
Titre:
Title:

On the Scott-continuity of tagged signal processes

Auteurs:
Authors:

Laurent Moss, & Guy Bois

Date: 2009

Type: Rapport / Report

Référence:
Citation:

Moss, L., & Bois, G. (2009). On the Scott-continuity of tagged signal processes
(Rapport technique n° EPM-RT-2009-01). https://publications.polymtl.ca/2640/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2640/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use:

Tous droits réservés

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-2009-01

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2640/
https://publications.polymtl.ca/2640/

EPM–RT–2009-01

ON THE SCOTT-CONTINUITY OF TAGGED SIGNAL
PROCESES

Laurent Moss et Guy Bois
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Avril 2009

©

On the Scott-continuity of tagged signal processes

Laurent Mossa, Guy Boisa

aDepartment of Computer and Software Engineering, École Polytechnique de Montréal,

P.O. Box 6079 Centre-Ville, Montréal, Québec, Canada H3C 3A7

Abstract

Process networks are frequently used to model signal processing and mul-
timedia applications. It is important to ensure that a process network has
a uniquely defined behavior in order to correctly model such deterministic
systems. Furthermore, a constructive procedure to determine this unique
behavior is necessary for its simulation and execution.

By the Kahn principle, the unique behavior of a process network is known
to be the least fixed point of the network functional when every process
computes a Scott-continuous function. The Kahn principle is used in a
recent timed extension of the least fixed point semantics of Kahn process
networks, using the tagged signal model. In this extension, processes compute
a function from input signals to output signals, where a signal is defined as a
partial function from a down set of tags to a set of values. However, it is often
tedious to formally prove that a tagged signal process is Scott-continuous.

This paper presents theorems on Scott-continuity that simplify such proofs.
Thus, a general theorem on the necessary and sufficient conditions for the
Scott-continuity of tagged signal processes is proven. Scott-continuity is then
proven for broad classes of processes, namely the classes of exactly causal
processes and of domain-warping processes, which include stateless processes,
delays as well as a subset of discrete-event processes.

Key words: Process networks, Denotational semantics, Timed systems,
Discrete events, Dataflow

Email addresses: moss@grm.polymtl.ca (Laurent Moss), bois@grm.polymtl.ca
(Guy Bois)

1

1. Introduction

Process networks, which are composed of several concurrently execut-
ing processes that communicate asynchronously only through point-to-point
FIFO channels, are frequently used to model signal processing and multi-
media applications. It is important to ensure that a process network has
a uniquely defined behavior in order to correctly model such deterministic
systems. Furthermore, a constructive procedure to determine this unique
behavior is necessary for its simulation and execution.

It has been shown that the existence and uniqueness of behaviors of
process networks can be guaranteed when every process is a Scott-continuous
function from the history of its inputs to the history of its outputs. By the
Kahn principle, the function computed by the process network is then the
least fixed point of the network functional. The existence of a least fixed
point is guaranteed by the Kleene fixed-point theorem [1, 2] and, because
it is a constructive theorem, the unique behavior can be obtained by the
iterative application of the network functional.

The Kahn principle has first been used in Kahn process networks [2],
which is an untimed model of computation. Recently, Liu and Lee have
developed a timed extension of the least fixed point semantics of Kahn process
networks [5, 6], using the tagged signal model. In this extension, processes
compute a function from input signals to output signals, where a signal is
defined as a partial function from a down set of tags to a set of values. An
example of such a signal is shown in Figure 1.

The requirement that every process be Scott-continuous is reasonable as
it means, informally, that a process does not need infinite input to produce
its output. However, it is often tedious to formally prove that a process is
Scott-continuous. The purpose of this paper is to present theorems on Scott-
continuity that simplify such proofs in the tagged signal model. Section 2
presents a brief overview of the tagged signal model. Section 3 proves a
general theorem on the necessary and sufficient conditions for the Scott-
continuity of tagged signal processes. In Section 4, the Scott-continuity
of a broad class of processes is shown, namely the class of exactly causal
processes, which includes the class of stateless processes as well as a subset
of discrete-event processes. Section 5 presents sufficient conditions for the
Scott-continuity of domain-warping processes such as delays. Section 6 shows
an example of a complex Scott-continuous tagged signal process composed of
several simpler processes. Section 7 concludes and presents future directions.

2

✲

✻

✻

✻

a
b

c

1 2 3 4 t

(1, a)

(3, c)

Figure 1: A timed signal defined on domain [0,3] with two present events at t = 1 and
t = 3. The signal takes an absent value ε for t ∈ [0, 3] \ {1, 3}.

2. Tagged signal model

In order to make this paper self-contained, a brief overview of the tagged
signal model is presented here. For more information, see [5, 6].

Signals are the basic building block of the tagged signal model. Each
signal represents a communication flow on a channel and has a value for each
tag in its domain of definition, where tags may represent time or causality.
Each signal is defined on a down set of tags, which means that if a signal is
defined for a given tag, then it is also defined for each tag less than or equal
to the given tag. Formally,

Definition 2.1 (Partially ordered set). Let X be a set and ≤ be a binary
relation over X. The tuple (X,≤) is a partially ordered set if, for each
a, b, c ∈ X, we have that:

(i) a ≤ a (reflexivity);

(ii) if a ≤ b and b ≤ a, then a = b (antisymmetry);

(iii) if a ≤ b and b ≤ c, then a ≤ c (transitivity).

Definition 2.2 (Down set). Let (T,≤) be a partially ordered set. A set
T ′ ⊆ T is a down set of T if, for each t ∈ T and t′ ∈ T ′, we have t ≤ t′ ⇒
t ∈ T ′.

Definition 2.3 (Signal). A signal s is a partial function s : T → V such
that:

(i) (T,≤) is a partially ordered set (the tag set);

(ii) V is an alphabet of values;

3

(iii) Its domain of definition, denoted dom (s), is a down set of T .

The set of signals with tag set (T,≤) and values V is denoted S(T, V).
Common choices for the tag set include the natural numbers (N) and the non-
negative real numbers (R+

0). More complex tag sets, such as R
+

0 ×N, are also
used to model super-dense time (e.g. delta-cycles in hardware description
languages).

In the tagged signal model, a process is a function from its input signals
to its output signals. For example, a process with one input and one output
has the following form: f : S(Ti, Vi) → S(To, Vo). When modeling a timed
process network, the tag set is a totally ordered set (such that t1 ≤ t2 or
t2 ≤ t1 for each t1, t2 ∈ T) and all signals share the same tag set. The sample
process would then have the following form: f : S(T, Vi) → S(T, Vo). Signals
in a timed process network can have a special value (ε), which represents the
absence of a regular value. Formally,

Definition 2.4 (Timed signal). A timed signal s ∈ S(T, V) is a signal
represented as a tuple (dom (s) , E) such that:

(i) (T,≤) is a totally ordered set;

(ii) V is an alphabet of values such that ε ∈ V represents an absent value;

(iii) E = {(t, s (t)) |t ∈ dom (s) , s (t) �= ε} is the set of present events.

For example, if s is the signal illustrated in Figure 1, then dom(s) = [0, 3]
and E = {(1, a), (3, c)}. The signal s has the absent value ε for each t ∈ [0, 3]
except for t = 1 and t = 3.

Signals can be partially ordered under the prefix order, where a signal r
is a prefix of s if both signals are identical up to a certain tag t, and then
only s may be defined for tags greater than t. Formally,

Definition 2.5 (Prefix order on signals). Let r, s ∈ S(T, V), r is a prefix of
s, denoted r ⊑ s, if:

(i) dom (r) ⊆ dom (s);

(ii) r (t) = s (t) , ∀t ∈ dom (r).

4

It has been shown in [5] that, for each (T,≤) and V , the set of signals
S(T, V) with the prefix order ⊑ is a complete partial order. This allows the
application of the Kahn principle to tagged signal process networks, where the
output signal of a process may be the input signal of another process. If every
tagged signal process is a Scott-continuous function from its input signals to
its output signals, then the least fixed point of the network functional exists
and is the unique behavior of the process network. The rest of the paper
focuses on the Scott-continuity of tagged processses.

3. A general Scott-continuity theorem

A function f : X → Y between two partially ordered sets (X,≤) and
(Y,≤) is said to be Scott-continuous if it preserves the supremum of all
directed subsets. A directed subset D ⊆ X is a set such that, for each
a, b ∈ D, there exists c ∈ D with a ≤ c and b ≤ c. The element c is then an
upper bound of set {a, b}. More generally, u is an upper bound of set D if
d ≤ u for each d ∈ D. If s is an upper bound of set D and we have s ≤ u
for each upper bound u of D, then s is the least upper bound or supremum
of D and is denoted

⊔

D. If each directed subset D of a partially ordered
set (X,≤) has a supremum

⊔

D, then (X,≤) is a directed complete partial
order. Scott-continuity is thus defined formally as follows:

Definition 3.1 (Scott-continuity). Let f : X → Y be a function between
two directed complete partial orders (X,≤) and (Y,≤). The function f is
Scott-continuous if, for each directed subset D ⊆ X, we have that

⊔

f(D)
exists and f(

⊔

D) =
⊔

f(D), where f (D) = {f (d) |d ∈ D}.

Proving that such a function f : X → Y is Scott-continuous is often
tedious, since one must consider all possible directed subsets, which may
include infinite directed subsets. Generally, the first step consists in proving
that the function is monotonic, meaning that a ≤ b implies f(a) ≤ f(b)
for each a, b ∈ X. As shown in Appendix A, if f is monotonic and D
is a directed set, then f(D) is also a directed set and

⊔

f(D) exists with
⊔

f(D) ≤ f (
⊔

D). The following lemma can thus be derived, as proven in
Appendix A:

Lemma 3.2. Let (X,≤) and (Y,≤) be directed complete partial orders. A
function f : X → Y is Scott-continuous if and only if the following conditions
hold:

5

(i) f is monotonic.

(ii) f (
⊔

D) ≤
⊔

f(D) for each directed subset D ⊆ X.

For each (T,≤) and V , the set of signals (S(T, V),⊑) is a complete partial
order [5], and thus also a directed complete partial order (a complete partial
order is a directed complete partial order with a least element). We therefore
have the following corollary:

Corollary 3.3. Let (X,≤) be a directed complete partial order. A function
f : X → S(To, Vo) is Scott-continuous if and only if the following conditions
hold:

(i) f is monotonic.

(ii) f (
⊔

D) ⊑
⊔

f(D) for each directed subset D ⊆ X.

It turns out that condition (ii) can be weakened such that only the
domains of suprema need to be considered. This significantly simplifies proofs
of Scott-continuity for tagged signal processes.

Theorem 3.4. Let (X,≤) be a directed complete partial order. A function
f : X → S(To, Vo) is Scott-continuous if and only if the following conditions
hold:

(i) f is monotonic.

(ii) dom (f (
⊔

D)) ⊆ dom (
⊔

f (D)), for each directed subset D ⊆ X.

Proof. By Corollary 3.3, if condition (i) does not hold, then f is not Scott-
continuous. If (ii) does not hold, then there exists a directed set D such that
dom (f (

⊔

D)) �⊆ dom (
⊔

f (D)) and, by Definition 2.5, we have f (
⊔

D) �⊑
⊔

f (D). Therefore, f is not Scott-continuous by Corollary 3.3. Thus, f is
Scott-continuous only if both conditions (i) and (ii) hold. We next show that
if both conditions (i) and (ii) hold, then f is Scott-continuous.

If (i) holds, then we have
⊔

f(D) ⊑ f (
⊔

D) for each directed set D ⊆
X. By Definition 2.5, we thus have

⊔

(f(D))(t) = (f (
⊔

D))(t) for each
t ∈ dom(

⊔

f(D)). If (ii) also holds, then we have (f (
⊔

D))(t) =
⊔

(f(D))(t)
for each t ∈ dom(f (

⊔

D)) and thus f (
⊔

D) ⊑
⊔

f(D). Since ⊑ is antisym-
metric, this implies f (

⊔

D) =
⊔

f(D) and f is thus Scott-continuous.

6

Several corollaries follow immediately from this general theorem. The first
one defines when a function with a single input signal and a single output
signal is Scott-continuous:

Corollary 3.5. A function f : S(Ti, Vi) → S(To, Vo) is Scott-continuous if
and only if the following conditions hold:

(i) f is monotonic.

(ii) dom (f (
⊔

D)) ⊆ dom (
⊔

f (D)), for each directed signal subset D ⊆
S(Ti, Vi).

A more general corollary covers functions with m ∈ N input signals
and one output signal. Such functions have the form f : S(Ti,1, Vi,1) ×
S(Ti,2, Vi,2) × · · · × S(Ti,m, Vi,m) → S(To, Vo). Following [1, Proposition
3.2.2], S(Ti,1, Vi,1) × S(Ti,2, Vi,2) × · · · × S(Ti,m, Vi,m) is a directed complete
partial order where tuples of signals are ordered by the pointwise prefix order
(meaning that (a1, a2, . . . , am) ⊑ (b1, b2, . . . , bm) is equivalent to aj ⊑ bj for
each 1 ≤ j ≤ m).

Corollary 3.6. A function on signals f : S(Ti,1, Vi,1) × S(Ti,2, Vi,2) × · · · ×
S(Ti,m, Vi,m) → S(To, Vo) is Scott-continuous if and only if the following
conditions hold:

(i) f is monotonic.

(ii) dom (f (
⊔

D)) ⊆ dom (
⊔

f (D)), for each directed signal subset D ⊆
S(Ti,1, Vi,1) × S(Ti,2, Vi,2) × · · · × S(Ti,m, Vi,m).

A still more general corollary covers functions with m ∈ N input signals
and n ∈ N output signals, having the form f : S(Ti,1, Vi,1) × S(Ti,2, Vi,2) ×
· · · × S(Ti,m, Vi,m) → S(To,1, Vo,1) × S(To,2, Vo,2) × · · · × S(To,n, Vo,n). Such
a function can be decomposed into n separate functions such that fj :
S(Ti,1, Vi,1) × S(Ti,2, Vi,2) × · · · × S(Ti,m, Vi,m) → S(To,j, Vo,j) for each 1 ≤
j ≤ n. Thus, the function f is Scott-continuous if and only if fj is Scott-
continuous for each 1 ≤ j ≤ n. Corollary 3.6 can then be applied sep-
arately to each fj. If we define the pointwise domain operator such that
dom(x1, x2, . . . , xn) = (dom(x1), dom(x2), . . . , dom(xn)) and the pointwise
subset operator such that (a1, a2, . . . , an) ⊆ (b1, b2, . . . , bn) is equivalent to
aj ⊆ bj for each 1 ≤ j ≤ n, then we get the following corollary:

7

Corollary 3.7. A function f : S(Ti,1, Vi,1)×S(Ti,2, Vi,2)×· · ·×S(Ti,m, Vi,m) →
S(To,1, Vo,1)×S(To,2, Vo,2)×· · ·×S(To,n, Vo,n) is Scott-continuous if and only
if the following conditions hold:

(i) f is monotonic.

(ii) dom (f (
⊔

D)) ⊆ dom (
⊔

f (D)), for each directed signal subset D ⊆
S(Ti,1, Vi,1) × S(Ti,2, Vi,2) × · · · × S(Ti,m, Vi,m).

This section proved a general theorem on the Scott-continuity of signal-
producing functions and showed it could be applied to tagged signal processes
with an arbitrary number of input and output signals. The following sections
apply this theorem and its corollaries to specific yet broad classes of tagged
signal processes.

4. Exactly causal processes are Scott-continuous

In this section, we prove the Scott-continuity of a broad class of processes:
exactly causal processes, which are monotonic and whose output signals are
defined only for all tags where all input signals are defined.

4.1. Exactly causal processes

A causal process is usually defined as a process whose outputs depend
only on past or current values of its inputs, but not on their future values. In
the tagged signal model, a causal process is thus a monotonic process whose
output signals are defined for all tags where all input signals are defined.
Thus, all input and output signals of a causal process must share the same
tag set. If each output signal of a causal process is also always defined for at
least one later tag, then this process is a strictly causal process. An exactly
causal process is a causal process whose outputs are defined nowhere except
for all tags where all input signals are defined. Formally,

Definition 4.1 (Exact causality). A function on signals f : S(T, Vi,1) ×
S(T, Vi,2) × · · · × S(T, Vi,m) → S(T, Vo,1) × S(T, Vo,2) × · · · × S(T, Vo,n) is
exactly causal if the following conditions hold:

(i) f is monotonic;

(ii) For each x1, x2, . . . , xm and y1, y2, . . . , yn such that (y1, y2, . . . , yn) =
f(x1, x2, . . . , xm), we have dom (yk) =

⋂

1≤j≤m

dom (xj), for 1 ≤ k ≤ n.

8

We prove that all exactly causal processes are Scott-continuous by apply-
ing Corollary 3.6 and a lemma and corollary on the domains of supremum of
signals.

Lemma 4.2. If D ⊆ S(T, V) is a directed signal subset, then dom (
⊔

D) =
⋃

d∈D

dom (d).

Proof. See Appendix A.

Corollary 4.3. Let (X,≤) be a partially ordered set. If f : X → S(To, Vo) is
a monotonic function and D ⊆ X is a directed subset, then dom (

⊔

f (D)) =
⋃

d∈D

dom (f (d)).

Proof. Let Y = f (D). Because f is monotonic, Y is a directed subset of
S(To, Vo). By Lemma 4.2, dom (

⊔

Y) =
⋃

y∈Y

dom (y). By definition, for each

y ∈ Y , there exists d ∈ D such that y = f (d). Therefore,
⋃

y∈Y

dom (y) =
⋃

d∈D

dom (f (d)).

Theorem 4.4. If f : S(T, Vi,1) × S(T, Vi,2) × · · · × S(T, Vi,m) → S(T, Vo) is
an exactly causal function, then it is Scott-continuous.

Proof. Each directed subset D ⊆ S(T, Vi,1)×S(T, Vi,2)×· · ·×S(T, Vi,m) can
be decomposed pointwise into m subsets such that D = D1 ×D2 × · · · ×Dm

and Dj ⊆ S(T, Vi,j) for 1 ≤ j ≤ m. By [1, Proposition 3.2.2], we have that
⊔

D exists and is equal to (
⊔

D1,
⊔

D2, . . . ,
⊔

Dm).
By Corollary 4.3, we have dom (

⊔

f(D)) =
⋃

d∈D

dom (f (d)). Because f is

exactly causal, this is equal to
⋃

d∈D

(

⋂

1≤j≤m

dom (dj)

)

with d = (d1, d2, . . . , dm).

Because the union and intersection operators are distribituve on sets, this

equals
⋂

1≤j≤m

(

⋃

dj∈Dj

dom (dj)

)

which, by Lemma 4.2, gives
⋂

1≤j≤m

dom (
⊔

Dj).

As f is exactly causal, this equals dom (f (
⊔

D)) and thus dom (f (
⊔

D)) =
dom (

⊔

f (D)). Therefore, f is Scott-continuous by Corollary 3.6.

As in the previous Section, this theorem can be easily extended to exactly
causal functions with m inputs and n outputs by decomposing such functions
into n separate functions each having m inputs and one output.

9

Corollary 4.5. If f : S(T, Vi,1)×S(T, Vi,2)×· · ·×S(T, Vi,m) → S(T, Vo,1)×
S(T, Vo,2) × · · · × S(T, Vo,n) is an exactly causal function, then it is Scott-
continuous.

Therefore, all exactly causal processes are Scott-continuous. For all pro-
cesses whose output signals are defined only for all tags where all input signals
are defined, proving the monotonicity of the process is thus sufficient to prove
its Scott-continuity.

Corollary 4.6. Let f : S(T, Vi,1)×S(T, Vi,2)×· · ·×S(T, Vi,m) → S(T, Vo,1)×
S(T, Vo,2)×· · ·×S(T, Vo,n). If, for each x1, x2, . . . , xm and y1, y2, . . . , yn such
that (y1, y2, . . . , yn) = f(x1, x2, . . . , xm), we have dom (yk) =

⋂

1≤j≤m

dom (xj),

for 1 ≤ k ≤ n, then the following statements are equivalent:

(i) f is monotonic;

(ii) f is exactly causal;

(iii) f is Scott-continuous.

4.2. Stateless processes

The value of each output signal of a stateless process at a given tag
depends only on the values of its input signals at the same tag. These
processes are called stateless because their output values at a given tag do
not depend on past input values. Stateless processes are commonly used
to model combinatorial components in the tagged signal model. We show
that stateless processes are monotonic and are a subclass of exactly causal
processes. Stateless processes are thus Scott-continuous.

Definition 4.7 (Statelessness). A function f : S(T, Vi,1)× S(T, Vi,2)× · · ·×
S(T, Vi,m) → S(T, Vo,1)×S(T, Vo,2)×· · ·×S(T, Vo,n) is stateless if the following
conditions hold:

(i) For each x1, x2, . . . , xm and y1, y2, . . . , yn such that (y1, y2, . . . , yn) =
f(x1, x2, . . . , xm), we have dom (yk) =

⋂

1≤j≤m

dom (xj), for 1 ≤ k ≤ n;

(ii) For 1 ≤ k ≤ n and for each t ∈ dom(yk), we have gk : Vi,1 ×Vi,2 × · · ·×
Vi,m → Vo,k such that yk(t) = gk(x1(t), x2(t), . . . , xm(t)).

10

Theorem 4.8. If f : S(T, Vi,1)× S(T, Vi,2)× · · · ×S(T, Vi,m) → S(T, Vo,1)×
S(T, Vo,2) × · · · × S(T, Vo,n) is a stateless function, then it is monotonic,
exactly causal and Scott-continuous.

Proof. Let (a1, a2, . . . , am) and (b1, b2, . . . , bm) be tuples of input signals such
that (a1, a2, . . . , am) ⊑ (b1, b2, . . . , bm). The tuples of output signals are then
(r1, r2, . . . , rn) = f(a1, a2, . . . , am) and (s1, s2, . . . , sn) = f(b1, b2, . . . , bm). By
Definition 2.5, we have dom(aj) ⊆ dom(bj) for 1 ≤ j ≤ m and, by condition
(i) of Definition 4.7, this implies dom(rk) ⊆ dom(sk) for 1 ≤ k ≤ n.

By condition (ii) of Definition 4.7, rk(t) = gk(a1(t), a2(t), . . . , am(t)) for
each t ∈ dom(rk) and sk(t) = gk(b1(t), b2(t), . . . , bm(t)) for each t ∈ dom(sk).
For 1 ≤ j ≤ m, we have aj(t) = bj(t) for each t ∈ dom(aj) because aj ⊑ bj .
By condition (i) of Definition 4.7, we have that dom(rk) ⊆ dom(aj) for
1 ≤ j ≤ m and 1 ≤ k ≤ n. Thus, we have aj(t) = bj(t) for each t ∈ dom(rk)
and rk(t) = sk(t) for each t ∈ dom(rk). This implies that rk ⊑ sk for
each 1 ≤ k ≤ n and thus (r1, r2, . . . , rn) ⊑ (s1, s2, . . . , sn). Therefore f is
monotonic and it follows from Corollary 4.6 that f is also exactly causal and
Scott-continuous.

Exemples of stateless processes include the merge process [5, 6], the add
process [5] and the decimator process, which respectively merge, add and
decimate together two data streams.

Example 4.9. A merge process produces an output signal in which the
present events of its two input signals are merged, such that only the present
events of the first signal are transmitted if both signals are present at exactly
the same tag. Formally, a merge is a function merge : S(T, V1)×S(T, V2) →
S(T, V1 ∪ V2) such that, for each z = merge (x, y), we have:

(i) dom (z) = dom (x) ∩ dom (y);

(ii) For each t ∈ dom (z), z (t) =

{

x (t) if x (t) �= ε
y (t) otherwise

Let g : V1 × V2 → V1 ∪ V2 such that g (v, w) =

{

v if v �= ε
w otherwise

We then have z (t) = g (x (t) , y (t)) and, by Definition 4.7, a merge is a
stateless process. By Theorem 4.8, it is thus monotonic, exactly causal and
Scott-continuous.

11

It may seem counterintuitive that this first-come, first-served merge is
monotonic and Scott-continuous. Indeed, first-come, first-served merge is a
special case of fair merge, which has been proven to be neither monotonic nor
Scott-continuous in untimed dataflow [7]. First-come, first-served merge has
also been shown to be neither monotonic nor Scott-continuous in the timed
dataflow model of Yates [8] (a similar model is used in an earlier version of the
tagged signal model [4, 3]). The critical difference is that the prefix order of
signals in the (new) tagged signal model takes into account their domains of
definition. Table 1 illustrates the behavior of a first-come, first-served merge
in untimed dataflow, Yates dataflow and the tagged signal model. In each
case, we have outputs z1, z2 such that z1 �⊑ z2. In both untimed and Yates
dataflow, we have inputs x1, x2 such that x1 ⊑ x2, which shows that first-
come, first-served merge is not monotonic, and thus not Scott-continuous, in
these models. However, in the tagged signal model, we have that x1 �⊑ x2

because, while both signals have the same domain, we have x1(2) = ε and
x2(2) = b. If instead, we define x3 = ([0, 1], {(1, a)}), such that x3 ⊑ x2,
then we have z3 = ([0, 1], {(1, a)}) and z3 ⊑ z2. This behavior is consistent
with the monotonocity of first-come, first-served merge in the tagged signal
model.

Table 1: Signals of first-come, first-served merge, with z1 = merge(x1, y) and
z2 = merge(x2, y)

Model Inputs x1, x2 Input y Outputs z1, z2

Untimed (a) (c) (a, c)

dataflow (a, b) (c) (a, b, c)

Yates {(1, a)} {(3, c)} {(1, a), (3, c)}

dataflow {(1, a), (2, b)} {(3, c)} {(1, a), (2, b), (3, c)}

Tagged ([0, 3], {(1, a)}) ([0, 3], {(3, c)}) ([0, 3], {(1, a), (3, c)})

signal model ([0, 3], {(1, a), (2, b)}) ([0, 3], {(3, c)}) ([0, 3], {(1, a), (2, b), (3, c)})

Example 4.10. An add process behaves similarly to a merge process, except
when events are present at the same tag in the two input signals. The output
signal at this tag then takes the value of the sum of the inputs. Formally, an
add is a function add : S(T, V)×S(T, V) → S(T, V) such that + is a binary
operation over V and, for each z = add (x, y), we have:

(i) dom (z) = dom (x) ∩ dom (y);

12

(ii) For each t ∈ dom (z), z (t) =

⎧

⎨

⎩

x (t) + y (t) if x (t) �= ε and y (t) �= ε
x (t) if x (t) �= ε and y (t) = ε
y (t) otherwise

Let g : V ×V → V such that g (v, w) =

⎧

⎨

⎩

v + w if v �= ε and w �= ε
v if v �= ε and w = ε
w otherwise

We then have z (t) = g (x (t) , y (t)) and, by Definition 4.7, an add is a
stateless process. It is thus monotonic, exactly causal and Scott-continuous.

Example 4.11. A decimator process produces an output signal which con-
tains all present events of the first input signal, except for tags where the
second signal is present. At these tags, the output signal is always absent
and the second input signal is said to decimate the first one. Formally, a
decimator is a function dec : S(T, V1) × S(T, V2) → S(T, V1) such that, for
each z = dec (x, y), we have:

(i) dom (z) = dom (x) ∩ dom (y);

(ii) For each t ∈ dom (z), z (t) =

{

x (t) if y (t) = ε
ε otherwise

Let g : V1 × V2 → V1 such that g (v, w) =

{

v if w = ε
ε otherwise

We then have z (t) = g (x (t) , y (t)) and, by Definition 4.7, a decimator is
a stateless process. It is thus monotonic, exactly causal and Scott-continuous.

4.3. Exactly causal discrete-event processes

Not all exactly causal processes are stateless. An exactly causal process
may have state, in that the current values of its output signals depend not
only on the current values of its input signals, but also on their histories. In
this section, we consider stateful processes which are discrete-event processes.
Both the input and output signals of such processes are discrete-event signals.
A discrete-event signal is a timed signal such that there is a finite number
of present events between any two given tags in its domain of definition.
Discrete-event signals were formally defined in [5, 6] as follows:

Definition 4.12 (Preimage). Let X and Y be two sets and let f : X → Y .
The preimage of set R ⊆ Y is f−1(R) = {x ∈ X|f(x) ∈ R}.

13

Definition 4.13 (Discrete-event signal). Let s ∈ S(T, V) be a timed signal
and let P = s−1(V \ {ε}) be the set of tags with present values. The signal
s is a discrete-event signal if the following conditions hold:

(i) There exists K ⊆ N and a function f : K → P such that:

(a) K is a down set of N;

(b) i ≤ j ⇔ f(i) ≤ f(j) (f is an order-isomorphism between P and a
down set of N);

(ii) If P is an infinite set, then dom(s) =
⋃

t∈P

D (t), where D (t) = {t′ ∈

T |t′ ≤ t}.

The set of discrete-event signals with tag set (T,≤) and values V is
denoted Sd(T, V) and was shown in [5] to be a complete partial order and
a down set of S(T, V). Since the order-isomorphism in condition (i) of
Definition 4.13 is a function from a down set of N to a set of tags, it is
a member of S(N, T). We define the function τ : Sd(T, V) → S(N, T) as
an operator which maps a discrete-event signal to the order-isomorphism
between a down set of N and its set of tags with present values. We define
another function ν : Sd(T, V) → S(N, V) as an operator which maps a
discrete-event signal to an enumeration of all present values ordered by their
tag. Thus, for each s ∈ Sd(T, V), we have dom(ν(s)) = dom(τ(s)) and
ν(s)(i) = s(τ(s)(i)) for each i ∈ dom(τ(s)). It is easy to see that τ and ν
are monotonic functions. The operators τ and ν are illustrated by examples
in Table 2.

Table 2: Operators τ and ν applied to sample signals

Signal s τ(s) ν(s)

([0, 10], {(1, a), (3, c), (6, b)}) ([0, 2], {(0, 1), (1, 3), (2, 6)}) ([0, 2], {(0, a), (1, c), (2, b)})

([0, 10], {(0.5, r), (2.84, s)}) ([0, 1], {(0, 0.5), (1, 2.84)}) ([0, 1], {(0, r), (1, s)})

We model a stateful discrete-event process as the composition of two
functions. The first function determines when present events occur on the
output signal, by computing an output sequence of tags from the sequences
of tags of the input signals. The second function determines the value of
each of these present events in the output signal. Finally, the constraint on

14

the output signal’s domain ensures that if the process is monotonic, then it
is also exactly causal and Scott-continuous.

Definition 4.14 (Strictly increasing signal). A signal s ∈ S(T, V) is strictly
increasing if, for each t1, t2 ∈ T such that t1 < t2, we have s(t1) < s(t2).

Definition 4.15 (Sequence-based function). A sequence-based function is
a function f : Sd(T, Vi,1) × Sd(T, Vi,2) × · · · × Sd(T, Vi,m) → Sd(T, Vo) with
g : S(N, T)m → S(N, T) and h : S(N, Vi,1) × S(N, Vi,2) × · · · × S(N, Vi,m) →
S(N, Vo) such that, for each x = (x1, x2, . . . , xm) and y = f(x), we have:

(i) dom(y) =
⋂

1≤j≤m

dom (xj);

(ii) y(t) =

{

h(ν(x))(n) if ∃n ∈ N such that g(τ(x))(n) = t
ε otherwise

(iii) g is closed on strictly increasing signals.

(iv) dom(g(τ(s))) ⊆ dom(h(ν(s))) for each s ∈ Sd(T, Vi,1) × Sd(T, Vi,2) ×
· · · × Sd(T, Vi,m).

If s is a discrete-event signal, then τ(s) is a strictly increasing signal.
Condition (iii) ensures that the sequence of tags in the output signal is also
strictly increasing.

The following theorem gives sufficient conditions for the monotonicity,
exact causality and Scott-continuity of a sequence-based function. For a ∈
S(N, T), we note t ∈ a if a−1({t}) �= ∅ and t /∈ a if a−1({t}) = ∅.

Theorem 4.16. A sequence-based function f : Sd(T, Vi,1)×Sd(T, Vi,2)×· · ·×
Sd(T, Vi,m) → Sd(T, Vo), with g : S(N, T)m → S(N, T) and h : S(N, Vi,1) ×
S(N, Vi,2) × · · · × S(N, Vi,m) → S(N, Vo), is monotonic, exactly causal and
Scott-continuous if the following conditions hold:

(i) h is monotonic;

(ii) For each r, s ∈ Sd(T, Vi,1) × Sd(T, Vi,2) × · · · × Sd(T, Vi,m) such that
r ⊑ s, we have:

(a) t /∈ g(τ(r)) and t ∈ dom (f(r)) ⇒ t /∈ g(τ(s));

(b) t ∈ g(τ(r)) and t ∈ dom (f(r)) ⇒ t ∈ g(τ(s));

15

Proof. Let x = f(r) and y = f(s). If r ⊑ s, then dom(r) ⊆ dom(s) and, by
condition(i) of Definition 4.15, this means that dom(x) ⊆ dom(y).

For each t ∈ dom(x), if x(t) = ε, then t /∈ g(τ(r)) and, by condition (ii.a),
we have t /∈ g(τ(s)) and thus y(t) = ε.

If x(t) �= ε, then t ∈ g(τ(r)) and, by condition (ii.b), we have t ∈ g(τ(s))
and thus y(t) �= ε. In this case, we have x(t) = h(ν(r))(m) and y(t) =
h(ν(s))(n) with t ∈ dom(x) and t = g(τ(r))(m) = g(τ(s))(n). By condition
(ii) and the fact that g is closed on strictly increasing signals, we have that
g(τ(r)) and g(τ(s)) are equal for all tags in dom(x) and we thus have m =
n. By condition (i), we have h(ν(r)) ⊑ h(ν(s)) and thus h(ν(r))(m) =
h(ν(s))(n). Therefore, x(t) = y(t) for each t ∈ dom(x) and thus x ⊑ y. We
have shown that r ⊑ s implies f(r) ⊑ f(s) and f is thus monotonic. It follows
from Corollary 4.6 that f is also exactly causal and Scott-continuous.

Again, this theorem can be easily extended to sequence-based functions
with m inputs and n outputs by decomposing such functions into n separate
functions each having m inputs and one output.

Example 4.17. The first example is a Kahn FIFO, which is an infinite FIFO
with non-blocking writes and blocking reads. As shown in Figure 2, a Kahn
FIFO has a data input signal (x) and a data output signal (y), as well as an
explicit request signal (r). When an event with the special value α is present
on the request signal, this means that the reading process is requesting a new
data value. As shown in Table 3, a Kahn channel answers a request for a
data value only once it has received this data value. The time when a Kahn
channel outputs a data value is thus the maximum of the time when it receives
this data value and the time when it receives a request for it. A Kahn channel
therefore does a pointwise maximum on the sequences of tags of its inputs.
Formally, a Kahn FIFO is a function kahn : Sd(T, V)×Sd(T, Vα) → Sd(T, V)
with Vα = {α, ε} such that, for each y = kahn(x, r), we have:

(i) dom(y) = dom(x) ∩ dom(r);

(ii) y(t) =

{

ν(x)(n) if ∃n ∈ N such that max(τ(x)(n), τ(r)(n)) = t
ε otherwise

By (i), a Kahn FIFO meets condition (i) of Definition 4.15. Let g :
S(N, T)2 → S(N, T) such that, for each a, b, c ∈ S(N, T) with c = g(a, b),
we have dom(c) = dom(a) ∩ dom(b) and, for each n ∈ dom(c), we have
c(n) = max(a(n), b(n)). Let h : S(N, V) × S(N, Vα) → S(N, V) such that

16

Figure 2: A Kahn FIFO channel with data and request inputs

Table 3: Sequence of events for a Kahn channel

Channel name Sequence of events

x ((1, a) , (5, b) , (19, c) , (20, d))
r ((0, α) , (6, α) , (12, α) , (18, α))
y ((1, a) , (6, b) , (19, c) , (20, d))

h(a, b) = a for each (a, b) ∈ S(N, V) × S(N, Vα). Thus, a Kahn FIFO also
meets conditions (ii) and (iv) of Definition 4.15 with the defined g and h.
Let a, b ∈ S(N, T) be two strictly increasing signal and let c = g(a, b). For
each i, j ∈ dom(c) such that i < j, we have x(i) < x(j) and y(i) < y(j), as
well as x(j) ≤ z(j) and y(j) ≤ z(j). By transitivity, we have x(i) < z(j) and
y(i) < z(j). Because z(i) is equal to x(i) or y(i), we have z(i) < z(j). A Kahn
FIFO thus meets condition (iii) of Definition 4.15 and is a sequence-based
function.

Since h is trivially monotonic, a Kahn FIFO meets condition (i) of The-
orem 4.16. Let c = g(a, b) and z = g(x, y) such that a ⊑ x and b ⊑ y. Then
dom(a) ⊆ dom(x) and dom(b) ⊆ dom(y) imply dom(c) ⊆ dom(z). For each
j ∈ dom(c), we have a(j) = x(j) and b(j) = y(j) which leads to c(j) = z(j)
and therefore c ⊑ z. Thus, g is monotonic and it follows immediately that
a Kahn FIFO meets condition (ii.b) of Theorem 4.16. Let y1 = kahn(x1, r1)
and y2 = kahn(x2, r2) such that (x1, r1) ⊑ (x2, r2). Assume there exists
t ∈ T such that t ∈ τ(y2) and t /∈ τ(y1). Because τ(y1) ⊑ τ(y2), there
exists n ∈ dom(τ(y2)) such that n /∈ dom(τ(y1)) and τ(y2)(n) = t. Thus,
we have first that n ∈ dom(τ(x2)) and n ∈ dom(τ(r2)), and second that
n /∈ dom(τ(x1)) or n /∈ dom(τ(r1)). Therefore, t /∈ dom(x1) or t /∈ dom(r1)
which leads to t /∈ dom(y1). A Kahn FIFO thus meets condition (ii.a) of
Theorem 4.16 and it is monotonic, exactly causal and Scott-continuous.

Example 4.18. An empty detector is a channel with a data input signal (x)
and an explicit request signal (r). As shown in Table 4, an empty detector
writes the special value α to the output signal (p) every time a read request

17

Table 4: Sequence of events for an empty detector

Channel name Sequence of events

x ((1, a) , (5, b) , (19, c) , (20, d))
r ((0, α) , (6, α) , (12, α) , (18, α))

p = empty(x, r) ((0, α) , (18, α))

is made when the channel is empty. For example, if a read request is made
on an empty detector such that τ(r)(0) < τ(x)(0), or if 0 /∈ dom(τ(x)), then
τ(p)(0) = τ(r)(0) is the time of the first request made on an empty channel.
If τ(r)(1) < τ(x)(0), then τ(p)(1) = τ(r)(1) is the time of the second failed
request, and so on and so forth.

Formally, denote the set of all subsets of T (the power set of T) by
P(T). Let G : S(N, T)2 → S(N,P(T)) such that, for each E = G(τx, τr)
with τx, τr ∈ S(N, T) and for each t ∈ T , we have t ∈ E(n) if there exists
j ∈ dom(τr) such that (i)t = τr(j); (ii)j ≥ n; (iii) t < τx(j − n) or (j −
n) /∈ dom(τx). Also denote the set of all partial functions from N to t by
[N → t] and let g : S(N, T)2 → [N → t] such that, for each e = g(τx, τr)
with τx, τr ∈ S(N, T) and n ∈ N, we have n ∈ dom(e) if E(n) �= ∅ and
e(n) = min(E(n)), where E = G(τx, τr).

Then, an empty detector is a function f : Sd(T, V)×Sd(T, Vα) → Sd(T, Vα)
with Vα = {α, ε} such that, for each y = empty(x, r), we have:

(i) dom(y) = dom(x) ∩ dom(r);

(ii) y(t) =

{

α if t ∈ g(τ(x), τ(r))
ε otherwise

By (i), an empty detector meets condition (i) of Definition 4.15. Let
h : S(N, V) × S(N, Vα) → S(N, Vα) such that, for each c = h(a, b) with
(a, b) ∈ S(N, V) × S(N, Vα), we have dom(c) = N and c(n) = α for each
n ∈ N. Then, if g is closed on strictly increasing signals, an empty detector
meets conditions (ii), (iii) and (iv) of Definition 4.15. We show by induction
that g is closed on strictly increasing signals.

Let E = G(τx, τr) and e = g(τx, τr) with two strictly increasing signals
τx, τr ∈ S(N, T). If dom(e) = ∅ or dom(e) = {0}, then e ∈ S(N, T) is
a strictly increasing signal. If not, then let i ∈ dom(e) such that i ≥ 1.
There exists k ∈ dom(τr) such that e(i) = τr(k) with τr(k) < τx(k − i)
or (k − i) /∈ dom(τx). In the first case, we have τr(k) < τx(k − i), thus

18

τr(k − 1) < τx(k − i) and τr(k − 1) ∈ E(i − 1). In the second case, we have
(k−i) /∈ dom(τx) and thus (k−1)−(i−1) /∈ dom(τx) and τr(k−1) ∈ E(i−1).
In both cases, this implies both that (i − 1) ∈ dom(e) and e(i − 1) < e(i).
By induction, if e is defined on any i ∈ N, then it is defined on any n ≤ i
and e(i) < e(j) for each i, j ∈ dom(e) such that i < j. Thus, e is defined
on a down set of N and is a strictly increasing signal. An empty detector is
therefore a sequence-based function.

Since h is trivially monotonic, an empty detector meets condition (i) of
Theorem 4.16. Let y1 = empty(x1, r1) and y2 = empty(x2, r2) such that
x1 ⊑ x2 and r1 ⊑ r2. Let e1 = g(τx1, τr1), e2 = g(τx2, τr2), E1 = G(τx1, τr1)
and E2 = G(τx2, τr2) such that τx1 = τ(x1), τx2 = τ(x2), τr1 = τ(r1) and
τr2 = τ(r2). We show that for each t ∈ T such that t ∈ e2 and t /∈ e1, we
have t /∈ dom(y1). Let t ∈ T such that t ∈ e2 and t /∈ e1. Then there exists
n ∈ dom(e2) and k ∈ dom(τr2) such that t = e2(n) and t = τr2(k). Thus we
have τr2(k) < τx2(k − n) or (k − n) /∈ dom(τx2).

Because τr1 is strictly increasing and τr1 ⊑ τr2, then we have t = τr1(k) if
k ∈ dom(τr1) and t /∈ dom(r1) if not. If t /∈ dom(r1), then t /∈ dom(y1), which
meets condition (ii.a) of Theorem 4.16. If t = τr1(k) and τr2(k) < τx2(k−n),
then we have τr1(k) < τx1(k − n) or (k − n) /∈ dom(τx1) and thus t ∈ E1(n).
If t = τr1(k) and (k−n) /∈ dom(τx2), then (k−n) /∈ dom(τx1) and t ∈ E1(n).
In both cases, since t /∈ e1 and t = e2(n), there exists i ∈ dom(τr1) with
i < k such that (i − n) /∈ dom(τx1) and τx2(i − n) ≤ τr2(i). Thus, τx2(i −
n) /∈ dom(x1). Because τx2(i − n) < τr2(k), we have t /∈ dom(x1) and thus
t /∈ dom(y1). An empty detector thus meets condition (ii.a) of Theorem 4.16.

We next show that condition (ii.b) of Theorem 4.16 holds. Let t ∈ T such
that t ∈ e1 and t ∈ dom(y1). Then there exists n ∈ dom(e1) and k ∈ dom(τr1)
such that t = e1(n) and t = τr1(k). Thus we have τr1(k) < τx1(k − n) or
(k − n) /∈ dom(τx1) and, for each i ∈ dom(τr1) such that i < k, we have
(i − n) ∈ dom(τx1) and τx1(i − n) ≤ τr1(i). If τr1(k) < τx1(k − n), we thus
have that τr2(k) < τx2(k − n) and e2(n) = t. If (k − n) /∈ dom(τx1) and
(k − n) /∈ dom(τx2), then we also have e2(n) = t. If (k − n) /∈ dom(τx1) and
(k−n) ∈ dom(τx2), then τx2(k−n) /∈ dom(x1) and thus τx2(k−n) /∈ dom(y1).
Because t ∈ dom(y1), we have that t < τx2(k−n) and thus τr2(k) < τx2(k−n)
and t = e2(n). An empty detector thus meets all conditions of Theorem 4.16
and is monotonic, exactly causal and Scott-continuous.

19

5. Domain-warping processes

In the previous section, we considered processes whose output signals are
defined only for all tags where all input signals are defined. The output of
these processes thus preserves the domain of their inputs. In this section,
we rather consider domain-warping processes, whose output signal generally
does not have the same domain as their input signals. Such domain-warping
processes can in particular be used to model delays.

The domain of a signal s ∈ S(T, V) is a down of set of T . Let D(T)
denote the set of all down sets on T . Then we have dom(s) ∈ D(T) for each
s ∈ S(T, V). It has been shown [5] that:

(i) D(T) is closed under union and intersection;

(ii) D(T) ordered by set inclusion ⊆ is a complete partial order;

(iii) For each directed subset D ⊆ D(T), we have
⊔

D =
⋃

d∈D

d

Functions of the form h : D(T) → D(T) are used to warp the domain of
a signal. As usual, h is monotonic if, for each r, s ∈ D(T) such that r ⊆ s,
we have h(r) ⊆ h(s). Also h is Scott-continuous if, for each directed subset

D ⊆ D(T), we have h(
⊔

D) =
⊔

h(D) and thus h

(

⋃

d∈D

d

)

=
⋃

d∈D

h(d).

Both continuous-time and discrete-event domain-warping processes are
considered in the following subsections.

5.1. Continuous-time domain-warping processes

The principle behind continuous-time domain-warping processes is sim-
ple: the value of the input signal for tag t ∈ T becomes the value of the
output signal for tag g(t), if g(t) is in the domain of the output signal, where
g : T → T . Of course, g needs to be injective so that each tag of the output
signal takes at most one value from the input signal. Formally, we have:

Definition 5.1 (Left inverse). Let X, Y be two sets and let f : X → Y be
an injective function. The left inverse of f is a partial function f−1 : Y → X
with domain of definition {f(x)|x ∈ X} such that f−1(f(x)) = x for each
x ∈ X.

20

Definition 5.2 (Continuous-time domain-warping function). A continuous-
time domain-warping function is a function f : S(T, V) → S(T, V) with
g : T → T and h : D(T) → D(T) such that g is injective, g−1 is the left
inverse of g and, for each x ∈ S(T, V) and y = f(x), we have:

(i) dom(y) = h(dom(x));

(ii) y(t) =

{

x(g−1(t)) if t ∈ dom(g−1) and g−1(t) ∈ dom(x)
ε otherwise

Lemma 5.3. A continuous-time domain-warping function f : S(T, V) →
S(T, V) with g : T → T and h : D(T) → D(T) is monotonic if the following
conditions hold:

(i) h is monotonic;

(ii) For each s ∈ S(T, V) and for each t ∈ h(dom(s)), there exists t
′

∈
dom(s) such that g−1(t) ≤ t

′

.

Proof. Let r, s ∈ S(T, V) with x = f(r) and y = f(s). If r ⊑ s, then
dom(r) ⊆ dom(s) and, by condition (i), we have dom(x) ⊆ dom(y).

For each, t ∈ dom(x), we have:

x(t) =

{

r(g−1(t)) if t ∈ dom(g−1) and g−1(t) ∈ dom(r)
ε otherwise

and

y(t) =

{

s(g−1(t)) if t ∈ dom(g−1) and g−1(t) ∈ dom(s)
ε otherwise

By condition (ii), for each t ∈ dom(x) such that t ∈ dom(g−1), there exists
t
′

∈ dom(r) such that g−1(t) ≤ t
′

and we thus have g−1(t) ∈ dom(r) and
g−1(t) ∈ dom(s). Because r ⊑ s, we have x(t) = y(t) for each t ∈ dom(x).
Therefore, x ⊑ y and f is thus monotonic.

Theorem 5.4. A continuous-time domain-warping function f : S(T, V) →
S(T, V) with g : T → T and h : D(T) → D(T) is Scott-continuous if the
following conditions hold:

(i) h is Scott-continuous;

(ii) For each s ∈ S(T, V) and for each t ∈ h(dom(s)), there exists t
′

∈
dom(s) such that g−1(t) ≤ t

′

.

21

Proof. By defintion, h is monotonic and f is thus monotonic by Lemma 5.3.
Let D ⊆ S(T, V) be a directed subset. Then we have that dom(f(

⊔

D)) =

h(dom(
⊔

D)). By Lemma 4.2, this is equal to h

(

⋃

d∈D

dom (d)

)

and, be-

cause h is Scott-continuous, to
⋃

d∈D

h (dom(d)). By Defintion 5.2, this gives
⋃

d∈D

dom(f(d)) and, by Corollary 4.3, dom(
⊔

f(D)). Therefore, dom(f(
⊔

D)) =

dom(
⊔

f(D)) and f is Scott-continuous by Corollary 3.5.

Example 5.5. Two examples of continuous-time domain-warping processes
are the lookahead and delay processes. These processes respectively shift to
the past and to the future every event in their input signal by a fixed tag
amount [5, 6]. Formally, let (T

′

,≤) be a totally ordered tag superset and
let + be a binary operation over T

′

such that (T
′

, +) is a group (i.e. + is
associative, there exists an identy element 0 ∈ T

′

and, for each t ∈ T
′

, there
exists an inverse element −t). Let T ⊆ T

′

be an interval, meaning that, for
each a, b, c ∈ T

′

, if a, c ∈ T with a ≤ b and b ≤ c, then we also have b ∈ T .
For a ∈ T such that a ≥ 0, a lookahead process is a function f :

S(T, V) → S(T, V) such that, for each y = f(x) with x ∈ S(T, V), we
have:

(i) dom(y) = {t ∈ T |(t + a) ∈ dom(x)};

(ii) y(t) = x(t+a)

Let g : T → T such that g(t) = t − a and g−1(t) = t + a, and let
h : D(T) → D(T) such that h(d) = {t ∈ T |(t + a) ∈ d}. A lookahead is
thus a continuous-time domain-warping process by Definition 5.2. We have

that h

(

⋃

d∈D

d

)

= {t ∈ T |(t + a) ∈
⋃

d∈D

d} and, by distributivity, this equals
⋃

d∈D

{t ∈ T |(t + a) ∈ d}. This is equal to
⋃

d∈D

h(d): h is thus Scott-continuous

and a lookahead meets condition (i) of Theorem 5.4. Let g−1(h(dom(x))) =
{g−1(t)|t ∈ h(dom(x))}. This is equal to {t + a|t ∈ h(dom(x))}, which
gives {t + a ∈ T |(t + a) ∈ dom(x)} = dom(x). Therefore, g−1(h(dom(x))) ⊆
dom(x) and a lookahead meets condition (ii) of Theorem 5.4. A lookahead
is thus monotonic and Scott-continuous.

A delay is defined similarly, for a ∈ T such that a ≥ 0, as a function
f : S(T, V) → S(T, V) such that, for each y = f(x) with x ∈ S(T, V), we
have:

22

(i) dom(y) = {t ∈ T |(t − a) ∈ dom(x) or (t − a) /∈ T};

(ii) y(t) =

{

x(t − a) if (t − a) ∈ T
ε otherwise

A delay is a continuous-time domain-warping process and it can be shown,
with a proof similar to the one for the lookahead, that it is monotonic and
Scott-continuous.

5.2. Discrete-event domain-warping processes

A discrete-event domain-warping process is similar to a sequence-based
process, except that the domain of the output signal is not necessarily the
domain of the input signal and that only the tags but not the values of
present events may be changed by the process. Formally, we have:

Definition 5.6 (Injective signal). A signal s ∈ S(T, V) is injective if, for
each t1, t2 ∈ T such that t1 �= t2, we have s(t1) �= s(t2).

Definition 5.7 (Discrete-event domain-warping function). A discrete-event
domain-warping function is a function f : Sd(T, V) → Sd(T, V) with g :
S(N, T) → S(N, T) and h : D(T) → D(T) such that, for each x ∈ Sd(T, V)
and y = f(x), we have:

(i) dom(y) = h(dom(x));

(ii) y(t) =

{

ν(x)(n) if ∃n ∈ N such that g(τ(x))(n) = t
ε otherwise

(iii) g is closed on injective signals;

(iv) dom(g(τ(s))) ⊆ dom(τ(s)) for each s ∈ S(T, V).

For each discrete-event signal s ∈ Sd(T, V), we have that τ(s) is an
injective signal. Condition (iii) ensures that g(τ(s)) is also an injective signal
and thus that two different tags in the input signal are never mapped to the
same tag in the output signal.

Lemma 5.8. A discrete-event domain-warping function f : Sd(T, V) →
Sd(T, V) with g : S(N, T) → S(N, T) and h : D(T) → D(T) is monotonic if
the following conditions hold:

(i) h is monotonic;

23

(ii) g is closed on strictly increasing signals;

(iii) For each r, s ∈ Sd(T, V) such that r ⊑ s, we have:

(a) t /∈ g(τ(r)) and t ∈ h(dom (r)) ⇒ t /∈ g(τ(s));

(b) t ∈ g(τ(r)) and t ∈ h(dom (r)) ⇒ t ∈ g(τ(s));

Proof. Let x = f(r) and y = f(s). If r ⊑ s, then dom(r) ⊆ dom(s) and, by
condition (i), we have dom(x) ⊆ dom(y). With conditions (ii) and (iii), we
can then use the same procedure than in the proof of Theorem 4.16 to prove
that x(t) = y(t) for each t ∈ dom(x) and thus x ⊑ y.

Theorem 5.9. A discrete-event domain-warping function f : Sd(T, V) →
Sd(T, V) with g : S(N, T) → S(N, T) and h : D(T) → D(T) is Scott-
continuous if the following conditions hold:

(i) h is Scott-continuous;

(ii) g is closed on strictly increasing signals;

(iii) For each r, s ∈ Sd(T, V) such that r ⊑ s, we have:

(a) t /∈ g(τ(r)) and t ∈ h(dom (r)) ⇒ t /∈ g(τ(s));

(b) t ∈ g(τ(r)) and t ∈ h(dom (r)) ⇒ t ∈ g(τ(s));

Proof. It follows immediately that h is monotonic and, by Lemma 5.8 with
conditions (ii) and (iii), f is also monotonic. With condition (i), we can
then use the same procedure than in the proof of Theorem 5.4 to prove that
dom(f(

⊔

D)) = dom(
⊔

f(D)) and that f is Scott-continuous by Corollary
3.5.

6. Composite processes

In the previous sections, we proved the Scott-continuity of exactly causal
processes and, under certain conditions, of domain-warping processes. Fol-
lowing the Kahn principle, if every process in a process network is Scott-
continuous, then the process network is itself a Scott-continuous function
that maps input signals to the least fixed point of the network equations.
Therefore, a process network built from the Scott-continuous processes de-
fined in the previous sections is also a Scott-continuous process, even if the
resulting composite process is neither an exactly causal process nor a domain-
warping process.

24

Example 6.1. A poll FIFO is a FIFO with non-blocking reads. It has a
data input signal (x) and a data output signal (y), as well as an explicit
request signal (r). If it receives a request while it is empty, it immediately
signals the failure to read by sending special value α on its output and it
then discards the request. If it receives a request while it is not empty, it
sends to the output the earliest (not yet sent to the output) value received
on its input. A poll FIFO is the composition of several simpler processes, as
shown in Figure 3. The behavior of the poll channel is shown in Table 5 with
the same inputs than for the Kahn FIFO.

Table 5: Sequence of events for a poll FIFO

Channel name Sequence of events

x ((1, a) , (5, b) , (19, c) , (20, d))
r ((0, α) , (6, α) , (12, α) , (18, α))

p = empty(x, r) ((0, α) , (18, α))
d = dec(r, p) ((6, α) , (12, α))

v = kahn(x, d) ((6, a) , (12, b))
y = merge(v, p) ((0, α) , (6, a) , (12, b) , (18, α))

An empty detector first detects read requests that are made when the
FIFO is empty. A decimator then produces a modified request signal in
which all requests on an empty FIFO have been removed. This modified
request signal controls an inner Kahn FIFO. The output of the Kahn FIFO,
which contains the result of all successful read requests, is merged with the
output of the empty detector, which contains failed read requests.

Figure 3: Schema of a poll FIFO

The Scott-continuity of the merge and decimator processes has been

25

shown in Example 4.9 and Example 4.11 whereas the empty detector has
been shown to be Scott-continuous in Example 4.18. A poll FIFO is thus a
process network in which every process is Scott-continuous and it is therefore
a Scott-continuous process.

7. Conclusion

We have demonstrated a general theorem on the necessary and sufficient
conditions for the Scott-continuity of tagged signal processes and we have
applied it to show the Scott-continuity of broad classes of processes. Thus,
we have shown the Scott-continuity of exactly causal processes, which include
stateless processes, such as merge and decimator processes, as well as some
discrete-event processes, such as a Kahn FIFO and empty detectors. The
Scott-continuity, under certain conditions, of domain-warping processes such
as delays and lookaheds has also been shown. Finally, we have shown how
composite processes can be composed from simpler processes.

With the proofs and theorems given in this paper, it becomes easier to
show that a given tagged signal process is Scott-continuous and therefore to
build compositional models of computation within the tagged signal model.
For example, these theorems can be used to model explicit communication
channels in real-time process networks and Scott-continuity guarantees that
the resulting process networks are compositional. Future work could also
involve developing proofs of Scott-continuity for other classes of processes.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Coun-
cil of Canada for its financial help.

References

[1] S. Abramsky and A. Jung, Domain theory, in: S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum (Eds.), Handbook of Logic in Computer
Science (vol. 3): Semantic Structures, Oxford University Press, Oxford,
UK, 1995, pp. 1–168.

[2] Gilles Kahn, The semantics of a simple language for parallel
programming, in: J.L. Rosenfeld (Ed.), Proceedings of the IFIP
Congress 74, North-Holland Publishing, 1974, pp. 471–75.

26

[3] E. A. Lee, Modeling concurrent real-time processes using discrete events,
Annals of Software Engineering 7(1-4):25–45, 1999.

[4] E. A. Lee and A. Sangiovanni-Vincentelli, A framework for comparing
models of computation, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 17(12):1217–29, 1998.

[5] X. Liu, Semantic Foundation of the Tagged Signal Model, Ph.D. Thesis,
EECS Department, University of California at Berkeley, 2005.

[6] X. Liu and E. A. Lee, CPO semantics of timed interactive actor
networks, Theoretical Computer Science 409(1):110–125, 2008.

[7] Prakash Panangaden and Eugene W. Stark. Computations, residuals,
and the power of indeterminacy, in: Timo Lepist and Arto Salomaa
(Eds.), Proceedings of the 15th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science
(vol. 317), Springer-Verlag, London, 1988, pp. 439–454.

[8] R. K. Yates. Networks of real-time processes, in: E. Best (Ed.),
Proceedings of the 4th International Conference on Concurrency
Theory, Lecture Notes in Computer Science (vol. 715), Springer-Verlag,
Germany, 1993, pp. 384–97.

A. Appendix: Additional proofs

A.1. Order theory

Lemma A.1. Let (X,≤) and (Y,≤) be complete partial orders. If a function
f : X → Y is monotonic, then for each directed subset D ⊆ X:

(i) f(D) = {f (d) |d ∈ D} is a directed subset of Y .

(ii)
⊔

f(D) ≤ f (
⊔

D).

Proof. For each directed subset D ⊆ X and for each a, b ∈ D, there exists
by definition c ∈ D such that a ≤ c and b ≤ c. If f is monotonic, then we
have f(a) ≤ f(c) and f(b) ≤ f(c) such that f(a), f(b), f(c) ∈ f(D). Thus,
f(D) is a directed subset of Y . There exists

⊔

D ∈ X and
⊔

f(D) ∈ Y
because (X,≤) and (Y,≤) are complete partial orders. By definition, we

27

have d ≤
⊔

D for each d ∈ D and, because f is monotonic, we have f(d) ≤
f (

⊔

D) for each f(d) ∈ f(D). Thus, f (
⊔

D) is an upper bound of f(D).
By definition,

⊔

f(D) is the least upper bound of f(D) and we thus have
⊔

f(D) ≤ f (
⊔

D).

Lemma A.2. Let (X,≤) and (Y,≤) be complete partial orders. A function
f : X → Y is Scott-continuous if and only if the following conditions hold:

(i) f is monotonic.

(ii) f (
⊔

D) ≤
⊔

f(D) for each directed subset D ⊆ X.

Proof. If (i) does not hold, then there exists r, s ∈ X such that r ≤ s but
f(r) �≤ f(s). We have a directed subset D = {r, s} such that

⊔

D = s and
therefore f (

⊔

D) = f(s). However
⊔

f(D) �= f(s) because f(r) �≤ f(s).
Therefore, f is not Scott-continuous.

If (ii) does not hold, then there exists a directed subset D such that
f (

⊔

D) �≤
⊔

f(D). Because of the reflexivity of ≤, we have that f (
⊔

D) �=
⊔

f(D) and f is not Scott-continuous. Therefore, f is Scott-continuous only
if both conditions (i) and (ii) hold. We next show that if both conditions (i)
and (ii) hold, then f is Scott-continuous.

If condition (i) holds, then by Lemma A.1, for each directed subset D ⊆
X, we have

⊔

f(D) ≤ f (
⊔

D). If condition (ii) also holds, then we have
f (

⊔

D) =
⊔

f(D) because of the antisymmetry of ≤ and f is thus Scott-
continuous.

A.2. Tagged signal model

Lemma A.3. If D ⊆ S(T, V) is a directed signal subset, then dom (
⊔

D) =
⋃

d∈D

dom (d).

Proof. The proof of this Lemma is the same as the proof of Lemma 2.16 in
[5], which showed that each signal set S(T, V) is a complete partial order. It
is given here again in order to make this paper self-contained.

Let dt ∈ D be any signal such that t ∈ dom(dt) and let s be a signal
such that dom(s) =

⋃

d∈D

dom (d) and s(t) = dt(t). By definition, dt exists for

each t ∈ dom(s). Also, since D is a directed set, every signal that could be
dt must have the same value at tag t, or else they would have no common
upper bound and this would be a contradiction.

28

For each d ∈ D, we have that dom(d) ⊆ dom(s) and d(t) = s(t) for each
t ∈ dom(d). The signal s is thus an upper bound of D. Let u be an upper
bound of D. Then we have dom(d) ⊆ dom(u) for each d ∈ D and thus
⋃

d∈D

dom (d) ⊆ dom(u). This gives dom(s) ⊆ dom(u). Furthermore, we have

dt(t) = u(t) for each t ∈ dom(s) and thus s(t) = u(t) for each t ∈ dom(s).
Therefore s ⊑ u and s =

⊔

D. This proves that dom (
⊔

D) =
⋃

d∈D

dom (d).

29

	EPM-RT-2009-01_Moss

