
Titre:
Title:

Introducing knowledge concepts in software process modeling

Auteurs:
Authors:

Noureddine Kerzazi, & Pierre N. Robillard

Date: 2010

Type: Rapport / Report

Référence:
Citation:

Kerzazi, N., & Robillard, P. N. (2010). Introducing knowledge concepts in software
process modeling. (Technical Report n° EPM-RT-2010-14).
https://publications.polymtl.ca/2636/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2636/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-2010-14

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2636/
https://publications.polymtl.ca/2636/

EPM–RT–2010-14

INTRODUCING KNOWLEDGE CONCEPTS IN
SOFTWARE PROCESS MODELING

Noureddine Kerzazi, Pierre N. Robillard
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Novembre 2010

EPM-RT-2010-14

INTRODUCING KNOWLEDGE CONCEPTS IN
SOFTWARE PROCESS MODELING

Noureddine Kerzazi, Pierre N. Robillard
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

Novembre 2010

2010
Noureddine Kerzazi, Pierre N. Robillard
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2010-14
Introducing Knowledge Concepts in Software Process Modeling
par : Noureddine Kerzazi, Pierre N. Robillard
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

Introducing Knowledge Concepts in Software Process
Modeling

Noureddine Kerzazi
Department of Computer and

Software Engineering
École Polytechnique de Montréal

Montréal, Canada
+1 514 340 4711 # 7182

Noureddine.Kerzazi@polymtl.ca

 Pierre N. Robillard
Department of Computer and

Software Engineering
École Polytechnique de Montréal

Montréal, Canada
+1 514 340 4711 # 4238

Pierre-n.Robillard@polymtl.ca

ABSTRACT
Software process is knowledge intensive. Nevertheless,
knowledge concepts are rarely taken into account in software
process modeling. This paper presents a new software process
modeling approach, which takes into account the various
conceptual knowledge required to perform a task. The approach is
based on the Software & Systems Process Engineering Meta-
model (SPEM 2.0). It essentially adds knowledge attributes to
existing relationships between roles, tasks and artifacts.
Comparison between attributes for a given task provides
information on the knowledge-gap between the SPEM elements
involved. This information could be used in knowledge oriented
project management to evaluate the risk associated to the
knowledge gaps. A software tool has been implemented to
facilitate the recording of various knowledge concepts while
modeling the software process. Example of this approach is
presented.

Keywords
Software Process Modeling; Software & Systems Process
Engineering Meta-model (SPEM); Conceptual knowledge.

1. INTRODUCTION
Over the last 10 years there has been a greater interest around

Knowledge creation and management for software organizations.
Many authors claim, for different reasons, the integration of
knowledge management (KM) in software development process
to be knowledge-oriented. Dakhli and Ben Chouikha [1] think that
software artifacts are accumulation of knowledge owned by
organizational stakeholders. Rus and Lindvall [2] argued that KM
is a risk prevention and mitigation strategy within software
organizations. Moreover, the authors advocate the relevance of
learning process, described as a fundamental part of KM, which
support employees to perform specific tasks. Wang et al. [3] recall
the fact that software processes are people-dependent within a
context of creative work. Robillard [4] pointed out that for
providing relevant support to software development, a cognitive

prospect have to be considered aimed at bridging the gaps
between software and cognitive sciences regarding knowledge.
Finally, Meso et al. [5] advocated that the strong software process,
tailored for a particular application context, should fitted to
cognitive theory.

Despite these different interests and perspectives, it follows that
the integration of knowledge component can improves the
efficiency of the software processes as well as their quality.
However, the latest specification of Software & Systems Process
Engineering Meta-model (SPEM 2.0) [6], the OMG‟s “de facto”
standard devoted to software process modeling, does not supports
this concern. It focuses on a structural view and does not define
support for such behavior modeling. That‟s why there is a need to
extend this Meta-model to support a knowledge-oriented
modeling perspective on the base of activity-oriented one.

A typical problem faced by project managers when starting a
software project, either new or maintenance, relates to the
question: Do we have necessary knowledge to complete the
project? Data is required to support an informed decision: For all
interrelated activities, which are the unit of work of a given
process, is it possible to measure the knowledge required to carry
out each task and to map this data to knowledge provided by
Roles (primary and additional) as well as input artifacts ? Hence,
there is a need for a dashboard that would helps to develop indices
of knowledge discrepancies. So we propose a formalism that is
based on: 1) the SPEM standard, which is used for building the
syntactic structure, and so providing a standardized static
structural view; and 2) an extension based on the relationships
between components of that structural view, which is used to
formalize the semantic relationships between SPEM elements, and
so supporting a conceptual view of Knowledge. This formal
approach allows process designers to create, as well as to
represent, analyze and validate a Knowledge view of process
model.

To demonstrate the potential of this conceptual Knowledge-
oriented approach, this paper presents a new perspective for
software process modeling supported by a new tool called
DSL4SPM (Domain-Specific-Language for Software Process
Modeling). This approach may be addressed by adding a new
perspective on top of the Activity-oriented one. Our proposal
consists to enrich the semantics of a process model by exploiting
the relationships between SPEM elements. Thus, we can address
multiple views based on these relationships.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
© Copyright N.Kerzazi, École Polytechnique de Montréal.

The remaining of the paper is organized as follows: Section 2
outlines the background theories. Section 3 highlights the
architecture of DSL4SPM tool and the basis of the proposed
approach. Section 4 illustrates an example based on post hoc
analysis of the process data related to a real project. Section 5
presents the conclusion and future works.

2. Theoretical Background
2.1 SPEM 2.0 Overview
SPEM2.0 is the OMG‟s standard aimed at software process

modeling [6]. It is based on UML and dedicated to describe
components of software process. The Meta-model separates the
content of methodology from its instantiation within a particular
process as shown in Figure 1. This improves the reuse of
predefined elements, such as Role, Task, Work Products and
Guidance in specific processes customized to specific types of
projects.

According to SPEM, a disciplined process is a set of activities;
each activity is composed of one or more tasks performed by an
abstract active entity called Role that is responsible for one or
more tangible entities called work products. Activities are
organized within phases. Tasks can be more detailed with Steps.
Roles describe the responsibilities and a set of skills used to make
easy the assignation to reel persons. Work products are a piece of
information produced or used by the tasks.

SPEM 2.0 is activity oriented Meta-model, it is founded on basis
of seven packages: 1) The Core contains common classes and
abstractions used by all other packages; 2) Process Structure
defines and represents a breakdown structure of nested Activities.
Activity references list of tasks, roles and Work Products, which
are defined in Method Content package; 3) Process Behavior
allows extension of SPEM Meta-model toward existing
externally-defined behavior models; 4) Managed Content
describes in natural language documentation of model
components (ex. White paper describing agile practices);
5) Method Content describes element such as Roles, Tasks, and
Work product Definitions; 6) Process with Methods uses the
elements already defined in Method Content package to build a
specific lifecycle or breakdown structure of activities for a
specific project; 7) Method Plug-in is a repository for
configurable libraries, which packages Method content and
processes contents to be reused.

Figure. 1.SPEM Method Framework mapped to Method Content

versus Process REF [6].

Figure 1 shows the synthesis of the two most interesting
packages for us: The Method Content and Process packages.
While there is a great acceptance regarding SPEM 2.0 as Meta-
model for software development processes, one important basic
concern is the need of tools that support a conceptual approach
from which other perspective such knowledge-oriented can be
integrated to processes modeling.

2.2 Knowledge Management theories
According to Davenport and Prusak [7], Knowledge

Management (KM) can be defined as a process that supports
sharing, distributing, creating, capturing and understanding
organization‟s knowledge. This definition seems to be general and
can be separated on a number of issues: knowledge creation,
representation and sharing. This subsection highlights what we
think are the representative theories coming from both
management and cognitive sciences. The management theories
emphasizes on organization supporting knowledge creation and
propagation, while cognitive theories emphasizes on knowledge
representation and storage.

From management point of view, Nonaka & Takeuchi [8] present
their knowledge-creation theory which is represented in a bi-
dimensional plan: the first is epistemological dimension that
emphasizes on two types of knowledge: Tacit (T) and Explicit
(E). Tacit knowledge is personal and context-specific wherein by
what a person is not able to express explicitly but which frames
his behavior, while the explicit knowledge is an externalized
knowledge that can be represented in formal or informal support
of communication independently of who “knows”. For the
software processes, this means that knowledge may exist in a
personal (Role) and in registered format (Artifact). The second is
ontological dimension that emphasizes on
organizational/managerial structures (i.e. Knowledge level):
Individual, group, organizational and inter-organizational. Nonaka
& Takeuchi argue that knowledge creation is fostered by a
conversion process transforming tacit knowledge to explicit
knowledge, and vice-versa, throughout a hierarchical structure
(i.e. ontological dimension). They identified four cycles of
conversion: Internalization (E-To-T), Externalization (T-to-E);
socialization (T-To-T) and combination (E-To-E).

Arguing that the important characteristic of knowledge relates to
action, many authors [8-10] recognize that a significant
implication of knowledge representation is to achieve a same
understanding of data or information within share of certain
knowledge base. However, there is a lack for formalism on how
the knowledge can be embodied within a process model
conceptually and not by a simple text description. Hence, there is
a need for a symmetric representation of knowledge, which means
that we could use the same descriptive object for roles as well as
tasks or artifacts.

Unlike management science, cognitive science looks at how
human mind stores things. It defines knowledge as a set of
interrelated concepts [11]. Concepts, which are defined as the
basic unit of knowledge, are at the center of theories for
knowledge representation [12]. Those concepts can be organized
in ontology to simplify their manipulation as well as to share
meanings and semantics. We believe it would be useful to
represent knowledge as it is represented in the human mind (i.e. a
set of concepts).

From cognitive point of view, Novak and Canas [13] developed
the theory of knowledge representation and/or sharing systems,
including individual learning. The authors defined knowledge as a
structured set of interrelated concepts (concept mapping). This
approach is used to represent as well as to share the knowledge on
a specific domain. Novak argues that learning involves the
assimilation (i.e. internalization) of new concepts into existing
cognitive structures as recommended by the "Constructivist
learning theory". Indeed, cognitive psychology stated that people
learn by the assimilation of new concepts and propositions into
existing cognitive structures, instead memorizing [14].

Recognizing that there are two types of knowledge : Declarative
and Procedural, Anderson [15] assumes that the Declarative
knowledge refers to things that can be described and shared with
others (e.g., answer a question about a programming language),
while Procedural knowledge is the knowledge exercised in the
performance of a task and focuses mostly on action than
information. This second type of knowledge is difficult to
describe, nevertheless, important particularly in problem solving
(e.g. experience of using a debugger).

Even though there is an abundance of theoretical knowledge
models in the literature, there is still a lack of integrated tools for
the KM as reported by Bjørnson & Dingsøyr in their systematic
review [16]. Recognizing that knowledge is the primary source of

an organization's innovative potential, this work intends to
integrate knowledge-oriented perspective on basis of activity-
oriented perspective aiming at represent and manage knowledge
within software development processes. First, SPEM Meta-model
is extended with attributes related to knowledge. So a cognitive
approach is adopted to represent the knowledge required to carry
out a task (considered as the core of action) and symmetrically the
knowledge provided by artifacts and roles that are linked to this
task. Second, the knowledge required and provided are compared
and system generate a dashboard. The next section presents the
foundations of the tool used to implement this perspective and
describes the steps of the proposed approach.

3. Extends conceptual modeling with the
Knowledge Representation

3.1 The system architecture of DSL4SPM
tool
DSL4SPM target the compliance point called “SPEM Process

with Behavior and Content” [6]. This compliance point is
recommended for implementers who want to focus on the
modeling aspects of SPEM. This subsection presents the
architecture, which has been used for DSL4SPM tool that
supports the proposed extension.

Figure 2.Architecture of the DSL4SPM tool

 Layer 1 – This lowest level represents the technical
infrastructure chosen for the DSL4SPM tool implementation
and persistency services. The choice of Visual Studio IDE is
based on two key points: 1) Using C # language which provides
the mechanism of partial class. This mechanism allows
separation of one class implementation in several physical files
(graphics, specific code, validation, etc.); 2) Provides "DSL

Tools" framework that supports the creation of a graphical
Domain-Specific-Language, which helps improving the
semantics of SPEM with a specific language based on the
concept of attributed relationships. It means that the focus is not
just about the structure of a process but also on information
contained in the attributes of the relationship between SPEM
elements and allows for multi-view representation. The next

section presents the ontological formalism of these
relationships.
 Layer 2 represents the Meta-model SPEM 2.0. Since this
Meta-model does not support the modeling of behavioral
aspects, it has been extended with a Role-Activity-Artifact
ontological formalism. This component allows the validation of
the model consistency (e.g. Verify the kind of links, which can
be performed, between two given elements). Others extensions
are proposed, their detail is out of scope of this paper.

 Layer 3 represents the tool interface that supports the
modeling (e.g. Tool Box, Scene, Breakdown structures and a
specific component supporting the communication with a
Method content, a repository that describes reusable elements).

 Layer 4 represents the usability of a process model, which
address, on top of Activity-Oriented structure, others
Breakdown structures such as knowledge which focuses on tacit
and explicit flows throughout the process. It can also be
exported to a Website, Visual Studio Team System (VSTS) and

project management tool such as Ms Project. Due to the
unpredictable nature of task‟s duration, the process can be
simulated from the estimated duration of tasks and their
sequence embodied in the link Task-to-Task. The component of
validation can be used to check the consistency of a process
model according to predefined rules (e.g. a primary role for each
task, a work product should be related to an activity, etc.).

3.2 Basis of the approach
Based on the DSL4SPM tool architecture as described in

preceding subsection, the knowledge-oriented perspective has
been developed on top of activity-oriented perspective.

Figure 3 depicts the approach of dashboard building aiming at
visualize the mismatch between the knowledge required to carry
out situational task and other SPEM elements (e.g. Role, artifact,
guidance, etc.) that provide this knowledge. The build of
dashboard follows three steps:

Figure 3. The dashboard building approach.

STEP 1: Parameterization

 This step specifies the ontology that formalizes the structure
of concepts. The process engineer loads a default or adapted tree
of concepts (i.e. ontology) from a structured XML file. The
project team gathers and organizes concepts of knowledge
relevant to the context of project. As defined by [17], an
ontology is a formal description of knowledge aiming at
provides a common understanding of topics to be shared
between users and systems. Following this definition and based
on work of Anquetil et al. [18], ontology of concept has been
used for materialize knowledge-sharing. As seen in figure 4 (f),
a tree of concept is proposed by default. This tree is recorded in
XML format, which means more flexibility for adjustment to a
specific context of process and/or project.
STEP 2: Modeling

 For each task, set references to a subset of concepts required
for achieving the task. For each concept, the designer specifies
in which way the concept is required declarative and/or
procedural.

 For all incoming links to each task (e.g. from Work
products, roles, guidance), set references to a subset of concepts
which are provided by this element.
STEP 3: Compute mismatch and draw a dashboard

 For each task, the system searches all incoming links,
retrieves the concepts provided and compiles the results. Thus, a
concept required by the task is considered as fully mapped if it
can be provided, with the proper type, by at least one of the
elements that are linked (incoming) to this task. A concept
required by the task is considered inadequately mapped if it is
partially mapped (ex. provided as declarative, while it is

required such as procedural). Finally, a concept is considered
non-mapped if it isn‟t provided by any SPEM elements linked to
this task.

 Dashboard displays the result of „mapping concepts‟ (as
seen in figure 5 below), which depicts the mismatch of
knowledge. In doing so, the user can visually note how much
the needs, in terms of knowledge, diverge from an adequate
situation.

4. Tool illustration, contributions and limits
In order to validate the benefits of this approach, an example

based on post hoc analysis of the process data related to a real
project has been modeled with DSL4SPM tool. The partial
result is shown in Figure 4.

Figure 4 the DSL4SPM modeling environment. Knowledge perspective is highlighted.

Figure 4 presents the DSL4SPM modeling environment and
highlights six main areas:

 (a) DSL4SPM Tool box, which contains the instantiable
elements classified in groups such as SPEM elements, Content
packaging, Relationships and Knowledge elements. Each group
contains process components that the process engineer can drag-
and-drop to the scene of modeling.

 (b) DSL4SPM modeling scene which represent a model of
process.

 (c) Visual Studio navigator view that represents a project of
process modeling composed of one or more process model.

 (d) Visual Studio properties window that represents the
attributes of each element within the scene of modeling.

 (e) Visual Studio problems view, which is use by
DSL4SPM to raise exceptions according to a formal verification
against established rules of coherence.

 (f) DSL4SPM specific form for each element within
modeling area. The form is organized according to predefined
views. Knowledge is an example of view, which represents a
knowledge-oriented perspective rather than activity-oriented
one.

Figure 5 shows a dashboard generated by the system following
the mapping of knowledge concepts between each Task and other
SPEM elements linked to it. This dashboard represents the tasks
and their knowledge status with “CompletelyMapped”,
“InadequacyMapped” and “Unmapped” indicators to remind the
management team of which tasks are not risky and which one
remain to be analyzed.

Figure 5 System dashboard generated from concepts mapping.

Table 1 summarizes quantitatively the concept mapping for all
tasks within process, number of SPEM elements linked to each
task, number of concepts required to carry out the task and
number of concepts provided by the elements linked to the task.

Table 1. Synthesis of Knowledge concepts mapping

Task Links
in

Concepts
required

Provided
concepts

Iteration Management 4 6 4
SRS Review 1 3 2
SRS Writing 3 4 3
UI Specification 0 1 0
Behavioral Model
Creation

2 3 4

Test Plan Writing 1 4 4
CM Plan Writing 3 3 6
OCR Prototyping 6 6 8
Interface Prototyping 5 4 6
Structure Model
Creation

10 4 9

Class Implementation 6 5 10
Test Cases Redaction 4 3 3
UI Implementation 5 4 9

The approach proposed, specifically the dashboard, might assist
the manager team to make an informed decision:

 The project manager could analyzes the competence gap
which indicates any discrepancies between the knowledge
concepts required for each activity and the aggregated concepts

provided by all the SPEM element around this activity (e.g.
Work products, guidance, roles). In doing so, the system
highlights the problematic tasks that need more knowledge
concepts and be able to

 Search for SPEM elements that can provides the missing
concepts.

 Make a contingency plan which could be to identify a
resource (interne or extern) that could bring some expertise.

 Add additional roles (team up) to support primary role

 Change strategy for risk migration based on prototyping or on
short iterations.

 Reorganize the process activities or project schedule to avoid
the risk.

 Allocate the ownership of part of project to a third party who
is best able to carries out the opportunity.

The system provides dashboard as rich pictures that supports
managers for decisions like external recruiting, forming teams,
support for organizational activities such as availability planning,
support for searching for and find a role with specific kind of
knowledge.

4.1 Limits of the proposed solution
 At the beginning of the project realization, it might be difficult
to assess the needs in terms of knowledge due to limited vision of
the solution, which is the same difficulty seen for planning and
estimation.

 Like the expert system, it could be necessary to have an
intervention of domain expert early in the project to adapt the
ontology of knowledge (i.e. tree of concepts) to specific local
context of the project.

 The relevance of each concept of knowledge to carry out task
on hand has been cut back to minimize the complexity of use.

 Empirical tests are needed to refine the proposed ontology as
well as to validate the usefulness of the approach within
industrial context.

5. Conclusion and Future Works
We have proposed a method to put forward a process-oriented

knowledge and a technique based on concept mapping to
represent knowledge in the process model. This knowledge-
oriented approach extend SPEM 2.0 and is supported by
DSL4SPM, a tool that supports software process modeling, based
on SPEM for the syntactic definition and semantic extension that
exploit the relationships between SPEM elements.

This method highlights the importance of knowledge modeling,
while the development of a dashboard for visualizing knowledge
mapping is the major achievement. The introduction of
knowledge concepts in software processes mitigates the risks
related to knowledge mismatch and supports an informed decision
early in the lifecycle of project. This knowledge mapping view
assists the project managers to identify the tasks that need more
knowledge concepts. After analyzing the mismatch of concepts,
the project managers can take rational and efficient decisions such
as recruitment of new competences or adding additional roles
(team up) to support primary role performing the task on hand.
Hence, the knowledge-oriented view complements activity-
oriented view and thereby fosters a better understanding of
complex processes by emphasizing appropriate abstractions.

The efficiency of modeling and visualization approach has been
illustrated throughout post hoc analysis of the process data related
to project developed by a team of undergraduate students. The
results showed that the approach is capable to represent a useful
dashboard that is helpful to understand the needs of knowledge for
each Task.

Future work will include a more detailed analysis of whole
process related to knowledge flows among software process
model within an industrial project. The targeted goal will be
assessment of the propagation of knowledge throughout all the
phases of software process aiming at supporting the project
managers to identify the problematic arcs.

6. ACKNOWLEDGMENTS
The first author would like to thank Olivier Gendrou for helping
with the experiment data, and analyses. Part of the work presented
was financially supported by the “Fonds de Recherche sur la
Nature et les Technologies” council of Québec (FQRNT) under
Grant 127037.

7. REFERENCES
[1] S. Dakhli and M. Ben Chouikha, "The knowledge-gap

reduction in software engineering," Piscataway, NJ, USA,
2009, pp. 287-294.

[2] I. Rus and M. Lindvall, "Knowledge management in software
engineering," Software, IEEE, vol. 19, pp. 26-38, 2002.

[3] X. Junchao, et al., "Applying little-JIL to describe process-
agent knowledge and support project planning in soft PM,"
Software Process: Improvement and Practice, vol. 12, pp.
437-48, 2007.

[4] P. N. Robillard, "The role of knowledge in software
development," Communications of the ACM, vol. 42, pp. 87-
93, 1999.

[5] P. Meso, et al., "The knowledge management efficacy of
matching information systems development methodologies
with application characteristics-an experimental study,"
Journal of Systems and Software, vol. 79, pp. 15-28, 2006.

[6] SPEM. Software & Systems Process Engineering Meta-Model
Specification. Version 2.0. Final Adopted Specification.

[7] T. H. Davenport and L. L. Prusak, Working Knowledge: How
Organizations Manage What They Know. Boston, USA:
Harvard Business School Press, 1998.

[8] I. Nonaka and H. Takeuchi, The Knowledge-Creating
Company: How Japanese Companies Create the Dynamics of
Innovation: Oxford University Press, USA, 1995.

[9] M. Alavi and D. E. Leidner, "Knowledge management and
knowledge management systems: conceptual foundations and
research issues," MIS Quarterly, vol. 25, pp. 107-36, 2001.

[10] M. L. Markus, et al., "A design theory for systems that
support emergent knowledge processes," MIS Quarterly, vol.
26, pp. 179-212, 2002.

[11] W. Yingxu, "On concept algebra and knowledge
representation," Los Alamitos, CA, USA, 2006, pp. 320-231.

[12] J. R. Anderson, The Architecture of Cognition: Lawrence
Erlbaum; Reprint edition (November 1, 1995), 1983.

[13] J. D. Novak and A. J. Cañas, "The Theory Underlying
Concept Maps and How to Construct Them," Technical
Report IHMC CmapTools 2006-01 Rev 01-2008, Florida
Institute for Human and Machine Cognition, available at:
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnd
erlyingConceptMaps.pdf, 2008.

[14] D. P. Asubel, The psychology of meaningful verbal
learning. New York: Grune and Stratton, 1963.

[15] J. R. Anderson, et al., "ACT-R: a theory of higher level
cognition and its relation to visual attention," vol. 12, pp. 439-
462, 1997.

[16] F. O. Bjørnson and T. Dingsøyr, "Knowledge management
in software engineering: A systematic review of studied
concepts, findings and research methods used," Information
and Software Technology, vol. 50, pp. 1055-1068, 2008.

[17] N. R. Noy, "Semantic integration: a survey of ontology-
based approaches," SIGMOD Record, vol. 33, pp. 65-70,
2004.

[18] N. Anquetil, et al., "Software maintenance seen as a
knowledge management issue," Information and Software
Technology, vol. 49, pp. 515-29, 2007.

http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf

	EPM-RT-2010-14_Kerzazi

