
Titre:
Title:

Reverse-Engineering the Literature on Design Patterns and
Reverse-Engineering

Auteurs:
Authors: Simon Denier, Foutse Khomh et Yann-Gaël Guéhéneuc

Date: 2008

Type: Rapport / Report

Référence:
Citation:

Denier, Simon, Khomh, Foutse et Guéhéneuc, Yann-Gaël (2008). Reverse-
Engineering the Literature on Design Patterns and Reverse-Engineering. Rapport
technique. EPM–RT–2008-09.

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2631/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2631/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

http://publications.polymtl.ca/2631/
http://publications.polymtl.ca/2631/
http://publications.polymtl.ca/

EPM–RT–2008-09

REVERSE-ENGINEERING THE LITERATURE ON

DESIGN PATTERNS AND REVERSE-ENGINEERING

Simon Denier, Foutse Khomh, and Yann-Gaël Guéhéneuc
Ptidej Team

DIRO, Université de Montréal and
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

October 2008

EPM-RT-2008-09

Reverse-Engineering the Literature on
Design Patterns and Reverse-Engineering

Simon Denier, Foutse Khomh, and Yann-Gaël Guéhéneuc
PTIDEJ Team

DIRO, Université de Montréal and
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

October 2008

2008
Simon Denier, Foutse Khomh et Yann-Gaël Guéhéneuc
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2008
Bibliothèque nationale du Canada, 2008

EPM-RT-2008-09
Reverse-Engineering the Literature on Design Patterns and Reverse-Engineering
par : Simon Denier, Foutse Khomh et Yann-Gaël Guéhéneuc
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique : biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue/

http://www.polymtl.ca/�
mailto:biblio.sfd@courriel.polymtl.ca�
http://www.polymtl.ca/biblio/catalogue/�

Reverse-Engineering the Literature on

Design Patterns and Reverse-Engineering

Simon Denier, Foutse Khomh, and Yann-Gaël Guéhéneuc
Ptidej Team

DIRO, Université de Montréal and

DGIGL, École Polytechnique de Montréal

October 16, 2008

Abstract

Since their inception in 1994, design patterns have been the subject of many papers. In the reverse-engineering
community, several authors have proposed approaches to consider design patterns during reverse- and re-engineering.
However, it has been recently put forward in the community that it is difficult to compare previous approaches due to
the diversity of vocabulary and the lack of a general framework to map and relate these approaches. Consequently,
we study 59 papers related to design patterns in the software engineering community at large (1) to identify and
define common terms related to design patterns, (2) to identify recurring themes in the papers, and (3) to further
characterise approaches for design pattern detection along several categories. Recurring themes allow us to provide
the portrait of the “typical” paper on design patterns while catagories draw the portrait of the “typical” approach
in design pattern detection. We propose to the community to use a fix vocabulary, to diversify the approaches, and
to build a common benchmark to assess the reverse engineering of design patterns.

1

Chapter 1

Introduction

Since their introduction in the software engineering community in 1994, design patterns have been the subject of
much discussions, research work, and conferences. Researchers studied design patterns with various purposes as
shown in Section 0.4.

However, design patterns lie between programming-language features and abstract concepts to ease communica-
tion (teaching, documenting) as highlighted in 2000 by the debate among Chambers, Harrison, and Vlissides [13],
as shown in the following definition:

Design patterns systematically name, explain, and evaluate solutions to important and recurring
object-oriented design problems. They capture design experience in a form that developers can use ef-
fectively. They express proven solutions and make them more accessible to developers of new programs
and help developers to choose design alternatives. Thus, they capture experience in the community
and create a common vocabulary by bringing forward reusable solutions. They also improve the doc-
umentation and maintenance of existing programs by making explicit the roles of classes and objects
and the underlying intents of designs. Some of the most important design patterns are documented
and presented in catalogs, for example this by the GoF [26]. The general process of use of design
patterns during development and maintenance is as follows: during the (re)conception of the program,
developers should identify a problem, find the related patterns, implement the chosen one, and docu-
ment it so as to be able to reuse this knowledge in later stage. Knowing the design patterns used in
programs can ease their comprehension and thus their maintenance. Each design pattern has many
possible implementations; an implementation may differ from the one suggested in a catalog while still
satisfying the intent of the pattern.

The definition of design patterns shows their extent but leaves much room for interpretation. This loose defini-
tion of patterns was desired by their early proponents [13] and is particularly relevant to the reverse-engineering
community because of the many papers on design pattern identification.

One of the first of such papers has been published by Brown in 1996 [11] more than 10 years ago. Since, several
other papers have presented new approaches and techniques with improved performance, precision, recall, and a
larger variety of patterns.

Yet, these approaches are difficult to compare and to build upon due to the loose definition of design patterns
and their related concepts. Consequently, there has been recent efforts in the literature [3, 28, 46] and dedicated
workshops, such as DP4RE at WCRE 2006, to better choose and define the terms related to patterns and to
organise the papers and approaches.

We build upon these previous efforts and propose three contributions to the body of knowledge on design
patterns in the context of reverse engineering. First, we propose a study of the vocabulary pertaining to design
patterns used in previous work and build a dictionary of terms to clearly name and define the concepts related to
design patterns. Second, we classify previous work in different themes and sub-themes. Third, we detail several
categories of the design pattern detection sub-theme to discuss the similarities and differences among previous
approaches and highlight the difficulty of comparing them. This study follows previous categorisation efforts of
the reverse engineering tools [29] and of the reverse engineering community [33].

2

We conclude our study by providing two portraits: one of the “typical” paper on design patterns using the
identified themes and one of the “typical” approach in reverse engineering using the categories of the design
pattern detection sub-theme. We also suggest research directions to the community on the use of the vocabulary
related to design patterns, the diversity of approaches, and the comparison of the approaches with one another.

The rest of the paper is organised as follows. Section presents the process and the results of our analysis of the
vocabulary. Section 0.4 introduces the different themes related to design patterns in the literature. Section 0.10
proposes categories to characterise approaches to detect design patterns. Section 0.12 discusses our study while
Section 0.15 concludes with some suggestions.

3

Chapter 2

Dictionary of Terms

The problem arising from the loose definition of design patterns and their first catalog is that of interpretation:
the definition leaves space for interpretation and thus also for debate and ambiguities.

We propose and implement a process to retain and define the key terms related to design patterns. This process
is similar to the process of domain analysis [49]. As such, the objective of the process is to provide a list of terms
most discriminating the concepts related to design patterns to avoid ambiguities. An ontology of the concepts is
future work.

2.1 Process

Our process divides in seven steps and results in a list of terms characterising design patterns, their definitions,
and a mapping between the terms in previous papers and these.

1. Identify collections of references of papers related to design patterns.

2. Choose one such collection and download all referenced papers.

3. Read all the paper and identify terms related to design patterns.

4. Compile all terms including potential synonyms and homonyms.

5. For each occurrence of a term, identify its synonyms and homonyms and retain the most significant term.

6. Define the retained terms.

7. Map all the terms in the literature with the retained terms.

This process is similar to that of reverse engineering programs written in different languages into a common
meta-model. The programs are the papers in the literature and the programming languages are terms related to
design patterns used in each paper. The common meta-model is the set of identified terms. In contrast to the usual
reverse engineering process, in which a “language-independent” meta-model is built and the different programs
map into it, we do not define such a meta-model because it would only be a model of the English language1, with
which all terms are expressed and defined. We simply define a model (a set of terms) and map the set of all exiting
terms into this set.

The result of this process is a set of terms and a mapping. The mapping takes the form of a table with
all existing terms as columns and retained terms as rows. Cells include references to papers that use the term
with the definition of the retained terms. The terms and their mapping provides a useful background for the
co-understanding of previous papers.

1We only study papers written in English because it is the language used in the main conferences in software engineering.

4

2.2 Steps 1, 2, and 3: Identification of the Terms

The first three steps of the process are used to identify all terms related to design patterns. In the first
step, we identify two main libraries of references on design patterns, available at http://liinwww.ira.uka.de/
bibliography/SE/patterns.html and http://www.patternforge.net/wiki/index.php?title=Papers_on_Pattern_
Repositories. These two libraries mostly overlap and are representative of other such libraries. One of the au-
thors contributed to the second library with more than 60 papers. Therefore, we choose this second library for the
sake of simplicity.

The chosen library contains 99 references. We download 59 papers in PDF or HTML format, excluding books
because of their restricted availability and of their breadth and some papers because of the unsuitability of their
encoding for search2. In these 59 papers3, we identify all terms related to design patterns and store them with
their associated references in a table. We convert all terms into singular nouns in British English for the sake
of homogeneity. We leave out some terms that either are synonyms of others, for example “Definition” is used
as a synonym of “Formalisation”, or that have little impact on the understanding, for example “Detection” vs.
“Identification”, or that have agreed-upon definitions, such as “Role”.

2.3 Steps 4, 5, and 6: Definitions of the Terms

The Steps 4 to 6 of the process concern the sorting and definitions of the retained terms. First, we study again
all papers and associated each found term with each paper that uses the term disregarding its definition. Table 1
presents in its left column the 42 terms related and the references to their defining papers.

Then, we group terms that we understood as having similar definitions. With this grouping, we retain 16 terms.
Table 1 presents in bold the retained terms and their main synonyms. We do not show here homonyms because
they will be studied in Step 7. We base our choice of the retained term both on the “popularity” of a term (the
number of papers using it) and on its “trend” in recent literature. Therefore, this choice can be at times arbitrary
when more than one term are popular or recent. Yet, Table 1 is useful because it can help the community in
making an informed choice of the terms to be retained for each definition.

2.4 Step 7: Mapping between All Terms and Retained Terms

The last step consists in mapping the terms in the literature with those retained in the previous steps. It brings
a common background to understand the studied papers. Table 2 shows all terms of the literature in columns
and retained terms in rows. Thus, a column shows the homonyms of a term and a row shows the synonyms of a
retained terms.

Table 2 shows some interesting facts. First, several terms are homonyms, being used repeatedly in the literature
with different definitions. This is particularly true with the term “Design pattern”, which has been used to mean
“Design motif”, “Design pattern”, “Idiom”, “Instance”, “Occurrence”, and “Solution”. This wide use of the term
“Design pattern” is not surprising given the relative novelty of this concept and its loose definition. Previous
authors often implicitly use the term “Design pattern” with different definitions because the extent of their work
was not fully understood at the time.

Second, different terms have been used for one definition by the same authors. For example, in Eden’s paper
[24], the terms “Design motif” and “Formalisation” are used to mean “Design motif”. Although it is rarely the case
in the studied papers, such a synonymy could lead to confusion in the understanding of the work if read without
care.

Finally, Table 2 shows that some more “specialised” terms, such as those characterising design patterns, “Fun-
damental patterns” or “Hybrid patterns”, are less subject to having homonyms and synonyms because they have
been more precisely defined from the start by their authors. Out study also hints that some terms have been
used only during a short period of time, such as “Leitmotiv” while others have been more prevalent, such as
“Formalisation” for example.

This table highlights the problem of vocabulary faced by the community and allows the co-understand the
studied papers using a common set of terms.

2The PDF format allows papers to be encoded as images that are not suitable for search.
3The complete list of studied papers is available at http://www.ptidej.net/downloads/Poster.pdf.

5

Terms Definitions

Abstract Design Pattern [47], Basic Form [6], De-
sign Motif [28], Design Template [11], Essence
[12], Expression [20], Formalisation [24], Imple-
mentation [36], Lattice [24], Leitmotiv [58], Logic
[12], Realisation [8], Reification [36], Representa-
tion [40], Specification [24], and Structure [26]

A design motif is the prototype proposed by a design pattern to solve
the related recurring design problem. Typically, a design motif is built
from the “Structure” section of the design pattern as defined in the
GoF, including elements from other relevant sections to characterise
the participants and their responsibilities [28].

Alternative [11], Modified Pattern [60], Variant
[12], Version [11]

A design motif (see previous definition) manifesting variety, deviation
of its canonical form as described in [26].

Canonical form [11] Original design motif as described in [26]

Cliché [51], Idiom [62], Micropattern [23] A standard algorithmic fragment [51].

Design Component [55], Instance [24], Microar-
chitecture [38]

An instance of a design motif is the concrete implementation of the
solution of the pattern in a program. A micro-architecture is deemed an
instance of a design motif if it can be asserted that the developers indeed
chose conscientiously and appropriately to implement the solution of
the design pattern to solve the corresponding design problem [28].

Design Pattern [26] A design pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a reusable
object-oriented designs. It identifies the participating classes and their
instances, their roles and collaborations, and the distribution of re-
sponsibilities. Each design pattern focuses on a particular object-
oriented recurring design problem. It describes when its solution ap-
plies, whether or not its solution can be applied in view of other design
constraints, and the consequences and trade-offs of its use. It also pro-
vides sample code to illustrate an implementation. [26]

Elemental Pattern [56], Fragments [24], Minipat-
tern [44], Subpattern [18]

Abstract syntax graph structures [43] that are constituent parts of other
patterns or subpatterns. An idiom could be a subpattern while sub-
patterns are not necessarily idioms.

Fundamental Pattern [1] A core of design patterns that capture good object-oriented design and
that can be used in various contexts [1].

Hybrid Pattern [50] Pattern generated through hybridization and whose intent is to solve a
high level design problem in a generic context [50].

Intent [26] A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular
design issue or problem does it address? [26]

Language of Patterns [17] A structured method of describing good design practices within a field
of expertise [18].

Occurrence [11] An occurrence of a design motif is the concrete implementation of the
solution of the pattern in a program. However, in the contrary to
an instance, it cannot be asserted that the design motif was used with
purpose by the developers, possibly because several micro-architectures
could conform to the structure of the design motif but without conform-
ing to the intent of the design pattern [24].

Protopattern [17] “patterns in waiting” that are not yet known to recur [3].

Secondary Role [9] Role that can be superimposed over the defining role of a class in a
program [9].

Solution [26] The solution of a design pattern is the description composed of the
“Structure”, “Participants”, and “Collaborations” sections, as defined
in the format in [26].

Trick [23] A trick is an operator specifying the sequence of steps taken in the
realization of a design motif [23].

Table 2.1. Retained Terms related to Design Patterns and their Definitions. Terms are grouped by sets
of synonyms, see Table 2 for the precise mapping among terms.

6

A
b
s
t
r
a
c
t

D
e
s
ig

n
P
a
t
t
e
r
n

A
lt

e
r
n
a
t
iv

e

B
a
s
ic

F
o
r
m

C
a
n
o
n
ic

a
l
F
o
r
m

C
li
c
h
é

D
e
s
ig

n
C

o
m

p
o
n
e
n
t

D
e
s
ig

n
M

o
t
if

D
e
s
ig

n
P
a
t
t
e
r
n

D
e
s
ig

n
T
e
m

p
la

t
e

E
le

m
e
n
t
a
l
P
a
t
t
e
r
n

E
s
s
e
n
c
e

E
x
p
r
e
s
s
io

n

F
o
r
m

a
li
s
a
t
io

n

F
r
a
g
m

e
n
t

F
u
n
d
a
m

e
n
t
a
l
P
a
t
t
e
r
n

H
y
b
r
id

P
a
t
t
e
r
n

I
d
io

m

I
m

p
le

m
e
n
t
a
t
io

n

I
n
s
t
a
n
c
e

I
n
t
e
n
t

L
a
n
g
u
a
g
e

o
f
P
a
t
t
e
r
n
s

R
e
t
a
in

e
d

T
e
r
m

s

Canonical
form

[60] [2,
11]

[60]

Design Mo-
tif

[52] [38] [15,
24]

[12,
11]

[48,
61]

[4] [58] [20] [41,
24]

[20,
10]

Design Pat-
tern

[20] [12,
11]

Fundamental
Pattern

[40,
11]

Hybrid Pat-
tern

[50]

Idiom [54] [38,
11]

[23] [54] [24] [6,
62]

Instance [36] [2,
10]

[12,
11]

[61,
24]

Intent [36] [12,
11]

Language of
Patterns

[18,
17]

Occurrence [54,
55]

[52,
48]

[55,
38]

Protopattern
Role
Secondary
Role
Solution [50,

21]
Subpattern [6,

62]
[55] [23] [56] [24] [17]

Trick
Variant [12,

11]
[2,
54]

L
a
t
t
ic

e

L
e
it

m
o
t
iv

L
o
g
ic

M
ic

r
o
a
r
c
h
it

e
c
t
u
r
e

M
ic

r
o
p
a
t
t
e
r
n

M
in

ip
a
t
t
e
r
n

M
o
d
ifi

e
d

P
a
t
t
e
r
n

O
c
c
u
r
r
e
n
c
e

P
r
o
t
o
p
a
t
t
e
r
n

R
e
a
li
s
a
t
io

n

R
e
ifi

c
a
t
io

n

R
e
p
r
e
s
e
n
t
a
t
io

n

S
e
c
o
n
d
a
r
y

R
o
le

S
o
lu

t
io

n

S
p
e
c
ifi

c
a
t
io

n

S
t
r
u
c
t
u
r
e

S
u
b
p
a
t
t
e
r
n

T
r
ic

k

V
a
r
ia

n
t

V
e
r
s
io

n

R
e
t
a
in

e
d

T
e
r
m

s

Canonical
form
Design Mo-
tif

[24,
23]

[9] [38,
11]

[23] [14,
15]

[58] [14] [10,
17]

[55,
38]

[40,
24]

[12,
11]

Design Pat-
tern

[9,
1]

Fundamental
Pattern
Hybrid Pat-
tern
Idiom [24,

23]
[17]

Instance [58] [11] [27]
Intent
Language of
Patterns
Occurrence [24,

11]
[60,
8]

[27]

Protopattern [52,
17]

Role
Secondary
Role

[9]

Solution [12,
11]

[1]

Subpattern [24,
23]

[36] [1,
18]

Trick [24,
23]

Variant [60] [62,
12]

[41,
6]

Table 2.2. Mapping of the Terms related to Design Patterns. We only present a
maximum of 2 references per cell for lack of space. The complete table is available at
http://www.ptidej.net/downloads/Poster.pdf.

7

Chapter 3

Themes and Classification Spaces

Using the retained terms, we study the papers and identify several recurring themes; one paper possibly following
more than one theme. These themes are useful to characterise the papers and to compare papers with one another.

We present 6 themes: purpose, process, formalisation, forward engineering, reverse engineering, and documen-
tation. We defined each theme, and relate the studied papers with them. These themes are useful to categorise
previous papers and thus relate them with one another.

3.1 Purpose Theme

Design patterns serve many purposes as shown in their definition. We divide this theme in two sub-themes:
community purpose and project purpose.

Community purpose. The community purpose concerns the use of design patterns to spread information.
Agerbo and Cornils [1] discuss the use of design patterns in programs and put forward the idea of a design pattern
library to solve the problem of tracing design patterns in programs. They also described the risks of over-using
design patterns in programs and of having too many patterns to choose from. They argue that if patterns grow
in large numbers, it will be increasingly difficult for users to grasp them all and they will not form a common
vocabulary anymore.

Project purpose. The project purpose concerns the use of design patterns as development tools. Their use can
be described at different development stages:

1. Design: identify a problem and propose a solution.

2. Implementation: instantiate a design motif.

3. Maintenance: document and suggest refactorings.

The benefits of design patterns during development have been the subject of many papers. Beck [6] suggests
that patterns generate architectures. Similarly, Guruprasad et al. [32] propose the Pattern Oriented Technique for
developing programs by focusing on design patterns by viewing a program as a collaboration of design patterns.
Lange and Nakamura [39] demonstrate that patterns can serve as guide in program exploration and thus make the
process of program understanding more efficient. Through a trail of pattern execution, they show that if patterns
were recognized at a certain point in the understanding process, they could help in “filling in the blanks” and in
further exploring a program, improving thus the understandability of the program. Many other papers focused on
the use of patterns during development: [10, 16, 57].

3.2 Process Theme

This theme focuses on the processes of using design patterns during the different stages of the development
and maintenance. The general process is presented in the definition of design patterns in Section . During the
maintenance of program, more particularly, a developer identifies code smells or a design problem, find appropriate

8

refactorings or design patterns, implement these, and document their use to be able to reuse this knowledge in the
future [37].

Many studies focused on the selection of design patterns and attempted to draw rules to combine these patterns
during the development. Guéhéneuc et al. [31] present a recommender system to help users in choosing among
the 23 design patterns from the GoF. [50, 32] draw rules for the combination and application of design patterns.
However, despite these studies, there is still no consistent program/language of design patterns. This theme on
the process of using design patterns have also been the topic of the works of [10, 16, 57].

3.3 Formalisation Theme

The formalisation theme relates approaches to describe design motifs. Despite their importance, few specification
languages are reported in the literature. Among these, LePUS [22] is a full-fledged logic language with well defined
semantics. It has a compact vocabulary and can represent regularities and relations among classes, functions,
and inheritance class hierarchies. Similarly, Hedin [34] presents an approach based on attribute grammars for
formalising design motifs, which provides attributes extensions describing conventions by declarative semantic
rules. On this same theme we have [56].

3.4 Forward Engineering Theme

Design patterns are useful for the design of object-oriented programs. Many studies have focused on design
patterns in the context of forward engineering. We divide this theme in two sub-themes: code generation and
language.

Code generation. With the growing interest in Model Driven Engineering [53], design patterns could be the
bridge between the designs of programs and the automatic generation of their source code. Many techniques of
code generation exists: Czarnecki and Helsen [19] propose a taxonomy for the classification of model transformation
techniques and discuss their applicability. Budinsky [12] describe the architecture and implementation of a tool
that automates the implementation of design motifs. The user of the tool supplies application-specific information
for a given pattern, from which the tool generates all the pattern-prescribed code automatically. Soukup [57]
explores the problems and possibilities of automated motif implementation. He identifies three basic problems:
the loss of the motifs during implementation, large clusters of mutually dependent classes caused by the use of
multiple motifs, and the lack for a library of concrete reusable motifs. Another paper on the topic is the Agerbo
and Cornils’ work [1].

Languages. Syntax extensions and extended language constructs have been explored to simplify the specification
of design motifs and to improve the readability of programs. Tatsubori et al. [59] showed that compile-time MOPs
provide a general framework to implement design motifs. They show that developers can use a MOP to create a
library of reusable motifs based on syntax extensions and extended language constructs. Similarly, Chambers [16]
also proposes an interesting contribution on the topic. Bosch [10] identifies four major problems associated with
the implementation of design motifs using conventional object-oriented languages. He solves these problems with
a layered object model, LayOM. LayOM is an extended object-oriented language that provides explicit support
for design motifs. It is extensible with abstractions for other motifs.

3.5 Reverse Engineering Theme

The theme of reverse engineering concerns all the papers on design patterns in the context of reverse engineering.
There are two major trends in this theme: design pattern detection and pattern based component recovery which
we consider here as sub-themes. Since their inception, it has been suggested that design patterns could play a
central role in reverse engineering for example because the detection of occurrences in programs could improve
their comprehension [61]. Occurrences would also improve the documentation of programs. During the reverse
engineering of a program, design patterns are also use to refactor code smells and design defects “away from”
the code. Many papers have been published in this sub-theme, for example: [28, 42, 56, 60]. On the sub-theme
of pattern based component recovery, we can quote the work of [36]. We detail the sub-theme of design pattern
detection in the following section.

9

3.6 Documentation Theme

This theme includes papers on the role of design patterns in the documentation of programs. Many papers
promote the idea that documenting patterns in the code helps in understanding a design and thus in easing
maintenance because developers often attempt to recover non-documented design patterns in programs. They
have illustrated how a combination of pattern allows to simply convey the essence of design (for example, in
JUnit). They have put forward the impact of design patterns on documentation and in the recovery of design
information for revere- and re-engineering. Lange and Nakamura [39] shows that design patterns can serve as
guide in program exploration and thus make the process of program understanding more efficient. The approach
presented by [34] also discusses the identification of design motifs for the documentation of programs. Soukup [57]
proposes an approach to build a library of reusable common motifs. Other interesting approaches are proposed by
[1] and [10].

10

Chapter 4

Design Pattern Detection Sub-theme

We now further study the papers in the design pattern detection sub-theme and propose seven categories charac-
terising the existing approaches.

The categories describe the characteristics of the approaches with nominal values, highlighted in italic in the
following. Two nominal values in a given category are not necessarily exclusive to each other. We only include
categories that help in discriminating previous approaches; unique characteristics of approaches are not taken into
account because they are not useful in comparing approaches.

We do not look at characteristics such as usability, coverage of pattern catalogs, performance, or scalability.
These characteristics are interesting for the evaluation of approaches but not for understanding the directions
followed (or not) by the community.

4.1 Conceptual Categories

Conceptual categories describe the data and computations involved in the detection of occurrences.

Theory. The theory category describes the theory behind the computations performed by an approach to detect
occurrences of motifs. Most of the existing approaches use graph theory: [42] uses graph transformation rules;
[28] relies on constraint-based programming, which combines graph with logic. Logic programming is used to infer
information based on the graph [61]. Smith and Scotts [56] uses a logic language called rho-calculus. Heuristics
allow to deal with the large search space: Antoniol et al. [2] use metrics on the target model. Niere et al. [42]
use fuzzy logic on the abstract syntax graph. The theory category is related with the motif model category, which
represents the input to the computation model supported by the theory.

Motif Model. The motif model category describes the characteristics used by the approaches to detect the
motif. These characteristics are used to detect occurrences in the target programs. Therefore, a model of each
motif must be provided as well as a mean to map constituents of the motif model against the target model (cf.
target model category).

Many papers have focused on the static structural characterisation of the occurrences. Behavioral models (such
as the call graph) are sometimes used to refine the structural model. Few work, such as [35], have focused on
dynamic analysis as a primary mean for detection. To our knowledge, the vocabulary of design patterns (such as
roles in classnames) has never been used for detection purpose.

Target Model. The category of the target model describes the characteristics of the model used to represent
the target programs, in which occurrences of motifs are searched. Most previous approaches use an abstract model
of the program, based on its source code or binaries. This abstract model has two advantages: first it is often
described as language-independent; second it can be enriched with data helpful to the detection. The model can
be built in incremental steps, each step enriching the model. Such information includes binary class relationships
[28] or delegation calls [42]. The model can be specific to the detection of occurrences or general : Wuyts [61] and
Smith and Scotts [56] show how they infer information useful for other tasks, such as programming style checking
or elemental design patterns detection.

11

Weighting. The weighting category refines the motif model in two directions. First, some approaches use only a
partial model of the motif: they deliberately ignore some constituents in their motif models, considered as optional
or too common to be useful during the detection. Such constituents appear as if their weight was null. [35]
characterize this approach as searching for “minimal key structures”. The idea of “principal” roles in [5, 45] also
relates to this category.

Second, some approaches give more weight to some constituents in the models, i.e., they deem some constituents
more important than the others for the detection. Such models are selective while others not giving importance
to special constituents are uniform. Tsantalis et al. [60] demonstrates an example of partial uniform model using
matrices. Matrices coefficients could also be used to make the approach selective.

In some approaches, weighting can also be negative: a negative weight indicates that a constituent is forbidden
in the model, such as a relationship between two concrete roles [47].

4.2 Occurrence Categories

Occurrence categories describe the characteristics of the detected occurrences, i.e., the results of the detection
process.

Granularity. The granularity category describes the level of details attained by the approaches in the detected
occurrences. Approaches could simply point to a set of classes implementing a motif. However, most approaches
are more detailed and provide a mapping between roles and classes. Others could map every constituents of
the motifs, including behaviors and relationships, with constituents of the target model, such as methods and
associations through instance variables, for example Niere [42] attempts .

Cardinality. The cardinality category describes whether constituents in an occurrence can be optional, single
(only one), or multiple (at least one). The cardinality category complements the granularity category. Each
constituent in a motif model can be assigned a particular cardinality. For example, a role can be assigned to a
single class, but another in the same motif can be assigned to multiple classes. This category is also linked to the
weighting category: constituent with a null weight are typically optional.

Variation. The variation category describes how an approach accommodates variants from the canonical motif.
An isotopic variant [56] exhibits a deviation from the canonical form which does not affect its structure or behavior.
A common case is the existence of an intermediate class between two roles, related by inheritance or association.
The occurrence still appears and behaves like the canonical motif. An approximate variant, on the contrary, does
not exhibit all the characteristics of its motif [28]. Either a role is missing or its behavior differs from the intended
behavior. As such, approximate occurrences are interesting to detect because they can be primary target for
refactoring.

12

Chapter 5

Discussions

We now conclude our study with discussions and suggestions for future work in the community.

5.1 Instance, occurrence, precision, and recall

During our study of the literature and the design pattern detection approaches, we noticed an important
difference between “instances” and “occurrences”, related to the concept of precision and recall [25].

An instance is the concrete implementation of a design motif in a program. As such, only developers can decide
whether some micro-architectures in the program are instances of some design motifs: the instance must respect
the intent and other properties of the design pattern that are currently impossible to check automatically. On
the contrary, an occurrence of a design motif is a micro-architecture that is similar to the motif: it conforms to
a reasonable extent to the motif but does not necessarily conforms to the intent of the pattern. Consequently,
current design pattern detection approaches can only detect occurrences, not instances, because only developers
can vet whether an occurrence respect the intent of the related pattern and, thus, is an instance.

Precision and recall are two measures that can be used to assess design pattern detection approaches by com-
paring the identified occurrences with the known instances of motifs in a set of programs. Unfortunately, there is
neither a common agreement on what is an instance in a program, nor a widely accepted benchmark with known
instances of motif, such as P-MARt [30].

5.2 Portraits

Using our study, we draw the portraits of the typical paper on design patterns and the typical approach on
design pattern detection.

A Typical Thematic Portrait. While studying the papers and identifying their themes, we notice that the
majority of papers to date relate to the themes of reverse engineering to contribute to the documentation of
programs for a project purpose. In comparison, they are very few papers focusing on the formalisation of design
patterns. In the forward engineering theme many studies focus on language extension rather than code generation.

A Typical Design Pattern Detection Portrait. The review of approaches in the design pattern detection
sub-theme outlines the current typical approach: it relies on graph theory, using abstract and incremental models
of the target programs. The motif model is static with structural and basic behavioral information. The approach
identifies roles in the detected occurrences and accommodates isotopic variants of the motif.

5.3 Future Work on Design Patterns

This typical portrait highlights some gaps in the literature on design motif detection. Graph theory has been
refined with logic and heuristics, but few approaches have tried a different theory (for example, vocabulary). This
predominance can be explained by the mostly static and structural motif models. The weighting category is
sometimes used but it is difficult to judge its impact. The cardinality category is often overlooked when discussing
the results.

13

Therefore our study highlights the need for the development of new hybrid approaches, combining static and
dynamic information as well as structural and behavioral information. Current and future approaches also need
to be evaluated in terms usability and coverage of the design pattern catalogs. Therefore, we suggest that future
approaches attempt to fill these gaps.

Our study also suggests the need to use a uniform vocabulary when writing papers as well as a uniform classi-
fication in themes to ease the identification of relevant papers and the comparison among approaches. Being able
to compare approaches is of high importance if the field of design pattern detection wants to consolidate and build
on previous work, as it has been done in the field of clone detection [7].

Another gap in the literature on design pattern detection concerns the description of the motifs. Most approaches
use a meta-model and a dedicated language to model motifs, yet none is quite satisfying yet with respect to coverage
of the catalogs and usability for code generation or detection. Efforts must be pursued to devise a formalism
satisfying the needs and build a representative library of reusable motifs.

The composition of motifs has also been little studied. Composition can refer to the cohabitation in imple-
mentation of motif constituents, the development of a composite form of motifs, the declaration of a new motif
as a composite of motifs, or the implementation/generation of idioms/subpatterns in the code. There is a lack of
studies about the impact of the composition of motifs on the code.

Finally, studies must be perform to concretely assess the impact of design pattern detection on the comprehension
process as well as on the evolution of programs [5]. Such studies are important to justify—even if a posteriori—the
work on detection and the use of design patterns during maintenance.

14

Chapter 6

Conclusion and Future Work

We presented an extensive study of the literature on design patterns triggered by the loose definitions of design
patterns, which prevent comparison among approaches, in particular in the reverse-engineering community.

First, we performed a domain analysis of the literature on design pattern to propose a consistent vocabulary.
The retained terms allowed us to cast previous papers in a common framework and to compare their approaches
from the linguistic point of view. Second, using the previous vocabulary, we identified six themes categorising the
papers on design patterns. The themes allow us to classify approaches and to help readers focus on approach of
interest. Third, we refined the design pattern detection sub-theme into seven categories to further classify related
approaches.

Finally, we discussed the difficulty of measuring the precision and recall of the detection approaches due to
the lack of common vocabulary and of agreed-upon benchmarks. We drew the portraits of the typical paper and
approach related to design patterns and their detection. We also suggested research directions for the community
to strengthen the field of design pattern detection in reverse-engineering.

Future work includes, in addition to the concerns highlighted in Section 0.12, including more papers and books
in our study, performing an historical study of the papers, lobbying the community to build a common repository
of instances of design motifs, and comparing in the form of a competition the current approaches to design pattern
detection.

15

Bibliography

[1] E. Agerbo and A. Cornils. How to preserve the benefits of design patterns. In Proceedings of the 13th Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 134–143. ACM Press, October 1998.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery in object-oriented software. In Proceedings of the 6th International
Workshop on Program Comprehension, pages 153–160. IEEE Computer Society Press, June 1998.

[3] B. Appleton. Patterns and software: Essential concepts and terminology, February 2000.
[4] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato. A comparison of reverse engineering tools based on design pattern decomposition. In

Proceedings of the 16th Australian Software Engineering Conference, pages 262–269. IEEE Computer Society Press, March–April 2005.
[5] L. Aversano, G. Canfora, L. Cerulo, C. D. Grosso, and M. di Penta. An empirical study on the evolution of design patterns. In

Proceedings of the 6th joint meeting of the European Software Engineering Conference and the 14th Symposium on Foundations of
Software Engineering, pages 385–394. ACM Press, September 2007.

[6] K. Beck and R. E. Johnson. Patterns generate architectures. In Proceedings of 8th European Conference for Object-Oriented Program-
ming, pages 139–149. Springer-Verlag, July 1994.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone detection tools. In IEEE Transactions
on Software Engineering, 33(9):577–591, September 2007.

[8] F. Bergenti and A. Poggi. IDEA: A design assistant based on automatic design pattern detection. In Proceedings of the 12th international
conference on Software Engineering and Knowledge Engineering, pages 336–343. Springer-Verlag, July 2000.

[9] M. L. Bernardi and G. A. Di Lucca. Improving design patterns quality using aspect orientation. In Proceedings of the 3rd Software
Technology and Engineering Practice workshop series. IEEE Computer Society Press, September 2005.

[10] J. Bosch. Design patterns as language constructs. In Journal of Object-Oriented Programming, 11(2):18–32, February 1998.
[11] K. Brown. Design reverse-engineering and automated design pattern detection in Smalltalk. Technical Report TR-96-07, Department of

Computer Science, University of Illinois at Urbana-Champaign, July 1996.
[12] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code generation from design patterns. In IBM Systems Journal,

35(2):151–171, February 1996.

[13] C. Chambers, B. Harrison, and J. Vlissides. A debate on language and tool support for design patterns. In proceeding of the 27th

Conference on Principles of Programming Languages, pages 277–289. ACM Press, January 2000.
[14] M. Ó. Cinnéide. Automated refactoring to introduce design patterns. In Proceedings of the ICSE Doctoral Workshop, June 2000.

[15] M. Ó. Cinnéide and P. Nixon. Automated application of design patterns to legacy code. In Proceedings of the 1st Workshop on
Object-Oriented Technology, pages 176–120. Springer-Verlag, June 1999.

[16] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes and symmetric multiple dispatch for Java.

In Proceedings of the 15th Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 130–145. ACM
Press, October 2000.

[17] J. O. Coplien. Idioms and patterns as architectural literature. In IEEE Software Special Issue on Objects, Patterns, and Architectures,
14(1):36–42, January 1997.

[18] J. O. Coplien. Software design patterns: Common questions and answers. In The Patterns Handbook: Techniques, Strategies, and
Applications, pages 311–320. Cambridge University Press, January 1998.

[19] K. Czarnecki and S. Helsen. Classification of model transformation approaches. 2003.
[20] S. Denier, H. Albin-Amiot, and P. Cointe. Expression and composition of design patterns with aspects. In actes de la 2e Journée

Francophone sur le Développement de Logiciels Par Aspects. Hermès, Septembre 2005.
[21] J. Dong. UML extensions for design pattern compositions. In Journal of Object Technology, 1(5):149–161, November 2002.
[22] A. H. Eden, Y. Hirshfeld, and A. Yehudai. LePUS – A declarative pattern specification language. Technical Report 326/98, Department

of Computer Science, University of Tel Aviv, June 1998.
[23] A. H. Eden and A. Yehudai. Tricks generate patterns. Technical Report 324, Department of Computer Science, University of Tel Aviv,

1997.
[24] A. H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application of design patterns. In Proceedings of the 12th

Conference on Automated Software Engineering, pages 143–152. IEEE Computer Society Press, November 1997.
[25] W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms. Prentice-Hall, 1992.
[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,

1st edition, 1994.
[27] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa. Modularizing design patterns with aspects: A

quantitative study. In Proceedings of the 4th international conference on Aspect-Oriented Software Development, pages 3–14. ACM
Press, March 2005.

[28] Y.-G. Guéhéneuc and G. Antoniol. Demima: A multi-layered framework for design pattern identification. In Transactions on Software
Engineering, September 2008. Accepted for publication.

[29] Y.-G. Guéhéneuc, K. Mens, and R. Wuyts. A comparative framework for design recovery tools. In Proceedings of the 10th Conference
on Software Maintenance and Reengineering, pages 121–130. IEEE Computer Society Press, March 2006.

[30] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi. Fingerprinting design patterns. In Proceedings of the 11th Working Conference on
Reverse Engineering, pages 172–181. IEEE Computer Society Press, November 2004.

[31] Y.-G. Guéhéneuc and Rabih Mustapha. A simple recommender system for design patterns. In Proceedings of the 1st EuroPLoP Focus
Group on Pattern Repositories, July 2007.

[32] D. J. R. Guruprasad, M. K. N. A. R. Guruprasad, and M. K. N. Guruprasad. A pattern oriented technique for software design. In ACM
SIGSOFT Software Engineering Notes, 22(4):70–73, July 1997.

[33] A. E. Hassan and R. C. Holt. The small world of software reverse engineering. In Proceedings of the 11th Working Conference on
Reverse Engineering, pages 278–283. IEEE Computer Society Press, November 2004.

16

[34] G. Hedin. Language support for design patterns using attribute extension. In Proceedings of the 1st ECOOP workshop on Language
Support for Design Patterns and Frameworks, pages 137–140. Springer-Verlag, June 1997.

[35] D. Heuzeroth, T. Holl, and W. Löwe. Combining static and dynamic analyses to detect interaction patterns. In Proceedings the 6th

world conference on Integrated Design and Process Technology. Society for Design and Process Science, June 2002.
[36] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé. Pattern-based reverse-engineering of design components. In Proceedings of the 21st

International Conference on Software Engineering, pages 226–235. ACM Press, May 1999.
[37] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 1st edition, August 2004.
[38] C. Krämer and L. Prechelt. Design recovery by automated search for structural design patterns in object-oriented software. In Proceedings

of the 3rd Working Conference on Reverse Engineering, pages 208–215. IEEE Computer Society Press, November 1996.
[39] D. B. Lange and Y. Nakamura. Interactive visualization of design patterns can help in framework understanding. In Proceedings of the

10th annual conference on Object-oriented programming systems, languages, and applications, pages 342 – 357. ACM Press, 1995.
[40] A. Lauder and S. Kent. Precise visual specification of design patterns. In Proceedings of 12th European Conference for Object-Oriented

Programming, pages 114–134. Springer-Verlag, July 1998.
[41] T. Mikkonen. Formalizing design patterns. In Proceedings of the 20th International Conference on Software Engineering, pages 115–124.

IEEE Computer Society Press, April 1998.
[42] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh. Towards pattern-based design recovery. In Proceedings of the 24th

International Conference on Software Engineering, pages 338–348. ACM Press, May 2002.
[43] J. Niere, J. P. Wadsack, and A. Zündorf. Recovering UML diagrams from Java code using patterns. In Proceedings of the 2nd workshop

on Soft Computing Applied to Software Engineering, pages 89–97. Springer-Verlag, February 2001.
[44] M. O’Cinnéide and P. Nixon. A methodology for the automated introduction of design patterns. In Proceedings of the 6th International

Conference on Software Maintenance, 1998.
[45] M. D. Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. Antoniol. An empirical study of the relationships between design pattern roles and

class change proneness. In Proceedings of the 24th International Conference on Software Maintenance. IEEE Computer Society Press,
September–October 2008.

[46] N. Pettersson and W. Löwe. Efficient and accurate software pattern detection. In Proceedings of the 13th Asia Pacific Software
Engineering Conference, pages 317–326. IEEE Computer Society Press, December 2006.

[47] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann. An approach for reverse engineering of design patterns. In Software and
System Modeling, 4(1):55–70, February 2005.

[48] L. Prechelt and C. Krämer. Functionality versus practicality: Employing existing tools for recovering structural design patterns. In
Journal of Universal Computer Science, 4(12):866–883, December 1998.

[49] R. Prieto-Dı́az. Domain analysis: An introduction. In Software Engineering Notes, 15(2):47–54, April 1990.
[50] D. J. Ram, P. J. Kumar, and M. S. Rajasree. Pattern hybridization: breeding new designs out of pattern interactions. In Software

Engineering Notes, 29(3):1–10, May 2004.
[51] C. Rich and R. C. Waters. The Programmer’s Apprentice. ACM Press Frontier Series and Addison-Wesley, 1st edition, January 1990.

[52] R. Schauer and R. Keller. Pattern visualization for software comprehension. In Proceedings of the 6th International Workshop on
Program Comprehension, pages 4–12. IEEE Computer Society Press, June 1998.

[53] D. C. Schmidt. Model-driven engineering. In IEEE Computer, 39(2):25–31, February 2006. Guest Editor’s Introduction.

[54] J. Seemann and J. W. von Gudenberg. Pattern-based design recovery of Java software. In Proceedings of 5th international symposium
on Foundations of Software Engineering, pages 10–16. ACM Press, November 1998.

[55] F. Shull, W. Melo, and V. R. Basili. An inductive method for discovering design patterns from object-oriented software systems. Technical
Report CS-TR-3597, Computer Science Department, University of Maryland, January 1996.

[56] J. M. Smith and D. Stotts. Elemental design patterns – a link between architecture and object semantics. Technical Report TR02-011,
Department of Computer Science, University of North Carolina, March 2002.

[57] J. Soukup. Implementing patterns. In Pattern Languages of Program Design, chapter 20, pages 395–412. Addison-Wesley, 1st edition,
May 1995.

[58] G. Sunyé, A. Le Guennec, and J.-M. Jézéquel. Design patterns application in UML. In Proceedings of the 14th European Conference
for Object-Oriented Programming, pages 44–62. Springer-Verlag, June 2000.

[59] M. Tatsubori and S. Chiba. Programming support of design patterns with compile-time reflection. In Proceedings of the 1st OOPSLA
workshop on Reflective Programming in C++ and Java, pages 56–60. Center for Computational Physics, University of Tsukuba, October
1998. UTCCP Report 98-4.

[60] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis. Design pattern detection using similarity scoring. In Transactions on
Software Engineering, 32(11), November 2006.

[61] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In Proceedings of the 26th Conference on the Technology
of Object-Oriented Languages and Systems, pages 112–124. IEEE Computer Society Press, August 1998.

[62] W. Zimmer. Relationships between design patterns. In Pattern Languages of Program Design, chapter 18, pages 345–364. Addison-
Wesley, 1995.

17

	EPM–RT–2008-09_Denier

