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Abstract: Lognormal functions have been found among the best descriptors of the impulse re-

sponse of neuromuscular systems under various experimental conditions. This arises from the 

fact that lognormal patterns automatically emerge when a large number of coupled systems inter-

act to produce a response. This paper evaluates the error of convergence towards a lognormal. 

Under the umbrella of the Central Limit Theorem, the error functions for lognormal and delta-

lognormal equations are derived and analyzed. It is shown that these errors can be computed from 

the estimated values of the lognormal parameters, without any explicit reference to the number of 

subsystems involved. The resulting theoretical framework is then exploited in three applications: 

the comparative benchmarking of parameter extraction algorithms, the validation of the results in 

analysis-by-synthesis experiments and the estimation of the range of acceptable movement times 

in tests involving rapid movements.  

 

1. Introduction 

  Computational models have been used for many years to study, characterize and com-

prehend human motor control. From a movement execution perspective, most of these models 

can be depicted as systems that perform a mapping from a task space to an action space. In this 

context, these various models can be classified according to their task representation (action 

plans, virtual targets, terminal attractors, optimization criteria, equilibrium points, etc.), their 

mapping processes (a wide range of methods, from a network of differential equations to compact 

analytical expressions) or their action spaces (dynamics, kinematics, statics, etc.). Each model 

encompasses the benefits as well as the limitations of its own interpretation scheme and it is im-

portant to study a model in details to better delimit its zone of validity and its domains of applica-

tion. In this paper, we pursue our analysis of such a model to further circumscribe its practical use 
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and propose new potential implementations. Indeed, we have demonstrated in this Journal (Pla-

mondon et al. (2003) that the impulse response of a neuromuscular system converges toward a 

lognormal function under some very general conditions. Assuming that the cumulative time de-

lays of a sequence of dependent sub-processes constituting a neuromuscular system were gov-

erned by a law of proportionate effects, it has been proved, using the Central Limit Theorem, that 

a neuromuscular system can be described globally as a linear system having a lognormal impulse 

response. 

The use of a lognormal function to describe the impulse response of a neuromuscular sys-

tem constitutes the corner stone of the Kinematic Theory of rapid human movements (Plamondon 

1995a, b, 1998). According to this framework, a rapid movement towards a target is produced by 

a synergy made up of two neuromuscular systems, an agonist system acting in the direction of the 

target and an antagonist one working in the opposite direction. When the two systems act in per-

fect opposition, the magnitude of the velocity profile can be described by a delta-lognormal equa-

tion:  

 ( ) 2
0 0 1 1 0 1 1 2 2 0 2= ( ) = ( ; , , ) ( ; , ,v t t t t D t t D t t 2

2 )μ σ− ΔΛ − Λ − Λ
r μ σ  (1) 

 where  

 

2(ln( 0
2

2
0

) )
1 2( ; , , ) = , = 1, 2
2

t t i

i
i i i

i

t t e i

μ
σμ σ

σ π

−
−

−

Λ  (2) 

 

 with  : the impulse response of a neuromuscular system. 2
0( ; , , )( = 1,2)i i it t iμ σΛ

( = 1,2)iD i : the magnitude of the input commands to the  system. thi

0t :  the time occurrence of the commands. 
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( = 1,2)i iμ  : the logtime delay of the  system. thi

( = 1,2)i iσ : the logresponse time of the  system. thi

 

When the two systems do not act in perfect opposition, the vectorial version of the model 

must be used (Plamondon and Djioua 2005, 2006) and the velocity profile is described by a 

weighted sum of lognormals:  

 2
0 0

=1 =1
( ) = ( ) = ( ; , , ), 2

n n

i i i i i
i i

v t v t t D t t nμ σ− Λ∑ ∑
r ur uur

≥  (3) 

 where is the vectorial input command to the  system. iD
ur

thi

Using similar approaches, lognormal functions have also been used to describe complex 2D 

movements like handwriting (Plamondon and Guerfali 1998) as well as 3D movements (Leduc 

and Plamondon 2001). 

To summarize, in the context of the previous classification scheme, the Kinematic Theory 

describes a movement using action plans made up of a sequence of virtual targets ( , 1iD
ur

2iD
ur

, ). 

These plans are instantiated through the lognormal impulse response of the selected neuromuscu-

lar systems (characterized by

0it

1iμ , 2iμ , 1iσ , 2iσ ) and the overall result is described in the kinematic 

domain using the velocity profile of the end-effector. 

Over the years, the Kinematic Theory has been employed to describe and explain under a 

single umbrella a large body of experimental data consistently reported in the field (Plamondon 

1995a,b, 1998; Plamondon and Alimi 1997; Alimi and Plamondon 1996, 1994; Woch and Pla-

mondon 2004; Plamondon and Djioua 2005; Woch and Plamondon 2007). Among other things, 

for unidimensional movements, the theory accounts for: 
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•  The asymmetric bell-shaped of the velocity profile (Georgopoulos et al 1981, Morasso 1981, 

Soechting and Laquantini 1981, Abend et al 1982, Atkeson and Hollerbach 1985, Nagasaki 1989, 

Uno et al 1989, Berardelli et al. 1996). 

•  The decrease of asymmetry as a function of velocity (Beggs and Howarth 1972), of spatial and 

temporal constraints (Shapiro and Walter 1986, Cooke and Brown 1994, Schmidt and Lee 1999) 

and its inversion at very high speed (Zelaznik et al 1986). 

•  The rescalability or non-rescalability of the velocity profiles under diverse experimental condi-

tions (Gielen et al 1985, Mustard and Lee 1987, Corcos et al 1990, Brown and Cooke 1981,1990, 

Gottlieb et al 1989, Goggin 1990). 

•  The relationship between numerous global variables (maximum velocity, time to maximum 

velocity vs. movement time or movement amplitude) under a variety of experimental protocols 

(Jeannerod 1984, Lestienne 1979, Hoffman and Strick 1986, Milner 1986, Wadman et al 1979, 

Brown and Slatter-Hammel 1949, Brook 1974, Freund and Budingen 1978). 

•  The different types of speed-accuracy tradeoffs (Fitts 1954, Schmidt et al 1979, Newell et al 

1979, Howarth et al 1971, Wright and Meyer 1983, Hancock and Newell 1985). 

•  The various properties of isotonic and isometric forces patterns (Gielen et al 1985, Gottlieb et 

al 1990, Marteniuk et al 1990, Freund and Büdingen 1978, Ghez and Gordon 1987). 

•  The variability of many global variables (peak velocity, peak acceleration, maximum isometric 

and isotonic forces) (Gielen et al 1985, Nagasaki 1989, Carlton and Newell 1988, Sherwood and 

Schmidt 1980, Gordon and Ghez 1987). 

A recent theoretical study has even shown that among the class of models that exploit 

analytical expressions to describe velocity profiles, the Delta-Lognormal model can be consid-

ered as the ultimate model toward which the Minimum-Jerk, the Minimum-Time, the Beta and 
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the Gamma models converge (Djioua and Plamondon 2007). In this perspective, the Kinematic 

Theory can be seen as an ultimate analytical minimization theory, aiming at minimizing the en-

ergy associated to the convergence error. From a practical point of view, the exploitation of the 

Kinematic Theory relies on the ability to extract the delta-lognormal parameters from real move-

ments using analysis-by-synthesis experiments. So far, the delta-lognormal functions have lead to 

the best reproduction of unidimensional movements, with a minimum of errors (Plamondon et al 

1993, Alimi and Plamondon 1994, Alimi 1994, Feng et al. 2002), which suggests that the con-

vergence error is probably very small. But, the search for optimal solutions remains an open 

problem and sub-optimal solutions can be found acceptable in many applications (Djioua et al., 

2005,2007b), provided that these solutions can be quantitatively evaluated with proper limiting 

criteria and thresholds . 

In this paper, we track this evaluation problem, using the error of convergence toward a 

lognormal as a guideline, to assess, among other things, the quality of parameter estimations. One 

important result of this theoretical study is that the error can be directly computed from the esti-

mated values of the lognormal parameters without any explicit reference to the number of subsys-

tems involved. Although, the total reconstruction errors come from both experimental and theo-

retical sources, it is shown that the theoretical predictions constitute a lower bound that can be 

used in practical applications. 

In the next section, we derive the analytical expression for the lognormal convergence er-

ror. In section 3, we present some computer simulations to analyze this error function. In section 

4, our results are generalized to the case of delta-lognormal velocity profiles and we also analyze 

a few simulations. In the next two sections, we report on some experimental results obtained from 
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the analysis-by-synthesis of simulated data (section 5) and real human movements (section 6), 

and we discuss the interest of using the convergence error in three practical applications:   

    • The comparative benchmarking of delta-lognormal parameter extraction algorithms,  

    • The definition of a threshold for the validation of parameter extraction results,  

    • The definition of an acceptable range of movement times in a typical experiment on   

      rapid movements.  

 

2. Convergence error for the lognormal  

The proof of lognormal convergence (Plamondon et al 2003; Feng 2005) is based on the 

representation of the impulse response of a neuromuscular system 0(h t t )−  as the limit to the 

convolution of  impulse responses N 0(ih t t )−  of time coupled sub-processes describing that sys-

tem, on a logarithmic time scale. As  tends toward infinity,  N

 

  (4) 0 1 0 2 0 0( ) = ( ) ( ) ( ) = (lim limN N
N N

h t t h t t h t t h t t h t t
→∞ →∞

− − ∗ − ∗ ∗ − %L 0 )−

 

 tends toward a lognormal function 2
0( ; , , )t t μ σΛ . 

What is of interest here is the error of convergence of  0( )Nh t t−% :  

 

 2
0 0 0( ) = ( ) ( ; , ,N NErr t t h t t t t )μ σ− − −Λ%  (5) 

 

 We present in the following paragraphs the major steps to get an analytical expression for  

. The complete details of the proof are given in the Appendix. 0(NErr t t− )
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To derive the mathematical equation for  0(NErr t t )− , we must first make a change of 

variable  that convert the lognormal convergence of 0= ln( )l t t− 0(Nh t t )−%

( )lH

 into the normal con-

vergence of . We then move to the frequency domain, using ( )l
Nh e% ω%  the Fourier transform 

of  :  (Nh e% )l

 

 
1 2

1 2
1 2

( ) = ( ) ( ) ( )
( ) ( ) ( )= ( ) ( ) ( )

l l l lN

j j jl l
l l lN

H H H H

A e A e A eφ φ φ

ω ω ω ω

lNω ωω ω ω

% L

L
ω  (6) 

 

 where  for ,  = 1, ,i NL

 

2 2
2 4

2 4 2( ) = 1
2! 4!

i

i i
liA

σ

e

ω
σ σω ω ω

−

− + +L ;  (7) 

  3 53 5
1( ) =

3! 5!
i i

li i
μ μφ ω μ ω ω ω− + − +L (8) 

 For simplicity, we make a change of variable such that the first moment 1 = 0,iμ  thus  

 

 3 53 5( ) = ,mod.2 = 1, , .
3! 5!

i i
li ini Nμ μφ ω ω ω− +L L  (9) 

 

 Then we have  

 

1 2
1 2

( 1 2
1 2

2 2 53 53(

( ) ( ) ( )( ) = ( ) ( ) ( )
( ) ( ) ( ))= ( ) ( ) ( )

)
3! 5!2=

j j jl l lN
l l l lN

j l l lN
l l lN

j

H A e A e A e

A A A e

e e

φ φ φ

φ

μσ

ω ω ωω ω ω ω
ω φ ω φ ωω ω ω

μω ω ω−

+ + +

− +

% L

L
L

L

 (10) 
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 where 2 2
3 3=1 =1

= , =N N
i ii i

σ σ μ μ∑ ∑  and 5 5=1
= N

ii
μ μ∑ . 

Noting that  

 

 
53 53( 3 5 3 5

23 5 3 5
) 13! 5! = 1 ( ) ( )

6 5! 2! 6 5!

j j j j je

μ μω ω μ ω μ ω μ ω μ ω− +
+ − + + − + +

L
L L L  (11) 

 

 We obtain  

 

2 2
3 5 3 5

23 5 3 5

2 2 2 2 2 2 2 2 2 2
3 5 3 5

2 23 5 3 5

12( ) = [1 ( ) ( ) ]
6 5! 2! 6 5!

1 12 2 2 2 2= ( )
6 5! 2! 6 2! 5!

l
j j j jH e

j j j je e e e e

σ

σ σ σ σ σ

( )

ω
μ ω μ ω μ ω μ ωω

ω ω ω ω ω
μ ω μ ω μ ω μ ω

−

− − − − −

+ − + + − + +

+ − + +

% L L L

L+

 (12) 

 

 So we can use 

2 2
3

3 2
6

j e
σ ω

μ ω −

 as an approximation of the error in Fourier domain under 

the previous change of variables. Since the inverse transform of the function 

2 2
3

3 2
6

j e
σ ω

μ ω −

 is:  

 

 

22 2
33 2

3 3
3

1 1 22( ) = =
2 6 6 2

x

j xj x xf x e e d e
σ

ω 3
ω

μ ω μ σω
π σ π

−−
∞

−∞ σ σ
⎡ ⎤⎛ ⎞⋅ ⋅ − +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∫  (13) 

 

 - 10 -



  

 we can now return to the case where the first moment 1=1
= N

ii
μ μ∑  is not zero. Noting 

that the Fourier transform of the function  

 

 
2

2

1 (exp( )
22

l μ
σσ π
−

−
)  (14) 

 is  

 
2 2

exp( )exp( )
2

jσ ω μω− −  (15) 

 and that the transform of  

 
2 3

2

1 ( ) 3( ) (exp( )[ ]
22

l l l
3

)μ μ μ
σ σ σσ π
− − −

− − +  (16) 

 is  

 
2 2

3exp( )exp( ) ( )
2

j jσ ω μω σω− −  (17) 

 

 therefore, making the inverse transform of the functio ( )n lH ω% , we get the error ap-

proximation formula:  

 

 

2

2

2
3

3 2 3

1 ( )( ) = ( ) exp( )
22

1 ( ) 3( ) ( )exp( )[ ]
6 22

l l
N N

lErr e h e

l l l

μ
σσ π

μ 3μ μ μ
σ σ σσ π

−
− −

− − −
⋅ − − +

%

;
σ

 (18) 

 

Making a reverse change of variables , we finally get 0 = lt t e−
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2 3
3 0 0

0 3 2
0

(ln( ) ) 3(ln( ) ) (ln( ) )1( ) exp( )[
6 22 ( )N

t t t t t tErr t t
t t

0
3 ]μ μ μ

σ σ σσ π
− − − − − −

− ⋅ − − +
−

; μ
σ

)

 (19) 

 

 If the lognormal impulse response is activated with an input command , then the out-

put of the system  is the component of a velocity profile:  

D

0(Nv t t−%

  

( ) ( ) ( )2
0 0= ; , ,N N

v t t D t t Err t tμ σ− Λ + −% 0v

)

                                  (20) 

 

and the error  on this profile can be described by: 0(vN
Err t t−

 

2
0

0 0 2
0

2 3
30 0 0

2 33
0 0

(ln( ) )( ) = ( ) exp( )
22 ( )

(ln( ) ) 3(ln( ) ) (ln( ) )= exp( )[
26 2 ( )

v NN

t tDErr t t v t t
t t

t t t t t tD
N t t

μ
σσ π

μ
0 ]μ μ μ

σ σ σσ σ π

− −
− − − −

−

− − − − − −
⋅ − − +

−

%

(21) 

 

3. Computer simulations 

 

 Apart from , that reflects a time translation and , an amplitude scaling factor, the ef-

fect of the two other lognormal parameters on the convergence error (19) is better understood 

with simulations. Figure 1a highlights the effect of

0t D

μ , the logtime delay, on  (equation 

20) and Figure 1b depicts the global effect of 

0(Nv t t−% )

μ  on 0vN
t(t )Err − (equation 21) by illustrating how 

its global mean square value (MSE) changes with μ  . As μ  gets smaller (faster movements), the 
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velocity component increases in peak amplitude and its width is reduced (see Figure 1a). This 

reduction of μ  has a tendency to decrease the MSE that is, the energy associated with the error 

function (see Figure 1b). In other words, for a neuromuscular system, the shorter are the time de-

lays, the faster is the convergence and the smaller is the convergence error. 
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 Figure.1 Effects of μ  on the velocity component 0(Nv t t )−%   and on the energy associ-

ated with the error function . As 0(
N

t t− )vErr μ  decreases, the effects of the error diminish.   

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

Time [s]

v N(t-
t0

) [
cm

.s
-1

]

Decrease  of
 σ  values 

0.05 0.1 0.15 0.2 0.25 0.3
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

σ  

En
er

gy
 o

f t
he

 E
rr

or
 fu

nc
tio

n 

 

Figure.2 Effects of σ  on the velocity component 0(Nv t t )−% , and on the energy associated 

with the error function . As 0(vErr t− )
N

t σ  decreases, the effects of the error decrease.   
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 Figures 2 highlight the effect of σ  under similar conditions. As expected, a smaller value 

of σ  results in an increase of the peak amplitude of 0(Nv t t )−%  and a reduction of its width (see 

Figure 2a). This reduction in logresponse time has a tendency to decrease the energy associated 

with the error function  that is, the faster is the response time, the smaller is the MSE 

(see Figure 2b). One must notice that these effects are very small, when compared to the ampli-

tudes of the velocity components, but they might be at the basis of several phenomena that are 

observed in rapid movements. For example, longer time delays (increase of 

0(vN
Err t t− )

μ  and σ ), a charac-

teristic of movements made by aged subjects (Woch and Plamondon 2007a), will result in larger 

convergence errors and thus more tremors in the signal. 

 

4. The delta-lognormal convergence 

 

 In many applications, particularly when working with fast single unidirectional move-

ments, it has been shown that equation (3) reduces to the delta-lognormal equation (1) (Plamon-

don and Djioua 2006). Since a delta-lognormal is the difference of two lognormal impulse re-

sponses weighted by their respective input commands, the total convergence error of this velocity 

can then be obtained by subtraction. Indeed, if 0
1
( )vN

Err t t−  represents the agonist lognormal er-

ror and  represents the antagonist lognormal error, that is:  0
2

(vN
Err t t− )

 

 

2(ln( 0 1
2

1 1
0 011 1 0

) )
2( ) = ( )

2 ( )

t t

v NN

DErr t t v t t e
t t

μ
σ

σ π

− − −

− − −
−

%  (22) 

 and,  
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2(ln ( 0 2
2

2 2
0 022 2 0

) )
2( ) = ( )

2 ( )

t t

v NN

DErr t t v t t e
t t

μ
σ

σ π

− − −

− − −
−

%  (23) 

 

 then, with  being the velocity profile of rapid movement 

and 

0 01 2
( ) = ( ) (N Nv t t v t t v t t− − −% % %

2
1 0 1 1 2 0 2 2( ; , , ) ( ; , , )t t D t t

0 )−

2( ;...) =t D μ σ μΛ − Λ σΔΛ , its corresponding ideal delta-lognormal de-

scription, the delta-lognormal convergence error can be described by:  

0 0 01 2

2 2(ln( (ln(0 1 0 2
2 2

1 21 2

1 0 2 0

( ) = ( ) ( )

) ) ) )
2 2 ,

2 ( ) 2 ( )

v N N

t t t t

Err t t v t t v t t

D De e
t t t t

μ μ
σ σ

σ π σ π

− − − −

⎡ ⎤− − − − −⎣ ⎦
− −⎡ ⎤

⎢ ⎥
−⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

% %

                     (24) 

 namely 

2(ln( 0 1
32

31 0 1 0 11 1
0 3 3

1 11 0
2(ln ( 0 2

32
32 0 2 0 22 2

3 3
2 22 0

) )
3(ln( ) ) (ln( ) )2( ) [ ]

6 2 ( )
) )

3(ln( ) ) (ln( ) )2 [ ]
6 2 ( )

t t

v

t t

t t t tDErr t t e
t t

t t t tD e
t t

1

2

μ
μ μσ
σ σσ π

μ
μ μσ
σ σσ π

− −

− −

μ
σ

μ
σ

−
− − − −

− ⋅ − +
−

−
− − − −

− ⋅ − +
−

;
       (25) 

We have performed computer simulations to study this latter equation. We have plotted in 

Figure 3a, a delta-lognormal velocity pattern, with typical values of ,i iμ σ , and its two lognormal 

components. In Figure 3b, the total delta-lognormal error with its agonist and antagonist compo-

nents are depicted. As can be seen, the agonist error is more important than the antagonist one 

and this latter has the tendency to increase the total error because of the different timing between 

these two signal components. Here again, from an energy perspective, the global effect of the 

convergence error increases as the movements get slower (larger μ  and σ ).  
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Figure.3 Typical example of a delta-lognormal profile 2
0 0( ) = ( ; , ,v t t D t t )μ σ− Λ  and its 

total error of convergence . The individual components are also plotted in each graph.  0(vErr t t− )

 

 

5. Working with simulated data 

5.1 Practical application I: Benchmarking of parameter extraction algorithms 

 

 A first application of the present study is to evaluate the sensitivity of a specific parame-

ter extraction algorithm to the convergence error. To do so, a database of ideal delta-lognormal 

profiles (equation 1) and a database of noisy profiles that incorporate their respective conver-

gence error (equation 25) have been built (Plamondon, Li and Djioua 2007; Djioua and Plamon-

don 2008). To have a database that reflects the large variety of velocity profiles encountered in 

real experiments, we have created seven classes of signals, each class containing 1000  speci-

mens. A class  is identified by the number of peaks in the velocity profile (  or i  if 

no real roots) and the position of the antagonist component dominance with respect to the agonist 

one (  (before) ,  (after) or  (simultaneous)).Each curve, ideal and noisy has been proc-

uvC = 0v ,1, 2

=u b a s
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essed by three  parameter extraction algorithms currently available in our laboratory: INFLEX 

(Guerfali and Plamondon 1995), INITRI (Plamondon, Li and Djioua, 2007) and XZERO (Djioua 

and Plamondon, 2008). We have also tested a system that combines the three previous algorithms 

in parallel and keeps the best solution (the IIX system). We have summarized in Tables 1 and 2 

the results of these tests for the ideal and noisy conditions. For each algorithm and for each class 

of curves, the percentages of convergence toward the exact solution (known from our truth table) 

within a  greater than 50  are reported. SNR dB

1 C

 

Table 1. Performance results (in %) under ideal testing conditions   

  Class 
 

Method   

   biC     1bC     0aC     aiC    1aC    2aC   2sC  Downstream 
only   

  Total 
(%)  

 INFLEX  0 22.6 90.1   94.6 91.9  94.6  92.8  92.8    69.5
INITRI   3 37.4  97.2 98.9 93 100  69.5 97.3  71.3

 XZERO  98.1  97.9 95.2 100 96.6 100 92 98   97.1
   IIX   98.1    98.5    99.7  100  99.5  100  99.6  99.8   99.3 

               (Performance criterion :  )   50SNR dB≥

Class  
 

Method 

    biC     bC    0a    aiC     1aC    2aC   2sC  Downstream 
only   

  Total 
(%)  

 INFLEX  0 24.6 89   94.1 91.2  94.6  92.1  92.2    69.4
INITRI   0.3 37.4  97.5 97.6 93.4 100  69.6 97.1   70.8

  XZERO   99.9  87.0 91.9 100 84.4.6 100 97.4 94.1   94.4
   IIX     99.9    93.8    99.6  100  99.2  100  99.7  99.7   98.9 

Table 2.  Performance results (in %) under noisy testing conditions  

                (Performance criterion :  )   50SNR dB≥

 

As one can see from Table 1, none of the algorithms is perfect: INFLEX and INITRI have 

problems with the  and the  classes (upstream cases), while INITRI performs better than biC 1bC
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XZERO on the  class. Although, XZERO is the best algorithm, the combination of the three 

methods into the IIX system leads to the best performances. Comparing the columns of the two 

Tables, one can see that all the algorithms are slightly affected by the convergence error some-

times positively sometimes negatively, depending on the class of curves. On a global basis, com-

paring the last columns of the two Tables, we can see that XZERO is more sensitive to the error 

of convergence although it performances still greatly exceed the two others. Here again, the com-

bined IIX system is the most robust and should be preferred. In a more general perspective, these 

results set the pass mark for the search of a new algorithm. 

1aC

 

6. Working with real data 

6.1. Typical experimental results 

  

To get a more realistic picture, we have run an analysis-by-synthesis experiment on real 

data previously collected according to the following scenario: ten (10) healthy young subjects, 

sitting in a comfortable position, were required to produce rapid strokes on a digitizer with their 

dominant hand. The ( ), ( )x t y t  trajectory, sampled at  Hz, was then processed to compute the 

velocity profile of the pen tip. 

200

For each profile, the nonlinear regression system IIX (Djioua 2007, Djioua and Plamon-

don 2008) was used to extract the best set of seven parameters that allow a reconstruction of the 

velocity with a minimum of errors. We have plotted in Figure 4 a typical result of such an ex-

periment. Figure 4a shows a typical stroke trajectory, as collected on the digitizer. In Figure 4b, 

one can see the original velocity profile, its ideal delta-lognormal reconstruction and its two com-

ponents. The reconstruction error was quantified with the Mean Square Error (MSE) and the Sig-
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nal to Noise Ratio (SNR). Figure 4c depicts the time course of the total reconstruction errors 

( ) as well as the theoretical convergence error ( ), as computed from 

equation (25), using the parameter values extracted from this specimen. Such error level is typical 

of healthy human subject. As one can see in this typical example, the convergence toward log-

normals is reached and the ratio of the total to the convergence errors is very good ( 31/ ). 

This provides quantitative insights on the quality of the reconstruction and suggests that the pre-

sent solution can be considered as optimal. A set of profiles similar to this one and produced by 

the ten subjects has been used in the two following practical applications. 

= 31SNR dB = 41.6SNR dB
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 Figure.4 Typical experimental results a) original trajectory as sampled by a digitizer. b) 

velocity profile with its agonist and antagonist components as reconstructed from the following 

set of parameters: 0 1 1 1 2= 0.259 , = 32 , = 1.049, = 0.2, = 7.497 ,t s D cm D cmμ σ−  
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2 2
2 2= 0.84, = 0.099, = 3.772 .MSE cm sμ σ −−

= 41.6SNR dB

( )tη

( )exp tη

  c) Total error ( ) and convergence error 

( ) as a function of time.  

= 31SNR dB

Err

 

6.2. Practical application II: validation of the parameter extraction results 

  

One problem that an experimenter faces when running such an analysis is to fix the limits 

for acceptable solutions. Indeed, in a typical experiment, a stroke can generally be reconstructed 

with a minimal reconstruction error but sometime this error can be large and it is difficult to de-

fine a rationale upon which specific set parameters can be rejected. The previous theoretical de-

velopment can be useful in this context and we illustrate, in the following paragraphs, how the 

knowledge of the convergence error can be use to validate experimental results. 

Let  be the noise of the velocity profile and let assume that this noise is composed of 

two independent sources respectively linked to the convergence error  and to the ex-

perimental error , the latter representing the conditions under which the experience is 

made (acquisition, filtering, pre-processing, etc.).  

0(v t t− )

 

( ) ( )xp tη0 e= ( )vrr t tη − +t E

totP

( )tΔΛ

  (26) 

 

 Let  be the total mean power of the ideal velocity profile, represented by a delta-

lognormal equation  .  

 ( ) 2

0 0

1=tot
f

f

t

t
P

t t
ΔΛ

− ∫ t dt  (27) 
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The upper bound ft  of the integral represents the duration of the movement, as calculated 

from the time occurrence of the input command . 0=t t

The total mean square error ( totMSE ) is defined as:  

 ( ) ( ) 2
0

0 0

1=
f

tot
f t

t
MSE v t t t dt

t t
− −ΔΛ⎡⎣− ∫ % ⎤⎦  (28) 

 Because the convergence error and the experimental error are independent, we can ex-

press totMSE  by: 

( ) ( ) ( )

( ) ( )

22
exp

0 00 0

2 2
exp

0 00 0

1 1= =

1 1

f f

tot v
f ft t

f f

v
f ft t

t t
MSE t dt Err t t dt

t t t t

t t
Err t dt t dt

t t t t

η η

η

⎡ ⎤+⎣ ⎦− −

= +
− −

∫ ∫

∫ ∫
 

 =tot conv expMSE MSE MSE+  (29) 

 

where convMSE  and expMSE  are the convergence and the experimental mean square errors 

respectively. 

Using the definition of the signal to noise ratio (SNR), it follows that: 

 

 0.1 0.1
10= 10 10 10log SNR SNRtot conv

expSNR − −⎡ ⎤− −⎣ ⎦  (30) 
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where 10= 10log tot
tot

tot

PSNR
MSE
⎡ ⎤
⎢
⎣ ⎦

⎥  is the total signal to noise ratio and, 

10= 10log tot
conv

conv

PSNR
MSE
⎡ ⎤
⎢
⎣ ⎦

⎥   is the signal to noise ratio corresponding to the convergence 

error . 0( )vErr t t−
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 Figure.5. Representation of  vs.  and illustration of the different limits   convSNR totSNR

  

The Figure 5 illustrates, for each velocity profile processed in this experiment, the 

 of the convergence error versus the total  , for the whole set of data described in 

section 5.1. 

convSNR totSNR
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As one can see in this Figure, the  is always greater than30 . This value can be 

used to put an upper and a lower limit to define the area of acceptable values in this graph.  

convSNR dB

The upper limit is depicted by the oblique line on the right hand side of the plot 

(  for . A point lying under this limit would have a total error 

smaller than the convergence error which, by definition, should be the smallest possible value. In 

the present experiment, no points lied in this region and all the results were kept according to this 

first selection criterion. Looking at the left hand side of the Figure 5, a vertical line depicts the 

lower limit that has been used to reject some results. To minimize arbitrariness in the definition 

of this limit, the following procedure has been used: 

=conv totalSNR SNR 30totalSNR dB≥
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Figure.6. The experimental SNR for each individual trials.  
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Figure.7 Density of the experimental SNR variability, assumed to be a Gaussian function  

  

Using equation (30), the  has been computed. It values are illustrated in Figure 6 as 

a function of the sample number. The histogram of Figure 7, shows that the variability of  

roughly follows a Gaussian process. According to a Kolmogorov-Smirnov test, this histogram 

can be considered as a normal distribution ( , ), and we can then calculate a confi-

dence interval  at 95%  of . 

expSNR

expSNR

expSNR

= 0h = 0.1p

( )CI

•Mean of  = 29.15expSNR dB

• Standard deviation of  = 5.86expSNR dB

•Confidence Interval with  95% = [17.42,40.88]dB

In Figure 5, we have seen that the minimum value for the  in this experiment was 

about . In the worst conditions, both for the convergence error and the experimental error, 

the minimum bound or threshold used to determine the acceptable parameter extraction results 

convSNR

30dB
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can be calculated by using equation (33) with  equal to 17.42  and  equal to 

. The threshold can thus be fixed at 17.19  for this analysis and 6 data points are rejected. 

expSNR

dB

dB convSNR

30dB

 

6.3. Practical application III: estimation of acceptable movement times (MT) 

 

Another interesting application of the error function is to use it to estimate a range of ac-

ceptable movement times in a given experiment Indeed, it is often difficult to quantify the nature 

of a rapid movement. Using the Kinematic Theory and the delta-lognormal model, the movement 

time can be calculated by considering the total surface under the delta-lognormal curve. This sur-

face represents the distance covered during a rapid movement. Considering that 99.97%  of the 

total distance is covered in the following interval:  

( ) ( )23 =σ+⎡ ⎤ 31 1 2 1 23 3 3= min , , ,I e e e eμ μ μ μ σσ σ σ −− − + 3eμ σ+2 ,ma 1x eμ ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
  (31) 

 

a formal definition of the movement time (MT) can be proposed, using the following rela-

tionship: 

 

 ( )inh 33 3= = eμ σ 2 sMT e μeμ σ+ −−  (32) σ

 

In this perspective, the variation intervals of the delta-lognormal parameters were calcu-

lated from our previous database of 192  trials executed by the ten subjects. From the parameter 

experimental intervals of [ ]2.432, 0.195μ∈ − −  and [ ]0.065,0.428σ ∈ , we have used equations 

(33) and (35) to construct a relationship between MT convSNR and  (see Figure 8). As one can see 
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from this Figure, when a limit of is considered as the lower bound, a movement could be 

qualified as rapid in our experiment, if its duration was under 1.3  seconds, and, no rapid move-

ment could be performed with duration smaller than 0.4 second. 

30dB

 

  

Figure.8 Variation of movement time MT versus the theoretical SNR. To each SNR value cor-

responds an MT interval inside which a movement can be considered as rapid. In this example, 

the minimum SNR is 30 dB and a movement is considered as acceptable if its duration is inside 

the interval [0.4, 1.3] second.    

 

7. Conclusion 

 

 In this article, we have addressed the theoretical problem of describing the rate of con-

vergence of the impulse response of a neuromuscular system toward a lognormal. We have first 
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derived an analytical expression for this error and studied the effect of the model parameters on 

these intrinsic errors. Using the same function, we have estimated the theoretical departure be-

tween a real and an ideal delta-lognormal velocity profiles and used the resulting equation in 

three practical applications. In the first , we have used a benchmark of simulated velocity profiles 

(ideal and noisy) to evaluate and compare the sensitivity of three parameter extraction algorithms 

currently in use. We have shown that a combined system (IIX) was leading to better perform-

ances. 

Moreover, typical results of analysis-by-synthesis of real data have confirmed that the 

convergence error was generally very small when the IIX system successfully processed a signal. 

The whole approach has then been used in two other applications: as a limiting framework to 

evaluate the quality of the results of analysis-by-synthesis experiments and as a criterion to define 

the range of acceptable movement times in an experiment dealing with rapid human movements. 

These latter two systematic methodologies provide automatic and robust ways for fixing thresh-

olds in data analysis based on the delta-lognormal model. 
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A. Appendix 

 

The Fourier transform ( )F ω  of the function  is  ( )h t

 ( ) = ( ) ( .1)j tF h t e dt Aωω
+∞ −

−∞∫  

 This function ( )F ω  is, in general, complex  

  ( )( ) = ( ) ( ) = ( ) ( .2)jF R jX A e Aφ ωω ω ω ω+

 where 
1

2 2 2( ) = [ ( ) ( )]A R Xω ω ω+  is called the Fourier spectrum of . In our proof of 

the lognormal convergence of the convolution of the  impulse responses (Plamondon et al. 

2003), we have shown that 

( )h t

N

2 2

2( )A e
σ ω

ω
−

; , | ( )A |< 1ω  for 0ω ≠  and (A ) 0ω →  as | |ω →∞  as-

suming that the third moment 3μ  exists. We shall denote the Fourier transform of the function 
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0(Nh t t−% )  by ( )NH ω% . Since 0= ln( )l t t− , then  exists. First, we start with the 

Fourier transform 

0( ) = ( l
N Nh t t h e−% % )

1(F )ω  of the normal function using  
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 Then we need to calculate the Fourier transform 2 ( )F ω  of the function  
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 that appears in equation (18). From (A.1), we have  
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 let ( )NH ω%  represents the Fourier transform of the function . Noting that the 

Fourier transform of the function 

0(Nh t t−% )
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 Since the integrand is an odd function in the second term of right hand side of (A.7), thus, 
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 Note that  for | ( ) |< 1NA ω% 0ω ≠  and  as |( ) 0NA ω →% |ω →∞ . Obviously, given any 

> 0ε , if  is sufficiently large, then N
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, the right side hand of (A.8) tends to-

ward zero as . Thus, as  we have  N →∞ N
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 Since , then 0= ln( )l t t− 0= lt e t+ . Integrating from 0 to (0 < 1)ε ε =  for the variable l , 

is equivalent to integrate from 1  to 0t+ eε 0t+  for the variable t . Indeed:  
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 Applying this equivalence to our problem, we have  
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 From the Mean Value Theorem for Integrals, there are 1 2 3 0 0, , (1 , )t t t t e tε∈ + +  such  
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 namely,  
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 where , if we select 1 2 3 0 0, , (1 , )t t t t e tε∈ + + ε  so small tha 3t  are almost the same. 

In other words, in a sufficiently small inter 0 )t

t 

val 

1 2, ,t t

0(1 eε,t+ + , the convergence error for a log-

normal can be expressed as follows  
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where . Now to generalize this result for the interval , we consider 

a sequence {  satisfying  and  as  In 

every sufficiently small interval  we have t t

0(1 , )t t e tε∈ + +

}, = 0,1,2, ,kt k L

0

L

0( , )t ∞

→∞

1)

0 1 2< < < < < ,kt t t tL

), = 0,1,2, ,k L

kt

k kt +

.k →∞

1( ,k kt t + ( ,∈  such that (A.15) 

holds. Therefore, in the interval , we have the lognormal approximation error as follows:  0( , )∞t

2(ln( 0
2

0 0
0

2(ln ( 0 32
3 0 0

3 3
0

) )
1 2( ) = ( )

2 ( )
) )

3(ln( ) ) (ln( ) )1 2 [ ] ( .16)
6 2 ( )

t t

N N

t t

Err t t h t t e
t t

t t t te A
t t

μ
σ

σ π
μ

μ μσ
σ σ σσ π

−
−

−
− μ

−

− − −
−
−

− − − −
⋅ − +

−

%

;  

 

 If the lognormal is weighted by an input command , then (A.16) must be replaced by 

the following  
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which represents the convergence error on the velocity output of a neuromuscular system. 

A special case of (A.16) is when the system is made up of  identical subsystems, each 

having identical third moments, then 
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 where   2 3
0 1 3 10
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∞ ∞

−∞ −∞
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It must be noted however that such a formula is useless in our model since the hypothesis 

of  identical subsystems does not make sense here.  N
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