POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: New efficient methods for airfoil parameterization and iterative
Title: inverse aerodynamic design

Auteur:
Author:

Date: 2002

Type: Mémoire ou thése / Dissertation or Thesis

Jianzhong Yu

EA . 'Yu, J. (2002). New efficient methods for airfoil parameterization and iterative
Référence: . . ; ARGE e O ;
inverse aerodynamic design [Mémoire de maitrise, Ecole Polytechnique de

Citation: 'Montréal]. PolyPublie. https://publications.polymtl.ca/26177/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/26177/

Directeurs de
recherche: lon Paraschivoiu
Advisors:

Programme:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/26177/
https://publications.polymtl.ca/26177/

UNIVERSITE DE MONTREAL

NEW EFFICIENT METHODS FOR
AIRFOIL PARAMETERIZATION AND
ITERATIVE INVERSE AERODYNAMIC DESIGN

JIANZHONG YU
DEPARTEMENT DE GENIE MECANIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE MECANIQUE)

JUIN 2002

© Jianzhong Yu, 2002.



UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

NEW EFFICIENT METHODS FOR
AIRFOIL PARAMETERIZATION AND
ITERATIVE INVERSE AERODYNAMIC DESIGN

présenté par : YU Jianzhong

en vue de ’obtention du dipldme de : Maitrise &s sciences appliquées

a été diiment par le jury d’examen constitu€ de :

M. ROBILLARD Luc, D.Sc., président
M. PARASCHIVOIU Ion, Ph.D., membre et directeur de recherche
M. TREPANIER Jean-Yves, Ph.D., membre




iv

ACKNOWLEDGEMENTS

First 1 would like to express my gratitude to my advisor, Professor Ion Paraschivoiu for
his financial support during the past two years and his permission to pursue my personal

research interests.

I am also very grateful to Dr Farooq Saeed for his numerous helps such as the installation
of Linux, especially for the useful programs that he offered to me. At the same time I'd
like to thank Dr Stéphane Hallé for his assistance in treating miscellaneous affairs like
ordering technical papers and preparing transparencies. And special thanks also go to my
colleague, Vincent Desobry and Madam Manon Rioux for the verification of some part of

this thesis written in French.

My gratitude is also expressed to Dr Mark Drela for using his exceptional code MSES
and to Dr. David L. Carroll for his GA optimization code which really saved me a lot of

time for programming.

Finally, I would like to acknowledge my wife and my son. Without their supports and

understandings, T could not spend most of my spare times working at this research.



RESUME

Deux nouvelles méthodes efficaces sont proposées dans ce mémoire. La premiere
concerne la représentation paramétrique du profil aérodynamique et la seconde, la

conception aérodynamique inversée.

La représentation paramétrique du profil aérodynamique est une fagon bien adaptée pour
améliorer Iefficacité de conception d’un profil ou d’une aile, ce qui permet de réduire le
nombre des parametres de conception ou du bruit de 1a fonction objective en I’optimisant
d’une manicre significative. Les méthodes existantes ont I'un des deux défauts suivants :
difficile & obtenir des paramétres de contrdle ou besoin de plus de points de contrdle
pour satisfaire la précision donnée. Si on prend plus de points, il est plus difficile de
controler ’égalité et la monotonie du profil. Donc une nouvelle méthode optimisée a €té
inventée pour régler ce probléme. La représentation du profil de cette méthode est basce
sur la spline paramétrique de 5° degré, mais avec des traitements spécifiques pour ajouter
automatiquement des nceuds additionnels de spline afin d’améliorer la précision. Quatre
paramétres de contrdle, la pente, la courbure et les deux abscisses des points de contrdle,
sont nécessaires pour chaque point qui peuvent en général étre sélectionnés directement
a partir des points originaux du profil d’aprés leur distribution de I’abscisse x. Donc dans
ce cas 1, la pente et la courbure ont seulement besoin d’étre optimisées par unc méthode
de gradient conjugué, et la convergence rapide de I’optimisation peut &tre assurée en
prenant les valeurs initiales de 1’interpolation de la spline de 5° degré issues des points
originaux du profil. Par conséquent, les parametres de contrdle peuvent étre obtenus en
10 secondes. Dans les quelques cas ol cette méthode des localisations de X ne peut pas
satisfaire I’exigence de précision, la méthode d’algorithme génétique (GA) est adaptée
pour optimiser ces localisations en combinaison avec la méthode de gradient conjugué
pour les autres parameétres. Puisque le micro GA est employé et que cette optimisation
n’est faite que pour peu de points discrets du profil original, la méthode est encore
efficace. D’ ailleurs, les résultats de calcul confirment que cette nouvelle méthode permet

de représenter presque tous les profils précisément par 7 a 13 points de contrdle. Bien
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que la pente et la courbure soient exigées pour chaque point de controle, elles sont
néanmoins beaucoup plus faciles a utiliser pour contrdler la géométrie du profil que les
positions des points. De plus, il est plus aisé d’ajouter des contraintes, de calculer des
caractéristiques géométriques et de faire des modifications locales du profil. Par
conséquent, cette méthode posséde un grand potentiel pour améliorer I’efficacité de la

conception du profil, de I’aile ou d’autres applications multidisciplinaires.

Les caractéristiques aérodynamiques sont trés sensibles & la forme géométrique du bord
d’attaque du profil. En conséquence, la deuxieme partie de ces recherches est consacrée
a développer une nouvelle méthode itérative de conception aérodynamique inversée qui
est non seulement efficace, mais permet aussi de calculer la région de bord d’attaque
assez précisément. Ceci demeure impossible pour beaucoup d’autres méthodes. Au lieu
de I’hypothése des variations des courbures des lignes de courant normales a la paroi du
profil, une équation géométrique de petite perturbation est déduite a partir de 1’équation
de moment de ligne de courant, de 1’équation de continuit¢ et des relations isentropiques
avec I’hypothese de la similitude de la ligne de courant proche a la paroi du profil. En
plus, la correction transsonique pour cette équation est prise en compte avec I’hypothese
sur les effets des ondes reflétées de la frontiere libre (la ligne sonique), car cette méthode
n’est basée que sur les valeurs aérodynamiques de surface. Alors, elle ne peut pas refléter
les caractéristiques transsoniques telles que les interférences des ondes. Les perturbations
géométriques normales 2 la paroi du profil sont calculées en résolvant cette équation
différentielle ordinaire de deuxidme ordre avec des valeurs initiales. Les techniques
comme lisser le profil, la relaxation non uniforme et le “strained coordinate transfer” qui
était utilisé pour supprimer les non-uniformités des solutions de perturbation des
problémes non linéaires, sont employées pour accélérer la convergence. Les résultats
démontrent D’efficacité et D’exactitnde de cette méthode non seulement pour les
conceptions d’écoulement compressible, mais aussi pour celles de basse vitesse surtout
que le bord d’attaque peut étre désigné précisément. Ceci demeure inaccessible presque

pour toutes les autres méthodes.
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ABSTRACT

Two new efficient methods for airfoil design are proposed in this thesis. One concerns
the optimized airfoil parameterization and another for iterative inverse aerodynamic

design.

The airfoil parameterization is a commonly accepted way to improve airfoil design
efficiency, which can greatly reduce design parameters and noises of objective function
in optimization. The existed methods have one of the two drawbacks: hard to get control
points or needing more control points at the given representation precision. The more
control points, the more difficult to control the smoothness and the monotony of airfoils.
Thus a new optimized approach is put forward to solve the above problems. The airfoil
representation of this method is based on the general 5th degree parametric spline but
with special treatments for automatically adding additional spline nodes in order to
improve the precision. Four control parameters, the slope, the curvature and the two
coordinates of control points, are needed for each control point which can be selected
directly from the original airfoil ones according to their x location distribution. Thus in
this case, only the slop and the curvature need to be optimized by a conjugate-gradient
method and the rapid optimization convergence can be guaranteed by taking initial
parameters from the Sth degree spline interpolation of the original airfoil points.
Therefore, the control parameters can be obtained within 10 seconds. For fewer cases that
this way to localize control points cannot meet the precision requirements, a genetic
algorithm (GA) method is adapted for optimization of the x locations combined with the
gradient method for other parameters. As the micro GA is used and the x location
optimization is only carried out for fewer discrete original airfoil points, the method is
still relatively efficient in this case. Moreover, the calculation results confirm that this
new method can accurately represent nearly any airfoil by 7 to 13 control points.
Furthermore, it is simpler to add constrains, to calculate geometric characteristics and to

make local airfoil modifications than the other methods. Thus the method possesses a
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great potential to improve airfoil and wing design efficiency, especially for multi-point

and multi-discipline optimization design.

Aerodynamic characteristics are very scnsitive to airfoil leading edge geometry.
Therefore, the second part of this research is concentrated on developing an iterative
inverse design method which is not only efficient but also can work well in the leading
edge region, which is impossible for many other methods. Instead of assumptions of
streamline curvature variations normal to airfoil surface as in the streamline curvature
methods, a small geometric perturbation equation is deduced from the streamline
momentum equations, the continuity equation and the isentropic relations with the
geometry similarity assumption of near streamlines to the airfoil surface. Moreover, the
transonic correction is considered in this equation with the assumption for the effects of
waves reflected from the free surface (sonic line) because the method based on the
surface flow values cannot take into account the transonic characteristics such as wave
interference. The geometric perturbation normal to the airfoil surface is then calculated
by solving this second order initial-value ordinary differential equation and the airfoil is
designed in iteration. The techniques like airfoil smoothing, non-uniform relaxation and
the strained coordinate transfer which was used to remove non-uniformity from
perturbation solutions of non-linear problems, are applied for accelerating the
convergence. The design cases demonstrate the high efficiency and accuracy of this
method not only for compressible flows but also for low speed flows, especially the
leading edge can be precisely calculated, which compensates for the deficiencies of the

other methods.
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CONDENSE EN FRANCAIS

Deux méthodes efficaces pour la conception du profil aérodynamique sont proposées

dans ce mémoire.

1. Représentation paramétrique optimisée du profil aérodynamique

1.1 Introduction

La représentation paramétrique du profil est une méthode qui est employée pour
représenter un profil avec beaucoup moins de points que Poriginal. Donc elle est bien
adaptée pour améliorer I’ efficacité de conception d’un profil ou d’une aile, ce qui permet
de réduire le nombre des paramétres de conception ou du bruit de la fonction objective en

I’optimisant d’une facon significative.

Les méthodes pour représentation paramétrique du profil peuvent se diviser en deux
genres : le classique et'le moderne. Le premier basé sur quelques fonctions de forme de
base n’est pas flexible & cause de sa capacité limitée et le second révélé avec le
développement de la conception assistée par 1’ordinateur est beancoup plus pratique,
parmi lequel la spline de Bézier, B-spline et B-spline non uniforme rationnelle
(NURBS). Des résultats satisfaisants ont €t€ obtenus avec toutes ces méthodes modernes
dans ces applications. Mais les premiéres ne sont pas assez précises ou requierent plus de
points de contrdle pour satisfaire la précision donnée. Si on prend plus de points, alors il
est plus difficile de controler ’égalité et la monotonie du profil. Le NURBS est tres
puissante, mais les parametres de contrdle sont calculés avec une méthode d’optimisation
basée sur le gradient qui dépend des valeurs initiales données. Puisque le probléme
d’optimisation contient de nombreuses minima locales et qu’il n’est pas possible
d’assurer des valeurs initiales appropriées, la solution ne peut pas étre garantie et, de ce
fait, il est difficile d’obtenir des parametres de contrdle avec cette méthode. Par

conséquent, une nouvelle méthode optimisée a ét€ inventée pour régler ce probleme.



1.2 Méthodes de représentation et d’optimisation

La représentation du profil avec cette méthode repose sur la spline paramétrique de 5°
degré car il est raisonnable de garder les courbures du profil non seulement continues
mais aussi lisses. Cependant, la spline générale ne peut pas étre employée directement
pour la représentation paramétrique du profil parce que les distances ou les variations
entre deux nceuds proches peuvent étre trop grandes en raison du faible nombre de points
de controle. Donc il faut régler les trois problémes principaux ci-apres: 1)
Approximation des longueurs des segments de courbe qui sont contenues dans les
fonctions de spline. La longueur de corde, qui est bien adaptée pour des applications
générales, est trop imprécise pour étre utilisée. Mais le calcul de la longueur exacte de
courbe qui est obtenue en résolvant un systeme d’équations non lindaires n’est pas garanti
(le calcul diverge parfois). Donc la longueur de courbe est I’approximation de 1’arc
circulaire moyen. Mais ce traitement conduit & un autre probléme. 2) Réduction des
paramétres de contrdle. Il y a trois vecteurs de contrble 4 chaque nceud de spline de 5°
degré, le vecteur de position, le vecteur tangent €t son gradient qui correspondent a six
parametres de contrdle dans le cas bidimensionnel. Si on prend les longueurs exactes des
segments de courbe, quatre de ces six parametres sont indépendants, car la norme du
vecteur tangent est unitaire et les derniers vecteurs sont normaux entre eux. Donc il existe
quatre paramétres de controle pour chaque neeud. Mais si les longueurs des segments de
courbe sont approximatives, ces six paramétres sont tout indépendants. Alors il faut
effectuer la normalisation pour réduire le nombre des paramétres de six a quatre, qui sont
deux abscisses de position, la pente et la courbure. 3) Ajouter des nceuds de spline
additionnels. La spline générale ne peut pas satisfaire I’exigence de précision spéciale du
profil i cause du faible nombre des nceuds de spline qui sont des points de contrdle pour
un profil paramétrique. Mais ¢a n’a pas de sens physique d’ajouter plus de points dans ce
cas 1a. Donc les nceuds additionnels sont ajoutés automatiquement pour améliorer la

précision, en maintenant continues les dérivées curvilignes de troisieme degré et de
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quatrieme degré a chaque nceud ajouté. Pour cela, il est nécessaire de résoudre un

systéme d’équations non linéaires qui ne prennent en compte que les voisins de nceud.

Puisque les nceuds de contréle de spline adaptée se situent exactement sur les courbes de
la spline, les points de contrdle peuvent étre sélectionnés directement a partir des points
originaux du profil. Alors deux stratégies peuvent étre employées : 1) Les points de
contrdle peuvent étre simplement fixés d’aprés leur distribution de I’abscisse x déterminé
par une fonction polynomiale donnée et la distribution de courbure du profil. Ainsi dans
ce cas 13, la pente et la courbure ont seulement besoin d’étre optimisées par une méthode
de gradient conjugué. Mais il faut que les valeurs initiales soient proches du minimum
global, car cette méthode d’optimisation ne permet de trouver qu’un minimum local sans
contraintes. Ceci peut étre assuré en prenant les valeurs initiales de I’interpolation de la
spline de 5° degré a partir des points originaux du profil. Donc la convergence rapide de
I’optimisation peut étre garantie et les parametres de controle peuvent étre obtenus en 10
secondes avec un ordinateur de 800 M Hz. Bien que les résultats calculés de cette
maniére soient exceptionnels, ils ne correspondent probablement qu’a un minimum local
puisqu’on ne peut pas trouver de différences entre un minimum local et le minimum
global méme mathématiquement. Si cette méthode des localisations de x ne peut pas
satisfaire I’exigence de précision, la deuxieme stratégie sera adaptée : 2) Les points de
contrdle sont aussi déterminés par optimisation. Dans ce cas 1a, la méthode d’algorithme
génétique (GA) est adaptée pour optimiser les localisations de x en combinaison avec la
méthode de gradient conjugué pour les autres paramétres. Puisque le micro GA est
employé et que cette optimisation n’est faite que pour peu de points discrets du profil

original, la méthode est encore efficace.
1.3 Résultats et discussions

Pour confirmer la capacité de cette méthode, divers types de profils paramétriques sont

présentés dans ce mémoire, y compris les profils NACA, les profils supercritiques de



xii
RAE et de NASA, le profil naturellement laminaire et celui pour le “rotor-craft”. Le
nombre des points de contrdle et I’erreur maximum entre les profils paramétriques et les
originaux figurent dans le tableau 2.1. Les résultats démontrent que la plupart des profils
les plus employés pour les avions, peuvent &tre présentés précisément en déterminant les
points de contrdle d’apres leur distribution de ’abscisse X : les profils de NACA avec 7 a
9 points de contrdle avec des erreurs maximunis entre 5.1><10—5 a 7.7><10-5, les profils
supercritiques avec 11 points de contrble et des erreurs maximums entre 2.5x10” a
6.5%10”. On peut visualiser les résultats presque tout de suite. Pour les autres profils dont
les points de contrdle ont besoin d’étre optimisés, les précisions sont encore excellentes,
mais ne sont pas aussi bonnes que celles obtenues dans les premiers cas. La raison
principale est la suivante : il est trés difficile de spécifier avec une bonne adéquation les
régions de variations pour chaque point de contrdle parce que le GA utilisé adapte un
code binaire et qu’il faut que ces régions satisfassent la relation 2"-1, ol n est entier. En
conséquence, la solution obtenue par ce biais est seulement une correspondante a un des
minima locaux. Ceci est trés manifeste dans 1’observation des distributions des erreurs

non uniformes.

En plus, les effets de la fonction objective sur les solutions d’optimisation sont aussi
étudiés dans cette recherche. Cette étude confirme que: 1) le choix de la fonction
objective a une forte influence sur les résultats d’optimisation, 2) I’approximation des
moindres carrés est appropriée pour le profil paramétrique et 3) la fonction objective, qui
contient I’erreur moyenne et les erreurs maximums de tous les segments de courbe, est
bien meilleure pour la représentation paramétrique du profil que celle qui inclut I’erreur
moyenne et la seule erreur maximum, quoique cette derniere forme de fonction soit
néanmoins généralement acceptable. Les raisons en sont les suivantes : la premiére forme
de fonction peut relativement garder sa valeur monotone et pour la derni¢re fonction
plusieurs minima locaux seraient formés par un mouvement aléatoire de la position de
I’erreur maximum d’un segment de courbe a l'autre, ce qui est néfaste pour

I’optimisation, surtout pour celle basée sur le gradient.
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1.4 Conclusion

Les résultats de calcul démontrent que cette nouvelle méthode permet de représenter
presque tous les profils non seulement précisément mais aussi efficacement par 7 a 13
points de contrdle, surtout les profils plus employés pour I’avion avec 11 points ou
moins, ce qui compense les insuffisances des autres méthodes. Bien que la pente et la
courbure soient exigées pour chaque point de contrdle, elles sont néanmoins beaucoup
plus faciles a utiliser pour contrbler la géométrie du profil que les positions des points. De
plus, il est plus aisé d’ajouter des contraintes telles que les épaisseurs du profil, de
calculer des caractéristiques géométriques comme les courbures et de procéder a des
modifications locales du profil avec cette méthode qu’avec les autres. Par conséquent,
cette méthode posséde un grand potentiel pour améliorer efficacité de la conception du

profil, de I’aile ou d’autres applications multidisciplinaires.

2. Méthode itérative de conception aérodynamique inversée

2.1 Introduction

La conception aérodynamique inversée permet de fournir la forme géométrique pour les
valeurs objectives spécifiées comme la distribution de pression ou celle de vitesse. Avec
le développement de I’informatique et des méthodes de dynamique numérique de fluide,
la conception aérodynamique inversée devient un outil privilégié pour désigner des

profils, les ailes d’avion, les pales pour 1’éolienne, I’h€licoptere et le compresseur.

De nombreuses méthodes de conception aérodynamique inversée existent et, en
particulier les méthodes itératives comme la méthode de Takanashi et celle de courbure
de ligne de courant de la NASA qui sont plus puissantes pour des applications

d’ingénierie car 1) Le programme pour résoudre les écoulements peut rester inchangé.
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Alors elles permettent d’étre couplées directement avec les logiciels aérodynamiques
récents. 2) Les méthodes sont basées sur les corrections itératives des différences de
pression ou de vitesse entre les profils objectif et calculé. Elles ne sont requises que pour
prédire la correcte tendance au lieu des valeurs exactes, car la solution sera améliorée
pendant le processus d’itération. Donc elles peuvent étre plus facilement utilisées pour

les configurations compliquées a cause de ses flexibilités.

Cependant, ces méthodes comme les nombreuses autres méthodes ne peuvent pas
calculer la forme du bord d’attaque du profil précisément a cause des grandes variations
de I’écoulement et de la distribution de haute courbure dans cette région. Cela limite leurs
applications pratiques parce que les caractéristiques aérodynamiques sont trés sensibles a
la forme géométrique du bord d’attaque. Alors plusieurs approches sont proposées pour
régler ce probléme. La nouvelle méthode de courbure de ligne de courant a donné de
bons résultats, mais elle est développée principalement pour I’écoulement de basse
vitesse et se révele moins efficace dans les autres cas. La représentation du profil par des
fonctions analytiques est satisfaisante dans certains cas, mais les résultats de conception
sont restreints. Par conséquent, une nouvelle méthode est proposée, qui est requis d’étre

non seulement efficace mais aussi précise.

2.2 Méthode de conception

Au lieu de I’hypothése des variations des courbures des lignes de courant normales a la
paroi du profil comme ce qui est fait dans les méthodes de courbure de ligne de courant,
une équation géométrique de petite perturbation est déduite & partir de I’équation de
moment de ligne de courant, de 1’équation de continuité et des relations isentropiques
avec I’hypothése de la similitude de la ligne de courant proche a la paroi du profil. Les
perturbations géométriques normales a la paroi du profil sont calculées en résolvant cette
équation différentielle ordinaire de deuxiéme ordre avec des valeurs initiales. Mais cette

équation est trés “‘stiff”’, car le coefficient de dérivée seconde a le méme ordre que les
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autres seulement dans la région du bord d’attaque. Bien que ce probleme puisse &tre
solutionné mathématiquement, il n’est pas physique de garder ce coefficient dans les
autres régions, car les termes ignorés auraient le méme ordre voire seraient plus grands
que lui. Ainsi cette équation ne s’ applique que dans la région de bord d’attaque. Du point
ol un saut de perturbation géométrique apparait ou ol le taux du coefficient de dérivée
seconde aux autres est inférieur A une valeur donnée (environ 1%), une équation
algorithmique, obtenue 2 partir de 1’équation ci-dessus en ignorant le terme de dérivée
seconde, est utilisée & la place. Mais pour la zone supersonique dans I’écoulement
transsonique, il est plus approprié d’employer cette €quation en forme différentielle
puisque la zone d’influence d’un point se limite seulement a sa zone de Mach. Par
ailleurs, cette équation n’est basée que sur les valeurs aérodynamiques de surface au lieu
du champ de I’écoulement. Alors, elle ne peut pas refléter les caractéristiques
transsoniques telles que les interférences des. Donc la correction transsonique est prise en
compte dans la réalisation de I’hypothése de la similitude de la ligne de courant proche a
la paroi du profil mais avec I’autre hypothése sur les effets des ondes reflétées de la

frontiére libre (la ligne sonique).

Pour la conception subsonique, les équations peuvent étre résolues directement mais la
convergence n’est pas rapide. Pour la conception transsonique, on ne peut pas trouver de
solution par ce biais. Donc il faut mettre en oeuvre des traitements spécifiques pour
assurer efficacité et la précision. Les trois mesures principales et les raisons d’utilisation
sont explicitées ci-aprés. (1) Transfert déformé des coordonnées (the strained coordinate
transfer) : Les différences entre la pression objective et celle calculée pres du bord
d’attaque et de 'onde de choc, peuvent étre si grandes (surtout pendant les premieres
itérations ) que les perturbations géométriques calculées soient fortement déformées a
cause des grandes différences entre les positions des points d’arrét, des sommets de
pression négative et des chocs. Ceci peut étre réglé en lissant le profil, mais le transfert
déformé des coordonnées pourrait accroitre Pefficacité. Cette technique était employée

pour supprimer les non-uniformités des solutions de perturbation des problémes non
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linéaires en transférant les points critiques d’un profil tels que le point d’arrét, la position
du sommet de pression négative et du choc aux points correspondants de I’autre profil.
(2) Lisser le profil : C’est une technique bien adaptée pour les autres méthodes it€ratives
et elle est essentielle pour I’écoulement transsonique en raison des discontinuités des
perturbations géométrique causées par I’onde de choc. En général, le profil est lissé une
fois par une itération de conception. Pour cette méthode de conception, trois méthodes
sont employées pour lisser le profil : (a) La méthode de la représentation paramétrique
du profil décrite dans la premiére partie de ce mémoire. Cette méthode peut garder les
dérivées d’ordre trois continues mais elle a tendance a trop peu lisser le profil car elle est
développée pour présenter le profil précisément. Donc les deux autres méthodes sont
utilisées pour lisser le profil localement. (b) Lisser les dérivées secondes des
perturbations géométriques et ensuite, les abscisses du profil sont obtenues  par
intégration. Cette méthode est employée principalement pour lisser la région
supersonique. (c) La fonction de Bézier est utilisée pour lisser la région de bord d’attaque
car elle permet de garder la tendance d’origine d’une courbe et d’amortir les valeurs de
sommet. 3) Relaxation non uniforme: la convergence est aussi accélérée avec la
technique de relaxation, mais les facteurs de relaxation sont différents sur les endroits

différents du profil en considérant les caractéristiques de la solution de perturbation.

2.3 Résultats de conception

Pour vérifier cette méthode de conception, les calculs sont effectués pour plusieurs cas.
Les coefficients de pression sont issus du code MSES qui est basé sur la méthode d’Euler
couplée avec celle de la couche limite. Pour les résultats de haute vitesse subsonique (M.
= 0.60 a 0.725) illustré dans les figures 4.1 et 4.2, le profil objectif et celui initial sont
respectivement RAE2822 et NACAQ012. Les grandes différences entre les deux profils
sont adéquates pour tester la capacité de la méthode. Pour le premier cas de conception
(M.. = 0.60, . = 1.50 d et Re = 1.00x10") ot le transfert déformé des coordonnées est

appliqué, les résultats montrent que : en 5 itérations, les différences des distributions de
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pression et celles géométriques entre le profil objectif et celui de conception sont si
petites que les résultats de conception seraient employés pour des applications pratiques.
En 15 itérations, la différence maximum de coefficient de pression est 0.006 et les erreurs
géométriques sont plus petites que 5.0x107 prés du bord d’attaque. Pour le deuxiéme cas
(M. =0.725,0.=0.00d et Re = 1.00x107), la solution de la méme précision est obtenue
en 20 itérations. La convergence est un peu plus lente, car le transfert déformé des
coordonnées ne peut pas étre utilisé en raison des grandes différences des positions de
sommet de pression négative entre les profils objectif et initial. Pour les deux cas de
basse vitesse (M. =0.3, ®=4.00a5.00d et Re = 1.00><107) illustrés dans les figures 4.4
et 4.5 avec le profil initial NACAO0012 et les profils objectifs RAE 5212 et NACA2412,
les résultats précis sont atteints en 15 & 20 itérations mais ils ne sont pas aussi bons que
dans les premiers cas. Pour le cas transsonique (figure 4.6), la solution obtenue en 25
itérations est excellente du point de vue pratique et en comparaison avec les résultats des

autres méthodes itératives, bien qu’il y ait des différences visibles autour des chocs.
2.4 Conclusion

Tous les résultats de conception ci-dessus démontrent I’efficacité et I’exactitude de cette
méthode non seulement pour les conceptions d’écoulement compressible, mais aussi pour
celles de basse vitesse, surtout que le bord d’attaque pent étre désigné précisément. Ceci
demeure inaccessible presque pour toutes les autres méthodes. Ils confirment aussi que
I’efficacité et la précision de conception dépendent des techniques pour lisser le profil et
accélérer la convergence et d’autres telles que le transfert déformé des coordonnées, mais
toutes ces techniques nécessitent d’&tre amélioré. Ainsi, elle pourrait remplacer les

anciennes méthodes et se répandre aux applications pratiques.
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INTRODUCTION

This thesis is divided into two parts: (1) Optimized Airfoil Parameterization and (2)
Tterative Inverse Aerodynamic Design. Each part can be used independently and all the
research belongs to the project of “Laminar Flow Control” which is financially supported
by Bombardier Aerospace. Although the developed methods intend to be employed in
Jaminar flow control design, they can be applied for general purposes such as aircratft,

turbine or other concerned design applications.

0.1 Airfoil Parameterization

With the developments of the computer and the computational fluid dynamics methods,
multi-point and multi-discipline optimization design attracts more and more interests.
But there are still a lot of engineers who hesitate to use optimization methods. This may
be due to the following reasons. 1) There is still a long way to use this kind of methods
as a “black box”. The results of optimization depend on appropriate selection of many
parameters determined by user’s concerned knowledge and calculation experiences. 2) In
many cases, optimization methods are still not efficient enough to meet practical needs.
Although it is rapid for gradient-based methods to find a local minimum, solutions
depend too much on the given initial value and the calculation convergence cannot be
guaranteed in practical applications that often contain too much noise, that is to say, too
many local minima. Evolution computation methods, such as the genetic algorithm, can
ensure to find a better solution, but much more computation time has to be spent in
complicated cases. Therefore, it is very practical to develop methods that can reduce
design parameters and noises of the objective function in optimization and with which it
is easy to add constrains and to coordinate with different disciplines. What is more, the
methods must be able to precisely represent airfoils with special smoothness
requirements. Furthermore, it should be convenient to take into account airfoil

characteristics, for example, curvatures and slops are larger only near the leading edge,
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airfoil curves are monotonous for most part of the airfoil and inflection points may occur

only at some special places.

Airfoil parameterization is a kind of method by which an airfoil can be represented by its
parametric one with much fewer points than the original. It is a commonly accepted way
to improve the airfoil or wing design efficiency, especially for multi-point and multi-
discipline optimization design and it is in practice use for a long time. However, it did
not find wide applications because the early methods that are generally based on some
basic shape functions are not flexible enough and their capabilities to accurately
represent airfoils are limited. Though this kind of methods can be useful, it has

tendencies to bias a design by making it fall into certain geometric families.

In recent years, achievements in computer aided geometric design also bring forward
some new more powerful tools to airfoil parameterization, among which Bézier polygon
by Venkataraman, B-spline (Burgreen et al) and most recently the non-uniform rational
B-spline (NURBS) by Trépanier and al. All these methods have been successfully
applied in airfoil or wing designs. But generally speaking, the formers are not accurate
enough for fewer control points or need more control points for the given precision
requirement. The more control points, the more local minima there are in objective
functions and thus it is more difficult to control the smoothness or monotony of airfoils.
NURBS is most powerful and very simple for geometry control. But it is difficult to
obtain control parameters because their calculation depends on optimization methods and
on the initial guess to the solution. As a result, an acceptable solution cannot be
guaranteed. Thus the practical applications of this method may be limited unless some of

its special treatments are improved.

In this research, a new optimized airfoil parameterization approach is proposed which
use four control parameters, the slope, the curvature and the two coordinates of control
points for each point. The airfoil representation is based on the general 5th degree spline

in Hermite form but with additional spline nodes automatically added from the
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information of the neighboring control points since the spline with very fewer nodes
cannot meet the airfoil special precision requirements. The parametric airfoil points can
be selected directly from the original ones according to their x locations, which generally
determined by some distribution function. Thus in this case, only the slope and the
curvature at each control point are unknown and they are obtained by a conjugate-
gradient optimization method. The initial parameters taken from Sth degree spline
interpolation of the original airfoil points and the relatively monotonous variations of the
objective function with those of the curvature and the slope can ensure the rapid
optimization convergence. For fewer cases that fixed x locations cannot satisfy the
precision requirements, a genetic algorithm (GA) method is adapted for optimization of

the x locations combined with the gradient method for other parameters.

The high accuracy and efficiency of this new method are confirmed by the
representations of several types of airfoils including supercritical, natural laminar and
low speed ones. Moreover, some concerned problems like influences of different
objective functions to optimization solutions are also discussed in detail with calculation

results.

0.2 Iterative Inverse Aerodynamic Design

Inverse problems are treated to obtain geometric properties for specified aerodynamic
characteristics in contrast to direct problems for which aerodynamic performances are
solved at given geometric conditions. Inverse aerodynamic design is used for designing
or modifying airfoils at specified target airfoil surface pressure or velocity distributions
to meet the special design requirements. As one of the design tools, inverse aerodynamic
design methods have found wide applications in aircraft, turbine machine and wind
energy equipment design with the development of the computer and the computational

fluid dynamics (CFD) methods.
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There are numerous inverse design methods among which iterative residual-correction
methods such as Takanashi’s and NASA’s (Barger, Campbell, William H. and Yu N.)
streamline curvature method are very powerful for engineering applications because of
the following fact. The iterative methods are based on iterative correction of pressure or
velocity differences between the target and designed airfoils and they are only required to
predict the correct geometric variation tendencies rather than the exact values because
the solution will be improved during the iteration process. In addition, the flow solver is
retained in its original form and can be treated just like a “black box”. Therefore they
can be directly coupled with any newly developed, more efficient flow solver and can be

easily applied to complicated configurations because of their flexibilities.

Generally speaking, there also exist the following problems for inverse design methods:
it is only for a single design point, hard to add constraints and to coordinate with other
disciplines, not accurate enough in most of practical cases and the specified target
pressure distribution cannot guarantee the minimum drag. Therefore, it is generally used
in the initial stage of industry designs and it seems that the efficiency has been the main
object of this kind of methods about which there are rarely precision discussions such as
maximum tolerances or maximum pressure coefficient difference. It is generally
accepted that from the practical point of view, if the graphic differences between the
target and design pressure distributions are small enough, the accuracy of the method is
taken for granted because in this case the lift, drag and moment differences between the
two airfoil are also so small that the design requirements can be met without any

problem.

As a result of limitations of inverse design, efforts must be made for geometry smoothing
and what’s more, verification of aerodynamic performance at off-design conditions and
other constrains, and modifications of target pressure distribution which is often obtained
in engineering design by modifying the one of an existed airfoil of which some

characteristics intend to be reserved and the others to be improved. As aerodynamic
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characteristics are very sensitive to the leading edge geometry that plays a very important
role in low speed maximum lift, transonic shock movement, etc., it is very hard to
reserve the key aerodynamic performances of the original airfoil if the applied design
method cannot work well in the leading edge region. Therefore, accurate calculation of
airfoil shapes, especially leading edge shapes is essential for efficiency of inverse design

methods.

The streamline curvature method invented by Barger is based on the following simple
equation d V/ V = —x(n) dn where V is velocity, K is streamline curvature and 7 is
distance normal to the streamline. For given velocity differences dV between a target
airfoil and an initial one, the geometric perturbations dn can be calculated with the
assumed variation relations of curvature normal to the streamline. The method is very
flexible owing to its simple formulation but it is physically based on taking the two
airfoils as streamlines of the same flow field. Thus its physical meaning is not very clear
because (a) streamlines cross with each other only at singular points such as a stagnation
point while these two airfoils can do at any point, (b) the mass continuity is satisfied
between streamlines but not between the two airfoils and (c) the formula cannot tell the
difference between subsonic and supersonic flows. Moreover, as the stagnation point is a
singular point to this method, the leading edge region cannot be solved very well with

this method.

Takanashi’s method based on the inversely formulated transonic small-perturbation
equation is the most popular in engineering, but the small perturbation assumption is not
valid near the stagnation point. Thus the method cannot be expected to work quite well
near the leading edge with so large flow variations and so high curvature distribution
unless some corrections are made. Many other design methods have also demonstrated
some deficiencies in this region. Thus several approaches have been tried to improve the
situations. William H. successfully calculated some results for low speed flows with his

new streamline curvature method but the method is less efficient and accurate in the
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other cases. Representation of airfoil geometry by families of smooth analytic functions

(Bernard, Hartwich and al) is an effective way but the design results are restrictive.

The objective of this research is to develop an iterative inverse method that is not only
efficient but also accurate enough. Instead of assumptions to streamline curvature
variations normal to airfoil surface as in the streamline curvature methods, a small
perturbation geometric equation is obtained from the streamline momentum equations,
the continuity equation and the isentropic relations with the geometry similarity
assumption of near streamlines to the airfoil surface. Moreover, the transonic correction
is also considered in this equation. The geometric perturbation normal to the airfoil
surface can be calculated by solving this ordinary differential equation as initial-value
problems and the airfoil is designed in iteration. The techniques like airfoil smoothing,
non-uniform relaxation and the strained coordinate transfer are applied for accelerating
the convergence. The high efficiency and accuracy of this method is demonstrated by
several subsonic and transonic airfoil design cases. In addition, some concerned

problems are also discussed in detail.



CHAPTER1
METHOD FOR OPTIMIZED
AIRFOIL PARAMETERIZATION

1.1 Airfoil representation
1.1.1 Basic formulations

As it is appropriate to keep airfoil curvatures not only continuous but also smooth, the
sixth order parametric spline is selected for airfoil representation. A sixth order spline
can keep fourth order derivatives continuous in globe use and third order derivatives
continuous for local control. The formulation is different from general purposes and thus

the explanations are needed.

A Ferguson curve for segment i-1 to i as shown in Figure 1.1 can be expressed as

following:
P(t); = HooPi1 + HoiP; + Hy P + Hi P + HooPuia + Ho Py (1.1)

where P is a position vector, P, = dP/dt, Py = d2P/dt2, subscript i-1 and i are curve index
or node index corresponding to t =0 and t = 1 of curve segment i. Ho o to Hy 1 are Hermite

interpolation functions defined as followings by Fujio and are given in Appendix 1.

Figure 1.1 A Ferguson curve segment



For the i-th curve segment P(t);, 0 £t < 1 corresponds to si.; <8 <s;. Suppose curve

coordinate s and parameter t have the following relation:
S = 81 + (Si—-Si_l)t (12)
Therefore, for the i-th curve segment
dp ,
Piin = P(0); = (d—) s=si1 (8i=8i1) =(8i=8:1) P (si1)
s

dPp
Pii=P(D)i=(

Ys=si(Si—si1) =(si=si1) P’ (s)) (1.3)
ds
dzP 2 2
Pyii = Pe(0); = (_d'—z—)s:si-l(si—si-l) =(si=si1) P7(s51)
s
2
Pei = Pu( 1) = (d32 )smsi(si=si1)? =(si—si) P (s))

From the i-th curve segment function given by formula (1.1), using relation (1.2), the

third order curvilinear derivative at node 1 :

P 1 e P Py (1)

s=si= t=1= ——— 1.4
ds3) Csism) )3(dt3) 1 (1.4)

P (s = ( —

In the same way, for node i but from the i+1-th curve segment function:

P s = () L&~ Pul)
Si)i =\—7=)s=si~ —g=——————
RIS Y (spi—si ) dp =0 (Sir1—5;i )

(1.5)

For a spline curve of which each segment is represented by formula (1.1), third and
fourth curvilinear derivatives should be continuous at each node. From formula (1.1),
(1.3), (1.4), (1.5) and Hermite basis, the equation for the continuity of third derivatives at

node i can be conducted as



20 653 i1 P + 8 681 883i+1 Pli-l + 8821 653i+1 P"i-l .
20 (8% +85%1) P; — 12 8s; 8sia1 (854 — 8s%1) P'i — 3 8% 8%si1 (Bs; +
3sir1) P7i +20 85% Piyy— 8 857 8siyy Pliys + 8870571 P71 =0 (1.6)

where 8s; = s;i—Si1, O0Siy1 = Sj;1 —S; are corresponding curve segment lengths.

In the same way, the equation for the continuity of fourth derivatives at node i is as

following:

30 884 w1 Pit + 14 SSi 884i+1 P’i—l + 2 Sszi 684i+1 P”i-l +
30 (6S4i — 854j+]) Pi + 16 681 85j+1 (8835 + 883i+1) P'i +3 8281 8251+1 (5821 —
682i+1) P”;— 30 6841 Pi+1 + 14 8841 88i+] P,i+] +2 5841 6821+1 P”i+1 =0 (1.7)

For given n nodes, that is to say, n P vector given, equations (1.6) and (1.7) compose a
system of 2(n-2) equations for 2n unknown. Another four equations can be obtained from

free end conditions that the third and fourth derivatives are zero at the two ends:

20P,—20P; + 12 8s; P/, + 8 8s; P/, +3 8% P — 85 P72 =0

30P;— 30 Py + 16 8s; P/ + 14 s, P+ 3 8% P =2 85°, P, =0 (1.8)
20 P, —20 Py + 8 8851 Pot + 12 88y Pl + 870t Py — 3 8570 P70 =0

30 Py — 30 Po+ 14 8551 Py + 16 8spy Py + 2 8570 P70 — 3 85%01 Py = 0

Thus for n given P, equations (1.6), (1.7) and (1.8) compose a closed system of 2n
equations with P” and P” as unknowns. For most cases that the curve length 8s between
two neighbouring nodes are not large and the curve variation is slow, the curve length
can be approximated by the chord length, the distance between the two nodes, without
causing larger errors. As a result, the coefficients of the above equations are constant and

it is easy to solve this linear system of equations with its diagonal matrix. But for
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parametric airfoil whose neighbouring nodes are not near, this treatment will cause

unacceptably large errors.

In programming, another end condition of given P” and P” can also be used. In addition,
there is an option that the problem can also be solved for the fixed slope P’ at the leading
edge because P’ is normal to the chord line for numerous airfoils. In this case, only the

third derivative is kept continuous at the leading edge.

1.1.2 Special problems to be solved

1.1.2.1 Curve length approximation

As the approximation of curve lengths by chord lengths is much less accurate for
parametric airfoil, other methods must be tried instead. Thus, exact curve lengths may be
used. In this case, the system of equations (1.6), (1.7) and (1.8) are nonlinear and it can
be solved in iteration with the common methods such as fixed constant coefficients,
Newton and etc. But the solution depends on the initial guess and the calculation will
diverge if an inflection point occurs on the curve during the iteration process.
Consequently another method given by Fujio (PP 354) is accepted. In this method, curve
lengths are approximated by average circular arc lengths. Therefore, the system of
equations becomes linear again and can be easily solved. What is more, the calculation
results show that the differences between using exact curve lengths and these
approximated can be too small to be ignored. That is why the circular arc length is the
default option in programming. But considering different application purposes, there are
four option for curve length approximations in the corresponding program Airy: 1) chord
length, 2) circular arc length, 3) curve length approximated by a cubic spline and 4)

curve length approximated by the sixth order spline.
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As the curve length cannot be calculated accurately, its approximation will give rise to a

serious problem that there are too many control parameters.
1.1.2.2 Parameter Reduction

For a spline curve segment represented by formula (1.1), there are three control vectors,
P, P’ and P” at each node. For airfoils, one vector has two components and so there are
six control parameters at each node. In fact, according to the following formula in Fujio’s

book (pp. 31), only two of four parameters for P’ and P” are independent and thus there

are total four control parameters at each node:
P/l =1; PP’=0; P’=xm (1.9)

where n is normal unit vector and K is curvature

3 |Pt>< Pttl

(1.10)
|p|?

K

As the curve lengths are approximated, so are derivatives P’ and P” calculated with
formula (1.3). Consequently the approximated P’ and P” do not satisfy relation (1.9),
especially the normal relation. Thus all the six parameters at each node are independent.
Therefore the normalization is necessary in order to reduce control parameters. The
process of normalization is like: 1) make tangent vectors P’ become unit vectors once
more, 2) calculate the normal unit vectors m from their normal relation with P’, 3)

calculate curvatures K according to formula (1.10) and 4) calculate new P’ = xn.



12

1.1.2.3 Adding spline nodes

As parametric airfoils are represented with only several control points, generally
speaking, the approximation precision of a spline curve cannot meet the special airfoil
design requirements because the distance between two neighbouring nodes can be too
large. Moreover, it is not practical to solve this problem by increasing control points. So
some other effective ideas have to be used. In this research, adding more nodes for the
spline curve is found to be much more effective. Of cause, these nodes must be
determined only from their neighbouring control points, that means, the parameters at
these nodes can be automatically calculated. The relations used for adding nodes are also
formula (1.6) and (1.7), which is based on the same idea that third or (and) fourth order

derivatives at each node should be continuous for each curve segment.

The process for adding nodes is as following: a) determine the x location of an adding
node between its two neighbouring control points according to the geometric variation of
the curve segment, b) formulate the two equation for the two x direction components of
P’ and P” at this x location with two third order derivative continuity equations
respectively obtained at this node and its neighbouring node according to formula (1.6),
¢) formulate three equations for the y coordinate and the two y components of P” and P”
at the given x in the same way as the last step but with one more equation added, which
is the fourth order derivative continuity equation (1.7) for the added node and d) solve
the system of equations non-linear because y is also unknown and so is the curve length.
The equations must be solved iteratively. The numerical method used is just a fixed

constant coefficient method.

In programming, there are three options for adding nodes between every two
neighbouring control points: 1) adding one more node, 2) adding two more nodes and 3)
no more nodes added. Adding more nodes is also possible, but the system of equations so

obtained is generally ill conditioned and the solutions may not be accepted. As the added
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nodes have no direct influences to control parameters, their normalization is not

necessary.

1.2 Airfoil approximation optimization

As original airfoils are going to be represented by parametric ones, the problems like
approximation errors, objective function selection, strategy for determining control

parameters, approximation methods and etc, must be decided.

1.2.1 Approximation errors and tolerance

The approximation error to an original airfoil point is generally defined as the distance
between this point and the approximated airfoil as shown in Figure 1.2. The calculation
of the error defined in this way needs finding a minimum by solving non-linear equations
that may be more complicated to the present case. So a different definition as shown in
Figure 1.3 is applied for the final error estimation in this research, in which the error is
defined as the distance between an original airfoil point and the parametric airfoil one

with which the normal line to this original airfoil point crosses. As the tangent vector P’

Original

df’_'_'_/__.——ﬂ

Parametric

Figure 1.2 General error definition demonstration



14

at the original airfoil is calculated by the sixth order spline, it is convenient to determine
the normal line. What is more, this definition takes already into account the global
geometric tendencies of the original airfoil and thus it is more appropriate for airfoils
than the general error definition which is only determined from discrete points. But the
error defined in this way is generally larger than that commonly defined, which is a little

conservative.

Original

Parametric

'

Figure 1.3 Error definition used in this thesis

The error calculation also needs solving non-linear equations, which are two equations
for x, and y determined by formula (1.1) and one equation for the normal line. This
equation system is solved by Newton iteration and the solution converges generally
within 5 or 7 iterations. But it must be found which curve segment the normal line

crosses with as the spline curve consists of several curve segments.

In objective functions, the error is just taken as the difference of two corresponding y
coordinates between the original and parametric airfoils for calculation conveniences. As
curves are parametric, the non-linear equation (1.1) for x needs to be solved to obtain
parametric values t at given x locations and then y values are calculated at known t. The
error like this is generally larger than that defined above. But the difference is small
except near the leading edge where the curve slope is much larger than in the other parts.

This has such an equivalent weighted effect on the objective function that the
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approximated errors in this region tend to be reduced, which is aerodynamically

favourable.

The manufacturing relative tolerance is about 10 in the key acrodynamic range which
includes the leading edge area and the forepart of airfoil upper surface and is near 5x10™
in other ranges, which is determined by aerodynamic sensitivity studies. For theoretic
airfoils, the tolerance should be smaller. Thus in this research, the tolerance used is about

5 %107 in the key aerodynamic range and 10™ for the other part.

1.2.2 Selection of objective functions

Selection of objective function is crucial to approximation problems. But unluckily, there
is no much mathematical basis about this problem because it concerns the problems like
the error probability which belongs to the area of statistics (William H. Press and al, pp
650). Therefore, selection of objective functions depends on physical understanding of
the concerned problems rather than mathematical reasoning. For airfoil approximations,
it is necessary to control not only average errors but also the maximum because the
maximum error must satisfy tolerance requirements. In this research, there are three

forms of objective function applied among which one is as

n
ofun(P, P, P”) = X wi |ysi-yi [° (1.11)

where n is the total number of original airfoil points or spline-interpolated points, i is the
point number index, w is the weighted factor and p is the power index for which different

values are used. The form with p =2 is most commonly used in this research.

If p > 1, larger errors will occupy more proportion in the objective function (1.11). Thus
the maximum error can be better controlled even with all the w; = 1 than the case of p =

1. If the error probability satisfies the normal distribution, the least-squires (p = 2)
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correspond to the minimum error distribution. But this may not true and sometimes the
maximum error control is more important. Therefore, larger p values are also tested in

this research.

The second form of objective functions used is

In fcm k-1
ofun(P,P’,P") = —Z (yoi-vi)® + Y OYmaxj’ (1.12)
n =! k-1

where k is the total number of control points, fcm is the factor between 0.3 and 1 for
controlling the order of the second term, the subscript j is the curve segment index and

O¥max j 1S the maximum y difference on segment j.
In order to make comparisons, the third form of objective functions is also tried:

' 1 n _
ofun(P, P’,P") = — 21 (Voi - vi)? + fem Oymax © (1.13)
n'"~

where 0¥max is the maximum y difference of the airfoil.

The second type (1.12) is specially tried to control the maximum error. The form of the
second term is used to keep the objective function monotonous and is different from that
used by some other authors. The form generally used contains only the maximum error
as in the third type (1.13) with p = 1 and may not be appropriate for airfoil
parameterization which is locally controlled by different parameters. The concerned

discussions will be given in 3.1 with calculation results.
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1.2.3 Determining control points

In this research, control points can be taken directly from the original airfoil and thus
optimizations are not needed to get control points in this case. This is a great advantage
over the other methods. The control points are selected according to their x locations
which are nearest to the corresponding x values determined by the following simple

distribution function:
x;=AE? - (A-DE;’ (1.14)

where subscript i represents the control point number index, A is a constant (= 1.5 ~ 3),

€ ; corresponding to X ; is equally distributed over the airfoil chord and 0< &;< 1.

The correction is generally needed for the two control points near the leading edge
according to the leading edge curvature distribution. In addition, for airfoils of which the
original points are not well distributed, the control points should be chosen from the

interpolated spline points rather than the original ones.
1.2.4 Optimization

If approximation can be treated as a linear least-squires fit problem, it is more efficient to
solve norm equations or to use the singular value decomposition (SVD). But for most of
practical problems like airfoil designs that are generally strongly non-linear, the above
methods may not be appropriate and thus optimization methods are often applied.
Generally speaking, efficient gradient-based methods like steepest-descent and
conjugate-gradient for finding one minimum cannot be used except that the initial guess
is near a good solution, which is very difficult because the objective function generally
contains a lot of minima. Consequently one of appropriate way is that the genetic

algorithm is applied for the globe search and a gradient-based method used for the local
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search if the objective function does not contain much noise. After all, it doesn’t matter
which kind of methods are used, the optimization is most likely to make the airfoil

parameterization less etficient unless some special measures are taken.

In this research, as the control points can be determined without optimization and the
initial values for the other two parameters (slope and curvature) are from calculation of
the sixth order spline and can be supposed near the ones corresponding to a globe
minimum. Moreover, the variations of the objective function are generally monotonous
with those of slops and curvatures for fixed control points. As a result, an unconstrained
conjugate-gradient method can be used, which can guarantee the efficiency of the airfoil
parameterization. Of cause, it is possible that the obtained solution were only a local

minimum rather than a globe one that cannot be confirmed even in mathematics theories.

1.2.4.1 Conjoint-gradient method

The conjugate-gradient method used in this research is based on Ashok and William H.

Press. The new parameter vector position is equal to

Xk+1 = X + Ok dy (115)

where the subscripts k +1 and k respectively mean the next iteration and the present
iteration, x: the vector position of optimization parameters, o: the step size and d is the

conjugate direction vector.

In this research, the initial x¢ is from the spline calculation as talked before, the initial
direction dg is taken equal to the steepest descent direction which is the opposite
direction of the gradient of the objective function and the step size 0y is determined from

the line search in which the minimum of the objective function at the given direction dy
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is first bracketed by a three-point pattern and then calculated in iteration by Brent’s

quadratic fit. The next direction dy, is determined by

diri = — 8ol + Prdy (1.16)

where the vector g is the gradient of the objective function and Py is calculated

according to the following Polak-Rebiere formula:

S (et — &)

P = = (1.17)
gk Bk
There is also another option in the program for calculating By :
T
kel kel
B, = g;ig* (1.18)
Sk Bk

Which is the Fletcher-Reeves version as results of considering gi.i' g« = O.

As generally objective functions are not quadratic and the search directions are not fully
conjugated, the optimization is most likely not to converge within the iterations times
equal to the total number n of control parameters. Thus a restart of optimization is
needed every n iterations wherein a steepest descent step is taken. Moreover, uniformly
scaling all parameters is essential for good behaviour of the conjugate-gradient method,

especially in the cases of many parameters used.

In this research, it is relatively easy to scale the control parameters because the scaling is
generally needed only between the slope and the curvature for which each parameter has

its own local and relatively uniform control region and thus the difference among slope
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derivatives is not large and so is that among curvature ones. In addition, it is found to be
more effective that the factors multiplying slopes and curvatures are taken directly as the
optimization parameters with their unitary initial values rather than slopes and curvatures
themselves because these factors are more convenient for scaling and gradient
calculations. However, the initial slopes and curvatures must be good enough in this
case, for example, if any initial value is zero, it can never be improved during the

optimization, though this kind of situations has never happened during the calculations.

How to calculate the gradient is also very crucial because it is impossible to obtain the
gradient analytically in most practical applications. The precision of approximation
methods is important but the numerical step is also one of the key factors. Too small step
choice leads to a loss of significance error and too large step results in a large truncation
error. A thumb rule given by Ashok and al, that the step is equal to the maximum of the
minimum step and one percent of the initial parameter, is also proved working well in

this research.

1.2.4.2 Genetic algorithm

Although the control points determined by the distribution function works well in most
cases, they cannot meet the precision requirements sometimes. Consequently the
optimization for control points is carried out. As it is difficult to use gradient-based

methods to handle the problem, a genetic algorithm method is adapted.

The genetic algorithm is a powerful tool for difficult optimization problems. It is based
on the evolution via survival of the fittest. The optimization is based on the code of
David L. Carroll. The initial population is randomly selected which consists of the
sample of individuals with different parameters. The tournament selection with a
shuffling technique for choosing random pairs for mating is used as the selection scheme

directing the genetic search. The binary encoding is used in the program to encode a
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solution into a chromosome. The reproduction is made by jump mutation, creep
mutation and the crossover operation with the option for single-point or uniform
crossover. Niching (sharing) and an option for the number of children per pair of parents
are also included. Moreover, the program has an option for the use of a micro-GA that
accepts a very small population with only crossover operation for reproduction. Micro-
GA can lead to more rapid convergence and its frequent re-generation of random

population members can ensure the diversity during the search process.

The main modification to this code is that one of the individuals in the initial population
is determined by the design experiences rather than randomly selected because all the
members randomly selected are generally very far away from an acceptable solution and
a reasonable initial guess is much better. This treatment can accelerate convergences but
has the possibility to cause a premature optimization termination, which may depend on

the globe search strategy.

As control points are only selected from airfoil points, a discrete optimization method
like a GA with binary encoding is appropriate. Furthermore, it is more convenient to use
the number index of control points as the optimization parameter instead of the x
location. But besides the severe drawback due to the existence of Hamming cliffs, the
binary encoding gives rise to some disadvantages to the application. It is very hard to
determine properly variation ranges of optimization parameters which cannot be made

continuous because it should satisfy the relation like 2"-1 like 3, 7, 15, etc. while the

overlap of control points is not allowed.

In this research, a micro-GA with a population of size 5 is confirmed to be very efficient
but acceptable solutions depend too much on the appropriate division of the variation
range for each parameter. Thus in the future research, it is practical to employ other GA
methods such as ones with real number encoding and techniques for automatic

adaptation of parameter variation ranges.
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CHAPTER 2
CALCULATION RESULTS FOR
AIRFOIL PARAMETERIZATION

2.1 Study of objective functions

The effects of the three forms of objective functions (defined in 1.2.2) to optimization

solutions are studied first as their selections depend on particular problems.

Error distribution comparisons for different objective functions are shown in Figure 2.1
for NACA65-215 with ‘9 control points (one spline node automatically added between
every two neighboring control points except the ones at the trailing edge). The result in
Figure 2.1(a) is obtained by twice conjugate-gradient optimizations with a least-squires
objective function (first form). The first time optimization from which the result is
illustrated in Figure 2.1(b) is not weighted and the second is based on the first with the
weighted factors for the points where errors surpass the given tolerance. The reduction of
the maximum errors is about 4.5x10" in this case. This method is effective only if
differences between surpassed errors and the tolerance are not large since error decreases
in one area generally accompany increases in its neighboring area controlled by the same
parameters because of the representation ability limit of a given spline function. The
result in Figure 2.1(c) demonstrates that the second form can better control the maximum

error than the first but the difference is not large.

Moreover, error distributions of NACA65-215 with 9 control points are presented in
Figures 2.2, 2.3 and 2.4 respectively for the three forms of objective functions with
different power Indices. Together with Figure 2.1(b), it is obvious: 1) the best results that
the maximum error is smallest and the error distribution is more uniform always

correspond to the power index p=2 that is the least-squires form but for the third form
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the variation differences are smaller among different power indices, 2) the error
distributions for the second form are most uniform of the three forms for the entire power
indices studied and the maximum errors are generally smallest. But the differences
between the second and the first are small for the least-squires form and 3) for power
index p = 2, the third form always corresponds to the worst situations of the three forms.

The maximum errors are largest and the error distributions are less uniform.

Furthermore, maximum error variations of three airfoils (NACA65-215, NACA0012 and
RAE2822) with different power indices are illustrated in Figure 2.5 for these three forms
of objective functions. The similar conclusion can be obtained once more with a little
exception that for NACAO0012 the minimum maximum errors appear at p = 1 for the
second and third forms, which also confirm that the two forms do have the control effects
to the maximum error. Moreover, the variation relations of maximum errors with these
of power indices are different among the three airfoils; for example, the maximum errors

for third form are always about 4 times larger than the other ones for RAE2822 airfoil.

The least-squires formula can better control not only the average error but also the
maximum error maybe because the error probability distribution approaches the normal
distribution and larger errors make more contribution to the objective function with p >1
as discussed in 1.2. The second form of objective function is obviously superiors to the
third one maybe owing to the following fact: the variations of the maximum error are not
monotonous with these of the control parameters for the third form because the location
of the maximum error can move randomly from one curve segment to another which is
locally controlled by different parameters. As a result, more local minima are most likely
to be formed artificially, which is unfavourable to optimization, especially to gradient-
based methods. Thus the results may correspond only to ones of the many local minima
formed in this way. The much more rapid convergence in these cases may also confirm
the reasoning indirectly. The second form that contains the minima for all the curve

segments can ensure relatively monotonous variations of objective functions. Of cause,
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the behaviour of objective functions depends on particular problems and the above

conclusion may not be general.

2.2 Scaling effects to the solutions of the conjugate-grading method

As the slope is not dimensional and the curvature has the dimension of length inverse,
the scaling between the slope and the curvature can be made just by taking different

airfoil chord lengths.

The scaling effects to the solutions of the conjugate-grading method are illustrated in
Figure 2.6 by the maximum error variations with the changes of airfoil chord lengths for
three airfoils. From the results, the calculations diverge for airfoil NACA65-215 and
NACAO0012 and don’t converge well for RAE2822 if the chord lengths are smaller than
one. For larger airfoil chord lengths, all the calculations converge but their differences

are not large.

In theory, conjugate-gradient methods overcome the problems resulted from poor
parameter scaling. In practice however, if the differences between the derivatives are too
large, some direction may never be sufficiently explored because the search directions
are generally not fully conjugated and the calculation will diverge or not converge to an
optimized solution. Therefore, it is necessary to make all the derivatives the same order

by uniformly scaling all parameters.
2.3 Parametric airfoil representation results
The results of the optimized airfoil parameterization for different types of airfoils

including supercritical, natural laminar, low speed airfoils, ones for rotorcraft, etc. are

shown in Figures 2.7 to 2.15 and Table 1.
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2.3.1 Optimized airfoil parameterization with control points fixed

The control points are fixed by the distribution function for the first six airfoils,
RAE2822, RAE5215, NACA65-215, NACA64a-010, NACA2412 and NACAO0012 in
Table 2.1. The other control parameters are obtained by the conjugate-gradient
optimization and all the calculations converge within 10 second (PC 800 MHz). These

airfoils are represented with 7 to 11 control points and the maximum errors are between

2.5x10” 10 7.7x10”. Tn all these cases, the airfoil representations are not only efficient

Table 2.1 Control Numbers and Maximum Errors

for Calculated Parametric Airfoils

(KAR: key aerodynamic range; NKAR: non key aerodynamic range)

[Airfoils Number of Maximum Errors | Location of Max. |
Control Points Errors
NACA0012 7 5.1x107 KAR
NACA2412 9 5.7x107 KAR
NASA64a010 9 6.4x107 KAR
NACA65,15 9 7.7%107 NKAR
RAES5215 11 6.5%10” KAR
RAE2822 11 2.5x10” NKAR
NASA SC(2)-0714 11 9.1x10° NKAR
'VR-12 11 1.0x10™ NKAR
NASA NLF(2)-0415 13 7.6x107 NKAR
s1210 13 9.7x10° NKAR

but also more accurate with fewer control points than the other methods, which is

attributed not only to the techniques of airfoil representation but also to the treatments for

optimization.
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From the error distributions illustrated in Figures 2.7 to 2.12, some of solutions should be
near the globe minima, e.g., for the supercritical airfoil RAE2822 with 11 control points
and the maximum error of 2.5x107 , the error distribution is very uniform. But for the
other cases, e.g., RAE5215, it is possible that the results correspond only to a near local
minimum because of the limit of the optimization method that only searches one local
minimum, although initial guesses from the spline calculation can generally guarantee
better solutions. Moreover, the strategy used for selecting control points results from the
efficiency consideration. The representation precision should be improved further if

control points are also optimized.

Figure 2.7, 2.8 and 2.9 also show that adding spline nodes is essential to the
representation precision, the maximum errors without adding nodes are three to five
times higher than those with nodes added. In addition, the number and the position of
added nodes have great influences to the precision of parametric airfoils. For RAE2822,
RAE5215, NACA65-215, NACA64a-010 shown in Figure 2.7 to 2.10, one spline node is
automatically added on each curve segment except the ones at the trailing edge. The
similar is For NACA2412 and NACA0012 shown in Figure 2.11 and 2.12 but two nodes

added at the two segments near the leading edges.

Some of above airfoils can be also represented with fewer control points and the results
are also acceptable as shown in Figure 2.11 for NACA 2412 with 7 points and the
maximum error 9.1x10 - Moreover, the effects of the weighted optimization are
demonstrated again in Figure 2.9 to 2.10. All these two results are from twice
optimizations. In this case, the method is still efficient (within 15 seconds) but it does not

always function.
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Figure 2.7 Parametric Airfoil Optimization Results

11 control points for RAE2822 Max. error:  2.5%10°
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(a) Geometric form comparison between the parametric and original airfoils
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Figure 2.8 Parametric Airfoil Optimization Results

11 control points for RAE5215 Max. error:  6.5%10”
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(a) Geometric form comparison between the parametric and original airfoils

[] upper surface point /A lower surface point

08001

7.5E-0%

(b) Error distribution with weighted least-squire optimization

[] upper surface point /\ lower surface point

9.0001
7.5E-058
Se-0s |-

2.5E-05
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Figure 2.9 Parametric Airfoil Optimization Results

9 control points for NACA65-215 Max. error:  7.7%10°
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(a) Geometric form comparison between the parametric and original airfoils
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(b) Error distribution with weighted least-squire optimization
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(c) Error distribution without weighted optimization

Figure 2.10 Parametric Airfoil Optimization Results

9 control points for NACA64a-010 Max. error:  6.4%10”
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(a) Geometric form comparison with 9 control points between the
parametric and original airfoils
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(c) Error distribution with 7 control points; Max. error: 9.1*10-5

Figure 2.11 Parametric Airfoil Optimization Results

for NACA2412
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(a) Geometric form comparison between the parametric and original airfoils
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Figure 2.12 Parametric Airfoil Optimization Results

7 control points for NACA0012 Max. error:  5.1%10°
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2.3.2 Airfoil parameterization with x locations optimized

The method for fixing control points does not work well for the last several airfoils,
NASA SC(2)-0714, NASA NLF(2)-0415, VR12 and S210 in Table 2.1 because the x
distribution function is not suitable to them. Thus a genetic algorithm (GA) method is
used for optimization of the x locations combined with the gradient method optimization
for slopes and curvatures. For the latter three airfoils, one spline node is also
automatically added on each curve segment except the ones at the trailing edge. For
NASA SC(2)-0714, spline nodes are added only on the two segments near the leading
edge. The optimization for x locations is carried out by a micro-GA with 5 members of
the population. An acceptable solution can be obtained within 150 generations if the x
variation range is appropriately specified, which takes less than one hour on an 800 MHz

personnel computer.

From the results illustrated 1n 2.14, The NASA SC(2)-0714 can be represented with 11
control points and the maximum error 9.1x10" - The results is acceptable but the errors
are a little larger and the error distribution is not uniform because adding spline nodes
does not work very well in this case. New techniques for adding spline nodes should be

developed to improve the situation.

NASA NLF(2)-0415 airfoil is represented with 13 control points and the maximum error
is 7.56x10 " at the location near the trailing edge, which are shown in Figure 2.13 (a) and
(b). The error distribution is aerodynamically favourable since the errors at the forepart
of the airfoil are smaller and more uniform. Considering that NLF(2)-0415 is a natural
laminar airfoil that the geometry is more complex and there are several areas where the
curvature variations are large, the result is excellent. The error distribution of this airfoil
with 11 control points is also illustrated in Figure 2.13(c). The larger errors appear only

. ) ) -4 )
at the aft-part of the airfoil and the maximum error is near 1.2x10 , which demonstrates
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that it is possible to represent accurately this airfoil with 11 control points if the

concerned treatments are improved further.

For VR12 airfoil shown in Figure 2.14, the maximum error (1.02><10'4 ) is little larger
than the tolerance requirement but it appears near the trailing edge. For S210 airfoil
shown in Figure 2.15, the errors are smaller than 5 5x107in key aerodynamic range and
the larger errors appear at the lower surface and are smaller than the tolerance

requirements.

Though the representation precision can be acceptable for VR12 and S210 airfoils, the
optimization are not very successful. From the results shown in Figure 2.14 and Figure
2.15 respectively for VR12 and S210 airfoils, the x location distributions of the control
points are obviously not very reasonable, which can be confirmed by the non-uniform
error distributions. The errors are larger near the leading edge and the trailing edge while
they are smaller at the middle part for VR12. There are larger waves in S210 lower
surface error distribution. This is due to the following reasons: 1) x location variation
range for each control point is not well specified because GA used utilises binary
encoding, which greatly limits the flexible definition of variation ranges for control
parameters (see 1.2.2.3). 2) optimization solutions may correspond to local minima that
are not good enough because they are calculated with the micro GA . Micro GA is
much more efficient than general GA but its search range 1s most likely to be limited. 3)
The strategy that the control points are selected from the original airfoil points is not
flexible especially for airfoils which have few points or of which the original points are
not well distributed. 4) The method for adding additional spline nodes may not be
appropriate to these kinds of airfoils. 5) The accurate representation capability of the

spline curve may be limited for complex geometries.
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(a) Geometric form comparison between the original airfoil
and the parametric one with 13 control points
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Figure 2.13 Parametric Airfoil Optimization Results

for NASA NLF(2)-0415 with x locations optimized
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(a) Geometric form comparison between the original airfoil
and the parametric one
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(c) Error distribution without control point x locations optimized

Figure 2.14 Parametric Airfoil Optimization Results

11 control points for NASA SC(2)-0714 Max. error: 9.13%10"
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Figure 2.15 Parametric Airfoil Optimization Results

11 control points for VR-12 Max. error:  1.01¥10™
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Figure 2.16 Parametric Airfoil Optimization Results

13 control points for S1210 Max. error:  9.7* 10°
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2.3.3 Comparisons with some other results

Comparisons with some results of NURBS method (Trépanier J. -Y., Lépine J. L. and
Pépin F) that is most accurate of all the other methods are shown in Table 2.2. The
objective of these comparisons is just to get some ideas about the precision of the present

method because the two methods are not based on the same comparison conditions.

Table 2.2 Control Point Number and Maximum Error Comparisons

IERE)I’L— CONTROLNUMBER |  MAXIMUMERROR

This Method NURBS | This Method T 'NURBS 1
NACA2412 9 B 57x10° |
NASAG4010 | 9 11 T 6.4x10°
“RAE2S2 11 = 13 25x10° |
L\iu - 11 11 1.0x10™

H " -5

iuio____l 13 | 13 J 9.7x10 | 7.3x10 ]

For the former three cases of fixed control points, the results of the present method are
obviously superiors to those of NURBS. For the latter two that need the optimization of
control points, NURBS results are a little better. Thus the present method has no
advantage over NURBS method for these kinds of geometrically complex airfoils,
considering that NURBS needs only three control parameters at each point. The raisons
may be: 1) the GA optimization used is not very appropriate and 2) NURBS is more
powerful for complex geometric representations. Luckily, VR12 is only designed for
rotary-crafts and rarely used. S1210 is a high lift airfoil that is only used in theoretic
researches and cannot find practical applications because of its severe structural

weaknesses.
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CHAPTER 3
ITERATIVE INVERSE
AERODYNAMIC DESIGN METHOD

3.1 Governing Equations

The energy equation or momentum equation with the isentropic relations along a

streamline can be written as

where p is the pressure, p the density, V the velocity, v is the ratio of specific heat and

the subscript o« represents free-stream values.

The momentum equation normal to the streamline has the following form:

) Jp
pVZi Kk = —— (3.2)
amn

where K is the curvature and 1 is the coordinate normal to airfoil surface.

For a streamline tube very near the airfoil as shown in Figure 3.1, with the first order

accuracy for 1, the continuity equation can be approximated as

2

VN + ——n? =C (3.3)
PV + o

where C 1s a constant.
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Airfoil surface _______. Streamline

— - — Reference coordinate (or curve)

Figure 3.1 Streamline Tube and Its Coordinates near Airfoil

Supposing small differences or perturbation between target and design airfoils, the

following equations can be obtained:

(pV)o = pV + A(pV)

Mo =M+ AN (3.4)
dpV dpV 0pV
)0: +A(___')
on on on

where the subscript o represents object values.

Substitute (3.4) into (3.3):

opV
(pPV)oAN+nA(pV) +MAN WJF

1, dpV dpV
— MA(z—) +MANNA(=—) =0 (3.5
2 am an
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The target pressure distribution is generally specified for inverse design and therefore it
is convenient to express the variables in (3.5) as functions of pressure coefficients with
the above equations and the following state equation (3.6), the sound speed relation (3.7),

the isentropic relation (3.8) and the pressure coefficient definition (3.9)

P = pRT (3.6)
a’= yRT (3.7)
p P
(F)Y= (;—)_)Y (3.8)
C, = —11)_—1)-“— (3.9)
—p V.2
P

where R is the gas constant, a represents the sound speed and C,, the pressure coefficient.

Thus the following dimensionless relations can be obtained:

\Y — 1
F(Cp,M.) = P V2 (14— YM2CH)Y A (3.10)
P A 2
where
1 1 1 1 )
A=[—MS + — - —— (1+—yM.>C,)""" )7 (3.11)
2 y-1 y-1 2
Consequently

1 odpV dF 0C,
= - =Ffx (3.12)
P e O T 0C, 9dn

where M is Mach number and f is the function of C, and M .. as following
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f(Cpy M ) =

2

oc

1
(1+?yMjcp)”Y A’ (3.13)

From equations (3.10) and (3.12), equation (3.5) becomes:

1
nF+ —z—nzKF'f =0 (3.14)

Substitute 1, F, K and { in equation (3.14) respectively withm + AN, F+ AF, x+ A

and f + Af, ignore the higher order terms of A 1),
1
(?n+An)nF’f Ax +(F, +nMF.fok)An +
l 2
nAF+E-n KAF ) =0 (3.15)

From (3.4), and Figure 3.1 :

nozho_hos; nzh_hs
As aresult
An= (hy— h) —(he~ hy) = Ah — Ah, (3.16)

where h is the coordinate normal to the reference curve (which can be considered as one
of target and designed airfoil surfaces), the subscripts o and s mean objective and surface

values respectively.
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The streamlines very near the airfoil surface are geometrically similar to the airfoil form
itself and there is nearly no difference between streamlines very far away from an airfoil
owing to the same free-stream condition; therefore it can be supposed that the difference
between a near streamline around the target airfoil and the corresponding one around the

design airfoil is proportional to and smaller than that between the two airfoils. That is to

say,

An= - DAh, (3.17)

where D is a small positive constant and can be made equal to the initial streamline value

of the design airfoil without loss of generality

D=ny/c (3.18)

where the subscript O represents the initial value.

In addition, note that the curvature increment

A A, (3.19)
K = .
05’
Therefore from (3.14) through (3.18), the following equation can be deduced:
o> Ah;
Al 5 + ABAhs+B = 0 (3.20)
ds

where

1
Al = (—En + An)nFf
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A3 = - (F, +nF’of01<)n—0 3.21)
C

1
B = nNAF + 7nnzm(F'f)

The above equation cannot be applied directly for the sake of the following fact. The
ordinary differential equation (3.20) is very stiff. The first coefficient Al is of the same
order as the other ones only near the leading edge away from which Al decreases very
rapidly. But this term cannot be ignored even if it can be made much smaller by choosing
a smaller A 1. Otherwise it is impossible to obtain a reasonable solution near the leading
edge due to its larger curvature variations. Furthermore, applying the equation (3.20) to
the whole airfoil leads to non-physical solutions. That is because the other ignored terms
can be of the same order as the coefficient Al or even greater than it in the other ranges.
Therefore physically it is meaningless to keep using this equation. In addition, the
constant D is little arbitrarily determined because exactly it is also an unknown variable.
But if the initial point is chosen as the stagnation point or the leading edge with zero
value, the geometric variations A h  near the leading edge is generally so small that this
small arbitrarily determined constant D has nearly no influence to the solution if the full
equation is applied only near the leading edge. Therefore for the other part of airfoils, the

following algebraic equation is used, which is equation (3.20) with the first term ignored:

A3Ah; +B = 0 (3.22)

For transonic flow, it can be confirmed that F'(= d (pV)/ d C;) dominating the properties
of the first coefficient of equation (3.20) is positive for supersonic flow, negative for
subsonic flow and null at sonic point. That is to say, the sonic point is a singular point for
equation (3.20). In fact, this singular point does not pose any serious problem to
applications because this term is much smaller than the other ones, hence it can be
ignored within the supersonic zone and equation (3.22) might be used instead. Moreover,

the term B of equation (3.22) dominated by the difference A F (= A(pV)) also shows
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different tendencies for subsonic and supersonic flows, thus with the same pressure
difference, the direction of the geometric perturbations for supersonic flows is opposite
to that of subsonic ones. In addition, for supersonic flows, the flow influence region is
only limited in Mach zones and as a result, equation (3.22) should be adapted and it is
more suitable to use the following differential form of equation (3. 15) with the first term

ignored treated as initial value problems:

A2TAn" + A3TAn +BT = 0 (3.23)
where

A2T = F, + nFyf,x

FoClo+ WFfox (3.24)
NAFC) + NAF + n'xkA(fF)

A3T
BT

However, transonic flows with their small supersonic zones can be greatly different from
pure supersonic ones with very far free boundaries. The supersonic variation relation
between the geometry and the pressure is not valid everywhere for transonic flow,
especially at beginning of the small supersonic zone where the general geometry and
pressure variations may still obey the subsonic relations. This phenomenon may be
simply explained by reflection of expansion waves from the very near sonic line as
shown by Farrari C. or Moulden T. H . These reflected waves are compressive and attend
to slow down the flow. Therefore if there is a small concave region even invisible on the
airfoil surface, the flow may decelerate instead of accelerating because of the effects of
reflected compressive waves and vice versa. Moreover, for transonic flows it is not
appropriate to express the geometry similarity assumption of near streamlines to the
airfoil surface as in equation (3.17), an additional relation of streamline slopes may be
preferred. What is more, the above equations are based on the surface values rather than

the whole flow field. Therefore they cannot reflect transonic flow characteristics such as
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wave interference. The correction to transonic effects must be taken into account, which
is realised by the treatments based on following ideas. Streamline slopes are the same
along their isoclines, but only from the surface variables is it impossible to define the
isoclines. Consequently, an approximated relation is tried from characteristic lines whose

direction is known at the airfoil surface. The angles 1 of the streamline line relative to

Cartesian coordinate x satisfies the following relation (Moulden, T. H. p110) :

U + ®= constant (3.25)

where o is Prandtl-Meyer function.

It is supposed that the slope difference of near streamlines between the target and design
airfoils is proportional to and smaller than that between the two airfoil forms along the

characteristic lines:
Ahs’—AhC' = DAL/ (3.26)

where D represents a small positive constant and the subscript ¢ the value at the

characteristic line.

Since the equation will be solved as an initial value problem, the left characteristics are
supposed to be dominant according to the analyse about the inflection wave that can
directly affect the flow before a research point. Thus from the geometric relations shown

in Figure 3.2 and the Mach angle relation:

’

C
As — h/

"= h’~hy =~ h +
n 5 =

As = nctan(p) =(M?-1)% (3.27)
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Airfoil surface o ___. Streamline

Characteristic line

Figure 3.2 Geometric relations among an airfoil surface, a near streamline and a

left characteristic line from the airfoil

With similar relations with (3.17) and higher order or supposed higher order terms
ignored, the following approximated differential equation for transonic flows can be

obtained

CAhY—xkN[(MZ2-D)" = (M? = 1) —xAn(MZ-1)" +
AW =0 (3.28)
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The above equations are only applied for correction purposes. And thus they are only
required to predict correct tendencies rather than exact values because solutions will be
improved in iteration process. Of cause, the approximation precision will exert great

influence on convergence speed, that is to say, on the efficiency of the method.

In brief, equations (3.20) and (3.22) are used for subsonic flows and equation (3.23) and
(3.28) are suitable for supersonic flows but the second and third terms of equation (3.28)
should be ignored while transonic flow calculations are most complicated of these three
cases and their numerical calculation process will be explained in detail in the next

section as a example.

3.2 Perturbation Calculation, Design Process and Flow solver

3.2.1 Initial conditions

3.2.1.1 Selection of initial points

The geometry similarity assumption of near streamlines to the airfoil surface is not valid
near the stagnation point where the geometric shape of even a very near streamline is
greatly different from the airfoil shape. But the nearer the streamline line is to the airfoil
surface, the smaller this invalid region is. Thus taking the stagnation point as the initial
point with zero initial value may solve this problem. However, the errors too near the
stagnation points can be too large to be accepted especially during first several iterations
if the stagnation point is directly taken as the initial point. Taking a nearer streamline for
calculation, that is to say, smaller 1 value can help solve this problem but not during the
first several iterations because the stagnation point of the initial airfoil is not close to or
even relatively far away from the target one. In addition, the convergence speed is very
slow if the used My is too smaller. That is why smoothing or strained transfer should be

used. But these two techniques will probably affect the designed airfoil precision and
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thus their applications should be cautious. In order to avoid this kind of problems, it is
appropriate to take the two discrete numerical points around the stagnation point of the
design airfoil as the initial calculation points instead of this stagnation point directly and
then to calculate the perturbation before and after the stagnation point separately. This
measure has been found to be effective because with the increase of iteration times the
two stagnation locations generally become so close and can be confined between the two
initial points that the invalidity of the similarity assumption cannot bring about any

serious problem.

The above problems are not unique for this new method; they should exist for the other

direct correction methods but there is no concerned discussion published.
3.2.1.2 Initial values

A proper initial value Ny is generally of 1% airfoil chord length for subsonic flows and

0.1% for supersonic flows for equation (3.14) according to the calculation experiences.

The initial geometric perturbation Ah; and its first order derivative to airfoil surface Ahy’
must be specified to solve equation (3.20). The initial Ahgis given by interpolation from
the stagnation point where Ahg is always taken as zero. The initial Ahy’ is made
proportional to the slope difference between the target and design stagnation positions

for the time being. The sign of Ah depends on the local pressure coefficient difference
and that of Ahy” on local pressure gradient difference. Though the above treatments are

proved effective, careful studies should be made in the future.

The initial Ahs can be directly made proportional to the local pressure coefficient
difference and the initial Ahy” to local pressure gradient difference but it is difficult to

control their magnitudes.
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3.2.2 Geometric Perturbation Calculation

For transonic flows, the main process for geometric perturbation calculation is as

follows:

1) Calculate F, F’ and f with calculated pressure coefficients by equations (3.10), (3.11)
and (3.13).

2) Calculate the near streamline coordinates 1) with the given initial value 1y and the
calculated coefficients F, F" and f by equation (3.14).

3) Solve equation (3.20) with Runge-Cutta four-step method or the other methods with
the specified initial conditions.

4) When a jump appears in the solution of equation (3.20) or the ratio of its first
coefficient and its second one is smaller than a given value (1% is generally used),
equation (3.22) is applied instead.

5) From the first sonic point, equations (3.23) and (3.28) are solved as the initial value
problem.

6) After the shock position or the last sonic point, equation (3.20) is used once more.

7) Coordinate transfer to make the supersonic solution matched with the subsonic one
after the shock and keep it unchanged near the first sonic point during first several

iterations.

Step 7) can be looked as a correction measure if the shock on the airfoil in iteration is
stronger because transonic flows depend on all the wave interferences and propagations
and shocks are envelops of compressive waves. The assumption that the left
characteristics are dominant is mainly based on design and calculation experiences and
for meeting the need of calculation convergence and it may cause larger errors near

strong shocks.

Moreover, equations (3.23) and (3.28) are solved with the second order middle point

method and equation (3.20) solved with Runge-Cutta four-step method. Although
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theoretically the later method is of fourth order precision, it is difficult to have the initial
conditions with higher order precision. Thus the calculation accuracy may not be good
enough. But this could slow down the convergence speed rather than cause serious errors

to the final solution in iterative correction process.

3.2.3 Design process' and convergence criteria

The following is the airfoil design process:

1) Calculate the pressure distribution of the initial airfoil using a flow solver (viscous or
non-viscous).

2) Strained coordinate transfer for the target C, distribution during the first several
iterations.

3) Calculate the normal geometric perturbation as shown in the last section.

4) Correct the calculated perturbations and make the strained coordinate transfer for
them if needed.

5) Non uniform relaxation for convergence acceleration

6) Add the geometric perturbation normal to the calculation airfoil.

7) Smoothing the new airfoil.

8) Calculate the new leading edge and trailing edge positions, transfer them to original
ones or make the trailing edge gap equal to the given one if specified.

9) Repeat the above steps until the convergence criterion is satisfied.

Different convergence criteria are employed in design process. The principal one is that
the maximum pressure coefficient difference between the target and the designed is
smaller than 0.006. Even this value is not very small but it is still so demanding that this

kind of criterion has never been acceptable in any iterative correction method. In fact,

The simplified flow chart of the design program is shown in Appendix 6. The concerned explanations
about the strained coordinate transfer, airfoil smoothing and non uniform relaxation can be found in section

33
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the precision of iterative inverse methods (Barger, Campbell and Takanashi) is generally
judged from the graphical differences between the target and design pressure or velocity
distributions and its exact amplitude like the maximum pressure and geometric
difference has been rarely discussed, the only exception may be the E. William’s paper in
which the maximum pressure difference is given for one of his best results and the
precision is still measured by graphical differences for the other results. Moreover,
William H. uses the convergence criterion that the lift coefficient difference is less than a
given value. But this criterion cannot be applied independently because the lift difference
is even zero while the pressure differences can be very larger. Thus in this research, the
solution is also accepted at given iteration times if the graphical differences between the
target and the designed pressure coefficients are small enough because the convergence
criterion for the specified maximum pressure coefficient difference cannot be always

satisfied.

3.2.4 Flow solver

The flower solver used is MSES of Mark Drela, MIT, which is a numerical airfoil
development system. It includes capabilities to analyse, modify and optimize single and
multi-element airfoils for a wide range of Mach and Reynolds numbers. It has its own
airfoil design code based on optimization for the least-squire pressure difference. In this
research, only its analysis code based on the matched Euler equation and the boundary

layer method is used.

The numerical formulation of MSES consists of a finite-volume discretization of the
steady Euler equation on an intrinsic streamline grid. Streamline block grids are initiated
by a panel method and the farthest grid location can be only of the twice airfoil chord as
the flow far field can be represented by high order vortex and doublets located at the
airfoil’s aerodynamic centre. The boundary layers and trailing wakes are described by a

two-equation integral formulation with lagged-dissipation closure. The non-viscous and
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viscous regions are fully coupled via the displacement thickness. The solid-body
boundary condition is used on the airfoil surface. The artificial viscosity is also used to
maintain numerical stability and allow shock capturing. The “envelope method”, which
is a simplified version of the e" method, is used for prediction of transition. Instead of
tracking the Tollmien-Schlichting (TS) wave amplitudes for many individual frequencies
as in the e" method, the envelope method determines for each surface point the amplitude
of whatever frequency happens to be most amplified at that point, which greatly
simplifies the calculation process. The overall system is solved using a full Newton

method.

3.3 Some Special Treatments

3.3.1 Strained Coordinate Transfer

Pressure differences between the target and calculated airfoils near the leading edge and
the shock positions can be so large especially during first several iterations that the
calculated geometric perturbation may be greatly deformed because of the large
differences between their stagnation points, suction peak positions and the shock
locations. Geometry smoothing can help solve the problem. But the strained coordinate

transfer may be more efficient.

The concept of employing coordinate straining to remove non uniformities from
perturbation solutions of non-linear problems is well established and originally proposed
by Lighthill five decades ago and found more applications in 1970s and 1980s by Nixon,
Stephen S and others but it has never been applied to geometric treatments of airfoil
design. The basic idea of the technique is that a straightforward perturbation solution

may possess the right form, but not quite at the appropriate location.

There are two kinds of strained transfer used according to Stephen S.: 1) in “classical”
sense, strained transfer is applied to full governing equations and boundary conditions.

Thus the differential equations so obtained are generally more complicated than their
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original ones, and 2) strained transfer is employed directly to the known non-uniform
solution, and then solving algebraic rather differential equations. It is obvious that the
second one is more suitable for the method based only on the known airfoil surface

variables.

This technique was often used for non-linear interpolation of two similar solutions. The
coordinate transfer is carried out generally with the aid of polynomials. The strained
range and its vanishing manner should be carefully considered. For inverse design
purpose, the requirements for strained coordinate transfer are much more demanding in
order to keep the geometric precision of the designed airfoil. Thus in this research the
transfer is applied only during the first several iterations for accelerating the convergence
and a transfer based on Bézier spline is tried instead of polynomials for the sake of

control flexibility.

The critical points of the two solutions like leading edge, trailing edge, stagnation point,
suction peak position, sonic point and shock position may be selected as strained points
according to different situations. The strained transfer is used for similar solutions while
the pressure distribution of the calculated airfoil during first iterations may not be similar
at all to the target. For example, one of them has a suction peak near the leading edge and
another not. Therefore only some of the above points need to be selected as strained

points in this case.

Although the calculation results have already proved that the strained transfer can
evidently accelerate the design convergence, there are still some problems to be solved,
for example, if the distance between the two corresponding strained points is too large,
the program may break down. Moreover some formula used now is not very appropriate
to the problems. Furthermore, it is difficult to accurately calculate the stagnation
locations because of the following fact. As pressure coefficients are only calculated at

discrete points, the stagnation points need to be extrapolated, which may cause larger
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errors owing to the steep flow gradient in this area. In fact, the pressure coefficient at the
stagnation point can be easily calculated for isentropic flows but it is unknown itself for
viscous cases. Though this kind of errors cannot be large relatively, they can be great

enough to affect the designed airfoil precision.

3.3.2 Airfoil Smoothing

Geometry smoothing is very important and even essential to some inverse methods for
which the airfoil is smoothed per design iteration (William E.). As airfoil smoothing
effects need to be meticulously controlled, it is impossible to directly apply the general
methods which tend to smooth an airfoil too much or too less. Therefore, special

methods suitable for airfoil smoothing must be developed.

One of suitable airfoil smoothing methods is based on rational Chebychev polynomials.
In this method the airfoil upper surface and lower surface are fitted separately, leading
edge and trailing edge are fixed and the curvature is kept continuous at the leading edge.
Moreover, NASA airfoil smoothing method may be also effective. In this research,
several other smoothing methods are adapted. The global smoothing method used is the
optimized airfoil parameterization method that is described in the above chapters. This
method can keep the third order derivatives continuous but its smoothing effects are very
local because it is designed for accurately representing the original curves. So in shock
region, another smoothing method is added. This method is based on the original idea of
Renz W. and modified. Why this method is accepted is based on the following ideas:
even if the graphic difference between two curves is invisible, their curvature difference
may be evident. As a result, smoothing curvature seems to be more effective. But
smoothing second order derivatives is much more convenient mathematically than
smoothing curvatures. Thus they are locally smoothed with the least-squares polynomial
fitting. The areas where smoothing and non-smoothing are connected are smoothed by

the Bézier function. The differences between the smoothed derivatives and the original



63

ones are integrated back to get the geometry difference. In addition, during the first
several iterations, the leading edge is smoothed with the sixth order polynomial fitting if
the maximum perturbation is larger than a specified value (about 0.001). The Bézier
function is widely used in the leading edge region in design process and it has been fund
to be very efficient because the Bézier function can keep the general tendency of the
original curve, damp the too high peaks and keep the slope continuous at the two ends. If
this kind of smoothing is not used, the calculation convergence is slower because of the
oscillations and noises of the geometric perturbation solution near the leading edge
which is due to the following factors: (1) the sensitivity of aerodynamic characteristics to
the leading edge shapes, (2) the differences of the suction peak and stagnation locations
and (3) numerical errors caused by extrapolation of the stagnation locations (in the case
of strained transfer used), interpolation of the pressure coefficient at the leading edge and
flow calculation owing to the very large gradient in this area, etc.. Some other more
detailed discussion about this problem can be found in the section about the initial

conditions.

Besides, least-squires fitting for airfoil smoothing is treated by solving the norm equation
for the time being instead of using the singular value decomposition though the later is
obviously superiors to the former because the norm equation is generally very ill
conditioned in most practical applications. The former method is accepted only because

it takes much less time for programming.

3.3.3 Non uniform relaxation

In design process, the sub-relaxation is necessary to guarantee the calculation
convergence especially during first several iterations because the calculated perturbation
may be deformed due to too large pressure differences near the leading edge while the
super-relaxation should generally be used for accelerating the convergence. But the

relaxation factor cannot be made constant directly because 1) the geometric perturbations
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near leading edge tend to be larger owing to large pressure gradients and they oscillate
and contain some noises because of the reasons discussed in the last section, 2)
geometric perturbations are too large in the supersonic region of transonic flows as the
flows are very sensitive to smaller perturbations, and 3) geometric perturbations are
generally smaller in the aft part of airfoil upper surface and on the lower surface at high
angles of attack. This may be caused by taking the same constant D in equations (3.17)
and (3.26) for the entire airfoil. The problem can be solved by treating the D as a

function of curvature lengths but it is more convenient to use ditferent relaxation factors.

In this research, three or four constant relaxation factors are used respectively in the
leading edge region, the upper surface, and lower surface or supersonic region. Linear or
non-linear relaxation factor distribution can also be used but it may deform geometric
perturbations. The regions for using different relaxation factors are delimited from 1)
sonic point, 2) zero perturbation point and 3) minimum perturbation point that is taken as
the coordinate origin for amplifying the perturbations after this point. The relaxation
factors used varied between 0.3 and 5, which is adjusted automatically in the program
according to the amplitudes of geometric perturbations and the pressure differences.
Relaxation factors should be selected in such a way that the convergence speed to the
target values should be more uniform at every point of the airfoil. If the pressure
differences in one part of the airfoil are already near zero and there are still larger
differences in the other part, the convergence is much slower. In addition, a large
relaxation factor can sometimes give rise to a serious problem that small perturbation
waves are amplified. The amplified waves reduce the convergence speed rather than

accelerate it, which is one of reasons why geometry smoothing is necessary.
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CHAPTER 4
AIRFOIL INVERSE DESIGN RESULTS®

4.1 Airfoil design for high subsonic flows

In order to avoid complicated flows containing shock waves, the first test design is
selected for M. = 0.60, Re = 1.00x10” and o = 1.50 d. The target airfoil is RAE2822 and
the initial airfoil is NACAQO012. The large difference between the two airfoils is suitable
for testing the capability of the method. The strained coordinate transfer is used during
the first ten iterations. The strained points are the leading edge, the trailing edge, the
pressure peak location and the stagnation point during the first 5 iterations and the same

points are selected except the pressure peak location for the next 5 iterations.

The design results are presented in Figure 4.1 with the pressure distribution and the
airfoil shape comparisons among the initial, target and design airfoils. The convergence
is very fast, the differences between the target and design are very small even in 5 design
iterations, for example, and the lift coefficient difference is smaller than 1%, which is
appropriate for initial design problems. In 15 iterations, the maximum pressure
coefficient difference, which appears near the leading edge, is 0.006 while the geometric

difference is smaller than 5.0x107 in the key aerodynamic range. The precision is

surprisingly good.

The curves illustrated in Figure 4.2 shows that the convergence is not monotonous and
there are some jumps, which are mainly caused by leading edge smoothing. In the
program, the leading edge smoothing is carried out if the maximum perturbation is large

than 0.001. The smoothing method based on the least-squires fitting of a 6™ order general

2 All the airfoils used in this chapter, target and initial, are represented by their parametric ones using the
method of this thesis with NC = 11 and NPOINT = 3 in appendices 7 and 8.
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polynomial (described in the last chapter) always tends to smooth the leading edge too
much. Therefore, when the maximum perturbation is larger than this specified and then
the smoothing is made, a jump appears. But after the jump, the convergence may be
accelerated. If the smoothing is stopped after the given iteration, the calculation results
shows that the general convergence tendency is monotonous but the convergence speed
can be slower. Thus, the best way to solve this problem may be to develop a more

appropriate smoothing method.

Another design case shown in Figure 4.3 is for M.. = 0.725, Re = 1.00x10 and o = 0.0 d.
The target airfoil and the initial one are also RAE2822 and NACAOQ012 respectively.
This case is selected for the sake of comparisons with the results (corresponding to the
same flow conditions but for non-viscous flow) of William E.. But the strained
coordinate transfer is not applied because of the larger difference of the suction peak
locations between the target and the initial pressure distributions. In addition, the
stagnation point locations are too close to the leading edge to be calculated with enough

accuracy just from the pressure distributions at given X positions.

The convergence is not as good as the above case because a supersonic region appears on
the upper surface of the initial airfoil during the first several iterations and the strained
coordinate transfer is not used. But it is still fast enough, in 20 design iterations the
pressure coefficient differences are smaller than 0.0045 in the leading edge region and
0.007 in the remaining part. In contrast, the results of William E. is obtained after 50
iterations and the precision is not given but the pressure and the geometry differences are
visible even from the much smaller figure. Consequently it is certain that the present
method is much more rapid and accurate in this case. And it is not surprised that

William’s method is mainly developed for low speed flows.
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4.2 Airfoil design for low speed flows

The first low speed design case is selected for M.. = 0.3, Re = 1.00x10” and o = 4.0 d.
The target airfoil is RAES5212 and the initial airfoil is NACAQ0012. The strained transfer

is also used during the first ten iterations.

From the results illustrated in Figure 4.4(a) and (b), the convergence is very fast. In 5
iterations, the geometry and pressure differences between the target and design are small
and the lift coefficient difference is smaller than 3%. There is nearly no visible difference
in 15 iterations, the lift coefficient difference is smaller than 0.001, the precision is good
enough from the practical point of view. Compared with William’s results which are his
best results and obtained in 25 iterations, the present method is much more efficient but
less accurate. The difference may be caused by the following fact. The pressure is
calculated in William’s design only by a panel method and there is no convergence
problem while in this thesis the flow is simulated by the coupled Euler and boundary
layer method. The boundary layer transition is fixed near the suction peak location. Thus
the suction peak is more sensitive to geometric perturbations. In addition, the éolutions

are not fully converged.

The second low speed design is effectuated for M.. = 0.3, Re = 1.00x10” and o, = 5.0 d.
The target airfoil is NACA2412 and the initial airfoil is NACAO0012. The strained

transfer is also used for the first ten iterations.

The pressure distribution and geometry comparisons presented in Figure 4.5 (a) to (¢)
show that the method provides the accurate results once more in 20 design iterations.
There is nearly no visible difference between the target and design pressure distributions
in this case. The lift coefficient differences are about 3% and 0.1% respectively for 5
iterations and 15 iterations. In 20 iterations, the pressure coefficient differences are

smaller than 0.005 everywhere except near the leading edge where the maximum value is
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still a little large (0.035) . This difference is not visible from Figure 4.5(c) because of the
large pressure gradient in this region. Considering that 1) the maximum geometric
differences are smaller than 7.0x10” near the leading edge, which are excellent, 2) the
flow solution is not fully converged at these conditions, and 3) the pressure differences
are smaller enough in the other part of the airfoil, thus the larger pressure differences
near the leading edge are mainly caused by the amplification of flow solver errors and
the other interpolation errors (discussed in 3.3.1 and 3.3.2) to the geometric differences.
In comparison with William’s results of the similar conditions, gained in 25 iterations,

the present method is more efficient and accurate in this case.
4.3 Transonic airfoil design

The design conditions are M.. = 0.715, Re = 1.00x107 and o = 2.3 d. The target airfoil is
RAE2822 and the initial airfoil is NACAQO12. The strained transfer i1s also used for the

first 20 iterations.

From the results presented in Figure 4.6(a) to (c), the convergence is also rapid. In 5
design iterations, the geometric differences (shown in Figure 4.5(a)) between the target
airfoil and the design are small but the pressure distribution differences are still large
owing to the sensitivity of transonic flows to small perturbations. From the pressure
distribution of the design airfoil, two shocks appear during the first several design
iterations, which makes the flow complicated and the convergence much slower. The
first shock is caused by the invisible non-monotonous variations of the curvature in this
region. It is possible to solve this problem by appropriately smoothing. As is talked in
3.3.2, smoothing second derivatives is used in this research but the smoothing is still
based on the least-squires fit of a general 6™ order polynomial that is not very appropriate
for airfoil smoothing. Thus more effective smoothing methods must be developed in

order to improve design results furthermore.
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The comparison results (Figure 4.6(b)) in 15 design iterations demonstrate that the
pressure distribution of the design airfoil is favourable, the lift coefficient difference
between the target and the design is smaller than 2% and the shock strength is little
smaller than that of the target. From the comparison results shown in Figure 4.5(c) after
25 design iterations, the pressure distribution of the design airfoil around the suction
peak coincides with that of the target, which means that the calculation for the leading
edge region is accurate. The results are very satisfactory from the practical point of view
and comparisons with the transonic results (Barger, Campbell, Takanashi and Yu N.) of
the other iterative methods, although there are visible pressure differences near the shock
locations, which is caused by the following factors. As a pressure jump appears owing to
the shock wave at the same location, there is also a jump in calculated geometric
perturbations. Furthermore, calculated geometric perturbations are greatly deformed near
the shock locations of the target and design airfoils. Smoothing is generally used for
solving this problem. But it is hard to make the two shocks coincide together because it
1s very difficult to accurately control the smoothing effects. The author has tried to solve
the problem by the strained coordinate transfer and some other new ways but there are

still some problems to be solved.
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CONCLUSION

5.1 Optimized airfoil parameterization

The new method can accurately represent nearly any airfoil with few than 13 control
points, e.g., NACA airfoils by 7 to 9 points and supercritical airfoils by 11 points.
Moreover, the method is also very efficient. In most cases, optimized results
converge within only 10 seconds on an 800 MHz personnel computer. Therefore, this
method compensates for the deficiencies of the existed methods and possesses a great

potential to improve the efficiency of airfoil or wing designs.

As the control points for this method are directly located on the representative airfoil,
it is much easier to calculate geometric characteristics (curvature and higher order
derivatives), to add constrains such as thickness requirements and for use in local
airfoil modifications than the other methods. In addition, designer’s experiences can

be directly carried on.

The technique of automatically adding additional spline nodes can greatly improve

the airfoil representation precision.

The selection of objective function has a great influence to optimization results. The
least-squires fit is also appropriate to the parametric airfoil approximation and the
objective function that consists of the average error and the maximum errors for each
curve segment is obviously superior to the commonly used objective function
composed only by the average error and the unique maximum error of the entire

airfoil.
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e The distribution function of fixing control points may not be suitable to all kinds of
airfoils. Future works include: (a) applying different distribution functions for
different types of airfoils, (b) finding appropriate relations between control points and
airfoil curvature distributions and (c) automatically adapting control points according
to calculated error distributions and fixing the control points by iteration process. If
the above works are finished, the optimization of control points will not be necessary

in any case.

e In order to improve the efficiency and the accuracy of the method furthermore for the
special cases that control points need to be optimized, the more appropriate

optimization method should be adapted.

5.2 Iterative inverse aerodynamic design

e The new method is not only very efficient but also accurate enough for both
compressible and low speed flows, especially the leading edge shape can be precisely

calculated, which is impossible for nearly all the other methods.

e The efficiency and the accuracy of the method depend more on the techniques such
as the strained coordinate transfer, geometry smoothing and non-uniform relaxation

for accelerating the convergence than on the method itself.

e The transonic correction based on the assumption for the effects of waves reflected
from the free boundary (sonic line) is effective but detailed studies regarding its

potential to improve transonic solutions should be conducted.

o Geometry smoothing is essential to design efficiency, but smoothing effects are hard
to control. In order to improve the design efficiency furthermore, more suitable

smoothing methods should be studied.
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The strained coordinate transfer is an effective way to accelerate the convergence but
further research on its ability to accurately reflect the geometric variations should be

made.

For the treatment of geometric discontinuity caused by shock waves, new techniques
must be exploited to replace the commonly used techniques like airfoil smoothing in

order to meet higher precision requirements in transonic flows.
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APPENDIX 1

SIXTH ORDER HERMITE INTERPOLATION FUNCTION

Hoo=—- 6t +15t* —-10t> + 1
Hoy = 6t° — 15t* +10¢t°

Hio=-3t"+8t*—-6t>+1
Hi; =-6t° +7t% —4¢°
1 3 3 1
Hog= - —t° 4+ —t* - —¢t° 4+ —¢?
2
1 1
HQ:] = —tS — t4 +—t3
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APPENDIX 2

INTRODUCTION TO PROGRAM AIRY

Program Airy is developed in Fortran by the author and is divided into two main parts
respectively for airfoil parameterization and airfoil inverse aerodynamic design of which
the principles and methods are described in this thesis. It consists of the following files:

airj73d.1f, 1j73.f, OPT.H, OUT.H, REVERS.H and XYCC.H.

The source file airj73d.f is applied for airfoil parameterization and contains the program
of about 4500 lines in Fortran, of which the flow chart and the main functions of
subroutines are illustrated in Appendix 3. The detailed parameter descriptions can be
found in the concerned subroutine. The program has been used for nearly six months and
proves being very robust, especially for optimization with x location fixed. The only
exception is: the optimization diverges if there are some non-smooth points near the
trailing edge of an original airfoil. In the case of optimization for x locations, if
satisfactory results cannot be obtained within nearly two hours, the variation range of

control points should be specified once more. This part will be improved in the future.

The source file rj73.f is for airfoil inverse design and has 4000 lines in Fortran. Its
simplified flow chart is demonstrated in appendix 6. The program cannot be used
independently and a flow solver must be needed to provide pressure coefficients on the
airfoil. The program works well in all the research cases but it should be developed

further for commercial applications.

Files OPT.H, OUT.H, REVERS.H and XYCC.H contain array definitions and
parameters required for optimization, output, inverse design and airfoil parameterization
respectively. The detailed illustration can be found in the concerned subroutines and

functions.
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For genetic algorithm optimization, the original program is from D.L. Carroll and
includes the following files: GAgal70.f, ga.inp, ga2.inp, ga.out, ga.restart, params.f and
ReadMe. The program and user manual can be downloaded freely from the web site (see

reference list) for research purposes.



APPENDIX 3

FLOW CHART OF MAIN PROGRAM AIRY

INPUT
Airfoil Data

l

ARCCORD

Calculate Curve

Lengths

)

SPLINE
Calculate Spline
Node Values

Calculate
Parametric
Airfoil ?

SPLINE

CONFOIL

Parametric Airfoil

Optimization

Inverse
Design ?

Yes l

REVERSE

Inverse
Aerodynamic Design

No

Spline Interpolation

!

ouTpPUT
Spline Interpolation
Or & Para. Airfoil




APPENDIX 4
FLOW CHART OF SUBROUTINE SPLINE
FOR SPLINE INTERPOLATION

l

HERMITS

Calculate

Hermite Functions

l

COEFF5

Calculate Equation
Coefficients

l

SEPTMS

Solve

Equations

|

CURV

Calculate Curvatures

l

SPLINT

Spline Interpolation

l
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APPENDIX 5

SIMPLIFIED FLOW CHART OF SUBROUTINE CONFOIL
FOR PARAMETRIC AIRFOIL OPTIMIZATION

94

SUBROUTINE CONFOIL
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. Control Points

NORMALIZE

Normalise Initial
Parametric Values

!

SUBROUTINE NEWFOIL

»  Set Parameters for

1 Adding Additional
Spline Nodes

Yes No
FIX Control
Points 7
I e
CONGRAD GA170 EE Set Variation Range »
Conjugate-Gradient  [lg¢— 4! of Control Points for
Optimization GA Optimization v GA Optimization h

.
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APPENDIX 6
SIMPLIFIED FLOW CHART OF SUBROUTINE REVERSE
FOR ITERATIVE INVERSE AERODYNAMIC DESIGN

Eem——moooememm ) |;_-_.—_.—_.-_-..-_-_-_-_—_-_-.'.-.'.-_-_-_Il
INTERPOCP & f Output %  u Transfer Airfoil
n " .. i
INTERPOXY n n€—  To Its Original
Initialization " Tteration Results n s Coordinate E
e M)

l """ A

MSET. MSES & SMOOTHBEZIE
’ POLYFIT2
. ¢
MEDF: SMOOTH
Calculate Pressure Airfoil Smoothing

l I',‘_-_-_-___-___I--—_—-—_—_—-—_—_—I
INTERPOCP w  Corrections or E:
Interpolate Cp to ii Non Uniforme :E
Given x positions ) Relaxation E:
Ly S - J

l i A
0 Calculate i No w  Calculate Small
w  Supersonic Range, g Perturbation Equation i

It stagnation Points & Cp !

Difteronoes ; b Coefficients & Solve
" ifferen

" the Equations

___________________________________

Yes STRAINTR
— | Strained Coordinate
Transfer

Strained
Transfer?

Tolerance
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APPENDIX 7
INPUT DATA DISCRIPTIONS
FOR PROGRAM AIRY

Input control file is named as aircontrol.dat of which the format example is given in

Appendix 7 and the control parameters are descried as following:

O o000 o0 oo0a0a0n00a00o0o0000a00c000na000annan

SUBROUTINE INPUT

INPUT ALL THE DATA & CONTROL PARAMETERS

CONTROL PARAMETERS FOR INPUT & GEOMETRIC TREATMENTS

IFOR

KYES

KDER :
KUL

airfoil input format

=1 DATA INPUT FROM LOWER SUR. TRAILING EDGE TO UPPER SUR. T.E.

=2 INPUT DIRECTION OPPOSITE TO 1

=3 FIRST UPPER SUR. THEN LOWER SUR. & BOTH FROM L E.

=4 PARAMETRIC AIRFOIL INPUT

=5

1

=2 PARAMETRIC AIRFOIL INPUT AS INITIAL GUESS FOR GA OPTIMIAZATION
=1 DERIVATIVES INPUT ONLY EFFECTIVE WHEN KYES =1

: =1 UPPER & LOWER SURFACE TO BE TREATED SEPARATELY

CONTROL PARAMETERS FOR PARAMETRIC AIRFOIL & OPTIMIZATION

NC
NPOINT:

: NUMBER OF CONTROL POINTS FOR PARAMETRIC AIRFOIL

CONTROL PARAMETER FOR OPTION OF ADDING POINTS

EVEN NUMBER : TWO POINTS ADDED NEAR L.E. BETWEEN TWO CONTROL P.
ODD NUMBER : ONE POINT NEAR L. E.

=1,2 :ONLY ADDE POINTS NEAR L.E.

=3,4 :FOR ALL BUT WITHOUT ADDED POINT NEAR T.E.

=5,6 : ADDE POINS BETWEEN ALL THE CONTROL POINTS



O 0o ooooao0oonoocoan~0c00c0o0oc00c000o000o00000n0000000000n0n
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=7 : SAME WITH 5 FOR TIME BEING
=8 : FOR ALL WITH ONE POINT ADDED BUT TWO NEAR L.T.
=9,10 : ADDE POINTS ONLY FOR FORWEED HALF AIRFOIL
=11,12: WITHOUT ADDING POINTS FOR T.E. OF LOWER SURFACE
KOPT : CONTROL PARAMETER FOR OPTIMIZATION
=1 DEFAUT WITHOUT OPTIMIZING X POSITIONS
=2 SPECIAL OPTIMIZATION FOR MINI. MAX. ERR. (WEIGHTED)
=3 GENETIC ALGORITHMS USED FOR OPTIMIZING X LOCATIONS.
OTHER NUMBER NO OPTIMIZATION
KRO : CONTROL PARAMETER FOR REOPTIMIZATION IF THERE ARE SOME
BAD POINTS
=1 YES OTHERS NO
KGA : FOR GA OPTIMIZATION OF INVERSE CALCULATION
=1 ONLY Y DERIV. YCP TAKEN AS OPTIMIZATION PARAMETERS
=2 ADDE TWO THICKNESS FACTORS FOR UPPER & LOWER SUR. &
THE OTHERS SAME WITH CAS 1
=3 SAME WITH CAS 1 BUT L.E. CURVATURE FACTOR IS ALSO
TAKEN AS OPT. PARAM.
BEST OPTION OF ALL THE TESTED CASES (2001.10.11)
=4 YCP & CURVATURES CC AS OPT. PARAMETERS
=5 YCP, CC & Y POSITIONS AS OPT. PARAM.
FOR CAS 1 &2, Ys ARE CALCULATED ACCORDING TO 3TH
CONTINUTY AT NODES
* * USELESS FOR THIS VERSION

CONTROL PARAMETERS FOR INVERSE DESIGN

KREV :
=1  INVERSE CALCULATION TO BE CARRIED OUT
OTHERS NO INVERSE DESIGN
INRE : CPINPUT CONTROL
=1 IN FORMAT OF MSES OUTPUT
=2 INFORMAT OF EULER2D
AM  : UPSTREAM MUCH NUMBER
TETH : TRAILING EDGE THICKNESS
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C

C

C CONTROL PARAMETERS FOR OUTPUT

C

C KOUT : OUTPUT OPTION FOR GRAPHIC SOFTWARE
C =1 TECPLOT

C =2 GNUPLOT

C

C

Airfoil input file name is input in the first line of the control file aircontrol.dat.
Moreover, some control parameters for inverse design are directly input from the

keyboard, of which the input descriptions are shown on the screen.
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APPENDIX 8
INPUT CONTROL FILE

aircontrol.dat

FORMAT EXAMPLE

RAE2822.dat : File name of input airfoil data

CONTROL PARAMETERS FOR INPUT & GEOMETRIC TREATMENTS ---veno-moom oo

: IFOR - input format (see descriptions in subroutine INPUT)
: KYES  —--- =1 parametric airfoil

: KDER = - =1 derivatives input only effective when KYES =1
: KUL - =1 upper & lower surface to be treated separately

CONTROL PARAMETERS FOR PARAMETRIC AIRFOIL & OPTIMIZATION ----------—-

: NC - number of control points for the parametric airfoil

: NPOINT ----- control option for adding points(see detail in INPUT)

: KOPT - control parameter for optimization (see detail in INPUT)
: KRO - re-optimization if =1
. KGA - for GA optimization of inverse design (in INPUT) useless for this version

CONTROL PARAMETERS FOR INVERSE DESIGN

: KREV ~ —ev =1 inverse calculation others: no

: INRE = - =1 Cp input in format of MSES =2 EULER2D format
:AM - upstream MACH number
: TETH - trailing edge thickness

CONTROL PARAMETERS FOR OUTPUT

: KOUT ----- =1 TECPLOT =2 GNUPLOT
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APPENDIX 9

OUTPUT FILES DISCRIPTIONS

Output control is set in the input file aircontrol.dat. The main output files:

1. Parametric airfoil

SplineSout.dat : the complete output includes 1) the airfoil with more points
interpolated from the original by the spline, 2) the original airfoil, 3) the parametric
airfoil and 4) the interpolated airfoil from the parametric to the original x positions.

Six output variables x, y, Xp, yp, Xpp, ypp correspond to Cartesian coordinates, their

curvilinear derivatives of the first order and second order respectively.

Error.dat : output errors between the original and parametric airfoils.
Output variables i, err, x, y are point number index, error and the Cartesian coordinates

of the original airfoil.

2. Inverse design

Iteration.dat : output error information for each iteration. Output variables:

ITE: iteration time.

ICPMLE, ICPMU, ICPML: point number index respectively corresponding to maximum
errors on the leading edge, upper surface and lower surface.

DCPMLE, DCPMU, DCPML.: maximum errors respectively on the above three points

DHMMO: maximum geometric perturbation value on the leading edge.

Xycptec.dat : output geometric and pressure information every 5 iteration and the best
solution.

The fist part is for the original airfoil and the second for the designed.
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X, y: Cartesian airfoil coordinates

XS: strained x coordinate

cpt, cps or cpr, cprs : pressure coefficient and its derivative to X for the target airfoil or

designed.
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