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RESUME

Deux nouvelles methodes efficaces sont proposees dans ce memoire. La premiere

conceme la representation parametrique du profil aerodynamique et la seconde, la
conception aerodynamique inversee.

La representation parametrique du profil aerodynamique est une fagon bien adaptee pour
ameliorer 1'efficacite de conception d'un profil ou d'une aile, ce qui permet de reduire Ie

nombre des parametres de conception ou du bruit de la fonction objective en 1'optimisant
d'une maniere significative. Les methodes existantes ont 1'un des deux defauts suivants :
difficile a obtenir des parametres de controle ou besoin de plus de points de controle

pour satisfaire la precision donnee. Si on prend plus de points, il est plus difficile de
controler 1'egalite et la monotonie du profil. Done une nouvelle methode optimisee a ete
inventee pour regler ce probleme. La representation du profil de cette methode est basee
sur la spline parametrique de 5e degre, mats avec des traitements specifiques pour ajouter
automatiquement des noeuds additionnels de spline afin d'ameliorer la precision. Quatre
parametres de controle, la pente, la courbure et les deux abscisses des points de controle,
sont necessaires pour chaque point qui peuvent en general etre selectionnes directement
a partir des points originaux du profil d'apres leur distribution de I'abscisse x. Done dans
ce cas la, la pente et la courbure ont seulement besoin d'etre optimisees par une methode
de gradient conjugue, et la convergence rapide de 1'optimisation peut etre assuree en

prenant les valeurs initiales de 1'interpolation de la spline de 5e degre issues des points
originaux du profil. Par consequent, les parametres de controle peuvent etre obtenus en
10 secondes. Dans les quelques cas ou cette methode des localisations de x ne peut pas

satisfaire 1'exigence de precision, la methode d'algorithme genetique (GA) est adaptee
pour optimiser ces localisations en combinaison avec la methode de gradient conjugue
pour les autres parametres. Puisque Ie micro GA est employe et que cette optimisation
n'est faite que pour peu de points discrets du profil original, la methode est encore
efficace. D'ailleurs, les resultats de calcul confirment que cette nouvelle methode permet

de representer presque tous les profils precisement par 7 a 13 points de controle. Bien
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que la pente et la courbure soient exigees pour chaque point de controle, elles sont
neanmoins beaucoup plus faciles a utiliser pour controler la geometrie du profil que les

positions des points. De plus, il est plus aise d'ajouter des contraintes, de calculer des
caracteristiques geometriques et de faire des modifications locales du profil. Par

consequent, cette methode possede un grand potentiel pour ameliorer I'efficacite de la

conception du profil, de 1'aile ou d'autres applications multidisciplinaires.

Les caracteristiques aerodynamiques sont tres sensibles a la forme geometrique du bord

d'attaque du profil. En consequence, la deuxieme partie de ces recherches est consacree
a developper une nouvelle methode iterative de conception aerodynamique inversee qui
est non seulement efficace, mais permet aussi de calculer la region de bord d'attaque

assez precisement. Ceci demeure impossible pour beaucoup d'autres methodes. Au lieu

de 1'hypothese des variations des courbures des lignes de courant normales a la paroi du

profil, une equation geometrique de petite perturbation est deduite a partir de 1'equation
de moment de ligne de courant, de 1'equation de continuite et des relations isentropi ques

avec 1'hypothese de la similitude de la ligne de courant proche a la paroi du profil. En

plus, la correction transsonique pour cette equation est prise en compte avec 1'hypoth^se
sur les effets des ondes refletees de la frontiere libre (la ligne sonique), car cette methode

n'est basee que sur les valeurs aerodynamiques de surface. Alors, elle ne peut pas reHeter

les caracteristiques transsoniques telles que les interferences des ondes. Les perturbations

geometriques normales a la paroi du profil sont calculees en resolvant cette equation
differentielle ordinaire de deuxieme ordre avec des valeurs initiates. Les techniques

comme lisser 1c profil, la relaxation non uniforme et Ie "strained coordinate transfer" qui

etait utilise pour supprimer les non-unifonnites des solutions de perturbation des

problemes non lineaires, sont employees pour accelerer la convergence. Les resultats
demontrent 1'efficacite et 1'exactitude de cette methode non seulement pour les

conceptions d'ecoulement compressible, mais aussi pour celles de basse vitesse surtout

que Ie bord d'attaque peut etre designe precisement. Ceci demeure inaccessible presque

pour toutes les autres methodes.
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ABSTRACT

Two new efficient methods for airfoil design are proposed in this thesis. One concerns

the optimized airfoil parameterization and another for iterative inverse erodynamic

design.

The airfoil parameterization is a commonly accepted way to improve airfoil design

efficiency, which can greatly reduce design parameters and noises of objective function

in optimization. The existed methods have one of the two drawbacks: hard to get control
points or needing more control points at the given representation precision. The more
control points, the more difficult to control the smoothness and the monotony of airfoils.
Thus a new optimized approach is put forward to solve the above problems. The airfoil

representation of this method is based on the general 5th degree parametric spline but
with special treatments for automatically adding additional spline nodes in order to

improve the precision. Four control parameters, the slope, the curvature and the two
coordinates of control points, are needed for each control point which can be selected

directly from the original airfoil ones according to their x location distribution. Thus in

this case, only the slop and the curvature need to be optimized by a conjugate-gradient

method and the rapid optimization convergence can be guaranteed by taking initial

parameters from the 5th degree spline interpolation of the original airfoil points.
Therefore, the control parameters can be obtained within 10 seconds. For fewer cases that

this way to localize control points cannot meet the precision requirements, a genetic

algonthm (GA) method is adapted for optimization of the x locations combined with the
gradient method for other parameters. As the micro GA is used and the x location
optimization is only carried out for fewer discrete original airfoil points, the method is

still relatively efficient in this case. Moreover, the calculation results confirm that this
new method can accurately represent nearly any airfoil by 7 to 13 control points.

Furthermore, it is simpler to add constrains, to calculate geometric characteristics and to
make local airfoil modifications than the other methods. Thus the method possesses a



Vlll

great potential to improve airfoil and wing design efficiency, especially for multi-point
and multi-discipline optimization design.

Aerodynamic characteristics are very sensitive to airfoil leading edge geometry.

Therefore, the second part of this research is concentrated on developing an iterative

inverse design method which is not only efficient but also can work well in the leading

edge region, which is impossible for many other methods. Instead of assumptions of
streamline curvature variations normal to airfoil surface as in the streamline curvature

methods, a small geometric perturbation equation is deduced from the streamline

momentum equations, the continuity equation and the isentropic relations with the

geometry similarity assumption of near streamlines to the airfoil surface. Moreover, the
transonic correction is considered in this equation with the assumption for the effects of

waves reflected from the free surface (sonic line) because the method based on the

surface flow values cannot take into account the transonic characteristics such as wave

interference. The geometric perturbation normal to the airfoil surface is then calculated

by solving this second order initial-value ordinary differential equation and the airfoil is
designed in iteration. The techniques like airfoil smoothing, non-uniform relaxation and
the strained coordinate transfer which was used to remove non-uniformity from

perturbation solutions of non-linear problems, are applied for accelerating the
convergence. The design cases demonstrate the high efficiency and accuracy of this
method not only for compressible flows but also for low speed flows, especially the

leading edge can be precisely calculated, which compensates for the deficiencies of the
other methods.
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CONDENSE EN FRAN<?AIS

Deux methodes efficaces pour la conception du profil aerodynamique sont proposees

dans ce memoire.

1. Representation parametrique optimisee du profil aerodynamique

1. 1 Introduction

La representation parametrique du profil est une methode qui est employee pour

representer un profil avec beaucoup moins de points que 1'original. Done elle est bien
adaptee pour ameliorer 1'efficacite de conception d'un profil ou d'une aile, ce qui permet
de reduire Ie nombre des parametres de conception ou du bruit de la fonction objective en

1'optimisant d'une fagon significative.

Les methodes pour representation parametrique du profil peuvent se diviser en deux

genres : Ie classique efle modeme. Le premier base sur quelques fonctions de forme de
base n'est pas flexible a cause de sa capacite limitee et Ie second revele avec Ie
developpement de la conception assistee par 1'ordinateur est beaucoup plus pratique,

parmi lequel la spline de Bezier, B-spline et B-spline non uniforme rationnelle
(NURBS). Des resultats satisfaisants ont ete obtenus avec toutes ces methodes modemes

dans ces applications. Mais les premieres ne sont pas assez precises ou requierent plus de

points de controle pour satisfaire la precision donnee. Si on prend plus de points, alors il
est plus difficile de controler 1'egalite et la monotonie du profil. Le NURBS est tres
puissante, mais les parametres de controle sont calcules avec une methode d'optimisation
basee sur Ie gradient qui depend des valeurs initiates donnees. Puisque Ie probleme

d'optimisation contient de nombreuses minima locales et qu'il n'est pas possible
d'assurer des valeurs initiates appropriees, la solution ne peut pas etre garantie et, de ce

fait, il est difficile d'obtenir des parametres de controle avec cette methode. Par

consequent, une nouvelle methode optimisee a ete inventee pour regler ce probleme.



1.2 Methodes de representation et d'optimisation

La representation du profil avec cette methode repose sur la spline parametrique de 5
degre car il est raisonnable de garder les courbures du profil non seulement continues
mais aussi lisses. Cependant, la spline generate ne peut pas etre employee directement

pour la representation parametrique du profil parce que les distances ou les variations
entre deux noeuds proches peuvent etre trop grandes en raison du faible nombre de points
de controle. Done il faut regler les trois problemes principaux ci-apres: 1)

Approximation des longueurs des segments de courbe qui sont contenues dans les
fonctions de spline. La longueur de corde, qui est bien adaptee pour des applications

generales, est trop imprecise pour etre utilisee. Mais Ie calcul de la longueur exacte de
courbe qui est obtenue en resolvant un systeme d'equations non lineaires n'est pas garanti
(Ie calcul diverge parfois). Done la longueur de courbe est 1'approximation de 1'arc

circulaire moyen. Mais ce traitement conduit a un autre probleme. 2) Reduction des

parametres de controle. D y a trois vecteurs de controle a chaque noeud de spline de 5
degre, Ie vecteur de position, Ie vecteur tangent et son gradient qui correspondent & six
parametres de controle dans Ie cas bidimensionnel. Si on prend les longueurs exactes des
segments de courbe, quatre de ces six parametres sont independants, car la norme du
vecteur tangent est unitaire et les demiers vecteurs sont normaux entre eux. Done il existe

quatre parametres de controle pour chaque noeud. Mais si les longueurs des segments de
courbe sont approximatives, ces six parametres sont tout independants. Alors il faut
effectuer la normalisation pour reduire Ie nombre des parametres de six a quatre, qui sont

deux abscisses de position, la pente et la courbure. 3) Ajouter des noeuds de spline

additionnels. La spline generale ne peut pas satisfaire 1'exigence de precision speciale du

profil a cause du faible nombre des noeuds de spline qui sont des points de controle pour
un profil parametrique. Mais qa n'a pas de sens physique d'ajouter plus de points dans ce
cas la. Done les noeuds additionnels sont ajoutes automatiquement pour ameliorer la

precision, en maintenant continues les derivees curvilignes de troisieme degre et de
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quatrieme degre a chaque noeud ajoute. Pour cela, il est necessaire de resoudre un
systeme d'equations non lineaires qui ne prennent en compte que les voisins de noeud.

Puisque les noeuds de controle de spline adaptee se situent exactement sur les courbes de
la spline, les points de controle peuvent etre selectionnes directement a partir des points
originaux du profil. Alors deux strategies peu vent etre employees : 1) Les points de
controle peuvent etre simplement fixes d'apres leur distribution de 1'abscisse x determine

par une fonction polynomiale donnee et la distribution de courbure du profil. Ainsi dans
ce cas la, la pente et la courbure ont seulement besoin d'etre optimisees par une m^thode

de gradient conjugue. Mais il faut que les valeurs initiales soient proches du minimum
global, car cette methode d'optimisation ne permet de trouver qu'un minimum local sans
contraintes. Ceci peut etre assure en prenant les valeurs initiales de 1'interpolation de la

spline de 5e degre a partir des points originaux du profil. Done la convergence rapide de
1'optimisation peut etre garantie et les parametres de controle peuvent etre obtenus en 10
secondes avec un ordinateur de 800 M Hz. Bien que les resultats calcules de cette

maniere soient exceptionnels, ils ne correspondent probablement qu'a un minimum local

puisqu'on ne peut pas trouver de differences entre un minimum local et Ie minimum
global meme mathematiquement. Si cette methode des localisations de x ne peut pas
satisfaire 1'exigence de precision, la deuxieme strategic sera adaptee : 2) Les points de
controle sont aussi determines par optimisation. Dans ce cas la, la methode d'algorithme

genetique (GA) est adaptee pour optimiser les localisations de x en combinaison avec la
methode de gradient conjugue pour les autres parametres. Puisque Ie micro GA est

employe et que cette optimisation n'est faite que pour peu de points discrets du profil
original, la methode est encore efficace.

1.3 Resultats et discussions

Pour confirmer la capacite de cette methode, divers types de profils parametriques sont

presentes dans ce memoire, y compris les profits NACA, les profils supercritiques de
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RAE et de NASA, Ie profil naturellement laminaire et celui pour Ie "rotor-craft". Le

nombre des points de controle et 1'erreur maximum entre les profils parametriques et les

originaux figurent dans Ie tableau 2. 1. Les resultats demontrent que la plupart des profils
les plus employes pour les avions, peuvent etre presentes precisement en determinant les
points de controle d'apres leur distribution de 1'abscisse x : les profils de NACA avec 7 ^

9 points de controle avec des erreurs maximums entre 5. 1x10 a 7.7x10 , les profils

supercritiques avec 11 points de controle et des erreurs maximums entre 2.5x10 ^

6. 5x10 . On peut visualiser les resultats presque tout de suite. Pour les autres profils dont

les points de controle ont besoin d'etre optimises, les precisions sont encore excellentes,

mais ne sont pas aussi bonnes que celles obtenues dans les premiers cas. La raison

principale est la suivante : il est tres difficile de specifier avec une bonne adequation les
regions de variations pour chaque point de controle parce que Ie GA utilise adapte un
code binaire et qu'il faut que ces regions satisfassent la relation 2-1, ou n est entier. En

consequence, la solution obtenue par ce biais est seulement une correspondante a un des
minima locaux. Ceci est tres manifeste dans 1'observation des distributions des erreurs

non uniformes.

En plus, les effets de la fonction objective sur les solutions d'optimisation sont aussi
etudies dans cette recherche. Cette etude confirme que: 1) Ie choix de la fonction

objective a une forte influence sur les resultats d'optimisation, 2) 1'approximation des
moindres carres est appropriee pour Ie profil parametrique et 3) la fonction objective, qui

contient 1'erreur moyenne et les erreurs maximums de tous les segments de courbe, est

bien meilleure pour la representation parametrique du profil que celle qui inclut 1'erreur

moyenne et la seule erreur maximum, quoique cette demiere forme de fonction soit
neanmoins generalement acceptable. Les raisons en sont les suivantes : la premiere forme

de fonction peut relativement garder sa valeur monotone et pour la derniere fonction

plusieurs minima locaux seraient formes par un mouvement aleatoire de la position de
1'erreur maximum d'un segment de courbe a 1'autre, ce qui est nefaste pour

1'optimisation, surtout pour celle basee sur Ie gradient.
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1.4 Conclusion

Les resultats de calcul demontrent que cette nouvelle methode permet de representer

presque tous les profils non seulement precisement mais aussi efficacement par 7 a 13
points de controle, surtout les profils plus employes pour 1'avion avec 11 points ou
moins, ce qui compense les insuffisances des autres methodes. Bien que la pente et la

courbure soient exigees pour chaque point de controle, elles sont neanmoins beaucoup

plus faciles a utiliser pour controler la geometric du profil que les positions des points. De
plus, il est plus aise d'ajouter des contraintes telles que les epaisseurs du profil, de
calculer des caracteristiques geometriques comme les courbures et de proceder a des

modifications locales du profil avec cette methode qu'avec les autres. Par consequent,

cette methode possede un grand potentiel pour ameliorer 1'efficacite de la conception du

profil, de 1'aile ou d'autres applications multidisciplinaires.

2. Methode iterative de conception aerodynamique inversee

2.1 Introduction

La conception aerodynamique inversee permet de foumir la forme geometrique pour les

valeurs objectives specifiees comme la distribution de pression ou celle de vitesse. Avec
Ie developpement de 1'informatique et des methodes de dynamique numerique de fluide,

la conception aerodynamique inversee devient un outil privilegie pour designer des

profils, les ailes d'avion, les pales pour 1'eolienne, 1'helicoptere et Ie compresseur.

De nombreuses methodes de conception aerodynamique inversee existent et, en

particulier les methodes iteratives comme la methode de Takanashi et celle de courbure

de ligne de courant de la NASA qui sont plus puissantes pour des applications

d'ingenierie car 1) Le programme pour resoudre les ecoulements peut rester inchange.
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Alors elles permettent d'etre couplees directement avec les logiciels aerodynamiques

recents. 2) Les methodes sent basees sur les corrections iteratives des differences de

pression ou de vitesse entre les profils objectif et calcule. Elles ne sont requises que pour

predire la correcte tendance au lieu des valeurs exactes, car la solution sera amelioree

pendant Ie processus d'iteration. Done elles peuvent etre plus facilement utilisees pour

les configurations compliquees a cause de ses flexibilit^s.

Cependant, ces methodes comme les nombreuses autres methodes ne peuvent pas
calculer la forme du bord d'attaque du profil precisement a cause des grandes variations

de 1'ecoulement et de la distribution de haute courbure dans cette region. Cela limite leurs

applications pratiques parce que les caracteristiques aerodynamiques sont tres sensibles a
la forme geometrique du bord d'attaque. Alors plusieurs approches sont proposees pour

regler ce probleme. La nouvelle methode de courbure de ligne de courant a donne de
bans resultats, mais elle est developpee principalement pour 1'ecoulement de basse

vitesse et se revele moins efficace dans les autres cas. La representation du profil par des

fonctions analytiques est satisfaisante dans certains cas, mais les resultats de conception

sont restreints. Par consequent, une nouvelle methode est proposee, qui est requis d'etre

non seulement efficace mais aussi precise.

2.2 Methode de conception

Au lieu de 1'hypothese des variations des courbures des lignes de courant normales a la

paroi du profil comme ce qui est fait dans les methodes de courbure de ligne de courant,

une equation geometrique de petite perturbation est deduite a partir de 1'equation de

moment de ligne de courant, de 1'equation de continuite et des relations isentropiques

avec 1'hypothese de la similitude de la ligne de courant proche a la paroi du profil. Les

perturbations geometriques normales a la paroi du profil sont calculees en resolvant cette

equation differentielle ordinaire de deuxieme ordre avec des valeurs initiales. Mais cette

equation est tres "stiff, car Ie coefficient de derivee seconde a Ie meme ordre que les
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autres seulement dans la region du bord d'attaque. Bien que ce probleme puisse etre

solutionne mathematiquement, il n'est pas physique de garder ce coefficient dans les

autres regions, car les termes ignores auraient Ie meme ordre voire seraient plus grands

que lui. Ainsi cette equation ne s'applique que dans la region de bord d'attaque. Du point

ou un saut de perturbation geometrique apparatt ou ou Ie taux du coefficient de derivee

seconde aux autres est inferieur a une valeur donnee (environ 1%), une equation

algorithmique, obtenue a partir de 1'equation ci-dessus en ignorant Ie terme de derivee
seconde, est utilisee a la place. Mais pour la zone supersonique dans 1'ecoulement

transsonique, il est plus approprie d'employer cette equation en forme differentielle

puisque la zone d'influence d'un point se limite seulement a sa zone de Mach. Par
ailleurs, cette equation n'est basee que sur les valeurs aerodynamiques de surface au lieu

du champ de 1'ecoulement. Alors, elle ne peut pas refleter les caracteristiques

transsoniques telles que les interferences des. Done la correction transsonique est prise en

compte dans la realisation de 1'hypothese de la similitude de la ligne de courant proche a

la paroi du profil mais avec 1'autre hypothese sur les effets des ondes refletees de la
frontiere libre (la ligne sonique).

Pour la conception subsonique, les equations peuvent etre resolues directement mais la

convergence n'est pas rapide. Pour la conception transsonique, on ne peut pas trouver de

solution par ce biais. Done il faut mettre en oeuvre des traitements specifiques pour

assurer 1'efficacite et la precision. Les trois mesures principales et les raisons d utilisation

sont explicitees ci-apres. (1) Transfert defonne des coordonnees (the strained coordinate

transfer): Les differences entre la pression objective et celle calculee pres du bord

d'attaque et de 1'onde de choc, peuvent etre si grandes (surtout pendant les premieres

iterations ) que les perturbations geometriques calculees soient fortement deformees a

cause des grandes differences entre les positions des points d'an-et, des sommets de

pression negative et des chocs. Ceci peut etre regle en lissant Ie profil, mais Ie transfert
deforme des coordonnees pourrait accroTtre 1'efficacite. Cette technique etait employee

pour supprimer les non-uniformites des solutions de perturbation des problemes non



XVI

lineaires en transferant les points critiques d'un profil tels que Ie point d'arret, la position

du sommet de pression negative et du choc aux points correspondants de 1'autre profil.

(2) Lisser Ie profil: C'est une technique bien adaptee pour les autres methodes iteratives

et elle est essentielle pour 1'ecoulement transsonique en raison des discontinuites des

perturbations geometrique causees par 1'onde de choc. En general. Ie profil est lisse une

fois par une iteration de conception. Pour cette methode de conception, trois methodes

sont employees pour lisser Ie profil: (a) La methode de la representation parametrique

du profil decrite dans la premiere partie de ce memoire. Cette methode peut garder les
derivees d'ordre trois continues mais elle a tendance a trop peu lisser Ie profil car elle est

developpee pour presenter Ie profil precisement. Done les deux autres methodes sont

utilisees pour lisser Ie profil localement. (b) Lisser les derivees secondes des

perturbations geometriques et ensuite, les abscisses du profil sont obtenues par
integration. Cette methode est employee principalement pour lisser la region

supersonique. (c) La fonction de Bezier est utilisee pour lisser la region de bord d'attaque

car elle permet de garder la tendance d'origine d'une courbe et d'amortir les valeurs de
sommet. 3) Relaxation non uniforme : la convergence est aussi acceleree avec la

technique de relaxation, mais les facteurs de relaxation sont differents sur les endroits

differents du profil en considerant les caracteristiques de la solution de perturbation.

2.3 Resultats de conception

Pour verifier cette methode de conception, les calculs sont effectues pour plusieurs cas.

Les coefficients de pression sont issus du code MSES qui est base sur la methode d'Euler

couplee avec celle de la couche limite. Pour les resultats de haute vitesse subsonique (Moc

= 0. 60 a 0.725) illustre dans les figures 4. 1 et 4. 2, Ie profil objectif et celui initial sont

respectivement RAE2822 et NACA0012. Les grandes differences entre les deux profils
sont adequates pour tester la capacite de la methode. Pour Ie premier cas de conception
(M^ = 0.60, a = 1. 50 det Re = l. OOxlO7) ou Ie transfert defonne des coordonnees est

applique, les resultats montrent que : en 5 iterations, les differences des distributions de
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pression et celles geometriques entre Ie profil objectif et celui de conception sont si
petites que les resultats de conception seraient employes pour des applications pratiques.
En 15 iterations, la difference maximum de coefficient de pression est 0. 006 et les erreurs

geometriques sont plus petites que 5.0xl0'5 pres du bord d'attaque. Pour Ie deuxieme cas
(M« = 0.725, a = 0.00 d et Re = l. OOxlO7), la solution de la meme precision est obtenue
en 20 iterations. La convergence est un peu plus lente, car Ie transfer! deforme des

coordonnees ne peut pas etre utilise en raison des grandes differences des positions de

sommet de pression negative entre les profils objectif et initial. Pour les deux cas de
basse vitesse (M» = 0. 3, a = 4.00 a 5.00 d et Re = l. OOxlO7) illustres dans les figures 4.4

et 4. 5 avec Ie profil initial NACA0012 et les profils objectifs RAE 5212 et NACA2412,

les resultats precis sont atteints en 15 a 20 iterations mais ils ne sont pas aussi bons que

dans les premiers cas. Pour Ie cas transsonique (figure 4. 6), la solution obtenue en 25
iterations est excellente du point de vue pratique et en comparaison avec les resultats des

autres methodes iteratives, bien qu'il y ait des differences visibles autour des chocs.

2.4 Conclusion

Tous les resultats de conception ci-dessus demontrent 1'efficacite et 1'exactitude de cette

methode non seulement pour les conceptions d'ecoulement compressible, mais aussi pour

celles de basse vitesse, surtout que Ie bord d'attaque peut etre designe precisement. Ceci

demeure inaccessible presque pour toutes les autres methodes. Us confirment aussi que

1'efficacite et la precision de conception dependent des techniques pour lisser Ie profil et

accelerer la convergence et d'autres telles que Ie transfert deforme des coordonnees, mais

toutes ces techniques necessitent d'etre ameliore. Ainsi, elle poun-ait remplacer les
anciennes methodes et se repandre aux applications pratiques.
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INTRODUCTION

This thesis is divided into two parts: (1) Optiinized Airfoil Parameterization and (2)

Iterative Inverse Aerodynamic Design. Each part can be used independently and all the

research belongs to the project of "Laminar Flow Control" which is financially supported

by Bombardier Aerospace. Although the developed methods intend to be employed in

laminar flow control design, they can be applied for general purposes such as aircraft,

turbine or other concerned design applications.

0. 1 Airfoil Parameterization

With the developments of the computer and the computational fluid dynamics methods,

multi-point and multi-discipline optimization design attracts more and more interests.

But there are still a lot of engineers who hesitate to use optimization methods. This may

be due to the following reasons. 1) There is still a long way to use this kind of methods

as a "black box". The results of optimization depend on appropriate selection of many

parameters determined by user's concerned knowledge and calculation experiences. 2) In

many cases, optimization methods are still not efficient enough to meet practical needs.

Although it is rapid for gradient-based methods to find a local minimum, solutions

depend too much on the given initial value and the calculation convergence cannot be

guaranteed in practical applications that often contain too much noise, that is to say, too

many local minima. Evolution computation methods, such as the genetic algorithm, can

ensure to find a better solution, but much more computation time has to be spent in

complicated cases. Therefore, it is very practical to develop methods that can reduce

design parameters and noises of the objective function in optimization and with which it

is easy to add constrains and to coordinate with different disciplines. What is more, the

methods must be able to precisely represent airfoils with special smoothness

requirements. Furthermore, it should be convenient to take into account airfoil

characteristics, for example, curvatures and slops are larger only near the leading edge,



airfoil curves are monotonous for most part of the airfoil and inflection points may occur

only at some special places.

Airfoil parameterization is a kind of method by which an airfoil can be represented by its

parametric one with much fewer points than the original. It is a commonly accepted way

to improve the airfoil or wing design efficiency, especially for multi-point and multi-

discipline optimization design and it is in practice use for a long time. However, it did

not find wide applications because the early methods that are generally based on some

basic shape functions are not Hexible enough and their capabilities to accurately

represent airfoils are limited. Though this kind of methods can be useful, it has

tendencies to bias a design by making it fall into certain geometric families.

In recent years, achievements in computer aided geometric design also bring forward

some new more powerful tools to airfoil parameterization, among which Bezier polygon

by Venkataraman, B-spline (Burgreen et al) and most recently the non-uniform rational

B-spline (NURBS) by Trepanier and al. All these methods have been successfully

applied in airfoil or wing designs. But generally speaking, the formers are n'ot accurate

enough for fewer control points or need more control points for the given precision

requirement. The more control points, the more local minima there are in objective

functions and thus it is more difficult to control the smoothness or monotony of airfoils.

NURBS is most powerful and very simple for geometry control. But it is difficult to

obtain control parameters because their calculation depends on optimization methods and

on the initial guess to the solution. As a result, an acceptable solution cannot be

guaranteed. Thus the practical applications of this method may be limited unless some of

its special treatments are improved.

In this research, a new optimized airfoil parameterization approach is proposed which

use four control parameters, the slope, the curvature and the two coordinates of control

points for each point. The airfoil representation is based on the general 5th degree spline

in Hermite form but with additional spline nodes automatically added from the



information of the neighboring control points since the spline with very fewer nodes

cannot meet the airfoil special precision requirements. The parametric airfoil points can

be selected directly from the original ones according to their x locations, which generally

determined by some distribution function. Thus in this case, only the slope and the

curvature at each control point are unknown and they are obtained by a conjugate-

gradient optimization method. The initial parameters taken from 5th degree spline

interpolation of the original airfoil points and the relatively monotonous variations of the

objective function with those of the curvature and the slope can ensure the rapid

optimization convergence. For fewer cases that fixed x locations cannot satisfy the

precision requirements, a genetic algorithm (GA) method is adapted for optimization of

the x locations combined with the gradient method for other parameters.

The high accuracy and efficiency of this new method are confirmed by the

representations of several types of airfoils including supercritical, natural laminar and

low speed ones. Moreover, some concerned problems like influences of different

objective functions to optimization solutions are also discussed in detail with calculation

results.

0.2 Iterative Inverse Aerodynamic Design

Inverse problems are treated to obtain geometric properties for specified aerodynamic

characteristics in contrast to direct problems for which aerodynamic performances are

solved at given geometric conditions. Inverse aerodynamic design is used for designing

or modifying airfoils at specified target airfoil surface pressure or velocity distributions

to meet the special design requirements. As one of the design tools, inverse aerodynamic

design methods have found wide applications in aircraft, turbine machine and wind

energy equipment design with the development of the computer and the computational

fluid dynamics (CFD) methods.



There are numerous inverse design methods among which iterative residual-correction

methods such as Takanashi's and NASA'S (Barger, Campbell, William H. and Yu N.)

streamline curvature method are very powerful for engineering applications because of

the following fact. The iterative methods are based on iterative correction of pressure or

velocity differences between the target and designed airfoils and they are only required to

predict the correct geometric variation tendencies rather than the exact values because

the solution will be improved during the iteration process. In addition, the flow solver is

retained in its original form and can be treated just like a "black box". Therefore they

can be directly coupled with any newly developed, more efficient flow solver and can be

easily applied to complicated configurations because of their flexibilities.

Generally speaking, there also exist the following problems for inverse design methods:

it is only for a single design point, hard to add constraints and to coordinate with other

disciplines, not accurate enough in most of practical cases and the specified target

pressure distribution cannot guarantee the minimum drag. Therefore, it is generally used

in the initial stage of industry designs and it seems that the efficiency has been the main

object of this kind of methods about which there are rarely precision discussions such as

maximum tolerances or maximum pressure coefficient difference. It is generally

accepted that from the practical point of view, if the graphic differences between the

target and design pressure distributions are small enough, the accuracy of the method is

taken for granted because in this case the lift, drag and moment differences between the

two airfoil are also so small that the design requirements can be met without any

problem.

As a result of limitations of inverse design, efforts must be made for geometry smoothing

and what's more, verification of aerodynamic performance at off-design conditions and

other constrains, and modifications of target pressure distribution which is often obtained

in engineering design by modifying the one of an existed airfoil of which some

characteristics intend to be reserved and the others to be improved. As aerodynamic



characteristics are very sensitive to the leading edge geometry that plays a very important

role in low speed maximum lift, transonic shock movement, etc., it is very hard to

reserve the key aerodynamic performances of the original airfoil if the applied design

method cannot work well in the leading edge region. Therefore, accurate calculation of

airfoil shapes, especially leading edge shapes is essential for efficiency of inverse design

methods.

The streamline curvature method invented by Barger is based on the following simple

equation d V/ V = -K(T|) dr| where V is velocity, K is streamline curvature and r| is

distance normal to the streamline. For given velocity differences dV between a target

airfoil and an initial one, the geometric perturbations dr| can be calculated with the

assumed variation relations of curvature normal to the streamline. The method is very

flexible owing to its simple formulation but it is physically based on taking the two

airfoils as streamlines of the same flow field. Thus its physical meaning is not very clear

because (a) streamlines cross with each other only at singular points such as a stagnation

point while these two airfoils can do at any point, (b) the mass continuity is satisfied

between streamlines but not between the two airfoils and (c) the formula cannot tell the

difference between subsonic and supersonic flows. Moreover, as the stagnation point is a

singular point to this method, the leading edge region cannot be solved very well with

this method.

Takanashi's method based on the inversely formulated transonic small-perturbation

equation is the most popular in engineering, but the small perturbation assumption is not

valid near the stagnation point. Thus the method cannot be expected to work quite well

near the leading edge with so large flow variations and so high curvature distribution

unless some corrections are made. Many other design methods have also demonstrated

some deficiencies in this region. Thus several approaches have been tried to improve the

situations. William H. successfully calculated some results for low speed flows with his

new streamline curvature method but the method is less efficient and accurate in the



other cases. Representation of airfoil geometry by families of smooth analytic functions

(Bernard, Hartwich and al) is an effective way but the design results are restrictive.

The objective of this research is to develop an iterative inverse method that is not only

efficient but also accurate enough. Instead of assumptions to streamline curvature

variations normal to airfoil surface as in the streamline curvature methods, a small

perturbation geometric equation is obtained from the streamline momentum equations,

the continuity equation and the isentropic relations with the geometry similarity

assumption of near streamlines to the airfoil surface. Moreover, the transonic correction

is also considered in this equation. The geometric perturbation normal to the airfoil

surface can be calculated by solving this ordinary differential equation as initial-value

problems and the airfoil is designed in iteration. The techniques like airfoil smoothing,

non- niform relaxation and the strained coordinate transfer are applied for accelerating

the convergence. The high efficiency and accuracy of this method is demonstrated by

several subsonic and transonic airfoil design cases. In addition, some concerned

problems are also discussed in detail.



CHAPTER 1

METHOD FOR OPTIMIZED

AIRFOIL PARAMETEMZATION

1. 1 Airfoil representation

1.1.1 asic formulations

As it is appropriate to keep airfoil curvatures not only continuous but also smooth, the

sixth order parametric spline is selected for airfoil representation. A sixth order spline

can keep fourth order denvatives continuous in globe use and third order derivatives

continuous for local control. The formulation is different from general purposes and thus

the explanations are needed.

A Ferguson curve for segment i-1 to i as shown in Figure 1. 1 can be expressed as

following:

P(t); = Ho.oPi-i + Ho. iPi + Hi,oPti-i + Hi, iP,, + Hs.oPtti-i + H^jPtti (1. 1)

where P is a position vector, P( = dP/dt, Pn = d2P/dt2, subscript i-1 and i are curve index
or node index corresponding to t = 0 and t = 1 of curve segment i. Ho, o to H2, i are Hermite

interpolation functions defined as fallowings by Fujio and are given in Appendix 1

/

Figure 1. 1 A Ferguson curve segment



For the i-th curve segment P(t);, 0 < t^ 1 corresponds to s ;-i ̂  s ^ s;. Suppose curve

coordinate s and parameter t have the following relation:

S = Sj-i + (Si-Si.i)t (1. 2)

Therefore, for the i-th curve segment

dp .
Pti-1 = Pt(0)i = (--)s=si-l(Si-Si-i) =(Si-Si-i)P/(Si-i)

ds

dp . .
P. ; = P, (l), = (--^), ^, (Si-Si-i) =(Si-Si-i)P/(Si)

ds

P,,, _l = P,, (0)i = (:-)s=si-l(Si-S, i)2 =(Si-Si-i)2P//(S, i)
d s'

d2p
2 Tt //?", =?"(!), = (-^), ^, (s, -Si-i)z =(Si-s, -i)2P//(sO

d s^

(1. 3)

From the i-th curve segment function given by formula (1. 1), using relation (1. 2), the

third order curvilinear derivative at node i.

d3P
P///(Si)i=(-^)s=s, =_ _ , 3(-:

d s' ' ~ - (Si-Si-i )' dt

1 ^dJ P^ Pttt(l)
^3<'-7TT)t=l=^. .. ^

(si-si-,r
(1. 4)

In the same way, for node i but from the i+1-th curve segment function:

d3P
P///(Si)i,, =(-)s=s,=

dsj (Si+i-s;)' dt

d3P
(-)t=0=

Put(O)
(Sj+i-Sj )3

(1. 5)

For a spline curve of which each segment is represented by formula (1. 1), third and

fourth curvilinear derivatives should be continuous at each node. From formula (1. 1),

(1.3), (1.4), (1.5) and Hermite basis, the equation for the continuity of third derivatives at

node i can be conducted as



20 5s3i+i P, -i + 8 §Si8s3i+i P/i-i + §s2i5s3i+i P//i-i -

20 (§s3, +5s3^i) Pi - 12 §Si5si+i (5s2i- 5s2,+i) P/i - 3 §2Si52s,+i (Ssi +

§Si+, ) P//, + 20 8s3i Pi+i - 8 §s3i 6si+i P/,+i + 5s3;5s2i+i P//i+i = 0 (1. 6)

where Ss; = Sj - Sj-i, 5si+i = Sj+i - s; are corresponding curve segment lengths.

In the same way, the equation for the continuity of fourth derivatives at node i is as

following:

30§s4i+iP, _, + 146si5s4i+iP/, -i + 25s2i5s4i+iP'/, i +

30 (§s4i - 5s4, +i) Pi + 16 6si §s, ^ (§s3, + Ss3;^) P/i + 3 §2Si 52Si+i (Ss2; -

5s2, +i) P//, - 30 §s4, P,^ + 14 5s4i 5si+i P/,+i + 2 §s4. 5s2i+i P//, +i =0 (1. 7)

For given n nodes, that is to say, n P vector given, equations (1. 6) and (1.7) compose a

system of 2(n-2) equations for 2n unknown. Another four equations can be obtained from

free end conditions that the third and fourth derivatives are zero at the two ends:

20 Pi - 20 ?2 + 12 5sj P/i + 8 §s, P/2 + 3 §s2i P//i - Ss2i P//2 = 0

30 Pi - 30 Pz + 16 8s, P/i + 14 8si P/z+ 3 5s2, P//i - 2 8s2i P//2 = 0

20 Pn-| - 20Pn + 8 §Sn-l P/n-l + 12 5Sn-l P/n + 6s2n-i P//n-i - 3 6s2n. i P//n = 0

30 Pn-| - 30 Pn + 14 SSn. l P/n-] + 16 §Sn-i P/n + 2 5s2n-l P//n-l - 3 5s2n. l P//n - 0

(1. 8)

Thus for n given P, equations (1. 6), (1.7) and (1. 8) compose a closed system of 2n

equations with P/ and P// as unknowns. For most cases that the curve length §s between

two neighbouring nodes are not large and the curve variation is slow, the curve length

can be approximated by the chord length, the distance between the two nodes, without

causing larger errors. As a result, the coefficients of the above equations are constant and

it is easy to solve this linear system of equations with its diagonal matrix. But for
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parametric airfoil whose neighbouring nodes are not near, this treatment will cause

unacceptably large errors.

In programming, another end condition of given P/ and P// can also be used. In addition,

there is an option that the problem can also be solved for the fixed slope P at the leading

edge because P/ is normal to the chord line for numerous airfoils. In this case, only the

third derivative is kept continuous at the leading edge.

1.1.2 Special problems to be solved

1.1.2. 1 Curve length approximation

As the approximation of curve lengths by chord lengths is much less accurate for

parametric airfoil, other methods must be tried instead. Thus, exact curve lengths may be

used. In this case, the system of equations (1. 6), (1.7) and (1. 8) are nonlinear and it can

be solved in iteration with the common methods such as fixed constant coefficients,

Newton and etc. But the solution depends on the initial guess and the calculation will

diverge if an inflection point occurs on the curve during the iteration process.

Consequently another method given by Fujio (PP 354) is accepted. In this method, curve

lengths are approximated by average circular arc lengths. Therefore, the system of

equations becomes linear again and can be easily solved. What is more, the calculation

results show that the differences between using exact curve lengths and these

approximated can be too small to be ignored. That is why the circular arc length is the

default option in programming. But considering different application purposes, there are

four option for curve length approximations in the corresponding program Airy: 1) chord

length, 2) circular arc length, 3) curve length approximated by a cubic spline and 4)

curve length approximated by the sixth order spline.
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As the curve length cannot be calculated accurately, its approximation will give rise to a

serious problem that there are too many control parameters.

1.1.2.2 Parameter Reduction

For a spline curve segment represented by formula (1. 1), there are three control vectors,

P, P/ and P// at each node. For airfoils, one vector has two components and so there are

six control parameters at each node. In fact, according to the following formula in Fujio's

book (pp. 31), only two of four parameters for P/ and P are independent and thus there

are total four control parameters at each node:

P/| = 1 ; P/ P// -0 ; P"=Kn (1. 9)

where n is normal unit vector and K is curvature

K =
IPtX P«

(1. 10)

As the curve lengths are approximated, so are derivatives P/ and P" calculated with

fonnula (1. 3). Consequently the approximated P' and ¥" do not satisfy relation (1. 9),

especially the normal relation. Thus all the six parameters at each node are independent.

Therefore the normalization is necessary in order to reduce control parameters. The

process of normalization is like: 1) make tangent vectors P/ become unit vectors once

more, 2) calculate the normal unit vectors n from their normal relation with P', 3)

calculate curvatures K according to formula (1. 10) and 4) calculate new P = Kn.
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1. 1.2.3 Adding spline nodes

As parametric airfoils are represented with only several control points, generally

speaking, the approximation precision of a spline curve cannot meet the special airfoil

design requirements because the distance between two neighbouring nodes can be too

large. Moreover, it is not practical to solve this problem by increasing control points. So

some other effective ideas have to be used. In this research, adding more nodes for the

spline curve is found to be much more effective. Of cause, these nodes must be

determined only from their neighbouring control points, that means, the parameters at

these nodes can be automatically calculated. The relations used for adding nodes are also

formula (1.6) and (1.7), which is based on the same idea that third or (and) fourth order

derivatives at each node should be continuous for each curve segment.

The process for adding nodes is as following: a) determine the x location of an adding

node between its two neighbouring control points according to the geometric variation of

the curve segment, b) formulate the two equation for the two x direction components of

P/ and P// at this x location with two third order derivative continuity equations

respectively obtained at this node and its neighbouring node according to formula (1. 6),

c) formulate three equations for the y coordinate and the two y components of P and P

at the given x in the same way as the last step but with one more equation added, which

is the fourth order derivative continuity equation (1. 7) for the added node and d) solve

the system of equations non-linear because y is also unknown and so is the curve length.

The equations must be solved iteratively. The numerical method used is just a fixed

constant coefficient method.

In programming, there are three options for adding nodes between every two

neighbouring control points: 1) adding one more node, 2) adding two more nodes and 3)

no more nodes added. Adding more nodes is also possible, but the system of equations so

obtained is generally ill conditioned and the solutions may not be accepted. As the added
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nodes have no direct influences to control parameters, their normalization is not

necessary.

1.2 Airfoil approximation optimization

As original airfoils are going to be represented by parametric ones, the problems like

approximation errors, objective function selection, strategy for determining control

parameters, approximation methods and etc, must be decided.

1.2.1 Approximation errors and tolerance

The approximation error to an original airfoil point is generally defined as the distance

between this point and the approximated airfoil as shown in Figure 1.2. The calculation

of the error defined in this way needs finding a minimum by solving non-linear equations

that may be more complicated to the present case. So a different definition as shown in

Figure 1. 3 is applied for the final en-or estimation in this research, in which the error is

defined as the distance between an original airfoil point and the parametric airfoil one

with which the normal line to this original airfoil point crosses. As the tangent vector P/

Original

Parametric

Figure 1.2 General error definition demonstration
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at the original airfoil is calculated by the sixth order spline, it is convenient to determine

the normal line. What is more, this definition takes already into account the global

geometric tendencies of the original airfoil and thus it is more appropriate for airfoils

than the general error definition which is only determined from discrete points. But the

error defined in this way is generally larger than that commonly defined, which is a little

conservative.

Original

Parametric

Figure 1.3 Error definition used in this thesis

The error calculation also needs solving non-linear equations, which are two equations

for x, and y determined by formula (1. 1) and one equation for the normal line. This

equation system is solved by Newton iteration and the solution converges generally

within 5 or 7 iterations. But it must be found which curve segment the normal line

crosses with as the spline curve consists of several curve segments.

In objective functions, the error is just taken as the difference of two corresponding y

coordinates between the original and parametric airfoils for calculation conveniences. As

curves are parametric, the non-linear equation (1. 1) for x needs to be solved to obtain

parametric values t at given x locations and then y values are calculated at known t. The

error like this is generally larger than that defined above. But the difference is small

except near the leading edge where the curve slope is much larger than in the other parts.

This has such an equivalent weighted effect on the objective function that the
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approximated errors in this region tend to be reduced, which is aerodynamically

favourable.

The manufacturing relative tolerance is about 10-4 in the key aerodynamic range which

includes the leading edge area and the forepart of airfoil upper surface and is near 5x10-4

in other ranges, which is determined by aerodynamic sensitivity studies. For theoretic

airfoils, the tolerance should be smaller. Thus in this research, the tolerance used is about
\-5: ,-4.

5 xl0~~1 in the key aerodynamic range and 10-'tfor the other part.

1.2.2 Selection of objective functions

Selection of objective function is crucial to approximation problems. But unluckily, there

is no much mathematical basis about this problem because it concerns the problems like

the error probability which belongs to the area of statistics (William H. Press and al, pp

650). Therefore, selection of objective functions depends on physical understanding of

the concerned problems rather than mathematical reasoning. For airfoil approximations,

it is necessary to control not only average errors but also the maximum because the

maximum error must satisfy tolerance requirements. In this research, there are three

forms of objective function applied among which one is as

ofun(P, P/, P//) = ^ w, | yo i - y; | p (1. 11)

where n is the total number of original airfoil points or spline-interpolated points, i is the

point number index, w is the weighted factor and p is the power index for which different

values are used. The form with p =2 is most commonly used in this research.

If p > 1, larger errors will occupy more proportion in the objective function (1. 11). Thus

the maximum error can be better controlled even with all the w; = 1 than the case of p =

1. If the error probability satisfies the normal distribution, the least-squires (p = 2)
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correspond to the minimum error distribution. But this may not true and sometimes the

maximum error control is more important. Therefore, larger p values are also tested in

this research.

The second form of objective functions used is

1 n
ofun(P, P/, P//) =-?(yoi-yi)p +

fcm k-1
S, 8ymaxj

k - 1 j=l
. p (1. 12)

where k is the total number of control points, fcm is the factor between 0.3 and 1 for

controlling the order of the second term, the subscript j is the curve segment index and

8ym axj is the maximum y difference on segment j.

In order to make comparisons, the third form of objective functions is also tried:

1 n
ofun(P, P/, P//) = - Z (yoi - yi)p + fcm §y.,

n

(1. 13)

where 5ymax 
is the maximum y difference of the airfoil.

The second type (1. 12) is specially tried to control the maximum error. The form of the

second term is used to keep the objective function monotonous and is different from that

used by some other authors. The form generally used contains only the maximum error

as in the third type (1. 13) with p = 1 and may not be appropriate for airfoil

parameterization which is locally controlled by different parameters. The concerned

discussions will be given in 3. 1 with calculation results.
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1.2.3 Determining control points

In this research, control points can be taken directly from the original airfoil and thus

optimizations are not needed to get control points in this case. This is a great advantage

over the other methods. The control points are selected according to their x locations

which are nearest to the corresponding x values determined by the following simple

distribution function:

x, =A^, 2 - (A-l)^,: (1. 14)

where subscript i represents the control point number index, A is a constant ( = 1.5-3),

^; corresponding to x ; is equally distributed over the airfoil chord and 0 ^ ^i ̂  1.

The correction is generally needed for the two control points near the leading edge

according to the leading edge curvature distribution. In addition, for airfoils of which the

original points are not well distributed, the control points should be chosen from the

interpolated spline points rather than the original ones.

1.2.4 Optimization

If approximation can be treated as a linear least-squires fit problem, it is more efficient to

solve norm equations or to use the singular value decomposition (SVD). But for most of

practical problems like airfoil designs that are generally strongly non-linear, the above

methods may not be appropriate and thus optimization methods are often applied.

Generally speaking, efficient gradient-based methods like steepest-descent and

conjugate-gradient for finding one minimum cannot be used except that the initial guess

is near a good solution, which is very difficult because the objective function generally

contains a lot of minima. Consequently one of appropriate way is that the genetic

algorithm is applied for the globe search and a gradient-based method used for the local
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search if the objective function does not contain much noise. After all, it doesn't matter

which kind of methods are used, the optimization is most likely to make the airfoil

parameterization less efficient unless some special measures are taken.

In this research, as the control points can be determined without optimization and the

initial values for the other two parameters (slope and curvature) are from calculation of

the sixth order spline and can be supposed near the ones corresponding to a globe

minimum. Moreover, the variations of the objective function are generally monotonous

with those of slops and curvatures for fixed control points. As a result, an unconstrained

conjugate-gradient method can be used, which can guarantee the efficiency of the airfoil

parameterization. Of cause, it is possible that the obtained solution were only a local

minimum rather than a globe one that cannot be confirmed even in mathematics theories.

1.2.4. 1 Conjoint-gradient method

The conjugate-gradient method used in this research is based on Ashok and William H.

Press. The new parameter vector position is equal to

Xk+i = Xk + apdk (1. 15)

where the subscripts k +1 and k respectively mean the next iteration and the present

iteration, x: the vector position of optimization parameters, a: the step size and d is the

conjugate direction vector.

In this research, the initial XQ is from the spline calculation as talked before, the initial

direction do is taken equal to the steepest descent direction which is the opposite

direction of the gradient of the objective function and the step size Ok is determined from

the line search in which the minimum of the objective function at the given direction dk
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is first bracketed by a three-point pattern and then calculated in iteration by Brent's

quadratic fit. The next direction dk+i is determined by

dk+1 = -gk+1 + Pkdfc (1. 16)

where the vector g is the gradient of the objective function and |3k is calculated

according to the following Polak-Rebiere formula:

gk+1' ( gk+1 - gk )
3k = _T

gk~ gk

There is also another option in the program for calculating (3k

(1. 17)

gk+l- gk+1
5k = _^

gk- gk
(1. 18)

Which is the Fletcher-Reeves version as results of considering gk+iT gk = 0.

As generally objective functions are not quadratic and the search directions are not fully

conjugated, the optimization is most likely not to converge within the iterations times

equal to the total number n of control parameters. Thus a restart of optimization is

needed every n iterations wherein a steepest descent step is taken. Moreover, uniformly

scaling all parameters is essential for good behaviour of the conjugate-gradient method,

especially in the cases of many parameters used.

In this research, it is relatively easy to scale the control parameters because the scaling is

generally needed only between the slope and the curvature for which each parameter has

its own local and relatively uniform control region and thus the difference among slope
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derivatives is not large and so is that among curvature ones. In addition, it is found to be

more effective that the factors multiplying slopes and curvatures are taken directly as the

optimization parameters with their unitary initial values rather than slopes and curvatures

themselves because these factors are more convenient for scaling and gradient

calculations. However, the initial slopes and curvatures must be good enough in this

case, for example, if any initial value is zero, it can never be improved during the

optimization, though this kind of situations has never happened during the calculations.

How to calculate the gradient is also very cmcial because it is impossible to obtain the

gradient analytically in most practical applications. The precision of approximation

methods is important but the numerical step is also one of the key factors. Too small step

choice leads to a loss of significance error and too large step results in a large truncation

error. A thumb mle given by Ashok and al, that the step is equal to the maximum of the

minimum step and one percent of the initial parameter, is also proved working well in

this research.

1.2.4.2 Genetic algorithm

Although the control points determined by the distribution function works well in most

cases, they cannot meet the precision requirements sometimes. Consequently the

optimization for control points is carried out. As it is difficult to use gradient-based

methods to handle the problem, a genetic algorithm method is adapted.

The genetic algorithm is a powerful tool for difficult optimization problems It is based

on the evolution via survival of the fittest. The optimization is based on the code of

David L. Carroll. The initial population is randomly selected which consists of the

sample of individuals with different parameters. The tournament selection with a

shuffling technique for choosing random pairs for mating is used as the selection scheme

directing the genetic search. The binary encoding is used in the program to encode a
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solution into a chromosome. The reproduction is made by jump mutation, creep

mutation and the crossover operation with the option for single-point or uniform

crossover. Niching (sharing) and an option for the number of children per pair of parents

are also included. Moreover, the program has an option for the use of a micro-GA that

accepts a very small population with only crossover operation for reproduction. Micro-

GA can lead to more rapid convergence and its frequent re-generation of random

population members can ensure the diversity during the search process.

The main modification to this code is that one of the individuals in the initial population

is determined by the design experiences rather than randomly selected because all the

members randomly selected are generally very far away from an acceptable solution and

a reasonable initial guess is much better. This treatment can accelerate convergences but

has the possibility to cause a premature optimization termination, which may depend on

the globe search strategy.

As control points are only selected from airfoil points, a discrete optimization method

like a GA with binary encoding is appropriate. Furthermore, it is more convenient to use

the number index of control points as the optimization parameter instead of the x

location. But besides the severe drawback due to the existence of Hamming cliffs, the

binary encoding gives rise to some disadvantages to the application. It is very hard to

determine properly variation ranges of optimization parameters which cannot be made

continuous because it should satisfy the relation like 2-1 like 3, 7, 15, etc. while the

overlap of control points is not allowed.

In this research, a micro-GA with a population of size 5 is confirmed to be very efficient

but acceptable solutions depend too much on the appropriate division of the variation

range for each parameter. Thus in the future research, it is practical to employ other GA

methods such as ones with real number encoding and techniques for automatic

adaptation of parameter variation ranges.
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CHAPTER 2

CALCULATION RESULTS FOR

AIRFOIL PARAMETEmZATION

2.1 Study of objective functions

The effects of the three forms of objective functions (defined in 1.2.2) to optimization

solutions are studied first as their selections depend on particular problems.

Error distribution comparisons for different objective functions are shown in Figure 2.1
for NACA65-215 with 9 control points (one spline node automatically added between

every two neighboring control points except the ones at the trailing edge). The result in

Figure 2. 1(a) is obtained by twice conjugate-gradient optimizations with a least-squires
objective function (first form). The first time optimization from which the result is

illustrated in Figure 2. 1(b) is not weighted and the second is based on the first with the

weighted factors for the points where errors surpass the given tolerance. The reduction of

the maximum errors is about 4. 5x10"" in this case. This method is effective only if

differences between surpassed errors and the tolerance are not large since error decreases

in one area generally accompany increases in its neighboring area controlled by the same

parameters because of the representation ability limit of a given spline function. The

result in Figure 2. 1(c) demonstrates that the second form can better control the maximum

error than the first but the difference is not large.

Moreover, error distributions of NACA65-215 with 9 control points are presented in

Figures 2. 2, 2. 3 and 2. 4 respectively for the three forms of objective functions with

different power Indices. Together with Figure 2. 1(b), it is obvious: 1) the best results that

the maximum error is smallest and the error distribution is more uniform always
correspond to the power index p = 2 that is the least-squires form but for the third fonn
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the variation differences are smaller among different power indices, 2) the error

distributions for the second form are most uniform of the three forms for the entire power

indices studied and the maximum errors are generally smallest. But the differences

between the second and the first are small for the least-squires fonn and 3) for power

index p = 2, the third form always corresponds to the worst situations of the three forms.

The maximum errors are largest and the error distributions are less uniform.

Furthermore, maximum error variations of three airfoils (NACA65-215, NACA0012 and

RAE2822) with different power indices are illustrated in Figure 2.5 for these three forms

of objective functions. The similar conclusion can be obtained once more with a little

exception that for NACA0012 the minimum maximum errors appear at p = 1 for the

second and third forms, which also confirm that the two forms do have the control effects

to the maximum error. Moreover, the variation relations of maximum errors with these

of power indices are different among the three airfoils; for example, the maximum errors

for third form are always about 4 times larger than the other ones for RAE2822 airfoil.

The least-squires formula can better control not only the average error but also the

maximum error maybe because the error probability distribution approaches the normal

distribution and larger errors make more contribution to the objective function with p >1

as discussed in 1. 2. The second form of objective function is obviously superiors to the

third one maybe owing to the following fact: the variations of the maximum error are not

monotonous with these of the control parameters for the third form because the location

of the maximum error can move randomly from one curve segment to another which is

locally controlled by different parameters. As a result, more local minima are most likely

to be formed artificially, which is unfavourable to optimization, especially to gradient-

based methods. Thus the results may correspond only to ones of the many local minima

formed in this way. The much more rapid convergence in these cases may also confirm

the reasoning indirectly. The second form that contains the minima for all the curve

segments can ensure relatively monotonous variations of objective functions. Of cause,
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the behaviour of objective functions depends on particular problems and the above

conclusion may not be general.

2.2 Scaling effects to the solutions of the conjugate-grading method

As the slope is not dimensional and the curvature has the dimension of length inverse,

the scaling between the slope and the curvature can be made just by taking different

airfoil chord lengths.

The scaling effects to the solutions of the conjugate-grading method are illustrated in

Figure 2. 6 by the maximum error variations with the changes of airfoil chord lengths for

three airfoils. From the results, the calculations diverge for airfoil NACA65-215 and

NACA0012 and don't converge well for RAE2822 if the chord lengths are smaller than

one. For larger airfoil chord lengths, all the calculations converge but their differences

are not large.

In theory, conjugate-gradicnt methods overcome the problems resulted from poor

parameter scaling. In practice however, if the differences between the derivatives are too

large, some direction may never be sufficiently explored because the search directions

are generally not fully conjugated and the calculation will diverge or not converge to an

optimized solution. Therefore, it is necessary to make all the derivatives the same order

by uniformly scaling all parameters.

2.3 Parametric airfoil representation results

The results of the optimized airfoil parameterization for different types of airfoils

including supercritical, natural laminar, low speed airfoils, ones for rotorcraft, etc. are

shown in Figures 2.7 to 2. 15 and Table 1.
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2.3. 1 Optimized airfoil parameterization with control points fixed

The control points are fixed by the distribution function for the first six airfoils,

RAE2822, RAE5215, NACA65-215, NACA64a-010, NACA2412 and NACA0012 in

Table 2. 1. The other control parameters are obtained by the conjugate-gradient

optimization and all the calculations converge within 10 second (PC 800 MHz). These

airfoils are represented with 7 to 11 control points and the maximum errors are between

2.5x10 ̂ to 7.7x10 \ In all these cases, the airfoil representations are not only efficient

Table 2.1 Control Numbers and Maximum Errors

for Calculated Parametric Airfoils

(KAR: key aerodynamic range; NKAR: non key aerodynamic range)

Airfoils

NACA0012

NACA2412

NASA64a010

NACA65215

RAE5215

RAE2822

NASASC(2)-0714

VR-12

NASANLF(2)-0415

S1210

Number of

Control Points

7

9

9

9

11

11

11

11

13

13

Maximum Errors

5. 1x10

5.7x10

6.4x10

7.7x10

6. 5x10-

2. 5x10

9. 1x10

1.0x10-

,-5

,-5

,-5

,-5

-5

,-5

,
-5

-4

7.6x10

9. 7x10

-5

Location of Max.

Errors

KAR

KAR

KAR

NKAR

KAR

NKAR

NKAR

NKAR

NKAR

NKAR

but also more accurate with fewer control points than the other methods, which is

attributed not only to the techniques of airfoil representation but also to the treatments for

optimization.
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From the error distributions illustrated in Figures 2. 7 to 2. 12, some of solutions should be
near the globe minima, e.g., for the supercritical airfoil RAE2822 with 11 control points
and the maximum error of 2. 5xl0-5, the error distribution is very uniform. But for the
other cases, e. g., RAE5215, it is possible that the results correspond only to a near local
minimum because of the limit of the optimization method that only searches one local
minimum, although initial guesses from the spline calculation can generally guarantee
better solutions. Moreover, the strategy used for selecting control points results from the
efficiency consideration. The representation precision should be improved further if
control points are also optimized.

Figure 2.7, 2. 8 and 2. 9 also show that adding spline nodes is essential to the
representation precision, the maximum errors without adding nodes are three to five

times higher than those with nodes added. In addition, the number and the position of
added nodes have great influences to the precision of parametric airfoils. For RAE2822.
RAE5215, NACA65-215, NACA64a-010 shown in Figure 2.7 to 2. 10, one spline node is
automatically added on each curve segment except the ones at the trailing edge. The
similar is For NACA2412 and NACA0012 shown in Figure 2. 11 and 2. 12 but two nodes
added at the two segments near the leading edges.

Some of above airfoils can be also represented with fewer control points and the results
are also acceptable as shown in Figure 2. 11 for NACA 2412 with 7 points and the
maximum error 9. 1x10'. Moreover, the effects of the weighted optimization are
demonstrated again in Figure 2. 9 to 2. 10. All these two results are from twice
optimizations. In this case, the method is still efficient (within 15 seconds) but it does not
always function.
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0 control point A original point parametric airfoil

(a) Geometric fomi comparison between the parametric and original airfoils

upper surface point y\ lower surface point

" ^

S 5E-95

(b) Error distribution with additional nodes automatically added
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(c) Error distribution without additional nodes added

Figure 2.7 Parametric Airfoil Optimization Results

11 control points for RAE2822 Max. error: 2. 5*10
.
-5



34

Ocontrol point A original point .parametric airfoil

(a) Geometric form comparison between the parametric and original airfoils
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(b) Error distribution with additional nodes automatically added
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(c) Error distribution without additional nodes added

Figure 2.8 Parametric Airfoil Optimization Results

11 control points for RAE5215 Max. error: 6. 5*10
-5
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0 control point A original point parametric airfoil

(a) Geometric form comparison between the parametric and original airfoils

upper surface point /\ lower surface point
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(b) Error distribution with weighted least-squire optimization
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(c) Error distribution without weighted optimization

Figure 2.9 Parametric Airfoil Optimization Results

9 control points for NACA65-215 Max. error: 7.7* 10
-5
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0 control point A original point parametric airfoil

(a) Geometric form comparison between the parametric and original airfoils

Q upper surface point ^ lower surface point

(b) Error distribution with weighted least-squire optimization

Q upper surface point ^ lower surface point

SE

(c) En-or distribution without weighted optimization

Figure 2. 10 Parametric Airfoil Optimization Results

9 control points for NACA64a-010 Max. error: 6.4* 10
-5



37

0 control point A original point parametric airfoil

(a) Geometric form comparison with 9 control points between the
parametric and original airfoils
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(b) Error distribution with 9 control points; Max. error: 5. 7*10
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(c) Error distribution with 7 control points; Max. error: 9. 1*10
-5

Figure 2. 11 Parametric Airfoil Optimization Results

forNACA2412
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0 control point A original point parametric airfoil

(a) Geometric form comparison between the parametric and original airfoils

Q upper surface point /\ lower surface point
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(b) Error distribution with additional nodes automatically added

Q upper surface point /^ lower surface point

7 . 5 E -05

(c) Error distribution without additional nodes added

Figure 2. 12 Parametric Airfoil Optimization Results

7 control points for NACAOO 12 Max. error: 5. 1*10
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2.3.2 Airfoil parameterization with x locations optimized

The method for fixing control points does not work well for the last several airfoils,

NASA SC(2)-0714, NASA NLF(2)-0415, VR12 and S210 in Table 2. 1 because the x

distribution function is not suitable to them. Thus a genetic algorithm (GA) method is

used for optimization of the x locations combined with the gradient method optimization

for slopes and curvatures. For the latter three airfoils, one spline node is also

automatically added on each curve segment except the ones at the trailing edge. For

NASA SC(2)-0714, spline nodes are added only on the two segments near the leading

edge. The optimization for x locations is carried out by a micro-GA with 5 members of

the population. An acceptable solution can be obtained within 150 generations if the x

variation range is appropriately specified, which takes less than one hour on an 800 MHz

personnel computer.

From the results illustrated in 2. 14, The NASA SC(2)-0714 can be represented with 11

control points and the maximum error 9. 1xl0~5 . The results is acceptable but the errors

are a little larger and the error distribution is not uniform because adding spline nodes

does not work very well in this case. New techniques for adding spline nodes should be

developed to improve the situation.

NASA NLF(2)-0415 airfoil is represented with 13 control points and the maximum error

is 7. 56x10 'at the location near the trailing edge, which are shown in Figure 2. 13 (a) and

(b). The error distribution is aerodynamically favourable since the errors at the forepart

of the airfoil are smaller and more uniform. Considering that NLF(2)-0415 is a natural

laminar airfoil that the geometry is more complex and there are several areas where the

curvature variations are large, the result is excellent. The error distribution of this airfoil

with 11 control points is also illustrated in Figure 2. 13(c). The larger errors appear only

at the aft-part of the airfoil and the maximum error is near 1.2x10 ', which demonstrates
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that it is possible to represent accurately this airfoil with 11 control points if the
concerned treatments are improved further.

For VR12 airfoil shown in Figure 2. 14, the maximum error (1.02xl0'4 ) is little larger
than the tolerance requirement but it appears near the trailing edge. For S210 airfoil
shown in Figure 2. 15, the errors are smaller than 5.5xl0'5 in key aerodynamic range and
the larger errors appear at the lower surface and are smaller than the tolerance
requirements.

Though the representation precision can be acceptable for VR12 and S210 airfoils, the
optimization are not very successful. From the results shown in Figure 2. 14 and Figure
2. 15 respectively for VR12 and S210 airfoils, the x location distributions of the control
points are obviously not very reasonable, which can be confirmed by the non-uniform
error distributions. The errors are larger near the leading edge and the trailing edge while
they are smaller at the middle part for VR12. There are larger waves in S210 lower
surface error distribution. This is due to the following reasons: 1) x location variation
range for each control point is not well specified because GA used utilises binary
encoding, which greatly limits the flexible definition of variation ranges for control
parameters (see 1. 2. 2. 3). 2) optimization solutions may correspond to local minima that
are not good enough because they are calculated with the micro GA . Micro GA is

much more efficient than general GA but its search range is most likely to be limited. 3)
The strategy that the control points are selected from the original airfoil points is not
flexible especially for airfoils which have few points or of which the original points are
not well distributed. 4) The method for adding additional spline nodes may not be
appropriate to these kinds of airfoils. 5) The accurate representation capability of the
spline curve may be limited for complex geometries.



41

0 control point A original point parametric airfoil

(a) Geometric form comparison between the original airfoil
and the parametric one with 13 control points
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Figure 2.13 Parametric Airfoil Optimization Results

for NASA NLP(2)-0415 with x locations optimized
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0 control point A original point parametric airfoil

(a) Geometric form comparison between the original airfoil
and the parametric one
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(b) Error distribution with control point x locations optimized
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(c) Error distribution without control point x locations optimized

Figure 2. 14 Parametric Airfoil Optimization Results

11 control points for NASA SC(2)-0714 Max. error: 9. 13* 10-5
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(a) Geometric form comparison between the parametric and original airfoils
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(c) Error distribution without control point x locations optinuzed

Figure 2.15 Parametric Airfoil Optimization Results
11 control points for VR-12 Max. error: 1.01*10-4
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0 control point A original point parametric airfoil

(a) Geometric form comparison between the parametric and original airfoils
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(c) Error distribution without control point x locations optimized

Figure 2.16 Parametric Airfoil Optimization Results

13 control points for S 1210 Max. error: 9.7*10-5
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2.3.3 Comparisons with some other results

Comparisons with some results of NURBS method (Trepanier J. -Y., Lepine J. L. and
Pepin F) that is most accurate of all the other methods are shown in Table 2.2. The
objective of these comparisons is just to get some ideas about the precision of the present
method because the two methods are not based on the same comparison conditions.

Table 2.2 Control Point Number and Maximum Error Comparisons

AIRFOIL

NACA2412

NASA64a010

RAE2822

VR12

S1210

CONTROL NUMBER

This Method NURBS

9

9

11

11

13

9

11

13

11

13

MAXIMUM ERROR

This Method NURBS

5. 7x10-

6.4xl0-5

2. 5x10 -5

1. 0x10

9.7x10

-4

-5

S.OxlO"5

7. 8x10--''

7. 8x10"

8.2xl0-5

7.3xl0-5

For the former three cases of fixed control points, the results of the present method are
obviously superiors to those ofNURBS. For the latter two that need the optimization of
control points, NURBS results are a little better. Thus the present method has no
advantage over NURBS method for these kinds of geometrically complex airfoils,
considering that NURBS needs only three control parameters at each point. The raisons
may be: 1) the GA optimization used is not very appropriate and 2) NURBS is more
powerful for complex geometric representations. Luckily, VR 12 is only designed for
rotary-crafts and rarely used. S1210 is a high lift airfoil that is only used in theoretic
researches and cannot find practical applications because of its severe structural
weaknesses.
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CHAPTER 3

ITERATIVE INVERSE

AERODYNAMIC DESIGN METHOD

3. 1 Governing Equations

The energy equation or momentum equation with the isentropic relations along a
streamline can be written as

y 
r -L^ ^ 

- 
^ . P°c . , VK

T-> (7)+r=y^ <7T)+T (3. 1)

where p is the pressure, p the density, V the velocity, y is the ratio of specific heat and
the subscript oc represents free-stream values.

The momentum equation normal to the streamline has the following form:

3
pV2 K =

3T1 (3. 2)

where K is the curvature and T| is the coordinate nomial to airfoil surface.

For a streamline tube very near the airfoil as shown in Figure 3. 1, with the first order
accuracy for T[, the continuity equation can be approximated as

1 3pV ^,
pV r| + - - Ti2 - C

2 dr|

where C is a constant.

(3. 3)
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^
\

r|

\ ^---

. --V

_----->

Airfoil surface -____. Streamline

- - - Reference coordinate (or curve)

Figure 3. 1 Streamline Tube and Its Coordinates near Airfoil

Supposing small differences or perturbation between target and design airfoils, the
following equations can be obtained:

( pV)o = pV + A( pV )

r|o = r| + AT)

,
3pV 3pV 3pV
(^-)° = -^- + A(--)

(3. 4)

^ 3T1 3r|

where the subscript o represents object values.

Substitute (3. 4) into (3. 3);

(pV)oAr|+TiA(pV) +r|A-n
3pV

3n
2 »2. /3PV. . . . 3pV

-Trl^A(^-) +TlAr|A(-)=0
'r| ' ' 3r| (3. 5)
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The target pressure distribution is generally specified for inverse design and therefore it

is convenient to express the variables in (3. 5) as functions of pressure coefficients with

the above equations and the following state equation (3. 6), the sound speed relation (3. 7),
the isentropic relation (3. 8) and the pressure coefficient definition (3. 9)

P = pRT

a 2 = yRT

(^)'=(p1)7

Cp-
p - p»
1

-pv.

(3. 6)

(3. 7)

(3. 8)

(3. 9)

where R is the gas constant, a represents the sound speed and Cp the pressure coefficient.

Thus the following dimensionless relations can be obtained:

F(Cp, M.) =J^= ̂ 2 (l+^yM«2Cp)l/yA
PocBoc 2

(3. 10)

where

1 __ , 1 1
A = [-M«2 + - -

2 y-1 y_l
(l+-yM. 2Cp)'-l/Y]l/2

Consequently

1 3pV

poca<» 3r|

3F 3Cp

3Cp 3n
= F/f K

(3. 11)

(3. 12)

where M is Mach number and f is the function of Cp and M oc as following



f(Cp, M «) = ^-^ ( 1 +^yM. 2 Cp) 1/Y A2
oc

1

2
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(3. 13)

From equations (3. 10) and (3. 12), equation (3. 5) becomes:

1

r|F+ - Ti2 KF/f==0 (314)

Substitute r|, F, Kand f in equation (3. 14) respectively with r|+Ar|, F+AF, K+AK

and f + Af, ignore the higher order terms of A T|,

1

(yr |+Ar|)r|F/fAK + (Fo +T1 F'ofo K) Ar| +

1
r|AF + - T|2KA(F/f) = 0 (3. 15)

From (3.4), and Figure 3. 1 :

r|o :=; ho - hos; r| " h -h

As a result

Ar|-(ho-h)-(hos-hs)= Ah- Ah (3. 16)

where h is the coordinate normal to the reference curve (which can be considered as one

of target and designed airfoil surfaces), the subscripts o and s mean objective and surface

values respectively.
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The streamlines very near the airfoil surface are geometrically similar to the airfoil form

itself and there is nearly no difference between streamlines very far away from an airfoil
owing to the same free-stream condition; therefore it can be supposed that the difference
between a near streamline around the target airfoil and the corresponding one around the
design airfoil is proportional to and smaller than that between the two airfoils. That is to
say,

AT|= - DAh, (3. 17)

where D is a small positive constant and can be made equal to the initial streamline value
of the design airfoil without loss of generality

D=r|o/c

where the subscript 0 represents the initial value.

In addition, note that the curvature increment

(318)

AK =
3Z Ah s

3s2 (3. 19)

Therefore from (3. 14) through (3. 18), the following equation can be deduced:

Al

where

32Ah
3s2 +A3Ahs+B = 0 (3. 20)

1

Al = (-T| + Ar|)r|F'f



A3 = -(F, +^F/ofoK)T1°-
1

B = T|AF + - ^2KA(F/f)

51

(3. 21)

The above equation cannot be applied directly for the sake of the following fact. The
ordinary differential equation (3.20) is very stiff. The first coefficient Al is of the same
order as the other ones only near the leading edge away from which Al decreases very
rapidly. But this term cannot be ignored even if it can be made much smaller by choosing
a smaller A TI. Otherwise it is impossible to obtain a reasonable solution near the leading
edge due to its larger curvature variations. Furthermore, applying the equation (3. 20) to
the whole airfoil leads to non-physical solutions. That is because the other ignored terms
can be of the same order as the coefficient Al or even greater than it in the other ranges.
Therefore physically it is meaningless to keep using this equation. In addition, the
constant D is little arbitrarily determined because exactly it is also an unknown variable.
But if the initial point is chosen as the stagnation point or the leading edge with zero
value, the geometric variations A h s near the leading edge is generally so small that this
small arbitrarily determined constant D has nearly no influence to the solution if the full
equation is applied only near the leading edge. Therefore for the other part of airfoils, the
following algebraic equation is used, which is equation (3. 20) with the first term ignored:

A3Ahs + B = 0
(3. 22)

For transonic flow, it can be confirmed that F/(= 3 (pV)/ 3 Cp) dominating the properties
of the first coefficient of equation (3.20) is positive for supersonic flow, negative for
subsonic flow and null at sonic point. That is to say, the sonic point is a singular point for
equation (3. 20). In fact, this singular point does not pose any serious problem to
applications because this term is much smaller than the other ones, hence it can be
ignored within the supersonic zone and equation (3. 22) might be used instead. Moreover.
the term B of equation (3. 22) dominated by the difference A F (= A(pV)) also shows
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different tendencies for subsonic and supersonic Hows, thus with the same pressure
difference, the direction of the geometric perturbations for supersonic flows is opposite
to that of subsonic ones. In addition, for supersonic flows, the flow influence region is
only limited in Mach zones and as a result, equation (3. 22) should be adapted and it is
more suitable to use the following differential form of equation (3. 15) with the first term
ignored treated as initial value problems:

A2T A r|/ + A3TA T[ +B =0 (3. 23)

where

A2T = Fo +T|F/ofoK

AST = F/oCp/o+ Tl/F/ofoK

BT = TiA(F'Cp/) + T|/AF + TiTi/KA(fF/)
(3. 24)

However, transonic flows with their small supersonic zones can be greatly different from
pure supersonic ones with very far free boundaries. The supersonic variation relation
between the geometry and the pressure is not valid everywhere for transonic flow.

especially at beginning of the small supersonic zone where the general geometry and
pressure variations may still obey the subsonic relations. This phenomenon may be
simply explained by reflection of expansion waves from the very near sonic line as
shown by Parrari C. or Moulden T. H . These reflected waves are compressive and attend
to slow down the flow. Therefore if there is a small concave region even invisible on the
airfoil surface, the flow may decelerate instead of accelerating because of the effects of
reHected compressive waves and vice versa. Moreover, for transonic flows it is not
appropnate to express the geometry similarity assumption of near streamlines to the

airfoil surface as in equation (3. 17), an additional relation of streamline slopes may be
preferred. What is more, the above equations are based on the surface values rather than
the whole flow field. Therefore they cannot reflect transonic flow characteristics such as
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wave interference. The correction to transonic effects must be taken into account, which

is realised by the treatments based on following ideas. Streamline slopes are the same

along their isoclines, but only from the surface variables is it impossible to define the
isoclines. Consequently, an approximated relation is tried from characteristic lines whose

direction is known at the airfoil surface. The angles ̂  of the streamline line relative to

Cartesian coordinate x satisfies the following relation (Moulden, T. H. pllO) :

'^+co= constant (3. 25)

where co is Prandtl-Meyer function.

It is supposed that the slope difference of near streamlines between the target and design
airfoils is proportional to and smaller than that between the two airfoil forms along the
characteristic lines:

Ah/ -Ahc/ = D Ah/ (3. 26)

where D represents a small positive constant and the subscript c the value at the
characteristic line.

Since the equation will be solved as an initial value problem, the left characteristics are

supposed to be dominant according to the analyse about the inflection wave that can

directly affect the flow before a research point. Thus from the geometric relations shown

in Figure 3.2 and the Mach angle relation:

n/ = h/-h/ » he/ +
3h/
3s

As - h /

As - r|ctan(4) =(M2-1) '/2
(3. 27)
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where 4 is the angle between the characteristic line and the streamline line.

'^<
^--"" ~h

_----->

\ '^..
\

\ "r-
s h,

Airfoil surface

Characteristic line

-. Streamline

Figure 3.2 Geometric relations among an airfoil surface, a near streamline and
left characteristic line from the airfoil

With similar relations with (3. 17) and higher order or supposed higher order terms
ignored, the following approximated differential equation for transonic flows can be
obtained

CAh/-KTi[(Mo2-l)l/2-(M2-l)l/2]-KAT|(Mo2-l)
Ar|/ = 0

1/2
+

(3. 28)
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The above equations are only applied for correction purposes. And thus they are only
required to predict correct tendencies rather than exact values because solutions will be
improved in iteration process. Of cause, the approximation precision will exert great
influence on convergence speed, that is to say, on the efficiency of the method.

In brief, equations (3. 20) and (3. 22) are used for subsonic flows and equation (3.23) and
(3. 28) are suitable for supersonic flows but the second and third terms of equation (3. 28)
should be ignored while transonic flow calculations are most complicated of these three
cases and their numerical calculation process will be explained in detail in the next
section as a example.

3.2 Perturbation Calculation, Design Process and Flow solver

3.2.1 Initial conditions

3.2. 1. 1 Selection of initial points

The geometry similarity assumption of near streamlines to the airfoil surface is not valid
near the stagnation point where the geometric shape of even a very near streamline is
greatly different from the airfoil shape. But the nearer the streamline line is to the airfoil
surface, the smaller this invalid region is. Thus taking the stagnation point as the initial
point with zero initial value may solve this problem. However, the errors too near the
stagnation points can be too large to be accepted especially during first several iterations
if the stagnation point is directly taken as the initial point. Taking a nearer streamline for
calculation, that is to say, smaller r|o value can help solve this problem but not during the
first several iterations because the stagnation point of the initial airfoil is not close to or
even relatively far away from the target one. In addition, the convergence speed is very
slow if the used ̂  is too smaller. That is why smoothing or strained transfer should be
used. But these two techniques will probably affect the designed airfoil precision and
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thus their applications should be cautious. In order to avoid this kind of problems, it is
appropnate to take the two discrete numerical points around the stagnation point of the
design airfoil as the initial calculation points instead of this stagnation point directly and
then to calculate the perturbation before and after the stagnation point separately. This
measure has been found to be effective because with the increase of iteration times the
two stagnation locations generally become so close and can be confined between the two
initial points that the invalidity of the similarity assumption cannot bring about any
serious problem.

The above problems are not unique for this new method; they should exist for the other
direct correction methods but there is no concerned discussion published.

3.2. 1.2 Initial values

A proper initial value ̂  is generally of 1% airfoil chord length for subsonic flows and
0. 1% for supersonic flows for equation (3. 14) according to the calculation experiences.

The initial geometric perturbation Ah, and its first order derivative to airfoil surface Ah/
must be specified to solve equation (3. 20). The initial Ah, is given by interpolation from
the stagnation point where Ah, is always taken as zero. The initial Ah/ is made
proportional to the slope difference between the target and design stagnation positions
for the time being. The sign of Ah, depends on the local pressure coefficient difference
and that of Ah/ on local pressure gradient difference. Though the above treatments are
proved effective, careful studies should be made in the future.

The initial Ah, can be directly made proportional to the local pressure coefficient
difference and the initial Ah/ to local pressure gradient difference but it is difficult to
control their magnitudes.
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3.2.2 Geometric Perturbation Calculation

For transonic flows, the main process for geometric perturbation calculation is as
follows:

1) Calculate F, F/ and f with calculated pressure coefficients by equations (3. 10), (3. 11)
and (3. 13).

2) Calculate the near streamline coordinates T| with the given initial value r|o and the
calculated coefficients F, F/ and f by equation (3. 14).

3) Solve equation (3. 20) with Runge-Cutta four-step method or the other methods with
the specified initial conditions.

4) When a jump appears in the solution of equation (3. 20) or the ratio of its first

coefficient and its second one is smaller than a given value (1% is generally used),
equation (3.22) is applied instead.

5) From the first sonic point, equations (3. 23) and (3. 28) are solved as the initial value
problem.

6) After the shock position or the last sonic point, equation (3. 20) is used once more.

7) Coordinate transfer to make the supersonic solution matched with the subsonic one

after the shock and keep it unchanged near the first sonic point during first several
iterations.

Step 7) can be looked as a correction measure if the shock on the airfoil in iteration is

stronger because transonic flows depend on all the wave interferences and propagations
and shocks are envelops of compressive waves. The assumption that the left
characteristics are dominant is mainly based on design and calculation experiences and
for meeting the need of calculation convergence and it may cause larger errors near
strong shocks.

Moreover, equations (3. 23) and (3. 28) are solved with the second order middle point
method and equation (3. 20) solved with Runge-Cutta four-step method. Although
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theoretically the later method is of fourth order precision, it is difficult to have the initial

conditions with higher order precision. Thus the calculation accuracy may not be good
enough. But this could slow down the convergence speed rather than cause serious errors
to the final solution in iterative correction process.

3.2.3 Design process' and convergence criteria

The following is the airfoil design process:

1) Calculate the pressure distribution of the initial airfoil using a flow solver (viscous or
non-viscous).

2) Strained coordinate transfer for the target Cp distribution during the first several
iterations.

3) Calculate the normal geometric perturbation as shown in the last section.

4) Correct the calculated perturbations and make the strained coordinate transfer for
them if needed.

5) Non uniform relaxation for convergence acceleration

6) Add the geometric perturbation normal to the calculation airfoil.

7) Smoothing the new airfoil.

8) Calculate the new leading edge and trailing edge positions, transfer them to original
ones or make the trailing edge gap equal to the given one if specified.

9) Repeat the above steps until the convergence criterion is satisfied.

Different convergence criteria are employed in design process. The principal one is that
the maximum pressure coefficient difference between the target and the designed is
smaller than 0.006. Even this value is not very small but it is still so demanding that this
kind of criterion has never been acceptable in any iterative correction method. In fact.

The simplified flow chart of the design program is shown in Appendix 6. The concerned explanations
about the strained coordinate transfer, airfoil smoothing and non uniform relaxation can be found in section
3.3



59

the precision of iterative inverse methods (Barger, Campbell and Takanashi) is generally
judged from the graphical differences between the target and design pressure or velocity
distributions and its exact amplitude like the maximum pressure and geometric
difference has been rarely discussed, the only exception may be the E. William's paper in
which the maximum pressure difference is given for one of his best results and the

precision is still measured by graphical differences for the other results. Moreover.

William H. uses the convergence criterion that the lift coefficient difference is less than a
given value. But this criterion cannot be applied independently because the lift difference

is even zero while the pressure differences can be very larger. Thus in this research, the

solution is also accepted at given iteration times if the graphical differences between the

target and the designed pressure coefficients are small enough because the convergence
criterion for the specified maximum pressure coefficient difference cannot be always
satisfied.

3.2.4 Flow solver

The flower solver used is MSES of Mark Drela, MYT, which is a numerical airfoil

development system. It includes capabilities to analyse, modify and optimize single and
multi-element airfoils for a wide range of Mach and Reynolds numbers. It has its own

airfoil design code based on optiinization for the least-squire pressure difference. In this

research, only its analysis code based on the matched Euler equation and the boundary
layer method is used.

The numerical formulation of MSES consists of a finite-volume discretization of the

steady Euler equation on an intrinsic streamline grid. Streamline block grids are initiated
by a panel method and the farthest grid location can be only of the twice airfoil chord as

the flow far field can be represented by high order vortex and doublets located at the

airfoil's aerodynamic centre. The boundary layers and trailing wakes are described by a
two-equation integral formulation with lagged-dissipation closure. The non-viscous and
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viscous regions are fully coupled via the displacement thickness. The solid-body
boundary condition is used on the airfoil surface. The artificial viscosity is also used to
maintain numerical stability and allow shock capturing. The "envelope method", which
is a simplified version of the e" method, is used for prediction of transition. Instead of

tracking the Tollmien-Schlichting (TS) wave amplitudes for many individual frequencies
as in the e" method, the envelope method determines for each surface point the amplitude
of whatever frequency happens to be most amplified at that point, which greatly
simplifies the calculation process. The overall system is solved using a full Newton
method.

3.3 Some Special Treatments

3.3.1 Strained Coordinate Transfer

Pressure differences between the target and calculated airfoils near the leading edge and
the shock positions can be so large especially during first several iterations that the

calculated geometric perturbation may be greatly deformed because of the large
differences between . their stagnation points, suction peak positions and the shock
locations. Geometry smoothing can help solve the problem. But the strained coordinate
transfer may be more efficient.

The concept of employing coordinate straining to remove non unifonnities from

perturbation solutions of non-linear problems is well established and originally proposed
by Lighthill five decades ago and found more applications in 1970s and 1980s by Nixon,
Stephen S and others but it has never been applied to geometric treatments of airfoil

design. The basic idea of the technique is that a straightforward perturbation solution
may possess the right form, but not quite at the appropriate location.

There are two kinds of strained transfer used according to Stephen S. : 1) in "classical"
sense, strained transfer is applied to full governing equations and boundary conditions.
Thus the differential equations so obtained are generally more complicated than their
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original ones, and 2) strained transfer is employed directly to the known non-uniform

solution, and then solving algebraic rather differential equations. It is obvious that the

second one is more suitable for the method based only on the known airfoil surface
variables.

This technique was often used for non-linear interpolation of two similar solutions. The

coordinate transfer is carried out generally with the aid of polynomials. The strained

range and its vanishing manner should be carefully considered. For inverse design

purpose, the requirements for strained coordinate transfer are much more demanding in
order to keep the geometric precision of the designed airfoil. Thus in this research the

transfer is applied only during the first several iterations for accelerating the convergence
and a transfer based on Bezier spline is tried instead of polynomials for the sake of

control flexibility.

The critical points of the two solutions like leading edge, trailing edge, stagnation point,

suction peak position, sonic point and shock position may be selected as strained points
according to different situations. The strained transfer is used for similar solutions while

the pressure distribution of the calculated airfoil during first iterations may not be similar

at all to the target. For example, one of them has a suction peak near the leading edge and
another not. Therefore only some of the above points need to be selected as strained

points in this case.

Although the calculation results have already proved that the strained transfer can

evidently accelerate the design convergence, there are still some problems to be solved,

for example, if the distance between the two con-esponding strained points is too large,

the program may break down. Moreover some formula used now is not very appropriate

to the problems. Furthermore, it is difficult to accurately calculate the stagnation
locations because of the following fact. As pressure coefficients are only calculated at

discrete points, the stagnation points need to be extrapolated, which may cause larger
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errors owing to the steep flow gradient in this area. In fact, the pressure coefficient at the

stagnation point can be easily calculated for isentropic flows but it is unknown itself for

viscous cases. Though this kind of errors cannot be large relatively, they can be great
enough to affect the designed airfoil precision.

3.3.2 Airfoil Smoothing

Geometry smoothing is very important and even essential to some inverse methods for

which the airfoil is smoothed per design iteration (William E. ). As airfoil smoothing
effects need to be meticulously controlled, it is impossible to directly apply the general
methods which tend to smooth an airfoil too much or too less. Therefore, special
methods suitable for airfoil smoothing must be developed.

One of suitable airfoil smoothing methods is based on rational Chebychev polynomials.

In this method the airfoil upper surface and lower surface are fitted separately, leading
edge and trailing edge are fixed and the curvature is kept continuous at the leading edge.
Moreover, NASA airfoil smoothing method may be also effective; In this research.

several other smoothing methods are adapted. The global smoothing method used is the

optimized airfoil parameterization method that is described in the above chapters. This

method can keep the third order derivatives continuous but its smoothing effects are very
local because it is designed for accurately representing the original curves. So in shock

region, another smoothing method is added. This method is based on the original idea of

Renz W. and modified. Why this method is accepted is based on the following ideas:
even if the graphic difference between tw curves is invisible, their cur/ature difference

may be evident. As a result, smoothing curvature seems to be more effective. But

smoothing second order derivatives is much more convenient mathematically than

smoothing curvatures. Thus they are locally smoothed with the least-squares polynomial

fitting. The areas where smoothing and non-smoothing are connected are smoothed by
the Bezier function. The differences between the smoothed derivatives and the original
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ones are integrated back to get the geometry difference. In addition, during the first
several iterations, the leading edge is smoothed with the sixth order polynomial fitting if
the maximum perturbation is larger than a specified value (about 0.001). The Bezier
function is widely used in the leading edge region in design process and it has been fund
to be very efficient because the Bezier function can keep the general tendency of the
original curve, damp the too high peaks and keep the slope continuous at the two ends. If
this kind of smoothing is not used, the calculation convergence is slower because of the

oscillations and noises of the geometric perturbation solution near the leading edge
which is due to the following factors: (1) the sensitivity of aerodynamic characteristics to
the leading edge shapes, (2) the differences of the suction peak and stagnation locations
and (3) numerical errors caused by extrapolation of the stagnation locations (in the case
of strained transfer used), interpolation of the pressure coefficient at the leading edge and
flow calculation owing to the very large gradient in this area, etc.. Some other more
detailed discussion about this problem can be found in the section about the initial
conditions.

Besides, least-squires fitting for airfoil smoothing is treated by solving the norm equation
for the time being instead of using the singular value decomposition though the later is
obviously superiors to the former because the norm equation is generally very ill
conditioned in most practical applications. The former method is accepted only because
it takes much less time for programming.

3.3.3 Non uniform relaxation

In design process, the sub-relaxation is necessary to guarantee the calculation
convergence especially during first several iterations because the calculated perturbation
may be deformed due to too large pressure differences near the leading edge while the
super-relaxation should generally be used for accelerating the convergence. But the
relaxation factor cannot be made constant directly because 1) the geometric perturbations
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near leading edge tend to be larger owing to large pressure gradients and they oscillate
and contain some noises because of the reasons discussed in the last section, 2)
geometnc perturbations are too large in the supersonic region of transonic flows as the

flows are very sensitive to smaller perturbations, and 3) geometric perturbations are
generally smaller in the aft part of airfoil upper surface and on the lower surface at high
angles of attack. This may be caused by taking the same constant D in equations (3. 17)
and (3. 26) for the entire airfoil. The problem can be solved by treating the D as a
function of curvature lengths but it is more convenient to use different relaxation factors.

In this research, three or four constant relaxation factors are used respectively in the
leading edge region, the upper surface, and lower surface or supersonic region. Linear or
non-linear relaxation factor distribution can also be used but it may defonn geometric
perturbations. The regions for using different relaxation factors are delimited from 1)
some point, 2) zero perturbation point and 3) minimum perturbation point that is taken as

the coordinate origin for amplifying the perturbations after this point. The relaxation

factors used varied between 0. 3 and 5, which is adjusted automatically in the program
according to the amplitudes of geometric perturbations and the pressure differences.
Relaxation factors should be selected in such a way that the convergence speed to the
target values should be more uniform at every point of the airfoil. If the pressure
differences in one part of the airfoil are already near zero and there are still larger
differences in the other part, the convergence is much slower. In addition, a large
relaxation factor can sometimes give rise to a serious problem that small perturbation
waves are amplified. The amplified waves reduce the convergence speed rather than
accelerate it, which is one of reasons why geometry smoothing is necessary.
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CHAPTER 4

AIRFOIL INVERSE DESIGN RESULTS2

4. 1 Airfoil design for high subsonic flows

In order to avoid complicated flows containing shock waves, the first test design is
selected for M. = 0.60, Re = l.OOxlO7 and ec = 1.50 d. The target airfoil is RAE2822 and
the initial airfoil is NACA0012. The large difference between the two airfoils is suitable
for testing the capability of the method. The strained coordinate transfer is used during
the first ten iterations. The strained points are the leading edge, the trailing edge, the
pressure peak location and the stagnation point during the first 5 iterations and the same
points are selected except the pressure peak location for the next 5 iterations.

The design results are presented in Figure 4. 1 with the pressure distribution and the

airfoil shape comparisons among the initial, target and design airfoils. The convergence
is very fast, the differences between the target and design are very small even in 5 design
iterations, for example, and the lift coefficient difference is smaller than 1%, which is

appropriate for initial design problems. In 15 iterations, the maximum pressure
coefficient difference, which appears near the leading edge, is 0.006 while the geometric
difference is smaller than 5. 0xl0-5 in the key aerodynamic range. The precision is
surprisingly good.

The curves illustrated in Figure 4. 2 shows that the convergence is not monotonous and

there are some jumps, which are mainly caused by leading edge smoothing. In the
program, the leading edge smoothing is carried out if the maximum perturbation is large
than 0.001. The smoothing method based on the least-squires fitting of a 6th order general

^A"AeJirfoils used i.nthlilchapter'targetand initia1' are represented by their parametric ones using the
method of this thesis with NC = 11 and NPOINT = 3 in appendices 7 and 8.
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polynomial (described in the last chapter) always tends to smooth the leading edge too

much. Therefore, when the maximum perturbation is larger than this specified and then

the smoothing is made, a jump appears. But after the jump, the convergence may be

accelerated. If the smoothing is stopped after the given iteration, the calculation results

shows that the general convergence tendency is monotonous but the convergence speed

can be slower. Thus, the best way to solve this problem may be to develop a more

appropriate smoothing method.

Another design case shown in Figure 4. 3 is for Mo
e 

= 0. 725, Re = 1.00x10 and a = 0.0 d.

The target airfoil and the initial one are also RAE2822 and NACA0012 respectively.

This case is selected for the sake of comparisons with the results (corresponding to the

same flow conditions but for non-viscous flow) of William E.. But the strained

coordinate transfer is not applied because of the larger difference of the suction peak

locations between the target and the initial pressure distributions. In addition, the

stagnation point locations are too close to the leading edge to be calculated with enough

accuracy just from the pressure distributions at given x positions.

The convergence is not as good as the above case because a supersonic region appears on

the upper surface of the initial airfoil during the first several iterations and the strained

coordinate transfer is not used. But it is still fast enough, in 20 design iterations the

pressure coefficient differences are smaller than 0. 0045 in the leading edge region and

0.007 in the remaining part. In contrast, the results of William E. is obtained after 50

iterations and the precision is not given but the pressure and the geometry differences are

visible even from the much smaller figure. Consequently it is certain that the present

method is much more rapid and accurate in this case. And it is not surprised that

William's method is mainly developed for low speed flows.



70

-Initial (NACA0012) -Target (RAE2822) -.- 10 Iterations

-1.

-0.

&

0.

0.1

0. 05

^. 0

-0. 05

-0.1

0. 5

0. 5

0.5
x/c

p. ;5
x/c

0. 5

0. 5

(a)

Figure 4.3 Inverse Airfoil Design Results

Airfoils and Pressure Distribution Comparisons

Mo. = 0. 725, Re = IxlO7 and a = 0.00 d.



71

Initial (NACA0012)

-1.

-0.

Q.
u

0.

Target (RAE2822) -- 20 Iterations

0.1

0. 05

^ 0

-0. 05

-0.1

0. 5

0. 5

0.5
x/c

p. ;5
x/c

0. 5

0. 5

(b)

Figure 4.3 Inverse Airfoil Design Results

Airfoils and Pressure Distribution Comparisons

Mo. = 0. 725, Re = IxlO7 and a = 0.00 d.



72

4.2 Airfoil design for low speed flows

The first low speed design case is selected for Mo
c 

= 0. 3, Re = l.OOxlO7 and a = 4. 0 d.

The target airfoil is RAE5212 and the initial airfoil is NACA0012. The strained transfer

is also used during the first ten iterations.

From the results illustrated in Figure 4.4(a) and (b), the convergence is very fast. In 5

iterations, the geometry and pressure differences between the target and design are small

and the lift coefficient difference is smaller than 3%. There is nearly no visible difference

in 15 iterations, the lift coefficient difference is smaller than 0.001, the precision is good

enough from the practical point of view. Compared with William's results which are his

best results and obtained in 25 iterations, the present method is much more efficient but

less accurate. The difference may be caused by the following fact. The pressure is

calculated in William's design only by a panel method and there is no convergence

problem while in this thesis the flow is simulated by the coupled Euler and boundary

layer method. The boundary layer transition is fixed near the suction peak location. Thus

the suction peak is more sensitive to geometric perturbations, n addition, the solutions

are not fully converged.

The second low speed design is effectuated for Moc = 0. 3, Re = l.OOxlO7 and a = 5. 0 d.

The target airfoil is NACA2412 and the initial airfoil is NACA0012. The strained

transfer is also used for the first ten iterations.

The pressure distribution and geometry comparisons presented in Figure 4.5 (a) to (c)

show that the method provides the accurate results once more in 20 design iterations.

There is nearly no visible difference between the target and design pressure distributions

in this case. The lift coefficient differences are about 3% and 0. 1% respectively for 5

iterations and 15 iterations. In 20 iterations, the pressure coefficient differences are

smaller than 0.005 everywhere except near the leading edge where the maximum value is
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still a little large (0. 035) This difference is not visible from Figure 4.5(c) because of the

large pressure gradient in this region. Considering that 1) the maximum geometric

differences are smaller than 7. 0x10 near the leading edge, which are excellent, 2) the

flow solution is not fully converged at these conditions, and 3) the pressure differences

are smaller enough in the other part of the airfoil, thus the larger pressure differences

near the leading edge are mainly caused by the amplification of flow solver errors and

the other interpolation errors (discussed in 3. 3. 1 and 3. 3. 2) to the geometric differences.

In comparison with William's results of the similar conditions, gained in 25 iterations,

the present method is more efficient and accurate in this case.

4.3 Transonic airfoil design

The design conditions are Mo, = 0. 715, Re = l. OOxlO7 and a = 2. 3 d. The target airfoil is

RAE2822 and the initial airfoil is NACA0012. The strained transfer is also used for the

first 20 iterations.

From the results presented in Figure 4. 6(a) to (c), the convergence is also rapid. In 5

design iterations, the geometric differences (shown in Figure 4. 5(a)) between the target

airfoil and the design are small but the pressure distribution differences are still large

owing to the sensitivity of transonic flows to small perturbations. From the pressure

distribution of the design airfoil, two shocks appear during the first several design

iterations, which makes the flow complicated and the convergence much slower. The

first shock is caused by the invisible non-monotonous variations of the curvature in this

region. It is possible to solve this problem by appropriately smoothing. As is talked in

3. 3. 2, smoothing second derivatives is used in this research but the smoothing is still

based on the least-squires fit of a general 6th order polynomial that is not very appropriate

for airfoil smoothing. Thus more effective smoothing methods must be developed in

order to improve design results furthermore.
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Figure 4.6 Inverse Airfoil Design Results
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The comparison results (Figure 4.6(b)) in 15 design iterations demonstrate that the

pressure distribution of the design airfoil is favourable, the lift coefficient difference

between the target and the design is smaller than 2% and the shock strength is little

smaller than that of the target. From the comparison results shown in Figure 4. 5(c) after

25 design iterations, the pressure distribution of the design airfoil around the suction

peak coincides with that of the target, which means that the calculation for the leading

edge region is accurate. The results are very satisfactory from the practical point of view

and comparisons with the transonic results (Barger, Campbell, Takanashi and Yu .) of

the other iterative methods, although there are visible pressure differences near the shock

locations, which is caused by the following factors. As a pressure jump appears owing to

the shock wave at the same location, there is also a jump in calculated geometric

perturbations. Furthermore, calculated geometric perturbations are greatly deformed near

the shock locations of the target and design airfoils. Smoothing is generally used for

solving this problem. But it is hard to make the two shocks coincide together because it

is very difficult to accurately control the smoothing effects. The author has tried to solve

the problem by the strained coordinate transfer and some other new ways but there are

still some problems to be solved.
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CONCLUSION

5. 1 Optimized airfoil parameterization

. The new method can accurately represent nearly any airfoil with few than 13 control

points, e.g., NACA airfoils by 7 to 9 points and supercritical airfoils by 11 points.

Moreover, the method is also very efficient. In most cases, optimized results

converge within only 10 seconds on an 800 MHz personnel computer. Therefore, this

method compensates for the deficiencies of the existed methods and possesses a great

potential to improve the efficiency of airfoil or wing designs.

. As the control points for this method are directly located on the representative airfoil,

it is much easier to calculate geometric characteristics (curvature and higher order

derivatives), to add constrains such as thickness requirements and for use in local

airfoil modifications than the other methods. In addition, designer's experiences can

be directly carried on.

. The technique of automatically adding additional spline nodes can greatly improve

the airfoil representation precision.

. The selection of objective function has a great influence to optimization results. The

least-squires fit is also appropriate to the parametric airfoil approximation and the

objective function that consists of the average error and the maximum errors for each

curve segment is obviously superior to the commonly used objective function

composed only by the average error and the unique maximum error of the entire

airfoil.
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. The distribution function of fixing control points may not be suitable to all kinds of

airfoils. Future works include: (a) applying different distribution functions for

different types of airfoils, (b) finding appropriate relations between control points and

airfoil curvature distributions and (c) automatically adapting control points according

to calculated error distributions and fixing the control points by iteration process. If

the above works are finished, the optimization of control points will not be necessary

in any case.

. In order to improve the efficiency and the accuracy of the method furthermore for the

special cases that control points need to be optimized, the more appropriate

optimization method should be adapted.

5.2 Iterative inverse aerodynamic design

. The new method is not only very efficient but also accurate enough for both

compressible and low speed flows, especially the leading edge shape can be precisely

calculated, which is impossible for nearly all the other methods.

. The efficiency and the accuracy of the method depend more on the techniques such

as the strained coordinate transfer, geometry smoothing and non-uniform relaxation

for accelerating the convergence than on the method itself.

. The transonic correction based on the assumption for the effects of waves reflected

from the free boundary (sonic line) is effective but detailed studies regarding its

potential to improve transonic solutions should be conducted.

Geometry smoothing is essential to design efficiency, but smoothing effects are hard

to control. In order to improve the design efficiency furthermore, more suitable

smoothing methods should be studied.



85

. The strained coordinate transfer is an effective way to accelerate the convergence but

further research on its ability to accurately reflect the geometric variations should be

made.

For the treatment of geometric discontinuity caused by shock waves, new techniques

must be exploited to replace the commonly used techniques like airfoil smoothing in

order to meet higher precision requirements in transonic flows.
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APPENDIX 1

SIXTH ORDER HERMITE INTERPOLATION FUNCTION

- 6t5 + 15t4 -10t3 + 1H o.o
Ho. i = 6t5 - 15t4 +10t3

H 1,0

HI.)

= - 3t3 + 8t4 -6t' + t

= _ 6t5 + 7t4 -4t3

H 2.0 =
1. 5 . 3. 4 3. 3 . 1

- -t3 + -t" - -t' +

H 2. 1 = -t3 - t4 + -t
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APPENDIX 2

INTRODUCTION TO PROGRAM AIRY

Program Airy is developed in Fortran by the author and is divided into two main parts

respectively for airfoil parameterization and airfoil inverse aerodynamic design of which

the principles and methods are described in this thesis. It consists of the following files:

airj73d. f, rj73. f, OPT. H, OUT. H, REVERS. H and XYCC. H.

The source file airj73d.fis applied for airfoil parameterization and contains the program

of about 4500 lines in Fortran, of which the flow chart and the main functions of

subroutines are illustrated in Appendix 3. The detailed parameter descriptions can be

found in the concerned subroutine. The program has been used for nearly six months and

proves being very robust, especially for optimization with x location fixed. The only

exception is: the optimization diverges if there are some non-smooth points near the

trailing edge of an original airfoil. In the case of optimization for x locations, if

satisfactory results cannot be obtained within nearly two hours, the variation range of

control points should be specified once more. This part will be improved in the future.

The source file rj73. f is for airfoil inverse design and has 4000 lines in Fortran. Its

simplified flow chart is demonstrated in appendix 6. The program cannot be used

independently and a flow solver must be needed to provide pressure coefficients on the

airfoil. The program works well in all the research cases but it should be developed

further for commercial applications.

Files OPT.H, OUT. H, REVERS.H and XYCC. H contain array definitions and

parameters required for optimization, output, inverse design and airfoil parameterization

respectively. The detailed illustration can be found in the concerned subroutines and

functions.
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For genetic algorithm optimization, the original program is from D.L. Carroll and

includes the following files: GAgal70. f, ga. inp, ga2. inp, ga.out, ga. restart, params. f and

ReadMe. The program and user manual can be downloaded freely from the web site (see

reference list) for research purposes.
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A PENDIX3

FLOW CHART OF MAIN PROGRAM AIRY

INPUT

Airfoil Data

ARCCORD
Calculate Curve

Lengths

CONFOIL
Parametric Airfoil

Optimization

SPLINE
Calculate Spline

Node Values

No

Calculate
Parametric
Airfoil ?

No

SPLINE

Spline Interpolation

Yes

Inverse

Design ?

Yes

REVERSE
Inverse

Aerodynamic Design

OUTPUT
Spline Interpolation
Or & Para. Airfoil
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APPENDIX 4

FLOW CHART OF SUBROUTINE SPLINE

FOR SPLINE INTERPOLATION

HERMIT5
Calculate

Hermite Functions

COEFF5
Calculate Equation

Coefficients

SEPTMS
Solve

Equations

CURV

Calculate Curvatures

SPLINT

Spline Interpolation
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APPENDIX 5

SIMPLIFIED FLOW CHART OF SUBROUTINE CONFOIL

FOR PARAMETRIC AIRFOIL OPTIMIZATION

SUBROUTINE CONFOIL

±
K-^^^-^--^^^^-^^
!! Determine "
" !!

; . . _. ii
;; Control Points j;

NORMALIZE
Normalise Initial

Parametric Values

SUBROUTINE NEWFOIL

j,-^-^-^. -^-^. -^
!! Set Parameters for >i

!! Adding Additional 11
]] Spline Nodes i;
ii_ ________________ Ji

Yes No

FIX Control
Points ?

CONGRAD
Conjugate-Gradient

Optimization

GA 170

GA Optimization

IT-
II
II
II

II
11
II
II
II
II
II
ll

Set Variation Range
of Control Points for

GA Optimization
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APPENDIX 6

SIMPLIFIED FLOW CHART OF SUBROUTINE REVERSE

FOR ITERATIVE INVERSE AERODYNAMIC DESIGN

INTERPOCP &
INTERPOXY
Initialization

MSET, MSES &
MEDF:

Calculate Pressure

INTERPOCP
Inteq?olate Cp to
Given x positions

Calculate
Supersonic Range,

stagnation Points & Cp
Differences

Output

Iteration Results

No

Transfer Airfoil
To Its Original

Coordinate

SMOOTHBEZffi
POLYFIT2
SMOOTH

Airfoil Smoothing

I?--
II
II
II

II
II
II
II

Corrections or

Non Uniforme

Relaxation

_
Calculate Small

Perturbation Equation
Coefficients & Solve

the Equations

Tolerance

Satisfied?

No
Yes

Strained

Transfer?

STRAINTR
Strained Coordinate

Transfer

Yes
Output
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APPENDIX 7

INPUT DATA DISCMPTIONS

FOR PROGRAM AIRY

Input control file is named as aircontrol.dat of which the format example is given in

Appendix 7 and the control parameters are descried as following:

SUBROUTINE INPUT

c

c

c

c

c

c

c

c

c

c

c

c

C INPUT ALL THE DATA & CONTROL PARAMETERS

C CONTROL PARAMETERS FOR INPUT & GEOMETRIC TREATMENTS

IFOR : airfoil input format

=1 DATA INPUT FROM LOWER SUR. TRAILING EDGE TO UPPER SUR. T.E.

=2 INPUT DIRECTION OPPOSITE TO 1

=3 RRST UPPER SUR. THEN LOWER SUR. & BOTH FROM L.E.

=4 PARAMETRIC AIRFOIL INPUT

=5

KYES : =1

=2 PARAMETRIC AIRFOIL INPUT AS INITIAL GUESS FOR GA OPTIMIAZATION

KDER : =1 DERIVATIVES INPUT ONLY EFFECTIVE WHEN KYES = 1

KUL : =1 UPPER & LOWER SURFACE TO BE TREATED SEPARATELY

C CONTROL PARAMETERS FOR PARAMETRIC AIRFOIL & OPTIMIZATION

c

C NC : NUMBER OF CONTROL POINTS FOR PARAMETRIC AIRFOIL

C NPOINT: CONTROL PARAMETER FOR OPTION OF ADDING POINTS

C EVEN NUMBER : TWO POINTS ADDED NEAR L.E. BETWEEN TWO CONTROL P.

C ODD NUMBER : ONE POINT NEAR L. E.

C = 1,2 : ONLY ADDE POINTS NEAR L.E.

C = 3,4 : FOR ALL BUT WITHOUT ADDED POINT NEAR T.E.

C = 5,6 : ADDE POINS BETWEEN ALL THE CONTROL POINTS
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

= 7 : SAME WITH 5 FOR TIME BEING

= 8 : FOR ALL WITH ONE POINT ADDED BUT TWO NEAR L.T.

=9, 10 : ADDE POINTS ONLY FOR FORWEED HALF AIRFOIL

=11, 12: WITHOUT ADDING POINTS FOR T.E. OF LOWER SURFACE

C K PT : CONTROL PARAMETER FOR OPTIMIZATION

=1 DEFAUT WITHOUT OPTIMIZING X POSITIONS

=2 SPECIAL OPTIMIZATION FOR MINI. MAX. ERR. (WEIGHTE )

=3 GENETIC ALGORITHMS USED FOR OPTIMIZING X LOCATIONS.

OTHER NUMBER NO OPTIMIZATION

KRO : CONTROL PARAMETER FOR REOPTIMIZATION IF THERE ARE SOME

BAD POINTS

=1 YES OTHERS NO

KGA : FOR GA OPTmiZATION OF INVERSE CALCULATION

=1 ONLY Y DERIV. YCP TAKEN AS OPTIMIZATION PARAMETERS

=2 ADDE TWO THICKNESS FACTORS FOR UPPER & LOWER SUR. &

THE OTHERS SAME WITH CAS 1

=3 SAME WITH CAS 1 BUT L.E. CURVATURE FACTOR IS ALSO

TAKEN AS OPT. PARAM.

BEST OPTION OF ALL THE TESTED CASES (2001. 10. 11)

=4 YCP & CURVATURES CC AS OPT. PARAMETERS

=5 YCP, CC & Y POSITIONS AS OPT. PARAM.

FOR CAS 1 & 2, Ys ARE CALCULATED ACCORDING TO 3TH

CONTINUTY AT NODES

* * USELESS FOR THIS VERSION

C CONTROL PARAMETERS FOR INVERSE DESIGN

c

C KREV

= 1 INVERSE CALCULATION TO BE CARRIED OUT

OTHERS NO INVERSE DESIGN

CP INPUT CONTROL

= 1 IN FORMAT OF MSES OUTPUT

=2 IN FORMAT OF EULER2D

UPSTREAM MUCH NUMBER

INRE

AM

C TETH : TRAILING EDGE THICKNESS
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c

c

C CONTROL PARAMETERS FOR OUTPUT

c

C KOUT : OUTPUT OPTION FOR GRAPHIC SOFTiVARE

C =1 TECPLOT

C =2 GNUPLOT

c

Airfoil input file name is input in the first line of the control file aircontrol. dat.

Moreover, some control parameters for inverse design are directly input from the

keyboard, of which the input descriptions are shown on the screen.
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APPENDIX 8

INPUT CONTROL FILE

aircontrol. dat

FORMAT EXAMPLE

RAE2822.dat : File name of input airfoil data

CONTROL PARAMETERS FOR INPUT & GEOMETRIC TREATMENTS

3 : IFOR --- input format (see descriptions in subroutine INPUT)

3 : KYES --=1 parametric airfoil

2 : KDER --=1 derivatives input only effective when KYES = 1

2 : KUL -- =1 upper & lower surface to be treated separately

CONTROL PARAMETERS FOR PARAMETRIC AIRFOIL & OPTIMIZATION

] 1 : NC -- number of control points for the parametric airfoil

3 : NPOINT -- control option for adding points(see detail in INPUT)

1 : KOPT -- control parameter for optimization (see detail in INPUT)

0 : KRO --re-optimization if=l

5 : KGA -- or GA optimization of inverse design (in-INPUT) useless for this version

CONTROL PARAMETERS FOR INVERSE DESIGN

0 : KREV --=1 inverse calculation others: no

1 : INRE --=1 Cp input in format of MSES =2 EULER2D format

0. 6 : AM -- upstream MACH number

0. 0 : TETH -" trailing edge thickness

CONTROL PARAMETERS FOR OUTPUT -

1 : KOUT--=1 TECPLOT =2 GNUPLOT
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APPENDIX 9

OUTPUT FILES DISCMPTIONS

Output control is set in the input file aircontrol. dat. The main output files:

1. Parametric airfoil

SpIineSout. dat : the complete output includes 1) the airfoil with more points

interpolated from the original by the spline, 2) the original airfoil, 3) the parametric

airfoil and 4) the interpolated airfoil from the parametric to the original x positions.

Six output variables x, y, xp, yp, xpp, ypp correspond to Cartesian coordinates, their

curvilinear derivatives of the first order and second order respectively.

Error.dat: output errors between the original and parametric airfoils.

Output variables i, err, x, y are point number index, error and the Cartesian coordinates

of the original airfoil.

2. Inverse design

Iteration.dat: output error information for each iteration. Output variables:

ITE: iteration time.

ICPMLE, ICPMU, ICPML: point number index respectively corresponding to maximum

errors on the leading edge, upper surface and lower surface.

DCPMLE, DCPMU, DCPML: maximum errors respectively on the above three points

DHMMO: maximum geometric perturbation value on the leading edge.

Xycptec.dat : output geometric and pressure infonnation every 5 iteration and the best

solution.

The fist part is for the original airfoil and the second for the designed.
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x, y : Cartesian airfoil coordinates

xs: strained x coordinat

cpt, eps or cpr, cprs : pressure coefficient and its derivative to x for the target airfoil or

designed.
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