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RÉSUMÉ 

L'emballage alimentaire actif est un sujet de recherche en cours. La fabrication de nouveaux 

matériaux d'emballage pour améliorer la sécurité alimentaire et la préservation des aliments est un 

sujet d'intérêt continu. Le chitosane est un polysaccharide d’origine marine, non toxique ayant un 

grand potentiel pour être utilisé comme biomatériau antimicrobien, compte tenu de son activité 

antibactérienne. En outre, le chitosane est utilisé comme un additif alimentaire et a d’ailleurs reçu 

le statut de «Generally Recognized As Safe» (GRAS) par la Food and Drug Administration (FDA) 

des États-Unis. Par conséquent, le chitosane peut être considéré comme un candidat idéal dans des 

applications liées à l’industrie alimentaire. 

Le présent travail de recherche porte sur la production de nanosphères de chitosane pour la 

formulation de matériaux d’emballage alimentaire antibactériens. Le projet de recherche a été 

réalisé en trois étapes. La première étape traite de l'étude de l'influence de différents facteurs 

environnementaux, microbiens et caractéristiques du chitosane sur son activité antibactérienne, 

lorsqu'il est utilisé sous une forme solide discontinue, comme la poudre et les flocons. L'activité 

antimicrobienne a été évaluée contre une souche Gram-négatif (Escherichia coli) et deux souches 

Gram-positif (Listeria innocua et Staphylococcus aureus), qui sont généralement responsables de 

la détérioration des aliments. Les résultats ont montré que le chitosane nécessite une solubilisation 

partielle pour l'exercice de son activité antibactérienne. En outre, des conditions de température 

adéquates, la force ionique (salinité) et la présence d'un support physique solide peuvent favoriser 

l'effet antibactérien. La souche E. coli s’est révélée plus affectée par le chitosane, suivie de L. 

innocua et S. aureus. D'autre part, l'action antibactérienne a augmenté avec la concentration en 

chitosane jusqu'à un point critique au-dessus duquel cet effet a diminué. Cet effet pourrait être la 

conséquence des protéines restantes dans le chitosane et qui peuvent servir de nutriments pour les 

bactéries, limitant ainsi l'activité antibactérienne. Ces résultats sont prometteurs pour l'utilisation 

directe de la poudre et des flocons de chitosane en tant qu'agents antimicrobiens pour des 

applications dans l'emballage alimentaire. 

La deuxième étape a consisté en la production de micro et nanosphères de chitosane par 

électropulvérisation. Les effets des paramètres de solution et de procédé sur la morphologie, la 

collecte des particules et la stabilité du procédé ont été étudiés. La cartographie de la stabilité du 

procédé a été établie selon les nombres adimensionnels suivants: Reynolds (Re), Peclet électrique 
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(Pe), Weber (We), Froude (Fr) et un paramètre de force électrostatique (Ω) qui relie les principales 

variables du procédé. La stabilité des solutions de chitosane par electropulvérisation nécessitait des 

valeurs relativement faibles pour les nombres Re, Fr et Ω, mais des valeurs relativement élevées 

pour les nombres Pe et We. Le procédé d'électropulvérisation constitue une nouvelle façon 

d'incorporer des nanosphères de chitosane dans les emballages alimentaires existants afin de leur 

fournir des propriétés antimicrobiennes et d'aider à prolonger la durée de conservation des produits 

alimentaires. 

La troisième étape étudie l'effet de la forme physique du chitosane, à savoir les solutions, les 

poudres et les nanosphères, ainsi que la taille des particules sur l’activité antibactérienne contre 

deux souches pathogènes, Staphylococcus aureus et Salmonella enterica serovar Typhimurium, 

des bactéries généralement associées à des infections d'origine alimentaire. Les nanosphères de 

chitosane ont présenté des performances antibactériennes supérieures à celles de la poudre de 

chitosane. Ceci a été expliqué par la petite taille et la plus grande surface de contact des nanosphères 

avec les parois cellulaires bactériennes. Les nanosphères ont également affiché une activité 

antibactérienne plus élevée que celle du chitosane en solution, ce qui peut être le résultat d'une 

charge superficielle plus élevée et d'une petite taille solide. Il est considéré que si le chitosane en 

solution interagit avec la paroi cellulaire, il restera sous forme libre dans le milieu plutôt que 

d’adhérer aux cellules de façon permanente. D'autre part, les souches de S. aureus étaient plus 

sensibles à l'action des nanosphères et étaient moins sensibles aux variations des conditions de pH 

et de température du milieu. Cette étude est d'une grande importance en ce qui concerne les 

nombreuses applications possibles des nanosphères de chitosane dans divers domaines dont 

l’emballage alimentaire et le biomédical. 
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ABSTRACT 

Active food packaging is an ongoing research topic. The fabrication of packaging materials to 

improve food safety and food preservation is a subject of continuous interest. Chitosan is a nontoxic 

polysaccharide that has great potential to be used as an antimicrobial biomaterial, given its 

antibacterial activity. Besides, chitosan is considered as “Generally recognized as safe” (GRAS) 

food additive by the US Food and Drug Administration (FDA), wherewith can be considered as 

candidate for food related applications.  

The current research work focuses on the production of chitosan nanospheres for the formulation 

of antibacterial food packaging materials. The research project was conducted in three phases. The 

first phase deals with the evaluation of different environmental, microbial and characteristics of 

chitosan on its antibacterial activity, when used in a discontinuous solid form, such as neat chitosan 

powder and flakes. The microbial activity was evaluated against one Gram-negative (Escherichia 

coli) and two Gram-positive strains (Listeria innocua and Staphylococcus aureus), which are 

commonly found in food spoilage. Results showed that chitosan requires a partial solubilisation for 

the exertion of the antibacterial activity. In addition, adequate temperature conditions, low ionic 

strength and the presence of a solid physical support may promote the antibacterial effect. E. coli 

strains were found to be more sensitive to chitosan, followed by L. innocua and S. aureus. On the 

other hand, antibacterial action increased with concentration up to a critical point above which this 

effect decreased. This effect may be due to remaining proteins in chitosan, which may serve as 

nutrients for the bacteria, limiting the antibacterial activity. These results are promising for the 

direct use of chitosan powder and flakes as antimicrobial agents for food packaging applications. 

The second phase consisted in the production of chitosan micro and nanospheres via 

electrospraying. Solution and processing parameters effects on the morphology, particle collection 

and processing stability were investigated. Mapping of the processing stability was established 

according to the following dimensionless numbers: Reynolds (Re), electric Peclet (Pe), Weber 

(We), Froude (Fr) and an electrostatic force parameter (Ω) which related the main variables of the 

process. The stability in the electrospraying of chitosan solutions required relatively low values for 

Re, Fr and Ω but relatively high values for Pe and We numbers. The electrospraying process may 

provide a novel way for incorporating chitosan nanospheres into existing food packaging to provide 

antimicrobial properties, and helping to extend the shelf-life of food products.  
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The third phase investigated the effect of chitosan physical form and particle size, namely solution, 

powder and nanospheres on the antibacterial activity, against two pathogen strains, Staphylococcus 

aureus and Salmonella enterica serovar Typhimurium, commonly associated with foodborne 

infection. Chitosan nanospheres displayed superior antibacterial performance than chitosan powder, 

explained by their small size and the larger surface area of contact of nanospheres with bacteria 

cell wall. Nanospheres also displayed higher antibacterial activity than chitosan in solution, which 

may be the result of the higher surface charge and solid and small size. It is believed that even 

though chitosan in solution interacts with the cell wall, it will remain as a free form in the medium 

rather than adhering into cells permanently. On the other hand, S. aureus strains were more 

sensitive to the action of nanospheres and were less influenced by the pH and temperature 

conditions of the medium. Given the remarkable antibacterial activity observed for chitosan 

nanospheres, this study is of great importance with respect to the many possible applications, such 

as in food packaging and in the biomedical field. 
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CHAPTER 1: INTRODUCTION 

For years, foodborne diseases have been of great concern to public health. Two factors have 

contributed to the appearance of new diseases as well as the re-emergence of old ones, representing 

a significant risk for food safety. The first one is the industrialization that has led to rapid-growing 

mass production and hence to an inadequate harvesting, storage, handling and transportation of 

food; and the second one is the globalization that has allowed international trade, facilitating the 

entry of pathogens that previously were not a threat for health [1, 2]. 

Canada is one of the countries whose population has been affected by the outbreak of pathogens 

resulting from contaminated food. Bacteria including Escherichia coli, Salmonella, Listeria, and 

Staphylococcus have been reported in spoiled products such as raw meat and pork, tainted cold 

cuts, oysters, cantaloupes, spinach and cheese, causing several pathogenic diseases [3, 4]. 

Foodborne infections are known to affect not only industrialized, but also non-industrialized 

countries [1]. The latter ones are particularly affected due to a wide range of diseases and the lack 

of governmental regulations regarding food inspection and handling.  

On the other hand, there is an increasing public, industrial and governmental concern about food 

waste. About 30 to 40% of the world’s food production is wasted before consumption either 

because of inappropriate handling and transportation which could cause contamination with 

bacteria, or because the food has reached its expiry date. North American and European countries 

are the most affected. Just in Canada, the losses in wasted food reach $ 31 billion each year [5].  

Different methods including the use of volatile gas indicators, oxygen absorbers, carbon dioxide 

scavengers, preservatives, moisture absorbers, among others, have been employed to extend the 

shelf life, maintain or improve the conditions of the packaged food and therefore to decrease food 

waste. Some of them, although appropriate for keeping freshness, are insufficient for keeping the 

food free of microorganisms. Therefore, technological solutions are being targeted to provide better 

public protection, decrease the economic losses for industry and reduce food spoilage. The 

fabrication of novel food packaging materials having antibacterial properties can be part of the 

solution to inhibit/eradicate pathogen growth, improving food safety and extending shelf life of 

food products. In this regard, chitosan is a highly promising candidate to be employed as 

biomaterial in food related applications, mainly due to its availability, nontoxicity and 

antimicrobial properties.  
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The present research aims towards the production of chitosan nanospheres for the formulation of 

antibacterial food packaging materials. To date, different studies have focused in evaluating the 

antimicrobial activity of chitosan solutions, gels, fibers and films [6-18]. However, micro and 

nanosize morphologies that allow increasing chitosan/cell interactions are on the target in recent 

research [19-21]. The first part of the current study focuses on the evaluation of the antibacterial 

activity of chitosan in a discontinuous solid form such as neat chitosan powder and flakes. Different 

environmental, microbial and characteristics of chitosan including pH, temperature, ionic strength, 

the presence of a solid physical support, bacterial species, as well as the effect of chitosan 

concentration and purity are investigated. The second part comprises the study of producing 

chitosan micro and nanospheres via electrospraying. Both processing and solution parameters are 

subjected to consideration. The third part compares the effect of chitosan physical form and particle 

size, namely solution, powders and nanospheres on the antibacterial activity, against two pathogen 

strains (S. aureus and S. Typhimurium) commonly found associated with foodborne infection. In 

our first study, chitosan in powder and flake forms reduced totally E. coli contamination, but 

displayed a limited antibacterial activity against the pathogen strain S. aureus. Therefore, pathogen 

strains, which are considered more resistant to antibacterial agents were considered relevant for 

testing the antibacterial activity of chitosan nanospheres. Environmental conditions such as pH and 

temperature are also considered. Given the remarkable antibacterial activity observed for chitosan 

nanospheres, the electrospraying process may provide a novel way for making chitosan-based food 

packaging materials. The incorporation of chitosan nanospheres into existing food packaging may 

be an alternative to further increase chitosan antimicrobial properties and lead to the formulation 

of new packaging materials. This novel packaging can impact the food industry and consumers by 

providing a way to inhibit bacterial growth and increase the shelf life of food products, such as 

chicken, beef and pork. 

In addition, the results of a research project aimed at the development of new chitosan-based 

materials for wound healing, is presented in Appendix A. This subject was part of an NSERC-

Engage project that was conducted during the accomplishment of this PhD. The antibacterial 

properties of chitosan can be combined with the regenerative properties of bacterial nanocellulose 

for potential biomedical applications. However, given that the two biopolymers cannot be 

solubilized in the same solvent, their processing become challenging and coaxial electrospinning 

was considered, as a new approach.  



3 

 

The main contributions of this research work are found in three scientific articles; the first one has 

been published in the journal Molecules, the second one has been submitted to the Journal of 

Aerosol Science, and the third one has been published in the Journal of Food Science. In addition, 

a fourth article is included as an appendix (Appendix A) in the thesis and reports the findings of a 

work performed in an NSERC-Engage project and comprises the results regarding the coaxial 

electrospinning of chitosan and bacterial nanocellulose for potential biomedical applications. This 

article has been published in the journal Cellulose.  

Organization of the thesis 

This thesis consists of the following chapters: 

• Chapter 1: Introduction 

• Chapter 2: Literature review 

• Chapter 3: Objectives 

• Chapter 4: Organization of the articles 

• Chapters 5 to 7: The three articles reporting the main results of this research project 

• Chapter 8: General discussion  

• Chapter 9: Conclusions and recommendations for future work 

• Appendix A: The fourth article reporting the main results of the NSERC-Engage Project  

• Appendix B: Governing equations in the electrospraying process 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Chitosan 

Chitosan is a natural cationic polysaccharide derived from chitin, the second polysaccharide most 

abundant in nature after cellulose [22]. Chitin is a biopolymer extracted from the exoskeleton of 

marine crustaceans such as crab, shrimp and lobsters; cuticle of insects and cell walls of fungi, 

mainly [23, 24]. The shells of marine crustaceans are the more convenient sources given the 

availability from the wastes of the fishing industry [25]. Generally, shells contain between 15 to 

40 % of chitin, 20 to 40 % of proteins and 20 to 50 % of calcium carbonate, besides pigments and 

metal salts as minor components [24]. Due to its low solubility in organic solvents and low 

chemical reactivity, chitin is usually transformed into chitosan [22, 26].  

Industrially, chitosan is obtained after several processing steps as shown in Figure 2.1. First, 

crustacean shells are subjected to a demineralization step under acid treatment with HCl to dissolve 

calcium carbonate, calcium phosphate and other mineral salts. Second, an alkaline treatment with 

NaOH or KOH follows, to solubilize the proteins. Third, a discolouration step with NaOH and 

ethanol is often done to remove pigments. Fourth, after a washing and drying step, chitin is 

obtained. Finally, a deacetylation step under concentrated alkaline conditions (concentrated NaOH) 

produces chitosan, which is the most important chitin derivative in terms of applications [23, 24].   

The quality and properties of chitosan products such as purity, molecular weight (MW) and degree 

of deacetylation (DDA) depend on the conditions and treatment used for its preparation, including 

the concentration of the chemicals used and the sequence and time of the treatments for 

deproteination, decalcification and deacetylation [26, 27]. Most commercial chitosan grades are 

mainly produced by alkaline deacetylation of chitin. Recently, enzymatic hydrolysis in the presence 

of chitin deacetylase have been used to produce chitosan [26]. However it is not yet available for 

industrial scale [27, 28]. When the degree of deacetylation (DDA) is higher than 50 % chitin is 

named chitosan [23, 29].  The DDA usually ranges from 66 to 96 %, depending on the method 

used for its production, whilst the molecular weight ranges from 4 kDa to 2000 kDa that is much 

lower than chitin, which is usually larger than 1000 kDa [26, 30-32]. 



5 

 

 

Figure 2.1: Industrial extraction of chitin and chitosan. 

2.1.1 Elemental analysis 

Depending on the extent of deacetylation, the nitrogen content of chitin and chitosan varies from 5 

to 8% [25, 33]. Table 2.1 and Table 2.2 present the elemental analysis and trace metal content, 

respectively, in a chitosan sample [22, 34]. In addition to carbon, nitrogen and hydrogen, elements 

such as aluminum, calcium, silicon and iron are present in the material itself whilst chromium and 

copper come from the stainless steel reactor and distilled water respectively during processing [22]. 
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Table 2.1: Elemental analysis (%) of chitosan and chitin; N-acetyl-glucosamine reference [34]. 

Adapted from [22]. 

Polymer C H N 

Chitosan  39.99 6.80 7.40 

Chitin  43.53 6.12 6.26 

N-acetyl glucosamine 43.53 7.15 6.26 

 

Table 2.2: Trace metal content of chitosan (ppm) [35]. Adapted from [22]. 

Aluminum 5-50 

Calcium 10-150 

Copper 2 

Iron 10-100 

Lead <10 

Manganese <1 

Silicon 10-100 

Titanium <1 

Silver <1 

Chromium 2.2 

Cobalt 0.2 

Zinc 0.3 

2.1.2 Chemical structure  

Structurally, chitin consists of 2-acetamido-2-deoxy-β-D-glucose through a β (1→4) linkage. 

Chitosan is the N-deacetylated derivative of chitin, however, this N-deacetylation is almost never 

complete [33]. Both the sequence and the content of the N-acetyl-D-glucosamine (acetylated unit) 

and D-glucosamine (deacetylated unit) in chitosan determine its properties and reactivity [32]. The 

structures of chitin and chitosan are presented in Figure 2.2.  



7 

 

 

Figure 2.2: Structure of chitin and chitosan [25]. 

2.1.3 Solution properties 

Due to the extensive intra- and intermolecular hydrogen bonding, and hydrophobic inter-chain 

interactions, chitosan degrades before melting, which makes it necessary to be dissolved in 

appropriate solvents [23, 25]. Chitosan is insoluble in water at neutral or basic pH values [22]. 

However, when the pH of the medium is lower than chitosan’s pKa (6.2-6.5) [36, 37], amino groups 

undergo protonation making the polymer soluble in water [23, 26]. Chitosan is soluble in organic 

acids including formic, acetic, citric, pyruvic and lactic acid; and in inorganic acids such as nitric, 

hydrochloric, sulphuric and perchloric acids [22, 24, 38]. 

Chitosan solubility is mainly controlled by its DDA and MW. In general, the solubility increases 

at high DDA and low MW values. However, other parameters such as ionization degree, ionic 

strength, pH, type of solvent, concentration, chain flexibility, crystallinity, distribution of acetyl 

glucosamine units and time and temperature of the chemical deacetylation reaction may influence 

chitosan solution properties [23, 38-40]. In HCl and acetic acid, chitosan is soluble for a degree of 

protonation around 0.5 [39]. Chitosan solubility is reported for DDA>50% [41]. 

The viscosity of chitosan aqueous solutions is influenced by factors such as DDA (deacetylation 

time), MW, concentration, degree of protonation, ionic strength, pH and temperature [26]. In 

general, chitosan solution viscosity decreases with temperature and ionic strength; and it increases 

with chitosan concentration and MW [22, 38, 42-44]. However, a pH change in the polymer 
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solution may give different results depending on the types of acids employed [26]. With acetic 

acid, the viscosity of chitosan tends to increase with decreasing pH, whereas with HCl the viscosity 

decreases when pH is lowered. This relates to the degree of protonation of chitosan [26, 38, 45, 

46]. In the first case, at low pH, intra and electrostatic repulsions due to protonation increase, hence 

promoting higher solubility, chain expansion and larger hydrodynamic volumes, which increase 

the viscosity. In the second case, also at low pH, the presence of large amounts of ions from a 

strong acid cause electrostatic charge screening (of the NH3
+ groups), enhancing chain flexibility 

and hence decreasing viscosity [38, 46].  

2.1.4 Antimicrobial properties 

Chitosan exhibits suitable functional and biological properties, including antimicrobial activity 

[47]. Several authors have reported antimicrobial properties for chitosan under different physical 

forms including chitosan in solutions [6-10, 15, 16], gels [48], films [11-14, 17, 18], fibers [49-52] 

and micro and nanoparticles [19-21, 53-56], on different microorganism species [12, 18, 57, 58]. 

Literature reports chitosan antimicrobial effectiveness not only on inhibiting the growth of Gram-

positive and Gram-negative [6, 59] bacteria but also yeast and molds [60]. The main difference 

between Gram-positive and Gram-negative strains is their membrane structure. Gram-positive 

strains are composed of one phospholipid bilayer and a thick peptidoglycan, whilst Gram-negative 

consist of two phospholipid bilayers and a thin peptidoglycan between them [51]. The antimicrobial 

properties of chitosan are affected by different factors: 1) microbial species and cell age [6, 61-63]; 

2) environmental conditions such as pH, ionic strength, temperature and time [61, 63, 64]; 3) 

chitosan characteristics including source, MW, DDA, concentration and physical form [6, 16, 61, 

62, 64-69]; among others.  

The antimicrobial properties of chitosan have been used for food preservation. Ouattara et al. [14] 

demonstrated delayed growth or the complete inhibition of different kind of bacteria (including 

Enterobacteriaceae and Serratia liquefaciens) in processed meats covered with chitosan films and 

stored at 4°C up to 21 days. Bhale et al. [65] showed that albumin quality and eggs conservation 

increased by three weeks at 25 ºC in the case of eggs covered by chitosan coating solutions (pH 

5.6). Coated eggs were overall acceptable to the consumer and did not differ from the control and 

commercial eggs regarding the organoleptic properties. Yingyuad et al. [60] dipped grilled pork 

samples in chitosan solutions with different chitosan concentrations and vacuum packaged. Their 
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results showed that the shelf life increased by at least two weeks compared to the samples that were 

not dipped. Throughout the storage period samples were found to be organoleptically acceptable 

and without significant changes in odour and colour.   

Different pathogenic organisms including Escherichia coli, Listeria and Salmonella have been 

reported as being inhibited by chitosan, in contaminated beef, ham, turkey, sausages, pork and fish 

products [16, 60-62, 70, 71]. Chitosan also protected mice against infection by Listeria 

monocytogenes, suggesting that the antimicrobial action may also occurs in humans [72].  

Muzzarelli et al. [59] reported the antibacterial effect of carboxybutyl chitosan on 298 pathogen 

strains including Gram-positive and Gram-negative bacteria and observed morphological damage 

of the cell wall and the internal cell structures. The bactericidal activity between the tested strains 

was different which suggested that different mechanisms of action of chitosan might be operating. 

However, the experiments were carried out with only a chitosan derivative, and results might differ 

in case of using unmodified chitosan.  

Chitosan is also reported to be effective against yeast and molds. Roller and Covill [73] studied the 

antifungal properties of chitosan against 15 microorganisms (8 yeast and 7 filamentous fungi) 

associated with food spoilage, at different chitosan concentrations, pH and temperature conditions. 

Concentrations of 0.1, 1 and 5 g/l of chitosan were necessary to reduce the growth of 

Zygosaccharomyces bailii, Mucor racemosus and Byssochlamys, respectively. El Ghaouth et al. 

[74] reported the antifungal activity of chitosan coating on strawberry fruits inoculated with 

Botrytis cinerea and Rhizopus stolonifer. Although a complete inhibition of fungal growth was not 

achieved, chitosan coating reduced significantly spore germination and radial growth, and 

indicated that chitosan was fungistatic rather than fungicidal. These results assess the potential use 

of chitosan as natural food preservative. 

Although the exact mechanism of the antimicrobial action of chitosan and its derivatives is still 

unknown, different mechanisms of growth inhibition have been proposed in literature [64, 75]:  

1) Electrostatic interactions: at pH<pKa, chitosan amino groups are protonated, creating 

electrostatic interactions with the anionic cell wall components (lipopolysaccharides and proteins) 

of the microorganism. 

2) The hydrophobic and chelating effects occurring at pH>pKa. N-acetylated chitosan and the 

presence of a long aliphatic chain in chitosan can favor the absorption onto cell walls via 
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hydrophobic interactions with cell wall proteins. As chelating agent, chitosan can selectively bind 

metals ions of the cell wall or from the medium, affecting bacteria stability and growth, 

respectively.   

3) Inhibition of the synthesis of mRNA and DNA transcription, produced when small particle sizes 

and low molecular weight chitosan penetrate the cell wall of bacteria and combines with DNA.   

4) Alteration of permeability, when high molecular weight chitosan or large size particles interact 

with cell surface blocking the entrance of essential nutrients to the cell or by forming an 

impermeable layer.  

These mechanisms will eventually result in biological changes and the leakage of intracellular 

components, leading to cell death [32, 64]. 

As mentioned in 3) and 4), chitosan molecular weight can determine the mechanism of 

antimicrobial action, but also, the mechanism depends on bacterial type. Chitosan with molecular 

weight greater than 10 kDa have been found to inhibit bacterial growth regardless of its type [13, 

66, 76]. Different studies [6, 10, 13, 67, 77] have demonstrated that, in general, chitosan 

antimicrobial activity increases with molecular weight when tested against Gram-positive bacteria, 

while for Gram-negative this activity is more efficient at low molecular weights.  

With respect to molecular weight, two different mechanisms for the antimicrobial activity have 

been suggested: in Gram-positive bacteria, chitosan on the surface of the cell can form a polymer 

membrane, which inhibits nutrients from entering the cell. In Gram-negative ones, chitosan of low 

molecular weight might enter the cell through penetration, disturbing the physicochemical 

activities of bacteria cells until cell death [10, 78].  

In addition, some authors reported higher effectiveness of chitosan against Gram-positive than 

Gram-negative bacteria, presumably due to the presence of lipid outer membrane in the latter that 

can be a barrier to chitosan. Others consider that Gram-negative bacteria are more sensitive to 

chitosan bioactivity because the negative charge on the cell surface of this bacteria is stronger than 

in Gram-positive, leading to more chitosan adsorbed and hence to a higher inhibitory activity [6, 

7, 61, 63, 67, 75, 79].  

Recently, Arkoun et al. [51] investigated the antibacterial mechanism of action for chitosan 

nanofibers. The results showed that chitosan nanofibers were both bacterial membrane 
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permeability disrupter and perforator. A series of four steps were proposed as the main mode of 

action for chitosan nanofibers. First, the adsorption of chitosan nanofibers onto bacterial surface; 

second, the perforation of the membrane; third, the leakage of cytosolic compounds including 

enzymes, proteins and DNA; and fourth, cell lysis and disintegration.  

2.1.5 Processing 

Chitosan is generally purchased in the form of fine powder, flakes or in solution, and can be 

processed into different physical forms through solubilisation in acidic media or by using an 

adequate solvent. Forms such as films [71, 80-83], fibers [84-89], micro and nanobeads [20, 31, 

90-101], hydrogels [102-104], membranes [105] and sponge (foams) [106] of chitosan alone or in 

blends [105, 107-109] are produced by several technological processes for applications in different 

fields [110]. For instance, chitosan film is the most studied physical form with potential use as 

packaging material, given its promising results regarding the antibacterial activity [13, 18]. 

However, chitosan films have low mechanical and barrier properties, and therefore need to be 

blended with another polymer for the improvement of these properties [111, 112]. Chitosan films 

are generally produced by the solution casting/solvent evaporation method [60, 113], or by 

blending with a thermoplastic polymer via twin-screw extrusion [114-116].  

Chitosan beads in the form of micro and nanospheres are of great interest in the biomedical field 

and are increasingly studied for drug delivery applications because of their small size and the large 

surface to volume ratio. Although the size of a nanoparticle is not clearly defined in literature, 

ASTM E2456-06 defines a nanoparticle as an ultrafine particle with at least one dimension in the 

range between 1 and 100 nm [117].  

Several methods have been employed to produce micro and nanospheres of chitosan. The most 

used ones are emulsion cross-linking, coacervation/ precipitation, spray-drying, emulsion droplet 

coalescence, ionic gelation and electrospraying [30]. Others like reverse micellar [118] and sieving 

methods are less used [31]. The selection of any method depends upon factors such as particle size 

requirement, chemical and thermal stability and residual toxicity associated with the final product 

[31].  
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2.1.6 Applications 

The unique properties of chitosan, including its nontoxicity 1  [26, 119], natural origin, 

biodegradability [26, 57], availability as well as the wide range of physical forms in which it could 

be transformed, are the main reason for its multiple applications. In particular, its antimicrobial 

properties [10, 16, 18, 63, 64, 120-122] and biocompatibility [6] make it of great interest in food 

packaging and biomedical applications, respectively. Chitosan has been approved as a food 

ingredient in Japan, Korea, Finland and Italy. In North America and Europe, it has received the 

“Generally recognized as safe” (GRAS) status by the US Food and Drug Administration (FDA), 

and has been used as food additive, nutritional supplement, natural health product and in drugs [32, 

123, 124] . Other main applications of chitosan-based materials are cited in Table 2.3.  

 

Table 2.3: Main applications for chitosan 

Field Application References 

Food sector Food additive and preservative, antioxidant, emulsifying, 

thickener, cholesterol reductor, antibacterial coating, food 

packaging, dietary supplements.  

[23, 26, 51, 61, 68, 

71, 125, 126] 

Biomedical Anticoagulant, hemostatic, wound healing, wound 

dressing, encapsulation, antitumor, bone and cell culture, 

gene therapy, controlled drug delivery, engineering 

scaffolds. 

[6, 23, 89, 106, 

127-130] 

Agriculture Pesticide, fungicide, soil enrichment, seed coating. [23, 71, 122, 131, 

132] 

Water and waste 

treatment 

Membranes for water filtration (removal of metal ions 

such as Hg, Cd, Ni, Zn). 

 

[23, 133, 134] 

 

                                                 

1 On accounting of the low lethal dose (LD50) value, which is in the same order of magnitude as the LD50 for sugar (16 

and 30 g/kg body weight, for chitosan and sugar, respectively) [117]. 
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2.2 Electrospraying process 

Electrospraying is a method of electrodynamic atomization. Its principle is based on the theory of 

deformation of charged droplets developed by Lord Rayleigh in 1882, Zeleny in 1917 and Sir 

Taylor in 1964 [135, 136]. The schematic of a typical electrospraying setup is illustrated in Figure 

2.3. The device consists of three main parts: a syringe pump that control the flow rate of the 

polymeric solution, a voltage generator (0 to 50 kV) and a metallic collector plate.  

In electrospraying, a high voltage electric field is applied to a polymeric solution that is pumped 

through a syringe. The electric charge generated on the exiting liquid makes the droplet deforms 

into the shape of a Taylor cone from which a jet is ejected and elongated [92, 137, 138]. When the 

electrostatic forces in the fluid overcome the surface tension, the jet breaks into nano and micro 

droplets that eventually travel to a collector plate [30, 92, 139-141]. Different spraying modes can 

occur during electrospraying, the single cone-jet mode is the most desired because of its stability 

and reproducibility. Once the droplets are separated, the solvent is evaporated. Due to Coulomb 

repulsion of the charges, the droplets are well dispersed during the process [138].  

Electrospraying is a relatively novel technique for the production of micro and nanospheres and its 

understanding and optimization are still under development [138]. There are four advantages in the 

use of electrospraying with respect to other conventional methods for the production of micro and 

nanoparticles: 1) one step processing which usually does not require extra drying; 2) no need for 

external dispersion/emulsion phase containing undesirable materials (generally toxic) for 

biomedical and food applications; 3) no high temperatures as in spray drying; and 4) better control 

over particle size, particle size distribution and morphology than in other methods. In the case of 

chitosan, which has the advantage of being soluble in aqueous acidic solutions, it avoids the use of 

hazardous organic solvents for the fabrication of micro and nanoparticles [92, 137]. 
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Figure 2.3: Electrospraying process 

2.2.1 Parameters of the process 

Table 2.4 shows the electrospraying processing parameters. Important parameters are not only 

polymer and solution properties such as molecular weight, concentration, viscosity, conductivity 

and surface tension, but also specific parameters of the electrospraying machine such as applied 

electric voltage, flow rate, tip-to-collector distance, temperature, needle gauge and the 

environmental conditions. All these parameters may affect the processing, size, morphology and 

reproducibility of the produced micro and nanospheres [86, 138, 142-144].  
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Table 2.4: Parameters for the processing via electrospraying 

Processing 

conditions 

 Electric field 
  Voltage   

  Distance tip to collector 

Flow rate 

Needle diameter  

Temperature 

Intrinsic 

properties of the 

solution 

Conductivity      Concentration 

Surface tension      MW 

Viscosity      Solvent type 

Ambient 

conditions 

Humidity 

Temperature 

Pressure 

Air velocity 

2.2.1.1 Processing conditions 

Electric field strength. The electric field strength (kV/cm) generally varies between 1 and 5 kV/cm. 

The currents that flow during the electrospraying process range from a few hundred nanoamperes 

to microamperes [145]. Voltages between 15 to 30 kV and distances between 5 to 25 cm are usually 

used. Short distances between needle and plate collector can generate a wet deposition of particles, 

causing coalescence of droplets. The shortest distance is determined as the distance that produces 

a shortcut. The optimum distance is the one that assures the complete evaporation of the solvent, 

the collection of the particles and a morphology with a narrow polydispersity [92, 137, 138].  

Flow rate. This parameter along with solution parameters (polymer concentration and molecular 

weight, solvent type and conductivity) can control polymer entanglements and particle formation. 

A high flow rate can cause the formation of secondary and satellite droplets and produce particles 

with high polydispersity. An optimal value for the flow rate is essential in order to achieve higher 
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evaporation of the solvent and to avoid droplets clustering. [138]. Literature reports a wide range 

of values from 0.003 to 30 mL/h, for the electrospraying of different materials [146].   

Needle gauge. Needle diameter is inversely proportional to its gauge. This is an important 

parameter in order to avoid coalescence of droplets and to have a reasonable collection and better 

particle formation. While lower needle gauge produces sputtering and broader size distributions, 

higher gauges allow narrowing the particle size range. Common needle gauges lie between 16 and 

26 (1.194 and 0.260 mm, internal diameter, respectively) [137], although lower sizes in the order 

of 100 µm of internal diameter have also been reported [145].  

Temperature. In general, the electrospraying process is conducted at ambient temperature. An 

increase in solution temperature can be favorable to the process because it decreases the surface 

tension and the viscosity of the solutions. An increase in temperature can also lead to a faster 

evaporation of the solvent, affecting particle size and morphology [147].  

2.2.1.2 Intrinsic properties of the solutions 

In general, variables such as polymer and solvent concentration, molecular weight, DDA (in the 

case of chitosan) affect the viscosity, surface tension, conductivity and chain entanglement, and 

influence the electrospraying process [143, 144].  

Polymer concentration. As opposed to electrospinning where higher polymer concentrations are 

employed to form continuous fibers, the electrospraying process requires relatively low polymer 

concentrations to generate micro and nanoparticles [137]. Two concentrations, the one associated 

with critical chain overlap, C*, and that for critical entanglement, Ce, determine the production of 

fibers or spheres [143] (see Figure 2.4). A dilute regime is obtained when polymer concentration 

is less than C*, where there is no entanglement formation (Figure 2.4a). At higher polymer 

concentrations, the semi dilute unentangled regime is achieved and some entanglements are 

observed, but they are not sufficient to maintain the morphology of the droplets (Figure 2.4b). 

Well-defined droplets are obtained at the semi-dilute moderately entangled regime (Figure 2.4c), 

at polymer concentrations in the range Ce<C<3C*; beyond this concentration, fiber emergence is 

attained [84, 92, 138, 143]. Stable fiber formation occurs at more than 2.5 entanglements per chain, 

or as C>>C* [143, 148] and increases with chitosan concentration [142].  
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Figure 2.4: Physical representation at the molecular level of various entanglement regimes obtained 

for different polymer concentrations. C*: critical chain overlap concentration, Ce: critical 

entanglement concentration. Adapted from [138] 

 

Polymer molecular weight. In the same manner than concentration, molecular weight affects the 

value of the critical concentration at which beads and fibers are obtained from the process; 

however, this concentration should be below the one of process limiting viscosity [86]. Both 

molecular weight and concentration influence particle size and morphology owing to viscosity 

[149, 150]. Beads and fibers are generally formed at low and high molecular weights, respectively 

[86]. Molecular weight has also a significant effect on the rheological and electrical properties such 

as surface tension, viscosity and conductivity.  

Solvent. Solvents with high vapor pressure (low boiling temperatures), which are highly volatile, 

are preferred in electrospraying. However, a fast evaporation of the solvent could hinder the 

diffusion of the polymer in the electrosprayed droplets and may lead to the formation of pores and 

hollow particles. The solvents more frequently used in electrospraying are acetone, acetic acid, 

acetonitrile, chloroform, 1,2-dichloroethane, dichloromethane (DCM), ethanol and N,N-dimethyl 

formamide (DMF), which can be used alone or combined [138]. Solvent concentration affects the 

morphology of electrosprayed droplets. Deposited particles with irregular shape can be obtained 

due to the solvent that is not evaporated before droplets reach the collector plate [138]. However, 

low concentrations of solvent may produce a phenomenon called sputtering, which affects process 
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stability and droplets deposition [137]. Remaining solvent content must be within the limits of 

safety standards. Solvent has also an important role in determining the conductivity of the 

electrosprayed solutions, a parameter that must be taken into account for the optimization of the 

process [138]. 

Viscosity. Viscosity along with conductivity are the dominant solution characteristics for the 

electrospraying process [142]. Spinning or spraying can be achieved depending on this value [144]. 

In general, low viscosity polymer solutions allows for droplets formation. However, relative low 

concentrations and hence low viscosities could limit the formation of the spherical shape and hinder 

the shrinkage of droplets during solvent evaporation [138, 151]. High viscosity solutions shift the 

cone-jet mode to higher voltages. Particle size can be controlled by the solution viscosity and 

operation parameters. A decrease in viscosity or an increase in conductivity decreases the particle 

size [138].   

Surface tension. Surface tension is mainly affected by the solvent type and concentration, while 

being less influenced by polymer concentration [86]. A low surface tension of the solution along 

with a low conductivity is needed to obtain a stable process and the single cone-jet mode [138, 

142]. Droplet and fiber formation can be determined by means of this parameter [86].  

Electrical conductivity. Low electrical conductivity values are preferred in order to obtain the 

single cone-jet mode and a stable process [138, 142]; however, too low values can be unfavorable 

for the process [149] and a value of at least 0.01 µS/m is required for the current to flow [138]. 

When small particle sizes are required, an increase in the conductivity can lead to their formation 

due to enhanced Coulomb repulsion, but sufficient viscosity is needed to ensure that entanglement 

forces remains higher than the Coulomb ones to maintain the stability of the process [138, 142]. 

The solvent is the main parameter influencing the conductivity of the solutions [138]. 

2.2.1.3 Ambient conditions 

Parameters such as field strength, conductivity and flow rate of the polymer solution affect the 

stability of the jet cone. Morphology and size of the droplets are mainly affected by concentration 

and molecular weight of the polymer, flow rate, vapor pressure of the solvent, electrospraying 

distance and environmental conditions of the chamber, including humidity, temperature, 

atmospheric pressure and air velocity [138].  
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High temperature conditions promote the rapid removal of the solvent affecting the particle size 

and shape. The rate of solvent evaporation and the solidification of the electrosprayed particles can 

also be influenced by atmospheric pressure, humidity and air velocity [152]. 

2.2.2 Governing equations of the process 

The steady jet in electrospraying is governed by four steady state equations representing the 

conservation of mass and electric charges, the linear momentum balance and the Coulomb’s law 

for the electric field [153, 154]. The complete development of the equations is shown in Appendix 

B. 

• Mass conservation: 

𝑣𝜋𝑅2 = 𝑄 

• Electric charge conservation: 

𝜋𝑅2𝐾𝐸 + 2𝜋𝑅𝑣𝜎 = 𝐼 

• Momentum conservation: 

𝜌𝑣𝑣′ =
𝑇′

𝜋𝑅2
 +  
𝜎𝜎′

𝜀 ̅
 +  (𝜀 − 𝜀)̅𝐸𝐸′ + 

𝛾

𝑅2
𝑅′ +  𝜌 g + 2

𝜎𝐸

𝑅
 

• Coulomb’s law for electric field: 

𝐸(𝑧) = 𝐸∞ − ln (
𝐿

𝑅0
) [
4𝜋

𝜀̅

𝑑(𝜎𝑅)

𝑑𝑧
− 
1

2
(
𝜀

𝜀̅
− 1)

𝑑2(𝐸𝑅2)

𝑑𝑧2
] 

where (in order of appearance) 𝑣 is the axial velocity of the jet, 𝑅 is the radius of the jet, 𝑄 is the 

flow rate, 𝐾 is the conductivity of the solution, 𝐸 is the axial component of the electric field inside 

the jet evaluated at the surface, 𝜎 is the surface charge density, 𝐼 is the current carried by the jet, 𝜌 

is the solution density, 𝑇 is the tensile force in the jet, 𝜀 ̅is the dielectric constant of the air, 𝜀  is the 

dielectric constant of the jet, 𝛾 is the surface tension, g is the gravity, 𝐸∞is the external electric 

field, 𝐿 is the length of the jet, 𝑅0 is the initial radius of the jet (needle), 𝑧 is the flow direction, and 

the variables containing the symbol “ ′ ” refer to the derivative of the respective variables. 
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2.2.3 Electrospraying of chitosan 

Many studies have successfully synthesized uniform particles of polymers such as poly (lactic-co-

glycolic acid) (PLGA), poly (caprolactone) (PCL) and ethylene vinyl acetate (EVA) via the 

electrospraying process [92, 139-141]. However, relatively few studies have considered the 

electrospraying of chitosan solutions [137, 142, 155], despite the extensive investigations 

published regarding its electrospinnability and fiber formation [86, 89, 156-159].  

The electrospraying of chitosan can be considered as a promising technique for the synthesis of 

defined size micro and nanoparticles. One of the main advantages is that chitosan is soluble in 

acetic acid, which is a nontoxic solvent with a low vapor pressure, which is desirable for the 

processing. Other advantages regarding the processing and final morphology obtained were 

exposed in Section 2.2. In addition of being a one-step process that does not require extra drying 

steps nor high temperature conditions, electrospraying allows to have better control over particle 

size, particle size distribution and morphology than with other conventional methods for micro and 

nanoparticle formation. However, the number of parameters for its optimization can be a complex 

task, and is a subject of ongoing research.  

To date, studies relating the electrospraying ability of chitosan have been mainly focused on the 

determination of the processing parameters for particle formation [137, 142, 155]. The study of the 

intrinsic properties of chitosan solutions for the optimization and the complete understanding of 

this process started to be addressed recently. Kuo et al. [155], Arya et al. [137] and Zhang et al. 

[142] evaluated the effect of different processing or solution parameters to control particle size and 

particle size distribution. Their studies comprised the analysis of one chitosan grade characterized 

by a given MW and DDA. Chitosan particles with sizes in the range of 124 to 940 nm in diameter 

were reported. Recently, Gómez-Mascaraque et al. [160] described the effect of chitosan molecular 

weight on the electrospraying of chitosan microspheres, and its correlation with electrical 

conductivity, viscosity and surface tension of the solutions. No processing parameters were studied 

and chitosan with only one DDA was considered in their study. In addition, the viscosity of the 

solutions was studied at a particular shear rate of 200 s-1, which is far from the one calculated, 

given the flow rate and needle size, in real electrospraying conditions (would be around 0.6 s-1 

when considering their processing conditions).  
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Despite the few studies available on the electrospraying ability of chitosan, some information can 

be obtained from electrospinning, which has been a subject of numerous studies. For instance, 

Geng et al. [86] obtained chitosan beads when electrospinning chitosan/acetic solutions having 

different polymer and acetic acid concentration and with chitosan of different molecular weights. 

Beads were obtained for chitosan solutions prepared with a chitosan molecular weight of 106 kDa, 

at a concentration of 7 wt% and with acetic acid concentrations of less than 30 wt%. For a chitosan 

molecular weight of 30 kDa and 10 wt% of chitosan, 90 wt% of acetic acid content was needed.  

2.3 Summary 

The state of the art presented above shows that chitosan is a promising candidate for the formulation 

of new antibacterial food packaging materials because of its nontoxicity and antimicrobial 

properties. Up to now, the reported research has mainly pointed to the study of chitosan films, 

fibers and solutions, the latter being impractical for real industrial applications. Hence, there is still 

room for the study of the antibacterial activity of chitosan powder and flakes, which may be of 

industrial interest because no processing step is involved. In addition, few studies have been 

addressed on the evaluation of the antibacterial activity of chitosan micro and nanospheres. 

Moreover, the study of the physical form to optimize its antibacterial properties has not been 

conducted yet, nor the effect of pH, temperature and pathogen species. These latter parameters are 

of particular interest for practical and real applications in food industry.  

On the other hand, the operating window and the influence of both processing and solution 

parameters for the electrospraying of chitosan solutions is still undetermined. It is needed to 

establish the proper relations between chitosan solutions and processing parameters to have an 

optimized process. This process has been recently studied with other polymers in drug delivery 

applications due to many of its advantages with respect to the conventional methods for micro and 

nanoparticle formation. The electrospraying process may provide a novel way for making chitosan-

based food packaging materials. The direct electrospraying of chitosan solutions into conventional 

packaging materials (such as polyethylene, polypropylene, aluminium films, etc.) attached to a 

grounded collector, may allow the incorporation of chitosan nanoparticles and provide 

antimicrobial properties.  
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CHAPTER 3: OBJECTIVES 

According to the literature review presented in Chapter 2, chitosan is a promising candidate for the 

formulation of new antibacterial food packaging materials. However, the antibacterial properties 

of chitosan in the solid state have not been addressed, nor the influence of its physical form. On 

the other hand, the operation window for the fabrication of chitosan micro and nanoparticles via 

electrospraying is still lacking. It is needed to establish proper relationships between chitosan 

solutions and processing parameters in order to have an optimized process. The main objective of 

this research is: 

“To produce chitosan micro and nanospheres via the electrospraying process for the 

formulation of new antibacterial chitosan-based food packaging materials” 

The specific objectives of the current research work are: 

1) To identify the main factors affecting the antibacterial activity of chitosan in a discontinuous 

solid form, such as chitosan powder and flakes. 

2) To study the influence of solution and process parameters on the electrospraying ability of 

chitosan and mapping the process stability and droplet formation. 

3) To produce chitosan micro and nanospheres via electrospraying for study the effect of chitosan 

physical form (flake, solution, micro and nanospheres) on the antibacterial activity. 
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CHAPTER 4: ORGANIZATION OF THE ARTICLES 

The following three chapters comprise the articles containing the main scientific findings of this 

study and represent the core of the thesis, which is presented in the form of three peer-reviewed 

journal papers. 

Chapter 5 presents the results of the first paper “Antibacterial Activity of Neat Chitosan Powder 

and Flakes” that has been published in Molecules (VOL. 22, NO. 1, 100, 2017) (impact factor = 

2.749). This journal was chosen because it is one of the leading journals that focuses on natural 

products and their properties. This paper was published in the special issue: “Antibacterial 

Materials and Coatings” on January 6th 2017. The manuscript investigates the influence of different 

environmental, microbial and intrinsic factors on the antibacterial activity of chitosan in a 

discontinuous solid form, such as powder and flakes. Factors including temperature, ionic strength, 

the presence of a solid physical support and chitosan purity are studied. A direct usage of chitosan 

in these forms may be of industrial interest because no processing step is involved. From the 

aforementioned factors, temperature, salt concentration and bacterial species are known to be the 

most critical in food spoilage and the most relevant in food preservation, and are considered 

altogether in this work. This systematic study was important to deepen our comprehensive 

understanding of chitosan antibacterial action and to broaden its activity and applicability. 

Chapter 6 presents the results of the second paper “Chitosan electrospraying: Mapping of process 

stability and droplet formation” that has been submitted to Journal of Aerosol Science (impact 

factor = 2.627). This journal was selected because it is one of the most important journals in 

publishing works related to electrostatics and particulate matter. The manuscript investigates the 

influence of processing and solution parameters on the processability of chitosan solutions and 

particle collection and morphology of chitosan nanoparticles. In addition, the mapping of the 

stability of the processing was established by means of the dimensionless Reynolds, electric Peclet, 

Weber and Froude numbers and the electrostatic force parameter, which relate the main variables 

of the process.  

Chapter 7 contains the results of the third article “Effect of Chitosan Physical Form on Its 

Antibacterial Activity Against Pathogenic Bacteria” that has been published in Journal of Food 

Science (VOL. 88, NO. 3, 679-686, 2017) (impact factor = 1.649). This journal was selected 

because it addresses research in the area of food microbiology and safety, nanoscale food science, 
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engineering and nanotechnology. This article was published on January 31st 2017. The manuscript 

investigates the antibacterial activity of chitosan nanospheres against two foodborne pathogens: 

Staphylococcus aureus and Salmonella enterica serovar Typhimurium at different pH and 

temperature conditions. In addition, the effect of chitosan physical form on its antibacterial activity 

is studied. Even though the antibacterial activity of chitosan has been widely studied, no report had 

compared the effect of particle size nor had analyzed the effect of pH and temperature on the 

antibacterial activity of chitosan nanospheres, to the best of our knowledge. This study was of great 

importance regarding the many possible applications, such as in food packaging and in the 

biomedical field. 

Additionally, Appendix A presents the results of a fourth paper “Chitosan-bacterial nanocellulose 

nanofibrous structures for potential wound dressing applications” that has been published in 

Cellulose (VOL. 23, NO. 5, 3089-3104, 2016) (impact factor = 3.195). This journal was chosen 

because it is the leading journal devoted to the scientific research in the area of cellulose and related 

naturally occurring polymers such as chitosan. This paper was published on August 1st 2016. This 

manuscript investigates the processing via coaxial electrospinning for the development of 

nanostructures containing both chitosan and bacterial nanocellulose for potential wound dressing 

applications. The antibacterial properties of the obtained fibers mats were investigated against a 

non-pathogen strain of E. coli. 
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CHAPTER 5: ARTICLE 1: ANTIBACTERIAL ACTIVITY OF NEAT 

CHITOSAN POWDER AND FLAKES 

 

Nury Ardila1, France Daigle2, Marie-Claude Heuzey1 and Abdellah Ajji1 

1 Research Center for High Performance Polymer and Composite Systems (CREPEC), 

Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-

Ville, Montréal, QC H3C 3A7, Canada 

2 Department of Microbiology, Infectiology and Immunology, Pavillon Roger-Gaudry, Université 

de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada 

 

(This work was published online in Molecules on January 6th, 2017) 

5.1 Abstract 

This study investigates the antibacterial activity of chitosan powder and flakes against three 

different bacterial species, Escherichia coli, Listeria innocua and Staphylococcus aureus, which 

are frequent causes of food spoilage. The effect of chitosan concentration and purity, as well as the 

influence of temperature, ionic strength (salt) and impact of a solid physical support in the medium 

are examined. Results show that the antibacterial activity of neat chitosan: (i) requires partial 

solubilisation; (ii) can be promoted by environmental factors such as adequate temperature range, 

ionic strength and the presence of a solid physical support that may facilitate the attachment of 

bacteria; (iii) depends on bacterial species, with a sensitivity order of E. coli > L. innocua > S. 

aureus; and (iv) increases with chitosan concentration, up to a critical point above which this effect 

decreases. The latter may be due to remaining proteins in chitosan acting as nutrients for bacteria 

therefore limiting its antibacterial activity. These results on the direct use of chitosan powder and 

flakes as potential antimicrobial agents for food protection at pH values lower than the chitosan 

pKa (6.2–6.7) are promising. 
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5.2 Introduction 

Chitin is a cellulose-like biopolymer consisting of linear chains of predominantly β-(1→4)-2-

acetamido-2-deoxy-D-glucose (also named N-acetyl-D-glucosamine) residues. Due to its low 

solubility in organic solvents and low chemical reactivity, chitin is usually transformed into 

chitosan. Chitosan, the deacetylated form of chitin, is a polysaccharide composed mainly of 

repeating β-(1 → 4)-2-amino-2-deoxy-D-glucose (or D-glucosamine) units. Several properties of 

chitosan, including its natural origin, abundance, biodegradability, availability, biocompatibility, 

mucoadhesivity and reactivity make it attractive in different fields (biomedical, food industry, 

cosmetology, water purification, among others) [1–3]. In particular, its antimicrobial properties [4–

6] along with its non-toxicity [7] make it of great interest in the food protection area [8–12].  

Although inherent, the antimicrobial properties of chitosan are affected by different factors. Kong, 

Chen, Xing and Park [4] have classified most of them into four different types, namely: (1) 

microbial factors, including microorganism species and cell age; (2) environmental factors such as 

pH, ionic strength of the medium, temperature and reaction time; (3) intrinsic characteristic of 

chitosan, such as positive charge density (associated with degree of deacetylation, DDA), 

molecular weight (MW), chelating capacity, hydrophobic/hydrophilic characteristics and (4) 

physical state, specifically solution or solid state. Although different authors have evaluated the 

effects of some of the aforementioned factors on the antimicrobial activity of chitosan solutions 

[2,5,6,13–17], films [18–20], fibers [21–24], micro- and nanoparticles [25–28], to our knowledge 

no study has reported the inhibitory effect of chitosan in a neat discontinuous solid state, such as 

powder and flakes, nor on its mode of action. A direct usage of chitosan in these forms may be of 

industrial interest because no processing step is involved. Moreover, a systematic study of chitosan 

in this state is necessary for a deeper understanding of its antibacterial (AB) action and to broaden 

its activity and applicability. For example, processed discontinuous solid forms of chitosan such as 

micro- and nanobeads may be of significant interest in the development of new chitosan-based 

food packaging materials, but this is beyond the scope of the present work. On the other hand, the 

mode of antimicrobial action of chitosan powder and flakes may be considered different from the 

one for chitosan nanoparticles, given the special character of the latter such as their small size and 

high surface area, as well as the possibility to enter the cells through perfusion [26,29].  
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Furthermore, while factors such as pH, medium type, bacterial species, and chitosan concentration, 

MW and DDA have been widely studied for chitosan in solution [2,5,6,13,14,16,17], others such 

as temperature, ionic strength, the presence of a solid physical support and chitosan purity have 

received less attention. From the aforementioned factors, temperature, salt concentration (ionic 

strength) and bacterial species are known to be the most critical in food spoilage and the most 

relevant in food preservation, but have not been thoroughly considered altogether in chitosan-

related studies and therefore are investigated in the present study. Apart from the above, humidity, 

which is known to be one of the major factors deteriorating the properties of food and accelerating 

the formation of undesirable organisms, will not be considered in the current research but in future 

investigations.  

In this work, we examine the effect of different critical factors affecting food spoilage and 

preservation on the AB activity of chitosan in a neat discontinuous solid state (powder and flake-

like forms), and under carefully controlled experimental conditions. More specifically, the 

influence of environmental and microbial factors such as temperature, ionic strength, the presence 

of a solid physical support, and bacterial species are investigated. Moreover, the effects of chitosan 

concentration and purity are analyzed. The results show that chitosan in powder and flake form 

exhibit a high antibacterial activity under conditions close to those of found in contaminated food 

products. Nonetheless, this activity can be affected positively or negatively by factors such as 

temperature, ionic strength, chitosan concentration, purity and bacterial species.  

5.3 Results and Discussion 

Table 5.1 presents the DDA, MW, polydispersity (PDI), moisture, ash and protein content as well 

as particle size values of the chitosan (CS) powder (P) and flakes (F) used. Chitosan flakes and 

powder have a DDA of 90% and 95%, respectively. In average, samples contain 9 wt/v % of 

moisture and low ash content (0.05%). In addition, chitosan flakes and powder include 8.8 and 176 

mg of proteins per gram of chitosan, respectively. According to the suppliers both grades come 

from the same source (shrimp shells), hence differences in purity may be related to the conditions 

of the chemical treatment when transforming chitin into chitosan, including the sequence for 

deproteinization, decalcification and deacetylation, the concentration of the chemicals used and the 

soaking time [30,31].  
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Table 5.1: Chitosan grades. 

CS Grade a 
DDA 

(%) 

MW 

(KDa) 
PDI 

Moisture 

(%) 
Ash (%) 

mg Protein/  

g Chitosan 

Mean particle size 

(μm)d 

F-90-207 b 90 207 1.7 8.1 ± 0.2 0.05 ± 0.02 8.8 ± 0.2 670 ± 400 

P-95-57 c 95 57 2.2 9.8 ± 0.1 0.05 ± 0.01 175.7 ± 0.3 55.1 ± 43.7 

a First letter in the nomenclature indicates F-flakes, P-powder; the first number the DDA (%) and 

the second one the average molecular weight (Mw, KDa). b Biolog GmbH. c Primex. d Normal. 

Regarding the MW and PDI, samples exhibit a weight average MW of 207 and 57 kDa and 

polydispersity indices of 1.7 and 2.2, respectively, which may also be related to different conditions 

during chemical treatment. Figure 5.1 presents the cumulative weight and number fraction as 

function of molar mass for chitosan. Chitosan flakes (F-90-207) have a narrower size distribution 

than chitosan powder (P-95-57). In addition, about 5% of chitosan flakes show a molecular weight 

between 30 to 50 kDa, whilst about 10% of the chitosan powder has a molecular weight near 10 

kDa, which may indicate the presence of chitooligosaccharides. 

 

Figure 5.1: Cumulative weight (Mw)/number (Mn) fraction as a function of molar mass for 

chitosan powder and flakes. 
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5.3.1 SEM 

5.3.1.1 Elemental Analysis 

Table 5.2 presents the elemental analysis of chitosan. In addition to carbon, nitrogen and oxygen, 

chitosan samples (both powder and flakes) contain traces (in ppm) of sodium, calcium, chlorine, 

cobalt and magnesium, probably remaining from chitin and the different stages of the extraction 

and purification processes [32].  

Table 5.2: Elemental analysis via EDS-SEM in chitosan grades. 

Chitosan 
Element 

C N O Na Ca Mg S Si Co Al Cl 

F-90-207 X X X X X X  X X X X 

P-95-57 X X X X X X X  X X X 

X indicates the elements present in the sample 

5.3.1.2 Particle Size, Thickness, Shape and Particle Size Distribution  

Figure 5.2 presents SEM micrographs of the chitosan samples. Their average particle size and 

particle size distribution are shown in Table 5.1 and Figure 5.2, respectively. According to the 

micrographs, chitosan flakes, which are of the order of millimeter size, present a thickness of 21.2 

μm, an irregular shape, and higher particle size values and broader particle size distribution than 

the powder grade. In the case of powder, distribution is right-skewed and particles are of 

micrometer size (55 μm, in average). Considering both chitosan in flakes and powder as spheres 

having a bulk density of 0.3 g/cm3 [33], the specific surface area varies from 0.03 (flakes) to 0.36 

(powder) m2/g (Figure 5.2). The specific surface area is considered an important factor for the 

antibacterial activity. 
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Figure 5.2: Chitosan in flakes and powder form (A, C) and their particle size distribution (B, 

normal distribution and D, log-normal distribution).  The symbols a, b and SSA (in Figures B and 

D) represent the average particle size, thickness and the specific surface area, respectively. This 

figure has been modified with respect to the original article. 

5.3.2 Antibacterial Assays 

5.3.2.1 Effect of Chitosan Concentration 

Figure 5.3 shows the effect of chitosan concentration for the two chitosan grades, when suspended 

in PBS. According to the results, the AB activity of chitosan increases with concentration up to a 

certain value, named the critical concentration, CC, after which this activity decreases. The CC was 

found to be between 0.4 and 1.2 wt/v % without any apparent pattern regarding DDA, MW, 

bacterial species or medium. The loss of antibacterial activity of chitosan powder and flakes at high 

chitosan concentrations is mainly related to impurities in the chitosan samples, as will be discussed 

below. 

It is noteworthy that: (i) the pH of the medium varied between 5.8 and 7.0 after the incorporation 

of chitosan (0.01%–0.5% pH 5.8; 0.5%–1.0% pH 6.2; 1.0%–2.0% pH 6.5 and 2.0%–4.0% pH 7.0) 
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to the PBS medium (pH 5.8), which is mainly related to the increase of protonated chitosan amino 

groups (NH3
+) and (ii) bacterial population in the control remained invariable in this pH range.  

Protonation may also cause partial solubility of chitosan suspensions, given the pH of the medium. 

The potential solubility of chitosan powder and flakes during the AB tests was verified qualitatively 

by ATR spectroscopy, at a chitosan concentration of 0.4 wt/v %. Figure 5.4 compares the FTIR 

spectra of PBS with the filtrate of chitosan suspensions subjected to the same conditions as in the 

AB tests at 7 and 37 °C. Solubility of chitosan suspensions was confirmed given the identification 

of the main characteristic peaks of chitosan at 1345, 1420, 1560, 1655 and 3290 cm−1, which 

correspond to a CO–NH deformation and to CH2 group (amide III); C-H2 stretching bending; amide 

II band and the N–H stretching of amine II; CONH2 group and stretching of C=O (amide I); and –

OH and –NH stretch, respectively. In particular, the amide I bands at 1655 cm−1 or the amide II 

band at 1560 cm−1 are identified as characteristic N-acetylation bands associated with amine and 

amide groups [34,35]. 

 

Figure 5.3: Effect of chitosan concentration in PBS on the number of viable survivors. Cc is the 

critical concentration above which the AB activity of chitosan decreases. Dashed lines represent 

the reduction in bacterial concentration after deproteinization. Samples are P-95-57 (powder) and 

F-90-207 (flakes). The number of viable organisms was the same after 18 and 48 h incubation on 
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the agar plates, suggesting that recovery from sub-lethal injury had not taken place. For each 

chitosan grade, means that do not share a letter are significantly different with a confidence level 

of 95% by Tukey Pairwise Comparisons. 

 

Figure 5.4: FTIR spectra: Peaks at 1345, 1420, 1560, 1655 and 3290 cm−1 confirm the solubility 

of chitosan powder and flakes in the suspensions during the AB tests. 

Preliminary AB tests showed that chitosan powder and flakes were not active at pH values higher 

than the chitosan pKa (6.2–6.5) [36,37], and indicated the need for a partially solubilized state to 

exert any AB effect. This point highlights the main difference with chitosan micro- and 

nanoparticles, in which the AB action of chitosan could be achieved at acidic and neutral pH values 

[25,26,28].  

The contributions to the AB activity from the partially solubilized chitosan (filtrate subjected 

previously to the same conditions as in the AB tests) and from the solid-state particles were 

quantified. Figure 5.5 presents the decrease in bacterial density after exposure of E. coli to 0.4 wt/v 

% chitosan and to the filtrate from chitosan suspensions. AB results allowed quantifying a 

reduction of 4.0 and 2.5 log in bacterial density from the chitosan solubilized in the suspensions 

with powder and flakes, respectively. An additional contribution of 2.7 and 0.8 logs reduction to 

the AB activity was obtained by the presence of the chitosan powder and flakes, which may act as 

physical supports for the attachment of bacteria, as previously reported for the case of chitosan 

microspheres [27]. Hence, these results suggest that the presence of a solid form may favor chitosan 
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AB activity. In this regard, AB assays were performed in the presence of calcium carbonate 

particles (CaCO3), a chemical compound lacking intrinsic AB activity.  

 

Figure 5.5: Recovery of viable bacteria after exposure of chitosan and filtrate from chitosan 

suspensions to E. coli. The number of viable organisms was the same after 18 and 48 h incubation 

on the agar plates, suggesting that recovery from sub-lethal injury had not taken place. Means that 

do not share a letter are significantly different with a confidence level of 95% by Tukey pairwise 

comparisons. 

Figure 5.6 shows the surviving bacteria after exposure of E. coli to CS solution and CaCO3. At a 

concentration of 0.01 wt/v %, CS solution reduces bacterial density by 1.4 log. However, E. coli 

reduction increases up to 4.8 logs when CaCO3 is present in the medium. As CaCO3 did not display 

AB activity in the absence of chitosan, these results indicate that the presence of a solid particles 

enhances the AB activity of the CS solution filtrate and may facilitate the attachment of bacteria. 

Similarly, chitosan powder and flakes may serve as physical solid supports to enhance the AB 

activity of the partially solubilized chitosan. Attachment of bacteria to chitosan is due to 

electrostatic interactions between the positively charged chitosan with the negatively charged cell 

surface. As CaCO3 reacts in acid medium (given the HCl added to the medium when adjusting the 
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pH to 5.8) producing CaCl2 and thereby Ca2+, hence it is believed that bacteria may attach to 

calcium when seeking nutrients for microbial growth [38].  

 

Figure 5.6: Recovery of viable bacteria after exposure of CaCO3 and CS solution (F-90-207) to E. 

coli. The number of viable organisms was the same after 18 and 48 h incubation on the agar plates, 

suggesting that recovery from sub-lethal injury had not taken place. Means that do not share a letter 

are significantly different with a confidence level of 95% by Tukey pairwise comparisons. 

Based on the previously discussed analyses, two hypotheses are considered to explain the existence 

of a critical chitosan concentration, as observed in Figure 5.3. The first one considers that a possible 

agglomeration of particles at the bottom of the assay tubes leaves less chitosan solubilized and 

fewer particles in contact with bacteria, thereby decreasing the AB activity of chitosan. However, 

AB tests conducted in Erlenmeyer flasks with higher surface area (approx. 16–25 times) than in 

assay tubes yielded the same trend than the ones presented in Figure 5.3, and consequently this 

hypothesis was rejected. The second hypothesis considerers that impurities, such as minerals and 

proteins remaining in chitosan [39] or chitosan itself may represent a nutrient source for bacteria 

and therefore be responsible for the decrease in the AB activity above the critical concentration. 

PBS buffer medium contains no nutrients for bacteria and at 4 wt/v % chitosan, bacterial density 

increases over the control and at a higher bacterial growth rate in chitosan powder than flakes, 

which is congruent with the higher protein content (Table 5.1). Besides, below the critical 
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concentration chitosan powder displayed higher activity, which is attributed to its higher DDA , 

lower MW and smaller particle size. This allows speculating that proteins act as nutrients for 

bacteria. Hence, a deproteinization step via enzymatic activity for these two chitosan grades was 

carried out, and the AB results are shown as dashed lines in Figure 5.3. Deproteinization was 

carried out under the action of Protease K, which is a specific enzyme that acts by breaking the 

peptide bonds of proteins, more specifically between the hydroxyl (COOH) and aminoacid (NH2) 

lateral chains. The treatment with the enzyme was relatively short, to avoid any depolymerization 

of chitosan. After the removal of proteins, the AB activity of chitosan increases and lower 

concentrations are sufficient to eradicate bacteria. In addition, by increasing chitosan content, the 

AB activity increases up to a certain concentration and remains the same even if the concentration 

is further increased. Accordingly, impurities in solid state chitosan such as proteins can limit its 

AB efficacy. On the other hand, the low ash values reported in Table 5.1 discard a feeding effect 

from minerals. Chitosan itself (in the form of chito-oligosaccharides observed in Figure 5.1) as a 

nutrient source for bacteria was also discarded since at 4 wt/v % bacterial density was totally 

reduced only for deproteinized chitosan, while chito-oligosaccharides may be present before and 

after enzymatic treatment.  

5.3.2.2 Identification of Proteins 

Figure 5.7 shows a SDS-PAGE electrophoresis test result for the identification of the proteins 

remaining in the two chitosan samples, before and after deproteinization. High molecular weight 

proteins, in the range of 100–250 kDa, were detected in chitosan before the deproteinization step. 

Those are indicated as intense bands in Figure 5.7. Once proteins are removed, a decrease in the 

intensity of the bands is observed for both chitosan grades. This also confirms that proteins are 

mostly removed after the enzymatic treatment. 
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Figure 5.7: Identification of proteins before and after deproteinization of chitosan. Samples are P-

95-57 (powder) and F-90-207 (flakes). 

5.3.2.3 Effect of Temperature  

Temperature is an important parameter to consider when seeking practical applications such as in 

the food packaging sector. Generally, in vitro AB tests of chitosan in solution form are carried out 

under optimal conditions for the growth and survival of bacteria, such as 37 °C in the case of E. 

coli. To our knowledge, the effect of temperature on the AB efficacy of chitosan in solution has 

barely been examined [40,41], not to mention in a discontinuous solid form.  

Figure 5.8 shows the effectiveness of chitosan at 7 ± 1 °C and 37 ± 1 °C and pH of 5.8. These 

values correspond to temperatures close to those of refrigerated food products and optimal bacterial 

growth, respectively. As presented in Figure 5.8, the AB activity of chitosan highly depends on the 

incubation temperature, with a noticeably greater AB efficacy at 37 °C. At this temperature, a total 

inhibition of bacterial density for the powder chitosan grade, and a decrease in 3 log CFU/mL 

(approx. 99.9% of bacteria) for the flakes, are observed. By contrast, despite the fact that the AB 

activity strongly decreases at 7 °C, as shown in Figure 5.8, both chitosan grades reduce bacterial 

density by more than 1 log CFU/mL (approx. 90% of bacteria). Hence, notwithstanding the limiting 

effect of temperature and the fact that total inhibition of bacteria was not achieved, results are still 

promising regarding chitosan AB activity in refrigerated conditions. Similar results were reported 
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recently in which a higher susceptibility of bacteria to the action of chitosan nanoparticles in high 

temperature conditions was found [25].   

Different factors may contribute to the stronger activity at 37 °C seen in both chitosan grades. First, 

as temperature controls the acid dissociation constant Ka (pKa = −log Ka) [42], an increase in the 

temperature favors the AB activity since Ka increases. In this work, the pKa of chitosan powder 

and flakes was determined by titration [43] at 0 °C and 37 °C. The pKa decreases from 6.7 to 6.6 

for chitosan flakes, and from 6.6 to 6.2 for chitosan powder when the temperature increased from 

0 to 37 °C, respectively. The smaller the value of pKa, the larger the extent of dissociation and the 

number of protonated amino groups, which should favor the AB activity at higher temperature.  

Second, a higher chitosan solubility and chain mobility may be achieved at 37 °C than at 7 °C. 

Figure 5.4 illustrated the potential solubility of chitosan powder and flakes at these temperatures. 

The higher AB activity of chitosan powder with respect to chitosan flakes at 37 °C may be 

accounted for by a lower particle size, lower MW and higher DDA content, which could favor its 

solubility, given the pH of the medium (5.8). In addition, chitosan powder has a higher content of 

low MW species (chito-oligosaccharides) as shown in Figure 5.1, which may have contributed to 

the higher AB effect [44]. 

Finally, Tsai and Su [40] have suggested that low temperature may induce changes in the bacterial 

cell structure by decreasing the number of binding sites on the surface (or electronegativity). 

Consequently, less protonated chitosan amino groups may interact with the available negatively 

charged sites in the bacteria surface, resulting in a decreased chitosan AB activity. In addition, E. 

coli is either a mesophile or a psychrotrophic and consequently a temperature of 7 ºC does not 

favor its biological activities, including its growth. According to our results, the AB activity for 

both chitosan grades is highly reduced when the temperature decreases but without significant 

difference regarding the efficacy between the two grades (p > 0.05), as observed at 37 °C (p < 

0.05). Therefore, it is speculated that this mechanism (decrease of number of binding sites) may 

influence the most and strongly limits the AB efficacy, regardless of the chitosan grade.  
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Figure 5.8: Effect of temperature on the antibacterial activity of chitosan (number of viable 

survivors). Bars with different letter are significantly different (p < 0.05). Samples are F-90-207 

(flakes) and P-95-57 (powder). The number of viable organisms was the same after 18 and 48 h 

incubation on the agar plates, suggesting that recovery from sub-lethal injury had not taken place. 

Means that do not share a letter are significantly different with a confidence level of 95% by Tukey 

pairwise comparisons. 

5.3.2.4 Effect of Salt Concentration and Ionic Strength 

Salts are commonly incorporated into food as additives and preservatives. Their presence can favor 

the chelating capacity of chitosan for metal ions and consequently compromise its antibacterial 

properties. Figure 5.9 shows the effect of salt concentration and ionic strength (I) on the AB activity 

of chitosan flakes. As the concentration of NaCl and MgCl2 increases from 0.1 M to 1.0 M, the AB 

activity of chitosan decreases. This effect can be explained through two mechanisms and the 

Debye-Hückel equation [4,45–47]. First, given the acidic conditions of the medium (pH 5.8), 

protonated chitosan amino groups may trigger electrostatic attraction of anionic compounds, 

including metal anions (chlorine, anionic ligands, etc.) [48]. Consequently, the interaction of 

chitosan with metal ions in the aqueous medium leaves less chitosan amino groups available for 

contact with bacteria. Secondly, the negatively charged components (lipopolysaccharides and 
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proteins) on the Gram-negative E. coli bacteria surface may interact with the existing cations in the 

medium instead of interacting with chitosan, consequently lowering the apparent AB activity. This 

interaction certainly occur given bacteria adsorb essential nutrients such as Ca2+ for microbial 

growth [38]. Otherwise, as electrolytes are dispersed in the medium, the electrostatic interactions 

of chitosan may be screened by the free charges, causing a net “double-layer” interaction decay 

with a characteristic length known as Debye-length κ−1 [49]. For an electrolyte: 

κ−1 = [(ε𝑟ε0𝑘𝐵𝑇)/(2𝑁𝐴𝑒
2𝐼)]1/2 (1) 

where  ε𝑟 , ε0, 𝑘𝐵 , 𝑇, 𝑁𝐴, 𝑒 and 𝐼  are the dielectric constant, permittivity of the free space, 

Boltzmann constant, absolute temperature, Avogadro number, elementary charge and ionic 

strength in the medium, respectively [47]. Since all previous parameters are the same in our study 

except for the ionic strength, κ−1 can be simplified as κ−1 = 𝐾𝐼−1/2 nm, where K is a constant. 

Accordingly, the Debye-length decreases with increasing ionic strength (or salt content in this 

case), explaining the decrease of the AB activity when NaCl or MgCl2 are added. This is a 

consequence of a decrease of the electrostatic repulsions in chitosan (screening of the positively 

charged chitosan amino groups), limiting the interactions with the negatively charged bacterial 

surface.  

In addition, our results show that the type of salt (ions) in the medium also influences the AB 

effectiveness of chitosan. This effect can be observed when analyzing the two types of salt at a 

concentration of 0.1 M. According to Figure 5.9, the AB efficacy of chitosan is weaker when Mg2+ 

ions are present in the medium in comparison with Na+, i.e., the presence of Na+ ions is less 

detrimental to the AB efficacy of chitosan. At 0.1 M, the ionic strength in the medium is three times 

higher for MgCl2 than for NaCl, which implies a decrease of about 1.7 times κ−1. Consequently, 

more charges are screened, limiting more significantly the AB activity. The same explanation is 

valid when comparing the AB efficacy of chitosan at 1.0 M NaCl (𝐼 = 1.0 𝑀, κ−1 = 1 𝐾 nm) with 

0.1 M MgCl2 (𝐼 = 0.3 𝑀, κ−1 = 1.82 𝐾 nm).  

On the other hand, when a high concentration of salt is used (1.0 M), the inhibitory effect of 

chitosan fades more in comparison with 0.1 M, but by an equal amount for both salts (p > 0.05). 

Although the Debye-length theory is only valid at low concentrations and breaks down when the 

ionic strength is over 0.1 M [50,51], a rough approximation indicates that at 1.0 M, κ−1  is 1.0 K 



40 

 

nm and 0.6 K nm for NaCl and MgCl2, respectively. In this case, despite the Debye-length is 

meaningfully different, no significant difference in the drop of the AB efficacy is observed, 

inferring that chitosan charges are totally screened. However, the concentration of salt is high 

enough to limit entirely the AB activity of chitosan as well as killing bacteria, as observed in the 

control samples containing no chitosan in Figure 5.9. Therefore, the small log reduction of E. coli 

by chitosan in the presence of 1.0 NaCl or MgCl2 appears effectively due to salts. The death of E. 

coli cells is probably the result of their effort to reduce the concentration gradient of salt inside and 

outside the cell walls, causing morphological damage and loss of cellular integrity, given such a 

high salinity content [52].  

 

Figure 5.9: Effect of salt concentration and ionic strength (I) on the antibacterial activity of 

chitosan. Bars with different letters are significantly different (p < 0.05). Sample is F-90-207 

(flakes). The number of viable organisms was the same after 18 and 48 h incubation on the agar 

plates, suggesting that recovery from sub-lethal injury had not taken place. Means that do not share 

a letter are significantly different with a confidence level of 95% by Tukey pairwise comparisons. 
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5.3.2.5 Influence of Bacterial Species 

Table 5.3 presents the survival and reduction (%) of bacterial density when three different species 

of bacteria are in contact with chitosan. Chitosan presents a noticeable greater AB activity against 

E. coli in comparison with L. innocua and S. aureus. For instance, while E. coli density is reduced 

by more than 99.5% by either chitosan powder or flakes, L. innocua and S. aureus are more 

sensitive to the effect of chitosan in powder form.  

Table 5.3: Recovery of viable bacteria on BHI agar after exposure to 0.4 wt/v % chitosan for 4 h at 

37 °C. 

Chitosan Type 

Survival Bacteria (log CFU/mL) Reduction * (%) 

Gram− Gram+ Gram− Gram+ 

E. coli L. innocua S. aureus E. coli L. innocua S. aureus 

Control 6.5 ± 0.6 a 6.6 ± 0.5 a 7.5 ± 0.8 a 0.0 0.0 0.0 

F-90-207 4.2 ± 0.4 b 5.4 ± 0.7 b 6.6 ± 0.9 a 99.5 93.1 88.2 

P-95-57 0.0 c 0.0 c 6.1 ± 0.6 a 100 100 96.3 

Results represent means of triplicate counts and were the same after 18 and 48 h of incubation on 

the agar plates, suggesting that the recovery from sub-lethal injury had not taken place. For each 

strain, means that do not share a letter are significantly different with a confidence level of 95% by 

Tukey Pairwise Comparisons. * The reduction in bacteria concentration is calculated according to 

Zheng & Zhu [6] 
𝑁1−𝑁2

𝑁1
 × 100%  where N1 and N2 are the number of colony on the plates before 

and after treatment, respectively.  

Figure 5.10 shows the morphology of E. coli, L. innocua and S. aureus cells via TEM. E. coli and 

L. innocua cells shows typically rod-shaped forms of 3.41 ± 0.68 and 1.22 ± 0.20 μm in length, 

and 1.01 ± 0.2 and 0.53 ± 0.05 μm in height, respectively. However, S. aureus cells are spherical, 

with a diameter of 0.81 ± 0.16 μm. Those dimensions allow speculating that discontinuous solid 

state chitosan may interact more easily with E. coli rather than with L. innocua and S. aureus cells, 

which falls within the same sensitivity order seen in our findings. However, our recent study on 

chitosan nanoparticles demonstrated that the AB activity is independent of the size and form of the 

cells [25]. 
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Figure 5.10: Morphology of intact: (a) E. coli; (b) L. innocua; (c) S. aureus cells. Images were 

kindly provided by Mounia Arkoun from the Chemical Engineering Department, Polytechnique 

Montréal. 

Some studies on chitosan solutions have reported a higher sensitivity against Gram-negative 

species [2,5,53,54]. The higher sensitivity found in the case of E. coli (Gram-negative) in 

comparison with L. innocua and S. aureus (both Gram-positive) can be explained first in terms of 

the differences in the cell surface characteristics between the Gram types, such as hydrophilicity, 

negative charge density and adsorptive properties, besides an apparent adsorption of bacteria onto 

chitosan particles. A generally stronger net negative charge in the Gram-negative strains [55–57] 

may favor larger electrostatic interactions between the positively charged chitosan amino groups 

and the negatively charged bacteria surface. Notwithstanding that the cell surface of both Gram-

positive and Gram-negative is negatively charged, the Gram-negative (E. coli) bacteria were more 

prone to adsorption, and hence were more susceptible to chitosan. Other factors such as higher 

hydrophilicity and adsorption of chitosan on cell wall in Gram-negative strains, with respect to 

Gram-positives ones, could increase the AB effect [56]. In addition to the above, the structural 

organization in the envelope/membrane constituents of Gram-positive and Gram-negative strains 

may play the most important role influencing the AB activity. Both strains have similar 

composition regarding phospholipids, glycoproteins, cholesterol and polysaccharides. However, 

the way they are placed and organized vary between the strains. For instance, Gram-positive consist 

of a single phospholipid layered membrane and a thick murein (peptidoglycan), while Gram-

negative consist of a single phospholipid layered membrane a thinner peptidoglycan layer and 

covered by a phospholipidic bilayered membrane. The smaller thickness of the peptidoglycan layer 
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in Gram-negative strains (7 to 8 nm), in comparison to the Gram-positive strains (20 to 80 nm), 

may render it more sensitive to the action of chitosan [58]. 

However, despite the above, many reports have demonstrated higher AB activity of chitosan in 

solution form against S. aureus in comparison with E. coli [6,14,15,58], which is opposite to the 

findings of our current work. In those cases, authors explained the higher AB effect on the Gram-

positive strains (such as S. aureus) as a consequence of the absence of the outer membrane barrier 

in comparison with the Gram-negative strains (such as E. coli) [14]. On the other hand, 

experimental data provided by Tsai et al. [59] allow to infer that the sensitivity of bacteria to 

chitosan is not dependent on the Gram-type (Gram-positive or Gram-negative) nor dependent on 

the bacterial species, but dependent on the strain. This would explain the controversial findings 

amongst different authors when comparing the effectiveness of chitosan.  

Our results demonstrated that chitosan needs at least partial solubilisation for an AB effect. 

Thereby, the lower MW (which include the presence of low MW species or chito-oligosaccharides, 

even in small quantities) and the higher DDA favors the solubility of chitosan powder and its AB 

activity. Further research should be performed in order to quantify the solubility of each chitosan 

grade.  

Owing to the size and shape of discontinuous solid state chitosan, it is considered that in addition 

to solubilisation, the AB action requires a direct contact between chitosan and the cell surface, with 

a probable microbial cell adsorption not only onto the surface of chitosan powder and flakes but 

also on the surface of CaCO3 particles, which notably enhances the AB activity. However, having 

only chitosan particles will avoid the need of an additional solid support for optimum AB activity. 

Other studies have demonstrated the adsorption properties of chitosan powder and flakes to 

residues and for removal of metals [48,60]. The higher sensitivity of bacteria to powder chitosan 

might be due to the larger specific surface area and the closer similarity of its size order with the 

cells, when compared to chitosan flakes. It has been reported that lowering chitosan particle size 

improves the antibacterial activity [25]. Other properties such as higher lead sorption capacity [61] 

and higher cytotoxicity towards tumor cells [62] have also been reported as improving with 

decreasing particle size.  

The mode of AB action may differ from that reported for chitosan nanoparticles [25], since the AB 

activity of powder and flakes require acidic pH and their sizes prevent them from penetrating into 
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cells as compared with nanoparticles. Hence, it is suggested that one part of the AB action is exerted 

by the direct contact of protonated chitosan powder’s and flakes’ surface with the negatively 

charged cell wall; and the other, by the solubilized chitosan which may deposit on bacteria surface 

affecting the cell permeability and leading to the leakage of proteinaceous and other intracellular 

constituents [27,63].  

On the other hand, further research is required in order to evaluate the cytotoxicity of chitosan 

powder and flakes, which is critical for food packaging and other industrial applications. Different 

studies have evaluated the cytotoxicity of chitosan nanoparticles [62,64], which can be more 

critical than chitosan powder and flakes, because they could penetrate the cells through pervasion 

and alter the DNA and mRNA functions. For instance, Qi et al. [62] reported high cytotoxic activity 

of chitosan nanoparticles toward tumor cells while low toxicity against normal human liver cells. 

5.4 Materials and Methods 

5.4.1 Materials 

Chitosan (CS) in powder (P) and flake form (F) were obtained from Primex (Siglufjordur, Iceland) 

and BioLog GmbH (Landsberg, Germany), respectively. They were characterized in terms of 

DDA, MW, polydispersity (PDI), moisture, ash, protein content and particle size, as presented in 

Table 5.1. Protein bovine serum albumin (BSA)—98% purity—and enzyme proteinase K and 

Glacial acetic acid were obtained from Sigma Aldrich (Oakville, ON, Canada). Calcium carbonate 

(CaCO3) with a particle size between 3 and 13 μm was obtained from Univar (Surrey, BC, Canada). 

All other chemicals and reagents were of analytical grade and used without further purification. 

5.4.2 Bacteria Strains and Culture  

Cultures of Escherichia coli (E. coli strain DH5α, non-pathogen), Listeria innocua (L. innocua 

strain ISPQ3284, non-pathogen), Staphylococcus aureus (S. aureus strain 54–73, pathogen) were 

obtained from the laboratory of microbiology, infectiology and immunology (Université de 

Montréal, Montréal, QC, Canada). They were selected as representative bacteria since they are 

some of the most frequent bacteria found in food spoilage. 
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5.4.3 Methods 

5.4.3.1 Infrared Spectroscopy (FTIR) 

The DDA values were verified and determined (when the company did not provide this 

information) via FTIR as described in Tsaih and Chen [65]. Samples were prepared in KBr disk 

form, where KBr disks were compounded from dry mixtures of about 1 mg of chitosan sample and 

100 mg of KBr. FTIR spectra were recorded on a Spectrum 65 FT-IR spectrometer (Perkin-Elmer, 

Woodbridge, ON, Canada) with a resolution of 4 cm−1 and 32 accumulations in the wavenumber 

range of 600 to 4000 cm−1.  

5.4.3.2 Gel Permeation Chromatography (GPC) 

The average MW and polydispersity index (PDI) for chitosan samples were determined by size-

exclusion chromatography (SEC) as described in Lavertu et al. [66]. Measurements were 

performed on a Gel Permeation Chromatography (GPC) system consisting of an LC-20AD 

isocratic pump (Shimadzu, Kyoto, Japan), an autosampler SIL-20AC HT (Shimadzu), an oven 

CTO-20AC (Shimadzu) coupled with a Dawn HELEOS II multiangle laser light scattering detector 

(Wyatt Technology Co., Santa Barbara, CA, USA), an Optilab rEX interferometric refractometer 

(Wyatt Technology Co.), and two Shodex OHpak columns (SB-806M HQ and SB-805 HQ) 

connected in series. The mobile phase was an acidic aqueous buffer (AcOH 0.15 M, AcONa 0.1 

M, NaN3 0.4 mM, 0.1 M NaCl) and a chitosan dn/dc value of 0.205 was used (laser’s wavelength 

of 658 nm). 

5.4.3.3 Thermogravimetric Analysis (TGA) 

5.4.3.3.1 Moisture Content 

The moisture content in chitosan powder and flakes was determined according to the AOAC 

standard methods 930.15 [67] in a thermogravimetric analyzer TGA Q500 from TA Instruments 

(New Castle, DE, USA). Approximately 10 mg of chitosan were heated from room temperature to 

150 °C, at a rate of 10 °C min−1 under a nitrogen atmosphere. 

5.4.3.3.2 Ash Content 
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The ash content in chitosan powder and flakes was characterized according to the AOAC standard 

methods 942.05 [67] using the same thermogravimetric analyzer. Approximately 10 mg of chitosan 

were heated from room temperature to 900 °C at a rate of 10 °C min−1 under an air atmosphere. 

5.4.3.4 Protein Content 

The protein content was determined by ultraviolet (UV) light at 280 nm on a Cary 5000 UV–vis-

NIR spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). First, a calibration curve 

was done with bovine serum albumin (BSA) as standard protein at different concentrations (0.01, 

0.05, 0.10, 0.25 and 0.50 wt/v %). Then, the protein content was calculated by correlating the 

absorbance of each chitosan sample (dissolved in 1 v/v % HCl) with the corresponding 

concentration in the calibration curve. 

5.4.3.5 Deproteinization and Identification of Proteins 

The deproteinization step was performed using the enzyme proteinase K. In this case, a buffer 

solution consisting of 30 mM Tris-Cl, 30 mM EDTA, 5% Tween 20, 0.5% Triton X-100 and 800 

mM GuHCl was prepared and pH was adjusted to 8.0. Chitosan in powder and flake form was 

added at a temperature of 50 °C, resulting in suspensions since chitosan is not soluble above its 

pKa (6.2–6.5) [36,37]. Then, proteinase K was added at a concentration of 100 μg·mL−1 under 

shaking during 15 min and finally the temperature was increased to 60 °C to stop the enzyme effect. 

Deproteinized chitosan was washed, centrifuged and dried at 60 °C overnight.  

The determination of proteins molecular weight was done using polyacrylamide gel electrophoresis 

(PAGE) in the presence of sodium lauryl sulfate (SDS) at a concentration of 15% Tris-HCl. In this 

case, 40 μL of filtrate from a 4 wt/v % chitosan (before and after deproteinization) suspension in 

water at pH 7.0 was injected into the gel. Silver staining was used for the recognition of the protein 

bond.  

5.4.3.6 Scanning Electron Microscopy (SEM) 

Particle Size. SEM images of chitosan powder and flakes were obtained using a JSM-7600 TFE 

field emission gun (JEOL, Calgary, AB, Canada) operated at 2 kV. The particle size and thickness 

were determined using Image-Pro® Plus software (version 5.1 from Media Cybernetics, Rockville, 

MD, USA) and taking the average value of 1000 particles.  
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Elemental Analysis. The qualitative determination of chitosan powder and flakes composition was 

done via Energy Dispersive X-ray spectroscopy (EDS) using a JEOL JSM-840A scanning electron 

microscope (Oxford Instruments, Abingdon-on-Thames, United Kingdom) operating at 20 kV. 

5.4.3.7 Attenuated Total Reflectance Spectroscopy (ATR) 

The potential solubility of chitosan powder and flakes during the AB tests was evaluated via ATR. 

Chitosan suspensions were prepared in the same conditions as for the AB tests, filtrated at room 

temperature by using Grade 1 Qualitative filter paper (WhatmanTM porous size of 11 μm), and then 

analyzed by placing one droplet of the filtrate directly on the surface of the ATR crystal and left 

overnight until complete drying before acquiring the spectra. These were recorded on a Perkin-

Elmer Spectrum 65 FT-IR spectrometer (Perkin-Elmer, Woodbridge, ON, Canada) with a 

resolution of 4 cm−1 and 32 accumulations in the wavenumber range of 600 to 4000 cm−1.  

5.4.3.8 Transmission Electron Microscopy (TEM) 

TEM analyses on fresh bacteria were performed according to the method of Arkoun et al. [63]. 

Briefly, overnight cultures containing 106 colony forming units per milliliter (CFU/mL) of the 

selected bacteria were centrifuged (8000 rpm/3 min) and the resulting pellets were resuspended in 

a 2 v/v % glutaraldehyde solution (phosphate buffer saline, PBS at pH 7.4) to fix the cells at 4 °C 

overnight. Then, 10 μL of each sample was deposited on Formvar carbon-coated grids containing 

one drop of 1% Alcian Blue. Cells were then subjected to 5 min post-fixation with 

paraformaldehyde (2 v/v %, PBS) and grids were stained using a drop of filtered 2 v/v % 

phosphotungstic acid (PTA, pH 7.0) for 30 s. A series of filtration and/or washing treatment were 

performed after each step in order to remove excess liquid, fixative or staining. Finally, TEM 

observation was performed using a CM100 transmission electron microscope (Philips Electron 

Optics, Eindhoven, The Netherlands) and digital micrographs were captured using an XR80 CCD 

digital camera (Advanced Microscopy Techniques, Woburn, MA USA). 

5.4.3.9 Antibacterial (AB) Assays 

In this study, one Gram-negative (E. coli) and two Gram-positive strains (L. innocua and S. aureus) 

were used (Figure 5.10). The microorganisms were grown in a nutritional rich medium (Brain Heart 

Infusion broth or BHI) under constant agitation for 24 h at 37 °C, in order to reach a density of 109 

colony forming units per milliliter (CFU/mL). After 24 h, the bacteria culture were diluted in a 
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buffer, a non-permissive growth condition (phosphate buffered saline or PBS solution), in order to 

reach a density of approximately 106 CFU/mL. Preliminary AB tests showed that chitosan powder 

and flakes were not active at pH values higher than chitosan pKa, and indicated the need of a 

solution state for the AB activity of chitosan. Therefore, the pH of the PBS solution was altered 

intentionally to 5.8 (with HCl 1 M). Chitosan powder and flakes were sterilized under UV light for 

20 min prior to the preparation of the chitosan suspensions.  

5.4.3.9.1 Effect of Chitosan Concentration 

Chitosan suspensions at concentrations between 0.01 and 4 wt/v % were prepared in 5 mL of PBS 

containing approximately 106 CFU/mL of E. coli. Suspensions were incubated during 4 h at 37 ± 

1 °C and 22% ± 1% relative humidity (RH) in a shaker. Serial dilutions of the inoculated 

suspensions were plated on BHI agar (unless otherwise specified) and incubated for 18 h at 37 ± 1 

°C and 34% ± 1% RH for the counting of the surviving bacteria (CFU/mL). Plates were verified 

after 48 h to corroborate that the recovery of viable organisms from sub-lethal injury had not taken 

place. These dilution and enumeration methods were used for all the other antibacterial following 

tests described below:  

5.4.3.9.2 Exposure of chitosan and filtrate from chitosan suspensions to E. coli 

Chitosan suspensions at a concentration of 0.4 wt/v % were prepared in 5 mL of PBS and placed 

during 4 h at 37 ± 1 °C and 22% ± 1% RH in a shaker. Suspensions were filtrated at room 

temperature by using Grade 1 Qualitative filter paper (WhatmanTM porous size of 11 μm). Then, 

chitosan suspensions and the filtrate from chitosan suspensions were inoculated with 

approximately 106 CFU/mL of E. coli and incubated during 4 h at 37 ± 1 °C and 22% ± 1% RH in 

the same shaker.  

5.4.3.9.3 Exposure of CaCO3 and chitosan solution to E. coli 

Chitosan solution was prepared by dissolving 1 wt/v % chitosan flakes in 1 v/v % acetic acid 

aqueous solution, under magnetic stirring and at room temperature until complete dissolution of 

the solutes. Chitosan solution was diluted into 5 mL of PBS containing approximately 106 CFU/mL 

of E. coli until reach a concentration of 0.01 wt/v % chitosan. CaCO3 suspensions at a concentration 

of 0.1 wt/v % were prepared in 5 mL PBS containing approximately 106 CFU/mL of E. coli. 

Samples were incubated during 4 h at 37 ± 1 °C and 22% ± 1% RH in a shaker.  
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5.4.3.9.4 Effect of Temperature 

Chitosan suspensions at a concentration of 0.4 wt/v % were prepared in 5 mL of PBS containing 

approximately 106 CFU/mL of E. coli, and incubated during 4 h at two temperature conditions, 7 

± 1 °C and 37 ± 1 °C at 22% ± 1% RH in a shaker.  

5.4.3.9.5 Effect of Salt Concentration and Ionic Strength 

Chitosan suspensions at concentration of 0.4 wt/v % were prepared in 5 mL of PBS containing 

approximately 106 CFU/mL of E. coli and incubated during 4 h at 37 ± 1 °C and 22% ± 1% RH in 

a shaker. Two types of salt, NaCl and MgCl2 at concentrations of 0.1 M and 1.0 M were added to 

the PBS medium before the inoculation of bacteria and the treatment with chitosan.  

5.4.3.9.6 Effect of Bacterial Species 

Chitosan suspensions at concentration of 0.4 wt/v % were prepared in 5 mL of PBS containing 

approximately 106 CFU/mL of E. coli, L. innocua or S. aureus, and incubated during 4 h at 37 °C 

and 22% ± 1% RH in a shaker.  

5.4.3.9.7 Statistical Analysis 

All AB tests were carried out in triplicate, and the average values with their standard deviation 

errors are reported. Results from the AB tests were analyzed statistically via Tukey pairwise 

comparisons with a confidence interval of 95% using the ANOVA-Minitab17® software (trial 

version, Minitab Inc., State College, PA, USA). Data were normalized by re-scaling in log form. 

5.5 Conclusions 

In this work we have shown that chitosan in a neat discontinuous solid state can exhibit high 

antibacterial activity under conditions close to those of contaminated food products. This activity 

can be altered by factors such as pH, temperature, ionic strength, chitosan concentration, purity and 

bacterial species, and shown to be favored by the removal of proteins in chitosan, acidic pH 

conditions, and lower salt content in the medium. In addition, the presence of a solid physical form 

in the medium enhanced significantly the AB activity of chitosan. 

Our results show the potential direct use of chitosan powder and flakes in food protection at pH 

values lower than chitosan pKa (6.2–6.7). Further research on chitosan AB activity should be 
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performed for a deeper understanding of the mechanisms and factors involved. In the scope of food 

protection, similar research could lead to the development of chitosan-based food packaging 

materials capable of inhibiting and eradicating bacteria growth.  
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6.1 Abstract 

Chitosan micro and nanospheres were produced by a one-step electrospraying process. The 

influence of several solution and process parameters on droplet morphology, collection yield and 

process stability was investigated. In addition, the mapping of the process stability was established 

according to various dimensionless numbers: Reynolds (Re), electric Peclet (Pe), Weber (We) and 

Froude (Fr) numbers and an electrostatic force parameter (Ω). Chitosan (medium molecular 

weight)/acetic acid (CS/AcOH) solutions at 1 and 2 wt/v % CS, and at 70 and 90 v/v % AcOH 

content, allowed the production of micro and nanoparticles. A solution surface tension below 36 

mN/m, a relatively low conductivity between 0.015 to 0.089 S/m and a shear viscosity between 

0.08 to 1.65 Pa s, were required for process stability, micro and nanoparticle formation and 

collection. The optimal process conditions included pumping of CS/AcOH solutions through a 22G 

needle, at flow rate of 0.2 mL/h, a voltage of 33 kV and a distance of 11 cm from the needle tip to 

collector plate. In general, the stability in the electrospraying of CS/AcOH solutions required 

relatively low values for Re, Fr and Ω, but relatively high values for Pe and We numbers.  

6.2 Introduction 

Chitosan is a linear polysaccharide with molecular structure consisting of glucosamine and N-

acetyl glucosamine units. Chitosan is obtained by the N-deacetylation of chitin, the second most 

abundant polysaccharide in nature, after cellulose. However, the N-deacetylation is almost never 
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complete (Kumar, 2000). When the DDA is higher than 50 %, chitin is named chitosan (Rinaudo, 

2006). The degree of deacetylation (DDA) usually ranges from 66-95 %, depending on the method 

used for its production, whilst the molecular weight (MW) of most commercial chitosan grades 

ranges from 4 to 2000 kDa (Agnihotri, Mallikarjuna, & Aminabhavi, 2004; Sinha et al., 2004). 

DDA and MW are the two main parameters influencing the physicochemical properties of chitosan 

such as solubility, crystallinity, viscosity, reactivity and processability (Kumirska, Weinhold, 

Thöming, & Stepnowski, 2011; Rinaudo, 2006). The unique properties of chitosan including its 

natural origin, availability, biodegradability, biocompatibility, mucoadhesivity, hemostatic 

properties, non-toxicity and antibacterial activity make it of great interest in a wide range of 

applications such as biomedical, pharmaceutical, water and waste treatment, cosmetology, 

agriculture and food industries (Agnihotri et al., 2004; Kumar, 2000; Rinaudo, 2006; Sinha et al., 

2004).  

Recently, the fabrication of chitosan micro and nanoparticles have been widely investigated in the 

biomedical field for drug- and gene-delivery applications due to their small size and large surface 

area to weight ratio (Agnihotri et al., 2004; Sinha et al., 2004). Several methods have been 

employed for their production (Agnihotri et al., 2004; Arya, Chakraborty, Dube, & Katti, 2009; 

Sinha et al., 2004). The most often used are emulsion cross-linking reaction, 

coacervation/precipitation, spray-drying, emulsion droplet coalescence and ionic gelation. Others 

such as reverse micellar and sieving methods are less common. The selection of any method 

depends of several factors such as particle size requirement, process, chemical and thermal stability 

and residual toxicity associated with the final product (Agnihotri et al., 2004; Mitra & Dey, 2011). 

Lately, the electrospraying process has been used as a relatively simple and low-cost technique for 

the fabrication of micro and nanoparticles. In addition of being a one-step process technique, it 

does not require subsequent purification steps and the process allows to control particle size, 

particle size distribution and form (Arya et al., 2009; Bock, Dargaville, & Woodruff, 2012; Kuo, 

Niu, Chang, Kuo, & Bair, 2004).  

The principle of electrospraying was established based on the theory of deformation of charged 

droplets developed by Rayleigh (1882), Zeleny (1914) and Taylor (1964), which states that an 

electric field applied to a liquid droplet exiting a capillary is capable of deforming the interface of 

the droplet. Figure 6.1 shows a schematic of the electrospraying process, which consists in the 

application of a high electric field to a polymeric solution being pumped through a syringe. 
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Typically, the process involves three stages. The first one implies pumping of the solution through 

the needle, where simple shear flow occurs. However, at the exit of the needle, a complex flow 

develops with extensional and shear components (Haward, Sharma, Butts, McKinley, & Rahatekar, 

2012). In the second stage, the charged liquid flowing out of the nozzle deforms in a meniscus with 

a characteristic shape known as Taylor cone (Rutledge & Fridrikh, 2007), from the apex of which 

a jet is ejected and elongated by an external electric field (Hohman, Shin, Rutledge, & Brenner, 

2001). A balance among the electrostatic, gravity, inertia, viscoelastic and surface tension forces 

determines the deformation of the fluid (Feng, 2002, 2003; Jaworek & Sobczyk, 2008). Uniaxial 

elongational flow caused by the electrical forces acting on the jet occurs (Hohman et al., 2001). 

Finally, in the last stage, the jet is disintegrated into charged droplets when the electrostatic forces 

in the fluid are able to overcome those due to viscosity and surface tension (Sultan, Ashgriz, 

Guildenbecher, & Sojka, 2011). In electrospraying, different modes for droplet formation have 

been identified (Jaworek & Krupa, 1999), but only the cone-jet mode is known to produce a stable  

process (Bock et al., 2012). Once formed, the charged droplets travel to a collector plate while the 

solvent is evaporated. Many different parameters including process (flow rate, needle size, voltage, 

distance from needle tip to plate collector and temperature), environmental (humidity, pressure and 

temperature), and the intrinsic properties of the solution (conductivity, surface tension and 

viscosity, which depend mainly on the polymer concentration and molecular weight, as well as the 

solvent type) are important factors in determining process stability, droplet formation and 

morphology. However, solution parameters are considered to be the most critical (Park et al., 

2007). 

Several fundamental studies on electrospinning - a process in which fibers are formed instead of 

particles - have allowed the determination of a set of governing equations for the second stage, 

which is considered a steady-stretching process (Carroll & Joo, 2006; Feng, 2002; Pantano, Gañán-

Calvo, & Barrero, 1994) and is common for both electrospinning and electrospraying (Hohman et 

al., 2001). Modeling of development of this stage has been performed by Reneker, Yarin, Fong, 

and Koombhongse (2000), Hohman et al. (2001), Feng (2002), among others, following the earlier 

works of Pantano et al. (1994), Gañán-Calvo (1997a,b) and Spivak and Dzenis (1998). The 

governing and dimensionless equations representing the mass, electric charge and momentum 

balances as well as the Coulomb’s law for electric field for the steady jet can be found elsewhere 

(Feng, 2002; Hohman et al., 2001). Table 6.1 reports the dimensionless numbers identified as the 
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most representative for describing the process. They were obtained from the dimensionless form 

of the governing equations and include the Reynolds (Re), electric Peclet (Pe), Weber (We) and 

Froude (Fr) numbers and the electrostatic force parameter (Ω), among others (Feng, 2002; Hohman 

et al., 2001). These numbers allow the identification of the multiple process and solution 

parameters implied in the electrospraying process (aforementioned), as well as their interaction.  

Several and extensive investigations have been published on the electrospinning of chitosan for 

fiber formation (Ardila et al., 2016; Geng, Kwon, & Jang, 2005; Homayoni, Ravandi, & Valizadeh, 

2009; Ohkawa, Cha, Kim, Nishida, & Yamamoto, 2004; Ohkawa, Minato, Kumagai, Hayashi, & 

Yamamoto, 2006; Schiffman & Schauer, 2007). However, relatively few studies have addressed 

the electrospraying ability of chitosan to produce dry solid micro and nanoparticles. For instance, 

Kuo et al. (2004), Arya et al. (2009) and Zhang and Kawakami (2010) evaluated the effect of 

different process or solution parameters to control the obtained morphology in terms of particle 

size and size distribution. Chitosan particles with sizes in the range of 124 to 940 nm in diameter 

were reported. However, their studies comprised the analysis of only one chitosan grade 

characterized by a given MW and DDA. Recently, Gómez-Mascaraque, Sanchez, and López-Rubio 

(2016) reported the effect of chitosan molecular weight on the electrospraying of chitosan 

microspheres, and its correlation with electrical conductivity, viscosity and surface tension of the 

solutions. Although this work shows similarity with our study, process parameters were not 

addressed and only one DDA grade was considered. In addition, the viscosity of the solutions was 

studied at a shear rate of 200 s-1 which is far from the one calculated given the flow rate and needle 

size in real electrospraying conditions (would be around 0.6 s-1 when considering their process 

conditions).  

Therefore, there is room for further analysis of this process in the case of chitosan. The present 

research work aims at studying both process and solution parameters to produce chitosan micro 

and nanospheres by electrospraying from five chitosan grades differing in MW and DDA. Process 

parameters such as flow rate, needle size, voltage, distance from needle tip to collector plate and 

electric field strength are analyzed first. Then, solution parameters including chitosan and acetic 

acid concentration, chitosan molecular weight and deacetylation degree, solvent type, which 

mainly determines the viscosity, surface tension and conductivity of the solutions are considered 

thereafter. Finally, the electrospraying ability of chitosan is mapped and established for the first 

time using dimensionless numbers governing the process, particularly Re, Fr, Pe, We and Ω, which 
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allow to correlate the most important variables involved with the obtained particle morphological 

characteristics.  

 

Figure 6.1: Schematic of the electrospraying process. 
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Table 6.1: Dimensionless numbers ruling the electrospraying process 

Dimensionless number 

Electric Peclet 

number         
 Dielectric 

constant ratio 
          

Reynolds 

number 
𝑅𝑒 =

𝜌𝑣0𝑅0
𝜂0

 
 

Aspect ratio               

Weber number    
 Deborah 

number 
 

Froude number       
 

Viscosity ratio               

Electrostatic 

force 

parameter 

   
 

Electric field 

strength 
   

In order of appearance per columns, 𝜀:̅ dielectric constant of the air, 𝑣0: velocity of the jet, 𝑅0: 

Initial radius of the jet (needle), 𝐾: conductivity of the solution, 𝜌: density of the solution, 𝜂0: 

viscosity of the solution, 𝛾: surface tension, g: gravitational constant, 𝐸0: initial external electric 

field, 𝜀: dielectric constant of the jet, 𝐿: length of the jet, 𝜆: relaxation time, 𝑡0: time, 𝜂𝑝: polymer 

viscosity, 𝜂0: solvent viscosity, 𝐸∞: uniform spatially external electric field, ∆𝑉: voltage and 𝑑: 

electrospraying distance. 

6.3 Materials and Methods 

6.3.1 Materials 

Chitosan (CS) grades with different weight average molecular weight (MW) and degree of 

deacetylation (DDA) were obtained from BioLog GmbH (Germany) and Primex (Iceland), and are 

presented in Table 6.2, along with nomenclature. Acetic acid (AcOH), trifluoroacetic acid (TFA), 

hydrochloric acid (HCl), citric acid (CA) and lactic acid (LA) aqueous solutions (≥ 85% in volume) 

were purchased from Sigma Aldrich (Canada). All chemicals used in this study were of analytical 

grade and used without further purification.  
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Table 6.2: Chitosan grades 

Nomenclature  DDA (%)  MW (kDa) PDI Company 

B1* 90 183 - Biolog GmbH 

B2 90 207 1.67 Biolog GmbH 

B3 90 344 1.72 Biolog GmbH 

P1 95 57 2.24 Primex 

P2 95 134 2.25 Primex 

* Main chitosan grade used in this study. 

6.3.2 Methods 

6.3.2.1 Solution preparation and characterization 

Chitosan at different concentrations (1, 2 and 3 wt/v %) was dissolved in different aqueous acetic 

acid concentrations (10, 30, 50, 70 and 90 v/v %). Other acids were also considered: hydrochloric 

acid (1 v/v %), citric acid (10, 30, 50 v/v %), lactic acid (1, 10, 50, 90, 100 v/v %), and pure TFA. 

Chitosan concentration was selected to be higher than the critical overlap concentration (C*) for 

chitosan, which is reported to be in the range of 0.1-0.12 wt/v % (Cho, Heuzey, Bégin, & Carreau, 

2006; Pakravan, Heuzey, & Ajji, 2011). Dissolution was carried out under magnetic stirring at 

room temperature until complete dissolution of the solutes. Obtained solutions were characterized 

in terms of electric conductivity, surface tension and viscosity as follows: The electric conductivity 

of the solutions was measured with a conductimeter Inolab ® Cond 750 (WTH GMbH, Germany). 

Measurements were done in triplicate. Surface tension measurement was performed in a Dynamic 

Contact Angle Meter and Tensiometer (DCAT11) equipped with a Wilhelmy plate as a test piece 

(sensor). Tests were done in triplicate. The steady shear viscosity of the solutions was measured in 

a controlled stress rheometer (MCR-502, Anton Paar, Germany) equipped with a double Couette 

flow geometry. Steady state flow tests were performed from 0.1 to 500 s-1 at 25 ºC. Low viscosity 

silicon oil was used to cover the surface of the samples to avoid the evaporation of acetic acid 

during the test. Pakravan et al. (2011) showed that the incorporation of silicon oil did not affect the 

rheological properties of the chitosan solutions. Tests were done in duplicate. 
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Results for chitosan/acetic acid (CS/AcOH) solutions in terms of electric conductivity, surface 

tension and shear viscosity are presented in Supporting Information, Figures 6.10 to 6.12 

respectively.  

6.3.2.2 Electrospraying set-up 

Electrospraying was performed on a homemade horizontal device containing a variable high DC 

voltage power supply (Gamma High Voltage Research, FL, USA) and a programmable 

microsyringe pump (Harvard Apparatus, PHD 2000, USA). Polymer solutions were pumped 

through a syringe fitted with a metallic needle (details provided below). Electrospinning of the 

different solutions was conducted at different flow rates, needle sizes and over a wide range of 

electric field strengths, by varying the voltage and distance between the needle tip and the grounded 

collector plate, as presented in Table 6.3. Solutions were electrosprayed from the same volume 

(0.25 mL) for the analysis of the process parameters. Once the conditions for process stability were 

established, the collection time was constant (30 min) for the study of the solution parameters. All 

experiments were conducted in a closed chamber at room temperature (22 ± 1 ºC), relative humidity 

of 20-30 % and under atmospheric pressure. Chitosan micro and nano spheres were collected on 

aluminium foil attached to a stationary collector plate located at a certain distance from the tip of 

the needle. Collected particles were dried overnight under a chemical fume hood for the 

evaporation of any remaining solvent.  

Table 6.3: Process parameters of electrospraying and range of analysis 

Parameter Value Units 

Electrospraying distance 5-25  cm 

Diameter of needle 18 (0.84), 22 (0.41), 26 (0.26) Gauge (mm)a 

Flow rate 0.2-0.8 mL/h 

Voltage 9-35 kV 

a Internal diameter 
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6.3.2.3 Scanning electron microscopy (SEM) 

The surface morphology of chitosan micro and nano spheres was observed by Scanning Electron 

Microscope, (SEM, JEOL JSM-7600TFE field emission gamma) operated at 2 kV. Particle size 

and distributions were analyzed using the Image-Pro Plus® software, taking the average of at least 

100 or 300 particles depending on the particles collected (electrospraying of chitosan solutions 

containing 10-50 % and 70-90 v/v % AcOH content, respectively). 

6.4 Results and Discussion 

6.4.1 Effect of process parameters in electrospraying 

Parameters including flow rate, needle size, voltage, needle tip to collector plate distance and 

electric field strength were investigated in this part of the study. Only one CS/AcOH solution was 

analyzed to keep solution properties such as viscosity, surface tension and conductivity constant. 

The CS/AcOH solution used was prepared at a concentration of 1 wt/v % (sample B1) in 50 v/v % 

AcOH. This chitosan grade was chosen since it has a moderate molecular weight (183 kDa), while 

the concentration was selected to avoid the formation of entanglements which can lead to fiber 

formation. Critical entanglement concentration for chitosan has been reported to be around 1.3-1.4 

wt/v % for a chitosan with an average MW of 85 kDa (Pakravan et al., 2011). The high AcOH 

content was considered to have a relatively high conductivity and low surface tension (Figures 6.10 

and 6.11 in Supporting Information), conditions that are required for solution deformation and 

driving of the jet, which favor process by electrospraying.  

6.4.1.1 Effect of flow rate and needle size 

Figure 6.2 presents SEM images showing the effects of flow rate and needle size, in terms of shear 

rate, in the electrospraying of a solution consisting of 1 wt/v % (sample B1) in 50 v/v % AcOH at 

25 kV/10 cm. In general, the nanoparticle size increases when the flow rate increases. In addition, 

flow rates of 0.2 and 0.5 mL/h and lower needle gauges (higher size), such as 22G and 18G, favor 

nanoparticles collection on the aluminum foil. By contrast, when the flow rate was increased to 0.8 

mL/h the yield (collected amount of particles) decreased mainly due to occasional dripping of the 

solution, given the relatively high flow rate. The yield also decreased when the solution is 

processed using a needle size of 26G. This effect is most probably due to other spraying modes 
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that could have developed (oscillating-jet, precession, or multi jet-mode spraying) rather than the 

cone and jet mode, given the low needle size and the high flow rate at such electric field, as 

presented by Jaworek and Krupa (1999), and Jaworek and Sobczyk (2008). In addition, the higher 

speed at which the solution is ejected from the tip of the needle could contribute to a low yield. For 

instance, for a flow rate of 0.2 mL/h, the ejection speed increased about 10 times (from 0.1 to 1.0 

mm/s) by decreasing the needle diameter (from 18 to 26G). In addition, the ejection speed increases 

with flow rate, and a solution processed at 0.8 mL/h in a 26G needle solution is ejected at a rate of 

4.2 mm/s. The increase in the ejection speed yields less material collected per unit area, since the 

spot area (area sprayed on the collector plate) increases, for example from 10 to 14 cm (in diameter) 

when the spraying is at 0.1 and 1.0 mm/s, respectively (needle of 18 and 26G, and at a flow rate of 

0.2 mL/h). Therefore, a higher nanoparticle collection is observed at 0.2 mL/h for needles with 

higher diameter (18 and 22G). For these conditions, particles display an average diameter of 187 

and 141 nm, respectively. In addition, the process was more stable and particle sizes were the 

smallest when using the 22G needle. Hence, this needle was used throughout the following tests. 

Finally, an increase in the shear rate of the solution causes the appearance of nanoparticles with an 

elongated form (Figure 6.2e to 6.2h) mainly due to a higher deformation of the solution due to 

shear (Figure 6.12 of the supporting information).  
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Figure 6.2: SEM images showing the effect of flow rate and needle size, in terms of shear rate, on 

the electrospraying of 1 wt/v % (sample B1) solution in 50 v/v % AcOH, at 25 kV/10 cm. 

6.4.1.2 Voltage, distance and electric field strength 

Arc discharges occurred in the electrospraying of CS/AcOH solutions when the distance from the 

needle tip to the collector plate was 5 cm or lower, and at voltages greater than 40 kV. In addition, 

a minimum electrostatic force of 1.2-1.5 kV/cm was required to allow the deformation of the 

droplet and attraction to the collector plate. Lower values than 1 kV/cm produced dripping and/or 

sputtering of the solution. 

Figure 6.3 presents SEM images showing the effect of electrospraying voltage and distance, in 

terms of the electric field strength, on the morphology and particle collection yield for a solution 

consisting of 1 wt/v % (sample B1) in 50 v/v % AcOH, electrosprayed at 0.2 mL/h and with a 22G 

needle. Regarding the morphology, nanoparticles are formed independently of the electric field 

strength, from 1.7 to 7 kV/cm. However, at electric field strengths between 3.5 and 7.0 kV/cm 

(Figure 6.3a-7.3c and 6.3f), an incomplete evaporation of the solvent can be noticed (which is 

mainly attributed to the short electrospraying distance and consequently to an improper contraction 
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and solidification of droplets); whilst at electric field strengths between 1.7 to 2.3 kV/cm (Figure 

6.3g-6.3i), the presence of elongated forms can be observed. This latter is most probably due to the 

relatively low electric field strength, which may cause solution deformation but without sufficient 

strength to allow droplet formation. Nevertheless, nanoparticles with lower sizes are formed at 

these low electric field strengths. Kuo et al. (2004) demonstrated a linear relationship and an 

increase in chitosan microsphere size for electric field strengths between 5.5 and 6.5 kV/cm. Here, 

two independent linear relationships can be established for nanoparticle size (not presented here 

for the sake of brevity): one, for electric field strengths between 2.3 to 3.5 kV/cm and another for 

5.0 to 7.0 kV/cm, in which size increases when increasing the electric field.  

Results also show that the electric field strength notably influences the particle collection yield. 

Low electric field strengths between 1.7 to 3.0 kV/cm allow obtaining large yield, whilst higher 

field strengths reduce it significantly. Similar results were observed when the solution was 

processed at the same flow rate (0.2 mL/h) and with a larger needle size (18G). Therefore, results 

suggest that there is a maximum electric field strength (or potential force) to apply to the solution, 

which prevent the burst of the droplet (allowing the occurrence of a continuous jet) and spraying 

outside the target. For instance, the spot diameter (sprayed area) when spraying the solution at 1.7, 

5.0 and 7.0 kV/cm is 10, 12 and 12.5 cm, respectively. Hence, there is less material per unit area 

at high electric field. Notwithstanding that low electric field strength seems to represent ideal 

conditions for process, a closer look at different areas of the collected material allow to identify 

different regions between 1.7 and 2.5 kV/cm. Figure 6.13 of the Supporting Information presents 

a further analysis of the morphology of the nanoparticles formed at electric field strengths between 

1.7 and 2.5 kV/cm. Different regions can be clearly identified, which indicate the occurrence of 

some instabilities in the process, mainly related to a sudden breakup of the jet given the relatively 

low electric field strength. Therefore, a large droplet may be deposited over the electrosprayed 

particles and erase their form. Consequently, results indicate that the best condition for the solution 

electrospraying is 3 kV/cm.  

The effect of distance and voltage by keeping constant the electric field at 3 kV/cm was also 

investigated. Figure 6.4 shows the morphology of a solution consisting of 2 wt/v % (sample B1) in 

70 v/v % AcOH processed at 0.2 mL/h and with a 22G needle. Different distances and voltages 

were considered, but the electric field was fixed at 3 kV/cm. A higher yield and lower particle sizes 

were obtained when a voltage of 33 kV at 11 cm was applied (Figure 6.4d). Similar tendencies 
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were observed for solutions consisting of 1 wt/v % in 70 v/v % AcOH and 2 % in 90 v/v % AcOH 

for the same sample (results not shown). Therefore, voltage, distance and electric field strength are 

significant parameters defining both particle size and collection yield.  

 

Figure 6.3: SEM images showing the effect of distance and voltage, in terms of electric field on 

the electrospraying of 1 wt/v % (sample B1) in 50 v/v % AcOH, at 0.2 mL/h and a 22G needle. 

 

Figure 6.4: SEM images showing the effect of distance and voltage, in terms of electric field on 

the electrospraying of 2 wt/v % (sample B1) in 70 v/v % AcOH, at 0.2 mL/h and a 22G size. 

6.4.2 Effect of solution parameters in electrospraying 

In electrospraying, both process and solution parameters are important for defining process and 

morphology. According to the results above, process parameters determine the yield (collected 
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amount), morphology, particle size and process stability. In this section, solutions parameters are 

discussed to analyze their effect on process and morphology. The influence of solution parameters 

is explained in terms of solution properties: namely conductivity, surface tension and viscosity, 

which are in turn mainly dependent on chitosan concentration, MW and DDA, as well as solvent 

type and content. 

6.4.2.1 Chitosan and acetic acid concentration 

Figure 6.5 shows the effect of CS and AcOH concentration on the morphology of CS/AcOH 

solutions processed by electrospraying in a 22G needle, at 0.2 mL/h and 3 kV/cm. CS/AcOH 

solutions with polymer concentrations less than 1 wt/v % were insufficient to electrospray and 

dripping resulted, regardless of AcOH content or process conditions. The evaporation of excess 

solvent may not be rapid enough to form solid nanospheres with solutions that contain low 

concentrations of chitosan and excessive solvent (Park et al., 2007). By contrast, solutions with 

polymer concentrations above 3 wt/v % were too viscous to electrospray. This is because the high 

viscosity impedes the continuous flow of the polymer solution through the needle and the electric 

field strength, even if high, was not sufficient to deform the solution until obtaining a stable jet and 

subsequent particle formation. Consequently, only solutions between 1 and 3 wt/v % of chitosan 

were tested. According to Figure 6.12 in the Supporting Information, solution viscosity is affected 

by both chitosan and AcOH content, but the effect is more pronounced when changing the polymer 

concentration. Regarding electrospraying, in general as AcOH content increases, the particle 

collection yield increases, regardless of the CS concentration. Low particle collection is observed 

for solutions containing between 10 and 50 v/v % AcOH presumably due to the high conductivity 

and high surface tension of the solutions (Figures 6.10 and 6.11 of Supporting Information), which 

both decrease the stability of the process (Chen, Pui, & Kaufman, 1995; Zhang & Kawakami, 

2010). At 10 and 30 v/v % AcOH, occasional sputtering of the solution occurs. Consequently, the 

formation of large droplets with a wide particle size distribution is observed. The low yield was 

observed for other chitosan solutions at 50 v/v % AcOH content or less, independently of chitosan 

MW or concentration.  

By increasing AcOH content up to 70 v/v %, homogeneous particles with a narrow particle size 

distribution were formed, particularly for 1 and 2 wt/v % (sample B1). A further increase in AcOH 

content up to 90 v/v % results in an increase in the diameter and distribution of particle size. This 
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is most probably due to the increase in viscosity and decrease in conductivity of the solutions, 

which may hinder deformation and spraying of the solution and cause solution jet resistance to 

separate into droplets (Hartman, Brunner, Camelot, Marijnissen, & Scarlett, 2000; Zhang & 

Kawakami, 2010). The dimensionless number 𝜋𝜂 introduced by Rosell-Llompart and de La Mora 

(1994) allows determining the effect of viscosity on the process of droplet formation: 

𝜋𝜂 =
(𝛾2𝜌(

𝜀𝜀0
𝐾
))
1/3

𝜂
    (1) 

where γ, ρ, ɛ, K and 𝜂 are the surface tension, solution density, dielectric constant, conductivity and 

viscosity, respectively. 

The effect of viscosity on droplet size can be neglected when 𝜋𝜂>>1. Otherwise, an increase in 

solution viscosity would increase droplet size (Wang et al., 2015; Zhang & Kawakami, 2010). 

Since 𝜋𝜂 values for all solutions in this study are 𝜋𝜂<<1, it is concluded that viscosity increases 

particle size, as observed experimentally (in the range of 70 to 90 v/v % AcOH). Besides, the 

decrease in conductivity when increasing the AcOH from 70 to 90 v/v % may increase particle 

diameter due to a decrease in Coulomb repulsion (Zhang & Kawakami, 2010).  

For 3 wt/v % (sample B1) in 70 and 90 v/v % AcOH content, the collection of particles decreases 

mainly due to the high viscosity of the solution. Experimentally, it was observed that the electric 

field is not able to completely deform the droplet until obtaining a stable jet. In addition, the 

relatively high viscosity of the solution prevents a complete breakup and only few particles are 

deposited on the collector plate. This would explain the low sizes observed in Figure 6.5n. 

Nonetheless, at 3 wt/v % B1 in 90 v/v % AcOH, fibers start forming because the polymer 

concentration is higher than the concentration at which entanglements are produced. This will be 

explained below. 
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Figure 6.5: SEM images showing the effect of chitosan (wt/v %) and acetic acid concentration 

(v/v %) on the electrospraying of chitosan (sample B1), at 3 kV/cm, 0.2 mL/h and needle size 22. 

6.4.2.2 Chitosan MW and DDA 

Figure 6.6 shows the droplet morphology for several chitosan grades (differing in MW and DDA, 

Table 6.2), after electrospraying at different CS and AcOH concentrations. All these solutions vary 

slightly with conductivity but display similar surface tension values (Figure 6.10 and 6.11 of 

Supporting Information), which were not affected significantly by MW or DDA. Low MW CS (P1, 

57 kDa) requires higher chitosan concentrations to obtain a reasonable particle collection, 

compared to other samples with higher MW. This is most probably due to a higher critical 

concentration, as will be discussed below. However, high concentrations (7 wt/v % CS) cause 

sputtering of the solution (results not shown). Since at a given CS and AcOH concentration, 

conductivity and surface tension are practically the same, the low yield for this chitosan grade is 

explained by its lower viscosity, which causes dripping of the solution (Figure 6.6a, 6.6f, 6.6k and 

6.6s). For instance, at 1 wt/v % CS and 90 v/v % AcOH, the shear viscosity increases from 0.02 to 

0.15 Pa.s when increasing the MW from 57 to 134 kDa (chitosan grades P1 and P2, respectively), 

at the same DDA (95 %). Low particle collection yield is also observed when increasing the CS 

from 2 to 3 wt/v % in medium MW CS (134 and 183 kDa, which corresponds to samples P2 and 

B1, respectively) (Figure 6.6t, 6.6u, 6.6w, and 6.6x). In this case, the decrease in the yield is mainly 

due to a significant increase in viscosity while the conductivity of the solution is low. For example, 
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for sample P2 (134 kDa), the shear viscosity increases from 0.93 to 2.77 Pa.s when increasing CS 

content from 2 to 3 wt/v %, respectively, at 70 v/v % AcOH. Consequently, even though surface 

tension is low at 70 v/v % AcOH, the electric field can deform but is unable to completely break 

the droplet at the needle tip. Thus, the stretched solution arrives entirely to the lower part of the 

collector. The same tendency was observed for sample B1 (183 kDa) at 3 wt/v %. 

Regarding morphology, results from Figure 6.6 indicate that nanoparticles with good yield are 

obtained from solutions having shear viscosities between 0.08 to 1.65 Pa.s, if we exclude the high 

MW CS (B3). The shear viscosity of the respective solutions was evaluated at the maximum 

apparent shear rate encountered at the needle wall (8.2 s-1), based on the dimensions of the needle 

geometry and the process flow rate, as explained by Pakravan et al. (2011). The more uniform 

nanoparticles are obtained from medium MW CS (samples B1 and B2) at relatively low CS 

concentrations (1 and 2 wt/v %). Nanoparticles with the lower size of 128 nm are produced from a 

solution containing 2 wt/v % B1 in 70 v/v % AcOH (Figure 6.6m).  

Fiber formation is observed for high MW B3 (344 kDa) at 1 wt/v % CS, 70 and 90 v/v % AcOH 

(Figure 6.6e and 6.6j) and for medium MW B2 (207 kDa) at 2 wt/v % CS and 90 v/v % AcOH 

(Figure 6.6r). However, as shown in Figure 6.6, all previous solutions (Figure 6.6e, 6.6j and 6.6r) 

have viscosity values close to other solutions for which fiber formation is not observed (Figure 

6.6q, 6.6m and 6.6n). Hence, the electrospraying ability of chitosan needs to be explained by other 

criteria than shear viscosity, surface tension and conductivity. The latter two do not change 

significantly for all solutions, as can be seen in Figure 6.6, and could be considered as constant. 

Some studies (McKee, Wilkes, Colby, & Long, 2004; Pakravan et al., 2011; Shenoy, Bates, Frisch, 

& Wnek, 2005) have reported the solution characteristic critical chain overlap and entanglement 

concentrations (C* and Ce, respectively) as important parameters explaining the electrospinnability 

of several polymers. For neutral polymers, Shenoy et al. (2005) reported stable fiber formation at 

polymer concentrations C>>C*. McKee et al. (2004) and McKee, Hunley, Layman and Long 

(2006) showed that beaded and bead-free fibers were formed at Ce and 2-2.5 Ce, respectively, for 

neutral polymers while this concentration increased up to 8-10 Ce for fiber formation in the case of 

polyelectrolytes. For chitosan of 85 kDa and 97.5% DDA, Pakravan et al. (2011) reported C* of 

0.1-0.12 wt % and Ce of 1.3-1.4 wt %. In the work of Pakravan et al. (2011), and in the present 

work, the critical overlap concentration, C* is calculated at the point at which the viscosity of the 

solution is twice the viscosity of the solvent (Dobrynin, Colby, & Rubinstein, 1995; Rubinstein, 
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Colby, & Dobrynin, 1994), while the critical entanglement concentration Ce is calculated by the 

method proposed by Colby, Fetters, Funk and Graessley (1991), as will be presented below.  

Table 6.4 displays C* and Ce for chitosan solutions at 70 and 90 v/v % AcOH. They vary between 

0.03-0.12 % and 1.0-2.6 %, respectively. For Ce, a value of 1.0 wt/v % is obtained for the higher 

MW (sample B3) and would explain the fiber formation observed in Figure 6.6e and 6.6j, since 

C=Ce. However, according to McKee et al. (2006), polymer concentration is too low and 

consequently beaded fibers are formed. Ce may also explain fiber formation for solutions at 2 wt/v 

% (sample B2) in 90 v/v % AcOH. However, the differences observed in morphology in Figure 

6.6n and Figure 6.6r suggest that AcOH content may also play an important role, since the values 

for Ce do not vary for these solutions, but they differ in AcOH content (70 and 90 v/v %, 

respectively). Hence, at 70 v/v % AcOH, the lower solvent content would result in a higher level 

of interactions between chitosan chains due to strong inter and intra chain hydrogen bonding. 

Consequently, bead formation may be favored. By contrast, higher AcOH content would favor 

chitosan chains stretching and fiber formation. This can be explained based on rheological 

behaviour of the solutions. Figure 6.14 of the Supporting Information shows the variation of 

viscosity with shear rate of the solutions. At a shear rate of 8.2 s-1, a 2 % B2 solution exhibits more 

shear thinning at 90 than at 70 v/v % AcOH content. A shear thinning behaviour of the chitosan 

solution can be interpreted as due to a reduction in entanglement density due to shear. Hence, 

rheological behaviour of the solution with 90 v/v % AcOH suggests that this solution would display 

higher fiber formation. On the other hand, the relative higher conductivity of the 2 % B2 solution 

at 70 v/v % AcOH may facilitate the breakup of the jet, allowing bead formation.  

Regarding DDA content, results show that DDA may play an important role in electrospraying, 

even though it does not affect conductivity nor surface tension of the solutions, but shear viscosity. 

Figure 6.6 shows that at the same chitosan and AcOH contents, P2 solutions present higher 

viscosity than B1 solutions, despite the fact that the MW of the latter is higher. This may be 

explained by the DDA which is higher for sample P1, and consequently, the electrostatic repulsions 

between chitosan chains are stronger, which may increase the viscosity of the solutions and 

complicate their process. Hence, DDA is considered as having a relative importance in the 

electrospraying ability of chitosan. However, future tests should be conducted on chitosan grades 

with same MW but differing in DDA content to validate this argument.  
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Based on the findings for C* and Ce, the results suggest that the concentration required for 

electrospraying depends mostly on CS MW as follows: for low MW CS (57 kDa): 25 C* ≤ C ≤ 1.6 

Ce and for medium MW CS (134-207 kDa): 14 C*
 ≤ C ≤ 1.5 Ce. In these conditions, adequate 

particle formation and collection is expected. High MW CS (344 kDa) produce beaded fibers at 

C=Ce. 

 

Table 6.4: Chain overlap (C*) and critical entanglement concentration (Ce) for chitosan at 70 and 

90 v/v % AcOH content 

Chitosan P1 P2 B1 B2 B3 

 70 v/v % AcOH 0.12 0.04 0.07 0.07 0.06 

C* (%) 90 v/v % AcOH 0.06 0.04 0.03 0.03 0.03 

Ce (%) 
70 v/v % AcOH 2.5 1.2 1.3 1.1 1.0 

90 v/v % AcOH 2.6 1.4 1.2 1.2 1.0 
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Figure 6.6: SEM images showing the effect of chitosan MW and DDA on the electrospraying of 

chitosan, at 3 kV/cm, 0.2 mL/h and needle size 22G. The shear viscosity of the respective solutions 

was evaluated at the maximum apparent shear rate encountered at the needle wall (8.2 s-1) and is 

indicated in each case. The scale bar is the same (1 µm) for all the SEM images. 

6.4.2.3 Solvent type 

Several solvents including hydrochloric acid (HCl), citric acid (CA), trifluoroacetic acid (TFA), 

lactic acid (LA) and acetic acid (AcOH) were used to solubilize chitosan and tested in 

electrospraying. Figure 6.7 illustrates the effect of AcOH, TFA and LA. Chitosan nanoparticles are 

obtained in AcOH as discussed so far (Figure 6.7a). At the same chitosan content and process 

conditions, hollow particles with a larger size are observed when TFA is used (Figure 6.7b). 
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Differences in morphology are mainly due to the lower boiling point of TFA with respect to AcOH 

(72.4 ºC vs. 118 ºC). Consequently, TFA with its higher vapor pressure than AcOH, results in a 

higher solvent volatility. This result suggests that CS solutions in TFA should be processed at 

higher flow rates than in AcOH. However, other process and solution parameters should also be 

taken into consideration. On the other hand, no particle formation is observed when the solvent is 

LA, HCl or CA, independently of the chitosan content (from 1 to 3 wt/v %). In all those cases, a 

sputtering of the solution is obtained on the collector, as observed in Figure 6.7c for LA. This result 

is mainly due to the high surface tension of these solvents (and hence CS solutions), making it 

difficult to process the solution (Zhang & Kawakami, 2010). For instance, CS in HCl was soluble 

only at low concentration of the acid (1 v/v %) and a surface tension of about 74 mN/m was 

measured. By contrast, CS was soluble in citric acid at high concentrations of the acid in water (10, 

30 and 50 wt/v). However, the solutions also had a high surface tension (62-72 mN/m), which 

prevented their process by electrospraying. Finally, CS was soluble in LA at low and high 

concentrations of the acid (1, 10, 30 and 50 v/v %, and in pure acid). The lower surface tension 

was obtained when CS was in pure LA, with a value of 44 mN/m. However, this value was still 

too high for jet and particle formation via electrospraying. Therefore, in addition to a low surface 

tension such as those measured in AcOH and TFA (36.2 and 15.6 mN/m, respectively), a relatively 

low volatility of the solvent is also required.  

 

Figure 6.7: SEM images showing the effect of solvent type on the electrospraying of chitosan 

(sample B1): a) 1 wt/v % CS in 70 v/v % AcOH; b) 1 wt/v % CS in TFA; c) 1 wt/v % CS in LA. 

Process conditions: needle 22G, 3 kV/cm and 0.2 mL/h. 
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6.4.3 Mapping of the electrospraying ability of chitosan as function of 

dimensionless numbers 

Up to now, it was shown that both process and solution parameters influence chitosan 

electrospraying. Production of chitosan micro and nanospheres with a good yield were successfully 

achieved when process CS/AcOH solutions having a surface tension lower than 36 mN/m, a 

conductivity between 0.015 to 0.089 S/m and a viscosity between 0.08 to 1.65 Pa.s (at the 

maximum shear rate at the needle, 8.2 s-1) in a 22G needle pumped at 0.2 mL/h at 3 kV/cm. Table 

6.5 shows the optimum values for the process and production of chitosan nanospheres with an 

average size of 128 ± 69 nm via electrospraying. All the experimental conditions tested and 

discussed so far allow the calculation of the dimensional numbers governing the electrospraying 

process of CS/AcOH solutions. Froude number and the electrostatic force parameter define the 

optimal process conditions, while Reynolds, Peclet and Weber numbers establish the range relating 

the solution parameters, as shown in Figure 6.8 and 6.9, respectively.  

Figure 6.8a shows the dimensionless number Fr as function of flow rate and needle size. Fr number 

indicates the ratio of inertial to gravitational forces. Results suggest that relatively low Fr numbers 

(Fr < 5 x10-3) favor process stability and particle collection yield. That is, a given needle size, 

relatively low velocities and for instance, a low flow rate will assure the stability in the cone-jet 

mode. Unstable jet can be obtained at a high needle size and very low velocities, or when Fr < 0.01 

x10-3.  

Figure 6.8b shows the dimensionless number Ω as function of the electric field strength and the 

flow rate, when considering a 22G needle size. Ω indicates the magnitude of the electrostatic forces 

relative to inertia, and variables including the electric field strength, the density and velocity of the 

jet, and therefore the flow rate, are related. Results indicate that relatively low Ω number in the 

range between 1.0 x103 and 5.0 x103 favor process stability and particle collection yield. That is, a 

relatively low electric field strength at a low flow rate, will favor the electrospraying. An increase 

in the flow rate will require an increase in the electric field strength to maintain the stability of the 

process. Ω lower than 1.0 x103 may cause the dripping of the solution while higher values than 5.0 

x103 may allow too few particle deposition and the sputtering of the solution in addition to the 

possibility of multiple jet formation.  
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Figure 6.9 shows the interrelation between the dimensionless numbers Re, Pe and We, containing 

the solution parameters of viscosity, conductivity and surface tension, respectively. Both Re and 

Pe depend on chitosan and AcOH contents. However, Re is more affected by chitosan than by 

AcOH concentration. At concentrations of 2 and 3 wt/v % CS, Re is almost independent of AcOH 

content. On the contrary, We number is only affected by AcOH, since the surface tension of the 

solutions are barely affected by chitosan concentration, as shown in Figure 6.11 of the Supporting 

Information. The region between these curves indicates the favourability of electrospraying for 

chitosan, which is the required conditions for achieving the cone jet mode. The results indicate that 

process stability and particle collection yield is governed by these dimensionless numbers and are 

achieved at relatively high Pe and We (Pe > 3.78x10-10, We > 0.96x10-6), while maintaining Re 

relatively low (0.1-1.0x10-3).  

 

Table 6.5: Optimum parameters to produce chitosan nanospheres with an average size of 128 ± 

69 nm via electrospraying 

Process  Solution 

Parameter  Value  Parameter 

(units) 

Value 

Needle size  22G  Surface tension* 0.036 N m 

Flow rate, Q 0.2 mL/h  Viscosity* 0.56 Pa s 

Distance, d 11 cm  Conductivity* 0.089 S/m 

Voltage, V 33 kV  CS MW  183 kDa 

Electric field strength, E 3 kV/cm  CS content 2 %  

   AcOH content 70 v/v %  

*These parameters are directly related to CS MW as well as CS and AcOH contents. 
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Figure 6.8: Dimensionless numbers establishing the process conditions in the electrospraying of 

CS/AcOH solutions: a) Froud number (Fr) as function of flow rate (Q), and b) Electrostatic force 

parameter (Ω) as function of electric field strength (E). Ω was calculated when considering R0 

from needle size 22G. 

 

Figure 6.9: Dimensionless numbers representing the solution parameters in the electrospraying of 

CS/AcOH solutions: Re, Pe and We as function of CS and AcOH content. Dotted lines (in green 

color) indicate that We is independent of CS concentration.  
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6.5 Conclusions 

Dry chitosan micro and nanospheres were produced by a one-step electrospraying process. A 

systematic study of the process determined that both solution and process parameters are critical 

for process stability, particle formation and collection yield. Nanospheres with a size of 128 nm in 

average were produced from CS/AcOH solutions from medium molecular weight CS (183 kDa) at 

2 wt/v % CS, and at 70 v/v % AcOH content. The optimal process conditions included pumping 

the solution through a 22G needle, at flow rate of 0.2 mL/h, using a voltage of 33 kV over a distance 

of 11 cm from the needle tip to collector plate. In general, the stability of CS/AcOH solutions 

electrospraying required relatively low values for Re, Fr and Ω numbers, but relatively high values 

for Pe and We. Mapping of the electrospraying process for chitosan solutions was achieved using 

dimensionless numbers, and it indicates the regions and conditions that favor both process stability 

and particle formation.   
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6.7 Supporting information 

Characterization of Chitosan/acetic acid (CS/AcOH) solutions  

Chitosan/ acetic acid (CS/AcOH) solutions were characterized in terms of conductivity, pH, surface 

tension and viscosity. Figure 6.10 presents the differences in conductivity for the solutions at 

different polymer and AcOH concentrations. The conductivity of the solvent (AcOH in water) 

initially increases with concentration up to 20 %, and then decreases gradually down to 0 at 100 % 

AcOH. When CS is added, the conductivity increases notably up to a maximum value at 10 % and 
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then decreases with a quasi-linear pattern. This decrease is due to the low degree of disassociation 

of the acid (Zhang & Kawakami, 2010). In addition, by increasing CS concentration, and at low 

AcOH content (1-20 v/v %), the conductivity increases by about 2 and 2.5 fold from 1 to 2 and to 

3 wt/v % CS. However, the effect of CS concentration on the conductivity of the samples decreases 

as the AcOH increases, and at 90% v/v % AcOH the conductivity is almost independent of CS 

content. Regarding MW and DDA, conductivity increases slightly as MW and DDA increase. 

However, the CS and AcOH concentration are the parameters that affect notably the conductivity 

of the different CS/AcOH solutions. According to the values obtained, all analyzed solutions are 

considered as highly conductive since their value is greater than 100 µS/cm (Zhang & Kawakami, 

2010).  

Figure 6.11 shows the surface tension of the different CS/AcOH solutions. The surface tension 

decreases continually with AcOH content from 74.7 mN/m, which corresponds to the value of the 

surface tension of water, to 28.4 mN/m, which corresponds to the surface tension of 100 % AcOH. 

From 10 to 50 % AcOH content, addition of CS decreases surface tension of the solution; and from 

70 to 90 % AcOH, surface tension is not affected by CS but by AcOH content. In addition, as with 

conductivity, surface tension does not change significantly with MW as reported in another study 

(Gómez-Mascaraque, Sanchez, & López-Rubio, 2016) nor with DDA. 

Figure 6.12 presents the viscosity of CS/AcOH solutions as a function of the shear rate, at different 

CS and AcOH concentrations for the CS grade B1. At 1 wt/v % CS, solutions present a Newtonian 

behavior along the range of shear rates tested, independently of the AcOH content. At a 

concentration of 2 and 3 wt/v % and from 1 to 70 v/v % AcOH, solutions present a slight shear 

thinning behavior that become more accentuated when the concentration of AcOH reaches 90 v/v 

%. A higher shear thinning behavior of the polymer solution can be interpreted as a result of a 

reduction in entanglement density due to shear. The shear viscosity is an important solution 

property to consider in solutions electrospraying since simple shear flow occurs inside the needle 

right before the solution is deformed by the electric field strength. According to Figure 6.12, the 

viscosity of the solutions depends on the shear rate encountered at the needle wall (maximum shear 

rate) in electrospraying. The latter was calculated based on the dimensions of the needle geometry 

and flow rate, as explained by Pakravan et al. [23]. The calculated shear rates are in the range of 

1.0 to 3.8 s-1, 8.2 to 32.8 s-1 and 32.2 to 128 s-1 for needle gauges of 18, 22 and 26G, respectively, 

in the range of flow rates analyzed (0.2 to 0.8 mL/h). These appear as dotted lines in Figure 6.12. 
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Therefore, needle size and flow rate determine shear rate at the needle wall, which will in turn 

define a characteristic value of the solution viscosity during process. 

 

 

Figure 6.10: Conductivity of CS/AcOH solutions with different AcOH contents for various 

chitosan grades. 
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Figure 6.11: Surface tension of CS/AcOH solutions with different AcOH contents for various 

chitosan grades. 

 

Figure 6.12: Viscosity of CS/AcOH solutions as a function of shear rate for chitosan grade B1. 

The doted lines represent the maximum shear rate at the needle wall calculated from the needle 

size and flow rate. 
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Figure 6.13: SEM images of different regions in the collected area after electrospraying 1 % CSB1 

in 50 %AcOH at 0.2 mL/h and a 22G needle. 

 

Figure 6.14: Viscosity as a function of shear rate for solutions containing chitosan with a 90 % 

DDA: B1 (183 kDa), B2 (207 kDa) and B3 (344 kDa). 
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7.1 Abstract 

The antibacterial activity of chitosan (CS) nanospheres, in comparison with other physical forms, 

was investigated against Salmonella enterica serovar Typhimurium and Staphylococcus aureus, 

which are 2 foodborne harmful pathogens. Results showed that the antibacterial efficacy of CS 

nanospheres: (1) was superior to that displayed by CS in powder and solution form; (2) was higher 

against S. aureus than against Salmonella Typhimurium; and (3) was dependent on the temperature 

and pH of the medium depending on the strain. For S. Typhimurium, a higher activity was 

displayed at 37 °C, in which 99.9 % of the population was eradicated independently of the pH, 

followed by 20 °C and 7 °C, in which acidic pH conditions favored a higher susceptibility of 

bacteria to the effect of CS. On the contrary, S. aureus was less susceptible to the pH and 

temperature conditions of the medium, and no statistical difference in the antibacterial effect was 

observed for pH 5.8 and 8.0 at 20 and 37 °C. However, at 7 °C a slightly higher activity was 

displayed at pH 5.8 than at 8.0. 
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7.2 Introduction 

Chitosan (CS) is a natural nontoxic polysaccharide obtained by the alkaline deacetylation of chitin 

and typically contains between 0% and 30% of N-acetyl glucosamine and 70% to 100% of 

glucosamine units (Muzzarelli 1973, Goosen 1997). The free amino groups in CS are known to be 

responsible for its physicochemical and biological properties, including its intrinsic antibacterial 

activity (Kumar 2000), which can be influenced by environmental and microbial factors and the 

intrinsic properties of CS itself (No and others 2002, Dutta and others 2009, Kong and others 2010). 

CS can be obtained or prepared in different physical forms such as powder and flakes (neat forms), 

solutions, films, fibers, micro and nanoparticles, which allow a wide range of applications in 

biomedicine, water treatment, food industry, agriculture and cosmetology, and so on. (Goosen 

1997, Kumar 2000, El-hefian and others 2011). Up to now, several studies have examined the 

antimicrobial activity of CS solutions (Chen and others 2002, Tsai and others 2002, Chung and 

others 2003, Zheng and Zhu 2003, Campos and others 2006, Chung and Chen 2008), gel (Goy and 

others 2015) and films (Ouattara and others 2000a, b, Zivanovic and others 2005, Beverlya and 

others 2008, Dutta and others 2009) on different microbial species. More recently, micro and 

nanosize morphologies have been fabricated to increase CS bioactivity and performance, and to 

enhance CS/cell interactions (Qi and others 2004, Kong and others 2008a, b, Xing and others 2008, 

2009a, b, Yien and others 2012). CS nanofibers have been mainly produced using the 

electrospinning process from neat CS aqueous acetic acid solutions (Geng and others 2005, 

Homayoni and others 2009) and CS solubilized in trifluoroacetic acid (TFA) (Ohkawa and others 

2004, 2006, Schiffman and Schauer 2007), and/or by blending with co-spinnable materials such as 

poly(ethylene oxide), poly(lactic acid) and poly(vinyl alcohol) (Ignatova and others 2006, 2009, 

Pakravan and others 2011, Ardila and others 2016). All these CS-based fibrous structures showed 

promising results regarding antibacterial activity (Ignatova and others 2006, 2009, Ardila and 

others 2016). On the other hand, the use of CS micro and nanoparticles have been widely 

investigated in the biomedical field for drug delivery applications due to their small size and large 

surface to weight ratio. Several methods have been employed for their production, including 

emulsion cross-linking reaction, coacervation / precipitation, spray-drying, emulsion droplet 

coalescence, ionic gelation and electrospraying (Agnihotri and others 2004, Sinha and others 2004, 

Bock and others 2011). The latter is particularly known for being a simple one-step processing 
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method that produces highly charged particles and which do not require extra purification steps 

(Jaworek 2007). Regarding the antibacterial activity, some studies have evaluated the efficacy of 

CS micro and nanoparticles on account of the minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) values determined by turbidimetric methods. For 

instance, Qi and others (2004) reported an MBC for CS solution of 64 µg/mL, compared with 1 

and 2 µg/mL for CS nanoparticles against Escherichia coli K88 and ATCC 25922, respectively; 

for Staphylococcus aureus ATCC 25923, an MBC value of 32 and 4 µg/mL was reported for CS 

in solution and nanoparticle form, respectively; whilst that for Salmonella enterica serovar 

Typhimurium, the MBC values reported were 64 and 4 µg/mL for CS in solution and nanoparticle 

form. Yien and others (2012) also reported a higher activity of low and high molecular weight 

(MW) CS nanoparticles with respect to CS in solution against different fungal species. The MIC90 

for low and high MW weight CS nanoparticles against Candida albicans was 0.25-0.86 and 0.6-

1.0 mg/mL, respectively. Against Fusarium solani it was 0.86 to 1.2 and 0.5 to 1.2 mg/mL for low 

and high MW, respectively, whilst the MIC90 for CS in solution was 3 mg/mL for both levels of 

MW.  On the other hand, Kong and others (2008a) reported a similar antibacterial activity for CS 

microspheres and solution. A total inhibition of S. aureus by a CS concentration of 1 mg/mL was 

observed.  

Even though the antibacterial activity of CS has been widely studied, no report has compared the 

effect of particle size, nor has analyzed the effect of pH and temperature on antibacterial activity 

of CS nanospheres. The study of these effects is of great importance on accounting the many 

possible applications, such as in food packaging and in the biomedical field. More specifically, the 

present research work investigates the effect of physical form and particle size, namely solution, 

powder and nanospheres, on CS antibacterial activity, under the same experimental conditions. In 

addition, the effect of pH, temperature and bacterium species on the effectiveness of CS 

nanospheres against Salmonella enterica serovar Typhimurium and Staphylococcus aureus is 

explored, which are pathogenic strains commonly associated with foodborne infection. This study 

aims at shedding light on the superior antibacterial activity of CS nanospheres in various 

conditions, and propose a mechanism behind it. 
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7.3 Materials and Methods 

7.3.1 Materials 

(CS) in powder form with 95 % degree of deacetylation (DDA), 57 kDa average MW, 25 kDa 

number-average MW and a polydispersity (PDI) of 2.24 was obtained from Primex (Iceland). 

Glacial acetic acid was purchased from Sigma Aldrich.  

Cultures of pathogens S. aureus (54-73) and S. Typhimurium (SL1344) were obtained from the 

Laboratory of Microbiology (Université de Montréal, Québec, Canada). 

7.3.2 Methods 

7.3.2.1 CS physical forms 

CS in powder form was used as received. CS solution was prepared by dissolving 1 wt/v % CS in 

1 v/v % acetic acid aqueous solution. Dissolution was carried out under magnetic stirring at room 

temperature until complete dissolution of the solutes. CS nanospheres were prepared using the 

electrospraying process. First, a solution of 3 wt/v % of CS in 70 v/v % aqueous acetic acid was 

prepared. Our study on CS electrospraying has determined that 70 v/v % of acetic acid is required 

for nanosphere formation and collection. The electrospraying process was performed using a 

homemade horizontal setup containing a programmable microsyringe pump (Harvard Apparatus, 

PHD 2000, USA) and a variable high DC voltage power supply (Gamma High Voltage Research, 

FL, USA). Polymer solution was pumped through a syringe fitted with a metallic 22-gauge needle 

(i.d. 0.41 mm, o.d. 0.72 mm) at a flow rate of 0.2 mL/h, using a voltage of 33 kV at a distance of 

11 cm between the needle tip and the grounded plate collector. Electrospraying was conducted in 

a chamber at room temperature, a relative humidity of 30 to 40 % and under atmospheric pressure. 

CS nanospheres were collected on aluminum foil attached to a stationary collector plate and then 

were dried overnight under a chemical fume hood for the evaporation of any remaining solvent. 

7.3.2.2 Morphology 

The morphology of CS powder and nanospheres was observed by scanning electron microscopy, 

(SEM, JEOL JSM-7600TFE field emission gun) operated at 2 kV. The particle diameter and size 
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distribution were analyzed using the Image-Pro Plus® software by taking an average of about 1000 

particles. 

7.3.2.3 Antibacterial tests  

The antibacterial activity of CS under different physical forms (powder, solution and nanospheres) 

was evaluated against 2 pathogenic bacteria: S. Typhimurium (Gram-negative) and S. aureus 

(Gram-positive). Bacteria were grown in a rich medium (Luria Bertani or LB broth) under constant 

agitation for 24 h at 37 ºC, until reaching a density of approximately 109 colony forming units 

(CFU)/mL. Then, the bacterial culture was diluted in de-ionized distilled water medium (pH 5.8 

and 8.0 altered by using HCl or NaOH 0.1 M), in order to have a density of approximately 106 

CFU/mL. CS in powder, solution, and nanosphere forms were immersed (after sterilization under 

UV light for 20 min) at a concentration of 0.01 wt/v % CS, into 5 mL of the culture medium 

containing S. Typhimurium or S. aureus. Subsequently, tubes were incubated at 7, 20 and 37 °C 

for 4 h in an incubator shaker (New Brunswick). Dilutions of the inoculated suspensions were 

prepared and deposited on LB agar plates and incubated for 18 h at 37 °C for the counting of the 

surviving bacteria (CFU/mL). Plates were verified after 48 h to corroborate that the recovery of 

viable organisms from sub-lethal injury had not taken place. Experiments were carried out in 

triplicate.  

Preliminary tests showed that zeta potential values differ greatly depending on the medium of 

testing, which may influence the antibacterial activity of CS nanospheres. For instance, at a pH of 

5.8, CS nanospheres displayed an overall positive surface charge of + 53.3 mV when measured in 

deionized distilled water, but a value of + 18.4 mV when measured in a buffered solution (PBS). 

These differences may be explained as a consequence of diffuse layer (charge screening) when in 

PBS, given the relative high salt content of this medium (11.16 wt/v % of NaCl, KCl, 

Na2HPO4.7H2O and KH2PO4). Therefore, antibacterial tests were performed in water, to promote 

the antibacterial effect. 

Preliminary tests suggested the use of 0.01 wt/v % CS for the comparison of the antibacterial 

activity under different physical forms. Given the relative low CS concentration, the pH of the CS 

suspensions was not affected after the 4 h of incubation. Lower concentrations were not possible 

due to limitations to precisely weight CS in powder form.  
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7.3.2.4 Zeta potential and particle size 

CS nanospheres were suspended in 5 ml of de-ionized distilled water (pH 5.8 and 8.0 altered by 

using HCl or NaOH 0.1 M), and stirred for 10 min at 100 rpm. The CS solution was diluted in 5 

ml of de-ionized distilled water at pH 5.8, and stirred in the same conditions than CS nanospheres. 

The zeta potential of the CS solution was measured only at pH 5.8. When adjusting the pH solution 

to 8.0, a precipitate was observed, given the poor solubility of CS in solution at pH above its pKa 

(6.2-6.5) (Pillai and others 2009, Yao and others 2011). Zeta potential was determined by laser 

Doppler velocimetry and phase analysis light scattering (M3-PALS) using a Malvern Zetasizer 

Nano ZSP instrument (Malvern Instruments Ltd., Malvern, Worcestershire, UK). The zeta 

potential was determined from the direction and velocity of the molecules in the applied electric 

field. The Smoluchowski model was used to convert the electrophoretic mobility measurements 

into zeta potential values. The temperature of the cell was maintained at 25 °C. The data presented 

are the average values of 3 individual measurements.  

The potential solubility of CS nanospheres during the antibacterial tests at pH 5.8 (given the pH of 

the medium is lower than chitosan’s pKa, chitosan amino groups undergo protonation and therefore 

may display certain solubility in the medium) was tested via dynamic light scattering (DLS) by 

analyzing particle size. The mean particle size measurement (Z-average) was performed at a fixed 

angle of 173° using a Zetasizer Nano ZSP instrument (Malvern Instruments, Worcestershire, UK) 

equipped with a 4 mW He–Ne laser (633 nm wavelength) at 25 °C. Droplet sizing was performed 

at 10-s intervals in a particle-sizing cell using backscattering technology. Z-average diameter 

(mean) of particles was calculated based on the Stokes–Einstein equation, assuming particles to be 

spherical. This assumption is considered reasonable given the physical form and size of CS 

nanospheres. Given the physical dimensions of CS in powder form, it was not possible to measure 

its zeta potential (pH 5.8 and 8.0) nor determine its size by DLS for the evaluation of its potential 

solubility. Each data points are the mean of triplicate measurements on 3 independent samples. 

7.3.2.5 Statistical analysis 

Antibacterial and zeta potential measurements were carried out in triplicate, and the average values 

with their standard deviations are reported. Zeta potential results were analyzed statistically using 

the Student’s t-test to determine differences. Level of significance is denoted as P<0.05. Statistical 

analysis for the antibacterial results were performed in two ways. The effect of CS physical form 
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was analyzed by using Tukey pairwise comparisons with a confidence interval of 95 %. The effect 

of temperature and pH for each strain was analyzed by adjusting the data to a Generalized linear 

model and then using Dunnet pairwise comparisons. These analyses were performed in ANOVA-

Minitab17® software and all data were normalized by re-scaling in log form.  

7.4 Results and Discussion 

7.4.1 Morphology 

Figure 7.1 presents the SEM micrographs of CS powder and nanospheres, and their particle size 

distribution. CS in powder form (Figure 7.1a) has an irregular shape and a size of 55 µm, on 

average, whilst CS nanospheres (Figure 7.1b) exhibit a regular spherical shape and present a 

diameter of 178 nm, in average. Both CS forms exhibit a wide particle size distribution, and about 

30% of CS nanospheres are in the order of 100 nm in size. 

 

Figure 7.1: Morphology and particle size distribution (log-normal) of chitosan a) in powder form 

and b) nanospheres. This figure has been modified with respect to the original article. 
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7.4.2 Zeta potential and solubility of CS nanospheres 

Zeta potential illustrates the surface charge and the electrostatic interactions between particles. 

Table 7.1 reports the zeta potential of CS solution and CS nanospheres in de-ionized distilled water 

at pH 5.8 and 8.0. Given the size of CS in powder form, it was not possible to measure the zeta 

potential and the measurements were out of the range.  

In the case of CS nanospheres, zeta potential decreases with pH. For instance, they display an 

overall positive surface charge of +53.3 and +14.8 mV when measured at pH 5.8 and 8.0, 

respectively. This decrease may be interpreted as a consequence of de-protonation of CS amino 

groups. Therefore, as the pH increases, charged amino groups promoting the stability of CS 

nanospheres fade. However, results indicate that at pH 8.0, CS nanospheres still display a positive 

surface charge, probably as a result of their interaction with the few ions in the medium (Na+), 

given that the pH of de-ionized distilled water was altered with NaOH intentionally. This result is 

consistent with the findings of Gan and others (2005) who reported a pH of 9.0 as the isoelectric 

point for CS nanoparticles prepared by ionic gelation.  

Table 7.1: Zeta potential (mV) and mean particle size (Z-average) of 0.01% chitosan 

Chitosan form 
 Zeta potential (mV)  Size (nm) 

 pH 5.8  pH 8.0  pH 5.8  pH 8.0 

Solution  34.4 ± 6.0a  -  -  - 

Nanospheres  53.3 ± 0.7b  14.8 ± 0.7c  459.1 ± 91.9a  797.3 ± 213.2a 

Means that do not share a letter in each group are significantly different (p<0.05) according to 

Student’s t-test. 

On the other hand, results show a significantly higher zeta potential value for CS nanospheres in 

comparison to CS solution at pH 5.8 (+53.3 vs. +34.4 mV, respectively) and consequently, display 

a higher stability. The lower zeta potential in CS solution is the result of the presence of more ions 

in solution (from acetic acid). Similar zeta potential values of between +51 kV (Qi and others 2004) 

and +35 to +55 kV (Yien and others 2012) were reported for CS nanoparticles prepared by ionic 

gelation. Differences with our results may be due to the preparation process and the CS 

concentration, MW and DDA. It was reported that zeta potential increases when increasing CS 
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MW (for example, when increasing the MW from 70 to 310 kDa, the zeta potential increases from 

+35 to +38, +43 to +50, and +47 to +55 mV, for a chitosan concentration 1, 2 and 3 mg/mL, 

respectively) (Chen and others 2010, Yien and others 2012). Results regarding the effect on CS 

concentration are contradictory. For example, Yien and others (2012) showed an increase in zeta 

potential values (for example from +35 to +47 mV, when increasing the chitosan concentration of 

1 to 3 mg/mL for low MW chitosan of 70 kDa. Similar tendency was observed for high MW 

chitosan of 310 kDa at the same chitosan concentrations) whilst Gan and others (2005) reported a 

decrease, when increasing CS concentration (for example from +43 to +34 mV, when increasing 

the chitosan concentration from 0.5 to 3 mg/mL, respectively, for chitosan of low MW-value not 

specified. Similar tendency was observed for medium and high MW chitosan).  

Nanoparticles with low surface charge (+20 mV or lower) encounter weaker electrostatic repulsion, 

which can promote particle aggregation due to van der Walls inter-particle attraction (Gan and 

others 2005, Yien and others 2012). This statement is in accordance with the differences in particle 

size observed via SEM and DLS (at pH 5.8 and 8.0). Table 7.1 presents the particle size (Z-average) 

obtained by DLS for CS nanospheres. Before contact with the medium, CS nanospheres have an 

average diameter of 178 nm (Figure 7.1b, by SEM), but once in the medium, their average diameter 

increases up to 459 nm and 797 nm (Table 7.1, by DLS) at pH 5.8 and 8.0, respectively. In addition 

to a likely swelling once in the medium, possible agglomeration of particles may occur at pH 8.0, 

given their low stability reflected in their low zeta potential value (+14.8 mV). This is reflected in 

the high particle size observed (797 nm, Table 7.1). In addition, nanospheres suspended at pH 5.8 

may undergo partial solubilisation. Indeed, after 4 h at pH 5.8, particle size decreases to 315 nm, 

and the reduction continues after 13 d until 256 nm. This reduction on the particle size should be 

considered when analyzing the antibacterial activity of CS nanospheres and for future applications 

as well. 

On the other hand, for dilute solutions such as 0.01 % CS (overlap concentration, C*=0.1-0.12 

wt%; Pakravan and others 2011), the intrinsic viscosity [η] can be used to get an approximate value 

of the radius of gyration (〈RG〉) of a polymeric molecule in a solvent by the following relation 

(Carreau and others 1997, Cho and others 2006): 〈𝑅𝐺〉
3 =

[𝜂] 𝑀̅𝑛

𝜙
 where 𝑀̅𝑛  is the number-average 

MW and 𝜙 is a universal constant (2.1x1023 mol-1). Given that [η] is 280.4 mL g-1 and  𝑀̅𝑛 is 25 

kDa, the radius of gyration is 32.1 nm. Hence in solution, CS chains will display a size of about 
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64.2 nm. This approximation is consistent with the equation proposed by Berth and Dautzenberg 

(2002) to calculate the radius of gyration given  𝑀̅𝑤: 〈𝑅𝐺〉 (𝑛𝑚) = 0.075𝑀𝑤
0.55 = 31 𝑛𝑚. 

7.4.3 Effect of physical form on the antibacterial activity of CS 

Figure 7.2 shows the antibacterial activity of CS under different physical forms at the same CS 

concentration (0.01%) and pH (5.8), against S. Typhimurium and S. aureus. Preliminary tests 

suggested the use of 0.01 wt/v % CS for the comparison of the antibacterial activity. Lower 

concentrations were limited due to weight CS in powder form.  

Given that the pH of the medium is lower than CS pKa (6.2-6.5; Pillai and others 2009, Yao and 

others 2011), CS amino groups in all physical forms are considered protonated and therefore 

capable of interacting with the negatively charged bacteria surface. This can be corroborated when 

looking at the zeta potential values for CS in solution and nanosphere form (Table 7.1). Although 

it was not possible to determine the zeta potential value of CS in powder (due to large particle size), 

their amino groups are assumed protonated just as for CS nanospheres. 

 

Figure 7.2: Antibacterial activity of chitosan under different physical forms. The number of viable 

organisms was the same after 18 and 48 h incubation on the agar plates, suggesting that recovery 

from sub-lethal injury had not taken place. For each strain, means that do not share a letter are 
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significantly different with a confidence level of 95% by Tukey Pairwise Comparisons. Statistical 

analysis was done separately for S. Typhimurium and S. aureus (samples with and without *). 

CS nanospheres displayed the highest activity, followed by CS in powder and solution form. 

Therefore, CS physical form and size influence its antibacterial activity. Furthermore, as particle 

size decreases, the antibacterial effect of CS is enhanced since CS nanospheres display a significant 

higher activity than CS in powder form (6.4 compared with 2.9 log reduction in bacterial density). 

This result may be explained by the larger specific surface area (SSA) of contact of CS nanospheres 

(SSA=112 m2/g) with bacteria cell wall than in CS powder (SSA=0.36 m2/g). The specific surface 

area was calculated based on the dimensions of the CS powder and nanoparticles, considering them 

as spheres having a bulk density of 0.3 g/cm3 (Cho and others 1998). Hence, there are more 

protonated amino groups at the nanosphere surface available to interact with the negatively charged 

bacteria cell wall, which results in a higher antibacterial activity. In addition, CS nanospheres can 

interact more effectively with the cell wall given their small size. Different studies have 

demonstrated that the surface area plays a major role in the antimicrobial activity. For instance, 

Yamamoto (2001) reported that the antibacterial activity of zinc oxide powders against E. coli 

increased considerably when decreasing the particle size from 0.8 to 0.1 µm. A similar trend, but 

with a lower impact, was observed when powders were tested against S. aureus. In another study, 

Martinez-Gutierrez and others (2010) also reported a significantly increase in the antimicrobial 

activity of silver and titanium nanoparticles when their particle size decreased from 250-300 to 20-

25 nm, against different Gram-positive and Gram-negative strains, including E. coli and S. aureus. 

CS nanospheres are also more effective than CS in solution. The lower activity of the solution may 

be explained due the lower zeta potential value. Similar findings were reported in which CS 

nanoparticles were more active than CS in solution against different bacterial (E. coli, S. 

choleraesuis, S. Typhimurium and S. aureus; Qi and others 2004) and fungal species (Candida 

albicans and Fusarium solani; Yien and others 2012). It has been suggested that the higher activity 

of CS nanoparticles was the result of a higher affinity and a better interaction with bacteria cell 

surface due to the higher surface charge and compact and small character, compared to CS in 

solution (Qi and others 2004, Yien and others 2012). As a matter of fact, our results show that CS 

nanospheres display a higher surface charge (zeta potential value +53.3 compared with +34.4 mV), 

which may have contributed to a higher interaction with the negatively charged cell surface. In 

addition, the distribution in particle size of CS nanospheres (Figure 7.1b) reveals that about 30% 
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of nanospheres are in the order of 100 nm or less in size, which may also contribute to a higher 

efficacy and adsorption when in contact with the bacterial cell surface. On the contrary, it is 

believed that even though CS in solution interacts with the cell wall, it will remain as a free form 

in the medium rather than adhering permanently into cells. A study carried out by Ma and Lim 

(2003) demonstrated that the cellular uptake of CS in solution was lower than that of CS 

nanoparticles since the CS molecules in solution were located extracellularly. This suggested that 

CS nanoparticles might be able to diffuse into cells, affecting their cellular membrane, and would 

explain the higher antibacterial activity obtained in this work for CS nanoparticles with respect to 

CS in solution.  

Finally, the higher activity of CS powder compared to that of CS in solution is explained as follows. 

At pH 5.8, CS in solution may have lost part of its physical form and be partially present as 

agglomerates, whilst CS in powder may still conserve its physical form, while with reduced size, 

as it happens for CS nanospheres at the same pH (partial solubilisation). In addition, CS powder 

can serve as a physical support that may maximize the attachment of bacteria. For instance, the 

size of CS powder is 37 to 81 times higher than the size of S. Typhimurium cells (rod shape with 

1.5 ± 0.4 µm in length and 0.7 ± 0.1 µm in width; Ardila and others 2017). Thereafter, the 

interaction of protonated CS amino groups with the negatively charged groups at bacteria cell 

surface may cause the disruption and the permeability of the cell membrane, the leakage of cellular 

components and therefore cell death (Chung and Chen 2008, Kong and others 2010).  

Similar results and trends were obtained when evaluating the antibacterial activity of the different 

CS forms against S. aureus (Figure 7.2). 

7.4.4 Effect of pH, temperature and bacterium species 

The antibacterial efficacy of CS nanospheres against S. Typhimurium and S. aureus was evaluated 

at different pH and temperature conditions, as reported in Figure 7.3. The evaluation of these 

factors is of great importance with respect to food packaging and biomedical applications. 

7.4.4.1 Bacterium species 

Figure 7.3 shows that the antibacterial activity of CS nanospheres is stronger against S. aureus than 

against S. Typhimurium, regardless of the pH of the medium and the incubation temperature. The 



103 

 

same trend against these strains was observed by other authors in the case of CS and CS oligomer 

solutions in acidic pH conditions (No and others 2002, Tsai and others 2002, Qi and others 2004). 

CS nanospheres were more effective against the Gram-positive, S. aureus than the Gram-negative, 

S. Typhimurium, presumably due to the presence of outer membrane lipid barrier in the latter 

(Zhong and others 2008, Kong and others 2010). 

On the other hand, results suggest that the antibacterial activity of CS nanospheres is independent 

of the form and size of the cells. For instance, S. Typhimurium cells have a rod-shape of 1.5 µm in 

length and 0.7 µm in width, whilst S. aureus cells have a spherical shape of 0.8 µm in diameter 

(Ardila and others 2017). Hence, CS nanospheres might have had larger contact with the surface 

of S. Typhimurium cells than with the ones of S. aureus. However, a higher activity was found 

against S. aureus, which have the smaller size and therefore the lower surface area to the adsorption 

of CS nanospheres.   

7.4.4.2 Temperature 

Figure 7.3 shows that the temperature of incubation may limit or favor the antibacterial action of 

CS. CS nanospheres display a higher antibacterial activity at 37 ºC than at 20 and 7 ºC for S. 

Typhimurium. In the case of S. aureus, the antibacterial efficacy is also lower at 7 ºC, but, no 

difference was observed at 20 and 37 ºC, in which the total concentration of bacteria was eradicated. 

It has been suggested that low temperature conditions may affect the bacteria surface 

electronegativity (Tsai and Su 1999). Consequently, the interaction of CS nanospheres with the 

cell surface may be limited. On the other hand, high temperature conditions may favor the solubility 

of CS, specially in acidic pH values, lowering the size of CS nanospheres. The decrease in particle 

size would improve the interaction of nanoparticles with cell walls and therefore would have a 

positive impact on the antibacterial action of nanospheres. Temperature can also affect the 

adsorption/adhesion of nanoparticles onto the cell wall surface. As temperature affects the 

Brownian motion, high temperature conditions favor the stability and distribution of the suspended 

nanospheres in the cell wall, avoiding particle aggregation. Besides, temperature enhances 

membrane fluidity, favoring the interaction of the cell surface with chitosan nanospheres.  

Notwithstanding the more limited antibacterial activity at 7 ºC in S. Typhimurium, the results show 

that bacterial density is reduced by about 1.8 and 1.6 log CFU/ml (at pH 5.8 and 8.0, respectively), 



104 

 

which represent a decrease in more than 97 % of bacteria. This result shows its potential use for 

different applications, including low temperature conditions such as in food packaging.   

7.4.4.3 pH 

The effect of pH on the antibacterial activity of CS nanospheres can be observed at the temperatures 

of incubation of 7 and 20 ºC in the case of S. Typhimurium and at 7 ºC in the case of S. aureus. As 

seen in Figure 7.3, CS nanospheres display slightly higher antibacterial activity in acidic pH 

conditions (5.8) than at slightly basic pH (8.0). This can be explained as a consequence of the 

greater surface charge and the lower particle size at pH 5.8 in comparison with pH 8.0 for CS 

nanospheres, as shown in Table 7.1. In addition, lower particle sizes could be expected at pH 5.8 

after 4 h of incubation, given the potential solubility of CS in acidic conditions, as previously 

discussed. Nevertheless, results also show that CS nanospheres display similar antibacterial 

activity, independently of the pH, against S. Typhimurium incubated at 37 ºC and against S. aureus 

incubated at 20 and 37 ºC. It suggests that CS nanospheres display a unique antibacterial effect in 

slightly basic conditions, such as pH 8.0. Contrary to these results, CS in powder form did not 

display any antibacterial activity at this pH for any of the bacterial species at 7 ºC nor 37 ºC (results 

not shown). Other studies on CS solutions, films and nanofibers (Kong and others 2010) also 

reported that acidic conditions were required for the antibacterial activity of CS. In addition to the 

results of the current study, Kong and others (2008b) reported a similar trend at a pH of 7.5 for the 

case of CS microspheres having 62.6 % DDA at concentrations of 500 and 1000 ppm. In their 

study, it was suggested that the inhibitory effect might be related to the hydrophobic interactions 

of the N-acetyl groups of CS microspheres with bacteria cells. In the present work, if existing, this 

influence should be minor given the high DDA of CS (95 %). On the other hand, neutral pH 

conditions may favor the chelating capacity of CS towards cations from the cell walls (Guibal 

2004). Hence, based on the different experimental conditions that were evaluated and the obtained 

results in the current study, the zeta potential measurements nor the particle size alone cannot 

explain the similar antibacterial activity obtained at pH 5.8 and 8.0 at high temperature conditions.  
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Figure 7.3: Influence of pH, temperature and bacterium species on the antibacterial activity of 

chitosan nanospheres. The number of viable organisms was the same after 18 and 48 h incubation 

on the agar plates, suggesting that recovery from sub-lethal injury had not taken place. For S. 

Typhimurium: pH and temperature significatively affects the antibacterial activity (p=0.001 and 

0.001, respectively) at a confidence level of 95%. For S. aureus: pH and temperature significatively 

affects the antibacterial activity (p=0.001) at a 95% confidence level. 

Our findings suggest that CS nanospheres may display a different mode of antibacterial action than 

CS in solution and powder form, in which acidic conditions are required for the protonation of CS 

amino groups, the subsequent interaction with bacteria cell wall and the exertion of the antibacterial 

effect. First, surface effects may be considered: as discussed previously, zeta potential values show 

that CS nanospheres display a positive surface charge at pH 5.8 and 8.0. Hence, it is hypothesized 

that CS nanospheres may adsorb on the bacteria cell wall independently of the pH conditions, given 

their small size and positive charge. The higher surface charge and the lower particle size at pH 5.8 

would explain the higher antibacterial effect in low temperature conditions. The interaction of CS 

nanoparticles with the negatively charged phospholipid components (anionic groups such as 

phosphate and carboxyl) may cause cell damage and rupture, affecting the cell permeability and 

producing the leakage of cellular components leading to cell death (Xing and others 2009a, Kong 
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and others 2010). Nanospheres may, in addition, form an impermeable layer on the cell surface, 

inhibiting the adsorption of essential nutrients and disturbing the normal metabolism of the cells. 

Since cellular uptake of CS nanoparticles has been reported to be higher than CS in solution (Ma 

and Lim 2003), a higher adsorption of CS nanoparticles into the cells would explain the higher 

antibacterial activity observed for nanospheres at pH 8.0 when compared with CS in solution at pH 

5.8. This mechanism would also explain the higher activity of CS nanospheres at pH 5.8 with 

respect to pH 8.0 in low temperature conditions. The lower particle size and the higher surface 

charge would facilitate the larger adsorption/interaction of CS into/with the cell. It is noteworthy 

to mention that about 30 % of CS nanospheres are smaller than 100 nm and acidic pH conditions 

may increase this percentage, favoring the antibacterial effect. 

Second, chelating effects may be involved. While in acidic pH conditions protonated CS amino 

groups can trigger electrostatic interactions with anionic compounds, at neutral and basic pH 

values, CS may act as a chelating agent by binding to trace elements and metal cations, either from 

the cell wall or from the medium (Guibal 2004). For instance, adhesion of chitosan with Mg2+ and 

Ca2+ ions (by forming metal complexes via chelation reaction), from the cell wall may cause the 

destabilization and disintegration of the cell membrane (Chung and Chen 2008), whilst the latter 

may reduce availability of the essential nutrients for the normal bioactivity of the cells (Rabea and 

others 2003, Kong and others 2008b, 2010). Kong and others (2008b) verified via SEM that E. coli 

cells adhered to the surface of CS microparticles and provided evidence for the disruption of the 

cells. The antibacterial activity was reported to be due to the chelating capacity of CS towards Mg2+ 

ions of the E. coli membrane, with subsequent changes in the outer membrane structure and cell 

permeability. In the current study CS has a high DDA, which means that it owns many amino 

groups to chelate with divalent cations. Hence, it is suggested that chelating effects become more 

important for CS nanospheres at neutral or slightly above pH conditions, given the antibacterial 

activity reported at pH 8.0. Hence, chelating effects can explain the activity observed in neutral 

conditions, and suggest that they are comparable to the electrostatic interactions triggered at acidic 

pH, given the similar antibacterial effect observed at high temperature (37 ºC) for both pH 5.8 and 

8.0.  

Lastly, besides the surface and chelating effects, it is hypothesized that permeation might also play 

an important role. Our morphological results showed a wide particle size distribution of CS 

nanospheres (Figure 7.1) with about 30 % of CS nanospheres smaller than 100 nm. It is speculated 



107 

 

that smaller CS nanospheres of few nanometers might enter the cell through pervasion, 

consequently altering the DNA and mRNA functions, and other physiological activities of cells 

(Rabea and others 2003, Kong and others 2010). As acidic conditions may further reduce the 

particle size, this mechanism would also explain the higher activity at pH 5.8.  However, up to 

now, no evidence that CS can penetrate the cell wall has been shown.  

Based on the antibacterial results, it is speculated that more than one mechanism could be 

responsible for the antibacterial activity of CS nanospheres. Further research and characterization 

should be conducted to elucidate the exact mechanism(s) of the antibacterial action. 

The findings of this study may differ from other previous studies due to differences in the 

experimental conditions. Further investigation should be addressed in order to elucidate the 

mechanism of inhibition of CS nanospheres, their incorporation into existing food packaging, their 

interaction with real food systems as well as their possible effect on the body in case of ingestion. 

7.5 Conclusions 

CS physical form highly influences its antibacterial activity. CS nanospheres displayed higher 

antibacterial activity than CS in powder and solution form against foodborne pathogens such as S. 

Typhimurium and S. aureus. Besides, a larger antibacterial effect was found against S. aureus. On 

the other hand, pH and temperature conditions did not limit the antibacterial efficacy of CS 

nanospheres, contrary to other physical forms, which are not completely active at low temperature 

and at neutral/slightly basic pH conditions. These results show the high inhibitory effect of CS 

nanospheres and their potential incorporation into conventional food packaging (film, cardboard, 

aluminum) for providing them with antibacterial activity and therefore to better guarantee food 

safety. 

Practical Application  

Chitosan (CS) nanospheres are highly effective against pathogen bacteria including Salmonella 

Typhimurium and Staphylococcus aureus, which are commonly found in food spoilage. Contrary 

to other CS forms, CS nanospheres are potential candidates for incorporation into food packaging 

and food safety given their high antibacterial activity at pH and temperature conditions of food 

preservation. 
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CHAPTER 8: GENERAL DISCUSSION 

The insolubility of chitosan in neutral and basic pH conditions may limit the applications of most 

chitosan-based systems. For instance, in this PhD thesis it was demonstrated that acidic pH 

conditions (pH< chitosan’s pKa) favoring the protonation and solubility of chitosan powder and 

flakes were required for the exertion of any antibacterial effect, contrary to chitosan nanospheres, 

in which particle size favoring chitosan-cell interactions play a major role in the antibacterial 

activity, as will be discussed below. Both chitosan powder and flakes were inactive in a neutral 

medium, independently of the chitosan concentration and bacterial density. Regarding chitosan 

solutions and films, several studies have demonstrated that, as the pH increases, the antibacterial 

activity decreases considerably because of a lower degree of protonation in chitosan amino groups 

[67, 122, 161, 162]. Although this drawback has been overcome with the use of chitosan derivatives, 

including quaternized chitosan (which may provide more protonated amino groups-NH3
+- 

available for interaction with negatively charged cell surface), their production methods are still 

under study and far from being considered for industrial applications.  

In general, food has an acid or slightly neutral pH, which would favor that chitosan solutions, films 

or powder and flakes may act as antimicrobial agents. However, coating of food by chitosan 

solutions may be inadequate for most kind of food, including meat, fruits and vegetables. Besides, 

dipping without a polymer matrix may result in a rapid diffusion of the solution within the bulk of 

food, alter the food pH and affect its organoleptic and nutritional properties [14]. Similarly, 

chitosan powder and flakes may be inadequate for some type of food, despite their potential direct 

use as antibacterial agents. On the other hand, the weak mechanical and barrier properties of 

chitosan films may limit their use as active films for food packaging applications [111, 112].  

On the contrary, chitosan nanoparticles may offer several advantages, as opposed to the other 

systems discussed. For instance, in this PhD thesis, we could demonstrate the enhanced 

antibacterial activity of chitosan nanospheres with respect to chitosan powder and solution form, 

and when reducing chitosan particle size, inferring that particle size has a major effect. Besides, 

the antibacterial activity of nanospheres was found to be independent of the medium pH, which is 

the major difference with respect to other chitosan forms (powder, flakes, solution and films). It 

was suggested that different mechanism could happen for chitosan nanospheres, as presented in 

Chapter 7. Briefly, given their small size, nanospheres may adsorb on bacterial surface 
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independently of the medium pH. At acidic pH, it is believed that the adsorption is due to 

electrostatic attraction of the positively charged amino groups and negatively charged cell wall. At 

neutral or slightly basic pH conditions, the mechanism is most probably due to chelating effects 

and chitosan amino groups may bind to metal cations and trace elements (such as Ca2+ and Mg2+) 

from the cell wall or the medium. Once adsorbed, nanospheres may interfere with the biological 

activities of the cells, by either forming an impermeable layer and blocking the release of enzymes 

that are necessary for the absorption of nutrients and/or hindering the leakage of toxic components, 

or by binding with essential elements for the metabolism from the medium. Lastly, it was suggested 

that given their small size, nanospheres may diffuse into the cells and alter the mRNA and DNA 

activities, independently of the medium pH. Therefore, for all the above, nanospheres are 

considered promising for food related applications.  

Recently, the electrospraying process has emerged as a relatively new technique for the fabrication 

of micro and nanoparticles for drug delivery applications. Electrospraying offer several advantages 

in comparison with other technologies for nanoparticle formation, including emulsion cross-

linking, coacervation/precipitation, spray drying, ionic gelation, as discussed in Chapter 2.2. The 

main advantage of using electrospraying resides in the control over particle size, morphology and 

the production of nanoparticles in one single step process. Besides, nanoparticles do not require 

extra purification steps, including the removal of remaining solvent, because it evaporates during 

processing. In addition, electrospraying allows transforming a chitosan solution into pure chitosan 

nanoparticles, by employing a non-toxic solvent such as acetic acid. Furthermore, the processing 

can be carried out without the need of any co-spinning agent, contrary to the production of chitosan 

nanofibers, via electrospinning. The direct incorporation of chitosan micro and nanoparticles into 

conventional food packaging materials (such as polyethylene, polypropylene, aluminium, etc.) 

through electrospraying could be an alternative of industrial interest for providing of antibacterial 

properties. This alternative may lead to the formulation of new antibacterial food packaging 

materials. 

However, despite the advantages of the electrospraying process, different aspects should be taken 

into consideration. First, the scale up for industrial production should be considered. Although the 

electrospraying technique is well recognized at lab scale, there is still a challenge for implementing 

it at an industrial level [149]. Nevertheless, drug industry is focusing in exploring this technology 

for biomedical and pharmaceutical applications. Second, the adhesion of chitosan nanoparticles 
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onto different surfaces (rugosity, type of matrix) as well as the need of a treatment (such as corona 

or plasma surface modification) should be considered. The direct electrospraying of a chitosan 

solution onto an aluminum foil resulted in nanoparticles that were easily removable from the film. 

Third, the stability of nanoparticles onto the surface matrix (conventional packaging, for example) 

should be looked at. Four, the effect of chitosan nanoparticles on the thermal, mechanical, optical 

ad barrier properties of the matrix should be considered. For instance, chitosan nanoparticles 

displayed a typical white spot once they were in the aluminum foil, suggesting that their use could 

be limited for packaging where transparency is required. Five, the migration of nanoparticles into 

food should be looked at. Contaminated food need to be in direct contact with chitosan 

nanoparticles to exploit their antibacterial effect. However, nanoparticles can migrate into food, 

and consequently not only affect its organoleptic properties but also be ingested. Hence, the study 

of cytotoxicity and biocompatibility of these nanoparticles toward human cells should be addressed 

in a future work. Chitosan is a non-toxic material with a lethal dose value (LD50), similar to the one 

reported for sugar (16 vs. 30 g/kg body weight) [117]. However, Health Canada [163] reported that 

in long term, a prolonged exposure to chitosan can cause a decrease in the absorption of essential 

minerals for the body. For this reason, capsules containing chitosan for slimming and reducing 

cholesterol should be taken with meals. Regarding the cytotoxic activity, Qi et al. [164] reported a 

high cytotoxicity of chitosan nanoparticles toward tumor cells but a low toxicity toward human 

liver cells. Finally, the antibacterial activity of chitosan nanospheres should be tested in real food 

conditions, such as refrigeration temperature (2-4 ºC), presence of nutrients that can limit the 

antibacterial effect of chitosan (including salts, lipids, proteins), competition with other intrinsic 

bacteria (natural and contamination flora). In this case, humidity, which is one of the major factors 

contributing to the deterioration of food, should also be taking into consideration. Moreover, 

chitosan nanospheres were tested as in a liquid medium which favored their interaction with 

bacteria. Therefore, tests should be addressed in solid state to mimic real conditions for food. On 

the other hand, when chitosan nanofibers were part of multilayer food packaging they exhibited 

promising results in the reduction of bacteria growth and the extension of the shelf life of meat 

[52].  

During the accomplishment of the current research work, we encounter several problems. The first 

was to condense and understand all the information regarding the antibacterial activity of chitosan. 

The lack of a standardized method for the evaluation of the antibacterial activity made it difficult 
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to compare the results from different authors. Second, given the extensive number of factors which 

may influence the antibacterial action of chitosan, and the duration of the experiments (including 

the repeatability), we had to prioritize and select only the most relevant factors for food related 

applications (pH, temperature, ionic strength, cell strains). However, other factors such as chitosan 

source should be considered. This point is of particular relevance, given the allergies that can be 

provoked when using a chitosan from marine sources, whose protein content is still over a certain 

limit. Besides, in the first part of the present research work, it was found that remaining proteins 

can also limit the antibacterial effect. Therefore, other sources of chitosan, such as from mushrooms 

and insects, and having different protein content, should be considered for future work.  

One of the biggest challenges in the second part of the study was to prepare reproducible chitosan 

nanospheres for the evaluation of the antibacterial effect against pathogenic bacteria. The extensive 

number of parameters influencing the electrospraying process hindered the straight production and 

demanded for a complete study of their interaction. Hence, the third part of the study was focused 

on the stability of the process to produce chitosan nanospheres. In this case, it was necessary to 

establish proper relations in terms of dimensionless number that characterized the process and that 

regrouped the most important variables during processing. Once the influence of the main 

parameters was established, the mapping of the process was defined. It is noteworthy to mention 

that the study was conducted in a short period to have less variation in the environmental conditions 

such as humidity of the chamber. Preliminary results demonstrated that differences in the relative 

humidity produced different outcomes in both processing and morphology. At relatively high 

concentrations of chitosan, and for high molecular weight chitosan, it was found that low humidity 

values (between 2 and 20%) allowed fiber formation, while higher humidity (between 30 to 45%) 

facilitated the spraying of the solutions and nanospheres formation. Hence, all electrospraying tests 

were conducted at humidity values between 30 and 40%. The mapping correlating the most 

important variables allow to predict the stability regions of the process when the environmental 

conditions remained constant. On the other hand, the study of the process was carried out mostly 

on chitosan solutions with acetic acid as solvent. This is of great convenience given the intended 

potential food related applications. Although other solvents, such as TFA are also promising for 

processing and nanoparticle formation, its toxicity during evaporation step and/or residual traces 

in nanospheres can be of great concern.  
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Finally, one main concerns that may limit the processing and applicability of chitosan nanospheres 

in the food packaging sector is the cost of the raw material, chitosan. Despite its high availability 

from marine sources, its price is still high (up to 10 times higher) in comparison with conventional 

polymers such as poly(lactic acid) and poly(ethylene), depending on the purity degree. Therefore, 

other chitosan sources should be explored as previously discussed.  
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

9.1  Conclusions 

This research focused on the production of chitosan micro and nanospheres for their potential 

incorporation into conventional food packaging materials. To do so, the evaluation of the 

antibacterial action of chitosan was evaluated first on a discontinuous solid form, such as neat 

chitosan powder and flakes. The first part of this research evaluated the influence of the main 

factors involved in food related applications such as pH, temperature, ionic strength, bacterial 

species on the antibacterial activity of chitosan. In addition, the effect of chitosan concentration 

and purity was analyzed. The following conclusions can be drawn from the results: 

1. Particulate solid chitosan displayed antibacterial activity only when the pH of the medium 

is lower than chitosan pKa, suggesting that a partial solubility of these forms is required for 

the exertion of the antibacterial effect.  

2. Chitosan antibacterial activity is favored at low pH and low salt concentrations, and at high 

temperature conditions. 

3. Chitosan concentration may limit or favor the antibacterial effect, depending on the purity 

(protein content). The antibacterial activity increases with chitosan concentration in high 

purity chitosan samples. However, the presence of impurities such as proteins may be 

detrimental for the antibacterial action and can favor the proliferation of bacteria into the 

medium.  

4. E. coli strains were found more sensitive to the action of chitosan than S. aureus and L. 

innocua strains.  

5. Chitosan powder and flakes may serve as physical support enhancing the antibacterial effect.  

The second part of this research focused on the mapping of the processability of chitosan/acetic 

acid solutions for stability and nanospheres formation via electrospraying. The following 

conclusions can be drawn from the results: 

1. Chitosan (medium molecular weight)/acetic acid solutions at 1 and 2 wt/v % chitosan, and 

at 70 and 90 v/v % acetic acid content, allowed the production of micro and nanoparticles.  
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2. A surface tension below 36 mN/m, a relative low conductivity between 0.015 to 0.089 S/m 

and a shear viscosity between 0.08 to 1.65 Pa s, were required for process stability, micro 

and nanoparticle formation and collection.  

3. Optimal processing conditions included pumping of chitosan solutions through a 22G 

needle, at a flow rate of 0.2 mL/h, a voltage of 33 kV and a distance of 11 cm from the 

needle tip to collector plate.    

4. The stability in the electrospraying of chitosan solutions required relatively low values for 

Re, Fr and Ω but relatively high values for Pe and We numbers. 

The third part of this research focused on the evaluation of several environmental and microbial 

factors on the antibacterial action of chitosan nanospheres. Besides, the effect of chitosan physical 

form and shape was considered. The following conclusions can be drawn from the results: 

1.  Chitosan physical form highly influences its antibacterial activity. Chitosan nanospheres 

displayed higher antibacterial activity than chitosan in powder and solution form against 

foodborne pathogens such as S. Typhimurium and S. aureus. 

2. S. aureus strains were found more sensitive to the antibacterial action of chitosan 

nanospheres than S. Typhimurium strains. 

3. pH and temperature conditions did not limit the antibacterial efficacy of chitosan 

nanospheres, contrary to other physical forms, which are not completely active at low 

temperature and at neutral/slightly basic pH conditions.  

The electrospraying process may provide a novel way for incorporating chitosan nanospheres into 

conventional food packaging material to confer antimicrobial properties and help to extend the 

shelf-life of food products.  

9.2 Recommendations  

The following aspects are recommended to be explored in future works: 

1. Study the mechanism of action of chitosan nanospheres via TEM observation of the cells 

and evaluating the leakage of components.  
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2. Investigate the effect of chitosan source (marine vs. mushrooms and insects) on the 

antibacterial action of chitosan.  

3. Evaluation of the solubility limits required for the antibacterial effect of chitosan powder 

and flakes. 

4. Study of the influence of environmental conditions including temperature, humidity and 

drying conditions on processing and morphology for nanoparticle formation via 

electrospraying.  

5. Study the effect of DDA in the electrospray ability of chitosan. 

6. Evaluate the optimal nanoparticle size for maximum efficiency in the antibacterial effect. 

7. Investigate the direct incorporation and adhesion of chitosan micro and nanoparticles into 

conventional food packaging materials such as polyethylene, polypropylene, aluminium 

foil, etc. through electrospraying. Different surface roughness, matrices and treatments 

should be considered.  

8. Study the effect of chitosan on the thermal, mechanical, optical and barrier properties of 

the polymer matrix containing chitosan nanoparticles. 

9. Evaluate the antibacterial activity of chitosan nanoparticles electrosprayed on the surface 

of different polymer matrix. Perform in situ and in vitro tests.  

10. Perform antibacterial tests at static conditions instead of inoculated liquid medium at 

different pH and temperature conditions.  

11. Evaluate the migration of chitosan nanoparticles into food, their effect on the organoleptic 

properties as well as the study of cytotoxicity and biocompatibility of these nanoparticles 

towards human cells, in case they are ingested. 

12. Evaluate the encapsulation of chitosan micro and nanospheres with essential oils, such as 

eugenol and thymol to further increase the antibacterial effect and its processing via 

electrospraying. 
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A.1 Abstract 

The fabrication of nonwoven mats containing chitosan and bacterial nanocellulose by 

electrospinning were considered using two different approaches: (i) simultaneous spinning of 

chitosan and bacterial nanocellulose solutions using two separate syringes towards the same target 

and (ii) coaxial electrospinning, where chitosan and bacterial nanocellulose were simultaneously 

electrospun through a spinneret composed of two concentric needles to produce core-shell 

structures. Co-spinning agents were required in both approaches. A direct blend of chitosan and 

bacterial nanocellulose and subsequent electrospinning was not feasible due to the incompatibility 

of their respective solvents. The first approach led to the production of mats containing both 

chitosan and bacterial nanocellulose nanofibers. However, few bacterial nanocellulose fibers were 

deposited on the collector. Addition of polylactide as a co-spinning agent and an increase in 

solution temperature (from 22 to 60 ºC) during electrospinning was required to improve both fiber 

formation and collection. On the other hand, coaxial electrospinning showed the best results for 

the production of nanofibers containing both chitosan and bacterial nanocellulose. Nanofibers with 

a good yield were obtained by using a chitosan/poly(ethylene oxide) (2.4/0.6 wt/v %) aqueous 

solution as the inner layer, and a bacterial nanocellulose solution (0.6 wt/v %) as the outer layer. 
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Co-electrospun nanofibers had a diameter of 85 nm in average, and a narrow size distribution. The 

core/shell nanostructure was validated by transmission electron microscopy whilst energy-

dispersive X-ray spectroscopy analysis showed that the nanofibers contained both chitosan and 

bacterial nanocellulose along their structure. Finally, the mats obtained by the coaxial approach 

exhibited strong antimicrobial activity with a decrease of 99.9 % of an Escherichia coli population. 

A.2 Introduction 

Cellulose and chitosan are both linear polysaccharides with molecular structures consisting of D-

glucose units linked by β-1,4-glucosidic bonds, and differ by the pendant groups at the C-2 position, 

i.e., hydroxyl for cellulose and acetyl amine units for chitosan (Sekwon 2010). Chitosan is obtained 

from chitin after deacetylation and purification processes. Chitin is the second most abundant 

polysaccharide on Earth, after cellulose (Muzzarelli 1973). Chitin is extracted mainly from the 

exoskeleton of marine crustaceans such as crabs, shrimps, crawfish and lobsters (Goosen 1997). 

Cellulose can be produced naturally by plant photosynthesis, or via microbial synthesis through 

various microorganism species including Acetobacter xylinum, Acetobacter hansenii and 

Acetobacter pasteurianus (Siró and Plackett 2010; Mohite and Patil 2014). Compared to cellulose 

from plants, bacterial cellulose has higher purity, higher crystallinity, higher degree of 

polymerization and interesting characteristics, such as higher surface area per unit mass and higher 

water holding capacity (Siró and Plackett 2010; Mohite and Patil 2014). In addition, a better in 

vivo compatibility with tissues has been reported for bacterial cellulose (Gama et al. 2012).  

Besides their abundance and renewability, intrinsic properties such as biocompatibility, 

biodegradability and non-toxicity make chitosan and cellulose attractive for different applications. 

In particular, chitosan is widely recognized as having antimicrobial and hemostatic properties 

(Goosen 1997; Sekwon 2010), whilst bacterial nanocellulose is of interest in the biomedical area 

owing to its regenerative ability in wound healing and moisture retaining properties (Gama et al. 

2012; Mohite and Patil 2014). Moreover, bacterial cellulose is ideal for cell immobilization and 

support due to its nanostructure and morphological similarity with collagen (Costa et al. 2012; 

Basmaji et al. 2015). The combination of the aforementioned properties can be of significant 

interest for the biomedical industry in the scope of new materials designed for wound dressing 

applications.  
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However, despite their good properties, processing of either bacterial cellulose or chitosan alone is 

a difficult task since they are not thermoplastic materials, nor soluble in most common solvents. In 

addition, their common processing becomes even more challenging if both materials are intended 

to be used together to take advantage of their individual properties. The limited solubility of 

chitosan and bacterial cellulose is mainly attributed to the length of their chains, the high 

crystallinity, the rigidity of their structure and the strong inter and intramolecular hydrogen bonding 

(McCormick et al. 1985; Swatloski et al. 2002). Chitosan is commonly dissolved in dilute acids 

such as acetic and formic acids. Cellulose (and bacterial cellulose) requires the use of more 

complex systems such as N,N-dimethyl acetamide/lithium chloride (DMAc/LiCl) (El‐Kafrawy 

1982; McCormick et al. 1985; Matsumoto et al. 2001; Röder et al. 2001). Other solvents such as 

N-methyl-2-pyrrolidinone/LiCl (NMP/LiCl), N-methylmorpholine N-oxide (NMMO) (El‐

Kafrawy 1982; Kulpinski 2005; Greiner and Wendorff 2007) and ionic liquids have also been 

reported (Schlufter et al. 2006; Okushita et al. 2012). However, the latter may lead to degradation 

(Schlufter et al. 2006) or induce structural modifications to cellulose (Okushita et al. 2012). On 

other hand, the DMAc/LiCl solvent system has been widely used for the dissolution of different 

types of cellulose over a wide range of concentrations, and without side reactions such as 

derivatization nor degradation (Matsumoto et al. 2001; Röder et al. 2001). DMAc causes inter 

crystalline swelling, increases accessibility of the solvent to the cellulose chains and weakens the 

hydrogen bonds between the cellulose molecules (Röder et al. 2001). The addition of LiCl and no 

other salt is required to bond cellulose and DMAc via electrostatic interactions (El‐Kafrawy 1982; 

McCormick et al. 1985). Nevertheless, differences in molecular structure and crystallinity between 

cellulose from different biological sources may vary its solubility regarding the solvent systems 

employed (Matsumoto et al. 2001). Lastly, regardless of the solvent, cellulose is commonly 

subjected to “activation procedures” such as freeze drying, swelling in water or solvent exchange, 

treatment with liquid ammonia and heating, in order to break hydrogen bonds and favor dissolution 

(McCormick et al. 1985; Röder et al. 2001; Potthast et al. 2002; Kim et al. 2006). In the latter case, 

temperature should be maintained below 85 ºC to avoid degradation of cellulose in DMAc and 

DMAc/LiCl solution (Potthast et al. 2002; Kim et al. 2006). 

Recently, a lot of attention has been paid to the production of submicron size fibers by 

electrospinning. Resulting nonwoven mats exhibit distinctly high specific surface area, typically 
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ranging from 10 to 500 m2/g, small pore size and high porosity (Greiner and Wendorff 2007; 

Pakravan et al. 2012).  

The electrospinning of neat chitosan solutions has been widely investigated (Ohkawa et al. 2004, 

2006; Geng et al. 2005; Schiffman and Schauer 2007; Homayoni et al. 2009). Blending chitosan 

with materials with high spinnability such as poly(ethylene oxide) (PEO) (Subramanian et al. 2005; 

Desai et al. 2008; Pakravan et al. 2011), poly(lactide) (PLA) (Ignatova et al. 2009) and poly(vinyl 

alcohol) (PVA) (Ohkawa et al. 2004; Li and Hsieh 2006) have been reported to facilitate its 

processing and fiber formation, as well as to improve fibrous mats characteristics. In particular, a 

chitosan/PEO blend ratio of 80/20 has displayed good processability and high yield and chitosan 

content (Bhattarai et al. 2005; Desai et al. 2008; Pakravan et al. 2011). It has been suggested that 

in the electrospinning process PEO may act as a carrier of chitosan via hydrogen bonding (Pakravan 

et al. 2011). For applications that require antimicrobial properties, a lower amount of the carrier 

polymer is preferable. 

Conversely, a limited number of publications can be found on the electrospinning of cellulose and 

bacterial cellulose. Cellulose has been electrospun from NMMO/water (Kulpinski 2005; Kim et al. 

2006; Greiner and Wendorff 2007), DMAc/LiCl (Kim et al. 2005, 2006; Frenot et al. 2007) and 

ionic liquids (Ahn et al. 2012) into fibers with diameters in the sub and micrometer range, whilst 

one study has performed the electrospinning of chemically modified bacterial cellulose in 

chloroform/acetone (Costa et al. 2012). Nevertheless, in most cases, the processing was challenging 

with low yield (collection) and poor quality of fibers, and in some studies it involved several steps. 

In particular, in NMMO/water, the composition for spinning cellulose was very narrow and 

solution temperatures between 70 and 110 ºC were required, which can degrade cellulose (Kim et 

al. 2006).  

In order to improve fiber formation, yield and decrease fiber size, different approaches have been 

considered in the case of vegetal-derived cellulose. Some studies performed the electrospinning of 

cellulose derivatives such as cellulose acetate (Liu and Hsieh 2002; Liu and Tang 2007), with a 

subsequent conversion to cellulose fibers by a deacetylation process in the presence of NaOH. 

However, this process can lead to side reactions including incomplete conversion and degradation, 

may require extra purifications steps, as well as cause changes in the fibers surface and organization 

(Röder et al. 2001; Liu and Hsieh 2002; Kim et al. 2006). Other authors electrospun cellulose 
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derivatives mixed with co-spinning agents such as PEO (Frenot et al. 2007) while other studies 

focused on the effect of different processing parameters in the morphology and final characteristics 

(Liu and Hsieh 2002; Kulpinski 2005; Kim et al. 2005, 2006; Xu et al. 2008). 

As with cellulose and bacterial cellulose, little attention has been paid to the processing of chitosan-

cellulose and chitosan-bacterial cellulose blends. Recently, Lin et al. (2013) and Cao et al. (2016) 

reported the preparation of chitosan-bacterial cellulose and chitosan-cellulose composite 

membranes, by dipping neat bacterial cellulose and cellulose casting film membranes into chitosan 

solutions. Ostadhossein et al. (2015) reported the fabrication of chitosan/bacterial cellulose films 

by solvent casting. In all these studies, cytocompatibility and antibacterial activity against 

Escherichia coli and Staphylococcus aureus was reported.  

Regarding the electrospinning of these blends, Park et al. (2011) investigated the electrospinning 

of chitosan-cellulose fibers by using an ionic liquid (1-ethyl-e-methylimidazolium acetate) as 

solvent. Despite the authors successfully produced fibers of micrometer size, these were not 

uniform and a low yield was obtained. In addition, electrospinning was difficult to control due to 

the high viscosity, high ionic strength and low volatility of the solvent, and a collecting bath was 

required to remove the solvent. To our knowledge, no other study has been reported on the 

electrospinning of chitosan-cellulose nor chitosan-bacterial cellulose blends. Processing of these 

materials via electrospinning could allow to control fiber size and porosity, which are important 

for wound dressing applications. In addition, the antibacterial properties can benefit from the 

nanostructure character of the nanofibers. On the other hand, bacterial cellulose has a higher purity 

and does not contain hemicellulose, lignin, pectin and other materials compared with cellulose 

from plants (Phisalaphong and Jatupaiboon 2008; Lin et al. 2013; Mohite and Patil 2014). Also, 

bacterial cellulose exhibit higher biocompatibility with tissues (Gama et al. 2012; Mohite and Patil 

2014). These properties are in favor of the use of bacterial cellulose rather than cellulose from 

plants for biomedical applications, including wound healing.  

The main objective of the present study is to develop antimicrobial chitosan/bacterial nanocellulose 

structures for potential wound dressing applications. To the best of our knowledge, this is the first 

time that the electrospinning of these blends is considered. This study is conducted through two 

different one step-electrospinning approaches: (i) simultaneous electrospinning of chitosan and 

bacterial nanocellulose through two separate solutions and syringes and (ii) concentric coaxial 
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electrospinning. In addition, the direct electrospinning of the basic materials is analyzed. The 

morphological details of the produced nanostructures, such as fiber diameter and distribution, 

porosity and content, are characterized by scanning electron microscopy (SEM), transmission 

electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Finally, the 

antimicrobial properties of the electrospun mats are investigated against a non-pathogen strain of 

Escherichia coli. 

A.3 Experimental 

A.3.1 Materials 

Chitosan (CS) in powder form (95 % degree of deacetylation (DDA) and 57 kDa weight average 

molecular weight) was obtained from Primex (Iceland). Bacterial nanocellulose (BNC) in film 

form (16.6 ± 1.2 µm thickness) was provided by Axcelon Biopolymers Corporation (London, ON, 

Canada). Dimethylacetamide (DMAc) 99.5 % and lithium chloride (LiCl) were purchased from 

Anachemia Science and Fisher Scientific Company, respectively. Poly(ethylene oxide) (PEO) 

(powder form and viscosity average molecular weight of 600 kDa), glacial acetic acid, lactic acid 

(LA) solution (≥ 85% in volume) and glycerol were purchased from Sigma-Aldrich. Poly(lactide) 

(PLA, 4060D) was purchased from Nature Works LLC. All chemicals used in this study were of 

analytical grade and used without further purification.  

Cultures of Escherichia coli (E. coli strain DH5α, non-pathogen) were obtained from the 

Laboratory of Microbiology, Infectiology and Immunology (Université de Montréal, Québec, 

Canada).  

A.3.2 Methods 

A.3.2.1 Solution preparation 

CS at a concentration of 3 wt/v % was dissolved in 50 v/v % acetic acid under stirring during 24 h 

at room temperature. PEO - a co-spinning agent for CS - at a concentration of 3 wt/v % was 

dissolved in 50 v/v % acetic acid under stirring at room temperature overnight. The CS/PEO blend 

was obtained by mixing the respective CS and PEO solutions at an 80/20 (wt/wt) ratio. The 

resulting solution was homogenized during 2 h under stirring. For the dissolution of BNC, the 
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DMAc/LiCl system was used. BNC films were first cut manually -until obtaining pieces of few 

centimeters in size, approximately, and immersed with liquid nitrogen until complete evaporation 

of nitrogen (approximately 30 s). They were then cryogenically grinded in an IKA mill crushing 

A10 operated at 20 000 rpm. These steps were repeated approximately 5 times until obtaining 

flakes of millimeter size to facilitate dissolution. Then, a BNC solution was prepared by dissolving 

0.6 wt/v % grinded BNC in a DMAc solution containing 3 wt/v % LiCl, under constant stirring 

during 2 h at 80 ºC to facilitate dissolution. The BNC solution was further mixed overnight at room 

temperature. The 0.6 wt/v % concentration was the maximum content of BNC that could be 

dissolved in this solvent system. PLA - a co-spinning agent for BNC - at a concentration of 10 

(wt/v) % was dissolved in DMAc in the presence of 3 wt/v % LiCl under stirring for 2 days at room 

temperature. Then, BNC/PLA blends were prepared by mixing BNC and PLA solutions at different 

ratios (1:1 and 1:3 (v/v)). These solutions were homogenized during 2 h under stirring. 

A.3.2.2 Electrospinning 

Figure A.1 presents the direct electrospinning of the basic materials and the two approaches that 

were considered here for the production of chitosan/bacterial nano cellulose (CS/BNC) nanofibrous 

structures: parallel and coaxial electrospinning. Electrospinning was performed on a homemade 

horizontal setup containing a programmable micro-syringe pump (Harvard Apparatus, PHD 2000, 

USA) and a variable high DC voltage power supply (Gamma High Voltage Research, FL, USA). 

Polymer solutions were pumped through a syringe fitted with a metallic needle (details provided 

in respective sections below). Electrospinning of the different solutions was conducted over a wide 

range of electric field strengths (1-5 kV/cm), by varying the voltage (15-35 kV) and the distance 

between the needle tip and the grounded collector plate (5 to 15 cm), at different flow rates (0.1 to 

1.5 mL/h), and solutions temperatures (22 and 60 ºC). All experiments were conducted in a 

chamber at a relative humidity of 20-30 % and under atmospheric pressure. Fibers were collected 

on aluminum foil attached to a stationary collector plate. Collected electrospun fibers were dried 

overnight under a chemical fume hood for the evaporation of any remaining solvent.  

A.3.2.2.1 Electrospinning of basic materials (direct electrospinning)  

First, the separate electrospinnability of BNC and CS/PEO blend was investigated. Then, the 

feasibility of electrospinning a blend containing both CS and BNC along with co-spinning agents 

was considered. BNC solution and BNC/PLA blends were directly electrospun through a 22-gauge 
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(i.d. 0.41 mm, o.d. 0.72 mm) at 0.3 mL/h and 3.0, and 2.3 kV/cm, respectively. Electrospinning of 

the CS/PEO blend was done using an 18-gauge needle size (i.d. 0.84 mm, o.d.1.27 mm) at 0.5 mL/h 

and 2.0 kV/cm.   

A.3.2.2.2 Parallel electrospinning 

This approach was considered to produce mats containing both chitosan and bacterial nanocellulose 

intertwined respective fibers. CS/PEO and BNC solutions, and CS/PEO and BNC/PLA (1:3) 

solutions were electrospun simultaneously towards the same target from two different needles to 

produce random mixing of converging jets of the two separate solutions. The needle size and the 

flow rate in electrospinning were the same as those employed in the direct electrospinning of each 

individual solution. Two different microsyringe pumps were required in this approach and an 

electric field of 3.0 kV/cm was applied for both solutions. 

A.3.2.2.3 Coaxial electrospinning 

This method was considered to produce chitosan/bacterial nanocellulose mats containing both 

components in each individual fiber, but in separate layers instead than in a blend. CS/PEO blend 

and BNC solution were electrospun through a coaxial spinneret comprised of an inner 21-gauge 

needle (i.d. 0.51 mm, o.d. 0.83 mm) concentrically mounted on an outer 15-gauge needle (i.d. 1.37 

mm, o.d. 1.83 mm) to produce core-shell structures. Core and shell solutions were electrospun at 

0.5 mL/h and 0.3 mL/h, respectively and at 2.3 kV/cm. The core solution had to be electrospun at 

a higher flow rate than the shell one in order to get a stable process of fiber formation. CS/PEO and 

BNC solutions were alternated between core and shell to evaluate their processability and resulting 

morphology. 
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Figure A.1: Different approaches used in this work for the production of nanofibrous structures: 

a) direct spinning of the basic materials, b) parallel and c) coaxial electrospinning set up. 

A.3.2.3 Characterization 

The surface morphology of the electrospun fibers was observed by scanning electron microscopy, 

(SEM, JEOL JSM-7600TFE field emission gamma) operated at 2 kV. Electrospun fiber diameters 

and their distribution were analyzed using the Image-Pro Plus software ® by taking an average of 

300 fibers. The analysis of mat composition was performed in the same SEM equipment under 

energy-dispersive X-ray spectroscopy (EDS) mode operated at 10 kV. The morphological and 

compositional characterization of the core-shell structure was performed on a transmission electron 

microscope (TEM, JEOL JEM-2100F) operated at 200 kV. In this case, fibers were directly 

collected onto a standard TEM copper grid coated with an amorphous carbon film.  

Prepared electrospun CS/PEO/BNC mats were submerged in an aqueous solution of 50 % (v/v) 

acetic acid for 10 minutes in order to remove the PEO and chitosan and quantify the BNC content. 

The extracted mats were then dried at room temperature overnight to remove the remaining solvent 

and then characterized by SEM.  
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The rheological properties of the CS/PEO and BNC solutions were measured in a controlled stress 

rheometer (MCR-502, Anton Paar, Germany) equipped with a double Couette flow geometry. 

Strain, frequency sweep and simple shear flow tests were conducted. Strain sweep tests were 

carried out from 0.0001 to 1 at frequencies of 0.628 and 62.8 rad/s at 25 ºC for the determination 

of the linear viscoelastic (LVE) region. A strain of 0.05 was determined to be in the LVE regime 

for both polymeric solutions. Frequency sweep tests were carried out from 0.5 to 500 rad/s at 0.05 

strain amplitude and 25 ºC. Steady state flow tests were performed from 0.1 to 500 s-1 at 25 ºC. 

Tests were done in duplicate. Surface tension measurements of CS/PEO and BNC solutions were 

performed in a dynamic contact angle meter and tensiometer (DCAT11, Future Digital Scientific 

Co, Long Island High-Tech, USA) equipped with a Wilhelmy plate as a test piece (sensor). Tests 

were done in triplicate. The conductivity of the solutions was measured with a conductimeter 

Inolab ® Cond 750 (WTH GMbH, Germany). Measurements were done in triplicate. 

The antibacterial properties of the nanofibers were evaluated by using a non-pathogen E. coli 

(DH5α) strain as a model bacterium. Bacteria were grown in a nutritional-rich medium (Luria 

Bertani or LB broth) under constant agitation for 24 h at 37 ºC, in order to reach a density of 109 

Colony Forming Units (CFU)/mL. After 24 h, the bacteria culture was diluted in a phosphate 

buffered saline (PBS, pH 5.8) solution, in order to reach a density of 106 CFU/mL. Mats of 25 x 

25 mm2 area were prepared and immersed (after sterilization under UV light for 20 min) into 

culture tubes containing 5 mL of the PBS inoculated with E. coli. Subsequently, tubes were 

incubated at 37 °C for 4 h in an orbital incubator shaker (New Brunswick). Dilutions of the 

inoculated suspensions were prepared and deposited on LB agar plates and incubated overnight at 

37 °C for the counting of the surviving bacteria (CFU/mL). CS/PEO fiber mats and bacterial 

nanocellulose in film form, with the same surface area, were used as positive and negative controls, 

respectively. Experiments were carried out in triplicate. 

A.4 Results and discussion 

A.4.1 Electrospinning of basic materials 

Figure A.2a presents the SEM micrograph for the native BNC film and Figure A.2b-f, the SEM 

images from direct electrospinning of different solutions containing either CS or BNC. Figure A.3 

presents their fiber size distribution. The best conditions for the continuous processing of the fibers 
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were a range of voltage between 25 to 35 kV, a distance between the needle tip and the collector 

plate of 7 to 15 cm and a flow rate of 0.3 and 0.5 mL/h for the solutions containing BNC and CS, 

respectively. Such low flow rates were required to allow the complete evaporation of the solvent, 

have a stable processing and avoid the agglomeration of fibers after arriving on the collector plate. 

The specific electrospinning parameters for each solution are given in the label of Figure A.2.  

Figures A.2b and A.3a show that beaded-free nanofibers with an average diameter of 44 nm were 

obtained from the CS/PEO 80/20 solution. According to Pakravan et al. (Pakravan et al. 2011), 

blending chitosan with a co-spinning agent such as PEO is necessary to facilitate its processing and 

make it electrospinnable.  

Figure A.2c shows that at first sight BNC is electrospinnable. Nonetheless, a very small yield, large 

fiber size (3.0 µm) and some instabilities in the processing were observed. The electrospun fibers 

were formed at the tip of the needle but remained straight in the electric field without arriving to 

the collector plate. This phenomenon was previously reported by Frenot et al. (2007) for solutions 

containing enzymatically treated cellulose in the same solvent system. They suggested that this 

behavior is related to salt, mainly the Li+ and Cl- ions present in the formed fibers, in which the 

high charge density may cause an overall positive charge on the fibers that forces them to remain 

straight in the negative field. The processing of the BNC solution at 60 ºC did not improve fiber 

formation nor their collection. Hence, in order to improve processing and yield, BNC was blended 

with an electrospinnable material which could be dissolved in the same solvent system 

(DMAc/LiCl), in this case PLA.  

Figure A.2d reveals that at a BNC/PLA blend ratio of 1:1, fibers merged into forming a film-like 

structure that resembles the native BNC film, as previously observed in Figure A.2a. By increasing 

the blend ratio to 1:3 (Figure A.2e), fiber formation and collection was notably improved and 

nanofibers of 220 nm in average diameter were obtained, as shown in Figure A.3b. Furthermore, 

better structure and yield were observed by increasing the blend ratio to 1:5 and the electrospinning 

temperature to 60 ºC, as presented in Figure A.2f. In this case, nanofibers with an average diameter 

of 42 nm were obtained, as shown in Figure A.3c. However, despite the improvement in fiber 

collection and processability, the blending with PLA yielded an overall low BNC content. 

On the other hand, the direct electrospinning of blends containing BNC and CS/PEO solution was 

not possible mostly because of the incompatibility of the solvents. A phase separation was notably 
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observed as soon as the two solutions were put in contact. The addition of other components was 

also examined but without promising results regarding processing, yield and morphology. Hence, 

the other two approaches, parallel and coaxial electrospinning were considered for the production 

of mats containing both chitosan and bacterial nanocellulose. 

 

Figure A.2: SEM micrographs and their size distribution: a) BNC in film form; and mats obtained 

from direct electrospinning of: b) CS/PEO @ 0.5 mL/h and 2.0 kV/cm; c) BNC @ 0.3 mL/h and 

3.0 kV/cm; d) BNC/PLA (1:1) @ 0.3 mL/h and 2.3 kV/cm; e) BNC/PLA (1:3) @ 0.3 mL/h and 

2.3 kV/cm and f) BNC/PLA (1:5) @ 0.3 mL/h, 2.3 kV/cm and 60 ºC. 

 

Figure A.3: Fiber size distribution of the mats from Figure A.2: a) CS/PEO @ 0.5 mL/h and 2.0 

kV/cm; b) BNC/PLA (1:3) @ 0.3 mL/h and 2.3 kV/cm; and c) BNC/PLA (1:5) @ 0.3 mL/h, 2.3 

kV/cm and 60 ºC. 
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A.4.2 Parallel electrospinning 

In order to obtain mats containing both CS and BNC, and considering that the electrospinning of a 

blend containing both CS and BNC was not successful, the electrospinning of separate solutions 

converging towards the same target was considered. The goal was to produce randomly mixed 

individual fibers of chitosan and bacterial nanocellulose. 

Figure A.4 shows the CS/BNC mats obtained from the simultaneous electrospinning of CS/PEO 

with BNC or with BNC/PLA (1:3) solutions, at 22 and 60 ºC. EDS analysis of the mats is presented 

in Figure A.5. 

Regarding the mats containing CS/PEO and BNC fibers, Figure A.4a reveals that CS/PEO fibers 

were certainly present, as known from the good spinnability of this system, whilst BNC fibers 

could not be clearly identified, as they were in Figure A.2c. As shown, nanofibers had a diameter 

of 41 nm in average, which is close to the one of CS/PEO fibers alone (Figure A.3a). This indicates 

that the higher yield and flow rate at which the CS/PEO solution was electrospun might have hidden 

the few fibers from BNC (Figure A.2c). 

By contrast, two types of fibers could be clearly identified in the SEM image of Figure A.4b, which 

correspond to CS/PEO and BNC/PLA fibers. The thicker fibers are most probably from the latter 

blend. In average, the nanofibers had a diameter of 63 nm, which lies between the one of CS/PEO 

fibers (44 nm, Figure A.3a) and BNC/PLA fibers (220 nm, Figure A.3b), when electrospun 

individually. This result tended to indicate the presence of the two types of fibers. 

Not surprisingly, when the temperature of the BNC/PLA solution was increased to 60 ºC as shown 

in Figure A.4c, fibers looked more homogeneous and the average nanofibers diameter was reduced 

to 46 nm.  

In order to verify the presence of BNC in the mats of Figure A.4, chlorine (Cl) was subjected to 

detection by EDS analysis, since it was in salt form in the BNC solution. It was assumed that the 

presence of Cl (salt) implied the presence of BNC in the mats, as reported by other authors for 

vegetal cellulose in the same solvent system (Kim et al. 2005, 2006). EDS spectrum in Figure A.5a 

indicates that in the case of CS/PEO fibers, elements such as carbon and oxygen were detected, 

which belong to chitosan, PEO and cellulose. In addition, fluoride and silicon were detected. They 

may originate from the dry film lube (Fluorocarbon) aerosol that was applied on the aluminum foil 
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for this particular sample, to easily detach the CS/PEO mats. Besides these, aluminum was also 

detected, which was mainly due to the foil used to collect the mats. No Cl whatsoever was detected. 

By contrast, Figure A.5b, c show that, in addition to C and O, Cl was detected in the mats containing 

BNC, even in small quantities, which further suggest that both CS and BNC were present in the 

mats. The low chlorine content detection was in accordance to the low flow rate at which the 

solutions containing BNC were electrospun, with respect to the one containing CS. Experimentally, 

the stability in the processing of BNC solution was only achieved at a flow rate of 0.3 mL/h, whilst 

that solution containing CS could be processed at a higher flow rate of 0.5 mL/h. In addition, a low 

ratio of BNC in the BNC/PLA blend, could also contribute to the low amount of Cl detection.  

However, even though mats containing both CS and BNC were successfully obtained, the BNC 

content in the mats was low (less than 0.6 wt/v % in the case of BNC and 0.2 wt/v % in the 

BNC/PLA blend) when compared with CS (2.4 wt/v %). This corresponds to 6 to 20 times higher 

content of CS with respect to BNC, when taking into account the flow rates at which the solutions 

were processed. This was clearly considered insufficient to take advantage of the BNC properties, 

and therefore a second approach – coaxial electrospinning – was considered to increase yield and 

BNC content. 

 

Figure A.4: CS/BNC structures from parallel electrospinning and their fiber size distribution. 

Randomly mixed fibers of: a) CS/PEO and BNC (22 °C); b) CS/PEO and BNC/PLA (22 °C); c) 
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CS/PEO and BNC/PLA (60 ºC). CS/PEO was electrospun@ 0.5 mL/h and 3.0 kV/cm whilst 

BNC and BNC/PLA blends @ 0.3 mL/h and 3.0 kV/cm. 

 

 

Figure A.5: EDS analysis of the electrospun mats: a) CS/PEO; b) CS/PEO and BNC; c) CS/PEO 

and BNC/PLA. Sample a) was electrospun directly whilst samples b) and c) represent the 

randomly mixed fibers from the parallel electrospinning. 

A.4.3 Coaxial electrospinning 

Figure A.6 presents the SEM micrographs and the size distribution when CS/PEO and BNC 

solutions were electrospun coaxially. According to the results, nonwoven mats containing CS, PEO 

and BNC with different structures were obtained, depending on the position of the core and shell 

solutions. CS/BNC beaded-fibers were obtained when the BNC solution was in the core and the 

CS/PEO was in the shell, as shown in Figure A.6a. Fibers and beads presented a diameter of 31 

and 187 nm in average, respectively. In addition to beads, some agglomerates were also observed. 

Similar results were obtained when varying the flow rates of the solutions (0.8 mL/h in the core 

and 0.5 mL/h in the shell; and 0.3 mL in the core and 0.5 mL/h in the shell). By contrast, uniform 

bead-free fibers were observed when the core and shell solutions were interchanged (CS/PEO in 

the core and BNC in the shell), as observed in Figure A.6b. In this case, fibers presented a larger 

diameter of 85 nm in average. Structural and dimensional differences in the obtained mats indicated 

that the position of the inner and outer solutions affected significantly the morphology.  

In order to elucidate the importance of using a spinnable solution as a carrier and to explain the 

differences in the morphology obtained, the properties of the solutions (namely viscosity, surface 

tension and conductivity) were examined. 
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First, when CS/PEO is in the core, a single jet might be elongated and maintained, given the own 

electrospinnability of this solution as discussed before. Hence, CS/PEO can serve as a carrier for 

the processing of BNC, which is hardly spinnable by itself. On the contrary, when CS/PEO is in 

the shell, BNC solution by itself might not maintain the jet, leading to instabilities in the processing, 

reflected by beaded-fibers and some agglomerates. Consequently, it is inferred that a carrier 

solution must be used in the core (CS/PEO) to drive the jet for an efficient pull out of the solution, 

and consequently lead to fiber formation. 

Second, the rheological properties, surface tension and conductivity of the CS/PEO and BNC 

solutions may explain furthermore the differences in the morphology obtained. Figure A.7 presents 

the viscosity of the solutions as a function of shear rate. CS/PEO behaves as a Newtonian fluid 

whilst BNC solution exhibits a markedly shear thinning behavior along the range of shear rates 

tested. A shear thinning behavior of the polymer solution can be interpreted as a result of a 

reduction in entanglement density, or de-structuration due to shear. Hence, the CS/PEO solution 

could maintain the entanglements under shear, unlike BNC, which could have allowed a better 

stability in the electrospun jet when the former solution was in the core. Figure A.8 presents the 

complex viscosity and the damping factor (tan delta) of the solutions as a function of the angular 

frequency. The damping factor is a solution property that can be taken as a measurement of the 

viscoelastic properties of the solutions, which are important for explaining fiber formation. 

According to the results for complex viscosity, CS/PEO and BNC solutions behave as Newtonian 

and shear thinning fluids, respectively, in the angular frequency range tested, as already observed 

in simple shear. On the other hand, Figure A.8 also shows that CS/PEO solution behaves as a 

viscoelastic fluid whilst BNC presents a gel-like behavior. Hence, when CS/PEO was in the core, 

the viscoelastic properties could have led to a higher stability of the jet since this solution could be 

stretched more easily, whilst maintaining entanglements. According to Dror et al. (2007), 

viscoelastic polymer solutions should be used in the core for a stable coaxial process. On the 

contrary, when BNC was in the core, it is assumed that the significant reduction in entanglement 

density with shear could have promoted instabilities in the co-electrospun jet. Further on, the gel-

like behavior could have contributed to more instabilities as the hydrogen bonding present in the 

gel can be easily broken. 

Table A.1 presents the viscosity, conductivity and surface tension of CS/PEO and BNC solutions. 

The viscosity values were evaluated at the shear rate encountered at the needle wall (maximum 
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shear rate) in coaxial electrospinning. The latter was calculated based on the dimensions of the 

coaxial geometry and the processing flow rate, as explained by Pakravan et al. (2012). The 

calculated shear rates were 0.3, 1.5 and 10.7 s-1, on the wall of the outer needle, annulus and inner 

needle, respectively. These values are illustrated by dotted lines in Figure A.7. The obtained 

viscosities for the CS/PEO and BNC solutions allowed to infer that a higher viscosity in the shell 

was required for the process stability and coaxial fiber formation. Therefore, when CS/PEO was in 

the core and BNC in the shell, the higher viscosity of the BNC allowed to hold the CS/PEO and to 

form a sheath around the core fluid by containing the latter and forming the core-shell structure. 

According to Yarin (2011), viscous tractions are responsible for the formation of coaxial jets and 

allow the entrainment of the core solution. This happens when the outer solution has a higher 

viscosity than the inner. Conversely, the higher viscosity of BNC when it was in the core may have 

caused the breakup of the jet, as demonstrated by the presence of beaded-fibers. To sum up, it is 

believed that in the coaxial setup, the CS/PEO solution serves as a carrier to successfully buildup 

the nanofibers, and the higher viscosity of the BNC solution promotes the stability and formation 

of the core/shell fibers.  

Finally, it is hypothesized that a lower surface tension of the core solution (CS/PEO) with respect 

to the shell (BNC) enables the formation of a stable Taylor cone, and favors the entrainment of the 

core into the shell. On the contrary, a higher surface tension of the core solution would allow 

instabilities, as the ones observed in the present study. Regarding the conductivity, Yu et al. (2004) 

speculated that higher conductivity of the core solution, and therefore a higher charge density, 

could lead to a higher pulling of the core solution by the electric field at a higher rate than the 

supply of the feed line, leading to instabilities in the co-electrospinning process. Consequently, 

beaded fibers will be obtained, as the ones observed when the BNC was in the core, as a result of 

the high conductivity and surface tension with respect to the CS/PEO solution.   

In order to corroborate the formation of the core-shell structure, TEM, EDS analysis and a 

treatment with acetic acid (in order to remove chitosan and PEO), were performed on the CS/PEO-

BNC mats.  

Figure A.9 shows the TEM and the EDS analysis of the CS/PEO-BNC mats. TEM imaging allowed 

to identify two regions: the inner one from the CS/PEO solution and the outer one corresponding 

to BNC. EDS analysis by SEM observation showed that peaks of C, N, O, Cu, Zn, Si and Cl were 
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detected in both core and shell. In particular, Cu detection was linked to the TEM grid, whilst the 

detection of N and Cl suggested the presence of CS and BNC, respectively, in the coaxial structure. 

The EDS analysis by TEM (not shown) also revealed the presence of Cl in both core and shell, and 

both in fibers and beads. Hence, results suggested that CS and BNC had no preferable location in 

the core or shell, even though they were deposited in respective positions. 

Figure A.10 presents the CS/PEO/BNC mats after treatment with 50 % (v/v) acetic acid solution. 

The acid treatment was done to remove both CS and PEO, and to analyze the remaining structure. 

As a result of the extraction, the nonwoven mat structure collapsed and fibers were completely 

disintegrated, regardless if CS/PEO was in the core (Figure A.10a) or in the shell (Figure A.10b). 

Nonetheless, when in the shell, two different kind of remaining structures were observed. A nano 

porous film-like co-continuous structure (Figure A.10b-1) with pore size of the same order of 

magnitude than the beads observed previously in Figure A.6a; and a structure with larger pore sizes 

(Figure A.10b-2), maybe as a result of the removal of possible agglomerates. Accordingly, results 

from acid treatment confirmed that both CS and BNC were present in both core and shell, as 

previously stated from the EDS analysis.  

To sum up, nanofibers with high yield and good fiber structure containing both CS and BNC were 

obtained when CS/PEO and BNC solutions were electrospun in the core and shell, respectively. 

Given the fact that PEO is an easily electrospinnable polymer, it is believed that the CS/PEO 

solution serves as a spinning carrier during the process. Oppositely to the parallel electrospinning 

approach, coaxial electrospinning allowed to a higher yield, a more homogeneous fiber structure 

and a higher BNC content (0.6 wt/v % in comparison with 0.2 wt/v% when blended with PLA) in 

the final mats, since this solution could be processed without addition of PLA. Furthermore, 

removal of PEO by water treatment would result in a neat CS/BNC porous mat. 
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Figure A.6: CS/PEO-BNC core-shell structures: a) CS/PEO in the shell and BNC in the core; b) 

CS/PEO in the core and BNC in the shell. Core @ 0.5 mL/h, shell @ 0.3 mL/h and 2.3 kV/cm. 
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Figure A.7: Viscosity vs. shear rate for CS/PEO and BNC solutions. 

 

Figure A.8: Viscoelastic properties of the CS/PEO and BNC solutions: Complex viscosity vs. 

frequency and tan delta vs. frequency. 
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Table A.1: Properties of the electrospun solutions 

Solution 
Shear viscosity [Pa s] 

Conductivity [µS cm-1] Surface tension [mN m-1] 
core shell 

CS/PEO 0.2 0.2 1605 ± 10 35.9 ± 0.4 

BNC 1.3 3.4-13 5027± 41 43.2 ± 0.1 

 

 

Figure A.9: TEM and EDS analysis (by SEM) of the CS/PEO-BNC core-shell structure. Sample 

was analyzed from a TEM copper grid support. 
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Figure A.10: SEM image of CS/PEO-BNC mats after treatment with 50% acetic acid solution: a) 

CS/PEO in the core, BNC in the shell; and b) CS/PEO in the shell, BNC in the core (different 

magnifications). 

A.4.4 Antibacterial properties 

Figure A.11 reports the antibacterial properties of the BNC film (as received) in comparison with 

CS/PEO nanofibers and CS/PEO/BNC structures obtained from the parallel and coaxial 

electrospinning approaches. According to the results, the BNC film did not exhibit antibacterial 

properties by itself and instead, an increase in bacterial population was observed with respect to 

the control. This may be the result of a nutrient effect since for obtaining BNC, bacteria require 

glucose, fructose, mannitol, among other sources of carbon as substrate (Horii 2000; Mohite and 

Patil 2014).  On the contrary, CS/PEO nanofibers displayed a high antibacterial activity and a 

decrease of 100% bacterial density was achieved. 

The antibacterial properties of the BNC were notably increased when CS was incorporated: the 

randomly-mixed CS/PEO and BNC fibers obtained by the parallel processing reduced bacterial 

density by about 2 log (CFU/mL) whilst the CS/PEO/BNC fibers obtained by the coaxial 

processing reduced it by 4 log (CFU/mL), regardless if chitosan was added in the core or in the 

shell. This reduction indicated that the core/shell structures were more effective than the mixed 

fibers from the parallel process, even if chitosan was initially in the core solution. Contrary to our 

finding, a higher activity was expected from the mixed fibers, and at least of the same order of 

magnitude than when chitosan was in the shell in the coaxial fibers, given the fact that more amino 

groups can be exposed to contact with bacterial surface. The lower activity observed in the mats 

from the parallel process may be explained by a lower chitosan content in the selected mats for the 

antibacterial tests (about half of the chitosan concentration with respect to the one in the coaxial 
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approach, even when the same volume was electrospun). This most probably results from the 

difficulty in converging the CS/PEO and BNC fibers to the same area on the collector plate, besides 

a possible repulsion between charged jets (Greiner and Wendorff 2007).  

On the other hand, the similar and high antibacterial activity displayed in the coaxial fibers 

indicated that chitosan was equally effective either if it was initially in the core or in the shell. This 

confirms that the coaxial fibers containing chitosan in the core may be discontinuous and form an 

intermittent core/shell structure, with intermixed layers.  

The antibacterial activity of chitosan is the result of the ionic interactions between the positively 

charged amino groups and the negatively charged bacteria surface, leading to loss of membrane 

permeability, cell leakage and death (Kong et al. 2010). Simple visual inspection of the CS/PEO 

and CS/PEO-BNC nanofiber mats, before and after the antibacterial tests, suggests that fibers are 

stable at pH 5.8. However, as nanofibers contain PEO, which is soluble in water, certain solubility 

of PEO is expected. In addition, chitosan may solubilize partially, given that the pH of the medium 

(5.8) is lower than chitosan pKa (6.2-6.5). Consequently, both released chitosan in the medium and 

the one remaining in the nanofiber mats may contribute to the antibacterial effect. 

Regarding the mechanism of antibacterial action of the CS/PEO-BNC nanofibers, it is suggested 

that the protonation of chitosan amino groups at the nanofiber surface are the ones conferring the 

antibacterial activity. The nanofiber structure allows for a greater interaction with bacterial cell 

wall. In addition, it is believed that nanofiber mats may serve as physical support favoring the 

interaction and adsorption of bacteria.  

In this work, we have demonstrated the antibacterial activity of chitosan/bacterial cellulose fiber 

mats produced by parallel and coaxial electrospinning. Further research should be addressed in 

terms of biocompatibility, regenerative properties, water holding capacity and mechanical 

properties of the fiber mats. Regenerated cellulose in BNC/PLA and CS/PEO-BNC nanofibers can 

exhibit different properties than native BNC, including crystallinity. For instance, native cellulose 

from plants and bacterial cellulose present generally a crystalline structure Type-I, but, 

solubilization and processing conditions may cause recrystallization, and transform into Type-II 

(Kim et al. 2005, 2006; Shanshan et al. 2012; Ostadhossein, 2015). Crystallinity can also 

significantly decrease after processing. Kim et al. (2005, 2006) found that cellulose fibers obtained 

from DMAc/LiCl were mostly amorphous, while Shanshan et al. (2012) reported a decrease in the 
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crystallinity (from 79 to 38%) of regenerated bacterial cellulose films using NMMO as solvent, 

with respect to neat bacterial cellulose. Therefore, possible differences between native BNC and 

regenerated one prepared by electrospinning, as well as their impact in the aforementioned 

properties (biocompatibility, regenerative properties, water holding capacity and mechanical 

properties), which are critical for wound dressing applications, should be considered in the future.  

 

Figure A.11: Inhibitory effects of different CS/PEO/BNC structures toward E. coli. P-parallel and 

C-coaxial electrospinning. The pH of the PBS solution was adjusted to 5.8 in order to protonate 

chitosan and activate its antibacterial activity 

A.5 Conclusions 

In this work we demonstrated that nanometer sized nonwoven mats containing CS and BNC could 

be successfully obtained in a one-step electrospinning process, either through parallel or coaxial 

approaches. The direct electrospinning of blends containing both BNC and CS was not possible, 

most probably because of the incompatibility of their respective solvents.  

Although the parallel electrospinning approach showed that mats containing both CS and BNC 

were successfully obtained, the BNC content was low (less than 0.6 wt/v % in the case of BNC and 

0.2 wt/v % in the BNC/PLA blend, in comparison with 2.4 wt/v % CS). This corresponds to 6 to 
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20 times higher content of CS with respect to BNC, when taking into account the flow rates at 

which the solutions were processed.  

The coaxial electrospinning approach showed the best results for the production of fibers 

containing CS and BNC. A good yield and fiber formation was obtained by using the CS/PEO 

blend in the core as a carrier. BNC content was also improved since this solution could be processed 

without blending with PLA, as was required in the parallel approach. 

The addition of CS to BNC provided good antibacterial properties. The CS/BNC mats reduced E. 

coli bacterial density by more than 99 %. These novel nanofibers have interesting potential 

applications in the biomedical field for wound healing dressing. 
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APPENDIX B - GOVERNING EQUATIONS IN THE ELECTROSPRAYING 

PROCESS 

The electrospraying process typically involves three stages (Figure B.1). The first one implies the 

pumping of the solution through the needle, where simple shear flow occurs. However, at the exit 

of the needle, a complex flow develops with extensional and shearing components [1]. In the 

second stage, the charged liquid flowing out from the nozzle gets deformed in a meniscus with a 

characteristic shape known as Taylor cone [2], from the apex of which a jet is ejected and elongated 

by an external electric field [3]. A balance among the electrostatic forces, gravity, inertia, 

viscoelastic forces and surface tension determines the deformation of the fluid [4-6]. Uniaxial 

elongational flow caused by the electrical forces acting on the jet occurs [3]. Finally, in the last 

stage, the jet is disintegrated into charged droplets when the electrostatic forces in the fluid are able 

to overcome the viscosity and surface tension [7]. In electrospraying, different modes for droplet 

formation have been identified [8], but only the cone-jet mode is known to produce a stable process 

[9]. Once formed, the charged droplets travel to a collector plate while the solvent is evaporated. 

Different parameters including processing (flow rate, needle size, voltage, distance from needle tip 

to plate collector and temperature), environmental (humidity, pressure and temperature), and the 

intrinsic properties of the solution (conductivity, surface tension and viscosity, which depend 

mainly on the polymer concentration and molecular weight, as well as the solvent type) are 

important factors in determining processing stability, droplet formation and morphology. However, 

solution parameters are considered to be the most critical [10]. 

The governing equations for the electrospraying process are reported in the literature and developed 

here for the second stage, which is considered a steady-stretching process [4, 11, 12]. This stage is 

common for both electrospraying and electrospinning processes [3]. Modeling of the development 

of this stage have been proposed by Hohman et al. [3], Feng [4] and Reneker et al. [13], among 

others, following the earlier works of Gañán-Calvo [12, 14, 15] and Spivak and Dzenis [16]. 
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Figure B.12: Different stages in the electrospraying process. 

B.1 Nomenclature 

𝑡: Time 

𝜌: Fluid density 

𝑅: Radius of the jet (variable) 

𝑅0:  Initial radius of the jet (radius of the needle) 

𝑣: Axial velocity of the jet (𝑣 = 𝑣𝑧) 

𝑣0:  Initial velocity of the jet 

𝑣𝜃: ϴ-component of the velocity of the jet 

𝑣𝑟: Radial component of the velocity of the jet 
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𝑚̇0: Mass flow rate at “plane 0” 

𝑚̇1: Mass flow rate at “plane 1” 

𝑄0: Volumetric flow rate at “plane 0” 

𝑄1: Volumetric flow rate at “plane 1” 

𝑄: Constant volumetric flow rate  

𝐼: Constant total current carried by the jet 

𝐽: Magnitude of current density 

𝐾: Conductivity of the liquid 

𝑬: Electric field  

𝐸: Axial component of the electric field inside the jet evaluated at the surface 

𝐸̃: Axial component of the electric field at the interface 

𝐸𝑛: Normal component of the electric field at the surface 

𝐸̅𝑛: Normal component of the electric field outside the jet 

𝐸𝑡: Tangential component of the electric field at the surface 

𝐸̅𝑡: Tangential component of the electric field outside the jet 

𝐸𝑟: Radial component of the electric field inside the jet evaluated at the surface 

𝐸̅𝑟: Radial component of the electric field outside the jet  

𝐸∞: Uniform spatially external electric field (𝐸∞ =
∆𝑉

𝑑⁄ )  

𝐸0: Initial external electric field 

𝑑: Electrospraying distance (gap) 

∆𝑉:  Applied potential difference  
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𝜎: Surface charge density 

𝜎0: Initial surface charge density 

Π: Total stress tensor 

𝑝: Pressure  

𝐼: Identity tensor 

g: Gravity  

𝜏: Extra stress tensor 

𝜏𝑟𝑟: Viscous radial normal stress  

𝜏𝑧𝑧:  Viscous axial normal stress  

𝑡𝑛
𝑒:  Normal force exerted on the jet by the electric field  

𝑡𝑡
𝑒:  Tangential force exerted on the jet by the electric field  

𝜀:  Dielectric constant (permittivity) of the jet 

𝜀:̅ Dielectric constant (permittivity) of the air  

𝜀0:  Dielectric constant (permittivity) of the vacuum 

‖∗‖:  Indicates the jump of a quantity across the surface of the jet 

𝛾:  Surface tension  

𝑇: Tensile force in the jet 

𝜆(𝑧):  Linear charge density along the jet 

Φ̅: Electrostatic potential outside the jet 

Φ̅∞: Electrostatic potential due to the external field in the absence of jet 
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𝑣′: 𝑣′ = 𝑑𝑣 𝑑𝑧⁄  

𝑇′: 𝑇′ = 𝑑𝑇 𝑑𝑧⁄  

𝜎′: 𝜎′ = 𝑑𝜎 𝑑𝑧⁄  

𝐸′: 𝐸′ = 𝑑𝐸 𝑑𝑧⁄  

𝑅′: 𝑅′ = 𝑑𝑅 𝑑𝑧⁄  

𝜂(𝛾̇):  Scalar function representing the non-Newtonian viscosity  

𝜂: Shear viscosity 

𝜂̅: Elongational viscosity 

𝜂0: Zero-shear rate viscosity 

𝛾̇: Rate of strain tensor 

𝛾̇: Shear rate or rate of strain, 𝛾̇ = |𝛾̇| 

𝜀̇(𝑡): Elongation rate 

𝜀0̇: Constant elongation rate  

∇𝑣: Gradient of the velocity field 

𝐿: Length of the jet 

∇
𝜏𝑝: Upper convected derivative for the extra stress tensor 

𝛼: Mobility factor 

𝜆: Relaxation time 

𝜂𝑠: Solvent viscosity 
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𝜂𝑝: Polymer viscosity 

B.2 Hypotheses  

1. The jet is considered as a liquid continuum [17]. 

2. Steady state (𝜕 𝜕𝑡⁄ = 0)  [4, 11, 12]. 

3. Isothermal flow (constant temperature). 

4. Unidirectional elongational flow. 

5. Axisymmetric flow (𝜕 𝜕𝜃⁄ = 0). 

6. Incompressible fluid (𝜌 = constant). 

7. The fluid is dielectric with charges only on its surface [18]. 

8. Standard assumptions for slender jets [3, 4, 15]: 

• The jet radius R  decreases slowly with respect to the axial direction 𝑧: 

 |𝑑𝑅(𝑧) 𝑑𝑧⁄ | ≪< 1 

• The axial velocity (𝑣𝑧 = 𝑣) is uniform in the cross section of the jet. 

9. 𝑣𝜃 = 0  

10. 𝑣𝑟 = 𝑣𝑅 = 𝑣𝑅(𝑅, 𝑧)  

11. 𝑣𝑧 = 𝑣 = 𝑣(𝑧)  

12. 𝑣𝑅 ≪< 𝑣𝑧  

13.  As the jet thins, the surface charge density 𝜎 varies, which in turn affects the electric field 

𝐸 , and the tensile force 𝑇 . Therefore, for simplicity 𝜎 , 𝐸  and 𝑇  besides 𝑅  and 𝑣  are 

assumed to be uniform on the cross-section of the jet and to vary only along 𝑧, whose origin 

is at the nozzle. 

14. There is not significant evaporation of the solvent in the jet (mass transfer effects are 

neglected) [19]. 

15. Air drag force is negligible on the jet [3, 13]. This force becomes important once the jet 

breakup into droplets [20].  

16. Ambient conditions (humidity, pressure, temperature) are considered constant during the 

process. 
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B.3 Governing equations for stable jet 

The jet is governed by four steady state equations representing the conservation of mass and electric 

charges, the linear momentum balance and the Coulomb’s law for the electric field [3, 4]. The 

balances are done for the second stage showed in Figure B.12, from the tip of the needle to the end 

of the jet.  

B.3.1 Mass conservation 

In steady state, the mass flow rate entering the jet is equal to the mass flow rate exiting. 

𝑚̇0 = 𝑚̇1   (B.1) 

𝜌𝑄0 = 𝜌𝑄1   (B.2) 

𝑣0𝜋𝑅0
2 = 𝑣1𝜋𝑅1

2 = 𝑄 = constant   (B.3) 

𝑣𝜋𝑅2 = 𝑄                 (B.4) 

where 𝑣, 𝑅 and 𝑄 are the velocity, radius and volumetric flow rate of the jet, respectively.  

B.3.2 Electric charge conservation 

The current carried by the jet has two components: the current that flows through the jet due to its 

bulk conductivity and the presence of the electric field inside the jet; and the current produced by 

the charge convected on the surface of the jet [21]. 

Current conducted within the jet [22]: 

𝐼𝑏𝑢𝑙𝑘 = 𝜋𝑅
2𝐽= 𝜋𝑅2𝐾𝐸  (B.5) 

Current conducted by the surface charge [22]: 

𝐼𝑠𝑢𝑟𝑓.𝑐ℎ𝑎𝑟𝑔𝑒 = 2𝜋𝑅𝐽= 2𝜋𝑅𝜎𝑣  (B.6) 

where 𝐽  is the magnitude of the current density, 𝐾  is the solution conductivity, 𝐸 is the axial 

component of the electric field and 𝜎 is the surface charge density.  

In steady state these expressions transform into:  

𝜋𝑅2𝐾𝐸 + 2𝜋𝑅𝑣𝜎 = 𝐼𝑡𝑜𝑡𝑎𝑙   (B.7) 
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B.3.3 Momentum conservation 

Momentum balance is formulated by considering the forces on a short section of the jet (Figure 

B.13) [4]. 

 

Figure B.13: Momentum balance on a short section of the jet [4] 

Starting from the equation of motion which expresses the conservation of linear momentum in a 

flowing fluid [23, 24]: 

𝜕(𝜌𝑣)

𝜕𝑡
= −∇ ∙ (𝜌𝑣 𝑣) − ∇Π + 𝜌𝑔 + other forces (B.8) 

The total stress tensor Π can be written as:  

Π = 𝑝𝐼 + τ  (B.9) 

Then, in steady state (see section B.2) the equation of motion becomes: 

0 = −∇ ∙ (𝜌𝑣 𝑣) − ∇p − ∇ ∙ τ + 𝜌𝑔 + other forces (B.10) 

The first term on the right-end side represent the inertial forces; the second one, the surface force 

due to pressure; the third one, the surface force due to viscous shear and normal stresses; the fourth 

one, the body force due to gravity; and the last one includes the forces due to the surface tension 

and the electric field. 

Developing each term and assuming constant density (see section B.2): 
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+
𝜕𝜏𝑧𝜃
𝜕𝑧

+
𝜏𝜃𝑟 − 𝜏𝑟𝜃

𝑟
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) +

1

𝑟

𝜕𝜏𝜃𝑧
𝜕𝜃

+
𝜕𝜏𝑧𝑧
𝜕𝑧 )

 
 
 

𝑟𝜃𝑧

 

𝜌g = 𝜌(

g𝑟
g𝜃
g𝑧
)

𝑟𝜃𝑧

 

Simplifying by using the hypotheses (4, 5, 8-12) mentioned in section B.2, and neglecting shear 

terms, since the flow is mainly elongational, we obtain:  

(
0
0
0
) = −𝜌(

0
0
𝜕𝑣𝑧

2

𝜕𝑧

) −

(

 
 

𝜕𝑝

𝜕𝑟
1

𝑟

𝜕𝑝

𝜕𝜃
𝜕𝑝

𝜕𝑧 )

 
 
−(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟

0
𝜕𝜏𝑧𝑧

𝜕𝑧

)+ 𝜌(
0
0
g
) + other forces     (B.11) 

Surface tension. Surface tension 𝛾 acts normally to the jet surface. Its contribution must appear 

not only in the radial but also in the axial component of the momentum balance due to the shape 

of the jet (Figure B.13). 

Electrostatic forces. 𝑡𝑛
𝑒  and 𝑡𝑡

𝑒  are the normal and tangential forces exerted on the jet by the electric 

field. Those forces are related to the surface charge density (𝜎), the electric field (𝐸) and the 
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dielectric constants of the jet (𝜀) and air (𝜀)̅, and can be determined with help of the leaky dielectric 

model [4, 18]:  

𝑡𝑛
𝑒 = ‖

𝜀

2
(𝐸𝑛

2−𝐸𝑡
2)‖ ≈

𝜎2

2𝜀̅
−
𝜀̅−𝜀

2
𝐸2  (B.12) 

𝑡𝑡
𝑒 = 𝜎𝐸𝑡 ≈ 𝜎𝐸  (B.13) 

Now, by considering Eq. B.11 and the contributions of the electrostatic and surface tension forces, 

it is possible to have the radial and axial equations for the momentum balance: 

Momentum balance in the radial direction: 

At the jet surface: 

−𝑝 + 𝜏𝑟𝑟 = 𝑡𝑛
𝑒 −

𝛾

𝑅
  (B.14) 

From this equation it is possible to obtain and expression for the pressure, 𝑝: 

𝑝 = 𝜏𝑟𝑟 − 𝑡𝑛
𝑒 +

𝛾

𝑅
= 𝜏𝑟𝑟 −

𝜎2

2𝜀̅
+
𝜀̅−𝜀

2
𝐸2 +

𝛾

𝑅
  (B.15) 

Momentum balance in the axial direction: 

𝜌
𝑑

𝑑𝑧
(𝑣𝑧
2) =

𝑑

𝑑𝑧
(−𝑝 + 𝜏𝑧𝑧 + 𝜌g+surface tension+electrostatic force      (B.16) 

Considering the component of the electrostatic force in the axial direction as well as their 

contribution of the normal because of the jet form, and adding the respective contribution of the 

surface tension force, Eq. B.16 becomes: 

𝜌
𝑑

𝑑𝑧
(𝜋𝑅2𝑣𝑧

2) =
𝑑

𝑑𝑧
[𝜋𝑅2(−𝑝 + 𝜏𝑧𝑧)] + 𝜋𝑅

2𝜌g +
𝛾

𝑅
2𝜋𝑅

𝑑𝑅

𝑑𝑧
+ 2𝜋𝑅 (𝑡𝑡

𝑒 − 𝑡𝑛
𝑒 𝑑𝑅

𝑑𝑧
)         

                (B.17) 

where 𝑑𝑅 𝑑𝑧⁄  represents the slope of the jet. 

Final equation for the momentum balance: 

Inserting Eq. B.12, B.13 and B.15 into Eq. B.17 and using the hypotheses 8 and 13 from section 

B.2 it is obtained: 
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𝜌𝑣𝑣′ =
𝑇′

𝜋𝑅2
+
𝜎𝜎′

𝜀̅
+ (𝜀 − 𝜀)̅𝐸𝐸′ +

𝛾

𝑅2
𝑅′ + 𝜌g + 2

𝜎𝐸

𝑅
        (B.18) 

where 𝑣 represents the velocity of the jet in the 𝑧 direction, the prime components the derivative 

with respect to 𝑧 and the term 𝑇 = 𝜋𝑅2(𝜏𝑧𝑧 − 𝜏𝑟𝑟) represents the tensile force in the jet and the 

stress components 𝜏𝑧𝑧 and 𝜏𝑟𝑟 depend on the fluid constitutive model.  

Tensile force in the jet: 

In theoretical work to date, the rheology of the polymer jet has been represented by a Newtonian 

viscosity [3, 25], a power-law viscosity [16] the linear Maxwell equation [13, 26], the Oldroyd-B 

[27], the FENE-P [11] and the Giesekus [5] constitutive equation. Feng has found this latter as a 

model that strikes a good balance between simplicity and satisfactory prediction for elongational 

rheology in addition of capturing elastic effects of viscoelastic fluids [5]. Here, to calculate the 

tensile force of the jet a generalized Newtonian constitutive relation is used in terms of simplicity.  

The generalized Newtonian fluid model [23]:  

𝜏 = 𝜂(𝛾̇)𝛾̇  (B.19) 

As considered in section B.2, the flow of the jet is mainly elongational. The kinematics for this 

type of flow are the following [23]: 

𝑣 = (

−
1

2
𝜀̇(𝑡)𝑥1

−
1

2
𝜀̇(𝑡)𝑥2

𝜀̇(𝑡)𝑥3

)

123

, 𝜀̇(𝑡) > 0           (B.20) 

For steady elongational flow, 𝜀̇(𝑡) = 𝜀0̇ = constant. Hence, the rate of strain tensor is:  

𝛾̇ = ∇𝑣 + (∇𝑣)
𝑇
= (

−𝜀0̇ 0 0
0 −𝜀0̇ 0
0 0 2𝜀0̇

)

123

and |𝛾̇| = √3𝜀0̇       (B.21) 

Finally, the stress tensor is: 

𝜏 = 𝜂(𝛾̇)𝛾̇ = (

−𝜂(𝛾̇)𝜀0̇ 0 0
0 −𝜂(𝛾̇)𝜀0̇ 0
0 0 2𝜂(𝛾̇)𝜀0̇

)

123

        (B.22) 
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From this equation it is possible to obtain: 

𝜏33 − 𝜏11 = 3𝜂(𝛾̇)𝜀0̇ = 3𝜂𝑣
′ = 𝜂̅𝑣′           (B.23) 

Where 𝜂(𝛾̇) = 𝜂 is the shear viscosity and 𝜂̅ is the elongational viscosity; hence, the tensile force 

of the jet is:  

𝑇 = 𝜋𝑅23𝜂𝑣′              (B.24) 

B.3.4 Coulomb’s law for electric field 

According to Hohman et al. [3] it is possible to write the electric field outside the slender jet as if 

it was due to an effective linear charge density (considering both free and induced charges on the 

jet surface) of charge 𝜆(𝑧) along the z-axis. 

To determine the linear charge density, Gauss’ law is applied over two cylindrical surfaces having 

the same length and which are coaxial with the jet as shown in: the surface S1 which lies just inside 

the interface and contains no charge (and no effective charge), and the surface S2 which lies just 

outside the interface and contains the effective charge 𝜆(𝑧)𝑑𝑧.  

 

Figure B.14: Gaussian surfaces: S1 lies just inside the interface and S2 lies just outside the 

interface and thus contains charge [3] 

a. Gauss’ law over S1: 

0 = ∮ 𝐸 ∙ 𝑛̂𝑑𝐴 = [2𝜋𝑅𝐸𝑟 +
𝑑

𝑑𝑧
(𝜋𝑅2𝐸)] 𝑑𝑧

𝑆1
         (B.25) 
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where 𝐸𝑟 and 𝐸 are the radial and axial components of the electric field inside the jet evaluated at 

the jet surface. From Eq. B.25 it is obtained: 

𝐸𝑟 = −
1

2𝜋𝑅

𝑑

𝑑𝑧
(𝜋𝑅2𝐸)             (B.26) 

b. Gauss’ law over S2 [3]: 

4𝜋𝜆(𝑧)𝑑𝑧 = ∮ 𝐸
𝑆2

∙ 𝑛̂𝑑𝐴 = [2𝜋𝑅𝐸𝑟 +
𝑑

𝑑𝑧
(𝜋𝑅2𝐸)] 𝑑𝑧    (B.27) 

where 𝐸̅𝑟 denotes the radial component of the electric field outside the jet. From Eq. B.27, it is 

possible to find the charge per unit length, 𝜆(𝑧): 

𝜆(𝑧) =
1

2
𝑅𝐸̅𝑟 +

1

4

𝑑

𝑑𝑧
(𝑅2𝐸)            (B.28) 

For a slender jet it is known that [3]: 

𝐸̅𝑟 ≈ 𝐸̅𝑛 =
𝜀

𝜀̅
𝐸𝑛 +

4𝜋𝜎

𝜀
             (B.29) 

Replacing Eq. B.26 and B.29 into Eq. B.28: 

𝜆(𝑧) =
2𝜋𝑅𝜎

𝜀̅
−
1

4
(
𝜀

𝜀̅
− 1)

𝑑

𝑑𝑧
(𝑅2𝐸)           (B.30) 

This effective linear charge is inserted into Coulomb’s law for the electrostatic potential outside 

the jet. To find this electrostatic potential Hohman et al. [3] assumed that 𝜆 varies over a length 

scale, 𝐿 >>> 𝑅0: 

Φ(𝑧, 𝑅) = Φ∞ +∫
𝜆(𝑧′)𝑑𝑧′

√(𝑧 − 𝑧′)2 + 𝑅2
 

Φ(𝑧, 𝑅) ≈ Φ∞ + 𝜆(𝑧)∫
𝑑𝑧′

√(𝑧 − 𝑧′)2 + 𝑅2
 

Φ(𝑧, 𝑅) ≈ Φ∞ − 2ln (
𝑅0
𝐿
) 𝜆(𝑧) 

Φ(𝑧, 𝑅) = Φ∞ + ln (
𝐿

𝑅0
) [
4𝜋𝑅𝜎

𝜀
−
1

2
(
𝜀

𝜀
− 1)

𝑑

𝑑𝑧
(𝑅2𝐸)]        (B.31) 
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where Φ is the electrostatic potential outside the jet and Φ∞ is the electrostatic potential due to the 

external field in the absence of the jet, 𝐿 is the entire length of the jet and 𝑅0 is the initial jet radius. 

Across the interface the tangential component of the electric field is continuous, so 𝐸̃ = 𝐸̅𝑡 = 𝐸𝑡 ≈

𝐸 and from Eq. B.31 is obtained the equation for the axial electric field inside the jet:  

𝐸 = −
𝑑Φ

𝑑𝑧
 

𝐸(𝑧) = 𝐸∞ − ln (
𝐿

𝑅0
) [
4𝜋

𝜀̅

𝑑(𝜎𝑅)

𝑑𝑧
−
1

2
(
𝜀

𝜀̅
− 1)

𝑑2(𝐸𝑅2)

𝑑𝑧2
]        (B.32) 

B.4 Dimensionless numbers of the process 

The parameters used to make dimensionless the governing equations for the electrospraying are 

the following: 

Length scale:    𝑅0 characteristic radius of the jet  

Velocity:   𝑣0 =
𝑄

𝜋𝑅0
2 

Electric field:   𝐸0 =
𝐼

𝜋𝑅0
2𝐾

 

Surface charge density: 𝜎0 = 𝜀𝐸̅0 

The dimensionless variables are: 𝑅∗ = 𝑅 𝑅0⁄  , 𝑣∗ = 𝑣 𝑣0⁄ , 𝜎∗ = 𝜎 𝜎0⁄  and 𝐸∗ = 𝐸 𝐸0⁄ . 

By using the dimensionless parameters, the dimensionless governing equations for the stable jet of 

the electrospraying process are derived: 

B.4.1 Mass balance 

𝑣𝜋𝑅2 = 𝑄 

Replacing the value for 𝑄 = 𝑣0𝜋𝑅0
2 from section 0: 

𝑣𝜋𝑅2 = 𝑣0𝜋𝑅0
2 

(
𝑣

𝑣0
) (
𝑅

𝑅0
)
2

= 1 



180 

 

𝑣∗𝑅∗2 = 1               (B.33) 

B.4.2 Electric charge balance 

𝜋𝑅2𝐾𝐸 + 2𝜋𝑅𝑣𝜎 = 𝐼 

Replacing the dimensionless parameters defined in section 0:  𝐾 =
𝐼

𝜋𝑅0
2𝐸0

   

𝜋𝑅2 (
𝐼

𝜋𝑅0
2𝐸0
)𝐸 + 2𝜋𝑅𝑣𝜎 = 𝐼 

Diving all terms by 𝐼 =
𝜋𝑅0

2𝐾𝜎0

𝜀̅
 and regrouping: 

(
𝑅

𝑅0
)
2

(
𝐸

𝐸0
) + 2 (

𝜀𝑣̅0
𝑅0𝐾

)(
𝑅

𝑅0
) (
𝑣

𝑣0
) (
𝜎

𝜎0
) = 1 

𝑅∗2𝐸∗ + 2𝑃𝑒 𝑅∗𝑣∗𝜎∗ = 1  (B.34) 

B.4.3 Momentum balance 

𝜌𝑣𝑣′ =
𝑇′

𝜋𝑅2
+
𝜎𝜎′

𝜀̅
+ (𝜀 − 𝜀)̅𝐸𝐸′ +

𝛾

𝑅2
𝑅′ + 𝜌g + 2

𝜎𝐸

𝑅
 

Considered that: 

𝑧∗ =
𝑧

𝑅0
→
𝑑𝑧∗

𝑑𝑧
=
1

𝑅0
 

𝑣∗ =
𝑣

𝑣0
→ 𝑣 = 𝑣0𝑣

∗ → 𝑣′ =
𝑑𝑣

𝑑𝑧
=
𝑑

𝑑𝑧
(𝑣0𝑣

∗) = 𝑣0
𝑑𝑧∗

𝑑𝑧

𝑑𝑣∗

𝑑𝑧∗
= (

𝑣0
𝑅0
)𝑣∗′ 

𝑅∗ =
𝑅

𝑅0
→ 𝑅 = 𝑅0𝑅

∗ → 𝑅′ =
𝑑𝑅

𝑑𝑧
=
𝑑

𝑑𝑧
(𝑅0𝑅

∗) = 𝑅0
𝑑𝑧∗

𝑑𝑧

𝑑𝑅∗

𝑑𝑧∗
= 𝑅∗′ 

𝜎∗ =
𝜎

𝜎0
→ 𝜎 = 𝜎0𝜎

∗ → 𝜎′ =
𝑑𝜎

𝑑𝑧
=
𝑑

𝑑𝑧
(𝜎0𝜎

∗) = 𝜎0
𝑑𝑧∗

𝑑𝑧

𝑑𝜎∗

𝑑𝑧∗
= (

𝜎0
𝑅0
) 𝜎∗′ 



181 

 

𝐸∗ =
𝐸

𝐸0
→ 𝐸 = 𝐸0𝐸

∗ → 𝐸′ =
𝑑𝐸

𝑑𝑧
=
𝑑

𝑑𝑧
(𝐸0𝐸

∗) = 𝐸0
𝑑𝑧∗

𝑑𝑧

𝑑𝐸∗

𝑑𝑧∗
= (

𝐸0
𝑅0
)𝐸∗′ 

𝑑(𝑅2𝜂𝑣′)

𝑑𝑧
=
𝑑𝑧∗

𝑑𝑧

𝑑(𝑅2𝜂𝑣′)

𝑑𝑧∗
=
1

𝑅0

𝑑

𝑑𝑧∗
[𝑅2𝜂 (

𝑣0
𝑅0
𝑣∗′)] =

𝑑

𝑑𝑧∗
(
𝑅2𝜂𝑣0

𝑅0
2 𝑣∗′) 

Replacing the previous dimensionless variables and expressions in the momentum balance: 

𝜌(𝑣0𝑣
∗) (
𝑣0
𝑅0
𝑣∗

′
) =

3𝜋

𝜋𝑅2
𝑑

𝑑𝑧∗
(
𝑅2𝜂𝑣0

𝑅0
2 𝑣∗

′
) +

1

𝜀̅
(𝜎0𝜎

∗) (
𝜎0
𝑅0
𝜎∗

′
) + 

+(𝜀 − 𝜀)̅(𝐸0𝐸
∗) (
𝐸0
𝑅0
𝐸∗

′
) +

𝛾

𝑅2
𝑅∗′ + 𝜌g +

2

𝑅
(𝜎0𝜎

∗)(𝐸0𝐸
∗) 

Multiplying all terms by 
𝑅0

𝜌𝑣0
2, replacing 𝜎 = 𝜀𝐸̅0 and regrouping terms: 

𝑣∗𝑣∗′ = 3(
𝜂0

𝜌𝑣0𝑅0
) (
𝑅0
𝑅
)
2 𝑑

𝑑𝑧∗
[(
𝑅

𝑅0
)
2

(
𝜂

𝜂0
) 𝑣∗′] + (

𝜀𝐸̅0
2

𝜌𝑣0
2)𝜎

∗𝜎∗′ + 

+(
𝜀𝐸̅0

2

𝜌𝑣0
2) (

𝜀 − 𝜀̅

𝜀 ̅
) 𝐸∗𝐸∗′ + (

𝛾

𝜌𝑣0
2𝑅0

) (
𝑅0
𝑅
)
2

𝑅∗
′
+ (

g𝑅0

𝑣0
2 ) + 2(

𝜀𝐸̅0
2

𝜌𝑣0
2) (

𝑅0
𝑅
)𝜎∗𝐸∗ 

𝑣∗𝑣∗′ =
3

Re𝑅∗2
𝑑(𝑅∗2𝑟𝜂𝑣

∗′)

𝑑𝑧∗
+ Ω𝜎∗𝜎∗′ + Ω𝛽𝐸∗𝐸∗′ +

1

We

𝑅∗′

𝑅∗2
+
1

Fr
+ 2Ω

𝜎∗𝐸∗

𝑅∗
 

𝑣∗𝑣∗′ =
3

Re𝑅∗2

𝑑(𝑅∗2𝑟𝜂𝑣
∗′)

𝑑𝑧∗
+

1

We

𝑅∗′

𝑅∗2
+

1

Fr
+ Ω(2

𝜎∗𝐸∗

𝑅∗
+ 𝜎∗𝜎∗′ + 𝛽𝐸∗𝐸∗′)     (B.35) 

In the case of using a viscoelastic constitutive equation such as the Giesekus model, as reported by 

Feng [5], instead of the Generalized Newtonian fluid model, Eq. B.35 changes by only the first 

term on the right side, and is the one related with the tensile force of the jet. The advantage of using 

this model is that it considers the nonlinear viscoelasticity that arises during the large-strain 

stretching of the polymer [5].  

Giesekus model: 

𝜏 = 𝜏𝑝 + 𝜏𝑠 = 𝜏𝑝 + 𝜂𝑠(∇𝑣 + ∇𝑣
𝑇)           (B.36) 
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 T

p p p p p

p

v v


     




        (B.37) 

where p


indicates the upper convected derivative, 𝛼 is the mobility factor, 𝜆 is the relaxation time 

and 𝜂𝑠 and 𝜂𝑝 are viscosities due to the solvent and polymer, respectively. Eq. B.37 can be reduced 

to two scalar equations for the polymer normal stress components [5]: 

𝜏𝑝𝑟𝑟 + 𝜆(𝑣𝜏𝑝𝑟𝑟
′ + 𝑣′𝜏𝑝𝑟𝑟) + 𝛼

𝜆

𝜂𝑝
𝜏𝑝𝑟𝑟
2 = −𝜂𝑝𝑣′          (B.38) 

𝜏𝑝𝑧𝑧 + 𝜆(𝑣𝜏𝑝𝑧𝑧
′ − 2𝑣′𝜏𝑝𝑧𝑧) + 𝛼

𝜆

𝜂𝑝
𝜏𝑝𝑧𝑧
2 = 2𝜂𝑝𝑣′         (B.39) 

According to Feng [5], the dimensionless momentum equation is: 

𝑣∗𝑣∗′ =
3(1−𝑟𝜂)

Re𝑅∗2
𝑑(𝑅∗2𝑣∗′)

𝑑𝑧∗
+

1

Re

𝑇𝑝
∗′

𝑅∗2
+

1

We

𝑅∗′

𝑅∗2
+

1

Fr
+ Ω(2

𝜎∗𝐸∗

𝑅∗
+ 𝜎∗𝜎∗′ + 𝛽𝐸∗𝐸∗′) 

                    (B.40) 

where 𝑇𝑝
∗ = 𝑅∗2𝑁1

∗ = 𝑅∗2(𝜏𝑝𝑧𝑧
∗ − 𝜏𝑝𝑟𝑟

∗ )  is the dimensionless tensile force and 𝑁1
∗  is the first 

normal stress difference of the polymer. In the same way than the conservation equations, the 

equations for the normal stress components (Eq. B.38 and B.39) are made dimensionless: 

Eq. B.38:   

𝜏𝑝𝑟𝑟 + 𝜆(𝑣𝜏𝑝𝑟𝑟
′ + 𝑣′𝜏𝑝𝑟𝑟) + 𝛼

𝜆

𝜂𝑝
𝜏𝑝𝑟𝑟
2 = −𝜂𝑝𝑣′ 

In this case to make dimensionless the equation, a new dimensionless parameter 𝜏0 =
𝜂0𝑣0

𝑅0
 is 

needed where 𝜂0 = 𝜂𝑠 + 𝜂𝑝. Therefore: 

𝜏𝑝𝑟𝑟
∗ =

𝜏𝑝𝑟𝑟
𝜏0

→ 𝜏𝑝𝑟𝑟 = 𝜏0𝜏𝑝𝑟𝑟
∗ → 𝜏𝑝𝑟𝑟

′ =
𝑑𝜏𝑝𝑟𝑟
𝑑𝑧

= 𝜏0
𝑑𝑧∗

𝑑𝑧

𝑑𝜏𝑝𝑟𝑟
∗

𝑑𝑧∗
=
𝜏0
𝑅0
𝜏𝑝𝑟𝑟
∗′  

Replacing into Eq.B.38: 

𝜏0𝜏𝑝𝑟𝑟
∗ + 𝜆 (

𝑣0𝜏0
𝑅0

𝑣∗𝜏𝑝𝑟𝑟
∗′ +

𝑣0𝜏0
𝑅0

𝑣∗′𝜏𝑝𝑟𝑟
∗ ) + (

𝛼𝜆𝜏0
2

𝜂𝑝
) 𝜏𝑝𝑟𝑟

∗2 = −(
𝜂𝑝𝑣0
𝑅0

) 𝑣∗′ 
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Dividing all terms by 𝜏0 and regrouping terms: 

𝜏𝑝𝑟𝑟
∗ + (

𝜆𝑣0
𝑅0
)𝑣∗𝜏𝑝𝑟𝑟

∗′ + (
𝜆𝑣0
𝑅0
)𝑣∗′𝜏𝑝𝑟𝑟

∗ + 𝛼 (
𝜆𝑣0
𝑅0
) (
𝜂0
𝜂𝑝
) 𝜏𝑝𝑟𝑟

∗2 = −(
𝜂𝑝
𝜂0
) 𝑣∗′ 

𝜏𝑝𝑟𝑟
∗ + 𝐷𝑒(𝑣∗𝜏𝑝𝑟𝑟

∗′ + 𝑣∗′𝜏𝑝𝑟𝑟
∗ ) + 𝛼

𝐷𝑒

𝑟𝜂
𝜏𝑝𝑟𝑟
∗2 = −𝑟𝜂𝑣

∗′        (B.41) 

Eq. B.39: 

𝜏𝑝𝑧𝑧 + 𝜆(𝑣𝜏𝑝𝑧𝑧
′ − 2𝑣′𝜏𝑝𝑧𝑧) + 𝛼

𝜆

𝜂𝑝
𝜏𝑝𝑧𝑧
2 = 2𝜂𝑝𝑣′ 

Introducing the same dimensionless number 𝜏0 =
𝜂0𝑣0

𝑅0
 and replacing into Eq. B.39: 

𝜏𝑝𝑧𝑧
∗ =

𝜏𝑝𝑧𝑧
𝜏0

→ 𝜏𝑝𝑧𝑧 = 𝜏0𝜏𝑝𝑧𝑧
∗ → 𝜏𝑝𝑧𝑧

′ =
𝑑𝜏𝑝𝑧𝑧
𝑑𝑧

= 𝜏0
𝑑𝑧∗

𝑑𝑧

𝑑𝜏𝑝𝑧𝑧
∗

𝑑𝑧∗
=
𝜏0
𝑅0
𝜏𝑝𝑧𝑧
∗′  

𝜏0𝜏𝑝𝑧𝑧
∗ + 𝜆 (

𝑣0𝜏0
𝑅0

𝑣∗𝜏𝑝𝑧𝑧
∗′ − 2

𝑣0𝜏0
𝑅0

𝑣∗′𝜏𝑝𝑧𝑧
∗ ) + (

𝛼𝜆𝜏0
2

𝜂𝑝
)𝜏𝑝𝑧𝑧

∗2 = 2(
𝜂𝑝𝑣0
𝑅0

) 𝑣∗′ 

Dividing all terms by 𝜏0 and regrouping terms: 

𝜏𝑝𝑧𝑧
∗ + (

𝜆𝑣0
𝑅0
)𝑣∗𝜏𝑝𝑧𝑧

∗′ − 2(
𝜆𝑣0
𝑅0
)𝑣∗′𝜏𝑝𝑧𝑧

∗ + 𝛼 (
𝜆𝑣0
𝑅0
)(
𝜂0
𝜂𝑝
) 𝜏𝑝𝑧𝑧

∗2 = 2(
𝜂𝑝
𝜂0
) 𝑣∗′ 

𝜏𝑝𝑧𝑧
∗ + 𝐷𝑒(𝑣∗𝜏𝑝𝑧𝑧

∗′ − 2𝑣∗′𝜏𝑝𝑧𝑧
∗ ) + 𝛼

𝐷𝑒

𝑟𝜂
𝜏𝑝𝑧𝑧
∗2 = 2𝑟𝜂𝑣

∗′        (B.42) 

As mentioned before, Eq. B.40 differs from Eq. B.35 by the term containing the tensile force of 

the jet. It was important to mention the model used by Feng since in the dimensionless form of the 

conservation equation another dimensionless number appears (the Deborah number, De) that 

considers the viscoelastic characteristics of the fluid and contribute to obtain a stable jet.   

B.4.4 Coulomb’s law for electric field 

𝐸 = 𝐸∞ − ln (
𝐿

𝑅0
) [
4𝜋

𝜀

𝑑(𝜎𝑅)

𝑑𝑧
−
1

2
(
𝜀

𝜀
− 1)

𝑑2(𝐸𝑅2)

𝑑𝑧2
] 

Considering that: 
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𝐸∗ =
𝐸

𝐸0
→ 𝐸 = 𝐸0𝐸

∗ and 
𝑑𝐸

𝑑𝑧
= (

𝐸0

𝑅0
)
𝑑𝐸∗

𝑑𝑧∗
  

𝑑(𝜎𝑅)

𝑑𝑧
=
𝑑𝑧∗

𝑑𝑧

𝑑(𝜎𝑅)

𝑑𝑧∗
= 𝜎0

𝑑(𝜎∗𝑅∗)

𝑑𝑧∗
 

𝑑(𝐸𝑅2)

𝑑𝑧
=
𝑑𝑧∗

𝑑𝑧

𝑑(𝐸𝑅2)

𝑑𝑧∗
= 𝐸0𝑅0

𝑑(𝐸∗𝑅∗2)

𝑑𝑧∗
 

𝑑2(𝐸𝑅2)

𝑑𝑧2
=
𝑑

𝑑𝑧
[
𝑑(𝐸𝑅2)

𝑑𝑧
] =

𝑑

𝑑𝑧
[𝐸0𝑅0

𝑑(𝐸∗𝑅∗2)

𝑑𝑧∗
] = 𝐸0𝑅0

𝑑𝑧∗

𝑑𝑧

𝑑

𝑑𝑧∗
[
𝑑(𝐸∗𝑅∗2)

𝑑𝑧∗
]    

= 𝐸0
𝑑2(𝐸∗𝑅∗2)

𝑑𝑧∗2
 

Replacing into the equation of Coulomb’s law for electric field: 

𝐸0𝐸
∗ = 𝐸∞ − ln (

𝐿

𝑅0
) [
4𝜋𝜎0
𝜀

𝑑(𝜎∗𝑅∗)

𝑑𝑧∗
−
1

2
(
𝜀

𝜀
− 1)𝐸0

𝑑2(𝐸∗𝑅∗2)

𝑑𝑧∗2
] 

Dividing all terms by 𝐸0 and simplifying: 

𝐸∗ =
𝐸∞
𝐸0
− ln (

𝐿

𝑅0
) [
4𝜋𝜎0
𝜎0

𝑑(𝜎∗𝑅∗)

𝑑𝑧∗
−
1

2
(
𝜀

𝜀
− 1)

𝐸0
𝐸0

𝑑2(𝐸∗𝑅∗2)

𝑑𝑧∗2
] 

𝐸∗ = 𝐸inf − ln𝜒 (4𝜋
𝑑(𝜎∗𝑅∗)

𝑑𝑧∗
−
𝛽

2

𝑑2(𝐸∗𝑅∗2)

𝑑𝑧∗2
)          (B.43) 

The governing equations for the electrospraying process are now represented with the variables 

𝑅∗, 𝐸∗, 𝜎∗, 𝑣∗, 𝜏𝑝𝑧𝑧
∗  and 𝜏𝑝𝑟𝑟

∗  that are dimensionless. In addition to allowing the identification of the 

dimensionless numbers describing the process, the dimensionless equations can be used for the 

modeling of the process to study its stability, to predict scaling laws with behavior of the jet and to 

produce operating diagrams where the process occurs as function of the experimental parameters.  

From the dimensionless equations obtained in Eq. B.34, B.35 and B.43, the dimensionless numbers 

Pe, Re, We, Fr, Ω, β, χ, 𝑟𝜂  and 𝐸inf  have been identified. The incorporation of a viscoelastic 

constitutive equation (such as Giesekus model) for obtaining the normal stresses difference in the 

tensile force 𝑇 of the jet, allows the appearance of the additional dimensionless number De (in Eq. 
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B.41 and B.42), which considers the polymer viscoelastic effects. The obtained dimensionless 

numbers are summarized in Table B.2.  

The dimensionless numbers help relating in a logical manner the different parameters affecting a 

process. In this way when many variables are implied, as in the case of electrospraying, the use of 

the dimensionless numbers is a good way to plan and to correlate experimental data, since in 

general, as the number of dimensionless groups is less than the number of variables, the number of 

experiments is reduced and the analysis is simplified.  
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Table B.2: Dimensionless numbers in the electrospraying process 

Dimensionless number Meaning 

Electric Peclet 

number 
𝑃𝑒 =

2𝜀𝑣0
𝑅0𝐾

 Indicates the importance of charge 

convection relative to conduction  

Reynolds 

number 
𝑅𝑒 =

𝜌𝑣0𝑅0
𝜂0

 Indicates the ratio of the inertial to 

viscous forces 

Weber number 𝑊𝑒 =
𝜌𝑣0

2𝑅0
𝛾

 Indicates the ratio of inertial to surface 

tension forces 

Froude number 𝐹𝑟 =
𝑣0
2

g𝑅0
 Indicates the ratio of inertial to 

gravitational forces 

Electrostatic 

force parameter 
Ω =

𝜀𝐸0
2

𝜌𝑣0
2 Indicates the magnitude of the 

electrostatic forces relative to inertia 

Dielectric 

constant ratio 
𝛽 =

𝜀

𝜀
− 1 Represents the magnitude of induced 

charges 

Aspect ratio  𝜒 =
𝐿

𝑅0
 Aspect ratio of the jet 

Deborah number 𝐷𝑒 = 𝜆
𝑣0
𝑅0
=
𝜆

𝑡0
 Ratio of the material relaxation time to 

the flow time scale  

Viscosity ratio 𝑟𝜂 =
𝜂𝑝

𝜂0
 Polymer solution viscosity to solvent 

viscosity  

Electric field 

strength 
𝐸inf =

𝐸∞
𝐸0
=
∆𝑉 𝑑⁄

𝐸0
 Ratio of applied electric field to initial 

electric field 
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