POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Préservation de I'opacité par raffinement de systemes spécifiés par
Title: des chaines de Markov discretes a intervalles

Auteur:
Author:

Date: 2017

Type: Mémoire ou thése / Dissertation or Thesis

Gaétan Dupeuble

L Dupeuble, G. (2017). Préservation de I'opacité par raffinement de systemes
Référence: spécifiés par des chaines de Markov discretes a intervalles [Mémoire de maitrise,
Citation: Ecole Polytechnique de Montréal]. PolyPublie.

https://publications.polymtl.ca/2569/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/2569/

Directeurs de
recherche: John Mullins
Advisors:

Programme

*|Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/2569/
https://publications.polymtl.ca/2569/

UNIVERSITE DE MONTREAL

PRESERVATION DE LOPACITE PAR RAFFINEMENT DE SYSTEMES SPECIFIES
PAR DES CHAINES DE MARKOV DISCRETES A INTERVALLES

GAETAN DUPEUBLE
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

MATI 2017

(© Gaétan Dupeuble, 2017.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

PRESERVATION DE L’OPACITE PAR RAFFINEMENT DE SYSTEMES SPECIFIES
PAR DES CHAINES DE MARKOV DISCRETES A INTERVALLES

présenté par : DUPEUBLE Gaétan

en vue de 'obtention du diplome de : Maitrise és sciences appliquées

a été diiment accepté par le jury d’examen constitué de :

M. KHOMH Foutse, Ph. D., président
M. MULLINS John, Ph. D., membre et directeur de recherche
M. TAHAR Sofiene, Ph. D., membre

1ii

DEDICACE

A ma famille
A Alicia

iv

REMERCIEMENTS

“Tous les hommes pensent que le bonheur se
trouve au sommet de la montagne alors qu’il

réside dans la facon de la gravir.”
— Confucius

Ce mémoire conclut une aventure sur les bancs de la recherche formelle. Comme toute aven-
ture, elle a eu son lot de rebondissements, d’émotions. Mais surtout, comme toute aventure,

elle a eu son lot de protagonistes.

A Theure du bilan, je tiens a remercier tout particulierement mon directeur de recherche,
Monsieur John MULLINS, qui a cru en moi des notre premiere rencontre, et m’a guidé et
soutenu depuis lors. Je salue son enthousiasme communicatif ainsi que sa motivation sans
égale. Un grand merci également a Monsieur Foutse KHOMH, président du jury, ainsi qu’a
Monsieur Sofiene TAHAR, membre du jury, pour avoir accepté de prendre sur leur temps

pour évaluer le présent mémoire.

Je tiens également a remercier mes parents qui, malgré I’océan qui nous sépare, sont toujours

la pour m’écouter et me rassurer.

Enfin, je tiens & remercier mon ame sceur Alicia, pour sa relecture avisée d’une part, pour

son soutien et sa présence sans faille au quotidien, d’autre part, malgré la distance.

RESUME

Les méthodes formelles permettent de modéliser et concevoir des systemes informatiques
critiques, notamment dans les domaines a fort risque humain que sont les transports de
personne ou les centrales énergétiques, par exemple. L'une des méthodes de conception est
celle dite de raffinements successifs, étapes lors desquelles les spécifications du systeme sont
ajustées afin que le produit final soit le plus conforme possible aux exigences initiales. Le
principe du raffinement est tel qu’il ne doit pas étre destructif : le modele raffiné doit vérifier
au moins les mémes requis déja validés par le modele précédent — par exemple, ’absence de

blocage, ou la terminaison du programme dans un état acceptant.

Parmi ces requis, le systeme doit parfois valider des requis non-fonctionnels, tels que des

propriétés de sécurité. Notamment, on se penche davantage sur la propriété d’opacité libérale.

Pour modéliser les systémes informatiques ainsi que de tels requis non-fonctionnels, on a
besoin de méthodes quantitatives. Ainsi, nous choisissons comme cadre théorique le modele
de la Chaine de Markov discrete a Intervalles (IDTMC). Ce modeéle a pour intérét d’avoir un
aspect non-déterministe. En réalité, c’est une extension du modele de Systeme de Transitions
Probabilistes (PTS) : en ce sens, on considére quune IDTMC représente une spécification,
que 'on peut implémenter par un PTS. Les PTS eux-mémes sont des modeles probabilistes,
qui permettent la mesure de propriétés quantitatives. Le second avantage de ce type de

modele est 'existence de trois types de raffinement : fort, faible et complet.

La problématique principale liée au raffinement de systémes sécurisés est la suivante : le fait
qu’une spécification vérifie une propriété de sécurité donnée n’est pas une condition nécessaire
au fait que son raffinement la vérifie également. Le but est donc de trouver, dans notre cadre

théorique, une notion de raffinement qui préserve la propriété de sécurité que 'on étudie.

L’opacité est une propriété de sécurité introduite avec le modele du Systeme de Transitions
Etiquetées (LTS), puis étendue aux PTS : elle traduit la capacité d'un observateur extérieur a
déduire I’état d'un prédicat secret en observant uniquement la partie publique des exécutions
du programme. Sa premiere définition est une définition binaire; en étendant la notion aux
PTS, on introduit un aspect probabiliste en définissant 'opacité libérale, qui mesure la non-
opacité du systeme, et l'opacité restrictive, qui mesure son opacité effective. Il est alors
possible d’étendre a nouveau ces notions aux IDTMC : il suffit de calculer I'opacité dans le

pire des cas pour I’ensemble des implémentations des IDTMC.

Ainsi, nous prouvons les résultats suivants.

vi

Tout d’abord, on prouve que l'opacité libérale dans une IDTMC non-modale, c’est-a-dire
completement définie, se calcule en un temps fini, doublement exponentiel. Nous proposons

un algorithme de calcul.

De plus, on prouve qu’il est possible d’approcher 'opacité libérale dans une IDTMC dans le
cas général, en un temps doublement exponentiel également. Nous proposons comme contri-
bution originale une extension de ’algorithme de calcul du cas non-modal, et nous prouvons

sa correction.

Enfin, on prouve que 'opacité libérale dans une spécification est préservée apres raffinement

faible, ce qui généralise un résultat similaire mais qui ne considérait que le raffinement fort.

En définitive, nous réalisons une preuve de concept destinée a étre reproduite pour d’autres
modeles et propriétés de sécurité similaires, telles que les Propriétés Rationnelles de Flux

d’'Information (RIFP) dont est issue 'opacité.

vii

ABSTRACT

Formal methods can help to design any computer system — softwares, protocols, architectures,
etc. Indeed, developping a system usually consists in refining it. The refined system is then
a more precise one, with some more features. Thus, all these stages lead to a final product
which is a working implementation of the initial specification. The key issue is as follows:
each refined system must at least verify all the properties verified by the previous one. This
must be the case for behaviour properties — like the absence of any deadlock — and for security

properties.

This issue is relatively easily resolved when it is about usual behaviour properties, but security
is trickier to model. Therefore, one cannot ensure the fact that a refined system verifies the

same security properties as the previous system.

This essay aims to highlight a particular security property, opacity, for which we prove that
it is preserved when a system is refined. Opacity is linked to the probability for a passive
external observer to know the content of a secret, only by observing the public outputs of

the system.

The framework is as follows. In order to modelize our specifications, we define the Interval
Discrete-Time Markov Chain (IDTMC), which is a generalisation of the Probabilistic Transi-
tion System (PTS). The probabilistic aspect is a way to introduce quantitative measurement
on our models. Since IDTMC are non-deterministic, they carry a higher layer of abstraction
than the PTS model. On this framework, one can define three types of refinement: strong,

weak and thorough.

Since opacity is already defined on PTSs, we define its extension to IDTMC. Particularly,
one can differentiate liberal opacity — the measure of non-opacity — from restrictive opacity
— the measure of effective opacity. The extension is directly defined by stating the fact that
the opacity of a secret in a IDTMC is the worst case among all the PTSs that implement

this specification.
Then we prove the following theorems.

First, if we consider a non-modal IDTMC, i.e. a specification for which each transition has a
non-zero probability, then the liberal opacity of any secret is computable in 2EXP-time. We

provide an algorithm to compute this value.

Then, for the general case, we prove that the liberal opacity can be approximate in 2EXP-

time. This original contribution comes with an extension of the previous algorithm, for which

viii

we prove its correctness.

Finally, we solve the main issue of this essay: liberal opacity in a specification is preserved
when the system is weakly refined. This contribution expands a similar result, which only

considered strong refinement.

These results lead to a proof of concept for the fact that secured systems can be refined
and keep their security properties, for a certain type of properties. This can be especially

generalised to all Rational Information Flow Properties (RIFP).

X

TABLE DES MATIERES

DEDICACE oo iii

REMERCIEMENTS iv

RESUME v

ABSTRACT . . . e vii

TABLE DES MATIERES ix

LISTE DES TABLEAUX e xii

LISTE DES FIGURES xiii

LISTE DES SIGLES ET ABREVIATIONS xiv

CHAPITRE 1 INTRODUCTION 1

1.1 Eléments de la problématique 1

1.2 Exemple de motivationo oL 3

1.3 Objectifs de recherche L 4

1.4 Méthodologie 5

1.5 Plan du mémoire 6
CHAPITRE 2 REVUE DE LITTERATURE
2.1 Raffinement et spécificationo
2.2 Le cas des systeémes sécuriséso

CHAPITRE 3 PRELIMINAIRES e, 12

3.1 Modélisation 12

3.1.1 Langages et automates oo 12

3.1.2 Les systemes de transitions 0oL 14

3.1.3 Un modele de spécification 17

3.2 Vérification de l'opacité 18

3.2.1 Une opacité binaire o 19

3.2.2 L’opacité probabiliste 20

CHAPITRE 4 THEORIE DES SPECIFICATIONS 25
4.1 IDTMC . . . e 25
4.2 Raffinement fort et faible oL 27
4.3 Implémentation et raffinement complet 28
4.4 Langages dans les IDTMC L 31
4.5 Ordonnancement 33
4.6 Extension de l'opacité libérale aux IDTMC 37

CHAPITRE 5 VERIFICATION DE L'OPACITE 39
5.1 Notions préliminaires 39

5.1.1 Synchronisation entre un DPA et une IDTMC 39
5.1.2 Solution Basique Réalisable (BFS) 41
5.1.3 Calcul d’'un MDP a partir d'une IDTMC 43
5.2 Calcul de I'opacité libérale dans le cas des IDTMC non-modales 44
5.3 Une approximation du cas général 46
5.3.1 Détermination des transitions modales 47
5.3.2 Elimination de certaines transitions modales 48
5.3.3 Dépliage de 'ordonnancement 50
5.3.4 Approximation du calcul de I'opacité libérale dans le cas des IDTMC
modales 50
5.4 Préservation de l'opacité libérale par raffinement 54
5.5 Cas des autres opacitéso Y
5.5.1 Quasi-opacité uniformeo 57
5.5.2 Opacité restrictive 59

CHAPITRE6 ETUDEDE CAS. 60

6.1 Description de I'étude decaso 60
6.1.1 Modélisation du systemeo 60
6.1.2 Requis de sécurité Lo 62

6.2 Calcul de 'opacité binaire 63

6.3 Opacité libérale 64
6.3.1 Application du théoreme 2 65
6.3.2 Bilanducalcul 68
6.3.3 Un autreexemple Lo 68

6.4 Un raffinement 71
6.4.1 Calcul d’opacité libérale 73

6.4.2 Calcul d’opacité restrictive 74

xi

CHAPITRE 7 CONCLUSION s 78
7.1 Synthese des travauxo 78
7.2 Limitations de la solution proposée 79
7.3 Améliorations futures 80

REFERENCES o 81

Tableau 6.1

Tableau 6.2

Tableau 6.3

Tableau 6.4

LISTE DES TABLEAUX

Probabilités du langage abc” dans les implémentations extrémales de

Résultats de 'algorithme suivant le sous-ensemble de transitions mo-
dales choisi
Résultats suivant le sous-ensemble de transitions modales choisi, pour
Aog, - o o

Probabilités nécessaires au calcul de 'opacité restrictive

xii

68

68

Figure 1.1
Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4

Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10

Figure 6.11
Figure 6.12
Figure 6.13

LISTE DES FIGURES

Exemple de motivationo
Exemple de DPA vérifiant le langage w-régulier L = a*, sur I'alphabet
S ={abcl ..o
Exemple de LTS
Exemple de PTS
Exemple de MDP
Exemple A’'IDTMC

S, raffine faiblement mais non fortement S,

imp(Sy) C imp(S2) mais S; ne raffine pas faiblement Sy

Deux implémentations de I'exemple de la figure 4.1

Exemple d’ordonnancement
Exemple d’implémentation non-ordonnancée d’'une IDTMC
Exemple de synchronisation entre un DPA et une IDTMC

[Mustration de la résolution du probléeme de I'exemple

xiii

14
15
16
18
26
28
29
31
35
36

42

Application de I'algorithme 4 sur les transitions modales (qo, 1) et (o, q3) 49

[Mustration de la preuve du théoreme 5
Un systeme de controle d’acces a une base de données médicales S,
Canal caché de communication entre le complice et I'attaquant
Une implémentationde Sy oL
Systeme de transitions A; g, — résultat du dépliage d’un ordonnanceur
sans-mémoire
Résultat de la seconde étape — Sy x A1, \E
Construction du Automate de Parité Déterministe (DPA) A,
Application du théoréme — Sy = (82 X Ao, \ €) Ay ...

[lustration du probléeme au sommet (g, So)

Application du théoreme — Transformation de Sy en son MDP M,,
Application des étapes du théoreme — cas d'un ordonnanceur de mé-

moire 2

Un raffinement S; du systéme précédent

Ordonnancement sans-mémoire quelconque de &7

Graphe de la fonction f

95
61
62
63

64
64
65
66
66
67

69
72
75
76

BFS
BSP
CMC
DPA
IDTMC
IMDP
LTS
MC
MDP
PTS
RIFP

LISTE DES SIGLES ET ABREVIATIONS

Solution Basique Réalisable

Prédicat Basique de Sécurité

Chaine de Markov a Contraintes

Automate de Parité Déterministe

Chaine de Markov discrete a Intervalles

Processus de Décision Markovien a Intervalles de probabilité
Systéme de Transitions Etiquetées

Chaine de Markov

Processus de Décision Markovien

Systeme de Transitions Probabilistes

Propriété Rationnelle de Flux d’Information

xXiv

CHAPITRE 1 INTRODUCTION

Que ce soit pour comprendre le fonctionnement d’un systéme ou pour concevoir un produit
industriel, il est courant de faire appel a des méthodes de modélisation formelle. Cela consiste
a dégager dans un premier temps les caractéristiques principales, en écartant les concepts
secondaires, a priori inutiles pour comprendre le fonctionnement du systeme. On obtient
alors un modele théorique qui décrit le comportement du systéme, mais qui ne le représente
pas exactement. Afin de minimiser ’écart entre le systéme et le modele, on a recours, lors
de la gestion de projet, au processus de raffinement : le modeéle est constamment amélioré,
et les caractéristiques fonctionnelles initialement écartées sont progressivement étudiées et
ajoutées. Ceci est une maniere de passer d’une idée théorique a un produit réel implémentant

cette idée.

1.1 Eléments de la problématique

En génie logiciel et informatique, les méthodes formelles sont généralement utilisées pour
modéliser, concevoir et vérifier des systémes critiques, notamment dans des domaines tels que
le ferroviaire ou l'avionique, ou les risques humains demandent une résistance parfaite aux
failles. Le raffinement est une part importante de ces méthodes, puisque la conception formelle
d’un systeme passe par une succession d’étapes ajoutant régulierement des fonctionnalités.
I1 est alors nécessaire de s’assurer qu’aucune étape du raffinement ne brise le fonctionnement
du systeme. Autrement dit, il est nécessaire de s’assurer, pour chaque étape, que le nouveau
modele vérifie au moins les mémes propriétés que I’ancien. On parle notamment de raffinement
de requis fonctionnels — par exemple, I’absence de blocage, ou la garantie que le train s’arréte

lors d'un feu rouge.

Ces requis fonctionnels ne sont cependant pas les seuls requis que peut comporter le cahier des
charges d’un systeme. On distingue également les requis non-fonctionnels. Par exemple, si ’'on
considére un fournisseur de services d’infonuage, I'un des requis non-fonctionnels classiques
est 'obligation de fournir une qualité de service quasiment parfaite aux clients. Il est courant
alors de quantifier le temps maximal autorisé de baisse de service durant une période donnée,
ou bien la probabilité quune panne se déroule. De fagon naturelle, la modélisation de ces

requis se réalise donc grace a des méthodes quantitatives.

Une problématique particuliere se pose alors : est-il possible de raffiner les modeles quanti-

tatifs, nécessaires a la modélisation de ces requis non-fonctionnels, tels que la sécurité ?

Habituellement, la sécurité est considérée a travers trois axes principaux : la confidentialité,
Iintégrité et la disponibilité. Garantir ces trois notions revient a garantir la sécurité du
systeme considéré. Un utilisateur malhonnéte désirant attaquer I'un de ses trois aspects est
communément appelé adversaire ou attaquant.

— La confidentialité englobe tout ce qui est lié a 'aspect privé d’un ensemble de données.
Le but est de garantir que seuls les utilisateurs autorisés peuvent intéragir avec les
données que 'on veut garder confidentielles.

— L’intégrité concerne la modification des données. Le but est de garantir que les données
sont a tout moment completes et lisibles. Notamment, une modification peut étre
réalisée uniquement par un utilisateur autorisé.

— La disponibilité concerne I'acces aux données ou aux services. Le but est de garantir
I’acces aux données a tout utilisateur autorisé. Cette troisieme propriété est générale-
ment vue comme orthogonale aux deux précédentes, puisqu’elle doit garantir un acces,
alors que les autres doivent restreindre l'acces.

Ces trois axes permettent de positionner toute problématique de sécurité dans l'industrie
— par exemple, une tentative de déni de service s’attaque a la disponibilité du systeme,
tandis qu’'un adversaire essayant d’accéder a une base de données privées s’attaque a la

confidentialité du systeéme, voir a son intégrité.

L’expansion des échanges commerciaux réalisés par I’entremise des internets, les données
confidentielles hébergées sur des serveurs infonuagiques, ou encore la quantité de services
nécessitant un acces fiable et continu aux réseaux internets, posent quantité de problémes
concrets de sécurité : comment étre certain de I'identité et de I’honnéteté du serveur qui regoit
nos coordonnées bancaires 7 L’acces a nos données confidentielles est-il réellement controlé et

inviolable 7 Jusqu’a quel point pouvons-nous assurer la disponibilité de nos services ?

La modélisation de la sécurité s’avere généralement complexe. Alors que les propriétés de
comportement — telles que I’absence de blocage ou ’absence de famine — sont des proprié-
tés portant sur des ensembles de traces d’exécution du systeme, la sécurité d’'un systeme
se modélise par des hyperpropriétés, c’est-a-dire des propriétés portant sur des ensembles
d’ensembles de traces : il est nécessaire d’ajouter un niveau d’abstraction supplémentaire par
rapport aux propriétés modélisant les requis fonctionnels (Clarkson et Schneider, 2010). Cet
ajout de complexité induit notamment que ces propriétés ne sont généralement pas conservées
lorsque le systeme est raffiné. Autrement dit, si un modele vérifie une propriété de sécurité,
il n’est pas nécessaire que les modeles qui le raffinent vérifient la méme propriété de sécurité.
Ceci pose un probleme majeur qui remet en cause la méthodologie de conception évoquée
jusqu’alors, puisqu’il n’est plus possible d’assurer la sécurité du produit final en vérifiant

uniquement les propriétés de sécurité sur le modele initial.

Il s’avere que certaines propriétés de sécurité ont tout de méme la capacité d’étre préservées
par raffinement. Prouvons dans ce mémoire que I'extension de 1'opacité libérale (Bérard et al.,

2015¢) a notre cadre de recherche fait partie de ces propriétés particulieres.

1.2 Exemple de motivation

[llustrons ces questionnements avec un exemple de motivation simple. Considérons un pro-
tocole simplifié de transmission sécurisée de messages entre deux parties, dont le but est
de garantir la confidentialité des messages échangés. Le systeme est constitué d’un canal de
transmission et d’un systeme de chiffrement. On abstrait les détails techniques de ces deux
sous-protocoles, ainsi que les systémes de vérification éventuels qu’un tel protocole peut avoir

— attente d'un accusé de réception, par exemple.

Puisqu’aucun systeme n’est parfait, on considere la possibilité d'une faille dans le systeme de
chiffrement, qui laisserait passer des messages en clair dans le canal. Puisque ’on ne connait
pas la probabilité de cette faille de sécurité, on fait apparaitre un intervalle de probabilité,

qui contient a priori la valeur réelle.

Finalement, on modélise le protocole par 'objet S; représenté sur la figure 1.1a. Les diffé-
rents états du modele (attente, transmission en clair, transmission chiffrée) traduisent les
différentes étapes possibles lors de la transmission d’un message. Les fleches représentent les
transitions entre les différents états, c’est-a-dire la maniére dont peut s’exécuter le modele;
elles contiennent les intervalles de probabilité. Notamment, on distingue ici deux boucles
d’exécution : lorsque le systeme est en attente, il a la possibilité de transmettre le message en
clair, ce qui modélise la faille précédemment décrite, ou bien de fonctionner correctement en
transmettant le message de fagon chiffrée ; puis il revient a son état initial des la transmission

réalisée, dans l'attente d’'un nouveau message a transmettre.

Ce modele, que I'on appelle une spécification, est ’abstraction de toutes les implémentations
du protocole décrit précédemment : il contient toutes les probabilités d’avoir une faille a
chaque boucle de transmission, sans considérer les détails derriére la méthode de chiffrement

ou de transmission.

Un tel modele permet alors une étude plus poussée du systeme, notamment du point de
vue de la sécurité. Par exemple, il parait évident que le but est d’éviter de passer par 1’état
transmission en clair afin d’assurer le bon fonctionnement du protocole. Ce type de modele
permet l'utilisation des méthodes quantitatives : il est possible de mesurer la probabilité
de passer par cet état, a la premiere boucle d’exécution, a la seconde, ou n’importe quand,

suivant la propriété que 1'on veut mesurer. On parlera dans la suite de probabilité de briser

la sécurité.

Plus précisément, puisque 1’on consideére une spécification non-déterministe — les probabilités
sont uniquement restreintes — on mesure le pire cas possible, c¢’est-a-dire le maximum des
probabilités de briser la sécurité. Par exemple, considérons la propriété “A la premiére boucle
de transmission, le message est transmis en clair.”, qui est un comportement qui brise la
sécurité. Dans la spécification &7, la probabilité maximale que cette propriété soit vraie est de
1, diie a l'intervalle de probabilité [0, 1] de la transition entre les états attente et transmission

en clair.

Dans une logique de conception de protocole, le but est alors de réduire ce risque de faille
de sécurité. Pour cela, on utilise la notion de raffinement de spécification : le modele initial
est raffiné, c’est-a-dire qu’'une nouvelle spécification est trouvée, telle que toutes ses implé-
mentations implémentent également la spécification de départ. Autrement dit, le raffinement
permet de trier parmi toutes les instances du protocole de départ afin de supprimer les pires
cas. Cela est réalisé ici en réduisant les intervalles de probabilités des transitions : on obtient

la spécification Sy, représentée figure 1.1b, qui raffine de maniere évidente la spécification Sj.

transmission en clair transmission en clair
[0, 1] [0.2,0.6]
1 1
— attente — attente
1 1
[0, 1] [0.4,0.8]
transmission chiffrée transmission chiffrée
(a) Modele &; (b) Modele Sy

Figure 1.1 Exemple de motivation

Il est alors possible de vérifier si le raffinement a effectivement amélioré la mesure de risque
réalisée sur la spécification S;. Avec le méme raisonnement, la propriété “A la premiere boucle
de transmission, le message est transmis en clair.” a cette fois-ci une probabilité d’étre vraie

de 0.6 dans le pire des cas.

1.3 Objectifs de recherche

Nos objectifs de recherche sont liés au probleme de raffinement destructif. Le but de nos

travaux consiste a :

1. définir un modele de spécification ou les requis sont non-fonctionnels et sur lequel on

peut définir un raffinement ;

2. définir et calculer la mesure de sécurité d’une spécification comme étant le pire cas de

ses implémentations ;

3. prouver que la propriété de sécurité est préservée par le raffinement de spécification,
afin de contourner cette problématique et de montrer que la méthodologie de concep-

tion de systemes sécurisés est justifiable.

1.4 Meéthodologie

Afin de remplir ces objectifs, la méthodologie utilisée est la suivante.

Le cadre théorique consiste en 1’étude du modele de la Chaine de Markov discrete a In-
tervalles (IDTMC). Ce type de spécification, dont deux exemples sont représentés sur la
figure 1.1, est un modele probabiliste non-déterministe permettant d’abstraire le systeme
étudié. L’aspect probabiliste justifie le choix de cette méthode dans le cadre de propriétés
quantitatives ; I’aspect non-déterministe permet d’étudier en un seul modele I’ensemble des
instances possibles du systeme. En ce sens, les IDTMC héritent des fonctionnalités de modeles
quantitatifs connus que sont les Chaines de Markov — méthode classique pour modéliser le
comportement de nombreux systémes — les Systemes de Transitions Probabilistes (PTS), ou
encore les Processus de Décision Markoviens (MDP) — modeéle probabiliste non-déterministe.
En pratique, une IDTMC est un PTS dont chaque probabilité de transition est remplacée
par un intervalle de probabilités, laissant ainsi un choix indénombrable de distributions pour

chaque état du modele.

Sur ce choix de spécification sont définis des raffinements : afin d’améliorer le modele d'un
systeme, on le raffine, c’est-a-dire que l'on précise son comportement. En pratique, apres
raffinement, ’ensemble des implémentations possibles du modele est réduit et est inclus dans
I’ensemble des implémentations du modele initial. Réitérer ce processus conduit fatalement
a une unique implémentation, un modele totalement déterministe qui spécifie complétement

le comportement du systeme. Un tel modele est alors un PTS.

On définit également une méthode d’implémentation d’une spécification, I’ordonnancement,
similaire a I'ordonnancement des MDP : I'ordonnanceur exécute la spécification, et choisit,
a chaque état rencontré, une distribution de probabilités parmi les distributions autorisées
par la spécification. Ce moyen d’implémenter permet de simuler I'action d’un adversaire
omniscient capable de manipuler le systéme comme bon lui semble. Etudier ceci donne ainsi

les failles éventuelles laissées par la spécification aux utilisateurs.

Parmi ces failles, on se penche davantage sur des propriétés de sécurité que ’on désire mesurer.
Notamment, nous étudions plus particulierement la notion de 'opacité : de fagon informelle,
I'opacité mesure la probabilité pour un observateur extérieur passif de distinguer un secret
d’un message quelconque — si cette probabilité est suffisamment faible, conformément aux
requis non-fonctionnels, cela signifie que le secret est opaque dans le modele. Dans une spé-
cification, la mesure de l'opacité est sa mesure dans la pire de ses implémentations, ce qui
constitue une extension de la définition d’opacité au cadre des spécifications. Plus particu-

lierement, on définit également la mesure dans la pire de ses implémentations ordonnancées.

Toutes ces méthodes aboutissent alors a I’étude de 'effet du raffinement de spécifications sur

la mesure de l'opacité.

1.5 Plan du mémoire

Le mémoire se divise en sept chapitres. A la suite de cette introduction, une revue de littéra-
ture présente 1’état de I'art en ce qui concerne les méthodes formelles de spécification et de

raffinement de systemes sécurisés.

Le chapitre 3 rappelle des résultats préliminaires et introduit les définitions nécessaires pour
la suite. Notamment, les notions de systéme de transition et d’automate sont expliquées, ainsi
que la propriété d’opacité, propriété de sécurité choisie pour nos résultats. Les notions sont
expliquées en suivant la logique suivante : du modele le plus simple au plus complet. Ainsi,
les premiers systemes de transition décrivent des systéemes hautement déterministes et tres

limités. Puis les modeles gagnent en généralité, en ajoutant notamment I'aspect probabiliste.

Le chapitre 4 présente le cadre théorique du mémoire. Les modeles de spécifications particu-
liers a notre étude, le processus de raffinement utilisé, ainsi que la généralisation du concept

d’opacité a ce type de modele sont définis.

Le chapitre 5 prouve les résultats principaux de cette étude : la décidabilité de 'opacité li-
bérale dans le cas des spécifications non-modales, le calcul d’une approximation de I’opacité
libérale dans le cas général, et la préservation de 'opacité par raffinement faible de spécifi-

cation.

Le chapitre 6 consiste en un exemple pratique d’application des aspects théoriques mis en
ceuvre dans le chapitre 5. Un systeme de contrdle d’acces a une base de données est modélisé
puis raffiné. Le but est de vérifier sur un exemple simple les résultats précédents, tout en

montrant comment appliquer les méthodes de calcul d’opacité.

Le chapitre 7 résume les résultats et contributions, puis décrit les travaux futurs a déployer.

CHAPITRE 2 REVUE DE LITTERATURE

Dans ce chapitre, nous définissons les fondements du cadre formel utilisé dans ce mémoire,
en nous penchant plus particulierement sur I’étude des systemes sécurisés. Nous listons éga-
lement le comportement de différentes propriétés usuelles de sécurité relativement au raffi-

nement de systemes.

2.1 Raffinement et spécification

Abadi et Lamport (1991) définissent un premier cadre de modele de spécification sur lequel
on peut établir une relation de raffinement. Leurs modeles sont des machines a états poten-
tiellement infinies, qui spécifient des requis fonctionnels, de siireté ou de vivacité. Le principe
de l'article est de prouver que le raffinement d’une spécification permet de trouver une nou-
velle spécification qui implémente la premiere. En ce sens, le modele raffiné spécifie de fagon
plus précise les requis par rapport au modele initial. Ici, les modeles probabilistes ne sont
pas utilisés : il n’y a pas de quantification de la précision de spécification des requis. En pra-
tique, une spécification S; implémente une spécification Ss si le comportement extérieur du
modele &7 fait partie du comportement extérieur du modele Sy. Cet article pose finalement

les fondements du raffinement de machines a états.

Les résultats sont alors étendus par Jonsson et Larsen (1991), qui définissent un cadre pro-
babiliste. Ils utilisent le modele probabiliste du Systeéme de Transitions Probabilistes (PTS),
et I’étendent pour abstraire davantage le modele. Ils définissent alors la Chaine de Markov
discrete a Intervalles (IDTMC), PTS dont les probabilités de transition sont remplacées par
des intervalles de probabilité. Cela permet de spécifier plus généralement des requis non-
fonctionnels, qui ont besoin de la quantification probabiliste. Les auteurs définissent alors la
notion d’implémentation au sens utilisé dans ce mémoire, c’est-a-dire le fait que les spécifi-
cations IDTMC peuvent étre vues comme des ensembles de PTS qui les implémentent. Par
la suite, la relation de raffinement entre spécification est définie, et telle que si &7 raffine Ss,
alors ’ensemble des implémentations de S; est inclus dans celui de S,. Les auteurs définissent
également la notion de modalité de transition — et par extension, la notion de spécification
modale : ¢’est un IDTMC qui possede au moins un arc dont la présence n’est pas obligatoire
lors de I'implémentation, c¢’est-a-dire une transition qui peut étre affectée d’une probabilité

nulle.

Delahaye et al. (2012) continuent le travail précédent, dans le cadre des IDTMC, en définissant

plus précisément la notion de raffinement. Notamment, ils différencient les raffinements fort,
faible et complet, ce qui induit une hiérarchie des spécifications plus complexe. Ils prouvent
notamment que le raffinement complet est plus faible que le raffinement faible, lui-méme plus
faible que le raffinement fort. Ces inégalités sont strictes en regle générale. Ainsi, cet article

décrit le cadre formel général de raffinement réutilisé par la suite dans ce mémoire.

Il reste a I'appliquer dans le cadre de requis non-fonctionnels.

2.2 Le cas des systémes sécurisés

La sécurité est un exemple de requis non-fonctionnel. Par conséquent, sa modélisation en est
plus complexe qu'un simple requis de stireté ou de vivacité. Clarkson et Schneider (2010)
illustrent ce fait en proposant une classification de ’ensemble des propriétés de sécurité en
introduisant la notion d’hyperpropriété. Son raisonnement est le suivant. Les requis fonction-
nels d'un systeme peuvent étre représentés facilement a partir de propriétés portant sur les
traces infinies d’exécution de celui-ci — formellement, une propriété de traces est I’ensemble
des traces qui vérifient un comportement donné. Ce formalisme s’avere insuffisant lorsque ’'on
décide de décrire des requis de sécurité. Il est nécessaire d’introduire un nouveau formalisme,
celui des hyperpropriétés : une hyperpropriété est un ensemble de propriétés, autrement dit
un ensemble d’ensembles de traces. Ainsi, en s’appuyant sur les notions de vivacité — on peut
toujours rencontrer un bon comportement dans le futur — et de stireté — il est possible d’at-
teindre un comportement rédhibitoire en un temps fini — déja connues dans le domaine des
propriétés de traces, Clarkson et Schneider définissent les notions d’hypervivacité et d’hyper-
stireté. Une hyperpropriété est alors l'intersection d’une hypervivacité et d’une hyperstireté,

ce qui introduit un paralléle formel avec les propriétés de traces.

En plus de ces définitions, Clarkson et Schneider donnent le contre-exemple suivant a la
problématique qui nous intéresse, selon laquelle le raffinement ne conserve pas nécessairement
la sécurité. Considérons la propriété de sécurité “les valeurs possibles de sortie du systeme
sont indépendantes de la valeur du bit secret h”. Le systeme 7 qui affecte 0, 1 ou h de fagon
non-déterministe a la sortie, vérifie évidemment la propriété. En revanche, le systeme 7’ qui
affecte systématiquement la valeur de h a la sortie ne vérifie pas la propriété. Pourtant, toute
exécution de 7’ est une exécution de w, donc 7’ raffine 7. On en déduit donc que raffiner
un systeme peut mener a la création d’une faille de sécurité conformément a une propriété

validée précédemment dans le processus de raffinement.

En parallele de ces concepts, diverses propriétés de sécurité existent afin de décrire les diffé-

rentes problématiques rencontrées en pratique.

La premiere définition formelle de la sécurité informatique approche le probléeme a travers les
concepts de non-interférence et de flux d’information (Goguen et Meseguer, 1982). Un systeéme
est non-interférent si aucune de ses actions n’induit de changement dans I'observation d’un
tiers extérieur. Dans le cas d’interférence, en revanche, on parle de flux ou de fuite d’informa-
tion : suivant ses observations, le tiers peut déduire des informations potentiellement critiques
sur ’état ou les parametres du systeme. On peut ainsi formaliser une politique de sécurité
en énoncant tout ce qui ne doit pas interférer par 'intermédiaire du systeme. L’attention est
dans un premier temps porté sur les systemes déterministes, modélisés par des machines de
Mealy dont les entrées sont confidentielles et les sorties publiques. Dans le méme temps, la
non-interférence intransitive est définie : cette propriété autorise la déclassification de ’action
confidentielle durant ’exécution, de sorte qu’apres déclassification, ’action en question n’est
plus critique (Rushby, 1992). Des généralisations aux systémes non-déterministes sont déve-
loppées par la suite (Sutherland, 1986). Mantel (2000, 2001) crée alors un moyen de définir
toute propriété de non-interférence et de flux d’information a partir d’une liste de briques

élémentaires : il introduit la notion de Prédicat Basique de Sécurité (BSP).

L’étape suivante de 1’étude des propriétés de flux d’information est leur quantification (Smith,
2009). Le but est de déterminer quelle quantité d’information de l'entrée est détectée par
observation de la sortie, et ce apres une unique exécution. Pour cette premiere approche, on
utilise le formalisme de ’entropie de Shannon (Shannon, 1948). On définit notamment les
notions d’information mutuelle entre deux variables aléatoires — de fagon intuitive, la quantité
d’information partagée entre les deux variables — ou la min-entropie. Ces définitions établies
impliquent ’étude de problemes supplémentaires. Notamment, un systeme non-déterministe
peut étre déterminisé par un adversaire en garantissant un flux d’information borné par une

constante donnée, ce en un temps exponentiel (Cerny et al., 2011).

Dans le sillage des propriétés de flux d’information, on peut distinguer 'opacité. C’est une
propriété particuliere permettant de traduire diverses problématiques liées a la sécurité des
systemes, telles que 'anonymat (Lin, 2011). Elle est imaginée initialement par Mazaré (2004),
dont la motivation est d’étendre la vérification de systémes sécurisés pour des problemes non-
couverts par les propriétés existantes. Ainsi, 'auteur définit une propriété opaque dans un
systeme s’il existe deux messages échangés par le systeme dont uniquement 1'un des deux
vérifie la propriété et tel qu'un observateur extérieur au systeme ne peut les différencier.
Il applique ses définitions a des protocoles cryptographiques. Il introduit la notion de simi-
litude de messages du point de vue de 'environnement, afin de traduire 'incapacité pour

I’observateur extérieur de différencier les messages échangés dans leur intégralité.

Ces notions sont généralisées a ’ensemble des systemes et utilisées dans le cadre des réseaux

10

de Petri (Bryans et al., 2004, 2005). Enfin, cette méme notion est formalisée dans le cadre
des systeémes de transition (Bryans et al., 2008). L’attaquant passif provenant de I’environ-
nement extérieur est alors représenté par une fonction définie sur I’ensemble des exécutions
du systeéme de transition — la notion d’observateur Orwellien est notamment définie. L’article
conclut sur la non-décidabilité de 'opacité sous observation orwellienne. Plus tard, Mullins et
Yeddes (2014) se limitent a une certaine catégorie de fonctions d’observation, les projections
Orwelliennes, et un certain type de secrets, les secrets réguliers, pour lesquelles 'opacité garde
un intérét pratique et devient vérifiable. Il est alors prouvé que 'opacité d’un secret régulier
relativement a un projecteur Orwellien est équivalent a la non-interférence intransitive pour

un systeme fini.

L’opacité se présente comme une inclusion d’ensembles réguliers. Bérard et Mullins (2014)
ont alors I'idée de définir la notion de Propriété Rationnelle de Flux d’Information (RIFP),
dont l'opacité est un exemple. Ce formalisme permet d’étendre les résultats connus pour
cette notion a un nombre accru de nouvelles propriétés de sécurité. Le but sous-jacent est de

proposer une nouvelle classification, dans laquelle les RIFP joueraient un role particulier.

L’aspect quantitatif de 'opacité permet de contrer sa valeur binaire jusqu’alors. Il devient
possible de calculer différentes grandeurs d’opacité d’un secret régulier dans un PTS. On
définit 'opacité libérale, qui est la probabilité que le secret ne soit pas opaque, et I'opacité
restrictive, qui est la probabilité que le secret soit effectivement opaque (cf. chapitre 3;
Sassolas, 2011; Bérard et al., 2015c).

Toutes ces problématiques sont avant tout étudiées a travers des modeles probabilistes tres
précis, ou I'abstraction est limitée, comme dans le cas des PTS. Bérard et al. (2015b) étudient
alors a étendre l'opacité libérale dans le cadre formel décrit dans la section 2.1 et réutilisé

dans la suite du mémoire. Notamment, considérons une IDTMC S et un secret ¢.

La question de l'opacité de ¢ dans un modele est la suivante : quelle est la probabilité pour
un observateur extérieur de reconnaitre avec certitude qu’une exécution du systeme dont il
est témoin est secrete ? Ce probleme est calculable dans un PTS, mais n’est pas réglé dans le
cadre des spécifications IDTMC. Les auteurs définissent donc ’extension de ce probleme en
considérant que 'opacité d’un secret dans une spécification IDTMC est la valeur maximale
de cette opacité calculée pour chacune des implémentations ordonnancées de la spécification.
Autrement dit, ils désirent calculer le pire cas. Les auteurs prouvent que cette probabilité
est mesurable pour un certain type de spécifications : les IDTMC non-modales, c’est-a-dire
celles qui ne posseédent aucun arc modal. Il est alors prouvé que le calcul est réalisable en un
temps doublement exponentiel. Cependant, la question reste ouverte pour le cas général : on

se propose de la traiter dans la suite du mémoire.

11

La seconde question que pose 'article est la suivante : est-il possible de raffiner I’'opacité, c’est-
a-dire améliorer la mesure de 'opacité dans un modele en le raffinant 7 Les auteurs répondent
en partie a cette question, en montrant que le raffinement fort préserve effectivement ’opacité.
L’étude des raffinements faibles et complets reste ouverte, et on se propose de traiter le cas

du raffinement faible dans la suite du mémoire.

12

CHAPITRE 3 PRELIMINAIRES

Dans ce chapitre, nous introduisons les définitions usuelles de modélisation de systemes,
afin de construire les fondations du formalisme choisi par la suite. Nous introduisons tout
d’abord les notions générales de modélisation de systemes probabilistes, puis nous présentons

une propriété de sécurité particuliere, I'opacité.

3.1 Modélisation

L’étape préliminaire a toute vérification formelle d’un systéme sécurisé est sa modélisation.
Cette partie a pour but de définir les modeles usuels qui constituent les bases du cadre de

notre étude.

3.1.1 Langages et automates

A partir d’un alphabet ¥, on peut construire des mots de longueur finie quelconque ou bien
des mots de longueur infinie. On appelle langage un ensemble de mots issus d’un alphabet. On
note ¥* le langage contenant tous les mots de longueur k. On note ¥* le langage contenant
tous les mots de longueur finie — formellement, ¥* = U,ey X% ; le langage contenant tous les

mots de longueur infinie est noté >*. L’union de ces deux langages est noté X = > U X*.

Un premier outil mathématique lié a la théorie des langages est la notion d’automate (Bérard

et al., 2015b; Piterman, 2007).

Définition 1 (Automate). Un automate est un tuple

A = (Q,E,(S, q07Qf)

tel que
— @ est un ensemble fini d’états, dont qy qui est l’état initial ;
— X est un alphabet ;
— 0 QXX — Q est une fonction de transition;

— @y est un sous-ensemble de (), composé des états dits acceptants.

C’est une machine a états finis dont le but est de reconnaitre si un mot appartient ou non a
un langage donné, lié a 'automate. Pour cela, la machine lit le mot caractere par caractere.

Chaque fois qu’elle lit un caractere, elle change d’état en concordance avec sa fonction de

13

transition. Cette procédure s’appelle I’ ezécution du mot par 'automate. Dans le cas d’'un mot
fini, on regarde dans quel état se trouve 'automate a la fin de la lecture : le mot appartient

au langage si, et seulement si, 'automate a la fin de 'exécution est dans un état acceptant.

Cette méthode doit cependant étre modifiée dans le cadre des mots infinis. Pour cela, ’au-
tomate généralement utilisé est 'automate de Biichi. La définition d’un automate de Biichi
est exactement la définition 1, la différence étant dans la sémantique de ce modele. Dans
un automate de Biichi, un mot est reconnu si, et seulement si, durant sa lecture, ’automate
passe infiniment souvent par des états acceptants. Ainsi, les automates de Biichi sont des
extensions directes des automates sur les mots finis. Cependant, alors que dans le cas fini,
les automates non-déterministes se déterminisent sans aucune perte d’information, cela n’est
plus vrai pour les automates de Biichi (Btichi, 1962; Piterman, 2007). Afin de s’affranchir de

cette difficulté, on fait appel a un autre type d’automate sur mot infini.

Définition 2 (Automate de Parité Déterministe (DPA)). Un Automate de Parité Détermi-
niste (DPA) est un tuple
A= (Q72767QO7F)

tel que
— @ est un ensemble fini d’états, dont qy qui est l’état initial ;
— X est un alphabet ;
— 0 QXX — Q est une fonction de transition;

— F est une fonction qui associe a chaque état une couleur parmi un ensemble fini

(1,....k}.

Un mot accepté par I'automate est un mot de X¢ telle que, lors de la lecture, la couleur
minimale des états rencontrés infiniment souvent est paire. Autrement dit, si on note p le
mot considéré, et Inf(p) 'ensemble des états rencontrés infiniment souvent durant la lecture,
il reste & calculer min{F(q)|q € Inf(p)}.

On parle de langage acceptant ou reconnu par un DPA si 'ensemble des mots du langage

constitue I'ensemble des mots reconnus par I'automate. Le langage est alors w-régulier.

Exemple. Sur l'ezemple de la figure 3.1, les états sont notés q|F(q), avec les notations
de la définition précédente. En analysant cet automate, on note que toute lecture d’un mot
contenant un b ou un c envoie l'automate dans [’état so indéfiniment. Ainsi, si p est un
mot qui n’appartient pas au langage L = a*, c’est-a-dire si p contient un b ou un c, alors
Uensemble Inf(p) est réduit a {so}, donc min{F(q)|q € Inf(p)} =3 donc est impair : tout
mot appartenant au complément du langage L n’est pas reconnu par le DPA. Inversement, la

lecture de l'unique mot a* du langage L reste indéfiniment dans l’état s1. Ainsi, min{F(q) | q €

14

Figure 3.1 Exemple de DPA vérifiant le langage w-régulier L = a*, sur 'alphabet 3 = {a, b, ¢}

Inf(a¥)} = 2 donc est pair : a* est reconnu par le DPA. Ces deux affirmations permettent

de conclure que le langage reconnu par le DPA est le langage L = a”.

3.1.2 Les systemes de transitions

Alors que la partie précédente introduit davantage un outil mathématique, le but de cette
partie est de définir les moyens possibles pour modéliser un systéme réel (Baier et Katoen,
2008).

La modélisation d’un systeme passe tout d’abord par ’abstraction de ses composantes inutiles
pour I’étude — par exemple, lors de I’étude d’un protocole de controle d’acces, on suppose
généralement que la cryptographie est parfaite et incassable. Ainsi, on ne s’intéresse qu’aux
aspects fonctionnels intéressants pour ’étude. Un systéme est alors considéré suivant deux
aspects particuliers : ’état de ses différentes propriétés atomiques, et son comportement futur.

Ces deux aspects sont représentés dans un systéme d’états-transitions.

Définition 3 (Systeme de Transitions Etiquetées (LTS)). Un Systéme de Transitions Eti-
quetées (LTS) est un tuple A = (Q,qo, T, %, \) tel que :

— @ est un ensemble dénombrable (fini ou non) d’états, avec qo I’état initial ;

— T C Q x Q est une relation de transition ;

— X est un alphabet ;

— A Q — X est une fonction d’étiquetage des états.

Ce modele est appelé & temps discret. A chaque unité de temps, le systéme réalise une

transition issue de son état courant, ce qui met alors a jour son état. On appelle exécution du

15

modele & partir d'un état ¢ € @ la suite d’états p = qoq1q2 - - . , avec qo = q et Vi, (¢i, giv1) € T
— autrement dit, la transition entre ¢; et ¢;,; existe. La trace de l'exécution p est alors la

suite tr(p) = Mqo) A (q1) A (q2) - - - € L.

Cette représentation s’apparente a un arbre d’exécutions non-déterministe, en ce sens qu’elle
liste toutes les exécutions possibles du systeme, sans considérer si I'une d’elles est plus ou

moins probable.

q1

(20

qo

q2

(0

Figure 3.2 Exemple de LTS

Exemple. L’exemple de la figure 3.2 modélise un systeme possédant deux exécutions infinies
possibles : p1 = qoqy ou p2 = qoqy. Les traces sont respectivement tr(pr) = ab® et tr(ps) =

ac”.

Probabilisation L’aspect probabiliste a pour but d’affiner la modélisation du systéme en
indiquant quelles exécutions sont les plus probables. De plus, ceci ajoute un outil de mesure.
La probabilisation d'un LTS s’effectue en attribuant des probabilités aux scénarios futurs

suivant le passé du systeme.

Formellement, prenons un LTS A dont les états sont indicés par ¢; (i € N). Notons X la
variable aléatoire qui désigne 1'état du systeme a l'instant discret k (k € N). Probabiliser A,
c’est définir les probabilités P (X1 = ¢; | /\gﬁi’g X = qn,), pour tout k£ € N un instant, 7 € N

I'indice d'un état, et p = gy, . .. gn, une exécution.

Généralement, on considere que les systemes probabilistes sont sans-mémoire, ¢’est-a-dire que
la probabilité de rencontrer un certain état a I'instant k+1 ne dépend que de I’état du systeme
a l'instant présent k. On parle également d’hypothese markovienne. Formellement, définir les

probabilités d'un systeme markovien, c’est définir les probabilités P(Xy11 = ¢; | Xi = ¢;),

16

pour tout instant k et tout couple d’états g;, ¢; € @) ; autrement dit, c’est exactement définir

les probabilités des transitions entre les états g; et g;.

Définition 4 (Chaine de Markov (MC)). Une Chaine de Markov (MC) est un tuple A =
(Q? qo, A) tel que !
— @ est un ensemble dénombrable (fini ou non) d’états, avec qo I'état initial ;

— A Q — Dist(Q) est une fonction qui associe a chaque état ¢ € @ une distribution
A(q) sur Q.

Le formalisme des MC mis en relation avec nos réflexions sur les propriétés atomiques que

I'on retrouve dans les LTS permet de définir une extension a ces deux notions.

Définition 5 (Systeme de Transitions Probabilistes (PTS)). Un Systéme de Transitions
Probabilistes (PTS) est un tuple A = (Q, qo, 2, A, L) tel que :
— @ est un ensemble dénombrable (fini ou non) d’états, avec qy létat initial ;
— A : Q — Dist(Q) est une fonction qui associe a chaque état ¢ € Q une distribution
A(q) sur Q;
— X est un alphabet ;
— L : @ — X est une fonction d’étiquetage des états.

Ainsi, avec la notion de PTS, nous possédons le formalisme nécessaire pour modéliser des
systemes probabilistes. On considere qu'un systeéme représenté par un PTS est entierement

spécifié — en oubliant les abstractions initiales.

q1

(O
0.2
qdo

0.8
q2

O]
Figure 3.3 Exemple de PTS

Exemple. L’exemple de la figure 3.3 modélise le méme systéme que ’exemple de la figure

3.2, que l'on a probabilisé. Dans l’état initial, le systéme a désormais 80% de chance d’aller

17

dans Uétat gy ou bien 20% de chance d’aller dans l'état ¢,. On note que cette figure représente

bien un PTS puisque chaque état induit une distribution sur ().

3.1.3 Un modele de spécification

La section précédente introduit les outils nécessaires pour représenter completement un sys-
teme réel probabiliste. Cependant, une telle approche peut mener a une modélisation trop
précise, qui ne laisse pas de place a I'ajustement. Par exemple, on peut vouloir ajuster les
distributions dans certains états afin d’affiner le comportement ou le rapprocher du com-
portement désiré. Pour cela, on introduit des outils permettant une modélisation avec un
niveau d’abstraction supplémentaire. On appelle ces nouveaux modeles des spécifications, car
le but est de spécifier le champ des possibles pour le systeme que 'on veut étudier. Les PTS

auxquels on aboutit apres étude des spécifications sont des implémentations de celles-ci.

Une premiere idée a envisager lorsqu’il s’agit d’élargir le champ des possibles est de proposer
plusieurs choix de distributions pour chaque état. Implémenter un tel objet consiste alors a

donner un poids plus ou moins important a chaque distribution au choix.

Définition 6 (Processus de Décision Markovien (MDP)). Un Processus de Décision Marko-
vien (MDP) est un tuple M = (Q, qo, A, A, X, L) tel que :
— @ est un ensemble dénombrable (fini ou non) d’états, avec qy l'état initial;
— A est un ensemble de choix de distributions sur () — on lappelle aussi ’ensemble des
distributions de base;
— A:Q x A — Dist(Q) est une fonction qui associe a chaque état ¢ € Q et d chaque
choiz pn € A une distribution A(q, p) sur Q ;
— X est un alphabet ;
— L : Q) — X est une fonction d’étiquetage des états.

Un MDP est donc un PTS pour lequel on propose un choix entre plusieurs distributions dans
chaque état. C’est un premier niveau d’abstraction qui permet de s’affranchir des probabilités
fixes des PTS.

Exemple. La figure 3.4 représente un modéle similaire a celui représenté par le PTS de la
figure 3.3. La différence réside dans le fail que l'on a désormais le choir entre deux systémes
distincts, représentés par les deux distributions py et po. Limplémentation consiste a choisir
deuz réels o et B, positifs et tels que leur somme vaut 1, afin de créer la distribution p =
-y + B - ps. On note qu’en choisissant o =1 et B =0, on obtient le PTS présenté figure
3.3.

18

q1

, 1
,Uq,O.Q @\) Ha

M2a0'5

f2,0.5

ol

q2

f1,0.8

Figure 3.4 Exemple de MDP

Le chapitre 4 a pour but d’introduire un nouveau modele de spécification, inspiré en partie

des MDP, a partir duquel nous définirons plus précisément le concept de raffinement.

Avant cela, il est nécessaire d’introduire les notions de sécurité que nous utilisons pour décrire

les systemes dans cette étude.

3.2 Vérification de 'opacité

La formalisation de la section précédente permet la modélisation, entre autres, de systemes
sécurisés — autrement dit, on désire vérifier un certain nombre de propriétés de sécurité a
I’étape de modélisation du systeme. L’idée est ainsi de détecter les potentielles failles de
sécurité avant méme leur implémentation. Dans cette étude, 'accent sécuritaire est porté par

la propriété d’opacité.

Le scénario général que I'on étudie ici est le suivant. Soit un systeme A dont I’ensemble des
propriétés atomiques constitue 'alphabet Y. On considére un langage w-régulier ¢ € 3 que
I'on désire garder secret. On dit quune exécution du systeme satisfait le secret si sa trace
appartient au langage ¢. On définit également une fonction d’observation, O : X — X5
avec Y, la partie observable de l'alphabet Y. On se limite aux projections naturelles de
Y dans X5, généralisées aux langages w-réguliers (Mullins et Yeddes, 2014; Bérard et al.,
2015b), c’est-a-dire les fonctions qui associent le mot vide a chaque élément non-observable

de X, qui laissent inchangé tout élément observable de Ialphabet, et telles que O(e) = ¢ :

Vo€ ¥®° Vae X\ Xy, O(ca) = O(o)
Vo € £°, Vb € Xy, O(ob) = O(o)b.

19

On note [0]p — ou [0] quand l'observateur est sous-entendu — la classe d’observation du mot

o, c’est-a-dire ’ensemble des mots dont 1'observation par O est la méme que celle du mot o :
[olo = 071(O(0)).

On note Obs 'ensemble des classes d’observations de la fonction d’observation.

Notons que si L est un langage w-régulier et si O est un observateur rationnel tel que présenté

ci-dessus, alors le langage O(L) est un langage w-régulier (Bérard et al., 2015c¢).

Le but est de calculer la capacité pour le systeme A de cacher I'exécution du secret a 1’ob-

servateur rationnel extérieur.

3.2.1 Une opacité binaire

La premiere définition d’opacité s’applique dans le contexte des LTS. Formellement, on dit
d’un secret qu’il est opaque si, pour toute exécution du secret, il existe une exécution non-
secrete qui est observée de la méme maniere par l'observateur rationnel extérieur — on dit
que le secret est couvert par une exécution non-secrete. Autrement dit, pour que le secret soit
opaque, il faut et il suffit que chaque classe d’observation contenant une exécution secrete

contienne également au moins une exécution non-secrete. On en déduit la définition suivante.

Définition 7 (Opacité). Soient un LTS A dont le langage des exécutions est L, un secret
w-régulier ¢ C L et un observateur rationnel O. Le secret ¢ est opaque dans A relativement

a O si, et seulement si,
O(p) COLN\).

Notons que 'on peut également définir I'opacité symétrique, en affirmant qu’un secret ¢ est
symétriquement opaque dans un systeme au langage L relativement a un observateur si, et
seulement si, ¢ et L\ ¢ sont opaques dans le systéme relativement a ’observateur. Autrement
dit, il faut et il suffit que chaque classe d’observation possede a la fois des exécutions secretes

et non-secretes.

Cette premiere définition d’opacité induit une classification simple de problémes de sécurité,
puisque l'opacité ici est une grandeur binaire : soit le secret est opaque, soit il ne I'est pas.
Cependant, dire que le secret n’est pas opaque signifie qu’il existe une exécution appartenant
a ’ensemble ¢ telle qu’aucune exécution non-secrete ne posséde la méme observation. Par
conséquent, cela ne signifie pas que le secret est systématiquement trahi. Cela signifie unique-
ment que, si 'exécution en question est observée, alors 'observateur a pleine connaissance

du fait qu’il est en présence d’un secret. La question naturelle que ’'on peut se poser alors

20

est la suivante : quelle est la probabilité que cette exécution soit réalisée par le systeme ?

3.2.2 L’opacité probabiliste
L’opacité probabiliste libérale
Afin de répondre a cette question, il faut pouvoir inclure ’aspect probabiliste au modele.

Pour cela, on adapte la notion d’opacité au contexte des PTS.

On considere I’ensemble des exécutions du systeme pour lesquelles un observateur est certain
d’étre en présence du secret. Cet ensemble est donc I'ensemble des exécutions du secret qui

n’appartiennent a aucune classe d’observation d’une exécution non-secrete : autrement dit,

avec les notations précédentes, on considere 'ensemble V(A, ¢, O) = ¢ N O~ HO(L\ ¢))
(Bérard et al., 2015c¢; Sassolas, 2011).

Définition 8 (Opacité libérale). Soient un PTS A dont le langage des exécutions est L,
un secret w-régulier ¢ C L et un observateur rationnel O. L’opacité libérale de ¢ dans A

relativement a O est la grandeur :

POI(A,¢,0) =P(pn O (O(L\ 9))).

Cette définition probabiliste nuance la définition binaire d’opacité, en ce sens qu’elle permet

de classer différents problemes de sécurité suivant la valeur obtenue.

Proposition 1. Soient un PTS A dont le langage des exécutions est L, un secret w-régulier
© C L et un observateur rationnel O.

— 0< POI(A,p,0) < 1;

— PO|(A,p,0) =1 si, et seulement si, ¢ = L

— PO|(A,p,0) =0 si, et seulement si, ¢ est opaque dans A relativement a O.

Démonstration. Le premier point découle du fait que I'opacité libérale est par définition une

probabilité.

Pour montrer le deuxiéme point, remarquons que si X est un ensemble, P(X) = 1 si, et

seulement si, X = U, avec U 'univers. Par conséquent,

PO|(A,p,0) = 1 & V(A ,p,O) = L
& eNO Y (OL\y) = L
& LCo N LCO YO\)

& L = ¢ (carpCL)

21

ce qui prouve le deuxiéme point.

Pour montrer le troisiéme point, remarquons que si X est un ensemble, P(X) = 0 si, et

seulement si, X = (). Par conséquent,

POI(A, 9, 0) = 0 & V(A p,0) = 0
< Op)NO(L\g) = 0
& O(p) € O(L\y)
ce qui prouve la propriété. O

Cette valeur permet de discriminer les systemes pour lequel les secrets sont non-opaques entre
eux. On peut alors affirmer quels sont les systemes les moins sécurisés, c’est-a-dire ceux pour

lesquels la probabilité de trahir tout le secret est la plus grande.

Notons qu’a l'inverse des propriétés de flux d’information fondées sur la notion d’entropie
de Shannon (Smith, 2009), on ne calcule pas la proportion du secret qui n’est plus protégée,

mais bien la probabilité que tout le secret soit rendu public.

Théoréme 1. Soient un PTS A dont le langage des exécutions est L, un secret w-régulier

@ C L et un observateur rationnel O. Alors la grandeur PO,(A, v, O) est mesurable.

Démonstration. D’apres la proposition 9 appliquée au cas particulier d'un PTS, le langage
L est w-régulier. De méme, ¢ est w-régulier. Enfin, d’apres la remarque sur les observateurs
rationnels, et d’apres les propriétés de fermeture des langages w-réguliers, on en déduit que
le langage dont on veut connaitre la probabilité est w-régulier. Ainsi, le probleme de calcul
d’opacité libérale revient a un probleme de calcul de probabilité d’un langage w-régulier dans

un PTS : on sait que ce probleme est décidable. O

D’autres formes d’opacité

Opacité restrictive A l'instar de l'opacité libérale qui permet de discriminer les systémes
pour lesquels les secrets sont non-opaques, on peut définir une notion duale afin de discriminer

les systemes pour lesquels les secrets sont opaques.

Intuitivement, le fait que le secret soit opaque ne le rend pas totalement immune a toute
fuite. En effet, 'observation donne un certain nombre d’informations a 'attaquant extérieur.
Celui-ci connait la répartition du secret sur les classes : ainsi, s’il observe une classe couverte
en grande majorité par des exécutions secretes, sa probabilité de pouvoir affirmer qu’il est en
présence du secret est plus importante que s’il est en présence d’une classe majoritairement

couverte par des exécutions non-critiques (Bérard et al., 2015¢; Sassolas, 2011).

22

Définition 9 (Opacité restrictive). Soient un PTS A dont le langage des exécutions est L,
un secret w-régulier ¢ C L et un observateur rationnel O. L’opacité restrictive de ¢ dans A

relativement a O est la grandeur définie par :

1 1
_— = Po) ————.
PO (A ¢.0) ~ 2, " BT
On utilise la moyenne harmonique pondérée par les probabilités sur les classes d’observation
afin de donner davantage de poids aux classes qui ont le plus de chance de trahir le secret.
De plus, cette définition vérifie les résultats de la proposition 2, qui sont les résultats naturels

d’une définition d’opacité restrictive.

Proposition 2. Soient un PTS A dont le langage des exécutions est L, un secret w-régulier
@ C L et un observateur rationnel O.
— 0< PO (A, 0, 0)<1;
— PO, (A, ¢,0) =0 si, et seulement si, ¢ n'est pas opaque, c’est-a-dire qu’il existe une
classe d’observation qui est uniquement composée d’exécutions de p ;
— PO (A, ,0) =1 si, et seulement si, ¢ =).

Démonstration. Le premier point se déduit immédiatement du fait que I’opacité restrictive est
par définition une moyenne harmonique de plusieurs probabilités, c¢’est donc une probabilité

également.

Pour montrer le second point, remarquons que ¢ n’est pas opaque si, et seulement si, il
existe une classe d’observation o € Obs composée uniquement d’exécutions de ¢, i.e. telle
que P(L\ ¢]0) = 0. Cela est équivalent au fait que W
moins un des termes de la somme tend vers l'infini. Or, 'inverse de l'opacité tend vers 'infini

tend vers l'infini, car alors au

si, et seulement si, 'opacité restrictive tend vers 0, ce qui termine la preuve.

Montrons le dernier point.

PO,(A,p,0) = 1 & m =1
& Yoe Obs, P(L\ypl|lo) = P(o)
& P(L\yp) =1
& v

]

Un modele alternatif On présente dans la suite de cette section une mesure d’opacité

alternative (Saboori et Hadjicostis, 2014). Dans leurs travaux, les auteurs considerent des

23

systemes finis — dont les langages sont inclus dans ¥*. On propose de transférer leurs notions
dans la sémantique des langages de >“. Pour cela, on définit la restriction suivante, inspirée

des notations de I'article en question.

Définition 10. Soit L un langage de >*.
— L’extension de L a ¥* est le cone noté L, = LYY ;
— Si o est un mot de L, on appelle longueur utile du cone résultant o,, la longueur de
la chaine o ; o est alors appelé partie utile.
— Si A est un PTS dont le langage des exécutions est L, on construit A, le PTS dont

le langage des exécutions est Ly,.

L’objet de cette partie concerne donc un ensemble tres restreint de PTS.

Considérons que l'attaquant n’est capable d’observer 'exécution que durant un temps fini,
qu’il peut choisir aussi long qu’il le désire. Ainsi, il n’est capable d’observer que les exécutions
dont la longueur utile est fixée a un entier k, correspondant au temps d’observation. Pour
vérifier qu'un systeme est bien sécurisé contre ce type d’observation, il est alors nécessaire
de vérifier que c’est le cas pour chaque longueur potentiellement choisie par 'attaquant. En
substance, on introduit ici la notion de quasi-opacité : on autorise le fait que le secret ne soit
pas opaque, mais on veut s’assurer que 'opacité libérale ne dépasse jamais un seuil critique,

noté 0.

Définition 11 (Quasi-opacité uniforme). Soit L un langage de ¥*. Soient un PTS A dont

le langage des exécutions est L, un secret régulier ¢ C L et un observateur rationnel O.

Notons Lo = o \ O (O(L\ ¢)), le langage de ¥* composé des exécutions de A qui brisent
lopacité de .

Alors, pour un 6 > 0, le cone du secret ¢, est uniformément quasi-opaque, ou #-opaque, dans

A, relativement a O si, et seulement si,

vk €N, P((Lc N 2F),) < 0.

Il est important de noter que le langage L¢ est construit a partir de la définition de 'opacité
dans la sémantique des langages réguliers sur 3* (Mullins et Yeddes, 2014). Formellement,
les notions sont analogues, et Lo est exactement le langage V(A, p, O) dont on calcule la
probabilité dans le cadre de l'opacité libérale. La notion de quasi-opacité uniforme revient
donc a dire que l'opacité libérale du secret est uniformément répartie suivant la longueur

utile des mots du langage (L¢).

24

En résumé Ce chapitre a permis d’introduire les notions préliminaires nécessaires a la
construction des théorémes et contributions du chapitre suivant. Nous avons introduit des
notions liées principalement au concept d’implémentation : les systemes décrits par les PTS
sont des systemes tres précis, notamment au niveau des probabilités de transitions. Le but
du chapitre suivant est de s’affranchir de cette précision, afin de pouvoir utiliser le concept
de raffinement de systemes. Il est alors nécessaire d’analyser comment se comportent les

propriétés de sécurité énoncées dans le cadre plus général des spécifications de systemes.

25

CHAPITRE 4 THEORIE DES SPECIFICATIONS

Ce chapitre constitue la présentation du cadre théorique de ’étude. Nous commencgons par
définir le modele de spécification utilisé, PIDTMC, dans la section 4.1. A partir de ce modele
de spécification, nous définissons deux types de raffinements — faible et fort — dans la section
4.2, que I'on compare. Cela permet d’aboutir, dans la section 4.3, a la notion d’implémentation
d’une spécification, qui est un PTS qui raffine FPIDTMC, puis a la notion de raffinement
complet, nouveau raffinement plus faible encore que le raffinement faible. Quelques propriétés
sur les langages dans les spécifications sont énoncées dans la section 4.4, afin de compléter les
définitions nécessaires au cadre théorique. La section 4.5 définit 'ordonnancement, qui est un
moyen de construire une implémentation a partir d’une spécification. Cette méthode permet
de construire les implémentations qu’un adversaire est capable de créer, ce qui justifie I’étude
de ces implémentations en particulier. La section 4.6 conclut ce chapitre en introduisant une
extension de 'opacité aux spécifications IDTMC. La mesure est prise dans le pire cas sur
I’ensemble des implémentations ordonnancées, car ce sont celles qui sont implémentées par

un adversaire malveillant.

4.1 IDTMC

La premiere brique du cadre théorique formé ici consiste en le choix d’'un modele de spé-
cification. Un tel modele doit étre probabiliste et non-déterministe, afin de jouer le role de
spécification en représentant ’ensemble des implémentations possibles du systeme étudié.
Pour cela, on décide de s’inspirer du modele des PTS, déja utilisé pour modéliser habituelle-
ment des systemes compléetement déterminés. On utilise donc la notion d’'IDTMC, extension
du PTS.

Dans la suite, on note Z ’ensemble des intervalles de [0, 1].

Définition 12 (Chaine de Markov discrete a Intervalles (IDTMC)). Une Chaine de Markov
discréte a Intervalles (IDTMC) est un tuple S = (S, 59, T, %, \) tel que :

— S est un ensemble dénombrable (fini ou non) d’états, avec sy l’état initial ;

— T:S5 — (S — I) associe a chaque état s € S une fonction T(s) de S dans Z, telle

que

3f S =100,1] : Y f(s)=1etVs €S, f(s) € T(s)(s);

s'esS
— X est un alphabet ;
— A : S = X est une fonction d’étiquetage des états.

26

Ici, le choix de la distribution dans chaque état s s’effectue grace a la fonction 7'(s). Puisque
'on consideére des intervalles de [0, 1], 'ensemble des choix est indénombrable. La condition
sur la fonction 7'(s) permet d’assurer que I'on peut définir une distribution a partir de s.
Une telle distribution est une fonction f : .S — [0, 1] telle que Vs' € S, f(s') € T(s)(s) et
> wes f(s') = 1. Par la suite, on notera f € T(s) une telle distribution.

Il est & noter qu’a l'origine, les IDTMC sont des extensions des MC (Jonsson et Larsen,

1991). Notre représentation ajoute la fonction d’étiquetage, afin de se rapprocher des PTS.

On peut distinguer les IDTMC suivant si elles sont modales ou non. Une IDTMC modale
est une spécification qui posseéde au moins une transition modale, ¢’est-a-dire une transition
reliant deux états s et s’ telle qu'il existe une distribution depuis 1'état s qui annule sa

probabilité.

La sémantique d’exécution d’une IDTMC est héritée de celle d'un LTS, décrite dans le cha-

pitre 3.

Exemple. L’exemple de la figure 4.1 reprend a nouveau ['exemple de la figure 3.3, en pro-
posant une spécification plus large concernant les probabilités des transitions. On note que
cette IDTMC' est modale car la transition entre les états qo et q1 peut étre annulée. Dans

I'tmplémentation résultante, I’état q; n’est plus accessible.

q1

(Do

[0,0.5]

0.2,1]

(e Dn

q2

Figure 4.1 Exemple d’IDTMC

27

4.2 Raffinement fort et faible

On peut définir le raffinement dans le cadre formel des spécifications IDTMC, de trois ma-
niéres différentes : on parle de raffinement fort, faible, et complet. Nous définissons dans cette

section les deux premieres notions, le raffinement complet étant défini dans la section 4.3.

Définition 13 (Raffinement fort). Soient deux spécifications Sy = (S, s10, 11,25, A1) et So =
(52752,0>T2> 3, >\2)-

S raffine fortement Sy (on note Sy <p Sa) si, et seulement si, il existe une relation R C
S1 x Sy telle que
— 510RS20;

— 81 51R sy, alors Ai(s1) = Aa(s2) et 36 : S1 — Dist(S2) :V f € Ti(s1),

734€ Sa, (Sges 16 -060()) € Tlon))

et si 0(s))(sh) > 0, siRsh.
Définition 14 (Raffinement faible). Soient deux spécifications Sy = (S1,s10,11,2, A1) et
Sy = (52, 82,0,T27 2,)\2)-

S; raffine faiblement Sy (on note S; <y Ss) si, et seulement si, il existe une relation R C
S1 x Sy tel que :
— 51,0R$2,0 y

— 81 51RSa, alors Ai(s1) = Ao(s2) etV f € Ti(s1), 30 : S1 — Dist(Ss) :

734 € S S S50) € Bl (s

et si 0(sh)(sh) > 0, s1Rsh.
Ces deux définitions de raffinement sont tres proches 'une de 'autre. Formellement, la dif-
férence réside dans la nature de la fonction 0 de correspondance des distributions. Dans le
cadre du raffinement fort, celle-ci doit étre uniforme : une seule fonction doit suffire pour assu-

rer la correspondance des intervalles de probabilité. En revanche, § n’est pas nécessairement

uniforme dans le cadre du raffinement faible et peut dépendre du choix des distributions.

Cette remarque prouve le résultat suivant.
Proposition 3. Si S; raffine fortement Sy, alors S raffine faiblement Ss.

Remarque. En revanche, la réciproque est fausse : pour le prouver, étudions le contre-

exemple tiré de Delahaye et al. (2011) et représenté sur la figure 4.2. 1l y a bien raffinement

28

faible de Sy par Sy. En effet, soit f € Ti(q). Notons x = f(s). Posons alors § : S1 — Dist(Ss)
telle que 6(s)(s1) =p-x et 0(s)(s2) = (1 —p) -z, avec

p=0 si x € [0.2,0.4]
p=223 size0.4,0.6]
p=0.6 sinon.

On obtient donc une fonction § non-uniforme suivant la distribution choisie, aucune fonction
uniforme ne fonctionnant : cela démontre que le raffinement fort est impossible, au contraire
du raffinement faible.

[0, 1] 0.2, 1]

) ()

(a) S

Figure 4.2 S raffine faiblement mais non fortement Sy

4.3 Implémentation et raffinement complet

Comme énoncé précédemment, les PTS sont des implémentations de spécifications IDTMC.
Pour définir cette notion de facon plus formelle, remarquons qu'un PTS n’est rien de moins
quune IDTMC pour laquelle les intervalles de probabilité sont réduits a des singletons.
Autrement dit, pour chaque paire d’états (g, ¢') du PTS, on transforme la probabilité A(q)(¢’)
en son singleton correspondant 7'(q)(¢') = {A(q)(¢')}. De cette maniére, on peut étendre

directement la notion de raflinement au formalisme des PTS.

Définition 15 (Implémentation). Soient A un PTS et S une spécification IDTMC. On dit

que A implémente S si, et seulement si, A raffine faiblement (fortement) S.

Si on note P 'ensemble des PTS, et imp(S) l'ensemble des implémentations d’une IDTMC
S,
imp(S) ={AeP : A=; S} ou =€ {5, 2p}-

La relation d’implémentation entre un PTS et sa spécification IDTMC est donc une simple

relation de raflinement.

29

En parallele de cette définition formelle d’implémentation, on peut remarquer que le raffi-
nement est une relation transitive sur ’ensemble des spécifications. Par conséquent, si une
IDTMC &; raffine (fortement ou faiblement) une IDTMC Ss, cela implique que tout élément
de imp(S;) raffine S,. Ainsi, tout élément de imp(S;) est un élément de imp(Sy). On déduit

la proposition suivante.

Proposition 4. Soient deuxr IDTMC S; et Sy telles que 81 raffine faiblement ou fortement
Sy. Alors imp(S1) C imp(Ss).

Remarque. La réciproque est cependant fausse : pour le prouver, citons ce contre-exemple
tiré de Delahaye et al. (2011) et représenté figure 4.3. En effet, imp(S1) C imp(Sy) mais il
n’y a pas de raffinement faible car l’état r ne raffine ni ry ni ro. Par 'absurde, supposons qu’il
existe une relation de raffinement faible R telle que, par exemple, rRry. Posons f € Ti(r)
telle que f(s) = 1. Soit § : S; — Dist(Sy) vérifiant la définition du raffinement faible.
Puisque s a pour étiquette ¢, seuls s1 et sy peuvent étre raffinés par s. Donc seuls §(s)(s1)
et 6(s)(sq9) sont éventuellement non-nuls. Ainsi, par exemple, f(s)-0(s)(s1) € Ta(r1)(s1). Or
Ty(r1)(s1) = 10,0.5] et f(s) =1 : il y a contradiction.

— q — a1
1 0,1] 0,1]
0,1 0,1] 0,05 [0,0.5] "0
OO © @ © @
s /
(a) S1 (b) S

Figure 4.3 imp(S1) C imp(S;) mais Sy ne raffine pas faiblement S,

Ce résultat permet de définir un raffinement plus complet, lui-méme plus faible que les deux

notions de raffinement précédemment introduites.

Définition 16 (Raffinement complet). Soient deuz IDTMC S; et Ss.

S; raffine completement Sy (on note S <. Ss) si, et seulement si, imp(Sy) C imp(Ss).

Finalement, on a la propriété suivante, qui résume les propositions 3 et 4.

30

Proposition 5. Soient deux spécifications IDTMC S, et S,.
Si 81 raffine fortement Sy, alors elle la raffine faiblement.

St Sy raffine faiblement Ss, alors elle la raffine complétement.

Notons que le raffinement d’'une IDTMC par un PTS est un cas particulier, résumé par la

proposition suivante.

Proposition 6 (Raffinement par un PTS). Soient A un PTS et S une IDTMC quelconque.

Les énoncés suitvants sont équivalents.
1. A raffine fortement S ;
2. A raffine faiblement S ;
3. A raffine compléetement S ;

4. A implémente S.

Démonstration. On sait déja que (1) implique (2) et que (2) implique (3) pour tout couple
d’IDTMC d’apres la proposition 5 : puisque tous les PTS sont des IDTMC particulieres, la

proposition tient toujours.
De plus, on sait par définition de 'implémentation que (1) est équivalent a (4).

Montrons que (2) implique (1). Si A = (Q, qo, X, A, L) raffine faiblement S = (S, so, T, 2,),

alors, avec les notations habituelles :

Vfie{Alq)},36:Q — Dist(S) : Vs €S, (> f(d) -5(q/)(s/)> e T(s)(s).

qeq

Or, {A(q)} est déja réduit a un singleton, donc la proposition se réduit a :

35:Q — Dist(S) : Vs €S, (> Ag)(d) - 6(q’)(s’)> eT(s)(s).
7€qQ
Cet énoncé est exactement la traduction du raffinement fort d’'une IDTMC par un PTS,
obtenue en réalisant le méme raisonnement : on en déduit que A raffine fortement S, ce qui

prouve 'implication.

I1 reste a montrer que (3) implique (1) ou (2). Supposons donc que A raffine complétement
S, clest-a-dire que imp(A) C S. Par définition, imp(A) décrit 'ensemble des PTS qui raf-
finent A. Notamment, A lui-méme est un PTS qui raffine A. Donc, A € imp(A), et par
conséquent, A € imp(S). Donc par définition, A raffine faiblement ou fortement S, ce qui

prouve 'implication. O

31

Cette proposition permet donc d’éluder le type de raffinement considéré lorsque c’est un
PTS qui raffine un IDTMC : dans un tel cas, on notera alors A < S et on dira de maniere

équivalent A raffine ou implémente S.

De plus, d’apres Baier et al. (2005), on a la proposition suivante.

Proposition 7. Soient A; et Ay deux PTS.

AleQ@AQﬁAl.

4.4 Langages dans les IDTMC

Ces définitions énoncées, on peut donner quelques résultats sur les langages dans les spécifi-

cations.

Le formalisme des IDTMC modales apporte une complexité dans la détermination d’un
unique langage, qui serait commun a l’ensemble des implémentations de 'IDTMC. Pour
illustrer ceci, implémentons par exemple de deux manieres 'IDTMC de la figure 4.1, et
représentons les PTS obtenus sur la figure 4.4. On note que le langage de la premiere implé-
mentation est L; = a(b*+¢¥) alors que le langage de la seconde implémentation est Ly = ac®.

La notion de langage d’IDTMC pose donc probleme.

do
—
1
42
O]
(a) Premiére implémentation (b) Seconde implémentation

Figure 4.4 Deux implémentations de I'exemple de la figure 4.1

Cependant, on peut affirmer la proposition suivante.

Proposition 8. Soient S, et Sy deux IDTMC non-modaux telles que S; = So.

32

Alors, en notant Ly (respectivement Ly) le langage de Sy (respectivement Ss),

Ly C L,.

Afin de prouver cette proposition, définissons la notion suivante.

Définition 17 (Exécutions similaires). Soient S; et Sy deur IDTMC telles que Sy raffine

faiblement Sy. Soit py (respectivement py) une exécution finie de Sy (respectivement S).

Les exécutions py et ps sont similaires si, et seulement si,
— leurs longueurs sont égales;
— Si p1 = $1S2...Sk €t po = P1Pa... Dk, alors tous les couples d’états (s;,pi),i € [1,k]

sont en relation d’aprés le raffinement.

Démonstration. Soient deux spécifications S; = (51, 501, 11, 2, A1) et Sa = (52, S0.2, T2, X, A2)
telles que &y raffine faiblement Ss.

La preuve est réalisée par induction sur la propriété plus forte suivante (Bérard et al., 2015b) :
pour chaque exécution finie de Sy, il existe une exécution similaire de S;. On suppose par
induction que I’énoncé est vrai pour tout mot de longueur n, et on montre qu’il reste vrai
pour un mot de longueur n+ 1. Soit w de longueur n+ 1, dans le langage des mots finis de S;.
On note w = wpa avec a € X. Une exécution qui produit le mot w est de la forme p = pysy,
avec \i(s1) = a. L’exécution pgy est une exécution de S; de longueur n, donc par hypothese
d’induction, il existe une exécution similaire pf, de Sy. Par définition du raffinement, il existe
une fonction § : S — Dist(Ss) telle que, pour so € Sa, si §(s1)(s2) > 0, alors Aj(s1) = Aa(s).
Or 0(sy) induit une distribution sur I'ensemble des états de S, donc il existe au moins un
Sy € Sy tel que d(s1)(s2) > 0. Ainsi, p et p’ = ps2 sont similaires, ce qui termine la preuve

par induction.

Toute exécution finie de §; possede donc une exécution similaire dans Sy, donc par définition
de la similitude d’exécutions, on en déduit que tout mot fini du langage de &; est un mot
fini du langage de S;. Or un mot infini est la limite de la suite de ses préfixes finis, donc par
passage a la limite, tout mot infini du langage de §; est un mot infini du langage de Ss, ce

qui termine la preuve. 0

Pour le cas particulier des PTS, si on considere deux PTS A; et Aj tels que A; < A, alors
d’apres la proposition 7, As < A;, et ainsi Ly = Ly en appliquant la proposition 8.

De plus, puisqu’'une implémentation d’'un IDTMC S est un PTS A tel que A < S, cela signifie
que L4 C Ls. On peut donc poser la définition suivante, étendue aux IDTMC modales.

33

Définition 18. Le langage L d’une IDTMC S est :

L= | La
Acimp(S)

Enfin, on établit la régularité du langage d’une spécification.

Proposition 9. Le langage d'une IDTMC' est w-régulier.

Démonstration. Le langage d’une IDTMC a nombre fini d’états ne dépend pas des probabili-
tés de transitions, on peut donc la transformer immédiatement en LTS & nombre fini d’états.
Un LTS a nombre fini d’états A = (Q, qo, T, 2, \) peut étre transformé en automate de Biichi
non-déterministe : il suffit de poser la fonction de transition 0 :) x ¥ —) qui, a tout état
q € Q, associe les états (g, A\(q)) = T'(q). Cela revient a transférer les étiquettes des états sur
les transitions issues de ces états. De plus, tout état accessible du LTS devient un état accep-
tant de 'automate. Cette transformation induit donc que le langage reconnu par I'automate
est exactement le langage du LTS. Ainsi, puisque tout langage reconnu par un automate est
un langage w-régulier, le langage de tout LTS a nombre fini d’états est w-régulier — de méme
pour le langage de 'IDTMC initiale. O

4.5 Ordonnancement

A Pinstar d’'un MDP, une IDTMC est un modéle de spécification non-déterministe, qui abs-
trait de nombreuses implémentations, et qui possede plusieurs composantes probabilistes.
Implémenter un tel systeme consiste a faire un choix parmi toutes les distributions exis-
tantes, afin d’aboutir a un unique systéme probabiliste, un PTS. Recourir a un ordonnanceur
est un des moyens de faire ces choix de distributions, de fagon successive en exécutant la

spécification.

Dans une optique sécuritaire, ’'ordonnanceur a une signification supplémentaire : on l'inter-
prete comme un adversaire du systeme, dont le but est d’implémenter la spécification de
n a briser ccurité. Ainsi, le meilleur adversair ui produisant I'implémentation
facon a briser la sécurité. Ainsi, le meilleur adversaire est cel oduisant 'implémentatio
qui possede le plus de chance d’étre nuisible. L’étude des ordonnanceurs est donc naturelle
dans le cadre du présent mémoire, et c’est la raison pour laquelle on utilisera par la suite les

termes adversaire et ordonnanceur en tant que synonymes.

Définition 19 (Ordonnanceur). Un ordonnanceur pour une IDTMC § = (S, s0,T,%,\)
est une application A : FExec(S) — Dist(S) telle que pour tout préfive fini d’exécution

34

p € FExec(S) se terminant dans un état s :
Vs' € S, A(p)(s") € T(s)(s).

Exemple. Considérons 'IDTMC représentée sur la figure 4.5a. Celle-ci est exactement la
spécification de l’exemple de motivation de la figure 1.1, a laquelle on a remplacé les états par
un alphabet plus générique, pour des soucis d’écriture. Pour rappel, le modéle représente un
protocole d’échange sécurisé de message ; si le systeme est dans [’état q, il est en attente d’un
message a envoyer ; s’il est dans l’état qo, il transmet le message en clair, ce qui aboutit a une
faille de sécurité ; enfin, s’il est dans [’état q3, il transmet le message chiffré : c’est son com-
portement voulu. La spécification laisse indéterminée la distribution entre un comportement

normal et un comportement défaillant pour chaque boucle d’exécution.

Considérons alors par exemple [’ordonnanceur suivant, dont le role est de choisir les distri-
butions de probabilité a chaque tour de boucle.

— A la premiére utilisation du systéme, l'ordonnanceur choisit une distribution équipro-
bable.

— Deuz exécutions peuvent alors se dérouler. Si le systéme rencontre une faille (donc
si la trace commence par q1q2q1), 'ordonnanceur choisit la distribution qui annule la
probabilité de transmettre le message de maniére chiffrée et rend la faille inévitable ;
dans le cas contraire (donc si la trace commence par qiqsqi), l'ordonnanceur choisit
une distribution 0.8/0.2, privilégiant d nouveau le comportement défaillant pour le
second tour de boucle.

— Enfin, aprés le deuxieme tour de boucle, I’ordonnanceur oublie les traces précédentes
et considere que le systéme est de retour a son état initial.

Un tel ordonnanceur implémente la spécification de maniere a obtenir le PTS représenté sur

la figure 4.50.

Notons que la définition est ici celle d'un ordonnanceur pour une IDTMC. On peut définir

de fagon tres similaire un ordonnanceur pour un MDP.

L’ensemble des ordonnanceurs d’une spécification S est noté Sched(S). L’ordonnancement

d’une telle spécification par un ordonnanceur A induit la construction du PTS
S(A) = (Qa qo, Ea A7 L)

tel que :
— @ C FEzec(S) est 'ensemble des états, tel que chaque état est une exécution finie
des états de §;

35

[0, 1] ©
q1
R 1
1
[O’ 1] q3

(a) Spécification & ordonnan-
cer

4142 419201 41929192

C]1Q3%12 4919349193

(b) Implémentation ordonnancée

Figure 4.5 Exemple d’ordonnancement

— qp est I'exécution ne contenant que 1’état initial sq ;

— VpeQ, Vs €S, Alp)(ps') = Alp)(s') ;
— Vp € Q, L(p) = A(s) si s est le dernier état de S visité par 'exécution p.

Par construction, S(A) € imp(S). De plus, on note S_imp(S) = {S(A)| A € Sched(S)}

I’ensemble des implémentations ordonnancées. La remarque précédente prouve alors que
S_imp(S) C imp(S).

Remarque. Cependant, [’égalité n’est pas assurée.

En effet, considérons l'exemple de la figure 4.6. On affirme que le PTS représenté sur la

36

figure 4.6b est une implémentation de UIDTMC S mais n’a pas été ordonnancé.

On montre que c’est une implémentation en posant R la relation de (Q x S telle que R =
{(QOa SO)? (Q17 Sl)a (Q17 82)7 (QQ, 31)> (q27 sZ)a (QS7 Sl)v (q3a 32)}'
Puisque qyRsy, posons § : Q — Dist(S) tel que :

6(q0)(s0) = 1;

q1)(s1) =05 et 0(qr)(s2) = 0.5;
0(q2)(s1) = 0.5 et 0(q2)(s2) = 0.5;
0(q3)(s1) = 0.5 et d(gs)(s2) =0

Alors, pour sy,

1 1 1
Z A(qO)(q/) . 5(q/)(81) = § x 0.5 + g x 0.5 + g x0.5=0.5¢€ T(So)(Sl).
a'eQ

On obtient le méme résultat pour so, et pour so, le résultat est trivial. Dans tous les cas, on

retrouve donc la condition de raffinement d’une spécification par un PTS.

Donc, le PTS A est bien une implémentation de S.

{0}

(s Do

(a) Exemple d'IDTMC S (b) PTS non-ordonnancé A de S

Figure 4.6 Exemple d’implémentation non-ordonnancée d’'une IDTMC

Cependant, ce n’est pas un ordonnancement.

Par labsurde, supposons qu’il existe A : FExec(S) — Dist(S) tel que S(A) = A, c’est-a-dire
que Vp € Q, Vs € S, A(p)(s') = A(p)(ps’). Alors, plus particulicrement, A(so)(s1) doit étre

37

égal a A(qo)(q1), A(qo)(g2) ou A(qo)(gs). Donc nécessairement, A(so)(s1) = %; mais dans ce
cas, A(so)(s1) € T'(so)(s1), ce qui est absurde.

On a montré de cette maniére que [’égalité entre S__imp(S) et imp(S) n'est pas assurée en

regle générale.

Un ordonnanceur général est un objet dont la mémoire est infinie : en effet, un ordonnanceur
résout l'indéterminisme étant donné le préfixe fini qu’il lit, parmi un ensemble infini de
préfixes finis. Dans un cadre plus pratique, tout systeme réel possede une mémoire finie : on

peut donc définir un sous-ensemble d’ordonnanceurs.

Définition 20 (Ordonnanceur a mémoire finie). Notons [n] = {1,...,n}, avec n un en-
tier. Un ordonnanceur a mémoire n pour une IDTMC S = (S, so,T,\) est un tuple A =
([n],d0,0,7) tel que

— [n] est un ensemble fini de modes ;

— 19 est le mode initial ;

— 0 :[n] x S — [n] est une fonction de transition de modes;

— v [n] x S — Dist(S) est une fonction de choiz vérifiant
V(i,s) € [n] x S, Vs" €S, v(i,s)(s") € T(s)(s).

Concretement, ’ensemble des modes représente ’ensemble des états de la mémoire de 1'or-
donnanceur ; celle-ci est modifiée par la fonction de transition de modes d. En parallele, la

fonction v est appelée et choisit la distribution parmi toutes celles qui sont disponibles.

L’ensemble des ordonnanceurs a mémoire n d’une spécification S est noté Sched,(S). On
note également S__imp, (S) = {S(A)| A € Sched,(S)} I'ensemble des implémentations or-

donnancées par un ordonnanceur a mémoire n.

Un cas particulier d’ordonnanceur a mémoire finie est celui de I’ordonnanceur sans-mémoire
— élément de Sched, (S). Le PTS obtenu alors est exactement de la méme forme que I'IDTMC
de départ — hormis les éventuelles transitions modales, dont I’ordonnanceur peut annuler les

probabilités.

4.6 Extension de l'opacité libérale aux IDTMC

Passons a présent a la formalisation de la mesure d’opacité dans le cadre des modeles de
spécification. Comme expliqué dans la section 3.1, une spécification IDTMC § peut se ca-

ractériser par ’ensemble de ses implémentations, noté imp(S), ou bien par I'ensemble de ses

38

implémentations ordonnancées, S__imp(S). Or, on sait calculer, d’apres le chapitre 3, les dif-
férentes valeurs d’opacité pour des implémentations. Ainsi, intuitivement, il s’agit de calculer
ces valeurs pour toutes les implémentations de la spécification, afin d’obtenir un encadrement
des valeurs d’opacité que I'on peut obtenir en implémentant S. La mesure de 'opacité pour
la spécification est alors le pire des cas sur I’ensemble de ses implémentations. Dans le cas
de l'opacité libérale, d’apres la propriété 1, plus la valeur de 'opacité libérale d'une implé-
mentation est grande, plus cette implémentation a de chance de divulguer le secret. Ainsi,
I'implémentation la moins sécurisée d’une spécification est celle qui possede 1'opacité libérale

la plus élevée.

Définition 21 (Opacité libérale d’une spécification). Soient une spécification IDTMC' S, un
secret w-réqulier ¢ et un observateur rationnel O. L’opacité libérale de ¢ dans S relativement

a O est la grandeur :

PO(S,9,0)= sup PO|(A,p,O).
Acimp(S)

Si on restreint le calcul a l’ensemble des implémentations ordonnancées, on définit :

S_PO|(S,0,0)= sup PO(A,p,O)= sup POI(S(A),p,O).

AeS_imp(S) AeSched(S)

Avec ce type de propriété, la sécurité est brisée lorsque le secret n’est pas opaque dans
le systéme, c’est-a-dire lorsque l'observateur extérieur est capable de distinguer entre les
exécutions secretes et non-secretes. L’adversaire a pour but de faciliter ce bris de sécurité, dans
le but de divulguer toute I'information a I’observateur. En somme, dans cette étude, la sécurité
est brisée des lors qu’il y a un canal de communication entre 1’adversaire et 1’observateur
passif. Ceci justifie le fait que I'on s’intéresse uniquement a 1’étude des implémentations

ordonnancées dans la suite du mémoire.

Ce chapitre a permis de poser les fondations du cadre théorique de 1’étude. Apres avoir
défini le modele de spécification de 'IDTMC, des moyens de raffiner ces spécifications, de
les implémenter et enfin de les ordonnancer, nous avons étendu la notion d’opacité libérale
déja définie sur les PTS. A partir de ces définitions, il est possible de modéliser des systémes

sécurisés opaques ou non-opaques.

Le prochain chapitre s’applique a étudier plus précisément I'opacité libérale dans les spécifi-
cations. Notamment, on prouve que la mesure de 'opacité libérale est décidable dans le cas
de spécifications non-modales ; on prouve également qu’elle peut étre approchée en un temps
fini dans le cas général ; enfin, on prouve que 'opacité est préservée quand la spécification

est raffinée.

39

CHAPITRE 5 VERIFICATION DE L’OPACITE

Ce chapitre a pour but de prouver les principaux résultats du mémoire, en étudiant le com-
portement de 'opacité libérale dans les spécifications. Les deux principaux objectifs de ce
chapitre sont de prouver que la mesure de l'opacité libérale dans une spécification IDTMC
est calculable en un temps fini d’'une part, et que l'opacité libérale est préservée lors du

raffinement de spécification d’autre part.

Le premier résultat pose un probléme car I’on remarque que le calcul est plus difficile dans
le cas des IDTMC modales, diies aux modifications du langage causées par la modalité des
transitions. Ainsi, on se penche avant tout sur le cas des spécifications non-modales dans
la section 5.2, puis on propose un algorithme permettant d’approcher le calcul dans le cas
général dans la section 5.3. La section 5.1 présente les notions préliminaires a la construction

des algorithmes de calcul.

Le second résultat est prouvé dans la section 5.4 : notamment, on prouve que l'opacité
est préservée par passage au raffinement faible. Aucun résultat n’est précisé dans le cas du

raffinement complet.

Enfin, la section 5.5 généralise les notions de quasi-opacité uniforme et d’opacité restrictive
aux spécifications IDTMC. De plus, on constate que la quasi-opacité uniforme se comporte de
maniere tres similaire a 'opacité libérale, puisqu’elles sont toutes deux issues de probabilités

d’ensembles w-réguliers.

5.1 Notions préliminaires

Cette section introduit les notions nécessaires a l'exécution de l'algorithme de calcul de
I'opacité libérale dans une spécification, particulierement dans le cas non-modal, détaillé
dans la section 5.2. Notamment, on définit le processus de synchronisation entre un DPA et
une IDTMC, ainsi que le processus de construction d'un MDP a partir d’'une IDTMC. Cette
seconde procédure demande au préalable l'introduction de la notion de Solution Basique

Réalisable (BFS), dans la section 5.1.2.

5.1.1 Synchronisation entre un DPA et une IDTMC

L’une des étapes principales de I’algorithme de calcul consiste en la synchronisation d’un
DPA, représentant un langage régulier, avec 'IDTMC étudiée. On construit ainsi une nouvelle

IDTMC, contenant I'information du langage régulier a vérifier.

40

Cette procédure est définie de la fagon suivante.

Définition 22. Soient un DPA A = (Q,X%,6,q, F) et une IDTMC S = (S,5s0,T,%,\). La
synchronisation entre A et S est 'IDTMC colorée S@ A = (S X Q, (S0, q),T", 2, N, F') telle
que, pour tout état (s,q) € S x Q,

v es () (45609) = T

— N((s,9) = M) ;
— F'((s,9)) = F(q).

Cette définition se traduit de la facon suivante : si le DPA est dans un état g et 'IDTMC
dans un état s simultanément, alors automate lit I'étiquette a = A(s) : d’apres sa fonction
de transition, son prochain état est nécessairement (g, o). L’IDTMC, quant a elle, choisit la

distribution comme a son habitude.

I1 est nécessaire de conserver dans 'IDTMC finale les couleurs appliquées aux différents états
afin de détecter les exécutions qui appartiennent au langage reconnu par le DPA : celles-ci
vérifient la condition d’acceptation des automates de parité (cf. définition 2). Illustrons ceci

sur un exemple.

Exemple. Pour illustrer ce processus, considérons le DPA représenté sur la figure 3.1 ainsi
que U'IDTMC représentée sur la figure 4.1, et réalisons la synchronisation entre ces deux

modeles. Le résultat est représenté sur la figure 5.1.

817(11 82,611

81 QQ 327 QQ

Figure 5.1 Exemple de synchronisation entre un DPA et une IDTMC

41

5.1.2 Solution Basique Réalisable (BFS)

Cette section permet d’introduire la notion de Solution Basique Réalisable (BFS) que 1'on
utilise par la suite. C’est une notion mathématique, issue du domaine de 'optimisation li-
néaire. Elle s’applique donc naturellement a notre cadre théorique, doté de modeles linéaires

et de grandeurs a optimiser.

Définition 23 (Solution Basique Réalisable (BFS)). Soit n un entier naturel, soient (a;)icp n]

et (bi)ie[lm] dans R"™, et soit le probleme linéaire contraint P suivant.

Z;L:1 x; =1
Vi e [1,n], x; € [a;b].

Le vecteur o = (a1 € [1,n]) est une Solution Basique Réalisable (BFS) de ce probléme si,

et seulement si, il existe au plus un indice k € [1,n] tel que oy # ay et ay # by.

L’ensemble des BFS constitue une base de [’ensemble vectoriel des solutions, de sorte que

toute solution générale du probléme s’exprime comme une combinaison linéaire des BFS.

L’intérét de cette notion réside dans le fait qu’il suffit de se restreindre a I’étude de la frontiere

du polyedre. Plus précisément, il y a un nombre fini de BF'S pour un probléeme donné.

Proposition 10. Il y a au maximum n - 2"~ points de l’espace qui peuvent étre les BFS du

probléeme linéaire P.

Démonstration. Soit o = (ay,i € [1,n]) une BFS du probléeme P. C’est par définition une
solution du probléme, donc si I'on connait n — 1 de ses composantes, on peut calculer la
n-ieme. On sait également qu’au moins n — 1 de ses composantes sont des frontieres d’inter-
valles. D’apres les coefficients binomiaux, il y a (n:) = n fagons de choisir quelles sont ces

composantes. La n-iéme composante est alors connue.

Pour chacune des composantes frontieres, il reste alors a choisir si elle est égale a la frontiere
haute (b;) ou basse (a;) : il y a donc deux choix pour chacune des n — 1 composantes, c’est-

a-dire, 27! choix en tout.

Finalement, il y a au maximum n-2"~! choix possibles pour déterminer les BFS du probléme.
m

[llustrons ceci par un exemple simple.

42

Exemple. Soit le probleme suivant.

r+y=1
x € [0.5,1]
y € [0,1]

Notons C' = [0.5,1] x [0, 1] I’ensemble des contraintes; c¢’est un polyédre sur l’espace vectoriel
R2. Il est représenté par le rectangle jaune sur la figure 5.2. La droite d’équation x +y = 1

est représentée en bleu.

Les points de R* qui peuvent étre des BFS du probléme sont (0.5,0.5), (1,0) et (0,1). Or
le point (0,1) n’est pas dans le domaine des contraintes, il est donc écarté. Ce processus est

illustré par l'intersection entre la droite et la frontiére du polyédre. Les BFS sont donc :

x=0.5ety=0.5;
r=1 ety=0.

Une solution générale au probleme s’écrit alors :

(Io,y0> =]Cl . (05,05) + k’Q . (1,0)

Domaine
08
06
BFS 1
=
04
02 r
S|2
O 1 L 1 1
0 0.2 0.4 06 0.8 1

I3
_ Croite d'éguation x+y=1

Figure 5.2 Illustration de la résolution du probléme de I'exemple

43

5.1.3 Calcul d’'un MDP a partir d’'une IDTMC

Une seconde étape importante de 1'algorithme de calcul consiste en la transformation d’une
IDTMC en un MDP. En effet, I’algorithme de mesure de probabilité maximale d’un langage
w-régulier dans un MDP est déja connu (Bérard et al., 2015a), alors que le méme calcul dans

une spécification IDTMC ne l'est pas.

La procédure est représentée sur I'algorithme 1 et est fondée sur la notion de BFS (Chatterjee
et al., 2008).

Pour un état s donné d’une spécification S = (5, s, T, %, A), T'(s) décrit I'ensemble des
distributions acceptées par la spécification. Mathématiquement, c¢’est une équation linéaire
en les probabilités de transitions, dont les inconnues sont restreintes dans un ensemble fermé

borné. On note ce probleme dans toute la suite P(s).

P(s) = YeesP(sip1=45]si=s5) = 1
Vs €5, Plsipn=s[si =s) € T(s)(s)

Il respecte toutes les conditions de la définition 23. Ainsi, en appliquant la procédure décrite
dans la section 5.1.2, on peut lister les différentes BFS de ce probleme au sommet P(s).

Notons que dans ce cas particulier, chaque BFS est une distribution sur les états de S.

On définit alors le MDP M tel que 'ensemble de ses états est exactement ’ensemble des
états de 'IDTMC S et tel que son ensemble de distributions de base correspond exactement
a I’ensemble des BF'S des problemes exprimés précédemment aux états correspondants — par
exemple, pour ’état initial, le MDP propose comme distributions toutes les BFS du probleme

P(sp) lié a I'état initial.

input : IDTMC S = (S, so, T, %, \)

output: MDP M = (S,s0, A, A, X, \)

A =

A = null,

foreach s € S do

Trouver les BFS p du probleme P(s);

A=AU{p|pest une BES de P(s)};

foreach p BFS du probléme P(s) do
| A(s),) = 15

end

© W N & ok Ny =

end
10 M= (S,s0, A, A, X, N\);
Algorithme 1: Algorithme de construction d’'un MDP a partir d’'une IDTMC

44

Un tel MDP traduit exactement la méme spécification que 'IDTMC initial. En effet, on
remarque qu’ordonnancer une spécification IDTMC revient exactement a trouver une solution
a chaque probleme au sommet : pour chaque s € S, il s’agit de trouver une distribution dans
T'(s). On remarque alors qu’'on peut résoudre ces problemes de deux maniéres : soit par la
méthode directe, qui revient a I'ordonnancement direct de 'IDTMC; soit par la méthode
expliquée ci-dessus, en exprimant une solution générale en tant que distribution de BFS. En
clair, un tel ordonnanceur choisit les poids qu’il donne aux différentes distributions : c¢’est

exactement le principe d’un ordonnanceur de MDP (c¢f. définition 6).

La proposition 10 ainsi que le fait que 'on calcule les BFS pour chaque état de 'IDTMC

donne le résultat suivant.

Corollaire 1. Le MDP issu de [’algorithme 1 est de taille exponentielle par rapport a la
taille de 'IDTMC initial.

Ces notions préliminaires définies, il est temps de les utiliser dans ’algorithme de calcul de

I'opacité libérale. Commencgons par le cas plus simple des spécifications non-modales.

5.2 Calcul de 'opacité libérale dans le cas des IDTMC non-modales

La modalité d'une IDTMC peut poser probleme. En effet, comme indiqué dans la section
4.4, lorsqu’on implémente une spécification modale, on peut modifier le langage. Ainsi, si S
est une IDTMC modale, S_ imp(S) est probablement composé de plusieurs groupes de PTS,
différenciés selon leur langages. Or 'ensemble des exécutions qui divulguent le secret, dont
on veut calculer la probabilité lors de la mesure d’opacité, dépend du langage : le calcul de la

borne supérieure sur ’ensemble des implémentations ordonnancées est donc plus complexe.

Pour cette raison, étudions tout d’abord le cas des spécifications non-modales, c¢’est-a-dire
celles qui ont un langage unique, afin de s’affranchir de cette difficulté. Nous énoncons le

résultat suivant.

Théoréme 2 (Décidabilité de l'opacité libérale). Soient une spécification IDTMC S non-

modale, un secret w-régulier @ et un observateur rationnel O.

Alors la grandeur S__PO,(S, ¢, O) est mesurable.

Démonstration. La preuve de ce théoreme consiste en une preuve algorithmique. Elle décrit

I’algorithme 2.

45

input : §=(5,50,7,%,\), p et O
output: S__PO(S, ¢, O)

1 Construire le DPA Ay, = (Q, %, 6, qo, F);
2 // Construction de Sy =S ® Ay

3 foreach (s,q) € S x @ do

4 foreach s’ € S do

5 | T'(s,9)(5',0(q, M(5))) = T(s)(s);
6 end

T | N(s,q) = As);

8 | F'(s,q) =F(q);

9 end

10 Sy = (5 %xQ,(s0,q), T, 2, N, F');
11 // Construction du MDP My,
12 A =10

13 A = null;

14 foreach (s,q) € S x Q do

15 Trouver les BFS p du probleme P(s, q);
16 A=AU{u|pest une BFS de P(s,q)};
17 foreach p BF'S du probléme P(s,q) do
18 || A((s,9), 1) = p;

19 end

20 end

21 My = (S X Q, (S0,q90), A, A, X, N F');

22 Calculer la probabilité maximale P du langage reconnu par My;

23 S__PO|(S,¢,0) =P;

Algorithme 2: Algorithme de calcul de 'opacité libérale dans une IDTMC non-
modale

Etape 1. La premicre étape (lignes 1 & 10) consiste & remarquer que le secret ¢ est un
langage w-régulier : ainsi puisque 1’ensemble des langages w-réguliers est fermé pour l'inter-
section et que 'observateur est rationnel, 'ensemble V(S, ¢, O) est lui-méme w-régulier. Le
probléme se réduit donc au calcul de la probabilité maximale d'un langage régulier dans une
IDTMC. Pour cela, on s’inspire des travaux de Bérard et al. (2015¢) : il s’agit de construire

I'IDTMC qui correspond a l'intersection du systeme et du langage.

On peut construire un DPA; noté Ay, qui reconnait le langage V(S, ¢, O). On le construit
en déterminisant 'automate de Biichi reconnaissant le méme langage (Piterman, 2007), que
I’on obtient en réalisant des compositions et intersections d’automates a partir de ’automate

reconnaissant le secret ¢ : cette procédure est de complexité exponentielle.

L’intersection entre le systeme et le langage se réalise par la synchronisation (cf. définition
22) de ce DPA avec 'IDTMC initiale : on obtient une IDTMC colorée synchronisée, notée

46
Sy =8S® Ay.

Etape 2. La seconde étape (lignes 11 a 21) consiste & construire le MDP correspondant &
cette IDTMC Sy a partir de la procédure décrite dans la section 5.1.3. On le note M,,. Ce

MDP contient décrit exactement la méme spécification que 'IDTMC Sy,.

Etape 3. La dernitre étape consiste alors & maximiser la probabilité du langage V(S,p,0)
dans le MDP M,,. Cette probabilité est exactement la grandeur S_PO,(S, ¢, O), l'opacité
libérale de ¢ dans 'IDTMC S. O

D’apres (Piterman, 2007), la procédure de construction du DPA reconnaissant le langage
V(S, ¢, O) est de complexité exponentielle. De plus, d’apres la section 5.1.3, la construction
du MDP M,, est exponentielle en la taille de 'IDTMC. Ainsi, on en déduit le corollaire

suivant.

Corollaire 2 (Complexité de 'algorithme de calcul de I'opacité libérale). Le calcul de l’opa-

cité libérale dans une spécification non-modale est de complexité doublement exponentielle.

Ce résultat constitue I'un des principaux résultats du mémoire, en ce sens qu’il justifie I'uti-
lisation de ce cadre et de cette propriété de sécurité : 'opacité est effectivement mesurable

dans une spécification non-modale, et nous avons un algorithme permettant de la calculer.

Cependant, ce résultat reste encore insuffisant, puisqu’il ne concerne qu'un nombre restreint
de spécifications. La section suivante tente de remédier a ce probléme en cherchant a appro-

cher la mesure de l'opacité dans le cas général.

5.3 Une approximation du cas général

Le théoreme 2 s’applique uniquement aux spécifications qui ne possedent aucune transition
modale. L’objet de cette partie est de construire un algorithme permettant un calcul approché

de 'opacité libérale dans le cas des spécifications modales.

Pour cela, remarquons que l'ordonnancement d’une IDTMC modale consiste en le choix
d’une distribution pour chaque préfixe fini d’exécution (cf. définition 19). Ainsi, s'il s’avere
que 'une des transitions a venir est modale, I’ordonnanceur peut choisir une distribution qui
annulera la probabilité de cette transition. On peut alors considérer que ce choix d’annuler
telle ou telle transition est réalisé avant le choix des probabilités des autres transitions —

I'ordre d’affectation des probabilités importe peu. Ainsi, on peut supposer que, pour chaque

47

préfixe fini, 'ordonnanceur choisit un sous-ensemble des transitions modales qu’il annule,

puis ajuste la distribution avec les transitions restantes.

Cette procédure laisse penser que 'on peut séparer le travail de 'ordonnanceur, entre son
travail sur la présence des transitions, puis sur leurs probabilités. Cependant, dans le cas de
I'ordonnanceur général, 'application reste limitée puisque la procédure est réalisée a chaque

étape, pour chaque préfixe fini, sans aucun moyen de prédire les décisions futures.

Si, en revanche, on se restreint au cas des ordonnanceurs a mémoire finie, il est possible d’al-
ler plus loin dans le raisonnement. En effet, le fait de considérer une mémoire finie implique
que l'on connait tous les comportements de 'ordonnanceur suivant 1’état de sa mémoire.
Autrement dit, pour un état de mémoire donné, 'ordonnanceur choisira toujours la méme
distribution — en particulier, il choisira toujours le méme sous-ensemble de transitions modales
a annuler. Par conséquent, si ’on a une spécification modale, on peut considérer que ’ordon-
nanceur choisit tout d’abord toutes les transitions qu’il désire annuler suivant les différents
états de sa mémoire. Il obtient ainsi une spécification non-modale, qu’il peut ordonnancer

comme a son habitude.

En définitive, I'idée qui ressort de cette introduction est la suivante : ’'ordonnancement d’une

spécification peut étre décortiqué et réordonné. Nous formalisons cette idée dans la suite.

5.3.1 Détermination des transitions modales

Cette introduction au probléme implique tout d’abord de pouvoir déterminer I’ensemble des
transitions modales d'une spécification IDTMC. Ceci est réalisé par 1'algorithme 3, inspiré
de Bérard et al. (2015b).

Cet algorithme parcourt toutes les transitions de 'TDTMC et détermine pour chacune d’elles
si elle est modale. On affirme qu’une transition est modale si, et seulement si, on peut lui
donner une probabilité nulle ou non-nulle (ligne 4), et :
— soit la somme des bornes supérieures des autres intervalles est strictement supérieure
a 1 (ligne 5);
— soit cette somme est égale a 1, et les bornes supérieures sont les maxima de leurs
intervalles respectifs (ligne 7).
Cet algorithme se termine car les IDTMC considérées sont a ensemble d’états finis, donc les

deux boucles sont finies.

48

input : Une spécification S = (5, so, T, A)
output: L’ensemble des transitions modales &,,(S)

1 &, =10

2 foreach s € S do

3 foreach s’ € S do

4 if T(s)(s") #{0} A 0€T(s)(s') then

5 if 3>, .o sup T(s)(t) > 1 then

6 | & =EnU{(s,9)};

7 else if Y-, ., sup T'(s)(t) = 1 A Vire sup T'(s)(t) € T(s)(t) then

8 | & =EnU{(s,)}

9 end

10 end

11 end

Algorithme 3: Algorithme de détermination des transitions modales

5.3.2 Elimination de certaines transitions modales

Outre le besoin de déterminer ’ensemble des transitions modales d'une spécification, I'in-
troduction émet le besoin d’en éliminer certaines afin d’obtenir une nouvelle spécification

non-modale, sur laquelle on peut appliquer les théoréemes connus.

Cette procédure est expliquée par 'algorithme 4. L’objet créé possede exactement la méme
structure que 'IDTMC initiale, seule I’application 7" est modifiée. Ceci est réalisé de maniere
a assurer I'annulation des transitions de 1’ensemble que 'on désire supprimer (lignes 2 et 3),

tout en retirant la modalité des autres transitions modales (lignes 4 et 5).

Puisque les spécifications IDTMC considérées sont a nombre fini d’états, I’ensemble des

transitions modales est nécessairement fini, ce qui assure la terminaison de I’algorithme.

Il est a noter que l'objet créé par 'algorithme n’est pas nécessairement une IDTMC. En
effet, étudions I'exemple de la figure 5.3a. Les trois transitions issues de g sont évidemment
modales, puisque si on annule I'une d’entre elles, il existe un moyen d’ajuster les probabilités
des deux autres afin d’assurer une distribution issue de ¢qg. Supposons alors que 'on désire
annuler les transitions modales (qo, q1) et (qo, g3). L’objet obtenu par 'algorithme est repré-
senté sur la figure 5.3b — notons que les états ¢; et g3 ne sont plus accessibles depuis 'état

initial, leur représentation est donc inutile. Cet objet n’est évidemment pas une IDTMC.

input : S = (5,50, 7,5,)), £ € 2(£,(S))
output: S\ &

1 Te =T,

2 foreach (s,s') € £ do

3 | Te(s)(s') = {0}

4 end

5 foreach (s,s') € £,(S) \ € do

o | Te(s)(s") =T(s)(s") \ {0}

7 end

8 S\E=(S5,s0,Tec, 2, N\)

Algorithme 4: Algorithme d’élimination d’un ensemble de transitions modales dans
une spécification

{a} {a,b}

_>‘ 0,0.5] 1]

(a) Exemple I’IDTMC modale (b) Objet issu de 'algorithme

Figure 5.3 Application de 'algorithme 4 sur les transitions modales (qo, q1) et (qo, g3)

20

5.3.3 Dépliage de ’'ordonnancement

Considérons le systéme de transitions non-étiquetées fini A, o = ([n], g, d) — ici, on prend en
compte uniquement I’aspect traitement de mémoire de 'ordonnanceur. Cette premiere étape
d’ordonnancement est réalisée en construisant 'IDTMC S x A, o = ([n] xS, (ig, s0), T", X, X)
telle que :

— V(i,s) € [n] x S, Vs €8, T'(i,s)(0(i,s),8") =T(s)(s);

— V(i,s) € [n] x S, N(i,s) = A(s).
Ceci traduit exactement le comportement de 'IDTMC initiale, a laquelle on a ajouté ’ajus-
tement de la mémoire de I'ordonnanceur. A cette étape, I'ordonnanceur n’a aucune action
sur le systeme : en effet, on est en présence d’une spécification non-implémentée, aucun choix

n’a été pris a propos des distributions.

Ces choix sont réalisés dans la seconde étape : il suffit alors d’ordonnancer S x A,y par

I'ordonnanceur sans-mémoire dont la fonction de choix de distribution est +' telle que

V(i,s) € [n] x S, +'(i,s) € T'(i, s).

On déduit de ce raisonnement que tout ordonnancement a mémoire finie n sur une spéci-
fication S est produit par un ordonnancement sans-mémoire sur la spécification S x A, 4,
pour un certain systeme de transitions a n états A, g. Notons par ailleurs qu’il n’existe quun
nombre fini de tels systéemes de transitions, puisque 1’on considére des IDTMC a nombre fini

d’états. On déduit le résultat suivant.

Lemme 1. Soit S une spécification IDTMC quelconque. Alors

S_imp,(S) =JS_imp,(S x Anyp).
0

5.3.4 Approximation du calcul de l'opacité libérale dans le cas des IDTMC

modales

Rappelons que le probléeme consiste en le calcul du maximum des opacités libérales des im-
plémentations ordonnancées d’une spécification. Les paragraphes précédents formalisent le
dépliage d’un ordonnancement a mémoire finie ainsi que la détermination et 1’élimination
des transitions modales d’une spécification modale. Tel que discuté précédemment, le calcul
sur I’ensemble des ordonnanceurs est a priori trop complexe : on se limite donc aux ordon-
nancements a mémoire finie et fixée — dans la suite du raisonnement, on choisit un entier n,

représentant la taille de la mémoire des ordonnanceurs que 1’on considere.

51

On note S__PO;,(S, ¢, O) le maximum des opacités libérales sur S__imp,,(S).
Puisque S__imp,,(S) C S_imp(S), de maniere évidente, S_ PO, (S, p,O) < S_PO|(S, ¢, O).

Le raisonnement décrit par I'algorithme 5 est le suivant. Puisque I'on sait calculer 'opacité
libérale d'une spécification non-modale, on essaie de se ramener a ce cas en retirant les
transitions modales. Pour cela, on considere uniquement l’ensemble S__imp,, (S), et on liste

I’ensemble des ordonnanceurs qui aboutissent a ces implémentations.

Plus exactement, on liste ’ensemble des systémes de transitions (ligne 2) a partir desquels
on réalise le dépliage de la spécification (ligne 3). On obtient a ce stade une IDTMC modale
dépliée, sur laquelle on peut appliquer successivement les algorithmes de détermination de
transitions modales 3, puis d’élimination d’un sous-ensemble de ces transitions 4 : on réalise
ce dernier algorithme pour tout sous-ensemble de I'ensemble des transitions modales (lignes
4 et 5). Pour chaque objet ainsi créé, on vérifie si c’est bien une IDTMC — autrement dit,
si 'on peut créer une distribution sur I'ensemble des états a partir de chaque état (ligne 6).
Dans ce cas, il est alors possible d’appliquer I’algorithme du théoréme 2, puisqu’on est en

présence d’une spécification non-modale.

La valeur de sortie de cet algorithme est notée S__PO;(n,S,p,O) et est le maximum de
toutes les valeurs obtenues a l'intérieur des boucles. On peut mettre a jour cette valeur a

chaque tour de boucle (ligne 7).

Théoréme 3 (Approximation de I'opacité libérale d'une spécification modale). Soient une
spécification IDTMC' S, un secret w-régulier ¢ et un observateur rationnel O. Alors on peut
approcher par la borne inférieure l'opacité libérale de ¢ dans S et approcher par la borne

supérieure 'opacité libérale de ¢ dans S limitée a ses ordonnanceurs a mémoire finie.

Preuve de correction de l’algorithme 5. Soient une spécification IDTMC S, un secret w-régu-

lier , un observateur rationnel O et un entier naturel n.

La sortie de I'algorithme est la valeur :
S_PO(n,S,p,O) =supsupS_PO(S x A0\ &, p,O).
o &
On prouve qu’elle vérifie la post-condition

S POL(S,0,0) < S PO/n,S,p,0) < S POS, p,0). (5.1)

52

input :n e N, S§=(5,50,T,%,\), pet O
output: S_ PO;(n,S, p,O) tel que
S _PO,(S,0,0) < S _PO|(n,S,0,0) < S _POIS, p,O)

S_PO(n,S,p,O) =0;
foreach 0 : [n] x S — [n] do
construire S x A, g;
foreach £ € Q(Em(S X An,(;)) do
construire S X A4\ &;
if SxA,p\E est une IDTMC then

S_PO)(n,S, ¢, 0) =

max (SPOl(n,S, ©,0); S POI(S x Anp \ €, ¢, (’)));

W N =

N o o s

8 end

9 end
10 end

Algorithme 5: Algorithme de calcul de 'opacité libérale d'une spécification modale

Rappelons les définitions des différentes grandeurs :

S—POln<S7 2 O) = SUPAeSchedn(S) POI(S(A)v ¥, O) = SUDPAes_ imp,,(S) POI(A7 ¥, O)
SfPOl(Sa @, O) = SUDAeSched(S) POZ(‘S(A)’ ¥ O) = SUP4es imp(S) POl(Av ¥ O)

Afin de prouver la premiere inégalité, on utilise le lemme 1 de dépliage.

S _imp,(S) =JS _imp,(S x A, p)
0

Cela signifie qu’ordonnancer la spécification avec une mémoire finie est équivalent a ordon-

nancer sans-mémoire la spécification dépliée.

On calcule alors sur chacun de ces ensembles le maximum de l'opacité libérale du secret,

d’apres les définitions précédentes :

S PO, (S,0,0) =supS_ PO;(S x Anp,,0) (5.2)
0

De plus, pour 6 fixé, on remarque que pour tout ordonnanceur sans-mémoire de S x A, g,
dont la fonction de choix de distribution est notée -, il existe un sous-ensemble de transitions
modales & tel que, v(s)(s") = 0 si, et seulement si, (s,s’) € £. Ainsi, tout ordonnancement
sans-mémoire de § x A,y est équivalent a un ordonnancement sans-mémoire de la méme

spécification pour laquelle on a retiré les transitions de I’ensemble &£ correspondant a la

93

fonction de choix. On en déduit le résultat suivant.

Sflmpl(s X An,@) = U Sflmpl(s X An,@ \ g)
&

De plus, puisque toute implémentation ordonnancée sans mémoire est une implémentation

ordonnancée, on déduit I'inclusion suivante.

US_impy(S x Auo\ €) € US_imp(S x Aua \)
& &

On calcule alors sur chacun de ces ensembles le maximum de l'opacité libérale du secret,

d’apres les définitions précédentes :
S_ PO (S X Ang,0,0) =supS_PO;1 (S x Anp\ E,0,0) (5.3)
£

et
sup S POp (S x Ao\ E,0,0) <supS_ PO|(S x Ao\ E,0,0). (5.4)
£ £

Ainsi, en mettant en relation les équations (5.2) et (5.3) et l'inéquation (5.4), on obtient la

premiere inégalité de la post-condition (5.1) :

S PO, (S,¢,0) <supsupS PO|(S x A, g\ E,0,0) =5 POi(n,S,p,0).
0 &

Afin de prouver la seconde inégalité, remarquons que toute implémentation ordonnancée
de § x A,p \ € est une implémentation ordonnancée de la spécification initiale S. Ainsi,
VO, VE, S _imp(S x Ao\ E) C S imp(S) donc en calculant les opacités libérales et par

passage a la borne supérieure sur 0 et &,

sup sup SfPOl<8 X An,& \ 57 ®, O) = SfPOl(nasa ©, O) S S7P01<87 ®, O)
0 £

Enfin, on note que 'algorithme se termine puisqu’il y a un nombre fini d’applications 6 :
[n] x S — S et un nombre fini de transitions modales — donc de sous-ensembles de ’ensemble

des transitions modales, ce qui termine la preuve de correction totale de I'algorithme. O

Puisqu’on ne réalise qu'un nombre exponentiel de boucles, et puisque le théoreme 2, de
complexité doublement exponentielle, est appelé a chaque tour de boucle, la complexité de

I’algorithme total n’est pas aggravée et on en déduit le corollaire suivant.

o4

Corollaire 3 (Complexité de l'algorithme de calcul d’opacité libérale dans le cas général).
L’approximation du calcul de l'opacité libérale dans les spécifications modales est réalisable

en un temps doublement exponentiel.

L’algorithme 5 et le théoreme 3 permettent de s’approcher de la généralisation du probleme
a toute spécification IDTMC. Cependant, on n’obtient qu'une borne inférieure de 1'opacité
libérale, puisqu’il est impossible de lister tous les ordonnanceurs de la spécification étudiée.
La limitation vient du fait que I'on se limite aux ordonnanceurs a mémoire finie. Il semble
judicieux de penser que l'on peut affiner la précision de la valeur approchée en considérant
davantage d’ordonnanceurs, notamment en augmentant la valeur de la mémoire limite que

I'on se fixe.

Dans la section suivante, on s’attache a prouver que l'opacité libérale est préservée par raf-
finement : cela prouve alors que I'opacité est une propriété de sécurité mesurable et capable
d’étre raffinée dans les specifications IDTMC.

5.4 Préservation de 'opacité libérale par raffinement

Les définitions et résultats des sections précédentes permettent la vérification de la sécurité
dans les spécifications IDTMC. L’objet de la section suivante consiste a finalement résoudre le
probleme initial, grace aux acquis accumulés. Le coeur du probléme initial est de spécifier un
systeme probabiliste, puis de I'améliorer continuellement en lui rajoutant des fonctionnalités

et en affinant son comportement : c’est le processus de raffinement (cf. section 4.1).

Dans les sections précédentes, nous avons considéré plus précisément les systemes probabi-
listes sécurisés. Vérifions a présent si le processus de raffinement d’un systeme probabiliste
sécurisé permet effectivement d’améliorer — ou de conserver — le comportement de la spécifi-

cation, notamment en ce qui concerne les propriétés d’opacité définies précédemment.

Théoréme 4 (Préservation de I'opacité libérale par raffinement). Soient un secret w-régulier
@ et un observateur rationnel O, soient deuzr spécifications IDTMC &1 et Sy telles que S
raffine faiblement Sy. Alors S__POy(Sy,0,0) < S__PO,)(Ss, ¢, O).

Remarquons que prouver le théoreme 4 pour le raffinement faible permet de le prouver
également pour le raffinement fort. En effet, si S; raffine fortement S,, alors elle la raffine

faiblement d’apres la proposition 5, et on peut appliquer le théoreme.

La preuve du théoreme 4 s’appuie sur le fait que si S; raffine Sy, alors imp(S;) C imp(Ss) ;

cependant, cela n’implique pas que S__imp(Sy) C S__imp(Sy) a priori. En effet, si A; est un

95

ordonnanceur de &; qui produit une implémentation S;(A;) € S__imp(S;), alors c’est une im-
plémentation de S, mais il est possible que ce ne soit pas un ordonnancement. L’idée consiste

alors a prouver que pour tout ordonnancement S;(A;), on peut trouver un ordonnancement
Sa(Az) qui est raffiné par S1(A;) (Bérard et al., 2015b).

81 R 82

imp(St) imp(Sa)

Figure 5.4 Illustration de la preuve du théoreme 5

Théoréme 5. Soient deux spécifications IDTMC Sy et Sy telles que Sy raffine faiblement Ss.
Pour tout ordonnanceur Ay de Sy, il existe un ordonnanceur Ay de Sy tel que S1(Ay) raffine

Sa(Az).

Quelques notations a propos des préfixes finis d’exécutions Avant de rédiger la

preuve de ce théoreme, définissons certaines notations.
Si p € FEzec(S), alors Ist(p) désigne le dernier état visité par p.

Si S raffine faiblement S, avec la relation R, alors on définit la relation ~C FEzec(S;) %
FEzec(S,) telle que : py ~ py si, et seulement si, |p1| = |p2| et pour chaque état intermédiaire,
Si’1RSi72.

Pour tout p, € FExec(S:), on désigne par sim(ps) = {p1 € FExec(S1) : p1 ~ p2}, et on

définit la mesure p,, telle que Vp, € sim(ps), pp,(p1) = P(S%%.

Démonstration. Soient deux IDTMC & = (51, 501,11, 2, A1) et So = (52, 50,2, 1o, 2, A2) telles
que S; raffine faiblement Ss, et soit un ordonnanceur A; € Sched(S;). Notons S1(A;) =
(Q1,q01,%, A1, Ly) le PTS ordonnancé par A;.

L’idée de la preuve consiste a construire le bon ordonnanceur A, € Sched(S,).

Notons tout d’abord R la relation de raffinement entre S; et Ss.

o6

Soit py € FExec(Sy) avec Ist(pg) = so. Alors, pour tout p; € sim(ps), A1(p1) € Ti(Ist(p1)) et
Ist(p1)Rsz. Sy raffine faiblement S,, donc il existe 6, : S; — Dist(Ss) telle que

> Ai(p1)dp, (s1) € Ta(s2).

8/165'1
On définit A, tel que :

Vp2 € FExec(S2), Aa(p2) = D pip(p1) D Ailpr) - 6, (1) € Ta(sa).

p1E€sim(p2) s1€851

On en déduit que A, est bien un ordonnanceur de S;. Montrons maintenant que ’ordonnan-

cement obtenu est raffiné par S;(A;) par une relation R’
Dans la suite, on note A; = S1(A1) et Ay = Sa(As).

Posons R’ =~ ou ~ est la relation de similitude entre deux préfixes finis d’exécutions.
Puisque les états de A; et de Ay sont des préfixes finis de leurs spécifications respectives, R’
est bien une relation entre les états des PTS considérés. Montrons que c’est bien une relation
de raffinement.

Soient p; € Q1 et py € Qs tels que p1 R ps.
Posons Iapplication ¢’ : Q1 — Dist(Qs) définie par :

1) - 0, (Ist (1)) (Ist(1s)) si 4 Rva,
o) {um(p) (1s02)) (st (1)

0 sinon.
/ ’ Az(pg)
Alors, pour tout p), € QQ2, et en notant ph, = py — s,
Ypeq Ailp)(Ph) - 6" (p1)(Ps) = Lses, Ailp1)(p1sh) - 6 (p1s1)(ph)

= Sues Alp)(sh) - 8o B) (oh)

= s A(p)(h) - tipa(p1) - 8, (51)(55)

Y caimipn) Setess A1(1) (1) 1 (91) - 6,0 (1) (5))
= As(ps)(sh)

= Dolp2)(ph).

o7

Cette partie technique prouvée, il reste a utiliser ceci pour prouver le théoreme 4.

Démonstration du théoréme 4. Soit A; € S _imp(S;). D’apres le théoreme 5, il existe un
ordonnancement Ay € S_imp(Ss) tel que A; < As. Puisque ce sont des PTS, d’apres la
proposition 7, Ay < A;, et comme dans la discussion autour de la proposition 8, cela implique
que leurs langages sont égaux. D’apres Bérard et al. (2015b), on en déduit également que
P 4, (w) = P 4,(w) pour tout préfixe fini appartenant au langage en commun. Donc, pour tout
langage w-régulier L, P4, (L) = P 4,(L). C’est notamment le cas pour le langage w-régulier

V(Alv 2 O) = V('A'?a ©s O)

On déduit de ce raisonnement que, pour tout ordonnancement A; € S impSy, il existe un
ordonnancement A, € S imp(Sy) tel que POy(Ay, 0, O) = PO(A1, p,O). Par conséquent,
S_PO|(S1,p,0) < S_PO|(Ss, p,0), puisqu’il peut rester des ordonnancements de Sy qui

ne sont raffinés par aucun ordonnancement de S;. O

Cette section a présenté 'un des résultats principaux du mémoire, en montrant que I'opacité
libérale dans une spécification IDTMC était préservée par raffinement faible, ce qui étend le

résultat déja prouvé par Bérard et al. (2015b), qui se limitaient aux raffinements forts.

Cependant, seule I'opacité libérale a été étudiée dans les sections précédentes. Nous propo-
sons dans la section suivante de définir d’autres formes d’opacité pour les spécifications, et

d’essayer d’étendre le théoreme 4 a celles-ci.

5.5 Cas des autres opacités

Dans le chapitre 3, plusieurs types d’opacité ont été définies sur les PTS. Nous avons étudié
plus en détail 'extension de 'opacité libérale aux IDTMC ; définissons a présent I'extension

de la quasi-opacité uniforme ainsi que celle de 1'opacité restrictive aux spécifications.

5.5.1 Quasi-opacité uniforme

Dans cette section, on généralise la notion de quasi-opacité uniforme aux spécifications
IDTMC. De fagon analogue a la généralisation de I'opacité libérale, le but est de déterminer
la quasi-opacité du secret sur chacune des implémentations ordonnancées afin de trouver le
pire cas pour la spécification. Puisque la quasi-opacité uniforme est une valeur binaire, la

définition est légerement différente.

En utilisant le méme raisonnement que pour la définition 11, on restreint ’espace de raison-

nement aux langages de la forme L, avec L C ¥*.

o8

Définition 24 (Quasi-opacité uniforme dans une IDTMC). Soit L un langage de 3*. Soient
une IDTMC' S dont le langage des exécutions est L, un secret régulier ¢ C L, un observateur

rationnel O, et un seuil 6 € [0, 1].

Alors le secret p,, est uniformément quasi-opaque ou 6-opaque dans S,, relativement a O si,
et seulement si, il est uniformément quasi-opaque dans toute implémentation ordonnancée

A€ S _imp(S,) relativement a O, c’est-a-dire,

VkeN, sup P((Lenzh),) <6
AeS_imp(Sy)

Le probleme consiste ainsi a déterminer, pour tout k entier, la valeur suivante, avec les mémes

notations que dans la définition 11 :

sup P((LC N Ek)w).
AeS_imp(Sy)
Puisque, pour k fixé, le langage (LcNXF),, est w-régulier, ce probléme est tout a fait analogue
au probleme de 'opacité libérale. Il est ainsi possible d’adapter les résultats des théoremes 2
et 3 afin d’obtenir en des temps doublement exponentiels les valeurs de ces bornes supérieures,

pour une valeur k fixée.

Notons que la discussion a propos de la modalité de 'IDTMC considérée tient toujours : le
langage Lo peut prendre plusieurs valeurs distinctes si on considere une spécification modale

selon 'ordonnancement, ce qui rend plus complexe le calcul.

Le calcul pour un k fixé ne suffit cependant pas a décider de I'uniforme quasi-opacité du
secret. En effet, la définition demande le calcul pour tout entier k naturel, ce qui rend le
probléme a priori indécidable en temps fini, a moins de prouver que l'on peut se limiter a
un nombre fini d’entiers k& (Saboori et Hadjicostis, 2014). En d’autres termes, le probléme de

décidabilité de la quasi-opacité uniforme reste ouvert.

En revanche, on remarque que la preuve du théoreme 4 tient pour toute probabilité d’ensemble
w-régulier, et pas uniquement pour le calcul de I'opacité libérale. Par exemple, pour le cas
de la quasi-opacité uniforme, si 'on suppose que ’on est capable de calculer une telle valeur,

on peut traduire le théoreme 4 comme suit.

Théoreme 6. Soient un secret w-régulier ¢ et un observateur rationnel O, soient deux
spécifications IDTMC Sy et Sy telles que Sy raffine complétement Sy, et soit un seuil 6 € [0, 1].
Alors, st ¢ est uniformément 0-opaque dans Sy relativement a O, alors il est uniformément

0-opaque dans Sy relativement a O.

29

Autrement dit, la quasi-opacité uniforme est également préservée par raffinement dans les
IDTMC.

5.5.2 Opacité restrictive

Valeur duale de 'opacité libérale, I'opacité restrictive a une définition bien plus complexe que
la premiere. Elle s’avere plus compliquée a manipuler, mais 'on peut tout de méme définir

cette mesure pour les IDTMC.

Dans le méme esprit que pour les autres opacités, on généralise la notion d’opacité restrictive
aux spécifications IDTMC : on définit ’opacité restrictive d'une spécification comme sa valeur
dans le pire des cas. Puisque la fonction d’opacité restrictive décroit en fonction du risque
de découvrir le secret, le pire cas est atteint lorsque I'opacité restrictive est minimale (cf.

proposition 2).

Définition 25 (Opacité restrictive dans une IDTMC). Soit L un langage de ¥*. Soient une
IDTMC S dont le langage des exécutions est L, un secret régulier ¢ C L et un observateur

rationnel O. L’opacité restrictive de ¢ dans S relativement a O est la grandeur définie par :

S PO.(S,p,0) = Aeshlfnp(a PO, (A, ¢,0).

Cependant, puisque la définition de l'opacité restrictive dans un PTS n’est pas linéaire, et
puisque 'opacité restrictive n’est la probabilité d’aucun langage régulier a priori, le calcul de

cette borne inférieure est tres complexe en pratique.

Ce chapitre a permis de prouver les résultats théoriques importants que sont :
— le calcul de l'opacité libérale dans une spécification non-modale est réalisable en un
temps doublement exponentiel ;
— le calcul de l'opacité libérale dans une spécification modale est approximable par la
borne inférieure en un temps doublement exponentiel ;
— toute probabilité d’ensemble w-régulier, telle que 1'opacité libérale ou la quasi-opacité
uniforme, est préservée par raffinement faible de spécification IDTMC.
Les algorithmes de calcul d’opacité ont été énoncés et prouvés, dans le but notamment de
pouvoir les appliquer dans le chapitre 6 : celui-ci consiste en ’étude d’un cas concret de
systeme sécurisé. Nous considérons un exemple de cas qu'un expert responsable sécurité dans
une entreprise peut recevoir pour étude, et nous établissons notre méthode de raffinement

sur cet exemple.

60

CHAPITRE 6 ETUDE DE CAS

Les sections 4 et 5 ont introduit un ensemble d’aspects théoriques et ont produit d’impor-
tants résultats de la théorie du raffinement de systemes sécurisés. Cette section applique ces
résultats et algorithmes sur un systéme abstrait. On réalise ici 'ensemble du processus de
raffinement, en partant d’un systéme réel que 'on veut sécuriser. On commence par sa mo-
délisation, le calcul de sa sécurité, puis on réalise un raffinement afin d’améliorer le modele.

Ce cas est inspiré des modeles d’authentification de Biondi et al. (2014).

6.1 Description de ’étude de cas

Cette section décrit le probleme que 'on considere. On explique tout d’abord les caractéris-
tiques du systeme existant, puis on le modélise sous forme de spécification IDTMC. Suite a
cela, on présente les requis de sécurité que 'on veut assurer, en les modélisant sous forme de

propriété d’opacité.

6.1.1 Modélisation du systéme

Considérons une base de données médicales. La confidentialité critique des données consi-
dérées implique que seul un panel restreint d’utilisateurs a acces a la base. Cependant, elle
doit pouvoir étre consultée a tout moment depuis plusieurs endroits distincts (médecins trai-
tants, hopitaux, cliniques), sans contrainte de temps ou d’espace. Ainsi, le serveur de base de
données est relié aux internets : un systeme de controle d’acces est nécessaire afin d’assurer
la confidentialité. Un simple systéme de vérification de couple wutilisateur/mot de passe est
envisagé dans un premier temps. On suppose pour notre étude formelle que les aspects cryp-
tographiques sont parfaits. Ainsi, on peut représenter le systeme par 'IDTMC de la figure

6.1, sur 'alphabet de propriétés atomiques exclusives ¥ = {a, b, ¢, d, e}.

Dans l'état qq, le systeme attend l'entrée du nom d’utilisateur. Le systéme est dans un état
d’attente, hors de la zone privée : cela correspond a la propriété a. Si le nom d’utilisateur
n’est pas reconnu, ce qui correspond a la propriété d, la requéte est rejetée (propriété e) et

le systeme passe dans 1’état déconnecté qy.

Si en revanche l'utilisateur est connu et possede a prior: les droits requis a la consultation
de la base de données, le systeme attend 'entrée du mot de passe associé dans 'état q.
Cette attente correspond a la propriété b, vérifiée tant que le mot de passe est incorrect ou

inexistant. Dés que le bon mot de passe est entré, le systeme garantit I’acces a la base de

61

données (propriété c¢). Si le mot de passe est incorrect, 'acces est éventuellement refusé et le

systeme passe dans ’état déconnecté qq.

La spécification autorise I'implémentation d’'un mécanisme permettant d’essayer une nouvelle
fois d’entrer un mot de passe en cas d’erreur. Ceci est représenté par la transition qui boucle

sur 'état ¢;.

La vérification du mot de passe est sous-spécifiée (état ¢1), en ce sens que les intervalles
de probabilités de transitions issues de cet état n’ajoutent aucune contrainte particuliere.
L’intérét ici est uniquement de traduire le flux des événements lors du contrdle d’acces,

premiere étape de la conception de ce systeme.

On impose uniquement des contraintes en sortie de 1’état ¢, lors de la vérification du nom
d’utilisateur. Ces probabilités dépendent du nombre d’utilisateurs possédant les droits de
consultation. La base est nécessairement utilisée par quelqu’un, donc ce nombre est néces-
sairement non-nul; de plus, puisque la base est reliée aux internets, il faut considérer des
utilisateurs qui ne sont pas enregistrés, nécessairement présents également. Ces deux raison-

nements permettent de justifier la non-modalité des transitions ¢y — q1 et go — go.

En pratique, les contraintes permettent de considérer divers scénarios d’implémentation, sui-
vant le nombre d’utilisateurs autorisés, la robustesse de leur mot de passe, et le degré de

connaissance d’éventuels utilisateurs malhonnétes.

[0, 1]

a2 qa
0.2,1] (: >_,[17 ; @Q 1,1]

Figure 6.1 Un systeme de contrdle d’acces a une base de données médicales S,

62

6.1.2 Requis de sécurité

Tel qu’'indiqué précédemment, on ne modélise pas les aspects cryptographiques : le choix du
procédé de chiffrement utilisé par la suite n’est pas le propos ici. La seule hypothéese que 'on
réalise concernant ces questions est celle selon laquelle la tentative de mot de passe entrée
par l'utilisateur reste secrete et cachée de I’environnement extérieur. On modélise ceci par la

fonction d’observation rationnelle suivante.

O(o) = o siog#b
ob) = ¢

On affirme alors que, malgré une infrastructure cryptographique parfaite, un tel systeme ne
garantit pas nécessairement la confidentialité des données médicales. Notamment, ce systeme
ne garantit pas une protection suffisante contre la création de canaux cachés de communica-

tion entre un attaquant et les données confidentielles.

A titre d’exemple, supposons qu'un attaquant extérieur, passif, soit capable de distinguer
les connexions a la base de données aprés plusieurs essais de mots de passe (abbt¢?), de
celles obtenues des le premier essai (abc”). Il représente alors chaque exécution du premier
groupe par le bit 0 (par exemple), et chaque exécution du second groupe par le bit 1. De
cette maniere, un complice possédant les droits de consultation de la base de données peut
se servir de ce canal caché pour transmettre des informations a 'attaquant, uniquement en

se connectant successivement de I'une ou 'autre des manieres, tel que décrit sur la figure 6.2.

abbtc® =0
Complice Attaquant
abc? =

Figure 6.2 Canal caché de communication entre le complice et I'attaquant

Une telle possibilité de fuite d’information est a éviter. Pour cela, le but est d’empécher la

distinction des deux groupes d’exécutions ; autrement dit, on requiert I'opacité du prédicat
» = abc”

dans la spécification considérée, relativement a l’observateur rationnel O défini précédem-

ment.

63

6.2 Calcul de I'opacité binaire

Vérifions dans un premier temps 1'opacité au sens de la définition 7 dans la spécification S,.
Pour cela, calculons les différents langages a considérer.
Lo = abte” + abte¥ + ade” O(Ly\ p) = ac” + ae’ + ade®
Ly\p = abbtc” +abTe” + ade” O(p) = ac”
On en déduit que O(p) C O(Ls\), donc a priori, le secret serait opaque dans la spécification
— c’est-a-dire qu’il est opaque dans toute implémentation de la spécification. Cependant, le
calcul a été réalisé en supposant que le langage Ly de Sy était le méme que toutes ses implé-
mentations, ce qui est faux puisque 'IDTMC possede des transitions modales (cf. discussion

autour de la définition 18).

Notamment, le PTS représenté figure 6.3 est une implémentation de la spécification, mais le
calcul de l'opacité est bien différent. On note Lf son langage.

L, = abc” + abe® + ade” O(Ly\ ¢) = ae” + ade”

Li\¢ = abe” + ade” O(yp) = ac”
Dans ce cas-ci, O(¢) € O(Lj \ ¢), donc le secret n’est pas opaque dans I'implémentation.
Ainsi, il existe des implémentations de la spécification dans lesquelles le secret n’est pas
opaque relativement a . Puisque la sécurité d’un systeme se vérifie toujours au pire cas,
on en déduit que le secret n’est pas opaque dans la spécification Sy. Le but est désormais

d’améliorer cette mesure, en calculant 'opacité libérale du secret dans la spécification.

o8

q1 q3

0.5

q2 q4
1
(DD

Figure 6.3 Une implémentation de S,

64

6.3 Opacité libérale

Afin de calculer 'opacité libérale de ¢ dans S, relativement a O, on applique le théoréme 3
puisque 'IDTMC est modale. Par conséquent, on ne pourra pas obtenir la valeur de I'opacité

libérale, mais uniquement une approximation par valeur inférieure.

L’algorithme dont le théoreme 3 prouve la correction demande comme parametres d’entrée
un entier naturel non-nul n (correspondant a la taille de la mémoire des ordonnanceurs
considérés), ainsi que Sq, ¢ et O. Afin d’illustrer nos calculs, posons par exemple n =1 : on

considere alors uniquement les ordonnanceurs sans-mémoire.

La premiere étape de 'algorithme consiste a énumérer tous les systemes de transitions A, g,
avec 0 : [n] X Sy — [n]. Puisque n = 1, il existe une unique fonction de transition de modes
6, notée ;. Ainsi, il existe un unique systéme de transitions A4, g,, représenté figure 6.4. I
s’ensuit qu’il existe une unique spécification produit S x A; g, , qui est égale a S,. Autrement

dit, un ordonnanceur sans-mémoire laisse inchangée la forme globale de I'TDTMC.

nOSL

Figure 6.4 Systeme de transitions A; g, — résultat du dépliage d’'un ordonnanceur sans-
mémoire

a2 44
0.2, 1] (: >_,[1, ; @Q 1,1]

Figure 6.5 Résultat de la seconde étape — Sa x Ay 4, \ €

La seconde étape consiste a calculer I'ensemble des transitions modales de la spécification

65

produit Sy x A 4, . Ici,
gm(82 X A1,91) = {<QI7 QI)a (q17 Q3>7 (CI17 Q4)}

Une fois ceci réalisé, il s’agit d’énumérer les sous-parties de cet ensemble, puis de construire,
pour chaque sous-partic &£, la spécification non-modale Sy x A4, \ €. Par exemple, pour

E ={(q1,q1)}, on construit la spécification représentée sur la figure 6.5.

Cet objet étant effectivement une spécification IDTMC, on peut passer a 1’étape suivante et

appliquer le théoréme 2 sur Sy x A; g, \ €.

6.3.1 Application du théoréme 2

Tout d’abord, il s’agit de construire 'automate de parité déterministe A, correspondant a
I'ensemble V(Syx A1 0,\E, ¢, O). Le langage de la spécification ici est Lo , = abc”+abe’+ade”,

de sorte que I'ensemble considéré se calcule de la maniere suivante.

O(Lao \) = ae’+ ade”
donc O 1 O(Lau\ p)) = abe” + ade”
donc O 1 O(Lay \ ¢)) = Lo,)\ (abe®” + ade®)

w

= abc
donc V(82 X A1,91 \87 ®, O) = ¢ N 0_1(0(L2,a \ 90))

= abc” Nabc” = abc” = .

On en déduit le DPA représenté sur la figure 6.6.

Figure 6.6 Construction du DPA Ay,

La prochaine étape consiste a réaliser le produit synchronisé de I'IDTMC non-modale étudiée

66

avec le DPA précédent. On obtient 'IDTMC non-modale colorée
Sy = (52 x Ai g, \5) ® Ay

représentée sur la figure 6.7.

(90,80) (611781) (93752)

2
[S—y
<)
_[\3
®>
=
@)
[\
f—
S

0.2, 1]

Figure 6.7 Application du théoréme — Sy, = (82 X Aig, \5) ® Ay

1
Domaine
BFS 1
08
06 h
oy
v
ol
=
[
04 +
BFS 2
02 h
O L i i i
0 02 0.4 06 08 1

P(g1,51)
e Droite d'équation P(ql,s1)+P(g2,51)=1

Figure 6.8 Mlustration du probléme au sommet (g, o)

Il s’agit a présent de considérer les différents systemes d’équations linéaires aux différents
sommets du graphe, tel qu’expliqué dans la preuve du théoreme 2. Par exemple, dans I'état

initial (go, So), le probléme linéaire a résoudre est le suivant, représenté graphiquement sur la

67

figure 6.8.

P((Qlasl))+P<(QQ751)) = 1

P((q1,51)) € [0.2,1]

P((QQ,Sl)) € [0.2,1]

Sur la figure, 'ensemble des solutions du probleme est représenté par l'intersection entre
la droite d’équation P((Ch,sl)) + P((Qg,sl)) = 1 et le domaine représenté en jaune. En

s’inspirant de 'explication du théoreme 2, on peut définir les BFS suivantes : (0.2,0.8) et
(0.8,0.2).

f2,0.8
f1,0.8 pi2,0.2
(Q4752)
(] S -
1 1
(q2,51) (qa; 53)
1

Figure 6.9 Application du théoreme — Transformation de &y en son MDP M,

Il reste a réitérer cette procédure pour I'ensemble des états de Sy afin de construire le MDP
correspondant. On rappelle que celui-ci est construit en donnant les différentes BFS en choix
de distributions pour chaque état, tel qu’illustré sur la figure 6.9. Notamment, pour 1’état
initial, on retrouve les distributions u; et ps qui correspondent respectivement aux BFS
(0.2,0.8) et (0.8,0.2) obtenues précédemment.

Il reste alors a calculer la probabilité maximale du langage abc” dans le MDP My, qui est
nécessairement atteinte pour une implémentation telle que, pour chaque état, la distribution
choisie est I'une des distributions obtenues par BFS. Ainsi, 'implémentation qui donne la
probabilité maximale a nécessairement choisi p; ou ps comme distribution a ’état initial
— et non une combinaison linéaire quelconque. On obtient finalement un nombre fini d’im-
plémentations a considérer, appelées implémentations extrémales. Il est facile d’extraire la

probabilité maximale recherchée.

Ici, on distingue quatre implémentations, suivant si on choisit @, ou us, puis vy ou vs. Les
résultats sont reportés sur le tableau 6.1 : on obtient que la probabilité maximale de lire abc®
dans M, est 0.8.

68

Tableau 6.1 Probabilités du langage abc® dans les implémentations extrémales de My,

Choix de distribution | u; | s
1%} 0.2 0
12 081 0

On en déduit, d’apres le théoreme 2, que S_ PO,(1, Sy, ¢, O) = 0.8.

6.3.2 Bilan du calcul

On a réalisé ici un seul passage dans 'algorithme du théoreme 3. Pour n = 1, on a considéré
I'unique systeme de transitions .A; g, ; puis, pour ce systeme, on a étudié une seule sous-
spécification non-modale de I'IDTMC dépliée par A;p,. Puis, on a calculé la probabilité
maximale recherchée dans cette sous-spécification particuliere. Afin de terminer I’étude pour
n = 1, il reste a considérer les autres cas de sous-spécifications non-modales — obtenues a
partir des autres sous-ensembles de &,,. Cela terminera ’algorithme, puisque A; p, est I'unique

systeme de transitions pour n = 1.

Les résultats des probabilités maximales pour les différents sous-ensembles de transitions

modales sont reportés sur le tableau 6.2.

Tableau 6.2 Résultats de I'algorithme suivant le sous-ensemble de transitions modales choisi

Choix de £ C &, {(q1,q1)} {(q1,93)} {(q1, q4)} 0
Rés. intermédiaires 0.8 0 0 0
Choix de £ C & | {(q1,q1), (a1, @)} | {(q1,q1), (@1, 90)} | {(q1,43), (91, 94)} | Em
Rés. intermédiaires 0 0.8 0 0

Ainsi, d’apres le théoreme 3 et la post-condition de I'algorithme correspondant, on en déduit
que
S PO;(Sy,0,0) < S POI(1,8,p,0) =08 <S5 PO|Ss, ¢, O).

On déduit notamment le fait que le secret ¢ n’est pas opaque dans S, relativement a O,
puisque S PO;(Sz2, ¢, O) > 0, ce qui est cohérent avec la discussion de la partie 6.2.
6.3.3 Un autre exemple

[lustrons a présent ’algorithme pour n = 2. Dans ce cas, il existe plusieurs systemes de

transitions a deux modes, il faut donc tous les étudier. Pour les besoins de l'illustration,

69

détaillons I’étude dans le cas de la fonction de transition de mode 65, produisant le systeme de
transitions A p, représenté sur la figure 6.10a. La spécification représentée sur la figure 6.10b
est issue du dépliage de I'ordonnancement de S, par un ordonnanceur dont la transition de
modes est régie par A p,. En substance, cet adversaire dédouble I'état ¢; vérifiant la propriété

atomique b, état central dans notre probleme.

Se\ {a}

q1

(U1
S
(a) Systeéme de transitions de

modes d’un ordonnanceur a
mémoire finie Ajg g,

[0,1]

[1,1]
(b) Premiere étape de Pordonnancement — Sy x As g,

Figure 6.10 Application des étapes du théoreme — cas d’'un ordonnanceur de mémoire 2

L’ensemble des transitions modales est

{(@1),(a1,2), (@1, 1), (¢,2)), E<ql, 1), (q1,2))

gm _)
((01,2), (@1, 1), ((01,2), (5,2)), ((a1,2), (4, 2)) }-

Dans le cas n = 1, seuls deux sous-ensembles de transitions modales parmi huit donnent des

résultats de probabilité maximale non-nuls. Cela s’explique par le fait que, pour les autres

70

cas, le langage V(Sy x Ai 9, \ &, p, O) est vide, autrement dit, le prédicat ¢ est opaque dans
la spécification modale correspondante. Ainsi, afin de limiter les calculs, une bonne méthode
consiste a éliminer tous les cas qui préservent 'opacité. Dans la suite, on note £ C &, le
sous-ensemble de transitions modales que 'on décide d’annuler, et S, = Sz X Asg, \ € la

spécification non-modale obtenue.

— Supposons que ((Ch, 1), (gs, 2)) € £ — c'est-a-dire que la transition (((11, 1), (gs, 2)) est
implémentée avec une probabilité nulle. Alors le langage L de la spécification non-
modale S,,, ne contient pas abc®, donc ¢ N L = (). Autrement dit, aucune exécution
de S,,, n"appartient au secret, celui-ci est donc évidemment opaque.

— Supposons que ((ql, 1), (q1, 2)) ¢ & et ((ql, 2), (gs, 2)) ¢ £. Alors le langage L contient
abbc” et abbc® & v, donc

O(abbc”) = ac” € O(L \ ¢).
Or O(pN L) Cac?, suivant si ¢ N L est vide ou non. On en déduit
O(pNL)CO(L\).

Autrement dit, le secret est opaque dans S,,,,.

— Supposons enfin que £ ne vérifie pas les deux conditions précédentes. Alors ¢ N L est
non-vide et L ne contient pas le langage abb™¢®. Autrement dit, on obtient & nouveau
le cas de non-opacité discuté dans la section 6.2. On peut alors réitérer la procédure

décrite pour le cas n = 1, et ce pour chaque sous-ensemble £ restant.

Ce raisonnement permet d’éviter de rentrer dans des boucles inutiles. On résume ce pa-
ragraphe par le tableau 6.3, contenant également les résultats intermédiaires pour chaque
sous-ensemble. Rappelons que ces résultats ne concernent que la fonction de transition de
modes 6,. Il est nécessaire de réitérer les étapes précédentes pour chaque fonction de transition

de modes & mémoire finie égale a deux.

Tableau 6.3 Résultats suivant le sous-ensemble de transitions modales choisi, pour As g,

Conditions sur £ C &, Résultats intermédiaires
Si ((q1,1), (q3,2)) €& 0
Si (g1, 1), (01,2) ¢ € et ((q1,2), (g3,2)) € & 0
Sinon 0.8

Les résultats pour les autres fonctions de transitions de modes a mémoire finie égale a deux

71

donnent comme résultat d’algorithme

S POY2,Ss,0,0) = 0.8.

On déduit de ce résultat et de celui obtenu pour n = 1 que le requis de sécurité exprimé
dans la section 6.1.2 n’est pas vérifié pour la spécification Sy. Plus précisément, on sait que

la probabilité maximale pour un adversaire de briser le secret est au moins de 0.8.

Le but de la section suivante est de corriger la spécification grace au processus de raffinement,
afin si possible de valider le requis de sécurité, tout en spécifiant un peu plus précisément le

fonctionnement du systeme de contrdle d’acces modélisé.

6.4 Un raffinement

La spécification Sy est le résultat d’une premiere modélisation abstraite du systeme de
controle d’acces, tel que discuté dans la section 6.1.1. Il est possible d’appliquer le proces-
sus de raffinement afin d’améliorer le systeme, en modélisant progressivement les différents

composants du systeme.

Précédemment, la spécification envisageait un mécanisme autorisant un nouvel essai a 'utili-
sateur ayant entré un mot de passe erroné, sans détailler. On propose ici le mécanisme suivant
afin d’améliorer le systéme de vérification du mot de passe. Si le mot de passe entré par 1'uti-
lisateur est correct, rien n’est modifié. Si en revanche il est erroné, le programme vérifie si
la tentative appartient a une liste noire de mots courants : dans ce cas, afin de contrecarrer
une éventuelle attaque de type dictionnaire, I'acces est refusé et le systéme passe dans 1’état

déconnecté.

Ceci est représenté par 'IDTMC de la figure 6.11. L’état ¢; de la spécification S, originale
est séparé en deux états : ry représente la vérification effective du mot de passe entré par
I'utilisateur, tandis que ro représente la lecture de la liste noire et la défense contre les

éventuelles attaques de type dictionnaire.

L’IDTMC proposée est non-modale. L’aspect abstrait du systéme de vérification de mot de
passe dans la spécification Sy justifie les modalités des transitions issues de I'état ¢; ; dans
&1, en revanche, on suppose que le processus ajouté doit nécessairement étre implémenté. Par

conséquent, on retire toute modalité dans les transitions issues des états ry et rs.

72

T (¥

0.1, 1]
O OBLL

Figure 6.11 Un raffinement S; du systeéme précédent

Preuve du raffinement fort de Sy par S;. Posons R C S x Sy la relation représentée par la
matrice Mx.
o @1 G2 g3 4
o [1
T 1
) 1
T3 1

Ty 1

Ts 1

Alors, notamment, rgRqg, et, pour r € Sy et g € Ss, si rRyq,
— A (r) = A2(q) de maniere évidente;
— posons ¢ : S; — Dist(S,) 'application telle que
1 sir"Rq

0 sinon.

vr' e S1, V¢ € Sy, 6(r')(¢') = {

Alors pour toute distribution f € T} (r),

Vg €Sy, Y f(r") -0 () = D f(r) € Tu(g)(d).

r' €Sy r'"Rq’

De plus, par définition de §, on a r"Rq’ si, et seulement si, 6(r")(¢") > 0.

73

Par exemple, pour ryRqo,

0204 [0.2,1
() {7”0 T, T 0—]””3}

et

0.2,1 0.2,1)
To(ao) = {a0 =2 g1, q0 222 g1

Soit une distribution f € Ti(rg). Alors,
— pour ¢ = qu, Xpes, f(r') - 6(")(qr) = f(r1) €[0.2,0.4] € To(q0)(qn) ;
— pour ¢ = g3, Xpes, f(r') - 0(r')(gs) = f(rs) €[0.2,1] € T>(qo)(gs) ;
— dans les autres cas, Y. .cq, f(r') - 0(r")(¢") =0 € {0} C T5(q0)(q)-
On traite les autres cas de maniere analogue, ce qui termine la preuve de raffinement fort de

82 par 81. O

6.4.1 Calcul d’opacité libérale

Puisque &7 n’est pas modale, il est possible d’appliquer le théoreme 2 afin de calculer I'opacité

libérale de ¢ relativement a O. Pour cela, calculons V(S,, ¢, O).

Le langage de la spécification Sy est L; = ab(bb)*c* + a(bb)* e + ade® donc
Li\¢ = ab(bb)*c + a(bb)te” + ade”
O(Ly\ ¢) = ac®+ ae” + ade®
eNLy = abc”
OlpNLy) = ac”

donc O(pNLy) C O(Li\ p)

Par conséquent, ¢ est opaque dans S relativement a O, c’est-a-dire que

S_POy(S:, ¢,0) = 0.

Remarquons que S__POi(S1,0,0) =0 < 0.8 < S__PO|(Ss, ¢, 0), ce qui est cohérent avec le

théoreme 4, puisque S raffine fortement S,.

Ici, le systeme raffiné valide les requis de sécurité, ce qui est une nette amélioration devant

74

le systeme précédent. Ceci est dii au raffinement des transitions modales en transitions non-
modales. L’ajustement des distributions problématiques permet d’écarter du domaine des

possibles les implémentations qui présentent une faille de sécurité.

Ainsi, outre ’ajout d’une fonctionnalité au systeme de controle d’acces, le raffinement permet

de conserver voire d’améliorer 'opacité d'un secret régulier.

6.4.2 Calcul d’opacité restrictive

D’apres les résultats de la section 6.4.1, la spécification S; valide les requis d’opacité du
secret. Cependant, tel que cela a été discuté dans la partie 3.2, vérifier si un prédicat est
opaque dans une spécification est un résultat peu nuancé. L’étape suivante consiste a donner
une approximation de la valeur de l'opacité restrictive — puisque la valeur exacte est tres

complexe a obtenir.

Rappelons que 'opacité restrictive du secret dans la spécification S; est définie par I'expres-
sion (cf. définition 25) :

SipOr(Sl, w, O) = Aes irilrrpr(Sl) POT(A7 2 O)

Pour une implémentation ordonnancée fixée A € S imp(S),

1 1
_ = Z Po) ————.
POT(A7 907 O) 0€O0bs P(L \ ()0 | O)
Considérons dans un premier temps uniquement les implémentations ordonnancées par un
adversaire sans-mémoire. On peut alors représenter un tel ordonnancement par le PTS A de

la figure 6.12, avec les conditions suivantes sur les variables py, po, et ps.

p1 €10.2,04]: py€[0.1,0.9]; ps€[0.1,0.9]

Calculons alors 'expression générale de 1'opacité restrictive de ¢ dans A.

Les classes d’observation du PTS par 'observateur rationnel O sont :
— 01 = ac® = O(ab(bb)*¢*);
— 09 = ae* = O(a(bb)Te¥);
— 03 = ade® = O(ade®).
Pour chaque classe o € Obs, on calcule la probabilité de la classe, P(0), ainsi que la probabilité

de toute exécution de la classe sachant qu’elle ne fait pas partie du secret, P(L \ ¢ |0).

75

(& T4
I —po
P @Q L
b3 b2
—> To
T2 1-— P3
OSSO0
1
1
r3 T's

Figure 6.12 Ordonnancement sans-mémoire quelconque de Sy

Pour cela, on suit le raisonnement suivant.

Une exécution du langage ab(bb)*c” s’écrit ab(bb)*c*, avec k € N. Ainsi, la probabilité d’une
telle exécution est
P (ab(bb)*c) = p1(1 — ps) - (p2 - p3)*.

Par conséquent, pour calculer la probabilité de tout le langage correspondant, on somme les
probabilités de toutes les exécutions appartenant a ce langage. On obtient ainsi la somme de

la série infinie suivante.

P(ab(bb)") = p1(1 — p2 Z p2 - p3)*

Puisque cette somme est la somme d’une série géométrique de raison ps - p3 < 1, la somme

de la série est finie et on peut calculer sa valeur.

1

P(ab(bb)"c”) = p1(1 —p2) - [

On obtient avec le méme raisonnement les résultats, reportés dans le tableau 6.4.

Tableau 6.4 Probabilités nécessaires au calcul de I'opacité restrictive

Classe d’observation P(o) P(L\ ¢]o)
ac” pr(1 —p2) 5 o(p2 - p3)" m
ae® pip2(1 — p3) o o(p2 - p3)" 1
ade® 1—m 1

76

Finalement, on obtient ’expression suivante d’opacité restrictive.

1 _ . p1p2(1—p3) p1(1—p2)
PO (A,p,0) l=p1+ 1—p2-p3 (1—p2-p3)?
_ p2(1—p3) (1=p2)
= 1+m < 1—p2-p3 + (1—p2-p3)?

Rappelons que le but est d’extraire la valeur minimale de 'opacité restrictive, donc la valeur
maximale de cette fonction. Pour cela, il suffit de poser p; = 0.4 — qui est la valeur maximale

de p; — puis de trouver la valeur maximale de la fonction

- p2(1 — p3) N (1 —p»)

— -1
1—pa-ps (1 —pa-p3)?

f(p2, p3

sur le domaine [0.1,0.9]%.

Cette fonction étant non-linéaire, le probléme fait appel a des procédés complexes d’optimi-
sation non-linéaire, ce qui n’est pas le propos de cette étude. Le graphe de la fonction sur le

domaine considéré est tracé sur la figure 6.13.

floy)
f(p2,p3
(p2,p3) -
25 - 2
2L 1.5
15 | 1
1 05
05 | 0
0
0.1

Figure 6.13 Graphe de la fonction f

Finalement, on déduit de cette étude que 'opacité restrictive minimale de la spécification, si
on se limite aux implémentations ordonnancées sans mémoire, est atteinte pour I'implémen-
tation de la figure 6.12 telle que p; = 0.4, po = 0.9 et p3 = 0.9. Pour cette implémentation,
I'opacité restrictive est PO, (A, ¢, O) =~ 0.52.

On peut donc déduire de ce résultat que 'opacité restrictive minimale de la spécification

77

vérifie

S PO,(S:,,0) < 0.5.

Il est possible d’affiner ce résultat, en réitérant 'opération pour I’ensemble des implémenta-
tions ordonnancées par un adversaire a mémoire quelconque n, dans le méme esprit que lors

du calcul approché de 'opacité libérale dans le cas d’une spécification modale.

Ce chapitre a permis I'application d’une étape du processus de raffinement sur un cas concret
de controle d’acces a une base de données. Les algorithmes énoncés et prouvés dans le chapitre
précédent ont permis la vérification des requis de sécurité sur les deux systémes sécurisés
considérés. Notamment, tel qu’il a été prouvé dans le chapitre précédent, raffiner le systeme

a permis d’améliorer la sécurité du systeme, tout en précisant ses fonctionnalités.

78

CHAPITRE 7 CONCLUSION

7.1 Syntheése des travaux

Le but de ce mémoire consistait a étudier la formalisation du raffinement de systéemes sécu-
risés. En regle générale, il est connu que cette problématique aboutit a un résultat négatif :
en effet, le raffinement d’'un systéme sécurisé peut briser la sécurité et le rendre vulnérable
pour certaines propriétés. Cependant, ce résultat n’est pas absolu, et notre objectif était de

représenter un cadre formel dans lequel raffiner un systeme sécurisé préserverait la sécurité.

Dans cette optique, nous avons tout d’abord défini le cadre formel de recherche, en choisissant
comme modele de spécification 'IDTMC, couplé au PTS en tant que modele d’implémenta-
tion. Ces deux modeles utilisant les hypotheses markoviennes permettent la représentation
de nombreux systemes réels, tout en appliquant des méthodes quantitatives, nécessaire a
la modélisation de propriétés de sécurité. En parallele, nous avons choisi 'opacité comme
propriété formelle de sécurité, possédant 'avantage d’étre connue dans le cadre des PTS et
étant calculable en un temps fini. De plus, 'opacité est liée aux propriétés de flux d’informa-
tion, qui sont au coeur d’importantes problématiques sur la confidentialité des données et des
échanges : elles représentent 'information que peut déduire un agent extérieur en observant

un systeme.

Afin de justifier I'intérét du choix de ce cadre, nous avons commencé par définir I'extension de
I'opacité au domaine des IDTMC, puis nous avons prouvé que cette grandeur était calculable
ou approchable en un temps fini. De fait, nous avons expliqué la méthode permettant de
calculer 'opacité libérale dans une IDTMC non-modale, c’est-a-dire une spécification dont
toutes les transitions sont nécessairement ordonnancées. Ce calcul, revenant a 1’optimisation
d’un systéme linéaire dans un ensemble fermé borné, se réalise en un temps doublement expo-
nentiel. De plus, en étudiant le cas général, nous avons construit les algorithmes permettant
de nous ramener a des calculs d’opacité dans le cas des spécifications non-modales. Ceux-ci
sont fondés sur le fait que nous listons de maniere formelle tous les ordonnancements a mé-
moire finie de 'PIDTMC, afin d’en sortir le cas le moins sécurisé. Ainsi, nous avons pu affirmer
que la valeur de l'opacité libérale dans le cas général pouvait étre approchée en un temps
doublement exponentiel, ce qui constitue notre premiere contribution originale en étendant

le résultat précédent, limité a une partie des spécifications.

Consécutivement, nous avons résolu notre problématique en énoncant le théoreme suivant :

I'opacité libérale d'une spécification IDTMC est, dans le pire des cas, conservée lorsque la

79

spécification est raffinée faiblement. Ce résultat s’appuie sur I’étude de la relation de raffi-
nement d’une part, et la relation d’ordonnancement d’autre part. Il constitue notre seconde
contribution originale, en généralisant le résultat déja connue de la préservation de 'opacité

par raffinement fort uniquement.

Enfin, nous avons illustré tous ces résultats sur un exemple d’application. Nous avons consi-
déré un systeme de controle d’acces a une base de données confidentielles, que nous avons
modélisé conformément a notre cadre d’études. Nous avons calculé que la premiere spécifica-
tion n’était pas opaque, en appliquant les algorithmes expliqués précédemment. Nous avons
alors défini un raffinement du systéme, et dans la méme optique, nous avons assuré ’'opacité,

ce qui a illustré le résultat de préservation de la sécurité.

7.2 Limitations de la solution proposée

Bien qu’il constitue une avancée dans la théorie, ce travail de recherche comporte certaines

limitations que nous n’avons pu franchir.

Tout d’abord, le théoreme de calcul de l'opacité libérale dans le cas général n’aboutit pas
a la preuve que la valeur exacte est calculable en temps fini. En effet, puisque 1'algorithme
consiste a énumérer les cas pour les différents ordonnanceurs a mémoire finie, et puisqu’il
y a théoriquement une infinité de ces ordonnanceurs — sans compter les ordonnanceurs a
mémoire quelconque — il est a priori impossible de réaliser le calcul exact en un temps fini :

la question reste ouverte.

En second lieu, nous avons prouvé que 'opacité libérale était préservée lors d’un raffinement
faible, ce qui implique qu’elle est préservée lors d’un raffinement fort. Pour autant, rien n’est

prouvé pour le raffinement complet. Cette question est encore ouverte.

Enfin, la plupart de I’étude a été réalisée en prenant en compte 'opacité libérale. La question
quant a sa grandeur duale, 'opacité restrictive, est encore en suspens. Or cette opacité est
justement intéressante pour distinguer des systémes dont le secret est effectivement opaque,
a l'inverse de l'opacité libérale, qui détermine le degré de non-opacité du secret dans un
systeme. La difficulté réside ici dans le fait que 'opacité restrictive dans un PTS n’est pas la
probabilité d’un ensemble régulier mais le résultat d’'une moyenne harmonique de probabilités

particulieres.

80

7.3 Ameéliorations futures

Cette recherche est le fruit de I’étude d'un cadre particulier dans la problématique du raffi-
nement de systemes sécurisés. Les travaux futurs consistent donc a continuer dans cette voie

en essayant de généraliser les résultats obtenus.

La premiere généralisation consiste a vérifier si les théoremes sont toujours valables si ’on
modifie la nature de la propriété. Notamment, que se passe-t-il lorsque 1’on remplace 'opacité
libérale par une autre RIFP (Bérard et Mullins, 2014) ? Si on parvient & prouver la générali-
sation, il sera possible de considérer un grand nombre de propriétés formelles de sécurité. En
effet, il est possible de prouver que les Prédicats Basiques de Sécurité (BSP) (Mantel, 2000,
2001) — introduites par Mantel et qui constituent les briques élémentaires de toutes les pro-
priétés de sécurité — peuvent étre vues comme des RIFP, en les calculant sous le sens libéral.

Ces deux résultats combinés sont autant de poinsts justifiant I'intérét de ce formalisme.

La seconde généralisation se trouve du coté du choix de modélisation. Le choix de 'ITDTMC
permet un formalisme contraint qui facilite les résultats. Serait-il possible d’étendre le tout
a des objets plus généraux, tels que les Chaines de Markov Contraintes (CMC)? Dans ce
formalisme, les probabilités de transitions ne sont plus restreintes par des intervalles, mais

par des relations de contraintes quelconques. Ainsi, les IDTMC sont des CMC particulieres.

Au-dela de ces extensions du domaine d’application des résultats, il serait intéressant d’explo-
rer davantage le calcul de I'opacité restrictive dans les IDTMC. L’aspect non-linéaire de cette
grandeur pose probleme, mais peut-étre existe-t-il un moyen de linéariser les fonctions afin
d’avoir une approximation de la valeur. Il faudrait pour cela suivre des pistes d’optimisation

de fonctions.

Enfin, nos résultats sont pour le moment dans un cadre trés théorique et peu applicatif. Le
logiciel de modélisation et vérification PRISM est actuellement capable de calculer I'opacité
libérale d’un PTS; il serait intéressant d’explorer la possibilité de modéliser les IDTMC sur
ce logiciel. Si cela s’avere possible, il serait alors envisageable de calculer 1'opacité libérale

d’une IDTMC, la difficulté étant alors de se limiter aux ordonnancements.

81

REFERENCES

Martin ABADI et Leslie LAMPORT : The existence of refinement mappings. Theoretical Com-
puter Science, 82(2):253 — 284, 1991. ISSN 0304-3975. URL http://www.sciencedirect.
com/science/article/pii/030439759190224P.

Christel BAIER et Joost-Pieter KATOEN : Principles of model checking. MIT Press, 2008.
ISBN 978-0-262-02649-9.

Christel BAIER, Joost-Pieter KATOEN, Holger HERMANNS et Verena WOLF : Comparative
branching-time semantics for markov chains. Inf. Comput., 200(2):149-214, 2005. URL
http://dx.doi.org/10.1016/j.1ic.2005.03.001.

Béatrice BERARD, Krishnendu CHATTERJEE et Nathalie SZNAJDER : Probabilistic opacity
for markov decision processes. Inf. Process. Lett., 115(1):52-59, 2015a. URL http://dx.
doi.org/10.1016/j.ipl.2014.09.001

Béatrice BERARD, Olga KOUCHNARENKO, John MULLINS et Mathieu SASSOLAS : Pro-
babilistic opacity in refinement-based modeling. CoRR, abs/1510.04316, 2015b. URL
http://arxiv.org/abs/1510.04316.

Béatrice BERARD et John MULLINS : Verification of information flow properties under
rational observation. CoRR, abs/1409.0871, 2014. URL http://arxiv.org/abs/1409.
0871.

Béatrice BERARD, John MULLINS et Mathieu SASSOLAS : Quantifying opacity. Mathema-
tical Structures in Computer Science, 25(2):361-403, 2015¢. URL http://dx.doi.org/10.
1017/50960129513000637.

Fabrizio BIoNDI, Axel LEGAY, Bo Friis NIELSEN et Andrzej WASOWSKI : Maximizing
entropy over markov processes. J. Log. Algebr. Meth. Program., 83(5-6):384-399, 2014.
URL http://dx.doi.org/10.1016/j.jlamp.2014.05.001.

Jeremy BRYANS, Maciej KOUTNY, Laurent MAZARE et Peter Y. A. RYaN : Opacity
generalised to transition systems. Int. J. Inf. Sec., 7(6):421-435, 2008. URL http:
//dx.doi.org/10.1007/s10207-008-0058-x.

Jeremy BRYANS, Maciej KOUTNY et Peter Y. A. RYAN : Modelling dynamic opacity using
petri nets with silent actions. In Formal Aspects in Security and Trust : Second IFIP TC1
WG1.7 Workshop on Formal Aspects in Security and Trust (FAST), an event of the 18th
IFIP World Computer Congress, August 22-27, 2004, Toulouse, France, pages 159-172,
2004. URL http://dx.doi.org/10.1007/0-387-24098-5_12.

http://www.sciencedirect.com/science/article/pii/030439759190224P
http://www.sciencedirect.com/science/article/pii/030439759190224P
http://dx.doi.org/10.1016/j.ic.2005.03.001
http://dx.doi.org/10.1016/j.ipl.2014.09.001
http://dx.doi.org/10.1016/j.ipl.2014.09.001
http://arxiv.org/abs/1510.04316
http://arxiv.org/abs/1409.0871
http://arxiv.org/abs/1409.0871
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1016/j.jlamp.2014.05.001
http://dx.doi.org/10.1007/s10207-008-0058-x
http://dx.doi.org/10.1007/s10207-008-0058-x
http://dx.doi.org/10.1007/0-387-24098-5_12

82

Jeremy BRYANS, Maciej KOUTNY et Peter Y. A. RYAN : Modelling opacity using petri
nets. Electr. Notes Theor. Comput. Sci., 121:101-115, 2005. URL http://dx.doi.org/10.
1016/j.entcs.2004.10.010.

JR BUCHI : On a decision method in restricted second order arithmetic logic. Proc. 1962
Internat. Congr. on Methodology and Philosophy of Sciences, 1962.

Pavol CERNY, Krishnendu CHATTERJEE et Thomas A. HENZINGER : The complexity of
quantitative information flow problems. In Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 205—
217, 2011. URL http://dx.doi.org/10.1109/CSF.2011.21.

Krishnendu CHATTERJEE, Koushik SEN et Thomas A. HENZINGER : Model-checking
omega-regular properties of interval markov chains. In Foundations of Software Science
and Computational Structures, 11th International Conference, FOSSACS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29 - April 6, 2008. Proceedings, pages 302-317, 2008. URL
http://dx.doi.org/10.1007/978-3-540-78499-9_22.

Michael R. CLARKSON et Fred B. SCHNEIDER : Hyperproperties. Journal of Computer
Security, 18(6):1157-1210, 2010. URL http://dx.doi.org/10.3233/JCS-2009-0393.

Benoit DELAHAYE, Kim G LARSEN, Axel LEGAY, Mikkel L. PEDERSEN et Andrzej WA-
SOWSKI : Decision problems for interval markov chains. In International Conference on

Language and Automata Theory and Applications, pages 274-285. Springer, 2011.

Benoit DELAHAYE, Kim G. LARSEN, Axel LEGAY, Mikkel L. PEDERSEN et Andrzej WA-
SOWSKI : Consistency and refinement for interval markov chains. J. Log. Algebr. Program.,
81(3):209-226, 2012. URL http://dx.doi.org/10.1016/j.jlap.2011.10.003.

Joseph A. GOGUEN et José MESEGUER : Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages
11-20, 1982. URL http://dx.doi.org/10.1109/SP.1982.10014.

Bengt JONSSON et Kim Guldstrand LARSEN : Specification and refinement of probabilistic
processes. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science
(LICS °91), Amsterdam, The Netherlands, July 15-18, 1991, pages 266277, 1991. URL
http://dx.doi.org/10.1109/LICS.1991.151651.

Feng LIN : Opacity of discrete event systems and its applications. Automatica, 47(3):496—
503, 2011.

Heiko MANTEL : Possibilistic definitions of security - an assembly kit. In Proceedings of
the 13th IEEE Computer Security Foundations Workshop, CSFW °00, Cambridge, England,

http://dx.doi.org/10.1016/j.entcs.2004.10.010
http://dx.doi.org/10.1016/j.entcs.2004.10.010
http://dx.doi.org/10.1109/CSF.2011.21
http://dx.doi.org/10.1007/978-3-540-78499-9_22
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1016/j.jlap.2011.10.003
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/LICS.1991.151651

83

UK, July 3-5, 2000, pages 185-199, 2000. URL http://dx.doi.org/10.1109/CSFW.2000.
856936.

Heiko MANTEL : Preserving information flow properties under refinement. In 2001 IEEE
Symposium on Security and Privacy, Oakland, California, USA May 14-16, 2001, pages
7891, 2001. URL http://dx.doi.org/10.1109/SECPRI.2001.924289.

Laurent MAZARE : Using unification for opacity properties. Proceedings of the 4th IFIP
WG1, 7:165-176, 2004.

John MULLINS et Moez YEDDES : Opacity with orwellian observers and intransitive non-
interference. In 12th International Workshop on Discrete Event Systems, WODES 2014,
Cachan, France, May 14-16, 201}., pages 344-349, 2014. URL http://dx.doi.org/10.
3182/20140514-3-FR-4046.00016.

Nir PITERMAN : From nondeterministic biichi and streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3(3), 2007. URL http://dx.doi.org/
10.2168/LMCS-3(3:5)2007.

John RUSHBY : Noninterference, transitivity, and channel-control security policies. SRI

International, Computer Science Laboratory, 1992.

Anooshiravan SABOORI et Christoforos N HADJICOSTIS : Current-state opacity formulations
in probabilistic finite automata. IEEE Transactions on automatic control, 59(1):120-133,
2014.

Mathieu SASSOLAS : Qualitative and Quantitative Methods for Detection of Hidden In-
formation. Theses, Université Pierre et Marie Curie - Paris VI, novembre 2011. URL
https://tel.archives-ouvertes.fr/tel-00683086.

Claude Elwood SHANNON : A mathematical theory of communication. 1948.

Geoffrey SMITH : On the foundations of quantitative information flow. In Foundations of
Software Science and Computational Structures, 12th International Conference, FOSSACS
2009, Held as Part of the Joint Furopean Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 288-302, 2009. URL http:
//dx.doi.org/10.1007/978-3-642-00596-1_21.

David SUTHERLAND : A model of information. In Proc. 9th National Computer Security
Conference, pages 175-183. DTIC Document, 1986.

http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.3182/20140514-3-FR-4046.00016
http://dx.doi.org/10.3182/20140514-3-FR-4046.00016
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
https://tel.archives-ouvertes.fr/tel-00683086
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Éléments de la problématique
	1.2 Exemple de motivation
	1.3 Objectifs de recherche
	1.4 Méthodologie
	1.5 Plan du mémoire

	2 REVUE DE LITTÉRATURE
	2.1 Raffinement et spécification
	2.2 Le cas des systèmes sécurisés

	3 PRÉLIMINAIRES
	3.1 Modélisation
	3.1.1 Langages et automates
	3.1.2 Les systèmes de transitions
	3.1.3 Un modèle de spécification

	3.2 Vérification de l'opacité
	3.2.1 Une opacité binaire
	3.2.2 L'opacité probabiliste

	4 THÉORIE DES SPÉCIFICATIONS
	4.1 IDTMC
	4.2 Raffinement fort et faible
	4.3 Implémentation et raffinement complet
	4.4 Langages dans les IDTMC
	4.5 Ordonnancement
	4.6 Extension de l'opacité libérale aux IDTMC

	5 VÉRIFICATION DE L'OPACITÉ
	5.1 Notions préliminaires
	5.1.1 Synchronisation entre un DPA et une IDTMC
	5.1.2 Solution Basique Réalisable (BFS)
	5.1.3 Calcul d'un MDP à partir d'une IDTMC

	5.2 Calcul de l'opacité libérale dans le cas des IDTMC non-modales
	5.3 Une approximation du cas général
	5.3.1 Détermination des transitions modales
	5.3.2 Élimination de certaines transitions modales
	5.3.3 Dépliage de l'ordonnancement
	5.3.4 Approximation du calcul de l'opacité libérale dans le cas des IDTMC modales

	5.4 Préservation de l'opacité libérale par raffinement
	5.5 Cas des autres opacités
	5.5.1 Quasi-opacité uniforme
	5.5.2 Opacité restrictive

	6 ÉTUDE DE CAS
	6.1 Description de l'étude de cas
	6.1.1 Modélisation du système
	6.1.2 Requis de sécurité

	6.2 Calcul de l'opacité binaire
	6.3 Opacité libérale
	6.3.1 Application du théorème 2
	6.3.2 Bilan du calcul
	6.3.3 Un autre exemple

	6.4 Un raffinement
	6.4.1 Calcul d'opacité libérale
	6.4.2 Calcul d'opacité restrictive

	7 CONCLUSION
	7.1 Synthèse des travaux
	7.2 Limitations de la solution proposée
	7.3 Améliorations futures

	RÉFÉRENCES

