
Titre:
Title:

Préservation de l'opacité par raffinement de systèmes spécifiés par
des chaînes de Markov discrètes à intervalles

Auteur:
Author:

Gaëtan Dupeuble

Date: 2017

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Dupeuble, G. (2017). Préservation de l'opacité par raffinement de systèmes
spécifiés par des chaînes de Markov discrètes à intervalles [Mémoire de maîtrise,
École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/2569/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2569/

Directeurs de
recherche:

Advisors:
John Mullins

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2569/
https://publications.polymtl.ca/2569/

UNIVERSITÉ DE MONTRÉAL

PRÉSERVATION DE L’OPACITÉ PAR RAFFINEMENT DE SYSTÈMES SPÉCIFIÉS
PAR DES CHAÎNES DE MARKOV DISCRÈTES À INTERVALLES

GAËTAN DUPEUBLE
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)
MAI 2017

c© Gaëtan Dupeuble, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

PRÉSERVATION DE L’OPACITÉ PAR RAFFINEMENT DE SYSTÈMES SPÉCIFIÉS
PAR DES CHAÎNES DE MARKOV DISCRÈTES À INTERVALLES

présenté par : DUPEUBLE Gaëtan
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. KHOMH Foutse, Ph. D., président
M. MULLINS John, Ph. D., membre et directeur de recherche
M. TAHAR Sofiène, Ph. D., membre

iii

DÉDICACE

À ma famille
À Alicia

iv

REMERCIEMENTS

“Tous les hommes pensent que le bonheur se
trouve au sommet de la montagne alors qu’il
réside dans la façon de la gravir.”

— Confucius

Ce mémoire conclut une aventure sur les bancs de la recherche formelle. Comme toute aven-
ture, elle a eu son lot de rebondissements, d’émotions. Mais surtout, comme toute aventure,
elle a eu son lot de protagonistes.

À l’heure du bilan, je tiens à remercier tout particulièrement mon directeur de recherche,
Monsieur John Mullins, qui a cru en moi dès notre première rencontre, et m’a guidé et
soutenu depuis lors. Je salue son enthousiasme communicatif ainsi que sa motivation sans
égale. Un grand merci également à Monsieur Foutse Khomh, président du jury, ainsi qu’à
Monsieur Sofiène Tahar, membre du jury, pour avoir accepté de prendre sur leur temps
pour évaluer le présent mémoire.

Je tiens également à remercier mes parents qui, malgré l’océan qui nous sépare, sont toujours
là pour m’écouter et me rassurer.

Enfin, je tiens à remercier mon âme sœur Alicia, pour sa relecture avisée d’une part, pour
son soutien et sa présence sans faille au quotidien, d’autre part, malgré la distance.

v

RÉSUMÉ

Les méthodes formelles permettent de modéliser et concevoir des systèmes informatiques
critiques, notamment dans les domaines à fort risque humain que sont les transports de
personne ou les centrales énergétiques, par exemple. L’une des méthodes de conception est
celle dite de raffinements successifs, étapes lors desquelles les spécifications du système sont
ajustées afin que le produit final soit le plus conforme possible aux exigences initiales. Le
principe du raffinement est tel qu’il ne doit pas être destructif : le modèle raffiné doit vérifier
au moins les mêmes requis déjà validés par le modèle précédent – par exemple, l’absence de
blocage, ou la terminaison du programme dans un état acceptant.

Parmi ces requis, le système doit parfois valider des requis non-fonctionnels, tels que des
propriétés de sécurité. Notamment, on se penche davantage sur la propriété d’opacité libérale.

Pour modéliser les systèmes informatiques ainsi que de tels requis non-fonctionnels, on a
besoin de méthodes quantitatives. Ainsi, nous choisissons comme cadre théorique le modèle
de la Chaîne de Markov discrète à Intervalles (IDTMC). Ce modèle a pour intérêt d’avoir un
aspect non-déterministe. En réalité, c’est une extension du modèle de Système de Transitions
Probabilistes (PTS) : en ce sens, on considère qu’une IDTMC représente une spécification,
que l’on peut implémenter par un PTS. Les PTS eux-mêmes sont des modèles probabilistes,
qui permettent la mesure de propriétés quantitatives. Le second avantage de ce type de
modèle est l’existence de trois types de raffinement : fort, faible et complet.

La problématique principale liée au raffinement de systèmes sécurisés est la suivante : le fait
qu’une spécification vérifie une propriété de sécurité donnée n’est pas une condition nécessaire
au fait que son raffinement la vérifie également. Le but est donc de trouver, dans notre cadre
théorique, une notion de raffinement qui préserve la propriété de sécurité que l’on étudie.

L’opacité est une propriété de sécurité introduite avec le modèle du Système de Transitions
Étiquetées (LTS), puis étendue aux PTS : elle traduit la capacité d’un observateur extérieur à
déduire l’état d’un prédicat secret en observant uniquement la partie publique des exécutions
du programme. Sa première définition est une définition binaire ; en étendant la notion aux
PTS, on introduit un aspect probabiliste en définissant l’opacité libérale, qui mesure la non-
opacité du système, et l’opacité restrictive, qui mesure son opacité effective. Il est alors
possible d’étendre à nouveau ces notions aux IDTMC : il suffit de calculer l’opacité dans le
pire des cas pour l’ensemble des implémentations des IDTMC.

Ainsi, nous prouvons les résultats suivants.

vi

Tout d’abord, on prouve que l’opacité libérale dans une IDTMC non-modale, c’est-à-dire
complètement définie, se calcule en un temps fini, doublement exponentiel. Nous proposons
un algorithme de calcul.

De plus, on prouve qu’il est possible d’approcher l’opacité libérale dans une IDTMC dans le
cas général, en un temps doublement exponentiel également. Nous proposons comme contri-
bution originale une extension de l’algorithme de calcul du cas non-modal, et nous prouvons
sa correction.

Enfin, on prouve que l’opacité libérale dans une spécification est préservée après raffinement
faible, ce qui généralise un résultat similaire mais qui ne considérait que le raffinement fort.

En définitive, nous réalisons une preuve de concept destinée à être reproduite pour d’autres
modèles et propriétés de sécurité similaires, telles que les Propriétés Rationnelles de Flux
d’Information (RIFP) dont est issue l’opacité.

vii

ABSTRACT

Formal methods can help to design any computer system – softwares, protocols, architectures,
etc. Indeed, developping a system usually consists in refining it. The refined system is then
a more precise one, with some more features. Thus, all these stages lead to a final product
which is a working implementation of the initial specification. The key issue is as follows:
each refined system must at least verify all the properties verified by the previous one. This
must be the case for behaviour properties – like the absence of any deadlock – and for security
properties.

This issue is relatively easily resolved when it is about usual behaviour properties, but security
is trickier to model. Therefore, one cannot ensure the fact that a refined system verifies the
same security properties as the previous system.

This essay aims to highlight a particular security property, opacity, for which we prove that
it is preserved when a system is refined. Opacity is linked to the probability for a passive
external observer to know the content of a secret, only by observing the public outputs of
the system.

The framework is as follows. In order to modelize our specifications, we define the Interval
Discrete-Time Markov Chain (IDTMC), which is a generalisation of the Probabilistic Transi-
tion System (PTS). The probabilistic aspect is a way to introduce quantitative measurement
on our models. Since IDTMC are non-deterministic, they carry a higher layer of abstraction
than the PTS model. On this framework, one can define three types of refinement: strong,
weak and thorough.

Since opacity is already defined on PTSs, we define its extension to IDTMC. Particularly,
one can differentiate liberal opacity – the measure of non-opacity – from restrictive opacity
– the measure of effective opacity. The extension is directly defined by stating the fact that
the opacity of a secret in a IDTMC is the worst case among all the PTSs that implement
this specification.

Then we prove the following theorems.

First, if we consider a non-modal IDTMC, i.e. a specification for which each transition has a
non-zero probability, then the liberal opacity of any secret is computable in 2EXP-time. We
provide an algorithm to compute this value.

Then, for the general case, we prove that the liberal opacity can be approximate in 2EXP-
time. This original contribution comes with an extension of the previous algorithm, for which

viii

we prove its correctness.

Finally, we solve the main issue of this essay: liberal opacity in a specification is preserved
when the system is weakly refined. This contribution expands a similar result, which only
considered strong refinement.

These results lead to a proof of concept for the fact that secured systems can be refined
and keep their security properties, for a certain type of properties. This can be especially
generalised to all Rational Information Flow Properties (RIFP).

ix

TABLE DES MATIÈRES

DÉDICACE . iii

REMERCIEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE DES MATIÈRES . ix

LISTE DES TABLEAUX . xii

LISTE DES FIGURES . xiii

LISTE DES SIGLES ET ABRÉVIATIONS . xiv

CHAPITRE 1 INTRODUCTION . 1
1.1 Éléments de la problématique . 1
1.2 Exemple de motivation . 3
1.3 Objectifs de recherche . 4
1.4 Méthodologie . 5
1.5 Plan du mémoire . 6

CHAPITRE 2 REVUE DE LITTÉRATURE . 7
2.1 Raffinement et spécification . 7
2.2 Le cas des systèmes sécurisés . 8

CHAPITRE 3 PRÉLIMINAIRES . 12
3.1 Modélisation . 12

3.1.1 Langages et automates . 12
3.1.2 Les systèmes de transitions . 14
3.1.3 Un modèle de spécification . 17

3.2 Vérification de l’opacité . 18
3.2.1 Une opacité binaire . 19
3.2.2 L’opacité probabiliste . 20

x

CHAPITRE 4 THÉORIE DES SPÉCIFICATIONS 25
4.1 IDTMC . 25
4.2 Raffinement fort et faible . 27
4.3 Implémentation et raffinement complet . 28
4.4 Langages dans les IDTMC . 31
4.5 Ordonnancement . 33
4.6 Extension de l’opacité libérale aux IDTMC 37

CHAPITRE 5 VÉRIFICATION DE L’OPACITÉ 39
5.1 Notions préliminaires . 39

5.1.1 Synchronisation entre un DPA et une IDTMC 39
5.1.2 Solution Basique Réalisable (BFS) 41
5.1.3 Calcul d’un MDP à partir d’une IDTMC 43

5.2 Calcul de l’opacité libérale dans le cas des IDTMC non-modales 44
5.3 Une approximation du cas général . 46

5.3.1 Détermination des transitions modales 47
5.3.2 Élimination de certaines transitions modales 48
5.3.3 Dépliage de l’ordonnancement . 50
5.3.4 Approximation du calcul de l’opacité libérale dans le cas des IDTMC

modales . 50
5.4 Préservation de l’opacité libérale par raffinement 54
5.5 Cas des autres opacités . 57

5.5.1 Quasi-opacité uniforme . 57
5.5.2 Opacité restrictive . 59

CHAPITRE 6 ÉTUDE DE CAS . 60
6.1 Description de l’étude de cas . 60

6.1.1 Modélisation du système . 60
6.1.2 Requis de sécurité . 62

6.2 Calcul de l’opacité binaire . 63
6.3 Opacité libérale . 64

6.3.1 Application du théorème 2 . 65
6.3.2 Bilan du calcul . 68
6.3.3 Un autre exemple . 68

6.4 Un raffinement . 71
6.4.1 Calcul d’opacité libérale . 73
6.4.2 Calcul d’opacité restrictive . 74

xi

CHAPITRE 7 CONCLUSION . 78
7.1 Synthèse des travaux . 78
7.2 Limitations de la solution proposée . 79
7.3 Améliorations futures . 80

RÉFÉRENCES . 81

xii

LISTE DES TABLEAUX

Tableau 6.1 Probabilités du langage abcω dans les implémentations extrémales de
MV . 68

Tableau 6.2 Résultats de l’algorithme suivant le sous-ensemble de transitions mo-
dales choisi . 68

Tableau 6.3 Résultats suivant le sous-ensemble de transitions modales choisi, pour
A2,θ2 . 70

Tableau 6.4 Probabilités nécessaires au calcul de l’opacité restrictive 75

xiii

LISTE DES FIGURES

Figure 1.1 Exemple de motivation . 4
Figure 3.1 Exemple de DPA vérifiant le langage ω-régulier L = aω, sur l’alphabet

Σ = {a, b, c} . 14
Figure 3.2 Exemple de LTS . 15
Figure 3.3 Exemple de PTS . 16
Figure 3.4 Exemple de MDP . 18
Figure 4.1 Exemple d’IDTMC . 26
Figure 4.2 S1 raffine faiblement mais non fortement S2 28
Figure 4.3 imp(S1) ⊆ imp(S2) mais S1 ne raffine pas faiblement S2 29
Figure 4.4 Deux implémentations de l’exemple de la figure 4.1 31
Figure 4.5 Exemple d’ordonnancement . 35
Figure 4.6 Exemple d’implémentation non-ordonnancée d’une IDTMC 36
Figure 5.1 Exemple de synchronisation entre un DPA et une IDTMC 40
Figure 5.2 Illustration de la résolution du problème de l’exemple 42
Figure 5.3 Application de l’algorithme 4 sur les transitions modales (q0, q1) et (q0, q3) 49
Figure 5.4 Illustration de la preuve du théorème 5 55
Figure 6.1 Un système de contrôle d’accès à une base de données médicales S2 . 61
Figure 6.2 Canal caché de communication entre le complice et l’attaquant 62
Figure 6.3 Une implémentation de S2 . 63
Figure 6.4 Système de transitions A1,θ1 – résultat du dépliage d’un ordonnanceur

sans-mémoire . 64
Figure 6.5 Résultat de la seconde étape – S2 ×A1,θ1 \ E 64
Figure 6.6 Construction du Automate de Parité Déterministe (DPA) AV 65
Figure 6.7 Application du théorème – SV =

(
S2 ×A1,θ1 \ E

)
⊗AV 66

Figure 6.8 Illustration du problème au sommet (q0, s0) 66
Figure 6.9 Application du théorème – Transformation de SV en son MDPMV . 67
Figure 6.10 Application des étapes du théorème – cas d’un ordonnanceur de mé-

moire 2 . 69
Figure 6.11 Un raffinement S1 du système précédent 72
Figure 6.12 Ordonnancement sans-mémoire quelconque de S1 75
Figure 6.13 Graphe de la fonction f . 76

xiv

LISTE DES SIGLES ET ABRÉVIATIONS

BFS Solution Basique Réalisable
BSP Prédicat Basique de Sécurité
CMC Chaîne de Markov à Contraintes
DPA Automate de Parité Déterministe
IDTMC Chaîne de Markov discrète à Intervalles
IMDP Processus de Décision Markovien à Intervalles de probabilité
LTS Système de Transitions Étiquetées
MC Chaîne de Markov
MDP Processus de Décision Markovien
PTS Système de Transitions Probabilistes
RIFP Propriété Rationnelle de Flux d’Information

1

CHAPITRE 1 INTRODUCTION

Que ce soit pour comprendre le fonctionnement d’un système ou pour concevoir un produit
industriel, il est courant de faire appel à des méthodes de modélisation formelle. Cela consiste
à dégager dans un premier temps les caractéristiques principales, en écartant les concepts
secondaires, a priori inutiles pour comprendre le fonctionnement du système. On obtient
alors un modèle théorique qui décrit le comportement du système, mais qui ne le représente
pas exactement. Afin de minimiser l’écart entre le système et le modèle, on a recours, lors
de la gestion de projet, au processus de raffinement : le modèle est constamment amélioré,
et les caractéristiques fonctionnelles initialement écartées sont progressivement étudiées et
ajoutées. Ceci est une manière de passer d’une idée théorique à un produit réel implémentant
cette idée.

1.1 Éléments de la problématique

En génie logiciel et informatique, les méthodes formelles sont généralement utilisées pour
modéliser, concevoir et vérifier des systèmes critiques, notamment dans des domaines tels que
le ferroviaire ou l’avionique, où les risques humains demandent une résistance parfaite aux
failles. Le raffinement est une part importante de ces méthodes, puisque la conception formelle
d’un système passe par une succession d’étapes ajoutant régulièrement des fonctionnalités.
Il est alors nécessaire de s’assurer qu’aucune étape du raffinement ne brise le fonctionnement
du système. Autrement dit, il est nécessaire de s’assurer, pour chaque étape, que le nouveau
modèle vérifie au moins les mêmes propriétés que l’ancien. On parle notamment de raffinement
de requis fonctionnels – par exemple, l’absence de blocage, ou la garantie que le train s’arrête
lors d’un feu rouge.

Ces requis fonctionnels ne sont cependant pas les seuls requis que peut comporter le cahier des
charges d’un système. On distingue également les requis non-fonctionnels. Par exemple, si l’on
considère un fournisseur de services d’infonuage, l’un des requis non-fonctionnels classiques
est l’obligation de fournir une qualité de service quasiment parfaite aux clients. Il est courant
alors de quantifier le temps maximal autorisé de baisse de service durant une période donnée,
ou bien la probabilité qu’une panne se déroule. De façon naturelle, la modélisation de ces
requis se réalise donc grâce à des méthodes quantitatives.

Une problématique particulière se pose alors : est-il possible de raffiner les modèles quanti-
tatifs, nécessaires à la modélisation de ces requis non-fonctionnels, tels que la sécurité ?

2

Habituellement, la sécurité est considérée à travers trois axes principaux : la confidentialité,
l’intégrité et la disponibilité. Garantir ces trois notions revient à garantir la sécurité du
système considéré. Un utilisateur malhonnête désirant attaquer l’un de ses trois aspects est
communément appelé adversaire ou attaquant.

— La confidentialité englobe tout ce qui est lié à l’aspect privé d’un ensemble de données.
Le but est de garantir que seuls les utilisateurs autorisés peuvent intéragir avec les
données que l’on veut garder confidentielles.

— L’intégrité concerne la modification des données. Le but est de garantir que les données
sont à tout moment complètes et lisibles. Notamment, une modification peut être
réalisée uniquement par un utilisateur autorisé.

— La disponibilité concerne l’accès aux données ou aux services. Le but est de garantir
l’accès aux données à tout utilisateur autorisé. Cette troisième propriété est générale-
ment vue comme orthogonale aux deux précédentes, puisqu’elle doit garantir un accès,
alors que les autres doivent restreindre l’accès.

Ces trois axes permettent de positionner toute problématique de sécurité dans l’industrie
– par exemple, une tentative de déni de service s’attaque à la disponibilité du système,
tandis qu’un adversaire essayant d’accéder à une base de données privées s’attaque à la
confidentialité du système, voir à son intégrité.

L’expansion des échanges commerciaux réalisés par l’entremise des internets, les données
confidentielles hébergées sur des serveurs infonuagiques, ou encore la quantité de services
nécessitant un accès fiable et continu aux réseaux internets, posent quantité de problèmes
concrets de sécurité : comment être certain de l’identité et de l’honnêteté du serveur qui reçoit
nos coordonnées bancaires ? L’accès à nos données confidentielles est-il réellement contrôlé et
inviolable ? Jusqu’à quel point pouvons-nous assurer la disponibilité de nos services ?

La modélisation de la sécurité s’avère généralement complexe. Alors que les propriétés de
comportement – telles que l’absence de blocage ou l’absence de famine – sont des proprié-
tés portant sur des ensembles de traces d’exécution du système, la sécurité d’un système
se modélise par des hyperpropriétés, c’est-à-dire des propriétés portant sur des ensembles
d’ensembles de traces : il est nécessaire d’ajouter un niveau d’abstraction supplémentaire par
rapport aux propriétés modélisant les requis fonctionnels (Clarkson et Schneider, 2010). Cet
ajout de complexité induit notamment que ces propriétés ne sont généralement pas conservées
lorsque le système est raffiné. Autrement dit, si un modèle vérifie une propriété de sécurité,
il n’est pas nécessaire que les modèles qui le raffinent vérifient la même propriété de sécurité.
Ceci pose un problème majeur qui remet en cause la méthodologie de conception évoquée
jusqu’alors, puisqu’il n’est plus possible d’assurer la sécurité du produit final en vérifiant
uniquement les propriétés de sécurité sur le modèle initial.

3

Il s’avère que certaines propriétés de sécurité ont tout de même la capacité d’être préservées
par raffinement. Prouvons dans ce mémoire que l’extension de l’opacité libérale (Bérard et al.,
2015c) à notre cadre de recherche fait partie de ces propriétés particulières.

1.2 Exemple de motivation

Illustrons ces questionnements avec un exemple de motivation simple. Considérons un pro-
tocole simplifié de transmission sécurisée de messages entre deux parties, dont le but est
de garantir la confidentialité des messages échangés. Le système est constitué d’un canal de
transmission et d’un système de chiffrement. On abstrait les détails techniques de ces deux
sous-protocoles, ainsi que les systèmes de vérification éventuels qu’un tel protocole peut avoir
– attente d’un accusé de réception, par exemple.

Puisqu’aucun système n’est parfait, on considère la possibilité d’une faille dans le système de
chiffrement, qui laisserait passer des messages en clair dans le canal. Puisque l’on ne connaît
pas la probabilité de cette faille de sécurité, on fait apparaître un intervalle de probabilité,
qui contient a priori la valeur réelle.

Finalement, on modélise le protocole par l’objet S1 représenté sur la figure 1.1a. Les diffé-
rents états du modèle (attente, transmission en clair, transmission chiffrée) traduisent les
différentes étapes possibles lors de la transmission d’un message. Les flèches représentent les
transitions entre les différents états, c’est-à-dire la manière dont peut s’exécuter le modèle ;
elles contiennent les intervalles de probabilité. Notamment, on distingue ici deux boucles
d’exécution : lorsque le système est en attente, il a la possibilité de transmettre le message en
clair, ce qui modélise la faille précédemment décrite, ou bien de fonctionner correctement en
transmettant le message de façon chiffrée ; puis il revient à son état initial dès la transmission
réalisée, dans l’attente d’un nouveau message à transmettre.

Ce modèle, que l’on appelle une spécification, est l’abstraction de toutes les implémentations
du protocole décrit précédemment : il contient toutes les probabilités d’avoir une faille à
chaque boucle de transmission, sans considérer les détails derrière la méthode de chiffrement
ou de transmission.

Un tel modèle permet alors une étude plus poussée du système, notamment du point de
vue de la sécurité. Par exemple, il paraît évident que le but est d’éviter de passer par l’état
transmission en clair afin d’assurer le bon fonctionnement du protocole. Ce type de modèle
permet l’utilisation des méthodes quantitatives : il est possible de mesurer la probabilité
de passer par cet état, à la première boucle d’exécution, à la seconde, ou n’importe quand,
suivant la propriété que l’on veut mesurer. On parlera dans la suite de probabilité de briser

4

la sécurité.

Plus précisément, puisque l’on considère une spécification non-déterministe – les probabilités
sont uniquement restreintes – on mesure le pire cas possible, c’est-à-dire le maximum des
probabilités de briser la sécurité. Par exemple, considérons la propriété “À la première boucle
de transmission, le message est transmis en clair.”, qui est un comportement qui brise la
sécurité. Dans la spécification S1, la probabilité maximale que cette propriété soit vraie est de
1, dûe à l’intervalle de probabilité [0, 1] de la transition entre les états attente et transmission
en clair.

Dans une logique de conception de protocole, le but est alors de réduire ce risque de faille
de sécurité. Pour cela, on utilise la notion de raffinement de spécification : le modèle initial
est raffiné, c’est-à-dire qu’une nouvelle spécification est trouvée, telle que toutes ses implé-
mentations implémentent également la spécification de départ. Autrement dit, le raffinement
permet de trier parmi toutes les instances du protocole de départ afin de supprimer les pires
cas. Cela est réalisé ici en réduisant les intervalles de probabilités des transitions : on obtient
la spécification S2, représentée figure 1.1b, qui raffine de manière évidente la spécification S1.

attente

transmission en clair

transmission chiffrée

[0, 1]

[0, 1]

1

1

(a) Modèle S1

attente

transmission en clair

transmission chiffrée

[0.2, 0.6]

[0.4, 0.8]

1

1

(b) Modèle S2

Figure 1.1 Exemple de motivation

Il est alors possible de vérifier si le raffinement a effectivement amélioré la mesure de risque
réalisée sur la spécification S1. Avec le même raisonnement, la propriété “À la première boucle
de transmission, le message est transmis en clair.” a cette fois-ci une probabilité d’être vraie
de 0.6 dans le pire des cas.

1.3 Objectifs de recherche

Nos objectifs de recherche sont liés au problème de raffinement destructif. Le but de nos
travaux consiste à :

5

1. définir un modèle de spécification où les requis sont non-fonctionnels et sur lequel on
peut définir un raffinement ;

2. définir et calculer la mesure de sécurité d’une spécification comme étant le pire cas de
ses implémentations ;

3. prouver que la propriété de sécurité est préservée par le raffinement de spécification,
afin de contourner cette problématique et de montrer que la méthodologie de concep-
tion de systèmes sécurisés est justifiable.

1.4 Méthodologie

Afin de remplir ces objectifs, la méthodologie utilisée est la suivante.

Le cadre théorique consiste en l’étude du modèle de la Chaîne de Markov discrète à In-
tervalles (IDTMC). Ce type de spécification, dont deux exemples sont représentés sur la
figure 1.1, est un modèle probabiliste non-déterministe permettant d’abstraire le système
étudié. L’aspect probabiliste justifie le choix de cette méthode dans le cadre de propriétés
quantitatives ; l’aspect non-déterministe permet d’étudier en un seul modèle l’ensemble des
instances possibles du système. En ce sens, les IDTMC héritent des fonctionnalités de modèles
quantitatifs connus que sont les Chaînes de Markov – méthode classique pour modéliser le
comportement de nombreux systèmes – les Systèmes de Transitions Probabilistes (PTS), ou
encore les Processus de Décision Markoviens (MDP) – modèle probabiliste non-déterministe.
En pratique, une IDTMC est un PTS dont chaque probabilité de transition est remplacée
par un intervalle de probabilités, laissant ainsi un choix indénombrable de distributions pour
chaque état du modèle.

Sur ce choix de spécification sont définis des raffinements : afin d’améliorer le modèle d’un
système, on le raffine, c’est-à-dire que l’on précise son comportement. En pratique, après
raffinement, l’ensemble des implémentations possibles du modèle est réduit et est inclus dans
l’ensemble des implémentations du modèle initial. Réitérer ce processus conduit fatalement
à une unique implémentation, un modèle totalement déterministe qui spécifie complètement
le comportement du système. Un tel modèle est alors un PTS.

On définit également une méthode d’implémentation d’une spécification, l’ordonnancement,
similaire à l’ordonnancement des MDP : l’ordonnanceur exécute la spécification, et choisit,
à chaque état rencontré, une distribution de probabilités parmi les distributions autorisées
par la spécification. Ce moyen d’implémenter permet de simuler l’action d’un adversaire
omniscient capable de manipuler le système comme bon lui semble. Étudier ceci donne ainsi
les failles éventuelles laissées par la spécification aux utilisateurs.

6

Parmi ces failles, on se penche davantage sur des propriétés de sécurité que l’on désire mesurer.
Notamment, nous étudions plus particulièrement la notion de l’opacité : de façon informelle,
l’opacité mesure la probabilité pour un observateur extérieur passif de distinguer un secret
d’un message quelconque – si cette probabilité est suffisamment faible, conformément aux
requis non-fonctionnels, cela signifie que le secret est opaque dans le modèle. Dans une spé-
cification, la mesure de l’opacité est sa mesure dans la pire de ses implémentations, ce qui
constitue une extension de la définition d’opacité au cadre des spécifications. Plus particu-
lièrement, on définit également la mesure dans la pire de ses implémentations ordonnancées.

Toutes ces méthodes aboutissent alors à l’étude de l’effet du raffinement de spécifications sur
la mesure de l’opacité.

1.5 Plan du mémoire

Le mémoire se divise en sept chapitres. À la suite de cette introduction, une revue de littéra-
ture présente l’état de l’art en ce qui concerne les méthodes formelles de spécification et de
raffinement de systèmes sécurisés.

Le chapitre 3 rappelle des résultats préliminaires et introduit les définitions nécessaires pour
la suite. Notamment, les notions de système de transition et d’automate sont expliquées, ainsi
que la propriété d’opacité, propriété de sécurité choisie pour nos résultats. Les notions sont
expliquées en suivant la logique suivante : du modèle le plus simple au plus complet. Ainsi,
les premiers systèmes de transition décrivent des systèmes hautement déterministes et très
limités. Puis les modèles gagnent en généralité, en ajoutant notamment l’aspect probabiliste.

Le chapitre 4 présente le cadre théorique du mémoire. Les modèles de spécifications particu-
liers à notre étude, le processus de raffinement utilisé, ainsi que la généralisation du concept
d’opacité à ce type de modèle sont définis.

Le chapitre 5 prouve les résultats principaux de cette étude : la décidabilité de l’opacité li-
bérale dans le cas des spécifications non-modales, le calcul d’une approximation de l’opacité
libérale dans le cas général, et la préservation de l’opacité par raffinement faible de spécifi-
cation.

Le chapitre 6 consiste en un exemple pratique d’application des aspects théoriques mis en
œuvre dans le chapitre 5. Un système de contrôle d’accès à une base de données est modélisé
puis raffiné. Le but est de vérifier sur un exemple simple les résultats précédents, tout en
montrant comment appliquer les méthodes de calcul d’opacité.

Le chapitre 7 résume les résultats et contributions, puis décrit les travaux futurs à déployer.

7

CHAPITRE 2 REVUE DE LITTÉRATURE

Dans ce chapitre, nous définissons les fondements du cadre formel utilisé dans ce mémoire,
en nous penchant plus particulièrement sur l’étude des systèmes sécurisés. Nous listons éga-
lement le comportement de différentes propriétés usuelles de sécurité relativement au raffi-
nement de systèmes.

2.1 Raffinement et spécification

Abadi et Lamport (1991) définissent un premier cadre de modèle de spécification sur lequel
on peut établir une relation de raffinement. Leurs modèles sont des machines à états poten-
tiellement infinies, qui spécifient des requis fonctionnels, de sûreté ou de vivacité. Le principe
de l’article est de prouver que le raffinement d’une spécification permet de trouver une nou-
velle spécification qui implémente la première. En ce sens, le modèle raffiné spécifie de façon
plus précise les requis par rapport au modèle initial. Ici, les modèles probabilistes ne sont
pas utilisés : il n’y a pas de quantification de la précision de spécification des requis. En pra-
tique, une spécification S1 implémente une spécification S2 si le comportement extérieur du
modèle S1 fait partie du comportement extérieur du modèle S2. Cet article pose finalement
les fondements du raffinement de machines à états.

Les résultats sont alors étendus par Jonsson et Larsen (1991), qui définissent un cadre pro-
babiliste. Ils utilisent le modèle probabiliste du Système de Transitions Probabilistes (PTS),
et l’étendent pour abstraire davantage le modèle. Ils définissent alors la Chaîne de Markov
discrète à Intervalles (IDTMC), PTS dont les probabilités de transition sont remplacées par
des intervalles de probabilité. Cela permet de spécifier plus généralement des requis non-
fonctionnels, qui ont besoin de la quantification probabiliste. Les auteurs définissent alors la
notion d’implémentation au sens utilisé dans ce mémoire, c’est-à-dire le fait que les spécifi-
cations IDTMC peuvent être vues comme des ensembles de PTS qui les implémentent. Par
la suite, la relation de raffinement entre spécification est définie, et telle que si S1 raffine S2,
alors l’ensemble des implémentations de S1 est inclus dans celui de S2. Les auteurs définissent
également la notion de modalité de transition – et par extension, la notion de spécification
modale : c’est un IDTMC qui possède au moins un arc dont la présence n’est pas obligatoire
lors de l’implémentation, c’est-à-dire une transition qui peut être affectée d’une probabilité
nulle.

Delahaye et al. (2012) continuent le travail précédent, dans le cadre des IDTMC, en définissant

8

plus précisément la notion de raffinement. Notamment, ils différencient les raffinements fort,
faible et complet, ce qui induit une hiérarchie des spécifications plus complexe. Ils prouvent
notamment que le raffinement complet est plus faible que le raffinement faible, lui-même plus
faible que le raffinement fort. Ces inégalités sont strictes en règle générale. Ainsi, cet article
décrit le cadre formel général de raffinement réutilisé par la suite dans ce mémoire.

Il reste à l’appliquer dans le cadre de requis non-fonctionnels.

2.2 Le cas des systèmes sécurisés

La sécurité est un exemple de requis non-fonctionnel. Par conséquent, sa modélisation en est
plus complexe qu’un simple requis de sûreté ou de vivacité. Clarkson et Schneider (2010)
illustrent ce fait en proposant une classification de l’ensemble des propriétés de sécurité en
introduisant la notion d’hyperpropriété. Son raisonnement est le suivant. Les requis fonction-
nels d’un système peuvent être représentés facilement à partir de propriétés portant sur les
traces infinies d’exécution de celui-ci – formellement, une propriété de traces est l’ensemble
des traces qui vérifient un comportement donné. Ce formalisme s’avère insuffisant lorsque l’on
décide de décrire des requis de sécurité. Il est nécessaire d’introduire un nouveau formalisme,
celui des hyperpropriétés : une hyperpropriété est un ensemble de propriétés, autrement dit
un ensemble d’ensembles de traces. Ainsi, en s’appuyant sur les notions de vivacité – on peut
toujours rencontrer un bon comportement dans le futur – et de sûreté – il est possible d’at-
teindre un comportement rédhibitoire en un temps fini – déjà connues dans le domaine des
propriétés de traces, Clarkson et Schneider définissent les notions d’hypervivacité et d’hyper-
sûreté. Une hyperpropriété est alors l’intersection d’une hypervivacité et d’une hypersûreté,
ce qui introduit un parallèle formel avec les propriétés de traces.

En plus de ces définitions, Clarkson et Schneider donnent le contre-exemple suivant à la
problématique qui nous intéresse, selon laquelle le raffinement ne conserve pas nécessairement
la sécurité. Considérons la propriété de sécurité “les valeurs possibles de sortie du système
sont indépendantes de la valeur du bit secret h”. Le système π qui affecte 0, 1 ou h de façon
non-déterministe à la sortie, vérifie évidemment la propriété. En revanche, le système π′ qui
affecte systématiquement la valeur de h à la sortie ne vérifie pas la propriété. Pourtant, toute
exécution de π′ est une exécution de π, donc π′ raffine π. On en déduit donc que raffiner
un système peut mener à la création d’une faille de sécurité conformément à une propriété
validée précédemment dans le processus de raffinement.

En parallèle de ces concepts, diverses propriétés de sécurité existent afin de décrire les diffé-
rentes problématiques rencontrées en pratique.

9

La première définition formelle de la sécurité informatique approche le problème à travers les
concepts de non-interférence et de flux d’information (Goguen et Meseguer, 1982). Un système
est non-interférent si aucune de ses actions n’induit de changement dans l’observation d’un
tiers extérieur. Dans le cas d’interférence, en revanche, on parle de flux ou de fuite d’informa-
tion : suivant ses observations, le tiers peut déduire des informations potentiellement critiques
sur l’état ou les paramètres du système. On peut ainsi formaliser une politique de sécurité
en énonçant tout ce qui ne doit pas interférer par l’intermédiaire du système. L’attention est
dans un premier temps porté sur les systèmes déterministes, modélisés par des machines de
Mealy dont les entrées sont confidentielles et les sorties publiques. Dans le même temps, la
non-interférence intransitive est définie : cette propriété autorise la déclassification de l’action
confidentielle durant l’exécution, de sorte qu’après déclassification, l’action en question n’est
plus critique (Rushby, 1992). Des généralisations aux systèmes non-déterministes sont déve-
loppées par la suite (Sutherland, 1986). Mantel (2000, 2001) crée alors un moyen de définir
toute propriété de non-interférence et de flux d’information à partir d’une liste de briques
élémentaires : il introduit la notion de Prédicat Basique de Sécurité (BSP).

L’étape suivante de l’étude des propriétés de flux d’information est leur quantification (Smith,
2009). Le but est de déterminer quelle quantité d’information de l’entrée est détectée par
observation de la sortie, et ce après une unique exécution. Pour cette première approche, on
utilise le formalisme de l’entropie de Shannon (Shannon, 1948). On définit notamment les
notions d’information mutuelle entre deux variables aléatoires – de façon intuitive, la quantité
d’information partagée entre les deux variables – ou la min-entropie. Ces définitions établies
impliquent l’étude de problèmes supplémentaires. Notamment, un système non-déterministe
peut être déterminisé par un adversaire en garantissant un flux d’information borné par une
constante donnée, ce en un temps exponentiel (Cerný et al., 2011).

Dans le sillage des propriétés de flux d’information, on peut distinguer l’opacité. C’est une
propriété particulière permettant de traduire diverses problématiques liées à la sécurité des
systèmes, telles que l’anonymat (Lin, 2011). Elle est imaginée initialement par Mazaré (2004),
dont la motivation est d’étendre la vérification de systèmes sécurisés pour des problèmes non-
couverts par les propriétés existantes. Ainsi, l’auteur définit une propriété opaque dans un
système s’il existe deux messages échangés par le système dont uniquement l’un des deux
vérifie la propriété et tel qu’un observateur extérieur au système ne peut les différencier.
Il applique ses définitions à des protocoles cryptographiques. Il introduit la notion de simi-
litude de messages du point de vue de l’environnement, afin de traduire l’incapacité pour
l’observateur extérieur de différencier les messages échangés dans leur intégralité.

Ces notions sont généralisées à l’ensemble des systèmes et utilisées dans le cadre des réseaux

10

de Petri (Bryans et al., 2004, 2005). Enfin, cette même notion est formalisée dans le cadre
des systèmes de transition (Bryans et al., 2008). L’attaquant passif provenant de l’environ-
nement extérieur est alors représenté par une fonction définie sur l’ensemble des exécutions
du système de transition – la notion d’observateur Orwellien est notamment définie. L’article
conclut sur la non-décidabilité de l’opacité sous observation orwellienne. Plus tard, Mullins et
Yeddes (2014) se limitent à une certaine catégorie de fonctions d’observation, les projections
Orwelliennes, et un certain type de secrets, les secrets réguliers, pour lesquelles l’opacité garde
un intérêt pratique et devient vérifiable. Il est alors prouvé que l’opacité d’un secret régulier
relativement à un projecteur Orwellien est équivalent à la non-interférence intransitive pour
un système fini.

L’opacité se présente comme une inclusion d’ensembles réguliers. Bérard et Mullins (2014)
ont alors l’idée de définir la notion de Propriété Rationnelle de Flux d’Information (RIFP),
dont l’opacité est un exemple. Ce formalisme permet d’étendre les résultats connus pour
cette notion à un nombre accru de nouvelles propriétés de sécurité. Le but sous-jacent est de
proposer une nouvelle classification, dans laquelle les RIFP joueraient un rôle particulier.

L’aspect quantitatif de l’opacité permet de contrer sa valeur binaire jusqu’alors. Il devient
possible de calculer différentes grandeurs d’opacité d’un secret régulier dans un PTS. On
définit l’opacité libérale, qui est la probabilité que le secret ne soit pas opaque, et l’opacité
restrictive, qui est la probabilité que le secret soit effectivement opaque (cf. chapitre 3 ;
Sassolas, 2011; Bérard et al., 2015c).

Toutes ces problématiques sont avant tout étudiées à travers des modèles probabilistes très
précis, où l’abstraction est limitée, comme dans le cas des PTS. Bérard et al. (2015b) étudient
alors à étendre l’opacité libérale dans le cadre formel décrit dans la section 2.1 et réutilisé
dans la suite du mémoire. Notamment, considérons une IDTMC S et un secret ϕ.

La question de l’opacité de ϕ dans un modèle est la suivante : quelle est la probabilité pour
un observateur extérieur de reconnaître avec certitude qu’une exécution du système dont il
est témoin est secrète ? Ce problème est calculable dans un PTS, mais n’est pas réglé dans le
cadre des spécifications IDTMC. Les auteurs définissent donc l’extension de ce problème en
considérant que l’opacité d’un secret dans une spécification IDTMC est la valeur maximale
de cette opacité calculée pour chacune des implémentations ordonnancées de la spécification.
Autrement dit, ils désirent calculer le pire cas. Les auteurs prouvent que cette probabilité
est mesurable pour un certain type de spécifications : les IDTMC non-modales, c’est-à-dire
celles qui ne possèdent aucun arc modal. Il est alors prouvé que le calcul est réalisable en un
temps doublement exponentiel. Cependant, la question reste ouverte pour le cas général : on
se propose de la traiter dans la suite du mémoire.

11

La seconde question que pose l’article est la suivante : est-il possible de raffiner l’opacité, c’est-
à-dire améliorer la mesure de l’opacité dans un modèle en le raffinant ? Les auteurs répondent
en partie à cette question, en montrant que le raffinement fort préserve effectivement l’opacité.
L’étude des raffinements faibles et complets reste ouverte, et on se propose de traiter le cas
du raffinement faible dans la suite du mémoire.

12

CHAPITRE 3 PRÉLIMINAIRES

Dans ce chapitre, nous introduisons les définitions usuelles de modélisation de systèmes,
afin de construire les fondations du formalisme choisi par la suite. Nous introduisons tout
d’abord les notions générales de modélisation de systèmes probabilistes, puis nous présentons
une propriété de sécurité particulière, l’opacité.

3.1 Modélisation

L’étape préliminaire à toute vérification formelle d’un système sécurisé est sa modélisation.
Cette partie a pour but de définir les modèles usuels qui constituent les bases du cadre de
notre étude.

3.1.1 Langages et automates

À partir d’un alphabet Σ, on peut construire des mots de longueur finie quelconque ou bien
des mots de longueur infinie. On appelle langage un ensemble de mots issus d’un alphabet. On
note Σk le langage contenant tous les mots de longueur k. On note Σ∗ le langage contenant
tous les mots de longueur finie – formellement, Σ∗ = ⋃

k∈N Σk ; le langage contenant tous les
mots de longueur infinie est noté Σω. L’union de ces deux langages est noté Σ∞ = Σω ∪ Σ∗.

Un premier outil mathématique lié à la théorie des langages est la notion d’automate (Bérard
et al., 2015b; Piterman, 2007).

Définition 1 (Automate). Un automate est un tuple

A = (Q,Σ, δ, q0, Qf)

tel que
— Q est un ensemble fini d’états, dont q0 qui est l’état initial ;
— Σ est un alphabet ;
— δ : Q× Σ→ Q est une fonction de transition ;
— Qf est un sous-ensemble de Q, composé des états dits acceptants.

C’est une machine à états finis dont le but est de reconnaître si un mot appartient ou non à
un langage donné, lié à l’automate. Pour cela, la machine lit le mot caractère par caractère.
Chaque fois qu’elle lit un caractère, elle change d’état en concordance avec sa fonction de

13

transition. Cette procédure s’appelle l’exécution du mot par l’automate. Dans le cas d’un mot
fini, on regarde dans quel état se trouve l’automate à la fin de la lecture : le mot appartient
au langage si, et seulement si, l’automate à la fin de l’exécution est dans un état acceptant.

Cette méthode doit cependant être modifiée dans le cadre des mots infinis. Pour cela, l’au-
tomate généralement utilisé est l’automate de Büchi. La définition d’un automate de Büchi
est exactement la définition 1, la différence étant dans la sémantique de ce modèle. Dans
un automate de Büchi, un mot est reconnu si, et seulement si, durant sa lecture, l’automate
passe infiniment souvent par des états acceptants. Ainsi, les automates de Büchi sont des
extensions directes des automates sur les mots finis. Cependant, alors que dans le cas fini,
les automates non-déterministes se déterminisent sans aucune perte d’information, cela n’est
plus vrai pour les automates de Büchi (Büchi, 1962; Piterman, 2007). Afin de s’affranchir de
cette difficulté, on fait appel à un autre type d’automate sur mot infini.

Définition 2 (Automate de Parité Déterministe (DPA)). Un Automate de Parité Détermi-
niste (DPA) est un tuple

A = (Q,Σ, δ, q0, F)

tel que
— Q est un ensemble fini d’états, dont q0 qui est l’état initial ;
— Σ est un alphabet ;
— δ : Q× Σ→ Q est une fonction de transition ;
— F est une fonction qui associe à chaque état une couleur parmi un ensemble fini
{1, . . . , k}.

Un mot accepté par l’automate est un mot de Σω telle que, lors de la lecture, la couleur
minimale des états rencontrés infiniment souvent est paire. Autrement dit, si on note ρ le
mot considéré, et Inf(ρ) l’ensemble des états rencontrés infiniment souvent durant la lecture,
il reste à calculer min{F (q) | q ∈ Inf(ρ)}.

On parle de langage acceptant ou reconnu par un DPA si l’ensemble des mots du langage
constitue l’ensemble des mots reconnus par l’automate. Le langage est alors ω-régulier.

Exemple. Sur l’exemple de la figure 3.1, les états sont notés q|F (q), avec les notations
de la définition précédente. En analysant cet automate, on note que toute lecture d’un mot
contenant un b ou un c envoie l’automate dans l’état s2 indéfiniment. Ainsi, si ρ est un
mot qui n’appartient pas au langage L = aω, c’est-à-dire si ρ contient un b ou un c, alors
l’ensemble Inf(ρ) est réduit à {s2}, donc min{F (q) | q ∈ Inf(ρ)} = 3 donc est impair : tout
mot appartenant au complément du langage L n’est pas reconnu par le DPA. Inversement, la
lecture de l’unique mot aω du langage L reste indéfiniment dans l’état s1. Ainsi, min{F (q) | q ∈

14

s0|1

s1|2

s2|3

a

b, c

a

b, c

a, b, c

Figure 3.1 Exemple de DPA vérifiant le langage ω-régulier L = aω, sur l’alphabet Σ = {a, b, c}

Inf(aω)} = 2 donc est pair : aω est reconnu par le DPA. Ces deux affirmations permettent
de conclure que le langage reconnu par le DPA est le langage L = aω.

3.1.2 Les systèmes de transitions

Alors que la partie précédente introduit davantage un outil mathématique, le but de cette
partie est de définir les moyens possibles pour modéliser un système réel (Baier et Katoen,
2008).

La modélisation d’un système passe tout d’abord par l’abstraction de ses composantes inutiles
pour l’étude – par exemple, lors de l’étude d’un protocole de contrôle d’accès, on suppose
généralement que la cryptographie est parfaite et incassable. Ainsi, on ne s’intéresse qu’aux
aspects fonctionnels intéressants pour l’étude. Un système est alors considéré suivant deux
aspects particuliers : l’état de ses différentes propriétés atomiques, et son comportement futur.
Ces deux aspects sont représentés dans un système d’états-transitions.

Définition 3 (Système de Transitions Étiquetées (LTS)). Un Système de Transitions Éti-
quetées (LTS) est un tuple A = (Q, q0, T,Σ, λ) tel que :

— Q est un ensemble dénombrable (fini ou non) d’états, avec q0 l’état initial ;
— T ⊆ Q×Q est une relation de transition ;
— Σ est un alphabet ;
— λ : Q→ Σ est une fonction d’étiquetage des états.

Ce modèle est appelé à temps discret. À chaque unité de temps, le système réalise une
transition issue de son état courant, ce qui met alors à jour son état. On appelle exécution du

15

modèle à partir d’un état q ∈ Q la suite d’états ρ = q0q1q2 . . . , avec q0 = q et ∀i, (qi, qi+1) ∈ T
– autrement dit, la transition entre qi et qi+1 existe. La trace de l’exécution ρ est alors la
suite tr(ρ) = λ(q0)λ(q1)λ(q2) · · · ∈ Σ∞.

Cette représentation s’apparente à un arbre d’exécutions non-déterministe, en ce sens qu’elle
liste toutes les exécutions possibles du système, sans considérer si l’une d’elles est plus ou
moins probable.

a

q0

b

q1

c

q2

Figure 3.2 Exemple de LTS

Exemple. L’exemple de la figure 3.2 modélise un système possédant deux exécutions infinies
possibles : ρ1 = q0q

ω
1 ou ρ2 = q0q

ω
2 . Les traces sont respectivement tr(ρ1) = abω et tr(ρ2) =

acω.

Probabilisation L’aspect probabiliste a pour but d’affiner la modélisation du système en
indiquant quelles exécutions sont les plus probables. De plus, ceci ajoute un outil de mesure.
La probabilisation d’un LTS s’effectue en attribuant des probabilités aux scénarios futurs
suivant le passé du système.

Formellement, prenons un LTS A dont les états sont indicés par qi (i ∈ N). Notons Xk la
variable aléatoire qui désigne l’état du système à l’instant discret k (k ∈ N). Probabiliser A,
c’est définir les probabilités P(Xk+1 = qi |

∧j=k
j=0 Xj = qnj

), pour tout k ∈ N un instant, i ∈ N
l’indice d’un état, et ρ = qn0 . . . qnk

une exécution.

Généralement, on considère que les systèmes probabilistes sont sans-mémoire, c’est-à-dire que
la probabilité de rencontrer un certain état à l’instant k+1 ne dépend que de l’état du système
à l’instant présent k. On parle également d’hypothèse markovienne. Formellement, définir les
probabilités d’un système markovien, c’est définir les probabilités P(Xk+1 = qi |Xk = qj),

16

pour tout instant k et tout couple d’états qi, qj ∈ Q ; autrement dit, c’est exactement définir
les probabilités des transitions entre les états qi et qj.

Définition 4 (Chaîne de Markov (MC)). Une Chaîne de Markov (MC) est un tuple A =
(Q, q0,∆) tel que :

— Q est un ensemble dénombrable (fini ou non) d’états, avec q0 l’état initial ;
— ∆ : Q → Dist(Q) est une fonction qui associe à chaque état q ∈ Q une distribution

∆(q) sur Q.

Le formalisme des MC mis en relation avec nos réflexions sur les propriétés atomiques que
l’on retrouve dans les LTS permet de définir une extension à ces deux notions.

Définition 5 (Système de Transitions Probabilistes (PTS)). Un Système de Transitions
Probabilistes (PTS) est un tuple A = (Q, q0,Σ,∆, L) tel que :

— Q est un ensemble dénombrable (fini ou non) d’états, avec q0 l’état initial ;
— ∆ : Q → Dist(Q) est une fonction qui associe à chaque état q ∈ Q une distribution

∆(q) sur Q ;
— Σ est un alphabet ;
— L : Q→ Σ est une fonction d’étiquetage des états.

Ainsi, avec la notion de PTS, nous possédons le formalisme nécessaire pour modéliser des
systèmes probabilistes. On considère qu’un système représenté par un PTS est entièrement
spécifié – en oubliant les abstractions initiales.

a

q0

b

q1

c

q2

0.2

0.8

1

1

Figure 3.3 Exemple de PTS

Exemple. L’exemple de la figure 3.3 modélise le même système que l’exemple de la figure
3.2, que l’on a probabilisé. Dans l’état initial, le système a désormais 80% de chance d’aller

17

dans l’état q2 ou bien 20% de chance d’aller dans l’état q1. On note que cette figure représente
bien un PTS puisque chaque état induit une distribution sur Q.

3.1.3 Un modèle de spécification

La section précédente introduit les outils nécessaires pour représenter complètement un sys-
tème réel probabiliste. Cependant, une telle approche peut mener à une modélisation trop
précise, qui ne laisse pas de place à l’ajustement. Par exemple, on peut vouloir ajuster les
distributions dans certains états afin d’affiner le comportement ou le rapprocher du com-
portement désiré. Pour cela, on introduit des outils permettant une modélisation avec un
niveau d’abstraction supplémentaire. On appelle ces nouveaux modèles des spécifications, car
le but est de spécifier le champ des possibles pour le système que l’on veut étudier. Les PTS
auxquels on aboutit après étude des spécifications sont des implémentations de celles-ci.

Une première idée à envisager lorsqu’il s’agit d’élargir le champ des possibles est de proposer
plusieurs choix de distributions pour chaque état. Implémenter un tel objet consiste alors à
donner un poids plus ou moins important à chaque distribution au choix.

Définition 6 (Processus de Décision Markovien (MDP)). Un Processus de Décision Marko-
vien (MDP) est un tupleM = (Q, q0, A,∆,Σ, L) tel que :

— Q est un ensemble dénombrable (fini ou non) d’états, avec q0 l’état initial ;
— A est un ensemble de choix de distributions sur Q – on l’appelle aussi l’ensemble des

distributions de base ;
— ∆ : Q × A → Dist(Q) est une fonction qui associe à chaque état q ∈ Q et à chaque

choix µ ∈ A une distribution ∆(q, µ) sur Q ;
— Σ est un alphabet ;
— L : Q→ Σ est une fonction d’étiquetage des états.

Un MDP est donc un PTS pour lequel on propose un choix entre plusieurs distributions dans
chaque état. C’est un premier niveau d’abstraction qui permet de s’affranchir des probabilités
fixes des PTS.

Exemple. La figure 3.4 représente un modèle similaire à celui représenté par le PTS de la
figure 3.3. La différence réside dans le fait que l’on a désormais le choix entre deux systèmes
distincts, représentés par les deux distributions µ1 et µ2. L’implémentation consiste à choisir
deux réels α et β, positifs et tels que leur somme vaut 1, afin de créer la distribution µ =
α · µ1 + β · µ2. On note qu’en choisissant α = 1 et β = 0, on obtient le PTS présenté figure
3.3.

18

a

q0

b

q1

c

q2

µ1, 0.2

µ2, 0.5

µ2, 0.5

µ1, 0.8

µ3, 1

µ4, 1

Figure 3.4 Exemple de MDP

Le chapitre 4 a pour but d’introduire un nouveau modèle de spécification, inspiré en partie
des MDP, à partir duquel nous définirons plus précisément le concept de raffinement.

Avant cela, il est nécessaire d’introduire les notions de sécurité que nous utilisons pour décrire
les systèmes dans cette étude.

3.2 Vérification de l’opacité

La formalisation de la section précédente permet la modélisation, entre autres, de systèmes
sécurisés – autrement dit, on désire vérifier un certain nombre de propriétés de sécurité à
l’étape de modélisation du système. L’idée est ainsi de détecter les potentielles failles de
sécurité avant même leur implémentation. Dans cette étude, l’accent sécuritaire est porté par
la propriété d’opacité.

Le scénario général que l’on étudie ici est le suivant. Soit un système A dont l’ensemble des
propriétés atomiques constitue l’alphabet Σ. On considère un langage ω-régulier ϕ ∈ Σω que
l’on désire garder secret. On dit qu’une exécution du système satisfait le secret si sa trace
appartient au langage ϕ. On définit également une fonction d’observation, O : Σ∞ → Σ∞ob ,
avec Σob la partie observable de l’alphabet Σ. On se limite aux projections naturelles de
Σ dans Σob, généralisées aux langages ω-réguliers (Mullins et Yeddes, 2014; Bérard et al.,
2015b), c’est-à-dire les fonctions qui associent le mot vide à chaque élément non-observable
de Σ, qui laissent inchangé tout élément observable de l’alphabet, et telles que O(ε) = ε :

∀σ ∈ Σ∞, ∀a ∈ Σ \ Σob, O(σa) = O(σ)
∀σ ∈ Σ∞, ∀b ∈ Σob, O(σb) = O(σ)b.

19

On note [σ]O – ou [σ] quand l’observateur est sous-entendu – la classe d’observation du mot
σ, c’est-à-dire l’ensemble des mots dont l’observation par O est la même que celle du mot σ :

[σ]O = O−1(O(σ)).

On note Obs l’ensemble des classes d’observations de la fonction d’observation.

Notons que si L est un langage ω-régulier et si O est un observateur rationnel tel que présenté
ci-dessus, alors le langage O(L) est un langage ω-régulier (Bérard et al., 2015c).

Le but est de calculer la capacité pour le système A de cacher l’exécution du secret à l’ob-
servateur rationnel extérieur.

3.2.1 Une opacité binaire

La première définition d’opacité s’applique dans le contexte des LTS. Formellement, on dit
d’un secret qu’il est opaque si, pour toute exécution du secret, il existe une exécution non-
secrète qui est observée de la même manière par l’observateur rationnel extérieur – on dit
que le secret est couvert par une exécution non-secrète. Autrement dit, pour que le secret soit
opaque, il faut et il suffit que chaque classe d’observation contenant une exécution secrète
contienne également au moins une exécution non-secrète. On en déduit la définition suivante.

Définition 7 (Opacité). Soient un LTS A dont le langage des exécutions est L, un secret
ω-régulier ϕ ⊆ L et un observateur rationnel O. Le secret ϕ est opaque dans A relativement
à O si, et seulement si,

O(ϕ) ⊆ O(L \ ϕ).

Notons que l’on peut également définir l’opacité symétrique, en affirmant qu’un secret ϕ est
symétriquement opaque dans un système au langage L relativement à un observateur si, et
seulement si, ϕ et L\ϕ sont opaques dans le système relativement à l’observateur. Autrement
dit, il faut et il suffit que chaque classe d’observation possède à la fois des exécutions secrètes
et non-secrètes.

Cette première définition d’opacité induit une classification simple de problèmes de sécurité,
puisque l’opacité ici est une grandeur binaire : soit le secret est opaque, soit il ne l’est pas.
Cependant, dire que le secret n’est pas opaque signifie qu’il existe une exécution appartenant
à l’ensemble ϕ telle qu’aucune exécution non-secrète ne possède la même observation. Par
conséquent, cela ne signifie pas que le secret est systématiquement trahi. Cela signifie unique-
ment que, si l’exécution en question est observée, alors l’observateur a pleine connaissance
du fait qu’il est en présence d’un secret. La question naturelle que l’on peut se poser alors

20

est la suivante : quelle est la probabilité que cette exécution soit réalisée par le système ?

3.2.2 L’opacité probabiliste

L’opacité probabiliste libérale

Afin de répondre à cette question, il faut pouvoir inclure l’aspect probabiliste au modèle.
Pour cela, on adapte la notion d’opacité au contexte des PTS.

On considère l’ensemble des exécutions du système pour lesquelles un observateur est certain
d’être en présence du secret. Cet ensemble est donc l’ensemble des exécutions du secret qui
n’appartiennent à aucune classe d’observation d’une exécution non-secrète : autrement dit,
avec les notations précédentes, on considère l’ensemble V(A, ϕ,O) = ϕ ∩ O−1(O(L \ ϕ))
(Bérard et al., 2015c; Sassolas, 2011).

Définition 8 (Opacité libérale). Soient un PTS A dont le langage des exécutions est L,
un secret ω-régulier ϕ ⊆ L et un observateur rationnel O. L’opacité libérale de ϕ dans A
relativement à O est la grandeur :

POl(A, ϕ,O) = P
(
ϕ ∩ O−1(O(L \ ϕ))

)
.

Cette définition probabiliste nuance la définition binaire d’opacité, en ce sens qu’elle permet
de classer différents problèmes de sécurité suivant la valeur obtenue.

Proposition 1. Soient un PTS A dont le langage des exécutions est L, un secret ω-régulier
ϕ ⊆ L et un observateur rationnel O.

— 0 ≤ POl(A, ϕ,O) ≤ 1 ;
— POl(A, ϕ,O) = 1 si, et seulement si, ϕ = L ;
— POl(A, ϕ,O) = 0 si, et seulement si, ϕ est opaque dans A relativement à O.

Démonstration. Le premier point découle du fait que l’opacité libérale est par définition une
probabilité.

Pour montrer le deuxième point, remarquons que si X est un ensemble, P(X) = 1 si, et
seulement si, X = U , avec U l’univers. Par conséquent,

POl(A, ϕ,O) = 1 ⇔ V(A, ϕ,O) = L

⇔ ϕ ∩ O−1(O(L \ ϕ)) = L

⇔ L ⊆ ϕ ∧ L ⊆ O−1(O(L \ ϕ))
⇔ L = ϕ (car ϕ ⊆ L)

21

ce qui prouve le deuxième point.

Pour montrer le troisième point, remarquons que si X est un ensemble, P(X) = 0 si, et
seulement si, X = ∅. Par conséquent,

POl(A, ϕ,O) = 0 ⇔ V(A, ϕ,O) = ∅
⇔ O(ϕ) ∩ O(L \ ϕ) = ∅
⇔ O(ϕ) ⊆ O(L \ ϕ)

ce qui prouve la propriété.

Cette valeur permet de discriminer les systèmes pour lequel les secrets sont non-opaques entre
eux. On peut alors affirmer quels sont les systèmes les moins sécurisés, c’est-à-dire ceux pour
lesquels la probabilité de trahir tout le secret est la plus grande.

Notons qu’à l’inverse des propriétés de flux d’information fondées sur la notion d’entropie
de Shannon (Smith, 2009), on ne calcule pas la proportion du secret qui n’est plus protégée,
mais bien la probabilité que tout le secret soit rendu public.

Théorème 1. Soient un PTS A dont le langage des exécutions est L, un secret ω-régulier
ϕ ⊆ L et un observateur rationnel O. Alors la grandeur POl(A, ϕ,O) est mesurable.

Démonstration. D’après la proposition 9 appliquée au cas particulier d’un PTS, le langage
L est ω-régulier. De même, ϕ est ω-régulier. Enfin, d’après la remarque sur les observateurs
rationnels, et d’après les propriétés de fermeture des langages ω-réguliers, on en déduit que
le langage dont on veut connaître la probabilité est ω-régulier. Ainsi, le problème de calcul
d’opacité libérale revient à un problème de calcul de probabilité d’un langage ω-régulier dans
un PTS : on sait que ce problème est décidable.

D’autres formes d’opacité

Opacité restrictive À l’instar de l’opacité libérale qui permet de discriminer les systèmes
pour lesquels les secrets sont non-opaques, on peut définir une notion duale afin de discriminer
les systèmes pour lesquels les secrets sont opaques.

Intuitivement, le fait que le secret soit opaque ne le rend pas totalement immune à toute
fuite. En effet, l’observation donne un certain nombre d’informations à l’attaquant extérieur.
Celui-ci connaît la répartition du secret sur les classes : ainsi, s’il observe une classe couverte
en grande majorité par des exécutions secrètes, sa probabilité de pouvoir affirmer qu’il est en
présence du secret est plus importante que s’il est en présence d’une classe majoritairement
couverte par des exécutions non-critiques (Bérard et al., 2015c; Sassolas, 2011).

22

Définition 9 (Opacité restrictive). Soient un PTS A dont le langage des exécutions est L,
un secret ω-régulier ϕ ⊆ L et un observateur rationnel O. L’opacité restrictive de ϕ dans A
relativement à O est la grandeur définie par :

1
POr(A, ϕ,O) =

∑
o∈Obs

P(o) · 1
P(L \ ϕ | o) .

On utilise la moyenne harmonique pondérée par les probabilités sur les classes d’observation
afin de donner davantage de poids aux classes qui ont le plus de chance de trahir le secret.
De plus, cette définition vérifie les résultats de la proposition 2, qui sont les résultats naturels
d’une définition d’opacité restrictive.

Proposition 2. Soient un PTS A dont le langage des exécutions est L, un secret ω-régulier
ϕ ⊆ L et un observateur rationnel O.

— 0 ≤ POr(A, ϕ,O) ≤ 1 ;
— POr(A, ϕ,O) = 0 si, et seulement si, ϕ n’est pas opaque, c’est-à-dire qu’il existe une

classe d’observation qui est uniquement composée d’exécutions de ϕ ;
— POr(A, ϕ,O) = 1 si, et seulement si, ϕ = ∅.

Démonstration. Le premier point se déduit immédiatement du fait que l’opacité restrictive est
par définition une moyenne harmonique de plusieurs probabilités, c’est donc une probabilité
également.

Pour montrer le second point, remarquons que ϕ n’est pas opaque si, et seulement si, il
existe une classe d’observation o ∈ Obs composée uniquement d’exécutions de ϕ, i.e. telle
que P(L \ ϕ | o) = 0. Cela est équivalent au fait que 1

POr(A,ϕ,O) tend vers l’infini, car alors au
moins un des termes de la somme tend vers l’infini. Or, l’inverse de l’opacité tend vers l’infini
si, et seulement si, l’opacité restrictive tend vers 0, ce qui termine la preuve.

Montrons le dernier point.

POr(A, ϕ,O) = 1 ⇔ 1
POr(A,ϕ,O) = 1

⇔ ∀o ∈ Obs, P(L \ ϕ | o) = P(o)
⇔ P(L \ ϕ) = 1
⇔ ϕ = ∅.

Un modèle alternatif On présente dans la suite de cette section une mesure d’opacité
alternative (Saboori et Hadjicostis, 2014). Dans leurs travaux, les auteurs considèrent des

23

systèmes finis – dont les langages sont inclus dans Σ∗. On propose de transférer leurs notions
dans la sémantique des langages de Σω. Pour cela, on définit la restriction suivante, inspirée
des notations de l’article en question.

Définition 10. Soit L un langage de Σ∗.
— L’extension de L à Σω est le cône noté Lω = LΣω ;
— Si σ est un mot de L, on appelle longueur utile du cône résultant σω la longueur de

la chaîne σ ; σ est alors appelé partie utile.
— Si A est un PTS dont le langage des exécutions est L, on construit Aω le PTS dont

le langage des exécutions est Lω.

L’objet de cette partie concerne donc un ensemble très restreint de PTS.

Considérons que l’attaquant n’est capable d’observer l’exécution que durant un temps fini,
qu’il peut choisir aussi long qu’il le désire. Ainsi, il n’est capable d’observer que les exécutions
dont la longueur utile est fixée à un entier k, correspondant au temps d’observation. Pour
vérifier qu’un système est bien sécurisé contre ce type d’observation, il est alors nécessaire
de vérifier que c’est le cas pour chaque longueur potentiellement choisie par l’attaquant. En
substance, on introduit ici la notion de quasi-opacité : on autorise le fait que le secret ne soit
pas opaque, mais on veut s’assurer que l’opacité libérale ne dépasse jamais un seuil critique,
noté θ.

Définition 11 (Quasi-opacité uniforme). Soit L un langage de Σ∗. Soient un PTS A dont
le langage des exécutions est L, un secret régulier ϕ ⊆ L et un observateur rationnel O.

Notons LC = ϕ \ O−1(O(L \ ϕ)), le langage de Σ∗ composé des exécutions de A qui brisent
l’opacité de ϕ.

Alors, pour un θ > 0, le cône du secret ϕω est uniformément quasi-opaque, ou θ-opaque, dans
Aω relativement à O si, et seulement si,

∀k ∈ N, P
(
(LC ∩ Σk)ω

)
< θ.

Il est important de noter que le langage LC est construit à partir de la définition de l’opacité
dans la sémantique des langages réguliers sur Σ∗ (Mullins et Yeddes, 2014). Formellement,
les notions sont analogues, et LC est exactement le langage V(A, ϕ,O) dont on calcule la
probabilité dans le cadre de l’opacité libérale. La notion de quasi-opacité uniforme revient
donc à dire que l’opacité libérale du secret est uniformément répartie suivant la longueur
utile des mots du langage (LC)ω.

24

En résumé Ce chapitre a permis d’introduire les notions préliminaires nécessaires à la
construction des théorèmes et contributions du chapitre suivant. Nous avons introduit des
notions liées principalement au concept d’implémentation : les systèmes décrits par les PTS
sont des systèmes très précis, notamment au niveau des probabilités de transitions. Le but
du chapitre suivant est de s’affranchir de cette précision, afin de pouvoir utiliser le concept
de raffinement de systèmes. Il est alors nécessaire d’analyser comment se comportent les
propriétés de sécurité énoncées dans le cadre plus général des spécifications de systèmes.

25

CHAPITRE 4 THÉORIE DES SPÉCIFICATIONS

Ce chapitre constitue la présentation du cadre théorique de l’étude. Nous commençons par
définir le modèle de spécification utilisé, l’IDTMC, dans la section 4.1. À partir de ce modèle
de spécification, nous définissons deux types de raffinements – faible et fort – dans la section
4.2, que l’on compare. Cela permet d’aboutir, dans la section 4.3, à la notion d’implémentation
d’une spécification, qui est un PTS qui raffine l’IDTMC, puis à la notion de raffinement
complet, nouveau raffinement plus faible encore que le raffinement faible. Quelques propriétés
sur les langages dans les spécifications sont énoncées dans la section 4.4, afin de compléter les
définitions nécessaires au cadre théorique. La section 4.5 définit l’ordonnancement, qui est un
moyen de construire une implémentation à partir d’une spécification. Cette méthode permet
de construire les implémentations qu’un adversaire est capable de créer, ce qui justifie l’étude
de ces implémentations en particulier. La section 4.6 conclut ce chapitre en introduisant une
extension de l’opacité aux spécifications IDTMC. La mesure est prise dans le pire cas sur
l’ensemble des implémentations ordonnancées, car ce sont celles qui sont implémentées par
un adversaire malveillant.

4.1 IDTMC

La première brique du cadre théorique formé ici consiste en le choix d’un modèle de spé-
cification. Un tel modèle doit être probabiliste et non-déterministe, afin de jouer le rôle de
spécification en représentant l’ensemble des implémentations possibles du système étudié.
Pour cela, on décide de s’inspirer du modèle des PTS, déjà utilisé pour modéliser habituelle-
ment des systèmes complètement déterminés. On utilise donc la notion d’IDTMC, extension
du PTS.

Dans la suite, on note I l’ensemble des intervalles de [0, 1].

Définition 12 (Chaîne de Markov discrète à Intervalles (IDTMC)). Une Chaîne de Markov
discrète à Intervalles (IDTMC) est un tuple S = (S, s0, T,Σ, λ) tel que :

— S est un ensemble dénombrable (fini ou non) d’états, avec s0 l’état initial ;
— T : S → (S → I) associe à chaque état s ∈ S une fonction T (s) de S dans I, telle

que
∃f : S → [0, 1] :

∑
s′∈S

f(s′) = 1 et ∀s′ ∈ S, f(s′) ∈ T (s)(s′);

— Σ est un alphabet ;
— λ : S → Σ est une fonction d’étiquetage des états.

26

Ici, le choix de la distribution dans chaque état s s’effectue grâce à la fonction T (s). Puisque
l’on considère des intervalles de [0, 1], l’ensemble des choix est indénombrable. La condition
sur la fonction T (s) permet d’assurer que l’on peut définir une distribution à partir de s.
Une telle distribution est une fonction f : S → [0, 1] telle que ∀s′ ∈ S, f(s′) ∈ T (s)(s′) et∑
s′∈S f(s′) = 1. Par la suite, on notera f ∈ T (s) une telle distribution.

Il est à noter qu’à l’origine, les IDTMC sont des extensions des MC (Jonsson et Larsen,
1991). Notre représentation ajoute la fonction d’étiquetage, afin de se rapprocher des PTS.

On peut distinguer les IDTMC suivant si elles sont modales ou non. Une IDTMC modale
est une spécification qui possède au moins une transition modale, c’est-à-dire une transition
reliant deux états s et s′ telle qu’il existe une distribution depuis l’état s qui annule sa
probabilité.

La sémantique d’exécution d’une IDTMC est héritée de celle d’un LTS, décrite dans le cha-
pitre 3.

Exemple. L’exemple de la figure 4.1 reprend à nouveau l’exemple de la figure 3.3, en pro-
posant une spécification plus large concernant les probabilités des transitions. On note que
cette IDTMC est modale car la transition entre les états q0 et q1 peut être annulée. Dans
l’implémentation résultante, l’état q1 n’est plus accessible.

a q0

b

q1

c

q2

[0, 0.5]

[0.2, 1]

[1, 1]

[1, 1]

Figure 4.1 Exemple d’IDTMC

27

4.2 Raffinement fort et faible

On peut définir le raffinement dans le cadre formel des spécifications IDTMC, de trois ma-
nières différentes : on parle de raffinement fort, faible, et complet. Nous définissons dans cette
section les deux premières notions, le raffinement complet étant défini dans la section 4.3.

Définition 13 (Raffinement fort). Soient deux spécifications S1 = (S1, s1,0, T1,Σ, λ1) et S2 =
(S2, s2,0, T2,Σ, λ2).

S1 raffine fortement S2 (on note S1 �F S2) si, et seulement si, il existe une relation R ⊆
S1 × S2 telle que

— s1,0Rs2,0 ;
— si s1Rs2, alors λ1(s1) = λ2(s2) et ∃ δ : S1 → Dist(S2) : ∀ f ∈ T1(s1),

∀ s′2 ∈ S2,

(∑
s′

1∈S1 f(s′1) · δ(s′1)(s′2)
)
∈ T2(s2)(s′2)

et si δ(s′1)(s′2) > 0, s′1Rs′2.

Définition 14 (Raffinement faible). Soient deux spécifications S1 = (S1, s1,0, T1,Σ, λ1) et
S2 = (S2, s2,0, T2,Σ, λ2).

S1 raffine faiblement S2 (on note S1 �f S2) si, et seulement si, il existe une relation R ⊆
S1 × S2 tel que :

— s1,0Rs2,0 ;
— si s1Rs2, alors λ1(s1) = λ2(s2) et ∀ f ∈ T1(s1), ∃ δ : S1 → Dist(S2) :

∀ s′2 ∈ S2,

(∑
s′

1∈S1 f(s′1) · δ(s′1)(s′2)
)
∈ T2(s2)(s′2)

et si δ(s′1)(s′2) > 0, s′1Rs′2.

Ces deux définitions de raffinement sont très proches l’une de l’autre. Formellement, la dif-
férence réside dans la nature de la fonction δ de correspondance des distributions. Dans le
cadre du raffinement fort, celle-ci doit être uniforme : une seule fonction doit suffire pour assu-
rer la correspondance des intervalles de probabilité. En revanche, δ n’est pas nécessairement
uniforme dans le cadre du raffinement faible et peut dépendre du choix des distributions.

Cette remarque prouve le résultat suivant.

Proposition 3. Si S1 raffine fortement S2, alors S1 raffine faiblement S2.

Remarque. En revanche, la réciproque est fausse : pour le prouver, étudions le contre-
exemple tiré de Delahaye et al. (2011) et représenté sur la figure 4.2. Il y a bien raffinement

28

faible de S2 par S1. En effet, soit f ∈ T1(q). Notons x = f(s). Posons alors δ : S1 → Dist(S2)
telle que δ(s)(s1) = p · x et δ(s)(s2) = (1− p) · x, avec

p = 0 si x ∈ [0.2, 0.4]
p = x−0.3

x
si x ∈ [0.4, 0.6]

p = 0.6 sinon.

On obtient donc une fonction δ non-uniforme suivant la distribution choisie, aucune fonction
uniforme ne fonctionnant : cela démontre que le raffinement fort est impossible, au contraire
du raffinement faible.

a q

b

r

c

s

[0, 1] [0.2, 1]

(a) S1

a q1

c

s1

b

r1

c

s2

[0, 1]
[0, 0.6]

[0.2, 0.4]

(b) S2

Figure 4.2 S1 raffine faiblement mais non fortement S2

4.3 Implémentation et raffinement complet

Comme énoncé précédemment, les PTS sont des implémentations de spécifications IDTMC.
Pour définir cette notion de façon plus formelle, remarquons qu’un PTS n’est rien de moins
qu’une IDTMC pour laquelle les intervalles de probabilité sont réduits à des singletons.
Autrement dit, pour chaque paire d’états (q, q′) du PTS, on transforme la probabilité ∆(q)(q′)
en son singleton correspondant T (q)(q′) = {∆(q)(q′)}. De cette manière, on peut étendre
directement la notion de raffinement au formalisme des PTS.

Définition 15 (Implémentation). Soient A un PTS et S une spécification IDTMC. On dit
que A implémente S si, et seulement si, A raffine faiblement (fortement) S.

Si on note P l’ensemble des PTS, et imp(S) l’ensemble des implémentations d’une IDTMC
S,

imp(S) = {A ∈ P : A �i S} où �i∈ {�f ,�F}.

La relation d’implémentation entre un PTS et sa spécification IDTMC est donc une simple
relation de raffinement.

29

En parallèle de cette définition formelle d’implémentation, on peut remarquer que le raffi-
nement est une relation transitive sur l’ensemble des spécifications. Par conséquent, si une
IDTMC S1 raffine (fortement ou faiblement) une IDTMC S2, cela implique que tout élément
de imp(S1) raffine S2. Ainsi, tout élément de imp(S1) est un élément de imp(S2). On déduit
la proposition suivante.

Proposition 4. Soient deux IDTMC S1 et S2 telles que S1 raffine faiblement ou fortement
S2. Alors imp(S1) ⊆ imp(S2).

Remarque. La réciproque est cependant fausse : pour le prouver, citons ce contre-exemple
tiré de Delahaye et al. (2011) et représenté figure 4.3. En effet, imp(S1) ⊆ imp(S2) mais il
n’y a pas de raffinement faible car l’état r ne raffine ni r1 ni r2. Par l’absurde, supposons qu’il
existe une relation de raffinement faible R telle que, par exemple, rRr1. Posons f ∈ T1(r)
telle que f(s) = 1. Soit δ : S1 → Dist(S2) vérifiant la définition du raffinement faible.
Puisque s a pour étiquette c, seuls s1 et s2 peuvent être raffinés par s. Donc seuls δ(s)(s1)
et δ(s)(s2) sont éventuellement non-nuls. Ainsi, par exemple, f(s) · δ(s)(s1) ∈ T2(r1)(s1). Or
T2(r1)(s1) = [0, 0.5] et f(s) = 1 : il y a contradiction.

a q

br

d

t

c

s

1

[0, 1][0, 1]

(a) S1

a q1

br1 b r2

d

t1

d

t2

c

s1

c

s2

[0, 1][0, 1]

[0, 0.5] [0, 1] [0, 0.5] [0, 1]

(b) S2

Figure 4.3 imp(S1) ⊆ imp(S2) mais S1 ne raffine pas faiblement S2

Ce résultat permet de définir un raffinement plus complet, lui-même plus faible que les deux
notions de raffinement précédemment introduites.

Définition 16 (Raffinement complet). Soient deux IDTMC S1 et S2.

S1 raffine complètement S2 (on note S1 �c S2) si, et seulement si, imp(S1) ⊆ imp(S2).

Finalement, on a la propriété suivante, qui résume les propositions 3 et 4.

30

Proposition 5. Soient deux spécifications IDTMC S1 et S2.

Si S1 raffine fortement S2, alors elle la raffine faiblement.

Si S1 raffine faiblement S2, alors elle la raffine complètement.

Notons que le raffinement d’une IDTMC par un PTS est un cas particulier, résumé par la
proposition suivante.

Proposition 6 (Raffinement par un PTS). Soient A un PTS et S une IDTMC quelconque.
Les énoncés suivants sont équivalents.

1. A raffine fortement S ;

2. A raffine faiblement S ;

3. A raffine complètement S ;

4. A implémente S.

Démonstration. On sait déjà que (1) implique (2) et que (2) implique (3) pour tout couple
d’IDTMC d’après la proposition 5 : puisque tous les PTS sont des IDTMC particulières, la
proposition tient toujours.

De plus, on sait par définition de l’implémentation que (1) est équivalent à (4).

Montrons que (2) implique (1). Si A = (Q, q0,Σ,∆, L) raffine faiblement S = (S, s0, T,Σ, λ),
alors, avec les notations habituelles :

∀ f ∈ {∆(q)}, ∃ δ : Q→ Dist(S) : ∀ s′ ∈ S,
(∑
q′∈Q

f(q′) · δ(q′)(s′)
)
∈ T (s)(s′).

Or, {∆(q)} est déjà réduit à un singleton, donc la proposition se réduit à :

∃ δ : Q→ Dist(S) : ∀ s′ ∈ S,
(∑
q′∈Q

∆(q)(q′) · δ(q′)(s′)
)
∈ T (s)(s′).

Cet énoncé est exactement la traduction du raffinement fort d’une IDTMC par un PTS,
obtenue en réalisant le même raisonnement : on en déduit que A raffine fortement S, ce qui
prouve l’implication.

Il reste à montrer que (3) implique (1) ou (2). Supposons donc que A raffine complètement
S, c’est-à-dire que imp(A) ⊆ S. Par définition, imp(A) décrit l’ensemble des PTS qui raf-
finent A. Notamment, A lui-même est un PTS qui raffine A. Donc, A ∈ imp(A), et par
conséquent, A ∈ imp(S). Donc par définition, A raffine faiblement ou fortement S, ce qui
prouve l’implication.

31

Cette proposition permet donc d’éluder le type de raffinement considéré lorsque c’est un
PTS qui raffine un IDTMC : dans un tel cas, on notera alors A � S et on dira de manière
équivalent A raffine ou implémente S.

De plus, d’après Baier et al. (2005), on a la proposition suivante.

Proposition 7. Soient A1 et A2 deux PTS.

A1 � A2 ⇔ A2 � A1.

4.4 Langages dans les IDTMC

Ces définitions énoncées, on peut donner quelques résultats sur les langages dans les spécifi-
cations.

Le formalisme des IDTMC modales apporte une complexité dans la détermination d’un
unique langage, qui serait commun à l’ensemble des implémentations de l’IDTMC. Pour
illustrer ceci, implémentons par exemple de deux manières l’IDTMC de la figure 4.1, et
représentons les PTS obtenus sur la figure 4.4. On note que le langage de la première implé-
mentation est L1 = a(bω+cω) alors que le langage de la seconde implémentation est L2 = acω.
La notion de langage d’IDTMC pose donc problème.

a

q0

b

q1

c

q2

0.5

0.5

1

1

(a) Première implémentation

a

q0

c

q2

1

1

(b) Seconde implémentation

Figure 4.4 Deux implémentations de l’exemple de la figure 4.1

Cependant, on peut affirmer la proposition suivante.

Proposition 8. Soient S1 et S2 deux IDTMC non-modaux telles que S1 �f S2.

32

Alors, en notant L1 (respectivement L2) le langage de S1 (respectivement S2),

L1 ⊆ L2.

Afin de prouver cette proposition, définissons la notion suivante.

Définition 17 (Exécutions similaires). Soient S1 et S2 deux IDTMC telles que S1 raffine
faiblement S2. Soit ρ1 (respectivement ρ2) une exécution finie de S1 (respectivement S2).

Les exécutions ρ1 et ρ2 sont similaires si, et seulement si,
— leurs longueurs sont égales ;
— si ρ1 = s1s2 . . . sk et ρ2 = p1p2 . . . pk, alors tous les couples d’états (si, pi), i ∈ [1, k]

sont en relation d’après le raffinement.

Démonstration. Soient deux spécifications S1 = (S1, s0,1, T1,Σ, λ1) et S2 = (S2, s0,2, T2,Σ, λ2)
telles que S1 raffine faiblement S2.

La preuve est réalisée par induction sur la propriété plus forte suivante (Bérard et al., 2015b) :
pour chaque exécution finie de S1, il existe une exécution similaire de S2. On suppose par
induction que l’énoncé est vrai pour tout mot de longueur n, et on montre qu’il reste vrai
pour un mot de longueur n+1. Soit w de longueur n+1, dans le langage des mots finis de S1.
On note w = w0a avec a ∈ Σ. Une exécution qui produit le mot w est de la forme ρ = ρ0s1,
avec λ1(s1) = a. L’exécution ρ0 est une exécution de S1 de longueur n, donc par hypothèse
d’induction, il existe une exécution similaire ρ′0 de S2. Par définition du raffinement, il existe
une fonction δ : S1 → Dist(S2) telle que, pour s2 ∈ S2, si δ(s1)(s2) > 0, alors λ1(s1) = λ2(s).
Or δ(s1) induit une distribution sur l’ensemble des états de S2, donc il existe au moins un
s2 ∈ S2 tel que δ(s1)(s2) > 0. Ainsi, ρ et ρ′ = ρ′0s2 sont similaires, ce qui termine la preuve
par induction.

Toute exécution finie de S1 possède donc une exécution similaire dans S2, donc par définition
de la similitude d’exécutions, on en déduit que tout mot fini du langage de S1 est un mot
fini du langage de S2. Or un mot infini est la limite de la suite de ses préfixes finis, donc par
passage à la limite, tout mot infini du langage de S1 est un mot infini du langage de S2, ce
qui termine la preuve.

Pour le cas particulier des PTS, si on considère deux PTS A1 et A2 tels que A1 � A2, alors
d’après la proposition 7, A2 � A1, et ainsi L1 = L2 en appliquant la proposition 8.

De plus, puisqu’une implémentation d’un IDTMC S est un PTS A tel que A � S, cela signifie
que LA ⊆ LS . On peut donc poser la définition suivante, étendue aux IDTMC modales.

33

Définition 18. Le langage L d’une IDTMC S est :

L =
⋃

A∈imp(S)
LA.

Enfin, on établit la régularité du langage d’une spécification.

Proposition 9. Le langage d’une IDTMC est ω-régulier.

Démonstration. Le langage d’une IDTMC à nombre fini d’états ne dépend pas des probabili-
tés de transitions, on peut donc la transformer immédiatement en LTS à nombre fini d’états.
Un LTS à nombre fini d’états A = (Q, q0, T,Σ, λ) peut être transformé en automate de Büchi
non-déterministe : il suffit de poser la fonction de transition δ : Q× Σ→ Q qui, à tout état
q ∈ Q, associe les états δ(q, λ(q)) = T (q). Cela revient à transférer les étiquettes des états sur
les transitions issues de ces états. De plus, tout état accessible du LTS devient un état accep-
tant de l’automate. Cette transformation induit donc que le langage reconnu par l’automate
est exactement le langage du LTS. Ainsi, puisque tout langage reconnu par un automate est
un langage ω-régulier, le langage de tout LTS à nombre fini d’états est ω-régulier – de même
pour le langage de l’IDTMC initiale.

4.5 Ordonnancement

À l’instar d’un MDP, une IDTMC est un modèle de spécification non-déterministe, qui abs-
trait de nombreuses implémentations, et qui possède plusieurs composantes probabilistes.
Implémenter un tel système consiste à faire un choix parmi toutes les distributions exis-
tantes, afin d’aboutir à un unique système probabiliste, un PTS. Recourir à un ordonnanceur
est un des moyens de faire ces choix de distributions, de façon successive en exécutant la
spécification.

Dans une optique sécuritaire, l’ordonnanceur a une signification supplémentaire : on l’inter-
prète comme un adversaire du système, dont le but est d’implémenter la spécification de
façon à briser la sécurité. Ainsi, le meilleur adversaire est celui produisant l’implémentation
qui possède le plus de chance d’être nuisible. L’étude des ordonnanceurs est donc naturelle
dans le cadre du présent mémoire, et c’est la raison pour laquelle on utilisera par la suite les
termes adversaire et ordonnanceur en tant que synonymes.

Définition 19 (Ordonnanceur). Un ordonnanceur pour une IDTMC S = (S, s0, T,Σ, λ)
est une application A : FExec(S) → Dist(S) telle que pour tout préfixe fini d’exécution

34

ρ ∈ FExec(S) se terminant dans un état s :

∀s′ ∈ S, A(ρ)(s′) ∈ T (s)(s′).

Exemple. Considérons l’IDTMC représentée sur la figure 4.5a. Celle-ci est exactement la
spécification de l’exemple de motivation de la figure 1.1, à laquelle on a remplacé les états par
un alphabet plus générique, pour des soucis d’écriture. Pour rappel, le modèle représente un
protocole d’échange sécurisé de message ; si le système est dans l’état q1, il est en attente d’un
message à envoyer ; s’il est dans l’état q2, il transmet le message en clair, ce qui aboutit à une
faille de sécurité ; enfin, s’il est dans l’état q3, il transmet le message chiffré : c’est son com-
portement voulu. La spécification laisse indéterminée la distribution entre un comportement
normal et un comportement défaillant pour chaque boucle d’exécution.

Considérons alors par exemple l’ordonnanceur suivant, dont le rôle est de choisir les distri-
butions de probabilité à chaque tour de boucle.

— À la première utilisation du système, l’ordonnanceur choisit une distribution équipro-
bable.

— Deux exécutions peuvent alors se dérouler. Si le système rencontre une faille (donc
si la trace commence par q1q2q1), l’ordonnanceur choisit la distribution qui annule la
probabilité de transmettre le message de manière chiffrée et rend la faille inévitable ;
dans le cas contraire (donc si la trace commence par q1q3q1), l’ordonnanceur choisit
une distribution 0.8/0.2, privilégiant à nouveau le comportement défaillant pour le
second tour de boucle.

— Enfin, après le deuxième tour de boucle, l’ordonnanceur oublie les traces précédentes
et considère que le système est de retour à son état initial.

Un tel ordonnanceur implémente la spécification de manière à obtenir le PTS représenté sur
la figure 4.5b.

Notons que la définition est ici celle d’un ordonnanceur pour une IDTMC. On peut définir
de façon très similaire un ordonnanceur pour un MDP.

L’ensemble des ordonnanceurs d’une spécification S est noté Sched(S). L’ordonnancement
d’une telle spécification par un ordonnanceur A induit la construction du PTS

S(A) = (Q, q0,Σ,∆, L)

tel que :
— Q ⊆ FExec(S) est l’ensemble des états, tel que chaque état est une exécution finie

des états de S ;

35

a

q1

b q2

c q3

[0, 1]

[0, 1]

1
1

(a) Spécification à ordonnan-
cer

a

q1

b

q1q2

c

q1q3

a

q1q2q1

a

q1q3q1

b

q1q2q1q2

b

q1q3q1q2

c

q1q3q1q3

1

0.5

0.5

1 1

1

1

0.8

0.2

1

(b) Implémentation ordonnancée

Figure 4.5 Exemple d’ordonnancement

— q0 est l’exécution ne contenant que l’état initial s0 ;
— ∀ρ ∈ Q, ∀s′ ∈ S, ∆(ρ)(ρs′) = A(ρ)(s′) ;
— ∀ρ ∈ Q, L(ρ) = λ(s) si s est le dernier état de S visité par l’exécution ρ.

Par construction, S(A) ∈ imp(S). De plus, on note S_imp(S) = {S(A) |A ∈ Sched(S)}
l’ensemble des implémentations ordonnancées. La remarque précédente prouve alors que

S_imp(S) ⊆ imp(S).

Remarque. Cependant, l’égalité n’est pas assurée.

En effet, considérons l’exemple de la figure 4.6. On affirme que le PTS représenté sur la

36

figure 4.6b est une implémentation de l’IDTMC S mais n’a pas été ordonnancé.

On montre que c’est une implémentation en posant R la relation de Q × S telle que R =
{(q0, s0), (q1, s1), (q1, s2), (q2, s1), (q2, s2), (q3, s1), (q3, s2)}.

Puisque q0Rs0, posons δ : Q→ Dist(S) tel que :



δ(q0)(s0) = 1;
δ(q1)(s1) = 0.5 et δ(q1)(s2) = 0.5;
δ(q2)(s1) = 0.5 et δ(q2)(s2) = 0.5;
δ(q3)(s1) = 0.5 et δ(q3)(s2) = 0.5.

Alors, pour s1,

∑
q′∈Q

∆(q0)(q′) · δ(q′)(s1) = 1
3 × 0.5 + 1

3 × 0.5 + 1
3 × 0.5 = 0.5 ∈ T (s0)(s1).

On obtient le même résultat pour s2, et pour s0, le résultat est trivial. Dans tous les cas, on
retrouve donc la condition de raffinement d’une spécification par un PTS.

Donc, le PTS A est bien une implémentation de S.

s0 {a}

s1

{b}

s2

{b}

[0.5, 1]

[0.5, 1]

[1, 1]

[1, 1]

(a) Exemple d’IDTMC S

q0

{a}

q1

{b}

q2

{b}

q3

{b}

1
3

1
3

1
3

1

1

1

(b) PTS non-ordonnancé A de S

Figure 4.6 Exemple d’implémentation non-ordonnancée d’une IDTMC

Cependant, ce n’est pas un ordonnancement.

Par l’absurde, supposons qu’il existe A : FExec(S)→ Dist(S) tel que S(A) = A, c’est-à-dire
que ∀ρ ∈ Q, ∀s′ ∈ S, A(ρ)(s′) = ∆(ρ)(ρs′). Alors, plus particulièrement, A(s0)(s1) doit être

37

égal à ∆(q0)(q1), ∆(q0)(q2) ou ∆(q0)(q3). Donc nécessairement, A(s0)(s1) = 1
3 ; mais dans ce

cas, A(s0)(s1) 6∈ T (s0)(s1), ce qui est absurde.

On a montré de cette manière que l’égalité entre S_imp(S) et imp(S) n’est pas assurée en
règle générale.

Un ordonnanceur général est un objet dont la mémoire est infinie : en effet, un ordonnanceur
résout l’indéterminisme étant donné le préfixe fini qu’il lit, parmi un ensemble infini de
préfixes finis. Dans un cadre plus pratique, tout système réel possède une mémoire finie : on
peut donc définir un sous-ensemble d’ordonnanceurs.

Définition 20 (Ordonnanceur à mémoire finie). Notons [n] = {1, . . . , n}, avec n un en-
tier. Un ordonnanceur à mémoire n pour une IDTMC S = (S, s0, T, λ) est un tuple A =
([n], i0, θ, γ) tel que

— [n] est un ensemble fini de modes ;
— i0 est le mode initial ;
— θ : [n]× S → [n] est une fonction de transition de modes ;
— γ : [n]× S → Dist(S) est une fonction de choix vérifiant

∀(i, s) ∈ [n]× S, ∀s′ ∈ S, γ(i, s)(s′) ∈ T (s)(s′).

Concrètement, l’ensemble des modes représente l’ensemble des états de la mémoire de l’or-
donnanceur ; celle-ci est modifiée par la fonction de transition de modes δ. En parallèle, la
fonction γ est appelée et choisit la distribution parmi toutes celles qui sont disponibles.

L’ensemble des ordonnanceurs à mémoire n d’une spécification S est noté Schedn(S). On
note également S_impn(S) = {S(A) |A ∈ Schedn(S)} l’ensemble des implémentations or-
donnancées par un ordonnanceur à mémoire n.

Un cas particulier d’ordonnanceur à mémoire finie est celui de l’ordonnanceur sans-mémoire
– élément de Sched1(S). Le PTS obtenu alors est exactement de la même forme que l’IDTMC
de départ – hormis les éventuelles transitions modales, dont l’ordonnanceur peut annuler les
probabilités.

4.6 Extension de l’opacité libérale aux IDTMC

Passons à présent à la formalisation de la mesure d’opacité dans le cadre des modèles de
spécification. Comme expliqué dans la section 3.1, une spécification IDTMC S peut se ca-
ractériser par l’ensemble de ses implémentations, noté imp(S), ou bien par l’ensemble de ses

38

implémentations ordonnancées, S_imp(S). Or, on sait calculer, d’après le chapitre 3, les dif-
férentes valeurs d’opacité pour des implémentations. Ainsi, intuitivement, il s’agit de calculer
ces valeurs pour toutes les implémentations de la spécification, afin d’obtenir un encadrement
des valeurs d’opacité que l’on peut obtenir en implémentant S. La mesure de l’opacité pour
la spécification est alors le pire des cas sur l’ensemble de ses implémentations. Dans le cas
de l’opacité libérale, d’après la propriété 1, plus la valeur de l’opacité libérale d’une implé-
mentation est grande, plus cette implémentation a de chance de divulguer le secret. Ainsi,
l’implémentation la moins sécurisée d’une spécification est celle qui possède l’opacité libérale
la plus élevée.

Définition 21 (Opacité libérale d’une spécification). Soient une spécification IDTMC S, un
secret ω-régulier ϕ et un observateur rationnel O. L’opacité libérale de ϕ dans S relativement
à O est la grandeur :

POl(S, ϕ,O) = sup
A∈imp(S)

POl(A, ϕ,O).

Si on restreint le calcul à l’ensemble des implémentations ordonnancées, on définit :

S_POl(S, ϕ,O) = sup
A∈S_imp(S)

POl(A, ϕ,O) = sup
A∈Sched(S)

POl(S(A), ϕ,O).

Avec ce type de propriété, la sécurité est brisée lorsque le secret n’est pas opaque dans
le système, c’est-à-dire lorsque l’observateur extérieur est capable de distinguer entre les
exécutions secrètes et non-secrètes. L’adversaire a pour but de faciliter ce bris de sécurité, dans
le but de divulguer toute l’information à l’observateur. En somme, dans cette étude, la sécurité
est brisée dès lors qu’il y a un canal de communication entre l’adversaire et l’observateur
passif. Ceci justifie le fait que l’on s’intéresse uniquement à l’étude des implémentations
ordonnancées dans la suite du mémoire.

Ce chapitre a permis de poser les fondations du cadre théorique de l’étude. Après avoir
défini le modèle de spécification de l’IDTMC, des moyens de raffiner ces spécifications, de
les implémenter et enfin de les ordonnancer, nous avons étendu la notion d’opacité libérale
déjà définie sur les PTS. À partir de ces définitions, il est possible de modéliser des systèmes
sécurisés opaques ou non-opaques.

Le prochain chapitre s’applique à étudier plus précisément l’opacité libérale dans les spécifi-
cations. Notamment, on prouve que la mesure de l’opacité libérale est décidable dans le cas
de spécifications non-modales ; on prouve également qu’elle peut être approchée en un temps
fini dans le cas général ; enfin, on prouve que l’opacité est préservée quand la spécification
est raffinée.

39

CHAPITRE 5 VÉRIFICATION DE L’OPACITÉ

Ce chapitre a pour but de prouver les principaux résultats du mémoire, en étudiant le com-
portement de l’opacité libérale dans les spécifications. Les deux principaux objectifs de ce
chapitre sont de prouver que la mesure de l’opacité libérale dans une spécification IDTMC
est calculable en un temps fini d’une part, et que l’opacité libérale est préservée lors du
raffinement de spécification d’autre part.

Le premier résultat pose un problème car l’on remarque que le calcul est plus difficile dans
le cas des IDTMC modales, dûes aux modifications du langage causées par la modalité des
transitions. Ainsi, on se penche avant tout sur le cas des spécifications non-modales dans
la section 5.2, puis on propose un algorithme permettant d’approcher le calcul dans le cas
général dans la section 5.3. La section 5.1 présente les notions préliminaires à la construction
des algorithmes de calcul.

Le second résultat est prouvé dans la section 5.4 : notamment, on prouve que l’opacité
est préservée par passage au raffinement faible. Aucun résultat n’est précisé dans le cas du
raffinement complet.

Enfin, la section 5.5 généralise les notions de quasi-opacité uniforme et d’opacité restrictive
aux spécifications IDTMC. De plus, on constate que la quasi-opacité uniforme se comporte de
manière très similaire à l’opacité libérale, puisqu’elles sont toutes deux issues de probabilités
d’ensembles ω-réguliers.

5.1 Notions préliminaires

Cette section introduit les notions nécessaires à l’exécution de l’algorithme de calcul de
l’opacité libérale dans une spécification, particulièrement dans le cas non-modal, détaillé
dans la section 5.2. Notamment, on définit le processus de synchronisation entre un DPA et
une IDTMC, ainsi que le processus de construction d’un MDP à partir d’une IDTMC. Cette
seconde procédure demande au préalable l’introduction de la notion de Solution Basique
Réalisable (BFS), dans la section 5.1.2.

5.1.1 Synchronisation entre un DPA et une IDTMC

L’une des étapes principales de l’algorithme de calcul consiste en la synchronisation d’un
DPA, représentant un langage régulier, avec l’IDTMC étudiée. On construit ainsi une nouvelle
IDTMC, contenant l’information du langage régulier à vérifier.

40

Cette procédure est définie de la façon suivante.

Définition 22. Soient un DPA A = (Q,Σ, δ, q0, F) et une IDTMC S = (S, s0, T,Σ, λ). La
synchronisation entre A et S est l’IDTMC colorée S ⊗A = (S×Q, (s0, q0), T ′,Σ, λ′, F ′) telle
que, pour tout état (s, q) ∈ S ×Q,

— ∀ s′ ∈ S, T ′
(

(s, q)
)((

s′, δ(q, λ(s))
))

= T (s)(s′) ;

— λ′
(
(s, q)

)
= λ(s) ;

— F ′
(
(s, q)

)
= F (q).

Cette définition se traduit de la façon suivante : si le DPA est dans un état q et l’IDTMC
dans un état s simultanément, alors l’automate lit l’étiquette α = λ(s) : d’après sa fonction
de transition, son prochain état est nécessairement δ(q, α). L’IDTMC, quant à elle, choisit la
distribution comme à son habitude.

Il est nécessaire de conserver dans l’IDTMC finale les couleurs appliquées aux différents états
afin de détecter les exécutions qui appartiennent au langage reconnu par le DPA : celles-ci
vérifient la condition d’acceptation des automates de parité (cf. définition 2). Illustrons ceci
sur un exemple.

Exemple. Pour illustrer ce processus, considérons le DPA représenté sur la figure 3.1 ainsi
que l’IDTMC représentée sur la figure 4.1, et réalisons la synchronisation entre ces deux
modèles. Le résultat est représenté sur la figure 5.1.

a|1

(s0, q0)

b|2

(s1, q1)

b|3

(s2, q1)

c|3

(s1, q2)

c|2

(s2, q2)

[0, 0.5]

[0.2, 1]

[1, 1]
[1, 1]

[1, 1]
[1, 1]

Figure 5.1 Exemple de synchronisation entre un DPA et une IDTMC

41

5.1.2 Solution Basique Réalisable (BFS)

Cette section permet d’introduire la notion de Solution Basique Réalisable (BFS) que l’on
utilise par la suite. C’est une notion mathématique, issue du domaine de l’optimisation li-
néaire. Elle s’applique donc naturellement à notre cadre théorique, doté de modèles linéaires
et de grandeurs à optimiser.

Définition 23 (Solution Basique Réalisable (BFS)). Soit n un entier naturel, soient (ai)i∈[1,n]

et (bi)i∈[1,n] dans Rn, et soit le problème linéaire contraint P suivant.

P =


∑n
i=1 xi = 1

∀i ∈ [1, n], xi ∈ [ai, bi].

Le vecteur α = (αi, i ∈ [1, n]) est une Solution Basique Réalisable (BFS) de ce problème si,
et seulement si, il existe au plus un indice k ∈ [1, n] tel que αk 6= ak et αk 6= bk.

L’ensemble des BFS constitue une base de l’ensemble vectoriel des solutions, de sorte que
toute solution générale du problème s’exprime comme une combinaison linéaire des BFS.

L’intérêt de cette notion réside dans le fait qu’il suffit de se restreindre à l’étude de la frontière
du polyèdre. Plus précisément, il y a un nombre fini de BFS pour un problème donné.

Proposition 10. Il y a au maximum n · 2n−1 points de l’espace qui peuvent être les BFS du
problème linéaire P.

Démonstration. Soit α = (αi, i ∈ [1, n]) une BFS du problème P . C’est par définition une
solution du problème, donc si l’on connaît n − 1 de ses composantes, on peut calculer la
n-ième. On sait également qu’au moins n− 1 de ses composantes sont des frontières d’inter-
valles. D’après les coefficients binomiaux, il y a

(
n
n−1

)
= n façons de choisir quelles sont ces

composantes. La n-ième composante est alors connue.

Pour chacune des composantes frontières, il reste alors à choisir si elle est égale à la frontière
haute (bi) ou basse (ai) : il y a donc deux choix pour chacune des n− 1 composantes, c’est-
à-dire, 2n−1 choix en tout.

Finalement, il y a au maximum n ·2n−1 choix possibles pour déterminer les BFS du problème.

Illustrons ceci par un exemple simple.

42

Exemple. Soit le problème suivant.


x+ y = 1
x ∈ [0.5, 1]
y ∈ [0, 1]

Notons C = [0.5, 1]× [0, 1] l’ensemble des contraintes ; c’est un polyèdre sur l’espace vectoriel
R2. Il est représenté par le rectangle jaune sur la figure 5.2. La droite d’équation x + y = 1
est représentée en bleu.

Les points de R2 qui peuvent être des BFS du problème sont (0.5, 0.5), (1, 0) et (0, 1). Or
le point (0, 1) n’est pas dans le domaine des contraintes, il est donc écarté. Ce processus est
illustré par l’intersection entre la droite et la frontière du polyèdre. Les BFS sont donc :

 x = 0.5 et y = 0.5;
x = 1 et y = 0.

Une solution générale au problème s’écrit alors :

(x0, y0) = k1 · (0.5, 0.5) + k2 · (1, 0)

Figure 5.2 Illustration de la résolution du problème de l’exemple

43

5.1.3 Calcul d’un MDP à partir d’une IDTMC

Une seconde étape importante de l’algorithme de calcul consiste en la transformation d’une
IDTMC en un MDP. En effet, l’algorithme de mesure de probabilité maximale d’un langage
ω-régulier dans un MDP est déjà connu (Bérard et al., 2015a), alors que le même calcul dans
une spécification IDTMC ne l’est pas.

La procédure est représentée sur l’algorithme 1 et est fondée sur la notion de BFS (Chatterjee
et al., 2008).

Pour un état s donné d’une spécification S = (S, s0, T,Σ, λ), T (s) décrit l’ensemble des
distributions acceptées par la spécification. Mathématiquement, c’est une équation linéaire
en les probabilités de transitions, dont les inconnues sont restreintes dans un ensemble fermé
borné. On note ce problème dans toute la suite P(s).

P(s) =


∑
s′∈S P(si+1 = s′ | si = s) = 1

∀ s′ ∈ S, P(si+1 = s′ | si = s) ∈ T (s)(s′)

Il respecte toutes les conditions de la définition 23. Ainsi, en appliquant la procédure décrite
dans la section 5.1.2, on peut lister les différentes BFS de ce problème au sommet P(s).
Notons que dans ce cas particulier, chaque BFS est une distribution sur les états de S.

On définit alors le MDP M tel que l’ensemble de ses états est exactement l’ensemble des
états de l’IDTMC S et tel que son ensemble de distributions de base correspond exactement
à l’ensemble des BFS des problèmes exprimés précédemment aux états correspondants – par
exemple, pour l’état initial, le MDP propose comme distributions toutes les BFS du problème
P(s0) lié à l’état initial.

input : IDTMC S = (S, s0, T,Σ, λ)
output: MDPM = (S, s0, A,∆,Σ, λ)

1 A = ∅;
2 ∆ = null;
3 foreach s ∈ S do
4 Trouver les BFS µ du problème P(s);
5 A = A ∪ {µ |µ est une BFS de P(s)};
6 foreach µ BFS du problème P(s) do
7 ∆((s), µ) = µ;
8 end
9 end

10 M = (S, s0, A,∆,Σ, λ);
Algorithme 1: Algorithme de construction d’un MDP à partir d’une IDTMC

44

Un tel MDP traduit exactement la même spécification que l’IDTMC initial. En effet, on
remarque qu’ordonnancer une spécification IDTMC revient exactement à trouver une solution
à chaque problème au sommet : pour chaque s ∈ S, il s’agit de trouver une distribution dans
T (s). On remarque alors qu’on peut résoudre ces problèmes de deux manières : soit par la
méthode directe, qui revient à l’ordonnancement direct de l’IDTMC ; soit par la méthode
expliquée ci-dessus, en exprimant une solution générale en tant que distribution de BFS. En
clair, un tel ordonnanceur choisit les poids qu’il donne aux différentes distributions : c’est
exactement le principe d’un ordonnanceur de MDP (cf. définition 6).

La proposition 10 ainsi que le fait que l’on calcule les BFS pour chaque état de l’IDTMC
donne le résultat suivant.

Corollaire 1. Le MDP issu de l’algorithme 1 est de taille exponentielle par rapport à la
taille de l’IDTMC initial.

Ces notions préliminaires définies, il est temps de les utiliser dans l’algorithme de calcul de
l’opacité libérale. Commençons par le cas plus simple des spécifications non-modales.

5.2 Calcul de l’opacité libérale dans le cas des IDTMC non-modales

La modalité d’une IDTMC peut poser problème. En effet, comme indiqué dans la section
4.4, lorsqu’on implémente une spécification modale, on peut modifier le langage. Ainsi, si S
est une IDTMC modale, S_imp(S) est probablement composé de plusieurs groupes de PTS,
différenciés selon leur langages. Or l’ensemble des exécutions qui divulguent le secret, dont
on veut calculer la probabilité lors de la mesure d’opacité, dépend du langage : le calcul de la
borne supérieure sur l’ensemble des implémentations ordonnancées est donc plus complexe.

Pour cette raison, étudions tout d’abord le cas des spécifications non-modales, c’est-à-dire
celles qui ont un langage unique, afin de s’affranchir de cette difficulté. Nous énonçons le
résultat suivant.

Théorème 2 (Décidabilité de l’opacité libérale). Soient une spécification IDTMC S non-
modale, un secret ω-régulier ϕ et un observateur rationnel O.

Alors la grandeur S_POl(S, ϕ,O) est mesurable.

Démonstration. La preuve de ce théorème consiste en une preuve algorithmique. Elle décrit
l’algorithme 2.

45

input : S = (S, s0, T,Σ, λ), ϕ et O
output: S_POl(S, ϕ,O)

1 Construire le DPA AV = (Q,Σ, δ, q0, F);
2 // Construction de SV = S ⊗AV
3 foreach (s, q) ∈ S ×Q do
4 foreach s′ ∈ S do
5 T ′(s, q)(s′, δ(q, λ(s))) = T (s)(s′);
6 end
7 λ′(s, q) = λ(s);
8 F ′(s, q) = F (q);
9 end

10 SV = (S ×Q, (s0, q0), T ′,Σ, λ′, F ′);
11 // Construction du MDP MV
12 A = ∅;
13 ∆ = null;
14 foreach (s, q) ∈ S ×Q do
15 Trouver les BFS µ du problème P(s, q);
16 A = A ∪ {µ |µ est une BFS de P(s, q)};
17 foreach µ BFS du problème P(s, q) do
18 ∆((s, q), µ) = µ;
19 end
20 end
21 MV = (S ×Q, (s0, q0), A,∆,Σ, λ′, F ′);
22 Calculer la probabilité maximale P du langage reconnu parMV ;
23 S_POl(S, ϕ,O) = P;
Algorithme 2: Algorithme de calcul de l’opacité libérale dans une IDTMC non-
modale

Étape 1. La première étape (lignes 1 à 10) consiste à remarquer que le secret ϕ est un
langage ω-régulier : ainsi puisque l’ensemble des langages ω-réguliers est fermé pour l’inter-
section et que l’observateur est rationnel, l’ensemble V(S, ϕ,O) est lui-même ω-régulier. Le
problème se réduit donc au calcul de la probabilité maximale d’un langage régulier dans une
IDTMC. Pour cela, on s’inspire des travaux de Bérard et al. (2015c) : il s’agit de construire
l’IDTMC qui correspond à l’intersection du système et du langage.

On peut construire un DPA, noté AV , qui reconnaît le langage V(S, ϕ,O). On le construit
en déterminisant l’automate de Büchi reconnaissant le même langage (Piterman, 2007), que
l’on obtient en réalisant des compositions et intersections d’automates à partir de l’automate
reconnaissant le secret ϕ : cette procédure est de complexité exponentielle.

L’intersection entre le système et le langage se réalise par la synchronisation (cf. définition
22) de ce DPA avec l’IDTMC initiale : on obtient une IDTMC colorée synchronisée, notée

46

SV = S ⊗AV .

Étape 2. La seconde étape (lignes 11 à 21) consiste à construire le MDP correspondant à
cette IDTMC SV à partir de la procédure décrite dans la section 5.1.3. On le noteMV . Ce
MDP contient décrit exactement la même spécification que l’IDTMC SV .

Étape 3. La dernière étape consiste alors à maximiser la probabilité du langage V(S, ϕ,O)
dans le MDPMV . Cette probabilité est exactement la grandeur S_POl(S, ϕ,O), l’opacité
libérale de ϕ dans l’IDTMC S.

D’après (Piterman, 2007), la procédure de construction du DPA reconnaissant le langage
V(S, ϕ,O) est de complexité exponentielle. De plus, d’après la section 5.1.3, la construction
du MDP MV est exponentielle en la taille de l’IDTMC. Ainsi, on en déduit le corollaire
suivant.

Corollaire 2 (Complexité de l’algorithme de calcul de l’opacité libérale). Le calcul de l’opa-
cité libérale dans une spécification non-modale est de complexité doublement exponentielle.

Ce résultat constitue l’un des principaux résultats du mémoire, en ce sens qu’il justifie l’uti-
lisation de ce cadre et de cette propriété de sécurité : l’opacité est effectivement mesurable
dans une spécification non-modale, et nous avons un algorithme permettant de la calculer.

Cependant, ce résultat reste encore insuffisant, puisqu’il ne concerne qu’un nombre restreint
de spécifications. La section suivante tente de remédier à ce problème en cherchant à appro-
cher la mesure de l’opacité dans le cas général.

5.3 Une approximation du cas général

Le théorème 2 s’applique uniquement aux spécifications qui ne possèdent aucune transition
modale. L’objet de cette partie est de construire un algorithme permettant un calcul approché
de l’opacité libérale dans le cas des spécifications modales.

Pour cela, remarquons que l’ordonnancement d’une IDTMC modale consiste en le choix
d’une distribution pour chaque préfixe fini d’exécution (cf. définition 19). Ainsi, s’il s’avère
que l’une des transitions à venir est modale, l’ordonnanceur peut choisir une distribution qui
annulera la probabilité de cette transition. On peut alors considérer que ce choix d’annuler
telle ou telle transition est réalisé avant le choix des probabilités des autres transitions –
l’ordre d’affectation des probabilités importe peu. Ainsi, on peut supposer que, pour chaque

47

préfixe fini, l’ordonnanceur choisit un sous-ensemble des transitions modales qu’il annule,
puis ajuste la distribution avec les transitions restantes.

Cette procédure laisse penser que l’on peut séparer le travail de l’ordonnanceur, entre son
travail sur la présence des transitions, puis sur leurs probabilités. Cependant, dans le cas de
l’ordonnanceur général, l’application reste limitée puisque la procédure est réalisée à chaque
étape, pour chaque préfixe fini, sans aucun moyen de prédire les décisions futures.

Si, en revanche, on se restreint au cas des ordonnanceurs à mémoire finie, il est possible d’al-
ler plus loin dans le raisonnement. En effet, le fait de considérer une mémoire finie implique
que l’on connaît tous les comportements de l’ordonnanceur suivant l’état de sa mémoire.
Autrement dit, pour un état de mémoire donné, l’ordonnanceur choisira toujours la même
distribution – en particulier, il choisira toujours le même sous-ensemble de transitions modales
à annuler. Par conséquent, si l’on a une spécification modale, on peut considérer que l’ordon-
nanceur choisit tout d’abord toutes les transitions qu’il désire annuler suivant les différents
états de sa mémoire. Il obtient ainsi une spécification non-modale, qu’il peut ordonnancer
comme à son habitude.

En définitive, l’idée qui ressort de cette introduction est la suivante : l’ordonnancement d’une
spécification peut être décortiqué et réordonné. Nous formalisons cette idée dans la suite.

5.3.1 Détermination des transitions modales

Cette introduction au problème implique tout d’abord de pouvoir déterminer l’ensemble des
transitions modales d’une spécification IDTMC. Ceci est réalisé par l’algorithme 3, inspiré
de Bérard et al. (2015b).

Cet algorithme parcourt toutes les transitions de l’IDTMC et détermine pour chacune d’elles
si elle est modale. On affirme qu’une transition est modale si, et seulement si, on peut lui
donner une probabilité nulle ou non-nulle (ligne 4), et :

— soit la somme des bornes supérieures des autres intervalles est strictement supérieure
à 1 (ligne 5) ;

— soit cette somme est égale à 1, et les bornes supérieures sont les maxima de leurs
intervalles respectifs (ligne 7).

Cet algorithme se termine car les IDTMC considérées sont à ensemble d’états finis, donc les
deux boucles sont finies.

48

input : Une spécification S = (S, s0, T, λ)
output: L’ensemble des transitions modales Em(S)

1 Em = ∅;
2 foreach s ∈ S do
3 foreach s′ ∈ S do
4 if T (s)(s′) 6= {0} ∧ 0 ∈ T (s)(s′) then
5 if ∑t6=s′ sup T (s)(t) > 1 then
6 Em = Em ∪ {(s, s′)};
7 else if ∑t6=s′ sup T (s)(t) = 1 ∧ ∀t6=s′ sup T (s)(t) ∈ T (s)(t) then
8 Em = Em ∪ {(s, s′)};
9 end

10 end
11 end

Algorithme 3: Algorithme de détermination des transitions modales

5.3.2 Élimination de certaines transitions modales

Outre le besoin de déterminer l’ensemble des transitions modales d’une spécification, l’in-
troduction émet le besoin d’en éliminer certaines afin d’obtenir une nouvelle spécification
non-modale, sur laquelle on peut appliquer les théorèmes connus.

Cette procédure est expliquée par l’algorithme 4. L’objet créé possède exactement la même
structure que l’IDTMC initiale, seule l’application T est modifiée. Ceci est réalisé de manière
à assurer l’annulation des transitions de l’ensemble que l’on désire supprimer (lignes 2 et 3),
tout en retirant la modalité des autres transitions modales (lignes 4 et 5).

Puisque les spécifications IDTMC considérées sont à nombre fini d’états, l’ensemble des
transitions modales est nécessairement fini, ce qui assure la terminaison de l’algorithme.

Il est à noter que l’objet créé par l’algorithme n’est pas nécessairement une IDTMC. En
effet, étudions l’exemple de la figure 5.3a. Les trois transitions issues de q0 sont évidemment
modales, puisque si on annule l’une d’entre elles, il existe un moyen d’ajuster les probabilités
des deux autres afin d’assurer une distribution issue de q0. Supposons alors que l’on désire
annuler les transitions modales (q0, q1) et (q0, q3). L’objet obtenu par l’algorithme est repré-
senté sur la figure 5.3b – notons que les états q1 et q3 ne sont plus accessibles depuis l’état
initial, leur représentation est donc inutile. Cet objet n’est évidemment pas une IDTMC.

49

input : S = (S, s0, T,Σ, λ), E ∈P
(
Em(S)

)
output: S \ E

1 TE = T ;
2 foreach (s, s′) ∈ E do
3 TE(s)(s′) = {0};
4 end
5 foreach (s, s′) ∈ Em(S) \ E do
6 TE(s)(s′) = T (s)(s′) \ {0};
7 end
8 S \ E = (S, s0, TE ,Σ, λ)
Algorithme 4: Algorithme d’élimination d’un ensemble de transitions modales dans
une spécification

q0

{a}

q2

{a, b}

q3

∅

q1

{a}

[0, 0.5]

[0, 1]

[0, 1]

[1, 1]

[1, 1]

[1, 1]

(a) Exemple d’IDTMC modale

q0

{a}

q2

{a, b}
]0, 0.5]

[1, 1]

(b) Objet issu de l’algorithme

Figure 5.3 Application de l’algorithme 4 sur les transitions modales (q0, q1) et (q0, q3)

50

5.3.3 Dépliage de l’ordonnancement

Considérons le système de transitions non-étiquetées fini An,θ = ([n], i0, θ) – ici, on prend en
compte uniquement l’aspect traitement de mémoire de l’ordonnanceur. Cette première étape
d’ordonnancement est réalisée en construisant l’IDTMC S×An,θ = ([n]×S, (i0, s0), T ′,Σ, λ′)
telle que :

— ∀(i, s) ∈ [n]× S, ∀s′ ∈ S, T ′(i, s)(θ(i, s), s′) = T (s)(s′) ;
— ∀(i, s) ∈ [n]× S, λ′(i, s) = λ(s).

Ceci traduit exactement le comportement de l’IDTMC initiale, à laquelle on a ajouté l’ajus-
tement de la mémoire de l’ordonnanceur. À cette étape, l’ordonnanceur n’a aucune action
sur le système : en effet, on est en présence d’une spécification non-implémentée, aucun choix
n’a été pris à propos des distributions.

Ces choix sont réalisés dans la seconde étape : il suffit alors d’ordonnancer S × An,θ par
l’ordonnanceur sans-mémoire dont la fonction de choix de distribution est γ′ telle que

∀(i, s) ∈ [n]× S, γ′(i, s) ∈ T ′(i, s).

On déduit de ce raisonnement que tout ordonnancement à mémoire finie n sur une spéci-
fication S est produit par un ordonnancement sans-mémoire sur la spécification S × An,θ,
pour un certain système de transitions à n états An,θ. Notons par ailleurs qu’il n’existe qu’un
nombre fini de tels systèmes de transitions, puisque l’on considère des IDTMC à nombre fini
d’états. On déduit le résultat suivant.

Lemme 1. Soit S une spécification IDTMC quelconque. Alors

S_impn(S) =
⋃
θ

S_imp1(S ×An,θ).

5.3.4 Approximation du calcul de l’opacité libérale dans le cas des IDTMC
modales

Rappelons que le problème consiste en le calcul du maximum des opacités libérales des im-
plémentations ordonnancées d’une spécification. Les paragraphes précédents formalisent le
dépliage d’un ordonnancement à mémoire finie ainsi que la détermination et l’élimination
des transitions modales d’une spécification modale. Tel que discuté précédemment, le calcul
sur l’ensemble des ordonnanceurs est a priori trop complexe : on se limite donc aux ordon-
nancements à mémoire finie et fixée – dans la suite du raisonnement, on choisit un entier n,
représentant la taille de la mémoire des ordonnanceurs que l’on considère.

51

On note S_POln(S, ϕ,O) le maximum des opacités libérales sur S_impn(S).

Puisque S_impn(S) ⊆ S_imp(S), de manière évidente, S_POln(S, ϕ,O) ≤ S_POl(S, ϕ,O).

Le raisonnement décrit par l’algorithme 5 est le suivant. Puisque l’on sait calculer l’opacité
libérale d’une spécification non-modale, on essaie de se ramener à ce cas en retirant les
transitions modales. Pour cela, on considère uniquement l’ensemble S_impn(S), et on liste
l’ensemble des ordonnanceurs qui aboutissent à ces implémentations.

Plus exactement, on liste l’ensemble des systèmes de transitions (ligne 2) à partir desquels
on réalise le dépliage de la spécification (ligne 3). On obtient à ce stade une IDTMC modale
dépliée, sur laquelle on peut appliquer successivement les algorithmes de détermination de
transitions modales 3, puis d’élimination d’un sous-ensemble de ces transitions 4 : on réalise
ce dernier algorithme pour tout sous-ensemble de l’ensemble des transitions modales (lignes
4 et 5). Pour chaque objet ainsi créé, on vérifie si c’est bien une IDTMC – autrement dit,
si l’on peut créer une distribution sur l’ensemble des états à partir de chaque état (ligne 6).
Dans ce cas, il est alors possible d’appliquer l’algorithme du théorème 2, puisqu’on est en
présence d’une spécification non-modale.

La valeur de sortie de cet algorithme est notée S_POl(n,S, ϕ,O) et est le maximum de
toutes les valeurs obtenues à l’intérieur des boucles. On peut mettre à jour cette valeur à
chaque tour de boucle (ligne 7).

Théorème 3 (Approximation de l’opacité libérale d’une spécification modale). Soient une
spécification IDTMC S, un secret ω-régulier ϕ et un observateur rationnel O. Alors on peut
approcher par la borne inférieure l’opacité libérale de ϕ dans S et approcher par la borne
supérieure l’opacité libérale de ϕ dans S limitée à ses ordonnanceurs à mémoire finie.

Preuve de correction de l’algorithme 5. Soient une spécification IDTMC S, un secret ω-régu-
lier ϕ, un observateur rationnel O et un entier naturel n.

La sortie de l’algorithme est la valeur :

S_POl(n,S, ϕ,O) = sup
θ

sup
E
S_POl(S ×An,θ \ E , ϕ,O).

On prouve qu’elle vérifie la post-condition

S_POln(S, ϕ,O) ≤ S_POl(n,S, ϕ,O) ≤ S_POl(S, ϕ,O). (5.1)

52

input : n ∈ N, S = (S, s0, T,Σ, λ), ϕ et O
output: S_POl(n,S, ϕ,O) tel que

S_POln(S, ϕ,O) ≤ S_POl(n,S, ϕ,O) ≤ S_POl(S, ϕ,O)
1 S_POl(n,S, ϕ,O) = 0;
2 foreach θ : [n]× S → [n] do
3 construire S ×An,θ;
4 foreach E ∈P

(
Em(S ×An,θ)

)
do

5 construire S ×An,θ \ E ;
6 if S ×An,θ \ E est une IDTMC then
7 S_POl(n,S, ϕ,O) =

max
(
S_POl(n,S, ϕ,O) ; S_POl(S ×An,θ \ E , ϕ,O)

)
;

8 end
9 end

10 end
Algorithme 5: Algorithme de calcul de l’opacité libérale d’une spécification modale

Rappelons les définitions des différentes grandeurs : S_POln(S, ϕ,O) = supA∈Schedn(S) POl(S(A), ϕ,O) = supA∈S_impn(S) POl(A, ϕ,O)
S_POl(S, ϕ,O) = supA∈Sched(S) POl(S(A), ϕ,O) = supA∈S_imp(S) POl(A, ϕ,O)

Afin de prouver la première inégalité, on utilise le lemme 1 de dépliage.

S_impn(S) =
⋃
θ

S_imp1(S ×An,θ)

Cela signifie qu’ordonnancer la spécification avec une mémoire finie est équivalent à ordon-
nancer sans-mémoire la spécification dépliée.

On calcule alors sur chacun de ces ensembles le maximum de l’opacité libérale du secret,
d’après les définitions précédentes :

S_POln(S, ϕ,O) = sup
θ
S_POl1(S ×An,θ, ϕ,O) (5.2)

De plus, pour θ fixé, on remarque que pour tout ordonnanceur sans-mémoire de S × An,θ,
dont la fonction de choix de distribution est notée γ, il existe un sous-ensemble de transitions
modales E tel que, γ(s)(s′) = 0 si, et seulement si, (s, s′) ∈ E . Ainsi, tout ordonnancement
sans-mémoire de S × An,θ est équivalent à un ordonnancement sans-mémoire de la même
spécification pour laquelle on a retiré les transitions de l’ensemble E correspondant à la

53

fonction de choix. On en déduit le résultat suivant.

S_imp1(S ×An,θ) =
⋃
E

S_imp1(S ×An,θ \ E)

De plus, puisque toute implémentation ordonnancée sans mémoire est une implémentation
ordonnancée, on déduit l’inclusion suivante.

⋃
E

S_imp1(S ×An,θ \ E) ⊆
⋃
E

S_imp(S ×An,θ \ E)

On calcule alors sur chacun de ces ensembles le maximum de l’opacité libérale du secret,
d’après les définitions précédentes :

S_POl1(S ×An,θ, ϕ,O) = sup
E
S_POl1(S ×An,θ \ E , ϕ,O) (5.3)

et
sup
E
S_POl1(S ×An,θ \ E , ϕ,O) ≤ sup

E
S_POl(S ×An,θ \ E , ϕ,O). (5.4)

Ainsi, en mettant en relation les équations (5.2) et (5.3) et l’inéquation (5.4), on obtient la
première inégalité de la post-condition (5.1) :

S_POln(S, ϕ,O) ≤ sup
θ

sup
E
S_POl(S ×An,θ \ E , ϕ,O) = S_POl(n,S, ϕ,O).

Afin de prouver la seconde inégalité, remarquons que toute implémentation ordonnancée
de S × An,θ \ E est une implémentation ordonnancée de la spécification initiale S. Ainsi,
∀θ, ∀E , S_imp(S × An,θ \ E) ⊆ S_imp(S) donc en calculant les opacités libérales et par
passage à la borne supérieure sur θ et E ,

sup
θ

sup
E
S_POl(S ×An,θ \ E , ϕ,O) = S_POl(n,S, ϕ,O) ≤ S_POl(S, ϕ,O).

Enfin, on note que l’algorithme se termine puisqu’il y a un nombre fini d’applications θ :
[n]×S → S et un nombre fini de transitions modales – donc de sous-ensembles de l’ensemble
des transitions modales, ce qui termine la preuve de correction totale de l’algorithme.

Puisqu’on ne réalise qu’un nombre exponentiel de boucles, et puisque le théorème 2, de
complexité doublement exponentielle, est appelé à chaque tour de boucle, la complexité de
l’algorithme total n’est pas aggravée et on en déduit le corollaire suivant.

54

Corollaire 3 (Complexité de l’algorithme de calcul d’opacité libérale dans le cas général).
L’approximation du calcul de l’opacité libérale dans les spécifications modales est réalisable
en un temps doublement exponentiel.

L’algorithme 5 et le théorème 3 permettent de s’approcher de la généralisation du problème
à toute spécification IDTMC. Cependant, on n’obtient qu’une borne inférieure de l’opacité
libérale, puisqu’il est impossible de lister tous les ordonnanceurs de la spécification étudiée.
La limitation vient du fait que l’on se limite aux ordonnanceurs à mémoire finie. Il semble
judicieux de penser que l’on peut affiner la précision de la valeur approchée en considérant
davantage d’ordonnanceurs, notamment en augmentant la valeur de la mémoire limite que
l’on se fixe.

Dans la section suivante, on s’attache à prouver que l’opacité libérale est préservée par raf-
finement : cela prouve alors que l’opacité est une propriété de sécurité mesurable et capable
d’être raffinée dans les specifications IDTMC.

5.4 Préservation de l’opacité libérale par raffinement

Les définitions et résultats des sections précédentes permettent la vérification de la sécurité
dans les spécifications IDTMC. L’objet de la section suivante consiste à finalement résoudre le
problème initial, grâce aux acquis accumulés. Le cœur du problème initial est de spécifier un
système probabiliste, puis de l’améliorer continuellement en lui rajoutant des fonctionnalités
et en affinant son comportement : c’est le processus de raffinement (cf. section 4.1).

Dans les sections précédentes, nous avons considéré plus précisément les systèmes probabi-
listes sécurisés. Vérifions à présent si le processus de raffinement d’un système probabiliste
sécurisé permet effectivement d’améliorer – ou de conserver – le comportement de la spécifi-
cation, notamment en ce qui concerne les propriétés d’opacité définies précédemment.

Théorème 4 (Préservation de l’opacité libérale par raffinement). Soient un secret ω-régulier
ϕ et un observateur rationnel O, soient deux spécifications IDTMC S1 et S2 telles que S1

raffine faiblement S2. Alors S_POl(S1, ϕ,O) ≤ S_POl(S2, ϕ,O).

Remarquons que prouver le théorème 4 pour le raffinement faible permet de le prouver
également pour le raffinement fort. En effet, si S1 raffine fortement S2, alors elle la raffine
faiblement d’après la proposition 5, et on peut appliquer le théorème.

La preuve du théorème 4 s’appuie sur le fait que si S1 raffine S2, alors imp(S1) ⊆ imp(S2) ;
cependant, cela n’implique pas que S_imp(S1) ⊆ S_imp(S2) a priori. En effet, si A1 est un

55

ordonnanceur de S1 qui produit une implémentation S1(A1) ∈ S_imp(S1), alors c’est une im-
plémentation de S2, mais il est possible que ce ne soit pas un ordonnancement. L’idée consiste
alors à prouver que pour tout ordonnancement S1(A1), on peut trouver un ordonnancement
S2(A2) qui est raffiné par S1(A1) (Bérard et al., 2015b).

S1 S2

S1(A1) S2(A2)

R

imp(S1) imp(S2)

R′

Figure 5.4 Illustration de la preuve du théorème 5

Théorème 5. Soient deux spécifications IDTMC S1 et S2 telles que S1 raffine faiblement S2.
Pour tout ordonnanceur A1 de S1, il existe un ordonnanceur A2 de S2 tel que S1(A1) raffine
S2(A2).

Quelques notations à propos des préfixes finis d’exécutions Avant de rédiger la
preuve de ce théorème, définissons certaines notations.

Si ρ ∈ FExec(S), alors lst(ρ) désigne le dernier état visité par ρ.

Si S1 raffine faiblement S2 avec la relation R, alors on définit la relation ∼⊆ FExec(S1) ×
FExec(S2) telle que : ρ1 ∼ ρ2 si, et seulement si, |ρ1| = |ρ2| et pour chaque état intermédiaire,
si,1Rsi,2.

Pour tout ρ2 ∈ FExec(S2), on désigne par sim(ρ2) = {ρ1 ∈ FExec(S1) : ρ1 ∼ ρ2}, et on
définit la mesure µρ2 telle que ∀ρ1 ∈ sim(ρ2), µρ2(ρ1) = P(ρ1)

P(sim(ρ2)) .

Démonstration. Soient deux IDTMC S1 = (S1, s0,1, T1,Σ, λ1) et S2 = (S2, s0,2, T2,Σ, λ2) telles
que S1 raffine faiblement S2, et soit un ordonnanceur A1 ∈ Sched(S1). Notons S1(A1) =
(Q1, q0,1,Σ,∆1, L1) le PTS ordonnancé par A1.

L’idée de la preuve consiste à construire le bon ordonnanceur A2 ∈ Sched(S2).

Notons tout d’abord R la relation de raffinement entre S1 et S2.

56

Soit ρ2 ∈ FExec(S2) avec lst(ρ2) = s2. Alors, pour tout ρ1 ∈ sim(ρ2), A1(ρ1) ∈ T1(lst(ρ1)) et
lst(ρ1)Rs2. S1 raffine faiblement S2, donc il existe δρ1 : S1 → Dist(S2) telle que

∑
s′

1∈S1

A1(ρ1)δρ1(s′1) ∈ T2(s2).

On définit A2 tel que :

∀ρ2 ∈ FExec(S2), A2(ρ2) =
∑

ρ1∈sim(ρ2)
µρ2(ρ1)

∑
s′

1∈S1

A1(ρ1) · δρ1(s′1) ∈ T2(s2).

On en déduit que A2 est bien un ordonnanceur de S2. Montrons maintenant que l’ordonnan-
cement obtenu est raffiné par S1(A1) par une relation R′.

Dans la suite, on note A1 = S1(A1) et A2 = S2(A2).

Posons R′ =∼ où ∼ est la relation de similitude entre deux préfixes finis d’exécutions.
Puisque les états de A1 et de A2 sont des préfixes finis de leurs spécifications respectives, R′

est bien une relation entre les états des PTS considérés. Montrons que c’est bien une relation
de raffinement.

Soient ρ1 ∈ Q1 et ρ2 ∈ Q2 tels que ρ1R′ρ2.

Posons l’application δ′ : Q1 → Dist(Q2) définie par :

δ′(ν1)(ν2) =

µρ2(ρ1) · δρ1(lst(ν1))(lst(ν2)) si ν1R′ν2,

0 sinon.

Alors, pour tout ρ′2 ∈ Q2, et en notant ρ′2 = ρ2
A2(ρ2)−→ s′2,

∑
ρ′

1∈Q1 ∆1(ρ1)(ρ′1) · δ′(ρ′1)(ρ′2) = ∑
s′

1∈S1 ∆1(ρ1)(ρ1s
′
1) · δ′(ρ1s

′
1)(ρ′2)

= ∑
s′

1∈S1 A1(ρ1)(s′1) · δ′(ρ1
A1(ρ1)−→ s′1)(ρ′2)

= ∑
s′

1∈S1 A1(ρ1)(s′1) · µρ2(ρ1) · δρ1(s′1)(s′2)
= ∑

ρ1∈sim(ρ2)
∑
s′

1∈S1 A1(ρ1)(s′1) · µρ2(ρ1) · δρ1(s′1)(s′2)
= A2(ρ2)(s′2)
= ∆2(ρ2)(ρ′2).

57

Cette partie technique prouvée, il reste à utiliser ceci pour prouver le théorème 4.

Démonstration du théorème 4. Soit A1 ∈ S_imp(S1). D’après le théorème 5, il existe un
ordonnancement A2 ∈ S_imp(S2) tel que A1 � A2. Puisque ce sont des PTS, d’après la
proposition 7, A2 � A1, et comme dans la discussion autour de la proposition 8, cela implique
que leurs langages sont égaux. D’après Bérard et al. (2015b), on en déduit également que
PA1(w) = PA2(w) pour tout préfixe fini appartenant au langage en commun. Donc, pour tout
langage ω-régulier L, PA1(L) = PA2(L). C’est notamment le cas pour le langage ω-régulier
V(A1, ϕ,O) = V(A2, ϕ,O).

On déduit de ce raisonnement que, pour tout ordonnancement A1 ∈ S_impS1, il existe un
ordonnancement A2 ∈ S_imp(S2) tel que POl(A1, ϕ,O) = POl(A1, ϕ,O). Par conséquent,
S_POl(S1, ϕ,O) ≤ S_POl(S2, ϕ,O), puisqu’il peut rester des ordonnancements de S2 qui
ne sont raffinés par aucun ordonnancement de S1.

Cette section a présenté l’un des résultats principaux du mémoire, en montrant que l’opacité
libérale dans une spécification IDTMC était préservée par raffinement faible, ce qui étend le
résultat déjà prouvé par Bérard et al. (2015b), qui se limitaient aux raffinements forts.

Cependant, seule l’opacité libérale a été étudiée dans les sections précédentes. Nous propo-
sons dans la section suivante de définir d’autres formes d’opacité pour les spécifications, et
d’essayer d’étendre le théorème 4 à celles-ci.

5.5 Cas des autres opacités

Dans le chapitre 3, plusieurs types d’opacité ont été définies sur les PTS. Nous avons étudié
plus en détail l’extension de l’opacité libérale aux IDTMC ; définissons à présent l’extension
de la quasi-opacité uniforme ainsi que celle de l’opacité restrictive aux spécifications.

5.5.1 Quasi-opacité uniforme

Dans cette section, on généralise la notion de quasi-opacité uniforme aux spécifications
IDTMC. De façon analogue à la généralisation de l’opacité libérale, le but est de déterminer
la quasi-opacité du secret sur chacune des implémentations ordonnancées afin de trouver le
pire cas pour la spécification. Puisque la quasi-opacité uniforme est une valeur binaire, la
définition est légèrement différente.

En utilisant le même raisonnement que pour la définition 11, on restreint l’espace de raison-
nement aux langages de la forme Lω, avec L ⊆ Σ∗.

58

Définition 24 (Quasi-opacité uniforme dans une IDTMC). Soit L un langage de Σ∗. Soient
une IDTMC S dont le langage des exécutions est L, un secret régulier ϕ ⊆ L, un observateur
rationnel O, et un seuil θ ∈ [0, 1].

Alors le secret ϕω est uniformément quasi-opaque ou θ-opaque dans Sω relativement à O si,
et seulement si, il est uniformément quasi-opaque dans toute implémentation ordonnancée
A ∈ S_imp(Sω) relativement à O, c’est-à-dire,

∀k ∈ N, sup
A∈S_imp(Sω)

P
(
(LC ∩ Σk)ω

)
≤ θ.

Le problème consiste ainsi à déterminer, pour tout k entier, la valeur suivante, avec les mêmes
notations que dans la définition 11 :

sup
A∈S_imp(Sω)

P
(
(LC ∩ Σk)ω

)
.

Puisque, pour k fixé, le langage (LC∩Σk)ω est ω-régulier, ce problème est tout à fait analogue
au problème de l’opacité libérale. Il est ainsi possible d’adapter les résultats des théorèmes 2
et 3 afin d’obtenir en des temps doublement exponentiels les valeurs de ces bornes supérieures,
pour une valeur k fixée.

Notons que la discussion à propos de la modalité de l’IDTMC considérée tient toujours : le
langage LC peut prendre plusieurs valeurs distinctes si on considère une spécification modale
selon l’ordonnancement, ce qui rend plus complexe le calcul.

Le calcul pour un k fixé ne suffit cependant pas à décider de l’uniforme quasi-opacité du
secret. En effet, la définition demande le calcul pour tout entier k naturel, ce qui rend le
problème a priori indécidable en temps fini, à moins de prouver que l’on peut se limiter à
un nombre fini d’entiers k (Saboori et Hadjicostis, 2014). En d’autres termes, le problème de
décidabilité de la quasi-opacité uniforme reste ouvert.

En revanche, on remarque que la preuve du théorème 4 tient pour toute probabilité d’ensemble
ω-régulier, et pas uniquement pour le calcul de l’opacité libérale. Par exemple, pour le cas
de la quasi-opacité uniforme, si l’on suppose que l’on est capable de calculer une telle valeur,
on peut traduire le théorème 4 comme suit.

Théorème 6. Soient un secret ω-régulier ϕ et un observateur rationnel O, soient deux
spécifications IDTMC S1 et S2 telles que S1 raffine complètement S2, et soit un seuil θ ∈ [0, 1].
Alors, si ϕ est uniformément θ-opaque dans S1 relativement à O, alors il est uniformément
θ-opaque dans S2 relativement à O.

59

Autrement dit, la quasi-opacité uniforme est également préservée par raffinement dans les
IDTMC.

5.5.2 Opacité restrictive

Valeur duale de l’opacité libérale, l’opacité restrictive a une définition bien plus complexe que
la première. Elle s’avère plus compliquée à manipuler, mais l’on peut tout de même définir
cette mesure pour les IDTMC.

Dans le même esprit que pour les autres opacités, on généralise la notion d’opacité restrictive
aux spécifications IDTMC : on définit l’opacité restrictive d’une spécification comme sa valeur
dans le pire des cas. Puisque la fonction d’opacité restrictive décroît en fonction du risque
de découvrir le secret, le pire cas est atteint lorsque l’opacité restrictive est minimale (cf.
proposition 2).

Définition 25 (Opacité restrictive dans une IDTMC). Soit L un langage de Σ∗. Soient une
IDTMC S dont le langage des exécutions est L, un secret régulier ϕ ⊆ L et un observateur
rationnel O. L’opacité restrictive de ϕ dans S relativement à O est la grandeur définie par :

S_POr(S, ϕ,O) = inf
A∈S_imp(S)

POr(A, ϕ,O).

Cependant, puisque la définition de l’opacité restrictive dans un PTS n’est pas linéaire, et
puisque l’opacité restrictive n’est la probabilité d’aucun langage régulier a priori, le calcul de
cette borne inférieure est très complexe en pratique.

Ce chapitre a permis de prouver les résultats théoriques importants que sont :
— le calcul de l’opacité libérale dans une spécification non-modale est réalisable en un

temps doublement exponentiel ;
— le calcul de l’opacité libérale dans une spécification modale est approximable par la

borne inférieure en un temps doublement exponentiel ;
— toute probabilité d’ensemble ω-régulier, telle que l’opacité libérale ou la quasi-opacité

uniforme, est préservée par raffinement faible de spécification IDTMC.
Les algorithmes de calcul d’opacité ont été énoncés et prouvés, dans le but notamment de
pouvoir les appliquer dans le chapitre 6 : celui-ci consiste en l’étude d’un cas concret de
système sécurisé. Nous considérons un exemple de cas qu’un expert responsable sécurité dans
une entreprise peut recevoir pour étude, et nous établissons notre méthode de raffinement
sur cet exemple.

60

CHAPITRE 6 ÉTUDE DE CAS

Les sections 4 et 5 ont introduit un ensemble d’aspects théoriques et ont produit d’impor-
tants résultats de la théorie du raffinement de systèmes sécurisés. Cette section applique ces
résultats et algorithmes sur un système abstrait. On réalise ici l’ensemble du processus de
raffinement, en partant d’un système réel que l’on veut sécuriser. On commence par sa mo-
délisation, le calcul de sa sécurité, puis on réalise un raffinement afin d’améliorer le modèle.
Ce cas est inspiré des modèles d’authentification de Biondi et al. (2014).

6.1 Description de l’étude de cas

Cette section décrit le problème que l’on considère. On explique tout d’abord les caractéris-
tiques du système existant, puis on le modélise sous forme de spécification IDTMC. Suite à
cela, on présente les requis de sécurité que l’on veut assurer, en les modélisant sous forme de
propriété d’opacité.

6.1.1 Modélisation du système

Considérons une base de données médicales. La confidentialité critique des données consi-
dérées implique que seul un panel restreint d’utilisateurs a accès à la base. Cependant, elle
doit pouvoir être consultée à tout moment depuis plusieurs endroits distincts (médecins trai-
tants, hôpitaux, cliniques), sans contrainte de temps ou d’espace. Ainsi, le serveur de base de
données est relié aux internets : un système de contrôle d’accès est nécessaire afin d’assurer
la confidentialité. Un simple système de vérification de couple utilisateur/mot de passe est
envisagé dans un premier temps. On suppose pour notre étude formelle que les aspects cryp-
tographiques sont parfaits. Ainsi, on peut représenter le système par l’IDTMC de la figure
6.1, sur l’alphabet de propriétés atomiques exclusives Σ = {a, b, c, d, e}.

Dans l’état q0, le système attend l’entrée du nom d’utilisateur. Le système est dans un état
d’attente, hors de la zone privée : cela correspond à la propriété a. Si le nom d’utilisateur
n’est pas reconnu, ce qui correspond à la propriété d, la requête est rejetée (propriété e) et
le système passe dans l’état déconnecté q4.

Si en revanche l’utilisateur est connu et possède a priori les droits requis à la consultation
de la base de données, le système attend l’entrée du mot de passe associé dans l’état q1.
Cette attente correspond à la propriété b, vérifiée tant que le mot de passe est incorrect ou
inexistant. Dès que le bon mot de passe est entré, le système garantit l’accès à la base de

61

données (propriété c). Si le mot de passe est incorrect, l’accès est éventuellement refusé et le
système passe dans l’état déconnecté q4.

La spécification autorise l’implémentation d’un mécanisme permettant d’essayer une nouvelle
fois d’entrer un mot de passe en cas d’erreur. Ceci est représenté par la transition qui boucle
sur l’état q1.

La vérification du mot de passe est sous-spécifiée (état q1), en ce sens que les intervalles
de probabilités de transitions issues de cet état n’ajoutent aucune contrainte particulière.
L’intérêt ici est uniquement de traduire le flux des événements lors du contrôle d’accès,
première étape de la conception de ce système.

On impose uniquement des contraintes en sortie de l’état q1, lors de la vérification du nom
d’utilisateur. Ces probabilités dépendent du nombre d’utilisateurs possédant les droits de
consultation. La base est nécessairement utilisée par quelqu’un, donc ce nombre est néces-
sairement non-nul ; de plus, puisque la base est reliée aux internets, il faut considérer des
utilisateurs qui ne sont pas enregistrés, nécessairement présents également. Ces deux raison-
nements permettent de justifier la non-modalité des transitions q0 → q1 et q0 → q2.

En pratique, les contraintes permettent de considérer divers scénarios d’implémentation, sui-
vant le nombre d’utilisateurs autorisés, la robustesse de leur mot de passe, et le degré de
connaissance d’éventuels utilisateurs malhonnêtes.

a q0

b

q1

c

q3

d

q2

e

q4

[0.2, 1]

[0.2, 1]
[1, 1]

[0, 1]

[0, 1]

[0, 1]

[1, 1]

[1, 1]

Figure 6.1 Un système de contrôle d’accès à une base de données médicales S2

62

6.1.2 Requis de sécurité

Tel qu’indiqué précédemment, on ne modélise pas les aspects cryptographiques : le choix du
procédé de chiffrement utilisé par la suite n’est pas le propos ici. La seule hypothèse que l’on
réalise concernant ces questions est celle selon laquelle la tentative de mot de passe entrée
par l’utilisateur reste secrète et cachée de l’environnement extérieur. On modélise ceci par la
fonction d’observation rationnelle suivante. O(σ) = σ si σ 6= b

O(b) = ε

On affirme alors que, malgré une infrastructure cryptographique parfaite, un tel système ne
garantit pas nécessairement la confidentialité des données médicales. Notamment, ce système
ne garantit pas une protection suffisante contre la création de canaux cachés de communica-
tion entre un attaquant et les données confidentielles.

À titre d’exemple, supposons qu’un attaquant extérieur, passif, soit capable de distinguer
les connexions à la base de données après plusieurs essais de mots de passe (abb+cω), de
celles obtenues dès le premier essai (abcω). Il représente alors chaque exécution du premier
groupe par le bit 0 (par exemple), et chaque exécution du second groupe par le bit 1. De
cette manière, un complice possédant les droits de consultation de la base de données peut
se servir de ce canal caché pour transmettre des informations à l’attaquant, uniquement en
se connectant successivement de l’une ou l’autre des manières, tel que décrit sur la figure 6.2.

Complice Attaquant
abb+cω ≡ 0

abcω ≡ 1

Figure 6.2 Canal caché de communication entre le complice et l’attaquant

Une telle possibilité de fuite d’information est à éviter. Pour cela, le but est d’empêcher la
distinction des deux groupes d’exécutions ; autrement dit, on requiert l’opacité du prédicat

ϕ = abcω

dans la spécification considérée, relativement à l’observateur rationnel O défini précédem-
ment.

63

6.2 Calcul de l’opacité binaire

Vérifions dans un premier temps l’opacité au sens de la définition 7 dans la spécification S2.
Pour cela, calculons les différents langages à considérer.

L2 = ab+cω + ab+eω + adeω

L2 \ ϕ = abb+cω + ab+eω + adeω
O(L2 \ ϕ) = acω + aeω + adeω

O(ϕ) = acω

On en déduit que O(ϕ) ⊆ O(L2\ϕ), donc a priori, le secret serait opaque dans la spécification
– c’est-à-dire qu’il est opaque dans toute implémentation de la spécification. Cependant, le
calcul a été réalisé en supposant que le langage L2 de S2 était le même que toutes ses implé-
mentations, ce qui est faux puisque l’IDTMC possède des transitions modales (cf. discussion
autour de la définition 18).

Notamment, le PTS représenté figure 6.3 est une implémentation de la spécification, mais le
calcul de l’opacité est bien différent. On note L′2 son langage.

L′2 = abcω + abeω + adeω

L′2 \ ϕ = abeω + adeω
O(L′2 \ ϕ) = aeω + adeω

O(ϕ) = acω

Dans ce cas-ci, O(ϕ) 6⊆ O(L′2 \ ϕ), donc le secret n’est pas opaque dans l’implémentation.
Ainsi, il existe des implémentations de la spécification dans lesquelles le secret n’est pas
opaque relativement à O. Puisque la sécurité d’un système se vérifie toujours au pire cas,
on en déduit que le secret n’est pas opaque dans la spécification S2. Le but est désormais
d’améliorer cette mesure, en calculant l’opacité libérale du secret dans la spécification.

a q0

b

q1

c

q3

d

q2

e

q4

0.5

0.5
1

0.5

0.5

1

1

Figure 6.3 Une implémentation de S2

64

6.3 Opacité libérale

Afin de calculer l’opacité libérale de ϕ dans S2 relativement à O, on applique le théorème 3
puisque l’IDTMC est modale. Par conséquent, on ne pourra pas obtenir la valeur de l’opacité
libérale, mais uniquement une approximation par valeur inférieure.

L’algorithme dont le théorème 3 prouve la correction demande comme paramètres d’entrée
un entier naturel non-nul n (correspondant à la taille de la mémoire des ordonnanceurs
considérés), ainsi que S2, ϕ et O. Afin d’illustrer nos calculs, posons par exemple n = 1 : on
considère alors uniquement les ordonnanceurs sans-mémoire.

La première étape de l’algorithme consiste à énumérer tous les systèmes de transitions An,θ,
avec θ : [n]× S2 → [n]. Puisque n = 1, il existe une unique fonction de transition de modes
θ, notée θ1. Ainsi, il existe un unique système de transitions A1,θ1 , représenté figure 6.4. Il
s’ensuit qu’il existe une unique spécification produit S2×A1,θ1 , qui est égale à S2. Autrement
dit, un ordonnanceur sans-mémoire laisse inchangée la forme globale de l’IDTMC.

1 S2

Figure 6.4 Système de transitions A1,θ1 – résultat du dépliage d’un ordonnanceur sans-
mémoire

a q0

b

q1

c

q3

d

q2

e

q4

[0.2, 1]

[0.2, 1]
[1, 1]

]0, 1]

]0, 1]

[1, 1]

[1, 1]

Figure 6.5 Résultat de la seconde étape – S2 ×A1,θ1 \ E

La seconde étape consiste à calculer l’ensemble des transitions modales de la spécification

65

produit S2 ×A1,θ1 . Ici,

Em(S2 ×A1,θ1) = {(q1, q1), (q1, q3), (q1, q4)}.

Une fois ceci réalisé, il s’agit d’énumérer les sous-parties de cet ensemble, puis de construire,
pour chaque sous-partie E , la spécification non-modale S2 × A1,θ1 \ E . Par exemple, pour
E = {(q1, q1)}, on construit la spécification représentée sur la figure 6.5.

Cet objet étant effectivement une spécification IDTMC, on peut passer à l’étape suivante et
appliquer le théorème 2 sur S2 ×A1,θ1 \ E .

6.3.1 Application du théorème 2

Tout d’abord, il s’agit de construire l’automate de parité déterministe AV correspondant à
l’ensemble V(S2×A1,θ1\E , ϕ,O). Le langage de la spécification ici est L2,a = abcω+abeω+adeω,
de sorte que l’ensemble considéré se calcule de la manière suivante.

O(L2,a \ ϕ) = aeω + adeω

donc O−1(O(L2,a \ ϕ)) = abeω + adeω

donc O−1(O(L2,a \ ϕ)) = L2,a \ (abeω + adeω)
= abcω

donc V(S2 ×A1,θ1 \ E , ϕ,O) = ϕ ∩ O−1(O(L2,a \ ϕ))
= abcω ∩ abcω = abcω = ϕ.

On en déduit le DPA représenté sur la figure 6.6.

s0 | 1 s1 | 1 s2 | 2

s3 | 1

a

b, c, d, e

b

a, c, d, e

c

a, b, d, e

Σ

Figure 6.6 Construction du DPA AV

La prochaine étape consiste à réaliser le produit synchronisé de l’IDTMC non-modale étudiée

66

avec le DPA précédent. On obtient l’IDTMC non-modale colorée

SV =
(
S2 ×A1,θ1 \ E

)
⊗AV

représentée sur la figure 6.7.

a | 1

(q0, s0)

b | 1

(q1, s1)

c | 2

(q3, s2)

d | 1

(q2, s1)

e | 2

(q4, s3)

e | 1

(q4, s2)

[0.2, 1]

[0.2, 1]

[1, 1]

]0, 1]

]0, 1]

[1, 1]

[1, 1]

[1, 1]

Figure 6.7 Application du théorème – SV =
(
S2 ×A1,θ1 \ E

)
⊗AV

Figure 6.8 Illustration du problème au sommet (q0, s0)

Il s’agit à présent de considérer les différents systèmes d’équations linéaires aux différents
sommets du graphe, tel qu’expliqué dans la preuve du théorème 2. Par exemple, dans l’état
initial (q0, s0), le problème linéaire à résoudre est le suivant, représenté graphiquement sur la

67

figure 6.8. 
P
(
(q1, s1)

)
+ P

(
(q2, s1)

)
= 1

P
(
(q1, s1)

)
∈ [0.2, 1]

P
(
(q2, s1)

)
∈ [0.2, 1]

Sur la figure, l’ensemble des solutions du problème est représenté par l’intersection entre
la droite d’équation P

(
(q1, s1)

)
+ P

(
(q2, s1)

)
= 1 et le domaine représenté en jaune. En

s’inspirant de l’explication du théorème 2, on peut définir les BFS suivantes : (0.2, 0.8) et
(0.8, 0.2).

a | 1

(q0, s0)

b | 1

(q1, s1)

c | 2

(q3, s2)

d | 1

(q2, s1)

e | 2

(q4, s3)

e | 1

(q4, s2)

µ1, 0.2

µ2, 0.2
µ2, 0.8

µ1, 0.8

1

ν1, 1

ν2, 1

1

1

1

Figure 6.9 Application du théorème – Transformation de SV en son MDPMV

Il reste à réitérer cette procédure pour l’ensemble des états de SV afin de construire le MDP
correspondant. On rappelle que celui-ci est construit en donnant les différentes BFS en choix
de distributions pour chaque état, tel qu’illustré sur la figure 6.9. Notamment, pour l’état
initial, on retrouve les distributions µ1 et µ2 qui correspondent respectivement aux BFS
(0.2, 0.8) et (0.8, 0.2) obtenues précédemment.

Il reste alors à calculer la probabilité maximale du langage abcω dans le MDPMV , qui est
nécessairement atteinte pour une implémentation telle que, pour chaque état, la distribution
choisie est l’une des distributions obtenues par BFS. Ainsi, l’implémentation qui donne la
probabilité maximale a nécessairement choisi µ1 ou µ2 comme distribution à l’état initial
– et non une combinaison linéaire quelconque. On obtient finalement un nombre fini d’im-
plémentations à considérer, appelées implémentations extrémales. Il est facile d’extraire la
probabilité maximale recherchée.

Ici, on distingue quatre implémentations, suivant si on choisit µ1 ou µ2, puis ν1 ou ν2. Les
résultats sont reportés sur le tableau 6.1 : on obtient que la probabilité maximale de lire abcω

dansMV est 0.8.

68

Tableau 6.1 Probabilités du langage abcω dans les implémentations extrémales deMV

Choix de distribution µ1 µ2
ν1 0.2 0
ν2 0.8 0

On en déduit, d’après le théorème 2, que S_POl(1,SV , ϕ,O) = 0.8.

6.3.2 Bilan du calcul

On a réalisé ici un seul passage dans l’algorithme du théorème 3. Pour n = 1, on a considéré
l’unique système de transitions A1,θ1 ; puis, pour ce système, on a étudié une seule sous-
spécification non-modale de l’IDTMC dépliée par A1,θ1 . Puis, on a calculé la probabilité
maximale recherchée dans cette sous-spécification particulière. Afin de terminer l’étude pour
n = 1, il reste à considérer les autres cas de sous-spécifications non-modales – obtenues à
partir des autres sous-ensembles de Em. Cela terminera l’algorithme, puisqueA1,θ1 est l’unique
système de transitions pour n = 1.

Les résultats des probabilités maximales pour les différents sous-ensembles de transitions
modales sont reportés sur le tableau 6.2.

Tableau 6.2 Résultats de l’algorithme suivant le sous-ensemble de transitions modales choisi

Choix de E ⊆ Em {(q1, q1)} {(q1, q3)} {(q1, q4)} ∅
Rés. intermédiaires 0.8 0 0 0
Choix de E ⊆ Em {(q1, q1), (q1, q3)} {(q1, q1), (q1, q4)} {(q1, q3), (q1, q4)} Em

Rés. intermédiaires 0 0.8 0 0

Ainsi, d’après le théorème 3 et la post-condition de l’algorithme correspondant, on en déduit
que

S_POl1(S2, ϕ,O) ≤ S_POl(1,S2, ϕ,O) = 0.8 ≤ S_POl(S2, ϕ,O).

On déduit notamment le fait que le secret ϕ n’est pas opaque dans S2 relativement à O,
puisque S_POl(S2, ϕ,O) > 0, ce qui est cohérent avec la discussion de la partie 6.2.

6.3.3 Un autre exemple

Illustrons à présent l’algorithme pour n = 2. Dans ce cas, il existe plusieurs systèmes de
transitions à deux modes, il faut donc tous les étudier. Pour les besoins de l’illustration,

69

détaillons l’étude dans le cas de la fonction de transition de mode θ2, produisant le système de
transitions A2,θ2 représenté sur la figure 6.10a. La spécification représentée sur la figure 6.10b
est issue du dépliage de l’ordonnancement de S2 par un ordonnanceur dont la transition de
modes est régie par A2,θ2 . En substance, cet adversaire dédouble l’état q1 vérifiant la propriété
atomique b, état central dans notre problème.

1 2

q1

S2

S2 \ {q1}

(a) Système de transitions de
modes d’un ordonnanceur à
mémoire finie A2,θ2

a (q0, 1)

b

(q1, 1)

b

(q1, 2)

c

(q3, 2)

c

(q3, 1)

d

(q2, 1)

e(q4, 2) e

(q4, 1)

[0.2, 1]

[0.2, 1]

[1, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[1, 1]
[1, 1]

[1, 1]
[1, 1]

(b) Première étape de l’ordonnancement – S2 ×A2,θ2

Figure 6.10 Application des étapes du théorème – cas d’un ordonnanceur de mémoire 2

L’ensemble des transitions modales est

Em =
{(

(q1, 1), (q1, 2)
)
,
(
(q1, 1), (q3, 2)

)
,
(
(q1, 1), (q4, 2)

)
,(

(q1, 2), (q1, 1)
)
,
(
(q1, 2), (q3, 2)

)
,
(
(q1, 2), (q4, 2)

)}
.

Dans le cas n = 1, seuls deux sous-ensembles de transitions modales parmi huit donnent des
résultats de probabilité maximale non-nuls. Cela s’explique par le fait que, pour les autres

70

cas, le langage V(S2 ×A1,θ1 \ E , ϕ,O) est vide, autrement dit, le prédicat ϕ est opaque dans
la spécification modale correspondante. Ainsi, afin de limiter les calculs, une bonne méthode
consiste à éliminer tous les cas qui préservent l’opacité. Dans la suite, on note E ⊆ Em le
sous-ensemble de transitions modales que l’on décide d’annuler, et Snm = S2 × A2,θ2 \ E la
spécification non-modale obtenue.

— Supposons que
(
(q1, 1), (q3, 2)

)
∈ E – c’est-à-dire que la transition

(
(q1, 1), (q3, 2)

)
est

implémentée avec une probabilité nulle. Alors le langage L de la spécification non-
modale Snm ne contient pas abcω, donc ϕ ∩ L = ∅. Autrement dit, aucune exécution
de Snm n’appartient au secret, celui-ci est donc évidemment opaque.

— Supposons que
(
(q1, 1), (q1, 2)

)
6∈ E et

(
(q1, 2), (q3, 2)

)
6∈ E . Alors le langage L contient

abbcω et abbcω 6∈ ϕ, donc

O(abbcω) = acω ∈ O(L \ ϕ).

Or O(ϕ ∩ L) ⊆ acω, suivant si ϕ ∩ L est vide ou non. On en déduit

O(ϕ ∩ L) ⊆ O(L \ ϕ).

Autrement dit, le secret est opaque dans Snm.
— Supposons enfin que E ne vérifie pas les deux conditions précédentes. Alors ϕ ∩ L est

non-vide et L ne contient pas le langage abb+cω. Autrement dit, on obtient à nouveau
le cas de non-opacité discuté dans la section 6.2. On peut alors réitérer la procédure
décrite pour le cas n = 1, et ce pour chaque sous-ensemble E restant.

Ce raisonnement permet d’éviter de rentrer dans des boucles inutiles. On résume ce pa-
ragraphe par le tableau 6.3, contenant également les résultats intermédiaires pour chaque
sous-ensemble. Rappelons que ces résultats ne concernent que la fonction de transition de
modes θ2. Il est nécessaire de réitérer les étapes précédentes pour chaque fonction de transition
de modes à mémoire finie égale à deux.

Tableau 6.3 Résultats suivant le sous-ensemble de transitions modales choisi, pour A2,θ2

Conditions sur E ⊆ Em Résultats intermédiaires
Si
(
(q1, 1), (q3, 2)

)
∈ E 0

Si
(
(q1, 1), (q1, 2)

)
6∈ E et

(
(q1, 2), (q3, 2)

)
6∈ E 0

Sinon 0.8

Les résultats pour les autres fonctions de transitions de modes à mémoire finie égale à deux

71

donnent comme résultat d’algorithme

S_POl(2,S2, ϕ,O) = 0.8.

On déduit de ce résultat et de celui obtenu pour n = 1 que le requis de sécurité exprimé
dans la section 6.1.2 n’est pas vérifié pour la spécification S2. Plus précisément, on sait que
la probabilité maximale pour un adversaire de briser le secret est au moins de 0.8.

Le but de la section suivante est de corriger la spécification grâce au processus de raffinement,
afin si possible de valider le requis de sécurité, tout en spécifiant un peu plus précisément le
fonctionnement du système de contrôle d’accès modélisé.

6.4 Un raffinement

La spécification S2 est le résultat d’une première modélisation abstraite du système de
contrôle d’accès, tel que discuté dans la section 6.1.1. Il est possible d’appliquer le proces-
sus de raffinement afin d’améliorer le système, en modélisant progressivement les différents
composants du système.

Précédemment, la spécification envisageait un mécanisme autorisant un nouvel essai à l’utili-
sateur ayant entré un mot de passe erroné, sans détailler. On propose ici le mécanisme suivant
afin d’améliorer le système de vérification du mot de passe. Si le mot de passe entré par l’uti-
lisateur est correct, rien n’est modifié. Si en revanche il est erroné, le programme vérifie si
la tentative appartient à une liste noire de mots courants : dans ce cas, afin de contrecarrer
une éventuelle attaque de type dictionnaire, l’accès est refusé et le système passe dans l’état
déconnecté.

Ceci est représenté par l’IDTMC de la figure 6.11. L’état q1 de la spécification S2 originale
est séparé en deux états : r1 représente la vérification effective du mot de passe entré par
l’utilisateur, tandis que r2 représente la lecture de la liste noire et la défense contre les
éventuelles attaques de type dictionnaire.

L’IDTMC proposée est non-modale. L’aspect abstrait du système de vérification de mot de
passe dans la spécification S2 justifie les modalités des transitions issues de l’état q1 ; dans
S1, en revanche, on suppose que le processus ajouté doit nécessairement être implémenté. Par
conséquent, on retire toute modalité dans les transitions issues des états r1 et r2.

72

a r0 b
r2

b

r1

c

r4

d
r3

e
r5

[0.2, 0.4]

[0.2, 1]
[1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[1, 1]

[1, 1]

Figure 6.11 Un raffinement S1 du système précédent

Preuve du raffinement fort de S2 par S1. Posons R ⊆ S1 × S2 la relation représentée par la
matrice MR.

MR =



q0 q1 q2 q3 q4

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1


Alors, notamment, r0Rq0, et, pour r ∈ S1 et q ∈ S2, si rRq,

— λ1(r) = λ2(q) de manière évidente ;
— posons δ : S1 → Dist(S2) l’application telle que

∀r′ ∈ S1, ∀q′ ∈ S2, δ(r′)(q′) =

 1 si r′Rq′

0 sinon.

Alors pour toute distribution f ∈ T1(r),

∀q′ ∈ S2,
∑
r′∈S1

f(r′) · δ(r′)(q′) =
∑
r′Rq′

f(r′) ∈ T2(q)(q′).

De plus, par définition de δ, on a r′Rq′ si, et seulement si, δ(r′)(q′) > 0.

73

Par exemple, pour r0Rq0,

T1(r0) = {r0
[0.2,0.4]−−−−→ r1, r0

[0.2,1]−−−→ r3}

et
T2(q0) = {q0

[0.2,1]−−−→ q1, q0
[0.2,1]−−−→ q3}.

Soit une distribution f ∈ T1(r0). Alors,
— pour q′ = q1,

∑
r′∈S1 f(r′) · δ(r′)(q1) = f(r1) ∈ [0.2, 0.4] ⊆ T2(q0)(q1) ;

— pour q′ = q3,
∑
r′∈S1 f(r′) · δ(r′)(q3) = f(r3) ∈ [0.2, 1] ⊆ T2(q0)(q3) ;

— dans les autres cas, ∑r′∈S1 f(r′) · δ(r′)(q′) = 0 ∈ {0} ⊆ T2(q0)(q′).
On traite les autres cas de manière analogue, ce qui termine la preuve de raffinement fort de
S2 par S1.

6.4.1 Calcul d’opacité libérale

Puisque S1 n’est pas modale, il est possible d’appliquer le théorème 2 afin de calculer l’opacité
libérale de ϕ relativement à O. Pour cela, calculons V(S2, ϕ,O).

Le langage de la spécification S1 est L1 = ab(bb)∗cω + a(bb)+eω + adeω donc

L1 \ ϕ = ab(bb)+cω + a(bb)+eω + adeω

O(L1 \ ϕ) = acω + aeω + adeω

ϕ ∩ L1 = abcω

O(ϕ ∩ L1) = acω

donc O(ϕ ∩ L1) ⊆ O(L1 \ ϕ)

Par conséquent, ϕ est opaque dans S1 relativement à O, c’est-à-dire que

S_POl(S1, ϕ,O) = 0.

Remarquons que S_POl(S1, ϕ,O) = 0 < 0.8 ≤ S_POl(S2, ϕ,O), ce qui est cohérent avec le
théorème 4, puisque S1 raffine fortement S2.

Ici, le système raffiné valide les requis de sécurité, ce qui est une nette amélioration devant

74

le système précédent. Ceci est dû au raffinement des transitions modales en transitions non-
modales. L’ajustement des distributions problématiques permet d’écarter du domaine des
possibles les implémentations qui présentent une faille de sécurité.

Ainsi, outre l’ajout d’une fonctionnalité au système de contrôle d’accès, le raffinement permet
de conserver voire d’améliorer l’opacité d’un secret régulier.

6.4.2 Calcul d’opacité restrictive

D’après les résultats de la section 6.4.1, la spécification S1 valide les requis d’opacité du
secret. Cependant, tel que cela a été discuté dans la partie 3.2, vérifier si un prédicat est
opaque dans une spécification est un résultat peu nuancé. L’étape suivante consiste à donner
une approximation de la valeur de l’opacité restrictive – puisque la valeur exacte est très
complexe à obtenir.

Rappelons que l’opacité restrictive du secret dans la spécification S1 est définie par l’expres-
sion (cf. définition 25) :

S_POr(S1, ϕ,O) = inf
A∈S_imp(S1)

POr(A, ϕ,O).

Pour une implémentation ordonnancée fixée A ∈ S_imp(S1),

1
POr(A, ϕ,O) =

∑
o∈Obs

P(o) · 1
P(L \ ϕ | o) .

Considérons dans un premier temps uniquement les implémentations ordonnancées par un
adversaire sans-mémoire. On peut alors représenter un tel ordonnancement par le PTS A de
la figure 6.12, avec les conditions suivantes sur les variables p1, p2, et p3.

p1 ∈ [0.2, 0.4]; p2 ∈ [0.1, 0.9]; p3 ∈ [0.1, 0.9]

Calculons alors l’expression générale de l’opacité restrictive de ϕ dans A.

Les classes d’observation du PTS par l’observateur rationnel O sont :
— o1 = acω = O(ab(bb)∗cω) ;
— o2 = aeω = O(a(bb)+eω) ;
— o3 = adeω = O(adeω).

Pour chaque classe o ∈ Obs, on calcule la probabilité de la classe, P(o), ainsi que la probabilité
de toute exécution de la classe sachant qu’elle ne fait pas partie du secret, P(L \ ϕ | o).

75

a r0 b
r2

b

r1

c

r4

d
r3

e
r5

p1

1− p1
1

1− p2

p2

1− p3

p3

1

1

Figure 6.12 Ordonnancement sans-mémoire quelconque de S1

Pour cela, on suit le raisonnement suivant.

Une exécution du langage ab(bb)∗cω s’écrit ab(bb)kcω, avec k ∈ N. Ainsi, la probabilité d’une
telle exécution est

P(ab(bb)kcω) = p1(1− p2) · (p2 · p3)k.

Par conséquent, pour calculer la probabilité de tout le langage correspondant, on somme les
probabilités de toutes les exécutions appartenant à ce langage. On obtient ainsi la somme de
la série infinie suivante.

P(ab(bb)∗cω) = p1(1− p2)
∞∑
k=0

(p2 · p3)k

Puisque cette somme est la somme d’une série géométrique de raison p2 · p3 < 1, la somme
de la série est finie et on peut calculer sa valeur.

P(ab(bb)∗cω) = p1(1− p2) · 1
1− p2 · p3

.

On obtient avec le même raisonnement les résultats, reportés dans le tableau 6.4.

Tableau 6.4 Probabilités nécessaires au calcul de l’opacité restrictive

Classe d’observation P(o) P(L \ ϕ | o)
acω p1(1− p2)∑∞k=0(p2 · p3)k 1∑∞

k=0(p2·p3)k

aeω p1p2(1− p3)∑∞k=0(p2 · p3)k 1
adeω 1− p1 1

76

Finalement, on obtient l’expression suivante d’opacité restrictive.

1
POr(A,ϕ,O) = 1− p1 + p1p2(1−p3)

1−p2·p3
+ p1(1−p2)

(1−p2·p3)2

= 1 + p1

(
p2(1−p3)
1−p2·p3

+ (1−p2)
(1−p2·p3)2 − 1

)

Rappelons que le but est d’extraire la valeur minimale de l’opacité restrictive, donc la valeur
maximale de cette fonction. Pour cela, il suffit de poser p1 = 0.4 – qui est la valeur maximale
de p1 – puis de trouver la valeur maximale de la fonction

f(p2, p3) = p2(1− p3)
1− p2 · p3

+ (1− p2)
(1− p2 · p3)2 − 1

sur le domaine [0.1, 0.9]2.

Cette fonction étant non-linéaire, le problème fait appel à des procédés complexes d’optimi-
sation non-linéaire, ce qui n’est pas le propos de cette étude. Le graphe de la fonction sur le
domaine considéré est tracé sur la figure 6.13.

Figure 6.13 Graphe de la fonction f

Finalement, on déduit de cette étude que l’opacité restrictive minimale de la spécification, si
on se limite aux implémentations ordonnancées sans mémoire, est atteinte pour l’implémen-
tation de la figure 6.12 telle que p1 = 0.4, p2 = 0.9 et p3 = 0.9. Pour cette implémentation,
l’opacité restrictive est POr(A, ϕ,O) ≈ 0.52.

On peut donc déduire de ce résultat que l’opacité restrictive minimale de la spécification

77

vérifie
S_POr(S1, ϕ,O) ≤ 0.5.

Il est possible d’affiner ce résultat, en réitérant l’opération pour l’ensemble des implémenta-
tions ordonnancées par un adversaire à mémoire quelconque n, dans le même esprit que lors
du calcul approché de l’opacité libérale dans le cas d’une spécification modale.

Ce chapitre a permis l’application d’une étape du processus de raffinement sur un cas concret
de contrôle d’accès à une base de données. Les algorithmes énoncés et prouvés dans le chapitre
précédent ont permis la vérification des requis de sécurité sur les deux systèmes sécurisés
considérés. Notamment, tel qu’il a été prouvé dans le chapitre précédent, raffiner le système
a permis d’améliorer la sécurité du système, tout en précisant ses fonctionnalités.

78

CHAPITRE 7 CONCLUSION

7.1 Synthèse des travaux

Le but de ce mémoire consistait à étudier la formalisation du raffinement de systèmes sécu-
risés. En règle générale, il est connu que cette problématique aboutit à un résultat négatif :
en effet, le raffinement d’un système sécurisé peut briser la sécurité et le rendre vulnérable
pour certaines propriétés. Cependant, ce résultat n’est pas absolu, et notre objectif était de
représenter un cadre formel dans lequel raffiner un système sécurisé préserverait la sécurité.

Dans cette optique, nous avons tout d’abord défini le cadre formel de recherche, en choisissant
comme modèle de spécification l’IDTMC, couplé au PTS en tant que modèle d’implémenta-
tion. Ces deux modèles utilisant les hypothèses markoviennes permettent la représentation
de nombreux systèmes réels, tout en appliquant des méthodes quantitatives, nécessaire à
la modélisation de propriétés de sécurité. En parallèle, nous avons choisi l’opacité comme
propriété formelle de sécurité, possédant l’avantage d’être connue dans le cadre des PTS et
étant calculable en un temps fini. De plus, l’opacité est liée aux propriétés de flux d’informa-
tion, qui sont au cœur d’importantes problématiques sur la confidentialité des données et des
échanges : elles représentent l’information que peut déduire un agent extérieur en observant
un système.

Afin de justifier l’intérêt du choix de ce cadre, nous avons commencé par définir l’extension de
l’opacité au domaine des IDTMC, puis nous avons prouvé que cette grandeur était calculable
ou approchable en un temps fini. De fait, nous avons expliqué la méthode permettant de
calculer l’opacité libérale dans une IDTMC non-modale, c’est-à-dire une spécification dont
toutes les transitions sont nécessairement ordonnancées. Ce calcul, revenant à l’optimisation
d’un système linéaire dans un ensemble fermé borné, se réalise en un temps doublement expo-
nentiel. De plus, en étudiant le cas général, nous avons construit les algorithmes permettant
de nous ramener à des calculs d’opacité dans le cas des spécifications non-modales. Ceux-ci
sont fondés sur le fait que nous listons de manière formelle tous les ordonnancements à mé-
moire finie de l’IDTMC, afin d’en sortir le cas le moins sécurisé. Ainsi, nous avons pu affirmer
que la valeur de l’opacité libérale dans le cas général pouvait être approchée en un temps
doublement exponentiel, ce qui constitue notre première contribution originale en étendant
le résultat précédent, limité à une partie des spécifications.

Consécutivement, nous avons résolu notre problématique en énonçant le théorème suivant :
l’opacité libérale d’une spécification IDTMC est, dans le pire des cas, conservée lorsque la

79

spécification est raffinée faiblement. Ce résultat s’appuie sur l’étude de la relation de raffi-
nement d’une part, et la relation d’ordonnancement d’autre part. Il constitue notre seconde
contribution originale, en généralisant le résultat déjà connue de la préservation de l’opacité
par raffinement fort uniquement.

Enfin, nous avons illustré tous ces résultats sur un exemple d’application. Nous avons consi-
déré un système de contrôle d’accès à une base de données confidentielles, que nous avons
modélisé conformément à notre cadre d’études. Nous avons calculé que la première spécifica-
tion n’était pas opaque, en appliquant les algorithmes expliqués précédemment. Nous avons
alors défini un raffinement du système, et dans la même optique, nous avons assuré l’opacité,
ce qui a illustré le résultat de préservation de la sécurité.

7.2 Limitations de la solution proposée

Bien qu’il constitue une avancée dans la théorie, ce travail de recherche comporte certaines
limitations que nous n’avons pu franchir.

Tout d’abord, le théorème de calcul de l’opacité libérale dans le cas général n’aboutit pas
à la preuve que la valeur exacte est calculable en temps fini. En effet, puisque l’algorithme
consiste à énumérer les cas pour les différents ordonnanceurs à mémoire finie, et puisqu’il
y a théoriquement une infinité de ces ordonnanceurs – sans compter les ordonnanceurs à
mémoire quelconque – il est a priori impossible de réaliser le calcul exact en un temps fini :
la question reste ouverte.

En second lieu, nous avons prouvé que l’opacité libérale était préservée lors d’un raffinement
faible, ce qui implique qu’elle est préservée lors d’un raffinement fort. Pour autant, rien n’est
prouvé pour le raffinement complet. Cette question est encore ouverte.

Enfin, la plupart de l’étude a été réalisée en prenant en compte l’opacité libérale. La question
quant à sa grandeur duale, l’opacité restrictive, est encore en suspens. Or cette opacité est
justement intéressante pour distinguer des systèmes dont le secret est effectivement opaque,
à l’inverse de l’opacité libérale, qui détermine le degré de non-opacité du secret dans un
système. La difficulté réside ici dans le fait que l’opacité restrictive dans un PTS n’est pas la
probabilité d’un ensemble régulier mais le résultat d’une moyenne harmonique de probabilités
particulières.

80

7.3 Améliorations futures

Cette recherche est le fruit de l’étude d’un cadre particulier dans la problématique du raffi-
nement de systèmes sécurisés. Les travaux futurs consistent donc à continuer dans cette voie
en essayant de généraliser les résultats obtenus.

La première généralisation consiste à vérifier si les théorèmes sont toujours valables si l’on
modifie la nature de la propriété. Notamment, que se passe-t-il lorsque l’on remplace l’opacité
libérale par une autre RIFP (Bérard et Mullins, 2014) ? Si on parvient à prouver la générali-
sation, il sera possible de considérer un grand nombre de propriétés formelles de sécurité. En
effet, il est possible de prouver que les Prédicats Basiques de Sécurité (BSP) (Mantel, 2000,
2001) – introduites par Mantel et qui constituent les briques élémentaires de toutes les pro-
priétés de sécurité – peuvent être vues comme des RIFP, en les calculant sous le sens libéral.
Ces deux résultats combinés sont autant de poinsts justifiant l’intérêt de ce formalisme.

La seconde généralisation se trouve du côté du choix de modélisation. Le choix de l’IDTMC
permet un formalisme contraint qui facilite les résultats. Serait-il possible d’étendre le tout
à des objets plus généraux, tels que les Chaînes de Markov Contraintes (CMC) ? Dans ce
formalisme, les probabilités de transitions ne sont plus restreintes par des intervalles, mais
par des relations de contraintes quelconques. Ainsi, les IDTMC sont des CMC particulières.

Au-delà de ces extensions du domaine d’application des résultats, il serait intéressant d’explo-
rer davantage le calcul de l’opacité restrictive dans les IDTMC. L’aspect non-linéaire de cette
grandeur pose problème, mais peut-être existe-t-il un moyen de linéariser les fonctions afin
d’avoir une approximation de la valeur. Il faudrait pour cela suivre des pistes d’optimisation
de fonctions.

Enfin, nos résultats sont pour le moment dans un cadre très théorique et peu applicatif. Le
logiciel de modélisation et vérification PRISM est actuellement capable de calculer l’opacité
libérale d’un PTS ; il serait intéressant d’explorer la possibilité de modéliser les IDTMC sur
ce logiciel. Si cela s’avère possible, il serait alors envisageable de calculer l’opacité libérale
d’une IDTMC, la difficulté étant alors de se limiter aux ordonnancements.

81

RÉFÉRENCES

Martín Abadi et Leslie Lamport : The existence of refinement mappings. Theoretical Com-
puter Science, 82(2):253 – 284, 1991. ISSN 0304-3975. URL http://www.sciencedirect.
com/science/article/pii/030439759190224P.

Christel Baier et Joost-Pieter Katoen : Principles of model checking. MIT Press, 2008.
ISBN 978-0-262-02649-9.

Christel Baier, Joost-Pieter Katoen, Holger Hermanns et Verena Wolf : Comparative
branching-time semantics for markov chains. Inf. Comput., 200(2):149–214, 2005. URL
http://dx.doi.org/10.1016/j.ic.2005.03.001.

Béatrice Bérard, Krishnendu Chatterjee et Nathalie Sznajder : Probabilistic opacity
for markov decision processes. Inf. Process. Lett., 115(1):52–59, 2015a. URL http://dx.
doi.org/10.1016/j.ipl.2014.09.001.

Béatrice Bérard, Olga Kouchnarenko, John Mullins et Mathieu Sassolas : Pro-
babilistic opacity in refinement-based modeling. CoRR, abs/1510.04316, 2015b. URL
http://arxiv.org/abs/1510.04316.

Béatrice Bérard et John Mullins : Verification of information flow properties under
rational observation. CoRR, abs/1409.0871, 2014. URL http://arxiv.org/abs/1409.
0871.

Béatrice Bérard, John Mullins et Mathieu Sassolas : Quantifying opacity. Mathema-
tical Structures in Computer Science, 25(2):361–403, 2015c. URL http://dx.doi.org/10.
1017/S0960129513000637.

Fabrizio Biondi, Axel Legay, Bo Friis Nielsen et Andrzej Wasowski : Maximizing
entropy over markov processes. J. Log. Algebr. Meth. Program., 83(5-6):384–399, 2014.
URL http://dx.doi.org/10.1016/j.jlamp.2014.05.001.

Jeremy Bryans, Maciej Koutny, Laurent Mazaré et Peter Y. A. Ryan : Opacity
generalised to transition systems. Int. J. Inf. Sec., 7(6):421–435, 2008. URL http:
//dx.doi.org/10.1007/s10207-008-0058-x.

Jeremy Bryans, Maciej Koutny et Peter Y. A. Ryan : Modelling dynamic opacity using
petri nets with silent actions. In Formal Aspects in Security and Trust : Second IFIP TC1
WG1.7 Workshop on Formal Aspects in Security and Trust (FAST), an event of the 18th
IFIP World Computer Congress, August 22-27, 2004, Toulouse, France, pages 159–172,
2004. URL http://dx.doi.org/10.1007/0-387-24098-5_12.

http://www.sciencedirect.com/science/article/pii/030439759190224P
http://www.sciencedirect.com/science/article/pii/030439759190224P
http://dx.doi.org/10.1016/j.ic.2005.03.001
http://dx.doi.org/10.1016/j.ipl.2014.09.001
http://dx.doi.org/10.1016/j.ipl.2014.09.001
http://arxiv.org/abs/1510.04316
http://arxiv.org/abs/1409.0871
http://arxiv.org/abs/1409.0871
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1016/j.jlamp.2014.05.001
http://dx.doi.org/10.1007/s10207-008-0058-x
http://dx.doi.org/10.1007/s10207-008-0058-x
http://dx.doi.org/10.1007/0-387-24098-5_12

82

Jeremy Bryans, Maciej Koutny et Peter Y. A. Ryan : Modelling opacity using petri
nets. Electr. Notes Theor. Comput. Sci., 121:101–115, 2005. URL http://dx.doi.org/10.
1016/j.entcs.2004.10.010.

JR Büchi : On a decision method in restricted second order arithmetic logic. Proc. 1962
Internat. Congr. on Methodology and Philosophy of Sciences, 1962.

Pavol Cerný, Krishnendu Chatterjee et Thomas A. Henzinger : The complexity of
quantitative information flow problems. In Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 205–
217, 2011. URL http://dx.doi.org/10.1109/CSF.2011.21.

Krishnendu Chatterjee, Koushik Sen et Thomas A. Henzinger : Model-checking
omega-regular properties of interval markov chains. In Foundations of Software Science
and Computational Structures, 11th International Conference, FOSSACS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29 - April 6, 2008. Proceedings, pages 302–317, 2008. URL
http://dx.doi.org/10.1007/978-3-540-78499-9_22.

Michael R. Clarkson et Fred B. Schneider : Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010. URL http://dx.doi.org/10.3233/JCS-2009-0393.

Benoît Delahaye, Kim G Larsen, Axel Legay, Mikkel L Pedersen et Andrzej Wą-
sowski : Decision problems for interval markov chains. In International Conference on
Language and Automata Theory and Applications, pages 274–285. Springer, 2011.

Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen et Andrzej Wa-
sowski : Consistency and refinement for interval markov chains. J. Log. Algebr. Program.,
81(3):209–226, 2012. URL http://dx.doi.org/10.1016/j.jlap.2011.10.003.

Joseph A. Goguen et José Meseguer : Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages
11–20, 1982. URL http://dx.doi.org/10.1109/SP.1982.10014.

Bengt Jonsson et Kim Guldstrand Larsen : Specification and refinement of probabilistic
processes. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science
(LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 266–277, 1991. URL
http://dx.doi.org/10.1109/LICS.1991.151651.

Feng Lin : Opacity of discrete event systems and its applications. Automatica, 47(3):496–
503, 2011.

Heiko Mantel : Possibilistic definitions of security - an assembly kit. In Proceedings of
the 13th IEEE Computer Security Foundations Workshop, CSFW ’00, Cambridge, England,

http://dx.doi.org/10.1016/j.entcs.2004.10.010
http://dx.doi.org/10.1016/j.entcs.2004.10.010
http://dx.doi.org/10.1109/CSF.2011.21
http://dx.doi.org/10.1007/978-3-540-78499-9_22
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1016/j.jlap.2011.10.003
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/LICS.1991.151651

83

UK, July 3-5, 2000, pages 185–199, 2000. URL http://dx.doi.org/10.1109/CSFW.2000.
856936.

Heiko Mantel : Preserving information flow properties under refinement. In 2001 IEEE
Symposium on Security and Privacy, Oakland, California, USA May 14-16, 2001, pages
78–91, 2001. URL http://dx.doi.org/10.1109/SECPRI.2001.924289.

Laurent Mazaré : Using unification for opacity properties. Proceedings of the 4th IFIP
WG1, 7:165–176, 2004.

John Mullins et Moez Yeddes : Opacity with orwellian observers and intransitive non-
interference. In 12th International Workshop on Discrete Event Systems, WODES 2014,
Cachan, France, May 14-16, 2014., pages 344–349, 2014. URL http://dx.doi.org/10.
3182/20140514-3-FR-4046.00016.

Nir Piterman : From nondeterministic büchi and streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3(3), 2007. URL http://dx.doi.org/
10.2168/LMCS-3(3:5)2007.

John Rushby : Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory, 1992.

Anooshiravan Saboori et Christoforos N Hadjicostis : Current-state opacity formulations
in probabilistic finite automata. IEEE Transactions on automatic control, 59(1):120–133,
2014.

Mathieu Sassolas : Qualitative and Quantitative Methods for Detection of Hidden In-
formation. Theses, Université Pierre et Marie Curie - Paris VI, novembre 2011. URL
https://tel.archives-ouvertes.fr/tel-00683086.

Claude Elwood Shannon : A mathematical theory of communication. 1948.

Geoffrey Smith : On the foundations of quantitative information flow. In Foundations of
Software Science and Computational Structures, 12th International Conference, FOSSACS
2009, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages 288–302, 2009. URL http:
//dx.doi.org/10.1007/978-3-642-00596-1_21.

David Sutherland : A model of information. In Proc. 9th National Computer Security
Conference, pages 175–183. DTIC Document, 1986.

http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.3182/20140514-3-FR-4046.00016
http://dx.doi.org/10.3182/20140514-3-FR-4046.00016
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
https://tel.archives-ouvertes.fr/tel-00683086
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Éléments de la problématique
	1.2 Exemple de motivation
	1.3 Objectifs de recherche
	1.4 Méthodologie
	1.5 Plan du mémoire

	2 REVUE DE LITTÉRATURE
	2.1 Raffinement et spécification
	2.2 Le cas des systèmes sécurisés

	3 PRÉLIMINAIRES
	3.1 Modélisation
	3.1.1 Langages et automates
	3.1.2 Les systèmes de transitions
	3.1.3 Un modèle de spécification

	3.2 Vérification de l'opacité
	3.2.1 Une opacité binaire
	3.2.2 L'opacité probabiliste

	4 THÉORIE DES SPÉCIFICATIONS
	4.1 IDTMC
	4.2 Raffinement fort et faible
	4.3 Implémentation et raffinement complet
	4.4 Langages dans les IDTMC
	4.5 Ordonnancement
	4.6 Extension de l'opacité libérale aux IDTMC

	5 VÉRIFICATION DE L'OPACITÉ
	5.1 Notions préliminaires
	5.1.1 Synchronisation entre un DPA et une IDTMC
	5.1.2 Solution Basique Réalisable (BFS)
	5.1.3 Calcul d'un MDP à partir d'une IDTMC

	5.2 Calcul de l'opacité libérale dans le cas des IDTMC non-modales
	5.3 Une approximation du cas général
	5.3.1 Détermination des transitions modales
	5.3.2 Élimination de certaines transitions modales
	5.3.3 Dépliage de l'ordonnancement
	5.3.4 Approximation du calcul de l'opacité libérale dans le cas des IDTMC modales

	5.4 Préservation de l'opacité libérale par raffinement
	5.5 Cas des autres opacités
	5.5.1 Quasi-opacité uniforme
	5.5.2 Opacité restrictive

	6 ÉTUDE DE CAS
	6.1 Description de l'étude de cas
	6.1.1 Modélisation du système
	6.1.2 Requis de sécurité

	6.2 Calcul de l'opacité binaire
	6.3 Opacité libérale
	6.3.1 Application du théorème 2
	6.3.2 Bilan du calcul
	6.3.3 Un autre exemple

	6.4 Un raffinement
	6.4.1 Calcul d'opacité libérale
	6.4.2 Calcul d'opacité restrictive

	7 CONCLUSION
	7.1 Synthèse des travaux
	7.2 Limitations de la solution proposée
	7.3 Améliorations futures

	RÉFÉRENCES

