
Titre:
Title:

Decomposition-Based Integer Programming, Stochastic
Programming, and Robust Optimization Methods for Healthcare
Planning, Scheduling, and Routing Problems

Auteur:
Author:

Seyed Hossein Hashemi Doulabi

Date: 2017

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Hashemi Doulabi, S. H. (2017). Decomposition-Based Integer Programming,
Stochastic Programming, and Robust Optimization Methods for Healthcare
Planning, Scheduling, and Routing Problems [Thèse de doctorat, École
Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2564/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2564/

Directeurs de
recherche:

Advisors:
Louis-Martin Rousseau, & Gilles Pesant

Programme:
Program:

Doctorat en génie industriel

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2564/
https://publications.polymtl.ca/2564/

UNIVERSITÉ DE MONTRÉAL

DECOMPOSITION-BASED INTEGER PROGRAMMING, STOCHASTIC
PROGRAMMING, AND ROBUST OPTIMIZATION METHODS FOR HEALTHCARE

PLANNING, SCHEDULING, AND ROUTING PROBLEMS

SEYED HOSSEIN HASHEMI DOULABI
DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INDUSTRIEL)
MAI 2017

c© Seyed Hossein Hashemi Doulabi, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

DECOMPOSITION-BASED INTEGER PROGRAMMING, STOCHASTIC
PROGRAMMING, AND ROBUST OPTIMIZATION METHODS FOR HEALTHCARE

PLANNING, SCHEDULING, AND ROUTING PROBLEMS

présentée par : HASHEMI DOULABI Seyed Hossein
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. GENDREAU Michel, Ph. D., président
M. ROUSSEAU Louis-Martin, Ph. D., membre et directeur de recherche
M. PESANT Gilles, Ph. D., membre et codirecteur de recherche
M. GENDRON Bernard, Ph. D., membre
Mme BODUR Merve, Ph. D., membre externe

iii

DEDICATION

To my wife, Sahar, whose endless love and sacrifice made this journey possible

To my parents who brought me up with their eternal love

iv

ACKNOWLEDGEMENTS

I wholeheartedly appreciate my wonderful advisors, Profs. Gilles Pesant and Louis Martin
Rousseau for their excellent guidance, immense knowledge and motivations. They supported
me very patiently by giving me the opportunity to explore many different research areas
during my PhD. I could not have imagined more supportive advisors for my PhD Study. I
consider them as role models in my future career in academia.

Besides my advisors, I would like to thank Prof. Patrick Jaillet for hosting me as a visiting
student at MIT. It was really a unique opportunity to collaborate with Prof. Jaillet and be
a part of his research group. In addition, I would like to thank Profs. Merve Bodur, Michel
Gendreau, Bernard Gendron for accepting to join the jury.

Furthermore, I acknowledge The Fonds de recherche du Québec - Nature et technologies (FR-
QNT) for providing full financial scholarships during the second and third year of my PhD
study and also another financial scholarship that supported my visit at MIT. Likewise, I ex-
press my gratitude to CIRRELT, and Institute of Industrial Engineers (IIE) for supporting
my research by several scholarships.

I also want to take this opportunity to thank all my great friends at CIRRELT for their
encouragements.

v

RÉSUMÉ

Il existe de nombreuses applications de planification, d’ordonnancement et de confection de
tournées dans les systèmes de santé. La résolution efficace de ces problèmes peut aider les
responsables de la santé à fournir des services de meilleure qualité, en utilisant efficacement
les ressources médicales disponibles. En raison de la nature combinatoire de ces problèmes,
dans de nombreux cas, les algorithmes de programmation en nombres entiers standards dans
les logiciels commerciaux de programmation mathématique tels que CPLEX et Gurobi ne
peuvent pas résoudre efficacement les modèles correspondants. Dans cette thèse, nous étu-
dions trois problèmes de planification, d’ordonnancement et de confection de tournées des
soins de santé et proposons des approches à base de décomposition utilisant la program-
mation en nombres entiers, la programmation stochastique et une méthode d’optimisation
robuste.

Le premier article de cette thèse présente un problème intégré de planification et d’ordon-
nancement dans le cadre des salles d’opération. Cette situation implique d’optimiser l’or-
donnancement et l’affectation des chirurgies aux différentes salles d’opération, sur un hori-
zon de planification à court terme. Nous avons pris en compte les heures de travail quoti-
diennes maximales des chirurgiens, le temps de nettoyage obligatoire alloué lors du passage
de cas infectieux à des cas non infectieux et le respect des dates limites des chirurgies. Nous
avons aussi empêché le chevauchement des chirurgies effectuées par le même chirurgien. Nous
avons formulé le problème en utilisant un modèle de programmation mathématique et déve-
loppé un algorithme «branch-and-price-and-cut» basé sur un modèle de programmation par
contraintes pour le sous-problème. Nous avons mis en place des règles de dominance et un
algorithme de détection d’infaillibilité rapide. Cet algorithme, basé sur le problème du sac à
dos multidimensionnel, nous permet d’améliorer l’efficacité du modèle de programmation de
contraintes. Les résultats montrent que notre méthode présente un écart à l’optimum moyen
de 2,81%, ce qui surpasse de manière significative la formulation mathématique compacte
dans la littérature.

Dans la deuxième partie de cette thèse, pour la première fois, nous avons étudié l’optimisation
des problèmes de tournées de véhicules avec visites synchronisées (VRPS) en tenant compte
de stochasticité des temps de déplacement et de service. En plus d’envisager un problème
d’ordonnancement des soins de santé à domicile, nous introduisons un problème d’ordonnan-
cement des salles d’opération avec des durées stochastiques qui est une nouvelle application
de VRPS. Nous avons modélisé les VRPS qui ont des durées stochastiques en programmation

vi

stochastique à deux niveaux avec des variables entières dans les deux niveaux. L’avantage du
modèle proposé est que, contrairement aux modèles déterministes de la littérature VRPS, il
n’a pas de contraintes «big-M». Cet avantage entraine en contrepartie la présence d’un grand
nombre de variables entières dans le second niveau. Nous avons prouvé que les contraintes
d’intégralité sur les variables du deuxième niveau sont triviales ce qui nous permet d’ap-
pliquer l’algorithme «L-shaped» et son implémentation branch-and-and-cut pour résoudre le
problème. Nous avons amélioré le modèle en développant des inégalités valides et une fonction
de bornes inférieures. Nous avons analysé les sous-problèmes de l’algorithme en L et nous
avons proposé une méthode de résolution qui est beaucoup plus rapide que les algorithmes de
programmation linéaire standards. En outre, nous avons étendu notre modèle pour modéliser
les VRPS avec des temps de déplacement et de service dépendant du temps.

Les résultats de l’optimisation montrent que, pour le problème stochastique de soins à domi-
cile, l’algorithme «branch-and-cut» résout à l’optimalité les exemplaires avec 15 patients et
10% à 30% de visites synchronisées. Il trouve également des solutions avec un écart à l’opti-
mum moyen de de 3,57% pour les cas avec 20 patients. De plus l’algorithme «branch-and-cut»
résout à l’optimalité les problèmes d’ordonnancement stochastique des salles d’opération avec
20 chirurgies. Ceci est une amélioration considérable par rapport à la littérature qui fait état
de cas avec 11 chirurgies. En outre, la modélisation proposée pour le problème dépendant
du temps trouve des solutions optimales pour d’une grande portion des exemplaires d’ordon-
nancement de soins de santé à domicile avec 30 à 60 patients et différents taux de visites
synchronisées.

Dans la dernière partie de cette thèse, nous avons étudié une catégorie de modèles d’optimi-
sation robuste en deux étapes avec des variables entières du problème adversaire. Nous avons
analysé l’importance de cette classe de problèmes lors de la modélisation à deux niveaux
de problèmes de planification de ressources robuste en deux étapes où certaines tâches ont
des temps d’arrivée et des durées incertains. Nous considérons un problème de répartition
et d’affectation d’infirmières comme une application de cette classe de modèles robustes.
Nous avons appliqué la décomposition de Dantzig-Wolfe pour exploiter la structure de ces
modèles, ce qui nous a permis de montrer que le problème initial se réduit à un problème
robuste à une seule étape. Nous avons proposé un algorithme Benders pour le problème refor-
mulé. Étant donné que le problème principal et le sous-problème dans l’algorithme Benders
sont des programmes à nombres entiers mixtes, il requiert une quantité de calcul importante
à chaque itération de l’algorithme pour les résoudre de manière optimale. Par conséquent,
nous avons développé de nouvelles conditions d’arrêt pour ces programmes à nombres entiers
mixtes et fourni des preuves de convergence. Nous avons développé également un algorithme
heuristique appelé «dual algorithm». Dans cette heuristique, nous dualisons la relaxation

vii

linéaire du problème adversaire dans le problème reformulé et générons des coupes itérati-
vement pour façonner l’enveloppe convexe de l’ensemble d’incertitude. Nous avons combiné
cette heuristique avec l’algorithme Benders pour créer un algorithme plus efficace appelé al-
gorithme «Benders-dual algorithm». De nombreuses expériences de calcul sur le problème de
répartition et d’affectation d’infirmières sont effectuées pour comparer ces algorithmes.

viii

ABSTRACT

There are many applications of planning, scheduling, and routing problems in healthcare sys-
tems. Efficiently solving these problems can help healthcare managers provide higher-quality
services by making efficient use of available medical resources. Because of the combinatorial
nature of these problems, in many cases, standard integer programming algorithms in com-
mercial mathematical programming software such as CPLEX and Gurobi cannot solve the
corresponding models effectively. In this dissertation, we study three healthcare planning,
scheduling, and routing problems and propose decomposition-based integer programming,
stochastic programming, and robust optimization methods for them.

In the first essay of this dissertation, we study an integrated operating room planning
and scheduling problem that combines the assignment of surgeries to operating rooms and
scheduling over a short-term planning horizon. We take into account the maximum daily
working hours of surgeons, prevent the overlapping of surgeries performed by the same sur-
geon, allow time for the obligatory cleaning when switching from infectious to noninfectious
cases, and respect the surgery deadlines. We formulate the problem using a mathemati-
cal programming model and develop a branch-and-price-and-cut algorithm based on a con-
straint programming model for the subproblem. We also develop dominance rules and a fast
infeasibility-detection algorithm based on a multidimensional knapsack problem to improve
the efficiency of the constraint programming model. The computational results show that
our method has an average optimality gap of 2.81% and significantly outperforms a compact
mathematical formulation in the literature.

As the second essay of this dissertation, for the first time, we study vehicle routing problems
with synchronized visits (VRPS) and stochastic/time-dependent travel and service times. In
addition to considering a home-health care scheduling problem, we introduce an operating
room scheduling problem with stochastic durations as a novel application of VRPS. We
formulate VRPS with stochastic times as a two-stage stochastic programming model with
integer variables in both stages. An advantage of the proposed model is that, in contrast to
the deterministic models in the VRPS literature, it does not have any big-M constraints. This
advantage comes at the cost of a large number of second-stage integer variables. We prove
that the integrality constraints on second-stage variables are trivial, and therefore we can
apply the L-shaped algorithm and its branch-and-cut implementation to solve the problem.
We enhance the model by developing valid inequalities and a lower bounding functional. We
analyze the subproblems of the L-shaped algorithm and devise a solution method for them

ix

that is much faster than standard linear programming algorithms. Moreover, we extend our
model to formulate VRPS with time-dependent travel and service times.

Computational results show that, in the stochastic home-health care scheduling problem, the
branch-and-cut algorithm optimally solves instances with 15 patients and 10% to 30% of syn-
chronized visits. It also finds solutions with an average optimality gap of 3.57% for instances
with 20 patients. Furthermore, the branch-and-cut algorithm optimally solves stochastic
operating room scheduling problems with 20 surgeries, a considerable improvement over the
literature that reports on instances with 11 surgeries. In addition, the proposed formula-
tion for the time-dependent problem solves a large portion of home-health care scheduling
instances with 30 to 60 patients and different rates of synchronized visits to optimality.

For the last essay of this dissertation, we also study a class of two-stage robust optimization
models with integer adversarial variables. We discuss the importance of this class of problems
in modeling two-stage robust resource planning problems where some tasks have uncertain
arrival times and duration periods. We consider a two-stage nurse planning problem as
an application of this class of robust models. We apply Dantzig-Wolfe decomposition to
exploit the structure of these models and show that the original problem reduces to a single-
stage robust problem. We propose a Benders algorithm for the reformulated single-stage
problem. Since the master problem and subproblem in the Benders algorithm are mixed
integer programs, it is computationally demanding to solve them optimally at each iteration
of the algorithm. Therefore, we develop novel stopping conditions for these mixed integer
programs and provide the relevant convergence proofs. We also develop a heuristic algorithm
called dual algorithm. In this heuristic, we dualize the linear programming relaxation of the
adversarial problem in the reformulated problem and iteratively generate cuts to shape the
convex hull of the uncertainty set. We combine this heuristic with the Benders algorithm to
create a more effective algorithm called Benders-dual algorithm. Extensive computational
experiments on the nurse planning problem are performed to compare these algorithms.

x

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xv

xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Categorization of operating room management 1
1.2 Categorization of home-health care management 2
1.3 Categorization of nurse-staffing management 4

CHAPTER 2 LITERATURE REVIEW . 6
2.1 Operating room planning and scheduling . 6

2.1.1 Integrated operating room planning and scheduling 6
2.1.2 Operating room planning . 10
2.1.3 Operating room scheduling . 13

2.2 Home-health care routing and scheduling . 16
2.3 Nurse rostering . 19

CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT 24

CHAPTER 4 ARTICLE 1 : A CONSTRAINT-PROGRAMMING-BASED BRANCH-
AND-PRICE-AND-CUT APPROACH FOROPERATING ROOMPLANNING AND
SCHEDULING . 26
4.1 Introduction . 27
4.2 Problem Statement and Notation . 30

LIST OF APPENDICES .

xi

4.3 Formulation and Column Generation Algorithm 32
4.3.1 Master Problem . 32
4.3.2 Subproblem . 34

4.4 Column Generation Enhancements . 37
4.4.1 Dominance Rules . 38
4.4.2 Fast Infeasibility-Detection Algorithm 41

4.5 Branch-and-Price-and-Cut Algorithm . 44
4.5.1 Structure of the Branch-and-Price-and-Cut Algorithm 44
4.5.2 Branching procedure . 46
4.5.3 Cutting planes . 48

4.6 Computational Experiments . 49
4.6.1 Instances . 50
4.6.2 Parameters . 51
4.6.3 Results . 52

4.7 Conclusion and Future Research . 58

CHAPTER 5 ARTICLE 2 : VEHICLE ROUTING PROBLEMS WITH SYNCHRONI-
ZED VISITS AND STOCHASTIC/TIME-DEPENDENT TRAVEL AND SERVICE
TIMES : APPLICATIONS IN HEALTHCARE 59
5.1 Introduction . 60
5.2 Problem definition and applications . 63
5.3 Two-stage stochastic programming model . 65

5.3.1 First-stage model . 65
5.3.2 Second-stage model . 68

5.4 Valid inequalities . 72
5.4.1 Subtour-elimination constraints . 72
5.4.2 Capacity constraints for service times 73
5.4.3 Improved no-overlap constraints . 73

5.5 L-shaped algorithm . 74
5.6 Lower bounding functional . 77
5.7 Analysis of subproblems . 79

5.7.1 Optimality cuts . 80
5.7.2 Feasibility cuts . 84

5.8 Extension to time-dependent problems . 86
5.9 Implementation details . 88
5.10 Computational results . 89

xii

5.10.1 Home-health care scheduling instances 89
5.10.2 Results for home-health care scheduling instances 90
5.10.3 Operating room scheduling instances 95
5.10.4 Results for operating room scheduling instances 96

5.11 Conclusion . 98

CHAPTER 6 ARTICLE 3 : EXPLOITING THE STRUCTURE OF TWO-STAGE RO-
BUST OPTIMIZATION MODELS WITH INTEGER ADVERSARIAL VARIABLES 99
6.1 Introduction . 100
6.2 Model and applications . 104
6.3 Reformulation . 107
6.4 Solution methods . 111

6.4.1 Benders Algorithm . 111
6.4.2 Dual Algorithm . 117
6.4.3 Benders-dual Algorithm . 120

6.5 Computational results . 122
6.5.1 Instances . 122
6.5.2 Parameters . 123
6.5.3 Results . 123

6.6 Conclusion . 128

CHAPTER 7 GENERAL DISCUSSION . 138

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 140
8.1 Contributions . 140
8.2 Limitations and future research directions 142

REFERENCES . 143

APPENDICES . 159

xiii

LIST OF TABLES

4.1 Values of λ for Different Infectious and Noninfectious Combinations for Sur-
geries i, i′, and the Surgery in Position p∗ − 1 40

4.2 Evaluation of Dominance Rules and the Fast Infeasibility-Detection Algorithm. 54
4.3 Evaluation of the CG algorithms. 54
4.4 Evaluation of the price-and-cut algorithm. 55
4.5 Evaluation of the branch-and-price algorithm. 55
4.6 56
4.7

Evaluation of the branch-and-price-and-cut algorithm.
Evaluation of the integer programming model, constraint programming mo-
del, and mixed algorithm. 56

4.8 Improvement in optimality gap from cuts and branching. 57
5.1 Computational results of the branch-and-cut and L-shaped algorithms

for the home-healthcare scheduling problem with stochastic travel and
service times. 93

5.2

5.3

Comparison of different solution methods for subproblems in stochastic
home-health care scheduling instances within a time limit of 30 minutes. 93
Computational results for the home-healthcare scheduling problem with
time-dependent travel and service times. 94

5.4

5.5

6.1

Computational results of the branch-and-cut and L-shaped algorithms
for the operating room scheduling problem with stochastic durations. 97
Comparison of different solution methods for subproblems in stochastic
operating room scheduling instances within a time limit of 30 minutes. 97
A numerical example to explain the stopping conditions of MIPs in the

114
6.2

Benders algorithm. .
Computational results of the Benders and dual algorithms for instances with

130
6.3

a planning horizon of two weeks (L = 2).
Computational results of the Benders and dual algorithms for instances with

131
6.4

a planning horizon of three weeks (L = 3).
Computational results of the Benders and dual algorithms for instances with

132
6.5

a planning horizon of four weeks (L = 4).
Computational results of the Benders and dual algorithms for instances with
a planning horizon of five weeks (L = 5). 133

6.6 Computational results of the Benders-dual algorithm for instances with
a planning horizon of two weeks (L = 2). 134

Table

Table
Table
Table
Table
Table
Table

Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

xiv

6.7 Computational results of the Benders-dual algorithm for instances with
a planning horizon of three weeks (L = 3). 135

6.8 Computational results of the Benders-dual algorithm for instances with
a planning horizon of four weeks (L = 4). 136

6.9 Computational results of the Benders-dual algorithm for instances with
a planning horizon of five weeks (L = 5). 137

A.1 Validity of λ for case 2-1. 164
A.2 Validity of λ for case 2-2. 164
A.3 Validity of λ for case 3. 164
A.4 Validity of λ for case 4. 164
A.5 Validity of λ for case 5. 165
A.6 Validity of λ for case 7. 165
A.7 Validity of λ for case 8. 165
A.8 Validity of λ for case 9. 166
A.9 167
A.10

Evaluation of the branching procedures.
The output of Step 1 in the heuristic algorithm proposed for setting the

168
A.11

number of operating rooms. .
The output of Step 2 in the heuristic algorithm proposed for setting the

168
A.12

number of operating rooms. .
The output of Step 3 in the heuristic algorithm proposed for setting the

168
C.1

number of operating rooms. .

198
C.2

199
C.3

200
C.4

Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of two weeks (L = 2). . . .
Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of three weeks (L = 3). . .
Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of four weeks (L = 4). . . .
Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of five weeks (L = 5). . . . 201

Table

Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table

Table

Table

Table

Table

xv

LIST OF FIGURES

Figure 5.1 68
Figure 5.2

A subtour formed by two different types of vehicles.
Convergence of lower and upper bounds in branch-and-bound algo-
rithm for home-health care scheduling instances. 92

Figure 6.1 Changes in the value of adjustability in terms of incentive factor for
different planning horizons. 126

Figure 6.2 Changes in the number of nurses in terms of incentive factor for dif-
ferent planning horizons. 126

Figure 6.3 Number of cuts generated during the Benders-dual algorithm for ins-
tances with L = 5 and OR = 5. 128

Figure 6.4 Best lower and upper bounds during the Benders-dual algorithms for
128

Figure C.1
all instances in Tables 6.6 to 6.9. .
The solution space of the adversarial variables in the example presented to
show the non-optimality of the dual algorithm. 196

xvi

A SUPPLEMENTS OF ARTICLE 1 159

B SUPPLEMENTS OF ARTICLE 2 169

C SUPPLEMENTS OF ARTICLE 3 185

APPENDIX

APPENDIX

APPENDIX

LIST OF APPENDICES

1

CHAPTER 1 INTRODUCTION

There is a wide range of operations research applications in healthcare. Researchers have
applied various operations research methods in disease prevention, disease screening and sur-
veillance, treatment, and designing and organization of healthcare systems (Denton et al.
2011). The recent area, also referred to as healthcare system management, focuses on pro-
viding high quality health services to patients as economically as possible. In the remainder
of this chapter, we provide three sections to categorize different problems in operating room,
home-health care and nurse-staffing management. These categorizations help readers have
better insights about the healthcare planning, scheduling and routing that we have studied
in this dissertation.

1.1 Categorization of operating room management

Around 60–70% of patients are admitted to hospitals for some type of surgical operation
(Guerriero and Guido 2011). Therefore, efficient management of operating theatres, which
include operating and recovery rooms, is very important to hospital managers.

As suggested by Guerriero and Guido (2011), we can categorize problems in operating room
management into three groups :

1. Case mix planning : This is the strategic stage of operating room management where
the total available operating room time over a long term (usually a year) is allocated to
surgical departments. The main objective in this stage is to minimize the total devia-
tions from a target time allocation to departments or to maximize the total weighted
number of scheduled surgeries.

2. Master surgery scheduling : After dividing the total available operating room time to
surgical departments, a cyclic schedule, over a medium term planning horizon, must
be determined. The schedule that is referred to as master surgery schedule determines
the number of daily available operating rooms, work hours of operating rooms and the
priority of surgeons or surgical departments in using them. This stage is the tactical
level of operating room management and the obtained master surgery schedule does
not change during the first three months after its creation.

3. Elective case scheduling : This stage is the operational level of operating room ma-
nagement where after deciding about the master surgical schedule, surgeries must be
scheduled on a daily basis. In this stage, we determine all details required to perform

2

a surgery including the corresponding surgeon, the start time of the surgery, required
equipments, etc. This stage can be divided itself into the following two steps :

(a) Advance scheduling (Operating room planning) : Surgeries are assigned to parti-
cular operating rooms and days.

(b) Allocation scheduling (Operating room scheduling) : Surgeries are sequenced and
scheduled in operating rooms.

In addition to the above definitions, there are two strategies affecting decision making in the
tactical and operational levels :

1. Block Scheduling Strategy : In this strategy, a set of time blocks are reserved for surgeons
or surgical departments to perform their surgeries. Each block time is a time interval
in a specific day in a specific operating room. In this strategy, it is assumed that
over the planning horizon, time blocks are reserved for surgeons (surgical groups) and
they cannot be used by other surgeons even though they remains unused because of
unpredicted events.

2. Open Scheduling Strategy : In this strategy, surgeries from different surgical depart-
ments can be performed in the same time block in the same operating room. Surgeons
must choose the surgeries to perform the next day, and the operating theatre manager
will schedule those surgeries in one or more rooms. This is a relaxation of the block-
scheduling strategy, and it is expected to give a more efficient schedule. However, the
management of such schedules is more difficult because of unexpected events such as
emergency cases and the stochastic nature of surgical durations.

In the first article presented in Chapter 4, we focus on the operational level of the operating
room management and study an integrated operating room planning and scheduling problem
under an open scheduling strategy. Moreover, one of the healthcare applications that we have
studied in the second article in Chapter 5 is an operating room scheduling problem (allocation
scheduling).

1.2 Categorization of home-health care management

Considering the increase in aged populations around the world and their health service needs,
the home-health care industry has grown significantly in the past decades. The main goal of
companies in this industry is to provide high quality health services to elderly people and
also to patients recovering from injuries or illnesses at their homes in the most cost-effective
way.

3

According to Hulshof et al. (2012), decision making in home-health care services can be
categorized as follows :

1. Strategic stage : At this stage, the following strategic decisions must be made :

(a) Regional Coverage : In this step, the home-health care organization must decide
about the number, types and locations of home-health care centers.

(b) Service mix : The home-health care organization must decide about the types of
services to provide. Home care includes helping patients with their basic personal
needs such as walking, feeding, and dressing, while home-health care is involved in
providing health services such as wound dressing, administering medication, mo-
nitoring the general health of the patient, pain control, and other health supports.

(c) Case mix : Based on the output of the service mix step, the home-health care
organization must decide about the types and the approximate number of patients
to serve.

(d) Districting : In this step, the region is partitioned into a number of districts. Pa-
tients in each district are usually assigned to one care team. The goal of districting
is to limit the travel distances and times for caregivers.

(e) Capacity dimensioning : For each skill category of caregivers, the organization de-
cides if it must employ staff or hire them temporarily from other agencies. Similar
decisions must be made about the different types of equipment that caregivers
need for serving patients.

2. Tactical stage : This stage is divided into the following steps :

(a) Capacity allocation : Resource capacities fixed in the Capacity dimensioning step
are allocated to different patient groups over identified districts. The goal in this
step is to fairly distribute workload, access times and quality of care for caregivers
and patients.

(b) Admission control : The home-health care organization must determine the rule
based on which patients are admitted. The main objective of admission control
policies is to select patients such that access times are minimized while resources
are used as efficiently as possible. Admission control policies are determined based
on various factors such as patient locations, the degree of urgency, the required
weekly number of visits, and service times.

(c) Staff-shift scheduling : In this step, the organization decide about the start and
end times of different shifts and determines the number of caregivers of different
types for working in various shifts in each district.

4

3. Operational stage : This stage is divided into the following steps :

(a) Staff-to-shift assignment : The organization assigns caregivers to shifts over a me-
dium planning horizon (several weeks). The goal of this step is to meet the staffing
levels fixed in the staff-shift scheduling step in the tactical level, while satisfying
constraints corresponding to work regulations and caregivers’ preferences.

(b) Visit scheduling : In this step, the home-health care organization determines all de-
tails required for visiting patients over the scheduling horizon. This step is divided
into the following sub-steps :

i. Short-term care plan : For each patient, the organization must decide about
the visit days and times.

ii. Staff-to-visit assignment : Specific caregiver(s) are assigned to each visit.

iii. Routing : For each caregiver, the sequence of patients to be visited is deter-
mined.

In the second article presented in Chapter 5, we study a vehicle routing and scheduling
problem with applications in operating rooms and home-health care scheduling problems.
The home-health care scheduling problem that we define in the second article is an integration
of the Staff-to-visit assignment and Routing steps presented in the previous categorization.

1.3 Categorization of nurse-staffing management

Human resource management is one of the most critical decision making areas in hospitals.
Nurse staffing has been the subject of many studies in the literature. This is because nurses’
salaries form a major part of hospitals’ budgets and therefore it is very important for hospital
managers to have an efficient nurse-staffing plan in order to run hospitals in a cost-effective
manner.

According to Punnakitikashem et al. (2008), we can consider four phases of nurse planning
and scheduling in hospitals as follows :

1. Nurse budgeting : Financial analysts allocate budgets for hiring nurses and determine
how many permanent and temporary nurses must be hired.

2. Nurse rostering : The nurse manager creates a schedule that determines on which days
and which shifts each nurse must be working in the hospital. In this scheduling problem,
there are many constraints corresponding to work regulations and demand satisfaction.
A prerequisite of this step is data modeling in which a data analyst forecasts the number
of patients that will enter hospital units over the next four to six weeks.

5

3. Nurse rescheduling : A rescheduling may happen 90 minutes before the start of each
shift. A nurse supervisor compares the number and skill levels of scheduled nurses with
the expected workload in the shift and if there is a shortage ask on-call nurses to work
in the shift.

4. Nurse assignment : At the beginning of each shift, the nurse supervisor assigns each
patient to a nurse such that 1) the nurse’s skill level is appropriate for serving the
patient, and 2) the workload of nurses is balanced.

In the third article presented in Chapter 6, we study a two-stage robust optimization pro-
blem with an application in general resource planning problems. As an application of the
developed model, we study a two-stage nurse planning problem in a hospital’s ward based
on an uncertain number of patients brought from ICUs to the ward. Nurse planning refers
to the part of nurse rostering where, based on the data obtained from data modeling, the
daily number of nurses required in the planning horizon are determined without deciding on
detailed schedules.

6

CHAPTER 2 LITERATURE REVIEW

In this chapter, we provide literature reviews on operating room planning and scheduling,
home-health care routing and scheduling, and nurse planning problems separately.

2.1 Operating room planning and scheduling

In recent years, some researchers have provided precious surveys on operating room manage-
ment with different perspectives (Cardoen et al. 2010, Guerriero and Guido 2011, May et al.
2011, Samudra et al. 2016). Cardoen et al. (2010) presented a survey by focusing on the
problem setting (e.g., objective functions or different types of patients) and the methodolo-
gical aspects (e.g., solution method or uncertainty). Guerriero and Guido (2011) presented
a more useful literature review based on the categorization scheme presented in Section 1.1.
May et al. (2011) provided a literature review where papers are categorized to six catego-
ries based on dividing the planning horizon into six stages. Samudra et al. (2016) classified
papers in the literature considering patient type, objective functions, decisions to make, up-
and downstream resources, uncertainty, research methodology and test instances.

In this section, we have used the structure proposed by Guerriero and Guido (2011) to review
relevant papers. In addition to papers referred to by Guerriero and Guido (2011), we have
studied the relevant papers published after 2011. Since the focus of the first article in this dis-
sertation is on the operational stage of operating room management, we limit the literature
review to papers dealing with this stage. In the Section 2.1.1, we review papers addres-
sing both operating room planning and operating room scheduling. Then, in sections 2.1.2
and 2.1.3, we review papers that studied these problems separately.

2.1.1 Integrated operating room planning and scheduling

In papers published by 2012, researchers rarely addressed integrated operating room planning
and scheduling due to the intrinsic complexity of the synchronization. Even, in this few
number of papers, most authors have proposed two-step methods to solve the planning and
scheduling problems rather than an exact method capable of finding the optimal solution in
a unified manner (Jebali et al. 2006, Guinet and Chaabane 2003, Fei et al. 2006, 2010, Liu
et al. 2011). However, after 2012, there has been an emergent interest in integrated planning
and scheduling of operating rooms.

7

Jebali et al. (2006) developed a two-step method where, in the first step, a mathematical
formulation minimizes the sum of daily hospitalization cost, overtime cost, and under time
cost by assigning surgeries to days and operating rooms. Then, in the second step, another
mixed integer programming formation (MIP) decides about the sequencing of surgeries consi-
dering the possibility of modifying the assignment of surgeries to operating rooms. The main
advantage of this work is that authors considered many details in scheduling including pre-
vention from surgeon overlapping (a surgeon cannot work in more than one operating room
simultaneously), anesthesia and cleaning times, time window constraints for surgeons, and
the possibility of blockage in recovery rooms. Because of the complexity of the developed
models, they only solved small-sized instances with three operating rooms, four surgeons and
four beds in recovery rooms.

Guinet and Chaabane (2003) developed an assignment formulation for the operating room
planning problem with side constraints such as surgeon availability, maximum daily workloads
for surgeons, and maximum overtime hours in operating room. This model minimizes the
sum of hospitalization cost (waiting time of patients) and overtime cost. They also proposed
a primal-dual heuristic based on a path augmenting method in a bipartite graph to assign
surgeries to operating rooms in the planning horizon. Then, they rescheduled patients on each
day in order to satisfy other staff and material constraints. It is possible that the solution
obtained by this approach violates the no-overlapping constraint for surgeons.

Fei et al. (2006) studied an operating room planning and scheduling problem in the case of
a block scheduling strategy that makes the scheduling part of the studied problem simpler
since surgeon overlapping will not happen at all. They presented a two-step approach where
a column generation algorithm finds some patient assignments for operating rooms. In the
scheduling phase, they considered the possibility of blockage due to the limited number of
beds in the recovery room that makes the problem similar to a two-stage flow shop. They
applied a hybrid genetic algorithm-tabu search method for this phase. The main novelty
of this work is the column generation method in which pattern variables decide about the
patient assignments to operating rooms. Fei et al. (2010) applied the proposed method for the
case of open scheduling strategy where the first step maximizes operating room utilization,
and the second step minimizes overtime and under time cost. Liu et al. (2011) developed
a heuristic to solve the operating room planning and scheduling problem introduced by Fei
et al. (2010). The proposed heuristic relies on the idea of aggregating states in a dynamic
programming model in order to deal with the curse of dimensionality.

In contrast to previously mentioned papers, some works in the literature have proposed a
unified approach for operating room planning and scheduling simultaneously (Roland et al.

8

(2006, 2010), Marques et al. (2012), Vijayakumar et al. (2013), Di Martinelly et al. (2014),
Molina-Pariente et al. (2015a), Zhou et al. (2016)). To the best of our knowledge, Roland
et al. (2006) is the first work that formulated the operating room planning and scheduling
problem in a unified way. Inspired from resource constrained project scheduling models,
they proposed an MIP model based on four-index binary variables to minimize the sum
of operating rooms fixed cost and overtime cost. The proposed four-index binary variables
determine the assignment of operating rooms, surgery dates, and start times to surgeries.
Roland et al. (2010) extended this model by considering different types of human resource
constraints including surgeons and nurses. They showed that the proposed formulation is
capable of solving only small-sized instances. In both previous papers, genetic algorithms
were applied to solve the problem due to the intractable nature of the developed formulations.

Marques et al. (2012) used the same four-index variables to formulate the integrated opera-
ting room planning and scheduling. They applied this formulation to study a real case in a
hospital in Lisbon. They considered several types of priorities for patients. Because of the
huge dimension of the MIP model, they scheduled emergency surgeries first, and then decided
about other surgeries. Finally, they applied a heuristic algorithm to improve the obtained
solution. One of the drawbacks of this work is that, to reduce the number of variables, the
scheduling horizon is discretized to 15-min time slots, which could be a source of inaccuracy
in the obtained solution. Most researchers considered 5-minute time slots in operating room
scheduling and planning (e.g., Lamiri et al. 2008b).

Vijayakumar et al. (2013) considered the operating room planning and scheduling as a bin-
packing problem with some side constraints and proposed an MIP formulation based on
five-index variables that determine the assignment of patients to surgeons, operating rooms,
days, and time slots. This variable definition is different from the one presented by Roland
et al. (2006), Roland et al. (2010), and Marques et al. (2012). The developed MIP model is
just capable of solving very small instances due to the huge number of variables. Therefore,
they proposed a heuristic approach based on the well-known First Fit Decreasing rule in the
bin packing problem.

Di Martinelly et al. (2014) developed an MIP model for integrating operating room planning
and scheduling with nurse scheduling. To formulate the operating room planning and sche-
duling part of the model, they used the four-index variable proposed by Roland et al. (2006).
They concluded that there is no relation between the required number of nurses and the
number of opened operating rooms, while the simultaneous scheduling of operating rooms
and nurses decreases other costs including overtime costs and the service costs of nurses. The
main deficiency of this work is that due to the large number of four-index variables, each day

9

is discretized to 15-minute time slots, which results in significant inaccuracy in start times
of surgeries.

Molina-Pariente et al. (2015a) studied an integrated operating room planning and scheduling
problem where teams of surgeons perform surgeries and the surgical durations depend on the
teams’ experience. They proposed an MIP model that can solve small-sized instances. They
also developed an iterative constructive method to solve larger instances.

Zhou et al. (2016) developed an MIP model for an integrated operating room planning and
scheduling with limited resources in pre-operative and post-operative stages. In contrast
to most models in the literature, they did not use the four-index variable introduced by
Roland et al. (2006) and instead used continuous variables for the start and finish times of
surgeries. They developed a Lagrangian relaxation algorithm and proposed a branch-and-
bound algorithm for solving the subproblem. They also enhanced the proposed Lagrangian
algorithm by a lower bound method and some dominance rules.

The main shortcoming of MIPs proposed by Vijayakumar et al. (2013), Molina-Pariente et al.
(2015a), and Zhou et al. (2016) is that they involve big-M constraints that result in weak
linear programming relaxations and significant slower convergence to the optimal solution in
a branch-and-bound algorithm.

Integration of optimization and simulation methods has been another research trend in the
area of operating room planning and scheduling (Persson and Persson 2009, M’Hallah and
Al-Roomi 2014, Wang et al. 2016b). Persson and Persson (2009) formulated an optimization
model to evaluate the effect of a law passed in Sweden stating that no elective surgery can
remain in the waiting list for the intervention more than 90 days. They studied a surgery
planning problem with consideration of recovery bed constraints in a Swedish hospital, and
proposed an MIP and a simulation model. Their computational results showed that the new
law would lead to longer waiting times for medium prioritized patients.

M’Hallah and Al-Roomi (2014) applied a simulation approach to evaluate three surgery
planning and scheduling strategies in a block scheduling environment. They assumed that in
each block surgeries are sequenced in a non-increasing order of their expected surgical times.
Their objective function was to minimize the total under time and overtime.

Wang et al. (2016b) applied a discrete event simulation to evaluate the performance of surgical
schedules obtained from solving a deterministic MIP model. Within the simulation model,
they considered the uncertainty of surgical durations, dynamic arrivals of emergency cases,
and limited downstream resources. They progressively solved the deterministic model for each
week and evaluated the obtained schedule by the simulation model. They considered surgeries

10

that were cancelled due to overtime and limited downstream resources for rescheduling within
next weeks. They applied the proposed approach on a network of collaborating hospitals and
demonstrated its superiority to the actual policy used in these hospitals.

2.1.2 Operating room planning

Many researchers have studied operating room planning problems. Most of them applied
MIP models to formulate deterministic problems (Ozkarahan 2000, Ogulata and Erol 2003,
Perdomo et al. 2006, Lamiri et al. 2008a,b, Fei et al. 2008, 2009, Augusto et al. 2008, 2010,
Wang et al. 2014a, Choi and Wilhelm 2014, Jebali and Diabat 2015, Roshanaei et al. 2017,
Marques and Captivo 2017. Ozkarahan (2000) studied the sequential allocation of surgeries
to operating rooms during the planning horizon. They aimed to optimize some conflicting
objectives including maximization of surgeon preferences and operating rooms utilization, and
minimization of under time and overtime costs simultaneously. To this end, she developed
an MIP model based on assignment variables and set the objective function to be a weighted
summation of the deviations from goals. To underline the superiority of the model, she
compared the obtained solution with the actual plan used by hospital’s administrators in a
case study. The main flaw of this work is that under the open scheduling strategy, there is
a possibility that an obtained allocation does not result in a feasible schedule with the same
cost due to surgeon overlapping.

Ogulata and Erol (2003) presented a hierarchical multiple criteria model based on mathe-
matical programming formulations to maximize balanced distribution of operations among
surgical groups and to minimize patients’ waiting times, overtimes and under times. They
divided decision making into three separate phases and for each phase developed an MIP
model. In the first phase, they selected patients considering priorities and arrival dates. In
the second phase, they assigned the selected patients to surgical groups. Finally, they deter-
mined the surgery dates of patients. They evaluated hierarchical model using data sets in a
Turkish hospital.

Fei et al. (2008) studied an operating room planning problem with the objective of minimizing
overtime and under time costs and proposed a branch-and-price algorithm. They developed a
heuristic algorithm to obtain feasible upper bounds in the branch-and-bound tree. Moreover,
they discussed several branching rules and node selection strategies. They evaluated the
proposed method by solving some randomly generated instances. Later, Fei et al. (2009)
used a slightly modified version of the proposed column generation to solve another operating
planning problem with constraints on the maximum workload of surgeons.

11

Molina-Pariente et al. (2015b) considered an operating room planning problem in a university
hospital in Spain. In this problem, the decision maker must assign intervention dates and
operating rooms for surgeries on the waiting list. The objective function is to minimize
the access time of patients. They implemented 83 heuristic algorithms from the literature
and computationally showed that their proposed metaheuristic algorithm outperforms other
heuristics.

Roshanaei et al. (2017) studied an operating room planning problem in a network of hospitals
where their objective was to minimize the sum of patients waiting times and opening cost of
operating rooms and surgical suites. They developed a logic-based Benders’ decomposition
(LBBD) to solve an integer programming model. They evaluated four different implementa-
tions of the proposed LBBD and demonstrated that their best implementation is significantly
faster than solving the original integer programming model.

In a few papers in the area of operating room planning, researchers have considered the
recovery room capacity constraint (Perdomo et al. 2006, Augusto et al. 2008, 2010). Perdomo
et al. (2006) studied an operating theatre scheduling problem and developed a formulation
that decides on the start time of surgeries without assigning surgeries to operating rooms.
The objective function of the developed model was to minimize the sum of surgery completion
times. They proposed a Lagrangian relaxation algorithm and a heuristic model to find lower
and upper bounds respectively. Augusto et al. (2008) enhanced the recent work by considering
a constraint on the number of transporters between operating and recovery rooms. Augusto
et al. (2010) studied the same problem with the extra assumption that when a patient’s
surgery is finished and there is no available bed in the recovery room, the recovery process
starts in the operating room. They modeled the problem as a four-stage flow shop scheduling
problem and proposed a Lagrangian relaxation.

Some researchers considered uncertainties in operating room planning problems (Gerchak
et al. 1996, Lamiri et al. 2008a,b, Hans et al. 2008, Wang et al. 2014a, Choi and Wilhelm
2014, Jebali and Diabat 2015, Marques and Captivo 2017). Gerchak et al. (1996) studied
an operating room planning with stochastic surgery durations. They developed a stochastic
dynamic programming model to determine the number of patients to be scheduled in a
finite planning horizon. If the number of all available surgeries are more than the number of
scheduled surgeries, the model postpones the remaining surgeries to next days by paying some
penalties in the objective function. They have considered the problem as an open scheduling
where the daily capacity is the sum of total available operating room times.

Lamiri et al. (2008a) studied the planning of elective and emergency cases in a block schedu-
ling environment. This work extended the problem studied by Gerchak et al. (1996) through

12

specifying the surgery date for individuals and also by considering emergency cases. They
developed a stochastic model based on Monte Carlo simulation to approximate the expected
value of overtime cost. After sampling from the probability distribution of emergency sur-
geries, they used an MIP model to solve the problem. The output of the proposed model
is an assignment for elective cases and keeping some capacity free for emergency cases. The
obtained solutions might turn out to be infeasible in practice because the operating rooms are
considered as a single resource with a capacity equal to the total available times of operating
rooms. Lamiri et al. (2008b) overcame this inaccuracy through developing a stochastic model
based on a column generation method for the same problem. In this work, in addition to un-
der time and overtime costs, a second level of overtime cost after a predetermined threshold
is considered.

Hans et al. (2008) addressed the assignment of surgeries and planning of slacks to operating
rooms in order to free some additional capacity to cope with uncertainty of surgery durations.
Their objective function maximizes capacity utilization and at the same time minimizes the
risk of overtime. They designed some heuristic algorithms and tested them on some real data
provided by Erasmus MC hospital in Netherlands. The main drawback of this work is that it
just dealt with expected values of surgery durations instead of considering them as random
variables.

Wang et al. (2014a) formulated an operating room planning problem with scenario-based
stochastic durations and emergency cases. In their formulation, the model seeks a trade-off
between the opening costs of operating rooms and overtime costs. They also included a chance
constraint to restrict the level of cancellations. They proposed a column generation algorithm
and multiple branching rules. The main issue about their proposed model is that the chance
constraint limit the probability of having cancellation without taking into account the level
of constraint violations.

Choi and Wilhelm (2014) studied a capacity planning problem where surgeries from different
surgical specialties are allocated to operating rooms on different days. The objective function
is to minimize the penalties of unplanned surgeries, and under time and over time of operating
rooms. They proposed a stochastic programming model and developed four simplified versions
of it, which are more convenient in numerical computations.

Jebali and Diabat (2015) formulated an operating room planning problem with stochastic
surgery durations as a two-stage stochastic programming model. In the proposed model, they
considered bed constraints in ICU and wards. They used sample average approximation to
solve the problem aiming to minimize the waiting, under time, and overtimes costs.

Marques and Captivo (2017) proposed an MIP model for an operating room planning pro-

13

blem. The decisions considered in their model are 1) the selection of patients from a waiting
list and 2) the assignment of dates, operating rooms, and time blocks to them. As an exten-
sion, they proposed a robust optimization approach to deal with uncertain surgery durations.
They applied the proposed methods in a Portuguese hospital.

2.1.3 Operating room scheduling

Most authors have considered operating room scheduling problems with deterministic para-
meters (Sier et al. 1997, Hsu et al. 2003, Cardoen et al. 2009a,b, Zhong et al. 2014, Wang
et al. 2015, Monteiro et al. 2015, Hachicha and Mansour 2016, Latorre-Núñez et al. 2016).

Sier et al. (1997) was one of the first works that addressed the scheduling and sequencing of
patients in operating rooms. They considered a weighted multi-objective function taking into
account patients age, availability of equipment in operating rooms and possible overlapping
of schedules in operating rooms. They modeled the objective function as a nonlinear integer
formulation and proposed a simulated annealing algorithm.

Hsu et al. (2003) studied patients scheduling in an ambulatory surgical center. They consi-
dered the patient scheduling process as a two-stage no-wait flow shop and minimized the
number of nurses in the post-anesthesia care unit and the makespan of the last recovered
patient. They assumed that the number of required nurses depends on the peak of patients
in the recovery room. They also supposed that surgeons’ schedules are back to back with
no idle time. To solve the problem, firstly, authors presented a greedy heuristic to find an
initial solution, and then applied a tabu search method to improve the solution. They evalua-
ted the quality of obtained solutions by comparing them with actual schedules in a hospital
university.

Cardoen et al. (2009a) considered surgery sequencing in a block scheduling environment
and proposed an MIP model with a multi-objective function inspired from a real case in
Belgium. In the objective function, they considered criteria such as giving priority to children
and patients that had cancellations before, penalties for scheduling some surgeries before a
predetermined time due to the travel time of patients, overtime of staff in recovery rooms after
the closing time of the day-care center, and peaks of bed usages in post-anesthesia care units.
Cardoen et al. (2009b) presented a branch-and-price algorithm for the same problem. They
developed a dynamic programming method for the pricing phase that constructs operating
room schedules. They also proposed some speeding-up techniques to improve the branch-
and-price algorithm.

14

Zhong et al. (2014) studied an operating room scheduling problem as a multi-machine sche-
duling problem by considering surgeons, nurses, anesthesiologists and surgical equipment as
machines. They proposed a two-stage heuristic approach that, in the first stage, assigns sur-
geries to operating rooms using the longest processing time rule. Then, in the second stage,
the proposed algorithm sequences surgeries in each operating room based on the weighted
shortest processing time rule in order to minimize the weighted completion times of surgeries.

Wang et al. (2015) addressed an operating room scheduling problem considering patient
priority, affinities between surgical team members, different types of resources, and availability
of surgical teams. They proposed a constraint programming model and also a MIP model
and compared them in a real case study from a Belgian University Hospital. They concluded
that the MIP model provides better solutions in the case of weighted sum objective functions
than makespan minimization, while the constraint programming model behaves conversely.

Monteiro et al. (2015) studied a new multi-objective function in operating room scheduling.
This multi-objective function aims to increase the affinities between surgical team members
and at the same time tries to increase the range of skills acquired by nurses in a long term.
They proposed an MIP model to formulate and solve the problem.

Hachicha and Mansour (2016) considered a scheduling problem in a private healthcare facility.
They considered the problem as three-stage flow shop scheduling problem. In the first-stage,
patients are admitted and prepared for surgeries. The second stage starts when patients are
transferred to operating rooms, and in the third stage, patients are allocated to hospital beds.
They developed two MIP models for this problem. Similar to many other papers in this area,
the main deficiency of this work is that there are many big-M constraints in the proposed
formulations and therefore MIPs stopped before finding optimal solutions in many instances.

Latorre-Núñez et al. (2016) addressed a daily operating room scheduling problem considering
operating rooms, post-anesthesia recovery and the arrival of emergency cases. They developed
an MIP model, a constraint programming model, and several heuristic algorithms.

A few researchers have studied the operating room scheduling with some stochastic surgery
durations (Denton et al. 2007, Batun et al. 2011, Mancilla and Storer 2012, Saadouli et al.
2015, Xiao et al. 2016). Denton et al. (2007) studied the effect of surgery sequencing in a single
operating room on a particular day. Considering waiting, idling and overtime costs in the
objective function, they presented a two-stage stochastic programming model and showed
that determining the start time of surgeries is of essence and can improve a surgery plan
significantly. Their two-stage stochastic programming model includes sequencing variables
that increase the complexity of the problem. Therefore, they proved the optimal policy for
a single operating room scheduling problem with two surgical cases and then, inspired from

15

this special optimal case, they developed some heuristics for surgery sequencing.

Batun et al. (2011) developed an interesting two-stage stochastic programming model for an
operating room scheduling problem. The objective function included opening cost of opera-
ting rooms, waiting times of surgeons and the overtime costs. They proposed an L-shaped
algorithm and enhanced it by developing a lower bounding functional.

Mancilla and Storer (2012) extended Denton et al. (2007) through presenting position-based
variables to determine the schedule of the single operating room. They proposed a heuristic
solution approach based on Benders decomposition which outperformed the simple heuristic
proposed by Denton et al. (2007).

Saadouli et al. (2015) proposed a two-step algorithm for an operating room scheduling pro-
blem with uncertainty in surgery durations and recovery times. In the first step, while consi-
dering slack times as a part of surgery durations, they solved a bin packing model in order
to select some surgeries for scheduling on a selected day. Then, in the second step, they ap-
plied an MIP model to assign selected surgeries to operating rooms. Finally, they compared
the proposed approach with the current approach in a hospital in Tunisia and showed some
improvements.

Xiao et al. (2016) considered a single operating room scheduling problem and proposed
a stochastic programming model and an L-shaped algorithm as the solution method. The
main novelty of this work is that they have considered the possibility of cancellations.

Some researchers used simulation methods to evaluate surgery sequencing in operating rooms
(Marcon and Dexter 2006, Arnaout and Kulbashian 2008, Saremi et al. 2013). Marcon and
Dexter (2006) studied the effect of various scheduling rules taken from machine scheduling
on the performance of hospitals such as operating rooms utilization, waiting time of patients
for recovery beds, and the required number of staff in the recovery room. They limited this
research to the case that surgeons work in only one operating room on each day. Using discrete
event simulation, they showed that the most significant effect of sequencing is on the waiting
time for recovery beds. The other interesting output of their work is to demonstrate that
the well-known longest processing time rule results in a high quality utilization of operating
rooms but requires more nurses in recovery rooms during a week.

Similarly, Arnaout and Kulbashian (2008) addressed the evaluation of scheduling rules in
surgery sequencing. They modelled the operating theatre scheduling as a parallel machine
scheduling with the objective of minimizing the makespan. They compared the well-known
shortest processing time and longest processing time rules with a new one developed by
themselves and showed the superiority of the last one using simulation. The main drawback

16

of this work is that it has not considered the possibility of surgeon overlapping in different
operating rooms.

Saremi et al. (2013) studied a multi-stage operating room scheduling problem with stochastic
service times. In this problem, they considered multiple classes of patients, the availability of
multiple resources, compatibility of patients and surgeons, and time window constraints for
surgeons. They proposed three simulation-based optimization method. The main difference
of this work with the others in the literature is that they have assumed that patients from
the same class have similar service times. Moreover, as another simplification they have ag-
gregated the total available times of operating rooms as the available capacity for performing
surgeries.

2.2 Home-health care routing and scheduling

Fikar and Hirsch (2017) is the only survey that specifically addresses home-health care rou-
ting and scheduling problems. They categorized papers in the literature into two groups ;
papers that studied single period and those that considered multi-period problems. Within
each category, they discussed different objectives, constraints and solution methodologies.
Moreover, Castillo-Salazar et al. (2016) provided a literature review on workforce scheduling
and routing problems (WSRP) and shortly discussed some characteristics of home-health care
problems as an example of WSRP. In the following, we review some of the most significant
papers in home-health care routing and scheduling.

Eveborn et al. (2006) focused on staff scheduling in the public home-health system in Sweden.
They formulated the problem as a set partitioning model and repetitively used a matching
algorithm to assign visiting schedules to staff. In generating staff routes, they considered
many constraints including time windows constraints, qualification of caregivers for assigned
visits, and planned breaks for staff members.

Akjiratikarl et al. (2007) proposed a particle swarm algorithm for the scheduling of caregivers
in the United Kingdom, where local authorities are responsible for providing home care
services. In this problem, they aimed to minimize the total traveled distance providing that
constraints on time windows and working hours must be satisfied.

Trautsamwieser et al. (2011) addressed a daily home care scheduling in the case of natural
disasters. They formulated the problem as an MIP model minimizing the weighted sum of
driving and waiting times, and the dissatisfaction levels of clients and nurses. The proposed
model is only capable of solving small-sized instances. Therefore, they devised a variable
neighbourhood search algorithm for larger instances. They evaluated the proposed algorithms

17

on data sets from Austrian Red Cross.

Hiermann et al. (2015) studied a multimodal home-healthcare scheduling problem in an
Austrian home-health care provider. In this problem, “multimodal” refers to different trans-
portation modes that caregivers can use to travel. The objective was to assign caregivers
to patients and find efficient routes for them while addressing caregivers and patients prefe-
rences. They proposed a two-step method where, in the first step, a constraint programming
algorithm finds initial solutions and, in the second-step, four metaheuristic algorithms im-
prove the solutions.

Mankowska et al. (2014) addressed a daily home-health care routing and scheduling problem
with interdependent services. In home-health care context, interdependent services refer to
services that caregivers must provide to patients simultaneously or with some time lags.
They also took into account individual service requirements of patients, qualifications of
nurses. They proposed an MIP model to minimize the sum of total traveled distance, and
total tardiness in serving patients. They also proposed some constructive, local search, and
variable neighborhood search heuristics to find solutions for large instances.

Bowers et al. (2015) studied routing and scheduling of midwives to visit mothers at homes.
They emphasized that the continuity of case by the same midwife ensures a better relationship
between mothers and health staff. They applied a variant of a multiple traveling salesman
algorithm incorporating staff and mother preferences.

Braekers et al. (2016) studied a home care routing and scheduling problem considering many
practical details such as skills, working regulations and overtime for nurses, travel costs
depending on the transportation mode, hard time windows, and patients’ preferences on
nurses and visit times. They proposed a bi-objective MIP model to minimize operational
costs and maximize the service level simultaneously. For solving large instances, they also
devised a metaheuristic algorithm that applies a large neighborhood search algorithm in a
multi-directional local search structure.

Some authors treated home-health care routing and scheduling as a vehicle routing problem
(VRP) and formulated the problem in a VRP setting (Bredström and Rönnqvist 2008, Ras-
mussen et al. 2012, Mısır et al. 2015). Bredström and Rönnqvist (2008) studied a vehicle
routing and scheduling problem with temporal precedence and synchronization constraints.
The temporal constraint means that, for some customers, more than one visit is required
and there must be a precedence order with time lags between them. They considered the
application of this problem in the home-health care context and proposed an MIP and a
heuristic solution algorithm.

18

Rasmussen et al. (2012) considered a home care scheduling problem with temporal, and soft
preference constraints as a generalization of vehicle routing problem with time windows.
They formulated the problem as a set partitioning problem and proposed a branch-and-price
algorithm. In the proposed algorithm, temporal constraints are enforced within the branching
procedure. Considering the soft preference constraints, they also introduced a visit clustering
approach and showed that it decreases run time significantly.

Mısır et al. (2015) evaluated the performance of generalized heuristics in solving routing
and rostering problem. They considered a home-health care routing and scheduling problem
as one of the relevant problems in this category. In this problem, they emphasized on the
patients preferences to nurses and vice versa. They also considered task synchronization for
serving some patients and referred to it as “connected activities”. All constraints that they
considered in this problem are soft constraints.

Some researchers extended the home-health care routing and scheduling by considering the
weekly planning of visits (Nickel et al. 2012, Shao et al. 2012, Bard et al. 2014a,b, Traut-
samwieser and Hirsch 2014, Cappanera and Scutellà 2015). Nickel et al. (2012) addressed a
home-health care planning and scheduling in Germany. In the planning horizon, they decide
on the visiting periods for patients during a week. In the scheduling horizon, they fix the
staff routes and schedules. They also took into account the fact that operational decisions
must be consistent as much as possible with the master schedule already fixed for a me-
dium term. In this work, the objective function minimizes the weighted sum of the number
of unscheduled patients, the patient-nurse loyalty penalty, caregivers’ overtimes, and the to-
tal traveled distance. They proposed metaheuristic algorithms that were combined with a
constraint programming model.

Shao et al. (2012) studied home-care planning, scheduling, and routing problem where a
number of multi-skilled therapists visits patients over a week. The objective was to find
weekly schedules for therapists such that the travel and administrative costs were minimized.
They formulated the problem as an MIP model and because of its failure they devised a
greedy randomized adaptive search procedure (GRASP) algorithm that generates tours for
therapists in parallel. Bard et al. (2014a) studied the same problem and stated that the
parallel GRASP developed by Shao et al. (2012) failed in instances with tight constraints.
They addressed this issue by devising a GRASP algorithm that generates tours sequentially.
Bard et al. (2014b) took a step forward and developed a branch-and-price-and-cut algorithm
for the same problem. Their algorithm finds near optimal solutions for instances with up to
162 visits and 5 therapists.

Trautsamwieser and Hirsch (2014) addressed a weekly home-health care planning and sche-

19

duling problem considering working regulations such as breaks, maximum daily working time,
and weekly rest times. They developed an MIP model. Then they reformulated it to a mas-
ter problem and subproblems framework and applied a branch-and-price solution algorithm.
They showed that the proposed branch-and-price algorithm is capable of solving instances
with 45 patients, and 203 visits in the week.

Cappanera and Scutellà (2015) proposed an MIP model for simultaneously 1) assigning ap-
propriately skilled operators to patients, 2) scheduling of visits, and 3) routing of operators.
They aimed to optimize two balancing objective functions for palliative and terminal pa-
tients. The first objective function maximizes the minimum utilization factors of operators,
while the second one minimizes the maximum utilization of operators.

Papers cited above studied static home-health care routing and scheduling problems. As an
exception, Bennett and Erera (2011) considered a home-health care routing and scheduling
where patients arrive dynamically and nurses must visit them several times a week over a
predetermined number of weeks. Appointment times for each visit must be selected from a
list of available options. Visits must repeat at the same date and times during the service
duration. They proposed a rolling horizon myopic planning approach to maximize the number
of served patients in a special case that a single nurse serves all patients.

Yuan et al. (2015) is the only paper in the literature that studied home-health care routing and
scheduling with stochastic service times. They proposed a two-stage stochastic programming
model and then reformulated it to a set partitioning model and applied column generation
and branch-and-price solution algorithms. They reported computational results for instances
with up to 50 patients.

2.3 Nurse rostering

As nurse planning is a part of nurse rostering and there is not any significant literature ad-
dressing nurse planning problems solely, in this section, we provide a literature review on
nurse rostering problems. Several researchers have provided surveys focusing on nurse roste-
ring problems (Cheang et al. 2003, Burke et al. 2004). Cheang et al. (2003) reviewed papers
in the literature by focusing on the modeling aspects (e.g., decision variables, constraints, and
objective functions), and solution approaches (e.g., mathematical programming, heuristics,
and artificial intelligence algorithms). Burke et al. (2004) reviewed different steps of nurse
staffing and scheduling and then provided a descriptive literature review based on solution
methods. In addition, there are some surveys on personnel scheduling problems that discuss
nurse rostering problems as one of the relevant applications (Ernst et al. 2004, Brucker et al.

20

2011, Van den Bergh et al. 2013).

Most researchers proposed heuristic and metaheuristic algorithms for nurse rostering pro-
blems (Aickelin and Dowsland 2000, Dowsland and Thompson 2000, Bellanti et al. 2004,
Burke et al. 2008, Tsai and Li 2009, Burke et al. 2010b,a, 2011, Lü and Hao 2012, Valouxis
et al. 2012, Martin et al. 2013, Wu et al. 2015, Tassopoulos et al. 2015, Rahimian et al.
2017a,b). Aickelin and Dowsland (2000) proposed a genetic algorithm for nurse rostering in a
hospital in UK. They used problem-specific knowledge in designing their algorithm. Downs-
land and Thompson (2000) devised a hybrid heuristic-integer programming algorithm for
nurse rostering in a UK hospital. In order to satisfy some rostering constraints, they hybri-
dized their algorithm with a tabu search algorithm, and knapsack and network flow models.
Bellanti et al. (2004) developed local and tabu search algorithms for a nurse rostering pro-
blem in an Italian hospital where considering holiday planning and labor constraints were
essential. Burke et al. (2008) proposed an approach that hybridizes heuristic ordering with
variable neighborhood search for solving a nurse rostering problem with commercial data.
They computationally showed that their algorithm outperforms a commercial algorithm.

Burke et al. (2010b) presented a multi-objective mathematical programming model and ap-
plied a hybrid integer programming (IP)-variable neighborhood search (VNS) as the solution
method. In their algorithm, IP solves a relaxed version of the problem with all hard constraints
and some soft constraints, while VNS improves the solution obtained from IP. Burke et al.
(2010a) developed a scatter search algorithm to minimize the violations of soft constraints.
Burke et al. (2011) proposed a hybrid local search and a diversification procedure. Lü and
Hao (2012) devised an adaptive neighborhood search with two neighborhood moves and three
intensification and diversification search strategies. Martin et al. (2013) proposed a coopera-
tive search algorithm that combines multiple metaheuristics where each of them was useful
in optimizing a different fairness objective function.

Wu et al. (2015) proposed an MIP model and a particle swarm optimization (PSO) for a nurse
rostering problem. They also proposed a simple procedure for refining the solution obtained
from the PSO algorithm. They showed that the PSO algorithm finds optimal solutions in all
real instances when the objective function is to maximize the fairness. Rahimian et al. (2017a)
developed a hybrid integer and constraint programming approach to solve a nurse rostering
problem. They extracted useful information such as the computational difficulty of instances
and constraints from the constraint programming model in order to adaptively adjust the
search parameters. Later, they proposed a hybrid algorithm combining integer programming
and variable neighborhood search for a nurse scheduling problem (Rahimian et al. 2017b).
They demonstrated that their algorithm outperforms two state-of the-art algorithms in a

21

recent benchmark of instances.

Some researchers also proposed two-phase metaheuristic algorithms where in the first phase
daily workloads of nurses are determined and in the second phase, daily shifts are assigned
to nurses (Tsai and Li (2009), Valouxis et al. (2012), Tassopoulos et al. (2015)).

Another group of researchers developed mathematical programming approaches for nurse
rostering problems (Jaumard et al. (1998), Bard and Purnomo (2005, 2006), Beliën and
Demeulemeester (2008), Maenhout and Vanhoucke (2010), He and Qu (2012)). Jaumard et al.
(1998) was among the firsts to apply column generation and branch-and-price algorithms
for nurse rostering. In their algorithm, the subproblem deal with individuals constraints
(workload, rotation, and days off) while the master problem takes into account demand
constraints.

Bard and Purnomo (2005) developed a column generation algorithm with master problem and
subproblems that are similar to those proposed by Jaumard et al. (1998). They considered a
multi-objective nurse rostering problem and improved the column generation algorithm using
a swapping heuristic and a refinement procedure for improving the generated columns. They
tested the proposed algorithm on a data set from a hospital in the US.

Bard and Purnomo (2006) studied a nurse rostering problem where agency nurses (temporary
nurses) are used to cover shortages. They proposed two MIPs to formulate the problem. One
of the models is based on pattern-view formulation, while the other one is developed based
on shift-view formulation. The objective in both models is to hire a fixed number of nurses
and assign them to nurse schedules such that the maximum amount of uncovered shift in the
planning horizon is minimized.

Beliën and Demeulemeester (2008) considered integrated nurse rostering and surgical block
assignment to surgeons. In this problem, the surgical block assignment determines the de-
mands in wards that must be covered by appropriate nurse rostering. They proposed column
generation and branch-and-price solution algorithms. Maenhout and Vanhoucke (2010) de-
veloped a branch-and-price for a multi objective nurse rostering problem. They discussed
various branching and pruning strategies.

He and Qu (2012) proposed a constraint-programming-based column generation algorithm for
a nurse rostering problem. Because of the flexibility of constraint programming in modeling
the column generation subproblems, they have successfully formulated all complex real-word
constraints in several benchmarks. They applied Depth Bounded Discrepancy Search and
Adaptive Cost Threshold Tightening approach to find high quality columns.

A recent research trend in nurse rostering is based on considering uncertainty in demands

22

and formulating the problem through stochastic optimization approaches (Kim and Mehrotra
2015, Bagheri et al. 2016, Römer and Mellouli 2016). Kim and Mehrotra (2015) studied an
integrated nurse staffing and scheduling problem with demand uncertainty. They formulated
the problem as a two-stage stochastic programming model. The first-stage decision is to
determine the staffing levels and nurse schedules. In the second stage, the model decides on
adding and cancelling some shifts in order to accommodate with fluctuation in the demand.
They showed that mixed-integer rounding inequalities for the second-stage model convexifies
the recourse function and therefore a tight formulation can describe the convex hull of the
solution space in the second-stage.

Bagheri et al. (2016) addressed a stochastic nurse rostering problem with uncertainty in
patient arrivals and lengths of stays. The formulated the problem as a two-stage stochas-
tic programming model where the first-stage model schedules nurses and the second-stage
model adds additional nurses to shifts to cover understaffing. They used a sample average
approximation method and applied the proposed method to a hospital in Iran.

Römer and Mellouli (2016) studied a multi-stage nurse rostering problem with demand un-
certainty. They considered the fact that the nurse scheduling for the current planning horizon
affects the scheduling problem in the next period, particularly in the case of demand uncer-
tainty. They proposed lookahead policies and evaluated the proposed policies by simulation.

Cyclic rostering and rerostering are two other variants of the nurse rostering problem. In
a cyclic rostering problem, we assume that nurse schedules cycle over a long period. Bard
and Purnomo (2007) addressed a cyclic nurse rostering problem and developed two Lagran-
gian relaxation algorithms by either relaxing the preference and demand constraints. They
theoretically showed that the first setting is not likely to provide good bounds. Therefore,
they enhanced the second algorithm through combining it by subgradient optimization, the
bundle method, heuristics, and variable fixing. Purnomo and Bard (2007) studied a cyclic
nurse rostering problem and developed a branch-and-price algorithm that maximizes nurse’s
preferences and minimizes the personnel cost. They developed several branching strategies
and a rounding heuristic. Maenhout and Vanhoucke (2009) studied the integration of nurse-
specific characteristics in cyclic nurse rostering for hospitals in Belgium. They compared their
approach with other cyclical and acyclical rostering approaches.

A nurse rerostering problem arises when the roster must be modified to accommodate unex-
pected staff absence. In this case, the new schedule must be as close as possible to the original
one. Moz and Pato (2007) proposed a genetic algorithm for a rerostering problem and imple-
mented it in a public hospital in Portuguese. Maenhout and Vanhoucke (2011) proposed an
evolutionary metaheuristic algorithm for this problem. Bäumelt et al. (2016) also studied a

23

nurse rerostering problem and proposed two parallel implementations of a local search algo-
rithm. They showed that the best parallel implementation, called homogeneous algorithm, is
between 12.6 to 17.7 times faster than the sequential local search algorithm.

24

CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

Our literature review on operating room planning and scheduling shows that, compared to
the rich literature in this context, only a few papers addressed integrated operating room
planning and scheduling problems. In most of these papers, researchers proposed two-stage
algorithms that do not guarantee finding optimal solutions. In the rest of the papers in this
area, researchers provided mixed integer programming models that formulate operating room
planning and scheduling problems as an integrated problem. However, the main deficiency
of these works is that either the proposed models suffer from so-called big-M constraints or
they include a large number of integer variables, which both results in non-scalability of these
models in problem size. Considering these shortcomings, in Chapter 4, we study an integrated
operating room planning and scheduling problem and formulate it as an integer programming
model with pattern variables. We propose a constraint-programming-based branch-and-price-
and-cut as the solution algorithm and enhance it in several ways. We also computationally
compare our algorithm with an integer programming model from the literature and with a
pure constraint programming that we formulated.

The literature review in Section 2.1.2 reveals that there is no work in the literature addres-
sing the home-health care scheduling problem with synchronized visits and stochastic/time-
dependent travel and service times. In Chapter 5, we study a general class of vehicle routing
problems with synchronized visits (VRPS) where travel and service times are stochastic/time-
dependent. In addition to considering a home-health care scheduling problem, we introduce
an operating room scheduling problem with stochastic durations as a novel application of
VRPS. We provide formulations and solution algorithms for the stochastic and the time-
dependent home-health care and operating room scheduling problems.

Our literature review in Section 2.1.3 showed that no paper in the literature has addressed a
nurse planning or a nurse rostering problem with uncertainty in patient demands by robust
optimization approaches. Therefore, in Chapter 6, we consider a general class of two-stage
robust optimization models with integer adversarial variables. We discuss the application
of this class of problems to two-stage resource planning problems where some tasks have
uncertain arrival and duration periods. We consider a nurse planning problem as an example
of two-stage resource planning problems. We develop a reformulation approach and several
solution algorithms for these models and provide computational experiments for the nurse
planning problem.

In Chapter 7, we provide a general discussion on Chapters 4, 5, and 6 and discuss the

25

presented articles as a whole. In Chapter 8, we first present a discussion on the contributions
of this dissertation. Then, we explain the limitations of the proposed approaches and future
research directions.

26

CHAPTER 4 ARTICLE 1 : A CONSTRAINT-PROGRAMMING-BASED
BRANCH-AND-PRICE-AND-CUT APPROACH FOR OPERATING ROOM

PLANNING AND SCHEDULING

Seyed Hossein Hashemi Doulabi
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Louis-Martin Rousseau
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Gilles Pesant
Department of Computer and Software Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Abstract. This paper presents an efficient algorithm for an integrated operating room plan-
ning and scheduling problem. It combines the assignment of surgeries to operating rooms and
scheduling over a short-term planning horizon. This integration results in more stable plan-
ning through consideration of the operational details at the scheduling level, and this increases
the chance of successful implementation. We take into account the maximum daily working
hours of surgeons, prevent the overlapping of surgeries performed by the same surgeon, allow
time for the obligatory cleaning when switching from infectious to noninfectious cases, and
respect the surgery deadlines. We formulate the problem using a mathematical programming
model and develop a branch-and-price-and-cut algorithm based on a constraint programming
model for the subproblem. We also develop dominance rules and a fast infeasibility-detection
algorithm based on a multidimensional knapsack problem to improve the efficiency of the
constraint programming model. The computational results show that our method has an
average optimality gap of 2.81% and significantly outperforms a compact mathematical for-
mulation in the literature.

Keywords. Integrated operating room planning and scheduling, operations research in heal-
thcare, branch-and-price-and-cut, constraint programming.

History. This article is published in INFORMS Journal on Computing in 2016. Also a
preliminary version of this work is published in CPAIOR conference (2014).

27

4.1 Introduction

Hospital managers must provide high-quality services by making efficient use of available
medical resources. The operating theatre, which includes operating and recovery rooms, is
particularly important : 60%–70% of patients are admitted for some forms of surgical inter-
vention, accounting for more than 40% of the total cost (Guerriero and Guido 2011). Careful
scheduling is necessary to decrease costs and improve resource utilization and patient flow.

Operating-theatre management has generally been divided into three stages (Guerriero and
Guido 2011) :

1. In the strategic stage, known as case mix planning, the operating-room availability is
divided among the surgical departments or surgeons. The objective function may mini-
mize the total deviation from a target allocation (Blake and Carter 2002) or maximize
the weighted benefit of the scheduled surgeries (Baligh and Laughhunn 1969).

2. In the tactical stage, a master surgery schedule (a cyclic schedule over a medium-term
planning horizon) is determined. It specifies the number of operating rooms available
daily, the hours of availability, and the relative priorities of the surgeons or surgical
departments.

3. In the operational stage, known as elective case scheduling, the daily scheduling is
carried out. For each case we determine the surgeon, the starting time, the required
equipment, etc. This stage is usually divided itself into the following two steps :

(a) Operating-room planning : Each surgery is assigned to a room and a day in the
planning horizon (usually a week) ; this is also called advance scheduling.

(b) Operating-room scheduling : The surgeries are assigned to specific time intervals or
the sequence of surgeries for each room is determined ; this is also called allocation
scheduling.

Two strategies can be used for the tactical and operational stages :

1. Block-Scheduling Strategy : A set of time blocks is assigned to surgeons or surgical
departments. Each time block is an interval on a specific day in a specific operating
room.

2. Open-Scheduling Strategy : Surgeons from different departments can perform surgeries
in the same time block. The surgeons must select the surgeries to perform the next day,
and the operating theatre manager will schedule those surgeries in one or more rooms.
This is a relaxation of the block-scheduling strategy, and it is expected to give a more
efficient schedule. However, the management of such schedules is more difficult.

28

We focus on integrated operating room planning and scheduling (IORPS) at the operational
level with an open-scheduling strategy. Many side constraints that are treated separately
in the planning and scheduling phases must be considered simultaneously in the integrated
problem. These constraints enforce the maximum daily hours of surgeons, prevent the over-
lapping of surgeries performed by the same surgeon, ensure sufficient cleaning time when
switching from infectious to noninfectious cases, and enforce the surgery deadlines. The in-
tegrated approach leads to a more detailed planning problem, and this increases the chance
of obtaining a stable schedule that can be successfully implemented. Our algorithm can also
be applied in the context of the block-scheduling strategy when a block is shared among
surgeons from the same department (Day et al. 2012).

IORPS has received little attention in the literature because of its intrinsic complexity ;
the planning and scheduling problems are usually solved sequentially that can lead to local
optimal solutions. For example, Jebali et al. (2006) used a mixed integer programming (MIP)
model to plan the surgeries for a given day and applied a second MIP model to assign surgeries
to rooms. Guinet and Chaabane (2003) developed an assignment formulation for the planning
problem and used a heuristic to assign surgeries to rooms. They then adjusted the daily
assignments to satisfy other staff and material constraints. Fei et al. (2006) proposed a column
generation (CG) model for a block-scheduling strategy assuming that just one surgeon works
in a specific operating room on a specific day. This assumption makes the scheduling part of
the studied problem less complex since surgeon overlapping does not happen. Fei et al. (2010)
developed a two-stage approach for an open-scheduling strategy. The first stage maximizes
the room utilization via CG, and the second stage uses a genetic algorithm to minimize the
under- and overtime costs.

Only a limited number of papers in the literature have proposed unified approaches to do
operating room planning and scheduling simultaneously. The exact approaches to IORPS use
compact mathematical formulations based on four- or five-index binary variables. Roland
et al. (2006, 2010) and Marques et al. (2012) defined binary variables xikdt that are 1 if
surgery i starts at time t in room k on day d. To the best of our knowledge, Roland et al.
(2006) were the first to investigate IORPS ; their work was inspired by resource-constrained
project scheduling. Roland et al. (2010) extended the model by considering various human
resource constraints for the surgeons and nurses ; they computationally showed that the
proposed formulation is just capable of solving small-sized instances. Both studies applied
genetic algorithms to solve large-sized instances. Marques et al. (2012) used the same type
of four-index variable to formulate the integrated operating room planning and scheduling.
Because of the large size of the MIP model, assignment and scheduling of emergency cases is
first performed, then other patients are scheduled and finally a heuristic algorithm improves

29

the solution. Vijayakumar et al. (2013) defined the binary variables xikdts that are 1 if surgery i
is performed by surgeon s at time t in room k on day d. The model was able to solve small
instances, and the authors also developed a heuristic approach.

In addition to the binary variables, the most recent model has continuous variables to model
the start time of surgeries, and it includes the well-known scheduling constraints that require
big-M values. Consequently, the linear programming relaxation of this model is expected to
be weaker than the models previously discussed. Therefore, Roland et al. (2006, 2010) and
Marques et al. (2012) can be considered the state-of-the-art exact algorithms for IORPS.
Although these formulations address the IORPS problem as it is, they are inefficient in solving
real-sized instances because they involve a huge number of binary variables. Our problem is
not exactly the same as any of the problems investigated previously ; the differences will be
highlighted in Section 3.2 where assumptions are made.

We present a constraint-programming-based branch-and-price-and-cut algorithm for IORPS.
A preliminary version, presented as a conference paper (Hashemi Doulabi et al. 2014) develo-
ped a column generation (CG) algorithm. CG is a well-known approach for linear programs
that considers a large number of variables without including all of them explicitly in the
model (Dantzig and Wolfe 1960, Gilmore and Gomory 1961, Desaulniers et al. 2006). The
basic columns (variables) to define the optimal solution of such linear programs are generated
iteratively by solving a subproblem. In the CG algorithm of Hashemi Doulabi et al. (2014)
each subproblem generates schedules for a single room on a single day.

This paper extends the algorithm of Hashemi Doulabi et al. (2014) in two ways. First, we
improve the efficiency of the constraint programming model in the subproblem. We add
dominance rules to decrease the size of the subproblems, and we also present an infeasibility-
detection algorithm based on a relaxation of the original subproblem that discovers infea-
sible subproblems very quickly in many cases. Second, we extend the CG algorithm to a
branch-and-price-and-cut approach by developing branching and cutting plane procedures.
Our results show that the new approach significantly outperforms the original CG algorithm,
decreasing the optimality gap from 9.90% to 2.81%. We also compare our approach with a
state-of-the-art integer programming model for IORPS adapted from Marques et al. (2012)
and also a pure constraint-programming model.

The remainder of this paper is organized as follows. Section 4.2 presents the problem definition
and some notation, and Section 4.3 introduces the CG formulation. Section 4.4 discusses the
dominance rules and a fast infeasibility-detection algorithm. Section 4.5 presents the general
structure of the branch-and-price-and-cut algorithm and the branching and cutting-plane
procedures. Section 4.6 presents extensive computational results, and Section 4.7 provides

30

concluding remarks. We have provided supplements of this paper in Appendix A.

4.2 Problem Statement and Notation

In this section, we present the IORPS assumptions and some notation. An IORPS problem
is defined over a planning horizon, usually a week. There are two types of surgeries : (1) man-
datory surgeries whose deadlines fall within the current planning horizon and (2) optional
surgeries that can be postponed to a later period. We consider an open scheduling environ-
ment, i.e., each room can be shared by different surgeons. The assumptions are as follows :

1. The durations of the surgeries are deterministic.

2. Each surgeon has determined his or her maximum surgery time for each day of the
planning horizon.

3. Different types of infections can be present. An obligatory cleaning of the operating
room is required when switching to a case with a different type of infection or to a
noninfectious case. No cleaning is required between two cases with no infection or the
same type of infection.

4. The surgeries have already been assigned to surgeons.

5. The recovery rooms are not a bottleneck : sufficient beds are available.

6. Eight hours are available in each operating room. No overtime is available.

7. The operating rooms are identical in terms of available time and equipment.

We maximize the total scheduled surgery time over the planning horizon subject to :

1. All mandatory surgeries are scheduled.

2. Surgeons do not exceed their maximum daily surgery times.

3. Each operating room and each surgeon can handle just one patient at a time.

4. Cleaning time is scheduled as previously explained.

One may criticize that Assumption 1 is not realistic as in the real world the durations of sur-
geries are stochastic. However it should be considered that the focus of this study is to have a
planning problem with more details at the scheduling level to increase the chance of obtaining
a stable schedule with more chance of successful implementation. Furthermore the problem is
already very complicated so we leave the stochastic version to future research. Assumption 2
is realistic, but only Marques et al. (2012) have taken it into account. Assumption 3 is also
very realistic and was first studied by Cardoen et al. (2009b), but it has not been considered
in the IORPS context. Assumption 4 is appropriate for hospitals where surgeons operate on
the patients they have previously seen in their clinics. Vijayakumar et al. (2013) consider the

31

assignment of surgeons to surgeries ; this approach is suitable for teaching hospitals, where
surgeries are assigned to assistant surgeons and residents as part of their training programs.
Assumption 5 is common in the IORPS literature because the problem is already difficult
without these additional resource constraints. Some researchers (Vijayakumar et al. 2013,
Marques et al. 2012) apply Assumption 6 whereas others (Roland et al. 2006, 2010) allow
overtime. Regarding Assumption 7, only Roland et al. (2010) consider rooms with different
equipment. Our algorithm solves the problem without this assumption ; see Appendix A.1
after reading Section 4.3. Our problem has features in common with the problems in the
literature, but it is not exactly the same as any of them.

We now introduce the basic notation used throughout the paper. Some other notations may
also be presented separately in each section.

Sets:
D : Set of days in planning horizon.
I : Set of surgeries ; I = I1 ∪ I2.
I1 : Set of mandatory surgeries.
I2 : Set of optional surgeries.
I ′l : Set of surgeries for surgeon l.
Kd : Set of operating rooms for day d.
L : Set of surgeons.
Td : Set of time slots for day d ; the available time is discretized into this set of time

slots.

Parameters:
ti : Duration of surgery i (i ∈ I).
si : Surgeon for surgery i.
ddi : Deadline of surgery i.
Ald : Maximum hours for surgeon l on day d.

OCT : Duration of an obligatory cleaning that was explained in Assumption 3.
CLii′ : Equal to OCT if cleaning is required between surgeries i and i′ ; 0 otherwise.

Since the integer programming model developed in (Marques et al. 2012) is one of state-of-
the-art exact algorithms for IORPS, an integer programming model adapted from (Marques
et al. 2012) is presented in Appendix A.2. Moreover, a pure constraint-programming mo-
del formulating the previous problem is presented in Appendix A.3. We will compare our
algorithm with these two approaches.

32

4.3 Formulation and Column Generation Algorithm

In this section we present an integer programming model and explain how we apply CG to
this problem. The following two sections discuss the master problem and the subproblem.

4.3.1 Master Problem

For the master problem the sets, parameters, and variables are as follows.

Variable:

xj : Equal to 1 if schedule j is accepted ; 0 otherwise. Each schedule is a set of surgeries
and cleaning activities with fixed start times for a single operating room on a given
day ; it must satisfy constraints 2–4 stated in Section 4.2.

Sets:

J : Set of all feasible schedules for all operating rooms during the planning period.

Ji : Set of feasible schedules that include surgery i.

J ′d : Set of feasible schedules for day d.

Parameters:

Bj : Total duration of all the surgeries in schedule j.

aijt : 1 if surgery i starts at time t in schedule j ; 0 otherwise.

a′ij : 1 if surgery i is included in schedule j ; 0 otherwise.

bjd : 1 if schedule j is scheduled on day d ; 0 otherwise.

The master problem is as follows :

max
∑
j∈J

Bjxj (4.1)

subject to : ∑
j∈Ji

xj = 1, i ∈ I1, (4.2)

∑
j∈Ji

xj ≤ 1, i ∈ I2, (4.3)

∑
j∈J ′

d

xj≤|Kd|, d ∈ D, (4.4)

∑
j∈J ′

d

∑
i∈I′

l

tia
′
ijxj ≤ Ald, l ∈ L, d ∈ D, (4.5)

33

∑
j∈J ′

d

∑
i∈I′

l

∑
t′∈Td: t′≤t<t′+ti

aijt′xj ≤ 1, d ∈ D, l ∈ L, t ∈ Td, (4.6)

xj ∈ {0, 1}, j ∈ J . (4.7)

Constraints (4.2)–(4.3) ensure that the mandatory surgeries are performed and allow the
optional surgeries to be postponed. The deadlines of the mandatory surgeries will be respected
in the subproblem. Constraint (4.4) ensures for each day that the number of schedules does
not exceed the number of available operating rooms. Constraint (4.5) enforces the maximum
working hours for each surgeon. Constraint (4.6) prevents overlapping surgeries for the same
surgeon ; in the literature it is referred to as the coloring constraint.

The model defined by (4.1)–(4.7) is inspired by the model presented by Fei et al. (2009). We
have added the coloring constraint, and the objective function is also different. Moreover,
our binary variables determine the daily schedule of an operating room, whereas the in Fei
et al. (2009) the binary variables determine the assignments of surgeries to rooms but not
the detailed schedules. The Fei model is intended just for planning, and it may assign more
than one surgery to a surgeon at a given time. Therefore it is possible that the generated
plans do not result in feasible schedules. The structure of our subproblem is totally different
from that of the Fei subproblem.

Moreover, the other advantage of the proposed formulation to Fei model is that we have
broken the symmetry of the identical operating rooms (see Section 4.3.2), and our model has
only |D| subproblems. In contrast, the Fei model must solve ∑d∈D |Kd| subproblems at each
iteration of the CG, where |D| is the number of days and |Kd| is the number of operating
rooms on day d. We could define other variables for the master problem ; e.g., the variables
could correspond to daily schedules for surgeons. The main advantage of the variables as
defined is that the symmetry of the operating rooms can be broken in this case.

We embed model (4.1)–(4.7) in a branch-and-price algorithm. At each node k of the branch
and bound tree, we generate a restricted number of columns (Jk ⊆ J) ; this problem is called
the restricted master problem denoted RMP k. Its linear programming relaxation, denoted
LR-RMPk, is solved by a CG algorithm, thereby generating more columns and obtaining
a valid upper bound from the active nodes at the bottom of the tree. At the end of the
branch-and-price algorithm we solve model (4.1)–(4.7) with all the generated columns to find
a feasible solution and the corresponding lower bound.

34

4.3.2 Subproblem

After solving LR-RMPk we must solve a number of subproblems to generate new columns.
These subproblems are defined using the dual values obtained by solving the relaxed master
problem. If no column can be generated we terminate the CG process. We use a constraint
programming model to formulate the subproblem. For each day d ∈ D we solve a subproblem
to generate a schedule for an operating room on that day. Let π(2)

i , π(3)
i , π(4)

d , π(5)
dl , and π

(6)
dlt be

the dual variables corresponding to constraints (4.2)–(4.6) in the LR-RMP. We also define
π

(2, 3)
i as

π
(2, 3)
i =

π
(2)
i , i ∈ I1;

π
(3)
i , i ∈ I2.

The reduced cost of variable xj is

σj = Bj −
∑
d∈D

∑
i∈I

bjda
′
ijπ

(2, 3)
i −

∑
d∈D

bjdπ
(4)
d −

∑
d∈D

∑
l∈L

∑
i∈I′

l

tibjda
′
ijπ

(5)
dl

−
∑
d∈D

∑
l∈L

∑
i∈I′

l

∑
t∈T

∑
t′∈Td: t′≤t<t′+ti

aijt′bjdπ
(6)
dlt .

In the subproblem we seek the column with the largest positive reduced cost. Because Bj is
constant and all the other terms are summed over d ∈ D, decomposition of the subproblem
over index d ∈ D can be presented as follows :

max
{
Bj −

∑
i∈I

a′ijπ
(2, 3)
i − π(4)

d −
∑
l∈L

∑
i∈I′

l

tia
′
ijπ

(5)
dl −

∑
l∈L

∑
i∈I′

l

∑
t∈T

∑
t′∈Td: t′≤t<t′+ti

aijt′π
(6)
dlt

}
.

Because only a small number of surgeries (n) can be performed in each operating room on
a given day, we use a position-based model. The variables for the constraint programming
model of the subproblem are as follows.

Wp : Index of surgery to be performed in position p on day d.

Vp : Start time of surgery assigned to position p on day d.

Ci : Number of Wp (p ∈ {1, . . . , n}) variables that take the value i (i ∈ I ∪ {0}).

The subproblem constraints are :

Wp ∈ {i ∈ I | ddi ≥ d} ∪ {0}, p ∈ {1, . . . , n}, (4.8)

Vp ∈ {0, 1, . . . , |Td|}, p ∈ {1, . . . , n}, (4.9)

If (Wp = 0) then (Wp+1 = 0), p ∈ {2, . . . , n− 1}, (4.10)

35

Vp+1 ≥ Vp + t[Wp] + CL[Wp][Wp+1], p ∈ {1, . . . , n− 1}, (4.11)
n∑
p=1

(Wp == i) = Ci, i ∈ I, (4.12)

0 ≤ Ci ≤ 1, i ∈ I, (4.13)
n∑
p=1

(s[Wp] == l)t[Wp] ≤ Ald, l ∈ L, (4.14)

If Wp = 0 then Vp = Vp−1 + t[Wp−1], p ∈ {2, . . . , n}. (4.15)

Constraint (4.8) ensures that the positions are either assigned to a surgery in set I or left
empty with value 0. The value n is an upper bound on the number of surgeries assigned
to an operating room. Constraint (4.9) defines the domain of the start-time variables. We
have supposed the surgery durations are multiples of a 5 minute time unit and discritized
the available time to 5-minute time slots. The values in domains are the indices of the time
slots. Constraint (4.10) states that if a position is left empty then the next available position
must also be empty, i.e., we do not allow empty positions between two surgeries. We observe
that holes in the schedule are possible since the start times of the surgeries are determined
by the Vp variables. The role of constraint (4.10) is to break the symmetry of the model
by eliminating identical solutions with different assignments of the surgeries to the available
positions. Constraint (4.11) ensures that the start time of a surgery is greater than the finish
time of the previous surgery plus any cleaning time. In constraint (4.12), (Wp == i) is a
Boolean expression equal to 1 when Wp is equal to i and 0 otherwise. Constraint (4.12)
together with constraint (4.13) ensures that each surgery appears at most once in a schedule.
Constraint (4.14) enforces the maximum working hours of the surgeons. This restriction was
present in the master problem (constraint (4.5)) ; we include it in the subproblem to prevent
infeasible columns. Constraint (4.15) forces the start time of an empty position to be equal
to the finish time of the previous position. This avoids similar columns with different start
times for the empty positions.

We assume that t[0] = 0 and s[0] = 0. This ensures that when Wp is 0, t[Wp] and s[Wp] will be
0. This together with constraints (4.10) and (4.15) guarantees that when Wp is 0 the start
time of this position and the next positions will be fixed to the start time of the last position
with a surgery from I. We also assume that CL0i = 0, CLi0 = 0, i.e., there is no cleaning
before and after empty positions.

36

The objective function is

max
{

n∑
p=1

t[Wp] −
n∑
p=1

π
(2, 3)
[Wp] −

n∑
p=1

(t[Wp]π
(5)
d[s[Wp]])

−
n∑
p=1

∑
t∈Td

((t ≥ Vp) ∧ (t < Vp + t[Wp]))π(6)
d[s[Wp]]t − π

(4)
d

}
. (4.16)

Here, π(2, 3)
[Wp] , π

(5)
d[s[Wp]], and π

(6)
d[s[Wp]]t are element constraints that are 0 ifWp is 0. Otherwise, the

corresponding dual values will be computed. The objective function can be simplified using
precomputed matrices as follows :

max
{

n∑
p=1

Gd[Wp] −
n∑
p=1

π∗d[Wp][Vp] − π
(4)
d

}
, (4.17)

where

Gdi =

ti − π
(2, 3)
i − tiπ(5)

dsi
, i 6= 0;

0, i = 0;
and

π∗dit =

∑

t′∈Td: t≤t′<t+ti

π
(6)
dsit′

, i 6= 0;

0, i = 0.

We observe that (4.17) is more efficient than (4.16) since the fourth term in (4.16) has n×|Td|
element constraints whereas (4.17) has only n. As a result, it is much faster to create and
delete (4.17).

In summary, the constraint programming model for the CG subproblem is

∀ d ∈ D :

max
{

n∑
p=1

Gd[Wp] −
n∑
p=1

π∗d[Wp][Vp] − π
(4)
d

}
(4.18)

subject to :

constraints (4.8)–(4.15)
n∑
p=1

Gd[Wp] −
n∑
p=1

π∗d[Wp][Vp] − π
(4)
d ≥ 0. (4.19)

Constraint (4.19) ensures that only columns with nonnegative reduced costs will be generated.
During the constraint programming search, solutions with positive reduced costs will become

37

new columns in the master problem. After the CG convergence, the objective value obtained
by solving the linear programming relaxation of the master problem (LR-RMP) is an upper
bound for the problem. We obtain a lower bound by solving an integer programming model
for the restricted master problem.

4.4 Column Generation Enhancements

In this section we enhance the CG with four dominance rules and a fast infeasibility-detection
algorithm. In constraint programming, different methods such as symmetry breaking and
dominance rules were developed to reduce the search effort. Focacci and Milano (2001), and
Fahle et al. (2001) independently developed symmetry breaking via dominance detection
(SBDD). This algorithm breaks symmetry in the search tree by pruning a node if it is
symmetrically equivalent to another node that is already explored. The idea of dominance
rules is to specify some characteristics such that solutions with these characteristics dominate
other solutions with respect to the objective function. Using dominance rules many low-
quality solutions can be pruned off quickly resulting in significant speedups. Chu and Stuckey
(2012) developed a generic method for generating dominance rules that are proven to be
correct and compatible with each other. Many researchers have also applied problem-specific
dominance rules in different combinatorial problems such as template design problem (Proll
and Smith 1998), steel mill design problem (Prestwich and Beck 2004), rectangle packing
problem (Korf 2004), open stacks problem (Chu and Stuckey 2009) and talent scheduling
problem (Garcia de la Banda et al. 2011). Following in their footsteps we design problem-
specific dominance rules applicable to the subproblem of our column generation algorithm
that is a single machine scheduling problem with irregular starting time costs.

The first dominance rule characterizes the start time of the surgery in the first position. The
second removes surgeries that will reduce the objective value of the subproblem if added to
the schedule. For the third rule, we observe that if because of certain constraints a pair of
surgeries cannot exist simultaneously in the same schedule, and one dominates the other in
terms of the change in the objective value, then the latter does not appear in the optimal
solution. For this dominance rule, if the pair of surgeries can appear simultaneously in the
schedule then instead of removing the dominated surgery, we condition its existence in the
solution on the scheduling of the dominant surgery. The fourth dominance rule states that if
because of the constraints in the subproblem a set of surgeries that dominate another surgery
cannot appear in an operating room schedule simultaneously, then the latter surgery does
not appear in the optimal solution.

The fast infeasibility-detection algorithm solves a relaxation of the subproblem using a fast

38

algorithm instead of the constraint programming solver. The latter can be time-consuming
for subproblems that are infeasible with respect to constraint (4.19). If the objective value
obtained by solving the relaxation of the subproblem is negative then the original subproblem
is infeasible. Otherwise, the positive objective value found by the fast infeasibility-detection
algorithm is an upper bound on the objective value of the constraint programming model.

4.4.1 Dominance Rules

The first dominance rule characterizes the start time of the surgery in the first position.

DOMINANCE RULE 1. The following constraint is valid for subproblem d :

(V1 == 0) or (V1 ≥ SDd),

where SDd is the shortest surgery duration for all the surgeries with deadlines on or after
day d (i.e., SDd = mini∈I; ddi≥d{ti}).

PROOF. We prove that there always exists an optimal solution for the IORPS problem that
satisfies the above condition in all the operating rooms. Assume that in an optimal solution,
in one of the operating rooms on day d a surgery assigned to the first position starts at
time V ∗ in the interval [1, SDd− 1]. The corresponding surgeon cannot have been in another
operating room on this day in the interval [0, SDd], because an overlap would then exist,
which is a contradiction. Thus, it is possible to shift the start time of the surgery in the first
position from V ∗ to 0. �

The other rules can be implemented dynamically. Note that for the variable selection we
select the Wp variables in lexicographic order and then fix the Vp variables. The following
dominance rules are applied when there is at least one Wp variable that is not yet fixed. For
the remainder of this paper it is supposed that p∗ the smallest index such that Wp∗ is not
yet fixed.

We define ∆best
id to be the best improvement in the objective value of subproblem d ∈ D when

we add surgery i :

∆best
id = ti − π(2, 3)

i − tiπ(5)
d[si] − min

t′∈Dom(V ∗p)

{
t′+ti−1∑
t=t′

π
(6)
d[si]t

}
, (4.20)

where Dom(Vp∗) denotes the domain of variable Vp∗ . Here ti is the direct improve-
ment from the increase in Bj when surgery i is added. The terms −π(2, 3)

i and −tiπ(5)
d[si]

39

are the changes in the objective function of the subproblem due to the dual values of
constraints (4.2), (4.3), and (4.5). Because the dual values of constraint (4.6) are nonne-
gative, −mint′∈Dom(V ∗p){

∑t′+ti−1
t=t′ π

(6)
[si] dt} is the best possible change in the objective function

of the subproblem regarding the dual values of constraint (4.6). This term considers the
best possible start time for surgery i. Note that the interval [1, SDd − 1] has been removed
from Dom(Vp∗) by Dominance Rule 1. Equation (4.20) considers the possibility of performing
surgery i in all available positions p ≥ p∗ because in (4.20) we can replace Dom(Vp∗) with⋃
p≥p∗ Dom(Vp) since Dom(Vp+1) ⊆ Dom(Vp) is valid with respect to constraint (4.12).

In (4.16) and (4.18), π(4)
d is the nonnegative dual variable of constraint (4.4), which is fixed

for each subproblem d ∈ D ; adding surgery i does not change this part of the objective
function. We similarly define ∆worst

id to be the largest deterioration in the objective function
of subproblem d ∈ D when we add surgery i :

∆worst
id = ti − π(2, 3)

i − tiπ(5)
d[si] − max

t′∈Dom(V ∗p)

{
t′+ti−1∑
t=t′

π
(6)
d[si]t

}
. (4.21)

The next dominance rule eliminates surgeries that deteriorate the objective value of the
subproblem.

DOMINANCE RULE 2. If ∆best
id < 0 then surgery i does not appear in the optimal solution

of subproblem d.

PROOF. Assume that surgery i with ∆best
id < 0 appears in an optimal solution. When we re-

move surgery i, the objective function is improved by at least |∆best
id |, which is a contradiction.

�

Dominance Rules 3(a)–3(c) remove or condition a surgery by finding a dominant surgery. We
introduce the following notation.

RASl : The maximum remaining time for surgeon l given the surgeries scheduled in positions
1 to p∗ − 1. This is Ald −

∑p∗−1
p=1 (s[Wp] == l)t[Wp] for p∗ > 1 and Ald for p∗ = 1.

RAO : The remaining time in the operating room given the surgeries scheduled in positions
1 to p∗ − 1. This is |Td| − min{Dom(Vp∗)} where min{Dom(Vp∗)} is the minimum
value in the domain of Vp∗ .

DOMINANCE RULE 3(a). In subproblem d, for a given surgery i with ddi ≥ d, if there is a
surgery i′ with ddi′ ≥ d and si = si′ such that

(1) ∆worst
i′d > ∆best

id ;

40

(2) ti ≥ ti′ + λ ; and

(3) ti + ti′ > RAS si
;

then surgery i is dominated by surgery i′ and can be removed from the domain of Wp variables
without losing the optimal solution. Here, λ is a constant upper bound on the additional pre-
/post-cleaning time needed when surgery i is replaced by surgery i′.

PROOF. The right-hand side of condition (3) is the maximum remaining time for surgeon
si = si′ . Given this condition, surgeries i and i′ cannot both appear in a schedule. Thus,
assume that surgery i is included in the schedule. Then, by condition (2), removing surgery i
gives sufficient time to perform surgery i′. Condition (1) ensures that replacing surgery i by
surgery i′ improves the objective value. Therefore, surgery i does not appear in the optimal
solution of subproblem d. �

Table 4.1 – Values of λ for Different Infectious and Noninfectious Combinations for Surgeries i, i′,
and the Surgery in Position p∗ − 1

Case Surgery i Surgery i′ Surgery in position p∗ − 1 λ

1 Noninfectious Noninfectious No condition 0

2 Noninfectious Infectious Noninfectious or infectious
with f ′p∗−1 6= fi′

OCT

3 Noninfectious Infectious Infectious with f ′p∗−1 = fi′ 0

4 Infectious Noninfectious Noninfectious or infectious
with f ′p∗−1 = fi

0

5 Infectious Noninfectious Infectious with f ′p∗−1 6= fi OCT

6 Infectious Infectious with fi′ = fi No condition 0

7 Infectious Infectious with fi′ 6= fi Noninfectious or infectious
with f ′p∗−1 6= fi and f ′p∗−1 6= fi′

OCT

8 Infectious Infectious with fi′ 6= fi Infectious with f ′p∗−1 = fi 2OCT

9 Infectious Infectious with fi′ 6= fi Infectious with f ′p∗−1 = fi′ 0

Table 4.1 presents the values of λ for different combinations of infectious and noninfectious
situations : fi, fi′ , and f ′p∗−1 denote the infection status of surgeries i, i′, and the surgery in
position p∗ − 1, respectively. Appendix A.4 derives the values of λ for the nine cases.

41

DOMINANCE RULE 3(b). If condition (3) of Dominance Rule 3(a) does not hold, then the
following constraint is valid for the subproblem :

Ci ≤ Ci′ . (4.22)

This constraint states that if surgery i appears in the schedule then surgery i′ must also

appear ; otherwise the objective value can be improved by replacing surgery i by surgery i′.

DOMINANCERULE 3(c). In Dominance Rule 3(a) if si 6= si′ but conditions (1) and (2) hold
and we have

RAS si′
≥ RAO, (4.23)

then constraint (4.22) can be added to the subproblem without losing the optimal solution be-
cause the objective value can be improved by replacing surgery i by surgery i′. Condition (4.23)
guarantees that the constraint on the maximum remaining time for surgeon si′ is not violated
by the replacement.

The next dominance rule considers a set of surgeries that conditions another surgery through
constraint (4.22). If it is not possible to schedule all the entries in the set, then the latter
surgery does not appear in the optimal solution.

DOMINANCE RULE 4. Let Pi be a set of surgeries that, with respect to constraint (4.22),
must be scheduled if surgery i is scheduled. Then surgery i can be removed from the domain
of Wp if ∑r∈Pi∪{i} tr > |Td| or

∑
r∈(Pi∩I′si

)∪{i} tr > Asid.

PROOF. If we include surgery i in the schedule, we must also include all the surgeries
in Pi. However,

∑
r∈Pi∪{i} tr > |Td| indicates that the sum of the durations of surgery i and

the preceding surgeries exceeds the available time in the operating room in subproblem d.
Moreover, ∑r∈(Pi∩I′si

)∪{i} tr > Asid indicates that the sum of the duration of surgery i and
the durations of surgeon si’s previous surgeries exceeds the available time for si on day d.
Therefore, surgery i can be removed from the domain of Wp∗ . �

4.4.2 Fast Infeasibility-Detection Algorithm

Sometimes the dual value of π(4)
d is so large that the best possible schedule in the subproblem

has a negative objective value. No column with a positive reduced cost can be generated, and
the subproblem is infeasible with respect to constraint (4.19). The rapid detection of such
infeasibilities is very critical, especially in the last CG iterations. We use a knapsack relaxation

42

to find an upper bound on the optimal value of subproblem d. We consider a multidimensional
knapsack problem in which each surgery i from the subproblem corresponds to an item with
the value ∆best

id . The integer programming formulation of this multidimensional knapsack
problem reads as follows :

Sets :

I ′′d : Set of surgeries with deadlines on or after day d that remain in the domain of Wp

after that dominance rules have been applied.

Variables :

yi : Equals to 1 if item i (corresponding to surgery i) is included in the knapsack.

max
∑
i∈I′′

d

∆best
id yi (4.24)

subject to : ∑
i∈I′′

d

tiyi ≤ |Td|, (4.25)

∑
i∈I′′

d
∩I′

l

tiyi ≤ Ald, l ∈ L, (4.26)

yi ∈ {0, 1}, i ∈ I ′′d . (4.27)

Constraint (4.25) ensures that the sum of the durations of scheduled surgeries does not ex-
ceed the total available time in the operating room. Constraint (4.26) states that the total
scheduled time for each surgeon does not exceed the maximum time for that surgeon. Ob-
viously this multidimensional knapsack problem is a relaxation of the scheduling problem in
the subproblem and an upper bound for this problem is an upper bound for the subproblem
if we neglect the fixed value π(4)

d . We use a well-known greedy algorithm with a value/weight
selection criterion to find an upper bound for the problem defined by (4.24)–(4.27). As be-
fore, p∗ is the smallest index such that Wp∗ is not yet fixed. This fast infeasibility-detection
algorithm is implemented dynamically, i.e., it is called once at the beginning when no variable
Wp is fixed (p∗ = 1) and also whenever a variable Wp is fixed (p∗ > 1). Before presenting the
algorithm we define ∆best

idp as follows :

∆best
idp = ti − π(2, 3)

i − tiπ(5)
d[si] − min

t′∈Dom(Vp)

{
t′+ti−1∑
t=t′

π
(6)
d[si]t

}
. (4.28)

This value is the best improvement in the objective value of subproblem d obtained by setting
the start time of surgery i that is already scheduled at position p. This start time must take

43

a value from Dom(Vp). The difference between ∆best
idp and ∆best

id is that Vp∗ is replaced by Vp.

The fast infeasibility-detection algorithm is as follows :

1. Set UpperBoundd = ∑p∗−1
p=1 ∆best

[Wp]dp. For p∗ = 1 this value is defined as zero.

2. Sort the unscheduled surgeries by (∆best
id /ti) and set i∗ = argmaxi∈I; ddi≥d{∆

best
id /ti}.

3. Assign surgery i∗ to the operating room if the remaining available time in the operating
room is sufficient and the constraint on the maximum time of surgeon si∗ is not violated.
In this case, set UpperBoundd := UpperBoundd + ∆best

i∗d , RAS si∗ := RAS si∗ − ti∗ , and
RAO := RAO − ti∗ and return to step 1. Otherwise go to step 4 or 5.

4. If ti∗ > RAS si∗ and RAS si∗ < RAO then divide i∗ into two surgeries i∗1 and i∗2

with durations RAS si∗ and ti∗ − RAS si∗ where si∗ denotes the surgeon of surgery i∗.
Assign surgery i∗1 to the schedule and disregard surgery i∗2. Set UpperBoundd :=
UpperBoundd + RAS si∗ (∆best

i∗d /ti∗), RAS si∗ := 0, and RAO := RAO − (ti∗ − RAS si∗)
and return to step 2. Here RAO > RAS si∗ guarantees that there is sufficient time in
the operating room for the assignment of surgery i∗1. Surgery i∗2 is eliminated for the
rest of the algorithm as there is not any available time for surgeon si∗ to perform it.

5. If ti∗ > RAO and RAO ≤ RAS si∗ then divide surgery i∗ into two surgeries i∗1 and
i∗2 with durations RAO and ti∗ − RAO. Assign surgery i∗1 to the schedule and set
UpperBoundd := UpperBoundd + RAO(∆best

i∗d /ti∗). Then stop because no operating-
room time remains after the assignment of surgery i∗1. Here condition RAO ≤ RAS si∗

ensures that surgeon si∗ has sufficient time to perform surgery i∗1.

This fast infeasibility-detection algorithm is evaluated dynamically as the Wp variables are
fixed and p∗ increases. When p∗ = 1, if UpperBoundd − π

(4)
d < 0 at the end of the algorithm

then the subproblem on day d is infeasible and can be skipped. Otherwise, the following
constraint can be added to the subproblem :

Objective Function of subproblem d

≤ UpperBoundd − π
(4)
d . (4.29)

Constraint (4.29) ensures that the constraint programming solver stops when it finds a feasible
solution with an objective value of UpperBoundd − π

(4)
d .

When p∗ > 1, if UpperBoundd − π
(4)
d < 0, then the current partial solution will not lead to

a complete solution with a positive objective value, and the constraint programming solver
backtracks to another partial solution in the search tree. However, if UpperBoundd−π

(4)
d ≥ 0,

constraint (4.29) can be added locally to the search tree. In this case, constraint (4.29) reflects
that the objective value of the current partial solution cannot be better than UpperBoundd−

44

π
(4)
d and the constraint programming solver then backtracks whenever it finds a local complete

solution with an objective value of UpperBoundd − π
(4)
d .

It should be noted that the effect of cleaning times are not considered in the previous upper-
bound calculation since this simplification results in a relaxed knapsack problem and is
necessary to get a valid upper bound. Note that for the value selection of Wp variables the
surgeries are sorted by descending order of ∆best

id /ti and for the Vp variables a lexicographic
ordering is applied.

4.5 Branch-and-Price-and-Cut Algorithm

It is well-known that to improve the quality of solutions obtained from a CG algorithm, it
can be extended to a branch-and-price algorithm where in each node of a branch-and-bound
tree, variables with positive reduced cost (in a maximization problem) are generated by CG.
We now describe the general structure of the branch-and-price-and-cut algorithm, and then
we develop branching and cutting-plane procedures.

4.5.1 Structure of the Branch-and-Price-and-Cut Algorithm

Algorithms 4.1 and 4.2 describe the price-and-cut and branch-and-price-and-cut procedures.
In Algorithm 4.1, two search phases are possible. If CheckOptimalityPhase is 0, it means that
in solving the subproblems, the constraint programming solver will stop after CPtimelimit
seconds. When CheckOptimalityPhase is set to 1, the constraint programming solver is allowed
to solve the subproblems without any time limit. The algorithm switches from the first phase
to the second only if no column is generated in an iteration (Line 16). It is also possible that
the algorithm switches to the first phase if some columns are generated in the second phase
(Line 21). If no column is generated when CheckOptimalityPhase is 1, StoppingCriterion will
be set to 1 in Line 18, terminating the while loop. In this case, the objective value of the
relaxed master problem will be a valid upper bound. This careful use of a time limit is vital
for the efficiency of the algorithm. The cuts added in Line 6 will be explained in Section 4.5.3.
In Line 10 of Algorithm 4.1, when the constraint programming solver finds a solution with a
positive objective value a new column is generated and the constraint programming algorithm
continues its search to generate other columns with larger positive reduced costs. In Line 12,
we check the columns generated in this iteration to see if they also have positive reduced
costs on other days. If they do, similar schedule patterns will be generated for the other
days if they respect the surgery deadlines. Finally, we solve the master problem restricted to
generated columns with binary variables to find a lower bound (Line 24). The initial columns

45

for the restricted master problem are generated by a constructive heuristic ; see Section 4.6.1.

Algorithm 4.1. (Price-and-cut algorithm)
1: StoppingCriterion = 0 ; CheckOptimalityPhase = 0 ; CPtimelimit = 10s
2: while (StoppingCriterion == 0) do
3: Solve the relaxed master problem.
4: Check for violated minimal cover cuts.
5: while (there are violated minimal cover cuts) do
6: Add a lifted minimal cover inequality to the master problem.
7: Solve the relaxed master problem.
8: end while
9: for (all subproblems d ∈ D) do

10: Solve the subproblem using constraint programming.
11: end for
12: Check if the generated columns can be copied to other days.
13: Add all columns generated in this iteration to the master problem.
14: if (no columns are generated) then
15: if (CheckOptimalityPhase == 0) then
16: CheckOptimalityPhase = 1 ; CPtimelimit = inf ;
17: else
18: StoppingCriterion = 1;
19: end if
20: else if (CheckOptimalityPhase == 1)
21: CheckOptimalityPhase = 0 ; CPtimelimit = 10s ;
22: end if
23: end while
24: Solve the restricted master problem with integer variables.

In the branch-and-price-and-cut algorithm presented by Algorithm 4.2, lines 3, 6, and 9
implement branches (1)–(3) ; see Section 4.5.2. The algorithm stops when a predetermined
time limit is reached or the lower and upper bounds are the same, confirming the optimality of
the current integer solution. The node selection (Line 5) is based on a best-first strategy. If no
branching is possible, the restricted master problem with integer variables is solved (Line 11)
to find a lower bound. If a predetermined time limit is reached (Line 13), the algorithm
computes a valid upper bound based on the upper bounds for those nodes for which the LR-
RMP has been solved to optimality. The algorithm subsequently switches to fast branching,
i.e., CheckOptimalityPhase is set to 1 in Algorithm 4.1. This allows the algorithm to rapidly
generate many columns by visiting many nodes in the tree instead of spending time proving

46

the optimality of the generated nodes. In fact, generating many columns using the prior
strategy increases the chance of getting a good integer solution in Line 16.

Algorithm 4.2. (Branch-and-price-and-cut algorithm)
1: UpperBound = +∞ ; LowerBound = −∞ ;
2: Apply Price-and-Cut algorithm at the root node.
3: Check and save possible branching at the root node ;
4: while (stopping criteria are not activated) do
5: Select a node from the list of feasible nodes ;
6: if (branching is possible) then
7: Branch and generate child nodes ;
8: Apply Price-and-Cut algorithm to the generated nodes.
9: Check and save possible branching at generated nodes ;

10: else
11: Solve the restricted master problem in the current node with integer variables.
12: end if
13: Check for switch to fast branching ;
14: Check stopping criteria ;
15: end while
16: Solve the restricted master problem with all generated columns and integrality constraints.

4.5.2 Branching procedure

We use three types of branching :

(1) Branching on the number of total scheduled surgeries in the planning horizon.

(2) Branching on the number of scheduled surgeries for a particular surgeon in the planning
horizon.

(3) Branching on whether two particular surgeries are scheduled in the same operating
room (Ryan and Foster 1981).

Branches (1) and (2) require a new constraint in the master problem. For branch (3) some
columns must be removed from the master problem, and some constraints must be added to
the subproblem. Branches (1) and (2) are implemented as traditional dichotomic branches
generating two new nodes. For branch (1), we add one of the following constraints to the
master problem :

∑
j∈J

∑
i∈I

a′ijxj ≥ dme, (4.30)

47

∑
j∈J

∑
i∈I

a′ijxj ≤ bmc, (4.31)

where m is the fractional number of scheduled surgeries in LR-RMP. For branch (2) for
surgeon l, we add one of the following constraints to the master problem :

∑
j∈J

∑
i∈I′

l

a′ijxj ≥ dm′le, (4.32)

∑
j∈J

∑
i∈I′

l

a′ijxj ≤ bm′l, c, (4.33)

where m′l is the fractional number of scheduled surgeries for surgeon l in LR-RMP. In the
computation of matrix Gdi in (4.18), ∆best

id , ∆worst
id , and ∆best

idp must be replaced by gi(Gdi),
gi(∆best

id), gi(∆worst
id), and gi(∆best

idp), where

gi(h) :=

h− π(30) − π(31), i 6= 0, si 6= l,

h− π(30) − π(31) − π(32)
si
− π(33)

si
, i 6= 0, si = l,

h, i = 0,

and π(30), π(31), π(32), and π(33) are the dual variables of constraints (4.30)–(4.33). Branch (3),
introduced by Ryan and Foster (1981), gives better integer solutions than the other branches
give. In one of the child nodes, two surgeries i and i′ must be scheduled in the same operating
room, and we remove from the master problem all the columns in which this is not the case.
In the other child node, surgeries i and i′ cannot be scheduled in the same operating room,
and we remove some columns accordingly. We also add constraint (4.34) to the first child
node and (4.35) to the second :

Ci = Ci′ , (4.34)

Ci + Ci′ ≤ 1. (4.35)

As computationally shown in Appendix A.5, branches (1) and (2) usually improve the upper
bound, whereas branch (3) is usually more effective in generating good columns, thus increa-
sing the likelihood of finding good integer solutions. Therefore, to improve lower and upper
bounds with the proposed branching rules, they are applied in the following order : We apply
branch (1) first. For branch (2), we select the surgeon for which the fractional part of the
number of scheduled surgeries is closest to 0.5. Finally, in branch (3), we select the pair of
surgeries for which the fractional number of times that they appear together is closest to 0.5.

48

4.5.3 Cutting planes

To improve the quality of the upper bound obtained by CG algorithm, a class of cutting
planes is added to the master problem iteratively. We use the lifted minimal cover inequa-
lity (Gu et al. 1998, Atamtürk 2005) based on a reformulation of the knapsack capacity
constraints (4.5), which are the constraints on the maximum daily hours of the surgeons.
Barnhart et al. (2000) used the same idea to improve the quality of a branch-and-price al-
gorithm for a multicommodity flow problem. We introduce an auxiliary binary variable zid
that is 1 if surgery i is scheduled on day d and 0 otherwise. Constraint (4.5) can now be
reformulated as follows :

∑
i∈I′

l

tizid ≤ Ald, d ∈ D, l ∈ L. (4.36)

The corresponding lifted minimal cover inequalities are∑
i∈I′l\C

αizid +
∑
i∈C
zid ≤ |C| − 1, d ∈ D, l ∈ L, C ∈ Ψld, (4.37)

where C is a minimal cover set for surgeon l on day d. This is the minimal subset of surgeries
for surgeon l that cannot be scheduled together on day d because of the limited knapsack
capacity (Ald). The set Ψld contains all minimal cover sets on day d for surgeon l. To impose
these cutting planes we express zid in terms of xj via zid = ∑

j∈J ′
d
∩Ji

xj. The cuts to be added
to the master problem are as follows :

∑
i∈I′

l
\C

∑
j∈J ′

d
∩Ji

αixj +
∑
i∈C

∑
j∈J ′

d
∩Ji

xj ≤ |C| − 1, d ∈ D, l ∈ L, C ∈ Ψld. (4.38)

During the CG procedure, whenever we detect a violated cut, it is added to the master
problem. To detect violated cuts, we use the default lifted cover inequality (LCI) algorithm
of Gu et al. (1998). However, because of time efficiency instead of the exact lifting algorithm,
we use a very fast lifting procedure from Atamtürk (2005) to generate LCI. This procedure
is as follows :

αi =

r, θr ≤ ti ≤ θr+1 − 1 (r ∈ {1, 2, . . . , |C| − 1}),

|C|, ti ≥ θ|C|,
∀i ∈ I ′l\C, (4.39)

where ti is the duration of surgery i. Here θr = ∑r
k=1 tck

, ∀ r ∈ {1, 2, . . . , |C|}, and ck is the
kth surgery in the minimal cover C when the surgeries in C are sorted in nondecreasing order
of durations.

49

The main concern when adding cuts to a CG algorithm is how to consider the effect of the
dual values of the added cuts in the objective function of the subproblems. To address this,
we define Γdi to be the set of all added cuts that include surgery i on day d with a nonzero
coefficient for zid. In each subproblem d ∈ D, whenever a new column that includes surgery i
is examined, the effect of the dual values of all the cuts in Γdi must be taken into account
in the reduced-cost computation. We define λdi to be the contribution of the dual values of
the added cuts in the objective function of subproblem d due to the inclusion of surgery i on
day d :

λdi =
∑
v∈Γdi

πvα
′
iv, i ∈ I, d ∈ D, (4.40)

where πv is the dual value of cut v ∈ Γdi and α′iv is the coefficient of zid in this cut. After
we solve the master problem, we compute the matrix λ = [λdi] and replace (4.18) by the
following objective function :

max
{

n∑
p=1

Gd[Wp] −
n∑
p=1

π∗d[Wp][Vp] −
n∑
p=1

λd[Wp] − π(4)
d

}
.

This is equivalent to the aggregation of matrix λ in matrix A in (4.18) as follows : Gdi =
ti − π(2, 3)

i − tiπ(5)
dsi
− λdi (for i 6= 0). Further, ∆best

id , ∆worst
id , and ∆best

idp must be updated via
∆best
id := ∆best

id − λdi, ∆worst
id := ∆worst

id − λdi, and ∆best
idp := ∆best

idp − λdi.

We define the lifted minimal cover inequalities on constraint (4.36) and not constraint (4.5)
because in the former the effect of the dual values of cuts can be considered in the objective
function of the subproblems, whereas in the latter there is no effective way to do this. We
also tested clique cuts and odd-cycle inequalities, but because of the difficulty in efficiently
considering the dual values of the variables in these cuts, they were not very effective and we
do not discuss them further.

4.6 Computational Experiments

We implemented the algorithm in IBM ILOG CPLEX Optimization Studio V12.4, which
includes CPLEX and CP Optimizer to solve linear, integer, and constraint programming mo-
dels. Experiments were run on a computer with two Intel Xeon X5675 processors, 3.07 GHz,
and a total of 12 cores. We ran different instances using different cores.

50

4.6.1 Instances

We generated three sets of instances with different specifications. In all the instances, the
planning horizon is five days of a week and the maximum hours for the surgeons (Ald) are
taken from Table 1 of (Fei et al. 2009) with some modifications. Fei et al. (2009) allowed
some surgeons to work overtime beyond eight hours but we do not, and the corresponding
entries are decreased to eight hours. In our instances, the average maximum time for surgeons
is about 320 minutes with a variance of roughly 20 minutes (i.e., Var[(∑d∈D Ald/|D|)l∈L] =
20 min). The surgery deadlines are uniformly generated in the interval [1, 14] as suggested by
Fei et al. (2009). Surgeries with deadlines after the fifth day are optional. The surgeries are
randomly assigned to eight surgeons, as suggested by Fei et al. (2009). We randomly assigned
half of the surgeries in each instance to the infectious category, and we set the cleaning time
(OCT) to 30 minutes.

In the first set of instances, denoted A, the surgery durations are uniformly generated in the
interval [2 hours, 4 hours] and time is discretized into five-minute units. Six operating rooms
are available for eight hours each day. Usually the number of rooms is large enough that
this resource does not happen to be the bottleneck of the system and the availability of the
surgeons is more restrictive.

Instance set B is the same as A except that the number of operating rooms is set using a
heuristic (see Appendix A.6). The heuristic computes an approximate average of the daily
working hours of each surgeon, assuming that the surgeon is going to perform all the surgeries
and the workload is distributed evenly over the planning horizon. It then uses these values
to compute the operating-room hours required daily. From this we derive the number of
operating rooms required. The main characteristic of instance set B is that the number of
operating rooms can be restrictive.

In instance set C, the surgery durations are generated according to the Pearson III distribu-
tion, as explained by Fei et al. (2009). The daily numbers of operating rooms are again set
using the heuristic. The average durations of the surgeries in this set is considerably lower
than those of the two previous sets.

The three instance sets cover a wide range of operating room planning and scheduling pro-
blems in different surgical departments. Sets A and B are good representatives of cases that
surgeries take more than two hours, such as cardiac surgery, bile duct and liver surgery, and
various types of vascular surgery (Leong et al. 2006). Set C is representative of cases with
shorter surgery durations such as hemiarthroplasty, limb amputation, and abdominal hyste-
rectomy which commonly take less than two hours (Leong et al. 2006). We set the number

51

of surgeries in A and B to {40, 60, 80, 100, 120} and the number in set C to {60, 80, 100}.
We generate five instances for each problem setting for a total of 65 instances. We do not
consider 40 or 120 surgeries in set C because in the former case, due to short surgery dura-
tions, only one operating room is required based on the heuristic presented in Appendix A.6
and in the latter neither the proposed algorithm nor the integer programming and constraint
programming models presented in Appendices A.1 and A.2 are very efficient.

To ensure feasibility of generated instances considering surgery deadlines, we apply a
constructive heuristic to generate an initial solution for each instance. In this heuristic whe-
never a surgery deadline cannot be respected its deadline is postponed to the next day. The
heuristic fills the operating rooms consecutively starting from the first operating room on the
first day to the last one on the last day. At each step it assigns a single surgery to an operating
room. For scheduling surgeries on each day the surgeons are considered in a random order,
and the surgeries are sorted by deadline. Two criteria break ties : (1) Surgeries performed
by more important surgeons according to a random importance assignment are considered
before other surgeries for the assignment. (2) If ties remain, the tied cases are sorted by
decreasing order of processing time. In each operating room earlier time slots are favored as
the start time of surgeries. The selected start time must lead to a feasible solution for the
other surgeries of the same surgeon, i.e., all coloring constraints and maximum working hours
must be respected. The resulting schedules define the initial columns of the master problem.

4.6.2 Parameters

The computational results are presented in Tables 4.2–4.8. We set the CG time limit to
two hours, and we set CPtimelimit, one of the parameters of the Algorithm 4.1 explained in
Section 4.5.1, to 10 seconds. If the CG does not converge within the time limit we report
a trivial upper bound, min(∑d∈D |Kd||Td|,

∑
d∈D

∑
l∈LAld,

∑
i∈I ti). We then solve the integer

programming model of the restricted master problem with a time limit of one hour to find a
lower bound (Line 24 of Algorithm 4.1). In the case of a branch-and-price or a branch-and-
price-and-cut, we allow an additional two hours for the branching procedure. In the first 15
minutes, we try to prove the optimality of the nodes. We then compute an upper bound of
the tree and the optimality of generated nodes will not be proven anymore and child nodes
of a given node are generated as the CG algorithm switches to CheckOptimalityPhase = 1.
After the branching procedure, we apply the integer programming model solver for one hour
with all the generated columns (Line 16 of Algorithm 4.2).

52

4.6.3 Results

In Tables 4.2–4.8, we give the computational times in seconds ; each row presents the average
over five instances. In Table 4.2, we evaluate the dominance rules and the fast infeasibility-
detection algorithm. Under columns “Original CG” and “Enhanced CG” the computational
results of the CG algorithm without applying any of enhancements and with all of them
are presented, respectively. In the enhanced CG, dominance rules and the fast infeasibility-
detection algorithm are implemented dynamically and are called whenever a Wp variable is
fixed. We give the number of CG iterations (No. of iterations) and the number of instances
for which the CG has not converged within the time limit (No. of unconverged). The results
in columns 5–12 are obtained by averaging over all the subproblems and all the CG iterations
at the root node of the constraint programming search tree, (i.e., when noWp variable is fixed
yet and p∗ = 1) although the dominance rules and the fast infeasibility-detection algorithm
are implemented dynamically. This provides a good sense of the effectiveness of these features.

“DR 1” gives the percentage of values in the domains of V1 removed by Dominance rule 1.
“DR 2,” “DR 3,” and “DR 4” give the percentages of surgeries in the subproblems removed by
dominance rules 2–4. When a rule removes a surgery from the domain of Wp∗ , that surgery
is not considered by the subsequent rules. The dominance rules are applied sequentially
as previously mentioned. This is reasonable because Dominance Rule 2 is the least time-
consuming : it is executed in O(|I|). Dominance Rule 2 removes some of the surgeries from the
domain ofWp∗ before Dominance Rule 1 (which runs in O(|I|2)) examines all pairs of available
surgeries. Dominance Rules 1(b) and 1(c) add some constraints in the form of constraint (4.22)
that increases the number of surgeries in the set Pi, thus making Dominance Rule 4 more
effective. “Conditioned values” gives the percentage of surgeries in the subproblems that are
conditioned by constraint (4.22) but not removed by any of the dominance rules. “FID 1”
gives the percentage of infeasible subproblems detected by the fast infeasibility-detection
algorithm. “FID 2” gives the percentage of infeasible subproblems over all the CG iterations
that are detected because all the surgeries are removed from the domains of Wp by the
application of Dominance Rules 2–4 at the root node of the constraint programming search
tree (i.e., when noWp variable is fixed yet and p∗ = 1). Column “Stopped by knapsack bound”
gives the percentage of subproblems for which the constraint programming solver stopped
because it found a solution with an objective value equal to the upper bound imposed by
constraint (4.29) for the case where p∗ = 1. Table 4.2 shows that

(1) 31% of the surgeries are removed by the dominance rules ;

(2) 16.22% of the surgeries are conditioned by constraint (4.22) ;

53

(3) about 14% of subproblems are detected to be infeasible before letting the constraint
programming solver do any propagation ;

(4) 8.58% of the subproblems also stopped as they reach the knapsack bound of
constraint (4.29) ; and

(5) the dominance rules and fast infeasibility-detection algorithm reduce the number of
unconverged instances from 36 to 7.

We observe that the effects of the dominance rules and fast infeasibility-detection algorithm
vary ; this is especially noticeable for “FID 2.”

Tables 4.3–4.6 present results for CG algorithms, price-and-cut, branch-and-price, and
branch-and-price-and-cut. We apply the dominance rules and the fast infeasibility detec-
tion algorithm unless otherwise stated. The columns are : (1) “No. of columns” : the total
number of columns generated. (2) “Alg. time” : the computational time, excluding the time
to find a lower bound at the end of the CG and the end of the branching. (3) “LB time” : the
time to solve the restricted master problem to obtain a lower bound. (4) “Total time” : the
sum of “Alg. Time” and “LB time”, (5) “UB” : the upper bound. (6) “LB” : the lower bound.
(7) “Gap” : the optimality gap, i.e., 100(UB − LB)/UB. (8) “No. of cuts” : the number of
cuts added. (9) “No. of nodes (optimality proved)” : the number of nodes for which optimality
is proved. (10) “No. of nodes (all nodes)” : the total number of nodes generated.

Table 4.3 shows that the dominance rules and the fast infeasibility-detection algorithm de-
crease the computational time from 4,477 seconds to 1,715 seconds, but for most instances in
sets A and B the quality of integer solutions obtained from the original CG is better than that
of integer solutions resulted from the enhanced CG. This is because of the larger number of
columns generated in the earlier algorithm which let the integer programming model called at
the end of the algorithm have more choices to get good integer solutions, whereas the second
algorithm converges faster with fewer number of columns as a result of applying dominance
rules. However, in 21 instances of sets A and B the original CG has not converged and trivial
upper bounds are reported. For set C, the original CG struggles to solve the subproblems ;
the enhanced CG generates more columns and finds a better lower bound.

As can be seen in Tables 4.3–4.6, the average optimality gaps for original CG, enhanced
CG, price-and-cut, branch-and-price, and branch-and-price-and-cut are 9.90%, 7.82%, 4.76%,
5.36%, and 2.81% respectively. In Table 4.6, the “initial objective value” is obtained from
the constructive heuristic previously explained in this section ; our algorithm significantly
improves these values.

54

Table 4.2 – Evaluation of Dominance Rules and the Fast Infeasibility-Detection Algorithm.
Original CG Enhanced CG

Instance
set

No. of
surgeries

No. of
iterations

No. of
unconverged

DR 1
(%)

DR 2
(%)

DR 3
(%)

DR 4
(%)

Conditioned
values(%)

FID 1
(%)

FID 2
(%)

Stopped by knapsack
bound(%)

No. of
iterations

No. of
unconverged

A 40 13 0 25.21 67.41 3.95 0.88 3.44 9.61 28.32 11.72 16 0
60 26 0 25.00 61.64 4.25 0.84 3.77 29.96 13.61 7.83 30 0
80 57 0 25.00 43.14 5.18 1.16 4.77 20.96 3.42 6.77 41 0
100 122 5 25.21 38.86 5.15 0.82 4.64 27.72 0.15 3.58 76 0
120 125 5 25.00 34.97 6.19 1.45 6.56 24.28 0.00 4.65 62 0

B 40 13 0 25.17 4.96 5.88 1.99 12.11 0.00 0.00 11.08 17 0
60 22 0 25.21 3.22 8.61 2.79 10.37 0.00 0.00 8.15 25 0
80 57 1 25.00 2.72 7.49 1.84 9.05 0.00 0.00 5.55 39 0
100 97 5 25.00 4.59 8.39 1.13 6.20 7.79 0.00 2.70 68 0
120 95 5 25.00 3.65 9.45 2.12 6.45 3.74 0.00 2.55 89 3

C 60 61 5 10.5 4.65 5.50 7.71 48.93 2.27 0.00 23.80 25 1
80 43 5 9.44 4.18 6.76 9.02 47.10 7.93 0.00 12.50 55 1
100 69 5 9.17 4.08 6.00 11.99 47.51 4.35 0.00 10.65 50 2

Average : - 61 - 21.53 21.39 6.37 3.36 16.22 10.66 3.50 8.58 46 -
Total : - - 36 - - - - - - - - - 7

Table 4.3 – Evaluation of the CG algorithms.
Original CG Enhanced CG

Instance
set

No. of
surgeries

No. of
columns

Alg.
time

LB
time

Total
time UB LB

Gap
(%)

No. of
columns

Alg.
time

LB
time

Total
time UB LB

Gap
(%)

A 40 627 48 0 48 1431 1395 2.44 357 25 0 25 1431 1384 3.20
60 1396 532 46 578 2020 1941 3.92 877 108 2 110 2020 1865 7.72
80 2204 2966 11 2977 2307 2123 7.94 1386 407 7 414 2307 2077 9.98
100 3004 7200 12 7212 2880 2195 23.79 1619 1960 14 1974 2401 2159 10.04
120 2606 7200 5 7205 2880 2183 24.19 1532 1337 8 1345 2423 2183 9.91

B 40 692 79 1 80 1371 1352 1.35 448 35 1 36 1371 1355 1.12
60 1243 605 9 614 1866 1807 3.17 812 137 5 142 1866 1799 3.59
80 2041 3569 176 3745 2207 2083 5.58 1220 736 23 759 2205 2067 6.22
100 2894 7200 523 7723 2438 2276 6.67 1921 2349 373 2722 2416 2271 6.01
120 2861 7200 54 7254 2496 2206 11.61 1878 4807 155 4962 2488 2221 10.71

C 60 571 7200 0 7200 576 507 11.98 741 1964 4 1968 576 532 7.71
80 412 7200 0 7200 792 688 13.11 1307 3508 4 3512 792 692 12.58
100 480 7200 0 7200 979 853 12.91 1878 4916 7 4923 979 853 12.89

Average : 4477 9.90 1715 7.82

55

Table 4.4 – Evaluation of the price-and-cut algorithm.

Price-and-cut

Instance
set

No. of
surgeries

No. of
columns

No. of
cuts

Alg.
time

LB
time

Total
time

UB LB
Gap
(%)

A 40 474 31 35 0 35 1411 1402 0.61
60 1093 72 129 10 139 1975 1897 3.90
80 1833 118 424 10 434 2205 2141 2.88
100 2498 134 2158 47 2205 2297 2218 3.44
120 2591 199 1055 10 1065 2301 2231 3.01

B 40 546 29 42 1 43 1367 1355 0.88
60 1117 73 187 18 205 1860 1819 2.13
80 2206 105 1662 97 1759 2173 2111 2.85
100 3036 144 4633 1139 5772 2402 2320 3.38
120 3173 178 5002 315 5317 2457 2306 6.14

C 60 754 0 2329 9 2338 576 532 7.57
80 1230 0 6034 3 6037 792 693 12.53
100 1787 0 4729 11 4740 978 855 12.56

Average : 4.76

Table 4.5 – Evaluation of the branch-and-price algorithm.

Branch-and-Price

Instance
set

No. of
surgeries

No. of
columns

No. of nodes
(optimality
proved)

No. of nodes
(all nodes)

Alg.
time

LB
time

Total
time

UB LB
Gap
(%)

A 40 631 397 821 182 1 183 1421 1400 1.49
60 6399 20 507 7323 1441 8764 2017 1957 2.99
80 4660 21 966 6590 288 6878 2308 2151 6.73
100 4211 8 135 9170 79 9249 2401 2217 7.64
120 3557 12 152 8552 30 8582 2471 2234 9.58

B 40 2776 64 781 7238 6 7244 1366 1361 0.39
60 3036 32 388 7344 323 7667 1862 1841 1.17
80 2523 13 416 7945 88 8033 2202 2114 3.97
100 2778 4 455 9532 1068 10600 2416 2303 4.68
120 2853 1 65 12033 306 12339 2488 2296 7.72

C 60 3964 10 356 9175 1101 10276 576 570 1.08
80 4030 5 102 10739 2568 13307 792 712 10.08
100 5348 2 84 12141 2957 15098 977 858 12.20

Average : 5.36

56

Table 4.6 – Evaluation of the branch-and-price-and-cut algorithm.
Branch-and-price-and-cut

Instance
set

No. of
surgeries

Initial
objective value

(heuristic)

No. of
columns

No. of
cuts

No. of nodes
(optimality proved)

No. of nodes
(all nodes)

Alg.
time

LB
time

Total
time UB LB

Gap
(%)

A 40 1321 785 34 3 39 83 1 84 1403 1403 0.00
60 1814 9379 132 19 300 7353 1306 8659 1971 1960 0.55
80 1894 7015 152 15 137 7639 864 8503 2203 2174 1.30
100 1968 5413 178 6 80 9381 222 9603 2297 2255 1.81
120 2014 5487 230 6 66 8273 22 8295 2298 2266 1.40

B 40 1193 1781 63 41 225 2262 207 2469 1361 1361 0.00
60 1601 3475 131 21 191 7398 779 8177 1853 1843 0.55
80 1824 4796 141 11 89 8878 906 9784 2161 2132 1.32
100 1993 4819 168 2 46 11862 2814 14676 2401 2337 2.65
120 2004 5120 215 2 43 12233 1157 13390 2457 2355 4.13

C 60 507 4216 0 5 141 9547 1786 11333 576 571 0.94
80 688 3745 2 2 85 13261 2319 15580 792 713 9.92
100 853 4929 0 2 105 11956 3589 15545 978 860 12.01

Average : 2.81

Table 4.7 – Evaluation of the integer programming model, constraint programming model, and mixed algorithm.
IP CP CP-IP

Instance
set

No. of
surgeries Time UB LB

Gap
(%)

No. of branches
(millions)

No. of fails
(millions) Time UB LB

Gap
(%) Time UB LB

Gap
(%)

A 40 300 1415 1112 20.97 2.71 1.12 300 1446 1366 5.51 257 1411 1399 0.86
60 11000 1966 1941 1.20 70.29 28.24 11000 2150 1693 21.23 10401 1974 1879 4.64
80 11100 2220 1670 24.76 58.74 23.25 11100 2436 1947 20.07 11100 2225 1995 10.31
100 11600 2302 851 63.15 44.74 16.79 11600 2436 2058 15.50 11600 2316 2101 9.20
120 8800 2338 421 81.10 29.13 10.58 8800 2436 2041 16.22 8800 2351 2056 12.52

B 40 4400 1361 1304 4.18 46.17 20.56 4400 1402 1285 8.27 4117 1365 1323 3.09
60 11000 1851 1700 8.11 92.89 40.00 11000 1920 1673 12.85 11000 1856 1739 6.21
80 12800 2180 1439 33.90 70.61 28.58 12800 2224 1841 17.12 12800 2189 1898 13.26
100 18200 2400 0 100.00 77.18 28.95 18200 2433 2007 17.50 18200 2408 2035 15.51
120 17800 2430 0 100.00 67.26 23.87 17800 2484 2140 13.86 17800 2434 2133 12.39

C 60 14800 576 538 6.63 125.40 54.27 14800 576 534 7.22 14800 576 547 4.97
80 18200 792 267 66.24 161.85 68.96 18200 792 611 22.80 18200 792 718 9.29
100 18200 978 0 100.00 112.69 60.74 18200 979 487 51.65 18200 978 487 51.62

Average : 46.94 17.68 11.84

57

Table 4.8 – Improvement in optimality gap from cuts and branching.

Instance
set

No. of
surgeries

Improvement from
cuts (%)

Improvement from
branching (%)

Improvement from
branching and cuts (%)

A 40 2.59 1.71 3.20
60 3.82 4.74 7.18
80 7.10 3.24 8.67
100 6.61 2.41 8.23
120 6.90 0.33 8.51

B 40 0.24 0.73 1.12
60 1.45 2.42 3.03
80 3.37 2.24 4.89
100 2.63 1.33 3.36
120 4.57 2.98 6.58

C 60 0.14 6.63 6.77
80 0.05 2.50 2.65
100 0.33 0.69 0.88

Average : 3.06 2.46 5.01

Depending on the time limits in practical cases, one may decide to use the branch-and-price-
and-cut or the price-and-cut algorithms that require two to four hours for large instances. If
less time is available, the practitioner could develop a heuristic and validate it by comparing
it with our algorithms.

Table 4.7 gives the results for the integer programming model (IP) and the constraint pro-
gramming model (CP) developed in Appendices 1 and 2. For each row we set the time limit
to the maximum time for the same instances in Table 4.6. As the constraint programming
model does not provide upper bounds, the trivial upper bounds of the instances are reported
for this algorithm. Column CP-IP gives the results for a mixed algorithm that uses CP for
half of the available time and then switches to IP. The IP solver can prune more quickly by
starting with the CP solution, and the heuristics in the CPLEX solver use it to find better
solutions. The average optimality gaps are large : 46.94%, 17.68%, and 11.84% for IP, CP,
and CP-IP respectively which are weaker than the average optimality gap 2.81% obtained
by the proposed branch-and-price-and-cut algorithm. Before running IP, we tuned its search
parameters using CPLEX’s automatic tuning tool. We randomly chose three small instances
from each of sets A, B, and C, and CPLEX examined different parameter settings to find
the most reliable setting over the nine instances ; the time limit was three hours for each
instance. Table 4.8 presents the improvement in the optimality gap achieved by adding cuts,
branching, or both to the enhanced CG. Adding both cuts and branching improves the gap
by 5.01% on average. In Appendix A.5 we evaluate the different types of branches.

58

4.7 Conclusion and Future Research

Integrated operating room planning and scheduling (IORPS) can improve the efficient use of
operating theatres by synchronizing the assignment and scheduling of surgeries. Operational
details can be considered at the scheduling level, increasing the chance of obtaining a stable
schedule that can be successfully implemented. Since patients, surgeons, nurses, anesthesio-
logists, and operating-room managers all play a role, there are many constraints to take into
account. We have developed a branch-and-price-and-cut algorithm for the IORPS which is
capable of addressing various kinds of problem settings. To improve the efficiency of the algo-
rithm, a constraint programming model proposed to solve subproblems is enhanced by some
dominance rules and a fast infeasibility-detection algorithm. Our model reduces the number
of subproblems at each CG iteration, so we can solve large instances. Extensive computatio-
nal results demonstrate the superiority of the developed method to a compact mathematical
programming model adapted from the literature and show that our algorithm can obtain
solutions with an average optimality gap of 2.81% for instances with up to 120 surgeries.
Future research could explore the following two issues :

1. Two sources of uncertainty could be considered : the durations of the surgeries and the
arrival times of emergency cases. Similar problems have been studied under a block-
scheduling strategy. However, to the best of our knowledge, only Batun et al. (2011)
have studied the problem under an open-scheduling strategy, and they solve instances
with at most 11 surgeries. More powerful algorithms are needed for stochastic IORPS
under an open-scheduling strategy.

2. Integration of the tactical and the operational levels can be another interesting oppor-
tunity where the number of blocks assigned to each surgical department and the start
and finish times of these blocks could be determined concurrently with the IORPS.

59

CHAPTER 5 ARTICLE 2 : VEHICLE ROUTING PROBLEMS WITH
SYNCHRONIZED VISITS AND STOCHASTIC/TIME-DEPENDENT

TRAVEL AND SERVICE TIMES : APPLICATIONS IN HEALTHCARE

Seyed Hossein Hashemi Doulabi
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Gilles Pesant
Department of Computer and Software Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Louis-Martin Rousseau
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Abstract. This paper, for the first time, studies vehicle routing problems with synchronized
visits (VRPS) where travel and service times are stochastic/time-dependent. In addition to
considering a home-health care scheduling problem, we introduce an operating room schedu-
ling problem with stochastic durations as a novel application of VRPS. We formulate VRPS
with stochastic times as a two-stage stochastic programming model with integer variables
in both stages. An advantage of the proposed model is that, in contrast to the determinis-
tic models in the VRPS literature, it does not have any big-M constraints. This advantage
comes at the cost of a large number of second-stage integer variables. We prove that the
integrality constraints on second-stage variables are trivial, and therefore we can apply the
L-shaped algorithm and its branch-and-cut implementation to solve the problem. We enhance
the model by developing valid inequalities and a lower bounding functional. We analyze the
subproblems of the L-shaped algorithm and devise a solution method for them that is si-
gnificantly faster than standard linear programming algorithms. Moreover, we extend our
model to formulate VRPS with time-dependent travel and service times. Computational re-
sults show that, in the stochastic home-health care scheduling problem, the branch-and-cut
algorithm optimally solves instances with 15 patients and 10% to 30% of synchronized vi-
sits. It also finds solutions with an average optimality gap of 3.57% for instances with 20
patients. Furthermore, the branch-and-cut algorithm optimally solves stochastic operating
room scheduling problems with 20 surgeries, a considerable improvement over the literature

60

that reports on instances with 11 surgeries. In addition, the proposed formulation for the
time-dependent problem solves a large portion of home-health care scheduling instances with
30 to 60 patients and different rates of synchronized visits to optimality.

Keywords. Vehicle routing with synchronized visits, stochastic/time-dependent travel and
service times, home-health care scheduling, operating room scheduling.

5.1 Introduction

In the literature of Vehicle Routing Problem (VRP), a large number of studies have taken
into account the scheduling of services to customers in addition to the routing of vehicles.
Such routing problems are generally referred to as routing and scheduling problems. The most
well-known problem in this area is VRP with Time Windows (VRPTW) where a number
of vehicles must serve customers with minimum cost while satisfying some time window
constraints. Recently there has been an emergent interest in VRP with Synchronized visits
(VRPS) in which two or more vehicles of different types must be simultaneously available
at the customer’s location for serving. VRPS is significantly more complicated than the
classic VRPTW because the scheduling of vehicles is interdependent, and therefore finding a
quality solution satisfying all time window constraints is more challenging. This problem has
a wide range of applications in home-health care scheduling (Bredström and Rönnqvist 2008,
Di Mascolo et al. 2014), raw milk collection (Drexl and Sebastian 2007), staff scheduling
(Lim et al. 2004, Li et al. 2005), garbage collection (De Rosa et al. 2002), forest management
(Paraskevopoulos et al. 2016), and telecommunication (Jaumard et al. 2016). We refer readers
to Drexl (2012) for VRP with other types of synchronizations.

In routing and scheduling problems, two important factors significantly increase problem
complexity. The first factor is uncertainty in travel and service times that has been dealt
with in the literature using stochastic and robust optimization approaches. Some researchers
studied Travelling Salesman Problems (TSPs) with independent and normally distributed
travel times and developed dynamic programming algorithms to maximize the probability of
completing the tour by a deadline (Kao 1978, Sniedovich 1981, Carraway et al. 1989). In some
papers, authors proposed two-stage stochastic programming methods to formulate the pro-
blems and applied branch-and-cut algorithms (Laporte et al. 1992, Kenyon and Morton 2003,
Adulyasak and Jaillet 2015). Column generation is another prevalent approach to formulate
routing and scheduling problems with stochastic travel and service times. In this approach,
the uncertainty of travel and service times are encapsulated in the column definition and
are handled in the subproblem (Taş et al. 2014b, Yuan et al. 2015, Errico et al. 2016). In
another category of papers, researchers developed chance-constrained programming models

61

for routing and scheduling problems and solved them either optimally or heuristically (La-
porte et al. 1992, Li et al. 2010, Zhang et al. 2012, Chen et al. 2014, Miranda and Conceição
2016). In these models, chance constraints ensure that time window constraints or constraints
restricting the maximum durations of tours are satisfied probabilistically. Moreover, a large
number of works in the literature applies heuristic and metaheuristic algorithms on routing
and scheduling problems with stochastic times (Taş et al. 2013, Yan et al. 2014, Gómez
et al. 2015, Ehmke et al. 2015, Binart et al. 2016). In addition, some researchers assumed
that uncertain travel and service times belong to an uncertainty set and then applied robust
optimization methods to find reliable routes. Such robust solutions either satisfy the time
windows constraints for all possible realizations of uncertain parameters (Agra et al. 2013,
Lee et al. 2012), or minimize a measure index representing the amount of constraint violations
for the worst-case scenario (Souyris et al. 2013, Han et al. 2013, Adulyasak and Jaillet 2015,
Jaillet et al. 2016, Zhang et al. 2016). We refer interested readers to a recent survey by Oyola
et al. (2016) that covers routing with stochastic travel and service times comprehensively.

Time dependency in travel and service times is another factor that significantly influences
the difficulty of routing and scheduling problems. In the literature, researchers have conside-
red time dependency mostly for travel times, due to traffic congestions, rather than service
times. As suggested by Ichoua et al. (2003), from a modeling perspective, we can categorize
papers in this area as follows. In some articles, authors addressed the time dependency by
simply considering weighted averages of travel times over different periods and then solved a
deterministic VRP (Fisher et al. 1982, Hill et al. 1988, Shen et al. 1995). In another category,
authors used piecewise linear functions to represent the travel times (Malandraki and Dial
1996, Ichoua et al. 2003, Hashimoto et al. 2008, Donati et al. 2008, Kuo 2010, Balseiro et al.
2011, Dabia et al. 2013, Jabali et al. 2012, Franceschetti et al. 2013, Taş et al. 2014a). Most
articles in this area proposed metaheuristic algorithms as the solution method. Another way
to model time dependent problems is based on discretizing the scheduling horizon to smaller
intervals with equal lengths that can have different travel and service times (Malandraki and
Daskin 1992, Jung and Haghani 2001, Haghani and Jung 2005, Soler et al. 2009, Huang et al.
2017). In these papers, the idea of discretization is essential to formulating problems as mixed
integer programming models.

Although there is a rich literature on VRP with synchronized visits and on VRP with sto-
chastic/time dependent travel and service times, to the best of our knowledge, there is no
paper addressing these aspects simultaneously. The main contributions of this research are
as follows :

• For the first time, we study VRP with synchronized visits and stochastic travel and

62

service times. In addition to considering a home-health care scheduling problem, we
introduce an operating room scheduling problem with stochastic durations as a novel
application of VRPS. We then formulate the problem as a two-stage stochastic pro-
gramming model with integer variables in both stages. An advantage of the proposed
model is that, unlike the deterministic models in the VRPS literature, our model does
not have any big-M constraints for the scheduling part of the problem. This advantage
comes at the cost of a large number of second-stage integer variables. We prove that
the integrality constraints on second-stage variables are redundant, and therefore we
can apply the well-known L-shaped algorithm and its branch-and-cut implementation.
• We considerably enhance the quality of the proposed L-shaped algorithm in the follo-

wing ways. We develop some valid inequalities for both first- and second-stage models.
We also develop a lower bounding functional for the second-stage cost and add it to the
master problem of the L-shaped algorithm. Moreover, we propose a solution method for
the subproblems of the L-shaped algorithm. This solution method that we specifically
design for our problem is much faster than standard linear programming algorithms
and is vital for the computational efficiency of the proposed branch-and-cut algorithm.
• We report extensive computational results on the VRP with synchronized visits and

stochastic travel and service times. For the home-health care scheduling problem with
stochastic travel and service times, we show that our algorithm optimally solves ins-
tances with 15 patients and 10% to 30% synchronized visits. It also finds solutions
with an average optimality gap of 3.57% for instances with 20 patients. Moreover, we
show that the developed algorithm optimally solves stochastic operating room schedu-
ling instances with up to 20 surgeries, a considerable improvement over Batun et al.
(2011) that reports on instances with 11 surgeries. In addition, our solution times are
significantly lower for instances with 11 surgeries (2231 seconds versus 9992 seconds).
• We also extend the proposed model to solve time-dependent VRP with synchronized

visits and show that our proposed algorithm finds optimal solutions for a large portion
of time-dependent home-health care scheduling instances with 30 to 60 patients and
different rates of synchronized visits.

We organize the remainder of this paper as follows. In Section 5.2, we introduce a VRP with
synchronized visits and stochastic travel and service times. We also discuss the applications
of this problem in home-health care and operating room scheduling problems. In Sections 5.3
and 5.4, we respectively propose a two-stage stochastic programming model and some valid
inequalities to improve it. In Section 5.5, we develop an L-shaped algorithm and present the
master problem and subproblems. We develop a lower bounding functional in Section 5.6. In
Section 5.7, we propose a solution method for the subproblems of the L-shaped algorithm.

63

In Section 5.8, we extend the proposed formulation to model time-dependent VRPs with
synchronized visits. We provide some implementation details in Section 5.9. We also present
extensive computational results on home-health care and operating room scheduling problems
in Section 5.10. Finally, we give some concluding remarks in Section 5.11. Proofs of all lemmas
and theorems (except Theorem 5.2) are provided in Appendix B.

5.2 Problem definition and applications

In this paper, we consider the following VRP with synchronized visits. Two or more fleets
of homogeneous vehicles are available at a depot to serve a number of customers within a
day. For serving each customer, a specific set of vehicles of different types must be available
at the customer’s location. If some vehicles arrive to the customer’s location earlier than
other required vehicles, they must wait until others arrive before service starts. Vehicles may
require consuming some amounts of limited resources while serving customers. The service
times of homogeneous vehicles are the same, but they can differ for each vehicle type. When
a vehicle’s service to a customer finishes, the vehicle either travels to the next customer
or finishes its tour by returning to the depot regardless of whether other vehicles are still
serving the customer. For each vehicle type, we assume that there is a set of arcs on which
traversing is allowed. We suppose that travel and service times are stochastic and a number of
scenarios representing the uncertainty is available. Moreover, for each customer there is a time
window with a hard earliest start time constraint and a soft latest start time constraint that
if violated, some penalties are incurred to the objective function. Furthermore, we suppose
that the time available to complete the tours is limited (e.g., 11 hours). There is also a time
threshold (e.g., 9 hours) for the start of the overtime period in which drivers are paid in
addition to their fixed daily payments. The decision maker must decide on the number of
vehicles of different types to hire, routing of vehicles, and departure times of vehicles from
the depot. The objective function includes the fixed costs of vehicles, travel costs, waiting
costs, overtime costs, and the penalty of delays in serving customers with respect to given
latest start times.

In this paper, we consider two applications of the above problem in health care. The first
application is a home-health care scheduling problem. In this problem, two types of nurses
that we refer to as Registered Nurses (RNs) and Home Health Aides (HHA), must serve
patients at their homes. An RN is allowed to provide a wide range of nursing services such
as wound dressing, ostomy care, intravenous therapy, administering medication, monitoring
the general health of the patient, pain control, and other health support. However, HHAs
can help patients with only their basic personal needs such as walking, feeding, and dressing

64

(Types of Home Health Care Services n.d.). In this problem, we divide patients into three
categories ; patients to be cared by an RN, patients to be visited by an HHA and patients
that needs to be served simultaneously by an RN and an HHA. Di Mascolo et al. (2014)
studied this problem in the absence of uncertainty for travel and service times and proposed
a mixed integer programming model to minimize the total waiting costs.

The second application that we study in this work is an operating room scheduling pro-
blem with stochastic surgery, anesthesia and cleaning times. In this problem, each surgery is
equivalent to a customer in the VRP with synchronized visits explained at the beginning of
this section. To perform each surgery, we require two servers (vehicles) to be simultaneously
available. These servers are surgeons and operating rooms. We suppose that the number of
surgeons is given, but the number of operating rooms, which are identical, is to be determi-
ned. We also assume that a unique surgeon is assigned to each surgery and each surgeon has
already fixed the sequence of surgeries to operate. We can divide the total time to complete
a surgery in an operating room into three parts : 1) preparation and anesthesia part during
which the surgeon is not necessarily present in the operating room, 2) the main part of the
surgery in which the surgeon operates, and 3) the cleaning part during which the operating
room is busy, but the surgeon is not and may have left the room in order to rest or reach
her/his next surgery in another operating room. In this problem, for surgeons and operating
rooms, the service time to perform a surgery is equal to the duration of the main part of the
surgery. Also, for operating rooms as one of the available servers (vehicles), we suppose that
the travel time from surgery i to surgery j is equal to the sum of cleaning time after surgery
i and the duration of the preparation and anesthesia part of surgery j. The durations of all
three parts of surgeries explained above are stochastic.

In order to match the operating room scheduling problem to the VRP with synchronized
visits, we assume that servers (operating rooms and surgeons) leave a dummy depot to
perform surgeries and return to it at the end of their routes. The operating room scheduling
problem previously explained is still slightly different from the VRP with synchronization.
For example, surgeons are not homogeneous and surgeries are already assigned to surgeons.
To match the operating room scheduling problem with our VRPS, we consider surgeons as
homogeneous vehicles and then for this vehicle type, we consider the set of allowed arcs for
travelling based on the given sequences of surgeries for surgeons. The decision maker must
decide on the number of operating rooms and their routings in order to minimize the total
cost that includes fixed costs of operating rooms, waiting costs of surgeons, and overtime
costs of operating rooms and surgeons.

Batun et al. (2011) viewed a similar operating room scheduling problem as a scheduling

65

problem rather than a VRP with synchronized visits. They formulated the problem as a two-
stage stochastic program and proposed an L-shaped solution algorithm. Although their model
is one of the most interesting papers in the field of stochastic operating room scheduling, we
observed the following shortcomings of their work :

1. The scheduling part of their model suffers from big-M constraints. It is well-known that
models with such constraints are weak due to poor linear programming relaxation. This
issue is even worse in this model, because big-M constraints are in the second-stage
model, and therefore big-M values appear as coefficients of variables in L-shaped cuts.
As a result, the cuts are weak and cannot approximate the second-stage cost effectively.

2. Authors proposed two sets of symmetry-breaking constraints to deal with symmetries in
their model. Although these constraints prevent the model from obtaining the same op-
timal solution with different presentations, they are not very effective in improving the
quality of linear programming relaxation and therefore, branch-and-bound algorithms
may explore a large number of nodes before these constraints become binding.

We have overcome these issues by developing a model in the next section that is free of big-M
constraints and any symmetries.

5.3 Two-stage stochastic programming model

In this section, we propose a two-stage stochastic programming model for the VRPS defined
in Section 5.2. In the first-stage model, the decision maker decides about the number of
vehicles of different types to hire, routing of vehicles, and their departure times. Then, after
the realization of uncertain travel and service times, the second-stage model computes the
start times of services to customers. We present the first- and second-stage formulations
in the two following sections separately. For some parameters in our model, we have used
superscripts that are initials of some keywords.

5.3.1 First-stage model

We use the following notation for sets, parameters and variables in the first-stage model.

Sets:

R : The set of all types of available vehicles.

Ri : The set of vehicles required for serving customer i.

I : The set of all customers.

66

Ir : The set of customers requiring a type r vehicle. Customers in this set may also need
to be visited by vehicles of other types.

Ar : The set of allowed arcs for type r vehicles.

T : The set of available time slots within the scheduling horizon (We suppose that the
available time is split into smaller time slots with equal lengths. In the remainder
of this paper, wherever we state that an event happens at time slot t, we mean that
it occurs at the beginning of the time slot).

T depri : The set of time slots at which a type r vehicle may depart the depot to serve
customer i with the condition that it can return to the depot before the end of the
scheduling horizon. The vehicle may visit some other customers before finishing its
tour. This set is inclusive but not necessarily exclusive, i.e., all time slots satisfying
the explained condition are members of this set, but there might be some time slots
in this set not respecting the condition. This set is not a part of given data. We will
discuss at the end of this section how to compute it using the available data.

Parameters:

ctrij : travel cost for a type r vehicle for travelling from customer i to customer j. Super-
script t stands for “travel”.

cvr : The fixed cost of hiring a type r vehicle. Superscript v stands for “vehicle”.

dri : The required amount of the resource (if there is any) that is consumed by a type r
vehicle while serving customer i.

Cr : The capacity of type r vehicles for the resource (if there is any) that they consume
while serving customers. We have Cr = ∞ if type r vehicles do not consume any
resource for serving customers.

qrs : An lower bound on the minimum number of type r vehicles required for serving
customers in set S ⊆ Ir. We compute it by qrs = max

{⌈∑
i∈S

dir/Cr
⌉
, 1
}
.

Variables:

mr : The number of type r vehicles to hire.

xrij : 1 if a type r vehicle visits customer j immediately after customer i ; 0 otherwise.

yrjt : 1 if a type r vehicle departs the depot at time slot t to visit customer j ; 0 otherwise.

Based on the given notation, we formulate the first-stage model as follows. In Model (S1),
index 0 stands for the depot.

67

(S1) min
x,y,m

∑
r∈R

cvrmr +
∑
r∈R

∑
i,j∈Ir∪{0}:

(i,j)∈Ar

ctrijxrij +Q(x,y)

 (5.1)

Subject to : ∑
i∈Ir:(0,i)∈Ar

xr0i = mr r ∈ R (5.2)

∑
i∈Ir∪{0}:(i,j)∈Ar

xrij = 1 r ∈ R, j ∈ Ir (5.3)

∑
i∈Ir∪{0}:(i,j)∈Ar

xrij = ∑
i∈Ir∪{0}:(j,i)∈Ar

xrji r ∈ R, j ∈ Ir ∪ {0} (5.4)

∑
i,j∈S:(i,j)∈Ar

xrij ≤ |S| − qrs r ∈ R,S ⊆ Ir : |S| ≥ 2 (5.5)

∑
t∈T dep

ri

yrjt = xr0j r ∈ R, j ∈ Ir (5.6)

xrij ∈ {0, 1} r ∈ R, (i, j) ∈ (Ir ∪ {0}) : (i, j) ∈ Ar(5.7)

yrjt ∈ {0, 1} r ∈ R, j ∈ Ir, t ∈ T deprj (5.8)

mr ≥ 0, integer r ∈ R (5.9)

Objective function (5.1) consists of the fixed costs of vehicles, the travel costs, and the
second-stage cost Q(x,y) that is a function of first-stage decision variables xrij and yrjt.
We define the second-stage cost in Section 5.3.2. Constraints (5.2) and (5.3) are degree
constraints for the depot and customers respectively. Constraint (5.4) is the flow conservation
constraint. Constraint (5.5) guaranties that for each type of vehicles, the capacity constraints
are respected and no subtour is allowed. Constraint (5.6) determines the departure time
of vehicles from the depot. Constraints (5.7)-(5.9) represent the integrality constraints for
first-stage decision variables. In Model (S1), we point out that constraint (5.5) eliminates
subtours composed of arcs traversed by vehicles of the same type for different types of vehicles
separately, but not together. We illustrate it by an example depicted in Figure 5.1. In this
figure, there is no subtour for type 1 and type 2 vehicles separately, but path A-B-C-D formed
by both types of vehicles is a subtour. In our problem, this type of subtour is also illegal
and results in infeasibility in the scheduling of customers visits. The infeasibility happens
because the start times of services to any pair of customers (i1, i2) in the subtour must
satisfy starti1 < starti2 and starti1 > starti2 that is a contradiction. Therefore, although
infeasibility cuts from the subproblems of L-shaped algorithm will remove such subtours,
we should avoid them beforehand in the first-stage model. As discussed later, we address
this issue by adding valid inequalities and also a lower bounding functional developed in
Sections 5.4.1 and 5.6 respectively.

68

Figure 5.1 A subtour formed by two different types of vehicles.

5.3.2 Second-stage model

To formulate the second-stage model, we use the following variables, sets, and parameters.

Variables:

urijtω : 1 if a type r vehicle starts serving customer i at time slot t immediately before
serving customer j in scenario ω ; 0 otherwise.

vitω : 1 if the service to customer i starts at time slot t in scenario ω ; 0 otherwise.

wrω : The total waiting time of all type r vehicles in scenario ω.

Parameters:

L : The length of the normal working hours for which no overtime cost is considered. In
our model, we consider this parameter in terms of time slots length. We also note
that L ≤ |T | holds as set T defined in Section 3.1 includes some additional time
slots for overtime periods.

ei : The earliest start time in the time window of customer i.

li : The latest start time in the time window of customer i.

sriω : The duration of the service provided by a type r vehicle to customer i in scenario ω.

trijω : The travel time of a type r vehicle from customer i to a customer j in scenario ω.

coritω : The overtime cost of a type r vehicle if it starts serving customer i at time slot t
in scenario ω and then immediately returns to the depot. Superscript o stands for
“overtime”. We compute it by coritω = c′overtime ×max{t + sriω + tri0ω − L, 0} where
c′overtime is the overtime cost for a single time slot beyond the session length L.

cdit : The delay cost of serving customer i when the service to the customer starts at time
slot t. Superscript d stands for “delay”. We compute it by cdit = c′delay×max{t− li, 0}
where c′delay is the delay cost for a single time slot beyond the latest start time li.

69

cwr : The waiting cost of a type r vehicle for a single time slot. Superscript w stands for
“waiting”.

fritω : The time slot at which a type r vehicle arrives in the depot immediately after starting
to serve customer i at time slot t in scenario ω. We have fritω = t+ sriω + tri0ω.

grijtω : The amount of time in scenario ω that a type r vehicle is involved in serving customer
i and also in travelling to the next customer j. We have by grijtω = sriω + trijω.

ξ(ω) : The vector of uncertain parameters including travel and service times in scenario ω.

Sets:
Tiω : The set of time slots at which the service to customer i may start in scenario ω. This

set is inclusive but not necessarily exclusive (Later in this section, we discuss how to
compute this set).

Trijω : The set of times slots at which a type r vehicle may start serving customer i im-
mediately before customer j in scenario ω. This set is inclusive, but not necessarily
exclusive (Later in this section, we discuss how to compute this set).

Ω : The set of random scenarios.
An assumption in modeling the second stage is that travel and service times are multiples of
time slot length. This assumption may require small modifications in real data. However, we
believe that the effect of this modification is negligible since the length of time slots that we
consider in our applications is very small (5 minutes) compared to the length of the scheduling
horizon (11 hours). In the previous notation, we suppose that sriω, trijω, and also all elements
of ξ(ω) are given in terms of time slot length. Using the given notation, we formulate the
second-stage model for scenario ω ∈ Ω as follows.

(S2) Q(x,y, ξ(ω)) = min
u,v,w

∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω

coritωuri0tω +
∑
i∈I

∑
t∈Tiω

cditvitω +
∑
r∈R

cwr wrω

(5.10)

Subject to :∑
t∈Trijω

urijtω = xrij r ∈ R, i, j ∈ (Ir ∪ {0}) : (i, j) ∈ Ar(5.11)

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω≤t

urijt′ω ≥
∑

k∈(Ir∪{0}):
(j,k)∈Ar & t∈Trjkω

urjktω r ∈ R, j ∈ Ir, t ∈ Tjω (5.12)

∑
j∈(Ir∪{0}):

(i,j)∈Ar & t′∈Trijω

urijtω = vitω r ∈ R, i ∈ Ir, t ∈ Tiω (5.13)

70

wrω =
∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0ω

frijωuri0tω −
∑

i,j∈Ir∪{0}:
(i,j)∈Ar

grijωxrij

−
∑
i∈Ir

∑
t∈T dep

ri

tyrit r ∈ R (5.14)

ur0itω = yrit r ∈ R, i ∈ Ir : (0, i) ∈ Ar, t ∈ T depri (5.15)

urijtω ∈ {0, 1} r ∈ R, i, j ∈ (Ir ∪ {0}) : (i, j) ∈ Ar(5.16)
t ∈ Trijω

vitω ∈ {0, 1} i ∈ I, t ∈ Tiω (5.17)

Objective function (5.10) represents the second-stage cost in scenario ω and includes over-
time, delay, and waiting costs. The second-stage cost Q(x,y) in objective function (5.1) is
calculated by Q(x,y) = Eω∈Ω[Q(x,y, ξ(ω))] where Eω∈Ω[.] computes the expected value over
scenarios ω ∈ Ω. Constraint (5.11) links first- and second-stage decision variables xrij and
urijtω. Constraint (5.12) is the no-overlap constraint and indicates that if the service to custo-
mer j starts at time slot t, then the service to customer i visited immediately before customer
j by the same vehicle must have started by time slot t − sriω − trijω. Constraint (5.13) is
the synchronization constraint and ensures that required vehicles start serving the custo-
mer at the same time. Constraint (5.14) computes total waiting times for different types
of vehicles. In this constraint, ∑

i∈Ir:(i,0)∈Ar

∑
t∈Tri0ω

frijωuri0tω computes the total tour comple-

tion times, ∑
i,j∈Ir∪{0}:(i,j)∈Ar

grijωxrij computes the sum of total service and travel times, and∑
i∈Ir

∑
t∈T dep

ri

tyrit calculates the total departure times. We used auxiliary variables wrω for the

ease of presenting objective function (5.10). We can simply substitute wrω in objective func-
tion (5.10). In this case, it would be better to transfer the expected value of the second
and the third terms on the right-hand side of constraint (5.14) to objective function (5.1)
in the first-stage model. Constraint (5.15) introduces the departure times from the depot to
the second-stage model. Constraints (5.16) and (5.17) represent integrality constraints for
second-stage variables.

In the following we aim to explain how to compute sets Tiω and Trijω, but before that we
need introduce two new parameter SRTrijtω and n-SRTrijtω by which we define these sets.
SRTrijtω : The shortest amount of time from the beginning of time slot t that a type r

vehicle starts serving customer i until it reaches customer j in scenario ω. By
reaching customer j we mean that the vehicle arrives the customer’s location
and if needed it waits until the customer’s time window opens. As we suppose
that the triangle inequality does not necessarily hold, the vehicle may visit

71

some other customers between customers i and j.

n-SRTrijtω : It is defined the same as SRTrijtω with a additional condition that the path
from customer i to customer j includes at most n arcs.

Algorithm 5.1 provides the pseudo code of the algorithm that we propose to compute SRTrijtω
for a fixed customer i, a fixed time slot t and all customers j ∈ I\{i}. This algorithm is
the extension of Bellman-Ford algorithm where earliest start time constraints and service
times are also considered. The following lemmas and Theorem 5.1 proves the correctness of
Algorithm 5.1.

LEMMA 5.1 In Algorithm 5.1, if dj <∞, it is equal to the amount of time that it takes for
a type r vehicle departing customer i at time slot t, until it reaches customer j and completes
its service. The vehicle may visit and serve some other customers between customers i and
j.

PROOF. Appendix B.1. This lemma is used in the proof of Theorem 5.1. �

Algorithm 5.1. Shortest path algorithm with the earliest start time constraints and service
times
1: Set di = 0 and dj =∞ for j ∈ I\{i}
2: for (n=1 to |I| − 1) do
3: for (each edge (j, k) in the set of arcs) do
4: if (dk > max{dj + trjkω, ek − t}+ srkω) then
5: dk = max{dj + trjkω, ek − t}+ srkω)
6: end if
7: end for
8: end for
9: Set SRTrijtω = dj − srjω for j ∈ I\{i}

LEMMA 5.2 After performing the n-th iteration in the main loop of Algorithm 5.1, dj is
equal to n-SRTrijtω.

PROOF. Appendix B.2. This lemma is used in the proof of Theorem 5.1. �

THEOREM 5.1 Algorithm 5.1 computes correct values of SRTrijtω.

PROOF. Appendix B.3. �

In order to calculate sets Trijω, Tiω and T depri , we also need to define a new time set T ′rijω as
follows :

72

T ′rijω : This time set is defined the same as Trijω. The only difference is that Trijω is a
refined version of T ′rijω and we have Trijω ⊆ T ′rijω. We compute T ′rijω by T ′rijω =
{t|t ≥ max{ei, SRTr0i0ω} & max{ej, t+ sriω + trijω}+ srjω + SRTrj0t∗ω ≤ |T |} where
t∗ = max{ej, t+ sriω + trijω}+ srjω.

Based on T ′rijω and SRTrijtω we compute sets Trijω, Tiω and T depri as follows.

Tiω = ∩
r∈Ri

[
∪

j∈(Ir∪{0}\i
T ′rijω

]
(5.18)

Trijω = Tiω ∩ T ′rijω (5.19)

T depri = {t ∈ T |t+max
ω∈Ω
{tr0iω + sriω + SRTri0(t+tr0itω+sriω)ω} ≤ |T |} (5.20)

5.4 Valid inequalities

In this section, we develop some valid inequalities for the first- and the second-stage models.
We add the first two valid inequalities to the first-stage model, while the third class of valid
inequalities are for the second-stage model.

5.4.1 Subtour-elimination constraints

As illustrated by Figure 5.1, constraint (5) does not eliminate subtours formed by arcs traver-
sed by vehicles of different types. While lower bounding functional introduced in Section 6 and
also infeasibility cuts generated from the subproblem of the L-shaped algorithm remove these
subtours, we prefer to avoid them more efficiently through adding valid inequalities (5.21)-
(5.24) to the first-stage model.

New variables:
zij : 1 if any vehicle serves customer j immediately after customer i ; 0 otherwise.

zij ≥ xrij r ∈ R, i, j ∈ (Ir ∪ {0}) : (i, j) ∈ Ar (5.21)

zij ≤
∑

r∈R:(i,j)∈Ar

xrij i, j ∈ (Ir ∪ {0}) : (i, j) ∈ ∩
r∈Ri

Ar (5.22)

∑
i,j∈S:(i,j)∈ ∩

r∈Ri

Ar

zij ≤ |S| − 1 S ⊆ I : |S| ≥ 2 (5.23)

0 ≤ zij ≤ 1 i, j ∈ (Ir ∪ {0}) : (i, j) ∈ ∩
r∈Ri

Ar (5.24)

Constraints (5.21)-(5.22) indicate that for a fixed arc (i, j), zij takes 1 if at least one of the

73

variables xrij is equal to 1 and it takes 0 if all variables xrij are equal to 0. Constraint (5.23)
is the subtour-elimination constraint defined on zij variables. As xrij variables are binary, we
do not need to consider integrality constraints for zij variables.

5.4.2 Capacity constraints for service times

As discussed for the first-stage model, if vehicles consume a limited resource while serving
customers, constraint (5.5) is essential to ensure that the capacity constraints are satisfied. In
healthcare applications explained in Section 5.2, there is not any physical resource required
while serving customers. However, in routing and scheduling problems, we can consider “time”
as a resource and impose constraint (5.5) to guarantee that the total service time in each
tour does not exceed the maximum available time in the scheduling horizon. Therefore, we
can add the following valid inequality to the first-stage model.

∑
i,j∈S:(i,j)∈Ar

xrij ≤ |S| −
⌈∑
i∈S

sriω/|T |
⌉

r ∈ R, ω ∈ Ω,S ⊆ I : |S| ≥ 2(5.25)

The above cut is known as the rounded capacity inequality in the literature (Lysgaard et al.
2004). We also add some other valid inequalities by considering “time” as a consumable
resource while serving customers. These constraints are Framed capacity, Strengthened comb,
Homogeneous multistar and Hypotour inequalities. We refer readers for more information
about these valid inequalities to Lysgaard et al. (2004).

5.4.3 Improved no-overlap constraints

The following theorem shows how we can improve constraint (5.12).

THEOREM 5.2 Constraints (5.26)-(5.27) are valid inequalities for the second-stage model.

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω≤t

urijt′ω ≥
∑

k∈(Ir∪{0}):
(j,k)∈Ar

∑
t′∈Trjkω :
t′≤t

urjkt′ω r ∈ R, j ∈ Ir, t ∈ Tjω (5.26)

∑
i∈(Ir∪{0}):(i,j)∈Ar

& (t−sriω−trijω)∈Trijω

urij(t−sriω−trijω)ω = ∑
k∈(Ir∪{0}):

(j,k)∈Ar & t∈Trjkω

urjktω r ∈ R, j ∈ Ir : |Rj| = 1 (5.27)
t ∈ Tjω : t > ej

PROOF. The validity of constraint (5.26) originates from the definition of variables urijtω.
We have obtained constraints (5.26) by lifting the right-hand side of constraint (5.12).

74

Constraint (5.26) indicates that if service to customer j starts at time t or earlier, then
the vehicle must have arrived to this customer at time t or earlier. Constraint (5.27) im-
plies that for any customer j requiring a single vehicle (condition Rj = {r} in (5.27)), the
service starts as soon as the vehicle arrives to the customer if the arrival time is after the
earliest start time of the corresponding time window (condition t ∈ Tjω : t > ej in (5.27)).
Constraint (5.27) is valid because, as stated later by Lemma 5.3, there is no advantage to
postpone the service to a customer when all required vehicles are available at the customer’s
location. �

THEOREM 5.3 Clique inequalities (5.28)-(5.29) are equivalent to constraints (5.26)-(5.27).

∑
k∈(Ir∪{0}):

(j,k)∈Ar & t′∈Trjkω

∑
t′∈Trjkω :
t′≤t

urjktω + ∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω>t

urijt′ω ≤ 1 r ∈ R, j ∈ Ir, t ∈ Tjω (5.28)

∑
k∈(Ir∪{0}):

(j,k)∈Ar & t∈Trjkω

urjktω + ∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω 6=t

urijt′ω = 1 r ∈ R, j ∈ Ir : (5.29)
|Rj| = 1, t ∈ Tjω : t > ej

PROOF. Appendix B.4. �

Although constraints (5.28)-(5.29) and constraints (5.26)-(5.27) are equivalent, there is a
significant benefit in considering the former constraints. Mixed integer programming (MIP)
solvers usually create a clique graph where each node represents a binary variable and an
edge between two nodes shows that the two corresponding variables do not take the value of
one simultaneously in any feasible solution. While solving a model, MIP solvers dynamically
updates this graph and detects more clique inequalities by reasoning on this graph. In the
branch-and-bound tree, whenever the solver finds a fractional solution violating any clique
inequality, it adds the violated cut to the model. As discussed later in Section 6, as the lower
bounding functional, we add a copy of second-stage constraints for the average scenario to
the master problems of the proposed L-shaped algorithm. For the lower bounding functional,
by introducing constraints (5.28)-(5.29) rather than constraints (5.26)-(5.27), we enrich the
clique graph and let the MIP solver detect more clique cuts and add them to the model when
they are violated.

5.5 L-shaped algorithm

The L-shaped algorithm is applicable to stochastic programming models with continuous re-
course decision variables. However, the second-stage variables of the model that we developed

75

in Section 5.3 are integer. The following theorem addresses this issue.

THEOREM 5.4 Integrality constraints (5.16)-(5.17) on second-stage variables are trivial as-
suming that subtours are prevented using constraints (5.21)-(5.24) or the lower bounding
functional later presented in Section 5.6.

PROOF. Appendix B.5. �

As a result of Theorem 5.4, we can relax the integrality constraints of all second-stage va-
riables and apply the L-shaped algorithm rather than the integer L-shaped algorithm. The
master problem (MP) of the L-shaped algorithm reads as follows.

(MP) min
x,y,m,θ

∑
r∈R

cvrmr +
∑
r∈R

∑
i,j∈Ir∪{0}:

(i,j)∈Ar

ctrijxrij −
∑
r∈R

∑
i,j∈(Ir∪{0}):

(i,j)∈Ar

cwr

∑
ω∈Ω

pωgrijtω

xrij +

−
∑
r∈R

∑
i∈Ir

∑
t∈T dep

ri

cwr tyrit + θ

 (5.30)

Subject to :
(5.2)− (5.9) (5.31)

θ ≥ ∑
ω∈Ω

pωθω (5.32)

θω ≥
∑
r∈R

∑
i,j∈Ir∪{0}:

(i,j)∈Ar

π
(1)
crijωxrij −

∑
r∈R

∑
i∈Ir:(i,0)∈Ar

∑
t∈T dep

ri

π
(2)
critωyrit ω ∈ Ω, c ∈ Coω (5.33)

∑
r∈R

∑
i,j∈Ir∪{0}:

(i,j)∈Ar

σ
(1)
crijωxrij −

∑
r∈R

∑
i∈Ir:(i,0)∈Ar

∑
t∈T dep

ri

σ
(2)
critωyrit ≤ 0 ω ∈ Ω, c ∈ Cfω (5.34)

We also formulate subproblem (SPω) for scenarios ω ∈ Ω in the L-shaped algorithm as follows.

(SPω) Q′(x,y, ξ(ω)) = min
u,v

∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω

coritωuri0tω +
∑
i∈I

∑
t∈Tiω

cditvitω +

∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω

cwr fritωuri0tω

 (5.35)

Subject to :

(5.11), (5.13), (5.15), (5.26) (5.36)

0 ≤ urijtω ≤ 1 r ∈ R, i, j ∈ (Ir ∪ {0}) : (i, j) ∈ Ar, t ∈ Trijω (5.37)

76

0 ≤ vitω ≤ 1 i ∈ I, t ∈ Tiω (5.38)

In objective function (5.30), the third and the fourth terms are the negative parts of the
waiting cost in the second-stage model (S2). We have assumed that in the second-stage
model (S2), wrω in objective function (5.10) is substituted using constraint (5.14) and then the
negative parts of wrω are transferred to the objective function of first-stage model (S1). In the
third term of (5.30), pω represents the probability of scenario ω. Also, θ is the approximation
of the second-stage cost without the negative parts of the waiting cost. In constraint (5.32),
θω stands for the approximation of the second-stage cost in scenario ω without the negative
parts of the waiting cost. Constraints (5.33), and (5.34) are the optimality and feasibility
cuts that are iteratively generated after solving subproblems (SPω). In these constraints,
Coω and Cfω are the index set of generated optimality and feasibility cuts for scenario ω. In
constraint (5.33), π(1)

crijω and π
(2)
critω are the dual variables of constraints (5.11) and (5.15)

when generating the c-th optimality cut, respectively. Likewise, in constraint (5.34), σ(1)
crijω

and σ
(2)
critω are the extreme rays of constraints (5.11) and (5.15) when generating the c-th

feasibility cut. In the objective function (5.35), the third term is obtained after substituting
wrω in objective function (5.10) using constraint (5.14).

In the L-shaped algorithm, after solving the master problem (MP), we fix the first-stage
solution in subproblems and solve them for all scenarios ω ∈ Ω. We then generate optimality
and feasibility cuts for subproblems solved optimally and those ones detected to be infeasible
respectively. The algorithm iterates until it reaches the maximum acceptable optimality gap
or the time limit. In addition to the standard L-shaped algorithm, we also implement the
branch-and-cut version of the L-shaped algorithm, where we solve the master problem once
by a branch-and-cut algorithm. In the branch-and-bound tree, whenever we find a first-
stage feasible solution we solve subproblems and add optimality and feasibility cuts (5.33)
and (5.34) to the branch-and-bound tree.

A question that may arise about the subproblem (SPω) is that why we considered
constraint (5.26) rather than its clique version (5.28). The reason is that, as stated by Theo-
rem 5.3, these two constraints are mathematically equivalent. In addition, as discussed in
Section 5.4.3, constraint (5.28) is more effective than constraint (5.26) only when we add it
as a part of the lower bounding functional to the master problem. In the subproblems of the
L-shaped algorithm, although these constraints are equivalent, we prefer constraint (5.26).
This is because there is a non-zero constant on the right-hand side of constraint (5.28) and
therefore if we include constraint (5.28) in subproblems, we must add an extra dual value
of this constraint to the optimality and feasibility cuts. This additional dual value makes

77

the analysis of the subproblem discussed in Section 5.7 more complicated without provi-
ding any benefit. On the contrary, we do not need to add any dual value corresponding to
constraint (5.26) to optimality and feasibility cuts since constant value of this constraint is
zero.

One may wonder why we ignored constraints (5.27) and (5.29) in subproblems. This is because
we solve the subproblems only for first-stage integer solutions. As constraints (5.27) and (5.29)
are trivial in this case, we simply neglect them in subproblems. However, we note that these
constraints are beneficial when added to the master problem as the lower bounding functional.

5.6 Lower bounding functional

In the following, we aim to develop a lower bounding functional for the proposed L-shaped
algorithm.

LEMMA 5.3 For a fixed first-stage solution, in any scenario ω ∈ Ω, services to customers
start as soon as all required vehicles are available at the customers’ locations.

PROOF. Appendix B.6. This lemma is used in the proof of Lemma 5.5. �

LEMMA 5.4 For a fixed first-stage solution, if customers are served as soon as the required
vehicles are available at customers’ locations, the finish time of service to each customer is
convex in terms of ξ(ω).

PROOF. Appendix B.7. This lemma is used in the proof of Lemma 5.5. �

As discussed in Section 5.3.2, Q(x,y, ξ(ω)) that we formulated by relations (5.10)-(5.17)
computes the second-stage cost for a fixed first-stage solution (x,y) in scenario ω assuming
that service and travel times in this scenario are multiples of the time slot length. Similarly,
Q′(x,y, ξ(ω)), defined by (5.35)-(5.38), calculates the second-stage cost without negative
parts of the waiting cost for scenario ω if all travel and service times are multiples of the time
slot length. Let’s define Qgeneral(x,y, ξ(ω)) as a function that computes the second-stage cost
without negative parts of the waiting cost for a fixed first-stage solution (x,y) in scenario
ω without any condition on service and travel times, i.e., these times are not necessarily
multiples of the time slot length.

LEMMA 5.5 For a fixed first-stage solution (x,y), Qgeneral(x,y, ξ(ω)) is convex in ξ(ω).

78

PROOF. Appendix B.8. This lemma is used in the proof of Theorem 5.5. �

LEMMA 5.6 Q′(x,y, bξ(ω)c) ≤ Qgeneral(x,y, ξ(ω)) holds where bξ(ω)c denotes a vector of
rounded-down travel and service times for scenario ω.

PROOF. Appendix B.9. This lemma is used in the proof of Theorem 5.5. �

THEOREM 5.5 θ ≥ Q′(x,y, bξ(ω̄)c) is a valid inequality for master problem (MP) where
ξ(ω̄) is the vector of travel and service times for the average scenario (i.e., ξ(ω̄) = ∑

ω∈Ω
pωξ(ω)).

PROOF. Appendix B.10. The proof of Theorem 5.5 is based on Lemmas 5.5 and 5.6, and
also Jensen’s Inequality (Jensen 1906). �

Theorem 5.5 shows that we can add θ ≥ Q′(x,y, bξ(ω̄)c) as a lower bounding functional
to the master problem (MP). To consider this lower bounding functional in our model, we
should impose the following constraints to the master problem.

θ ≥
∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω̄

coritω̄uri0tω̄ +
∑
i∈I

∑
t∈Tiω̄

cditvitω̄ +
∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω̄

cwr fritω̄uri0tω̄ (5.39)

(5.11), (5.13), (5.15), (5.26), (5.37)-(5.38) for scenario ω̄ (5.40)

We note that in constraints (5.39)-(5.40), ω̄ denotes the scenario corresponding to the realiza-
tion bξ(ω̄)c. As shown above, we make a copy of the second-stage variables for scenario ω̄ and
add the corresponding second-stage constraints and the objective function by (5.39)-(5.40).
The above lower bounding functional is very effective and is a vital part of the L-shaped
algorithm developed in this paper. This is because it provides a strong lower bound for ap-
proximating the second-stage cost. There are some points that can improve the proposed
lower bounding functional. First, as stated by Theorem 5.4, integrality constraints on the
second-stage variables are trivial and we can relax them. However, we noticed that CPLEX
finds feasible solutions more easily when we declare these variables as integer variables. This is
perhaps because CPLEX applies some heuristics to find feasible solutions that are more effec-
tive in the case of integer variables. Therefore, in the lower bounding functional (5.39)-(5.40),
we replace constraint (5.37)-(5.38) by constraint (5.16)-(5.17) and consider variables vitω̄ and
urijtω̄ as binary variables. Second, as discussed in Section 5.4.3, constraint (5.28) is more ef-
fective than constraint (5.26) when we have integrality constraint on vitω̄ and urijtω̄ variables.

79

Therefore, in the lower bounding functional, we replace constraint (5.26) by constraint (5.28)
in (5.39). Moreover, we improve the lower bounding functional by adding constraint (5.29)
for scenario ω̄.

The proposed lower bounding functional is inspired by Batun et al. (2011) where authors
applied Jensen’s Inequality to devise a lower bounding functional for the second-stage cost of
a stochastic operating room scheduling problem. In this work, authors proved the convexity
of the second-stage cost function based on the fact that their second-stage model is a linear
programming model with linear uncertain parameters. However, we could not follow the
same way as uncertain parameters appear in the definition of time sets in our second-stage
model. Thus, we proved the convexity of the second-stage model by analyzing the structure
of the objective function. Another difference between our lower bounding method with that
of Batun et al. (2011) is that we use the realization bξ(ω̄)c rather than ξ(ω̄) because our
second-stage formulation works in the case that travel and service times are multiples of
time slots length. An advantage of our lower bounding functional to the one presented by
Batun et al. (2011), is that ours does not have any big-M constraints and thus we expect it
to provide a tighter approximation of the second-stage cost.

THEOREM 5.6 The proposed lower bounding functional eliminates subtours.

PROOF. Appendix B.11. �

Although Theorem 5.6 guaranties that the lower bounding functional removes subtours from
the first-stage model, we include the subtour-elimination constraints (5.21)-(5.24) in the first-
stage model, because they are stronger. Grötschel and Padberg (1979) proved that similar
subtour-elimination constraints in the symmetric travelling salesman problem define facets
of the solution space polytope.

5.7 Analysis of subproblems

As discussed in the previous section, to generate the optimality and feasibility cuts, we need to
solve subproblems for all scenarios ω ∈ Ω and extract dual values or infeasibility extreme rays.
This step of the algorithm is computationally demanding especially for our subproblems that
include a large number of variables and constraints. This issue is even worse in the case of the
branch-and-cut implementation of the L-shaped algorithm where we must solve subproblems
whenever we find a first-stage feasible solution in any node of the branch-and-bound tree. In
this section, we develop a solution method for subproblems that is much faster than standard

80

linear programming algorithms. We have designed this solution method specifically for the
subproblems of our problem. In the following, we provide Algorithm 5.2 that, for a fixed first-
stage solution (x̂, ŷ), computes the start times of services to customers in scenario ω. Using
this algorithm, if we find that the completion times of all tours are within the scheduling
horizon |T |, the subproblem is feasible and we use the formula presented in Section 5.7.1 to
compute the dual values π(1)

crijω and π(2)
critω. We then generate an optimality cut (5.33) based on

the calculated dual values. However, if we realize that any vehicle completes its tour after the
end of the scheduling horizon, we generate an infeasibility cut as explained in Section 5.7.2.

In Algorithm 5.2, L2 is the set of customers with a fixed start time for the service and L1

maintains the set of customers that do not have any preceding customer or if they have,
all of them are in L2. In Line 3 of Algorithm 5.2, Pj is the set of all customers that are
served immediately before customer j by the same vehicle(s). In Algorithm 5.2, whenever we
determine the start time of the service for a customer j, we remove that customer from all
sets Pk (see Line 6). In Line 5, we compute the start times of services to customers in L1. In
this line, deprj denotes the time that a type r vehicle departs the depot to visit customer j.
We note that deprj is available as a part of the first-stage solution and we keep this notation
for the remainder of this paper. We update L1 and L2 in lines 7 and 8. Although we can
compute the optimal values of second-stage variables using Algorithm 5.2, it does not help
us generate feasibility and optimality cuts (5.33) and (5.34) directly because we need dual
values or infeasibility extreme rays corresponding to the constraints of subproblems.

Algorithm 5.2. Computation of start times for a fixed first-stage solution in scenario ω
1: Initialize L1 = {j ∈ I|x̂r0j = 1 for r ∈ Rj} and L2 = ∅
2: for r ∈ Rj, i, j ∈ I define prj = i if x̂rij = 1
3: for j ∈ I initialize Pj = {i ∈ I|∃r ∈ Rj : x̂rij = 1}
4: while (L1 6= ∅) do
5: for j ∈ L1 set startj = max

r∈Rj

{g(r, j)+sr(prj)ω + tr(prj)jω} where g(r, j) = deprj if prj = 0
and g(r, j) = startprj

otherwise.
6: for j ∈ L1, k ∈ I : j ∈ Pk set Pk := Pk\{j}
7: Set L2 := L2 ∪ L1 and L1 := ∅
8: for k ∈ I if (Pk = ∅ and k /∈ L2) set L1 := L1 ∪ {k}
9: end while

5.7.1 Optimality cuts

In this section, knowing that the subproblem is feasible, we aim to analyze its dual formulation
in order to compute the optimal values of dual variables. As stated in Lemma 5.3, subproblem

81

(SPω) has a special structure and for a fixed first-stage solution, we can find the optimal
second-stage solution by serving customers as soon as all required vehicles are available. The
special structure of subproblem (SPω) motivated us to analyze the dual formulation of the
subproblem in order to see if there is any shortcut to find the optimal dual solution.

Before writing the dual formulation of subproblem (SPω) given by (5.35)-(5.38), we note
that upper bounds constraints in (5.37)-(5.38) are trivial and we can remove them. The
redundancy of urijtω ≤ 1 in constraint (5.37) is clear with respect to constraint (5.3) in the
master problem, constraint (5.11) in the subproblem and urijtω ≥ 0. The redundancy of
vitω ≤ 1 is also obvious with respect to constraints (5.3), (5.11), and (5.13) in the master
problem and the subproblem respectively. Another point in the subproblem is that, with
respect to constraint (5.11), constraint (5.15) is redundant in the case that x̂r0i = 0 holds.
Considering the above points, by ignoring the upper bounds constraints in (5.37)-(5.38) and
constraint (5.15) for cases that x̂r0i = 0 holds, we write the dual formulation of the subproblem
(SPω) as follows.

(Dω) max
π

∑
r∈R

∑
i,j∈Ir∪{0}:

(i,j)∈Ar

x̂rijπ
(1)
rijω +

∑
r∈R

∑
i∈Ir:
x̂r0i=1

∑
t∈T dep

ri

ŷritπ
(2)
ritω (5.41)

Subject to :

π
(1)
r0jω +

∑
t′∈Tjω :

t+tr0jω≤t′

π
(3)
rjt′ω + F(x̂r0j=1)π

(2)
rjtω ≤ 0 r ∈ R, j ∈ Ir : (0, j) ∈ Ar, t ∈ Tr0jω (5.42)

π
(1)
rijω +

∑
t′∈Tjω :

t+sriω+trijω≤t′

π
(3)
rjt′ω −

∑
t′∈Tiω :
t≤t′

π
(3)
rit′ω+

π
(4)
ritω ≤ 0 r ∈ R, i, j ∈ Ir : (i, j) ∈ Ar, t ∈ Trijω (5.43)

π
(1)
ri0ω −

∑
t′∈Tiω :
t≤t′

π
(3)
rit′ω + π

(4)
ritω ≤ λritω r ∈ R, i ∈ Ir : (i, 0) ∈ Ar, t ∈ Tri0ω (5.44)

−
∑
r∈R

π
(4)
ritω ≤ cdit i ∈ I, t ∈ Tiω (5.45)

π
(3)
rjtω ≥ 0 r ∈ R, j ∈ Ir, t ∈ Tjω (5.46)

In Model (Dω), π(1)
rijω, π

(2)
rjtω, π

(3)
rjtω, and π

(4)
ritω denote the dual variables corresponding to

constraints (5.11), (5.15), (5.26) and (5.13) respectively. To simplify the model and also
the analysis that follows, we have defined a new parameter λritω by λritω = coritω + cwr fritω.
In constraint (5.42) and also in the remainder of the paper, we note that F(.) is a constant

82

value that is equal to 1 if condition (.) is satisfied, and 0 otherwise.

In the following, we define some sets based on which we propose some formulas to compute
the optimal values of dual variables π(1)

rijω, π
(2)
rjtω, π

(3)
rjtω, and π

(4)
ritω. Before that, we need to define

the concepts of “critical and non-critical vehicles”. For a given first-stage solution, based on
the start times that we obtain by Algorithm 5.2, we refer to a vehicle as a “critical vehicle” of
customer j in scenario ω if the service starts as soon as the vehicle arrives to the customer’s
location. In other words, if the vehicle arrives one time unit later than the current arrival
time, the service to the customer postpones for the same amount of time. Conversely, we
refer to a vehicle as a “non-critical vehicle” of customer j in scenario ω if the start time of
the service to the customer in this scenario is later than the vehicle arrival time.
Sets:
NRjω : The set of non-critical vehicles in scenario ω for customer j.
CRjω : The set of critical vehicles in scenario ω for customer j.
NT ω : The set of customers without any critical vehicle in scenario ω. For these customers,

the services start as soon as their time windows open.
CT ω : The set of customers with at least one critical vehicle in scenario ω.

In addition to sets defined above, we define some notation as follows. krj and irj respectively
denote the customers that are visited by a type r vehicle immediately after and before
customer j (i.e., x̂rjkrj

= 1 and x̂rirjj = 1). Also, t∗jω denotes the start time of the service to
customer j in scenario ω that we computed by Algorithm 5.2. Moreover, we suppose that
αrjω j ∈ CT ω, r ∈ CRjω are arbitrary parameters satisfying relations (5.47)-(5.48). We can
consider αrjω as the degree of criticality for vehicle r in serving customer j in scenario ω. In
the case that vehicle r is the only critical vehicle for customer j, αrjω is equal to 1 ; otherwise
it could be less than 1.

∑
r∈CRjω

αrjω = 1 j ∈ CT ω (5.47)

αrjω ≥ 0 j ∈ CT ω, r ∈ CRjω (5.48)

Based on the sets and notation defined above, we propose the following formulas to compute
the optimal values of dual variables in Model (Dω).

π
(4)
rjtω=−αrjω

cd

j(min(t,t∗
jω))+

∑
r′∈NRjω :kr′j=0

λ
r′j(min(t,t∗

jω))ω

+

αrjω

∑
r′∈NRjω :
kr′j 6=0

∑
t′∈Tkr′j ω :

t+sr′jω+tr′jkr′j ω≤t′

π
(3)
r′kr′j t′ω j∈CT ω ,r∈CRjω :t∈Trirj jω (5.49)

83

π
(4)
rjtω=−

∑
t′∈Tkrj ω :

t+srjω+trjkrj ω≤t′

π
(3)
rjkrj t′ωF(x̂rj0=0)

+λ
rj(min(t,t∗

jω))ω
F(x̂rj0=1) j∈CT ω ,r∈NRjω ,t∈Tjω (5.50)

π
(2)
rjtω=−

∑
t′∈Tjω :t+tr0jω≤t′
t′≤deprj+tr0jω

π
(3)
rjt′ω j∈CT ω ,r∈CRjω :xr0j=1,t∈Tr0jω :t<deprj (5.51)

π
(1)
rijω=αrjω c

i(t∗
iω)+

∑
r′∈NRiω :kr′i=0

λ
r′i(t∗

iω)ω

)

+λ
ri(t∗

iω)ω
F(x̂ri0=1) i∈CT ω ,r∈CRiω ,j∈Ir∪{0}:x̂rij=1 (5.52)

π
(3)
rjtω=

(
π

(4)
rjtω−π

(4)
rj(t+1)ω

)
+F(x̂rj0=1)(λrj(t+1)ω−λrjtω) +

F[
(x̂rj0 6=0) & (t+srjω+trjkrj ω)∈Tkrj ω

]π(4)
rkrj(t+srjω+trjkrj ω)ω

j∈CT ω ,r∈CRjω ,t∈Tjω :t<t∗jω (5.53)

π
(1)
ri0ω=λri(t∗

iω
)ω i∈NT ω ,r∈R:x̂ri0=1 (5.54)

π
(1)
r0jω= min

t∈Tr0jω

− ∑
t′∈Tjω :

t+tr0jω≤t′

π
(3)
rjt′ω−F(x̂r0j=1)π

(2)
rjtω

 r∈R,j∈Ir:(0,j)∈Ar & x̂r0j=0 (5.55)

π
(1)
rijω= min

t∈Trijω

− ∑
t′∈Tjω :

t+sriω+trijω≤t′

π
(3)
rjt′ω+

∑
t′∈Tiω :
t≤t′

π
(3)
rit′ω−π

(4)
ritω

 r∈R,i,j∈Ir:(i,j)∈Ar & x̂rij=0 (5.56)

π
(1)
ri0ω= min

t∈Tri0ω

λritω+
∑

t′∈Tiω :
t≤t′

π
(3)
rit′ω−π

(4)
ritω

 r∈R,i∈Ir:(i,0)∈Ar & x̂ri0=0 (5.57)

All other variables = 0 (5.58)

LEMMA 5.7 For any realization of parameters αrjω j ∈ CT ω, r ∈ CRjω satisfying rela-
tions (5.47)-(5.48), the solution obtained by formulas (5.49)-(5.58) is a feasible dual solution
for Model (Dω).

LEMMA 5.8 For any realization of parameters αrjω j ∈ CT ω, r ∈ CRjω satisfying rela-
tions (5.47)-(5.48), the objective value of the dual solution obtained by formulas (5.49)-(5.58)
is equal to the optimal objective value of subproblem (SPω).

THEOREM 5.7 For any realization of parameters αrjω j ∈ CT ω, r ∈ CRjω satisfying rela-
tions (5.47)-(5.48), the solution obtained by formulas (5.49)-(5.58) is an optimal solution of
Model (Dω).

84

The validity of Theorem 5.7 is based on the strong duality theorem in linear programming.
Lemmas 5.7 and 5.8 demonstrate that the dual solution obtained by (5.49)-(5.58) is feasible
and has an objective value that is equal to the optimal objective value of the primal subpro-
blem. Theorem 5.7 indicates that, instead of using simplex or interior point algorithms, we
can simply use relations (5.49)-(5.58) in order to find the values of dual variables π(1)

crijω and
π

(2)
critω in optimality cut (5.33).

5.7.2 Feasibility cuts

The only way that, for a first-stage solution, subproblem (SPω) may turn out infeasible is
that for at least one vehicle, the tour does not complete within the scheduling horizon. The
first idea to prevent from revisiting first-stage solutions with infeasible subproblems is to use
the following simple no-good cut.

∑
r∈R

∑
i∈Ir:

∃t∈T dep
ri :ŷrit=1

yri(depri) +
∑
r∈R

∑
i,j∈(Ir∪{0}):

(i,j)∈Ar & x̂rij=1

xrij ≤ n− 1 (5.59)

In (5.59), n is the sum of the number of x̂rij and ŷrit variables that are to equal to 1. It is
clear that if the subproblem is infeasible for a given first-stage solution, modified solutions
obtained by postponing the departure times are also infeasible. Therefore, we can enhance
(5.59) as follows.

∑
r∈R

∑
i∈Ir:

∃t∈T dep
ri :ŷrit=1

∑
t′∈T dep

ri :
t′≥depri

yrit′ +
∑
r∈R

∑
i,j∈(Ir∪{0}):

(i,j)∈Ar & x̂rij=1

xrij ≤ n− 1 (5.60)

No-good cuts are generally known as weak cuts. Therefore, in the following, we explain how to
develop stronger feasibility cuts. In order to propose the new feasibility cuts, we first need to
define the notions of “path” and “critical path”. We define a path P by P = (Pnodes, Presources)
where Pnodes = 〈av〉v=1 to |Pnodes| is a sequence of |Pnodes| nodes in I ∪ {0} visited on the path
and Presources = 〈rv〉v=1 to |Pnodes|−1 is series of vehicles types corresponding to arcs (av, av+1)
for v = 1 to |Pnodes| − 1. The vehicles types are not necessarily the same for different arcs.
We also suppose that the destination of the last arc is the depot (i.e. a|Pnodes| = 0), while the
origin may or may not be the depot. For a given first-stage solution, we refer to a path as a
“critical path” in scenario ω if the two following conditions are satisfied :

1. The vehicle corresponding to each arc on the path is a critical vehicle for the customer
at the arc tail (we defined the notion of “critical vehicle” in Section 5.7.1)

85

2. The sum of travel and service times on the path plus the start time of the service to
the first customer on the path violates the scheduling horizon’s time limit.

The reason for infeasibility of subproblem (SPω) for a given first-stage solution, is the exis-
tence of at least one critical path. In the following, we present two types of no-good cuts
in order to prevent the part of the first-stage solution resulting in critical paths. We devise
the first cut for critical paths originating from the depot. For this type of critical paths, we
propose the following cut using the notation P = (Pnodes, Presources) explained above.

∑
t∈T dep

r1a2 :t≥depr1a2

yr1a2t +
|Pnodes|−1∑

v=1
xrvavav+1 ≤ |Pnodes| − 1 (5.61)

We propose the second type of cuts for critical paths not originating from the depot. In this
case, all vehicles visiting the first customer are non-critical and the service to the customer
starts when his time window opens. We can write the no-good cut as follows without any
knowledge about customers visited before the first customer on the path and any departure
time.

|Pnodes|−1∑
v=1

xrvavav+1 ≤ |Pnodes| − 2 (5.62)

We apply Algorithm 5.3 to extract critical paths for a given first-stage solution in scenario
ω. To explain Algorithm 5.3, we first need to describe the two following networks. Network
N is induced by non-zero variables x̂rij. In this network, Nnodes = I ∪{0} is the set of nodes
and the set of arcs includes arc (i, j) if there is at least one vehicle r ∈ R for which we have
x̂rij = 1. We modify Network N to obtain Network N ′. We make a copy of the depot (node
0) and denote it by 0′. Then, we replace all active arcs (i, 0) with arcs (i, 0′). We also denote
the set of arcs in Network N ′ by N ′arcs.

In Line 1 of Algorithm 5.3, Critical_Paths is a set including critical paths that the algorithm
generates. The algorithm updates this set within Procedure 5.1. Moreover, Start0′ , that is set
to |T |+1, is the smallest tour makespan violating the available time in the scheduling horizon.
Starti stands for the start time of the service to customer i that we compute by Algorithm 5.2.
In Line 2 of Algorithm 5.3, P denotes the partial critical path that the algorithm extends by
moving backward from node 0′ in Network N ′. Using Procedure 5.1, we extend the incomplete
critical path P . In this procedure, a1 denotes the first node at the beginning of partial path
P . In lines 1 to 9, for all arcs (i, a1) ∈ N ′arcs and resources r ∈ Ra1 satisfying xria1 = 1, we
check the if statement in Line 3. If the given condition in Line 3 is true, it means that node

86

i is on a critical path followed by partial critical path P , and therefore we can add node i
and resource r to the beginning of Pnodes and Presources respectively. However, since we can
also probably extend the partial critical path P through other nodes and resources, we first
make a copy of path P in Line 4 and then, in Line 5, we add node i and resource r to the
beginning of the node set and the resource set of the new path respectively. In Line 6, we
call Procedure 1 for extending the new path P ′. In Line 10, we check if path P is extended
in the for loop started in Line 1. If it is not extended, it means that the path is a complete
critical path and we add it to Critical_Paths.

Algorithm 5.3. Generation of critical paths for a fixed first-stage solution in scenario ω
1: Set Critical_Paths = ∅, Start0′ = |T |+ 1 and Starti for i ∈ I by Algorithm 5.2.
2: Set P = (Pnodes, Presources) with Pnodes = 〈0′〉 and Presources = ∅.
3: Call Procedure 5.1 to extend path P .

Procedure 5.1. Backward extension of the partial critical path P
1: for (i, a1) ∈ N ′arcs do
2: for r ∈ Ra1 : x̂ria1 = 1 do
3: if Starta1 − tri(a1)ω − sriω ≤ Starti then
4: Make a copy of path P and name it P ′

5: Add node i and resource r to the beginning of P ′nodes and P ′resources respectively.
6: Call Procedure 5.1 to extend path P ′.
7: end if
8: end for
9: end for

10: if path P did not extend in the recent for loop then
11: Add path P to Critical_Paths
12: end if

5.8 Extension to time-dependent problems

As in the second-stage model, we discretized the available time, we can simply consider time
dependency for travel and service times in our problem by replacing parameters trijω and
sriω with time-dependent travel and service times. We introduce sritω as the duration of the
service to customer i provided by a type r vehicle in scenario ω when the service starts at
time t. Also, we define trijtω as the travel time of a type r vehicle from customer i to customer
j in scenario ω assuming that the vehicle leaves customer i at time t. We suppose that the
First-in-First-Out (FIFO) rule holds, i.e., if a vehicle starts its travel between two customers

87

later, it does not arrive to the destination earlier. Mathematically, FIFO rule means that
t1 + trijt1ω ≤ t2 + trijt2ω holds for t2 ≥ t1. Ichoua et al. (2003) discussed FIFO vastly and
proposed an algorithm to modify travel times in order to satisfy it. We also suppose that time-
dependent service times are non-decreasing over time, i.e., srit1ω ≤ srit2ω holds for t2 ≥ t1. To
capture time dependency in our problem, we need to slightly modify constraint (5.12) and
also time sets T depri and T ′rijω in the second-stage model as follows.

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+srit′ω+trij(t′+srit′ω)ω≤t

urijt′ω ≥
∑

k∈(Ir∪{0}):
(j,k)∈Ar & t∈Trjkω

urjktω r ∈ R, j ∈ Ir, t ∈ Tjω (5.63)

T ′rijω =
{
t|t ≥ max{ei, SRTr0ieiω}&max{ej, t+ sritω + trij(t+sritω)ω}

+srjt∗1ω + SRTrj0t∗2ω ≤ |T |
}

where t∗1 = max{ej, t+ sritω + trij(t+sritω)ω} and t∗2 = t∗1 + srjt∗1ω.

T depri =
{
t ∈ T |t+max

ω∈Ω
{tr0itω + sri(t+tr0itω)ω + SRTri0(t+tr0itω+sri(t+tr0itω)ω)ω} ≤ |T |

}

Moreover, we slightly modify Algorithm 5.1 to consider time-dependent travel and service
times in the computation of SRTrijtω. In lines 4, 5 and 9 of Algorithm 5.1, we replace trjkω,
srkω and srjω by trjk(dj)ω, srkt∗1ω, and srjt∗2ω where t∗1 = t + max{dj + trjk(dj)ω, ek − t} and
t∗2 = t+ dj − srjt∗2ω.

By considering time-dependency in our model, Theorem 5.1 remains valid. In addition, we
can simply modify (5.26)-(5.29) to benefit from Theorems 5.2 and 5.3. Theorem 5.4 does not
hold in the current problem setting. However, it holds if we either ignore the waiting cost in
the objective function of the second-stage model or replace grijtω with grijt = s̄ri + t̄rij where
s̄ri denotes an average value of service time for customer i by a type r vehicle and t̄rij stands
for the travel time from customer i to customer j for the same vehicle type. The statement of
Lemma 5.5 also does not necessarily hold and therefore lower bounding functional proposed
by Theorem 5.5 based on Lemma 5.5 is not valid anymore. It is clear that L-shaped algorithm
and the enhancements that we proposed in Sections 5.5, 5.6 and 5.7 are not applicable when
we have a problem with travel and service times that are simultaneously time-dependent and
stochastic. However, we can use the deterministic version of the proposed model in Section 5.3
to solve problems with time-dependent travel and service times.

88

5.9 Implementation details

In this section, we provide the implementation details of the L-shaped algorithm and of the L-
shaped-based-branch-and-cut algorithm that we simply refer to as branch-and-cut algorithm.
In the branch-and-cut algorithm, we solve subproblems only when we find a first-stage fea-
sible solution, i.e., do not solve them for fractional first-stage solutions in any node in the
branch-and-bound tree. For solving subproblems, we use the fast solution method proposed
in Section 5.7. To generate the optimality cuts using formulas (5.47)-(5.58), we set αr∗jω = 1
and αrjω = 0, r ∈ CRjω\{r∗} where r∗ is randomly selected from CRjω for ω ∈ Ω, j ∈ CT ω. In
all nodes with fractional first-stage solutions, we call a maximum flow algorithm to separate
the subtour-elimination constraints presented in Section 5.4.1. This algorithm is a combi-
nation of the maximum flow algorithm developed by Goldberg and Tarjan (1988) and the
shrinking procedure proposed in Padberg and Rinaldi (1990). This algorithm separates the
most violated subtour-elimination constraint. Jünger et al. (2000) tested several maximum
flow algorithms existing in the literature and concluded that the above algorithm is the most
efficient one. There are some freedoms for the implementation of Padberg-Rinaldi algorithm.
We considered the details provided on pages 175 and 176 in Jünger et al. (2000) to address
these freedoms.

Furthermore, we used the code provided by Lysgaard et al. (2004) for the separation of the
Capacity cuts presented in Section 5.4.2 and other cuts including Framed capacity, Streng-
thened comb, Homogeneous multistar and Hypotour inequalities. We allow at most three
rounds for the separation of these cuts at the root node of the branch-and-cut algorithm
and of the master problem in the L-shaped algorithm. We consider all random scenarios
separately for the generation of these cuts in the root node. In addition to the root node, for
the first 100 nodes, we separate these cuts for only one scenario that is randomly selected in
each node. For each round of the separation of above cuts, we used the strategy suggested in
Section 5.3.1 of Lysgaard et al. (2004).

Additionally, since the master problem of the L-shaped algorithm is computationally deman-
ding, we stop proving the optimality of the branch-and-bound tree for the master problem
when it reaches a local optimality gap 1%. By local optimality gap, we mean the optima-
lity gap of the branch-and-bound tree when solving the master problem not the optimality
gap of the L-shaped algorithm. In order to find the optimal solution, we relax this stopping
condition in the master problem whenever the L-shaped algorithm reaches an optimality gap
2%. Furthermore, in each iteration of the L-shaped algorithm, when solving the master pro-
blem, we save the best 50 obtained solutions and then generate the optimality and feasibility
cuts by solving the subproblems for all these solutions. This is because each iteration of the

89

master problem is computationally unwieldy and it is not efficient to generate feasibility and
optimality cuts only for the best-obtained solution.

5.10 Computational results

We implemented the proposed algorithms in C++ and used IBM ILOG CPLEX Optimization
Studio V12.6 to solve mixed integer programming models. We ran experiments on a computer
with two Intel Xeon X5650 Westmere processors, 2,67 Ghz, and a total of 12 cores. We used
a single core for running each test instance.

5.10.1 Home-health care scheduling instances

In this section, we explain how we generated a set of home-health care scheduling instances
with stochastic travel and service times and another set of instances with time-dependent
travel times. We refer to the first set of instances as stochastic home-health care scheduling
instances and the other set as time-dependent instances.

To generate most of data in these instance sets, we used the data generation approach pro-
posed by Di Mascolo et al. (2014) that is inspired from a real case in France. We slightly
modified the proposed approach in order to consider stochasticity/time-dependency for tra-
vel and service times. In these instances, two groups of nurses including Registered Nurses
(RNs) and Home Health Aides (HHAs) must serve patients that are uniformly dispersed in
a square area with a side length of 40 kilometers. The Home-Healthcare Center (HHC) is
located at the center of this area. For stochastic instances, we set the number of patients to
{10, 15, 20}. Also for the time-dependent problem, we generated instances with {30, 40, 50,
60} patients. Moreover, we define synchronization rate as the percentage of patients requiring
a simultaneous service by an RN and an HHS and set it to {10, 20, 30, 40}. To determine the
type of required nurses for patients without any synchronization, we randomly divided them
to two groups of the same size and supposed that these groups must by served by RNs and
HHAs separately. For each patient, we generated the earliest start time and also the length
of the time window from [0 min, 120 min] and [60 min, 180 min] randomly and then fixed
the latest start time to the sum of time window’s earliest start time and its length.

For stochastic instances, we generated 100 random scenarios for travel and service times. For
each scenario, we randomly generated the service times from [20 min, 180 min]. Also, we
generated the travel time between every pair of customers i and j from a normal distribution
with a mean µij = dij and a standard deviation σij = dij/6 where dij is the Euclidean
distance between customers i and j. For time-dependent instances, we generated travel times

90

using the approach proposed by Ichoua et al. (2003). We first randomly assigned each arc to
one of the three available traffic zones. For each traffic zone, the travel speed changes over
the scheduling horizon. We used travel speeds provided in Table 5.1 of Ichoua et al. (2003).
In this table, travel speeds for three traffic scenarios are given. In each traffic scenario, for
each traffic zone, there are three time intervals with different travel speeds. In a fixed traffic
scenario, assuming that a vehicle starts travelling from customer i and customer j at time
slot t, we set the travel time to µij/Speedτtηij

where µij = dij is the nominal value of the
travel time on arc (i, j), τt denotes the time interval that time slot t belongs to, and Speedτtηij

denotes the travel speed in zone ηij in time interval τt. To respect the FIFO rule, we modified
travel times using the algorithm provided in Figure 4 of Ichoua et al. (2003). In both instance
sets, we rounded travel times, service times and also the earliest and latest start times in
time windows to the closest multiple of 5 minutes because the length of each time slot in our
model is set to 5 minutes. As an exception, for time-dependent instances, we rounded down
travel times to the nearest multiple of 5 minutes in order to preserve the FIFO rule.

We supposed that the normal session length for nurses is 9 hours after which overtime penal-
ties are incurred. Moreover, we set the maximum available time for completing tours to 11
hours. Based on http://www.payscale.com, we estimated the fixed costs of hiring an RN
and an HHA to be 94.41$ and 216$ per day that are equivalent to 10.49$ and 24$ per hour
respectively. We also supposed that nurses are paid with double rates for working beyond
the normal session length. Besides, we set the per hour delay cost for serving a patient to
15.73$ that is equal to 1.5 times of an HHA’s salary rate. Since we let the model decide
about the number of nurses and we pay fixed costs for hiring RNs and HHA, the model tends
to minimize waiting times to visit patients by a few nurses. Therefore, we did not consider
waiting costs in the home-health care scheduling problem. However, in the case that the
number of nurses is fixed a priori, one can consider waiting costs. We obtained 120 stochastic
home-health care scheduling instances by generating 10 instances for each combination of
the number of patients and the synchronization rate. Also, we obtained 480 time-dependent
home-health care scheduling instances by generating 10 instances for each combination of the
number of patients, the synchronization rate and the three traffic scenarios in Table 5.1 of
Ichoua et al. (2003).

5.10.2 Results for home-health care scheduling instances

We report the results of the home-health care scheduling problem with stochastic travel and
service times in Table 5.1. In this table, each row represents the average over 10 instances.
Under “Data Info.”, “Pat. No.” and “Syn (%)” respectively give the number of patients and
the percentage of customers requiring synchronized visits. Under “L-shaped algorithm” and

http://www.payscale.com

91

“branch-and-cut algorithm”, we report the results of the proposed algorithms. As the branch-
and-cut algorithm outperforms the L-shaped algorithm, we give more details for the branch-
and-cut algorithm. “Time (sec)”, give the computational time of algorithms in seconds. LB.

and UB. indicate the best lower and upper bounds of algorithms, respectively, and Gap. com-
putes the gap between these bounds. The subscripts of LB., UB., and Gap. are either “L” or
“B” which represent the L-shaped and the branch-and-cut algorithms respectively. Also, Un-
der “L-shaped algorithm”, “Ite.” gives the number of times that the L-shaped algorithm has
iterated between the master problem and subproblems. Under “branch-and-cut algorithm”,
we also have the following columns. “Nodes No.” gives the number of nodes that are exa-
mined in the branch-and-cut algorithm. “Feas. Cut No.” and “Opt. Cut No.” respectively
indicate the number of generated feasibility and optimality cuts. We set a time limit of 24
hours for running instances. However, in order to show that the proposed branch-and-cut
algorithm finds high quality upper bounds in less computational time, we report Column
“∆UB

4h,24h(%)”, which computes the gap between the upper bounds obtained after 4 and 24
hours. “V SS” indicates the value of the stochastic solution in percentage. We obtain this
value by V SS = 100(UBdet − UBB)/UBdet where UBdet indicates the objective value of
the stochastic problem for the solution obtained by solving the “mean-value” problem. By
“mean-value” problem, we refer to the problem with a single scenario that is the average of all
scenarios. For the fixed “mean-value” solution, if the stochastic problem turns out infeasible
in at least one scenario, then we have UBdet =∞ and V SS = 100%.

In Table 5.1, the average values of GapB are 0.00%, 0.60% and 3.57% for instances with 10,
15 and 20 patients respectively, while the average of GapL for the same size instances are
1.27%, 1.88% and 6.70%. These values demonstrate that the branch-and-cut algorithm signi-
ficantly outperforms the L-shaped algorithm, especially in larger-sized instances. We can see
that as the size of instances increases, the problem gets more difficult and average values of
GapB increase. Small values of ∆UB

4h,24h demonstrate that the branch-and-cut algorithm finds
high quality upper bounds in the first 4 hours of computational time. Figure 5.2 depicts the
convergence of the lower and upper bounds averaged over all instances within the compu-
tational time. We can observe that significant portion of improvement in lower and upper
bounds occurs during the first 4 hours. Moreover, in Table 5.1, we observe that all average
values of V SS are 100% that demonstrates that considering stochasticity in modeling the
home-health care scheduling problem is very important and solutions obtained by solving the
“mean-value” problem are infeasible in the stochastic problem.

92

Figure 5.2 Convergence of lower and upper bounds in branch-and-bound algorithm for home-
health care scheduling instances.

Table 5.2 presents the computational results of the branch-and-bound algorithm with different
solution methods for subproblems. In this table, each row gives the average of results for 40
instances with different synchronization rates. Under “Proposed Method”, we provide results
for the case that subproblems are solved using the method proposed in Section 7. “Primal
Simplex”, “Dual Simplex”, and “Interior Point” present computational results for cases that
we used standard linear programming algorithms to solve subproblems. Furthermore, “Ave.
Time (sec)” shows the average solution time for solving a single subproblem and “Nodes No.”
indicate the number of nodes explored within a computational time of 30 minutes. Also, under
columns Primal Simplex, Dual Simplex, and Interior Point, “Time ratio” gives the ratio of
the corresponding Ave. Time (sec) to the Ave. Time (sec) of our proposed method. Average
values of Time ratio demonstrate that our subproblem analysis method is 169, 483, and
196 times faster than primal simplex, dual simplex, and interior point methods respectively.
Moreover, our proposed method explores a significantly higher number of nodes and provides
lower optimality gaps within the time limit.

In Table 5.3, we provide computational results for the time-dependent home-health care
scheduling problem. Each row presents the average of results for 30 instances with three
speed scenarios given by Ichoua et al. (2003). In this table, under “Optimal Instances
No. (out of 30)”, we give the number of instances solved to optimality. Moreover, “V TS”

93

Table 5.1 – Computational results of the branch-and-cut and L-shaped algorithms for the home-healthcare scheduling
problem with stochastic travel and service times.

Data Info. L-shaped algorithm branch-and-cut algorithm

Pat.
No.

Syn.
(%)

Ite.
Time
(sec)

LBL UBL GapL(%)
Node
No.

Feas.
Cut No.

Opt.
Cut No.

Time
(sec)

LBB UBB GapB(%) ∆UB
4h,24h(%) V SS(%)

10 10 25 3083 928 928 0.00 157 23 1984 109 928 928 0.00 0.00 100
20 37 54356 955 958 0.29 918 46 3872 248 958 958 0.00 0.00 100
30 30 86400 938 957 1.95 8680 652 9001 4193 957 957 0.00 0.00 100
40 32 86400 988 1018 2.84 15837 2379 11801 10016 1016 1016 0.00 0.00 100

Average 31 57559 952 965 1.27 6398 775 6664 3641 965 965 0.00 0.00 100

15 10 42 86400 1276 1291 1.15 23347 285 9299 6343 1291 1291 0.00 0.00 100
20 39 86400 1299 1314 1.11 7242 103 9291 3377 1314 1314 0.00 0.00 100
30 22 86400 1412 1445 2.30 46217 2013 21401 62179 1435 1444 0.63 0.00 100
40 22 86400 1448 1492 2.95 49339 4341 22244 79729 1465 1491 1.77 0.97 100

Average 31 86400 1359 1385 1.88 31536 1685 15558 37907 1376 1385 0.60 0.24 100

20 10 32 86400 1580 1628 3.05 43560 3127 34686 86406 1585 1628 2.74 0.83 100
20 18 86400 1650 1732 4.96 53276 20942 20202 86406 1651 1719 4.12 0.81 100
30 20 86400 1833 1956 5.87 37652 4750 31542 86409 1842 1901 3.24 0.01 100
40 9 86400 1870 2307 12.92 40040 8875 22970 86407 1880 1958 4.19 1.36 100

Average 19 86400 1734 1906 6.70 43632 9424 27350 86407 1739 1802 3.57 0.75 100

Table 5.2 – Comparison of different solution methods for subproblems in stochastic home-health care scheduling
instances within a time limit of 30 minutes.

Data Info. Proposed Method Primal Simplex Dual Simplex Interior Point

Pat.
No.

Ave.
Time
(sec)

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

10 0.007 1835 1.23 0.596 86 403 3.64 1.563 220 60 8.28 0.653 94 194 6.24
15 0.012 2227 2.55 1.884 161 32 INF 4.581 378 0 INF 1.912 164 9 INF
20 0.016 802 24.56 4.291 259 1 INF 14.832 850 0 INF 5.516 330 0 INF

Average 0.012 1621 9.45 2.257 169 145 INF 6.992 483 20 INF 2.694 196 68 INF

94

shows the value of time-dependent solutions in percentage. We compute this value by
V TS = 100(UB − OptC)/OptC where UB stands for the best objective value obtained
by solving the time-dependent problem. Also OptC indicates the optimal objective value of
time-dependent problem for the solution obtained by solving the “constant-speed problem”.
By “constant-speed problem” we refer to the problem in which all time-dependent parame-
ters are replaced by average values. As we can see, the proposed mixed integer programming
model can solve almost all instances with 40 patients optimally. Also it finds the optimal
solutions for instances with 50 and 60 patients where the synchronization rate is 20% and
10% respectively. For instances with 40, 50, and 60 patients the average optimality gap is
0.04%, 0.30%, and 0.79% respectively. We can see that the average value of V TS is 13.85%.
It shows that solutions obtained by our method considerably outperform those solutions ob-
tained by solving the constant-speed problem. In Table 5.3, we can also see that the number
of generated nodes and the computational time are increasing in terms of the number of
patients and the synchronization rate.

Table 5.3 – Computational results for the home-healthcare scheduling problem with
time-dependent travel and service times.

Data Info. Deterministic time-dependent model

Pat.
No.

Syn.
(%)

Optimal
Instances No.
(out of 30)

Nodes No. Time (sec) LB UB Gap(%) V TS(%)

30 10 30 85 814 2168 2168 0.00 13.17
20 30 140 1209 2313 2313 0.00 14.62
30 30 322 3351 2377 2377 0.00 13.67
40 30 532 5907 2496 2496 0.00 14.51

Average 30 270 2820 2338 2338 0.00 13.99

40 10 30 243 2743 2691 2691 0.00 13.59
20 30 614 6509 2860 2860 0.00 14.81
30 29 1075 14375 3097 3098 0.03 13.47
40 27 2075 37550 3290 3294 0.12 13.55

Average 29 1002 15294 2985 2986 0.04 13.86

50 10 30 436 5448 3341 3341 0.00 13.35
20 30 1246 18278 3632 3633 0.00 13.61
30 21 2304 53309 3779 3791 0.31 14.07
40 14 1546 69118 4062 4095 0.91 12.66

Average 24 1383 36538 3704 3715 0.30 13.43

60 10 30 905 12079 3972 3972 0.00 14.44
20 23 1820 44947 4199 4205 0.14 14.30
30 9 1312 76139 4447 4482 0.80 14.34
40 4 703 84603 4811 4918 2.22 13.44

Average 17 1185 54442 4357 4394 0.79 14.13

95

5.10.3 Operating room scheduling instances

For the operating room scheduling problem, we generated a set of instances with stochastic
surgery, anesthesia and cleaning times and did not generate time-dependent instances as time
dependency does make sense in this application. We set the number of surgeries to {11, 15, 20,
25}. For each instance, we generated 500 random scenarios that is the same as the number of
scenarios used by Batun et al. (2011). We would have preferred to use the same instances for
which Batun et al. (2011) reported their computational results. However, because of the data
disclosure policy in Mayo Clinic, authors could not provide the same data and encouraged us
to generate surgery and anesthesia durations using distributions provided in Table 1 of Gul
et al. (2011). Gul et al. (2011) extracted these distributions from the data of 4034 patients
at Mayo Clinic in the first 21 weeks of 2006. As no data is available in Gul et al. (2011)
for cleaning times, we generated them from [0 min, 15 min] uniformly. After transforming
the generated durations to travel and service times in the equivalent VRPS as explained in
Section 2, we rounded travel and service times to the closest multiple of 5 minutes, that is
the length of time slots in our model.

To generate operating room scheduling instances, we introduce a parameter ρ that denotes
the average working time of a surgeon. We set ρ to {5, 7, 9} hours. We set the number of
surgeons to dγ/ρe where γ denotes the sum of surgeries durations averaged over all scenarios.
We assigned surgeries to surgeons as follows. The idea of the following procedure is to make
balanced workloads for surgeons. We first sorted surgeries in a decreasing order of the average
surgery duration. Then we assigned surgeries one by one from the sorted list to surgeons. To
assign each surgery, among all surgeons, we chose the one with the lowest sum of assigned
surgeries durations. After assigning all surgeries, we sequenced surgeries randomly for each
surgeon. We supposed that the normal session length, during which no overtime penalty is
paid, is 9 hours. We also considered the possibility of having overtime for at most 2 hours. As
it does not make sense to consider time windows for the start time surgeries, we set earliest
and latest start times to the beginning and the end of the day respectively. We also supposed
that surgeons are available at the beginning of the scheduling horizon.

We used all cost coefficients provided by Batun et al. (2011). The fixed cost of opening an
operating room is 4437$. There is no waiting cost for operating rooms as we consider fixed
cost for them. However, as there is no fixed cost for surgeons, we considered the waiting cost
to be 88.74$ per minute for them. We also set the overtime cost for surgeons and operating
rooms to 133.11$ and 12.37$ per minute respectively. We generated 10 instances for each
combination of ρ and the number of surgeries for a total of 120 instances.

96

5.10.4 Results for operating room scheduling instances

We report the results of the operating room scheduling problem with stochastic durations
in Table 5.4. In this table, each row represents the average over 10 instances. Under “Data
Info.”, “Pat. No.” and “Sur. Time Limit” respectively give the number of patients and the
value of parameter ρ used for the generation of instances. Other columns of this table are
the same as similar columns in Table 5.1.

In Table 5.4, we observe that the values of GapB are considerably less than those of GapL.
This observation demonstrates that the branch-and-cut algorithm strongly dominates the
L-shaped algorithm in the operating room scheduling context too. In Table 5.4, the average
values of GapB are 0.00%, 0.00%, 0.11% and 2.20% for instances with 11, 15, 20 and 25
surgeries respectively. We observe that most of instances with up to 20 surgeries are optimally
solved. Furthermore, our branch-and-cut algorithm can solve instances with 25 surgeries and
average surgeon time limits of 9 hours optimally. These results demonstrate that our branch-
and-cut algorithm is significantly more effective than the algorithm proposed by Batun et al.
(2011) which can solve instances with up to 10 and 11 surgeries optimally.

Moreover, in Table 5.4, the average values of V SS are 8.10%, 39.12%, 38.98%, and 40.06%
which show that value of stochastic solution for instances with more surgeries is higher and
the application of our algorithm is more justifiable and beneficial in such cases. In addition,
we observe that V SS increases as the average surgeon time limit increases. This is because,
in instances with higher average surgeon time limits (ρ), it is more likely that the mean-
value solution results in unexpected overtime or infeasibility in the stochastic problem. The
other noticeable point is that the values of ∆UB

4h,24h are less than 0.78% which shows that
our branch-and-cut algorithm improves the upper bound values within the first 4 hours of
computational time. It is also noteworthy that the average of computational time to obtain
optimal solutions of instances with 11 surgeries is 2231 seconds, while the solution time of
the algorithm proposed by Batun et al. (2011) for two sets of instances with the same size is
4866 and 9992 seconds.

Similar to Table 5.3, Table 5.5 provides the computational results of the branch-and-bound
algorithm for stochastic operating room scheduling instances with different solution methods
of subproblems. In all cases, we set the time limit to 30 minutes. We observe that our
proposed solution method for subproblems is 78, 76, and 59 times faster than primal simplex,
dual simplex, and interior point methods, respectively. We can also observe that our method
explores 198 nodes within the time limit, while other methods time out in the root node of
the branch-and-bound tree. It is also noteworthy that the value of Time ratio increases in
the number of patients.

97

Table 5.4 – Computational results of the branch-and-cut and L-shaped algorithms for the operating room scheduling
problem with stochastic durations.

Data Info. L-shaped algorithm branch-and-cut algorithm

Pat.
No.

Sur. Time
Limit

Ite.
Time
(sec)

LBL UBL GapL(%)
Node
No.

Feas.
Cut No.

Opt.
Cut No.

Time
(sec)

LBB UBB GapB(%) ∆UB
4h,24h(%) V SS(%)

11 5 16 54059 25898 26016 0.44 1284 0 6164 3473 26016 26016 0.00 0.00 6.47
7 17 2796 23459 23459 0.00 509 1 4785 1772 23459 23459 0.00 0.00 8.45
9 15 19489 24384 24678 1.17 512 0 3719 1446 24484 24484 0.00 0.00 9.38

Average 16 25448 24580 24717 0.54 768 0 4889 2231 24653 24653 0.00 0.00 8.10

15 5 14 80136 32625 33969 4.19 6232 0 13430 10790 33127 33127 0.00 0.07 7.41
7 11 70304 26983 27972 4.05 5016 7 7668 4200 27494 27494 0.00 0.00 9.95
9 12 43979 23821 24692 3.73 759 54 4367 1064 24396 24396 0.00 0.00 100.00

Average 12 64807 27810 28878 3.99 4002 20 8488 5351 28339 28339 0.00 0.02 39.12

20 5 13 86400 44237 46472 5.09 9280 0 11693 11251 44832 44832 0.00 0.00 5.88
7 8 36093 33678 35179 4.88 20125 1 9513 8753 34262 34262 0.00 0.00 11.06
9 11 35910 30866 32323 4.93 14176 161 9945 8177 31821 31935 0.34 0.00 100.00

Average 11 52801 36261 37991 4.96 14527 54 10384 9393 36972 37010 0.11 0.00 38.98

25 5 8 86400 57045 60082 5.35 16782 0 39141 84461 57736 59577 3.23 0.43 3.32
7 7 86400 40581 45347 11.96 19005 6 27569 86400 42110 43519 3.37 0.78 16.86
9 4 48794 37642 40502 8.15 18906 1717 9503 7329 39956 39956 0.00 0.00 100.00

Average 7 73865 45089 48644 8.49 18231 574 25404 59397 46600 47684 2.20 0.40 40.06

Table 5.5 – Comparison of different solution methods for subproblems in stochastic operating room scheduling
instances within a time limit of 30 minutes.

Data Info. Proposed Method Primal Simplex Dual Simplex Interior Point

Pat.
No.

Ave.
Time
(sec)

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

Ave.
Time
(sec)

Time
ratio

Nodes
No.

GapB

(%)

11 0.053 307 2.79 1.91 37 0 24.64 1.96 37 0 23.86 1.97 38 0 24.31
15 0.058 280 6.62 3.35 58 0 INF 3.76 61 0 INF 2.93 49 0 INF
20 0.088 114 10.03 7.38 84 0 INF 9.23 91 0 INF 5.79 67 0 INF
25 0.107 89 12.81 17.57 132 0 INF 15.28 114 1 INF 9.20 80 0 INF

Average 0.077 198 8.06 7.55 78 0 INF 7.56 76 0 INF 4.97 59 0 INF

98

5.11 Conclusion

In this paper, we studied a vehicle routing problem with synchronized visits (VRPS) and
stochastic/time-dependent travel and service times. In addition to considering a home-health
care scheduling problem, we cast an operating room scheduling problem with stochastic
durations as a VRPS. We developed a two-stage stochastic integer programming model to
formulate VRPS with stochastic times. In contrast to the deterministic models in the VRPS
literature, our proposed formulation is free of big-M constraints. We obtained this advantage
by splitting the available time into smaller time slots that resulted in a large number of
second-stage integer variables. We proved that the integrality constraints on second-stage
variables are redundant, thus can be relaxed. Having continuous variables in the second
stage, we applied the L-shaped algorithm and its branch-and-cut implementation as solution
methods. Moreover, we improved the proposed approach by devising valid inequalities and
a lower bounding functional. We also analyzed the subproblems of the L-shaped algorithm
and proposed a solution method for them that is significantly faster than standard linear
programming algorithms. Furthermore, we discussed how to modify the proposed formulation
to solve VRPS with deterministic time-dependent travel and service times.

Computational experiments revealed that, in the stochastic home-health care scheduling
problem, the branch-and-cut algorithm solves instances with 15 patients and 10% to 30% of
synchronized visits to optimality. In addition, it finds solutions with an average optimality
gap of 3.57% for instances with 20 patients. In the stochastic operating room scheduling
problem, the branch-and-cut algorithm is capable of finding optimal solutions for instances
with 20 surgeries. This is a considerable improvement over the state-of-art algorithm that
reports on instances with 11 surgeries. Moreover, the modified model for the time-dependent
problem obtains solutions with an average optimality gap of 0.79% for home-health care
scheduling instances with 60 patients and 10% to 40% of synchronized visits.

99

CHAPTER 6 ARTICLE 3 : EXPLOITING THE STRUCTURE OF
TWO-STAGE ROBUST OPTIMIZATION MODELS WITH INTEGER

ADVERSARIAL VARIABLES

Seyed Hossein Hashemi Doulabi
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Patrick Jaillet
Department of Electrical Engineering and Computer Science

Laboratory for Information and Decision Systems

Operations Research Center, MIT, Cambridge, USA

Gilles Pesant
Department of Computer and Software Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Louis-Martin Rousseau
Department of Mathematics and Industrial Engineering, Polytechnique Montreal

Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT),

Montreal, Canada

Abstract. This paper addresses a class of two-stage robust optimization models with integer
adversarial variables. We discuss the importance of this class of problems in modeling two-
stage robust resource planning problems where some tasks have uncertain arrival times and
duration periods. We apply Dantzig-Wolfe decomposition to exploit the structure of these
models and show that the original problem reduces to a single-stage robust problem. We pro-
pose a Benders algorithm for the reformulated single-stage problem. Since the master problem
and subproblem in the Benders algorithm are mixed integer programs, it is computationally
demanding to solve them optimally at each iteration of the algorithm. Therefore, we develop
novel stopping conditions for these mixed integer programs and provide the relevant conver-
gence proofs. We also develop a heuristic algorithm called dual algorithm. In this heuristic,
we dualize the linear programming relaxation of the adversarial problem in the reformulated
problem and iteratively generate cuts to shape the convex hull of the uncertainty set. We
combine this heuristic with the Benders algorithm to create a more effective algorithm called
Benders-dual algorithm. Extensive computational experiments on a two-stage nurse planning
problem are performed to compare these algorithms.

100

Keywords. Integer programming, Dantzig-Wolfe decomposition, two-stage robust optimiza-
tion, nurse planning problem.

6.1 Introduction

In the operations research literature there are many different methodologies to address un-
certainty in optimization problems. Stochastic approaches are one of the main classes and
are applicable if probability distributions of uncertain parameters are known. However, these
approaches are usually criticized for requiring information on the probability distributions
and also for computational complexities. Robust optimization, a more recent methodology,
generally assumes that uncertain parameters belong to an uncertainty set, and aims to find
a robust solution immunizing the decision maker against the worst-case scenario within this
uncertainty set.

In robust optimization problems choosing an appropriate uncertainty set is critical and can
highly affect the robustness and the optimal objective value of the obtained solution. The de-
cision maker should select a suitable uncertainty set to reasonably represent the randomness
of the uncertain parameters while taking into account the computational issues arising in the
solution algorithm. From the literature on robust optimization, the most prevalent uncer-
tainty sets are box uncertainty sets (Soyster 1973), ellipsoidal uncertainty sets (Ben-Tal and
Nemirovski 1999, El Ghaoui and Lebret 1997, El Ghaoui et al. 1998), polyhedral uncertainty
sets and Γ -cardinality uncertainty sets (Bertsimas and Sim 2004). In box uncertainty sets,
uncertain parameters are assumed to take their values from different intervals independently.
Box uncertainty sets usually result in overly conservative solutions because all parameters
are allowed to take their worst values simultaneously. Ellipsoidal uncertainty sets alleviate
this issue by restricting the uncertain parameters to an ellipsoidal space and this prevents
them from taking worst values at the same time. Polyhedral uncertainty sets confine the
uncertain parameters to a polyhedral space and can be viewed as a special case of ellipsoidal
uncertainty sets (Ben-Tal and Nemirovski 1999). In Γ -cardinality uncertainty sets, for each
constraint the number of uncertain parameters deviating from their nominal values must be
less than Γ .

Robust optimization was initially proposed for single-stage optimization problems where the
decision maker must choose a complete solution before the disclosure of information about
the real values of uncertain parameters (Soyster 1973, Ben-Tal and Nemirovski 1999). Then it
was extended to multi-stage problems where the values of uncertain parameters are revealed
gradually in some stages (Ben-Tal et al. 2004, Delage and Iancu 2015). In multi-stage robust
problems the decision maker does not choose a complete solution at the beginning, but instead

101

makes partial decisions sequentially after observing the values of uncertain parameters over
different stages. The worst-case data realization in each stage is obtained by solving what is
referred to sometimes as an “adversarial problem”(Ardestani-Jaafari and Delage 2016).

In a single-stage robust optimization problem, constraints must be satisfied for all possible
realizations of uncertain parameters. Therefore, by repeating constraints for different values
of uncertain parameters, we can view a robust problem as a mathematical program with a
large number of constraints. Depending on the structure of the uncertainty set, two tech-
niques are usually applied to solve single-stage robust problems. The first approach is to
iteratively generate violated constraints of the mathematical program explained above using
a constraint generation algorithm (Fischetti and Monaci 2012, Bertsimas et al. 2016). In the
second approach, the problem is reformulated as its deterministic robust counterpart and
then solved directly. Soyster (1973) presented such a deterministic counterpart model for
robust linear problems with box uncertainty sets. Ben-Tal and Nemirovski (1999) proposed
a second order cone program for uncertain linear programs with ellipsoidal uncertainty sets.
They also showed that in the case of polyhedral uncertainty sets the robust counterpart mo-
del is a linear program. Bertsimas and Sim (2004) showed that robust linear programs with
Γ -cardinality uncertainty sets can be reformulated as deterministic linear programs.

Multi-stage robust problems are more complicated than single-stage robust problems and are
generally intractable (Ben-Tal et al. 2004). There are two common solution approaches for
these problems. Both approaches transform the multi-stage problem to a single-stage pro-
blem and then apply the solution methods of the single-stage robust problem. In the first
approach the recourse decisions are restricted to a function of uncertain parameters resulting
in a single-stage robust problem. In this context, affine adaptability, also referred to as li-
near decision rules, assumes recourse decisions to be affine functions of uncertain parameters.
This method is very popular and is applied in various areas such as supply chain management
(Ben-Tal et al. 2005), inventory control (Ben-Tal et al. 2009), portfolio management (Fonseca
and Rustem 2012), warehouse management (Ang et al. 2012), capacity management (Ouorou
2013) and network design (Poss and Raack 2013). Chen and Zhang (2009) introduced the ex-
tended affine adaptability by re-parameterizing the primitive parameters and then applying
the affine adaptability. Bertsimas et al. (2011) proposed a more accurate approximation of
recourse decisions using polynomial adaptability. A drawback of the functional adaptability
is its inability to handle problems with integer recourse decisions. Another approach is finite
adaptability in which the uncertainty set is split into a number of smaller subsets, each with
its own set of recourse decisions. The number of these subsets can be either fixed a priori
or decided by the optimization model (Vayanos et al. 2011, Bertsimas and Caramanis 2010,
Hanasusanto et al. 2014, Postek and Den Hertog 2014, Bertsimas and Dunning 2016). An im-

102

portant advantage of the finite adaptability is that, in contrast to the functional adaptability
approach, it easily handles problems with integer recourse variables.

In the literature, convex uncertainty sets are used to model robust problems. The main
advantage of these uncertainty sets is that they can be simply formulated by continuous
variables and the problem remains tractable in many cases such as linear programs. However,
it is sometimes inevitable or desirable to use integer variables to formulate the uncertainty set.
Nguyen and Lo (2012) studied a single-stage robust portfolio problem where the weights of
portfolios are fixed such that a generic objective function is optimized for the worst possible
ranking of portfolios. Thus, in this application it is necessary to use integer variables to
formulate the ranking of portfolios. Feige et al. (2007) and Gupta et al. (2014) also studied
some classical covering problems where in their adversarial problems, integer variables were
used to choose a set of active clients in a graph. Moreover, in some cases integer variables are
used to approximate non-convex uncertainty sets. For instance, Siddiq (2013) and Chan et al.
(2015) studied a robust facility location problem and discussed how non-convex uncertainty
sets can be approximated by discretization.

There are many papers in the literature that have proposed Benders algorithms to solve two-
stage robust optimization problems (Jiang et al. 2012, Zheng et al. 2012, Bertsimas et al.
2013, Jiang et al. 2013, Zhao and Guan 2013, Remli and Rekik 2013, Zhang et al. 2015,
Dashti et al. 2016). In these papers, assuming that the problem is set as a min(max(min(.)))
problem, the authors have dualized the inner minimization to reformulate the problem to a
min(max(.)) problem with bilinear terms in the objective function. Then, they have applied
a Benders algorithm to solve the first-stage problem together with cuts generated from an
outer approximation algorithm which solves the maximization problem.

Column-and-constraint generation algorithm is another common exact approach to solve a
two-stage robust optimization problem (Zeng and Zhao 2013, Zhao and Zeng 2012, An et al.
2014, An and Zeng 2015, Danandeh et al. 2014, Ding et al. 2016, Wang et al. 2014b, Lee
et al. 2014, 2015, Li et al. 2015, 2017, Chen et al. 2016, Wang et al. 2016a). The underlying
idea of this approach is to make copies of recourse decision variables and also second-stage
constraints for each possible realization of uncertain parameters which results in a large-scale
mixed-integer programming model. As it is impossible to solve this model directly, a column-
and-constraint generation algorithm is essential to generate critical uncertain scenarios and
their corresponding recourse decision variables and second-stage constraints.

In this work we assume that the uncertainty appears on the right-hand side values and the
corresponding technology matrix of recourse decision variables has a block-diagonal structure.
The main difference of our approach compared to the previous exact approaches for two-stage

103

robust optimization models is that we apply Dantzig-Wolfe decomposition on the vector
of uncertain right hand-side values in order to exploit the block-diagonal structure in the
technology matrix of recourse decision variables, and reformulate the two-stage problem as
a single-stage problem. This single-stage problem has a different structure compared to the
single-stage problem which is obtained by dualizing the second-stage problem as explained
previously. As a result, when applying the Benders algorithm, we do not have any bilinear
term in the objective function of the subproblem. Moreover, in contrast to the reformulations
technique which dualizes the inner minimization problem, our proposed reformulation is
applicable when recourse decision variables are integer. Furthermore, the single-stage problem
obtained from our reformulation has much fewer copies of recourse variables and second-stage
constraints compared to the case where the two-stage problem is directly formulated as a
single-stage problem by making copies of recourse variables and second-stage constraints for
each possible realization of uncertain parameters. Therefore, in some applications, such as
the nurse planning problem studied in this work, we can apply a Benders algorithm on the
single-stage problem resulted form the proposed reformulation approach without any need
to use a column-and-constraint generation approach. The reformulation approach that we
propose is inspired from the one proposed in Siddiq (2013) that presented a reformulation
for a specific facility location problem. The advantage of our reformulation is that it is more
general and applicable to any two-stage robust problem with block-diagonal structure in the
technology matrix of recourse decision variables.

The main contribution of our work is a novel reformulation and some solution methods
for a class of two-stage robust problems with integer adversarial variables. We discuss the
importance of this class of robust models in two-stage robust resource planning problems
where some tasks with uncertain arrivals and durations are expected. We apply Dantzig-Wolfe
decomposition to exploit the block-diagonal structure in the technology matrix of recourse
decision variables. This decomposition reduces the original two-stage problem to a single-
stage problem. We then develop a Benders algorithm for the reformulated problem. Since
the master problem and subproblem in the Benders algorithm are mixed-integer programs, it
is computationally expensive to solve them to optimality. Hence, we propose novel stopping
conditions for these mixed integer programs and prove the convergence of the algorithm. We
also develop a heuristic algorithm, namely dual algorithm, and combine it with the Benders
algorithm to create a more effective algorithm called Benders-dual algorithm. We compare
the computational performance of the proposed algorithms in a nurse planning application.

We organize the remainder of this paper as follows. In Section 6.2, we introduce the struc-
ture of the two-stage robust optimization problems studied in this paper and discuss its wide
range applications in robust resource planning problems including a nurse planning problem.

104

In Section 6.3, we use Dantzig-Wolfe decomposition to reformulate the original two-stage ro-
bust problem as a single-stage robust problem and apply the proposed reformulated approach
to our nurse planning problem. In Section 6.4, we develop solution methods for the reformu-
lated problem, and provide extensive computational results on our nurse planning problem
in Section 6.5. Finally we give some concluding remarks and future research directions in
Section 6.6.

6.2 Model and applications

We study a class of two-stage robust optimization problems with the following structure.

(P1) min
x∈X

(
cᵀ1x+ max

u∈U

(
min
y∈Y

cᵀ2y
))

(6.1)

Subject to :

Ax+Bu+ Cy ≤ b (6.2)

In the above formulation, x and y are the vector of decision variables in the first and the second
stage respectively. u is the vector of uncertain parameters, also referred to as adversarial
variables, that are restricted to the uncertainty set U . c1 and c2 are given cost vectors, A,
B and C are known matrices with appropriate dimensions and b denotes the known vector
of right-hand side values. x ∈ X and y ∈ Y represent the integrality and bound constraints
that we may have for variables in the first and second stages. Objective (6.1) minimizes the
sum of the first- and second-stage costs. In this model, x ∈ X must be selected such that
for all realizations u ∈ U there is y ∈ Y such that constraint (6.2) is satisfied. We assume
that U is a finite uncertainty set. This assumption is necessary for the convergence proofs
of the proposed Benders algorithms discussed in Section 4.1. The first- and second-stage
variables can be continuous, integer or mixed, but all adversarial variables are supposed to
be integer. We also assume that C is a block-diagonal matrix. The main focus of this research
is to exploit this block-diagonal structure and develop algorithms to solve the reformulated
problem efficiently. In the rest of this paper we sometimes include constraints x ∈ X , u ∈ U
and y ∈ Y together with constraint (6.2). We also point out that in the literature of two-
stage robust optimization the inner max(min(.)) problem in the above problem setting is
sometimes referred to as the “adversarial problem”.

Let us now explain how Model (P1) can fit a wide range of two-stage robust resource planning
problems where a set of tasks denoted by T with uncertain arrivals and durations are expected
within a given planning horizon. Let D denote the set of days in the planning horizon. To
perform each task, a set of resources is needed. Let R denote the set of all resources. We

105

suppose that the daily required amount of resource r ∈ R to perform task t ∈ T , denoted by
htr, is known and discrete. Also let Pt denote the set of all discrete scenarios for the uncertain
arrival and duration of task t and let atp and ltp be the arrival day and the duration of task
t in scenario p ∈ Pt respectively. In the first stage, the decision maker must decide on the
amount of resources made available over the planning horizon, paying a daily cost of c1r per
unit of resource r ∈ R over that period. In the adversarial problem, considering the first-stage
decisions, the worst possible combination of scenarios about tasks is assumed to take place.
Because of this worst-case realization, the amount of resource r ∈ R supplied for day d ∈ D
in the first stage may not be enough. In this case, in the second stage, the decision maker
needs to get some additional amounts of resource r ∈ R on day d to meet the demand level.
In the second stage, the daily cost of resource r ∈ R is c2r > c1r and there may be some
additional restrictions on the maximum daily amounts of extra resources available.

The above problem can arise in various contexts such as project resource planning, main-
tenance planning and workforce planning where the durations of activities and their start
times are uncertain. To formulate this problem as an example of Model (P1) we define the
following variables and sets.

Variables:

xdr : The amount of resource r supplied on day d in the first stage.
utp : 1 if scenario p ∈ Pt (previously explained) realizes for task t ; 0 otherwise. (adversa-

rial variables)
ydr : The additional amount of resource r supplied on day d in the second stage.

Sets:

Ptd : The subset of scenarios in Pt where task t is in process on day d, i.e., Ptd =
{p ∈ Pt : atp ≤ d, atp + ltp > d} (note that atp and ltp are defined above as the arrival
day and the duration of task t in scenario p ∈ Pt respectively).

The two-stage robust resource planning problem is formulated as follows :

minx∈X
(∑
d∈D

∑
r∈R

c1rxdr + maxu
(

miny∈Y
∑
d∈D

∑
r∈R

(c2rydr)
))

(6.3)

Subject to :
xdr + ydr ≥

∑
t∈T

∑
p∈Ptd

htrutp r ∈ R, d ∈ D (6.4)

∑
p∈Pt

utp = 1 t ∈ T (6.5)

utp ∈ {0, 1} t ∈ T , p ∈ Pt (6.6)

106

In the above model, constraint (6.4) corresponds to the daily demand constraints over the
planning horizon and constraints (6.5) and (6.6) define the uncertainty set. x ∈ X and y ∈ Y
enforce non-negativity and integrality constraints of the first- and second-stage variables. In
constraint (6.4) for each (r, d) ∈ R×D we have a block in the technology matrix corresponding
to vector y.

As an illustrative instance of the problem defined above, we will concentrate in this paper on
a nurse planning problem. In this problem, we plan wards’ nurses of a hospital for a medium
term. The daily workloads of nurses depend on the number of patients brought from operating
rooms to wards. Patients are already scheduled in operating rooms over the planning horizon.
Before transferring patients from operating rooms to wards they may stay in ICUs for some
days. The lengths of stays in ICUs and wards are uncertain and discrete. For each patient
a number of scenarios about the lengths of stays in ICUs and wards are available. In the
first stage of this problem, we assign some nurses to wards over the planning horizon. In the
second stage if the nurses’ workload on a day is more than the service capacity of nurses
assigned to that day, some extra nurses are hired. Nurses hired in the second-stage are paid
more than those hired in the first-stage. The problem is formulated as follows :

Parameters:

c1 : The daily cost of a nurse hired in the first stage.

c2 : The daily cost of a nurse hired in the second stage.

Md : The maximum number of nurses available for hiring on day d in the second-stage.

δ : The amount of service time provided by a first- or second-stage nurse per day (in
hours).

ρ : The average of required service time for each patient per day (in hours).

lICUtp : The length of stay in ICUs for patient t in scenario p ∈ Pt.

lWard
tp : The length of stay in wards for patient t in scenario p ∈ Pt.

d′t : The surgery day for patient t.

Set:

D : The set of days in the planning horizon.

T : The set of patients (tasks) already scheduled in operating rooms over the planning
horizon.

Td : The set of patients scheduled on day d.

Pt : The set of scenarios for patient t. Each scenario gives information on the lengths of
stays in ICUs and wards.

107

Ptd : The subset of scenarios in Pt where patient t is in wards on day d, i.e., Ptd ={
p ∈ Pt : d′t ≤ d, d′t + lICUtp + lWard

tp > d
}
.

Variables:

xd : The number of nurses assigned to day d in the first stage.

utp : 1 if patient t follows scenario p after its surgery, 0 otherwise. (adversarial variable)

yd : The number of nurses hired on day d in the second stage.

min
x

(∑
d∈D

c1xd + max
u

(
min
y

∑
d∈D

(c2yd)
))

(6.7)

Subject to :

δxd + δyd ≥ ρ
∑
t∈T

∑
p∈Ptd

utp d ∈ D (6.8)

xd ≥ 0, integer d ∈ D (6.9)∑
p∈Pt

utp = 1 t ∈ T (6.10)

utp ∈ {0, 1} t ∈ T , p ∈ Pt (6.11)

0 ≤ yd ≤Md, integer d ∈ D (6.12)

Constraint (6.8) is the daily demand constraints over the planning horizon. In this constraint,
the reason that we have used coefficient ρ as the average workload of each patient rather than
the actual workloads is that we do not know patients’ workloads in advance and therefore we
cannot adjust the level of second-stage nurses accordingly in the morning. Constraint (6.10)
and (6.11) define the discrete uncertainty set. Constraints (6.9) and (6.12) represent the
bounds and integrality constraints for first- and second-stage variables respectively. In the
next section, we use the nurse planning problem to illustrate the proposed reformulation. We
also present extensive computational results on this problem in Section 6.5.

6.3 Reformulation

In this section we propose a reformulation of Model (P1) and use it to develop solution
methods in Section 6.4. For this we need the following additional notation, used throughout
the rest of the paper.

K : The index set of blocks in matrix C.

Ck : The k-th block in matrix C.

Rowk : The number of rows in block Ck.

108

Colk : The number of columns in block Ck.

yk : The subset of variables y involved in block Ck.

Yk : The set of integrality and bound constraints corresponding to variables yk.

c2k : The subset of c2 corresponding to variables yk.

bk : The right-hand side values in front of block Ck.

Ak : The rows in matrix A in front of block Ck.

Bk : The rows in matrix B in front of block Ck.

With respect to the block-diagonal structure of matrix C we can rewrite constraint (6.2) as
follows.

Akx+Bku+ Ckyk ≤ bk k ∈ K (6.13)

Furthermore, we define some notation related to Bku in (6.13).

S ′k : The set of all realizations for Bku, i.e., S ′k = {v ∈ RRowk |v = Bku, u ∈ U}.

Sk : The index set of S ′k, i.e., Sk = {1, 2, ..., |S ′k|}.

eks : The s-th member of S ′k (defined for s ∈ Sk).

wks : Is a binary variable and takes 1 if Bku is equal to eks, 0 otherwise.

Using all the above notation, we reformulate Model (P1) as follows.

(P2) min
x

cᵀ1x+ max
u,w

min
y

∑
k∈K

cᵀ2kyk

 (6.14)

Subject to :

Akx+
∑
s∈Sk

ekswks + Ckyk ≤ bk k ∈ K (6.15)

x ∈ X (6.16)∑
s∈Sk

wks = 1 k ∈ K (6.17)

Bku =
∑
s∈Sk

ekswks k ∈ K (6.18)

wks ∈ {0, 1} k ∈ K, s ∈ Sk (6.19)

u ∈ U (6.20)

yk ∈ Yk k ∈ K (6.21)

109

In the following we introduce a new model that is equivalent to Model (P2) as we will show
later in Lemma 6.1 and Theorem 6.1. To introduce Model (P3), for each k ∈ K we make |Sk|
copies of variables yk ∈ RColk and define variables y′ks ∈ RColk(s ∈ Sk). Model (P3) is given
by (6.22)-(6.29).

(P3) min
x

(
cᵀ1x+ max

u,w

(
min
y′

∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(6.22)

Subject to :
Akx+ eks + Cky

′
ks ≤ bk k ∈ K, s ∈ Sk (6.23)

x ∈ X (6.24)∑
s∈Sk

wks = 1 k ∈ K (6.25)

Bku = ∑
s∈Sk

ekswks k ∈ K (6.26)

wks ∈ {0, 1} k ∈ K, s ∈ Sk (6.27)

u ∈ U (6.28)

y′ks ∈ Y ′k k ∈ K, s ∈ Sk (6.29)

The structure of Model (P3) is such that, if wks takes 1, y′ks is equal to the optimal solution
of yk in Model (P2). Indeed by introducing constraint (6.23) we have made |Sk| copies of
constraint (6.15) to compute the values of y′ks independently. Moreover, to ensure that the
optimal objective values of models (P2) and (P3) are the same, cᵀ2ky′ks in (6.22) is multiplied
by wks.

LEMMA 6.1 Suppose that Model (P2) is feasible. Then x̂ is a first-stage feasible solution of
Model (P2) if and only if it is a first-stage feasible solution of Model (P3). Moreover, the
objective values of models (P2) and (P3) for the first-stage solution x̂ are the same if max

u,w

and min
y′

are solved optimally. Furthermore, for this first-stage solution the optimal values of
variables y′ks in Model (P3) represent the second-stage optimal policies in Model (P2).

PROOF. Appendix C.1. �

The following theorem states the relations between models (P2) and (P3).

THEOREM 6.1 Models (P2) and (P3) are equivalent, that is either

- both models are unbounded, or

- both models are infeasible, or

110

- both models are feasible and bounded with the same optimal objective value and the
same optimal solution for the first-stage variables. In this case the optimal solution of
variables y′ks in Model (P3) represents the optimal policies for variables yk in Model
(P2).

PROOF. Lemma 6.1 directly results in cases 1 and 3. To prove case 2, we note that with
respect to Lemma 6.1 for any feasible solution in Model (P2) there is an equivalent feasible
solution in Model (P3). Therefore, Model (P3) is infeasible if and only if Model (P2) is
infeasible. �

The next theorem shows that Model (P3) can be reduced to a single-stage problem.

THEOREM 6.2 In Model (P3) the objective function maxu,w (miny′ (.)) can be replaced by
miny′ (maxu,w (.)).

PROOF. Appendix C.2. �

Therefore, we can rewrite Model (P3) as follows :

(P4) min
x,y′

(
cᵀ1x+ max

u,w

(∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(6.30)

(6.23)− (6.29)

In fact, the reformulation presented in this section shows that we can transform the two-
stage robust problem (P1) to a single-stage robust problem. The other interesting point
about Model (P4) is that the solution spaces of variables (x, y′) and (u,w) are independent.
Therefore, we can introduce Model (P5) as follows.

(P5) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

(u,w)∈(U ,W)

(∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(6.31)

In the above model, (X ,Y ′) = {(x, y′)|constraints (6.23)-(6.24) and (6.29) are satisfied} and
(U ,W) = {(u,w)|constraints (6.25)-(6.28) are satisfied}. We use the latter model to present
our solution methods in Section 6.4. In the rest of this paper, we refer to the inner max(.)
in (6.31) as the adversarial problem.

In the following, we give the corresponding nurse planning problem reformulation in the
form of Model (P5). The definitions of variables xd and uip from the nurse planning problem
remain unchanged.

111

New set:

Sd : The set of all possible realizations for the number of patients in wards on day d.

New variables:

wds : 1 if exactly s patients are in wards on day d, 0 otherwise.

y′ds : The number of nurses hired on day d in the second stage if exactly s patients are in
wards on this day.

min
x,y′

(∑
d∈D

c1xd + max
u,w

(∑
d∈D

∑
s∈Sd

c2wdsy
′
ds

))
(6.32)

Subject to :
δxd + δyds ≥ ρ× s d ∈ D, s ∈ Sd (6.33)

xd ≥ 0, integer d ∈ D (6.34)∑
s∈Sd

wds = 1 d ∈ D (6.35)

∑
t∈T

∑
p∈Ptd

utp = ∑
s∈Sd

swds d ∈ D (6.36)

∑
p∈Pt

utp = 1 t ∈ T (6.37)

wds ∈ {0, 1} d ∈ D, s ∈ Sd (6.38)

utp ∈ {0, 1} t ∈ T , p ∈ Pt (6.39)

0 ≤ yds ≤Md, integer d ∈ D, s ∈ Sd (6.40)

6.4 Solution methods

In this section we propose three solution methods for Model (P5). We present a Benders
algorithm that iterates between a master problem and a subproblem to tighten the optimality
gap. We also propose a heuristic, called dual algorithm. In this heuristic, we dualize the
linear programming relaxation of the inner max problem in Model (P5). Then we iteratively
generate some cuts to shape the convex hull of the uncertainty set. We also present a Benders-
dual algorithm that applies the dual heuristic within the framework of the Benders algorithm.

6.4.1 Benders Algorithm

In our Benders algorithm, valid lower and upper bounds are obtained by solving the master
problem and the subproblem respectively. The algorithm iterates between these problems

112

until the bounds converge. In the following we present the master problem and subproblem.
Then we explain the framework of the Benders algorithm.

Suppose that m adversarial scenarios (ûj, ŵj) ∈ (U ,W), j = 1, 2, ...,m are available. In our
Benders algorithm, we iteratively detect new scenarios and update m. We define the master
problem of the Benders algorithm as follows.

(MP) min
(x,y′)∈(X ,Y ′),θ

θ (6.41)

Subject to :
θ ≥ cT1 x+ ∑

k∈K

∑
s∈Sk

cᵀ2ky
′
ksŵ

j
ks j = 1, 2, ...,m (6.42)

THEOREM 6.3 The optimal objective value of Model (MP) is a valid lower bound for Model
(P5).

PROOF. Appendix EC.3. �

For a feasible solution (x̂′, ŷ′) ∈ (X ,Y ′) a valid upper bound is obtained by solving the inner
max problem in (6.31). We refer to the following problem as the subproblem of the Benders
algorithm.

(SP) max
(u,w)∈(U ,W)

(
cᵀ1x̂+ ∑

k∈K

∑
s∈Sk

cᵀ2kŷ
′
kswks

)
(6.43)

Algorithm 6.1 provides the pseudo code of the Benders algorithm. In this algorithm, UB
and LB respectively denote the best upper and lower bounds found during the algorithm.
Also m denotes the number of adversarial scenarios already generated and included as an
instance of constraint (6.42) in the master problem. In Line 3, we obtain an initial solution
(x̂, ŷ′) by a heuristic algorithm that is explained at the end of Section 6.4.2. Lines 4 to 9
represent the main loop of the Benders algorithm. In Line 5, we use solution (x̂, ŷ′) to modify
the objective function of the subproblem. Then we solve the subproblem in Line 6 to obtain
an adversarial scenario (û, ŵ). The algorithm updates UB if the optimal objective value of
the subproblem is less than the current UB. In Line 7, we add a new optimality cut (6.42) to
the master problem. This cut corresponds to the new adversarial scenario found by solving
the subproblem. In the next step, the algorithm solves the master problem to obtain a new
feasible solution (x̂, ŷ′) and updates LB. As stated before the optimal objective value of
the master problem is a valid lower bound for the original robust problem. Since we add a
new instance of constraint (6.42) in each iteration of the algorithm to the master problem,
the lower bound obtained from the master problem is non-decreasing during the algorithm.

113

The stopping conditions of the Benders algorithm are then checked in Line 9. δBendersacc and
AlgT imeLimit respectively denote the maximum acceptable optimality gap and the available
computational time.

Algorithm 6.1. Benders algorithm
1: Input parameters : δBendersacc and AlgT imeLimit.
2: Set UB=∞, LB=-∞, and m = 0.
3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat
5: Modify the objective function of subproblem (SP) using (x̂, ŷ′).
6: Solve the subproblem and update UB if it is necessary.
7: Add a new optimality cut (42) to the master problem and set m = m+ 1.
8: Solve the master problem and update LB.
9: until (100(UB − LB)/LB ≤ δBendersacc or time limit AlgT imeLimit is reached)

The main shortcoming of the Benders algorithm is that the master problem and subpro-
blem are mixed integer programs (MIPs) and therefore it would be very time consuming
to optimally solve them in all iterations of the algorithm. In the following we present novel
stopping conditions for these MIPs. Before explaining these conditions we define “ε-dominant
incumbents” for the master problem and subproblem as follows : For a constant ε > 0, an
ε-dominant incumbent of the master problem is a feasible solution in the master problem
with an objective value that is less than the lower bound for the recent subproblem by a
margin of ε. Similarly, an ε-dominant incumbent of the subproblem is a feasible solution in
the subproblem with an objective value that is at least ε higher than the upper bound of the
recent master problem. The stopping conditions are presented as follows.

Stopping condition for the master problem (subproblem) : The mixed integer pro-
gram terminates when the optimal solution is found or at least TimeMP seconds (TimeSP
seconds) has passed from the moment that the first ε-dominant incumbent of the master
problem (subproblem) is found.

In Table 6.1, we present a numerical example with ε = 5 to explain this stopping condition
for both the master problem and the subproblem. In this table, the results of the master
problem and of the subproblem are presented in separate columns. We report the lower and
upper bounds for the related mixed integer programs. Since these MIPs are not optimally
solved there are gaps between the lower and upper bounds. Columns “Order”also give the
order in which these MIPs are solved. In this example, in iterations 1 to 4, the upper bound
of the master problem is at least ε = 5 units less than the lower bound for the previous

114

subproblem. Moreover, in iterations 2 to 4, the lower bound for the subproblem is at least
ε = 5 units higher than the upper bound of the master problem in the previous iteration. In
Iteration 5, when solving the subproblem, we observe that the lower bound does not increase
to ε = 5 units higher than the upper bound of the master problem in Iteration 4. Therefore,
the stopping condition is not met and the subproblem has to be solved optimally. Similarly,
in the same iteration, when we solve the master problem, the upper bound does not decrease
to ε = 5 units less than the lower bound for the subproblem in that iteration. Thus, the
stopping condition is not satisfied and the master problem has to be solved to optimality.

Table 6.1 – A numerical example to explain the stopping conditions
of MIPs in the Benders algorithm.

Iteration
Subproblem Master problem

Order LB UB Order LB UB

1 1 120 470 2 45 110
2 3 340 650 4 30 300
3 5 320 360 6 155 165
4 7 170 185 8 157 160
5 9 160 160 10 160 160

The upper bound in the master problem and the lower bound in the subproblem correspond
to feasible solutions of MIPs. Therefore, the stopping condition for the subproblem means
that the subproblem terminates before reaching the optimality if we find a critical adversarial
scenario. We refer to an adversarial scenario as a critical one if by adding its corresponding
cut (6.42) to the master problem, the objective value of solution (x̂, ŷ′) found in the previous
iteration, increases by at least ε units. Lower bounds in the master problem and the upper
bounds in the subproblem are valid lower and upper bounds for the original robust problem
respectively. Since we do not solve the master problem optimally the lower bounds obtained
from the master problem can be decreasing. As an example, in Table 1 we can observe that
the lower bound for the master problem decreases from 45 in the first iteration to 30 in
the second iteration. However, we know that the lower bound for the master problem in an
early iteration is also a valid lower bound for the master problem in next iterations because
optimality cuts (6.42) are added incrementally to the master problem. Therefore, we can
impose the best lower bound LB by adding the following constraint to the master problem.

θ ≥ LB (6.44)

115

Moreover, the best upper bound UB updated during the Benders algorithm can be imposed
to the master problem using the following constraint.

θ ≤ UB (6.45)

Constraint (6.45) is valid because the optimal objective value of the subproblem is an upper
bound on the optimal objective value of the original robust problem. As it will be discussed
later, constraints (6.44)-(6.45) are vital for proving the convergence of the Benders algo-
rithm with stopping conditions for the master problem and subproblem. We cannot impose
constraints similar to constraints (6.44)-(6.45) to confine lower and upper bounds for the
subproblem because the coefficients in the objective function of the subproblem are modified
during the algorithm.

When we apply the stopping conditions, most of the time the subproblem is not solved
optimally. Therefore, the best upper bound obtained by Algorithm 6.1 is poor if the algorithm
times out. In this case, we call Procedure 6.1 at the end of Algorithm 6.1 to improve the quality
of the best upper bound. This procedure sorts all solutions (x̂, ŷ′) found by the master problem
based on their upper bounds. The upper bound of each solution (x̂, ŷ′) is the upper bound of
its corresponding subproblem obtained in Line 6 of Algorithm 6.1. Procedure 6.1 evaluates
these solutions separately by solving the subproblem without any stopping condition. When
solving a subproblem if we obtain a feasible solution with an objective value higher than
the best upper bound UB, the subproblem terminates and Procedure 6.1 evaluates the next
solution (x̂, ŷ′) in the sorted list. This is because in this case, another solution with a better
upper bound is already known. We consider a time limit EvaT imeLimit for this procedure.

Procedure 6.1. Evaluation of the generated solutions (x̂, ŷ′)
Input parameters : EvaT imeLimit and δBendersacc .
if (100(UB − LB)/LB > δBendersacc) then
Sort solutions (x̂, ŷ′) in the solution pool.
for (i=1 to NumberSolutions) do
Solve the subproblem for i-th solution (x̂, ŷ′) and update UB if necessary.
if (100(UB − LB)/LB ≤ δBendersacc or EvaT imeLimit is reached) then
break ;

end if
end for

end if

In the following we discuss the convergence of the Benders algorithm with and without

116

stopping conditions for the subproblem and master problem. We use the following notation
to present the next lemmas and theorems.

W : The set of vectors w for which there is u ∈ U such that (u,w) ∈ (U ,W).

n : The number of adversarial scenarios in (U ,W).

n′ : The number of unique vectors w that the algorithm visits the subproblem before it
converges.

n
′′ : The number of times that the algorithm visits an already encountered vector w before

it converges.

ε : A positive constant used in stopping conditions of the master problem and subpro-
blem.

Opt : The optimal objective value of the original robust problem.

OSP
i : The optimal objective value of the subproblem in iteration i.

UMP
i : The upper bound of the master problem in iteration i.

f(j) : The iteration in which for the j-th times the algorithm generates an adversarial
scenario with a new vector w in the subproblem.

g(i) : The iteration in which for the i-th times the algorithm re-visits any of the generated
vectors w in the subproblem.

Ii : An indicator that is equal to 1 if in iteration i the algorithm generates an adversarial
scenario with a repeated vector w, 0 otherwise.

THEOREM 6.4 The Benders algorithm without stopping conditions for the master problem
and subproblem converges in at most |W| + 1 iterations that is bounded above by n + 1
iterations.

PROOF. Appendix C.4. �

The following lemmas are used in the proof of Theorem 6.5.

LEMMA 6.2 In the Benders algorithm with stopping conditions for the master problem and
subproblem, if the algorithm finds an adversarial scenario with a repeated vector w in the
subproblem of iteration i, then it is the optimal solution of the subproblem and the optimal
objective value of the subproblem is equal to the upper bound of the recent master problem in
iteration i− 1, i.e. UMP

i−1 = OSP
i .

PROOF. Appendix C.5. This lemma is used in the proofs of lemmas 6.3, 6.4 and 6.5. �

117

LEMMA 6.3 In the Benders algorithm with the stopping conditions for the master problem
and subproblem, if the algorithm finds an adversarial scenario with a repeated vector w in the
subproblem of iteration i and OSP

i − Opt > ε holds, then in at most k = b(OSP
i − Opt)/εc

iterations either the algorithm finds an adversarial scenario with a new vector w or OSP
i+k −

Opt ≤ ε holds.

PROOF. Appendix C.6. This lemma is used in the proof of Theorem 6.5. �

LEMMA 6.4 In the Benders algorithm with the stopping conditions for the master problem
and subproblem, if the algorithm finds an adversarial scenario with a repeated vector w in
the subproblem of iteration i and OSP

i − Opt ≤ ε holds, then in the next iteration either the
Benders algorithm converges or an adversarial scenario with a new vector w is found.

PROOF. Appendix C.7. This lemma is used in the proof of Theorem 6.5. �

LEMMA 6.5 In the Benders algorithm with the stopping conditions, relation OSP
g(i1) ≥ OSP

g(i2)

holds for any integer numbers i1 and i2 satisfying 1 ≤ i1 < i2 ≤ n
′′.

PROOF. Appendix C.8. This lemma is used in the proof of Theorem 6.5. �

THEOREM 6.5 The Benders algorithm with the stopping conditions converges in at most
n′∑
j=1

(1 + (b(OSP
f(j)+1 − Opt)/εc + 1)If(j)+1) iterations that is bounded above by |W|(b(OSP

g(1) −

Opt)/εc+ 2) iterations.

PROOF. Appendix C.9. �

6.4.2 Dual Algorithm

In this section we present a heuristic algorithm. This algorithm dualizes the linear program-
ming relaxation of the inner max problem in Model (P5) to transform the min-max problem
to a single minimization problem. Let’s assume that constraints forming the convex hull of
the inner max problem in Model (P5) are as follows.

Du+ Ew ≤ b2 (6.46)

In constraint (6.46), u and w are the vectors of adversarial variables, D and E are technology
matrices with appropriate dimensions and b2 is the known vector of right-hand side values.
D, E and b2 are independent from the values of (x̂, ŷ′) that are fixed in the outer min
problem in Model (P5). This is because the solution space of adversarial variables does not

118

depend on the variables in the outer min problem. If we have constraints (6.46) we can
replace constraints (6.25)- (6.28) with them. In this case, the inner max problem is a linear
programming model for fixed values of (x̂, ŷ′) in the outer min problem. Therefore by dualizing
the inner max problem we obtain the following model.

(D-P5) min
x̂,ŷ′,γ

(cᵀ1x+ bᵀ2γ) (6.47)

Subject to :
(23)− (24), (29)

Eᵀksγ ≥ cᵀ2ky
′
ks k ∈ K, s ∈ Sk (6.48)

Dᵀγ = 0 (6.49)

γ ≥ 0 (6.50)

In the above model, γ is the vector of dual variables for constraint (6.46) and Eks is the
column in E that includes coefficients of variable wks. We can observe that the min-max
problem in Model (P5) reduces to a single min problem and can be solved directly as a mixed-
integer programming model. In the literature, the above dualization technique is prevalent to
simplify single-stage robust problems where the inner max problem is a linear programming
model. However, in our model, the inner max problem is a mixed integer program and
constraints (6.46) forming the convex hull of the uncertainty set are unknown. In the following
we present a heuristic algorithm that relaxes the integrality constraints of the variables in
the inner max problem of Model (P5). Then by iteratively generating some cuts, it attempts
to shape the solution space of the relaxed inner max problem into its convex hull before the
relaxation. To present this heuristic we first need to define the following two models (P6)
and (P7).

(P6) min
x,y′

(
cᵀ1x+ max

u,w

(∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(6.51)

Subject to :
(23)− (29)

Fu+Gw ≤ b3 (6.52)

In Model (P6), constraint (6.52) is the set of valid cuts that the heuristic algorithm generates
iteratively. This constraint set is empty at the beginning of the algorithm. In this constraint,
F and G are technology matrices with appropriate dimensions and b3 the known vector
of right-hand side values. We obtain the following Model (P7) by relaxing the integrality

119

constraints of variables y and w in Model (P6) and then dualizing the inner max problem.

(P7) min
x,y′,π,λ,α,β

(
cᵀ1x+ bᵀ3π + bᵀ4λ+ ∑

k∈K
αk

)
(6.53)

Subject to :
(6.23)− (6.24), (6.29)

Bᵀkβk +Hᵀλ+ F ᵀπ = 0 (6.54)

αk + eᵀksβk +Gᵀksπ ≥ cᵀ2ky
′
ks k ∈ K, s ∈ Sk (6.55)

In Model (P7), βk and π are vectors of dual variables for constraints (6.26) and (6.52)
respectively, αk is the dual variable of constraint (6.25) defined for each k ∈ K and Gks

is the column in G that includes coefficients of variable wks. To write the dual of the inner
max problem in Model (P6) we have supposed that linear constraints hidden in uncertainty
set U in constraint (6.28) are represented by Hu ≤ b4. In Model (P7), λ denotes the vector
of dual variables for Hu ≤ b4.

Algorithm 6.2 provides the pseudo code of the dual algorithm. In Line 2, we suppose that
no instance of constraint (6.52) is available at the beginning of the algorithm and F , G and
b3 are empty. “Ite”is the iteration counter of the loop starting in Line 3. In Line 5, we solve
Model (P7) to obtain a feasible solution for (x̂, ŷ′). For a fixed solution (x̂, ŷ′) in Model (P6),
the inner max problem is an integer program and we denote it by InnerMax(x̂, ŷ′). In Line 7,
we call Procedure 6.2. In each iteration of this procedure, we solve the linear programming
relaxation of InnerMax(x̂, ŷ′) and obtain a new fractional scenario (û, ŵ). Then this procedure
generates some valid cuts to remove this fractional scenario. This procedure continues until
it cannot detect any other violated cut or time limit AlgT imeLimit is reached. We use
an integer programming solver to perform Procedure 6.2 and let it generate valid cuts as
explained above. In calling the integer programming solver, we limit the maximum number
of nodes to be explored in the branch and bound tree to one. In Line 8 in Algorithm 6.2,
we extract the cuts generated by the integer programming solver and update F , G and b3

in models (P6) and (P7). In Lines 9, the algorithm checks stopping criteria. One of these
stopping criteria checks if the percentage of the objective value improvement obtained in the
current iteration is less than or equal to parameter δDualacc .

The dual algorithm is a heuristic algorithm and does not necessarily find the optimal solu-
tion. Appendix C.10 presents an example to demonstrate that the dual algorithm does not
guarantee the optimality. In the Benders algorithm presented by Algorithm 6.1, in Line 3 we
solve Model (P7) with empty F , G and b3 to find an initial solution (x̂, ŷ′).

120

Algorithm 6.2. Dual algorithm
1: Input parameters : LocalT imeLimit , AlgT imeLimit and δDualacc .
2: Set Ite = 0 and empty F , G and b3 in Models (P6) and (P7).
3: repeat
4: Ite+ +.
5: Solve Model (P7) with time limit LocalT imeLimit to obtain a feasible solution (x̂, ŷ′).
6: Set ObjIte equal to the objective value of Model (P7).
7: Apply Procedure 6.2 to generate some cuts (6.52).
8: Extract the generated cuts and update F , G and b3 in models (P6) and (P7).
9: until (No cut is generated in Line 7 in this iteration or time limit AlgT imeLimit is

reached or (100(ObjIte −ObjIte−1)/ObjIte−1 ≤ δDualacc))

Procedure 6.2. Cut generation for the dual algorithm
repeat
Solve the linear programming relaxation of InnerMax(x̂, ŷ′) to obtain (û, ŵ).
Detect some valid cuts to remove the fractional solution (û, ŵ).
Update F , G and b3 in InnerMax(x̂, ŷ′).

until (No valid cut is generated or time limit AlgT imeLimit is reached)

6.4.3 Benders-dual Algorithm

In this section, we combine the Benders and dual algorithms to create a more efficient al-
gorithm. In this hybrid algorithm the Benders algorithm guarantees the convergence of the
algorithm. The dual algorithm improves the overall efficiency by generating valid cuts for the
adversarial problem and also by finding better solutions (x̂, ŷ′) through solving Model (P7).

Algorithm 6.3 provides the pseudo code of the hybrid algorithm. In Line 3 of this algorithm,
we obtain an initial solution (x̂, ŷ′) by solving Model (P7) while F , G and b3 are ignored. Lines
4 to 8 together with Line 20 are the same as the main loop of the Benders algorithm given
in Algorithm 6.1. The algorithm finds an adversarial scenario by solving the subproblem in
Line 6. We then add a new optimality cut to the master problem and solve it to find a new
solution (x̂, ŷ′). Then if time limit WarmupT imeLimit is already reached, the algorithm
enters an inner loop starting in Line 11. This loop is taken from the dual algorithm and
improves the current solution (x̂, ŷ′) by iteratively generating cuts (6.52) in Line 13 and then
solving Model (P7) in Line 15. Then we check the stopping criteria of the dual algorithm in

121

Algorithm 6.3. Benders-Dual algorithm
1: Input parameters : WarmupT imeLimit, AlgT imeLimit, LocalDualT imeLimit,
EvaT imeLimit, δDualacc and δBendersacc .

2: Set UB =∞, LB = −∞, m = 0 and empty F , G and b3 in models (P6) and (P7).
3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat
5: Modify the objective function of subproblem (SP) using solution (x̂, ŷ′).
6: Solve the subproblem with the proposed stopping condition and update UB if it is

necessary.
7: Add a new optimality cut to the master problem and set m = m+ 1.
8: Solve the master problem with the proposed stopping condition, update LB and save

(x̂, ŷ′) in the solution pool.
9: if (WarmupT imeLimit is reached) then

10: Set Ite = 0.
11: repeat
12: Ite+ +.
13: Apply Procedure 6.2 using solution (x̂, ŷ′) to generate some cuts (6.52).
14: Extract the generated cuts and update F , G and b3 in models (P6) and (P7).
15: Solve Model (P7) to obtain a solution (x̂, ŷ′) and save it in the solution pool.
16: Set ObjIte to the objective value of Model (P7).
17: until (No cut is generated in Line 14 or time limit LocalDualT imeLimit is reached

or 100(ObjIte −ObjIte−1)/ObjIte−1 ≤ δDualacc)
18: Choose the best solution (x̂, ŷ′) from the solution pool.
19: end if
20: until (100(UB − LB)/LB ≤ δBendersacc or AlgT imeLimit is reached)
21: Apply Procedure 6.1 with parameters EvaT imeLimit, and δBendersacc to improve UB.

Line 17. To check if time limit LocalDualT imeLimit is reached, the algorithm tracks the
time from the start of the inner loop in Line 11. After leaving the inner loop in Line 17 and
before starting a new iteration of the algorithm, we have to decide on the new solution (x̂, ŷ′)
to modify the objective function of the subproblem in Line 5. Therefore, during the algorithm
we save all generated solutions (x̂, ŷ′) in a solution pool. Then in Line 18 among all solutions
in the pool, we choose the one with the lowest worst objective value against all generated
adversarial scenarios as the current solution (x̂, ŷ′). Similar to the Benders algorithm with
stopping conditions for the master problem and the subproblem, we apply Procedure 6.1 at

122

the end of the algorithm in order to improve the best upper bound UB. As explained before,
this procedure evaluates solutions (x̂, ŷ′) separately within a total time limit EvaT imeLimit.
The other point about the Benders-dual algorithm is that time limit WarmupT imeLimit is
used in Line 9 in order to prevent from entering the inner loop in Line 11 before this time
limit because on small instances the Benders algorithm converges very fast without any need
of the dual algorithm.

There are generally two advantages for combining the Benders and dual algorithms. First, by
generating cuts (6.52) in the dual algorithm and including them in the subproblem, we hope
that the algorithm can solve the subproblem faster in next iterations. Also it is possible to
improve the best solution (x̂, ŷ′) by solving Model (P7) in Line 17 in Algorithm 6.3.

6.5 Computational results

In this section, we present extensive computational results for the nurse planning problem
introduced in Section 6.2. We implemented all algorithms in C++ and used IBM ILOG
CPLEX 12.6 to solve the mixed integer programs. We ran experiments on a computer with
two Intel Xeon X5675 processors, 3.07 Ghz, and a total of 12 cores. We ran different instances
using different cores separately.

6.5.1 Instances

We generated 1000 instances with different parameter settings. The parameters considered in
the generation of the instances include the length of the planning horizon (L), the incentive
factor (IF) and the number of operating rooms over the planning horizon (OR). We set the
number of weeks in the planning horizon to {2, 3, 4, 5}. We also assume that surgeries are
scheduled only on workdays. We define the incentive factor (IF) as the ratio of c2/c1 where c1

and c2 are the daily cost of first-stage and second-stage nurses in Objective function (6.7). A
higher value of the incentive factor shows that the hospital pays more to second-stage nurses
than first-stage ones. We set the incentive factor to {1.1, 1.3, 1.5, 1.7, 1.9}. We suppose that
first-stage nurses are paid 1 unit cost per hour which for 8 work hours results in c1 = 8.
Furthermore, we also fix the number of operating rooms over the planning horizon at {1, 2,
3, 4, 5}. For each operating room we generate 3, 4, or 5 surgeries randomly with a uniform
distribution. Considering a full factorial experiment, 100 combinations of L, IF and OR are
possible and we generate 10 instances for each problem setting for a total of 1000 instances.
For each patient, we generate two scenarios for the length of stays in ICU and wards. In each
scenario, both lengths of stays are uniformly generated from interval [1 day, 10 days]. The

123

total number of global scenarios which include information for all patients can be computed
by 2|T | where |T | is the number of patients in the planning horizon. It is worth noting that
even in our small-sized instances there is a large number of global scenarios.

We also assume that each nurse works for 8 hours a day (δ = 8) and the average daily service
time for each patient is 2 hours (ρ = 2).

6.5.2 Parameters

In Algorithms 6.1 to 6.3, we set AlgT imeLimit to 2 hours. In the Benders-Dual algorithm,
we fix the convergence limits δBendersacc and δDualacc at 0.1%. We use the same values δBendersacc

and deltaDualacc for the Bender and dual algorithms respectively. We also consider 5 seconds
for TimeLB and TimeUB in the stopping conditions of the master problem and the subpro-
blem in Algorithms 6.1 and 6.3. Furthermore, in Procedure 6.1 of Algorithms 6.1 and 6.3
we set EvaT imeLimit to 2 hours. Therefore, considering parameters AlgT imeLimit and
EvaT imeLimit, we run a problem instance for at most 4 hours by Algorithms 6.1 and 6.3
and 2 hours by Algorithm 6.2. In Algorithms 6.2 and 6.3, we fix LocalDualT imeLimit at 30
seconds. In the Benders-dual algorithm, we consider 20 minutes for WarmupT imeLimit.

6.5.3 Results

A short summary of the results are as follows : 1) The dual algorithm converges in a few
number of iterations and therefore results in larger optimality gaps compared to the other
algorithms. 2) In the Benders algorithm the optimality gap decreases considerably during
the algorithm (from around 53% to less than 4%). 3) The Benders-dual algorithm relatively
outperforms the Benders algorithm in terms of the objective value. In both algorithms the
lower bound improve quickly in initial iterations. 4) The value of adjustability, a criterion
defined to compare the quality of the objective value for the two-stage robust model with
that of the non-adaptive robust problem, shows that by solving the adaptive problem we find
solutions which are around 5% less costly. 5) We have also observed that in instances where
second-stage nurses are paid with a lower rate, the number of nurses hired in the first-stage
is fewer and the value of adjustability is higher.

We report the results of the Benders and dual algorithms for instances with the planning
horizon of 2, 3, 4 and 5 weeks in Tables 6.2 to 6.5 respectively. Tables 6.6 to 6.9 also present
the results of the Benders-dual algorithm for different planning horizons. In all of these
tables, each row represents the average over 10 instances. Under “Data Info.”, “IF”, “OR”,
and “Sur.”respectively give the incentive factor, the number of operating room, and the
number of surgeries over the planning horizon. “Time (sec)”gives the total computational

124

time of algorithms in seconds. Also “Ite.”gives the number of iterations that algorithms
repeat their main loops. Furthermore, “LB∗. ”and “UB∗. ”indicate the best lower and up-
per bounds in the last iteration of algorithms and “Gap∗. ”computes the gap between these
bounds. The subscripts of “LB∗. ”, “UB∗. ”and “Gap∗. ”in Tables 6.2 to 6.9 are either “B”,
“D”or “BD”to represent the Benders, dual and Benders-dual algorithms respectively. Since
the dual algorithm does not provide any lower bound we do not report LB∗D in Tables 6.2
to 6.5. We use the best lower bound of the Benders algorithm (LB∗B) to compute Gap∗D (i.e.,
Gap∗D = 100((UB∗D − LB∗B)/LB∗B).

In Tables 6.2 to 6.5, under “Benders algorithm”, “LB1”and “UB1”give the lower and upper
bounds in the first iteration of the Benders algorithm and Gap1 computes the gap between
these bounds. “N∗”gives the average number of first-stage nurses in the planning horizon for
the best obtained solution. In the nurse planning problem if we forbid hiring the second-stage
nurses, the problem will be a non-adjustable robust problem. In Appendix C.11 we explain
how to solve the non-adjustable version of the robust nurse planning problem presented in
Section 6.2. In Tables 6.2 to 6.5, under “Benders algorithm”, we report some computational
results of the non-adjustable problem and compare them with the results of the Benders
algorithm. “Nnonadj”gives the average number of first-stage nurses in the optimal solution
of the non-adjustable problem. For the best and non-adjustable solutions we present more
details including the ranges and the standard deviations in Appendix EC.12. The results
in this appendix show that the standard deviations are insignificant compared to averages
presented in Tables 6.2 to 6.5. “Vadj”represents the value of adjustability. We compute it
by 100(Optnonadj − UB∗B)/(UB∗B) where Optnonadj is the optimal objective value of the non-
adjustable problem. The value of adjustability shows how much the objective value can be
worse if we do not have the flexibility of hiring second-stage nurses. In Tables 6.2 to 6.5,
“Imp”, gives the percentage of the upper bound improvement obtained during the Benders
algorithm. We compute it by 100(UB1 − UB∗B)/UB1.

In Tables 6.2 to 6.9, under “Dual algorithm”and “Benders-dual algorithm”, “TC”gives the
total number of cuts that Procedure 6.2 generates in the dual and Benders-dual algorithms.
Some cuts generated in initial iterations of Algorithms 6.2 and 6.3 are dominated by other
cuts generated in next iterations. In this case, CPLEX removes the dominated cuts from the
inner max problem of Model (P6). “TCLI”gives the total number of non-dominated cuts in
the last iteration of the algorithms.

In Tables 6.6 to 6.9, “C1”to “C8”give the number of different cuts generated by Procedure 6.2
in the Benders-dual algorithm. Cuts referred by these columns are respectively cliques cuts,
covers cuts, flow covers cuts, fractional cuts, generalized upper bound covers cuts, implied

125

bound cuts, mixed rounding cuts and zero-half cuts. More explanations about these cuts are
available in CPLEX User’s Manual 12.6 (IBM 2015). “∆(UB∗)”also gives the percentage by
which the best upper bound of the Benders-dual algorithm is superior to the best upper
bound of the Benders algorithm (i.e., ∆(UB∗) = 100(UB∗B − UB∗BD)/UB∗B).

In Tables 6.2 to 6.5, the averages of initial gaps in the first iteration of the Benders algorithm
(Gap1) are 66.29%, 55.10%, 47.56%, and 42.80%. At the end of the Benders algorithm the
optimality gaps decrease to 0.05%, 2.61%., 5.13%, and 6.98% respectively. Comparison of
“Gap1”and “Gap∗B”demonstrates that the Benders algorithm significantly improves the op-
timality gap. Moreover, in these tables, the averages of “Imp”are 5.14%, 4.80%, 3.31%, and
2.34%. These averages show that the Benders algorithm improves the upper bound during
the algorithm and the improvement of optimality gap is not only because of improving the
lower bound. We also observe that the upper bound improvement decreases as the length of
the planning horizon increases. This observation confirms that instances with longer planning
horizons are more difficult and the Benders algorithm becomes less effective in solving them.
Similarly instances with more operating rooms are more difficult and the Benders algorithm
performs more iterations before stopping for such instances.

In Tables 6.2 to 6.5, the averages of adjustability values (Vadj) are 6.76%, 7.46%, 6.30%, and
5.33%. These values demonstrate that hiring nurses in the second stage improves the objective
value of the non-adjustable problem around 6.46% on average. We can see that there is no
significant relation between the length of the planning horizon and the value of adjustability.
However, as depicted in Figure 6.1 there is a strong relation between the adjustability value
and incentive factor. As shown in this figure as the incentive factor increases the adjustability
value decreases. We expected this observation because a higher incentive factor means that
second-stage nurses are proportionally paid more than first-stage nurses. As a result the
decision maker is more inclined in hiring first-stage nurses rather than second-stage nurses,
and the adjustability value decreases. In Tables 6.2 to 6.5, we observe that for all instances
the values of Nnonadj are higher than the values of N∗. This is because in the case of non-
adjustability, we are not allowed to hire any second-stage nurse, and therefore we hire more
first-stage nurses. Figure 6.2 also depicts the relation between the incentive factor and the
average number of first-stage nurses in the best solution (N∗). As expected we can see that
N∗ is increasing in the incentive factor. It is also interesting to see that for instances with
the planning horizon of two weeks, N∗ does not change as the incentive factor increases.
This behavior is not due to any poor performance of the Benders algorithm because as we
can see in Table 6.2 the Benders algorithm solves most instances optimally. For instances in
Table 6.2 we increased the value of IF gradually and observed that values of N∗ increase for
IF≥ 2 and reach the values of Nnonadj at IF= 11.

126

Figure 6.1 Changes in the value of adjustability in terms of incentive factor for different
planning horizons.

Figure 6.2 Changes in the number of nurses in terms of incentive factor for different planning
horizons.

In Tables 6.2 to 6.5, we can see that for most instances the dual algorithm converges quickly
after only a few iterations and the average optimality gaps are worse than those of the Benders
algorithm. This is because the dual algorithm is a heuristic, while the Benders algorithm is
an exact algorithm and converges to the optimal solution. We can also see that the values

127

of “TC”and “TCLI” are very close even for instances where the dual algorithm does not
converge very fast.

In Tables 6.6 to 6.9, the averages of best gaps for the Benders-dual algorithm (Gap∗BD) are
0.61%, 3.30%, 5.46%, and 7.58%. These averages are higher than the averages of optima-
lity gaps for the Benders algorithm. However, in these tables, the averages of “∆(UB∗)”are
-0.46%, 0.09%, 0.94%, and 1.19% respectively. These values show that the Benders-dual al-
gorithm finds better upper bounds than the Benders algorithm in instances with planning
horizons of 3, 4, and 5 weeks. The averages of “∆(UB∗)”are especially more noticeable in the
last two tables considering the averages of “Gap∗B”and “Imp(%)”for the Benders algorithm
in Tables 6.4 and 6.5. In Tables 6.6 to 6.9 we observe that for instances with longer plan-
ning horizons the averages of computational time (Time (sec)) and also the total number
of generated cuts (TC) are higher. Furthermore, a comparison of “TC”and “TCLI” shows
that on average between 28% and 31% of cuts generated by Procedure 6.2 in the Benders-
dual algorithm are dominated by other cuts generated in next iterations of the algorithm.
Figure 6.3 also depicts the number of generated cuts during the Benders-dual algorithm for
instances with L = 5 and OR = 5 in Table 6.9. To draw this figure, iterations after time
limit WarmupTimeLimit are taken into account because before this time limit Procedure 6.2
does not generate any cut in the Benders-dual algorithm. Since the number of iterations in
the Benders-dual algorithm is different for each of the considered instances, we present the
iteration progress in the horizontal axis of Figure 6.3 in terms of percentage. In this figure,
the total number of generated cuts increases linearly in terms of the number of iterations.
We can observe that there is a linear trend for each single cut except for Type 1 cuts (C1)
that are generated more in the beginning. This is because Type 1 cuts are clique cuts and
most of them are detected and added to the model in the presolve procedure of CPLEX.

Figure 6.4 provides insights into lower and upper bound improvements during the Benders-
dual algorithm. In this figure, it is noticeable that in early iterations of the algorithm,
the lower bound increases very rapidly from 1889 to 2278 and then within the initial
WarmupT imeLimit it improves gradually. However, after WarmupTimeLimit the algorithm
does not improve the lower bound significantly. The reason is that after WarmupTimeLi-
mit the Benders-dual algorithm starts to call Procedure 6.2 to generate cuts. As a result the
main loop of Algorithm 6.3 becomes more time consuming and the algorithm calls the master
problem less often than before. Therefore the lower bound does not improve with the same
rate. Moreover, in this figure we can see that before WarmupTimeLimit the upper bound
decreases slowly at a linear rate, but after this time limit it improves very quickly because of
calls to Procedure 6.2.

128

Figure 6.3 Number of cuts generated during the Benders-dual algorithm for instances with
L = 5 and OR = 5.

Figure 6.4 Best lower and upper bounds during the Benders-dual algorithms for all instances
in Tables 6.6 to 6.9.

6.6 Conclusion

In this paper, we have considered a class of two-stage robust optimization models with inte-
ger adversarial variables. We discussed that this class of robust problems is useful in mode-
ling two-stage robust resource planning problems where some tasks with uncertain arrivals
and durations are expected. We exploited the structure of the problem using Dantzig-Wolfe

129

decomposition and reduced the original two-stage robust problem to a single-stage robust
problem. We then proposed a Benders algorithm with a master problem and a subproblem
which are mixed-integer programs. As it is unwieldy to optimally solve these mixed integer
programs in each iteration of the Benders algorithm we presented novel stopping conditions
for them and provided the relevant convergence proofs. We also developed a heuristic algo-
rithm, namely dual algorithm, and combined it with the Benders algorithm to create a more
effective algorithm capable of finding solutions with tighter optimality gaps. We performed
extensive computational experiments to compare the proposed algorithms in a nurse planning
problem. The computational results demonstrated that the Benders and hybrid algorithms
find solutions with an average optimality gap of less than 5% in instances with planning hori-
zons up to five weeks. A possible future research direction would be to explore the extension
of the proposed algorithms to multi-stage robust problems with integer adversarial variables.
Another extension would be to develop a column-and-constraint generation to solve the refor-
mulated problem in the case that it has a large number of variables and constraints. Finally,
applying the proposed algorithms to other applications should definitely be of interest.

130

Table 6.2 – Computational results of the Benders and dual algorithms for instances with a planning horizon of two
weeks (L = 2).

Data Info. Benders algorithm Dual algorithm

IF OR Sur. LB1 UB1 LB∗B UB∗B
Time
(sec)

Ite. N∗ Nnonadj
Vadj

(%)
Gap1

(%)
Gap∗B
(%)

Imp

(%)
TC TCLI

Time
(sec)

Ite. UB∗D
Gap∗D
(%)

1.1 1 39 294 339 325 325 1 27 2.63 3.15 8.48 15.98 0 4.18 59 57 4 4 337 3.7
2 79 600 655 626 626 12 47 5 6.2 10.89 9.31 0 4.36 476 458 187 24 642 2.55
3 119 902 966 926 926 63 64 7.45 9.1 10.07 7 0 4.09 621 600 500 28 943 1.89
4 157 1182 1260 1211 1211 1258 90 9.73 12.07 11.65 6.59 0 3.92 790 762 495 30 1230 1.58
5 202 1501 1583 1530 1531 5888 110 12.45 15.19 11.12 5.47 0.08 3.27 618 594 168 21 1551 1.41

1.3 1 39 241 353 331 331 2 30 2.63 3.15 6.63 47.53 0 6.12 12 11 0 2 353 6.62
2 79 396 691 638 638 13 48 5 6.2 8.78 81.42 0 7.62 137 136 87 7 686 7.48
3 119 506 1019 942 942 61 66 7.46 9.1 8.16 104.95 0 7.53 28 28 0 2 1015 7.65
4 157 699 1352 1233 1233 1094 87 9.74 12.07 9.66 94.94 0 8.8 38 37 0 2 1346 9.18
5 202 1014 1701 1553 1558 8575 119 12.44 15.19 9.19 69.84 0.32 8.41 44 38 0 2 1694 9.07

1.5 1 39 241 353 336 336 2 31 2.63 3.15 4.85 47.53 0 4.54 18 17 0 2 352 4.73
2 79 378 694 650 650 12 50 5 6.2 6.75 87.44 0 6.27 34 33 0 2 693 6.49
3 119 506 1019 959 959 44 65 7.52 9.1 6.3 104.95 0 5.91 55 53 0 3 1012 5.57
4 157 699 1352 1255 1255 1167 93 9.76 12.07 7.74 94.94 0 7.17 41 39 0 2 1345 7.21
5 202 1014 1701 1578 1581 7906 113 12.44 15.19 7.62 69.84 0.19 7.07 47 43 0 2 1695 7.45

1.7 1 39 241 353 341 341 1 28 2.67 3.15 3.32 47.53 0 3.16 18 17 0 2 353 3.24
2 79 378 694 662 662 13 50 5.06 6.2 4.86 87.44 0 4.59 38 37 0 2 694 4.75
3 119 506 1019 974 974 44 65 7.54 9.1 4.64 104.95 0 4.42 54 52 0 3 1013 3.96
4 157 699 1352 1276 1276 1097 87 9.8 12.07 5.97 94.94 0 5.62 48 46 1 2 1346 5.5
5 202 1014 1701 1602 1605 7529 110 12.45 15.19 5.98 69.84 0.2 5.63 49 46 1 2 1696 5.88

1.9 1 39 241 353 346 346 2 29 2.67 3.15 1.84 47.53 0 1.77 12 11 0 2 353 1.83
2 79 378 694 673 673 11 49 5.06 6.2 3.11 87.44 0 2.98 39 38 0 2 694 3.07
3 119 506 1019 989 989 51 66 7.54 9.1 3.03 104.95 0 2.93 44 43 0 2 1016 2.73
4 157 699 1352 1297 1297 2058 96 9.8 12.07 4.25 94.94 0 4.07 60 57 0 2 1347 3.85
5 202 1014 1701 1625 1632 8667 115 12.44 15.19 4.22 69.84 0.41 4.04 39 35 0 2 1694 4.23

Average 119 634 1011 955 956 1823 69 7.48 9.14 6.76 66.29 0.05 5.14 137 132 58 6 1004 4.86

131

Table 6.3 – Computational results of the Benders and dual algorithms for instances with a planning horizon of three
weeks (L = 3).

Data Info. Benders algorithm Dual algorithm

IF OR Sur. LB1 UB1 LB∗B UB∗B
Time
(sec)

Ite. N∗ Nnonadj
Vadj

(%)
Gap1

(%)
Gap∗B
(%)

Imp

(%)
TC TCLI

Time
(sec)

Ite. UB∗D
Gap∗D
(%)

1.1 1 59 615 677 646 646 34 42 3.36 4.31 12.13 10.1 0 4.6 649 626 447 32 662 2.56
2 121 1247 1329 1268 1274 9253 105 6.59 8.64 13.97 6.6 0.46 4.12 1016 979 1381 39 1299 2.44
3 182 1819 1913 1839 1880 14400 132 9.66 12.61 12.75 5.16 2.23 1.73 1012 977 994 31 1875 1.94
4 240 2384 2479 2409 2478 13665 209 9.38 16.57 12.33 3.98 2.87 0.03 1125 1086 1376 31 2450 1.72
5 300 2974 3108 3006 3108 14400 293 12.73 20.72 11.96 4.52 3.38 0 1466 1419 1953 35 3055 1.62

1.3 1 59 450 716 660 660 29 39 3.36 4.31 9.63 66.56 0 7.72 388 378 464 21 699 5.87
2 121 918 1434 1298 1304 10628 111 6.55 8.64 11.33 66.9 0.52 9.05 480 458 290 18 1392 7.28
3 182 1414 2110 1875 1924 14400 152 9.6 12.61 10.19 52.07 2.57 8.86 598 572 287 15 2027 8.07
4 240 1906 2759 2452 2560 14400 243 12.6 16.57 8.74 46.73 4.41 7.23 551 527 279 12 2672 9.05
5 300 2584 3423 3065 3227 14400 471 15.74 20.72 7.85 33.91 5.27 5.73 970 931 941 20 3273 6.73

1.5 1 59 364 724 674 674 28 44 3.43 4.31 7.42 99.58 0 6.86 44 43 0 2 720 6.88
2 121 712 1452 1326 1328 5832 102 6.86 8.64 9.3 105.37 0.15 8.49 83 79 1 3 1437 8.34
3 182 1378 2119 1916 1970 13680 205 9.79 12.61 7.6 55.61 2.78 7.05 144 137 1 4 2100 9.59
4 240 1812 2783 2505 2626 14400 304 12.7 16.57 5.98 54.26 4.84 5.64 89 85 1 3 2778 10.93
5 300 2404 3480 3130 3310 14400 448 16.08 20.72 5.13 45.17 5.74 4.87 96 92 1 3 3467 10.76

1.7 1 59 364 724 685 685 26 49 3.51 4.31 5.63 99.58 0 5.29 39 38 0 2 719 4.95
2 121 712 1452 1349 1351 5508 95 6.91 8.64 7.46 105.37 0.13 6.92 92 90 1 3 1441 6.81
3 182 1378 2119 1953 2002 14400 164 9.83 12.61 5.87 55.61 2.51 5.53 127 123 1 3 2106 7.85
4 240 1812 2783 2552 2685 14400 241 12.81 16.57 3.67 54.26 5.18 3.53 87 83 1 3 2775 8.73
5 300 2404 3480 3183 3377 14400 345 16.08 20.72 3.04 45.17 6.09 2.94 120 114 2 4 3463 8.78

1.9 1 59 364 724 697 697 25 48 3.51 4.31 3.9 99.58 0 3.72 43 42 0 2 722 3.58
2 121 712 1452 1372 1372 3894 95 6.93 8.64 5.86 105.37 0 5.52 78 75 0 3 1442 5.16
3 182 1378 2119 1985 2053 13680 182 9.91 12.61 3.26 55.61 3.38 3.15 112 106 1 3 2106 6.05
4 240 1812 2783 2600 2754 14400 376 13.24 16.57 1.08 54.26 5.89 1.05 85 79 1 3 2780 6.93
5 300 2386 3480 3242 3468 14400 523 18.01 20.72 0.33 46.08 6.97 0.33 127 120 2 4 3462 6.76

Average 180 1452 2065 1907 1977 9964 201 9.57 12.57 7.46 55.1 2.61 4.8 385 370 337 12 2037 6.38

132

Table 6.4 – Computational results of the Benders and dual algorithms for instances with a planning horizon of four
weeks (L = 4).

Data Info. Benders algorithm Dual algorithm

IF OR Sur. LB1 UB1 LB∗B UB∗B
Time
(sec)

Ite. N∗ Nnonadj
Vadj

(%)
Gap1

(%)
Gap∗B
(%)

Imp

(%)
TC TCLI

Time
(sec)

Ite. UB∗D
Gap∗D
(%)

1.1 1 80 951 1033 987 987 1352 79 3.82 5.01 13.61 8.6 0 4.45 1044 1011 2372 42 1014 2.69
2 163 1897 2018 1923 1975 14400 128 7.59 9.88 12.06 6.38 2.7 2.13 1470 1422 3099 41 1969 2.39
3 241 2706 2846 2738 2846 14400 299 6.69 14.34 12.91 5.14 3.92 0 1319 1269 1901 33 2796 2.12
4 318 3527 3710 3567 3710 14400 334 10.52 18.73 13.15 5.17 3.99 0 1576 1520 1805 32 3641 2.06
5 397 4322 4662 4382 4661 14400 493 14.92 23.09 10.97 7.88 6.36 0.01 2931 2861 5535 42 4472 2.05

1.3 1 80 757 1103 1011 1011 1079 78 3.82 5.01 10.94 51.11 0 8.35 669 641 270 24 1064 5.26
2 163 1570 2179 1962 2021 13680 204 7.48 9.88 9.48 47.57 3.02 7.22 1018 972 1251 27 2081 6.11
3 241 2510 3112 2789 2946 14400 510 10.61 14.34 9.04 25.65 5.65 5.3 1530 1445 1925 30 2933 5.16
4 318 3401 4039 3639 3905 14400 720 13.9 18.73 7.49 18.77 7.31 3.3 1969 1874 2708 33 3779 3.86
5 397 4054 5039 4476 4892 14400 766 17.02 23.09 5.74 24.89 9.28 2.9 2645 2554 6300 40 4698 4.91

1.5 1 80 576 1122 1034 1034 1027 80 3.92 5.01 8.49 95.76 0 7.8 132 130 0 3 1107 7.08
2 163 1214 2213 2004 2074 14400 212 7.57 9.88 6.74 85.05 3.46 6.3 146 142 1 3 2197 9.64
3 241 2066 3212 2855 3029 14400 485 10.79 14.34 6.07 57.99 6.1 5.71 175 167 2 3 3192 11.82
4 318 2878 4197 3722 4019 14400 736 13.99 18.73 4.43 46.23 7.99 4.23 165 152 3 4 4175 12.18
5 397 3606 5172 4577 5043 14400 942 17.36 23.09 2.57 43.82 10.17 2.49 198 185 7 4 5151 12.54

1.7 1 80 576 1122 1052 1052 694 88 4.02 5.01 6.56 95.76 0 6.13 98 98 0 2 1109 5.39
2 163 1214 2213 2042 2120 13679 188 7.63 9.88 4.41 85.05 3.79 4.21 130 123 1 3 2199 7.7
3 241 2066 3212 2917 3113 14400 543 10.82 14.34 3.2 57.99 6.72 3.09 143 134 2 4 3192 9.43
4 318 2878 4197 3796 4134 14400 714 14.26 18.73 1.53 46.23 8.9 1.5 145 133 3 4 4183 10.2
5 397 3606 5172 4670 5155 14400 732 20.85 23.09 0.33 43.82 10.39 0.32 170 161 4 4 5154 10.37

1.9 1 80 576 1122 1070 1070 764 102 4.02 5.01 4.77 95.76 0 4.53 90 88 0 2 1117 4.34
2 163 1214 2213 2079 2170 14400 247 7.67 9.88 2.01 85.05 4.37 1.95 121 118 1 3 2201 5.87
3 241 2066 3212 2970 3185 14400 589 11.14 14.34 0.87 57.99 7.23 0.85 118 112 2 3 3199 7.73
4 318 2878 4197 3873 4195 14400 680 18.28 18.73 0.04 46.23 8.32 0.03 136 127 3 3 4184 8.05
5 397 3577 5172 4758 5172 14400 784 23.09 23.09 0 45.02 8.7 0 206 188 5 4 5156 8.35

Average 240 2267 3100 2836 3021 11659 429 10.87 14.21 6.3 47.56 5.13 3.31 734 705 1088 16 3039 6.69

133

Table 6.5 – Computational results of the Benders and dual algorithms for instances with a planning horizon of five
weeks (L = 5).

Data Info. Benders algorithm Dual algorithm

IF OR Sur. LB1 UB1 LB∗B UB∗B
Time
(sec)

Ite. N∗ Nnonadj
Vadj

(%)
Gap1

(%)
Gap∗B
(%)

Imp

(%)
TC TCLI

Time
(sec)

Ite. UB∗D
Gap∗D
(%)

1.1 1 101 1267 1366 1303 1309 10929 122 4.04 5.29 13.08 7.8 0.49 4.17 1454 1408 4939 52 1341 2.98
2 202 2437 2607 2467 2587 14400 182 7.31 10.33 11.79 6.97 4.85 0.74 1739 1682 3945 41 2537 2.83
3 302 3621 3807 3657 3807 14400 311 7.28 15.31 12.64 5.13 4.09 0 1923 1854 3522 39 3734 2.11
4 401 4712 5010 4766 5010 12281 423 11.74 20.19 12.83 6.31 5.1 0 2505 2445 4937 37 4882 2.43
5 503 5876 6402 5951 6402 10507 307 16.74 25.3 10.64 8.95 7.57 0 3811 3693 7200 34 6128 2.97

1.3 1 101 951 1462 1333 1341 11157 163 4.06 5.29 10.38 60.96 0.57 8.26 751 714 404 22 1418 6.32
2 202 2216 2822 2513 2646 14400 482 7.55 10.33 9.31 27.89 5.3 6.2 1819 1741 2776 38 2641 5.11
3 302 3394 4122 3720 3972 14400 591 11.33 15.31 7.96 21.45 6.76 3.6 2016 1931 3609 34 3917 5.24
4 401 4522 5456 4848 5412 13697 476 15.47 20.19 4.47 20.68 11.62 0.81 2706 2604 5040 36 5078 4.73
5 503 5636 6848 6059 6848 13398 408 20.57 25.3 3.44 21.79 13.02 0 3481 3367 6480 31 6434 6.2

1.5 1 101 786 1480 1363 1370 10342 171 4.15 5.29 8.03 92.55 0.53 7.42 153 148 1 3 1466 7.57
2 202 1738 2892 2578 2739 14400 476 7.72 10.33 5.59 70.92 6.24 5.28 109 107 1 2 2886 11.92
3 302 3031 4287 3808 4103 14400 640 11.47 15.31 4.51 43.01 7.74 4.31 162 153 3 3 4268 12.11
4 401 3866 5652 4966 5533 14400 793 16 20.19 2.15 47.23 11.44 2.09 203 194 3 3 5643 13.64
5 503 5048 7083 6202 7083 14400 522 25.3 25.3 0 40.65 14.21 0 260 247 10 4 7064 13.89

1.7 1 101 786 1480 1387 1393 7985 172 4.23 5.29 6.26 92.55 0.44 5.88 166 161 1 3 1469 5.92
2 202 1738 2892 2627 2806 14400 443 7.77 10.33 3.09 70.92 6.79 2.99 124 121 1 2 2884 9.8
3 302 3031 4287 3879 4219 14400 672 11.6 15.31 1.63 43.01 8.75 1.6 165 157 3 3 4273 10.16
4 401 3866 5652 5074 5644 14400 733 18.05 20.19 0.14 47.23 11.23 0.13 194 188 4 3 5644 11.23
5 503 5048 7083 6312 7083 12289 473 25.3 25.3 0 40.65 12.21 0 264 251 8 4 7069 11.98

1.9 1 101 786 1480 1410 1416 7644 244 4.29 5.29 4.54 92.55 0.4 4.33 208 202 1 4 1465 3.86
2 202 1738 2892 2675 2874 14400 580 8.91 10.33 0.66 70.92 7.41 0.64 161 155 2 3 2881 7.7
3 302 3031 4287 3951 4287 14400 634 14.94 15.31 0.01 43.01 8.52 0 155 150 3 3 4271 8.13
4 401 3866 5652 5176 5652 13680 650 20.19 20.19 0 47.23 9.21 0 210 201 4 3 5644 9.06
5 503 5085 7083 6439 7083 12686 455 25.3 25.3 0 39.57 10.01 0 250 237 7 4 7066 9.75

Average 302 3123 4163 3779 4105 12952 445 12.45 15.28 5.33 42.8 6.98 2.34 1000 964 1716 16 4084 7.51

134

Table 6.6 – Computational results of the Benders-dual algorithm for instances with a planning horizon of two weeks (L = 2).

Data Info. Benders-dual algorithm

IF OR Sur. C1 C2 C3 C4 C5 C6 C7 C8 TC TCLI
Time
(sec)

Ite. LB∗
BD UB∗

BD

Gap∗
BD

(%)
∆(UB∗)

(%)

1.1 1 39 0 0 0 0 0 0 0 0 0 0 2 35 325 325 0 0
2 79 0 0 0 0 0 0 0 0 0 0 43 97 626 626 0 0
3 119 0 0 0 0 0 0 0 0 0 0 326 172 926 926 0 0
4 157 60 258 258 153 54 118 770 257 1928 1380 6759 322 1209 1216 0.59 -0.44
5 202 79 343 355 132 90 123 1100 169 2390 1669 7494 313 1524 1539 1.04 -0.54

1.3 1 39 0 0 0 0 0 0 0 0 0 0 2 35 331 331 0 0
2 79 0 0 0 0 0 0 0 0 0 0 57 102 638 638 0 0
3 119 5 37 32 24 7 8 75 51 240 181 1083 212 942 943 0.1 -0.11
4 157 87 372 237 190 73 120 869 347 2295 1661 7637 334 1229 1246 1.34 -1.05
5 202 69 425 271 130 87 118 1016 197 2312 1708 8074 322 1544 1576 2.1 -1.19

1.5 1 39 0 0 0 0 0 0 0 0 0 0 2 34 336 336 0 0
2 79 0 0 0 0 0 0 0 0 0 0 53 100 650 650 0 0
3 119 13 54 19 46 11 16 143 112 413 299 1646 224 959 960 0.16 -0.17
4 157 88 392 218 202 60 112 904 361 2336 1692 7610 339 1252 1272 1.6 -1.38
5 202 110 441 232 165 76 149 1113 177 2463 1777 8118 324 1570 1608 2.43 -1.75

1.7 1 39 0 0 0 0 0 0 0 0 0 0 2 33 341 341 0 0
2 79 0 0 0 0 0 0 0 0 0 0 22 69 662 662 0 0
3 119 0 0 0 0 0 0 0 0 0 0 163 112 974 974 0 0
4 157 110 220 148 99 88 97 664 152 1577 1109 5379 237 1274 1285 0.78 -0.69
5 202 122 367 206 155 157 144 1132 137 2420 1612 9016 300 1599 1626 1.69 -1.3

1.9 1 39 0 0 0 0 0 0 0 0 0 0 2 33 346 346 0 0
2 79 0 0 0 0 0 0 0 0 0 0 17 65 673 673 0 0
3 119 0 0 0 0 0 0 0 0 0 0 110 103 989 989 0 0
4 157 125 168 156 72 119 66 481 124 1311 946 5063 259 1296 1311 1.1 -1.04
5 202 195 281 278 110 210 98 885 119 2176 1534 7983 297 1623 1661 2.34 -1.75

Average 119 43 134 96 59 41 47 366 88 874 623 3067 179 954 962 0.61 -0.46

135

Table 6.7 – Computational results of the Benders-dual algorithm for instances with a planning horizon of three weeks (L = 3).

Data Info. Benders-dual algorithm

IF OR Sur. C1 C2 C3 C4 C5 C6 C7 C8 TC TCLI
Time
(sec)

Ite. LB∗
BD UB∗

BD

Gap∗
BD

(%)
∆(UB∗)

(%)

1.1 1 59 0 0 0 0 0 0 0 0 0 0 101 83 646 646 0 0
2 121 58 254 293 163 48 132 1184 287 2418 1807 8442 280 1264 1279 1.2 -0.41
3 182 90 303 338 98 77 126 1279 131 2442 1828 10806 274 1828 1858 1.63 1.17
4 240 96 290 323 34 100 132 954 61 1990 1408 11583 235 2396 2439 1.79 1.58
5 300 105 291 301 12 135 143 965 39 1989 1341 12938 251 2988 3050 2.05 1.88

1.3 1 59 0 0 0 0 0 0 0 0 0 0 139 102 660 660 0 0
2 121 73 336 236 155 61 140 1210 379 2590 1974 8969 280 1285 1321 2.8 -1.32
3 182 104 451 272 99 86 159 1175 141 2487 1874 12881 274 1851 1922 3.84 0.07
4 240 77 520 306 53 117 244 1148 98 2563 1850 13749 272 2423 2525 4.24 1.33
5 300 116 540 192 22 137 226 922 41 2194 1546 14185 269 3026 3154 4.22 2.23

1.5 1 59 0 0 0 0 0 0 0 0 0 0 58 81 674 674 0 0
2 121 108 347 199 161 57 147 1415 358 2793 2154 9413 287 1310 1356 3.46 -2.09
3 182 87 463 209 118 63 169 1250 125 2485 1862 12539 275 1892 1976 4.41 -0.3
4 240 86 484 221 68 97 254 1166 74 2451 1796 12577 273 2475 2605 5.25 0.8
5 300 156 473 164 42 101 250 1106 47 2338 1690 14400 269 3089 3262 5.6 1.44

1.7 1 59 0 0 0 0 0 0 0 0 0 0 37 53 685 685 0 0
2 121 118 207 113 110 101 79 651 180 1557 1038 8637 228 1344 1369 1.83 -1.32
3 182 116 404 206 117 103 158 1337 119 2559 1829 13336 279 1934 2018 4.35 -0.8
4 240 115 369 177 63 128 235 1094 64 2246 1590 13805 272 2525 2676 5.94 0.34
5 300 168 451 200 54 143 215 1209 53 2493 1771 14400 272 3150 3375 7.13 0.08

1.9 1 59 0 0 0 0 0 0 0 0 0 0 41 59 697 697 0 0
2 121 195 193 162 78 212 80 630 155 1705 1154 7963 229 1368 1390 1.57 -1.33
3 182 248 339 278 62 268 166 1071 120 2552 1768 11888 279 1967 2078 5.64 -1.24
4 240 218 352 277 46 260 188 1027 85 2452 1660 12786 278 2568 2762 7.54 -0.31
5 300 248 274 212 25 239 181 857 64 2100 1330 12542 275 3201 3455 7.92 0.39

Average 180 103 294 187 63 101 137 866 105 1856 1331 9529 229 1890 1969 3.3 0.09

136

Table 6.8 – Computational results of the Benders-dual algorithm for instances with a planning horizon of four weeks (L = 4).

Data Info. Benders-dual algorithm

IF OR Sur. C1 C2 C3 C4 C5 C6 C7 C8 TC TCLI
Time
(sec)

Ite. LB∗
BD UB∗

BD

Gap∗
BD

(%)
∆(UB∗)

(%)

1.1 1 80 43 132 199 125 31 99 523 512 1663 1217 5703 256 983 985 0.19 0.16
2 163 109 207 345 108 64 120 1354 155 2462 1851 12149 248 1913 1951 1.94 1.21
3 241 89 229 310 32 95 134 1170 76 2135 1576 14288 229 2719 2786 2.46 2.08
4 318 103 273 262 8 103 119 755 38 1661 1109 14031 235 3542 3635 2.64 1.99
5 397 158 483 290 2 151 197 1024 35 2338 1649 14321 235 4349 4475 2.9 3.98

1.3 1 80 75 151 184 147 42 106 621 624 1949 1453 6380 258 1007 1021 1.39 -0.99
2 163 125 396 259 92 73 160 1346 210 2661 2044 14158 253 1929 2017 4.54 0.19
3 241 59 400 266 28 119 194 1022 96 2183 1596 14361 237 2742 2891 5.42 1.87
4 318 135 535 263 9 141 182 841 64 2170 1587 14400 242 3573 3781 5.82 3.16
5 397 229 655 185 7 121 181 1083 41 2502 1905 14400 238 4388 4655 6.1 4.83

1.5 1 80 117 191 175 146 84 114 719 538 2086 1566 5778 252 1030 1047 1.62 -1.31
2 163 157 401 239 118 78 166 1535 215 2909 2255 13696 254 1970 2082 5.69 -0.43
3 241 78 431 160 57 99 216 1068 91 2199 1637 14400 237 2801 2995 6.94 1.1
4 318 164 504 188 37 137 232 1051 68 2381 1778 14400 241 3653 3930 7.59 2.19
5 397 267 377 168 19 144 216 1011 55 2256 1537 14400 240 4481 4984 11.18 1.16

1.7 1 80 47 29 27 15 23 14 86 56 297 206 2062 127 1052 1054 0.18 -0.19
2 163 180 295 167 75 135 115 968 127 2062 1429 13714 252 2021 2117 4.72 0.12
3 241 115 375 160 62 141 203 1104 87 2246 1626 14400 238 2859 3090 8.11 0.72
4 318 205 377 178 37 166 202 970 70 2205 1504 13853 245 3728 4112 10.27 0.56
5 397 312 209 130 13 168 167 625 54 1678 882 14390 247 4581 5141 12.24 0.26

1.9 1 80 73 63 74 32 56 28 193 128 647 468 2603 129 1070 1073 0.27 -0.28
2 163 274 256 238 54 230 113 1002 152 2319 1621 11568 249 2059 2179 5.77 -0.41
3 241 212 258 198 38 248 159 838 95 2046 1316 12190 244 2913 3180 9.17 0.12
4 318 271 276 194 30 240 186 767 85 2049 1236 12844 249 3801 4162 9.51 0.8
5 397 318 241 126 11 193 217 708 51 1865 1019 14392 245 4683 5141 9.77 0.6

Average 240 157 310 199 52 123 154 895 149 2039 1443 11955 235 2794 2979 5.46 0.94

137

Table 6.9 – Computational results of the Benders-dual algorithm for instances with a planning horizon of five weeks (L = 5).

Data Info. Benders-dual algorithm

IF OR Sur. C1 C2 C3 C4 C5 C6 C7 C8 TC TCLI
Time
(sec)

Ite. LB∗
BD UB∗

BD

Gap∗
BD

(%)
∆(UB∗)

(%)

1.1 1 101 74 138 262 103 44 122 765 470 1978 1462 11384 230 1290 1320 2.27 -0.82
2 202 80 158 336 62 64 118 1171 121 2110 1605 14179 228 2447 2526 3.23 2.36
3 302 141 207 367 15 125 126 1055 70 2106 1532 14400 219 3632 3728 2.65 2.05
4 401 236 376 426 4 137 172 1300 61 2713 1998 14400 218 4716 4884 3.56 2.49
5 503 409 684 361 3 138 154 1375 45 3168 2402 14400 216 5903 6131 3.85 4.23

1.3 1 101 106 171 216 97 41 140 731 508 2009 1479 11104 250 1318 1362 3.39 -1.59
2 202 108 366 249 60 79 143 1126 166 2297 1764 14400 226 2468 2628 6.48 0.67
3 302 89 443 292 16 163 197 951 97 2246 1658 14400 217 3625 3876 6.91 2.41
4 401 192 725 259 3 139 233 1115 68 2734 2059 14400 219 4725 5085 7.62 6
5 503 473 852 270 6 124 186 1659 53 3623 2866 14400 213 5941 6375 7.31 6.9

1.5 1 101 180 224 245 112 80 142 928 508 2420 1789 10702 254 1346 1393 3.5 -1.72
2 202 118 357 159 69 72 161 1180 144 2260 1729 14392 231 2528 2712 7.3 0.97
3 302 208 499 204 40 176 217 1228 111 2682 2036 14255 223 3695 4057 9.75 1.15
4 401 317 389 247 25 206 291 1395 92 2962 1967 13738 214 4848 5504 13.57 0.49
5 503 467 185 150 16 159 232 934 70 2212 1204 14396 219 6082 7039 15.73 0.62

1.7 1 101 208 134 135 53 125 71 377 193 1296 809 8242 167 1381 1405 1.73 -0.86
2 202 85 263 108 56 79 125 853 93 1661 1168 14400 230 2587 2794 8.02 0.39
3 302 214 421 199 56 210 217 1272 83 2672 1966 14356 227 3788 4154 9.65 1.53
4 401 305 220 167 23 167 210 813 57 1962 1095 13437 221 4940 5626 13.89 0.32
5 503 469 226 195 22 181 251 1083 76 2503 1427 14364 214 6164 7039 14.2 0.62

1.9 1 101 248 177 177 79 168 76 461 235 1619 977 8904 157 1404 1432 2.02 -1.17
2 202 248 225 196 48 217 116 795 123 1968 1308 12555 233 2637 2848 8.01 0.86
3 302 203 249 161 30 245 161 715 74 1837 1103 11966 226 3850 4252 10.45 0.81
4 401 327 257 182 25 217 201 814 68 2090 1185 14328 227 5029 5626 11.86 0.46
5 503 505 235 170 23 208 255 1010 77 2484 1391 14393 226 6259 7044 12.53 0.54

Average 302 240 327 229 42 143 173 1004 147 2304 1599 13276 220 3704 4034 7.58 1.19

138

CHAPTER 7 GENERAL DISCUSSION

In the articles presented in Chapters 4, 5, and 6, we studied the applications of decomposition-
based integer programming algorithms in deterministic, stochastic, and robust optimization
problems in the healthcare context. In Chapter 4, we proposed a branch-and-price-and-cut
algorithm for a weekly operating room planning and scheduling problem. In the second paper,
we formulated a daily operating room scheduling problem in the presence of stochastic dura-
tions. The deterministic version of the daily operating room scheduling problem is a simplified
version of the planning and scheduling problem studied in Chapter 4. However, we realized
that the stochastic daily operating room scheduling problem is even more challenging than
the deterministic operating room planning and scheduling problem presented in Chapter 4.
Moreover, the second paper shed light on how we can formulate operating room scheduling
problems as vehicle routing problems. The structure of the problem studied in Chapter 6 was
somewhat different from those in Chapters 4 and 5. However, this chapter was a complement
of Chapters 4 and 5 as it showed that decomposition-based integer programming algorithms
could be also applied in robust optimization problems successfully.

The main common point in the presented articles is that the applications of all proposed
models are in healthcare. In the first article, we focused on an operating room scheduling
problem. In the second paper, we studied a vehicle routing problem with applications in home-
health care and operating room scheduling problems. Also, in the third paper, we considered a
nurse planning problem as the main application of the proposed two-stage robust optimization
model. This problem was also closely relevant to the problems studied in the first two articles
as the workload of nurses depended on the number of patients brought to the ward from
operating rooms. The presented papers together show that applying decomposition-based
integer programming algorithms are useful in healthcare planning, scheduling, and routing
problems.

In all presented articles, we provided extensive computational results in order to evaluate the
efficiency of the proposed algorithms. Moreover, we compared all proposed algorithms and
models with some other algorithms that either were taken from the literature or we developed
ourselves.

Another interesting point about the proposed algorithms is that setting stopping conditions
for parts of them was so critical and important. In the column generation algorithm propo-
sed in Chapter 4, we proposed a time-based stopping condition for optimizing subproblems
formulated by the constraint programming model. Similarly, in Chapter 5, we proposed an

139

optimality-gap-based stopping condition for the master problem of the proposed L-shaped
algorithm. Also, as discussed in Chapter 6, one of the main contributions of the third paper
was to develop novel stopping conditions for both the master problem and subproblem of the
proposed algorithms.

140

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In this dissertation, we studied the application of decomposition-based integer programming,
stochastic programming, and robust optimization algorithms in three healthcare planning,
scheduling, and routing problems. In the following, we first present a summary of the contri-
butions achieved by this dissertation. Then we highlight its limitations and possible future
research directions.

8.1 Contributions

In the first essay of this dissertation, we addressed an integrated operating room planning
and scheduling problem by simultaneously considering the assignment of surgeries to ope-
rating rooms and their daily scheduling over a week. We considered many practical details
such as the maximum daily working time of surgeons, prevention from the overlapping of
surgeries performed by the same surgeon, sequence-dependent cleaning times, and surgery
deadlines. We developed an integer programming model based on pattern variables for ope-
rating rooms’ schedules and proposed a branch-and-price-and-cut solution algorithm that
applied a constraint programming model for the subproblems. We significantly improved the
efficiency of the algorithm by devising some dominance rules and a fast-infeasibility-detection
algorithm for the subproblems. Computational results demonstrated that the proposed ap-
proach was capable of finding solutions with an optimality gap of 2.81% for instances with
40 to 120 surgeries. It also considerably outperformed an integer programming model from
the literature and a pure constraint programming model that we formulated.

As the second essay of this dissertation, for the first time, we considered vehicle routing
problems with synchronized visits (VRPS) and stochastic/time-dependent travel and service
times. We studied two healthcare applications of VRPS. The first application was a home-
health care scheduling problem with stochastic/time-dependent travel and service times and
the second one was an operating rooms scheduling problem with stochastic anesthesia, clea-
ning and surgery durations. To the best of our knowledge, it was the first time an operating
room scheduling problem was formulated as a VRPS.

To formulate the stochastic version of VRPS, we developed a two-stage stochastic program-
ming model with integer variables in both stages. In contrast to the deterministic models in
the VRPS literature, our proposed formulation did not have any big-M constraints. We ob-
tained this advantage by time discretization that resulted in a large number of second-stage

141

integer variables. We proved that the integrality constraints on second-stage variables were
redundant and could be relaxed. Having continuous variables in the second stage, we applied
the L-shaped algorithm and its branch-and-cut implementation as solution methods. Moreo-
ver, we improved the proposed approach by devising valid inequalities and a lower bounding
functional. We also analyzed the structure of subproblems in the L-shaped algorithm and
proposed a solution method for them that was faster than standard linear programming al-
gorithms. Furthermore, we discussed how to modify the proposed formulation to solve VRPS
with deterministic time-dependent travel and service times.

Computational experiments revealed that, in the home-health care scheduling problem, the
branch-and-cut algorithm solved instances with 15 patients and 10% to 30% of synchronized
visits to optimality. In addition, it found solutions with an average optimality gap of 3.57% for
instances with 20 patients. In the stochastic operating room scheduling problem, the branch-
and-cut algorithm was capable of finding optimal solutions for instances with 20 surgeries.
This is a considerable improvement over the state-of-art algorithm that reports on instances
with 11 surgeries. Moreover, the modified model for the time-dependent problem obtained
optimal solutions for a large portion of home-health care scheduling instances with 30 to 60
patients and 10% to 40% of synchronized visits.

In the third essay, we considered a class of two-stage robust optimization problems with
integer adversarial variables. The main application of this class of problems is in two-stage
robust resource planning problems where tasks’ arrivals and durations are uncertain. We
considered a two-stage nurse planning problem as an example of such robust resource planning
problems. In this problem, there was uncertainty in the arrivals of patients from ICUs to wards
and in their length of stays.

We applied Dantzig-Wolfe decomposition to exploit the block-diagonal structure of the co-
efficient matrix in the recourse model and reformulated the problem to single-stage robust
problem. We developed a Benders algorithm for the reformulated model where the master
problem and subproblem in the Benders algorithm were both mixed integer programs. As it
was computationally unwieldy to solve these mixed integer programs to optimality at each
iteration of the algorithm, we devised novel stopping conditions for them and proved the
convergence to optimal solutions in the presence of these conditions. Moreover, we proposed
a heuristic algorithm called dual algorithm. The underlying idea of this algorithm was to
dualize the linear programming relaxation of the adversarial problem in the reformulated
model and to generate cuts iteratively to shape the convex hull of the uncertainty set. We
also created a more powerful algorithm by combining the Benders algorithm with the dual
algorithm. Extensive computational experiments on the nurse planning problem showed that

142

the hybrid algorithm was capable of finding high quality solutions in instances with up to
500 patients in a planning horizon of five weeks.

8.2 Limitations and future research directions

We believe that future research can extend the first essay in several ways. First, we did
not take into account upstream and downstream constraints (e.g. beds in preparatory and
recovery rooms). To address this issue, one may need to add new variables to formulate the
patient scheduling in pre- and post-operating-room stages. Another future research direction
is to consider the same integrated operating room planning and scheduling problem where
surgery durations are stochastic. We can consider this research as an extension of the second
essay where we addressed an operating room scheduling problem with stochastic durations.

In the routing and scheduling problem studied in the second essay, we considered the simplest
version of synchronized visits where the required vehicles must be available at the same time
in the customer’s location. Considering time lags in the synchronization of required vehicles is
interesting and can be the subject of future research. This aspect of synchronization is known
as temporal constraints and was not addressed in VRPS with stochastic times. In addition,
the second essay separately accounted for stochastic/time-dependent travel and service times
in vehicles routing problems with synchronized visits. As discussed in Section 5.8, we do
not expect that the proposed approach can handle the case that stochasticity and time-
dependency are available simultaneously. Future studies can focus on dealing with these
aspects at the same time.

The proposed solution approach in the third essay is useful when the number of recourse
decision variables after reformulating the problem is limited. However, in many applications,
this condition is not satisfied and we cannot apply the proposed approach directly. Future
studies can extend the proposed approach by developing an efficient column-and-constraint
generation algorithm that generates recourse decision variables and relevant constraints when
they are needed. Moreover, in the second essay, we specifically focused on two-stage robust
optimization problems with integer adversarial variables. Future research can extend our
approach for multi-stage problems.

143

Adulyasak, Yossiri, Patrick Jaillet. 2015. Models and algorithms for stochastic and robust vehicle
routing with deadlines. Transportation Science 50(2) 608–626.

Agra, Agostinho, Marielle Christiansen, Rosa Figueiredo, Lars Magnus Hvattum, Michael Poss,
Cristina Requejo. 2013. The robust vehicle routing problem with time windows. Computers
& Operations Research 40(3) 856–866.

Aickelin, Uwe, Kathryn A. Dowsland. 2000. Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Journal of Scheduling 3(3) 139–153.

Akjiratikarl, Chananes, Pisal Yenradee, Paul R Drake. 2007. Pso-based algorithm for home care
worker scheduling in the uk. Computers & Industrial Engineering 53(4) 559–583.

An, Yu, Bo Zeng. 2015. Exploring the modeling capacity of two-stage robust optimization : Variants
of robust unit commitment model. IEEE Transactions on Power Systems 30(1) 109–122.

An, Yu, Bo Zeng, Yu Zhang, Long Zhao. 2014. Reliable p-median facility location problem : two-
stage robust models and algorithms. Transportation Research Part B : Methodological 64
54–72.

Ang, Marcus, Yun Fong Lim, Melvyn Sim. 2012. Robust storage assignment in unit-load warehouses.
Management Science 58(11) 2114–2130.

Ardestani-Jaafari, Amir, Erick Delage. 2016. Robust optimization of sums of piecewise linear func-
tions with application to inventory problems. Operations Research 64(2) 474–494.

Arnaout, Jean-Paul M, Sevag Kulbashian. 2008. Maximizing the utilization of operating rooms with
stochastic times using simulation. Proceedings of the 40th conference on winter simulation.
Winter Simulation Conference, 1617–1623.

Atamtürk, Alper. 2005. Cover and pack inequalities for (mixed) integer programming. Annals of
Operations Research 139(1) 21–38.

Augusto, Vincent, Xiaolan Xie, Viviana Perdomo. 2008. Operating theatre scheduling using lagran-
gian relaxation. European Journal of Industrial Engineering 2(2) 172–189.

Augusto, Vincent, Xiaolan Xie, Viviana Perdomo. 2010. Operating theatre scheduling with patient
recovery in both operating rooms and recovery beds. Computers & Industrial Engineering
58(2) 231–238.

Bagheri, Mohsen, Ali Gholinejad Devin, Azra Izanloo. 2016. An application of stochastic program-
ming method for nurse scheduling problem in real word hospital. Computers & Industrial
Engineering 96 192–200.

Baligh, Helmy H, Danny J Laughhunn. 1969. An economic and linear model of the hospital. Health
Services Research 4(4) 293.

REFERENCES

144

Balseiro, SR, Irene Loiseau, Juan Ramonet. 2011. An ant colony algorithm hybridized with insertion
heuristics for the time dependent vehicle routing problem with time windows. Computers &
Operations Research 38(6) 954–966.

Bard, Jonathan F, Hadi W Purnomo. 2005. Preference scheduling for nurses using column genera-
tion. European Journal of Operational Research 164(2) 510–534.

Bard, Jonathan F, Hadi W Purnomo. 2006. Incremental changes in the workforce to accommodate
changes in demand. Health Care Management Science 9(1) 71–85.

Bard, Jonathan F, Hadi W Purnomo. 2007. Cyclic preference scheduling of nurses using a lagrangian-
based heuristic. Journal of Scheduling 10(1) 5–23.

Bard, Jonathan F, Yufen Shao, Ahmad I Jarrah. 2014a. A sequential grasp for the therapist routing
and scheduling problem. Journal of Scheduling 17(2) 109–133.

Bard, Jonathan F, Yufen Shao, Xiangtong Qi, Ahmad I Jarrah. 2014b. The traveling therapist
scheduling problem. IIE Transactions 46(7) 683–706.

Barnhart, Cynthia, Christopher A Hane, Pamela H Vance. 2000. Using branch-and-price-and-cut
to solve origin-destination integer multicommodity flow problems. Operations Research 48(2)
318–326.

Batun, Sakine, Brian T Denton, Todd R Huschka, Andrew J Schaefer. 2011. Operating room
pooling and parallel surgery processing under uncertainty. INFORMS Journal on Computing
23(2) 220–237.

Bäumelt, Zdeněk, Jan Dvořák, Přemysl Šucha, Zdeněk Hanzálek. 2016. A novel approach for nurse
rerostering based on a parallel algorithm. European Journal of Operational Research 251(2)
624–639.

Beliën, Jeroen, Erik Demeulemeester. 2008. A branch-and-price approach for integrating nurse and
surgery scheduling. European Journal of Operational Research 189(3) 652–668.

Bellanti, F, Giuliana Carello, Federico Della Croce, Roberto Tadei. 2004. A greedy-based neighbo-
rhood search approach to a nurse rostering problem. European Journal of Operational Research
153(1) 28–40.

Ben-Tal, Aharon, Golany Boaz, Shtern Shimrit. 2009. Robust multi-echelon multi-period inventory
control. European Journal of Operational Research 199(3) 922–935.

Ben-Tal, Aharon, Boaz Golany, Arkadi Nemirovski, Jean-Philippe Vial. 2005. Retailer-supplier
flexible commitments contracts : a robust optimization approach. Manufacturing & Service
Operations Management 7(3) 248–271.

Ben-Tal, Aharon, Alexander Goryashko, Elana Guslitzer, Arkadi Nemirovski. 2004. Adjustable
robust solutions of uncertain linear programs. Mathematical Programming 99(2) 351–376.

Ben-Tal, Aharon, Arkadi Nemirovski. 1999. Robust solutions of uncertain linear programs. Opera-
tions Research Letters 25(1) 1–13.

145

Bennett, Ashlea R, Alan L Erera. 2011. Dynamic periodic fixed appointment scheduling for home
health. IIE Transactions on Healthcare Systems Engineering 1(1) 6–19.

Bertsimas, Dimitris, Constantine Caramanis. 2010. Finite adaptability in multistage linear optimi-
zation. IEEE Transactions on Automatic Control 55(12) 2751–2766.

Bertsimas, Dimitris, Iain Dunning. 2016. Multistage robust mixed-integer optimization with adap-
tive partitions. Operations Research 64(4) 980–998.

Bertsimas, Dimitris, Iain Dunning, Miles Lubin. 2016. Reformulation versus cutting-planes for
robust optimization. Computational Management Science 13(2) 195–217.

Bertsimas, Dimitris, Dan Andrei Iancu, Pablo Parrilo, et al. 2011. A hierarchy of near-optimal
policies for multistage adaptive optimization. IEEE Transactions on Automatic Control 56(12)
2809–2824.

Bertsimas, Dimitris, Eugene Litvinov, Xu Andy Sun, Jinye Zhao, Tongxin Zheng. 2013. Adaptive
robust optimization for the security constrained unit commitment problem. IEEE Transactions
on Power Systems 28(1) 52–63.

Bertsimas, Dimitris, Melvyn Sim. 2004. The price of robustness. Operations Research 52(1) 35–53.

Binart, Sixtine, Pierre Dejax, Michel Gendreau, Frédéric Semet. 2016. A 2-stage method for a field
service routing problem with stochastic travel and service times. Computers & Operations
Research 65 64–75.

Blake, John T, Michael W Carter. 2002. A goal programming approach to strategic resource
allocation in acute care hospitals. European Journal of Operational Research 140(3) 541–561.

Bowers, John, Helen Cheyne, Gillian Mould, Miranda Page. 2015. Continuity of care in community
midwifery. Health Care Management Science 18(2) 195–204.

Braekers, Kris, Richard F Hartl, Sophie N Parragh, Fabien Tricoire. 2016. A bi-objective home care
scheduling problem : Analyzing the trade-off between costs and client inconvenience. European
Journal of Operational Research 248(2) 428–443.

Bredström, David, Mikael Rönnqvist. 2008. Combined vehicle routing and scheduling with temporal
precedence and synchronization constraints. European Journal of Operational Research 191(1)
19–31.

Brucker, Peter, Rong Qu, Edmund Burke. 2011. Personnel scheduling : Models and complexity.
European Journal of Operational Research 210(3) 467–473.

Burke, Edmund K, Timothy Curtois, Gerhard Post, Rong Qu, Bart Veltman. 2008. A hybrid
heuristic ordering and variable neighbourhood search for the nurse rostering problem. European
Journal of Operational Research 188(2) 330–341.

Burke, Edmund K, Timothy Curtois, Rong Qu, G Vanden Berghe. 2010a. A scatter search metho-
dology for the nurse rostering problem. Journal of the Operational Research Society 61(11)
1667–1679.

146

Burke, Edmund K, Timothy Curtois, L Fijn van Draat, Jk Van Ommeren, G Post. 2011. Progress
control in iterated local search for nurse rostering. Journal of the Operational Research Society
62(2) 360–367.

Burke, Edmund K, Patrick De Causmaecker, Greet Vanden Berghe, Hendrik Van Landeghem. 2004.
The state of the art of nurse rostering. Journal of Scheduling 7(6) 441–499.

Burke, Edmund K, Jingpeng Li, Rong Qu. 2010b. A hybrid model of integer programming and va-
riable neighbourhood search for highly-constrained nurse rostering problems. European Journal
of Operational Research 203(2) 484–493.

Cappanera, Paola, Maria Grazia Scutellà. 2015. Joint assignment, scheduling, and routing models
to home care optimization : a pattern-based approach. Transportation Science 49(4) 830–852.

Cardoen, Brecht, Erik Demeulemeester, Jeroen Beliën. 2009a. Optimizing a multiple objective
surgical case sequencing problem. International Journal of Production Economics 119(2)
354–366.

Cardoen, Brecht, Erik Demeulemeester, Jeroen Beliën. 2009b. Sequencing surgical cases in a day-
care environment : an exact branch-and-price approach. Computers & Operations Research
36(9) 2660–2669.

Cardoen, Brecht, Erik Demeulemeester, Jeroen Beliën. 2010. Operating room planning and sche-
duling : A literature review. European Journal of Operational Research 201(3) 921–932.

Carraway, Robert L, Thomas L Morin, Herbert Moskowitz. 1989. Generalized dynamic programming
for stochastic combinatorial optimization. Operations Research 37(5) 819–829.

Castillo-Salazar, J Arturo, Dario Landa-Silva, Rong Qu. 2016. Workforce scheduling and routing
problems : literature survey and computational study. Annals of Operations Research 239(1)
39–67.

Chan, Timothy CY, Zuo-Jun Max Shen, Auyon Siddiq. 2015. Robust facility location under demand
location uncertainty. arXiv preprint arXiv :1507.04397 .

Cheang, Brenda, Haibing Li, Andrew Lim, Brian Rodrigues. 2003. Nurse rostering problems—a
bibliographic survey. European Journal of Operational Research 151(3) 447–460.

Chen, Lu, Minh Hoàng Hà, André Langevin, Michel Gendreau. 2014. Optimizing road network daily
maintenance operations with stochastic service and travel times. Transportation Research Part
E : Logistics and Transportation Review 64 88–102.

Chen, Xin, Wenchuan Wu, Boming Zhang. 2016. Robust restoration method for active distribution
networks. IEEE Transactions Power Systems 31(5).

Chen, Xin, Yuhan Zhang. 2009. Uncertain linear programs : Extended affinely adjustable robust
counterparts. Operations Research 57(6) 1469–1482.

Choi, Sangdo, Wilbert E Wilhelm. 2014. On capacity allocation for operating rooms. Computers
& Operations Research 44 174–184.

147

Chu, Geoffrey, Peter J Stuckey. 2009. Minimizing the maximum number of open stacks by custo-
mer search. International Conference on Principles and Practice of Constraint Programming.
Springer, 242–257.

Chu, Geoffrey, Peter J Stuckey. 2012. A generic method for identifying and exploiting dominance
relations. Principles and Practice of Constraint Programming. Springer, 6–22.

Dabia, Said, Stefan Ropke, Tom Van Woensel, Ton De Kok. 2013. Branch and price for the time-
dependent vehicle routing problem with time windows. Transportation Science 47(3) 380–396.

Danandeh, Anna, Long Zhao, Bo Zeng. 2014. Job scheduling with uncertain local generation in
smart buildings : Two-stage robust approach. IEEE Transactions on Smart Grid 5(5) 2273–
2282.

Dantzig, George B, Philip Wolfe. 1960. Decomposition principle for linear programs. Operations
Research 8(1) 101–111.

Dashti, Hossein, Antonio J Conejo, Ruiwei Jiang, Jianhui Wang. 2016. Weekly two-stage robust
generation scheduling for hydrothermal power systems. IEEE Transactions on Power Systems
31(6) 4554–4564.

Day, Robert, Robert Garfinkel, Steven Thompson. 2012. Integrated block sharing : A win–win
strategy for hospitals and surgeons. Manufacturing & Service Operations Management 14(4)
567–583.

De Rosa, Barbara, Gennaro Improta, Gianpaolo Ghiani, Roberto Musmanno. 2002. The arc routing
and scheduling problem with transshipment. Transportation Science 36(3) 301–313.

Delage, Erick, Dan A. Iancu. 2015. Robust multistage decision making. Tutorials in Operations
Research 20–46.

Denton, Brian, James Viapiano, Andrea Vogl. 2007. Optimization of surgery sequencing and sche-
duling decisions under uncertainty. Health Care Management Science 10(1) 13–24.

Denton, Brian T, Oguzhan Alagoz, Allen Holder, Eva K Lee. 2011. Medical decision making : open
research challenges. IIE Transactions on Healthcare Systems Engineering 1(3) 161–167.

Desaulniers, Guy, Jacques Desrosiers, Marius M Solomon. 2006. Column generation, vol. 5. Springer
Science & Business Media.

Di Martinelly, C, P Baptiste, MY Maknoon. 2014. An assessment of the integration of nurse
timetable changes with operating room planning and scheduling. International Journal of
Production Research 52(24) 7239–7250.

Di Mascolo, Maria, Marie-Laure Espinouse, Can Erdem Ozkan. 2014. Synchronization between
human resources in home health care context. International Conference on Health Care Systems
Engineering. Springer, 73–86.

Ding, Tao, Shiyu Liu, Wei Yuan, Zhaohong Bie, Bo Zeng. 2016. A two-stage robust reactive power
optimization considering uncertain wind power integration in active distribution networks.
sustainable energy. IEEE Transactions on Sustainable Energy 7(1) 301–311.

148

Donati, Alberto V, Roberto Montemanni, Norman Casagrande, Andrea E Rizzoli, Luca M Gambar-
della. 2008. Time dependent vehicle routing problem with a multi ant colony system. European
Journal of Operational Research 185(3) 1174–1191.

Dowsland, Kathryn Anne, Jonathan Mark Thompson. 2000. Solving a nurse scheduling problem
with knapsacks, networks and tabu search. Journal of the Operational Research Society 51(7)
825–833.

Drexl, Michael. 2012. Synchronization in vehicle routing—a survey of vrps with multiple synchro-
nization constraints. Transportation Science 46(3) 297–316.

Drexl, Michael, Hans-Jürgen Sebastian. 2007. On some generalized routing problems. Tech. rep.,
Deutsche Post Lehrstuhl für Optimierung von Distributionsnetzwerken (NN).

Ehmke, Jan Fabian, Ann Melissa Campbell, Timothy L Urban. 2015. Ensuring service levels in rou-
ting problems with time windows and stochastic travel times. European Journal of Operational
Research 240(2) 539–550.

El Ghaoui, Laurent, Hervé Lebret. 1997. Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matrix Analysis and Applications 18(4) 1035–1064.

El Ghaoui, Laurent, Francois Oustry, Hervé Lebret. 1998. Robust solutions to uncertain semidefinite
programs. SIAM Journal on Optimization 9(1) 33–52.

Ernst, Andreas T, Houyuan Jiang, Mohan Krishnamoorthy, David Sier. 2004. Staff scheduling and
rostering : A review of applications, methods and models. European Journal of Operational
Research 153(1) 3–27.

Errico, Fausto, Guy Desaulniers, Michel Gendreau, Walter Rei, L-M Rousseau. 2016. A priori opti-
mization with recourse for the vehicle routing problem with hard time windows and stochastic
service times. European Journal of Operational Research 249(1) 55–66.

Eveborn, Patrik, Patrik Flisberg, Mikael Rönnqvist. 2006. Laps care—an operational system for
staff planning of home care. European Journal of Operational Research 171(3) 962–976.

Fahle, Torsten, Stefan Schamberger, Meinolf Sellmann. 2001. Symmetry breaking. International
Conference on Principles and Practice of Constraint Programming. Springer, 93–107.

Fei, Hongying, Chengbin Chu, Nadine Meskens. 2009. Solving a tactical operating room plan-
ning problem by a column-generation-based heuristic procedure with four criteria. Annals of
Operations Research 166(1) 91.

Fei, Hongying, Chengbin Chu, Nadine Meskens, Abdelhakim Artiba. 2008. Solving surgical cases
assignment problem by a branch-and-price approach. International Journal of Production
Economics 112(1) 96–108.

Fei, Hongying, Nadine Meskens, Chengbin Chu. 2006. An operating theatre planning and scheduling
problem in the case of a" block scheduling" strategy. International Conference on Service
Systems and Service Management, vol. 1. IEEE, 422–428.

149

Fei, Hongying, Nadine Meskens, Chengbin Chu. 2010. A planning and scheduling problem for an
operating theatre using an open scheduling strategy. Computers & Industrial Engineering
58(2) 221–230.

Feige, Uriel, Kamal Jain, Mohammad Mahdian, Vahab Mirrokni. 2007. Robust combinatorial op-
timization with exponential scenarios. International Conference on Integer Programming and
Combinatorial Optimization. Springer, 439–453.

Fikar, Christian, Patrick Hirsch. 2017. Home health care routing and scheduling : A review. Com-
puters & Operations Research 77 86–95.

Fischetti, Matteo, Michele Monaci. 2012. Cutting plane versus compact formulations for uncertain
(integer) linear programs. Mathematical Programming Computation 4(3) 239–273.

Fisher, Marshall L, Arnold J Greenfield, Ramchandran Jaikumar, Joseph T Lester III. 1982. A
computerized vehicle routing application. Interfaces 12(4) 42–52.

Focacci, Filippo, Michaela Milano. 2001. Global cut framework for removing symmetries. Interna-
tional Conference on Principles and Practice of Constraint Programming. Springer, 77–92.

Fonseca, Raquel J, Berç Rustem. 2012. International portfolio management with affine policies.
European Journal of Operational Research 223(1) 177–187.

Franceschetti, Anna, Dorothée Honhon, Tom Van Woensel, Tolga Bektaş, Gilbert Laporte. 2013.
The time-dependent pollution-routing problem. Transportation Research Part B : Methodolo-
gical 56 265–293.

Garcia de la Banda, Maria, Peter J Stuckey, Geoffrey Chu. 2011. Solving talent scheduling with
dynamic programming. INFORMS Journal on Computing 23(1) 120–137.

Gerchak, Yigal, Diwakar Gupta, Mordechai Henig. 1996. Reservation planning for elective surgery
under uncertain demand for emergency surgery. Management Science 42(3) 321–334.

Gilmore, Paul C, Ralph E Gomory. 1961. A linear programming approach to the cutting-stock
problem. Operations Research 9(6) 849–859.

Goldberg, Andrew V, Robert E Tarjan. 1988. A new approach to the maximum-flow problem.
Journal of the ACM (JACM) 35(4) 921–940.

Gómez, Andrés, Ricardo Mariño, Raha Akhavan-Tabatabaei, Andrés L Medaglia, Jorge E Mendoza.
2015. On modeling stochastic travel and service times in vehicle routing. Transportation Science
50(2) 627–641.

Grötschel, Martin, Manfred W Padberg. 1979. On the symmetric travelling salesman problem i :
inequalities. Mathematical Programming 16(1) 265–280.

Gu, Zonghao, George L Nemhauser, Martin WP Savelsbergh. 1998. Lifted cover inequalities for 0-1
integer programs : Computation. INFORMS Journal on Computing 10(4) 427–437.

Guerriero, Francesca, Rosita Guido. 2011. Operational research in the management of the operating
theatre : a survey. Health Care Management Science 14(1) 89–114.

150

Guinet, Alain, Sondes Chaabane. 2003. Operating theatre planning. International Journal of
Production Economics 85(1) 69–81.

Gul, Serhat, Brian T Denton, John W Fowler, Todd Huschka. 2011. Bi-criteria scheduling of
surgical services for an outpatient procedure center. Production and Operations Management
20(3) 406–417.

Gupta, Anupam, Viswanath Nagarajan, R Ravi. 2014. Thresholded covering algorithms for robust
and max–min optimization. Mathematical Programming 146(1) 583–615.

Hachicha, Hejer Khlif, Farah Zeghal Mansour. 2016. Two-milp models for scheduling elective sur-
geries within a private healthcare facility. Health Care Management Science 1–17.

Haghani, Ali, Soojung Jung. 2005. A dynamic vehicle routing problem with time-dependent travel
times. Computers & Operations Research 32(11) 2959–2986.

Han, Jinil, Chungmok Lee, Sungsoo Park. 2013. A robust scenario approach for the vehicle routing
problem with uncertain travel times. Transportation Science 48(3) 373–390.

Hanasusanto, Grani Adiwena, Daniel Kuhn, Wolfram Wiesemann. 2014. Two-stage robust integer
programming. Optimization Online .

Hans, Erwin, Gerhard Wullink, Mark Van Houdenhoven, Geert Kazemier. 2008. Robust surgery
loading. European Journal of Operational Research 185(3) 1038–1050.

Hashemi Doulabi, Seyed Hossein, Louis-Martin Rousseau, Gilles Pesant. 2014. A constraint
programming-based column generation approach for operating room planning and schedu-
ling. International Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems. Springer, 455–463.

Hashimoto, Hideki, Mutsunori Yagiura, Toshihide Ibaraki. 2008. An iterated local search algorithm
for the time-dependent vehicle routing problem with time windows. Discrete Optimization
5(2) 434–456.

He, Fang, Rong Qu. 2012. A constraint programming based column generation approach to nurse
rostering problems. Computers & Operations Research 39(12) 3331–3343.

Hiermann, Gerhard, Matthias Prandtstetter, Andrea Rendl, Jakob Puchinger, Günther R Raidl.
2015. Metaheuristics for solving a multimodal home-healthcare scheduling problem. Central
European Journal of Operations Research 23(1) 89–113.

Hill, AV, VA Mabert, DW Montgomery. 1988. A decision support system for the courier vehicle
scheduling problem. Omega 16(4) 333–345.

Hsu, Vernon Ning, Renato de Matta, Chung-Yee Lee. 2003. Scheduling patients in an ambulatory
surgical center. Naval Research Logistics 50(3) 218–238.

Huang, Yixiao, Lei Zhao, Tom Van Woensel, Jean-Philippe Gross. 2017. Time-dependent vehicle
routing problem with path flexibility. Transportation Research Part B : Methodological 95
169–195.

151

Hulshof, Peter JH, Nikky Kortbeek, Richard J Boucherie, Erwin W Hans, Piet JM Bakker. 2012.
Taxonomic classification of planning decisions in health care : a structured review of the state
of the art in OR/MS. Health Systems 1(2) 129–175.

IBM. 2015. CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release 6 .

Ichoua, Soumia, Michel Gendreau, Jean-Yves Potvin. 2003. Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research 144(2) 379–396.

Jabali, O, TWoensel, AG de Kok. 2012. Analysis of travel times and co2 emissions in time-dependent
vehicle routing. Production and Operations Management 21(6) 1060–1074.

Jaillet, Patrick, Jin Qi, Melvyn Sim. 2016. Routing optimization under uncertainty. Operations
Research 64(1) 186–200.

Jaumard, Brigitte, Hamed Pouya, Rami Fahim, Andres Barrios. 2016. Planning network migration.
International Conference on Communications. IEEE, 1–6.

Jaumard, Brigitte, Frederic Semet, Tsevi Vovor. 1998. A generalized linear programming model for
nurse scheduling. European Journal of Operational Research 107(1) 1–18.

Jebali, Aida, Atidel B Hadj Alouane, Pierre Ladet. 2006. Operating rooms scheduling. International
Journal of Production Economics 99(1) 52–62.

Jebali, Aida, Ali Diabat. 2015. A stochastic model for operating room planning under capacity
constraints. International Journal of Production Research 53(24) 7252–7270.

Jensen, Johan Ludwig William Valdemar. 1906. Sur les fonctions convexes et les inégalités entre les
valeurs moyennes. Acta Mathematica 30(1) 175–193.

Jiang, Ruiwei, Jianhui Wang, Muhong Zhang, Yongpei Guan. 2013. Two-stage minimax regret
robust unit commitment. IEEE Transactions on Power Systems 28(3) 2271–2282.

Jiang, Ruiwei, Muhong Zhang, Guang Li, Yongpei Guan. 2012. Benders’ decomposition for the two-
stage security constrained robust unit commitment problem. IIE Annual Conference. Institute
of Industrial Engineers, 1.

Jung, Soojung, Ali Haghani. 2001. Genetic algorithm for the time-dependent vehicle routing pro-
blem. Transportation Research Record : Journal of the Transportation Research Board (1771)
164–171.

Jünger, Michael, Giovanni Rinaldi, Stefan Thienel. 2000. Practical performance of efficient minimum
cut algorithms. Algorithmica 26(1) 172–195.

Kao, Edward PC. 1978. A preference order dynamic program for a stochastic traveling salesman
problem. Operations Research 26(6) 1033–1045.

Kenyon, Astrid S, David P Morton. 2003. Stochastic vehicle routing with random travel times.
Transportation Science 37(1) 69–82.

Kim, Kibaek, Sanjay Mehrotra. 2015. A two-stage stochastic integer programming approach to
integrated staffing and scheduling with application to nurse management. Operations Research
63(6) 1431–1451.

152

Korf, Richard E. 2004. Optimal rectangle packing : New results. ICAPS . 142–149.

Kuo, Yiyo. 2010. Using simulated annealing to minimize fuel consumption for the time-dependent
vehicle routing problem. Computers & Industrial Engineering 59(1) 157–165.

Lamiri, Mehdi, Xiaolan Xie, Alexandre Dolgui, Frédéric Grimaud. 2008a. A stochastic model for
operating room planning with elective and emergency demand for surgery. European Journal
of Operational Research 185(3) 1026–1037.

Lamiri, Mehdi, Xiaolan Xie, Shuguang Zhang. 2008b. Column generation approach to operating
theater planning with elective and emergency patients. IIE Transactions 40(9) 838–852.

Laporte, Gilbert, Francois Louveaux, Hélène Mercure. 1992. The vehicle routing problem with
stochastic travel times. Transportation Science 26(3) 161–170.

Latorre-Núñez, Guillermo, Armin Lüer-Villagra, Vladimir Marianov, Carlos Obreque, Francisco
Ramis, Liliana Neriz. 2016. Scheduling operating rooms with consideration of all resources,
post anesthesia beds and emergency surgeries. Computers & Industrial Engineering 97 248–
257.

Lee, Changhyeok, Cong Liu, Sanjay Mehrotra, Zhaohong Bie. 2015. Robust distribution network
reconfiguration. IEEE Transactions on Smart Grid 6(2) 836–842.

Lee, Changhyeok, Cong Liu, Sanjay Mehrotra, Mohammad Shahidehpour. 2014. Modeling trans-
mission line constraints in two-stage robust unit commitment problem. IEEE Transactions on
Power Systems 29(3) 1221–1231.

Lee, Chungmok, Kyungsik Lee, Sungsoo Park. 2012. Robust vehicle routing problem with deadlines
and travel time/demand uncertainty. Journal of the Operational Research Society 63(9) 1294–
1306.

Leong, G, J Wilson, A Charlett. 2006. Duration of operation as a risk factor for surgical site
infection : comparison of english and us data. Journal of Hospital Infection 63(3) 255–262.

Li, Xiangyong, Peng Tian, Stephen CH Leung. 2010. Vehicle routing problems with time windows
and stochastic travel and service times : Models and algorithm. International Journal of
Production Economics 125(1) 137–145.

Li, Yanzhi, Andrew Lim, Brian Rodrigues. 2005. Manpower allocation with time windows and
job-teaming constraints. Naval Research Logistics 52(4) 302–311.

Li, Zhigang, Wenchuan Wu, Mohammad Shahidehpour, Boming Zhang. 2015. Adaptive robust tie-
line scheduling considering wind power uncertainty for interconnected power systems. IEEE
Transactions on Power Systems 31(4) 2701–2713.

Li, Zhigang, Wenchuan Wu, Bo Zeng, Mohammad Shahidehpour, Boming Zhang. 2017. Decentrali-
zed contingency-constrained tie-line scheduling for multi-area power grids. IEEE Transactions
on Power Systems 32(1) 354–367.

Lim, Andrew, Brian Rodrigues, Lei Song. 2004. Manpower allocation with time windows. Journal
of the Operational Research Society 55(11) 1178–1186.

153

Liu, Ya, Chengbin Chu, Kanliang Wang. 2011. A new heuristic algorithm for the operating room
scheduling problem. Computers & Industrial Engineering 61(3) 865–871.

Lü, Zhipeng, Jin-Kao Hao. 2012. Adaptive neighborhood search for nurse rostering. European
Journal of Operational Research 218(3) 865–876.

Lysgaard, Jens, Adam N Letchford, Richard W Eglese. 2004. A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming 100(2) 423–445.

Maenhout, Broos, Mario Vanhoucke. 2010. Branching strategies in a branch-and-price approach for
a multiple objective nurse scheduling problem. Journal of Scheduling 13(1) 77–93.

Maenhout, Broos, Mario Vanhoucke. 2011. An evolutionary approach for the nurse rerostering
problem. Computers & Operations Research 38(10) 1400–1411.

Malandraki, Chryssi, Mark S Daskin. 1992. Time dependent vehicle routing problems : Formula-
tions, properties and heuristic algorithms. Transportation Science 26(3) 185–200.

Malandraki, Chryssi, Robert B Dial. 1996. A restricted dynamic programming heuristic algorithm
for the time dependent traveling salesman problem. European Journal of Operational Research
90(1) 45–55.

Mancilla, Camilo, Robert Storer. 2012. A sample average approximation approach to stochastic
appointment sequencing and scheduling. IIE Transactions 44(8) 655–670.

Mankowska, Dorota Slawa, Frank Meisel, Christian Bierwirth. 2014. The home health care routing
and scheduling problem with interdependent services. Health Care Management Science 17(1)
15–30.

Marcon, Eric, Franklin Dexter. 2006. Impact of surgical sequencing on post anesthesia care unit
staffing. Health Care Management Science 9(1) 87–98.

Marques, Inês, M Eugénia Captivo. 2017. Different stakeholders’ perspectives for a surgical case
assignment problem : Deterministic and robust approaches. European Journal of Operational
Research 261(1) 260–278.

Marques, Inês, M Eugénia Captivo, Margarida Vaz Pato. 2012. An integer programming approach
to elective surgery scheduling. OR Spectrum 34(2) 407–427.

Martin, Simon, Djamila Ouelhadj, Pieter Smet, Greet Vanden Berghe, Ender ÖZcan. 2013. Coope-
rative search for fair nurse rosters. Expert Systems with Applications 40(16) 6674–6683.

May, Jerrold H, William E Spangler, David P Strum, Luis G Vargas. 2011. The surgical scheduling
problem : Current research and future opportunities. Production and Operations Management
20(3) 392–405.

M’Hallah, Rym, AH Al-Roomi. 2014. The planning and scheduling of operating rooms : A simulation
approach. Computers & Industrial Engineering 78 235–248.

Miranda, Douglas Moura, Samuel Vieira Conceição. 2016. The vehicle routing problem with hard
time windows and stochastic travel and service time. Expert Systems with Applications 64
104–116.

154

Mısır, Mustafa, Pieter Smet, Greet Vanden Berghe. 2015. An analysis of generalised heuristics for
vehicle routing and personnel rostering problems. Journal of the Operational Research Society
66(5) 858–870.

Molina-Pariente, Jose M, Victor Fernandez-Viagas, Jose M Framinan. 2015a. Integrated operating
room planning and scheduling problem with assistant surgeon dependent surgery durations.
Computers & Industrial Engineering 82 8–20.

Molina-Pariente, Jose M, Erwin W Hans, Jose M Framinan, Tomas Gomez-Cia. 2015b. New heu-
ristics for planning operating rooms. Computers & Industrial Engineering 90 429–443.

Monteiro, Thibaud, Nadine Meskens, Tao Wang. 2015. Surgical scheduling with antagonistic human
resource objectives. International Journal of Production Research 53(24) 7434–7449.

Moz, Margarida, Margarida Vaz Pato. 2007. A genetic algorithm approach to a nurse rerostering
problem. Computers & Operations Research 34(3) 667–691.

Nguyen, Tri-Dung, Andrew W Lo. 2012. Robust ranking and portfolio optimization. European
Journal of Operational Research 221(2) 407–416.

Nickel, Stefan, Michael Schröder, Jörg Steeg. 2012. Mid-term and short-term planning support for
home health care services. European Journal of Operational Research 219(3) 574–587.

Ogulata, S Noyan, Rızvan Erol. 2003. A hierarchical multiple criteria mathematical programming
approach for scheduling general surgery operations in large hospitals. Journal of Medical
Systems 27(3) 259–270.

Ouorou, Adam. 2013. Tractable approximations to a robust capacity assignment model in telecom-
munications under demand uncertainty. Computers & Operations Research 40(1) 318–327.

Oyola, Jorge, Halvard Arntzen, David L Woodruff. 2016. The stochastic vehicle routing problem, a
literature review, part ii : solution methods. EURO Journal on Transportation and Logistics
1–40.

Ozkarahan, Irem. 2000. Allocation of surgeries to operating rooms by goal programing. Journal of
Medical Systems 24(6) 339–378.

Padberg, Manfred, Giovanni Rinaldi. 1990. An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming 47(1) 19–36.

Paraskevopoulos, Dimitris C, Gilbert Laporte, Panagiotis P Repoussis, Christos D Tarantilis. 2016.
Resource constrained routing and scheduling : Review and research prospects. CIRRELT report
.

Perdomo, Viviana, Vincent Augusto, Xiaolan Xie. 2006. Operating theatre scheduling using lagran-
gian relaxation. International Conference on Service Systems and Service Management, vol. 2.
IEEE, 1234–1239.

Persson, Marie, Jan A Persson. 2009. Health economic modeling to support surgery management
at a swedish hospital. Omega 37(4) 853–863.

155

Poss, Michael, Christian Raack. 2013. Affine recourse for the robust network design problem :
Between static and dynamic routing. Networks 61(2) 180–198.

Postek, Krzysztof, Dick Den Hertog. 2014. Multi-stage adjustable robust mixed-integer optimization
via iterative splitting of the uncertainty set. CentER Discussion Paper Series .

Prestwich, Steven, J Christopher Beck. 2004. Exploiting dominance in three symmetric problems.
4th International Workshop on Symmetry and Constraint Satisfaction Problems. Citeseer, 63–
70.

Proll, Les, Barbara Smith. 1998. Integer linear programming and constraint programming ap-
proaches to a template design problem. INFORMS Journal on Computing 10(3) 265–275.

Punnakitikashem, Prattana, Jay M Rosenberger, Deborah Buckley Behan. 2008. Stochastic pro-
gramming for nurse assignment. Computational Optimization and Applications 40(3) 321–349.

Purnomo, Hadi W, Jonathan F Bard. 2007. Cyclic preference scheduling for nurses using branch
and price. Naval Research Logistics 54(2) 200–220.

Rahimian, Erfan, Kerem Akartunalı, John Levine. 2017a. A hybrid integer and constraint pro-
gramming approach to solve nurse rostering problems. Computers & Operations Research 82
83–94.

Rahimian, Erfan, Kerem Akartunalı, John Levine. 2017b. A hybrid integer programming and
variable neighbourhood search algorithm to solve nurse rostering problems. European Journal
of Operational Research 258(2) 411–423.

Rasmussen, Matias Sevel, Tor Justesen, Anders Dohn, Jesper Larsen. 2012. The home care crew
scheduling problem : Preference-based visit clustering and temporal dependencies. European
Journal of Operational Research 219(3) 598–610.

Remli, Nabila, Monia Rekik. 2013. A robust winner determination problem for combinatorial trans-
portation auctions under uncertain shipment volumes. Transportation Research Part C : Emer-
ging Technologies 35 204–217.

Roland, Benoît, Chr Di Martinelly, Fouad Riane, Yves Pochet. 2010. Scheduling an operating theatre
under human resource constraints. Computers & Industrial Engineering 58(2) 212–220.

Roland, Benoit, Christine Di Martinelly, Fouad Riane. 2006. Operating theatre optimization : A
resource-constrained based solving approach. International Conference on Service Systems and
Service Management, vol. 1. IEEE, 443–448.

Römer, Michael, Taïeb Mellouli. 2016. Future demand uncertainty in personnel scheduling : inves-
tigating deterministic lookahead policies using optimization and simulation. 30th European
Conference on Modelling and Simulation. ECMS.

Roshanaei, Vahid, Curtiss Luong, Dionne M Aleman, David Urbach. 2017. Propagating logic-
based benders’ decomposition approaches for distributed operating room scheduling. European
Journal of Operational Research 257(2) 439–455.

156

Ryan, David M, Brian A Foster. 1981. An integer programming approach to scheduling. Computer
Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling 269–280.

Saadouli, Hadhemi, Badreddine Jerbi, Abdelaziz Dammak, Lotfi Masmoudi, Abir Bouaziz. 2015. A
stochastic optimization and simulation approach for scheduling operating rooms and recovery
beds in an orthopedic surgery department. Computers & Industrial Engineering 80 72–79.

Samudra, Michael, Carla Van Riet, Erik Demeulemeester, Brecht Cardoen, Nancy Vansteenkiste,
Frank E Rademakers. 2016. Scheduling operating rooms : achievements, challenges and pitfalls.
Journal of Scheduling 19(5) 493–525.

Saremi, Alireza, Payman Jula, Tarek ElMekkawy, G Gary Wang. 2013. Appointment scheduling of
outpatient surgical services in a multistage operating room department. International Journal
of Production Economics 141(2) 646–658.

Shao, Yufen, Jonathan F Bard, Ahmad I Jarrah. 2012. The therapist routing and scheduling
problem. IIE Transactions 44(10) 868–893.

Shen, Yu, Jean-Yves Potvin, Jean-Marc Rousseau, Serge Roy. 1995. A computer assistant for vehicle
dispatching with learning capabilities. Annals of Operations Research 61(1) 189–211.

Siddiq, Auyon. 2013. Robust facility location under demand location uncertainty. Master’s thesis,
University of Toronto.

Sier, D, P Tobin, C McGurk. 1997. Scheduling surgical procedures. Journal of the Operational
Research Society 48(9) 884–891.

Sniedovich, Moshe. 1981. Technical note – analysis of a preference order traveling salesman problem.
Operations Research 29(6) 1234–1237.

Soler, David, José Albiach, Eulalia MartíNez. 2009. A way to optimally solve a time-dependent
vehicle routing problem with time windows. Operations Research Letters 37(1) 37–42.

Souyris, Sebastián, Cristián E Cortés, Fernando Ordóñez, Andres Weintraub. 2013. A robust op-
timization approach to dispatching technicians under stochastic service times. Optimization
Letters 7(7) 1549–1568.

Soyster, Allen L. 1973. Technical note—convex programming with set-inclusive constraints and
applications to inexact linear programming. Operations Research 21(5) 1154–1157.

Taş, D, Michel Gendreau, N Dellaert, Tom Van Woensel, AG De Kok. 2014b. Vehicle routing with
soft time windows and stochastic travel times : A column generation and branch-and-price
solution approach. European Journal of Operational Research 236(3) 789–799.

Taş, Duygu, Nico Dellaert, Tom Van Woensel, Ton De Kok. 2013. Vehicle routing problem with
stochastic travel times including soft time windows and service costs. Computers & Operations
Research 40(1) 214–224.

Taş, Duygu, Nico Dellaert, Tom van Woensel, Ton de Kok. 2014a. The time-dependent vehicle
routing problem with soft time windows and stochastic travel times. Transportation Research
Part C : Emerging Technologies 48 66–83.

157

Tassopoulos, Ioannis X, Ioannis P Solos, Grigorios N Beligiannis. 2015. A two-phase adaptive
variable neighborhood approach for nurse rostering. Computers & Operations Research 60
150–169.

Trautsamwieser, Andrea, Manfred Gronalt, Patrick Hirsch. 2011. Securing home health care in
times of natural disasters. OR Spectrum 33(3) 787–813.

Trautsamwieser, Andrea, Patrick Hirsch. 2014. A branch-price-and-cut approach for solving the
medium-term home health care planning problem. Networks 64(3) 143–159.

Tsai, Chang-Chun, Sherman HA Li. 2009. A two-stage modeling with genetic algorithms for the
nurse scheduling problem. Expert Systems with Applications 36(5) 9506–9512.

Types of Home Health Care Services. n.d. In www.hopkinsmedicine.org. retrieved december 2016,
from http ://goo.gl/oa2up1. .

Valouxis, Christos, Christos Gogos, George Goulas, Panayiotis Alefragis, Efthymios Housos. 2012.
A systematic two phase approach for the nurse rostering problem. European Journal of Ope-
rational Research 219(2) 425–433.

Van den Bergh, Jorne, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, Liesje De Boeck.
2013. Personnel scheduling : A literature review. European Journal of Operational Research
226(3) 367–385.

Vayanos, Phebe, Daniel Kuhn, Berç Rustem. 2011. Decision rules for information discovery in multi-
stage stochastic programming. 50th IEEE Conference on Decision and Control and European
Control. IEEE, 7368–7373.

Vijayakumar, Bharathwaj, Pratik J Parikh, Rosalyn Scott, April Barnes, Jennie Gallimore. 2013. A
dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital. European
Journal of Operational Research 224(3) 583–591.

Wang, Chengshan, Bingqi Jiao, Li Guo, Zhe Tian, Jide Niu, Siwei Li. 2016a. Robust scheduling of
building energy system under uncertainty. Applied Energy 167 366–376.

Wang, Shuo, Vahid Roshanaei, Dionne Aleman, David Urbach. 2016b. A discrete event simulation
evaluation of distributed operating room scheduling. IIE Transactions on Healthcare Systems
Engineering 6(4) 236–245.

Wang, Tao, Nadine Meskens, David Duvivier. 2015. Scheduling operating theatres : Mixed integer
programming vs. constraint programming. European Journal of Operational Research 247(2)
401–413.

Wang, Yu, Jiafu Tang, Richard YK Fung. 2014a. A column-generation-based heuristic algorithm for
solving operating theater planning problem under stochastic demand and surgery cancellation
risk. International Journal of Production Economics 158 28–36.

Wang, Zhaoyu, Bokan Chen, Jianhui Wang, Jinho Kim, Miroslav M. Begovic. 2014b. Robust
optimization based optimal dg placement in microgrids. IEEE Transactions on Smart Grid
5(5) 2173–2182.

158

Wu, Tai-Hsi, Jinn-Yi Yeh, Yueh-Min Lee. 2015. A particle swarm optimization approach with
refinement procedure for nurse rostering problem. Computers & Operations Research 54 52–
63.

Xiao, Guanlian, Willem van Jaarsveld, Ming Dong, Joris van de Klundert. 2016. Stochastic pro-
gramming analysis and solutions to schedule overcrowded operating rooms in china. Computers
& Operations Research 74 78–91.

Yan, Shangyao, Chih-Kang Lin, Sheng-Yu Chen. 2014. Logistical support scheduling under stochas-
tic travel times given an emergency repair work schedule. Computers & Industrial Engineering
67 20–35.

Yuan, Biao, Ran Liu, Zhibin Jiang. 2015. A branch-and-price algorithm for the home health care
scheduling and routing problem with stochastic service times and skill requirements. Interna-
tional Journal of Production Research 53(24) 7450–7464.

Zeng, Bo, Long Zhao. 2013. Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters 41(5) 457–461.

Zhang, Bo, Tao Yao, Terry L. Friesz, Yuqi Sun. 2015. A tractable two-stage robust winner deter-
mination model for truckload service procurement via combinatorial auctions. Transportation
Research Part B : Methodological 78 16–31.

Zhang, Tao, W Art Chaovalitwongse, Yuejie Zhang. 2012. Scatter search for the stochastic travel-
time vehicle routing problem with simultaneous pick-ups and deliveries. Computers & Opera-
tions Research 39(10) 2277–2290.

Zhang, Yu, Roberto Baldacci, Melvyn Sim, Jiafu Tang. 2016. Routing optimization with time
windows under uncertainty. Optimization Online .

Zhao, Chaoyue, Yongpei Guan. 2013. Unified stochastic and robust unit commitment. IEEE
Transactions on Power Systems 28(3) 3353–3361.

Zhao, Long, Bo Zeng. 2012. Robust unit commitment problem with demand response and wind
energy. Power and Energy Society General Meeting, San Diego, CA. IEEE, 1–8.

Zheng, T., J. Zhao, E. Litvinov, F. Zhao. 2012. Robust optimization and its application to power
system operation. Proceedings of CIGRE SC C2 Session, Paris, France. CIGRE.

Zhong, Liwei, Shoucheng Luo, Lidong Wu, Lin Xu, Jinghui Yang, Guochun Tang. 2014. A two-stage
approach for surgery scheduling. Journal of Combinatorial Optimization 27(3) 545–556.

Zhou, Bing-hai, Meng Yin, Zhi-qiang Lu. 2016. An improved lagrangian relaxation heuristic for the
scheduling problem of operating theatres. Computers & Industrial Engineering 101 490–503.

159

 SUPPLEMENTS OF ARTICLE 1

A.1 The model for the case of nonidentical operating rooms

In this appendix, we discuss how the CG algorithm proposed in Section 4.3 can take into
account the case of nonidentical operating rooms. We consider two cases :

Case 1) Different availabilities : In his case, instead of considering a separate subproblem
for each operating room, the presented constraint programming model can be modified by
adding dummy mandatory surgeries to represent the unavailable early and late time periods.
We add the following constraints to the subproblems :

If (W1 = i) then (V1 = 0), i ∈ dummyearly, (A.1)

If (Wp = j) then (Vp + t[Wp] = |Td|), j ∈ dummylate, p ∈ {2, ..., n}. (A.2)

We assume that the early dummy surgeries must be scheduled in the first position and the
others can be scheduled in any other positions. We specify appropriate deadlines to ensure
that the dummies are assigned to the correct days. We must schedule appropriate pairs of
dummy surgeries together ; for this we require the following constraint :

If (W1 = i) then (Ccomp(i) == 1)), i ∈ dummyearly, (A.3)

This constraint states that if a dummy surgery is scheduled in the morning, its complementary
dummy surgery, denoted comp(i), must appear in the same schedule. Constraint (A.2) forces
comp(i) to be the last surgery in the operating room.

Case 2) Different equipment : For this case we need a different subproblem for each type
of operating room. In the master problem, we modify constraint (A.4) as follows :∑

j∈Jd

xj ≤ |Kr,d|, d ∈ D, r ∈ Roomd, (A.4)

where Roomd is the set of operating room types on day d, and |Kr,d| is the number of rooms
of type r on day d. The model still breaks the symmetry of identical rooms. Note that rooms
of the same type have the same equipment but may have different availabilities.

 APPENDIX A

160

A.2 An integer programming model adapted from (Marques et al. 2012)

The problem defined in Section 4.2 can be formulated as an integer programming model using
the four-index binary variables xikdt (Roland et al. 2006, 2010, Marques et al. 2012) and two
other sets of binary variables yikd and zii′kd. We define the following sets and variables.

Sets :

Tdi : A subset of Td such that if surgery i starts at any time slot in this subset it finishes
before the end of regular time on day d.

Pairsd : The set of all pairs of surgeries i and i′ with deadlines on or after day d such that
cleaning is required if surgery i′ is performed immediately after surgery i.

Variables :

xikdt : 1 if surgery i starts at time t on day d in operating room k ; 0 otherwise.

yikd : 1 if surgery i is scheduled in operating room k on day d ; 0 otherwise.

zii′kd : 1 if the pair (i, i′) ∈ Pairsd is scheduled in operating room k on day d and surgery
i starts at any time before surgery i′ (not necessarily successively).

The integer programming model is as follows :

max
∑
d∈D

∑
k∈Kd

∑
i∈I:ddi≥d

∑
t′∈Tdi

(tixikdt′) (A.5)

subject to :∑
d∈D:d≤ddi

∑
k∈Kd

∑
t∈Tdi

xikdt = 1, i ∈ I1, (A.6)

∑
d∈D:d≤ddi

∑
k∈Kd

∑
t∈Tdi

xikdt ≤ 1, i ∈ I2, (A.7)

∑
i∈I:ddi≥d

∑
t′∈Tdi:max[t−ti,0]<t′≤t

xikdt′ ≤ 1, d ∈ D, k ∈ Kd, t ∈ Td, (A.8)

∑
i∈I′

l
:ddi≥d

∑
k∈Kd

∑
t′∈Tdi:max[t−ti,0]<t′≤t

xikdt′ ≤ 1, d ∈ D, l ∈ L, t ∈ Td, (A.9)

∑
i∈I′

l
:ddi≥d

∑
k∈Kd

∑
t′∈Tdi

tixikdt′ ≤ Ald, l ∈ L, d ∈ D, (A.10)

yikd =
∑
t∈Tdi

xikdt, d ∈ D, k ∈ Kd, i ∈ I : ddi ≥ d,

(A.11)

161

zii′kd ≤ yikd, zi′ikd ≤ yi′kd, d ∈ D, k ∈ Kd, (i, i′) ∈ Pairsd,
(A.12)

zii′kd + zi′ikd ≤ 1, d ∈ D, k ∈ Kd, (i, i′) ∈ Pairsd(i < i′),
(A.13)

zii′kd + zi′ikd ≥ yikd + yi′kd − 1, d ∈ D, k ∈ Kd, (i, i′) ∈ Pairsd(i < i′),
(A.14)∑

t∈Tdi

(txikdt) + ti + CLii′ ≤
∑
t∈Tdi′

(txi′kdt)+

M(1− zii′kd), d ∈ D, k ∈ Kd, (i, i′) ∈ Pairsd,
(A.15)

xikdt ∈ {0, 1}, d ∈ D, k ∈ Kd, t ∈ Td, i ∈ I : ddi ≥ d,

(A.16)

zii′kd ∈ {0, 1}, d ∈ D, k ∈ Kd, (i, i′) ∈ Pairsd.
(A.17)

The objective function (A.5) maximizes the total duration of the scheduled surgeries.
Constraints (A.6) and (A.7) ensure that the mandatory surgeries are performed and allow
the optional surgeries to be postponed. Constraint (A.8) ensures that each operating room
on each day is occupied by at most one surgery in each time slot. Constraint (A.9) prevents
overlapping surgeries for the same surgeon. Constraint (A.10) enforces the maximum working
hours for each surgeon. Constraint (A.11) links the intermediate variables yikd to xikdt ; these
variables are included to make the model more readable. Constraints (A.12) force zii′kd to be
0 if surgery i or surgery i′ is not scheduled in operating room k on day d. Constraints (A.13)
and (A.14) together force either zii′kd or zi′ikd to be 1 if surgeries i and i′ are both scheduled
in operating room k on day d. If two surgeries from the set Pairsd are scheduled in the same
room on the same day, they must be sequenced. Constraint (A.15) ensures that if zii′kd is 1,
the start time of surgery i′ occurs after the finish time of surgery i in room k on day d plus
CLii′ .

A.3 A pure constraint-programming model

We now present a constraint programming model for the problem defined in Section 4.2. The
constraint programming variables are as follows :

yid : It is an interval variable for surgery i on day d. This variable is present in the solution

162

if surgery i is scheduled on day d.

zid : This variable is the index of the surgery scheduled immediately before surgery i in the
same operating room on day d. If surgery i is the first surgery in the room this variable
is 0 and if surgery i is not scheduled on day d it is -1.

The following model is implemented using the CP optimizer in IBM ILOG CPLEX Optimi-
zation Studio V12.4.

max{
∑
d∈D

∑
i∈I:ddi≥d

Length(yid)} (A.18)

subject to :

zid ∈ {i′ ∈ I|i′ 6= i, ddi′ ≥ d} ∪ {0,−1}, d ∈ D, i ∈ I : ddi ≥ d, (A.19)

End(yid) ≤ |Td|, d ∈ D, i ∈ I : ddi ≥ d, (A.20)

Count([zid]i∈I:ddi≥d, 0) ≤ |Kd|, d ∈ D, (A.21)

Count([zid]i∈I {i′}:ddi≥d, i
′) ≤ Presence(yi′d), d ∈ D, i′ ∈ I : ddi′ ≥ d, (A.22)

NoOverlap[yid]i∈I′
l
:ddi≥d, d ∈ D, l ∈ L, (A.23)

If (zid = i′) then [(Presence(yi′d) = 1) & d ∈ D, i ∈ I : ddi ≥ d,

(Start(yid) ≥ End(yi′d) + CLi′i)] , i′ ∈ I\{i} : ddi′ ≥ d, (A.24)

If (zid = −1) then (Presence(yid) = 0), d ∈ D, i ∈ I : ddi ≥ d, (A.25)∑
d∈D:ddi≥d

Presence(yid) = 1, i ∈ I1 (A.26)

∑
d∈D:ddi≥d

Presence(yid) ≤ 1, i ∈ I2 (A.27)

∑
i∈I′

l
:ddi≥d

Length(yid) ≤ Ald, d ∈ D, l ∈ L (A.28)

The objective function (A.18) maximizes the total scheduled surgery time. Here Length(yid)
is equal to the duration of surgery i if variable yid is present in the solution. (A.19) specifies the
domains of the zid variables. Constraint (A.20) ensures that if surgery i is scheduled on day d
it is completed before the end of the day. In constraint (A.21), Count([zid]i∈I:ddi≥d, 0) counts
the number of times that the value 0 appears in the vector [zid]i∈I:ddi≥d. This constraint
ensures that the number of surgeries that are the first surgeries in their operating rooms
on day d does not exceed the number of available operating rooms on this day. The left-

163

hand side of constraint (A.22) counts the number of times that surgery i′ is the immediate
predecessor of the other surgeries on day d. Constraint (A.22) indicates that if surgery i′ is
not scheduled on day d, it cannot be the immediate predecessor of any surgery on that day.
Constraint (A.23) prevents overlapping surgeries for the same surgeon. Constraint (A.24)
states that if surgery i′ is the immediate predecessor of surgery i on day d then surgery i′

must be scheduled on the same day and the start time of surgery i must be after the finish
time of surgery i′ plus CLi′i. Constraint (A.25) ensures that surgery i is not scheduled on
day d if zid is -1. Constraint (A.26) ensures that the mandatory surgeries are performed, and
constraint (A.27) allows the optional surgeries to be postponed. Constraint (A.28) enforces
the maximum working hours for each surgeon.

We apply dominance rule 1 by adding the following constraint :

Start(yid) = 0 or Start(yid) ≥ SDd, d ∈ D, i ∈ I : ddi ≥ d

where as defined in Dominance rule 1, SDd is the smallest surgery duration among all surge-
ries with deadlines on or after day d. (i.e., SDd = mini∈I;ddi≥d ti) We order the yid variables
by surgery deadline. For a fixed i ∈ I, they are ordered lexicographically by d. Each zid

variable is evaluated immediately after its corresponding yid.

A.4 Proof of λ values for different cases

In this section, We validate the λ values in Table 4.1. Let ∆1 be the cleaning time required
between the surgeries in positions p∗ − 1 and p∗ if surgery i in position p∗ is replaced by
surgery i′. Similarly, let ∆2 be the cleaning time required between the surgeries in positions
p∗ and p∗ + 1 if surgery i in position p∗ is replaced by surgery i′. We show that regardless of
the infection status of the surgery in position p∗ + 1, ∆1 + ∆2 ≤ λ holds for the λ values in
Table 4.1. Let f ′p∗+1 be the infection status of the surgery in position p∗+ 1 if it is infectious.
In tables presented in this appendix, different infection statuses for the surgery in position
p∗ + 1 are presented under Column “p∗ + 1”.

Case 1 : Since surgeries i and i′ are both noninfectious, replacing surgery i by surgery i′

does not change the possible pre/post-cleaning time : λ = 0.

Case 2 : Two subcases are possible.

Case 2-1 : The surgery in position p∗ − 1 is noninfectious. Table A.1 computes ∆1 and ∆2

given the infection status of the surgery in position p∗ + 1. We have ∆1 + ∆2 ≤ OCT and
λ = OCT .

164

Table A.1 – Validity of λ for case 2-1.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious 0 OCT OCT
Infectious with f ′p∗+1 = fi′ 0 0 0
Infectious with f ′p∗+1 6= fi′ 0 OCT OCT

λ = max(∆1 + ∆2) OCT

Case 2-2 : The surgery in position p∗ − 1 is infectious with f ′p∗+1 6= fi′ . Table A.2 shows
that λ = OCT .

Table A.2 – Validity of λ for case 2-2.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious 0 OCT OCT
Infectious with f ′p∗+1 = fi 0 0 0
Infectious with f ′p∗+1 6= fi and f ′p∗+1 6= fi′ 0 OCT OCT

λ = max(∆1 + ∆2) OCT

Case 3 : Table A.3 shows that λ = 0.

Table A.3 – Validity of λ for case 3.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious -OCT OCT 0
Infectious with f ′p∗+1 = fi′ -OCT 0 -OCT
Infectious with f ′p∗+1 6= fi′ -OCT OCT 0

λ = max(∆1 + ∆2) 0

Case 4 : Table A.4 shows that λ = 0.

Table A.4 – Validity of λ for case 4.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious 0 -OCT -OCT
Infectious with f ′p∗+1 = fi 0 0 0
Infectious with f ′p∗+1 6= fi 0 -OCT -OCT

λ = max(∆1 + ∆2) 0

165

Case 5 : Table A.5 shows that λ = OCT .

Case 6 : Since surgeries i and i′ have the same type of infection, replacing surgery i by
surgery i′ does not change the possible pre/post-cleaning time : λ = 0.

Case 7 : Table A.6 shows that λ = OCT .

Table A.5 – Validity of λ for case 5.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious OCT -OCT 0
Infectious with f ′p∗+1 = fi OCT 0 OCT
Infectious with f ′p∗+1 6= fi OCT -OCT 0

λ = max(∆1 + ∆2) OCT

Table A.6 – Validity of λ for case 7.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious 0 0 0
Infectious with f ′p∗+1 = fi 0 OCT OCT
Infectious with f ′p∗+1 = fi′ 0 -OCT -OCT
Infectious with f ′p∗+1 6= fi and f ′p∗+1 6= fi′ 0 0 0

λ = max(∆1 + ∆2) OCT

Case 8 : Table A.7 shows that λ = 2OCT .

Table A.7 – Validity of λ for case 8.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious OCT 0 OCT
Infectious with f ′p∗+1 = fi OCT OCT 2OCT
Infectious with f ′p∗+1 = fi′ OCT -OCT 0
Infectious with f ′p∗+1 6= fi and f ′p∗+1 6= fi′ OCT 0 OCT

λ = max(∆1 + ∆2) 2OCT

166

Case 9 : Table A.8 shows that λ = 0.

Table A.8 – Validity of λ for case 9.

p∗ + 1 ∆1 ∆2 ∆1 + ∆2

Noninfectious -OCT 0 -OCT
Infectious with f ′p∗+1 = fi -OCT OCT 0
Infectious with f ′p∗+1 = fi′ -OCT -OCT -2OCT
Infectious with f ′p∗+1 6= fi and f ′p∗+1 6= fi′ -OCT 0 -OCT

λ = max(∆1 + ∆2) 0

A.5 Comparison of branches (1) and (2) with branch (3)

Table A.9 gives results for the three branching rules presented in Section 4.5.2. We compare
two branch-and-price-and-cut algorithms : in Algorithm A.1 we use branches 1 and 2, and
in Algorithm A.2 we use branch 3. The nodes are pruned whenever no branching is possible.
Algorithm A.1 may terminate early because no branch can be found. For a fair comparison, we
first run Algorithm A.1 and we then run Algorithm A.2 for the same period of time ; this value
is given in the Time column. The rightmost columns give the differences in the upper and
lower bounds found by the two algorithms. These values indicate that Algorithm A.1 generally
provides better upper bounds. Algorithm A.2 generally provides better lower bounds, mainly
because it generates more columns.

167

Table A.9 – Evaluation of the branching procedures.

Algorithm A.1 Algorithm A.2

Instances
sets

No. of
surgeries

Time
No. of
columns

UB LB
Gap
(%)

No. of
columns

UB LB
Gap
(%)

UB2 − UB1 LB2 − LB1

A 40 41 485 1403 1402 0.07 855 1411 1403 0.57 8 1
60 181 1214 1971 1910 3.09 1973 1975 1958 0.86 4 48
80 1341 2384 2203 2154 2.01 3391 2211 2170 1.61 8 16
100 6030 3871 2297 2247 2.14 5491 2297 2251 1.99 0 4
120 3231 3343 2304 2252 2.26 4123 2306 2254 2.24 2 2

B 40 147 626 1362 1361 0.06 838 1367 1359 0.61 5 -2
60 1054 1629 1854 1834 1.09 1989 1859 1839 1.09 5 5
80 2683 2497 2162 2119 2.01 3270 2173 2124 2.27 11 5
100 9049 3799 2403 2327 3.12 5477 2403 2330 3.01 0 3
120 8902 4407 2457 2342 4.67 5562 2457 2343 4.61 0 1

C 60 7379 3468 576 561 2.50 3472 576 571 0.66 0 10
80 7429 1889 792 702 10.68 4216 792 713 9.34 0 11
100 6823 3593 978 853 12.24 4271 978 860 11.51 0 7

Average : 3.53 3.11 3.31 8.54

168

A.6 A heuristic for setting the number of operating rooms

We now present the heuristic that determines the number of operating rooms for instance
sets B and C.

Step 1 : For each surgeon, we divide the sum of all the surgery durations corresponding to
that surgeon over the five days of the week proportional to the surgeon’s maximum daily hours
(being careful not to exceed the maximum value). This gives an indication of the surgeon’s
daily working time. This might give the result presented in Table A.10 for an example with
eight surgeons.

Table A.10 – The output of Step 1 in the heuristic algorithm proposed for
setting the number of operating rooms.

Day
Average daily workloads

Surgeon 1 Surgeon 2 Surgeon 3 Surgeon 4 Surgeon 5 Surgeon 6 Surgeon 7 Surgeon 8

Mon. 50.8 90.9 40.7 73.4 29.6 92.1 120.0 80.5

Tue. 93.8 68.4 72.8 60.5 48.4 69.1 36.6 20.3

Wed. 49.3 49.2 18.9 58.8 83.0 37.5 24.1 52.5

Thu. 58.5 24.4 112.8 59.2 63.2 30.0 72.5 69.4

Fri. 23.1 34.3 25.7 22.5 37.8 34.4 43.4 70.6

Step 2 : For each day, we sum the expected daily hours to determine the total operating
time. For the example, this gives the result presented in Table A.11.

Table A.11 – The output of Step 2 in the heuristic algorithm
proposed for setting the number of operating rooms.

Day Mon. Tue. Wed. Thu. Fri.

Total operating time 578.0 469.8 373.4 490.1 291.8

Step 3 : We divide the total times by eight hours (i.e., 96 five-minute intervals) to determine
the expected number of operating rooms for each day.

Table A.12 – The output of Step 3 in the heuristic algorithm
proposed for setting the number of operating rooms.

Day Mon. Tue. Wed. Thu. Fri.

Number of operating rooms 6 5 4 5 3

169

 B SUPPLEMENTS OF ARTICLE 2

B.1 Proof of Lemma 5.1

We prove this lemma by induction. After the initialization in Line 1 of Algorithm 5.1, we
have di = 0 and dj = ∞ j ∈ I\{i} that is the base of induction. Consider a moment
before updating dk in Line 5 of the algorithm. By the inductive assumption, we know that
if dj < ∞ (j 6= i) it is equal to the reach time of customer j through a path originating
from customer i at time t, plus the service time of customer j. Therefore, if dk is updated
by dk = max{dj + trjkω, ek − t} + srkω in Line 5 it is equal to a reach time of customer k
through a path from the customer j because dj + trjkω presents a reach time of customer k by
following a path that originates from customer i. In this path, the vehicle reaches and serves
customer j, then travels from customer j to customer k. In dk = max{dj + trjkω, ek − t}+srkω

by choosing the maximum of ek − t and dj + trjkω, we ensure that if it is required the vehicle
waits until the time window of customer k opens. Also srkω at the end of the recent formula
ensures that we consider the service time of customer k in the computation of dk. Therefore,
we proved that Lemma 5.1 holds.

B.2 Proof of Lemma 5.2

We prove this lemma by induction. The base case of the induction at iteration 0 (i.e. just
before executing the for loop starting in Line 2 for the first t ime) h olds s ince d i = 0 and
dj = ∞ for j ∈ I\{i}. As the inductive case, we must show that at the end of iteration n,
dk is equal to the shortest reach time for customer k ∈ I with at most n arcs. We prove that
the inductive case holds by noting the following points.

1. At lines 3 and 4 of Algorithm 5.1, the algorithm tries to improve the reach time dk by
setting dk = max{dj + trjkω, ek − t} + srkω if dk > max{dj + trjkω, ek − t} + srkω is
satisfied for any arc connecting customer j to customer k.

2. By the inductive assumption we know that at the end of iteration n − 1, dj is the
shortest reach time for node i ∈ I with at most n− 1 arcs.

 APPENDIX

170

B.3 Proof of Theorem 5.1

After |I|−1 repetitions of the for loop starting in Line 2 of Algorithm 5.1, based on Lemma 5.2
we know that dk is equal to the shortest required time to reach and serve customer k through
a path with at most |I| − 1 arcs that originates from customer i at time t. Moreover, we
know that the paths resulting in the shortest reach times are simple paths with no repetitive
nodes. Therefore, since every simple path has at most |I|− 1 arcs, we have proved that after
|I| − 1 repetitions of the for loop, dj is equal to the sum of the shortest reach times SRTrijtω
and the service time srjω for j ∈ I. We note that the service time srjω is a part of dj because
in Line 5 of the algorithm, we consider the service time srkω. Therefore, by deducting service
times from dj in Line 9, we obtain the correct values of SRTrijtω.

B.4 Proof of Theorem 5.3

We obtain the following constraint by summing over i ∈ (Ir ∪ {0}) : (i, j) ∈ Ar on
constraint (5.11).

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t∈Trijω

urijω = ∑
i∈(Ir∪{0}):

(i,j)∈Ar

xrij r ∈ R, j ∈ Ir (B.1)

Constraint (5.3) shows that the right-hand side of constraint (B.1) is equal to 1. Therefore,
we can rewrite constraint (B.1) as the following constraints (B.2) and (B.3).

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t∈Trijω

urijω = 1 r ∈ R, j ∈ Ir (B.2)

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω>t

urijt′ω + ∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω≤t

urijt′ω = 1 r ∈ R, j ∈ Ir (B.3)

By replacing the left-hand side of constraint (5.26) using constraint (B.3), we obtain
constraint (5.28).

Also, to obtain constraint (5.29) from constraint (5.27), we first rewrite constraint (B.2) as
the following constraints (B.4) and (B.5).

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω=t

urijt′ω + ∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω 6=t

urijt′ω = 1 r ∈ R, j ∈ Ir (B.4)

∑
i∈(Ir∪{0}):

(i,j)∈Ar & (t−sriω−trijω)∈Trijω

urij(t−sriω−trijω)ω +

171

∑
i∈(Ir∪{0}):

(i,j)∈Ar

∑
t′∈Trijω :

t′+sriω+trijω 6=t

urijt′ω = 1 r ∈ R, j ∈ Ir (B.5)

Then, we obtain constraint (5.29) by replacing the left-hand side of constraint (5.27) using
constraint (B.5).

B.5 Proof of Theorem 5.4

To prove this theorem, we show that for any fixed first-stage solution without any subtour, if
the corresponding second-stage solution is fractional we can turn it into an integer solution
with an objective value that is at least as good as that of the fractional solution. In the
following, Algorithm B1 shows how we can modify a fractional second-stage solution in
scenario ω to obtain a second-stage integer solution. In this algorithm, a triplet (r, i, j) stands
for an arc traversed by a type r vehicle from customer i to customer j. In this algorithm,
L1 maintains the list of all triplets (r, i, j) with xrij = 1 for which there is a single index t
such that urijtω = 1. Also, L2 maintains the list of triplets (r, i, j) with xrij = 1 for which the
following two conditions hold :

1. triplet (r, i, j) is not in L1.

2. i = 0 holds or for each r′ ∈ Ri, there is one index k ∈ Ir′ ∪{0} satisfying (r′, k, i) ∈ L1.

The goal of Algorithm B1 is to modify a second-stage fractional solution for scenario ω to an
integer solution with an objective value that is at least as good as the objective value of the
original fractional solution. To prove that Algorithm B1 fulfills this goal, we must show that
the following statements hold :

Statement 1 : At the end of Algorithm B1, all triplets (r, i, j) with xrij = 1 are in list L1.

Statement 2 : When modifying the solution in Step 1, all constraints remain satisfied.

Statement 3 : When modifying the solution in Step 1, the objective function does not
deteriorate.

Part 1- Proof of Statement 1
We prove the validity of Statement 1 by contradiction. Let’s assume that this statement does
not hold. It means that in one iteration of the algorithm, when we are in Step 1, L2 is empty
and there is one or more triplets (r, i, j) with xrij = 1 that are neither in L1 nor in L2. We
consider the following two cases :

Case 1) There is only one triplet (r, i, j) with xrij = 1 that is neither in L1 nor in L2. With
respect to the definition of L2, since triplet (r, i, j) /∈ L2, we must have i 6= 0 and also there

172

Algorithm B1. Modification of second-stage fractional solutions
1: Set L1 = {(r, i, j) ∈ R× I2|∃t ∈ Trijω : uijtω = 1} and L2 = {(r, i, j) ∈ (R× I2)\L1|(i =

0) or ∀r′ ∈ Ri ∃k ∈ (Ir′ ∪ {0}) : (r′, k, i) ∈ L1}.
2: Step 1- Choose a triplet (r, i, j) ∈ L2 and modify urijtω for t ∈ Trijω by setting urij(t∗i)ω =
vi(t∗i)ω = 1 and uijtω = vitω = 0 for t 6= t∗i where t∗i = argmin{t ∈ Tiω|urijtω > 0}.

3: Step 2- Remove (r, i, j) from L2 and add it to L1. If L1 includes all triplets (r, i, j) for
which xrij = 1 then the algorithm is converged and an integer solution with an objective
value that is at least as good as the objective value of the original fractional solution is
obtained.

must be at least one vehicle type r′i ∈ Ri, for which (r′i, k, i) /∈ L1 for all k ∈ Ir′i ∪ {0}. Also,
with respect to constraint (5.3), we know that there is an index ki ∈ Ir′i ∪ {0} such that
xr′ikii = 1 holds. Here two cases are possible :

Case 1-1) triplet (r′i, ki, i) is in L2 that is a contradiction because we assumed that L2 is
empty.

Case 1-2) triplet (r′i, ki, i) is not L2. As explained in Case 1, this triplet cannot be a member
of L1 too. Therefore, triplet (r, i, j) is not the only triplet with xrij = 1 that is neither in L1

nor in L2 that is a contradiction with the assumption of Case 1.

Case 2) There are two or more triplets (r, i, j) with xrij = 1 that are neither in L1 nor in
L2. With respect to the definition of L2, since triplets (r, i, j) are not in L2, for each triplet
(r, i, j) we must have i 6= 0 and also there must be at least one vehicle type r′i ∈ Ri, for
which (r′i, k, i) /∈ L1 for all k ∈ Ir′i ∪{0}. Also, with respect to constraint (5.3), we know that
for each triplet (r, i, j) there is an index ki ∈ Ir′i ∪ {0} such that xr′ikii = 1. This means that
for any triplet (r, i, j) that is not in L1, there is at least one ingoing triplet (r′i, ki, i) that
is not in L1 either. Therefore, this shows that there is at least one tour formed by triplets
(r, i, j) that are not in L1. We claim that this tour is a subtour. The reason is that indices
ki in ingoing triplets (r′i, ki, i) cannot be equal to 0. This is because if ki = 0 holds, then
with respect to the definition of L2, triplet (r′i, ki, i) would have been either in L1 or in L2,
while both of these cases are contradictions. Therefore, we conclude that there is at least one
subtour formed by triplets (r, i, j) with xrij = 1 that are not in L1. The existence of such a
subtour is in contradiction with the fact that the first-stage solution is subtour-free.

Part 2- Proof of Statement 2
To prove that Statement 2 holds, we should show that constraints (5.11)-(5.15) are satisfied

173

by the modified solution. Regarding constraint (5.14), we suppose that this constraint is
already removed through replacing wrω in objective function (5.10). Constraint (5.11) remains
satisfied because exactly one of the variables urijtω is set to 1 if xrij = 1. To demonstrate
that constraint (5.12) remains satisfied we consider two following cases :

Case 1) Variables urijtω t ∈ Tiω modified in Step 1 of Algorithm B1 are on the left-hand
side of constraint (5.12). In this case, it is clear that by setting urij(t∗i)ω = 1 in Step 1 of
Algorithm B1 this constraint remains satisfied.

Case 2) In this case, we assume modified variables urijtω t ∈ Tiω are on the right-hand side of
constraint (5.12). For the sake of consistency with indices of variables on the right-hand side
of constraint (5.12), we assume that variables urjktω t ∈ Tjω with xrjk = 1 are modified in Step
1 of Algorithm B1. First, note that in Algorithm B1, with respect to the precedence relations
induced by non-zero x variables, we are sure that before modifying variables urjktω t ∈ Tjω
that are on the right-hand side of constraint (5.12), variables urijtω t ∈ Tiω with xrij = 1
that are on the left-hand side of constraint (5.12) are already modified by the algorithm.
Therefore, to demonstrate that constraint (5.12) remains satisfied in this case, we only need
to show that t∗i + sriω + trijω ≤ t∗j . To show the validity of this inequality we note that t∗i
and t∗j denote the smallest indices t ∈ Tiω and t ∈ Tjω for which urijtω > 0 and urjktω > 0
before modifying the variables. Therefore, if t∗i + sriω + trijω ≤ t∗j does not hold it means that
constraint (5.12) was not satisfied before applying Algorithm B1 that is a contradiction.

Regarding constraint (5.13), it is clear that, by modifying the solution in Step 1 of Algorithm
B1, this constraint remains satisfied. Also for constraint (5.15), we note that all ur0itω variables
remain unchanged as their values before applying Algorithm B1 are either 0 or 1. So, this
constraint remains satisfied by the modified second-stage solution.

Part 3- Proof of Statement 3
After replacing variables wrω using constraint (5.14), we rewrite objective function (5.10) as
follows :

Q(x,y, ξ(ω)) = min
u,v

∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0tω

(coritω + cwr fritω)uri0tω +
∑
i∈I

∑
t∈Tiω

cditvitω

−
∑
r∈R

cwr

 ∑
i,j∈(Ir∪{0}):

(i,j)∈Ar

grijtωxrij +
∑
i∈Ir

∑
t∈T dep

ri

tyrit

 (B.6)

Apparently, for fixed indices r ∈ R and i ∈ Ir, cost coefficients of uri0tω variables are higher

174

for larger values of t ∈ Tri0ω. Similarly, for a fixed index i ∈ I, cost coefficients of vitω variables
are higher for larger values of Tiω. Therefore, it is clear that by modifying the second-stage
solution as proposed in Step 1 of Algorithm B1, the objective value does not deteriorate.

B.6 Proof of Lemma 5.3

As shown in objective function (B.6), the part of the second-stage objective function related
to second-stage variables is equal to the weighted sum of tours completion times and service
start times. Also, as discussed in the last paragraph in the proof of Theorem 5.4, coefficients
of uri0tω and vitω are non-decreasing in terms of t. Therefore, for a fixed first-stage solution,
we obtain the best second-stage objective value when customers are served as soon as all
required vehicles are available.

B.7 Proof of Lemma 5.4

Let’s assume that κj(ω) denotes the finish time of service to customer j in scenario ω. In the
following, we suppose that customer i is a predecessor of customer j if there is r ∈ Rj such
that xrij = 1. To prove the convexity of κj(ω) for all customers j we define two lists L1 and
L2 as follows.

– L1 maintains the list of customers j for which the convexity of κj(ω) is already proven.
– L2 maintains the list of customers j for which there is not any customer i as the

predecessor (i.e., for all r ∈ Rj, i ∈ Ir : (i, j) ∈ Ar we have xrij = 0 or all customers i
that are predecessors of customer j are in L1).

To prove the convexity of κj(ω) for all customers j, we sequentially choose a customer j
from L2, prove the convexity of κj(ω) and add customer j to list L1. Since there is not any
subtour in routes formed by the first-stage solution x, after |I| iterations we are sure that
the convexity κj(ω) for all customers j is proven.

For customer j selected from L2, we compute κj(ω) by κj(ω) = max{max
r∈Rj

{κir(ω) +
trirjω}, ej} + max

r∈Rj

{srjω} where ir denotes the customer that a type r vehicle has served im-
mediately before customer j. srjω and trirjω are parameters in the vector ξ(ω) and therefore
they are convex in terms of ξ(ω) because assuming that srj(αω1+(1−α)ω2) and trirj(αω1+(1−α)ω2)

denote the corresponding service and travel times in scenario αξ(ω1) + (1− α)ξ(ω2) we have
srj(αω1+(1−α)ω2) = αsrjω1 +(1−α)srjω2 and trirj(αω1+(1−α)ω2) = αtrirjω1 +(1−α)trirjω2 . Also ej is
a constant. Moreover, the convexity of κir(ω), r ∈ Rj are proven in previous iterations of the
algorithm. We know that convex functions are closed for two operations of summation and

175

maximization, i.e., the sum and the maximum of two convex functions is a convex function
too. Therefore, it is clear that κj(ω) = max{max

r∈Rj

{κir(ω) + trirjω}, ej}+max
r∈Rj

{srjω} is convex
in ξ(ω). To complete our proof, we should show that in initial steps, when we evaluate the
convexity of κj(ω) for customer j without any predecessor (i.e., ir = 0), κj(ω) is convex.
We note that in this case we have κir(ω) = ∑

t∈T
tŷrjt that shows κir(ω) is a constant and the

convexity of κj(ω) is proven in the same way explained before.

B.8 Proof of Lemma 5.5

In the general case, when service and travel times are not multiples of the time slots length,
we define the second-stage cost function Qgeneral(x,y, ξ(ω)) as follows.

Qgeneral(x,y, ξ(ω)) =
∑
i∈I

c′delaydiω +
∑
i∈I

∑
r∈Ri

c′overtimeoriω +
∑
r∈R

cwr wrω (B.7)

In Qgeneral(x,y, ξ(ω)) defined by (B.7), diω = max{φi(ω)− li, 0} denotes the delay in serving
customer i where φi(ω) stands for the time that service to customer i starts. Also, oriω
denotes the overtime of the type r vehicle returning to the depot after serving customer i.
We compute it by

oriω =
{

(κi(ω) + tri0ω − L), if xri0 = 1
0 , if xri0 = 0

where κi(ω) is the finish time of service to customer i. Furthermore, wrω indicates the total
waiting time of all vehicles of type r in scenario ω that is computed by

wrω =
∑
i∈Ir

Criω −
∑

i,j∈(Ir∪{0}):
(i,j)∈Ar

grijtωxrij −
∑
i∈Ir

∑
t∈T dep

ri

tyrit

where Criω denotes the completion time of the type r vehicle returning to the depot after
serving customer i. We compute Criω by the following formula :

Criω =
{

(κi(ω) + tri0ω), if xri0 = 1
0 , if xri0 = 0

In the following, we prove that diω, oriω and wrω are convex in terms of ξ(ω), and therefore
Qgeneral(x,y, ξ(ω)) is a convex function.

First, we note that diω = max{φi(ω) − li, 0} where φi(ω) = max{max
r∈Rj

{κir(ω) + trirjω}, ej}

176

and κi(ω) and ir are defined as in the proof of Lemma 5.4. Considering that we proved the
convexity of κi(ω) using Lemmas 5.3 and 5.4 and also the fact that the sum and the maximum
of two convex functions is also a convex function, we conclude that φi(ω) is also convex in
terms of ξ(ω). Similarly, based on the convexity of φi(ω) we conclude that diω is a convex in
terms of ξ(ω) too. Also, based on the convexity of κi(ω) in terms of ξ(ω), it is clear that for a
fixed first-stage solution (x,y), oriω, Criω and wrω are convex. Therefore Qgeneral(x,y, ξ(ω))
is convex in terms of ξ(ω).

B.9 Proof of Lemma 5.6

First, we note that Q′(x,y, bξ(ω)c) = Qgeneral(x,y, bξ(ω)c) holds because based on the de-
finition of Qgeneral(x,y, ξ(ω)), this function computes the second-stage cost regardless of
whether or not travel and service times in ξ(ω) are multiples of the time slots length. The-
refore, to prove that Q′(x,y, bξ(ω)c) ≤ Qgeneral(x,y, ξ(ω)) is correct we just need to show
that Qgeneral(x,y, bξ(ω)c) ≤ Qgeneral(x,y, ξ(ω)) holds. Based on Lemma 5.3, we know that
service to a customer starts as soon as all required vehicles are available at the customer’s
location. Therefore, it is clear that φi(ω) and κi(ω) which respectively stand for the start time
and finish time of the service to customer i, do not increase when we replace ξ(ω) by bξ(ω)c.
Considering relation (B.7) in the proof of Lemma 5.5, which represents Qgeneral(x,y, ξ(ω)),
we notice that diω, oriω, Criω and wrω are non-decreasing functions in terms of κi(ω) and
φi(ω), and therefore we conclude that by replacing ξ(ω) with bξ(ω)c the second-stage cost
does not increase and Qgeneral(x,y, bξ(ω)c) ≤ Qgeneral(x,y, ξ(ω)) holds.

B.10 Proof of Theorem 5.5

As a result of Lemma 5.5, we can write Jensen’s Inequality (Jensen 1906) for
Qgeneral(x,y, ξ(ω)) as follows.

Qgeneral(x,y) = E
ω∈Ω

[Qgeneral(x,y, ξ(ω))] ≥ Qgeneral(x,y, ξ̄(ω)) (B.8)

Also, based on the definition of Qgeneral(x,y, ξ(ω)), the following relation holds.

Q′(x,y) = E
ω∈Ω

[Q′(x,y, ξ(ω))] = E
ω∈Ω

[Qgeneral(x,y, ξ(ω))] (B.9)

Relations (B.8) and (B.9) show that the following relation holds.

Q′(x,y) ≥ Qgeneral(x,y, ξ̄(ω)) (B.10)

177

Also, Lemma 5.6 and relation (B.10) demonstrate the following inequality.

Q′(x,y) ≥ Q′
(
x,y,

⌊
ξ̄(ω)

⌋)
(B.11)

In master problem (MP), θ stands for the second-stage cost without negative parts of
the waiting cost and we have Q′(x,y). Therefore, with respect to relation (B.11), θ ≥
Q′
(
x,y,

⌊
ξ̄(ω)

⌋)
is a valid inequality for the master problem of the proposed L-shaped algo-

rithm.

B.11 Proof of Theorem 5.6

We use a contradiction approach to prove that the proposed lower bounding functio-
nal prevents solutions with subtours. Let’s assume that a subtour (i1, i2, ..., in, i1) exists
for the vector of resources (r1, r2, ..., rn, r1) that means xrcicic+1 = 1 for c = 1, 2, ..., n
(in+1 = i1 and rn+1 = r1). Assume that the start time of service to customer ic is t∗c ,
i.e., vi(t∗c)ω = 1. Considering constraint (5.13) for i = in+1, r = rn and t = t∗n+1, we have∑
j∈(Irn∪{0}):

(i,j)∈Arn

urnin+1jt∗n+1ω
= 1 (note that i ∈ Irn because xrninin+1 = 1). Also, the right-hand side

of constraint (5.12) for r = rn, j = in+1 and t = t∗n+1 is equal to ∑
j∈(Irn∪{0}):

(i,j)∈Arn

urnin+1jt∗n+1ω
= 1.

Therefore, the left-hand side of this constraint must be equal to 1 (note that it cannot be
greater than 1 because of constraint (5.11) and constraint (5.3)). Also since xrninin+1 = 1, with
respect to constraint (5.11), we know that index i on the left-hand side of constraint (5.12)
must be equal to in. Thus, there exists an index t′ satisfying t′ + srninω + trninin+1ω ≤ t∗n+1

for which urninin+1t′ω = 1. This also shows that, with respect to constraint (5.13), the start
time of service to customer in, that is denoted by t∗n, satisfies t∗n < t∗n+1. By repeating the
above procedure n times, it is clear that we obtain t∗1 < t∗2 < ... < t∗n < t∗n+1 = t∗1 that is a
contradiction.

B.12 Proof of Lemma 5.7

To prove this lemma, we show that by replacing the values of dual variables using (5.49)-
(5.58), all constraints (5.42)-(5.46) in Model (Dω) are satisfied. In the following, we check
constraints one by one for the proposed solution.

Evaluation of constraint (5.42)

Case 1) Assume that we have xrij 6= 1. In this case, with respect to (5.55), constraint (5.42)

178

is satisfied.

Case 2) In this case, we assume that x̂rij = 1 and t ≥ t∗iω = deprj holds. With respect
to (5.58), we have π(2)

rjt′ω = π
(1)
rijω = π

(3)
rjt′ω = 0. Therefore, constraint (5.42) is satisfied.

Case 3) In this case, we assume that x̂rij = 1 and t < t∗iω = deprj holds. With res-
pect to (5.58), we have π(1)

r0jω = 0. After substitution of π(2)
rjtω using (5.51), we can rewrite

constraint (5.42) as follows :

∑
t′∈Tjω :t+tr0jω≤t′
t′≥deprj+tr0jω

π
(3)
rjt′ω ≤ 0 r ∈ R, j ∈ Ir : (0, j) ∈ Ar, t ∈ Tr0jω (B.12)

In the following, we show that summation on the left-hand side of (B.12) is equal to 0. Two
cases are possible : either r ∈ NRjω or r ∈ CRjω holds. In the first case, with respect (5.58)
all π(3)

rjt′ω in (B.12) are equal to 0. In the second case, we note that t′ ≥ deprj + tr0jω

implies t′ ≥ t∗jω because of r ∈ CRjω. Therefore, again (5.58) indicates that all π(3)
rjt′ω in

relation (B.12) are equal to 0.

Evaluation of constraint (5.43)

Case 1) Assume that we have x̂rij 6= 1. In this case, with respect to (5.56), constraint (5.43)
is satisfied.

In all of the following cases for constraint (5.43), we assume x̂rij = 1.

Case 2) In this case, we assume that customer i is a non-critical customer, i.e., i ∈ NT ω.
In this case, with respect to relation (5.58) we have π(1)

rijω = π
(3)
rit′ω = π

(4)
ritω = 0. So, we can

rewrite constraint (5.43) as follows :

∑
t′∈Tjω :

t+sriω+trijω≤t′

π
(3)
rjt′ω ≤ 0 r ∈ R, i, j ∈ Ir : (i, j) ∈ Ar, t ∈ Trijω (B.13)

By considering two cases of r ∈ NRjω or r ∈ CRjω we can easily show that the remaining
terms on the left-hand side of constraint (5.43) are equal to 0. In the case of r ∈ NRjω,
relation (5.58) shows that all remaining π(3)

rjt′ω are equal to 0. Also, in the case of r ∈ CRjω,
with respect to relation (5.58), we know that π(3)

rjt′ω = 0 for t′ ≥ t∗jω. In the following, we show
that in constraint (5.43) for all terms π(3)

rjt′ω, t′ ≥ t∗jω holds and thus all are equal to 0. In
constraint (5.43), we note that the summation of π(3)

rjt′ω is over t′ ∈ Tjω : t′ ≥ t + sriω + trijω

where t ∈ Trijω. We know that for all t ∈ Trijω we have t ≥ ei. Therefore, in
∑

t′∈Tjω :
t+sriω+trijω≤t′

π
(3)
rjt′ω,

179

condition t′ ≥ t+ sriω + trijω shows t′ ≥ t+ sriω + trijω ≥ ei + sriω + trijω = t∗jω holds. In the
recent relation, t + sriω + trijω ≥ ei + sriω + trijω holds because in Case 2 we have assumed
i ∈ NT ω. Also, ei + sriω + trijω = t∗jω holds because we have assumed r ∈ CRjω. Thus, for
r ∈ CRjω we have ∑

t′∈Tjω :
t+sriω+trijω≤t′

π
(3)
rjt′ω = ∑

t′∈Tjω :
t∗rjω≤t

′

π
(3)
rjt′ω = 0

Case 3) In this case, we assume that customer i is a critical customer, i.e., i ∈ CT ω and
also r ∈ NRiω. In constraint (5.43), with respect to (5.58), we have π(1)

rijω = π
(3)
rit′ω = 0. By

substituting π(4)
ritω using relation (5.50), the constraint reduces to 0 ≤ 0. In replacing the value

of π(4)
ritω using relation (5.50), we note that kri = j 6= 0.

Case 4) In this case, we assume that customer i is a critical customer, i.e., i ∈ CT ω and
also r ∈ CRiω. We divide this case into four sub-cases as follows :

Case 4-1) In this case, we additionally assume that t < t∗iω holds. By substituting the values
of π(3)

rit′ω using (5.53), we can rewrite constraint (5.43) as follows.

π
(1)
rijω + π

(4)
ri(t∗iω)ω ≤ 0 r ∈ R, i, j ∈ Ir : (i, j) ∈ Ar, t ∈ Trijω (B.14)

We note that, in replacement of π(3)
rit′ω using relation (5.53), we have kri = j 6= 0. Then by

replacing π(1)
rijω and π(4)

ri(t∗iω)ω using relations (5.52) and (5.49), we obtain the following relation.

αriω
∑

r′∈NRiω :kr′i 6=0
t′∈Tkr′iω :t∗iω+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω ≤ 0 r ∈ R, i, j ∈ Ir : (i, j) ∈ Ar, t ∈ Trijω (B.15)

By considering two cases of r′ ∈ NRkr′iω
and r′ ∈ CRkr′iω

we can show that all π(3)
r′kr′it

′ω on
the left-hand side of (B.15) are equal to 0 with respect to relation (5.58). For the case of
r′ ∈ CRkr′iω

, we note that t′ ≥ t∗iω + sr′iω + tr′ikr′iω
implies t′ ≥ t∗kr′i

and therefore relation
(5.58) is applicable.

Case 4-2) In this case, we assume that t ≥ t∗iω holds. We note that, with respect to (5.58) all
π

(3)
rit′ω in constraint (5.43) are equal to 0. By substituting π(4)

ritω and π(1)
rijω using relations (5.49)

and (5.52), we obtain the following relation.

∑
t′∈Tjω :

t+sriω+trijω≤t′

π
(3)
rjt′ω

+αriω
∑

r′∈NRiω :kr′i 6=0
t′∈Tkr′iω :t+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω ≤ 0 r ∈ R, i, j ∈ Ir : (i, j) ∈ Ar, t ∈ Trijω(B.16)

180

Similar to previous Case 4-1, by considering two case of r′ ∈ NRkr′iω
and r′ ∈ CRkr′iω

, we
can show that second summation on the left-hand side of (B.16) is equal to 0. We note that,
in the case of r′ ∈ CRkr′iω

, we use the assumption t ≥ t∗iω to show that t′ ≥ t+sr′iω+tr′ikr′iω
≥

t∗iω + sr′iω + tr′ikr′iω
= t∗kr′iω

. Regarding the first summation on the left-hand side of (B.16),
we can similarly show that all π(3)

rjt′ω are equal to 0 for both cases r ∈ NRjω and r ∈ CRjω.
Therefore, (B.16) reduces to 0 ≤ 0 that holds.

Evaluation of constraint (5.44)

Case 1) Assume that we have x̂ri0 6= 1. In this case, with respect to (5.57), constraint (5.44)
is satisfied.

Case 2) We assume that x̂ri0 = 1 holds and also customer i is a non-critical customer,
i.e., i ∈ NT ω. In this case, in constraint (5.44), we have π(4)

ritω = π
(3)
rit′ω = 0 with respect to

constraint (5.58). Also by substituting π(1)
rijω , using relations (5.54), constraint (5.44) reduces

to λrit∗iωω
≤ λritω which holds because for t ∈ Tri0ω we have t ≥ ei = t∗iω. The recent equality is

valid because we assumed i ∈ NT ω. Relation t ≥ t∗iω shows that λrit∗iωω
≤ λritω holds because

λritω is non-decreasing in t.

Case 3) We assume that x̂ri0 = 1 holds and also customer i is a critical customer, i.e.,
i ∈ CT ω. We break case 3) to three following sub-cases :

Case 3-1) In this case, we assume that r ∈ CRiω and t ∈ Tri0ω : t ≥ t∗iω hold. In this case,
With respect to (5.58), all terms π(3)

rit′ω in constraint (5.44) are equal to 0. By substituting
relations π(1)

rijω and π
(4)
ritω using relations (5.52) and (5.49), constraint (5.44) reduces to the

following relation.

λrit∗iωω
+ αrjω

∑
r′∈NRiω :kr′i 6=0

t′∈Tkr′iω :t+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω ≤ λritω r ∈ R, i ∈ Ir : (i, 0) ∈ Ar (B.17)

t ∈ Tri0ω

Similar to Case 4-2 in the evaluation of constraint (5.43), all π(3)
r′kr′it

′ω in (B.17) are equal to
0. Thus, (B.17) comes down to λri(t∗iω)ω ≤ λritω which holds because λritω is non-decreasing
in terms of t and we have assumed t ≥ t∗iω.

Case 3-2) In this case, we assume that r ∈ CRiω and t ∈ Trijω : t < t∗iω hold. In this case,
constraint (5.44) reduces to the following relation by substituting π(3)

rit′ω using relation (5.53).

π
(1)
ri0ω + π

(4)
ri(t∗iω)ω ≤ λrj(t∗iω)ω r ∈ R, i ∈ Ir : (i, 0) ∈ Ar, t ∈ Tri0ω (B.18)

181

In the replacement of π(3)
rit′ω using relation (5.53), we note that x̂ri0 = 1 holds. By replacing

π
(1)
ri0ω and π(3)

rit∗iωω
using (5.52) and (5.49), (B.18) reduces the following relation.

αriω
∑

r′∈NRiω :kr′i 6=0
t′∈Tkr′iω :t∗iω+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω ≤ 0 r ∈ R, i ∈ Ir : (i, 0) ∈ Ar, t ∈ Tri0ω (B.19)

The left-hand side of relation (B.19) is equal to 0, as discussed in Case 4-1 in the evaluation
of constraint (5.43). Therefore, relation (B.19) comes down to 0 ≤ 0 that holds.

Case 3-3) In this case, we assume that r ∈ NRiω holds. In this case, with respect to (5.58),
all terms π(1)

ri0ω and π
(3)
rit′ω in constraint (5.44) are equal to 0. By substituting π

(4)
ritω using

relation (5.50), constraint (5.44) reduces to λri(min(t,t∗iω))ω ≤ λritω which holds for both cases
of t < t∗iω and t ≥ t∗iω because λritω is non-decreasing in terms of t.

Evaluation of constraint (5.45)

Case 1) Let’s assume customer i is a non-critical customer, i.e., i ∈ NT ω. In this case, with
respect to (5.58), all π(4)

ritω in constraint (5.45) are equal to 0 and therefore the constraint
reduces to 0 ≤ cdit which holds for all parameters cdit.

Case 2) Let’s assume customer i is a critical customer, i.e., i ∈ CT and also t ≥ t∗iω holds.
First, we rewrite constraint (5.45) as follows.

− ∑
r∈NRiω :
x̂ri0=0

π
(4)
ritω −

∑
r∈NRiω :
x̂ri0 6=0

π
(4)
ritω −

∑
r∈CRiω

π
(4)
ritω ≤ cdit i ∈ CT ω, t ∈ Tiω : t ≥ t∗iω (B.20)

In the first summation of (B.20), using relation (5.50), we have π
(4)
ritω =

− ∑
t′∈Tkrj ω :

t+srjω+trjkrj ω≤t′

π
(3)
rjkrjt′ω

= 0 . The last equality is valid with respect to discussion

provided in Case 4-2 in the evaluation of constraint (5.43) for t ≥ t∗iω. By replacing π(4)
ritω in

(B.20) using relations (5.49) and (5.50), we obtain the following relation.

cdi(t∗iω) −
∑

r∈CRiω

αriω ∑
r′∈NRiω :kr′i 6=0

t′∈Tkr′iω :t+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω

 ≤ cdit r ∈ CT ω, t ∈ Tiω : t ≥ t∗iω(B.21)

In the recent replacement, we simplified the left-hand side of relation (B.21) using

182

∑
r∈CRiω

αriω = 1. Also, we know that ∑
r′∈NRiω :kr′i 6=0

t′∈Tkr′iω :t+sr′iω+tr′ikr′iω≤t′

π
(3)
r′kr′it

′ω for t ≥ t∗iω as discussed

before in Case 4-2 in the evaluation of constraint (5.43). Therefore, relation (B.21) reduces
to cdit∗iω

≤ cdit which holds because cdit is non-decreasing in terms of t.

Case 3) Let’s assume customer i is a critical customer, i.e., i ∈ CT ω and t < t∗iω holds.
Similar to the previous case, we can rewrite constraint (5.45) as follows.

− ∑
r∈NRiω :
x̂ri0=0

π
(4)
ritω −

∑
r∈NRiω :
x̂ri0 6=0

π
(4)
ritω −

∑
r∈CRiω

π
(4)
ritω ≤ cdit i ∈ CT ω, t ∈ Tiω : t < t∗iω (B.22)

By replacing π(4)
ritω using (5.49) and (5.50), we obtain the following relation.

cdi(t∗iω) + ∑
r∈NRiω :kr′i=0

λr′i(t∗iω)ω ≤ cdit + ∑
r∈NRiω :kr′i=0

λritω i ∈ CT ω, t ∈ Tiω : t < t∗iω (B.23)

Relation (B.23) holds because cdit + ∑
r∈NRiω :kr′i=0

λritω is non-decreasing in terms of t and we

assumed t < t∗iω.

Evaluation of constraint (5.46)

For those π
(3)
rjtω that are set to 0 by relation (5.58), constraint (5.46) is clearly

satisfied. For those variables π
(3)
rjtω evaluated by relation (5.53),

(
π

(4)
rjtω − π

(4)
rj(t+1)ω

)
+

F(x̂rj0=1)
(
λrj(t+1)ω − λrjtω

)
≥ 0 holds because −π(4)

rjtω and λrjtω are non-decreasing in terms
of t. As π(3)

rjtω in (5.53) depends on π(3)
rkrj(t+srjω+trjkrj ω)ω, by induction and starting from cases

that F[(x̂rj0 6=1) & (t+srjω+trjkrj ω)∈Tkrj ω] = 0, one can easily show that π(3)
rjtω ≥ 0 holds.

B.13 Proof of Lemma 5.8

First, we compute the objective value of subproblem (SPω) and then we show that the
objective value of Model (Dω) for the dual solution obtained by (5.49)-(5.58) is equal to the
objective value of subproblem (SPω).

With respect to Theorem 5.4, we know that all urijtω and vitω variables take binary values. We
denote the optimal values of urijtω and vitω by u∗rijtω and v∗itω respectively. Also, let t∗iω denote
the start time of serving customer i in scenario ω. Thus, we have u∗rijt∗iωω

= 1, u∗rijtω = 0 for
t 6= t∗iω and v∗i(t∗iω)ω = 1, v∗itω = 0 for t 6= t∗iω.

183

Optimal objective value of subproblem (SPω) = ∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0ω

coritωu
∗
ri0tω +

∑
i∈I

∑
t∈Tiω

cditv
∗
itω + ∑

r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0ω

cwr fritωu
∗
ri0tω

Using λritω = coritω + cwr fritω, we can simplify the above relation as follows.

Optimal objective value of subproblem (SPω) = ∑
r∈R

∑
i∈Ir:

(i,0)∈Ar

∑
t∈Tri0ω

λritωu
∗
ri0tω +

∑
i∈I

∑
t∈Tiω

cditv
∗
itω = ∑

r∈R

∑
i∈Ir:
x̂ri0=1

λri(t∗iω)ω + ∑
i∈I

cdi(t∗iω) = ∑
r∈R

∑
i∈Ir:
x̂ri0=1

λri(t∗iω)ω + ∑
i∈CT ω

cdi(t∗iω)

Now, we compute the objective value of the Model (Dω) for the dual solution obtained
by (5.49)-(5.58).

The objective value of Model (Dω) = ∑
r∈R

∑
i,j∈(Ir∪{0}):

(i,j)∈Ar

x̂rijπ
(1)
rijω + ∑

r∈R

∑
i∈Ir:
x̂r0i=1

∑
t∈T dep

ir

ŷritπ
(2)
ritω

= ∑
r∈R

∑
i,j∈(Ir∪{0}):

(i,j)∈Ar & x̂rij=1

π
(1)
rijω + ∑

r∈R

∑
i∈Ir:
x̂r0i=1

∑
t∈T dep

ir :
ŷrit=1

π
(2)
ritω = ∑

i,j∈(I∪{0}):

∑
r∈Ri:

(i,j)∈Ar & x̂rij=1

π
(1)
rijω

= ∑
i,j∈(I∪{0}):

& i∈CT ω

∑
r∈Ri:

(i,j)∈Ar & x̂rij=1

π
(1)
rijω + ∑

i,j∈(I∪{0}):
& i∈NT ω

∑
r∈Ri:

(i,j)∈Ar & x̂rij=1

π
(1)
rijω

= ∑
i,j∈(I∪{0}):

& i∈CT ω

∑
r∈CRiω :

(i,j)∈Ar & x̂rij=1

π
(1)
rijω + ∑

i,j∈(I∪{0}):
& i∈CT ω

∑
r∈NRiω :

(i,j)∈Ar & x̂rij=1

π
(1)
rijω + ∑

i,j∈(I∪{0}):
& i∈NT ω

∑
r∈Ri:

(i,j)∈Ar & x̂rij=1

π
(1)
rijω

= ∑
i∈I,j∈(I∪{0}):

& i∈CT ω

∑
r∈CRiω :

(i,j)∈Ar & x̂rij=1

(
αriω

(
cdi(t∗iω) + ∑

r′∈NRiω :kr′i=0
λr′i(t∗iω)ω

)
+ λri(t∗iω)ωF(x̂ri0=1)

)

+ ∑
i∈I∩NT ω

∑
r∈Ri:
x̂ri0=1

λrit∗iωω

= ∑
i∈I,j∈(I∪{0}):

& i∈CT ω

∑
r∈CRiω :

(i,j)∈Ar & x̂rij=1

(
αriω

(
cdi(t∗iω) + ∑

r′∈NRiω :kr′i=0
λr′i(t∗iω)ω

))

184

+ ∑
i∈I,j∈(I∪{0}):

& i∈CT ω

∑
r∈CRiω :

(i,j)∈Ar & x̂rij=1

(
λri(t∗iω)ωF(x̂ri0=1)

)
+ ∑

i∈I∩NT ω

∑
r∈Ri:
x̂ri0=1

λri(t∗iω)ω

= ∑
i∈I∩CT ω

∑
r∈CRiω

(
αriω

(
cdi(t∗iω) + ∑

r′∈NRiω :kr′i=0
λr′i(t∗iω)ω

))
+ ∑

i∈I∩CT ω

∑
r∈CRiω :
x̂ri0=1

λri(t∗iω)ω

+ ∑
i∈I∩NT ω

∑
r∈Ri:
x̂ri0=1

λri(t∗iω)ω

= ∑
i∈I∩CT ω

(
cdi(t∗iω) + ∑

r′∈NRiω :kr′i=0
λr′i(t∗iω)ω

)
+ ∑

i∈I∩CT ω

∑
r∈CRiω :
x̂ri0=1

λri(t∗iω)ω + ∑
i∈I∩NT ω

∑
r∈Ri:
x̂ri0=1

λri(t∗iω)ω

= ∑
i∈I∩CT ω

cdi(t∗iω) + ∑
i∈I∩CT ω

∑
r∈NRiω :
x̂ri0=1

λri(t∗iω)ω + ∑
i∈I∩CT ω

∑
r∈CRiω :
x̂ri0=1

λri(t∗iω)ω + ∑
i∈I∩NT ω

∑
r∈Ri:
x̂ri0=1

λri(t∗iω)ω

= ∑
i∈I∩CT ω

cdi(t∗iω) + ∑
i∈I

∑
r∈Ri:
x̂ri0=1

λri(t∗iω)ω = Optimal objective value of subproblem (SPω)

185

 C SUPPLEMENTS OF ARTICLE 3

C.1 Proof of Lemma 6.1

We use the following notation.

(U , W) : The uncertainty set that is defined a s (U , W) = {(u, w)| constraints (6.25)-(6.28)
are satisfied}.

J : The index set of (U ,W) that is defined as J = {1, 2, ..., |(U ,W)|} where |(U ,W)|
represents the cardinality of (U ,W).

(uj, wj) : The j-th member of (U ,W).

We also define fk(x,w) and gk(x, eks) as follows.

fk(x,w) = min
yk

cᵀ2kyk (C.1)

Subject to :

Akx+ ∑
k∈K

ekswks + Ckyk ≤ bk k ∈ K (C.2)

yk ∈ Yk k ∈ K (C.3)

gk(x, eks) = min
y′

ks

cᵀ2ky
′
ks (C.4)

Subject to :

Akx+ eks + Cky
′
ks ≤ bk k ∈ K (C.5)

y′ks ∈ Yk k ∈ K (C.6)

For each adversarial scenario (y, w) ∈ (U ,W) with index j ∈ J , with respect to
constraints (6.17) and (6.25), exactly one of the variables wjks s ∈ Sk is equal to 1 for
each k ∈ K. Let sj denote the index in Sk for which wjksj

is equal to 1. Therefore we have the
following relations.

wjksj
= 1 j ∈ J (C.7)

wjks = 0 j ∈ J , s 6= sj (C.8)

In the following we prove the if -statement of Lemma 1. The only if -statement of this lemma

 APPENDIX

186

can be proven in a reverse direction. Assume that x̂ is a first-stage feasible solution of Model
(P2). In the following we separately prove that

- x̂ is also a first-stage feasible solution of Model (P3).
- The objective values of (P2) and (P3) for this fixed first-stage solution are the same

if max
u,w

and min
y′

are solved optimally.

Proof of Part 1 : Since Model (P2) is feasible, there is at least a feasible second-stage policy
〈αkj〉(k∈K) for each j ∈ J such that

Akx̂+ ∑
s∈Sk

eksw
j
ks + Ckαkj ≤ bk k ∈ K, j ∈ J (C.9)

αkj ∈ Yk k ∈ K, j ∈ J (C.10)

Using (C.7) and (C.8), we can rewrite relations (C.9)-(C.10) as follows.

Akx̂+ eksj
+ Ckαkj ≤ bk k ∈ K, j ∈ J (C.11)

αkj ∈ Yk k ∈ K, j ∈ J (C.12)

Relations (C.11)-(C.12) demonstrate that for each k ∈ K and s ∈ Sk there is at least one
j ∈ J such that for y′ks = αkj constraints Akx+ eks + Cky

′
ks ≤ bk and y′ks ∈ Yk are satisfied.

Therefore, x̂ is also a first-stage feasible solution of Model (P3).
Proof of Part 2 : To prove that the objective values of (P2) and (P3) for the fixed first-
stage solution x̂ are the same, it is enough to prove that relation (C.13) or its equivalent,
relation (C.14), holds.

cᵀ1x̂+ max
(u,w)∈(U ,W)

(∑
k∈K

fk(x̂, w)
)

= cᵀ1x̂+ max
(u,w)∈(U ,W)

(∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(C.13)

max
(u,w)∈(U ,W)

(∑
k∈K

fk(x̂, w)
)

= max
(u,w)∈(U ,W)

(∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(C.14)

Moreover, regarding (C.7) and (C.8), in constraint (C.2) of fk(x̂, wj) we can substitute∑
s∈Sk

eksw
j
ks by eksj

. It is then clear that mathematical programs corresponding to gk(x̂, eksj
)

and fk(x̂, wj) have the same structure and following relations hold.

gk(x̂, eksj
) = fk(x̂, wj) k ∈ K, j ∈ J (C.15)

argmin
y′

ks

(
gk(x̂, eksj

)
)

= argmin
yk

(fk(x̂, wj)) k ∈ K, j ∈ J (C.16)

187

The following stream of equalities proves the validity of (C.14). In the following relations the
second equality is obtained using (C.15). The third equality is valid because of (C.7)-(C.8).

max
(u,w)∈(U ,W)

(∑
k∈K

fk(x̂, w)
)

= max
j∈J

(∑
k∈K

fk(x̂, wj)
)

= max
j∈J

(∑
k∈K

gk(x̂, eksj
)
)

=

max
j∈J

(∑
k∈K

∑
s∈Sk

gk(x̂, eks)wjks
)

= max
(u,w)∈(U ,W)

(∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

In addition, relation (C.16) shows that we can obtain the second-stage optimal policies for
variables yk in Model (P2) from the optimal values of variables y′ks.

C.2 Proof of Theorem 6.2

As discussed in Appendix C.1, we can present the inner max problem in Model (P3) by

max
(u,w)∈(U ,W)

(∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(C.17)

where gk(x̂, eks) is defined as follows.

gk(x, eks) = min
y′

ks

cᵀ2ky
′
ks (C.18)

Akx+ eks + Cky
′
ks ≤ bk k ∈ K (C.19)

y′ks ∈ Yk k ∈ K (C.20)

It is clear that the optimal values of vectors y′ks for k ∈ K, s ∈ Sk are independent of
(u,w) ∈ (U ,W) and are defined by

y′∗ks = arg min
y′

ks
∈Gks

(cᵀ2ky′ks) k ∈ K, s ∈ Sk (C.21)

where Gks = {y′ks ∈ Yk|Akx̂ + eks + Cky
′
ks ≤ bk}. Therefore, because of the independence

of y′ks, k ∈ K, s ∈ Sk from (u,w) ∈ (U ,W), we can swap max
(u,w)

and min
y′

in Model (P3) and
Theorem 6.2 is proven.

188

C.3 Proof of Theorem 6.3

Consider the following problem.

(MP′) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

(y,w)∈(U ,W)′

(∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(C.22)

where (U ,W)′ = {(uj, wj), j = 1, 2, ...,m}. Since (U ,W)′ ⊆ (U ,W) the optimal objective
value of Model (MP′) is a valid lower bound for the optimal objective value of the original
robust problem (P5). In the following we demonstrate that (MP′) is equivalent to (MP). By
writing the convex combination of m scenarios (uj, wj), Model (MP′) can be rewritten as
follows.

(MP′′) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

λ

(
m∑
j=1

λj

(∑
k∈K

∑
s∈Sk

cᵀ2ky
′
ksŵ

j
ks

)))
(C.23)

m∑
j=1

λj = 1 (C.24)

λj ≥ 0 j = 1, 2, ...,m. (C.25)

In Model (MP′′), for a fixed value of (x, y′), the inner max problem is a linear programming
model and one of its extreme points will be the optimal solution. Each extreme point of this
model corresponds to one of the scenarios (uj, wj). Therefore, Model (MP′′) is equivalent to
Model(MP′). By dualizing the inner max problem in Model (MP′′) and assuming θ as the
dual variables of constraint (C.24) we obtain Model (MP) and Theorem 6.3 is proven.

C.4 Proof of Theorem 6.4

To prove that the Benders algorithm without stopping conditions converges in at most |W|+1
iterations, it is enough to show that if the algorithm visits an adversarial scenario with a
repeated vector w in the subproblem, then the optimal solution is found and the Benders
algorithm is converged. Let’s denote this adversarial scenario by (û, ŵ). We also assume
that the algorithm obtains solution (x̂, ŷ′) by solving the master problem just before the
subproblem in which scenario (û, ŵ) is found. Since in scenario (û, ŵ), vector w is repeated,
the above master problem includes an instance of constraint (6.42) corresponding to vector
ŵ. Furthermore, since (x̂, ŷ′) is a feasible solution in the master problem we have

cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks ≤ θ∗ ≤ Opt (C.26)

189

where θ∗ is the optimal solution of the master problem in this iteration and Opt is the optimal
objective value of the robust problem. Besides, in the Benders algorithm without stopping
conditions for the master problem and subproblem, the adversarial scenario (û, ŵ) is visited
in the subproblem if it is the optimal solution of the subproblem. Therefore, we have

Opt ≤ cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks (C.27)

Relation (C.27) is valid because the optimal objective value of the subproblem is a valid
upper bound for the optimal objective value of the robust problem. Consequently, (C.26)-
(C.27) results in relation (C.28).

Opt = cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks (C.28)

This relation means that (x̂, ŷ′) is the optimal solution of the robust problem and the Benders
algorithm is converged in at most |W|+ 1 iterations. Since for each w ∈ W there is at least
one u ∈ U satisfying (u,w) ∈ (U ,W), |W|+ 1 is bounded above by n+ 1.

190

Notation used in appendices C.5 to C.9

We use the following notation in the proofs of appendices C.5 to C.9.

W : The set of vectors w for which there is u ∈ U such that (u,w) ∈ (U ,W).

n : The number of adversarial scenarios in (U ,W).

n′ : The number of unique vectors w that the algorithm visits in the subproblem before
it converges.

n′′ : The number of times that the algorithm visits an already encountered vector w in
the subproblem before it converges.

ε : A positive constant used in stopping conditions of the master problem and subpro-
blem.

MP (i) : The master problem in iteration i.

SP (i) : The subproblem in iteration i.

Opt : The optimal objective value of the original robust problem.

UMP
i : The upper bound of the master problem in iteration i.

OMP
i : The optimal objective value of the master problem in iteration i.

LMP
i : The lower bound of the master problem in iteration i.

USP
i : The upper bound of the subproblem in iteration i.

OSP
i : The optimal objective value of the subproblem in iteration i.

LSPi : The lower bound of the subproblem in iteration i.

f(j) : The iteration in which for the j-th times the algorithm generates an adversarial
scenario with a new vector w in the subproblem.

g(i) : The iteration in which for the i-th times the algorithm re-visits any of the generated
vectors w in the subproblem.

Ii : An indicator that is equal to 1 if in iteration i the algorithm generates an adversarial
scenario with a repeated vector w, 0 otherwise.

C.5 Proof of Lemma 6.2

Let (x̂, ŷ′) and θ̂ respectively denote the solution and the objective value of the master problem
in iteration i − 1. Furthermore, let (û, ŵ) denote the adversarial scenario with the repeated
vector w = ŵ found in the subproblem in iteration i. Since vector w = ŵ is repeated, we have

191

already included an instance of constraint (6.42) corresponding to this vector in the master
problem in iteration i− 1 and the following relation holds.

θ̂ ≥ cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks (C.29)

The Benders algorithm applies solution (x̂, ŷ′) to modify the objective function of the sub-
problem in iteration i. If (û, ŵ) is not the optimal solution of subproblem then it means that
in the subproblem the following stopping condition is satisfied.

cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks ≥ θ̂ + ε (C.30)

Obviously relation (C.30) is in contrast with (C.29) and we conclude that if the algorithm
visits an adversarial scenario with a repeated vector w in the subproblem, this scenario is
the optimal solution of the subproblem. To prove that the optimal objective value of the
subproblem is equal to the upper bound of the master problem in iteration i − 1, we have
to show that in the master problem, an instance of constraint (6.42) corresponding to the
repeated vector ŵ is binding. If for another adversarial scenario with a different repeated
vector w = w′, constraint (6.42) is binding, then we must have cᵀ1x̂ + ∑

k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks <

cᵀ1x̂ + ∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksw

′
ks which is a contradiction regarding the optimality of (û, ŵ) in the

subproblem in iteration i. Therefore, if the algorithm finds an adversarial scenario with a
repeated vector ŵ in the subproblem, the optimal objective value of the subproblem is equal
to the upper bound of the recent master problem.

C.6 Proof of Lemma 6.3

Equivalently this lemma states that if in k = b(OSP
i −Opt)/εc iterations after iteration i the

algorithm does not find any adversarial scenario with a repeated vector w then OSP
i+k−Opt ≤ ε

holds. In iteration i, since the algorithm found an adversarial scenario with a repeated vector
w in subproblem SP (i), regarding Lemma 6.2 this adversarial scenario is the optimal solution
of the subproblem and LSPi = OSP

i holds. Furthermore, in the master problem MP (i) that
is solved after subproblem SP (i), two cases are possible.

Case 1) OMP
i > OSP

i −ε holds. First note that OMP
i < Opt is a valid regarding Theorem 6.3.

OMP
i > OSP

i − ε together with OMP
i < Opt results in Opt > OSP

i − ε. The latter relation
contradicts with the initial assumption OSP

i −Opt > ε. Therefore, this case does not happen.

192

Case 2) OMP
i ≤ OSP

i −ε holds. This relation is equivalent to OMP
i ≤ LSPi −ε with respect to

relation LSPi = OSP
i . Regarding OMP

i ≤ LSPi − ε, the stopping condition in master problem
MP (i) is satisfied and the master problems stops when it finds a feasible solution with an
upper bound UMP

i satisfying the following relation.

UMP
i ≤ LSPi − ε = OSP

i − ε (C.31)

We have assumed that no adversarial scenario with a new vector w is generated in k =
b(OSP

i −Opt)/εc iterations after iteration i. Therefore, in iteration i+1 an adversarial scenario
with a repeated vector w is generated and regarding Lemma 6.2 we have OSP

i+1 = UMP
i . The

recent relation together with (C.31) results in the following relation.

OSP
i+1 ≤ OSP

i − ε (C.32)

Similarly we can show that for k ≤ b(OSP
i −Opt)/εc relation (C.33) holds. This is because it

is supposed form iteration i to iteration i+ b(OSP
i −Opt)/εc all visited adversarial scenarios

have repeated vectors w.

OSP
i+h ≤ OSP

i+h−1 − ε h ∈ {1, 2, ..., k} (C.33)

Relation (C.33) is equivalent to (C.34).

OSP
i+h −Opt

ε
≤
OSP
i+h−1 −Opt

ε
− 1 h ∈ {1, 2, ..., k} (C.34)

From (C.34) we can simply obtain

OSP
i+k −Opt

ε
≤
OSP
i+h−1 −Opt

ε
− k (C.35)

and by setting k = b(OSP
i −Opt)/εc we will have

OSP
(i+k) −Opt

ε
≤
OSP

(i+h−1) −Opt
ε

−
⌊
OSP
i −Opt

ε

⌋
(C.36)

which is equivalent to

OSP
(i+k) −Opt ≤ ε (C.37)

Therefore, we proved that if in k = b(OSP
i −Opt)/εc iterations after iteration i the algorithm

193

does not find any adversarial scenario with a repeated vector w then OSP
i+k −Opt ≤ ε holds.

C.7 Proof of Lemma 6.4

Three cases are possible.

Case 1) OSP
i − Opt ≤ ε and OSP

i − OMP
i ≥ ε hold. We show that in this case in the next

iteration the algorithm generates an adversarial scenario with a new vector w. Because of
OSP
i −OMP

i ≥ ε, the stopping condition in the master problem in iteration i is satisfied and
the following relation holds.

UMP
i ≤ OSP

i − ε ≤ Opt (C.38)

If the algorithm visits an adversarial scenario with a repeated vector w in the subproblem
in iteration i + 1, we must have UMP

i = OSP
i+1 regarding Lemma 6.2. Then with respect to

(C.38), OSP
i+1 < Opt holds which is a contradiction because the optimal objective value of the

subproblem is an upper bound of the optimal objective of the robust problem. Therefore, in
this case in the next iteration an adversarial scenario with a new vector w will be generated.

Case 2) OSP
i − Opt ≤ ε, OSP

i − OMP
i ≤ ε and OMP

i < Opt hold. We show in the next
iteration the algorithm generates an adversarial scenario with a new vector w. Because of
OSP
i − OMP

i ≤ ε, in the master problem in iteration i there is not any adversarial scenario
satisfying the stopping condition. Thus, the master problem is solved optimally and we will
have the following relation.

OMP
i = UMP

i (C.39)

In the subproblem of next iteration, if the algorithm visits an adversarial scenario with a
repeated vector w, then regarding Lemma 6.2 we must have relation (C.40).

UMP
i = OSP

i+1 (C.40)

Considering the primary assumption OMP
i < Opt and relations (C.39)-(C.40) we must have

OSP
i+1 < Opt which is a contradiction because the optimal objective value of the subproblem

is an upper bound of the optimal objective value of the robust problem. Therefore, in this
case in iteration i+ 1 the algorithm generates an adversarial scenario with a new vector w.

Case 3) OSP
i − Opt ≤ ε, OSP

i − OMP
i ≤ ε and OMP

i = Opt hold. We show that in this case
in the next iteration either the Benders algorithm converges or it generates an adversarial

194

scenario with a new vector w. Because of OSP
i −OMP

i ≤ ε, in the master problem in iteration i
there is not any adversarial scenario satisfying the stopping condition. Therefore, the master
problem is solved optimally and relation (C.41) holds.

LMP
i = OMP

i = UMP
i (C.41)

In the subproblem of iteration i + 1, the algorithm generates an adversarial scenario with
either a new vector w or a repeated vector w. In the latter case regarding Lemma 6.2 we must
have relation (C.40). Considering the primary assumption OMP

i = Opt and relations (C.40)-
(C.41) we have LMP

i = Opt = OSP
i+1. This relation demonstrates that the optimal solution

of the robust problem is obtained and the Benders algorithm is converged. Therefore, in
this case, in the next iteration either the Benders algorithm converges or it generates an
adversarial scenario with a repeated vector w.

C.8 Proof of Lemma 6.5

Regarding constraint (6.45) since the algorithm visits an adversarial scenario with a repeated
vector w in the subproblem of iteration g(i1), in any iteration j ≥ g(i1), the inequality
UMP
j ≤ OSP

g(i1) holds and by setting j = g(i2)− 1 ≥ g(i1) we obtain the following relation.

UMP
g(i2)−1 ≤ OSP

g(i1) (C.42)

Note that g(i2)− 1 ≥ g(i1) holds because i1 < i2. Also regarding Lemma 6.2, in the subpro-
blem of iteration g(i2) that the algorithm has visited an adversarial scenario with a repeated
vector w, we have UMP

g(i2)−1 = OSP
g(i2). This relation together with relation (C.42) demonstrates

the validity of OSP
g(i2) ≤ OSP

g(i1).

C.9 Proof of Theorem 6.5

To prove that the Benders algorithm converges in at most
n′∑
j=1

(1 + (b(OSP
f(j)+1 − Opt)/εc +

1)If(j)+1) iterations it is enough to show it takes at most 1 + (b(OSP
f(j)+1−Opt)/εc+ 1)If(j)+1

iterations between visiting j-th and (j+ 1)-th new vector w in the subproblem. Let’s assume
j < n′. Two cases are possible.

Case 1) we have If(j)+1 = 0 that means in the iteration f(j) + 1 the algorithm finds an
adversarial scenario with a new vector w. In this case the number of between visiting j-th
and (j + 1)-th new adversarial scenarios is 1.

195

Case 2) we have If(j)+1 = 1 that means in iteration f(j)+1 the algorithm visits an adversarial
scenario with a repeated vector w. In this case, after visiting the an adversarial scenario
with a repeated vector w in iteration f(j) + 1, with respect to Lemma 6.3 it takes at most
k = b(OSP

f(j)+1 − Opt)/εc to find an adversarial scenario with a new vector w or to have
OSP
f(j)+1+k − Opt ≤ ε. In the latter case, regarding Lemma 6.4, we know that in the next

iteration f(j) + k+ 2 either the Benders algorithm converges or an adversarial scenario with
a new vector w is found. Since it is assumed that j < n′, the Benders algorithm does not
converge before finding the (j + 1)-th adversarial scenario with a new vector w. Thus, we
expect that the algorithm generates (j + 1)-th new vector w by iteration f(j) + k + 2. In
other words, the number of iterations between visiting j-th and (j+ 1)-th new vector w is at
most b(OSP

f(j)+1−Opt)/εc+ 2. Therefore, for j < n′ the number of iterations between visiting
j-th and (j + 1)-th new vector w is computed by relation (C.43).

(1− If(j)+1) +
(⌊

OSP
f(j)+1 −Opt

ε

⌋
+ 2

)
If(j)+1 (C.43)

For j = n′ we can use a similar reasoning as presented above for j < n′. The difference is that
only Case 2 is applicable because regarding the definition of n′ no new vector w is visited
after visiting the n′-th new vector w. Moreover, when we use Lemmas 6.3 and 6.4 in Case 2,
the generation of an adversarial scenario with a new vector w is not an option and we are
sure that after finding the n′-th new vector w, the Benders algorithm converges in at most(
b(OSP

f(j)+1 −Opt)/εc+ 2
)
iterations that is the same as (C.43) with respect to If(j)+1 = 1 for

j = n′. Therefore, by summing the number of iterations computed by relation (C.43) from
j = 1 to j = n′ we obtain the following maximum number of iterations.

n′∑
j=1

(
1 +

(⌊
(OSP

f(j)+1 −Opt)/ε
⌋

+ 1
)
If(j)+1

)
= n′ +

n′∑
j=1

((
b(OSP

f(j)+1 −Opt)/εc+ 1
)
If(j)+1

)
≤ n′ +

n′∑
j=1

(
b(OSP

f(j)+1 −Opt)/εc+ 1
)

= n′
(
b(OSP

g(1) −Opt)/εc+ 2
)

≤ |W|
(
b(OSP

g(1) −Opt)/εc+ 2
)

Proof of the first inequality : We know that in n′ iterations the algorithm visits at least
one adversarial scenario with a repeated vector w. g(1) denotes the iteration in which a
repeated vector w is visited for the first time. To prove the first inequality it is enough to
show the validity of the following relation (C.44).

⌊
OSP
g(1) −Opt

ε

⌋
+ 1 ≥

(⌊
OSP
f(j)+1 −Opt

ε

⌋
+ 1

)
If(j)+1 j ∈ {1, 2, ..., n′} (C.44)

196

As OSP
g(1) ≥ Opt is a valid relation, (C.44) holds when If(j)+1 equal 0. In the case that If(j)+1

is equal to 1, regarding the definition of g(1) and If(j)+1 we know that g(1) ≤ f(j) + 1. Thus,
with respect to Lemma 6.5, we have OSP

g(1) ≥ OSP
f(j)+1 that results in b(OSP

g(1) − Opt)/εc + 1 ≥
b(OSP

f(j)+1 −Opt)/εc+ 1. Therefore, relation (C.44) is valid.

C.10 An example to show the local optimality of the dual algorithm

Consider the problem min(x1,x2)∈X (2x1 + 1.5x2 + max(u1,u2)∈U(x1u1 + x2u2)) where

U = {(u1, u2) ∈ N2|u1 ≤ 2, u2 ≥ 1, 0.99u1 + 2u2 ≤ 5.98, 1.99u1 + u2 ≥ 2.99}
and

X = {(x1, x2) ∈ R2|x1 + x2 = 1, (x1, x2) ∈ {0, 1}2}.
The solution space of the adversarial variables (u1, u2) are four points A, B, C, and D

in Figure C.1. The optimal solution of this problem is (x1, x2) = (0, 1). For this solution
the objective line in max(u1,u2)∈U is Line L1. This objective line shows that scenarios A
and B in the adversarial problem are optimal with a total objective value of 3.5. If we
relax the integrality constraints on variables u1 and u2 the solution space in the adversarial
problem extends to polytope E-B-C-D. In this case, for solution (x1, x2) = (0, 1) the optimal
adversarial scenario is Point E with an objective value of 4.49. However, for solution (x1, x2) =
(1, 0) the objective line L2 represents the objective function of the inner max problem. This
objective line finds points B and C as the optimal adversarial scenarios with an objective
value of 4. In this example, if we apply the dual algorithm to solve this problem the algorithm
converges in the first iteration by finding the non-optimal solution (x1, x2) = (1, 0).

Figure C.1 The solution space of the adversarial variables in the example presented to show the
non-optimality of the dual algorithm.

197

C.11 Non-adjustable nurse planning problem

In a non-adjustable robust problem, the decision maker is not allowed to take recourse actions
in the second stage. Therefore, to formulate and solve the non-adjustable nurse planning
problem, in Model (6.32)-(6.40) we should set the second-stage variables y′ds to zero. In this
case, Model (6.32)-(6.40) reduces to the following problem.

min
x

(
max
u,w

(∑
d∈D

c1xd

))
(C.45)

δxd ≥ ρ× s d ∈ D, s ∈ Sd (C.46)

xd ≥ 0, integer d ∈ D (C.47)∑
s∈Sd

wds = 1 d ∈ D (C.48)

∑
t∈T

∑
p∈Ptd

utp = ∑
s∈Sd

swds d ∈ D (C.49)

∑
p∈Pt

utp = 1 t ∈ T (C.50)

wds ∈ {0, 1} d ∈ D, s ∈ Sd (C.51)

utp ∈ {0, 1} t ∈ T , p ∈ Pt (C.52)

It is clear that we can remove adversarial variables utp and wds from the above model. Also
we can consider constraint (C.46) only for the highest value s ∈ Sd for each d ∈ D. Therefore,
assuming that smax,d denotes the highest value s ∈ Sd, the non-adjustable nurse planning
problem reduces to the following model.

min
x

(∑
d∈D

c1xd

)
(C.53)

δxd ≥ ρ× smax,d d ∈ D (C.54)

xd ≥ 0, integer d ∈ D (C.55)

The above model is trivial and its optimal solution is presented as follows.

x∗d = max
{

0,
⌈
ρ× smax,d

δ

⌉}
d ∈ D (C.56)

198

C.12 Details on the number of first-stage nurses in the best and non-adjustable
solutions in Tables 6.2 to 6.5.

Table C.1 – Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of two weeks (L = 2).

Data Info.
The number of first-stage nurses

in the best solution
The number of first-stage nurses
in the non-adjustable solution

IF OR Sur. Ave Min Max STD Ave Min Max STD
1.1 1 39 2.63 2.14 2.93 0.22 3.15 2.79 3.71 0.28

2 79 5.00 4.29 5.86 0.46 6.20 5.50 7.36 0.50
3 119 7.46 7.14 8.07 0.30 9.10 8.64 9.71 0.36
4 157 9.26 8.21 10.86 0.80 12.07 11.07 13.57 0.79
5 202 11.69 9.57 13.36 0.89 15.19 13.43 16.21 0.71

1.3 1 39 2.63 2.14 2.93 0.22 3.15 2.79 3.71 0.28
2 79 5.00 4.29 5.86 0.46 6.20 5.50 7.36 0.50
3 119 7.46 7.14 8.07 0.30 9.10 8.64 9.71 0.36
4 157 9.51 8.00 10.36 0.72 12.07 11.07 13.57 0.79
5 202 11.89 9.86 12.71 0.78 15.19 13.43 16.21 0.71

1.5 1 39 2.65 2.14 3.00 0.24 3.15 2.79 3.71 0.28
2 79 5.02 4.50 5.86 0.43 6.20 5.50 7.36 0.50
3 119 7.51 7.14 8.50 0.45 9.10 8.64 9.71 0.36
4 157 9.58 8.07 10.50 0.72 12.07 11.07 13.57 0.79
5 202 12.01 10.00 13.29 0.80 15.19 13.43 16.21 0.71

1.7 1 39 2.67 2.14 3.00 0.24 3.15 2.79 3.71 0.28
2 79 5.06 4.50 5.86 0.43 6.20 5.50 7.36 0.50
3 119 7.54 7.14 8.50 0.43 9.10 8.64 9.71 0.36
4 157 9.76 8.36 10.86 0.70 12.07 11.07 13.57 0.79
5 202 12.49 10.14 13.79 0.88 15.19 13.43 16.21 0.71

1.9 1 39 2.67 2.14 3.00 0.24 3.15 2.79 3.71 0.28
2 79 5.06 4.50 5.86 0.43 6.20 5.50 7.36 0.50
3 119 7.54 7.14 8.50 0.43 9.10 8.64 9.71 0.36
4 157 9.75 8.43 10.71 0.66 12.07 11.07 13.57 0.79
5 202 12.89 10.36 15.43 1.24 15.19 13.43 16.21 0.71

Average 119 7.39 6.38 8.31 0.54 9.14 8.29 10.11 0.53

199

Table C.2 – Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of three weeks (L = 3).

Data Info.
The number of first-stage nurses

in the best solution
The number of first-stage nurses
in the non-adjustable solution

IF OR Sur. Ave Min Max STD Ave Min Max STD
1.1 1 59 3.36 3.00 3.76 0.20 4.31 3.90 4.71 0.23

2 121 6.09 5.05 7.52 0.67 8.64 7.48 9.86 0.63
3 182 8.71 7.76 9.52 0.53 12.61 11.57 13.19 0.48
4 240 11.31 10.67 12.81 0.56 16.57 15.67 17.33 0.56
5 300 14.17 13.43 15.10 0.54 20.71 19.43 21.95 0.70

1.3 1 59 3.36 3.00 3.76 0.20 4.31 3.90 4.71 0.23
2 121 6.28 5.43 7.19 0.53 8.64 7.48 9.86 0.63
3 182 8.95 7.95 9.76 0.52 12.61 11.57 13.19 0.48
4 240 11.73 11.14 13.00 0.51 16.57 15.67 17.33 0.56
5 300 14.66 13.90 15.38 0.52 20.71 19.43 21.95 0.70

1.5 1 59 3.48 3.14 3.90 0.23 4.31 3.90 4.71 0.23
2 121 6.67 5.76 7.95 0.66 8.64 7.48 9.86 0.63
3 182 9.25 8.48 9.90 0.42 12.61 11.57 13.19 0.48
4 240 11.78 11.14 13.14 0.55 16.57 15.67 17.33 0.56
5 300 14.90 14.05 15.52 0.52 20.71 19.43 21.95 0.70

1.7 1 59 3.50 3.14 3.9 0.24 4.31 3.90 4.71 0.23
2 121 6.86 6.29 7.81 0.46 8.64 7.48 9.86 0.63
3 182 9.90 9.14 10.57 0.44 12.61 11.57 13.19 0.48
4 240 12.30 11.52 14.00 0.72 16.57 15.67 17.33 0.56
5 300 15.90 14.24 20.86 1.77 20.71 19.43 21.95 0.7

1.9 1 59 3.50 3.14 3.90 0.24 4.31 3.90 4.71 0.23
2 121 6.88 6.24 7.81 0.47 8.64 7.48 9.86 0.63
3 182 10.83 9.14 12.67 1.16 12.61 11.57 13.19 0.48
4 240 15.70 12.14 17.00 1.43 16.57 15.67 17.33 0.56
5 300 20.40 19.19 21.52 0.66 20.71 19.43 21.95 0.70

Average 180 9.62 8.72 10.73 0.59 12.57 11.61 13.41 0.52

200

Table C.3 – Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of four weeks (L = 4).

Data Info.
The number of first-stage nurses

in the best solution
The number of first-stage nurses
in the non-adjustable solution

IF OR Sur. Ave Min Max STD Ave Min Max STD
1.1 1 80 3.67 3.21 4.18 0.31 5.01 4.36 5.39 0.26

2 163 6.79 5.93 7.54 0.44 9.88 8.86 10.71 0.56
3 241 9.45 8.36 9.89 0.45 14.34 13.71 14.71 0.31
4 318 12.13 11.43 12.93 0.46 18.74 18.18 19.64 0.46
5 397 15.33 14.68 16.00 0.43 23.09 22.18 23.79 0.48

1.3 1 80 3.83 3.46 4.18 0.22 5.01 4.36 5.39 0.26
2 163 7.13 6.21 7.96 0.48 9.88 8.86 10.71 0.56
3 241 9.77 8.57 10.32 0.50 14.34 13.71 14.71 0.31
4 318 12.74 12.00 13.79 0.52 18.74 18.18 19.64 0.46
5 397 15.82 15.14 16.46 0.41 23.09 22.18 23.79 0.48

1.5 1 80 3.96 3.57 4.29 0.23 5.01 4.36 5.39 0.26
2 163 7.47 6.50 7.86 0.38 9.88 8.86 10.71 0.56
3 241 10.10 8.79 10.79 0.61 14.34 13.71 14.71 0.31
4 318 13.33 12.29 14.57 0.70 18.74 18.18 19.64 0.46
5 397 19.44 15.61 23.14 3.16 23.09 22.18 23.79 0.48

1.7 1 80 4.00 3.57 4.29 0.19 5.01 4.36 5.39 0.26
2 163 7.78 7.21 8.64 0.43 9.88 8.86 10.71 0.56
3 241 10.75 9.54 11.54 0.53 14.34 13.71 14.71 0.31
4 318 16.10 12.64 19.39 2.78 18.74 18.18 19.64 0.46
5 397 22.84 22.00 23.57 0.46 23.09 22.18 23.79 0.48

1.9 1 80 4.01 3.57 4.29 0.18 5.01 4.36 5.39 0.26
2 163 8.52 7.32 10.50 1.25 9.88 8.86 10.71 0.56
3 241 14.04 13.39 14.46 0.35 14.34 13.71 14.71 0.31
4 318 18.44 17.71 19.39 0.50 18.74 18.18 19.64 0.46
5 397 22.79 21.96 23.54 0.47 23.09 22.18 23.79 0.48

Average 240 11.21 10.19 12.14 0.66 14.21 13.46 14.85 0.42

201

Table C.4 – Details of the number of first-stage nurses in the best and non-adjustable
solutions for instances with a planning horizon of five weeks (L = 5).

Data Info.
The number of first-stage nurses

in the best solution
The number of first-stage nurses
in the non-adjustable solution

IF OR Sur. Ave Min Max STD Ave Min Max STD
1.1 1 101 3.76 3.51 3.94 0.17 5.29 5.11 5.49 0.11

2 202 6.71 6.46 7.11 0.21 10.33 10.00 11.03 0.28
3 302 10.04 9.46 11.00 0.44 15.31 14.74 16.06 0.41
4 401 13.04 12.49 13.89 0.41 20.19 19.54 20.89 0.44
5 503 17.06 16.49 17.86 0.40 25.30 24.49 26.31 0.55

1.3 1 101 4.03 3.71 4.26 0.16 5.29 5.11 5.49 0.11
2 202 7.29 6.86 7.66 0.26 10.33 10.00 11.03 0.28
3 302 10.44 9.80 11.26 0.45 15.31 14.74 16.06 0.41
4 401 13.7 13.34 14.57 0.37 20.19 19.54 20.89 0.44
5 503 17.51 16.89 18.14 0.40 25.30 24.49 26.31 0.55

1.5 1 101 4.30 3.89 4.66 0.22 5.29 5.11 5.49 0.11
2 202 7.51 7.03 8.23 0.37 10.33 10.00 11.03 0.28
3 302 11.59 9.91 15.69 2.05 15.31 14.74 16.06 0.41
4 401 17.98 13.74 20.4 2.68 20.19 19.54 20.89 0.44
5 503 25.03 24.37 26.17 0.55 25.30 24.49 26.31 0.55

1.7 1 101 4.23 3.97 4.54 0.16 5.29 5.11 5.49 0.11
2 202 7.93 7.57 8.77 0.36 10.33 10.00 11.03 0.28
3 302 11.88 10.8 15.63 1.36 15.31 14.74 16.06 0.41
4 401 19.99 19.34 20.66 0.45 20.19 19.54 20.89 0.44
5 503 25.02 24.31 26.00 0.52 25.30 24.49 26.31 0.55

1.9 1 101 4.26 4.06 4.46 0.13 5.29 5.11 5.49 0.11
2 202 8.89 7.57 9.97 0.97 10.33 10.00 11.03 0.28
3 302 15.03 14.40 15.63 0.39 15.31 14.74 16.06 0.41
4 401 19.96 19.34 20.66 0.48 20.19 19.54 20.89 0.44
5 503 25.01 24.34 26.00 0.52 25.30 24.49 26.31 0.55

Average 302 12.49 11.75 13.49 0.58 15.28 14.78 15.95 0.36

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 GENERAL ORGANIZATION OF THE DOCUMENT
	4 ARTICLE 12mu-:6muplus1mu A CONSTRAINT-PROGRAMMING-BASED BRANCH-AND-PRICE-AND-CUT APPROACH FOR OPERATING ROOM PLANNING AND SCHEDULING
	5 ARTICLE 22mu-:6muplus1mu VEHICLE ROUTING PROBLEMS WITH SYNCHRONIZED VISITS AND STOCHASTIC/TIME-DEPENDENT TRAVEL AND SERVICE TIMES: APPLICATIONS IN HEALTHCARE
	6 ARTICLE 32mu-:6muplus1mu EXPLOITING THE STRUCTURE OF TWO-STAGE ROBUST OPTIMIZATION MODELS WITH INTEGER ADVERSARIAL VARIABLES
	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATIONS
	REFERENCES
	APPENDICES

