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RÉSUMÉ 

Le problème résolu dans cette thèse est divisé en deux parties: 1) la localisation-affectation pour 

les tournées sur les arcs en tenant compte des caractéristiques des secteurs, c’est-à-dire le 

problème de conception des secteurs (SDP), 2) le routage robuste sur les arcs avec contraintes de 

durée (RARPTD). 

Les objectifs de cette recherche sont les suivants: 1) développer une formulation mathématique 

pour la conception des secteurs en considérant le temps de passage sur les arcs et le niveau de 

service requis. Le résultat du modèle mathématique donne une solution optimale pour le 

problème de localisation-affectation pour les tournées sur les arcs, 2) proposer un algorithme 

heuristique efficace, qui assure à la fois des coûts acceptables et de bonnes caractéristiques des 

secteurs. L'algorithme heuristique donne une solution applicable pour le problème de conception 

des secteurs, 3) développer une formulation mathématique déterministe pour le problème de 

tournées sur les arcs avec contraintes de durée et concevoir un jeu de données d'incertitude des 

temps de parcours et de service, 4) proposer une formulation résoluble pour le problème de 

tournées robustes sur les arcs avec contraintes de durée. 

Les essais sont conduits avec des données générées aléatoirement et avec un cas réel de réseau. 

L'analyse des résultats démontre que l'algorithme heuristique en trois étapes est plus facile à 

utiliser que l'algorithme branch-and-cut. De plus, l'algorithme heuristique en trois étapes peut 

générer une bonne solution avec des secteurs concis et bien conçus. En ce qui concerne le 
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RARPTD, les essais montrent que les réseaux de petite taille peuvent être résolus rapidement. 

L’analyse de sensibilité indique que: 1) il existe toujours deux façons d'améliorer la robustesse de 

la solution optimale: payer le prix de la robustesse ou ajuster l'allocation des arcs aux secteurs, 2) 

lorsque le nombre de véhicules augmente, la solution optimale sous faible niveau d'incertitude 

peut être plus robuste, mais le coût des solutions optimales sous le même niveau d'incertitude 

augmente. 
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ABSTRACT 

The problem solved in this thesis is divided into two parts: 1) location-allocation arc routing with 

considering the characteristics of sectors, namely, the sector design problem (SDP), 2) robust arc 

routing with time duration based on the sectoring result of sector design (RARPTD).  

The objectives of this research are: 1) to develop a location-allocation arc routing mathematical 

formulation with considering the deadheading time and required service level. The result of the 

mathematical model provides an optimal solution for the location-allocation arc routing problem, 

2) to design an effective and efficient heuristic algorithm, which ensures both acceptable cost and 

good sector characteristics. The heuristic algorithm provides an applicable solution for the sector 

design problem, 3) to develop the deterministic mathematical formulation for the arc routing 

problem with time duration and deadheading time and design the uncertainty support set of the 

service time and deadheading time, 4) to propose a solvable formulation for the robust arc routing 

problem. The result of the robust formulation provides the robust optimal solution for the robust 

arc routing problem with time duration. 

Experiments are conducted with randomly generated instances and a real network case. The 

results analysis demonstrates that the three-stage heuristic algorithm is computationally more 

tractable than the branch-and-cut algorithm and could yield high quality solution with compact 

and good shaped sectors. As for the part of RARPTD, experiments demonstrate that small-sized 

networks can be solved to optimality quickly and sensitivity analysis indicates: 1) there are 
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always two ways to improve the robustness of the optimal solution: pay the price of robustness or 

adjust the allocation of required edges, 2) when the number of vehicles increases, the optimal 

solution under low uncertainty level can be more robust but the cost of the optimal solutions 

under the same uncertainty level increases. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem definition 

Road maintenance operations are conducted out of a set of depots spatially distributed on a 

transportation network. Each depot is responsible for providing maintenance service to a sector of 

the network. In this thesis, I present several algorithms for the design of service sectors and 

robust arc routing problem in a road network that support daily maintenance operations, which is 

one of the most expensive maintenance operations in both China and Canada. Service demands in 

each sector are met by a fleet of service vehicles. Typical service demands include visually 

checking the operational status of each road segment, evaluating the function of the auxiliary 

facilities, reporting the defects of the road and so on. Service vehicles operate on routes that start 

and end at the depot assigned to each sector.  

The sector design and schedule of the maintenance routes are considerably important. For 

instance, every year, Quebec`s winter lasts about 5 months. Coming along with the winter is the 

thick layer of snow on the road network. One of the most troublesome problems is that roads 

covered with snow make the transportation difficult. One way to deal with this problem is to 

remove snow on roads. Daily snow removal operations include visually checking the operational 

status of each road segment, reporting the defects, shoveling snow and so on. Unreasonable 

routes of the snowplows will lead to significantly high operational cost. Therefore, the scientific 

schedule of removal routes is quite important. vc 
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The problem solved in this thesis is divided into two parts: 1) location-allocation arc routing 

with considering the characteristics of sectors, called sector design for simplicity. The contents of 

this part have been published in the International Journal of Production Research by Chen et al. 

(2017); 2) robust arc routing based on the sectoring result of sector design. In the next 

sub-sections these two sub-problems are defined in more details. 

1.1.1 Sector design 

The sector design problem (SDP) addressed in this thesis consists of determining depots’ 

locations and their respective service sectors on a road network in order to serve the whole set of 

road segments under given operational constraints. The number of vehicles required to provide 

maintenance service to a given sector depends on the workload of each sector. In this thesis, the 

workload is defined as the total working time, including service time and deadheading time. In 

order to precisely assess the workload within each sector, the routing operation must be taken 

into consideration. The objective is to minimize the overall cost with an acceptable service level. 

Moreover, the characteristics of the resulting sectors need to be taken into consideration.  

In conclusion, with considering the characteristics of sectors, the SDP is to achieve that (1) each 

arc is assigned to a depot; (2) each arc is serviced on a route that starts and ends at its assigned 

depot; (3) each depot is assigned with a number of vehicles depending on its workload; (4) the 

working duration of each vehicle does not exceed a given threshold; and (5) the total cost is 

minimized.  
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1.1.2 Robust arc routing with time duration 

The arc routing problem with time duration constraints (ARPTD) is an extension of the arc 

routing problem (ARP), which is different from the classical capacitated arc routing problem 

(CARP). The classical capacitated arc routing problem was introduced by Golden and Wong 

(1981), which is usually defined on a connected undirected graph, consisting of determining a set 

of vehicle routes such that (1) each vehicle starts at the depot, services a subset of the edges it 

traverses, then returns to the depot; (2) the total demand serviced by a vehicle does not exceed 

capacity; (3) each required edge is serviced exactly once; and (4) the sum of deadheading costs is 

minimized.  

However, when we study the problem of road network daily maintenance routing problem, we 

find that the work time duration rather than capacity of each maintenance vehicle is limited 

compared with CARP. The work time included both the service time and deadheading time. In 

practice, the service time and deadheading time are often subject to significant uncertainty. In this 

thesis, it is assumed that both the service times on required arcs and deadheading times are 

uncertain and belong to a polyhedral uncertainty set Q. Then, the robust arc routing problem with 

time duration constraints (RARPTD) is studied. 

1.2 Research objectives 

In this study, the general objective is to make the scientific planning of daily maintenance 

operations on road maintenance networks. However, when we study the problem of road network 
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daily maintenance planning problem, if depot location, arcs allocation and robust arc routing are 

considered at the same time in building a mathematical formulation, the formulation becomes too 

complex and contains too many variables to be solved to optimality. Therefore, the problem 

studied in this thesis is divided into two parts:  

1) Location-allocation arc routing with considering the characteristics of sectors, called sector 

design for simplicity, which concerns locating the maintenance depots, partitioning the large 

network into sectors and deterministic arc routing. The specific objectives in this part can be 

summarized as: 

 Develop a location-allocation arc routing mathematical formulation with considering the 

deadheading time and required service level without the sector design component. The 

objective is to minimize the overall cost. The formulation will be solved with a 

branch-and-cut algorithm. The result of the mathematical formulation provides an optimal 

solution for the location-allocation arc routing problem. 

 Define the sectoring evaluation and design an effective and efficient heuristic algorithm, 

which ensures both acceptable cost and good sector characteristics. Apply a post-algorithm 

to optimize the maintenance route within each sector. The heuristic algorithm provides an 

applicable solution for the sector design problem. 

 Compare the results of the branch-and-cut algorithm and the heuristic algorithm with both 

some randomly generalized instances and a real network case. 
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2) Robust arc routing based on the sectoring result of sector design, which aims at realizing the 

robust and cost-saving arc routing under service time and deadheading time uncertainty. The 

specific objectives in this part can be summarized as: 

 Develop the deterministic mathematical formulation for the arc routing problem with time 

duration and deadheading time and design the uncertainty support set of the service time and 

deadheading time, which is a more general polyhedral set and less conservative. 

 Find the robust counterpart of the deterministic formulation to describe the robust arc 

routing problem and transform it into a solvable integer linear programming with duality 

techniques. Solve it with the branch-and-cut algorithm. The result of the robust integer 

linear programming provides the robust optimal solution for the arc routing problem with 

uncertain service time and deadheading time. 

 Conduct experiments with randomly generated instances to verify the performance of the 

robust formulation and also apply sensitivity analysis to a sector obtained from the sectoring 

result of the real network. The uncertainty level and the number of vehicles are varied to 

conduct the sensitivity analysis and draw some conclusions. 

The next section presents the overall structure of this thesis. 

1.3 Thesis structure 

In this chapter, the definition of the problem studied and the research objectives are presented.  
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Chapter 2 presents a literature review over common methodologies and approaches used in 

capacitated arc routing problem (CARP), sector design problem (SDP) and robust arc routing 

problem with time duration (RARPTD), then, the methodology and contribution of this thesis are 

presented.  

The SDP formulation and the three-stage algorithm are described in chapter 3, then, the 

computational results of some randomly generated instances and a real network case are 

presented to verify the efficiency and effectiveness of the three-stage algorithm.  

In chapter 4, the deterministic ARPTD formulation is first built, then, the RARPTD formulation 

is obtained after the definition of uncertainty set and the application of duality techniques. The 

formulation is applied to a sector from the sectored real network. The sensitivity analysis is 

conducted considering the uncertainty level and number of vehicles.  

Finally, chapter 5 concludes the thesis and proposes some future research directions. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents the review of studies about the capacitated arc routing problem (CARP), the 

location-allocation arc routing problem, the sectoring arc routing problem, the CARP with 

uncertainty and robust optimization, divided into three main sections: 

 Capacitated arc routing problem 

 Sector design 

 Robust arc routing with time duration 

Besides, Section 4 presents the methodology of this research and Section 5 situates the 

contribution of this research compared to existing related approaches and methodologies. 

2.1 Capacitated arc routing problem 

There are many relevant literature and relatively mature research about CARP. The exact 

algorithms for the CARP can be divided into three main categories: 1) based on cutting planes 

(Belenguer and Benavent 1998, 2003); 2) based on transformation of the CARP into a 

capacitated vehicle routing problem (Baldacci and Maniezzo 2006, Longo et al. 2006; 3) based 

on column generation and additional cutting planes approaches (Keenan 2001, Gómez-Cabrero et 

al. 2005, Letchford and Oukil 2009, Martinelli et al. 2011, Bartolini et al. 2011, Bode and Irnich 

2011). 
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Compared with the ARPTD, there are some similar problems derived from CARP studied before 

for example the time constrained arc routing problem (TCARP) and the capacitated arc routing 

problem with deadheading demand (CARPDD).  

TCARP is motivated by a postal delivery application in rural Ireland by Keenan (2005), which is 

a generalization of the CARP where both a service time and a traversal time are associated with 

each edge, while servicing the required edges, satisfying the duration limit and minimizing the 

total route duration. However, in the ARPTD, the objective is to minimize the deadheading cost, 

which is more general than the objective of minimizing the total route duration of the TCARP.  

CARPDD extends the classical capacitated arc routing problem by introducing an additional 

capacity consumption incurred by a vehicle deadheading an edge, which was formally introduced 

by Kirlik and Sipahioglu (2011). In 2013, Bartolini et al. (2013) proposed an exact algorithm for 

the deterministic CARPDD. Compared to the ARPTD, CARPDD is more general because of the 

limited vehicle capacity rather than the time duration of each route and can apply to several 

practical situations; however, for each specific situation, there are some distinguishing 

characteristics that the generalized CARPDD cannot describe.  

2.2 Sector design 

 In the following subsections the works on the location-allocation arc routing problem, and the 

sectoring arc routing problem are reviewed respectively. 



 

 

 

9 

2.2.1 Location-allocation arc routing problem 

Location-allocation routing problems (LARP) deal with the combination of three types of 

decisions: the location of facilities, the allocation of customers, and the design of distribution 

routes. While most LARP papers address node routing (see the survey papers Prodhon and Prins, 

2014, Drexl and Schneider, 2015), the location-allocation arc routing problem (L-AARP) is quite 

overlooked in the literature.  

Levy and Bodin (1989) address the problem of designing districts for postal delivery. A 

heuristic approach is developed to firstly assign all edges to a depot, and then improve the 

balance of the districts.  

Ghiani and Laporte (1999) address the problem of locating a set of depots in an arc routing 

context. It is shown that the problem can be transformed into a Rural Postman Problem (RPP) if 

there is a single depot to open or no bounds on the number of depots. The problem is then solved 

to optimality using a branch-and-cut algorithm. 

Amaya et al. (2007) address the capacitated ARP with refill points. The vehicle servicing arcs 

must be refilled on the spot by using a second vehicle. The problem can be viewed as a L-AARP 

because in addition to traversing edges or arcs, the refill points must also be located on the graph. 

The problem is solved by a cutting plane approach.  
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Doulabi and Seifi (2013) address multi-depot location arc routing problems with vehicle 

capacity constraints. A simulated annealing algorithm is proposed to solve the relaxed 

formulation in order to obtain a lower bound for the problem.  

Lopes et al. (2014) present some new constructive and improvement methods used within 

different meta-heuristic frameworks.  

Compared with the SDP addressed in this paper, the L-AARP focuses only on the minimization 

of cost, without considering the characteristics of sectors (workload balance, compactness, etc.). 

2.2.2 Sectoring arc routing problem 

Sectoring (or districting) arc routing problem (SARP) is to sector a large region into sectors (or 

districts), to facilitate the organization, planning or control of activities performed within the 

network owing to the easier planning of operations in smaller sub-networks. Compared with 

location and vehicle routing problem, Districting Problem is a distinct stage in the organization of 

arc routing application. Thus, it hasn’t received a lot of attention in the literature.   

Hanafi et al. (1999) consider a sectoring problem in the context of municipal waste collection. 

The objective is to achieve workload balance among all the sectors, and to minimize the number 

of connected components within a sector.  

Labelle et al. (2002) consider a sector design for snow removal operations. The problem is to 

partition the street network into sectors, and to allocate sectors to disposal site so as to minimize 
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the total operational cost. An “assign-first-partition-second” heuristic procedure was proposed to 

solve the problem.  

Muyldermans et al. (2002) consider the problem of district design for salt spreading operations. 

The problem involves partitioning a road network into non-overlapping, connected sub-networks, 

each with a depot. A heuristic procedure was developed in which the road network was firstly 

partitioned into small cycles. Then the small cycles were aggregated into districts.  

Mourão et al. (2009) consider the sectoring arc routing problem, which involves the partition of 

a road network into sectors and the design of routes for each sector, so as to minimize the total 

duration of the trips. The number of sectors is pre-specified. One vehicle is associated with each 

sector, but it may perform several trips so as to satisfy capacity and time limit constraints. Three 

heuristic approaches are evaluated based on different criteria, such as routing distance, workload 

imbalance, and compactness, etc.  

Bozkaya et al. (2011) use a tabu search heuristic embedded within a geographic information 

system-based decision support system to tackle the districting problem. The resulting district 

meets districting criteria.  

Silva de Assis et al. (2014) discuss a districting problem in the context of meter reading in 

power distribution networks. A bi-criteria mathematical programming formulation that tries to 

maximize balance and compactness is proposed to optimize the current districting plan.  
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Butsch et al. (2014) proposes a heuristic to design districts in an arc routing context. Solutions 

must satisfy both hard criteria (complete and exclusive assignment as well as connectedness) and 

several soft criteria (balance, small deadheading, local compactness, and global compactness). 

The heuristic applies a construction procedure followed by a tabu search improvement phase. 

 

Kandula and Wright (1995, 1997) also consider a combined location, sectoring and fleet sizing 

problem for the application of snow removal on roads. The problem was formulated as a mixed 

integer linear program with the location allocation components associated with district design. 

Their experimental results demonstrate the effectiveness of the methodology in designing 

districts. However, the authors have not proposed any algorithm that could be applied to solve 

problems other than the case described in their papers. Besides this work, no other work has been 

found to deal with combined location, allocation, and sectoring problem.  

2.3 Robust arc routing with time duration 

In this section, we review the works on the CARP with uncertainty and the robust optimization 

respectively. 
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2.3.1 CARP with uncertainty 

In practice, the service time and deadheading time are often subject to significant uncertainty. 

The CARP with stochastic demand were dealt with in some papers. For some applications, the 

demand on each edge is described by a random variable with a specific probability distribution.  

Fleury et al. (2004) study the robustness of deterministic CARP solutions when demands are 

randomized. A memetic algorithm is adapted to handle the randomness of the demands. Fleury et 

al. (2005) study the CARP with stochastic demand with normally distributed edge demands.  

Christiansen et al. (2009) consider the CARP with stochastic demand with the demands on 

required edges described by Poisson distribution. The problem is formulated as a set-partitioning 

problem and solved by a branch-and-price algorithm with pricing carried out by dynamic 

programming.  

Laporte et al. (2010) study the CARP with stochastic demand described by Poisson distribution 

in the context of garbage collection. An adaptive large-scale neighbourhood search heuristic is 

developed for the problem. 

However, considering insufficient historical data, unclear statistical information, the difficulty to 

obtain the probability distribution of uncertain parameters and so on, robust optimization 

techniques are better used to deal with the uncertainty. Chen et al. (2017) study the robust 

optimization approach for the directed arc routing problem encountered in daily maintenance 
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operations of a road network under the uncertainty of service time. Except that, there is not much 

relevant research on robust arc routing problem.  

2.3.2 Robust optimization 

The robust optimization approach was introduced for convex optimization problems by Ben-Tal 

and Nemirovski (1998,1999). Although there is not much relevant work on robust optimization 

techniques on the arc routing problem, the methodology has been applied in other different 

settings, a closely related one of which is the vehicle routing problem. 

List et al. (2003) solve the fleet planning under uncertainty with robust optimization techniques 

and explore the tradeoff between the expected cost and the risk of extreme outcomes of uncertain 

variables.  

Sungur et al. (2008) study a robust VRP with demand uncertainty aiming at minimizing 

transportation costs while satisfying all demands in a given bounded uncertainty set. 

Computational results showed that the robust solution incurs only a small additional cost over 

deterministic solution.  

Erera et al. (2010) consider the VRP with stochastic demands and duration constraints. The sum 

of expected route durations over all possible realizations is minimized with robust optimization 

techniques by solving the optimization problem of an adversary. A set of vehicle routes is first 
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selected before the uncertain demands realized. Additional travel time is considered due to 

recourse action after demands realizing. 

Souyris et al. (2012) study the problem of dispatching technicians to service distributed 

equipment with service time uncertain. The problem is formulated as a vehicle routing problem 

with soft time windows and a robust optimization model is proposed and solved by 

branch-and-price.  

Agra et al. (2013) solve the robust vehicle routing problem with time windows by two different 

robust formulations and compare the two robust formulations on a test bed composed of maritime 

transportation instances.  

Gounaris et al. (2013) derive robust counterparts of different deterministic Capacitated VRP 

formulation, use the robust capacity rounded inequalities as the cuts to expedite solving and then 

compare the performance of all the robust formulations.  

The methodology adopted in this thesis is presented in the next section. 

2.4 Methodology 

As it can be seen from the literature review, the proposed approaches and models have some 

limitations and shortcomings to design sectors and (robust) routes efficiently, three of which are 

listed below and addressed in later chapters of this thesis. 

 The deadheading time is ignored in most cases. 
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 The location-allocation problem and sectoring problem are considered separately. 

 Stochastic routing is done without considering insufficient historical data or computational 

intractability. 

In this thesis, the deadheading time is considered both in the algorithm design, to assess to 

workload within each sector more precisely, and in routing formulations. Location-allocation arc 

routing problem and sectoring arc routing design problem are combined to obtain both good 

overall cost and good characteristics of the partitioned sectors. The robust optimization is applied 

with a general polyhedral uncertainty set to deal with uncertain demands, overcoming the 

difficulties of insufficient historical data and computational intractability of statistics method. 

Specific methodology used in this thesis is summarized as follows. 

 The location-allocation arc routing problem and deterministic arc routing problem with time 

duration are both formulated as mixed integer linear programming models, aiming at 

minimizing the overall cost and the deadheading cost respectively. 

 The sectoring evaluation is designed according to the literature. Based on the sectoring 

evaluation, combining the sweeping method and greedy method applied to the VRP, a 

three-stage heuristic algorithm is proposed to solve the sector design problem. In order to 

precisely assess the workload within each sector, the routing operation is taken into 

consideration in the first stage. 
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 Define the uncertain service time and deadheading time with a general polyhedral support 

set, then, derive the robust counterpart of the deterministic formulation of the arc routing 

problem with time duration. Duality techniques are applied to deal with the infinite 

constraints caused by the uncertainty set. 

 Conduct experiments with randomly generated instances and a real network case to verify 

the effectiveness and efficiency of the three-stage heuristic algorithm. Do sensitivity 

analysis of robust solutions under different levels of uncertainty and different numbers of 

vehicles.  

The next section presents the contribution of this thesis.  

2.5 Contribution of this thesis 

The contribution of this thesis can be summarized as follows, 

 As far as the sector design problem is concerned, existing work always consider 

location-allocation arc routing and sectoring arc routing separately. When considering 

location-allocation arc routing problem without sectoring component, the formulation will 

only focus on the minimization of overall cost, thus, ignoring the characteristics of sectors, 

resulting in overlapped and imbalanced sectors. We combined location-allocation and 

sectoring in the three-stage algorithm in this thesis to overcome above shortcomings and 

also improve the solving efficiency compared with the exact algorithm. 

 In practical, when maintenance vehicles service roads, there will be both service time and 

deadheading time consumed, however, classical capacitated arc routing problem ignores the 
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deadheading time. In this thesis, the deadheading time is considered for both the design of 

three-stage algorithm and the building of the mathematical formulations. 

 In this thesis, the deterministic mathematical formulation for the ARPTD is first proposed. 

Then, the robust counterpart of the deterministic formulation under a general polyhedral 

uncertainty set is developed. The existing approach to deal with the robust problem (Sungur 

et al. 2008) assumes service and deadheading times could attain their worst-case realizations 

simultaneously. Compared with that, the general polyhedral uncertainty set can avoid overly 

conservative solutions as some statistical information can be injected into it such as the 

correlation between variables. This is the first time of the general polyhedral uncertainty set 

to be used in solving the robust arc routing problem.
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CHAPTER 3 SECTOR DESIGN 

In this chapter, the sector design problem (SDP) is addressed, which is defined as a 

location-allocation arc routing problem with considering some sought-after characteristics of 

sectors. 

The sector design problem (SDP) is addressed within the following structure. Section 1 first 

presents the formulation of the location-allocation arc routing problem (L-AARP) without 

considering any characteristics of sectors, aiming at minimizing the overall cost. Combining the 

sweeping method and the greedy method applied to the VRP, Section 3 proposed a three-stage 

heuristic algorithm to solve the sector design problem. The sectoring evaluation is designed 

according to the literature in Section 4. Experiments are conducted with randomly generated 

instances and a real network case in Section 5 to verify the effectiveness and efficiency of the 

three-stage heuristic algorithm. Finally, Section 6 summarizes this chapter and draws some 

conclusions and remarks. 

The contents of this chapter have been published in the International Journal of Production 

Research by Chen et al. (2016). 

3.1 Formulation 

The sector design problem (SDP) addressed in this thesis consists of determining depots’ 

locations, their respective service sectors and routes within each sector. The number of service 
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vehicles allotted to each sector must be appropriate to the assigned workload and in this thesis, 

the workload is defined as the total working time, including service time and deadheading time. 

In order to precisely assess the workload within each sector, the routing operation is taken into 

consideration both when building the formulation of the location-allocation arc routing problem 

(L-AARP) and designing the three-stage heuristic algorithm. The objective is to minimize the 

overall cost with an acceptable service level. In this section, the formulation of the 

location-allocation arc routing problem (L-AARP) is given, where the characteristics of sectors 

are not considered compared with the sector design problem (SDP). 

The mathematical formulation for the L-AARP is defined on a directed graph G = (V, A), with a 

set of vertices V, and an arc set A. The potential locations of the depots are selected from the set 

V. The set of potential locations is denoted as S. Thus, S is a subset of V. Each arc 𝑎𝑎 ∈ 𝐴𝐴 has a 

service time. The problem is to find a set of maintenance depots, such that: (1) each arc in A is 

assigned to a depot; (2) each arc is serviced on a route that starts and ends at its assigned depot; 

(3) each depot is assigned with a number of vehicles depending on its workload; (4) the working 

duration of each vehicle does not exceed a given threshold; (5) the total cost is minimized.  

3.1.1 Notation 

The following notation is used in the proposed formulation. 

Parameters: 
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V   set of vertices, 𝑣𝑣 ∈ 𝑉𝑉  

A   set of arcs, 𝑎𝑎 ∈ 𝐴𝐴 

S   set of potential locations of depots. S is a subset of V  

K   set of vehicles, 𝑘𝑘 ∈ 𝐾𝐾 

TV    number of vehicles available for all sectors   

O(v)  set of arcs leaving vertex, 𝑣𝑣 ∈ 𝑉𝑉 

I(v)   set of arcs entering vertex, 𝑣𝑣 ∈ 𝑉𝑉 

Y   subset of vertices, 𝑌𝑌 ⊆ 𝑉𝑉 

A(Y)   the set of arcs whose two end nodes are both in Y 

F  fixed cost of locating a depot at any site s, 𝑠𝑠 ∈ 𝑆𝑆 

f  fixed cost of using a vehicle 

TD  the time duration limit of a route 

Las distance from depot s to arc a,  𝑠𝑠 ∈ 𝑆𝑆, 𝑎𝑎 ∈ 𝐴𝐴. Las is the distance of the shortest path 

between s and the starting node of arc a. 

da  length of arc a, 𝑎𝑎 ∈ 𝐴𝐴 

r  maximal service distance of an open depot. Penalty cost will occur on arcs        

       located outside of the maximum service distance of the assigned depot. 
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sa  service time on arc a, 𝑎𝑎 ∈ 𝐴𝐴 

ta   deadheading time on arc a, 𝑎𝑎 ∈ 𝐴𝐴 

 required service level. It is defined as the fraction of the arcs that are located within the 

maximal service distance of the maintenance depot. 𝛾𝛾 ≤ 1.  

P   unit penalty cost of the arcs located outside of the maximum service distance 

Q   unit deadheading travel cost 

ias is defined as a binary parameter that takes the value of 1 if the arc a is outside the coverage of 

the maximal service distance of a potential depot.  

𝑖𝑖𝑎𝑎𝑎𝑎 = �1, 𝑖𝑖𝑖𝑖 𝐿𝐿𝑎𝑎𝑎𝑎 ≥ 𝑟𝑟
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Then, matrix I is defined, 𝐼𝐼 = {𝑖𝑖𝑎𝑎𝑎𝑎|𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴}. 

Decision variables: 

𝑏𝑏𝑠𝑠   = 1, if a depot is built at site s; 0, otherwise, 𝑠𝑠 ∈ 𝑆𝑆. 

𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘   =1, if arc a is serviced by vehicle k based at depot s; 0, otherwise, 𝑠𝑠 ∈ 𝑆𝑆, 𝑘𝑘 ∈ 𝐾𝐾, 𝑎𝑎 ∈ 𝐴𝐴. 

𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘   number of times arc a is traversed (without servicing) by vehicle k at depot s, 𝑠𝑠 ∈ 𝑆𝑆, 

𝑘𝑘 ∈ 𝐾𝐾, 𝑎𝑎 ∈ 𝐴𝐴. 

𝑧𝑧𝑘𝑘𝑘𝑘  = 1, if vehicle k is used at depot s; 0, otherwise, 𝑠𝑠 ∈ 𝑆𝑆, 𝑘𝑘 ∈ 𝐾𝐾. 
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3.1.2 Objective function 

The objective is to minimize the overall service cost D, which includes the fixed cost of using the 

depots D1, the fixed cost of vehicles D2, the deadheading travel cost D3, and the total penalty cost 

D4. D1 is obtained by multiplying the fixed cost of locating a depot by the total number of depots 

built. D2 is calculated by multiplying the fixed cost of a vehicle by the total number of vehicles 

used. Unit deadheading cost is multiplied by the total length of arcs deadheaded to obtain the 

deadheading travel cost D3. As for the total penalty cost D4, it is obtained by multiplying the unit 

penalty cost by the total length of the arcs located outside of the maximum service distance. 

The objective function of the L-AARP formulation is: 

min𝐷𝐷 = min(𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4) 

= min (𝐹𝐹�𝑏𝑏𝑠𝑠
𝑠𝑠∈𝑆𝑆

+ 𝑓𝑓��𝑧𝑧𝑘𝑘𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑄𝑄���𝑑𝑑𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑃𝑃���𝑖𝑖𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

 

(3.1) 

3.1.3 3.1.3 Constraints 

Number of service time 

One of the given operational constraints is that each required arc must be serviced exactly once, 

therefore (3.2) is used to ensure this operational constraint. 

��𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑠𝑠∈𝑆𝑆𝑘𝑘∈𝐾𝐾

= 1,∀𝑎𝑎 ∈ 𝐴𝐴                                                      (3.2) 
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Flow constraints 

For any complete vehicle route, we know that at each node, the number of arcs leaving and 

entering must be equal, which is called the network flow conservation constraints and described 

with constraints (3.3). 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑣𝑣)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) = � (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐼𝐼(𝑣𝑣)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ),∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆, 𝑣𝑣 ∈ 𝑉𝑉                  (3.3) 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑠𝑠)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≥
∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                              (3.4) 

Constraints (3.4) combined with (3.3) ensure that each vehicle k must leave and return to the 

depot if it is used at that depot to serve any arc. 

Connectivity constraints 

A classical type of constraints for routing problem is the connectivity constraints. A vehicle route 

of routing problem without connectivity constraints may break down into 2 or more disconnected 

tours, all of which satisfy the flow conservation constraints however some of which do not pass 

through the depot, as illustrated in figure 3-1. The vehicle route breaks down into 2 disconnected 

subtours, depot-1-2-depot and 3-4-5-6-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
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Figure 3-1 Disconnected subtours 

Constraints (3.5) are the connectivity constraints, which ensure that if there is any arc in A(Y) 

served by vehicle k of depot s, then there must be an arc in O(Y) traversed or served by vehicle k 

of depot s (vehicle k crosses the border of Y). 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑌𝑌)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≥ 𝑥𝑥𝑟𝑟𝑟𝑟𝑘𝑘 ,∀𝑌𝑌 ⊆ 𝑉𝑉, 𝑠𝑠 ∉ 𝑌𝑌, 𝑟𝑟 ∈ 𝐴𝐴(𝑌𝑌),𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                (3.5) 

Relationship between decision variables 

𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘  is related to both 𝑧𝑧𝑘𝑘𝑘𝑘 and 𝑏𝑏𝑠𝑠 as we know that a vehicle is used only if it serves at least one 

arc and a depot is built only if it provides service to at least one arc, which are ensured by 

constraints (3.6) and (3.7) respectively. 

𝑧𝑧𝑘𝑘𝑘𝑘 ≥
∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                            (3.6) 

𝑏𝑏𝑠𝑠 ≥
∑ ∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘∈𝐾𝐾𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑠𝑠 ∈ 𝑆𝑆                                             (3.7) 

Time duration constraints 
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The working duration for each maintenance vehicle is limited. Constraints (3.8) ensure that the 

total work duration (travel time plus service time) of each vehicle is less than the maximum 

allowed working duration during each shift. 

�(𝑠𝑠𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴

+ 𝑡𝑡𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≤ 𝑇𝑇𝑇𝑇,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                   (3.8) 

Service level constraints 

The maximum number of arcs located out of the coverage of the maximal service distance of 

their assigned depot is limited by the required service level. Multiply (1 − 𝛾𝛾) by the total 

number of arcs serviced by the depot to obtain the maximum number of arcs located outside of 

the maximal service area of the depot. 

��𝑖𝑖𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

≤ (1 − 𝛾𝛾)��𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

,∀𝑠𝑠 ∈ 𝑆𝑆                                (3.9) 

Total number of vehicles 

The total number of vehicles used must be less than the number of available vehicles TV, which 

are valid constraints to tight the formulation. 

��𝑧𝑧𝑘𝑘𝑘𝑘
𝑠𝑠∈𝑆𝑆𝑘𝑘∈𝐾𝐾

≤ 𝑇𝑇𝑇𝑇                                                     (3.10) 

Integer and non-negativity constraints 

These constraints guarantee the integrality and non-negativity of the decision variables in the 

formulation. 
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𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑠𝑠, 𝑧𝑧𝑘𝑘𝑘𝑘 ∈ {0,1},∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                (3.11) 

𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ≥ 0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                (3.12) 

Complete formulation 

Now the complete formulation can be presented in the following, which includes the objective 

function, service time of required arcs, flow constraints, connectivity constraints, relationship 

between decision variables, time duration constraints, service level constraints, total number of 

vehicles and integer and non-negativity constraints. 

min𝐷𝐷 = min(𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4) 

= min (𝐹𝐹�𝑏𝑏𝑠𝑠
𝑠𝑠∈𝑆𝑆

+ 𝑓𝑓��𝑧𝑧𝑘𝑘𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑄𝑄���𝑑𝑑𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑃𝑃���𝑖𝑖𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

) 

                      
(3.1) 

��𝑥𝑥𝑎𝑎𝑠𝑠𝑘𝑘
𝑠𝑠∈𝑆𝑆𝑘𝑘∈𝐾𝐾

= 1,∀𝑎𝑎 ∈ 𝐴𝐴                                                     (3.2) 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑣𝑣)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) = � (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐼𝐼(𝑣𝑣)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ),∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆, 𝑣𝑣 ∈ 𝑉𝑉                      (3.3) 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑠𝑠)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≥
∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                  (3.4) 

� (𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝑂𝑂(𝑌𝑌)

+ 𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≥ 𝑥𝑥𝑟𝑟𝑟𝑟𝑘𝑘 ,∀𝑌𝑌 ⊆ 𝑉𝑉, 𝑠𝑠 ∉ 𝑌𝑌, 𝑟𝑟 ∈ 𝐴𝐴(𝑌𝑌),𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                 (3.5) 

𝑧𝑧𝑘𝑘𝑘𝑘 ≥
∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                             (3.6) 
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𝑏𝑏𝑠𝑠 ≥
∑ ∑ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘∈𝐾𝐾𝑎𝑎∈𝐴𝐴

|𝐴𝐴| ,∀𝑠𝑠 ∈ 𝑆𝑆                                               (3.7) 

�(𝑠𝑠𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴

+ 𝑡𝑡𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ) ≤ 𝑇𝑇𝑇𝑇,∀𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                    (3.8) 

��𝑖𝑖𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

≤ (1 − 𝛾𝛾)��𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

,∀𝑠𝑠 ∈ 𝑆𝑆                               (3.9) 

��𝑧𝑧𝑘𝑘𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑘𝑘∈𝐾𝐾

≤ 𝑇𝑇𝑇𝑇                                                       (3.10) 

𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑠𝑠, 𝑧𝑧𝑘𝑘𝑘𝑘 ∈ {0,1},∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                (3.11) 

𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ≥ 0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                 (3.12) 

This section presents the formulation of the location-allocation arc routing problem (L-AARP) 

without considering the characteristics of sectors, with the objective of minimizing the overall 

cost, which will be solved by the branch-and-cut algorithm. In order to solve the 

location-allocation arc routing problem with considering the characteristics of sectors, based on 

the sectoring evaluation, a three-stage heuristic algorithm is designed in the next sections.  

3.2 Branch-and-cut algorithm 

This section proposes a branch-and-cut algorithm based on the mathematical formulation 

introduced in Section 3.1. Because the connectivity constraints (3.5) have exponential size, the 

connectivity constraints are separated during the search. The following three different separation 

techniques have been developed.  
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i) The exact method that detects violated constraints via solving a sequence of min-cut 

problems by the well-known push-relabel algorithm (Ahuja et al. 1993).  

ii) A heuristic method that detects the violation via identifying isolated components by using a 

union-find data structure (Corman et al. 2001). For each isolated component, all violated 

inequalities are added.  

iii) The same method with ii), except that only the most-violated inequality for each isolated 

component is added.  

 If a valid inequality is denoted as ax ≥ b, where x is a vector of variables, a is a vector of 

coefficients and b is scalar, then the violation of this inequality can be defined as b – ax. The 

most-violated inequality means the one with the largest value of b – ax.   

 In addition, the following symmetry breaking constraints are introduced to speed up the process 

of the branch-and-cut algorithm. They ensure that at each depot, the number of arcs serviced by 

vehicle k must be greater than or equal to the number of arcs serviced by vehicle k + 1. Thus, the 

algorithm can avoid those solutions with the same objective value but being different only by 

exchanging routes of two vehicles. 

� 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
�∈�

≥ � 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘+1
�∈�

,∀𝑠𝑠 ∈ 𝑆𝑆,𝑘𝑘 ∈ {1, … , |𝐾𝐾| − 1}                           (3.13) 

We now describe the details of the algorithm. The connectivity constraints (3.5) are first 

relaxed, as well as the integer requirement of the variables of the original model (P), and then 
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include the symmetry-breaking constraints into model (P). The original model (P) has turned into 

a new linear program (P’). 

(P’) 

min𝐷𝐷 = min(𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4) 

= min (𝐹𝐹�𝑏𝑏𝑠𝑠
𝑠𝑠∈𝑆𝑆

+ 𝑓𝑓��𝑧𝑧𝑘𝑘𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑄𝑄���𝑑𝑑𝑎𝑎𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+ 𝑃𝑃���𝑖𝑖𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

 

subject to:  

(3.2) – (3.4), (3.6) – (3.10), (3.13) and  

0 ≤ 𝑥𝑥𝑎𝑎𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑠𝑠, 𝑧𝑧𝑘𝑘𝑘𝑘 ≤ 1,∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                  (3.14) 

𝑦𝑦𝑎𝑎𝑎𝑎𝑘𝑘 ≥ 0,∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾, 𝑠𝑠 ∈ 𝑆𝑆                                          (3.15) 

After model (P’) is solved, the constraint set is updated by adding the violated connectivity 

constraints (5) and try to solve (P’) again. This process continues iteratively until the optimum 

found for (P’) is feasible for constraints (3.5). Then, if there are fractional variables, we branch 

on one fractional variable to generate two new sub-problems. If all the variables are integer, we 

explore another sub-problem, i.e., for each sub-problem, the previous procedure is repeated.  

The branch-and-cut algorithm is implemented in C++, using IBM ILOG CPLEX Concert 

Technology, version 12.6. The standard CPLEX cuts are automatically added. All the CPLEX 

parameters are set to their default values. 
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3.3 A three-stage heuristic algorithm 

Solving a sector design problem involves not only partitioning the entire road network into 

sectors but also determining the maintenance routes within each sector with considering good 

characteristics of sectors. One way to overcome this complexity is a three-stage procedure in 

which the first stage is to decide the clusters using the adapted sweeping method, and the second 

stage is to assign the clusters to the potential sites of depots based on minimum cost criteria. 

Finally, in the third stage, the locations of depots and their respective service sector are 

determined through a number of iterations. A post-algorithm procedure is applied to optimize the 

maintenance routes within each sector and determine a set of minimum cost routes in a service 

sector. Details of the proposed algorithm are described in the following subsections. 

3.3.1 Clustering the arcs (road segments) 

 A cluster is a set of arcs that will be served by a single vehicle. And the workload of a vehicle 

should not exceed its working duration TD. The sweeping method for solving the vehicle routing 

problem has been adapted to build clusters. The adapted sweeping method (ASM) is proposed to 

assign nearby arcs to each cluster without exceeding the time duration constraint. The rationale 

implied by this method is to mimic the behavior of road maintenance service in order to achieve 

sector compactness.  

 Firstly, all the arcs in A are ordered by the following procedure.  
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Select a vertex O centrally located on graph G as the pole, and the polar axis, L, is set to be from 

O to the right direction. Put G in the polar coordinates system. For each arc a, 𝑎𝑎 ∈ 𝐴𝐴, the starting 

vertex and the ending vertex can be represented respectively as (ρa, θa) and (ρa’, θa’). Represent 

arc a by the polar coordinates of the vertex with smaller angular coordinate.  

Order all the arcs in A in non-decreasing order of their angular coordinates. For those arcs 

whose angular coordinates are equal, order them in non-decreasing order of their radial 

coordinate. There exist some arcs for which both their radial and angular coordinates are equal. 

That is, these arcs have an intersection. In this case, a new polar coordinate system is built with 

the intersection as the new pole O’. L’ is set to be from O’ to the down direction. Order these arcs 

in non-decreasing order of their new angular coordinates.  

 

(a) three arcs have equal polar coordinates          (b) new polar coordinates 

Figure 3-2 An instance having arcs with equal polar coordinates 

 For example, in the polar coordinate system shown in Figure 3-2(a), the three arcs, a1, a2, a3, 

have the same polar coordinates. In Figure 3-2(b), a new polar coordinates system is built. Thus 
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these three arcs are ordered in non-decreasing order of their angular coordinates in the new 

system as a3, a2, a1. 

 Denote the resulting sequence of arcs as 𝐴̅𝐴. The steps of the ASM are as follows: 

Step 1: Set n = 1.  

Step 2: Let An be the set of the arcs that belong to cluster n. Let Cn denote the workload of 

servicing all the arcs in An. Set An to be Ø. Set Cn to be 0.  

Step 3: Get the first arc from 𝐴̅𝐴, and denote it as 𝑎𝑎�. 

Step 4: Include 𝑎𝑎� into An, and update the workload Cn. Cn can be obtained by solving a Directed 

Rural Postman Problem (DRPP).  

Step 5: If Cn < TD, then go to Step 6; otherwise remove 𝑎𝑎� from An, close cluster n, set n =n + 1 

and go to Step 2.  

Step 6: Remove 𝑎𝑎� from 𝐴̅𝐴. If 𝐴̅𝐴 is empty, then stop; otherwise go to Step 3. 

 In Step 4, we used the method introduced by Bartolini et al. (2011) to transform the DRPP into a 

Vehicle Routing Problem (VRP). Then, an integer linear programming formulation with 

Miller-Tucker-Zemlin (Kulkarni & Bhave, 1985) constraints is developed for the VRP and 

solved by a branch-and-bound algorithm. In Step 5, when a specific arc cannot be inserted into a 

cluster without violating the capacity constraint, this cluster is closed. When the ASM method 
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terminates, the value of n is the total number of vehicles needed, denoted as N. Thus, 𝐴𝐴 =

{𝐴𝐴𝑛𝑛}𝑛𝑛=1𝑁𝑁 .  

3.3.2 Assigning the clusters 

 The objective of this stage is to get an assignment of clusters to potential sites satisfying the 

service level requirement. Firstly, we introduce how to calculate the service level and the 

incurred penalty cost associated with each assignment.  

 Upon the assignment of cluster An to a potential site s (An→s), denote the subset of arcs in An 

whose Las is less than or equal to r as An
*. The service level associated with this assignment 

(An→s) is defined as:  

𝛾𝛾(𝐴𝐴𝑛𝑛 → 𝑠𝑠) =
|𝐴𝐴𝑛𝑛∗ |
|𝐴𝐴𝑛𝑛|                                                      (3.16) 

The associated penalty cost is defined as:  

𝐷𝐷4(𝐴𝐴𝑛𝑛 → 𝑠𝑠) = � 𝑃𝑃 ∙
𝑎𝑎∈𝐴𝐴𝑛𝑛−𝐴𝐴𝑛𝑛∗

𝑑𝑑𝑎𝑎                                         (3.17) 

In order to assign a cluster An (𝑛𝑛 ∈ 𝑁𝑁) to a potential site, the following procedure is proposed: 

Step 1: For each 𝑠𝑠 ∈ 𝑆𝑆, do: 

  i) calculate the associated service level γ (An→s); 

  ii) calculate the associated penalty cost D4(An→s).  
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Step 2: Let S* be the set of possible sites that satisfy the service level. If S* = Ø, then assign 

cluster An to the site with the highest service level and stop; otherwise go to Step 3.  

Step 3: Assign cluster An to the site (in S*) with the minimum penalty cost. If there are more than 

one site in S* with the minimum penalty cost, choose one randomly.  

The above procedure is repeated until all the clusters have been assigned to one site.  

3.3.3 Determining the location of depots 

 The principle of this stage is to locate a certain number of depots to provide maintenance service 

with a given service level, so that the total service cost is minimized. The objective is achieved by 

merging any two sites to see if the total service cost could be reduced. A merge operation is 

defined as follows. 

Merge operation: Denote si and sj as two potential sites (si, sj∈ 𝑆𝑆). Note that a potential site can 

be an empty site without assigned clusters. Thus, to merge si and sj is to re-assign those clusters, 

if there are any, that were assigned to site si to site sj, then to shut down si (if si was an open 

depot).  

 The service level of site sj is updated using equation (3.16). If the required service level γ is 

satisfied, the merge is acceptable; otherwise, it is declined. Therefore, given a set of the potential 

sites S, the procedure of this stage can be described as follows: 
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Step 1: Order the potential sites in S in a random sequence. Denote the sequence of sites as RS. 

Set m=1. 

Step 2: Denote the m-th site of RS as s0. Remove the m-th site from RS, updating RS to RS *. 

Denote the n-th site of RS * as sn. 

Step 3: for n = 1 to | RS *| do 

 i) merge s0 and sn;  

 ii) if the merge is acceptable, calculate the saving cost sc0n;  

Step 4: Denote n* as the site that incurs the largest positive saving, and merge s0 and sn*.  

Step 5: Update the corresponding clusters that are assigned to s0 and sn*. if m<|S|, set m=m+1, 

then to step 2; otherwise go to step 6. 

Step 6: Calculate the objective value D of the solution as defined in equation (3.1).  

In Step 3, a merge operation will incur the decrease of fixed cost and the increase of penalty 

cost. The saving cost is thus the summation of the two items.   

The above procedure is embedded into an iterative structure that facilitates the search for a good 

solution. At each iteration, the sequence of sites RS is updated by randomly swapping a number 

of sites. The best D* found and the associated solution are updated.  

When the algorithm terminates, the sectoring of the network, including the location of each 

depot, as well as its corresponding service sector, is determined.  
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A post-algorithm procedure is applied to optimize the maintenance routes within each sector and 

determine a set of minimum cost routes in a service sector, which comes from the previous work 

(Chen et al. 2014)). The branch-and-cut algorithm is used in the post-algorithm procedure. The 

total cost is then updated. 

3.4 Sectoring evaluation 

Besides the total service cost of a sectoring result, a number of complementary criteria has been 

proposed in literature as we described in Section 2.2.2 to evaluate a solution. Three criteria 

adopted in this thesis are described as follows:  

(1) Imbalance 

The imbalance of a sectoring result is defined as the difference between the maximum average 

sector workload and the minimum average sector workload. The average sector workload is 

defined as the total workload of the sector divided by the number of vehicles assigned to this 

sector.  

(2) Overlap 

Define M as the total number of sectors. The sector area m, SAm, is defined as the area of the 

polygon (with all the interior angles smaller than 270 degree), which covers all the arcs within 

sector m. Denote TA as the area of the complete network. The overlap of a sectoring solution is 

defined as:  
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
(∑ 𝑆𝑆𝑆𝑆𝑚𝑚𝑀𝑀

𝑚𝑚=1 ) − 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

                                         (3.18) 

The overlap concerns the shape of sectors. Small overlap indicates clear boundaries, and is 

preferable.  

(3) Compactness 

 The Compactness Ratio (CR) is calculated to evaluate the compactness of each sector. Denote 

SPm as the perimeter of the minimum polygon that covers sector m. The compactness ratio of 

sector m is defined as: 

CRm =
�SAm

SPm
                                                       (3.19) 

Thus the compactness ratio of a sectoring solution is given by: 

𝐶𝐶𝐶𝐶 = �
|𝐴𝐴𝑚𝑚|
|𝐴𝐴| ∙ 𝐶𝐶𝐶𝐶𝑚𝑚

𝑀𝑀

𝑚𝑚=1
                                            (3.20) 

where Am is the set of arcs that are served in sector m.
 

The larger the value of CR, the more compact a sectoring result is. Denote the Compactness 

Ratio of the network without sectoring as OCR. Setting OCR as a reference, smaller difference 

between OCR and CR is expected, which represents better compactness of the sectoring. 
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3.5 Computational results 

In this section, some experiments are conducted and analyzed to evaluate the quality and the 

efficiency of the algorithms. All the tests were performed on a personal computer with a 2.53 

GHz duo processor and 8.0 GB of RAM. The algorithm was coded in MATLAB 14.0. 

3.5.1 Problem settings 

Different sizes of graphs were randomly generated to mimic the shape of real road networks. The 

graph generation procedure is similar to the method proposed by Belenguer et al. (2006).  

Some important parameters of the networks are developed based on the real data we received 

from a road maintenance agency in Shanghai. They are shown as follows: 

(1) The length (da) of a road segment was set as the Euclidean distance between the two end 

nodes of the arc (unit: km). The average service speed of the vehicles in service is 15km/h. 

Thus, the service time (sa) on an arc was defined as 4da (min). The average travel speed of the 

vehicles not in service is 40 km/h. 

(2) The fixed cost of using a depot F was set to be 1000, and the fixed cost of employing a 

vehicle f was set to be 200. The unit penalty cost P was set to be 20. The unit deadheading 

cost was set to be 2. 

(3) The required service level was set to be 0.9. The maximum allowed working duration of each 

vehicle (C) was set to be 240 minutes.  
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3.5.2 Comparison of the branch-and-cut algorithm and the TSA 

The first set of experiments compares the branch-and-cut algorithm with the three-stage 

algorithm (TSA). The ratio κ quantifies the difference in terms of total cost. It is given by 𝜅𝜅 =

(𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐷𝐷𝐵𝐵&𝐶𝐶)/𝐷𝐷𝐵𝐵&𝐶𝐶, where DTSA is the objective value of the TSA solution, and DB&C is the 

objective value of the branch-and-cut approach. 

Table 3-1 shows the results based on the performance measure κ in percentage for different 

problems. The instances have 12 to 20 vertices, and 23 to 61 arcs, respectively. The column 

“CPU(s)” gives the CPU seconds of both algorithms to solve each instance. For the 

branch-and-cut algorithm, the best upper bound found within four hours of calculation is used for 

comparison. For each instance the gap from the lower bound is also reported in the table.  

Comparing with the branch-and-cut algorithm, the total cost of the sectoring solution obtained 

from the TSA is slightly higher, with a ratio from 0.49% to 12.2%. The results also show the 

efficiency of the TSA. The TSA takes much less computation time, taking only seconds for each 

run regardless of the problem size. Thus we will use the TSA for solving medium and large sized 

problems in the following experiments.  
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Table 3-1 Comparison of the B&C algorithm and the TSA 

 

3.5.3 Experiment on a real network 

In this sub-section, we evaluate the performance of the TSA for solving a real network of 

high-speed freeways in the city of Shanghai. The complete network consists of 31 vertices and 88 

No |V| |A| r  

B&C   TSA   

κ (%) 

CPU(s) gap(%) Db&c   CPU(s) DTSA 

a-1 12 23 18 22.36 0 3167.64 

 

38.41 3334.04 5.25 

a-2 12 25 18 2.5 0 3072.69 

 

29.24 3204.56 4.29 

a-3 12 30 18 8.87 0 3275.62 

 

32.62 3506.95 7.06 

b-1 16 35 18 13467.42 0 3914.73 

 

40.15 3975.27 1.55 

b-2 16 37 18 21.22 0 3217.1 

 

42.33 3340.17 3.83 

b-3 16 43 18 14410.28 3.11 3483.87 

 

39.78 3909.46 12.2 

c-1 20 48 20 751.13 0 3942.1 

 

78.12 4231.4 7.34 

c-2 20 52 20 14400.03 2.53 4101.11 

 

80.34 4489.67 9.47 

c-3 20 61 20 14400 2.30 3947.5   75.35 3966.86 0.49 
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arcs as shown in Figure 3-3. The total mileage of the network is about 200 kilometers. A majority 

of the network is two-way roads, with each way maintained independently. 

 

Figure 3-3 Network of the high-speed freeways in the city of Shanghai 

 The set of potential sites S is {2, 4, 8, 12, 15, 18} (indicated as triangles in Figure 3-3). The 

sectoring problem of the network has been solved by the branch-and-cut algorithm, as well as by 

the three-stage heuristic algorithm. Both sectoring solutions are illustrated in Figure 3-4. The 

complete network has been partitioned into three sectors in both solutions, each of which 

corresponds to the area serviced by a single depot.  

 Table 3-2 summarizes both solutions, which include the depot of each sector, as well as the 

number of vehicles used in each sector. 
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              (a) Branch-and-cut solution                 (b) TSA solution 

Figure 3-4 Sectoring solutions of the network in Figure 3-3 

Table 3-2 Summarization of both sectoring solutions 

Sector 

Branch-and-cut solution  TSA solution 

Location Number (vehicles) Location Number (vehicles) 

1 8 4 8 6 

2 12 2 12 2 

3 2 4 4 3 

 

Besides the total costs, both solutions are evaluated in terms of those criteria described in 

Section 6. The results are shown in Table 3-3. 
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Table 3-3 Performance measures for the sectoring solutions shown in Figure 3-4 

Solution  Total cost Imbalance (min) Overlap (%) 

Compactness 

CR OCR 

Branch-and-cut 5160.6 34.1  11.63 0.213 

0.268 

TSA 5661.2 31.0  7.86 0.227 

 From Table 3-3, although the total cost of the TSA solution is 9.70% higher than the total cost of 

the branch-and-cut solution, the TSA outperforms the branch-and-cut algorithm in terms of both 

overlap and compactness. The objective of the branch-and-cut algorithm is merely to minimize 

the total cost regardless of the shape of the sector. Therefore, arcs of one sector may locate in the 

neighbor sector as long as the total cost is saved, which results in overlap of sectors. For TSA 

algorithm, overlap is owing to the definition of the area of the sector, all interior angles of the 

polygon being smaller than 270 degree. It can be almost avoided that complete arcs in one sector 

locate in another sector. Thus, the performance is better in terms of the compactness and overlap 

of each sector.  

 Therefore, we conclude that with the TSA a clearer sectoring result will be obtained with better 

shape and compactness of each sector. Even though the TSA solution is more expensive, it is 

more appealing and preferable in practice.  
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3.5.4 Sensitivity analysis for medium and large sized problems 

In this part, a sensitivity analysis is conducted by varying each of the following parameters: (1) 

service level γ; and (2) percentage of two-way roads q. Random medium and large sized planar 

networks have been generated following the same procedure in problem settings. These instances 

have 25 to 42 vertices, 59 to 157 arcs, respectively. They consist of two major categories: a) 

networks with an approximate equivalence of one-way and two-way roads (q = 0.5); and b) 

networks with a majority of two-way roads (q = 0.2). 

Table 3-4 Instances details 

Instance No. |V| |S| |A| r q Instance No. |V| |S| |A| r q 

a-1-1 25 5 59 20 0.5 b-1-1 25 5 78 20 0.2 

a-1-2 25 5 66 20 0.5 b-1-2 25 5 81 20 0.2 

a-1-3 25 5 68 20 0.5 b-1-3 25 5 82 20 0.2 

a-2-1 30 5 82 20 0.5 b-2-1 30 5 99 20 0.2 

a-2-2 30 5 84 20 0.5 b-2-2 30 5 103 20 0.2 

a-2-3 30 5 95 20 0.5 b-2-3 30 5 105 20 0.2 

a-3-1 36 5 91 22 0.5 b-3-1 36 5 114 22 0.2 
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Table 3-4 Instances details (cont’d and end) 

a-3-2 36 5 103 22 0.5 b-3-2 36 5 114 22 0.2 

a-3-3 36 5 107 22 0.5 b-3-3 36 5 118 22 0.2 

a-4-1 42 6 122 22 0.5 b-4-1 42 6 142 22 0.2 

a-4-2 42 6 131 22 0.5 b-4-2 42 6 151 22 0.2 

a-4-3 42 6 135 22 0.5 b-4-3 42 6 157 22 0.2 

For each group, we randomly generated 3 instances, each of which has the same number of 

vertices, but different number of arcs. Table 3-4 summarizes the detail information about the 

instances. 

Service level 

Two service levels were used in the experiments, namely medium service level (γ = 0.7) and 

high service level (γ = 0.9). Figure 3-5 illustrates the performance in terms of the total cost for 

solving four groups of instances in each category.  



 

 

 

47 

 

(a) Instances with q = 0.5 

 

(b) Instances with q = 0.2 

Figure 3-5 Performance comparison with different service level 

 It is clearly indicated in the figure that more cost is incurred with the increase of the service 

level. This is mainly because the number of sectors increases with higher service level. The 

tendency is the same for each percentage of two-way roads (q). The cost increase ranges from 0 

to 53.4% with more two-way roads in the network (q=0.2). It ranges from 4.2% to 41.7% with 

more one-way roads in the network (q=0.5). 
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Percentage of two-way roads  

The network structure varies with different percentage of two-way roads. In order to understand 

the impact of the network structure on the efficiency of conducting maintenance service, we 

analyze some key cost components in the total cost. For each category of instances, Figure 3-6 

illustrates the performance in terms of fixed cost of using the maintenance depots (D1), and the 

deadheading travel cost (D3). Note that each data point on the figure is an average of 3 instances. 

 

a) Fixed cost of maintenance depots (D1) 

  

b) Deadheading travel cost (D3) 

Figure 3-6 Performance comparison with different q 

It is observed from the results that: 
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1) With the same size of the network, the number of sectors needed for instances with q = 

0.5 is usually more than that for instances with q = 0.2. This incurs a higher fixed cost of 

depots as shown in Figure 3-6(a). The cost increase can be up to 37.5%.  

2) The deadheading cost of instances with q = 0.5 is higher than that of instances with q = 

0.2, as shown in Figure 3-6(b). The increase can be up to 133.4%.  

3) The penalty costs of the two categories are of the same level.    

The reason of the above observations is that the accessibility of those networks with more 

two-way roads is better.  

The proposed heuristic algorithm is also evaluated in terms of those criteria described in Section 

3.2. Service level is set to be 0.9 in this round of experiment. Table 3-5 shows the results of the 

different performance measures, namely work load imbalance, sector overlap, and compactness 

of the sectoring. The results indicate that the proposed algorithm yields high quality sectoring 

solutions for both categories of instances with compact and good shaped sectors.  

It is also indicated in Table 3-5 that the algorithm performs better, in terms of workload balance 

and sector overlap, when solving those instances from category b)(q = 0.2). This occurs because: 

(1) More deadhead travel is needed for those networks with more one-way roads (category a). 

Thus, higher workload imbalance occurs especially when two-way roads are not well 

distributed over the network. 
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(2) With more two-way roads, the compactness of a cluster tends to be higher since workload is 

more aggregated. This is beneficial to partition the network into sectors with less overlap.  

Table 3-5 Performance measures on different sectoring criteria (γ = 0.9) 

instance 

No. 

imbalance 

(min) 

avg. 
overlap   

(%) 

avg. 

compactness 
avg. 

CR/OCR 
CR OCR 

a-1-1 
29.2  

42.8  

0.00  

2.62  

0.198  0.242  

0.881  
a-1-2 

45.3  0.00  0.204  0.252  

a-1-3 
54.0  7.86  0.252  0.248  

b-1-1 24.0  

11.4  

3.87  

1.29  

0.194  0.246  

0.815  b-1-2 1.3  0.00  0.198  0.241  

b-1-3 9.0  0.00  0.205  0.246  

a-2-1 3.4  

17.9  

4.97  

2.55  

0.206  0.240  

0.904  a-2-2 26.8  0.00  0.225  0.244  

a-2-3 23.4  2.67  0.234  0.251  
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Table 3-5 Performance measures on different sectoring criteria (γ = 0.9) (cont’d) 

b-2-1 11.1  

11.2  

2.72  

1.24  

0.224  0.239  

0.905  b-2-2 5.6  0.00  0.213  0.235  

b-2-3 17.0  0.99  0.215  0.247  

a-3-1 49.4  

27.4  

8.89  

4.42  

0.224  0.253  

0.909  a-3-2 9.5  0.00  0.206  0.242  

a-3-3 23.3  4.38  0.238  0.240  

b-3-1 9.5  

20.3  

0.50  

1.94  

0.194  0.242  

0.844  b-3-2 26.8  0.00  0.216  0.245  

b-3-3 24.5  5.31  0.203  0.239  

a-4-1 19.3  

18.5  

0.00  

1.08  

0.209  0.243  

0.850  a-4-2 22.3  3.25  0.206  0.242  

a-4-3 14.0  0.00  0.208  0.248  
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Table 3-5 Performance measures on different sectoring criteria (γ = 0.9) (cont’d and end) 

b-4-1 6.8  

10.9  

0.00  

0.16  

0.214  0.247  

0.897  b-4-2 15.9  0.47  0.222  0.240  

b-4-3 9.9  0.00  0.214  0.238  

3.6 Summary and remarks 

In this chapter, the sectors design problem was addressed, which consists of determining depots’ 

locations, their respective service sectors and routes within each sector. The problem without 

considering the characteristics of sectors was formulated as a location-allocation arc routing 

problem and was solved by a branch-and-cut algorithm. A three-stage heuristic algorithm with 

sector design component and a post-algorithm procedure was developed to determine the sectors 

with evaluation considerations.  

In the computational analysis, randomly generated planar networks with different sizes, 

structures, and different service levels were tested. The experiments demonstrated that the 

three-stage heuristic algorithm is computationally more tractable than the branch-and-cut 

algorithm and could yield high quality solution with compact and good shaped sectors as the 

scale of the network grows. Moreover, a real network was presented, solved by both algorithms. 

It is obvious that with the TSA a clearer sectoring result will be produced with better shape and 

compactness of each sector at the expense of cost. 
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The sensitivity analysis revealed that the three-stage algorithm performs better at solving those 

networks with a majority of two-way roads, since the deadheading time (shortest distance) 

between two arcs tends to be short.
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CHAPTER 4 ROBUST ARC ROUTING WITH TIME DURATION 

In this chapter, we address the robust arc routing problem with time duration (ARPTD), a 

variant of the capacitated arc routing problem (CARP) with uncertain demands. 

This chapter is organized as follows. Section 1 first presents the deterministic formulation of the 

arc routing problem with time duration, aiming at minimizing the deadheading cost. Section 2 

proposes a definition of the uncertainty set, which is polyhedral. We then re-express the 

inequalities constraints of the uncertainty set 𝑄𝑄 in matrix form. Section 3 presents the solvable 

formulation of robust arc routing problem with time duration (RARPTD). Experiments are 

conformed on randomly generated instances in section 4 to assess the performance of the robust 

formulation. A real network case is exhibited in section 5 and some sensitivity analyses are 

presented. Finally, section 6 summarizes this chapter and draws some conclusions. 

4.1 Deterministic formulation 

The first solved formulation for the deterministic CARP was proposed in 1990 by Belenguer 

(Belenguer 1990). In 1994, Welz (Welz 1994) presented another two-index formulation based on 

the formulation of Belenguer, in which, each edge is replaced by two opposite arcs. We extend 

Welz`s two-index formulation to obtain the edge assignment formulation (EA) for the ARPTD. 
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4.1.1 Notation 

The formulation is defined on an undirected (q = 0) graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with vertex set 𝑉𝑉 =

{0,1, … , n} where vertex 0 is the depot. A subset 𝐸𝐸𝑅𝑅 ⊆ 𝐸𝐸 of required edges must be serviced. K 

is the set of vehicles. 

Each edge 𝑒𝑒{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 in the undirected connected graph is replaced by two arcs (i,j) and (j,i), 

denoted by 𝑒𝑒 and 𝑒⃐𝑒. Thus, a new directed graph 𝐺𝐺` = (𝑉𝑉,𝐴𝐴) is obtained. Exactly one of the 

two required arcs generated by the required edge must be serviced. Arcs generated by the 

required edges make up set 𝐴𝐴𝑅𝑅. Since it is easy to show that it is never necessary for any vehicle 

to traverse an edge more than once in a given direction, binary variables 𝑥𝑥𝑎𝑎𝑘𝑘 and 𝑦𝑦𝑎𝑎𝑘𝑘 are used. 

𝑥𝑥𝑎𝑎𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                ,𝑎𝑎 ∈ 𝐴𝐴𝑅𝑅 ,𝑘𝑘 ∈ 𝐾𝐾  

𝑦𝑦𝑎𝑎𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                   ,𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾  

Denote 𝑐𝑐𝑎𝑎 as the deadheading cost of arc 𝑎𝑎,𝑎𝑎 ∈ 𝐴𝐴. Other notations are the same as defined in 

section 3.1.1. 

4.1.2 The deterministic ARPTD formulation 

Since the constraints of the deterministic ARPTD formulation are similar to those of section 3.1.3, 

they are not discussed in detail. 

The ARPTD can be formulated as follows: 
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𝑧𝑧(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑐𝑐𝑎𝑎𝑦𝑦𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

                                            (4.1) 

𝑥𝑥𝑎𝑎𝑘𝑘 + 𝑦𝑦𝑎𝑎𝑘𝑘 ≤ 1,∀𝑎𝑎 ∈ 𝐴𝐴𝑅𝑅 ,𝑘𝑘 ∈ 𝐾𝐾                                               (4.2) 

�(𝑥𝑥𝑒𝑒
𝑘𝑘 + 𝑥𝑥𝑒⃐𝑒

𝑘𝑘)
𝑘𝑘∈𝐾𝐾

= 1,∀𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅                                                (4.3) 

� (𝑥𝑥𝑎𝑎𝑘𝑘 + 𝑦𝑦𝑎𝑎𝑘𝑘)
𝑎𝑎∈𝑂𝑂(𝑣𝑣)

− � (𝑥𝑥𝑎𝑎𝑘𝑘 + 𝑦𝑦𝑎𝑎𝑘𝑘)
𝑎𝑎∈𝐼𝐼(𝑣𝑣)

= 0,∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾                          (4.4) 

� (𝑥𝑥𝑎𝑎𝑘𝑘 + 𝑦𝑦𝑎𝑎𝑘𝑘)
𝑎𝑎∈𝑂𝑂(𝑌𝑌)

≥ 𝑥𝑥𝑏𝑏𝑘𝑘 ,∀𝑌𝑌 ⊂ 𝑉𝑉, 0 ∉ 𝑌𝑌,𝑘𝑘 ∈ 𝐾𝐾, 𝑏𝑏 ∈ 𝐴𝐴𝑅𝑅(𝑌𝑌)                       (4.5) 

� 𝑠𝑠𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑅𝑅

𝑥𝑥𝑎𝑎𝑘𝑘 + �𝑡𝑡𝑎𝑎
𝑎𝑎∈𝐴𝐴

𝑦𝑦𝑎𝑎𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇,∀𝑘𝑘 ∈ 𝐾𝐾                                          (4.6) 

�𝑦𝑦𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴

≤ �𝑦𝑦𝑎𝑎𝑘𝑘+1
𝑎𝑎∈𝐴𝐴

,𝑘𝑘 ∈ {1,2, … , |𝐾𝐾| − 1}                                      (4.7) 

𝑥𝑥𝑎𝑎𝑘𝑘 ∈ {0,1},∀𝑎𝑎 ∈ 𝐴𝐴𝑅𝑅 ,𝑘𝑘 ∈ 𝐾𝐾                                                  (4.8) 

𝑦𝑦𝑎𝑎𝑘𝑘 ∈ {0,1},∀𝑎𝑎 ∈ 𝐴𝐴,𝑘𝑘 ∈ 𝐾𝐾                                                 (4.9) 

The objective function (4.1) minimizes the total deadheading cost. Constraints (4.2) are valid 

inequalities that guarantee that any vehicle will not traverse an edge more than once in a given 

direction. Constraints (4.3) ensure that each edge is serviced exactly once. Constraints (4.4) and 

(4.5) are the flow conservation and connectivity constraints respectively. Constraints (4.6) are the 

time duration constraints. Overtime and delay are not allowed here. Constraints (4.7) are valid 

inequalities for ARPTD, which are used to eliminate symmetry. Constraints (4.8) and (4.9) 

enforce the binary nature of all decision variables. 
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4.2 Definition of uncertainty set 

In practice, the service time and deadheading time are often subject to significant uncertainty. 

Assume that both the service times on required arcs and deadheading times are uncertain and 

belong to a polyhedral uncertainty set 𝑄𝑄, without known probability distributions. The nominal 

value of the service time and deadheading time are denoted by 𝑠𝑠𝑎𝑎 and 𝑡𝑡𝑎𝑎 respectively, which 

are the average service or deadheading time of the historical data.  

First of all, the uncertainty set 𝑄𝑄 is defined with linear inequalities that the service time and 

deadheading time of each arc should satisfy. A polyhedral uncertainty set can be formed by 

choosing different families of linear inequalities according to the practical situation. 

Linear inequalities for deadheading times 

1) Bounds 

We consider that the deadheading time of each arc belongs to a bounded set, which is 

constructed based on deviations around the nominal deadheading time of each arc. Let 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 be 

the maximum lower deviation of the deadheading time on arc 𝑎𝑎. The maximum upper deviation 

is supposed to be twice the maximum lower deviation. Thus, 

𝑡𝑡𝑎𝑎 ∈ �𝑡𝑡𝑎𝑎 − 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑎𝑎 + 2 ∙ 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�,𝑎𝑎 ∈ 𝐴𝐴 
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The value of 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is related to the level of uncertainty of the environment. A high value of 

𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 indicates a high uncertainty. When 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0, the deadheading time 𝑡𝑡𝑎𝑎 is a deterministic 

value, thus turning back to a deterministic problem. Besides, we should note that 𝑡𝑡𝑒𝑒 = 𝑡𝑡𝑒⃐𝑒 , 𝑒𝑒 ∈ 𝐸𝐸. 

2) Budgets 

Generally, for a specific subset of arcs, the deadheading times of all its arcs will not attain its the 

worst realization at the same time. In other words, the deviations of the deadheading times of all 

arcs in that subset can be limited by a budget. A high deviation budget allows more arcs to attain 

their worst realization at the same time. The deviation budget constraints of arc subsets are given 

as follows, 

� (𝑡𝑡𝑎𝑎 − 𝑡𝑡𝑎𝑎)
𝑎𝑎∈𝐴𝐴𝑙𝑙

≤ 𝐵𝐵𝑙𝑙,𝐴𝐴𝑙𝑙 ⊆ 𝐴𝐴,𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙 = 1,2, … , 𝐿𝐿 

where 𝐴𝐴𝑙𝑙 are specific subsets of 𝐴𝐴, in which the deviations of arcs have to satisfy the budget 

constraint. {𝐴𝐴𝑙𝑙}𝑙𝑙=1𝐿𝐿  are disjoint and ∪𝑙𝑙=1𝐿𝐿 𝐴𝐴𝑙𝑙 = 𝐴𝐴 . Sets 𝐴𝐴𝑙𝑙  can be obtained from practical 

experience. For example, when the underlying graph can be partitioned  geographically into 

several districts, it is reasonable to assume that the deadheading times of all arcs in one district 

will not attain their worst realization at the same time and a specific level of deviation budget can 

be estimated from the historical data. Sets 𝐴𝐴𝑙𝑙 can also be obtained from a statistical analysis.  

We consider in this thesis the budgets are determined with respect to the lower deviation and 

upper deviation of 𝑡𝑡𝑎𝑎, according to the following formula 
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𝐵𝐵𝑙𝑙 = � (−
𝑎𝑎∈𝐴𝐴𝑙𝑙

𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜇𝜇𝑙𝑙[� (
𝑎𝑎∈𝐴𝐴𝑙𝑙

2 ∙ 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) − � (−
𝑎𝑎∈𝐴𝐴𝑙𝑙

𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚)],𝐴𝐴𝑙𝑙 ⊆ 𝐴𝐴,𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙 = 1,2, … , 𝐿𝐿 

where 𝜇𝜇𝑙𝑙  is the level of the deviation budget for set 𝐴𝐴𝑙𝑙 , 𝜇𝜇𝑙𝑙 ∈ [0,1] . Then, the budget 

constraints can be simplified to the following expression, 

� (𝑡𝑡𝑎𝑎 − 𝑡𝑡𝑎𝑎)
𝑎𝑎∈𝐴𝐴𝑙𝑙

≤ � (−
𝑎𝑎∈𝐴𝐴𝑙𝑙

𝛾𝛾𝑎𝑎
𝑚𝑚𝑚𝑚𝑚𝑚 + 3 ∙ 𝜇𝜇𝑙𝑙 ∙ 𝛾𝛾𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚),𝐴𝐴𝑙𝑙 ⊆ 𝐴𝐴,𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙 = 1,2, … ,𝐿𝐿 

Linear inequalities for service times 

1) Bounds 

The bounded set of service time of each arc can not be described simply with the nominal 

service time and maximum deviation like that of deadheading time because the bounded set of 

service time is determined by two factors: 1) In practice, the service time and deadheading time 

of one arc are positively-correlated, owing to the same external environment, for example, the 

status of roads, weather conditions and characteristics of staff. The positive correlation of 𝑠𝑠𝑎𝑎 and 

𝑡𝑡𝑎𝑎 can be expressed by the relationship 𝑠𝑠𝑎𝑎 = 𝜑𝜑𝑡𝑡𝑎𝑎, where 𝜑𝜑 is a positive factor greater than 1. 

2) Unexpected emergencies or other uncertainties can still occur during servicing, which would 

cause 𝑠𝑠𝑎𝑎 − 𝜑𝜑𝑡𝑡𝑎𝑎 ≠ 0. The maximum deviation of (𝑠𝑠𝑎𝑎 − 𝜑𝜑𝑡𝑡𝑎𝑎) is denoted by 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚. Then, The 

bounded uncertainty set for 𝑠𝑠𝑎𝑎 is thus as, 

𝑠𝑠𝑎𝑎 ∈ [𝜑𝜑𝑡𝑡𝑎𝑎 − 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜑𝜑𝑡𝑡𝑎𝑎 + 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  ],𝑎𝑎 ∈ 𝐴𝐴𝑅𝑅 
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where 𝜑𝜑𝑡𝑡𝑎𝑎 accounts for the positive correlation between the service time and deadheading time 

of arc 𝑎𝑎, while 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 represents the uncertainties during servicing. The deterministic case is 

covered by setting 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0. Besides, we should note that 𝑠𝑠𝑒𝑒 = 𝑠𝑠𝑒⃐𝑒 , 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅 . 

According to the definition of the bounded sets for 𝑡𝑡𝑎𝑎 and 𝑠𝑠𝑎𝑎, the relationship between these 

sets is illustrated in Figure 4-1. The shaded areaⅠ is the bounded set of 𝑠𝑠𝑎𝑎 under different 

realizations of 𝑡𝑡𝑎𝑎. The shaded area Ⅱ show all possible value of (𝑠𝑠𝑎𝑎 − 𝑡𝑡𝑎𝑎) under different 

realizations of 𝑡𝑡𝑎𝑎. 

 

Figure 4-1. The relationship between the bounded sets for 𝑡𝑡𝑎𝑎 and 𝑠𝑠𝑎𝑎 

In order to assure that 𝑠𝑠𝑎𝑎 ≥ 𝑡𝑡𝑎𝑎, the value of 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 must satisfy some constraints: 

min{𝑠𝑠𝑎𝑎 − 𝑡𝑡𝑎𝑎} = min{𝜑𝜑𝑡𝑡𝑎𝑎 − 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑎𝑎} = min {(𝜑𝜑 − 1)𝑡𝑡𝑎𝑎 − 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚}

= (𝜑𝜑 − 1)�𝑡𝑡𝑎𝑎 − 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚� − 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 
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Therefore, the following constraints must be satisfied. 

(𝜑𝜑 − 1)�𝑡𝑡𝑎𝑎 − 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚� − 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0                                         (4.10) 

2) Budgets 

 Similarly, the service time of each required arc will not attain the worst realization at the same 

time. The deviation budget constraints of service time are given as follows, 

� (𝑠𝑠𝑎𝑎 − 𝜑𝜑𝑡𝑡𝑎𝑎)
𝑎𝑎∈{𝐴𝐴𝑙𝑙}𝑅𝑅

≤ �  ( −𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 2 ∙ 𝜇𝜇𝑙𝑙 ∙ 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  )
𝑎𝑎∈{𝐴𝐴𝑙𝑙}𝑅𝑅

, {𝐴𝐴𝑙𝑙}𝑅𝑅 ⊆ 𝐴𝐴𝑅𝑅 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙 = 1,2, … , 𝐿𝐿 

 where {𝐴𝐴𝑙𝑙}𝑅𝑅 are specific subsets of 𝐴𝐴𝑅𝑅, assumed to be the set of required arcs of 𝐴𝐴𝑙𝑙 and 𝜇𝜇𝑙𝑙 

is the level of the deviation budget for set 𝐴𝐴𝑙𝑙, 𝜇𝜇𝑙𝑙 ∈ [0,1]. 

In order to make the robust part concise and easier to understand, we re-express the inequality 

constraints of the uncertainty set 𝑄𝑄 in matrix form, 

𝑄𝑄 = �𝑠𝑠 ∈ 𝑅𝑅+
|𝐴𝐴𝑅𝑅|, 𝑡𝑡 ∈ 𝑅𝑅+

|𝐴𝐴|:𝑊𝑊[
𝑠𝑠
𝑡𝑡

] ≤ ℎ,𝑊𝑊 ∈ 𝑅𝑅𝑚𝑚×(|𝐴𝐴𝑅𝑅|+𝐴𝐴), ℎ ∈ 𝑅𝑅𝑚𝑚� 

 Where, 𝑚𝑚 = 2|𝐴𝐴| + 2|𝐴𝐴𝑅𝑅| + 2𝐿𝐿. 

4.3 Robust ARPTD formulation 

We now derive the robust version of time duration constraints (4-6), 

� 𝑠𝑠𝑎𝑎
𝑎𝑎∈𝐴𝐴𝑅𝑅

𝑥𝑥𝑎𝑎𝑘𝑘 + �𝑡𝑡𝑎𝑎
𝑎𝑎∈𝐴𝐴

𝑦𝑦𝑎𝑎𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑠𝑠𝑎𝑎, 𝑡𝑡𝑎𝑎 ∈ 𝑄𝑄                            (4.6′) 

The dual variables are denoted by λ. Then, solvable robust constraints can be obtained by 

applying duality to the infinite-dimensional time duration constraints (4-6’) as follows, 
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�ℎ𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝜆𝜆𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑇𝑇,𝑘𝑘 ∈ 𝐾𝐾                                                     (4.11) 

�𝑊𝑊𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≥ 𝑥𝑥𝑎𝑎𝑘𝑘, 𝑘𝑘 ∈ 𝐾𝐾, 𝑎𝑎 ∈ 𝐴𝐴𝑅𝑅                                           (4.12) 

�𝑊𝑊𝑖𝑖(𝑎𝑎+|𝐴𝐴𝑅𝑅|)𝜆𝜆𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≥ 𝑦𝑦𝑎𝑎𝑘𝑘,𝑘𝑘 ∈ 𝐾𝐾, 𝑎𝑎 ∈ 𝐴𝐴                                    (4.13) 

𝜆𝜆 ∈ 𝑅𝑅+𝑚𝑚×𝑘𝑘                                                             (4.14) 

Thus, the complete robust counterpart of formulation ARPTD can be written as follows: 

𝑧𝑧(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑐𝑐𝑎𝑎𝑦𝑦𝑎𝑎𝑘𝑘
𝑎𝑎∈𝐴𝐴𝑘𝑘∈𝐾𝐾

                                                     

Subject to 

(4.2)~(4.5), (4.7)~(4.9), (4.11)~(4.14). 

RARPTD is solved with the branch and cut algorithm described in Section 3.2. 

4.4 Computational results 

In this computational study, the procedure to generate undirected instances is as follows: 1) 

randomly generate the coordinates of X vertices in a unit square; 2) a heuristic is used to find the 

shortest tour passing through all the nodes exactly once, thus making the graph strongly 

connected; 3) randomly add a certain number of edges to the current tour, ensuring no 

intersection and proper length; 4) the distance is scaled up by a factor. The same procedure has 
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been used to generate instances for other arc routing problems (see Chen et al. 2014 and Hà et al. 

2014). 

We name the instances “XN-YE-Z”, where x denotes the number of nodes, y denotes the number 

of edges and z denotes the number of the instances that have the same number of nodes and 

edges. We partition the arcs in 𝐴𝐴 into four geographic quadrants, based on the coordinates of 

their midpoints. For each of these subsets, a budget constraint must be satisfied; see section 4.2. 

4.4.1 Problem settings for the robust model 

 The average service speed of the vehicles in service is 15km/h. The average travel speed of 

the vehicles not in service is 40 km/h. Thus, 𝑠𝑠𝑎𝑎 = 4𝑑𝑑𝑎𝑎 and 𝑡𝑡𝑎𝑎 = 1.5𝑑𝑑𝑎𝑎 respectively. The 

deadheading cost is defined as 𝑐𝑐𝑎𝑎 = 5𝑑𝑑𝑎𝑎. 

 Uncertainty level. The maximum deviation of the deadheading time 𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is defined as 

𝛾𝛾𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜗𝜗𝑡𝑡𝑎𝑎. 𝜗𝜗 is the level of uncertainty of the deadheading time on each arc and is 

defined to be the same for all the arcs for the same uncertain environment. 𝜗𝜗 ∈

{0.1, 0.3, 0.5}. The maximum deviation of the service time 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is defined as 𝜀𝜀𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜉𝜉𝑠𝑠𝑎𝑎. 

𝜉𝜉 is the level of uncertainty of the service time on each arc and is defined to be the same for 

all the arcs for the same uncertain environment. In order to satisfy constraints (4.10), we set 

𝜉𝜉 ∈ {0.05, 0.15, 0.25}. 
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 Deviation budget. The level of the deviation budget of the service and deadheading times, 

𝜇𝜇𝑙𝑙, belongs to {0.5, 0.7,0.9}.  

4.4.2 Experimental analysis 

Some experiments on different sizes of networks were conducted to evaluate the performance of 

the robust formulation (RARPTD). The uncertainty set was fixed to (𝜗𝜗, 𝜇𝜇𝑙𝑙) = (0.3, 0.7). The 

number of required edges was set to be 2/3 of |E|. The CPU time was limited to 10 hours. 

Table 4-1 Computational comparison of different sizes of networks 

 

Table 4-1 demonstrates the performance of the formulation (RARPTD) over 15 networks of 3 

different sizes. When the network size is small (15 edges) and the number of vehicles is below 4, 

all the instances can be solved to optimality very fast. However, when the size of network 

becomes larger (21 edges) and the number of vehicles increases, the time needed to solve 

instances to optimality increases significantly. Most instances cannot be solved to optimality 
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within time limit when the number of edges increases to 27. Out of those that were not solved to 

optimality, the average gap is 31.2%. When we are solving an undirected problem with 27 edges 

and 5 vehicles, we actually are solving a directed problem with 54 arcs and 5 vehicles, therefore, 

the number of variables is quite large, which explains why it cannot be solved easily. 

4.4.3 Experiments on a sector from the real network 

Other experiments were conducted on the undirected graph of sector 3, which is obtained from 

the directed graph of sector 3 sectored with TSA in section 3.5 by substituting all the directed 

arcs with undirected edges. The same colored arcs in Figure 4-2(a) are served by one vehicle, 

therefore, we assume them to form a subset, for which a budget constraint must be satisfied. After 

replacement, the same colored edges in Figure 4-2(b) are also assumed to form a subset with a 

budget constraint. Depot is indicated with a green circle in Figure 4-2. 

 

(a) directed graph                    (b) undirected graph 

Figure 4-2 Network of sector 3 
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If we set (𝜗𝜗, 𝜇𝜇𝑙𝑙) = (0.3, 0.7) and |𝐾𝐾| = 4, then the optimal solution is exhibited in Figure 4-3. 

In each route, we represent the serviced edges by green lines and the deadheaded edges by red 

lines. 

 

Figure 4-3 The optimal solution of sector 3 

The sensitivity analysis is conducted in the following by varying (1) the level of uncertainty, 

including the deviation budget and the uncertainty of the deadheading and service times; and (2) 

the number of vehicles used.  

Uncertainty level 
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The RARPTD determines a set of robust routes that remains feasible under all the possible 

realizations of 𝑡𝑡𝑎𝑎 and 𝑠𝑠𝑎𝑎. The feasible solutions set under uncertainty set 𝑄𝑄 is denoted by 

𝑅𝑅(𝑄𝑄). If the support 𝑄𝑄�  is a superset of the support 𝑄𝑄, then 𝑅𝑅(𝑄𝑄�) ⊆ 𝑅𝑅(𝑄𝑄).  

Table 4-2 Overtime of the worst route (min) (|𝐾𝐾| = 4) 

(ϑ, ξ, μl )\OS(ϑ, ξ, μl ) (0.1, 0.05, 0.5) (0.1, 0.05, 0.7) (0.1, 0.05, 0.9) (0.3, 0.15, 0.5) (0.3, 0.15, 0.7) (0.3, 0.15, 0.9) (0.5, 0.25, 0.5) (0.5, 0.25, 0.7) (0.5, 0.25, 0.9) 

(0.1, 0.05, 0.5) 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  

(0.1, 0.05, 0.7) 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  

(0.1, 0.05, 0.9) 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  

(0.3, 0.15, 0.5) 25.9  11.4  0.0  0.0  0.0  0.0  0.0  0.0  0.0  

(0.3, 0.15, 0.7) 33.9  34.1  15.2  23.8  0.0  0.0  0.0  0.0  0.0  

(0.3, 0.15, 0.9) 33.9  37.9  48.9  48.9  49.4  0.0  31.8  0.0  0.0  

(0.5, 0.25, 0.5) 98.4  64.8  10.7  48.9  15.7  0.0  0.0  0.0  0.0  

(0.5, 0.25, 0.7) 111.8  110.1  67.0  96.9  67.8  21.5  44.7  0.0  0.0  

(0.5, 0.25, 0.9) 111.8  116.4  123.4  123.4  124.1  59.4  101.0  22.3  0.0  
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Let us denote the uncertainty set for parameters (𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙) as 𝑄𝑄(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙). For a polyhedral 

support 𝑄𝑄, 𝑅𝑅(𝑄𝑄�𝜗̃𝜗, 𝜉𝜉, 𝜇𝜇�𝑙𝑙�) ⊆ 𝑅𝑅(𝑄𝑄(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙)), that is, any robust feasible set of routes for the 

uncertainty level �𝜗̃𝜗, 𝜉𝜉, 𝜇𝜇�𝑙𝑙� is also robust feasible for the uncertainty level (𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙), if 𝜗̃𝜗 ≥ 𝜗𝜗, 

𝜉𝜉 ≥ 𝜉𝜉 and 𝜇𝜇�𝑙𝑙 ≥ 𝜇𝜇𝑙𝑙, which is illustrated in Table 4-2. Let us denote the optimal solution with 

uncertainty set parameters (𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙) by 𝑂𝑂𝑂𝑂(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙). Table 4-2 shows the overtime of the worst 

route of optimal solutions under different uncertainty levels. It is obvious that when 𝜗̃𝜗 ≥ 𝜗𝜗, 𝜉𝜉 ≥

𝜉𝜉 and 𝜇𝜇�𝑙𝑙 ≥ 𝜇𝜇𝑙𝑙 , 𝑂𝑂𝑂𝑂�𝜗̃𝜗, 𝜉𝜉, 𝜇𝜇�𝑙𝑙� is robust feasible for the uncertainty level (𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙), however, 

𝑂𝑂𝑂𝑂(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙) is not necessarily robust feasible for the uncertainty level �𝜗̃𝜗, 𝜉𝜉, 𝜇𝜇�𝑙𝑙�. Here we say 

that 𝑂𝑂𝑂𝑂�𝜗̃𝜗, 𝜉𝜉, 𝜇𝜇�𝑙𝑙� has higher robustness than 𝑂𝑂𝑂𝑂(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙). 

However, a higher level of robustness is not free; in fact, this could incur higher costs, as is 

shown in Table 4-3. When the uncertainty level becomes higher, the deadheading cost increases. 

The column ‘Increase’ gives the increased percentage of cost relative to the parameter setting 

(𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙) = (0.1, 0.05, 0.5). 

Table 4-3 Impact of uncertainty level on the optimal solution (|𝐾𝐾| = 4) 

 

We can see from Table 4-3 that some optimal solutions with different level of (𝜗𝜗, 𝜉𝜉, 𝜇𝜇𝑙𝑙) may 

have the same cost, for example, 𝑂𝑂𝑂𝑂(0.1, 0.05, 0.5)  and 𝑂𝑂𝑂𝑂(0.3, 0.15, 0.5) , however, the 

robustness of these solutions is quite different. 𝑂𝑂𝑂𝑂(0.3, 0.15, 0.5) has higher robustness. 
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Actually, although 𝑂𝑂𝑂𝑂(0.1, 0.05, 0.5)  and 𝑂𝑂𝑂𝑂(0.3, 0.15, 0.5)  have the same cost, the 

allocation of required edges to vehicles is different, which implies that, in that case, there are two 

ways of improving the robustness of the optimal solution: 1) by paying the price of robustness; 2) 

by adjusting the allocation of required edges to obtain higher robustness at the same price. 

Number of vehicles 

The RARPTD of sector 3 is again solved with different constant fleet sizes. The fleet size |K| is 

set to be 2, 3, 4 and 5. For each fleet size, the uncertainty level has the same settings. Table 4-4 

displays the sensitivity of cost with respect to the number of vehicles. 

We can see from Table 4-4: 

1) When the number of vehicles is small, the RARPTD will have no feasible solution under high 

uncertainty level. 

2) When the number of vehicles used increases, the cost of the optimal solution for the same 

uncertainty level increases. 

3) When the number of vehicles increases, the cost of the optimal solution will be less sensitive 

to the uncertainty level. In other words, with larger number of vehicles, the optimal solution 

under low uncertainty level can be more robust. 

These observations can be explained as follows: 
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1) Higher uncertainty means that one must consider worse realization of the deadheading and 

service times, therefore, more vehicles are needed to satisfy the demands. 

2) Under the same uncertainty level, when the RARPTD can be solved with smaller number of 

vehicles, more deadheading time may be produced with larger number of vehicles because 

some route has to be broken down into 2 routes, which leads to the use of deadheading arcs. 

3) When more vehicles are used, there will be more surplus time duration for vehicles routes, 

therefore, the optimal solution can be more robust for the higher uncertainty level. 

Table 4-4 Impact of the number of vehicles on the optimal solution 

 

4.5 Summary and remarks 

In this chapter, the robust arc routing problem with time duration was addressed. This model 

can be applied to service sectors after these have been determined. After proposing the 

deterministic mathematical formulation for the ARPTD and defining the general polyhedral 
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uncertainty set of service and deadheading times, the robust counterpart of the deterministic 

formulation was developed and then solved. 

Experiments conducted with randomly generated instances showed that the RARPTD can be 

solved to optimality quickly for small-sized networks. A real network case was also exhibited. 

Our sensitivity analysis indicates that: 1) A higher level of robustness of the optimal solution 

could incur higher costs; 2) When the number of vehicles increases, the optimal solution under 

low uncertainty level can be more robust but the cost of the optimal solution under the same 

uncertainty level increases.
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

This chapter concludes the thesis and then proposes the recommendations for future work in 

studying the arc routing problem with time duration. 

5.1 Conclusions 

Road maintenance operations are conducted out of a set of depots spatially distributed on a 

transportation network. Each depot is responsible for providing maintenance service to a sector of 

the network. Within a sector, service vehicles operate on routes that start and end at the depot. 

The problem solved in this thesis is divided into two parts: 1) location-allocation arc routing with 

considering the characteristics of sectors, namely, the sector design problem (SDP); 2) robust arc 

routing based on the sectoring result of sector design (RARPTD). Using scientific optimization 

methods for sector design and scheduling of the maintenance routes is an important concern.  

In order to solve the sector design problem (SDP), a three-stage heuristic algorithm with a sector 

design component was developed to determine the sectors with sectoring evaluation 

considerations. Our computational experiments have shown that the three-stage heuristic 

algorithm is computationally more tractable than the branch-and-cut algorithm and could yield 

high quality solution with compact and good shaped sectors as the scale of the network grows. 

With the real network case, it was found that compared with the branch and cut algorithm, a 
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clearer sectoring result with better shape and compactness of each sector can be produced with 

the TSA, at the expense of cost. 

After partitioning a large-sized network into small-sized sectors, the robust arc routing problem 

with time duration is addressed. The deterministic mathematical formulation for the ARPTD was 

proposed and a general polyhedral uncertainty set of service and deadheading times was defined. 

After that, the robust counterpart of the deterministic formulation was developed and then solved. 

Computational experiments showed that the RARPTD can be solved to optimality quickly for 

small-sized networks. The sensitivity analysis was conducted with respect to the level of 

uncertainty and the number of vehicles used, which revealed that a higher level of robustness of 

the optimal solution usually incurs higher costs.  

Recommendations for future research will be presented in the next section. 

5.2 Recommendations for future research 

In this thesis, formulations and algorithms were proposed to solve the sector design problem and 

robust arc routing problem with time duration, and good results were obtained. However, there 

are still many issues that could be addressed in the future research. These includes, 

 Considering the uncertainty on the service and deadheading times in the sector design stage. 

 Studying more real network cases and data, and using statistical techniques to obtain more 

relevant uncertainty sets for practical problems. 
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 Finding valid inequalities to speed up the solution of the RARPTD, since the RARPTD 

cannot be solved to optimality quickly on large-sized network. 
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