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RESUME

Les applications modernes sont difficiles a diagnostiquer avec les outils de débogage et de
profilage traditionnels. Dans les systeme de production, la premiere priorité est de minimiser
la perturbation sur I'application cible. Les outils de tragage sont tres appropriés pour ’étude
des performances de tels systeémes car les événements sont enregistrés et ’analyse se fait
a posteriori. Une des principales exigences des systemes de tracage est le faible surcofit.
L’activation d'un nombre réduit d’événements aide a respecter cette exigence, mais au prix

de la diminution de la granularité de la trace.

Dans cette these, nous présentons notre travail de recherche qui traite du probleme de la gra-
nularité limitée des traces en maintenant un faible surcotit sur les applications cibles. Nous
présentons de nouvelles techniques et algorithmes qui abordent le probleme en se basant
d’abord sur une approche de filtrage logiciel et de tragage coopératif, puis en explorant des
mécanismes plus avancés de tracage matériel. Nous avons proposé une approche efficace de
tracage conditionnel dans 'espace noyau et utilisateur qui se base sur des mécanismes de
filtrages compilés en code natif. Afin d’atteindre 1'objectif d’avoir une trace détaillée du sys-
teme, nous expliquons que les processeurs modernes contiennent des blocs de tracage matériel
qui n’ont pas encore été entierement exploités dans le domaine du tracage. Nous caractérisons
leur performance et nous analysons les paquets de traces, leur relation avec ’exécution du lo-
giciel, et les possibilités de les utiliser pour une trace détaillée. Nous proposons des techniques
a faible surcofit, assistées par le matériel, rendant possible une analyse détaillée permettant
la détection des latences d’interruption et des appels systemes. Nous présentons aussi une
nouvelle technique qui se base sur les paquets de trace a bas niveau du processeur pour
analyser efficacement les processus et les ressources utilisées dans une machine virtuelle. De
plus, nous avons identifié¢ et solutionné des problemes reliés au tracage matériel en utilisant
I’assistance logicielle du systeme d’exploitation, ouvrant ainsi la voie a des recherches plus
approfondies sur les approches coopératives de tragage matériel-logiciel. Comme nos tech-
niques sont axées sur les exigences du tracage a haute vitesse dans les systémes embarqués
et de production traitant des transactions a haute fréquence, nous avons constaté que nos
progres dans le domaine du tracage matériel-logiciel se sont avérés tres utiles pour détecter

la contention des ressources et la latence dans les systémes.
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ABSTRACT

Modern applications are becoming hard to diagnose using traditional debugging and profil-
ing tools. For production systems the first priority is to have minimal disturbance on the
target application. To analyze performance of such systems, tracing tools are imperative
where events can be logged and analyzed post-execution. One of the key requirements for
tracing solutions however, is low overhead. A generic solution can be to select only a few
events to trace, but at the cost of trace granularity. In this thesis, we present our research
work that deals with the problem of lack of high granularity in traces while maintaining a
low-overhead on target applications. We present our new techniques and algorithms that
approach the problem initially from a software filtering and co-operative tracing approach,
and then explore more advanced hardware tracing mechanisms that can be used. We have
proposed an efficient kernel and userspace conditional tracing approach, with an enhanced
native compiled filtering mechanism. Continuing towards our goal to have a detailed trace
of a system, we further discuss how modern processors contain new hardware tracing blocks
that have not yet been fully explored and exploited in the tracing domain. We characterize
their performance and analyze the trace packets, their relation with software executions and
opportunities to utilize them for a detailed trace. We therefore propose low-overhead hard-
ware assisted techniques that allow a fine grained instruction based interrupt and system call
latency detection mechanism. We also present a new algorithm that shows how such low-
level trace packets coming directly from the processor, can be effectively utilized to analyze
even the processes or resources consumed inside a VM. We have also identified and improved
upon issues related to hardware tracing itself using software assistance from operating sys-
tems thus laying out ground for further research in hardware-software co-operative tracing
approaches. As our techniques are focused towards requirements of high speed tracing in
embedded or production systems, catering high frequency transactions, we have found that
our advancements in the hardware-software domain have proved to be invaluable in detecting

resource contention and latency in systems.
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CHAPTER 1 INTRODUCTION

System analysis tools are indispensable to developers. The advent of newer many-core systems
have made it hard for current debuggers and tracers to keep up in terms of features and
performance. To get a detailed view of system internals, a more in-depth analysis is required
which usually involves probing millions of locations in application code. In software with large
code-bases, such as the Linux kernel, thousands of statically instrumented tracepoints exist.
Analyzing such software requires thousands of such tracepoints to be enabled at runtime,
which eventually generates a huge amount of trace data that needs to be analyzed. For
resource constrained systems, it would be inefficient to store such a huge amount of trace data
and retrieve it for offline analysis. In our work, we first investigated a software-only approach
where we focused on efficient filtering of trace data at runtime to weed out unnecessary
tracepoints and select only the interesting ones. We also proposed a kernel-userspace co-
operative tracing approach where the trace filters would co-operatively work on conditions

that can be changed dynamically.

Furthermore, we observed that modern debugging and tracing tools are not utilizing the full
support of hardware provided by the current generation processors which have in-built tracing
blocks. These hardware tracing techniques could allow a more detailed way of analyzing data
by further reducing the runtime overhead. We investigated this line of thought and came
up with innovative hardware-assisted tracing techniques that can be combined with software

tracing tools to provide low-overhead and more granular analysis of modern systems.

1.1 Definitions and Basic Concepts

1.1.1 Instrumentation

In the domain of computer program analysis, we define the term instrumentation as the
addition of extra code in the analysis program either before or after compilation that enables
the observer to gather metrics about the program as it eventually executes. These metrics can
be as simple as a histogram of the number of times a function got called or complex memory
and thread sanitation routines. Most of the advanced tools used for profiling, tracing or
debugging that we eventually discuss are built upon such instrumentation primitives. In this

thesis, we classify instrumentation as either static, dynamic or hybrid in nature.



Static Instrumentation

In many cases, before compilation begins, the analysis code can be added as part of the
target program source. For example, in the case of a simple function profiler, a function that
increments a small counter can be added at every entry of all functions in the target program.
This is usually the case for large software such as the Linux kernel which use statically inserted
tracepoints in all major functions. Various tools hook onto their tracepoints in the kernel
to gather data for further analysis. We will elaborate on this in subsequent sections. Such
instrumentation is inexpensive but has a drawback of always being in the critical execution
path during execution. Another approach to static instrumentation is when the compiler itself
instruments paths in the code to execute analysis code [1]. In any case, static instrumentation
requires the source code knowledge or compiler assistance, to introduce analysis code in the

target application.

Modern compilers such as GCC and LLVM Clang allow special symbols or callback-function
hooks to be inserted at entries and exits of all functions in the source code at compile time.
At runtime, an instrumentation agent can latch onto those functions and execute its own ana-
lysis code. As an example, the Linux kernel can be compiled with the gcc -pg switch which
inserts a mcount symbol at each function entry and exit. This can be latched onto by the
Ftrace tracer at runtime to provide dynamic tracing capabilities. Similarly, for any userspace
program, GCC offers the -finstrument-functions switch, which provides compile time ins-
trumentation of calls to __cyg _profile func_enter() and __cyg profile func_exit()
functions. These can then be interposed at runtime and be used to run analysis code. The
analysis infrastructure and tools such as LTTng, Ftrace, SystemTap and eBPF heavily utilize

static instrumentation which is part of the Linux kernel infrastructure.

Dynamic Instrumentation

Analysis code can also be inserted in binaries post compilation — either on application binaries
residing on the disk or more importantly while the target application is executing. This is
known as Dynamic Binary Instrumentation (DBI) and is of special interest to us as it allows
the insertion of code while the process is executing. DBI eliminates the need of having a prior
knowledge of program source code while providing the benefit of enabling and disabling the
analysis code We classify most of the dynamic instrumentation techniques used in building

frameworks and tools as follows :

TRAP Based : This technique is used in tools such as older Kprobes [2, 3] and GDB’s

normal tracepoints [4, 5|. During execution, when the TRAP is encountered, the OS halts



the program and its state is saved. It sends a SIGTRAP signal to the process which can
handle the exception. Usually in the handler, the original instructions are executed, out of
line and then the intended instrumentation code is executed. Upon return from the handler,
the original instruction is restored and the execution continues. On x86, 0xCC is reserved for
such an interrupt. The target instruction in the target function is replaced with an exception
causing instruction (such as int 3 on 1386 architecture), and the exception handler then
executes the instrumentation code. Traditional debuggers use this approach to implement
breakpoints, with the help of debugging calls (such as ptrace() on Linux) to insert the
TRAP and read the status and content of the debugged process.

Jump-pad Based : Most of the good instrumentation frameworks such as Dyninst, PIN
and tools like GDB (for fast tracepoints) [6], however, employ the much faster trampoline
approach. Dyninst usually replaces the complete target function with a patched version in
which a jump is placed at the specified instrumentation point in the target. This jump
transfers the execution to a trampoline which executes the displaced instructions from the
target function. Then, the stack is adjusted and the CPU registers are saved on stack. Finally,
a call to the snippet (instrumentation code) is made. Upon return, the stack is rearranged,
the original register state is restored, and the execution continues. As the execution stream is
not disturbed, and the snippet execution only incurs some jumps and a few more instructions

instead of a costly trap, this process is one of the fastest instrumentation approaches.

JIT Translation : Other tools like Valgrind [7] use Just-in-Time (JIT) code translation
based techniques. The binary is first disassembled and converted into an intermediate repre-
sentation (IR). The IR is then instrumented with analysis code (such as the memory analysis
code of memcheck). It is then recompiled back to the machine code and this instrumented
code is stored in a code-cache. This can then be executed on Valgrind’s synthetic CPU. It
is much like interpreting native instrumented instructions in a process virtual machine [8].
With this scheme, the tool (Valgrind) has a very good control over the target executable.

However, being very costly, this is not appropriate for the tracing domain.

1.1.2 Tracing

Tracing can be defined as a very fast system-wide fined grained logging mechanism. With the
traditional debugging approach, it becomes quite difficult to gather very low level, as well as
time accurate details about the system’s behavior in quasi real-time. Sampling based profiling
tools are also only moderately useful in such cases. Therefore, the fast logging mechanism
called tracing is employed. Tracing tools and frameworks are built upon the base instrumen-

tation techniques discussed previously. Tracing can be divided according to the functional



aspect (static or dynamic) or by its intended use (kernel or userspace tracing — also known as
tracing domains). Static tracing requires source code modification and recompilation of the
target binary/kernel, whereas in dynamic tracing one can insert a tracepoint directly into a

running process/kernel, or in a binary residing on the disk.

Tracepoint

Tracing usually involves adding a special tracepoint in the code. This tracepoint can look
like a simple function call, which can be inserted anywhere in the code (in case of userspace

applications) or be provided as part of the standard kernel tracing infrastructure.

Event

Each tracepoint hit is usually associated with an event. When a tracepoint is hit, a callback
function is called which allows trace data to be collected, aggregated or stored in a buffer. The
events are very low level and occur more frequently. Some examples are syscall entry/exit,
scheduling calls, etc. For userspace applications, these can be some important functions in
the target application such as a request processing thread of a server or an insert operation

in a database.

Trace Buffer

In general, tracing involves storing associated data in a special buffer, whenever an event
occurs. For a detailed execution trace of a very fast system, this data is obviously huge and
contains precise time-stamps of the tracepoints hit, along with any optional event-specific
information (value of variables, registers, etc). All this information can be stored in a specific

format for later retrieval and analysis.

1.1.3 Program Flow

Another important way to debug and profile programs is by analyzing the paths a program
took while executing. This can help in understanding if the call stack for a given function
was the one that we expected, or be used to profile function executions and observe latency
between any two points in the program. Information about possible program paths can be
obtained by static or dynamic analysis of source code, or more advanced hardware-assisted
techniques. While static analysis of a program through its source code can yield a detailed
Control Flow Graph (CFG), and eventually a way to visualize the program flow, it is only at

runtime that the information about reachable CFG paths can be known. As an example, the



Ftrace tracer in the Linux kernel uses the software based hybrid instrumentation techniques
discussed above to obtain the program flow at function granularity. The program flow can be
obtained at a very high granularity through either analyzing every instruction executed by
the processor or through offline reconstruction of instruction flow by recording only branches

and change-of-flow instructions in the program.

Hardware Tracing

A major part of the work presented in this thesis revolves around special hardware tracing
blocks that are part of modern processor chips. These on-chip tracing blocks generate high
frequency trace packets at instruction or branch granularity in a program which allows the
analysis tool to reconstruct program and/or data flow by looking at the instruction flow
and timings. This allows a more fine-grained analysis of applications. As an example, Intel
provides the Branch Trace Store (BTS), Last branch Record (LBR) and Processor Trace (PT)
hardware blocks which allow recording each branch status and its target. Such trace hardware
is implemented on silicon with enable/disable control from control registers of the processor.
This is the lowest level of tracing, which allows analysis of instructions as they execute.
The same hardware can also be configured to generate timestamp packets to analyze latency
issues very closely in real-time systems. As there is no tracepoint being called in the software
and trace recording happens in parallel, the overhead of this hardware-assisted approach on

the target application is minimal. We elaborate more on this in the next chapter.

1.2 Problem and Scope

Up until recently, code analysis tools have always been simpler in terms of design and func-
tionality owing to the fact that test applications were monolithic and processing hardware
was simple. For the more complex modern, multi-core and distributed systems of today, even
though debuggers can give a detailed view of the target process at any given time, they
require pausing the process and running a manual or conditional automated analysis. This
alters the time-correctness of applications. Tracing, as discussed before, has proven to be
an important technique in such cases. It is robust and useful for long-running systems in
production for which halting the process for analysis is not an option. For a detailed view
of such systems however, as expected, enabling millions of trace events generates a lot of
data and hence causes unwanted overhead in the system. This forces the analyst to disable
multiple tracepoints, which then impedes the understanding of proper application context
post-execution. Even though modern tracers allow preliminary filtering of events, the condi-

tions on which they check are restricted to only the kernel context. Moreover, tracing tools



and frameworks do not leverage advancements in processor hardware over the years, due to
their complexity and lack of empirical data on their performance, even when these hard-
ware tracing frameworks could address the problem of detailed trace data obtained with low

overhead.

Research Questions The state-of-the art analysis techniques have not considered such
limitations and lack any advancement that allow the reduction of overhead and maintaining
reproducible and useful traces. In view of the issues discussed above, we go a bit further and
define three important research questions that have not yet been addressed in-depth in this
domain :

— Is it possible to develop a new, modern tracing technique that allows a more detailed
view of the system but at a lower overhead and with a larger trace context ?

— Can we further enhance the information gathered from the control flow traces and
reduce the overhead on production systems using modern hardware techniques coupled
with software assistance ?

— Will the newly proposed algorithms and techniques, be robust, have low overhead and

cause minimum perturbations to the target system ?

1.3 Research Objectives

For obtaining a highly detailed view of the system but at a low cost to the system itself, the
conditional aspect of tracing has not been investigated in-depth before — especially considering
the cost of filtering high-frequency events with a software approach. Conditional tracing can
be used where filters can be applied over tracepoints, which allow the tracepoint to fire and
actually record data only when a particular condition is verified. The conditions need to have
a context of the operating system as well as the target process and would require some sort
of expression language that could be evaluated at runtime at a high speed. Apart from that,
modern processor chips now contain hardware tracing blocks that have not been sufficiently
utilized to obtain detailed traces. Therefore, the lack of very accurate trace information is
still a major issue for production systems. For this research, the general objective has been
to solve the problem of low-overhead yet detailed traces by exploring pure software as well

as hardware-assisted techniques recently becoming available.
Going further, we identified specific objectives of our research as follows :

— To propose a new tracing technique that introduces the concept of software based
conditional tracing which can yield a holistic yet detailed view of the target applica-

tions.



— To propose algorithms that utilize hardware tracing support in modern processors for
a detailed analysis of target applications and virtual machines with a low-impact on
the observed system.

— To develop new algorithms and techniques that optimize the state-of-the-art hardware
trace analysis approach for improving accuracy of trace data gathered for an overall

improved tracing framework.

1.4 Contributions

In-line with the research objectives stated above, this thesis presents the following original
contributions in the field of systems and program analysis :

— A fast conditional tracing architecture which incorporates JIT compiled filters and
an improved kernel VM - user VM direct data sharing mechanism for low overhead
co-operative tracing.

— An instruction and time delta profiling algorithm which utilizes on-chip hardware
tracing blocks for a low-overhead program flow and latency analysis. This technique
also allows us to profile software tracing overhead with cycle-accurate resolution.

— A hardware-assisted virtual machine analysis algorithm which utilizes trace packets
from on-chip hardware to detect resource contention in virtual CPUs, and processes
running inside the VM with near-zero overhead and in a non-intrusive manner.

— A robust, low-overhead, kernel-assisted hardware trace reconstruction algorithm which
allows hardware traces to be reconstructed in partial or incorrect decoding scenarios

when runtime compiled code is executed on the hardware.

1.5 Outline

This thesis is organized as follows. Chapter 2 is dedicated to the review of state-of-the-art
literature and associated software frameworks, the techniques they use and our inference from
them. Chapter 3 outlines our research methodology and explains the process of generating
research leads, identifying problems, actionable items, specific milestones and eventual out-
comes in terms of research papers and a succinct description of their content. It presents an
overall view of the body of this research. We then move towards the core body of the research

which has been presented as four articles.

We first present a new and improved trace filtering and conditional tracing architecture as the
article titled “Enhanced Userspace and In-Kernel Trace Filtering for Production Systems”.

We propose our new kernel and userspace co-operative tracing approach as well as a fast



tracing architecture based on eBPF and LTTng. This article appears in the November 2016
issue of Journal of Computer Science and Technology (Springer) and constitutes Chapter 4
of this thesis.

The second article discusses new hardware trace based high resolution and low overhead
filtering techniques and a new algorithm to generate instruction and time delta profiles for
accurate profiling of interrupt and syscall latency. This article is titled “Hardware-Assisted
Instruction Profiling and Latency Detection” and appears in the August 2016 issue of Journal

of Engineering (IET) and is presented in Chapter 5 of the thesis.

Our third article presents a novel non-intrusive algorithm to trace VMs, with very low over-
head hardware-assisted tracing, through analysis of raw hardware trace packets. This work
has been presented in the International Workshop on Cloud Computing Systems, Networks,
and Applications at IEEE Globecom conference and appears in Proceedings of Globecom
Workshops (IEEE). This is reproduced as Chapter 6 in this thesis.

The fourth article in Chapter 7 presents a new algorithm and an in-kernel implementation
which tackles the issue of faulty hardware trace reconstruction when runtime code such as
JIT compiled sections are being executed in a target process. This work has been submitted

to ACM Transactions on Computer Systems

Finally, in Chapter 9, we present a summary and discussion of our research contributions,
their impact on the tracing ecosystem and provide recommendations for future work that

may be carried out in this field.



CHAPTER 2 LITERATURE REVIEW

In this chapter we attempt to classify and review techniques used within popular trace,
profile and debugging tools - both software and hardware based. This has helped us gain an

understanding of the benefits and deficiencies in state-of-the-art methods and algorithms.

2.1 Tracing and Instrumentation

As discussed in Chapter 1, static and dynamic instrumentation techniques form the core of
the tracing, debugging and profiling tools and frameworks available. We first begin with a
case-study of a small experimental dynamic tracing tool called DyTrace, which we develo-
ped while analyzing tracers in-depth. This gives the reader a deeper understanding of what
goes on behind most popular trace frameworks from a very low-level perspective while dis-
cussing the state-of-the-art techniques used in developing them. We shall then move towards
the description of other dynamic and static instrumentation techniques and details of other

modern trace frameworks and related recent advancements.

2.1.1 CASE STUDY : DyTrace

The goal of this initial effort was to build a minimal tracing tool that allows insertion of static
tracing code in a binary dynamically. For this, we used a binary instrumentation framework

called Dyninst and a special POSIX syscall called ptrace().

ptrace()

Linux has a special system call called ptrace () which “provides a means by which one process
(the “tracer”) may observe and control the execution of another process (the “tracee”), and
examine and change the tracee’s memory and registers. It is primarily used to implement
breakpoint debugging and system call tracing” [9]. A target child process on which ptrace
has to be used goes through the following states :

—_

. Child process is stopped upon receiving a signal (like SIGSTOP)

2. Parent receives child status from wait () (it is safe to start ptrace)
3. Ptrace operations are performed on the child
4

. Parent signals child again to continue execution
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A typical ptrace() call may be written as,
long ret = ptrace(PTRACE_ATTACH, pid, NULL, NULL);

where the first argument is a special ptrace code, the second is the PID of the target child
process to control, and the third and fourth arguments are the memory addresses for modi-
fication and data structures to be written to the process respectively. As an example in the
above code line, the PTRACE_ATTACH code is used when a task (T) wishes to control the child
(C) with PID as pid. It makes C a child of the tracing task T. Similarly, in the following
listing,

long ret = ptrace(PTRACE_POKEDATA, pid, addr, new_val);

The call writes new_val to address addr in the address space of the child task. Such actions
are useful for debuggers where variables can be changed upon pausing the process to ob-
serve its behavior. There are other ptrace codes such as PTRACE _SETREGS, PTRACE _GETREGS,
PTRACE_PEEKTEXT etc. which perform similar related tasks. The modifications done by ptrace
itself are at the binary level and hence have a direct effect on the execution. Consider an

execl call,
execl("/bin/1s", "1ls", NULL);

According to the calling conventions for the calls on a x86 machine, first the syscall number
is loaded in %eax and then the subsequent arguments are loaded in %ebx, %ecx, %edx, %esi
and %edi. After setting these registers, the soft interrupt 0x80 is called as int $0x80 which
signals the kernel to go ahead with the system call [10]. However, before executing the syscall,
the kernel checks if the process is being traced or not. So, in the traditional fork-exec model,
if the child has a ptrace() call before an execve() call, the kernel will hand over the
control to the parent before execve(). At the syscall, the kernel saves the value of the
eax register which has the syscall number. The parent then continues to call ptrace with
actions such as modifying/reading the memory or registers. This is usually followed by a
PTRACE_CONT code which continues the child execution and the syscall but now with modified
register/memory values. Thus, it can be seen that ptrace can act as a building block for
any dynamic instrumentation technique and an instrumentation primitive. The subsequent

sections discuss some tools built using such primitives and their performance.
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Dyninst

Dyninst presents a very simple and powerful API for dynamic instrumentation [6]. There are
two main essential terminologies involved in performing instrumentation, snippets and points.
Points are simply the locations in a program where instrumentation can be inserted. They
can be function entry, function exit etc. Snippets are the abstraction for the code that can be
inserted at the points. Snippets are not directly written in assembly, but instead Dyninst uses
an intermediate representation via an abstract syntax tree. If the complexity of the snippet

increases, it can be built separately using a C-like syntax based scripting support in DynC.

Dyninst introduces the concept of mutator which is the program that is supposed to modify
the target (mutatee). This mutatee can either be a running application or a binary resi-
ding on disk. The process attaching or creating a new target process allows the mutator to
control the execution of the mutatee. This can be achieved by either processCreate() or
processAttach() which returns a BPatch object. This functionality is achieved internally
using the ptrace() call discussed before. The mutator then gets the program image using
the object, which is a static representation of the mutatee. Using the program image, the
mutator can identify all possible instrumentation points in the mutatee. The next step is
creating a snippet for insertion at the identified point. The mutator can then create a snip-
pet, to be inserted into the mutatee. Building small snippets can be trivial. For example,
small snippets can be defined using the BPatch_arithExpr and BPatch_varExp types. The

snippet is compiled into machine language and copied into the application’s address space.

Jump-Pad For executing the built snippets, the concept of jump-pad or trampolines is
used. The normal execution flow is modified by jumping to another memory location, execu-

ting the snippet code there and then returning, as illustrated in figure 2.1.

PROGRAM TRAMPOLINE #1 TRAMPOLINE #2 Dynamic

—/P Snippet
INSN 1 Pre Handler |- Save Regs
IMP X INSN 2 Setup Args tpint()
INSN 3 4—//’-— Post Handler Call Snippet

Restore Regs

Figure 2.1 Trampoline approach used by Dyninst

The instruction at the instrumentation point is replaced by a jump to a base trampoline.
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The base trampoline then jumps to a mini-trampoline that starts by saving any registers that
will be modified. Next, the instrumentation is executed. The mini-trampoline then restores
the necessary registers, and jumps back to the base trampoline. Finally, the base trampoline
executes the replaced instruction and jumps back to the instruction after the instrumentation

point.

Instruction Instrumentation While building the experimental DyTrace tool, particu-
larly at the instrumentation phase, the changes made at the assembly level to the executing
process’s executable memory were observed. Figure 2.2 shows how Dyninst uses the trampo-

line approach at instruction level to insert our own static tracing functions dynamically.

We see a test function where our tool intends to insert our static tracing function tpint ()
just before its exit. This tpint () function simply saves the integer value provided to it as
an argument to a trace file - thereby tracing the value dynamically as the program executes

and demonstrating a small trace tool.

#### Original ### #### Dyninst's Modification ###
4009e8 <+0>: push  %rbp 4009e8 <+0>: jmpq  0x10000

: 9 9 dooced rex.RB cld
4009e9 <+1>: mov %rsp,%rbp Whole Block Replaced | D 0
4009ec <+4>: movl  $0x2a,-0x4(%rbp) TovTeT ~TTo sub (%rax),%al
40093 <+11>: pop %rbp 4009f1 <+9>: add %al, (%rax)
4009F4 <+12>: retq 40093 <+11>: pop %rbp

40094 <+12>: retq

Figure 2.2 Original code and jumps inserted for trampolines

When instrumentation at function exit was done for Dyninst, it replaced the whole function
block and patched a jump on entry with address to its trampoline. Dyninst executes the
instructions out-of-line and then returns from the function. Figure 2.3 shows what goes
inside the trampoline. First, the remaining function is executed out-of-line. The basic idea
for instrumentation is to prepare the stack first, and save the current state by pushing all the
registers. Then, it continues to execute the snippet (containing the pre-built tracepoints from
the library), restores the stack state, pops all the registers and finally restores the original
stack pointer and returns. In our small experiment with DynTrace, as shown in the figure, a
variable with the value 43 (trace payload) was recorded dynamically, using a static tracing

function tpint () by instrumenting it at end of the target function.

Irrespective of whether the available tracing frameworks are in userspace or in the kernel, the
same basic static and dynamic tracing techniques are used. As an example, the jump-pad

technique is used by GDB in its fast userspace tracepoints as well as by Kprobes to provide
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ﬂt of line executtonl .-

E 0x10000: push  %rbp v 0x1003d: lea -0x18(%rsp),%rsp
| 0x10001: mov %rsp,%rbp ! 0x10042: movabs $0x601064,%rax
1 0x10004: movl  $0x2a,-0x4(%rbp) E 0x1004c: mov (%rax),%edi
i 0x1000b: pop %rbp I Aviaaan. movabs $0x0,%rax = A
Ml Rl il tpint() from |
Ntnnn - , lea -0xa8(%rsp),%rsp tracepoint lib movabs $0x7f448928fa06,%rbx
Trampoline start R
Grow Stack mov %rax,0x20(%rsp) 0x10062: callg *%rbx
0x10019: lea 0xa8(%rsp),%rax 0x10064: lea 0x18(%rsp),%rsp
bo some tricks | and SOXFEFfffffffffffed,%rsp '0x10069: ' pop %r15 Shrink stack |'
0x10025: mov %rax, (%rsp) Pop regs T pop %r14 '
0x10029: mov -0x88(%rax) ,%rax ,0x1006d: pop %ri3 :
CRARAATTT G ek Y loxtooef: pop 12 :
Push regs r - .
7 . push  %rbx i 10x10071: pop %rsp '
, 0x10032: push  %rcx T 10x10072: pop %rdx X
' Ox10033: push  %rdx ' '0x10073: pop %rcx :
. Vo Restore !
' 0x10034: push  %rsp 1 10x10074: pop %rbx original rsp '
. 0x10035: push  %ri12 1 10x10075: __pop  %rax -~ )
! 0x10037: push  %ri3 E 0x10076: mov (%rsp),%rsp
1 0x10039: push  %ri4 i 0x1007a: retq
v 0x1003b: push  %ri5 )

Figure 2.3 Inside a Dyninst trampoline

an efficient dynamic tracing framework in the kernel. Before moving further, we discuss some
common intermediate techniques used in kernels on which high level trace frameworks can

hook onto.

2.1.2 Kprobes

With the basic mechanism in place to modify instructions, developers have provided a sup-
port infrastructure in the Linux kernel in the form of Kprobes, to instrument almost any
kernel function on-the-fly and gather debugging and performance information without any
disruption [3]. Tracing tools can build upon the Kprobe interface by providing kernel modules.
The module’s init function registers one or more probes, and the exit function un-registers
them. A registration function such as register_kprobe () specifies where the probe is to be
inserted and what handler is to be called when the probe is hit. Upon a probe registration,
Kprobes makes a copy of the probed instruction and replaces the first byte(s) of the probed
instruction with a breakpoint instruction (e.g., int 3 on i386 and x86_64). When a CPU
hits the breakpoint instruction, a trap occurs, the CPU’s registers are saved, and control
passes to Kprobes. Kprobes executes the pre_handler associated with the Kprobe, passing

the addresses of the Kprobe struct and the saved registers to the handler . A newer fast



14

kprobes implementation which removed the slower TRAP based dependency on int 3 was
proposed and implemented recently, which aims to improve the performance further [2]. This
is based on the jump-pad instrumentation approach discussed before. Most tracers such as
LTTng, SystemTap or Perf, that wish to provide dynamic tracing capabilities in the Linux

kernel, use Kprobes and get the trace payload data through their own mechanisms.

2.1.3 TRACE_EVENT

The majority of static tracepoints in the Linux kernel are provided using the TRACE_EVENT ()
macro [11, 12]. It is one of the most common ways to connect a tracer to the tracepoints in
the kernel, mainly due to the fact that it allows the developers to just use the macro to add
tracepoints and acts as an abstraction for the trace or profile tools. The same tracepoint can
then be used by all the popular Linux tracers - Perf, LT Tng, SystemTap or Ftrace. This macro
allows the kernel developers to basically define a callback function hook that would be called
upon a tracepoint hit. It also allows arguments that should match the function prototype
and a structure that can contain the tracepoint data. Tools such as LTTng or SystemTap
can then define their own tracepoint wrappers as part of statically or dynamically generated
kernel modules that match those defined in the TRACE_EVENT macro statically in the kernel
code. This allows a standard location of tracepoints strategically placed in the Linux kernel
source code but a facility for other tracers to hook onto them and use their own mechanisms

of data transfer or computation.

2.1.4 Tracing Infrastructure Hierarchy

Static and dynamic tracing functionality in the userspace and Linux Kernel is provided by
standard static and dynamic instrumentation techniques discussed earlier. There are a huge
number of tracers that have been developed over the years, with varying capabilities and
support. They can either support the kernel domain or userspace domain, or both. Tracers
can sometimes hook to the standard interfaces described above or use their own low level
static and dynamic tracing mechanisms. While tracers have been described elsewhere in
detail, there has been no attempt to classify them based on the underlying infrastructure.
Therefore, before going further to describe some state-of-the-art tracing tools, we classify
them. This should help the reader to better understand as we describe some common trace
frameworks. Figure 2.4 shows some common trace frameworks and the underlying mechanisms
they use. The red color signifies kernel support and the black color signifies userspace support.
The same figure also indicates the dynamic or static capabilities by direction of the arrows

- either towards static instrumentation or dynamic instrumentation. As an example, we can
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Kprobes

P
<=

Jump-Pad

Compile Time @ JIT Translation

Static Instrumentation Dynamic Instrumentation

Figure 2.4 Dependency graph of tracing tools and frameworks showing kernel (m) & users-
pace (m) tracers

see that Ftrace, the kernel tracer allows tracing with the help of kprobes based events that in
turn use either an optimized jump-pad based approach or a trap based technique. The same
tracer also allows dynamically activated static tracepoints, which use compile-time static

instrumentation approach. We now discuss some of these tools in detail.

Ftrace

The Linux kernel’s native trace support is provided by its function tracer called ftrace [13].
It is a kernel-exclusive tracer which allows recording a trace of all eligible kernel functions
along with accurate timestamps. It can then provide a function call graph representation or
other analysis outputs such as interrupt-off or scheduling latency [14]. Ftrace simultaneously
allows two mechanisms for tracing with trace control and data recording provided using the
kernel’s Debugfs pseudo-filesystem [15]. There are multiple trace targets available that can

be used, but most of them either use the event tracer or a custom hooking mechanism.

Event Tracing Event tracing in ftrace is provided using the kernel’s static tracing hooks
exposed as TRACE_EVENT() macro. This is similar to how Perf or LTTng use them. The
tracepoint handler function of Ftrace allows the data to be collected in its own buffer, thus
providing uniform information, as obtained from other tracers. An important feature of the
event tracing mechanism of Ftrace is the ability to use filters. These filters allow a basic
degree of limited conditional tracing. However, the filtering is done after the trace data has

been recorded in the buffer. Another important limitation of filters in Ftrace is the inability of



16

Ftrace to access register values and variables at tracepoint locations. However, each tracepoint

contains high resolution timing information which is valuable in diagnosing latency issues.

Dynamic Tracing Even though the name suggests the dynamic nature of tracing, this
mechanism is essentially a dynamically activated static instrumentation technique. At kernel
compile time, when the CONFIG_DYNAMIC_ FTRACE option is used, the buildsystem uses GCC’s
compile time instrumentation option which inserts the mcount symbol at function entry. This
allows Ftrace to directly hook onto most of the functions in the kernel directly and execute
tracing or filtering code. Tim Bird has discussed this earlier in relation to function latency
calculation in the Linux kernel [16] where these capabilities of Ftrace have been utilized. Apart
from that, Ftrace also allows true Kprobe based dynamic tracing, which is itself based on
jump-pad or trap based dynamic instrumentation. This allows Ftrace to dynamically probe
not just entries of functions but also offsets within the function and functions-exits using
the Kretprobes. This, however, carries all the limitations of Kprobes, such as restrictions on
certain kernel functions. Overall, Ftrace is one of the most stable kernel tracing tools in use

and is actively maintained by the kernel community.

2.1.5 SystemTap

SystemTap [17] allows the dynamic insertion of tracepoints as well as collecting traces for
tracepoints defined using TRACE_EVENT. The trace collected can be displayed on the console
while it is generated, or can be saved to a file. The flight recorder mode can dump the
trace in memory to a file for it to be analyzed later. Instrumentation and trace code for
SystemTap is written as scripts. The language is similar to C in terms of syntax and supports
all ANSI C operations. The supported data types are only integers and strings but the same
SystemTap script can be used to declare multiple instrumentation points. The declaration
of an instrumentation point is composed of two parts. The first part is used to identify the
event that you want to associate with the instrumentation point. The second part is the code
to execute when the tracepoint is encountered. SystemTap also supports conditional tracing.

To set a condition, the if style syntax is used :

probe kernel.function("vfs_read")

{
dev_nr = $file->f path->dentry->d_inode->i_sb->s_dev
if (dev_nr >= 3)

printf ("%x\n", dev_nr)
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In the above script, the instrumentation point is inserted at the entry of the function
vfs_read. The information is extracted from the parameter file and is copied into a tem-

porary variable. This condition is then evaluated and the script outputs the value if true.

SystemTap scripts are converted into C code, which is then compiled as a module. This mo-
dule is then inserted in the kernel and communicates with SystemTap for tracing. There is also
a special mode where it is possible to insert C code in scripts mainly to overcome some limi-
tations of the scripting language. Dynamic kernel tracepoints in SystemTap are implemented
using Kprobes. SystemTap also takes input from the DWARF debugging information gene-
rated during the kernel compilation to determine the addresses of instrumentation points, as
well as to resolve references to kernel variables used in scripts. SystemTap then registers the
handler passed to Kprobe to retrieve the values of these variables. The dynamic tracepoints

can use all the available variables from the instrumentation point addresses.

SystemTap provides a multitude of events that can be associated with instrumentation points.

A few examples are listed below :

/* Function entry */

probe kernel.function("vfs_read").call

/* Function exit */

probe kernel.function("vfs_write").return

/* specific location in kernel code */

probe kernel.statement("*@fs/read write.c:42")

/* Specific address in binary */
probe kernel.statement (0xc00424242)

SystemTap also allows static tracepoint connections using the TRACE_EVENT macro. A static

tracepoint can be activated by a script as follows :

probe kernel.trace("event_name")

The event name is the name given to the static tracepoint during the call to the TRACE_EVENT
macro. Just as other trace probe types, static tracepoints defined in this way can be condi-
tional too. However, they can only use the variables passed as parameters at the point of

instrumentation. This is because the static tracepoint handlers do not receive copies of the
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calling stack frame when the event is launched. In addition, SystemTap cannot use the dis-
play format specified in the TRACE_EVENT using the macro TP_printk. To represent the data
as defined in the TRACE_EVENT macro, the user must redefine how to do it in the script.

Though a very elaborate, feature-rich, and easy to use tool, SystemTap suffers from serious
performance issues in terms of data gathering speed and scalability. Some benchmarks which
compared SystemTap and LTTng-UST were performed by Julien Desfossez and showed re-
sults where in some instances UST was 289 times faster than SystemTap (in flight recorder
mode) with the LTTng kernel [18]. This huge difference in performance is due to the use of
buffering while collecting trace data for UST, instead of the SystemTap approach to have a
system-call transition for each event. Also, a major chunk of work is handled in kernel rather
than in user-space by SystemTap [19]. This is an architectural difference which leads to a
deteriorated performance. The idea of dynamic compilation, also comes with an interrupt-
driven approach and frequent context switches. Apart from that, mechanisms like preparing
the code for compilation, the actual compilation to a module and the insertion process into
the kernel as a module carries extra overhead, which overshadows the efforts of having an

overall better tracing system.

2.1.6 LTTng

The Linux Trace Toolkit next generation is a very fast and extremely low-overhead kernel
and userspace tracer. Low overhead, in simple terms, means that even with a non-activated
tracepoint inserted in the code, it gives near-zero impact on the overall execution of the target
application. This makes LTTng a bit different from the other tools and a default choice for
real time applications. Its tracing technique implements a fast wait-free read-copy-update

(RCU) buffer for storing data from tracepoint execution.

In figure 2.5, it can be seen that the LTTng session daemon acts as a focal point for trace
control. Static instrumentation can be defined as tracepoints in the source code of the kernel,
as well as in user-space applications with UST. The TRACE_EVENT macro can also be used for
kernel events. Dynamic instrumentation in kernel is provided by Kprobe, in the same way as
for other tools. An instrumented application, which contains the user’s desired tracepoints,
automatically registers itself to the session daemon, just as its execution starts. This is also
the case with the kernel. This is useful for handling simultaneous trace control for multiple
trace sessions. Thereafter, the session daemon manages all the tracing activity. The LTTng
consumer daemon is responsible for handling the trace data coming from the applications.
It exports raw trace data and builds a CTF stream to be written on the disk. The Common

Trace Format (CTF) is a compact binary format, which stores all the trace data in a very well
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structured manner for further analysis by trace viewers and converters, such as Babeltrace
(command line), or Trace Compass (graphical). For example, one can view the exact time
of each event and the control flow through the various calls in the kernel, graphically in a

time-line using Trace Compass.

Performance LTTng is currently the fastest tracer available for userspace tracing. Various
performance comparisons with other tracers have revealed this before as well [18] [21]. The
major factor for such improvements in performance is mainly due to the use of userspace RCU
techniques for having a lock-less ring buffer in LTTng-UST. In figure 2.6, it can be seen how
multiple readers trying to access a resource are managed by the RCU technique. The major
reasons for such performance benefits are that rcu_read_lock() and rcu_read_unlock()
are very fast [20]. However, LTTng still lacks some good features which some other tools

already have such as trace support through scripting, dynamic tracepoint generation and

1. http://1ttng.org/docs/v2.8/
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insertion in userspace, and a more elaborate trace filtering framework which supports both
userspace and kernel trace filtering. Its current filtering approach is slow and restricts is
support for conditional filtering with a kernel-userspace support scheme. We discuss these

later in Chapter 4, where we improve upon this and propose a novel scheme.

2.2 Process Virtual Machines

Process Virtual Machines (VMs) are created within a process context and are frequently used
in scenarios where code may be dynamically injected in applications such as an OS kernel.
Linux as well as Solaris have supported Process VMs such as DTrace and Berkeley Packer
Filter (BPF) for tracing and network filtering usecases. This section explores process VMs in
depth - focusing on precursors to full fledged process virtual machines, such as the techniques
used in their design and bytecode interpreters. Keeping in mind the lightweight implementa-
tions required in the context of this research, lightweight and minimal VM implementations

are discussed.

2.2.1 Design Strategies

From a low-level design perspective, a virtual machine can be either stack based or register

based. After all, a virtual machine is actually just like a real hardware machine implemented
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in software, which allows it to execute code for an architecture, other than or the same as
the one on which it is being run. To execute some code for that software defined machine, it

has to follow the standard procedure to emulate an actual hardware machine :

— Conversion of high level language program to the virtual machine’s bytecode (akin to
C — machine language conversion)

— Setup a Program Counter to keep track of each instruction in the stream

— Fetch the next instruction

— Decode operands based on the ISA

— Execute the instruction and write back data

To execute the instructions, the operands can either be stored on a stack or be considered
to be registers for operations to be performed. Therefore, from this perspective, the machine

can either be a stack-based or a register-based virtual machine.

Stack based VM Traditionally, a virtual stack has been used for evaluating expressions
in VMs. For stack-based architectures locations of operands are implicit, following the stack
pointer. In register-based machines, they would have to be specified explicitly in registers and
then the operations would have to be performed on them. As an example, in an imaginary
language, a code to add two numbers at the top of stack and store the result back on the

stack may look something like this :

add ; A+B in accumulator (ACC) now
push ACC ; ACC pushed back to stack

This is of course assuming that the stack pointer is pointing to A and B which are the first
two values at the top of stack. Owing to the fact that operands are implicitly defined, it
would thus seem that stack-based machined would produce more compact machine code and
would be more efficient than its counterpart. Most of the current VMs such as Java VM and
NET CLR are stack-based.

Register based VM Another approach is to store the operands and provide direct ad-
dresses from which to get data. These “addresses” are simply the virtual registers. A similar

addition operation in a register based VM may look like :
add R1, R2, R3 ; A+B stored in R3

This assumes that values A and B are stored in registers R1 and R2 already. However, it

means that these registers are not implicitly defined and they have to be specified for each
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operation. This drastically reduces the number of instructions to be executed but the code
size increases somewhat because of the register arguments. This means a trade-off between
instruction length and instruction count. Apart from that, register based VMs have been
found to be more efficient and quicker than their counterparts. For example, there may be
expressions which need to be recalculated each time they appear in the code. This means
that a register based VM can optimize this by storing the value in a register for repeated use.
Fewer instructions also mean that the number of instruction dispatch needed will be smaller.
Usually the instruction dispatch (fetching the instruction from memory) is implemented using
a “switch case” and is a hard to predict indirect branch - thus it is expensive [22]. For such

reasons, some newer VMs such as Dalvik and Lua VMs are register-based.

A formal study of the performance of stack and register-based VMs was done by Davis,
Yunhe et al. [23]. They translated stack-based Java VM code to register-based code and
independently studied how it performed. It has been observed that doing so eliminated around
47% of executed VM instructions and the corresponding machine code size gets increased
by only 25%. They also observed smaller execution times (32.3% less) for the register-based
machines using standard benchmarks. This points to an inclination towards usage of register-
based VMs on modern processors. However, real life use cases vary a lot and it is not easy

to draw any a priori conclusion favoring any specific approach.

2.2.2 Interpreter Dispatch Mechanisms

The maximum time consumed in VM execution is actually the cost of instruction dispatch
[23, 22]. The actual computation can be equivalent to a few machine instructions but the
dispatch mechanism usually takes a maximum of 10 to 12 machine instructions and involves
a time consuming indirect branch. The dispatch mechanisms are typically either of switch or

threaded type :

Switch Dispatch - The main loop of the interpreter contains a large switch-case sta-
tement. For each opcode in the virtual machine, there is one case statement. An example
in listing 2.1 shows a typical function which evaluates the bytecode instruction (instr) and
then fetches the next instruction from the instruction buffer, after incrementing the virtual

program counter (pc).
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Listing 2.1 Example of a switch dispatch

void evaluate () {
while (1) {
switch (instr) {
case add:
/* add */
regs[r1] = regs[r2] + regs[r3];
break;
case sub:
/* subtract */
regs[r1l] = regs[r2] - regs[r3];

break;

}

instr = instr_buff [pc++];

This type of dispatch is simple but is somewhat inefficient in some instances. The break in the
end translates to an unconditional jump to the start of the loop, there is only a single indirect
branch for dispatching instructions, and the branch is very unpredictable on branch predictor
enabled machines. There is also a range check on opcode to be performed. However, for the
JVM, there is already a separate bytecode verifier. Overall, this is an acceptable method for

the generic use-cases.

Threaded Dispatch - Another method is to use threaded code. This is a technique where
the generated code consists only of calls to subroutines. In this dispatching technique, instruc-
tions are represented by the address of the routine that implements them and the dispatch
consists in fetching that address and branching to the subroutine. A threaded dispatch can

be of multiple types - direct, indirect, token dispatch etc. Refer to listing 2.2.

Such an implementation is possible in non ANSI C compilers only. For instance, GNU C
provides a facility for goto statements to jump to multiple different locations by usage of

labels as first-class values.
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Listing 2.2 Example of a switch dispatch

void evaluate () {
Inst dispatch_table = { &&nop, &&add, ... }
goto dispatch_table [*pc];

add:
regs[r1] = regs[r2] + regs[r3];
pc++t;

goto dispatch_table [*pc];

sub:
regs[r1] = regs[r2] - regs[r3];
pc++t;

goto dispatch_table [*pc];

Translation to machine code generally involves 3-4 machine code instructions for each VM
instruction in a direct dispatch, while it takes 9-10 machine code instructions for each VM ins-
truction [24]. Davis et al. have discussed the implementation and efficiency of token threaded
dispatch in [22]. The dispatch code is appended to the end of the code for each VM instruc-
tion. This allows the dispatch to be scheduled more efficiently and increases the prediction

accuracy of indirect branches (45% versus 2%, 20%).

2.2.3 DTrace

Even though a versatile and complete trace aggregation mechanism, we discuss DTrace in
this section due to its powerful in-kernel VM approach [25]. This tool was initially developed
by Sun Microsystems for its Solaris platform to perform kernel tracing, but was soon ported
to MacOS, QNX etc. The concept behind DTrace is similar to other tracing techniques.
The user writes instrumentation demands as a C-like D language script. The architecture
consists of certain providers which are basically kernel modules. These modules perform
a particular kind of instrumentation to create probes which are then used to gather data.
Each provider can publish probes. The DTrace framework can connect to these probes and
gather data. A library called 1ibdtrace can interface the user level trace consumers to
the dtrace(7d) kernel driver. It contains within itself the D compiler - this converts the

D source to a machine independent form, DIF (D Intermediate Format), for DTrace’s own
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virtual machine. This is a register based RISC like machine with a small instruction set.
Multiple DIF objects constitute a complete program known as a DTrace Object Format
(DOF) which contains complete details about the probe, string and variable tables. This
DOF is injected into the kernel at instrumentation time [26]. Whenever this probe fires as
the system executes, the providers give control to the DTrace framework, which can then carry
out tracing directives using the dtrace_probe() function. The DTrace approach to tracing,
although very comprehensive, is essentially interrupt-driven and adds delays to the overall
process. It is possible to insert probes in userspace applications, but this simply generates
an interrupt, and the probe handler and the scripts still execute in kernel space. However,
Dtrace is still one of the earliest trace techniques that employ in-kernel VMs and formed
inspiration for newer techniques such as eBPF based trace aggregation, discussed later in
Chapter 4.

2.2.4 Runtime Code Compilation

The previous sections dealt with process VMs and their building blocks, especially, bytecode
interpreters. The VMs, for a given scenario, are able to translate the high-level expressions to
bytecodes which are then sent to an interpreter and executed. This means, for each expression,
that an expression tree is built and translated to bytecode at runtime and then eventually
executed. Though a very flexible approach as compared to static program compilation, it is
expected to have some startup overhead. In many scenarios like implementing filtering in a
web-server using traditional bytecode, this implementation technique will lead to undesired
overhead. This, coupled with the time to interpret and execute, has an adverse impact on
performance. A way to optimize this model of execution, and reduce the overhead, is to use
dynamic compilation techniques such as Just-in-time (JIT) compilation, where instead of
directly executing the bytecode in the interpreter, it is first converted to native code for the
given architecture and then executed. Though some startup time is still present while using
JIT compilation, the speedup obtained in most cases by the use of native code overshadows

the other drawbacks by a large factor.

JIT Compilation Overview

JIT compilation has been used in various scenarios and can take up multiple forms - from
dynamic translation (architecture to architecture in ISA simulators) to an intermediate in-
terpreter /runtime compiler implementation. In this section, JIT is discussed in the context
of its use as an intermediate compiler invoked at runtime and running in parallel to, or re-

placing the interpretation phase - just as in the case of BPF. In [27], an early implementation
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of JIT in JDK 1.1 has been discussed in detail. There are two possible execution methods
after generating bytecode using javac - convert it to native code using JIT and then exe-
cute it on the hardware, or use the java interpreter and execute it on the JVM directly.
In a traditional non-JIT scenario, at runtime, the JVM loads the class files, determines the
semantics of each individual bytecode, and performs the appropriate computation. However,
the addition of the translation to native code improves the speed to a great extent. Newer
Java implementations use HotSpot technology where the code starts getting interpreted at
the beginning but, as it detects that certain routines/components are being heavily used,
they are dynamically compiled and executed. There are a few major drawbacks and benefits
for this dynamic compilation approach, as compared to plain static compilation, which are

still relevant in current JI'T implementations.
Advantages :

1. One of the major advantages of dynamic compilation is that the generated code is
better optimized than statically compiled code [28]. Modern JIT compilers make use
of performance counters to collect information about how the program is behaving

during runtime, so that dynamic compilation can be better optimized.

2. Better optimized code can be achieved by inlining certain methods, program control
flow optimization, dead-code removal, loop combining, loop unrolling or architectural
optimization during native code generation by chosing optimization strategy suited

for the code profile.
Drawbacks :

1. In dynamic compilation, there is always an initial warmup time which induces a certain
overhead. This may be small or big depending upon optimizations and the implemen-

tation of dynamic compilation.

2. Some optimizations can be non-deterministic in nature and are not suitable for all
applications. For example, in real-time and interactive (GUI) applications, it may

cause unpredictable behavior [28] if not implemented properly.

To summarize, in the case of plain interpretation of bytecode, execution is slower as compa-
red to bytecode compiled to native code. In the case of static compilation, there will be less
opportunities for optimization as compared to JIT compilation. For the limited JIT require-
ments in our research scenario, a significant speed improvement at a possibly very low initial
startup cost can be expected. The subsections below discuss typical JI'T compiler elements

and subsequently some simple and moderately complex implementations of JIT for our needs.
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JIT Compiler Design

A JIT compiler has to be closely coupled to the process VM or the simple bytecode gene-
rator in the machine. The modern JIT compiler design may be segregated into four major

constituent elements :

VM-JIT Compiler Interface : Assuming that the decision to choose the target section of
code for compilation has been reached (based on certain statistics for function use), there has
to be an interface from the interpreter which will inform the compiler to begin compilation,
specifying certain arguments such as the function name, bytecode etc. Such an interface
has the responsibility to bootstrap and invoke the JIT compiler. This interface, along with
the actual compiler code, can be considered as the compiler frontend. The compiler library
can be dynamically loaded, or be made part of the VM itself, and provide methods like
jitCompileInit () etc. There has to be a provision so that the compiler has access to the

required data structures and code in the VM.

Compilation Logic : This can be considered as the actual code of the compiler which
will begin compilation. Usually, the main argument it needs is the bytecode data structure
required to be translated and it returns the executable native code. For example, GNU LibJIT
has a function called jit_function_compile which takes as argument, the jit_function_t
structure [29]. This structure actually contains the IR (Intermediate Representation) of the
function, before it is actually compiled. Upon compilation, the actual machine code (for
a specific architecture) is generated and stored in the same structure. The generation of
code for most simple JIT compilers is a direct switch statement to convert individual IR
statements to native code. The compiler can be more sophisticated and attempt to optimize
the generated code (optimizing compiler or non-optimizing compiler). The optimizing type
has the ability to selectively compile only commonly used methods, dead-code detection etc.
The non-optimizing type usually compiles all the methods, which may be expensive as they
consume memory as well as use up valuable time. However, it is simple to implement, and

useful for small VM designs (such as filtering machines)

Code & Execution Management : Upon generation of the code, the compiler provides
certain functions so that the compiled code can be invoked and executed in the VM’s context
seamlessly, just as it would have been interpreted. The invocation is pretty straightforward :
we can pause the interpretation phase, upon reaching the desired target function, compile

the function and then execute it in the same context, for example with some methods like
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jit_function_apply() in LibJIT [29]. Upon return, we restart from where the pause happe-
ned. Before execution, the VM has to figure out how the execution control has to be switched.
This can vary for different approaches. For example, in simple compilers, sometimes all the

bytecode is pre-compiled in one go, at the start, and then just executed directly by the VM.

Memory Management : This is another major aspect of a JIT compiler. During the
compilation and execution phase, there is a need for memory. For example, the compiled code
has to be allocated to a specific memory location and has to be freed once used. Managing the
stack offsets is yet another task during execution. Apart from that, if it is an implementation
where a switch from the VM’s interpreter to the compiled code is required repeatedly, the
interpreter’s PC has to be saved and the native code’s jump tables have to be laid out. Also,
there is global data, such as dynamically allocated data during code execution, which is
supposed to go possibly in the VM memory. Most JIT compilers need to have a well defined

strategy for managing memory.

2.2.5 Optimizing Filters

Similar to the filtering approach used by Ftrace [13] in the Linux kernel, DTrace [25] provides
a limited filtered tracing mechanism called speculative tracing. It allows the data to be re-
corded tentatively in a separate speculation buffer, and later decide whether to commit data
to the main tracing buffers or discard it based on the evaluation of a speculate() function.
As an example in [25] and [26] a filtered trace of all function entries is only committed if
a particular syscall such as ioctl() returns a failure. The speculation involves writing the
data to the buffer, and possibly copying it to the principal buffer only post trace record. This
filter predicate condition interpretation, coupled with the data copies, makes the overhead
of this approach comparable to that of tools using bytecode interpretation, such as LT Tng.
Even though it seems to be a runtime filtering approach, the speculation mechanism inhe-
rently uses an Ftrace like approach of filtering post-record which provides an opportunity for

optimization.

To speed up filtering of network packets being captured at user-level, a preliminary packet
filtering mechanism has been introduced to UNIX for quite some time now. The goal was to
have some mechanism in the kernel which gives user-level programs access to raw, unprocessed
network traffic. The pioneering work done in this area (around 1980) was the CMU /Stanford
Packet Filter and its inspired work - the NIT for SunOS, and Snoop in SGI IRIX. However, a
major improvement was made when the BSD Berkeley Packet Filter (BPF) was introduced.

It claimed performance improvements of around 10 to 150 times faster than Sun’s NIT and
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1.5 to 20 times faster than CSPF. [30].

BPF was designed as a register based VM and has 2 major components - the network tap
subsystem and the packet filtering subsystem. The packet filter is of more interest here as it
decides, based on some mechanism, whether the incoming packet is of interest to the listening
application and, if yes, how much of the packet it requires. Each of the interested processes
has its own user-defined filter implementation. The filters are implemented as a boolean
function true and false for allowing or disallowing the packet to pass. The model for filters
is control flow graph based, as it offers a significant performance advantage as compared to

the traditional filter models, such as the tree based models.

Bailey et al. [31] proposed a new way of specifying filters declaratively in their Pathfinder tool.
The filters could be represented as statements and translated to DAG representation. This
mechanism reduces the number of times a pattern has to be evaluated for filtering. Similar
to this approach, Engler et al. presented Dynamic Packet Filter (DPF) [32] where they
improved upon Pathfinder’s approach use of native compilation techniques, while keeping
the same declarative language format of filter description. This showed an improvement of

about 13x to 26x as compared to Pathfinder’s implementation.

A newer approach to improve BPF’s performance in the kernel was proposed by Begel et
al. in BPF+ [33], where they performed compiler optimizations to eliminate redundant pre-
dicates during filter generation. One of their major contributions was to perform bytecode
optimizations and propose an elementary JIT compiler for BPF to improve its performance
further. They also proposed a bytecode verifying mechanism to ensure safety of executing
bytecode in the BPF VM.

Swift is a new packet filtering mechanism proposed by Wu et al. recently [34]. They showed
a 3x improvement over in-kernel BPF implementations of that time, mainly due to the
aggressive use of SIMD instructions provided by i386 and x86_ 64. They propose a new VM
mechanism based on a CISC like ISA and is compatible with BPF’s API to simplify the code

specification and generation.

BPF has been further improved recently as an extended BPF (eBPF) implementation in
the Linux kernel [35] with enhancements to register management, bytecode generation and
optimizations using a modern compiler infrastructure. Its architecture has been modified to
provide a more versatile in-kernel tiny virtual machine that allows networking, tracing as
well as security features to be developed over it. Apart from filtering just network packets,
it can now assist in trace filtering or syscall filtering. This provided some of the foundation
work for the userspace trace filtering and kernel-userspace tracing improvements we propose

in our research.
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2.3 Program Flow Tracing

Static analysis of binaries, to understand how the program runs, allows the developers to
visually analyze how the compiler generates instructions, estimate how the instructions may
execute, and can be used further for code coverage [36, 37]. Such information is also vital for
debuggers to generate and aid in the breakpoint debugging approach. Recently, the focus on
pure static code analysis tools has been mostly in the security domain, for analysing malicious
or injected code in binaries [38, 39] or optimizing compilers based on the analysis of gene-
rated code [40]. However, the actual execution profiles can differ from what static tools can
anticipate, due to the complexities of newer computer architectures in terms of pipelines, ins-
truction prefetching, branch prediction and unforeseen runtime behaviour such as hardware
interrupts. Therefore, to understand the effect of individual instructions or function blocks,
the instructions executed can be profiled at runtime. These techniques constitute what we

can call as Program Flow Tracing (PFT).

Ball et al. have proposed and explored in-depth, the use of counting instructions for code
blocks [41]. The basic idea is to have the ability to record the instruction profile and replay
it later on. Some of these earlier approaches, however, dealt with inserting instrumentation
code, to profile instructions and other interesting events. As processors advanced, additional
hardware counters were added to them which allows recording important events such as cache
misses or instructions executed. Access to such hardware is usually provided by querying
Model Specific Registers (MSR) of a processor. Hardware counter sampling based techniques
have been developed and discussed earlier such as DCPI [42, 43|, where authors demonstrated
the use of hardware counters provided by the processor for profiling instructions. As a next
step for hardware assistance in PFT generation, much more specialized hardware began to be
used. Merten et al. [44] have earlier proposed the use of a Branch Trace Buffer (BTB) and their
hardware table extension for profiling branches. Vaswani et al. proposed hardware profiling
based on their custom-hardware solution [45], where they observed that low overhead with
hardware-assisted path profiling can be achieved. Recent advances, especially in the Linux
kernel, discuss how profiling tools like Perf can be used to generate execution profiles, based on
data collected from special hardware counters, hardware blocks that record branches or pure
software controlled sampling [46, 47]. We shall discuss more about hardware PFT techniques

in subsequent subsections.
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2.3.1 Software PFT Techniques

Larus et al. have discussed techniques to profile functions by observing their runtime fre-
quency of execution using instrumentation to inject tracing code in function blocks, or control-
flow edges [48]. They observed overhead of 0.2% to 5%, without taking into consideration the
effect of the extra overhead of disk writes (which they observed as 24-57% in those days). This
technique of function instrumentation can be eventually used to generate program flow. An
eventual addition to static instrumentation technique is dynamic binary translation which
allows for finer control of execution through symbolic execution. Nethercode has proposed
Valgrind [49] as a JIT translation based scheme for similar software PFT. Even though this
framework is more data-flow tracing oriented [50], some very insightful control-flow tools have

been developed, such as Callgrind and Kcachegrind [51].

As already discussed earlier, Ftrace [13, 14], also allows a detailed kernel execution genera-
tion using its function_graph trace target. This allows ftrace to generate a kernel function
call-stack for a given duration along with accurate timing details. Froyd et al. [52] have dis-
cussed function profiling of applications when the binaries have been optimized at compile
time. They propose csprof, a tool to unwind a fully optimized binary at arbitary points
and suggest necessary modifications to GCC for providing required DWARF2 bytecodes for
efficient profiling. We now discuss more advanced techniques that allow much more accurate

and high resolution traces with hardware assistance.

2.3.2 Hardware PFT Techniques

For better trace resolution and higher accuracy, recording each and every instruction executed
is the key. While this may be a possibility with a software-only approach, with schemes such
as those used in Valgrind, the huge overhead renders such analysis useless in real-life scenarios
in production systems, and tracing each and every instruction to deduce the program flow

can be quite expensive if any kind of software instrumentation is required.

Some hardware tracing modules for recent microprocessors allow the used of on-chip buffers
for tracing, recording trace data from individual CPUs on the SoC, and send it for internal
processing or storage. In some processors, off-chip trace buffers can also be used that allow
trace data to flow from on-chip internal buffers to external devices, with industry standard
JTAG ports, and to development host machines, through high performance hardware trace
probes [53, 54]. The tools used around such specialized hardware are undocumented and

vendor-specific and hence have not been studied further by us.

Recent research deals with compressing the trace output during the decoding phase to save
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transfer bandwidth [55], while part of the focus in earlier research was on the unification of
such traces as well [56]. This provides a very detailed picture of the execution at almost no
overhead on the target system. The ability of hardware to record operations directly from the
processor can be either a fine grained all-instruction record scheme or a lightweight branch
tracing scheme. Architectures such as ARM and PowerPC provide hardware support for
such mechanisms in the form of NSTrace (PowerPC), EmbeddedICE, ARM Coresight and
MIPS PDTrace [57, 58]. These hardware blocks allow recording bus activity directly and then
reconstruct the flow offline from the recovered data. However, the amount of data generated
is too high if external devices are not used to sink the data. In such scenarios, memory buses
reach saturation levels as they now try to store data locally in main memory. Such issues of
memory related overhead for hardware program/data flow traces have been observed earlier as
well [48, 41]. Even though hardware can generate per-instruction trace data at zero execution

overhead, such an additional data flow may impact the memory subsystem.

An approach for reducing the impact of hardware tracing is choosing only those instructions
that cause a program to change its flow. Instructions like direct/indirect jumps, calls, excep-
tions etc. are usually enough to reconstruct the program flow with the help of static binaries.
The instructions between consecutive branches remain constant and hence can be obtained
from the static analysis of binaries. Dedicated hardware blocks in the Intel architecture, such
as Last Branch Record (LBR), Branch Trace Store (BTS) [59], and more recently Intel Pro-
cessor Trace (PT) [60, 61] choose to only record branches in the currently executing code
on the CPU cores. Their performance however varies a lot depending upon the technique
they use. For example, LBR is an MSR based mechanism and hence can save only the last
few branches. BTS allows a larger branch depth. However, it uses 24 bits per branch, which
has been observed to cause an overhead between 20% to 100% for varying execution profiles
(62, 63]. Intel PT is the latest and the most efficient as it uses 1 bit per branch for direct
conditional branches. We elaborate more on an efficient hardware based PFT technique in
Chapter 6 and Chapter 7.

2.4 Hardware Trace Reconstruction

Improvements to the generation of dynamic code and Dynamic Binary Translation (DBT)
at runtime has been recently discussed by Hawkins et al. [64]. They have proposed a Dy-
namoRIO based approach, with a 7.3 times improvement over its predecessors. Their DBT
technique keeps track of JIT compilation happening at runtime by dynamically instrumen-
ting its translation. In addition they follow a static annotation scheme to tag the dynamically

generated code for analysis.
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A similar technique for code reconstruction has also been proposed by Tikir et al. where they
use dynamic recompilation of Java code to lazily insert instrumentation code at runtime [65].
This allows them to gather debugging information from JIT engine when required as the
application executes. One of the major drawbacks is that their approach is language specific
and deals with additions done to the Java Virtual Machine Debugger Interface (JVMDI)
which makes it platform specific as well. Runtime compiled non-JVM code support is not

possible in such cases and has not been discussed as well.

A recent patent by Koltachev et al. [66] takes a unique approach to debug JIT applications.
They execute the test applications generating native code to be executed under a debug
session. The dual-debug session allows control over native as well as interpreted code analysis.
Lee et al. [40] have taken a similar approach where they implement runtime interposition with
the help of an agent that handles all language transitions and allows mixed-mode debugging
of code between multiple languages. This also gives them control over generated code but

with the trade-off of speed and robustness.

In their research on post-mortem control-flow generation, Ayers et al. [67] point out the
difficulty in keeping track of native code generated from Java or other such languages, as there
is no standard way to instrument such code. Thus, they provide a customized solution, which
uses runtime code instrumentation, at control-flow block granularity, for binary program
analysis that records traces for post-analysis. For language agnostic approaches, Intel provides
a comprehensive JIT Profiling API to report information about just-in-time generated code
that can be used by performance tools. The intended use is by JIT compilers themselves,
where they can use the API calls to report execution profiles by sending execution traces to
the Intel VTune profiler [68]. The major drawback of this approach is that it requires a very

invasive JIT engine re-compilation and a dependency on Intel’s API compatibility.

2.5 Summary of Literature Review

We explained the state-of-the-art techniques being used in software-tracing, trace filtering
and hardware tracing domain. We realized that the field of software-hardware interaction
in tracing is a relatively new highly relevant area, and can provide ample opportunity of

research in enhancing trace resolution and overhead.

Our analysis of tracing tools and our experience in building a minimal tracing system, Dy-
Trace exposed us to the latest tools and techniques being used in this domain. We performed
a detailed analysis of static and dynamic instrumentation mechanisms and their relevance

in modern tracing tools eventually classifying tracing tools by domain and the underlying
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techniques they use. We observe that, while tools such as LTTng provide low overhead in
tracing with their efficient trace buffering and trace control techniques, other tools such as
DTrace allow much better control in trace data being generated. The focus in the tracing
domain has also shifted towards lowering the trace overhead, and trace filtering has been
an important focus in this regard. Recent work in the Linux kernel with BPF, for network
packet and trace filtering has indeed shown this. However, there has been no work done to
effectively control the trace data co-operatively, from userspace and kernel as well. This en-
couraged us to analyze available process VMs and various ways to optimize and utilize them

in our approach.

We also realized that there is an obvious lack of detailed analysis of modern trace hardware
in processors. While previous generation Intel and ARM processors have been studied in
relation to tracing and code profiling using ETM, Intel BTS and LBR, newer and more
efficient hardware tracing facilities such as Intel PT were not evaluated in similar studies.
There is an obvious interest in the domain of program flow tracing based on our study
of the domain, however lack of a formal analysis has proved to be a challenge in its rapid
adoption. This was an opportunity to us, as we realized in our analysis that hardware assisted
techniques, when used in conjunction with software tracing, could provide a very detailed

trace analysis at an ultra-low overhead.
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CHAPTER 3 RESEARCH METHODOLOGY

In view of the nature of this research, it may be easy to visualize the progression as two major
parallel threads - one dealing with a pure software aspect and the other with an upcoming
modern hardware tracing aspect, and an eventual amalgamation of the two leading to a
conclusion. We now present the way in which our research progressed over these years and

how it resulted in the four papers that are now part of this thesis.

3.1 Research Progression

As discussed briefly in Chapter 1 and as illustrated in figure 3.1, we started off with investi-
gating the software approach to enhance the trace granularity while reducing the overhead.
We analyzed the deficiencies in current systems and proposed new architecture for software
tracing, marked as [M1la, M1b]. Eventually, our work focused on reducing the overhead fur-
ther while achieving better granularity in program-flow traces using hardware assistance.
This required the development of novel algorithms that support modern hardware tracing
analysis and their extension to analyze software latency and Virtual Machines [M2, M3].
We eventually discovered limitations in hardware trace reconstruction owing to our work in
[M1b] which led to our concluding contribution in the hardware trace reconstruction domain
through a new technique for robust tracing [M4]. This is described briefly in the following

sub-sections.

User-Kernel
Co-operative
Tracing

Conditional
Tracing
Enhancements

M2

Research Ha;?:gge Hardware-Assisted Hq{dware
Leads A . VM Analysis race
nalystis Reconstruction

Research Progression II»

Figure 3.1 research milestones and progression

3.1.1 Research Leads

During our thorough literature review at the beginning of our research we first identified

potential areas of contribution based on the state-of-the-art techniques used in tracing.
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Trace Context We realized that in order to advance in our research goal of providing more
granular tracing with greater context and low overhead, we could employ filtering techniques
at runtime with the traces. Most of the runtime filtering approaches used in high speed
tracing infrastructures, such as LTTng, were interpreted in nature, and modern techniques
such as eBPF had the potential to be adapted for these fast tracers. This is specially needed
for userspace events that are generated by processes that run continuously on production
systems. While proposing a new filtering tracing infrastructure, it is important to not lose
context while the trace size is reduced. We therefore marked it as a potential area for further

investigation.

Processor Trace Support We further analyzed advancing hardware tracing support in
modern processors, which is a completely new domain of research from the trace analysis
perspective. It is yet to be fully exploited and, therefore, was a prime candidate to fulfill
our needs of developing a more granular tracing approach. While applying software analysis
techniques on VMs, we realized that hardware support for the same was severely lacking
and no one had exploited these mechanisms before. There is a potential for analyzing the
trace data, providing ways to isolate and generate actionable information from it and explore
its advanced capabilities and its possible applications and deficiencies. Thus, this was also

marked as a potential area of research.

3.1.2 Problem Definition

While we investigated the research leads, we started formalizing the problem to solve. Based
on the literature survey and current tools, we decided that low-overhead, high-granularity
tracing needs to be achieved with software as well as upcoming new hardware techniques and

therefore defined this as the definitive problem to solve.

3.1.3 Defining Scope

Filtering and hardware tracing is a vast domain in itself. Therefore, our next step was to define
the scope of our research and ensure that we fulfill the research objectives while providing
valuable proof-of-concepts to demonstrate the performance of the proposed algorithms. For
our first research lead, we restricted our research to production systems that generate high-
speed trace events and run on commodity Linux distributions. This ensured that we could
analyze and augment our experiments as we have high visibility in Linux due to its source
being open. Apart from that, cutting edge advancements in our field are primarily focused

on Linux and its internals. For the second research lead, even though our techniques can
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be extended on any modern processor, we selected Intel’s Processor Trace (PT) as the base
mechanism for testing and implementation. The 6th generation Skylake processors are mature
and support the newest advancements from the silicon technology perspective. It was also the
first to support Linux and hence fits well within our criteria of OS selection. Our selection of
experimentation framework using open tools ensures that the research scope was wide enough
and that our work would be applicable to a wide variety of desktop and embedded platforms.
For hardware trace analysis we focused mostly on already compressed trace data and its
analysis rather than focusing on hardware implementations or improvements in silicon and
architecture. Our research scope for hardware trace analysis was quite vast as well — ranging
from instruction flow tracing, call graphs as well as raw trace packet analysis for a detailed
view of events. For the reconstruction of traces, we assume that the test applications contain

relevant DWARF symbols and that the target system supports in-memory trace record.

3.1.4 Research Body

Once we had defined the problem, scope, objectives and identified potential outcomes for
the research, we proceeded on to the research and prototyping part. The main areas of our

research that lead to the publications included in this text have been outlined below.

Enhanced Filtered Tracing

The idea of an in-kernel filtering mechanism has been in use before but had been applied to
network packet filters. A small in-kernel process VM allowed filter expressions to be tested
against incoming packet information such as source or destination IP, size and other packet
headers data. One of the most common in-kernel filtering mechanisms is the Berkeley Packet
Filter. Recent developments in the Linux kernel extended it further as eBPF which allowed a
faster filtering mechanism. In userspace, advanced tracing tools such as LTTng have allowed
high speed tracing through its lockless trace buffers, for an overall lower trace overhead, but
have fallen short in trace filtering techniques. The first part of our work, corresponding to
milestone [M1a], has been presented in Article 1 (Chapter 4) where we propose an enhanced
filtered tracing architecture that improves the overall tracing speed by introducing an eBPF

based JIT compiled tracing filter mechanism for high-speed userspace tracing.

Co-operative Conditional Tracing

In order to improve upon the conditional tracing aspect, we proposed a new technique to

efficiently perform trace filtering. In addition to filters on trace payloads, our proposed ar-
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chitecture allowed more advanced conditions to be set. As planned for milestone [M1b], one
of the major parts of our research work was a co-operative filtering architecture that used
similar bytecode expressions for kernel as well as userspace eBPF machines. This kernel eBPF
(KeBPF) and userspace eBPF (UeBPF) could now directly interact with a shared memory
architecture that allowed an impact of UeBPF on KeBPF and vice-versa. We demonstrated
this in Article 1 with a conditional syscall trace filtering mechanism where syscalls could
be recorded by suggestive thresholds set by UeBPF. The effect of a runtime compiled na-
tive code, from the eBPF bytecode on hardware traces was eventually observed and further

analyzed by us in a latter part of our research.

Hardware Trace Analysis

While working on a software oriented approach for reducing the trace overhead, we started
working towards milestone [M2]. We analyzed modern hardware tracing support on proces-
sors. As there was no prior literature on branch trace based advances in current architectures,
we started prototyping and conducting performance overhead analysis of hardware tracing
itself. This required the analysis of packets generated by the processor and the packet ge-
neration protocols. We realized that branch tracing could be enabled and disabled, with
configuration bits set directly in the processor using model-specific registers. However, the

added complexity of analyzing the branch trace data is huge.

Latency Analysis We therefore proposed a new algorithm for analyzing such data and
ways to utilize it for syscall and interrupt latency computation. We selected Intel PT as a
base for gathering accurate instruction profiling data and applied the algorithms developed
to get latency profiles in such cases. With our new algorithm, for syscall latency and tracer
overhead, hardware traces for syscalls could now be taken and their kernel call stacks obser-
ved. This enabled an accurate instruction by instruction view of each call, with a nanosecond
resolution and precision. Our new algorithm worked on an instruction grouping and specia-
lization technique that we developed to analyze instruction traces directly from hardware

trace reconstruction. This work has been presented in Article 2, (Chapter 5 of this thesis).

Tracing Virtual Machines

Further analysis of hardware trace data showed a sequence of packets that enabled us to
identify the time spent in processing by individual virtual CPUs in a VM. We developed a
novel algorithm called HAVAna, that analyzed the hardware trace packets and allowed us

to generate interactive resources as well as process trace views using Trace Compass, with a
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nanosecond range resolution. Our algorithm worked with raw hardware trace packets, from
processors that contained paging information packets to help us identify individual processes
inside the VMs without any agent running inside the VM. No tracing was enabled on the
host except the direct dump of hardware trace packets, which causes negligible overhead.
Our research work for this milestone [M3] has been presented in Article 3 (Chapter 6 of this
thesis).

Hardware Trace Reconstruction

Our experience with eBPF in userspace and in kernel, in the first part of the research,
lead to a realization that there are issues with hardware trace reconstruction. This was
marked as our final milestone [M4]. As branch tracing techniques such as Intel PT rely
on reconstructing program flow after the fact, the reconstruction process needs application
binaries and runtime information about load addresses. While this may be readily available
in most cases, in multiple scenarios, such as JIT translation and static-key instrumentation
in the kernel and userspace, the presence of runtime compiled code causes errors in hardware
trace reconstruction. We observed this problem multiple times in our analysis during our first
research phase with eBPF, and realized that no technique exists that would allow an accurate
and non-intrusive way to gather and reconstruct such trace data. We therefore proposed a
new technique and an algorithm called FlowJIT, that used operating system support to
maintain copies of runtime compiled or replaced code and then use it for offline hardware
trace reconstruction. We demonstrated FlowJIT with two usecases in Article 4 (Chapter 7
of this thesis).

3.1.5 Experimentation

For each of the research milestones, extensive experimentation was performed to assess the
performance and overhead, either in terms of excess time spend, extra instructions incurred
or a given research specific metric. We reproduced the test results multiple times and ensured
that our observations were statistically significant. Appropriate representation forms such as
line graphs, sun-burst graphs or density plots were used to present the results. These have

been discussed in detail in subsequent chapters.
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4.1 Abstract

Trace tools like LTTng have a very low impact on the traced software as compared to tra-
ditional debuggers. However, for long runs, in resource constrained and high throughput
environments, such as embedded network switching nodes and production servers, the collec-
tive tracing impact on the target software adds up considerably. The overhead is not just in
terms of execution time but also in terms of the huge amount of data to be stored, processed
and analyzed offline. This paper presents a novel way of dealing with such huge trace data ge-
neration by introducing a Just-In-Time (JIT) filter based tracing system, for sieving through
the flood of high frequency events, and recording only those that are relevant, when a specific
condition is met. With a tiny filtering cost, the user can filter out most events and focus only
on the events of interest. We show that in certain scenarios, the JIT compiled filters prove
to be three times more effective than similar interpreted filters. We also show that, with
increasing number of filter predicates and context variables, the benefits of JIT compilation
increase with some JIT compiled filters being even three times faster then their interpre-
ted counterparts. We further present a new architecture, using our filtering system, which
can enable co-operative tracing between kernel and process tracing VMs (virtual machines)
that share data efficiently. We demonstrate its use through a tracing scenario where the user

can dynamically specify syscall latency through the userspace tracing VM whose effect is
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reflected in tracing decisions made by the kernel tracing VM. We compared the data access
performance on our shared memory system and show an almost 100 times improvement over

traditional data sharing for co-operative tracing.

4.2 Introduction

With the traditional debugging approach, it becomes quite difficult to gather very low level
as well as time accurate details about the systems’ behavior in quasi real-time or soft real-
time systems. Sampling based profiling tools are also of limited use in such cases. Therefore,
a fast logging mechanism, called tracing, is employed. Tracing can be divided according to
the functional aspect (static or dynamic) or by its intended use (kernel or userspace tracing

— also known as tracing domains).

Tracing usually involves adding special tracepoints in the code. A tracepoint looks like a
simple function call, which can be inserted anywhere in the code (in the case of userspace
applications) or be provided as part of the standard kernel tracing infrastructure (tracepoint
“hooks” in the Linux kernel). Each tracepoint hit is usually associated with an event. For
instance, the events in Linux kernel are very low level and occur frequently. Some examples are
syscall entry/exit, scheduling calls, etc. For userspace applications, these can be any function
call entry in the program. This indeed is a very efficient way to follow a program execution,
rather than traditional debugging, specially in scenarios where the effect of pausing, waiting
for user interaction and collecting data, can alter the behavior of a normal execution and
yield incorrect results. Sometimes, the error cannot be reproduced in normal scenarios, due to
the presence of time dependent errors in programs, which do not arise systematically or even
frequently (for example, a heisenbug) [69]. For such cases, low overhead and low disturbance

tracing tools are invaluable.

Tracing involves storing the associated data in a special buffer whenever an event occurs.
For a detailed execution trace of a very fast system, with high frequency trace events, this
data can be huge and contains precise time-stamps of the tracepoints hit, along with any
optional event-specific information (values of variables, registers, etc). All this information
can be stored in a specific format for later retrieval and analysis. In many cases, the trace
data contains a lot of uninteresting, redundant, information during normal execution and
needlessly consumes a lot of storage space. There can be situations where the target system
is resource constrained, such as an embedded network controller, where a huge number of
trace events can be generated at very high speed for hundreds of days in a row [70, 71].
It would be very inefficient to store all the traced data and try to retrieve it for offline

analysis. In such situations, trace filters can be used to discard unwanted tracepoints and
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record only those specific ones that are of interest. The trace filters are composed of multiple
filter predicates which essentially are the conditions to be checked. The predicates are joined
together with Boolean operators and form a Boolean expression that returns either a TRUE

or FALSE. More about this will be discussed in later sections.

Most tools employ some form of filtering. We observed that the filtering schemes used in
most state-of-the-art tools are the same. This can be seen in Figure 4.1 where we generally
(1) define the filter predicates in a high level statement form, (2) create a predicate tree, and
possibly a more efficient bytecode representation and (3) when the tracepoint is hit, walk the
associated predicate tree while evaluating the conditions, or interpret the associated bytecode
and evaluate the filter outcome. Another approach, as in Figure 4.1(c) is to JIT (Just-In-
Time) compile the filter bytecode to native code and execute it on the machine. This yields

a significant performance improvement as compared with interpreting the bytecode directly.

Execution Flow —p»
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TRUE i 5
P — FILTER | g tracepoint() :
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TARGET BINARY
@) (b) (c)
: Create Convert to > JIT Compile
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Walk and Interpret Execute

i Evaluate Tree Bytecode
: \—> TRUE/FALSE 4—|
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Figure 4.1 Overview of filtering in trace and debug context. The bold path (c) is the approach
which yields minimum overhead

Some interesting prototyping results were reported by Alexei Starovoitov. An implementation
of JIT compiled Berkeley Packet Filter (BPF) bytecode to kernel tracing demonstrated an
improvement from 32 ns to 4 ns per call (best-case scenario) [35]. These improvements are

in contrast to the state-of-the-art trace filtering approaches such as those in LTTng-UST
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[72], which use bytecode generation-interpretation for evaluating filters (Figure 4.1(b)). We
therefore improved tracing performance using JIT compiled filters by enhancing the current
tracing architecture as discussed in this paper. It has proven to be more robust than the
current filtered tracing techniques and has lead to reduced trace storage size, and hence the

efficient diagnosis of problems.

The benefits of having a very fine control over tracing have always been important from the
developers’ perspective, but the filter computation overhead has always been a hindrance. In
this paper, we present a new tracing scheme which tries to minimize this overhead and hence

allows a more flexible use of the JIT technique for conditional tracing.

We also introduce the concept of co-operative tracing where, through an efficient sharing
mechanism, kernel tracing can be guided from userspace or vice versa. Important data, such
as performance counters or kernel-aggregated values, can be shared between the kernel and

the userspace filters, to achieve co-operative tracing.
Our major contributions in this paper are as follows,

— an improved userspace tracing framework which utilizes JIT-based trace filtering, thus
reducing the trace footprint and overhead ;

— kernel and userspace co-operative tracing through a kernel VM — user VM direct data
sharing mechanism that enables events in userspace to affect kernel tracing and vice
versa ;

— a userspace library that provides an implementation of the two above contributions

as well as a means of incorporating efficient filtering in generic tools.

The remainder of the paper is organized as follows. We start with a discussion on the basic
building blocks of tracing. The techniques such as static and dynamic code instrumentation,
on which the Linux tracing infrastructure is built, are explained. We also discuss its relevance
in our context of trace filtering and our new scheme for kernel-userspace co-operative tra-
cing. We then explain some commonly used filtering techniques used in scenarios like in-kernel
network packet filtering and see how different tools like DTrace, LTTng and SystemTap ap-
proach filtering of traces. We move on to explain the design of bytecode interpreters relevant
for filter design. Subsequently, JIT compilation techniques and their use in tracing are dis-
cussed. We introduce our proposed method and architecture for a JIT-based optimized trace
filtering framework, its design and its benefits. Our evaluation of its performance against
current interpreted filtering techniques is evaluated and presented. We move on to propose
our co-operative tracing system as an extension to the JIT-based trace filtering system, and
to achieve high-speed kernel-userspace tracing on resource-constrained soft-realtime systems.

We discuss how the current bytecode based filtering systems evolve into a generic system,
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and the efficient data sharing mechanism that we propose which yields close to 100x impro-
vements over current data sharing mechanisms. We also expose how this architecture can be
used independently, not just for conditional trace filtering, but for taking certain actions (like
recording a trace, aggregating data, sharing data with userspace) based on whether condi-
tions are met or not. We see how this architecture differs from approaches taken by tools
such as DTrace and SystemTap. Finally, the results from the performance benchmarks, the

inferences drawn from the results, and the directions for future work have been presented.

4.3 Literature Review

Most of the previous relevant work on filtering focused on network packets but not on tracing.
McCanne and Jacobson [30] proposed quite early a bytecode based virtual machine for in-
kernel BSD network packet filtering, called as Berkeley Packet Filter (BPF). This interpreted
technique delivered a performance of up to 20 times faster than the original tree-based designs
such as those of the CMU /Stanford Packet Filter (CSPF) [73].

In Pathfinder, Bailey et al. [31] proposed a new way of specifying filters declaratively. This
reduces the times a pattern has to be evaluated. Engler and Kaashoek presented DPF [32]
where they showed an improvement of about 13x~26x as compared with Pathfinder’s imple-
mentation, due to the use of native compilation techniques, while keeping the same declarative

language format of filter description.

BPF in its original format was further improved by Begel et al. in BPF+ [33], where they
performed compiler optimizations to eliminate redundant predicates during filter generation.
They also eventually implemented an elementary JIT compiler for BPF to improve its per-

formance further - similar to what DPF had done with the Pathfinder’s implementation.

Wu et al. recently proposed Swift [34], a new and complete packet filtering system based on
a CISC ISA, and a BPF compatible API to simplify the code specification. They showed
up to 3x performance of corresponding in-kernel BPF implementations, mainly due to the

aggressive use of SIMD instructions provided by i386 and x86_ 64.

Very recently, BPF was improved and evolved into an eztended BPF (eBPF) implementation
in the Linux kernel [35, 74] with enhancements to register management, bytecode generation
and optimizations using a modern compiler infrastructure. Its architecture was slightly mo-
dified to provide a more versatile in-kernel tiny virtual machine. This provided some of the
foundation work for the userspace trace filtering and kernel-userspace tracing improvements
we propose in this paper. Earlier versions of BPF syntax have also been used for packet

filtering in Windows.
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DTrace [25], originally developed for Solaris, is a purely script-driven tool which consists
of a new language (D language) for defining trace scripts. The trace scripts get compiled
into an intermediate format (DIF) and are subsequently executed in DTrace’s own in-kernel
virtual machine. It is now possible to insert probes in userspace applications but this simply
generates an interrupt, and the probe handler still executes in kernel space. For sharing
data between probe executions, DTrace supports global variables, thread-level variables and
aggregations. Aggregations can use per-CPU buckets and can thus be incremented with low
overhead, without locking, at high frequency. The actual aggregation, with heavier locking, is
only needed when extracting the aggregated value, typically at the end. Thread-level storage
also avoids locking. Reentrancy could be an issue if DTrace allowed the same thread-level
variable to be accessed from normal and from interrupt context. Global variables in DTrace
are not lock-protected, and concurrent access can lead to corruption. Thus, although being a
very elaborate, popular and convenient scripting system for tracing and monitoring, DTrace
suffers from several limitations. All scripts execute from kernel space and the only userspace
to kernel interaction is achieved using tracepoints in applications generating costly traps.
Furthermore, DTrace suffers from scalability problems and offers limited support for sharing

global variables.

SystemTap has been developed along similar lines, to gather trace data dynamically. However,
for kernel tracing, SystemTap generates C code to be compiled as a kernel module and loaded
dynamically. This differs from the BPF and DTrace approach of executing bytecode within
the kernel [75]. While this approach, in theory, offers the best performance with native code, it
suffers from the requirements of needing a full compilation environment for the target kernel
at runtime. SystemTap scripts can define and use global variables. They are automatically
read- or write-locked when accessed from the scripts, in case the scripts could be executing
concurrently in probe handlers. This severely limits the scalability in scenarios requiring data
sharing. Furthermore, while probes can now be hooked to userspace code, they generates an
interrupt and the corresponding scripts execute in kernel space, just like DTrace. There is
thus no provision for scripts executing in userspace and sharing data with the kernel. We
discuss this further in Subsection 4.4.2 and Section 4.6, where comparisons with the newer

eBPF approach are made.

4.4 Background

Most tracing tools are built on underlying mechanisms which deliver different performance
under various scenarios. In terms of performance, the most important factor across all tools

is the reduced overhead. As each tracepoint execution incurs some time, this added time can
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potentially slow down the normal execution of the software and yield different results. The
goal is therefore to have negligible overhead, ensuring that the behavior is the same, with
or without tracing. We now discuss some basic concepts and relevant techniques that many

state-of-the-art tracing tools employ.

Static Instrumentation Instrumentation in computing is the process of adding a certain
code in any given application, with the inserted code snippet performing tasks related to
diagnosing errors, profiling activities or gathering traces. The piece of code is intended to run
fast with very little overhead. In many cases, this code can be added statically, where it is
added before compilation — for example, as a small function call at the trace target function
entry and exit. When compiled with this instrumentation, each call to the trace target func-
tion entry and exit will lead to the instrumentation being run. This static instrumentation
can also be done at compile time, where the code can be inserted by the compiler backend.
The Linux kernel provides manually inserted static trace points using the TRACE_EVENT ma-
cro [12]. Tt exposes trace hooks on which other kernel tracing systems can be built upon. In
addition to static code instrumentation, compiled code can also be inserted into binaries on

disk, without any source code being available.

Dynamic Instrumentation The other type of instrumentation is dynamic instrumenta-
tion, sometimes also called dynamic binary instrumentation (DBI). Traditional static tech-
niques insert code at compile time, and this inserted code is persistent. Whenever the specific
function is called, the instrumentation code also runs and incurs some overhead — even when
the developer does not necessarily want the instrumentation code to run. It also limits the
instrumentation only to software for which the code is available for recompilation. Instru-
mentation can either be performed on the binary residing on disk or by attaching to running
processes (for example, attaching a debugger to a running process). Dynamic instrumentation
tools and frameworks can be built using either (1) TRAP-based approach such as in older
Kprobes [3, 76] and GDB’s normal tracepoints [5, 4], or (2) a trampoline-based approach
such as in Dyninst [6] and PIN [77] or (3) a more elaborate JIT technique as used in tools
like Valgrind [8] and PIN.

4.4.1 Tracing

Static tracing for LTTng, in kernel and userspace, is implemented using the static instru-
mentation techniques where a tracepoint() call may be placed anywhere in a function,

and with supporting macros can generate very fast and accurate tracing data [72]. During
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compilation, this call gets expanded to an actual tracing function, according to the tracing
context. This is the most optimum tracing mode. The Linux kernel’s own tracing infrastruc-
ture, ftrace, provides static as well as dynamic tracing, depending on how it is used. Other
tracing tools like SystemTap provide dynamic tracing through the use of Kprobes, Jprobes
and Uprobes [17]. SystemTap also uses Dyninst for userspace tracing to gain some perfor-
mance as well. The Kprobe approach has been used extensively to insert instrumentation
code in the non-blacklisted kernel functions. These have traditionally been TRAP-based,
but trampoline-based probes have also been made available recently. Dynamic tracing with

LTTng is based on the kernel’s Kprobe technique.

Irrespective of what technology they are built upon, activated tracepoints may generate a
lot of data. This motivates the work on filters and how they can be used to filter out a large

fraction of uninteresting trace data.

4.4.2 Filters

Filtering is widely used in computing — from filter queries supplied to SQL databases to
providing sand-boxed secure execution environments by filtering out syscalls [78]. The basic
idea of a filter F'is to find a small subset S from a large input set L. The criterion of selecting
S is that the application of filter F' to each element ¢ of L returns TRUE.

S={iieL Fi}

Here F(i) can be defined as a Boolean function whose outcome depends on the filter predi-
cates Py, Py..P,. These predicates are the heart of the filter itself and are joined with Boolean
operands. In our tracing context, a filter function F' with an expression E and operators (*)

can be defined as follows,

For every ¢ € L, let
TRUE if E={P xP,*.P,}

F(i) = is TRUF for i
FALSE otherwise

In operating systems and software applications, the need for filtering is the most prominent
in network packets. A lot of network traffic on the system causes packets of various protocols,
sizes, having different sources and destinations, to pass through the networking device and
the kernel. A user would specify its needs in the form of a Boolean expression. There are

multiple approaches for evaluating the filter expressions. The concept of building trees and
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evaluating them for Boolean outcomes has been used before in filters like the NIT [30] in
SunOS and Linux kernel’s internal network packet filter. In their earlier stages, these filters
had a predicate tree walker which walked the nodes, evaluated them, and eventually reached
a final binary decision. From the seemingly infinite number of packets being transferred
from the device, the predicate tree formation and walking algorithm requires a considerable
amount of computation to evaluate each packet. To overcome this, an initial version of the
Berkeley Packet Filter (BPF) introduced a bytecode interpretation based filtering [30, 79].
The predicates in an expression are expressed as nodes of a control flow graph (CFG). The
nodes were converted to bytecode and interpreted by a small in-kernel register based BPF
interpreter. At the time of its introduction in BSD, BPF gave an improvement of 20 times
over earlier techniques. This was also evident in recent patches to the Linux kernel where, in
certain scenarios, BPF based filtering brought down the filtering costs from 139 ns to 32 ns
[35]. We now discuss the ways to improve this further by techniques such as JIT compiling
the bytecode.

Filter Performance Optimizations The maximum time consumed in VM execution is
actually the cost of instruction dispatch [23, 22]. The computation can be equivalent to
a few machine instructions but the dispatch mechanism usually takes a maximum of 10
to 12 machine instructions and involves a time consuming indirect branch. The dispatch
mechanisms are typically of either switch or threaded type. To give a short overview, a
switch dispatch may contain a large switch-case statement where, for each opcode of the
VM, there would be one case statement to fetch and evaluate the opcode — which is part of the
interpretation phase shown in Fig.4.1(b). Then, the next bytecode is fetched and evaluated
until the bytecode program is finished.

The upgraded BPF+ implementation [33] incorporated many tiny data-flow optimizations
such as removing redundant predicates from the CFG during the BPF bytecode generation
phase, the identification of potential lookup tables, and the optimization of register usage and
so on. The authors of [33] also did an early JIT implementation and converted the bytecode
to native code with a simple register assignment scheme. They obtained a speedup of up to
6.6x between unoptimized BPF code and JIT compiled native code in certain scenarios with

a varying number of predicates.

For every bytecode instruction passed to the switch, instead of interpreting and dispatching
the equivalent operation, this minimal JI'T compiler emits the x86 opcodes and stores them
into a code cache upon running for the first time. For the subsequent filter runs, the code
is executed natively from the code cache and bypasses the instruction dispatch mechanism

(Fig.4.1(c)). This considerably reduces the overhead, as stated before. The main performance
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gain by JIT compiling filter bytecode is achieved when the events occur at a high frequency,
and run long enough, such as in “always on” systems. We have used a similar principle for our
filtering architecture. Along with micro-optimizations to the BPF system and the usage of
the fastest tracing approach, we have proposed a very fast trace filtering system, as described

in Section 4.5.

4.4.3 Trace Filtering

The need for filtering in tracing tools has been addressed before in tools such as DTrace
and LTTng. Not tracing and storing uninteresting events becomes a priority when event
frequency is high. Filters are applied in the execution path of each tracing event. To reduce
the overhead, many systems defer the trace filtering to analysis time. Trace viewing and
analysis frameworks such as TraceCompass are optimized for performing complex analysis
[80]. Cantrill et al. have discussed the importance of runtime filtering earlier [25]. With a
better filtering infrastructure, it is possible to filter out traces at runtime as well. We now
discuss some trace filtering approaches that have been used before, and then move on to

explain our filtering design in Section 4.5.1.

Speculative Tracing DTrace provides a filtered tracing mechanism called speculative tra-
cing. The basic idea is to record the trace data tentatively in a separate speculation buffer,
and then decide whether to commit data to the main tracing buffers or discard it based on
checking the data with speculate () function. An example is shown in [25] and [26] where the
authors described how a filtered trace of all functions entries is only committed if a particular
syscall such as ioctl() returns a failure. While it is seen as a runtime filtering approach, the
speculation involves writing the data to the buffer and possibly copying it to the principal
buffer. The DTrace filter execution architecture itself consists of custom bytecode generation
and interpretation using a small in-kernel DTrace virtual machine. This predicate condition
interpretation, coupled with the data copies, makes the overhead of this approach comparable

to that of tools using bytecode interpretation.

LTTng Trace Filtering LTTng works similarly. The expressions are converted to bytecode
and then interpreted. We take an example of LTTng User Space Tracer (UST) where a filter
is set on an event. As shown in Fig.4.2, when the client encounters a filter expression for a
specific userspace event to be enabled, the client first parses the expression using a custom

lexer-parser and then converts it into a syntax tree.

The nodes of the syntax tree are visited and classified. Then, the intermediate representation
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Figure 4.2 The client is responsible for conversion of a filter expression to the bytecode, which
is sent through lttng-sessiond to the instrumented userspace application for validation,
linking and an eventual interpretation per event

(IR) is generated and a small verification is done on IR. Currently, there is no support for
binary arithmetic operations, as the trace filtering needs were very limited. Only logic and
comparisons operations are provided. Also, except for logical operators, the nesting of other
operators is not allowed. The IR is checked to ensure that no wildcard is used in-between
string literals and that only valid operators are used. Then, the bytecode is generated by tra-
versing the tree in post-order. The generated bytecode and data is saved to the context and
transmitted to the session daemon, 1ttng-sessiond, which sends the bytecode to the users-
pace application targeted for event filtering. There, the bytecode execution process starts.
First, the bytecode is linked to the target event to create a bytecode runtime. Second, a range
overflow check for different instruction classes is done and the bytecode is validated for illegal

instructions. Finally, the bytecode is sent to LTTng’s own filtering virtual machine.

LTTng’s interpreter is a hybrid stack/register based virtual machine. As seen in Fig.4.3, it
is a stack-based VM consisting of two registers, ax and bx, aliased to the top of stack. This
makes operations easy, just like on register-based machines, as the push and pops are reduced.
At the same time, this gives more flexibility just as for stack machines. The interpreter is
a threaded- instruction dispatch based interpreter [24, 81], but can be used as a normal

dispatch in scenarios where compiler support is not available.
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STACK
ax top
bx top - 1

Figure 4.3 The LTTng interpreter is stack based with two registers (ax and bx) aliased to
top of stack

Listing 4.1 shows how the ‘signed not-equal-to’ operator is interpreted. Here, the operation
is performed directly using the macros estack_bx_v and estack_bx_a which point to the
two values to be tested on the execution stack. The LTTng interpreter is quite efficient in

relation to the limited scope it has (simple filter execution).

Listing 4.1 LTTng’s machine interpreting a bytecode

OP(FILTER_OP_NE_S64):

{
int res;
res = (estack_bx_v != estack_ax_v);
estack_pop(stack, top, ax, bx);
estack_ax_v = res;
next_pc += sizeof(struct binary_op);
PO;

}

However, as we have observed, both by analysis of the source code and through performance
numbers discussed in Subsection 4.7.2, further optimization is possible with the use of JIT
compilation, better optimizations in the bytecode compiler and adding more features (arith-
metic operations) to make it more flexible. The overhead is within the range of those tools

using bytecode interpretation.

4.5 Filtered Tracing Architecture

We propose a novel userspace trace filtering architecture, with an improved overall tracing
performance, as compared with available tracing tools. We choose LTTng and eBPF as the
main drivers for this tracing architecture. We now describe the underlying framework on

which our filtered trace architecture is based, and present a justification behind that choice.
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4.5.1 Base Framework

eBPF The idea to convert BPF bytecode to native code, as discussed in Section 4.4.2, has
been exploited recently again by Starovoitov for an improved BPF implementation in Linux
kernel. The earlier implementations, also called classic BPF in the Linux kernel, consisted
of two 32-bit registers — A and K. The conditional branch had two jump targets JT (jump
if true) and JF (jump if false). There were 32-bit memory slots for filter data. As the main
goal of BPF was packet filtering, there are dedicated “extensions” where the developer can
load and store data from packets directly. Keeping in mind the good performance and the
simplicity of BPF, efforts have been ongoing to make it more generic and modern. The newer
version called, extended BPF (or eBPF) [35, 74] has many improvements. The instruction set
has been changed, and was designed with emphasis on the importance of JI'T and underlying
architectures on which it is run. eBPF now has 10 internal registers and one frame pointer.
The calling convention is similar to current architectures, like ARM64 and x86_ 64, avoiding
extra copies in calls [82]. With this calling convention, the eBPF registers also map one-to-one
to the x86_ 64 and other hardware registers. This simplifies the JIT compiler implementation
as well. The main target of eBPF is a generic kernel interpretation framework, it sports a
robust verifier and has a concept of “BPF maps’, an abstract data type to share data between
the kernel and the userspace. There are various helper functions as well, and a dedicated
bpf () syscall has been proposed to update and access the maps that the BPF programs keep
on updating. However, for tracing purposes in userspace, eBPF needs to be optimized for
filtering, so that filtering operations can directly occur in userspace. Our adaptation aims to
achieve that. Apart from filtering, our extensions can provide co-operative conditional tracing

from userspace.

LTTng The Linux Trace Toolkit next generation (LTTng) [11] is a very fast and extremely
low overhead tracing tool developed at DORSAL! '. With a non-activated tracepoint inserted
in the code, it gives near zero impact on the overall execution of the target application. This
distinguishes LTTng from the other tools, making it an excellent choice for real-time appli-
cations. Its tracing technique implements a fast wait-free read-copy-update (RCU) buffer for
storing data from tracepoint execution [20]. Its efficiency and scalability has been demons-
trated in various performance comparisons [11, 83, 18]. LTTng-UST is the userspace tracing
counterpart of LTTng. The major factor for such an increase in performance is the use of a
lock-less ring buffer in LT Tng-UST, as it efficiently manages multiple readers trying to ac-

cess the same resource simultaneously [72]. However, LTTng-UST still lacks in areas such as

1. 'http://dorsal.polymtl.ca/en
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providing an improved dynamic tracing mechanism and an efficient filtering mechanism for
userspace tracing. Our contributions also lead to a JIT compiler based bytecode for LTTng,
in addition to its interpreted filter bytecode, provided by default in userspace. It also provides

a base to add an initial support for JIT based kernel filtering as well.

Coupled with eBPFE’s efficient JIT-based filtering technique, LT Tng-UST’s fast tracing perfor-
mance can lead to an improved overall performance as compared with interpreted approaches
used by DTrace and LTTng’s default interpreter. The design of our new eBPF-based JIT com-
piler and interpreter framework, for userspace and kernel trace tracing, is influenced by the
network filtering approach for which eBPF was originally designed. Our filtering scheme, ho-
wever, deviates from this network-centric approach. It aims to provide improved performance
specifically for userspace tracepoint filtering, and for combined kernel and userspace tracing.
The reach of eBPF usage has also been extended by allowing LLVM /GCC-based backends to
generate very efficient BPF bytecode from a restricted C interface, while maintaining similar

performance.

The system architecture is shown in Fig.4.4. The filter arguments either are declared by
the user manually, into eBPF bytecode, or can be generated by the LLVM based backend
which converts those simple ‘C’-like expressions in eBPF bytecode. The filter also needs the
information about the trace payload and the tracepoint context, which can be obtained from
the target binary in which the filter is run. It can then be fed to our userspace implementation
of the eBPF library?2. The library either checks for the JIT support on the architecture on
which it is run, or can be configured to always JI'T compile the bytecode. The JIT-compiled
code is saved to a code cache and the filter is run around the tracepoint() call. As a
fallback, the bytecode could be interpreted if the JIT compilation fails. Even though our
library implementation is directed towards trace filters, it can also be easily used as a basis
to build generic filtering tools such as syscall filtering, or database filters in userspace. We

now explain in details the various steps taken during filtering, in this proposed architecture.

Bytecode Preparation As stated before, there are two ways to provide bytecode to
the interpreter (and for later JIT compilation). In the first mode, the user specifies the
filter by hard-coding the eBPF opcode macros such as BPF_LD_IMM64(BPF_REG 0, 1),
BPF_EXIT_INSN(Q) etc. in the target program, or manually assembling bytecodes for an eBPF
program and loading it as shown in Listing 4.2. This is useful only when the filter is small
or the developer is proficient enough to write BPF assembly manually. The other option is
to specify the filter in C and let the recently developed LLVM’s eBPF backend generate the

2. 2http://step.polymtl.ca/~suchakra/libebpf.tar.gz
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Figure 4.4 The architecture of our proposed eBPF based trace filtering system

eBPF bytecode binary. The compiler converts the eBPF filter, specified in a restrictive C
format, to a binary with a .text section containing the executable filter eBPF bytecodes.
We implemented a small method to extract the opcodes from the section and pass opcodes
on to the interpreter or the JIT compiler library. This approach is beneficial because there

is an opportunity for the developer to use the optimization routines from the LLVM tools.

We now discuss some characteristics of the bytecode itself. As mentioned earlier in Subsection
4.5.1 the newer bytecode of eBPF is closer to native architectures like the x86. Using a similar
format leads to a more uniform and portable design. The register layout is shown in Table

4.1, derived from the filter documentation in the Linux kernel [82].

The RO register in eBPF is where the exit value from eBPF programs is stored. Upon eBPF
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Table 4.1 Register mapping for eBPF-x86

eBPF 186 Purpose

RO  rax Return value from function /
exit value from eBPF

R1 rdi First argument
R2 rsi Second argument
R3  rdx Third argument
R4 rcx Fourth argument
R5 r8 Fifth argument
R6 rbx Callee saved
R7 13 Callee saved
RS rid Callee saved
R9 rib5 Callee saved
R10  rbp Frame pointer

program return, RO is set to 1 for TRUE and 0 for FALSE, just as shown in Listing 4.2.
Register R1 is the place where the filter context is loaded. For example, the context is often
made available to the target program through a structure, filled with arguments on which
filtering is to be performed. These arguments can be the payload fields from the LTTng
tracepoint or, for more complex scenarios, these values can be obtained at runtime (LTTng’s
context such as PID/TID). A pointer to this structure can be passed in register R1, which is
then accessed as filter context by the eBPF program. In addition, tracing filters regularly need
to compare strings, since several tracepoint payload fields are formatted as strings (e.g., the
filename in the open() syscall). We therefore implemented a bpf_strcmp() function which
can be called from within the eBPF code. Such helper functions make eBPF filter programs
more flexible. As discussed later in Subsection 4.6.3, we used these helper functions to further

extend the filtering system.

Listing 4.2 eBPF program for a sample filter

ldd r1, (0)r1
mov r2, 42
jeq rl, r2 goto TRUE
mov rO, O
ret
TRUE:
mov r0, 1

ret
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Native Code Compilation The main feature of the system, and the leading reason for
improved performance, is the JI'T compilation of the bytecode. The JIT compilation process
for this library is a simple one-to-one JIT and for each instruction (or group of eBPF ins-
tructions) there is a direct translation to native code instructions. The compiler backend is
non-optimizing. Indeed, the LLVM clang compiler frontend performs most of the interesting
optimizations, before sending the intermediate representation to the bytecode generation ba-
ckend. The native code then follows closely the generated bytecode. For illustrative purposes,

in Listing 4.3, we explain the machine code compilation for Listing 4.2 on an x86-64 system.

Listing 4.3 JIT compiled eBPF program for sample filter

0 push %rbp
1 mov %rsp, hrbp (1)

4 sub $0x228, Y%rsp

b mov %rbx, -0x228 (%rbp)
12 mov %r13, -0x220(%rbp)
19 mov %r14, -0x218(%rbp)
20 mov %rl5, -0x210(%rbp)

27 xor Y%rax, %rax }

(2)

29 xor %ri13, %ri3
2c¢ mov (Y%rdi), Y%rdi
30 mov $x2a, %rsi
3a cmp %rsi, Y%rdi
3d jz 0x4b

3f mov $0x0, Y%rax
49 jmp 0x55

4b mov $0x1, %rax )
55 mov -0x228(%rbp), %rbx )
5¢ mov -0x220(%rbp), %ri3

63 mov -0x218(%rbp), %ril4

6a mov -0x210(%rbp), %rilb

71 leave

72 ret J

-

The compiler first emits some standard instructions to build the function preamble (1). Some
variables are allocated on the stack as well for later use, and the values of callee saved registers
are saved (2). This is a standard preparation for a JIT-compiled filter binary. eBPF’s R0 and
R7 registers, used as the old A and K registers, are cleared (3). The filter context value
supplied in R1 (rdi) is loaded and compared with a predefined value (4). Based on this

comparison, 0 or 1 is loaded in RO (rax) and a jump to the exit routine is taken (5). A
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standard set of bytecodes is also emitted for the exit, the callee-saved registers are restored
and the filter function is exited (6).

Deviating from the Linux kernel’s eBPF approach, our eBPF library is lighter, and the
JIT compiler faster, by excluding the support for special instructions that perform direct
computations in the kernel on network packet data structures. Since we do not need the BPF
map data structures, the compiler and the interpreter now being in the userspace, these have
been removed as well. Instead, to extend the filtering library to a generic assisted-tracing
library, we propose our own shared-memory based communication system between the kernel
and the userspace eBPFs, as detailed in Subsection 4.6.3. For filtering, the native code also
supports calls to new helper routines for tracing specific string comparison functions, such as
bpf_strcmp. The architecture is kept flexible, so that other helper functions can be added

as desired.

We tested the performance of the filter, and the filtered tracing architecture, in relation
to various factors such as filter execution speed, and compared it with the performance of
LTTng’s userspace trace filtering system based on bytecodes. For practical reasons, because
of the limitations of the C pre-processor for defining variable length argument lists, LTTng’s
bytecode filter currently limits the number of filter predicates to 10, which limited us for our
test cases. However, the design of eBPF-based filters has no such restrictions for similar tests.
For now, the number of instructions that can be executed with eBPF is kept at 4096, with
the support for tail-calls so that multiple filters can be chained as desired. In our tests, for
a similar filter predicate type, we could filter on 50 predicates with our design, as compared
with 10 with LTTng’s current interpreted filter, in the tests that we performed. The design

of the experiments and our findings are elaborated in Section 4.7.

4.6 Improved Tracing Infrastructure

In Section 4.5, we discussed how eBPF and LTTng can be used to develop a new and efficient
filtered tracing architecture. We now explore the use of eBPF to provide a new way of perfor-
ming dynamic tracing in the kernel. We eventually propose and present a new co-operative
kernel-userspace tracing system, which supports dynamically defining conditional tracing,
and a more efficient data sharing mechanism. We now briefly describe similar approaches

taken by other tools.
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4.6.1 Dynamic Tracing

Some of the most interesting developments in the tracing infrastructure have been the ability
to dynamically insert tracing probes and take actions when these dynamic probes are hit.
The dynamic tracing tools at kernel level are available with different granularities. One of
the approaches that has proven to be very flexible is defining a scripted tracing language,
which is dynamically compiled at runtime to some IR or bytecode, and then intended to
be interpreted in-kernel. Based on the instructions, certain “functions” or “actions” can be
executed to gather data into buffers, to be read later from the userspace. Some famous
examples are ProbeVue [84] and DTrace [26]. These tools provided scripting languages like
D and Vue which would be compiled to an intermediate format. For example, in the case
of DTrace, the D program input through the dtrace command or a userspace application,
would go through the same process of lex-parse to generate the parse tree, and then be
compiled to a D intermediate format (DIF). A visual survey of the DTrace code reveals that
the DTrace compiler offers very limited optimizations (integer constant folding and peephole
optimization) as compared with the enhanced optimizations performed in LLVM for eBPF
bytecode. This DIF would be compiled by the assembler to the DIF object (DIFO). This is
then coupled with data tables (strings and variables) to form the DTrace object format (DOF')
— which is the actual bytecode interpreted by the in-kernel DTrace VM. The VM is a RISC
machine with a fixed register set. The instruction length is fixed to four bytes. To retrieve
values from the kernel, D'Trace provides a driver that communicates with a userspace library
(which can be used with other DTrace consumers like lockstat and intrstat). This is one
of the most comprehensive dynamic tracing infrastructures available. However, it requires
a custom VM in-kernel, and the interpretation cost can be high for long running or badly
written scripts. Another approach was that of SystemTap, where the SystemTap scripts
would be translated into pure C language and then compiled as kernel modules. These could
then be loaded at runtime in the kernel to provide tracing support. It eliminates the need
for an in-kernel VM, but the cost of tracepoint executions and data accesses has been high

as compared with other dynamic tools [85].

4.6.2 Data Sharing

Apart from the cost of the tracepoint execution, the cost of collecting and aggregating data
is an important consideration as well. Most tools employ a producer-consumer design where
the trace events can send data (producer) to a buffer (either in kernel or userspace), and
the filled buffers become available (in userspace) for analysis, storage or display (consumer).

Neira-Ayuso et al. discussed various kernel-userspace data sharing mechanisms before [86].
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For very large data bandwidth, the best strategy is to minimize the number of context

switches or syscalls.

In DTrace, the 1libdtrace library is responsible for consuming data retrieved from the buffers
at probe execution. DTrace provides per-CPU buffers in the kernel that are filled with relevant
data. Based on the ioctl() arguments in the library, an action is taken on the buffer, such as
copying data to the relevant userspace buffer. LT Tng provides very efficient shared memory
per-CPU ring buffers for one-way sharing of data from userspace to kernel. With the support
for Kprobes as well, it is an efficient dynamic tracing system for the kernel. However, there
is no specific tracing script support in LTTng, for more advanced analysis or aggregation, as
can be done with tools like DTrace. In its current form, eBPF allows the two-way sharing of

data (in BPF maps) from userspace to kernel, based on the bpf syscall (refer to Fig.4.5).

eBPF VM

----------- ---‘{ BPF Bytecode

' > BPF Maps }---- -
KPROBE — :
kS :
H h 4
Kernel
bpf() SYSCALLS
Userspace 'y
Load : Lookup
Elements
foo_kern.c foo_user.c '
: foo_kern.bpf
i eBPF LLVM
Backend
;
v :
foo_kern.bpf [--"" Read Maps i
Load

Figure 4.5 An eBPF program in its current form, with the kernel part (foo_kern.c) and a
userspace part (foo_user.c). The userspace part uses the bpf () syscall to load bytecode in
the eBPF kernel VM, as well as reading and updating data in BPF maps

Aggregated or filtered values, stored in hash-tables or array-maps, can also be accessed and
updated directly from within an eBPF program bytecode, using the BPF_CALL instruction and
helper functions, since the program has already been in kernel context. Even though eBPF
is efficient and flexible, as it can be dynamically compiled and be used to aggregate data, it

would benefit from a more efficient way to transfer data. eBPF itself is not a complete tracer
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but an infrastructure upon which tracers can be built. The main benefit of eBPF is that
it generates dynamically compiled, JIT code for tracing. With a more efficient data sharing
system, used cooperatively with the LTTng tracing system, it can provide an overall benefit,
in terms of speed as well as flexibility, to scripted tracing. The resulting system provides a
better tracing infrastructure than that offered by currently available tools. We now discuss

our co-operative tracing approach based on eBPF and LTThg.

4.6.3 KeBPF and UeBPF Interactions

Now that we have a system to dynamically execute JI'T-compiled code in our programs, we
can think beyond just filtering, and make decisions and take “actions” based on aggregated
values, in kernel as well as userspace. On the kernel side, this effort is presently ongoing in the
form of small eBPF scripts that can aggregate data and share it with userspace [87] (refer to
Fig.4.5). The kernel eBPF (KeBPF) machine provides access to the shared values in the form
of array-maps or hash tables using a syscall. The user can decide to perform aggregations on
the values in hash tables in kernel and concurrently read them from userspace. With some
effort, eBPF programs can also be used to take decisions based on remembered state (e.g.,
aggregated values). Our implementation of userspace eBPF (UeBPF) as a library opens new

possibilities to collaboratively trace and share data from userspace to kernel and vice versa.

INlustrative Use Case

We show the importance of the interaction between KeBPF and UeBPF programs using an
example. For diagnosing system performance, it can be beneficial for the user to track the
latency of syscalls issued by a particular userspace process. For that, we developed a custom
module where the userspace process registers itself using some ioctl() and then probes the
sys_enter and sys_exit trace events along with the time-stamps for each syscall. We can
thus compute, for each syscall, how much time the syscall was taking, and thus track the
particular syscall latency. We can keep track of all syscalls and set a threshold to decide
when to record an event or not, based on the syscall latency threshold. If the elapsed time for
a syscall is more than the threshold, the event can be recorded, or otherwise be discarded.
However, the latency threshold should not be the same for each syscall. It can vary from
syscall to syscall and can vary based on the complexity of the request and the underlying
hardware speed. We can therefore add specific hooks in the userspace application which can
specify expected thresholds to the kernel. These hooks then can be set from within eBPF
programs so that the user is able to dynamically change the threshold values even at function

granularity.
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On the kernel side, the kernel can share data with the userspace application to assist it
in tracing, based on conditions such as checking if CPUs have been switched, if we are in
a blocking state while waiting for a device, etc. All such process states can be shared and
the process can then conditionally decide to trace or not. This requires a fast data sharing
mechanism between the KeBPF and UeBPF programs, for minimum overhead. We therefore
implemented a mmap based shared memory, between kernel and userspace, so that KeBPF
and UeBPF programs could share data directly. Other approaches, such as Perf-based events
and LTTng’s data sharing, use fast shared memory as well, but only in the context of tracing
data, flowing from the producer to the consumer. Also, as discussed before, SystemTap and
DTrace are limited in how variables can be shared between different probes executed in kernel
mode, and offer no way of executing code in userspace, thus communicating with such code.
DTrace’s buffers are accessible from the userspace libdtrace library, but this involve copies

from kernel buffers.

Our sharing is between two VMs (KeBPF and UeBPF). Therefore, there is a direct access to
take decisions on tracing from both sides, right at the bytecode level. In that context, a shared
memory access enables very efficient communications, and useful usage scenarios. Coming
back to the example, as shown in Fig.4.6, we have a process with PID 42 that registers with
our syscall latency tracker module. The process contains a UeBPF filter attached to certain
function level hooks in the application (as discussed before) which calls our implemented
eBPF helper function bpf_set_threshold(). This helper function, when called from within
the UeBPF filter, writes the updated threshold for the given process/syscall in a shared
memory mapped location, shared with KeBPF. The sharing itself is based on a mmap () based
implementation where KeBPF allocated the required memory during initialization and then
mapped it to the userspace address space for direct access. The user can write data using
the helper function, and thus can have direct bi-directional access and a zero-copy overhead.
Therefore, the thresholds can be dynamically adjusted, and the kernel tracing output can
be controlled. In addition, the userspace can continually fill the proc_state structure with
current process state so as to control other parts of kernel/userspace tracing. In contrast,
as of now, the state of the art is to use the bpf () syscall and create/update BPF maps
from userspace. Each bpf () syscall, however, incurs more cost for the same operation, as
compared with a direct read or write in our shared memory. We implemented the VM-VM
sharing by allocating the page in the kernel and then mapping the memory to grant access
from userspace. In addition, in the default eBPF maps, each value requires an explicit copy

in the kernel from userspace, which is avoided in our shared memory approach.

In our tracing approach, kernel and userspace scripts are each executed in their respective

context. This enables very fast userspace tracing, avoiding context switches or traps at each
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Figure 4.6 The KeBPF-UeBPF shared memory implementation showing syscall latency thre-
sholds being set dynamically from within a UeBPF filter program

userspace tracepoint. This is the reason behind the unrivaled performance of the LTTng
userspace library. The excellent communication performance between userspace and kernel
space, enabled by the shared memory implementation, then opens up a lot of possibilities,
as shown later in the experiments, because of this high-performance architecture. There
are, however, precautions required for using this shared memory channel. From the security
point of view, the kernel scripts should treat appropriately these userspace supplied values.
Furthermore, appropriate synchronization mechanisms must be used, depending on the access

protocol.

For single-threaded synchronous access, no synchronization is required. For instance, a users-
pace script, executed from a single-threaded process, may specify a threshold just before the
application issues a system call. Upon finishing the system call, while the application is still
blocked, a kernel script would check if the threshold was exceeded, in which case it could

write a stack dump to the trace. In this scenario, no synchronization is needed.

There are several cases where thread-level storage can also avoid synchronization issues.
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Thread-level storage can easily be built using arrays indexed by the thread ID, or using
similar mechanisms. One common scenario is aggregating counts (e.g., the number of bytes
read, the number of packets received). This could lead to severe scalability problems if a
single global variable protected by a lock was used. Instead, one variable per thread (or per
core) is typically used and no synchronization is required. The variables can then be read
and aggregated at the end, once the scripts are deactivated, not being concurrently updated
any more. Alternatively, the variables can be read, even while they are being incremented,

as accesses to aligned, word-size, variables are atomic.

For shared, concurrently accessed, global variables, the situation is more problematic. For
instance, tracers in probe handlers either avoid any locking, like LTTng with atomic lockless
operations, or only allow probes in specific contexts where locking is possible. For example,
SystemTap limits the context where probes can be inserted, avoiding NMI interrupts for
instance, and automatically protects accesses to global variables with locks. Our implemen-
tation currently does not impose any particular access scheme or locking protocol. As an
example, the userspace RCU algorithms have proven to provide near zero read-side over-
head for concurrency control applications. It accomplishes this by allowing reads to occur
concurrently with updates. RCU maintains multiple versions of objects and makes sure they
are not discarded until all pre-existing read side critical sections are finished [20, 88]. These
algorithms would be applicable to a mixed kernel and userspace environment, but the cur-
rent URCU library implementation would need to be extended to communicate with a kernel

counterpart.

Our proposed approach allows a direct link between two VMs, one in userspace and the other
in kernel, to aggregate data, share data with zero copy overhead, and set filtered tracing and
conditional actions for each other. Results and inferences from our performance tests on our
shared memory implementation, for co-operative KeBPF-UeBPF tracing, are presented in

the next section.

4.7 Experimentation and Results

In order to demonstrate the effectiveness of the proposed architecture and algorithms, we
divide the experimentations into two sets. The first set focuses on the pure performance of
native code filters, and their performance when tracing is enabled with varying parameters.
The second set evaluates how our shared memory implementation performs as compared with

the bpf () syscall based approach, used by the default in-kernel eBPF implementation.
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4.7.1 Test Environment

All tests were done on a machine running Fedora 20 with the default 64-bit kernel 3.15
and the eBPF patched kernel 3.17-rc7 for kernel eBPF tests. We used LTTng v2.6 on our
workstation running an Intel i7-3770 featuring 4 cores, with hyper-threading disabled, and

16 GB of memory, for tracing and observing its interpreter performance.

4.7.2 Filter Experiment Set

There are multiple factors on which the trace filters performance can be measured. The
most important is overhead, which can be defined as the extra time or effort required to
complete a task when an external factor acts upon a control experimental setup. In terms of
tracing/filtering, the time taken due to the addition of tracing and filtering can be compared
with a baseline value (the normal execution time of the target process). This extra time is
the overhead and is the primary measure of the impact caused by any proposed addition
to the tracing system. To evaluate the performance, we designed a synthetic benchmark 33
with operator chaining. As shown in Fig.4.7, The filter predicates (P, P;..Py) are simple
string comparisons connected with a boolean operator (%), which is usually an AND/OR.
The important time measurements for us are the time required to build and setup the filter
(tx), the time to evaluate the filter (¢.) and, upon evaluation, the time taken to execute the

tracepoint code (¢;). Thus, the total time relevant for our observations is,

To evaluate t., we took AND/OR operator chained predicates, doing string comparisons,
and observed them for a varying number of events, under a biased condition (the filter
always returned TRUE) (refer Fig.4.8). This measured the performance of eBPF-JIT vs in-
terpreted and hardcoded filters, so that we could understand better how the native compiled
filters in userspace were functioning. We then devised another comprehensive test to com-
pare AND/OR chained predicates, doing string comparisons with varying depth-of-evaluation
(DoE), for a run consisting of 100 million events. Varying the DoE meant that the filter was
evaluated to be FALSE, and skipped the remaining predicates, after Px predicates. This is
the same as having a filter length equal to the position of the Py predicate, and the filter
evaluated to be TRUE. We varied the DoE from P =5 to P = 40 with steps of 5. Refer to
Figure 4.9. In the following test, we included the tracepoint time factor ¢, as well. For this,

we used similar tests and varied the events and the number of predicates, but the filter was

3. 3http://step.polymtl.ca/~suchakra/libebpf-benchmarks.tar.gz
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kept biased as TRUE, so that the tracepoint was called and we could measure t,. This gave
us the total (¢, + t;), needed to fully characterize our system. We have neglected tx as the
preparation time for filters is amortized over a large number of executions, and is negligible
under such conditions. The intended use case is high performance trace filters, with high

frequency events observed over long durations.

t (TRUE)

t | t, (FALSE) | t

K t

1 D

[varo == “str@”‘ * {varl == “strl”‘ *D* {varN == “strN”H Tracepoint ‘
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] 1 X N

v
TRUE

Depth of Evaluation (DoE)

Figure 4.7 Design of the trace filter benchmark. Evaluation time ¢, depends on DoE.

In this same experiment, we compared the time taken by similar LTTng-UST’s interpreted
filters with that by our eBPF interpreted and JIT approach. However, we limited the number
of predicates to only nine variables, due to LTTng currently not allowing more than nine

distinct string variables as trace payload (refer to Fig.4.10 for results).

Observations In the first test case for filter optimizations, also shown in Fig.4.8, we ob-
served that for 100 million events and a 50 predicates filter, the interpreted eBPF filter was
4.3x slower than the hard-coded filter (considered as a lower-bound reference). The native
compiled eBPF filter, however, was only 1.4x slower than the hard-coded reference. Even
though the JIT compiled filter performance is expected to be similar to that of the actual
hard-coded filter, since both were executing native machine code, we could see that this small
overhead was due to extra instructions being executed for each filter, as seen in Listing 4.3.
The overall filter performance was consistent for 1M and 10M events, indicating that there
would be a consistent filter overhead reduction in the 3x range, when using native compiled
eBPF filters, as compared with similar interpreted filters, for tracing scenarios with long

predicates and high event frequency.

In the second test case, as shown in Fig.4.9, we observed that with a constant 100 million
events and an increasing number of predicates, the benefit of natively compiled eBPF trace
filters increased marginally. The performance of a 10 predicate JIT compiled eBPF filter was

3.1x better than a similar interpreted filter. This increased to 3.2x for 20 predicates, and a
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Figure 4.8 Pure eBPF filter performance with a 50 predicate TRUE biased AND chain

little over 3.3x for 40 predicates. This shows that even for filters with unusually long predicate

chains, the performance was consistent with that of natively compiled filters.
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Figure 4.9 Pure eBPF filter performance with 100M events and a TRUE biased AND chain

In the third test scenario, we compared LTTng’s interpreted filter performance with eBPF’s
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JIT compiled filter performance by observing the biased FALSE cases in Fig.4.10.
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Figure 4.10 eBPF vs LTTng’s filter performance with increasing number of TRUE/FALSE
biased AND chain predicates

For nine predicates, eBPF’s JIT filter was 3.1x faster than a similar LTTng’s interpreted
filter. We further observed that eBPF’s interpreted filter itself was 1.8x faster than LTTng’s
interpreted filter, pointing to a better register-based eBPF interpreter. We now see how these
filters fared with LT Tng tracing enabled. In that case, if the filter was evaluated to TRUE, the
tracepoint was recorded and the observed time included the tracepoint time. We compared
our observations with the LTTng (no filter) mode as the reference line, where no filter was
set and all tracepoints were recorded. For a filter of nine AN D chained string comparisons,
biased to TRUE, the interpreted LTTng had an overhead of 325 ns/event, as compared with
eBPF-JIT filter’s overhead of 154 ns/event, when LTTng (no filter) was taken as reference.
Our JIT based approach was therefore 2.1x faster. This demonstrates the fact that, with the
small cost of JIT-based filtering with our library (154 ns/event in this case), the user can
implement filtering at little cost to potentially save a lot of resources by cutting down on

unnecessary events that can easily be filtered.

Memory Overhead

Tracing itself may consume a significant amount of memory, some added instructions and

data in the program executable, but more importantly, per-CPU structures to buffer events
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until they are streamed to disk or the network. For instance, in a typical high throughput
tracing setup, LTTng can even be configured to use 64 sub-buffers of 8 MB each. For each
tracepoint for which a condition is added with our proposed scheme, a small data structure
is needed for the interpreted case to represent the trace actions and predicates. When JIT
compilation is used for the condition bytecode, additional memory is required to store the
compiled code. Either way, the additional memory consumed is insignificant and much lower
at 32 KB for a complex 50 predicates eBPF filter, as compared with the memory requirements

of the trace buffers themselves.

4.7.3 Shared Memory Experiment Set

For this experiment set, we created a synthetic benchmark to evaluate the performance of
our KeBPF-UeBPF shared memory implementation and compared it with the default syscall
based sharing system used in KeBPF. We started off by creating an eBPF program which
populates an eBPF array-map with 1000 integers with random values. We then looked up
these values from userspace using the bpf () syscall with arguments BPF_MAP_LOOKUP_ELEM
and measured the time for multiple runs. We compared this with the time taken to read the
same values updated in Kernel eBPF using our shared memory, and then read from userspace

using a simple read (), or a helper function in UeBPF which calls read ().

Observations In the case of KeBPF-UeBPF shared memory implementation, we got an
overall improvement of 99x over the default implementation. The time taken by 1000 reads
of an integer array-map is shown in Table 4.2. The default bpf () implementation took 218
ns/read whereas our shared memory implementation took 2.2 ns/read, which can be explained
by the fact that the shared memory can be directly accessed, without needing a system call,
as detailed in Subsection 4.6.3.

Table 4.2 Time taken for 1000 reads of an integer array-map

Time(ns) StdDev
Baseline 2120 210
eBPF-shm 2247 984
eBPF-syscall 218203 801

Our eBPF-shm shared memory was close to the baseline values taken using simple read calls.
eBPF-syscall, in Table 4.2, shows the time taken to read using the bpf () syscall. Going

through the eBPF code in the kernel we observed that a similar process, of using this syscall
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to update a map value in the kernel, would incur a syscall time as well as the time involved
in copying the value to the kernel space. In our shared memory system, however, there was
no extra copy involved, and KeBPF and UeBPF could share data directly at a high speed,

as observed in our test.

4.8 Conclusion and Future Work

In this paper we presented two contributions to tracing techniques in userspace. First, we
improved the trace filtering mechanism by using Just-In-Time (JIT) compilation to convert
trace filter bytecode into native machine code. We used the Linux kernel’s eBPF based byte-
code technique, and improved it for tracing in userspace context. We targeted LT Tng-UST as
the tracer, due to its low overhead, and observed that our native filtering approach surpasses
the filtering performance of similar high performance state-of-the-art tools. We showed that,
with our technique, we could filter traces in record time to have smaller traces and provide
more efficient tracing, in long running high frequency in production tracing scenarios, such as
embedded soft-realtime systems and networked nodes. We devised a rigorous benchmark and
found that the performance of the new JIT-based filtered tracing architecture is 3x that of
the current interpreted approaches. We provided the implementation in the form of a generic
userspace eBPF filtering library that can be used to improve other trace filtering scenarios

such as network packets or syscall-based sand-boxing in userspace.

As the second contribution, we developed a shared memory system between the default
Kernel eBPF and our Userspace eBPF, by extending the eBPF system at both levels. This
enables sharing data at greater speeds and using it to do co-operative tracing from kernel
to userspace and vice versa. We demonstrated this using a basic syscall latency tracing
example, where the thresholds could be dynamically adjusted at function level granularity
using hooks in the userspace application, right from within UeBPF. KeBPF could then access
it to make decisions on recording or discarding syscall events. The interaction between a
kernel VM and a userspace VM is significant as it allows a direct interaction between decision
making sections. Along with the benefit of zero-copy overhead, it provides the flexibility for
performing conditional actions on kernel-userspace shared data - such as performance counter
values, process states (off-CPU state, wait threshold, syscall latency threshold, resources
thresholds, etc.).

There are, however, some limitations in our current approach, however, which will motivate
some of our future work. We have observed that very specific and long filter predicate usecases
in trace filtering can have a negative effect. The overall trace becomes small, and important

events which give a context to the tracing scenario get missed out. To overcome this, we
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can use profile-guided tracing where the generated bytecode can perform some non-intrusive
profiling on the tracing, get some feedback and also record traces which are relevant to the
filter scenario — even if it does not satisfy the filter condition. Triggers for system-wide (ker-
nel+userspace) tracing can be defined and, when enabled, in addition to the intended filtered
tracepoint, would also record a system-wide trace for some predefined or dynamically defi-
ned duration. We can also utilize LLVM’s compiler infrastructure to support some high-level
meta language to define tracing specific scripts, and move towards traditional scrip- based
filtering when required, while keeping all the benefits of low overhead and speed provided by
LTTng.

The UeBPF library could also benefit from more explicit support for data sharing through
multiple threads. We can also port it to non-Linux platforms as a generic library for trace,
network packet or syscall filtering. This would expand it from its current Linux specific
implementation. In some specific usecases, it may also be worthwhile to investigate hardware
based trace filtering, where an eBPF machine would be implemented not just as a JIT
compiler but as specialized hardware. Our current userspace eBPF implementation could
also be extended to provide support for program flow tracing, such as with Intel Processor
Trace (PT) [89], where ¢eBPF programs from userspace could conditionally trigger a PT

snapshot.
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5.1 Abstract

Debugging and profiling tools can alter the execution flow or timing, can induce heisenbugs
and are thus marginally useful for debugging time critical systems. Software tracing, however
advanced it may be, depends on consuming precious computing resources. In this study,
the authors analyse state-of-the-art hardware-tracing support, as provided in modern Intel
processors and propose a new technique which uses the processor hardware for tracing without
any code instrumentation or tracepoints. They demonstrate the utility of their approach with
contributions in three areas - syscall latency profiling, instruction profiling and software-tracer
impact detection. They present improvements in performance and the granularity of data
gathered with hardware-assisted approach, as compared with traditional software only tracing
and profiling. The performance impact on the target system — measured as time overhead
is on average 2-3%, with the worst case being 22%. They also define a way to measure
and quantify the time resolution provided by hardware tracers for trace events, and observe
the effect of fine tuning hardware tracing for optimum utilisation. As compared with other
in-kernel tracers, they observed that hardware-based tracing has a much reduced overhead,
while achieving greater precision. Moreover, the other tracing techniques are ineffective in

certain tracing scenarios
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5.2 Introduction

Modern systems are becoming increasingly complex to debug and diagnose. One of the main
factors is the increasing complexity and real-time constraints which limit the use of tradi-
tional debugging approaches in such scenarios. Shorter task deadlines mean that the faithful
reproduction of code execution can be very challenging. It has been estimated that developers
spend around 50% to 75% of their time debugging applications at a considerable monetary
cost [55]. In many scenarios, heisenbugs [90] become near impossible to detect. Long-running
systems can have bugs that display actual consequences much later than expected, either
due to tasks being scheduled out or hardware interrupts causing delays. Important parame-
ters that need to be analyzed while doing a root cause analysis for a problem include the
identification of costly instructions during execution, the detection of failures in embedded
communication protocols, and the analysis of instruction profiles that give an accurate repre-
sentation of which instructions consume the most CPU time. Such latent issues can only be
recorded faithfully using tracing techniques. Along with accurate profiling, tracing provides

a much needed respite to developers for performance analysis in such scenarios.

We focus in this work on two important common issues in current systems : the efficient de-
tection/tracking of hardware latency and the accurate profiling of syscalls and instructions,
with an ability to detect program control flow more accurately than with current software
approaches. We discuss our new analysis approach, which utilizes conditional hardware tra-
cing in conjunction with traditional software tracing to accurately profile latency causes. The
trace can be decoded offline to retrieve the accurate program flow even at instruction gra-
nularity, without any external influence on the control flow. As software tracing can induce
changes in the control flow, with our system we can further detect the cause of latency in-
duced by the software tracers themselves, on the software under observation, to nanosecond

range accuracy.

Pure software profiling and tracing tools consume the already constrained and much needed
resources on production systems. Over the years, hardware tracing has emerged as a powerful
technique for tracing, as it gives a detailed and accurate view of the system with almost zero
overhead. However, the IEEE Nexus 5001 standard [91] defines 4 classes of tracing and
debugging approaches for embedded systems. Class 1 deals with basic debugging operations
such as setting breakpoints, stepping instructions and analysing registers - often directly
on target devices connected to hosts through a JTAG port. In addition to this, Class 2
supports capturing and transporting program control-flow traces externally to host devices.
Class 3 adds data-flow traces support, in addition to control-flow tracing, and Class 4 allows

emulated memory and I/O access through external ports. Hardware tracing modules for
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recent microprocessors (Class 2-Class 4) can either utilize (1) on-chip buffers for tracing,
recording trace data from individual CPUs on the SoC, and send it for internal processing or
storage, or (2) off-chip trace buffers that allow trace data to flow from on-chip internal buffers
to external devices, with specialized industry standard JTAG ports, and to development host
machines, through high performance hardware trace probes [53, 54]. These hardware trace
probes contain dedicated trace buffers (as large as 4 GB) and can handle high speed trace
data. As we observed in our performance tests (section 5.5), the former approach can incur
overhead in the range of 0.83% to 22.9%, mainly due to strain on memory accesses. We
noted that trace streams can generate data in the range of hundreds to thousands of MB /sec
(depending on trace filters, trace packets and packet generation frequency). Thus, there is a
tradeoff in choosing either an external analysis device or on-chip buffer recording. The former
gives a better control, (less dependency on external hardware which is curcial for on-site
debugging), but incurs a small overhead for the memory subsystems on the target device.
The latter provides a very low overhead system but requires external devices and special
software (often proprietary) on development hosts. The generated trace data is compressed
for later decoding with specialized debug/trace tools [92, 93] that run on host machines, as

illustrated in Figure 5.1.

Device memory is limited, thus there are multiple ways to save tracing data using either
of the two approaches discussed above. Therefore, to achieve maximum performance, recent
research deals with compressing the trace output during the decoding phase to save transfer
bandwidth. [55]. Earlier, part of the focus was on the unification of the traces, which is
beneficial for Class 3 devices [56]. This provides a very detailed picture of the execution at

almost no overhead on the target system.

In this paper, we mainly focus on on-chip local recorded traces, pertaining to Class 2 de-
vices, owing to their low external hardware dependency and high availability in commonly
used architectures such as Intel x86-64. With our proposed approach, using hardware-trace
assistance, we were able to trace and profile short sections of code. This would ensure that
precious I/O bandwidth is saved while maintaining sufficient granularity. We used Intel’s
new Processor Trace (PT) features and were able to gather accurate instruction profiling
data such as syscall latency and instruction counts for interesting events such as abnormal
latency. In profile mode, we can also selectively isolate sections of code in the operating sys-
tem, for instance idling the CPU, taking spinlocks or executing FPU bound instructions, to

further fine-tune the systems under study.

The remainder of the paper is organized as follows. Section 5.3 gives a general overview of

program-flow tracing, its requirements, and limitations of the current sampling systems to
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handle these. It also introduces the concept of hardware tracing to overcome such limitations.
We discuss state-of-the-art techniques used in software tracing and finally concentrate on our
research scope. In section 5.4, we introduce our hardware and hardware-assisted software
tracing based architecture. We then elaborate our three contributions that introduce an
instruction and time delta profiling technique to identify interrupt latencies, profiling syscall
latency in short sections of code and identify causes of latency in software tracers. These
contributions utilize our hardware-assisted approach. In section 5.5, as our final contribution,
we start with a detailed experiment, measuring overhead and trace size, for Intel’s Processor
Trace hardware tracing infrastructure as it forms the core of our hardware based approach.
We have also proposed a new metric to define the granularity of the temporal and spatial
resolution in a trace. We then show how the hardware based trace profiler can help visualize

anomalies through histograms.
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5.3 Background

In an ideal environment, developers would want to know as much as possible about the
flow of their programs. There are three important artifacts that can be gathered during a
program execution - flow of instructions during program, their classification, and deduction
of the program flow with timing information. Static analysis of binaries, to understand how
the program runs, allows the developers to visually analyze how the compiler generates
instructions, estimate how the instructions may execute, and can be used further for code
coverage [36, 37]. Such information is also vital for debuggers to generate and aid in the
breakpoint debugging approach. Recently, the focus on pure static code analysis tools has
been mostly in the security domain, for analysing malicious or injected code in binaries [38, 39]
or optimizing compilers based on the analysis of generated code [40]. However, the actual
execution profiles can differ from what static tools can anticipate, due to the complexities of
newer computer architectures in terms of pipelines, instruction prefetching, branch prediction
and unforeseen runtime behaviour such as hardware interrups. Therefore, to understand the
effect of individual instructions or function blocks, the instructions executed can be profiled
at runtime. The use of counting instructions for blocks of code, at program execution time,
has been proposed and explored in-depth before [41]. Therefore, the instruction sequence and
profile can be recorded and then replayed later on. However, some of these earlier approaches
dealt with inserting instrumentation code, to profile instructions and other interesting events.
Sampling based techniques, developed earlier such as DCPI [42, 43], have also been discussed
extensively before, where authors demonstrated the use of hardware counters provided by
the processor for profiling instructions. Merten et al. [44] have earlier proposed the use of a
Branch Trace Buffer (BTB) and their hardware table extension for profiling branches. Custom
hardware-based path profiling has been discussed by Vaswani et al. [45], where they observe
that low overhead with hardware-assisted path profiling can be achieved. Recent advances,
especially in the Linux kernel, discuss how profiling tools like Perf can be used to generate
execution profiles, based on data collected from special hardware counters, hardware blocks

that record branches or pure software controlled sampling [46, 47].

5.3.1 Program Flow Tracing

Recording instruction flow or branches in a program can provide information about how a
program actually executes in comparison to its expected execution. The comparison of an
anomalous program flow trace with that of a previous one can let the developer know what
was the effect of changes on the system. It can also be used to track regressions during new

feature additions. At lower levels, such as instructions flow, bugs that occur in long running
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real-time systems can now be detected with more confidence, as the complete execution details
are available. With recent hardware support from modern processors, this has become easier
than ever. We discuss details about such hardware support further in section 5.3.2. Larus et
al discussed quite early about using code instrumentation to inject tracing code in function
blocks, or control-flow edges to track instructions or deduce the frequency of their execution
[48, 41]. They observed overhead of 0.2% to 5%, without taking into consideration the effect
of the extra overhead of disk writes (which they observed as 24-57% in those days). Other
more powerful tools, which effectively perform execution profiling or control-flow tracing, can
be built using similar binary modifying frameworks such as Valgrind [49]. Even though this
framework is more data-flow tracing oriented [50], some very insightful control-flow tools have
been developed, such as Callgrind and Kcachegrind [51]. Program-flow tracing can either
encompass a very low level all-instruction trace generation scheme, or a more lightweight

branch-only control-flow trace scheme.

Instruction Tracing Tracing each and every instruction to deduce the program flow can
be quite expensive if instrumentation is required. Hence, architectures such as ARM and
PowerPC provide hardware support for such mechanisms in the form of NSTrace (PowerPC),
EmbeddedICE, Embedded Trace Macrocell (ETM), Program Trace Macrocell (PTM) (now
part of ARM CoreSight) and MIPS PDTrace [57, 58]. The basic idea is to snoop the bus
activity at a very low-level, record such data and then reconstruct the flow offline from the
bus data. External hardware is usually connected as bus data sink and special software can
then use architecture level simulators to decode the data. The benefit of a complete instruction
flow trace is that there is highly detailed information about each and every instruction for
accurate profiles, in-depth view of memory access patterns and, with the support of time-
stamped data, a very accurate overall tracer as well. However, the amount of data generated
is too high if external devices are not used to sink the data. Indeed, memory buses are usually
kept busy with their normal load, and an attempt to store the tracing data locally incurs bus
saturation and additional overhead. An approach to reduce such bandwidth and yet keep at

least the program-flow information correct is to use branch only traces.

Branch Tracing The issue of memory related overhead for hardware program/data flow
traces has been observed earlier as well [48, 41]. Even though hardware can generate per-
instruction trace data at zero execution overhead, such an additional data flow may impact
the memory subsystem. Hence, just choosing the instructions that cause a program to change
its flow greatly reduces the impact. Such control-flow instructions (like direct/indirect jumps,

calls, exceptions etc) can indeed be enough to reconstruct the program flow. Dedicated hard-
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ware blocks in the Intel architecture, such as Last Branch Record (LBR), Branch Trace Store
(BTS) [59], and more recently Intel Processor Trace (PT) choose to only record branches
in the currently executing code on the CPU cores. By following the branches, it is quite
easy to generate the instruction flow with the help of additional offline binary disassembly.
For example, for each branch instruction encountered in the flow, a record for the branch
taken/not-taken and its target can be recorded externally. This is then matched with the
debug information from the binary to reconstruct how the program was flowing. We detail
and discuss the branch tracing approach, as well as instruction tracing, in section 5.3.2, where

we show a state-of-the-art branch tracing approach using Intel PT as an example.

5.3.2 Hardware Tracing

As discussed previously, the complete instruction and branch tracing is supported by dedi-
cated hardware in modern multi-core processors. They provide external hardware recorders
and tracing devices access to the processor data and address buses. ARM’s early implemen-
tation of EmbeddedICE (In-circuit Emulator) was an example of this approach. Eventually,
processor chip vendors formally introduced dedicated and more advanced hardware tracing
modules such as CoreSight, Intel BTS and Intel PT. In a typical setup, such as shown in
Figure 5.1, trace data generated from the trace hardware on the chip can be funneled to
either the internal buffer for storage, or observed externally through an external hardware
buffer /interface to the host development environment, for more visibility. In both cases, the
underlying techniques are the same but performance varies according to the need of the user

and the hardware implementation itself.

Tracing Primitives

Since an important part of our research deals with program flow tracing, we discuss how
hardware tracing blocks can be used to implement it. The basic idea is to record the control-
flow instructions along with some timing information (if needed) during the execution of the
program. Different architectures have different approaches for deciding on the optimum buffer
size, trace compression techniques, and additional meta-data such as timing information,
target and source instruction pointers etc. We explain such techniques along with an overview
of the tracing process in this section. A program flow trace can be broadly broken down into

following elements.

Trace Configuration Most of the hardware trace modules can be fine-tuned by writing

data to certain control registers, such as Model Specific Registers (MSR) in Intel or the
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Coresight ETM/ETB configuration registers for ARM. For example, writing specific bits in
MSRs can control how big a trace buffer will be or how fine-grained or accurate the timing
data will be generated. An optimum configuration leads to better trace output - the effect of

which is discussed later in this paper.

Trace Packets A hardware trace enabled execution generates all the hardware trace data
in a compressed form for eventual decoding. This can consist of different distinguishable
elements called trace packets. For example, in the context of Intel PT, these hardware trace
packets can contain information such as paging (changed CR3 value), time stamps, core-to-
bus clock ratio, taken-not-taken (tracking conditional branch directions), record target IP
of branch, exceptions, interrupts, source IP for asynchronous events (exceptions, interrupts).
The amount or type of packets enabled and their frequency of occurrence directly affect the
trace size. In the control-flow trace context, the most important packets that are typically
common to different architectural specifications of trace hardware are :

— Taken-Not-Taken : For each conditional direct branch instruction encountered (such
as jump on zero, jump on equal), the trace hardware can decode if that specific branch
was taken or not. This is illustrated with Intel PT’s trace output as an example in
Figure 5.2. We can observe that Intel PT efficiently utilizes 1 bit per branch instruction

to encode it as a taken or not taken branch.

Number {0..20}
Trace Packets

mov <numbers>,%eax '-->|N T N TN T|
and $0x1,%eax

test  %eax,%eax

je <odd> ; TNT Packet

Figure 5.2 An odd-even test generates corresponding Taken-Not-Taken Packets

The earlier implementations such as Intel BTS used 24 bits per branch, which caused
an overhead between 20% to 100% as the CPU enters the special debug mode, causing
a 20 to 30 times slowdown [62, 63].

— Target IP : Indirect unconditional branches (such as register indirect jumps) depend
on register or memory contents, they require more bits to encode the destination
(Instruction Pointer) IP of the indirect branch. This can also be the case when the
processor encounters interrupts, exceptions or far branches. Some implementations

such as Intel PT provide other packets for updating control flow, such as Flow Update
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Packet (FUP), which provide source IP for asynchronous events such as interrupts
and exceptions. In other scenarios, the binary analysis can usually be used to deduce
the source IP.

— Timing : Apart from deducing the program-flow, packets can be timed as well. Ho-
wever, time-stamping each and every instruction can be expensive in terms of trace
size as well as extra overhead incurred. ARM CoreSight provides support for accurate
time-stamp per instruction. However, the usecase is mainly aimed at usage of an ex-
ternal high speed buffer and interface hardware through a JTAG port. For on-device
tracing such as Intel PT, the packet size can be kept small by controlling the frequency
of time-stamps being generated and the type of time-stamps. For example, a timing
packet can either be the lower 7 bytes of the TSC value as an infrequently recorded
TSC packet or can be just a more frequent 8-bit Mini Timestamp Counter (MTC)
packet occurring in between two TSC packets. MTC packets record incremental up-
dates of CoreCrystalClockValue and can be used to increase the timing precision with
fewer bits utilized. Trace timing in some implementations can further be improved by
a cycle accurate mode, in which the hardware keeps a record of cycle counts between
normal packets.

In the next section we discuss how we can leverage hardware tracing techniques and utilize

it for efficient and more accurate profiling and tracing.

5.4 Trace Methodology

In order to get useful instruction profiling and tracing data for use-cases such as accurate
detection of interrupt latency, we propose a framework that utilizes a hardware-assisted soft-
ware tracing approach. The major focus of our work is on post-mortem analysis of production
systems. Hence, the underlying technologies used aim at recording raw trace or program-flow
data at runtime, and eventually perform an offline merge and analysis, to get in depth infor-
mation about abnormal latency causes, or generate instruction execution profiles. The data
generated in hardware tracing can reach a range of hundreds of MB per second. Various
approaches have been taken to reduce this overhead. Apart from careful configuration of the
trace hardware, various methods such as varying the length of TNT packets (short/long),
IP compression, indirect transfer return compression [61] are employed to control precisely
the trace size, with the aim of reducing memory bus bandwidth usage. Previous work of-
ten focused on trace compression and even better development of tracing blocks itself [55].
In contrast, we chose to leverage the latest state-of-the-art hardware such as Intel PT and

carefully isolate interesting sections of the executed code to generate short hardware traces.
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These short traces can be eventually tied to the corresponding software trace data to generate
a more in-depth view of the system at low cost. This can also be used to generate instruction
execution profiles in those code sections for detecting and pinpointing anomalous sections of
the program, right down to the executed instruction. This gives a unique and better approach
as compared to other techniques of sample based profiling (such as Perf) or simulation/trans-
lation based profiling (such as Valgrind) mainly due to the fact that there is no information
loss, as the inferences are based on the real instruction flow in a program, and the overhead
of simulated program execution is completely removed. Choosing only specific sections of
code, to trace and profile with hardware, also means that we do not require external trace
hardware and can rely on internal trace buffers for post-mortem analysis. In this section,
we first show the design of our framework itself and demonstrate how we can use Intel PT
hardware-assisted software tracing. We also explain our three main contributions, detailing
how we could profile interrupts/syscall latency and evaluate the impact of software tracers
themselves. We start with some background on Intel PT, and then explain the architecture

of our technique.

5.4.1 Intel PT

Intel’s MSR based Last Branch Record (LBR) and the BTS approach for branch tracing
have been widely explored before [62, 63]. Eventually, the benefits of the hardware tracing
approach advanced the branch-tracing framework further, in the form of Intel PT. Branch
trace data with PT can now be efficiently encoded and eventually decoded offline. The basic
idea, as shown in Figure 5.2, is to save the branching information during program execution,
encode and save it. Later on, the trace data along with run-time information such a process
maps, debug-info and binary disassembly, we can fill in the gaps between the branches and
form a complete execution flow of the application. During the decoding of the compressed
recorded branch data, whenever a conditional or indirect branch is encountered, the recorded
trace is browsed through to find the branch target. This can be merged with debug symbols
and static analysis of the binary code to get the intermediary instructions executed between
the branches. Therefore, with Intel PT’s approach, we do not need to exclusively store each
and every instruction executed but just track branches - allowing on-device debugging and
less complex implementation of hardware and debugging software. Apart from that, with the
simple MSR based configuration of the hardware, we have the ability to set hardware trace
start and stop filters based on an IP range to allow a more concise and efficient record of
trace at runtime. The decoder has been open sourced by Intel for a rapid adoption in other
tools such as Perf [94]. We incorporated PT in our framework, owing to its low overhead and

versatility as presented later in section 5.5.2 where we discuss its performance and overhead.
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5.4.2 Architecture

We developed a framework based on the PT library, for decoding the hardware trace, and
a reference PT driver implementation provided by Intel to enable, disable and fine tune
trace generation [95, 96]. An overview of our hardware-assisted trace/profile system is shown
in Figure 7.3. The Control Block is a collection of scripts to control the PT hardware in
CPUs through the simple-pt module. The control scripts can be used for configuring the PT
hardware for filtering, time-stamp resolution and frequency control. It can enable/disable
traces manually for a given time period. This is achieved by setting the TRACE_EN bit in the
MSR_TA32 RTIT_CTL control register that activates or deactivates the trace generation. We

use the control scripts for generating raw instruction and latency profiling data. Any PT data

CPU

Kernel Trace

Buffer

simple-pt*
Module

Userspace T

Control Block

Storage

PT Configuration

Trace Enable

Runtime
Information

Trace Disable

..........................................

Trace Decoder
Block

Intermediate Format

! Visualization
: Block

» Instruction Profiler —P- m

L» Latency Profiler i

Figure 5.3 The architecture of our proposed hardware-assisted trace-profile framework. Simple
PT is used for trace hardware control
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generated is sent to a ring-buffer, the content of which is dumped to the disk for offline analy-
sis. Along with the trace data, runtime information such as process maps, CPU information
and features are saved as sideband data. This is essential for trace reconstruction. The Trace
Decoder reconstructs the control flow based on runtime information, debug information from
binary, and per-CPU PT data. The decoding process involves reading the processor trace
binary byte by byte. Much like assembly opcodes, packets are identified by an arrangement
of bytes. We go through individual incoming bytes from the trace buffer to identify the packet
and its contents. This is merged with the dissembled binary information to give the packets
an execution context. This data is converted to our intermediate format that is consumed by
the Instruction Profiler and Latency Profiler modules which can generate visualizations. Our
intermediate format consists of a stream of instructions with markers identified by function
names. This is converted to visualization data by transforming the markers to a call-stack
with instruction or time-delta. More about this is explained in subsequent sections. We now
elaborate on our three contributions that cover instruction/syscall latency profiling and the

performance impact of software tracing systems on modern production systems.

5.4.3 Delta Profiling

As seen in Figure 7.3, the raw PT data from the processor can be reconstructed to generate
a program control flow. It is, however, important to analyze this huge information in a mea-
ningful manner. Therefore, we present an algorithm to sieve through the data and generate
instruction execution profiles based on patterns of occurrence of instructions in the control

flow.

These profiles can be used to represent the histograms based on a time-delta or an instruction
count delta. This can work for single instructions to observe histograms during a simple
execution, as well by just counting the occurrence of a set of instructions. This approach is
significantly different from sample based profiling, as it is based on true instruction flow and
can pinpoint errors at finer granularity in short executions. As interrupts are quite significant
in embedded production systems, we choose to profile instructions that are responsible for
disabling and enabling interrupts in the Linux kernel. Thus, we generate two histograms
that represent time-delta and instruction count delta of intervals between interrupt enabling
and disabling instructions. We observed that interrupt disabling and enabling in Linux on a
x86 machine is not just dependent on two instructions, sti and cli respectively, but also
on a pattern of instructions that use pushf and popf to push and pop the entire EFLAGS
register, thus clearing or setting the interrupt flag in the process. Thus, to effectively profile

the interrupt cycle, we identified the instruction patterns during decoding and grouped and
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Algorithm 1 Hardware Delta Profiling

Input : {D:t,...t,}, where D is the coded stream for time 7, , , Target Instruction Set
I (either individual instruction pair I; or super-instruction pair S;) and Mode (T'A or
ICA)

Output : Time-A histogram, Instruction Count-A histogram, Instruction Count histogram
of I

1: procedure DELAHISTOGRAM

2 iC <0

3 reset Flag(F)

4 foric D do

5: z = decodelnstruction(i)

6 incrementCount()

7 if = (I; or S;) then

8 if Mode = T'A then

9: if isSet(F) then

10: unset(F')

11: tSntm — Tz

12: At =tSp1m — tsy
13: addToDatabase(DB, At)
14: else

15: 15, <— t,

16: set(F')

17: end if

18: end if

19: if Mode = IC'A then
20: if isSet(F) then

21: unset(F')

22: ICA = getDelta()
23: resetCounter(iC')
24: addToDatabase(DB, ICA)
25: else

26: startCounter(iC')
27: set(F)

28: end if

29: end if
30: count (iC')

31: end if

32: end for

33: generateHistogram(DDB)
34: end procedure

identified them as superSTI and superCLI instructions. For incoming coded hardware-trace

streams, we devised an algorithm shown in listing Algorithm 1 that is able to generate these
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profiles. For example, when we apply this during the trace decode time, we can obtain the
time taken between two consecutive interrupts enable and disable in the execution, or the
number of instructions executed between them. These target super-instructions pairs (S;),
which are actually a pseudo-marker in the instruction stream based on pattern matching, can
be given as input to the profiler. Based on the mode, it can either begin instruction counting
or timestamp generation and stores it in a database. We then iterate over the database and

generate the required visualizations.

We can extend this technique of identifying patterns in the code to record more interesting
scenarios. For example, in the Linux kernel, CPU idling through the cpu_relax() function
generates a series of repeating nop instructions. Similarly, the crypto subsystem in the Linux
kernel aggressively uses the less-recommended FPU. We were able to successfully identify

such patterns in the system based purely on PT, without any active software tracer.

We present an implementation of the algorithm in section 5.5.3 where we elaborate more on
our delta profiling experiment. Decoded traces from Intel PT were chosen to demonstrate

utility of this approach.

5.4.4 Syscall Latency Profiling

Syscalls affect the time accuracy of systems, especially in critical sections, as they form
a major chunk of code executed from userspace. For example, filesystem syscalls such as
read(), open(), close() etc. constitute 28.75% of code in critical sections of Firefox. [97].
Profiling syscall counts for a given execution is easy and can be performed with simple
profilers such as Perf, or even through static or dynamic code analysis techniques based on
ptrace(). However, to understand, the extra time incurred in the syscalls, we can get help
from software tracers. As the software tracers themselves affect the execution of syscalls,
an accurate understanding can only be achieved by an external observer which does not
affect the execution flow. In such scenarios, hardware tracing is a perfect candidate for such
an observer. We used hardware traces and devised a way to visualize syscall stacks in our
proposed technique, after decoding, to compare them between multiple executions. This gave
us a deep and accurate understanding of any extra time incurred in syscalls, right down
to individual instructions. We devised a way such that, post-decoding, the trace data was
converted to our visualization path format that prepares a raw callstack. Refer Figure 5.4.
The function markers in the decoded data are converted to individual execution paths in
the hierarchy. Each node in the path represents a function. To each path, we append the
instructions that executed for traversing the path up to its tail. Each line in the new data

contains a single complete path in the callstack. As an example, Figure 5.5(a) illustrates



85

Intermediate Trace Visualization
with Markers Path Format

Call <f1> f1 - f2 - f3 - 3

INSN1 0T

CALL <f2> flfer- 1

INSN2

INSN3

CALL <f3> H

INSN4 v

INSN5 Visualization

RET

Figure 5.4 A sample trace sequence converted to a section of visualization path format

the effect of an external tracer (LTTng) on the mmap() syscall with the help of a callstack.
The callstack shown is for a short section of code from the library mmap call to the start
of the syscall in the kernel. We see in the figure that the highlighted call-path reached the
lttng event_write() function from the second ring of the entry_SYSCALL 64 () function
in the kernel. The layers represent calls in a callstack, with the call depth going from the
innermost to the outermost layers. Here, the path to the 1ttng event_write() function
took 9.3% of all instructions in the recorded callstack. As the code sections are short, and
the data represented is hierarchical in nature, it is easy to visualize them on sunburst call-

graphs [98, 99] for a clear visual comparison.

entry_SYSCALL_64()

entry_SYSCALL_64()

SyS_mmap()

lttng_event_write()

Figure 5.5 The effect of an external software tracer on the mmap() syscall, obtained from a
near zero overhead hardware trace, is visible in (a) as extra layers as compared to (b), which
took a shorter path and a shallower callstack. The rings represent the callstack and are drawn
based on instruction count per call
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We can observe such a short callstack from another execution, in Figure 5.5(b), where LTTng
tracing is disabled, and we notice the absence of extra calls which were added as layers and
peaks in Figure 5.5(a). The metrics in the sunburst graphs are calculated based on the number
of instructions executed along a particular call path based on the visualization path format.

The visualization is interactive and its implementation is based on the D3 javascript library.

5.4.5 Software Tracer Impact

With our hardware assisted profile, we can observe how much extra time and instructions
any external software tracer added to the normal execution of the syscall. This can also
be used as a basis for analyzing the overhead of known tracers on the test system itself.
For example, we observed that the extra time taken in the syscall is due to the different
paths the syscall has when tracing is enabled, as compared to when tracing is disabled. A
lot of code in the kernel is untraceable such as C macros and blacklisted functions built
with the __attribute__((no_instrument function)) attribute that don’t allow tracers
to trace them. This is usually a mandatory precaution taken in the kernel to avoid tracers
going in sections of code that would cause deadlocks. However, our PT based approach
allowed us to get much finer details than other pure software tracers, as it acts as an external
observer and can even record calls to those functions. We monitored how LTTng changes
the flow of 7 consecutive syscalls in a short section of traced code. As an example, for
mmap () calls, we observed that with software tracing and recording enabled, a total of 917
additional instructions were added to the normal flow of the syscall, which took an extra
173 ns. For short tracing sections, an overhead of 579 ns was observed on average for open ()
syscalls, with 1366 extra instructions. We observed that the overhead also varies according
to the trace payload for syscalls, as LTTng specific functions in the kernel modules copy and
commit the data to trace events. Therefore, with the hardware-trace assisted tool, we can
get instruction and time accurate overhead of the tracer’s impact on the system itself. Such
detailed information about a software tracer’s impact is not possible to obtain by conventional
software tracers themselves. Hardware-assisted profiles allows to study the flow through those
unreachable sections of code (assembly, non-traceable functions in the kernel) along with a
higher granularity. We tested this with our PT based approach. In section 5.5.2 we further
compare the overhead of Linux kernel’s Ftrace tracer with Intel PT to see the impact of

hardware traces as compared to current function tracing facility.
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5.5 Experimentation and Results

5.5.1 Test Setup

The test machine has an Intel Skylake i5-6600K processor which supports Intel Processor
Trace and runs a patched Linux Kernel version 4.4-rc4 on a Fedora 23 operating system.
To get minimum jitter in our tests, we disabled CPU auto-scaling and fixed the operating
frequency to 3.9GHz. This was done to just ensure that synthetic benchmarks were accurate
and reproducible. This would not affect the result as the ratio of core crystal clock value to
TSC frequency is considered during decoding time to make sure the effect of auto-scaling is
accounted for in the time calculations. The system has 16 GB main memory and a 500 GB

solid state drive.

5.5.2 PT Performance Analysis

The most important requirement for a performance analysis framework is that it should have
minimum impact on the test system itself. Therefore, before deciding on the trace hardware
for our framework, we characterized PT’s performance. The impact of a PT based hardware
assisted tracer on the system has not been thoroughly characterized before. As it formed the
basis of our other contributions, therefore, as a major part of our work, we developed a series
of benchmarks to test how much overhead the tracing activity itself causes. We measured four
aspects - the execution overhead in terms of extra time, the trace bandwidth, and the trace
size and temporal resolution with varying time accuracy. We also compared the overhead of

our PT based approach with that of current default software tracers in Linux kernel.

Execution Overhead

Similar to such synthetic tests done for measuring the Julia Language performance [100]
against C and Javascript, we added more indirect branch intensive tests, such as TailFact
which causes multiple tail-calls for factorial computation and Fibonacci to illustrate condi-
tional branches. We also tested an un-optimized and optimized Canny edge detector to check
the effect of jump optimizations in image processing tasks. As conditional branches constitute
most of the branch instructions, to get a precise measurement for a conditional branch, we
tested a million runs of an empty loop (Epsilon) against a loop containing an un-optimized
conditional branch (Omega). Therefore, the TailFact test gives us the upper limit of overhead
for indirect branch instructions while the Omega test gives us the upper limit for conditional

branches.



88

Table 5.1 Execution overhead and trace bandwidth of Intel PT under various workloads. The
TailFact and Omega tests define the two upper limits

Time QOverhead

Benchmark Bandwidth (MBps)

C (%) V8 (%)
TailFact 2200 22.91 -
Parselnt 1420 9.65 10.36
Fib 1315 5.86 5.80
RandMatStat 340 2.58 20.00
CannyNoOptimize 303 2.55 -
PiSum 339 2.47 6.20
CannyOptimize 294 2.34 -
Sort 497 1.05 6.06
RandMatMul 186 0.83 11.08
Omega 205 11.78 (8.68) -
Epsilon 217 3.10 (0.0) -

Observations Our test results have been summarized in table 5.1. We can see that ex-
cessive TIP packets generated due to tail-calls from the recursive factorial algorithm cause
the maximum overhead of 22.9%, while the optimized random matrix multiplication (Rand-
MatMul) overhead is 0.83%. The optimization in the C version of RandMatMul is evident
as it aggressively used vector instructions (Intel AVX and SSE) from the BLAS library [101]
during a DGEMM, thus generating very few TIP or TNT packets, as compared to the unop-
timized loop based multiplication in Javascript, which through the V8’s JIT got translated
to conditional branches. This explains the difference, as seen in the table, where the overhead
for V8 is 11.08%. Same is the case with RandMatStat, which also generated more TIP pa-
ckets thus pushing the overhead to 20%. In order to observe the TNT packet overhead, the
Omega test generated pure TNT packets. As this includes one million extra conditional jump
overhead from the test loop for both Epsilon and Omega, we can normalize the overhead and

observe it to be 8.68%.

Trace Bandwidth

The direct correlation between the trace size, packet frequency and hence the trace bandwidth
is quite evident. To quantify it, we record the trace data generated per time unit and quantify
the trace bandwidth for our micro-benchmarks in table 5.1. To calculate the bandwidth, we
record the size of raw trace data generated and the time taken for execution of the individual

benchmarks.
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Observations We see that the trace bandwidth is quite high for workloads with high
frequency TIP packets such as TailFact. Larger TIP packets increase the bandwidth and
cause a considerable load on the memory bus. Overall, for moderate workloads, the median
bandwidth lies between 200-400 MBps.

Trace Size

Apart from the inherent character of the applications (more or less branches) that affect
the trace size and timing overhead, Intel PT provides various other mechanisms to fine tune
the trace size. The basic premise is that the generation and frequency of other packets such
as timing and cycle count information can be configured before tracing begins. To test the
effect of varying such helper packets, we ran the PiSum micro-benchmark from our overhead
experiments, which mimics a more common workload with userspace-only hardware trace
mode. We first started with varying the generation of synchronization packets called PSB,
while the cycle accurate mode (CYC packets) and the mini-timestamp count (MTC) packets
were disabled. The PSB frequency can be controlled by varying how many bytes are to be
generated between subsequent packets. Thus, for a higher number of bytes, those packets
will be less frequent. As PSB packets are accompanied with a (Time Stamp Counter) TSC
packet, this also means that the granularity of timing varies. The same was repeated with
MTC packets while the PSB packet generation was kept constant and the CYC mode was
disabled. Similar tests were done with CYC packets, where PSB packet generation was kept
constant and MTC packet generation was disabled. Figures 5.6, 5.7 and 5.8 show the effect

of varying the frequency of packets on the generated trace data size.

Observations We observe in Figures 5.6, 5.7 and 5.8 that, as expected, when the time
period (indicated by number of cycles or number of bytes in-between) for CYC, MTC or
PSB packets is increased, the trace size decreases. However, it moves towards saturation, as
opposed to a linear decrease. The reason we observed is that, for a given trace duration,
there is a fixed number of packets that are always generated from the branches in the test
application. This sets a minimum threshold. Furthermore, in Figure 5.6, the trace size did not
increase further for time periods < 2% cycles, because the maximum number of CYC packets
that can be generated for our synthetic workload was reached at 2° cycles. The trace data
size can however further increase for other workloads with higher frequency of CYC packets,
when kernel tracing is enabled. In our tests, we found that the lower and upper bounds of
trace data size, based on lowest and highest possible frequencies of all packets combined, are
respectively 819 KB and 3829 KB.
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Effect CYC Frequency on
Trace Size and Temporal Resolution
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Figure 5.6 Trace size and resolution while varying valid CPU cycles between two subsequent
CYC packets. Lower TRF value is better

Effect of MTC Frequency on
Trace Size and Temporal Resolution
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Figure 5.7 Trace size and resolution while varying valid CPU cycles between two subsequent
MTC packets. Lower TRF value is better

Temporal Resolution

In addition to the effect of different packet frequencies on the trace data size, it is also impor-

tant to observe how much timing granularity we lose or gain. This can help the user decide
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Effect of PSB Frequency on
Trace Size and Temporal Resolution
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Figure 5.8 Trace size and resolution while varying valid bytes of data between two subsequent
PSB packets

what would be the trade-off between size, timing granularity of the trace and the tracing
overhead, to better judge the tracer’s impact on the target software. We therefore define
a Temporal Resolution Factor (TRF). For a given known section of code, with equidistant

branches,
Ny

ThE = max(P) — min(P)

X (p — min(P))

where,

e (A[cSort[n — 1]) " (ATSort[n — 1])
2 2
and P is the set of all p that represents a median factor in the observed sets. Here, AT and
Al are the time and instruction deltas between subsequent decoded branches and n is the
length of the total decoded branches. The formula calculates the median of the sorted datasets
of AT and A, and normalizes them with a factor of Ny for an accurate representation. The
value of n, however, varies according to the frequency of packets. Hence, with the packets we
estimate the averages based on the maximum we can obtain. This experiment was coupled
with the trace size experiment above so that, for the same executions, we could observe
our temporal resolution as a function of the trace size as well. The choice of equidistant

branches is intentional for a more controlled and repeatable micro-benchmark. The results

are presented in Figures 5.6, 5.7 and 5.8 with TRF on the second Y axis. TRF varies between
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0-100. Lower TRF values represent better resolutions.

Observations It is interesting to see a clear trend that the data size is inversely propor-
tional to TRF. Hence, the larger the trace size, the better is the temporal resolution in the
trace. Another important observation is the sudden increase in resolution when CYC packets
are introduced. We observed that the highest resolution we obtained for our tests was 14
ns and 78 instructions between two consecutive events in the trace (TREF = 4.0 x 1079).
This compares to the lowest resolution of 910.5 us and 2.5 million instructions (TRF = 100)
between two events with no CYC and far apart PSB packets. The reason for such a huge
variation is that the introduction of the cycle accurate mode generates CYC packets before
all CYC eligible packets (such as TNT, TIP). The CYC packets contain the number of core
clock cycles since the last CYC packet received, which is further used to improve the time
resolution. With a large number of CY C-eligible packets being generated in quick succession,
the trace size as well as the resolution increases drastically, as compared to MTC and PSB
packets. For CYC observations in Figure 5.6, the resolution for < 2¢ cycles is not shown, as it
covers the whole execution in our workload for which we are interested. Thus, we always get a
constant maximal number of CYC packets and the TRF value saturates. Therefore, we only
included valid cycles > 2°. This can however vary for real life usecases such as kernel tracing
where the branches are not equally spaced and the code section is not linear. However, the

TRF values obtained can be a sufficient indicator of upper and lower bounds of resolution.

Ftrace and PT Analysis

We also compared the hardware control flow tracing with the closest current software solutions
in the Linux kernel. An obvious contender in kernel control-flow tracing for our Intel PT
based framework is Ftrace [13]. Both can be used to get the execution flow of the kernel for
a given workload - with our approach providing a much more detailed view than Ftrace. We
therefore used the Sysbench synthetic benchmarks to gauge the overhead of both approaches
for disk I/O and memory and CPU intensive tests. We configured Ftrace in a mode as close
as possible to Intel PT by outputting raw binary information to a trace buffer. We also set
the per-CPU trace buffer size to 4MB. Our findings are presented in table 5.2. We can see
that, as compared to PT, FTrace was 63% slower for a Sysbench File I/O workload with
random reads and writes. This generates numerous kernel events for which Ftrace had to
obtain time-stamps at each function entry. In the PT case, the time-stamps are an inherent
part of the trace data generated in parallel through trace hardware. This explains the huge

difference in overhead. A similar difference is observed in the memory benchmark as well. In
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the case of the CPU benchmark, the work was userspace bound and hence the trace generated

was smaller - thus a non-statistically significant overhead in PT and 0.6% overhead in Ftrace.

Table 5.2 Comparison of Intel PT and Ftrace overheads for synthetic loads

Benchmark Baseline With PT With Ftrace Querhead

PT (%) Ftrace (%)
File I/O (MBps) 32.32 31.99 19.76 1.00 63.56
Memory (MBps) 5358.25 5355.59 4698.52 0.00 14.04
CPU (s) 19.001 19.007 19.121 0.00 0.6

5.5.3 Delta Profiling Instructions

In these sets of experiments we show how our Algorithm 1 is able to generate histograms
for instruction and time delta for superSTI and superCLI instructions groups. In order to
quantify how much time is spent in a short section where interrupts are disabled, we created
a synthetic test module in the kernel that disables and enables interrupts as our input. We
control the module using ioct1() to cycle the interrupts. We pin the userspace counterpart
of our test module on CPUO and analyze the hardware trace for CPUQ. Our algorithm is
implemented during the trace decoding phase to generate the instruction delta and time
delta in an intermediate format which we then plot as histograms. This helps pinpoint how
many instructions were executed in the interval between two consecutive interrupt disable
and enable. Looking at Figure 5.9, we can see that most of the interrupts disabled intervals
executed around 90-100 instructions. For the same execution, we observe in Figure 5.10 that
most of the interrupts disabled intervals have a duration in the range 40-80 ns. We can
then look for the interrupts disabled intervals of abnormally high duration which are at the
far right in the histogram. Delta profiling of actual instruction flows therefore allows for an
overview of the interrupt cycling in the kernel for a particular short running task. As discussed
in section 5.6, to get more in depth analysis, we can take snapshots when abnormal latencies
are encountered, to get a more in depth view upon identifying them from the histogram

profiles.

5.6 Conclusion and Future Work

New techniques used in hardware tracing are now empowering developers in the domain of
software performance debugging and analysis. We observe that hardware assisted tracing and

profiling provides a very fine granularity and accuracy in terms of control flow and time and
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Figure 5.9 Histogram of instruction count delta for superSTI and superCLI instructions
generated using Delta Profiling algorithm
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Figure 5.10 Histogram of time delta for superSTI and SuperCLI instructions generated using

Delta Profiling algorithm

present a trace framework that utilizes hardware-assistance from Intel Processor Trace (PT).
Our PT based approach, with a minimal overhead in the range of 2-5%, was able to provide

a highly detailed view of control flow. We also present a detailed analysis of trace size and
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temporal resolution provided by PT, while fine tuning its configuration. With the help of
our framework, we were able to generate detailed targeted callstacks for syscalls and observe
differences between multiple executions. We also demonstrated a way to trace the software
tracers themselves and show how similar kernel control-flow tracers such as Ftrace cause
overheads as high as 63%, while PT was able to generate similar yet more detailed results
with 1% overhead. Hardware tracing also allowed us to gather traces from parts of the kernel
that are invisible to traditional software tracers. PT assisted cycle-accurate profiling was able
to provide resolution as high as 14 ns, with timed events only 78 instructions apart. However,
our analysis of Intel PT and the information released by Intel suggests that many additional

features such as using PT in virtual machine tracing are left yet to be explored.

Latency Snapshots

We hinted how, in addition to syscall latency profiles, more in-depth analysis on other non-
deterministic latencies can be done. An interesting observation relevant for realtime systems
is also an in-depth analysis of TRQ latency. Newer tracepoints in the kernel introduced by
tracers such as LTTng [102] allow recording software trace events when IRQ a latency beyond
a certain threshold is reached. We can further refine our idea by recording hardware trace
snapshots in such conditions, thus obtaining more detailed control-flow and timing informa-

tion.

Virtual Machine Trace and Analysis

Our Intel PT based hardware assisted technique can also be used to detect VM state tran-
sitions, in host or guest only hardware tracing, for more in depth analysis of VMs without
any software tracing support. We observed that PT can also generate VMCS Packets and
set the NonRoot (NR) bit in PIP packets when hardware tracing is enabled in VM context
[61]. The extra information in hardware traces allows the decoder to identify VM entry and
exit events and load specific binaries for rebuilding control-flow across VMs and host. Thus,
with no software intrusion and a low overhead, we can get accurate VM traces, compare and

quantify their performance.
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Abstract

Cloud infrastructure providers need reliable performance analysis tools for their nodes. Mo-
reover, the analysis of Virtual Machines (VMs) is a major requirement in quantifying cloud
performance. However, root cause analysis, in case of unexpected crashes or anomalous be-
havior in VMs, remains a major challenge. Modern tracing tools such as LTTng allow fine
grained analysis - albeit at a minimal execution overhead, and being OS dependent. In this
paper, we propose HAVAna, a hardware-assisted VM analysis algorithm that gathers and
analyzes pure hardware trace data, without any dependence on the underlying OS or perfor-
mance analysis infrastructure. Our approach is totally non-intrusive and does not require any
performance statistics, trace or log gathering from the VM. We used the recently introduced
Intel PT ISA extensions on modern Intel Skylake processors to demonstrate its efficiency
and observed that, in our experimental scenarios, it leads to a tiny overhead of up to 1%, as
compared to 3.6-28.7% for similar VM trace analysis done with software-only schemes such
as LTTng. Our proposed VM trace analysis algorithm has also been open-sourced for further
enhancements and to the benefit of other developers. Furthermore, we developed interac-
tive Resource and Process Control Flow visualization tools to analyze the hardware trace
data and present a real-life usecase in the paper that allowed us to see unexpected resource

consumption by VMs.
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6.1 Introduction

The backbone of modern distributed cloud systems are virtualization technologies that enable
VMs to provide the necessary infrastructure. Public and private cloud infrastructure providers
allow the users to access a pool of resources based on a Pay-as-Use (PaU) model where
numerous automated cloud orchestration tools allow seamless control of bring-up and tear-
down of VMs. This flexibility in resource scaling leads to imbalanced workload distribution on
the underlying hardware on which the VMs run. Users can also intermittently run demanding
applications which may need their VMs to be migrated to difference resource groups. Cloud
infrastructure administrators therefore need modern tools for performance analysis of such
VMs. However, efficient debugging, troubleshooting and analysis of such massive distributed
systems is a still a known challenge [103]. For fine-grained post-mortem root cause analysis of
problems occurring on VMs, the administrators may need highly detailed information about
the characteristics of VMs on their infrastructure - such as profile of processes running on
them, virtual CPU (vCPU) consumption, pattern of scheduling of processes on VMs and
their interactions with underlying hypervisors. Most of such information can be gathered
by proper configuration tools provided by the host OS kernel. Software-only diagnosis of
problems on VMs, however, calls for recording all software events such as occurrences of
vm_entry, vm_exit, sched_switch. The added overhead from such events can be mitigated
by using tracing tools such as LTTng[104]. However, these tools also alter the execution flow
of the VMs and require careful configuration (such as adding additional static tracepoints in
QEMU and KVM). In addition, proprietary close-sourced operating systems on specialized
hardware may not expose tracing tools or APIs and would be opaque to the administrator.

In such scenarios, pure hardware tracing can help in diagnosing abnormal executions.

In this paper, we introduce a novel approach that uses hardware trace support provided in
modern processors for VM analysis. Special trace data emitted by the trace hardware on
the processor can be collected and analyzed offline to gather in-depth information about
execution profiles of VMs and hypervisors on the host. Our approach allows for a near-zero

tracing overhead and a new technique to visualize such data.

We demonstrate the uniqueness of our approach through the hardware trace support provided
in Intel’s Skylake series of processors in the form of Intel Processor Trace (PT)[61]. These trace
blocks generate huge amounts of hardware trace data, consisting of mostly branch related
packets that can be used to reconstruct the program flow. The trace data also contains certain
trace packets such as PIP and VMCS which we record, extract and use with our algorithm
to generate synthetic trace events that identify important states of processes in VMs such

as entry/exit from hypervisor, to or from the VM, and scheduling events between processes
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in VMs. We generate synthetic events from such hardware trace packets that profile vCPU
consumption by processes, without any software and operating system (OS) intervention, thus
ensuring a low overhead and minimum interference with the VMs. Since this approach is OS
independent, it works on any OS platform without any necessary configuration. Through this,
we were able to identify processes inside VMs that would cause undesired vCPU load. To the
best of our knowledge, there is no pre-existing efficient technique to gather such high level
VM analysis from low level hardware trace packets. Our main contributions in this paper are
as follows :

— A novel low overhead hardware-assisted approach to extract, group and analyze hard-
ware trace packets gathered from the processor for VM analysis. The VMs, host hy-
pervisor and host OS are oblivious to our tracing and analysis phase. Therefore, there
is no need for internal access within VMs, which may not be allowed in most situations
due to security reasons.

— A visualization strategy to display these hardware trace events on a time series graph,
and identify hard to diagnose issues such as processes contending for resources in VM.
Our graphical views show CPU usage inside the VM along with their interaction with
the Virtual Machine Monitor (VMM). We also implemented a graphical view for the
execution flow of processes inside the VM.

The rest of the paper is organized as follows : Section 6.2 presents related work, comparing
the closest approaches to ours. Section 6.3 introduces important processor trace packets for
VM analysis and explains the different layers of the architecture that we use in our paper.
Here, we also present the algorithm used to retrieve information from processor trace packets.
We show a use-case of our analysis in Section 6.4. The added overhead with our approach is

compared with existing approaches in Section 6.5. Section 6.6 concludes the paper.

6.2 Related Work

Program flow tracing based instruction counting, and tracking blocks of code, has been dis-
cussed earlier [69]. In order to reduce the bandwidth of such tracing, Merten et al. [105] have
earlier proposed the use of a Branch Trace Buffer (BTB) and their hardware table exten-
sion for profiling branches. Custom hardware-based path profiling has also been discussed
by Vaswani et al. [45]. Linux Kernel tools such as Ftrace and Kprobes allow such code ins-
trumentation and program flow deduction. Modern architectures snoop bus activity at very
low level inside the processor and allow recording each and every instruction being execu-
ted. This, however, generates a huge amount of data. To mitigate this, the new approach is

to only record instructions that cause the program flow to change, such as direct/indirect
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jumps, calls, exceptions etc. By following these change-of-flow instructions, it is quite easy to
generate a complete program flow with the help of additional offline binary disassembly at
the decoding phase. Dedicated hardware blocks in the Intel architecture, such as Last Branch
Record, Branch Trace Store [59], and more recently Intel Processor Trace (PT) follow this
approach. A detailed study of hardware-assisted tracing and profiling with Intel PT has been
recently presented in [60].

Hardware-trace based compiler optimization techniques have also been discussed before [106]
where results from execution profiles of a software application can be fed back to the com-
piler to optimize the resulting binary. Jorg et al. in [107] present a data parallel provenance

algorithm which uses Intel PT for improving security and dependability in software.

AWS CloudWatch and Openstack Ceilometer are the metering, monitoring and alarming
tools for clouds. They provide basic metrics such as physical CPU and number of vCPU
used for each VM. The information presented by such tools is not suitable for analyzing
VMs. Most existing Linux tools such as vmstat gather statistics by reading procfs file with
significant overhead. Therefore, they are not recommended for implementing a low overhead
tool for analyzing and debugging VMs. In [108], the authors proposed a significant multi-
layer tracing and analyzing technique to detect anomalies inside VMs. They implemented an
execution flow recovery of specific processes by tracing the host and VMs at the same time.
In their work, they need internal access to the VMs. Furthermore, their work is limited to
the Linux OS since they use LTTng as Linux kernel tracer. PerfCompass[109] uses a VM’s
kernel trace (from LTTng) and gathers information from syscall events to detect anomalies
inside the VM. Authors in [110] implemented a vCPU monitoring tool based on "perf kvm
record”. With their monitoring tool, they are able to gather statistics about CPU usage for
processes and the hypervisor. Wang in [111] used Perf to detect over-commitment of pCPUs.
From all available CPU metrics, they used LLC which has a direct relationship with pCPUs
over-commitment. Our profiling technique uses hardware trace packets that show vCPU usage
along with processes execution flow, without any software and OS intervention. Our approach
adds less overhead to VMs compared to other techniques and it does not rely on a specific
OS or hypervisor. As per our knowledge, no prior work has been done for analyzing VMs at
a high level from such low level hardware traces yet. Our work, therefore, is unique and novel

in this aspect.
6.3 Hardware Tracing VMs

Hardware trace generation can be configured and controlled by certain configuration registers
such as MSRs in Intel or CoreSight ETM/ETB Configuration registers on ARM. In this paper,
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we select Intel PT as an experimentation platform for our hardware-asssisted VM analysis
approach. Once hardware trace generation is enabled, the tracing blocks from processor
cores generate compressed encoded trace packets for eventual decoding. These hardware
trace packets can contain information such as paging (changed CR3 value), time stamps,
core-to-bus clock ratio, taken-not-taken (tracking conditional branch directions), record the
target IP of branches, exceptions and interrupts, and record the source IP for asynchronous
events (exceptions, interrupts). Keeping track of all these packets can be quite expensive -
especially, if the required analysis is at a high level (such as VMs in our case). Therefore, we
isolate only those packets for analysis that are sufficient to reconstruct the flow in the VMs.

Some of the important hardware packets and their role in our analysis are as follows :

PIP

The Paging Information Packet (PIP) is generated whenever the CR3 register value is modi-
fied. This includes scenarios such as a task switch, a MOV CR3 instruction or, more importantly,
a VM Entry and VM Exit at the time when VM execution is enabled. This packet allows
the decoder to uniquely identity which process was executing on the processor. During VM
execution, the packet also contains a Non-Root (NR) bit that can further indicate if the
process was executing in a NR context (guest mode) or in the VMM context. Together with

other packets generated for VMXON instructions, we can generate a detailed view of the VM.

VMCS

This packet is generated at a successful VMPTRLD instruction, which indicates interaction
between the VMM and the guest OS. The VMCS packet payload consists of the VMCS
pointer of the logical processor that will execute the VM guest context. This packet helps us

in determining which vCPU was being utilized at what time.

Timing

Timing information for each event can be deduced from 3 more important packets. The first
one is Time Stamp Counter (TSC) which gives the lower 7 bytes of the time-stamp counter
- the same as the one returned by the RDTSC instruction. The Mini Time Counter (MTC)
packet contains the 8-bit value derived from the Always Running Timer (ART) on Intel
processors. Along with a Timing Alignment (TMA) packet, the MTC and TSC values can

be used to estimate the precise timing of each event up to nanosecond precision [61].

For our analysis, we record all these packets and analyze them in post VM execution scenarios.
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We also record the physical CPU (pCPU) associated with the relevant packet. We then create

synthetic events with all the packets and the relevant context information attached to them.
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Figure 6.1 System Architecture

6.3.1 System Architecture

As seen in Figure 6.1, the trace control module configures the tracing hardware on the
processor. Enabling the tracer generates a huge amount of encoded trace data that is stored
on disk, with context information for each pCPU attached to it. The translation module filters
and extracts the raw packets for VM analysis. The PIP, VMCS, TSC and MTC packets are
decoded from the per-CPU trace stream and converted to an XML derived intermediate
format (IF). The synthetic events are identified from the decoded trace and stored in this
format. For example, <event> tags contain each event with their timestamps along with
event specific data. There are two event packets - PIP and VMCS. The main driver for this
module is our Hardware-Assisted VM Analysis (HAVAna) Algorithm that is based on the
state machine which analyses the packet IF and generates visualizations describing the VM
behavior. The XML driven visualizations are consumed by the Trace Compass [80] trace

analysis tool for an in-depth interactive view of the VM execution.

6.3.2 HAVAna Algorithm

The main feature of our proposed technique is the state machine that classifies hardware
packets and generates synthetic events for visualization. The input to the algorithm is the
raw XML event description stored in the IF generated during trace translation. Each event

packet from the stream is sent to the state machine shown in Figure 6.2. The occurrence
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of a VMCS event packet in the IF, succeeding a PIP packet, marks the process for being
scheduled on the vCPU and indicates the beginning of a VM execution at a high level.
The process enters the VMM Mode (Root Mode). A PIP packet with a new CR3 value
and Non-Root (NR) bit (extracted from PIP hardware trace packet) as 1 indicates that a
VM process is now being executed. This is marked by the VM Mode (Non-Root Mode).
Successive transitions of PIP packets with NR bit value indicate the execution switching
between VMM and VM mode. Along with the timestamps in all the states gathered from the
IF, we can start creating a time series graph that shows the process activity in VM and VMM.
By associating vCPUs with VMCS base pointers, we can identify the vCPU consumption as
well. The output of the state machine are the synthetic events that are then stored and input
to the trace visualization tool. The pseudocode for our algorithm to uncover different states
for vCPUs and processes inside VMs is shown in Algorithm 2. It receives events as input and
updates the State History Tree [80] as output. For each packet, it checks the name. In case
of the packet name is VMCS, it saves the VMCS based address and changes the Status of
the related vCPU as VMM (Line 4). When our algorithm receives a PIP packet, it checks
the NR field. If the NR field is 1, it first queries the current running vCPU base address
and modifies the Status of the related vCPU as VM (Line 8) and then it queries the current
running VMM and modifies its Status as IDLE (Line 9). It also changes the Status of the
current process (identified by the CR3 value) running inside the VM as VM (Line 10). If the
NR field is zero, and the current status of the vCPU is VMM, it modifies the Status of the
vCPU, process and VMM as IDLE, (Line 13-15). In case the NR field is zero and the current
status of the vCPU is VM, it sets all the attributes to VMM, (Line 18-20).

pemmmTTIIIIT I --. vCPU
; VMM Mode
| (NR=0) ’
) VCPU
e F_’IP (NR=-1_) _____ PIP (NR=0)

Figure 6.2 HAVAna State Machine

6.3.3 Trace Visualization

For constructing the Synthetic Events (SE) for visualization, we follow a XML based scheme

similar to the one used by Kouame et al. [112]. In our case, however, we define rules for state
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Algorithm 2 HAVAna Algorithm

1: procedure HAVANA(Input : Event Packets (P,[7]) from IF Output : Updated SHT)

2 SE[i] = parseXML(P,]i])

3 if (SE[i].name == VMCS) then

4: Modify Status attribute of SE[i].base as VMM
5: else if (SE[i/.name == PIP) then
6
7
8
9

if (SE[i]. NR == 1) then
Query Status attribute of current running base
Modify Status attribute as VM
Modify VMM Status as IDLE

10: Modify Status attribute of SE[i].cr3 as VM

11: else if (Query Status attribute of SE/i/.base == VMM) then
12: Query Status attribute of current running base
13: Modify base Status as IDLE

14: Modify VM Status as IDLE

15: Modify VMM Status as IDLE

16: else

17: Query Status attribute of current running base
18: Modify base Status as VMM

19: Modify Status attribute of SE/[i].cr8 as VMM
20: Modify VM Status as IDLE

21: end if

22: end if

23: end procedure

transitions in XML, as described in Algorithm 2, and input them to the TraceCompass[80]
tool, an open source tool for analyzing traces and logs. It provides an extensive and well
documented interface to build analysis views and graphs. We have also open sourced ! our
hardware-assisted VM analysis scheme and algorithm. We created two analysis views based
on the synthetic events. The first one is the VM Resource View that shows the vCPU resource
usage by VMMs as well as the processes running on the VM. This can be useful for analyzing
transitions between the VMM and VM modes and identify abnormal latencies in either VM,
process or VMM mode. The second view is the VM Control Flow View, which shows each
process on the VM and their flow of execution. We describe these views with a usecase in

the following section.

1. http://step.polymtl.ca/~suchakra/havana.tar.gz
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6.4 Usecases - Resource Contention

To show the efficiency of our approach, we first show our VM Resource View with an example
of a 4 threaded application which calculates prime numbers. We configured our test VM with
4 vCPUs pinned to one pCPU, which can represent an ideal low-tier VPS. We ran our test
application while recording a hardware trace from Intel PT in a trace buffer. We extracted
the trace data, decoded and converted it to the XML IF and applied our HAVAna algorithm.
The resulting VM Resource view, as seen in Figure 6.3, shows an execution window of about
3 seconds with the 4 threads executing on the 4 vCPUs while contending for CPU resources.
The red bars show the process execution in the VM while the green bars shows the VMM mode
execution. As the visualization is interactive, we can zoom the slightly anomalous looking
green bar and observe how much extra time was spent in the VMM mode as compared to the
VM to VMM switches adjacent to that execution, as shown in the same figure. Usually such
behavior is indicative of VM page faults and VM PAUSE states. However further analysis of

each extra time requires detailed software trace from the host kernel.
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Figure 6.3 Resource View showing 4 vCPUs and their execution distribution on single pCPU
along with a zoomed view of the VMM mode

For our VM Control Flow View, we demonstrate a RabbitM(Q) based message queuing system
that performs MDb5 hashing. With the same VM configuration as above, we setup 3 worker
threads that do the hashing in a round robin fashion and sent 3 jobs simultaneously to them.
Each worker process would execute for some duration and the scheduler on the VM then
passes the execution to the other worker processes. We can observe such a pattern for the 3

workers in Figure 6.4. Each process intermittently does the job and then relinquishes control
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Figure 6.4 Control Flow View showing 3 RabbitMQ worker processes contending for existing
pCPU

to the next process in queue and so on. This view can be used to show how the control flow
was passed between processes, their relationships with their parents, children and abnormal
executions if any. All of these views have been populated with hardware trace data gathered
from PT, without any software trace intervention, thus making our approach agnostic of any

OS platform or software infrastructure dependency.

6.5 Overhead Analysis Experiments

One of the major benefits of our work is that we avoid interacting with software altogether
during the trace recording phase - unlike the current software based tracers such as Ftrace,
LTTng or SystemTap, that cause some overhead in the target trace execution while trace
recording. To quantify the reduction in trace timing overhead with our approach, we used
the sysbench benchmark to measure the overhead caused when LTTng kernel tracing was
enabled. We compared it to the hardware trace overhead incurred while Intel PT was being
used. The test machine was an Intel i5-6600K processor clocked at 3.5GHz with 16GB of
main memory. We ran our tests and benchmarks on a vanilla Linux kernel v4.5. We used
KVM as kernel hypervisor and QEMU as its userspace counterpart. Our results have been

summarized in Table 6.1.

Table 6.1 PT based VM trace and LTTng trace overhead

Execution Overhead(%)

Benchmark
PT LTTng
File I/O 1.00 28.72
Memory 0.00 3.67
CPU 0.00 3.72

We observed that, for the File I/O benchmark, the hardware tracing overhead for the analysis
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was only 1%, as compared to a similar VM analysis trace overhead with LTTng at 28.7%
where tracing was activated on the host kernel[113]. This large overhead was mostly due to
the trace storage competing with the benchmark for disk bandwidth. In other cases, the PT
overhead was not statistically significant, and hence was neglected, while the LTTng overhead
stood at around 3.6%. Even though LTTng’s trace analysis could give deeper insights about
the host and VM than our pure hardware trace approach, the completely non-intrusive,
platform OS independent, approach of hardware tracing can yield similar end results at a

much lower execution cost on host and VM.

6.6 Conclusion

The use of tracing allows cloud infrastructure providers to diagnose issues that may be hard
to reproduce otherwise. As virtualization is the base layer for building up cloud services, it
is important to tackle issues in VMs. We observed that most of such analyses would require
gathering data from the VM, the hypervisor and the host kernel which needs agents running
inside client VMs. To overcome this limitation, we propose a new hardware trace analysis
based HAVAna algorithm that allows detailed diagnosis of CPU resource consumption by
processes on VMs, their states and flow of execution, in a completely non-intrusive manner,
without the involvement of any OS or VM interface. We demonstrate that our technique
allows detection of resource contention in the VMs without querying the guest at all, thereby
allowing infrastructure providers to meet their SLAs effectively without any support from
the clients” VMs. This can also be beneficial to further analyze malicious executions in the

target VMs or move them to different resource groups based on observed workloads.

Even though our approach and algorithm are independent from any VM interaction, the
amount of information, such as identifying the faulty process by name or PID, or gathering
instruction profile data for individual processes is reduced. Such problems can be tackled
eventually by fetching minimal statistics from VMs, such as process maps from the guest
kernel. Another obvious addition can be to identify executions in VMs intended to have
small lifespans (such as those which mimic containers in their behavior) and compare their
successive startup and teardown profiles by comparing instruction executions. This would

help in clustering them and moving them to different resource groups as required.
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Abstract

Hardware tracing has emerged as a low-cost technique to analyze systems at a very fine gra-
nularity, thus mitigating the need for software-only trace approaches for performance analy-
sis. State-of-the-art trace hardware on modern Intel and ARM processors allows recording
change-of-flow instructions in executable binaries, such as branches, for offline reconstruc-
tion. This conventional userspace based trace reconstruction, however, is not robust enough
in the common scenarios where runtime code is being generated, compiled and executed. We
therefore propose a novel kernel-assisted mechanism called FlowJIT to reconstruct hardware
traces with a low overhead of around 1.3us per code page modification event. We further
show the efficacy or our technique with the help of two illustrative usecases that cover the
JIT compiled code scenario as well as a same-page instruction modification scenario. Our

implementation has been open sourced as a patch for the Linux kernel.

7.1 Introduction

For developing quality software, developers rely heavily on performance analysis and debug-
ging tools. However, interrupt driven debugging can cause unintended latency in execution,
especially in situations where time-correctness is as important as the data-correctness of a

software execution. Detecting such heisenbugs [90] in complex systems is getting challenging



108

on contemporary infrastructure. In addition to traditional debugging approaches, which may
distort execution flow, advanced tracing tools such as LTTng [11] reduce the overhead of
analysis. A similar in-kernel static and dynamic tracing infrastructure [3] also aims to gather
detailed traces. These tracing tools depend on software tracing hooks exposed in the Linux
kernel, to which they can attach in order to gather trace data and write it to special trace
buffers. Similar to the software approach, almost all modern processors provide hardware
tracing blocks on the chip that can also be used to gather program or data flow, along with
timing information, at instruction level granularity. As the trace packets are encoded and
generated directly by the processor, the overhead of hardware tracing on target software is
minimal and the trace information retrieved is precise. The state-of-the-art hardware tra-
cing approach aims to record only change-of-flow instructions such as conditional or indirect
jumps, calls, asynchronous interrupts and returns. The data is transmitted in highly com-
pressed and encoded [89] form by the processor, in order to reduce the impact on the memory
bus. During the decoding phase of this trace data, the target application binary is parsed
and, along with the branch instruction information from the hardware trace, the complete
control flow is generated. Highly granular control-flow of programs is especially important in

performance and security analysis of embedded and large scale production systems.

This approach has been used faithfully for program flow reconstruction at the kernel as well
as userspace level. Introduction of hardware tracing blocks in mass-produced commodity
processors will soon lead to their quicker adoption and improved analysis tools. However,
an important caveat manifests in scenarios where runtime code compilation is used. While
experimenting, we observed that dynamically generated and compiled code in binaries was

not being faithfully reconstructed while decoding recorded hardware traces.

In this paper, we present a novel technique for reconstructing runtime generated program flow
using operating system support, without any support from the JIT compilation mechanism
or any other API in userspace. We were able to gather runtime compiled code with operating
system support which we could then use in our offline analysis. We further propose a decoding
mechanism that accounts for these code changes happening at runtime, in memory address
locations that were opaque to the decoder earlier. We demonstrate the efficacy of our approach
using as experimental base the extended Berkeley Packet Filter (eBPF) JIT compiler, Linux
and the Intel Processor Trace (PT) hardware tracing blocks. Our experiments demonstrate
that with a very low overhead of 1.1 to 2.8us, runtime code reconstruction using hardware-
only tracing is indeed possible - thus seamlessly integrating static and dynamically generated
program flow, with a language agnostic approach. We further propose extensions of this
technique to commonly known non-traceable regions in the Linux kernel itself, where are

used runtime code patching techniques such as static-key instrumentation [114].
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The rest of the paper is organized as follows : We first elaborate on the background of
program flow, hardware tracing and code generation techniques in section 7.2 and present
our motivation for this research. We define the problems and review the state-of-the-art
techniques that have been used until now for JIT code reconstruction from hardware traces.
In section 7.4 we discuss our algorithm for OS-supported JIT code access tracking and propose
an architecture and implementation strategy for our approach. Thereafter, we demonstrate
its use with two illustrative usecases in section 7.5. In section 7.6, we analyze the overhead
incurred in OS assisted hardware tracing with Intel PT along with some typical execution
profiles gathered from code reconstruction. We conclude the paper outlining our observations

and identifying pointers for future work.

7.2 Literature Review

Recovering program flow traces from an execution can provide in-depth details about pro-
gram executions and has been widely used in feedback based compiler optimization [106] and
development of control flow analysis tools such as Callgrind and Kcachegrind [51, 49, 50].
Larus et al. have discussed about instrumenting code and injecting tracing code into function
blocks or control-flow edges to keep track of instructions and get insights on their execution
frequency [48, 41]. They reported an overhead of 0.2% to 5%, when the effect of the extra
overhead of disk writes was not taken into consideration. Program-flow tracing can either be
a very detailed low level all-instruction trace implementation, or a more lightweight branch-
only control-flow trace generation. Complete instruction flow traces have been supported by
various hardware architectures in the form of Coresight (ARM), NSTrace (PowerPC) and
PDTrace (MIPS) [57, 58]. Instruction flow traces are gathered from specialized hardware
which records each and every instruction executed by the processor in addition to its asso-
ciated data such as instruction pointers or register values. This instruction and data trace
provides a fine-grained view of system with details such as execution profiles and memory
access patterns. The drawback of such an approach is the huge amount of data produced,
which requires additional external hardware for trace analysis. The extra overhead on the
memory subsystem has been observed earlier as well [48, 41]. An alternative is to record
only change of flow and branch instructions, and reconstruct the flow post execution, while
decoding with information about the executed binaries. Dedicated hardware blocks in the
Intel architecture, such as Last Branch Record (LBR), Branch Trace Store (BTS) [59], and
more recently Intel Processor Trace (PT) [89] choose to only record branches in the currently
executing code on the CPU cores. Intel BTS uses 24 bits per branch, and causes the CPU to
enter a special debug mode, which leads to an overhead of 20% to 100% for varying branch
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profiles in the applications [62, 63]. Intel PT however records 1 bit per conditional branch,
and the complete IP for indirect branches, thus reducing the trace bandwidth further. Intel
PT generates this information in an encoded form, as multiple hardware packets such as
Taken-Not-Taken (TNT), Target IP (TIP), Time Stamp Counter (TSC), which are then de-
coded post execution to generate the program flow [60]. In previous work, we observed Intel
PT’s low overhead as 2-3 % for common workloads, compared to other software-only program
flow trace approaches which had an overhead of up to 63.5% [60]. Jorg et al. in [107] use
Intel PT for improving security and dependability in software by presenting a data parallel
provenance algorithm. Analysis of virtual machines using host-only Intel PT hardware traces

has also been explored recently [115].

The most common candidate for runtime code generation are the process virtual machines
and bytecode interpreters that use JIT compilation techniques to improve execution speed.
The eBPF bytecode interpreter, originally developed for packet filtering in the OS kernel, has
been recently improved to generate optimized and verified JIT code for execution [33, 116].
Modern implementations of Javascript support in browsers also leverage V8 engine’s JIT
capabilities to provide native execution speed for Javascript code. Debugging and analysis of
runtime generated code is however still a challenge, owing to the fact that code is generated
and modified on the fly.

Tikir et al. have discussed an approach where they use dynamic recompilation of Java code
to lazily insert instrumentation code at runtime to gather debugging information from JIT
when required [65]. Their approach is however language specific and deals with additions
done to the Java Virtual Machine Debugger Interface (JVMDI).

Very recently, Hawkins et al. have proposed new techniques for improving Dynamic Binary
Translation (DBT), relevant for dynamically generated code [64]. Their DynamoRIO based
approach, claiming a 7.3x improvement over its predecessors, is based on keeping track of
JIT compilation and dynamically instrumenting its translation. They also propose static

annotation techniques for dynamically generated code.

A recent patent by Koltachev et al. [66] takes a unique approach to debug JIT applications
by allowing them to execute and natively compile their code under a debugging session, thus
allowing a dual-debug session with native as well as interpreted code analysis. A similar
approach is taken by authors in [40] where they implement runtime interposition with the
help of an agent that handles all language transitions and allows mix-mode debugging of

code between multiple languages.

In their research on post-mortem control flow generation, Ayers et al. [67] point out the

difficulty in keeping track of native code generated from Java or other such languages, as there
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is no standard way to instrument such code. Thus, they provide a customized solution, which
uses runtime code instrumentation, at control-low block granularity, for binary program
analysis that records traces for post-analysis. Joan Calvet et al. [117] also discusses instruction
analysis based dynamic tracing techniques for inference of cryptographic primitive patterns

at runtime by identifying 1/O parameters of such obfuscated functions.

Intel provides a comprehensive JIT Profiling API to report information about just-in-time
generated code that can be used by performance tools. The intended use is by JI'T compilers
themselves, where they can use the API calls to report execution profiles by sending execution
traces to the Intel VTune profiler [68]. The major drawback of this approach is that this

requires a very invasive JIT engine re-compilation.

In summary, most state-of-the-art tools approach the runtime compiled code analysis issue
by either providing a language specific API or by instrumenting the native code generators
themselves — either dynamically or statically. While this may work on a per-case basis or
for use by mixed-mode debuggers, in case hardware tracing is active, to the best of our
knowledge, no solution exists that is able to transparently record all runtime compiled code
execution along with native code — especially when branch traces are being used to reconstruct
instruction flow. We deviate from the approaches taken by these tools and move towards a

more encompassing approach which uses operating system support.

7.3 Background and Motivation

Almost all the major applications used today have some form of dynamically generated code
being executed inside. Web browsers aggressively use the latest Just-in-time (JIT) compi-
lation techniques to speed up Javascript execution. Dynamic instrumentation and dynamic
translation of code is also common in trace tools that inject performance analysis code for
gathering metrics from running applications. However, program flow analysis with hardware
trace of such code presents many challenges. To explain the current limitations, we first define
its scope, some background on code execution and then move towards an example where it

manifests.

For a given target process P, Figure 7.1 illustrates the operating system’s view of the process
memory. The virtual address space for P has some content in the form of pages, a number
of which are in the executable Virtual Memory Areas (VMA), typically the .text sections
of a process, which contains the executable code of the program and shared library code.
This is shown as VMA; and contains executable file-backed pages which we name as code

section CS,. Figure 7.2 shows this small linearly executing code section CS), of the process
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Figure 7.1 Runtime and file-backed code section for a process P as observed by the OS

P. Consider that P now generates dynamically compiled code. Typically for such code, the
memory is dynamically allocated on the heap and the code copied to the assigned pages which
are then marked as executable. Unlike pages in VMA;, these pages in VMA, are anonymous
and do not contain a backing file. We name these pages as part of the code section CS,. At
runtime, some of these pages may need to be modified and revised. As seen in figure 7.2,
at execution, each revision or a new dynamically compiled section can be considered as a
single segment CS,,,, where n is the number of times a new section is added or a previous
section revised and rewritten at runtime. This behavior is common for every userspace and
in-kernel dynamically executed code. As an example, for a userspace JIT compiled network
packet filter based on eBPF, CS, may represent a single page worth of dynamically compiled
filter code which may be modified repeatedly at runtime, based on policy requirements. We

elaborate more on this in section 7.5. We can now define the process control flow function
F(P) as,

F(P)=F(CS,)UY F(CS,)
i=1
where F' denotes the instruction flow of a given code and Y signifies the union of individual
flows of C'Sr,;. However, a software-only approach for generating the flow F'(P) would also
involve extra code sections before each C'S, and add additional instructions to the critical
execution. As discussed, in case of JIT compiled code, this is only currently achieved using

JIT compiler specific functions or language dependent APIs [65, 68].

Modern hardware tracing techniques however allow F'(P) to be reconstructed post-execution,
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thus generating true execution profiles at very low-overhead. We have discussed this in de-
tail in our previous work [60]. Therefore, for each branch encountered in CS, and CS,, the
processor generates encoded trace packets representing the decision on a branch taken or not
taken, along with the instruction pointer (IP) if required. We represent these trace packets
symbolically for CS, and CS, as T, and T,. For branch traces, the decoding of this enco-
ded trace requires the availability on disk of the static binaries of the running process, as
the pages belonging to this VMA are file-backed. Therefore when traced with hardware, the

process code section control flow F'(CS,) can now be derived as,

F(OSP) = 1(CS,, 1))

where II is a map and merge function that takes the statically available process code segment
(CS,) and the corresponding hardware trace packets (7,) as input, and generates the flow as
output. However, for dynamically generated CS,,, section, it is not possible to faithfully obtain
F(CS,,), as the packets T,,, don’t map to any available code segments, since they belong to a
VMA which is anonymous memory. For example, JIT compilers cause in memory execution
of short sections of dynamically generated code which the hardware trace decoders fail to
account for, as they expect static binaries while decoding. As discussed in the previous section,
a solution to the problem of non-availability of CS, sections is use JI'T or language specific
APIs that periodically dump runtime compiled code when it is generated and executed.
However, this may require recompilation of the JIT supported runtime, which may not be in
diagnosing production systems that don’t allow code modifications. Moreover, this also adds

the undesired API code in the critical flow path which we observe eventually in F'(P).

We observed this problem throughout in many locations in the Linux kernel where modifying
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code for optimization is a fairly common occurrence in trace, network packet filter and security
subsystems. The problem is more acute in userspace where multiple languages may be using
JIT compilation, and APIs to dump and analyze JI'T code may not always be available. This
motivated us to approach the limitation of reconstruction in state-of-the-art hardware trace
systems, from a different perspective. We therefore propose a kernel-assisted technique that
monitors and keeps track of executable code memory to record CS,,, sections transparently,
in order to generate accurate program flow. Therefore, to get the flow of a given dynamic

code section CS,, we can define F/(CS,,) as,

F(CS,n) = T(CSm, vma( CSm), ts(CSym), Tym)

Function I" takes as input the code section (CS,,,), address of the VMA in which this CS,,, sec-
tion belongs (vma(CS,,)), along with the timestamp of the revision of this section (¢s(CS,,))
and the associated hardware trace for the section (7,,,). We store the timestamp, address and
content of each new dynamic code section revision with our FlowJIT technique, which then

allows reconstruction of the hardware trace, something not otherwise possible.

7.4 Methodology

In order to monitor runtime-compiled code, our strategy is to first start tracking the processes
which are expected to generate executable code at runtime. When the target bytecode is
intended to be JI'T compiled, or executable code is prepared in a process, a small code cache
is prepared in the memory where the generated machine code is saved. This code cache may
also be updated repeatedly with the updated CS, sections, as seen in Figure 7.2. Our approach
keeps track of each update for each page change of the code-cache. On a POSIX-compliant
system, the malloc () syscall is used to allocate memory for this cache and its attributes flags
are set to executable, using a mprotect () syscall and the PROT_EXEC flags supplied with it.
We essentially keep track of access rights on this memory section and generate artificial page-
faults from the kernel to extract the executable pages. The following subsection describes the

FlowJIT approach in detail.

7.4.1 FlowJIT Architecure

FlowJIT begins by tracking the individual pages in the kernel for the tracked process which
is runtime compiling native code for execution. As shown in Figure 7.3, a userspace program
flowjit-agent is used to register the target process using a FlowJIT specific ioct1(). This

sets a flag in the kernel task structure for the process, which then marks the process to
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be monitored. Next, FlowJIT intercepts the access protection functions in the kernel which
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Figure 7.3 FlowJIT Architecture

identify the executable pages requested by the target process. As discussed before, these pages
correspond to the C§, code sections. The page access control module in FlowJIT sets those
pages as tracked and flips their protection rights from ezecutable to non-executable (NX).
The Page Fault Handler manages access-faults on those pages and sets the access rights back
to executable. At the same time, it copies the executable code from the kernel and generates
a synthetic FlowJIT event by adding the current time-stamp, the faulting instruction IP, and
assigning an ID. Any update to the JIT code for the same IP is stored in a linked list in the
kernel. A userspace daemon, part of the hardware trace decoder framework, lazily copies the
linked list contents from the exposed DebugF'S file to the disk. The decoder can then query
the FlowJIT events based on their IP and synchronize them with the timestamp to complete
the code reconstruction. The linked list data is indexed according to the virtual address for
the dynamic pages and queried by address and time when the decoder encounters a virtual

address where the decoding failed. We demonstrate this in detail in section 7.5, where we
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properly reconstruct the otherwise incompletely decoded hardware trace gathered from the
Intel PT trace hardware.

In-Kernel Access Tracking

The access management part of the FlowJIT system can be defined using a state machine
where the states denote the status and access rights of pages in a virtual memory area (VMA).
In our context, the pages may be in state either Tracked, Untracked or Fault. In Figure 7.4, we

show how these states can transition, and the access rights on the pages thereafter. Initially,

Untracked
(EXEC/NON-EXEC)

UN-TRACK
UN-TRACK

Tracked
(NON-EXEC)

Fault

(NON-EXEC—EXEC,
DUMP)

Figure 7.4 Access Tracking State Machine

when the process registers itself with the kernel using the flowjit-agent, all its pages,
whether executable or non-executable, are marked as tracked and remain in this state until
the agent requests them to be untracked. Tracked (Exec) pages which are executable are
artificially marked as non-executable by FlowJIT and they enter the Tracked (Non-Exec)
state. In the normal course of execution, when the application tries to execute them, they
generate a page fault and enter the Fault state. We handle that page fault in the kernel
and query if the page was originally tracked and its attributes changed. In such a case, the
page attributes are changed back to their original values and a synthetic FlowJIT event is
generated. The event is dumped and the page again enters the Tracked (Exec) state and is

then untracked by the agent. The underlying process has been illustrated in Algorithm 3
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Algorithm 3 Access Tracking Algorithm

Input : VMAs containing CS, and CS, for P
Output : Updated FlowJIT event buffer (B.,)

1V, < vma(CS,)

2: 'V, < vma(CS,)

3V = (V.V}

4: while P.pid is tracked and page in exec_pages(V') do
5: if (page € V,) then

6: page.arm = armed

7 FLownTTOGGLE(page, INIT)

8: end if

9: if (page.fault,,..) then
10: FLowJITHANDLE(page)
11: end if
12: end while

13: function FLowJITTOGGLE(page, state)
14: if (state is INIT) then
15: page.exec < 0
16: else if (state is PF) then

17: ev < {timestamp, address(Vyage) }
18: FLownTEVENTDUMP(ev)

19: page.exec < 1
20: end if
21: end function
22: function FLOWJITHANDLE(page)
23: if (page.arm is armed) then
24: page.arm = disarm
25: FLOowNITTOGGLE(page, PF)
26: end if
27: end function
28: function FLOWJITEVENTDUMP(event)
29: B,, < event
30: flush(Bey)
31: end function

> Access-fault handler

> FlowJIT sets NX

> FlowJIT resets NX

> Buffer copied to disk

We have released FlowJIT as an open-source kernel patch ! which can be activated by a simple

configuration option in the kernel. While most of the other runtime code profiling techniques

require compiler-specific APIs or manual addition of code in the target application/runtime

compiler engine, the FlowJIT technique requires no other modification to the source code and

tackles the problem of runtime code reconstruction at kernel level. This makes it versatile to

use as well as the first approach to tackle runtime compiled code reconstruction for hardware

1. http://github.com/tuxology/flowjit
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traces. We explain this using two illustrative examples in the next section.

7.5 Illustrative Use-Cases

7.5.1 JIT Compiled Code

Recently improved and extended, the Berkeley Packet Filter (eBPF) in the kernel is being
increasingly adopted for traffic filtering, shaping and classification. Its versatile in-kernel
virtual machine is also being used to improve trace aggregation and trace filtering. At the
heart of eBPF’s improvement is the eBPF’s JIT compiler [116]. Hardware trace reconstruction
for eBPF code is therefore important for a complete execution flow. To demonstrate our
FlowJIT technique on a JIT compiled case, we consider a scenario where a user is executing
code within a process using a userspace eBPF process VM. This is illustrative of the real-
life use of eBPF to filter syscalls using seccomp-bpf in Chrome or userspace network packet
filtering in tools like Wireshark. We use uBPF 2 to emulate eBPF’s behavior in userspace while
hardware tracing is activated. As an example, our target process (P) executes a dynamically
compiled eBPF code section (CS,) which is a simple loop that increments an integer 42 times.
This section is different from the normal code of P (CS,), which includes executable code in
its address space such as its .text section, and dynamically loaded libraries. As P executes,
uBPF builds the CS, section as a identifiable function, complete with a function prologue
and epilogue. This is stored in a code cache whose access permissions are set to executable
and executed using a simple call instruction after loading the address of the code cache C§,

in the rax register on an x86 machine.

The process by which FlowJIT works in this context has been illustrated in pseudocode 4,
where FlowJIT essentially intercepts the mprotect () call made by the uBPF compiler, as it
intends to set executable permissions for the compiled bytecode. However, FlowJIT intercepts
it in the kernel and flips the executable flags. Eventually, an access page fault is induced,
which FlowJIT handles and generates a synthetic event. This FlowJIT event contains the
timestamp, the virtual address of the code segment and the raw binary data which was the
JIT compiled code. Eventually, we add this event to a memory mapped buffer which is lazily

copied to a userspace file.

During the above execution, hardware tracing using Intel PT was enabled and the raw trace
data was collected while the process P was executed. The decoded trace data consists of
two interesting packets - the Target Instruction Pointer (TTP) packet and Taken-Not-Taken
(TNT) packet. The TIP packet is generated when an indirect branch, exception or an in-

2. https://github.com/iovisor/ubpf
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Algorithm 4
: USERSPACE PROCESS P :

mem < malloc()

C'S,. < compile(bytecode, mem)

mprotect(mem) with Flags = { EXEC,|WRITE}

IN-KERNEL FLOWIJIT :

On mprotect(mem, Flags) :

if (mem is anonymous) then
Set Flags = {|\EXEC}
mem.tracked = 1

end if

Continue with original mprotect()

. if (P executes C'S, from mem) then

if ({EXEC} not in Flags and mem.tracked is 1) then
page < page__ fault(mem) > Access-fault on tracked VMA
fault__handler(page)
event < build__event(page, timestamp, address(mem))
list ~ dump(event) > Add event to list
Set Flags = { EXEC}
Continue P execution

else if (Flags is {EXEC}) then
Continue P execution

end if

: end if

NN RN DD = = b e e e e e e e
Rl el T A B S AN o O el

terrupt occurs. The TNT packets are issued at each conditional branch and loop instruction
and contain one bit for each branch taken or not taken. Thus, in our case, when P tried to
execute the runtime compiled CS, section of code by issuing a call %rax instruction, the
processor generated a TIP packet with the value of the IP of the CS, section. While deco-
ding the trace data, the TNT packets are associated with the binaries of P and its associated
libraries on disk to complete the instruction flow in the decoded trace. However, we observed
that, when the runtime compiled CS, section address was encountered, the decoding failed
as no memory was associated with that address. This is illustrated in the missing association

of trace packets (7)) in Figure 7.5.

To overcome this decoding failure, we used the dumped FlowJIT events and queried the
runtime compiled images based on the IP retrieved from the TIP trace packet when the
decoding failed. This IP corresponds to the virtual address which is used as an index to
access the individual FlowJIT event from the dumped data. The timestamp is used to verify
the version of the JIT copy (in case the runtime compiled code was updated multiple times).

To reconstruct the flow of the retrieved image (I,), we first generate the control flow graph
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Figure 7.5 FlowJIT retrieved runtime code image of eBPF (1,) merged with failed decoding
in hardware trace (7)) to reconstruct flow of JIT compiled code

representation of this image (CFG(CS,)) and then merge it with the associated trace packets
T,.. For this example, 1, 2 and 4 nodes represent segments which have a unconditional jump
and are thus omitted from the trace 7)., whereas node 3 represents a conditional jump which
generates 42 TN'T packets with the first 41 bits being N and the last bit T. The TNT packets
are mapped to the conditional branches in I, sequentially, which results in the true flow of
the hardware trace (Flow(CS,)). Therefore, using FlowJIT, runtime JIT compiled eBPF code
could be reconstructed successfully, without any dedicated API or invasive process, by just

using kernel support.

7.5.2 Static Key Instrumentation

Another important scenario where current hardware decoding is incorrect is the commonly
used static key approach in the Linux kernel, which avoids conditional branches while keeping
much of their functionality [114]. Static keys are actually dynamically activated by modifying
instructions inside the kernel. The technique uses the asm goto statements in GCC which
allow branching to a label. Thus, the branches may be taken or not taken by default while
avoiding a memory reference each time. In case the branch direction needs to be changed, the
nop introduced by the static key instrumentation are patched with the targets at runtime.

This technique is useful in avoiding conditional checks in performance sensitive code in the
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kernel, such as tracepoints. We devised a userspace test for static key instrumentation which
consisted of the first execution of a function foo () with the default nop and another execution
with the branch being modified by patching the jump site on-the-fly. Listing 7.1 and 7.2 show
the target function, and the corresponding assembly code and jump-site patching respectively.
At runtime, the jump-site at line 3 in Listing 7.2 is patched with a relative jump to line 7 (as
e9 23 00 00 00), which corresponds to line 7 in Listing 7.1. The Linux kernel relies heavily
on static key for reducing the cost of tracepoints further and providing a zero-overhead

execution when default branch conditions are intended to be taken.

Listing 7.1 The function foo() showing static-key being used

void foo ()
{
printf ("foo entry\n");
if (asm_goto_full (&key, 1)) {
printf ("STATIC_KEY IS TRUE\n");
} else {
printf ("STATIC_KEY IS FALSE\n");
}
printf ("foo exit\n");

Listing 7.2 The nop inserted with static-key is the patch site

4009f0 <foo>:

400a00: Of 1f 44 00 00 nopl 0x0(%rax,%rax,1l)

400a05: 48 8d 3d 02 01 00 00 1lea 0x102(%rip),%rdi
400a0c: e8 2f fd ff f£ff callg 400540

400a28: 48 8d 3d fc 00 00 00 1lea Oxfc(frip),krdi
400a2f: e8 0Oc fd ff f£ff callqg 400540

The code generation and modification for static keys here happens at instruction granularity.
Unlike the previous eBPF JIT usecase, the actual binary of the process already exists. The-
refore, when we executed our static key test while generating hardware traces with Intel PT,
the post-execution decoding worked as the target IPs can be mapped to the functions in the
binary. However, on closer inspection, we observed that on both static key branching cases,

only the default nopl was being shown in the decoded instruction trace instead of the code
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from the updated jump-site. We observed this in the Linux kernel as well, where a wrong
instruction flow was being reported with hardware tracing. This issue of incorrect decoding
can be resolved with our FlowJIT approach. We now ran the same test on our FlowJIT
enabled kernel and were able to recover both modified and unmodified static key instrumen-
tation from the dumped FlowJIT events. We then used the extracted IP from the event and
matched it with the static key sites. We could then update the incorrect instructions nopl
in the decoded trace, based on the actual execution trace from FlowJIT, which we found
out as jmp 400a28. Thus, we were successfully able to reconstruct CS, sections, which were
incorrectly being used for decoding. It is worth noting that the code modification was done
in the same page in this case. This also relates to a similar behavior shown in self-modifying

code where FlowJIT could also be eventually applied.

In addition to the above examples, there are numerous other scenarios where FlowJIT may
be essential. In the Linux kernel, the function tracer uses the nop patched mcount mecha-
nism, supported by the GCC’s profiling options. Function entries can be patched at runtime
with actual mcount calls when dynamic tracers are enabled. Apart from that, in userspace,
shared libraries utilizing load time relocation would require extra decoder support for faith-
ful decoding. In all these cases, FlowJIT can provide a portable and efficient mechanism to

reconstruct the actual code flow.

7.6 Experimentation and Results

Any addition to the critical execution path in the kernel causes extra overhead in terms of
time taken. In the case of FlowJIT, each runtime compilation location causes an extra access
page fault. In our current implementation, the generation of each FlowJIT event causes the
addition of a total of 4132 bytes (modified executable page, identifiers and timestamp data),
appended to a linked list in the kernel. In this section, we provide a comprehensive study
of the overhead associated with FlowJIT in terms of extra time and number of access faults

associated with executions.

Test Setup Overhead tests were performed on a machine with an Intel Skylake i5-6600K
processor, with Intel PT support, running a FlowJIT patched Linux kernel, version 4.7, and
Fedora 23 distribution. CPU auto-scaling was disabled and the operating frequency was fixed

to 3.5GHz, to minimize jitters and have reproducible results.

We first analyzed the effect of JIT compiled code sites on the number of page faults caused by
the process, when FlowJIT was activated for our target process. The test target consisted of a

dynamically compiled eBPF program being recompiled and re-executed multiple times from
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within the process. The page faults and time in subsequent experiments were measured for
the complete execution of the test target. Following the nomenclature used earlier, these JIT
sites may be seen as the runtime code segments CS,. We therefore vary the number of CS, in
a program in logarithmic steps and observe the number of page faults (PF),) caused. Figure
7.6 shows the FlowJIT enabled and disabled cases for our eBPF test program in comparison

to a controlled baseline test, where the page faults were tightly controlled.
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Figure 7.6 Effect of JIT compile sites on Page Faults with FlowJIT

We observe in the baseline test that the additional number of page faults, caused in the
FlowJIT enabled case, account for most of the page faults. We measured that the exact
amount of tracked access faults were equal to the extra JIT sites added. The overhead on top
of the baseline looks magnified. Indeed, in a more realistic scenario, with multiple JIT sites
executing in our eBPF enabled program, the overhead, caused by FlowJIT induced access

faults, would be amortized over more numerous already existing page faults.

We also measured the absolute overhead of our test program with increasing CS, values.
We can see in Figure 7.7 that the extra time taken by the test process, while FlowJIT was
enabled, remained largely consistent, even as the JIT compiled sites increased. The maximum

overhead was 19.3%, as measured for 60K different JIT executions.
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Figure 7.7 Overhead of FlowJIT enabled executions with increasing JIT compiled sites

7.6.1 Access Fault Overhead

As evident from baseline results in Figure 7.6, the number of extra CS, sections cause almost
the exact same number of access faults. This is therefore the absolute minimum overhead that
FlowJIT causes. Therefore, in order to quantify this per access-fault overhead in execution,
we devised a synthetic experiment that performs 20 thousand small code compilations and
subsequently executes them. We then measure precisely in-kernel how much time a single

FlowJIT event takes. For each execution, the overhead 1" can be quantified as,

T =ty +lae +tpy

Here, t;, denotes the tracking initiation time, t,. denotes page access change time and s
denotes the access page fault time. Out of these, ¢;. can be safely neglected as the tracking
initiation is a one time cost and would be insignificant over recurring ¢,. + ¢,; time in our
experiment. Therefore, at runtime, FlowJIT’s addition to the critical execution path time
now is (1) modifying access permissions; (2) allocate memory for FlowJIT event ; (3) obtain
and copy timestamp and instruction pointer; (4) copy the modified page and (5) add the
FlowJIT event to the linked list. This is the flow that is of interest to us. We label this as

revised overhead (T,ps = t4c + tpr) and monitor it by putting timestamps for the complete
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T s flow inside our FlowJIT kernel implementation.

We plotted the density curve for the 20 thousand executions, with the observed overhead
per access fault and page dump time (7,,) as a parameter. As observed in Figure 7.8, the
overhead of FlowJIT varied in our synthetic tests from 973ns to 6.8us with three distinct
peaks at 1.3us, 2.7us and 6.6us. This multi-modal variation was a result of the non-uniform
nature of page-faults themselves, due to the caching effects related to VMA resolution and
subsequent TLB hits and misses. To minimize variations as much as possible, and ensuring
that the observations were reproducible, we isolated page faults to just those access faults
which were caused by our FlowJIT tracked pages. We can thus infer that, in an ideal scenario,
most of the page faults took around 1.3us. The individual values of ¢,. obtained in our tests
had an average of 20.8ns, which was very low compared to t,;. Overall, the total cost is
almost negligible, considering the huge number of page faults that naturally occur in the due

course of process execution.
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Figure 7.8 Distribution of overhead for each access fault

The current implementation of FlowJIT requires copying tracked pages between kernel and
userspace. In future versions, we plan to reduce the overhead further to a few nanoseconds
range by userspace-kernel shared memory implementation or the splice() technique used in
[11], thus minimizing kernel-userspace copy costs. For our current implementation, the event
copy cost is part of the ¢,; overhead discussed before. We confirmed that our observations are
in line with our synthetic tests of memcpy (), where 349ns were required on the test system

for copying data of similar size as a single FlowJIT event.
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7.7 Conclusion

Recent advancements in hardware tracing allow compact and accurate branch traces to be
generated for a target process or OS kernel. However, we observed that decoding the traces
post-execution either fails or produces erroneous instruction flow when runtime compiled code
is generated and executed by the target. To overcome this problem, we developed FlowJIT,
a kernel-assisted technique that allows tracking of pages containing runtime generated code,
and dumping them for rectifying and reconstructing the hardware trace. Our OS-centric
approach is language and JIT compiler agnostic, thus removes the reliance on assistance
from their infrastructure. Our technique allows accurate instruction flow reconstruction, with
a negligible cost of around 1.3us of extra execution overhead per access fault event. FlowJIT
solves one of the major flaws in dynamically compiled code reconstruction that has not yet
been tackled until now. This approach with minimal overhead makes hardware tracing more

robust and reliable.

Even though we cover the two major cases for runtime generated code — method based JIT
compilation and direct code instrumentation, a natural extension of this work would be
to cover the special case of self-modifying code as well. Currently, such an analysis would
require single-stepping instructions in the target process to assess if they are being rewritten
while recording individual changes. As we observed in Subsection 7.5.2; the modifications
within the same page could indeed be observed by FlowJIT. This may induce considerable
overhead but open up larger avenues for code security analysis using hardware traces. Another
extension to our technique may be to identify and track all executable pages of the process,
thus eliminating the need to rely on on-disk process binaries for code reconstruction. This
would allow faster and efficient decoding and instruction profiling, but with a trade-off of not
having function names at analysis time, since this is stored in extra sections in the binaries

on disk.
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CHAPTER 8 GENERAL DISCUSSION

In this chapter, we revisit the objectives set at the beginning and discuss how our research
helped in achieving those. We also observe the broad impact of our work in our domain and

in industry outlining specific contributions, outcomes and limitations of our research.

8.1 Revisiting Milestones

Our strategy of defining milestones and directing our research to achieve those was discussed
earlier in Chapter 3. In this section, we further the discussion on our research progression

identifying specific instances from our work that helped in reaching the milestones.

Conditional Tracing Enhancements A part of our work presented in the first article
dealt with how filtering can be enhanced for a fast userspace tracing tool such as LTTng. It
is important to note in such cases that per filter overhead may seem only a few nanoseconds
each but this is of huge importance when the event frequency is high. Advancements in
network packet filtering over the past years have been leading the discussion in the filtering
domain. Our work with eBPF based JIT filters for providing conditional tracing to LTTng,
puts the spotlight on the tracing aspect. Tracing network events at high speed is a challenge
in itself. Our work aims at providing conditional support so that similar filtering techniques
can be used in userspace as well as kernel space scenarios. This milestone formed the fist step
towards our goal of achieving a low-overhead filtered tracing architecture where events could

be detailed and recorded only when deemed necessary.

User-Kernel Co-operative Tracing The first article also discussed a novel architecture
which allowed similar kernel and userspace VMs to communicate and provide a co-operative
tracing approach. Our new mechanism enabled what we can call co-operative conditional
tracing. A major part of this was facilitated by our new shared memory architecture which
allowed userspace as well as kernel code to act on filtering conditions collectively. This is
an important step in building a mechanism where we cannot just provide a fast filtering
mechanism but also provide a way to control the information generated, so that the context
is not lost even though the events recorded are minimized by filtering. Our contributions
advanced the software based filtering approach and extended the available JI'T supported

bytecode mechanisms it uses.
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Hardware Trace Analysis Our research continued for achieving the next milestone where
we shifted our focus from a software only approach and investigated hardware tracing ad-
vances in modern processor architectures. This allowed us to provide a more fine grained view
of the system at a very low overhead than a software-exclusive approach. While the hardware
tracing domain is not new in itself, the advances in silicon which make it low-overhead and
easily accessible in commodity processors are very recent and have not been explored ear-
lier. We devised a new algorithm and trace analysis technique that allows instruction level
analysis for latency detection of interrupts and syscalls. In addition, we provide empirical evi-
dence of our low overhead approach through rigorous experimentation and characterization
of hardware tracing techniques. This milestone was a major one in tracing - considering that
advanced analysis from modern hardware tracing infrastructures is still at a nascent stage in

the performance analysis domain.

Hardware-Assisted VM Analysis Owing to their importance in the modern distributed
computing landscape, we set our fourth research milestone as the analysis of VMs. Earlier, it
required support from the guest hypervisor traces as well as host hypervisor traces. Thus, in
the third article, we have proposed a new algorithm called HAVAna that allows almost zero
overhead analysis of VMs without any software tracing running on guest or even on the host.
Our algorithm deciphers hardware trace packets without any intrusion in the VM through
which we could analyze its computing resource consumption and process scheduling on the

CPUs. Such an approach to tracing of VMs had not been proposed till now.

Hardware Trace Reconstruction Improvements While working on the hardware and
software milestones set for our research, we observed that when runtime generated code such
as JIT compiled userspace eBPF programs were used in conjunction with hardware tracing,
the trace reconstruction was anomalous. Therefore, in the fourth article, we developed a
new algorithm called FlowJIT to identify instances of runtime compiled code or instruction
modification scenarios with the help of kernel assistance and tracked them so that they could
be used for offline hardware trace reconstruction. Our new algorithm was able to solve the
trace reconstruction failure we observed in kernel as well as userspace cases. This completed

our initial goal of creating a robust, low overhead and detailed tracing technique.

8.2 Research Impact

Our work on an enhanced software tracing approache led to development of fast trace filtering

techniques that we now use in userspace. Our userspace implementation of the JI'T supported
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eBPF VM has been open-sourced ! as a general purpose filtering library that can be adapted
in any userspace project. Further development of other userspace eBPF libraries by industry
in networking domain have evolved since then for similar filtering usecases. Hardware assis-
tance for tracing can be considered as the next paradigm in low-overhead tracing. Our work
investigated this hardware-software interaction to provide a highly detailed program flow
tracing output. This marks a major shift in how high-speed tracing further evolves. Our own
work for hardware assisted VM analysis has been released as open source software with an
interactive visualization tool based on Trace Compass?. Apart from that, our final research
work of hardware trace reconstruction has been released as a Linux kernel patch . This will
help the research community and hardware developers to improve upon their designs and

incorporate features to minimize errors.

8.3 Limitations

Even though we strive for a thorough software-hardware amalgamated approach to tracing
for a low-overhead and fine-grained tracing approach, some limitations on our research still
exist. Aggressive filtering without application and kernel context, reduces the trace size to
a greater extent but can significantly reduce the trace usefulness. Even though this can be
reduced by a co-operative tracing approach, the choice of filter predicates is user controlled
and not automated yet. In addition to this, our userspace eBPF library is not designed to
be thread safe and there are opportunities for improvements in supporting multi-threaded
applications. Apart from that, hardware assistance for low overhead tracing requires speciali-
zed hardware support in the production environments which is vendor dependent and needs
separate implementations for different hardware trace packet formats and protocols. In ad-
dition, the lack of standardization in hardware tracing among different silicon vendors would
require multiple implementations of our approach with minor adjustments to each. However,
for processors of the same architecture, design standardization such as in ARM Coresight and
Intel PT are now being introduced gradually. Using raw hardware trace packets for analysis
of VMs also reduces the analysis scope to the identification of processes by the associated
CR3 values, and the identification of vCPUs by isolating unique VMCS values. Even though
this is sufficient, there is scope for adding identification context such as process names or
PIDs.

1. http://step.polymtl.ca/~suchakra/libebpf.tar.gz
2. http://step.polymtl.ca/~suchakra/havana.tar.gz
3. https://github.com/tuxology/flowjit
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

9.1 Concluding Remarks

Software is becoming ever more complex and decentralized by design. Monolithic software
architectures are being replaced with micro-services based architectures and run on advanced
and powerful modern processors. The analysis of such complex systems requires knowledge of
its interactions with the operating system as well as the underlying hardware. In our research
work, we had initially set out with a goal of a more fine grained as well as precise software
analysis approach, with the help of tracing. Reducing the trace overhead, while maintaining
relevant information in the traced data, was one of the most important areas of work we
focused on. Recent developments in on-chip resources were an untapped potential in trace
analysis but the lack of prior work in this area posed multiple challenges to us. In our work
we have discussed in detail how we developed multiple algorithms which bridged hardware-
software boundaries and helped in advancing the tracing framework further. In the first phase
of research we tacked the problem of low overhead detailed tracing with a software filtering
based approach, which eventually led to development of a new and efficient co-operative
tracing architecture. While working on this goal, we researched how hardware tracing blocks
in processors could assist and lead to an overall low overhead design. We therefore proposed
new algorithms that were able to accurately profile syscall and interrupt latency with such an

analysis, and use it further for our novel non-intrusive VM analysis algorithm called HAVAna.

In our next research phase, we worked on improving the robustness of such an analysis
through a new technique of tracking runtime code pages with the help of kernel support. Our
new technique called FlowJIT was able to accurately reconstruct anomalous hardware trace
flow, which was an unsolved problem till now. The research we carried out, cuts across diverse
fields in the computing domain - operating systems, hardware analysis as well as graphs and
Software Engineering in general. It helped us immensely in enhancing our knowledge as well.
We hope that the work presented in this thesis will further help in advancing the field of

software analysis and tracing.

9.2 Recommendations for Future Research

Based on our research experience, we recommend that future researchers focus on efficient
usage of hardware tracing techniques, exploring its use in other fields such as security analysis.

As an extension to our work on VM analysis, process data such as PIDs, maps and names can
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be recorded from the guest OS at regular intervals, which can further improve the information
provided by the analysis, and help identify resource hungry processes easily. Another aspect
of the future work in this area can be the analysis of boot sequences of VMs. Hardware
tracing is especially useful for boot time tracing since it is difficult to have the software
trace infrastructure working before a large part of kernel and devices are initialized. Thus,

execution profiles of whole VMs can be generated with this approach.

We also observed that the hardware trace data generated is huge. Our analysis focused on
short spans of executions only. However, this may not be true in all cases. Therefore, there
is ample opportunity for research on efficient storage of hardware trace data in distributed
databases and to allow parallel decoding and search using Big-data analysis techniques.
In addition, to restrict the hardware trace data generation, there may be a possibility to
combine native compiled filtering techniques in tracing with the hardware trace snapshot
mode, where a cyclic buffer may store hardware trace data continuously. Then a conditional
software-trace event is generated, the hardware trace data could also be tagged along with
it, for a more accurate analysis. Even though such analysis techniques are more focused on
performance domain, the analysis of individual instructions and associated data can lead to

further research opportunities in reverse engineering and security analysis of binaries.
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