
Titre:
Title:

Design patterns for distributed application security

Auteur:
Author:

Yun Wang

Date: 2004

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Wang, Y. (2004). Design patterns for distributed application security [Master's
thesis, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/24532/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/24532/

Directeurs de
recherche:

Advisors:
François Guibault

Programme:
Program:

Unspecified

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/24532/
https://publications.polymtl.ca/24532/

UNIVERSITE DE MONTREAL

DESIGN PATTERNS FOR DISTRIBUTED APPLICATION SECURITY

YUNWANG

DEPARTEMENT DE GENIE D^FORMATIQUE

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION

DU DIPLOME DE MAITRISE ES SCmNCES APPLIQUEES

(GENIE INFORMATIQUE)

DECEMBRE 2004

© Yun Wang, 2004.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNI UE DE MONTREAL

Ce memoire indtule:

DESIGN PATTERNS FOR DISTRIBUTED APPLICATION SECURITY

presente par: WANG Yun

en vue de 1'obtention du diplome de: Maitrise es science a li uees

a ete dument accepte par Ie jury d'examen constitue de:

M. UINTERO Ale'andro, Doct., president

M. GUIBAULT Fran cis, Ph.D., membre et directeur de recherche

M. FERNANDEZ Jose M., Ph.D., membre

IV

DEDICATION

To all my family members.

Without your support, this would not have been possible.

ACKNOWLEDGMENTS

I would like to thank my director, professor Francois Guibault for guiding me through

my research to complete a Master at Ecole Polytechnique de Montreal. I thank professor

Guibault for being so patient to provide me the insight to tackle different problems, read

several drafts of my thesis and make invaluable comments. I also would like to thank

my committee members: professor Alejandro Quintero and professor Jose M. Femandez

who have accepted to evaluate this thesis.

I am grateful to all of my family members, for their support and encouragement over the

years. I would not have been able to make it this far without their support in so many

different endeavours and for being great friends.

I thank Dr. Suzanne Sirois and Dr. Dongqing Wei who brought me opportunities to de-

velop my interests in research. I also thank professor Jean-Yves Trepanier who gave me

invaluable advices and comments on my research related subjects. Thanks to my col-

leagues Amadou N'diaye, Babak Mahdavi, Bin Chen, Daojun Liu, Djamel Bouhemhem,

Marie-Garbrielle Vallet, Qun Zhou, Sebastien Laflamme, and Yuanli Wang who provided

me much needed support during my research activities. Thanks to all my Mends and

everybody in CERCA and school who supported me and made sure that I maintained my

sanity.

This acknowledgement would not be complete without mentioning my best friend Qing-

song Xiao Bach and some very special people who have always been with me and given

me lot of encouragement and happiness.

VI

RESUME

Dans Ie developpement des applications et des logiciels, la securite est souvent ignoree a

1'etape da prototype, soit parce que la politique de securite n'est pas disponible, ou parce

qu'il semble plus facile de remettre a plus tard les soucis de securite. Cette omission rend

Ie deploiement du systeme final beaucoup plus difficile.

Ce memoire presente Ie patron "Gestionnaire de Securite", un patron de conception archi-

tectural qui etablit une architecture de securite utilisant trois niveaux de mecanismes de

controle d'acces et six modules. L'objectif de ce patron est d'aider a integrer la politique

de securite liee au controle d'acces a n'importe quelle etape dans Ie cycle de developpe-

ment de la plate-forme VADOR et de permettre de prendre en compte les questions de

securite plus facilement et de fa^on plus flexible pour differents organismes ayant des

politiques de securite diverses.

Le patron Gestionnaire de Securite est utilise dans Ie cadre du developpement de la plate-

fonne VADOR, un projet qui a ete initie afin de foumir une plate-forme pour la concep-

tion optimale mulddisciplinaire (MDO). VADOR a ete developpe au CERCA en collab-

or tion avec Bombardier Aeronautique, qui a foumi la grande majorite des applications

d'analyse, des processus a automatiser ainsi q'un environnement industriel pour la vali-

dation du systeme.

Pour repondre aux exigences d'une plate-forme MDO (Salas and Townsend (1998)), une

architecture multicouche et client/serveur a ete proposee pour la plate-forme VADOR.

Le patron Agent Actif, un patron de conception architectural global, a ete developpe pour

construire la plate-forme d' agent mobile VADOR. II est base sur des composants logiciels

de base, des langages, des protocoles standards et les principes de conception Oriente-

Objet. II permet 1'execution automatique des processus d'analyse et Ie mouvement des

donnees a travers un reseau distribue d'ordinateurs heterogenes et comporte un GUI (In-

Vll

terface Usager Graphique) qui permet aux utilisateurs de fonctionner interactivement.

II a egalement la capacite de la gestion de base de donnees permettant aux utilisateurs

d'acceder a 1'infonnation et de visualiser les resultats d'analyse intennediaires et finaux.

Le prototype de la plate-forme VADOR a ete developpe et utilise chez Bombardier Aero-

nautique comme une plate-forme MDO. II passe actuellement a 1'etape de deploiment

pour repondre aux exigences specifiques des clients, y compris 1'integration des poli-

tiques de securite, car les mesures de securites n'ont pas etc definies dans Ie prototype

initial.

Ce memoire se concentre sur Ie developpement d'une architecture orientee vers la securite

pour la plate-forme VADOR et Ie developpement d'un patron "Gestionnaire de Securite"
base sur cette architecture. Comme composant du patron Agent Actif, Ie patron Ges-

tionnaire de Securite aidera a creer un modele de securite pour VADOR afin de faciliter

1'integration des politiques de s6curite pour exigences de securite dans divers organismes.

Le Gestionnaire de Securite resout les problemes specifiques de securite lies aux requetes

d'acces aux ressources du systeme dans la plate-forme VADOR.

Vlll

ABSTRACT

In software applications' development, security is often ignored at the stage of prototype,

the reason being either that the security policy is not readily available, or that it seems

easier to postpone security concerns. This omission makes the deployment of the system

more difficult.

This thesis presents the Security Manager pattern, an architecture design pattern that

builds security architecture with three level access control mechanisms and six modules.

The objective of this pattern is to help to integrate the security policy related to access

control at any stage in the development cycle of VADOR framework, and makes address-

ing security concerns easier and more flexible for different organizations with various

security policies.

The Security Manager pattern is used in the development of the VADOR framework, a

project that was initiated with the objective of developing a Multi-disciplinary Design

Optimization (MDO) framework. It has been developed at CERCA, in collaboration with

Bombardier Aerospace, who provided actual analysis applications, design processes in

need of automation and test ground for the framework.

To meet the MDO framework's requirements (Salas and Townsend (1998)), a multi-layer,

client-server architecture has been proposed for the VADOR framework, the Active Agent

pattern, a global architecture design pattern has been developed to constmct the VADOR

mobile agent framework. It is based on standard basic software components, languages,

and protocols, and extensively uses object-oriented principles. It provides automatic ex-

ecution of processes and the movement of data across a distributed network of heteroge-

neous computers, and comprises a client GUI to allow users to operate interactively, it is

also linked to a database management system providing users access to information and

intermediate visualization of final analysis results.

IX

The VADOR framework prototype has been developed and used in Bombardier Aerospace

as a MDO framework, it is currently moving onto the implementation stage to meet cus-

tamers' specific requirements, including the integration of security policies, as the secu-

rity issues were not defined in the initial prototype.

This thesis is going to focus on the development of a security architecture in the VADOR

framework, then a Security Manager pattern will be defined based on the security archi-

tecture. As a component of the Active Agent pattern, the Security Manager pattern will

help to create a VADOR security model, so that it can facilitate the integration of secu-

rity policies for security requirements from different organizations, and solve the specific

security problems related to control accesses to system resources in the VADOR frame-

work.

CONDENSE EN FRAN^AIS

Ce document presente Ie developpement du patron Gestionnaire de Securite, un patron

de conception oriente vers la securite qui comporte six modules et definit des mecan-

ismes de protection divises en trois niveaux. Ce patron vise a proposer une architecture

de conception pour VADOR, une application repartiee, multi-utilisateur et multi-fil. Le

patron Gestionnaire de Securite vise a permettre aux concepteurs d'eviter certains defauts

liees a la securite au moment de la conception et a resoudre des problemes specifiques de

security.

Le patron Gestionnaire de Securite est mis en application et valide dans Ie systeme

VADOR en tant qu'une des composantes du patron Agent Actif. L'objectif principal

de cette mise en application du patron est d'eviter certains defauts de securite et de re-

soudre des problemes de securite lies a 1'acces aux commandes et aux ressources gerees

par Ie systeme VADOR. Par ailleurs, la validation et les essais d'utilisation du patron

Gestionnaire de Securite au sein du systeme VADOR.

Les patrons Gestfonnaire de Securite et Agent Actif

Le systeme VADOR est un environnement de gestion de donnees et d'execution de taches

d'analyse base sur une approche de distnbution utilisant Ie concept des agents mobiles

qui met en application Ie patron Agent Actif (Chen (2004)). Tel qu'illustore a la figure

I, Ie prototype de VADOR etait congu de telle sorte qu'un Gestionnaire de Securite soit

responsable des aspects de securite dans Ie systeme. Cependant, etant donne que la poli-

tique de securite de VADOR n'avait pas ete definie lors de la conception du prototype,

Ie Gestionnaire de Securite n'a pas ete realise, et les responsabilites liees a la securite

n'ont pas ete prises en compte. Le systeme VADOR est maintenant passe a une nou-

Xl

velle phase de developpement, comprenant entre autre un deploiement dans plusieurs de-

partements techniques chez Bombardier Aerospatiale. Dans ce contexte, les quesdons de

securite lors des echanges de donnees et d'execution des taches d'analyse par differents

groupes d'ingenieurs au sein de la compagnie ont pris une importance grandissante, parti-

culierement lorsque ces echanges et ces executions de taches impliquent des sites distants

connectes par Internet.

Le developpement d'une politique de securite et des outils de gestion de cette politique

est devenu une enjeu important du developpement de VADOR, particulierement dans la

perspective ou plusieurs industries peuvent pofentiellement etre interessees a deployer Ie

systeme, pour lesquelles la politique de securite devra etre specifiquement adaptee.

Qient
create

Agent User

agent owner

securi i _ _ _ i
Agent -- j SecuirityManager ;

concreteiAgent place

GincreteAigent ExecutionPlace

FIGURE I La Structure du Patron de Agent Actif

Problemes de securite dans 1c systeme VADOR

Con^u des Ie depart comme une application distnbuee et multi-utilisateurs, Ie systeme

VADOR foumit aux ingenieurs un environnement de conception ef&cace et bien adapte

Xll

a leurs besoins de collaboration au sein de 1'entreprise. Cependant, puisque Internet est

Ie principal media de transmission de 1'informadon entre les applications reparties basees

sur une technologie d'agents mobiles, la securite represente un defi central qui derive des

caracteristiques meme de la plate-forme VADOR.

L'un des problemes fondamentaux de securite de la plate-forme est lie a la fa^on dont

les taches sont declenchees a distance sur les differents ordinateurs afin de realiser une

sequence d'analyse. Dans Ie prototype de VADOR, un utilisateur unique nomme VADO-

RADM devait posseder les objets d'execution (Wrappers) et les fichiers resultant des

analyses, et ce, dans les repertoires de chacun des utilisateurs de fa^on a ce que Ie sys-

teme VADOR puisse representer sans restriction chaque utilisateur lors de la manipulation

des dossiers d'autres utilisateurs.

Ce probleme a ete resolu au niveau du systeme d'exploitation, en utilisant SSH afin de

laisser des utilisateurs de VADOR autres que VADORADM posseder leurs propres ob-

jets d'execution de taches et leurs dossiers dans leurs repertoires. Cependant, d'autres

problemes potentiels de securite existent toujours dans la plate-forme VADOR, tel que

1'integration de SSH a la plate-fonne et des problemes dans 1'utilisation de processus

multi-fils pour 1'execution simultanee de taches multiples.

Ces problemes peuvent induire des defauts de securite lies a une conception incorrecte

de 1'architecture de securite de VADOR. Ces defauts peurent etre exploites a des fins

malicieuses. Ils incluent Ie controle incorrect de point d'acces multiples , la verification

deficiente des erreurs, la mauvaise gestion des profile-utilisateurs, un controle deficient de

1'acces a 1'information, la mauvaise manipulation d'exceptions, et 1'integration ddficiente

des aspects de securite de systemes extemes.

Tous ces defauts peuvent mener, d'une fagon ou d'une autre, a des problemes de controle

d'acces, pnncipalement au niveau de la gestion des ressources des utilisateurs de VADOR.

Par ailleurs, des mecanismes de controle deflnis incorrectement peuvent egalement poser

Xlll

des problemes fondamentaux de securite au niveau de la plate-forme. Dans ce contexte,

1'architecture de securite de VADOR cherche principalement a foumir des mecanismes

de protection et de controle flexibles pour 1'ensemble des ressources de la plate-forme

VADOR.

Structure et modules du patron Gestionnaire de Securite

Motive par les besoins de controle d'acces aux ressources de VADOR, un patron Ges-

tionnaire de Securite est developpe et integre a la plate-forme. L'objectif de ce patron

de securite est de foumir un canevas architectural de securite pour la plate-forme, ca-

pable d'empecher des defauts et des problemes de securite lies au controle d'acces aux

ressources.

Le patron Gestionnaire de Securite est base sur des patrons de securite existants, et se

compose de six modules prenant chacun une part de responsabilite dans la mise en place

de mecanismes de protection au niveau du controle d'acces aux ressources. Tous ces

modules travaillent ensemble pour etablir la stmcture du patron, tel qu'illustre a la figure

II.

. Le Module d'lnterface de Securite foumit des interfaces a tous les modules relies

a la securite dans la plate-forme VADOR, favorisant 1'integration du patron dans

une architecture logicielle deja existante.

. Le Module d'Authentification d'Agent se compose des modules Serveur de Secu-

rite et Signature d'Agent. Ce module est responsable de controler Ie premier niveau

de protection du systeme VADOR - 1'authentification et la verification des agents.

. Le Module de Signature d'Agent participe au premier niveau de protection en

signant un agent qui est envoye pour 1'execution d'une tache.

XIV

authenticate

Client

uard

SecurityServer

aecurityAttri tes

l»t Lavl Profction: Vador Sacurity Sarvar bard on JVM
SecurityManager SecurityContext

securityAttributBs Punationality: Kgwit »uthantic*tlon/V«riIic*tion

Policy laforead: Bxfmal policy - Signatur* Varificatlon
PoLicyEnforcer

SecurityVisitor PolicyApplicator

policy

guar

securityAttributes

SecurityManager SecurityContext

securityAttributes

PolicyEnforce

SecurityVisitor

policy
PolicyApplicator

2nd L«vl Protection: Vador Sarvara

Functionality: Taak Bxacution P»Eini»»ion ChBcking

Policy anforead: Vador Policy

. SSHMthent^ate.>J'"YsH'Server"! 3rd Lwl Profction: Oparatlng Sytan

runotionality: V»der U««r Authwitication/V«rific»tion

Policy Enforaad: Sytun Policy

FIGURE II Stmcture du patron Gestionnaire de Securite

. Le Module de Serveur de Securite participe egalement au premier niveau de pro-

tection et collabore avec Ie module de signature d'agent, de sorte qu'il puisse ven-

fier la signature d'un agent et 1'authentifier.

. Le Module de Description des Attributs de Securite permet d'acceder aux at-

tributs relatifs a la securite d'une entite au nom de laquelle des operations doivent

etre executees et de separer ces attnbuts des autres caracteristiques des objets.

. Le Module Gestionnaire de Securite organise tous les modules afin qu'ils fonc-

tionnent ensemble pour foumir aux autres serveurs de VADOR les fonctionnal-

ites specifiques liees a la securite. A titre d'exemples, Ie Gestionnaire de Securite,

en reponse a une requete du Serveur de Securite, foumit des services de controle

d'acces, pour Ie premier niveau des mecanismes de protection, soit la verification et

1'authentification des agents. Par ailleurs, Ie Gestionnaire de Securite, en reponse a

une requete de 1'Executive Server, foumit des services de controle d'acces pour Ie

deuxieme niveau des mecanismes de protection, soit 1'autonsation d'un agent.

XV

Trois niveaux de mecanismes de protection

Tel que mentionne ci-dessus, les problemes fondamentaux de securite dans Ie systeme de

VADOR ont ete resolus en udlisant SSH au niveau du systeme d'exploitation. Cependant,

d'autres problemes potentiels de securite pourraient apparaitre, en raison de possibles de-

fauts dans les mecanismes de securite des differentes applications qui composent Ie sys-

teme. Specifiquement, les defauts dans Ie controle d'acces au systeme VADOR pourraient

pennettre 1'acces non autorise aux ressources du systeme, tels que les fichiers de donnees

des utilisateurs. L'utilisation de SSH ne pennet pas de se prevenir ce type de probleme.

Afin de proteger les ressources tant centre les defauts au niveau de VADOR qu'au niveau

du systems d'exploitation, des mecanismes stmctures en trois niveaux de protection sont

definis dans Ie patron Gestionnaire de Securite, tel qu'illustre a la figure III

. Le Premier Niveau est controle par Ie Gestionnaire de Securite a travers Ie Serveur

de Securite. Ce niveau est base sur les mecanismes de securite foumis par la Java

Virtual Machine (JVM), et permet de respecter une politique de securite exteme,

dans laquelle des clefs de securite sont definies et initialisees par 1'administrateur

de VADOR. L'objectif de ce niveau est de controler les acces aux ressources du

sy steme VADOR, tels que les objets de VADOR. Les mecanismes associes a ce

niveau comprennent la verification et 1'authentification des agents.

. Le Deuxiemes Niveau de mecanismes de protection est controle par les Ges-

tionnaires de Securite qui agissent au nom des autres serveurs de VADOR (en-

droits d'execution). Ce niveau permet de faire respecter la politique de securite de

VADOR, dans laquelle les pnvileges des utilisateurs sont definis et stockes dans

la base de donnees de VADOR. Cette politique peat etre initialisee dynamique-

ment. Elle est necessaire au Gestionnaire de Securite pour la verification des per-

missions d'execution des processus. L'objectif de ce niveau est de controler les

XVI

VADOR Agent - Exteroal
Security

Policy

Security Server

Access to ,^.^ ^^ ^^ ̂ ^ p.ot.ction
(Vador Security Servur

Security Server Security Manager b** °n JVM>

Resourcaa

Iruafd Jtguit VADOR

Policy

2nd Levl Protaction

Full Access v»OR«ppiic. tion <VADOR!-.'
Douain

to Reaources

Sytui Domain

VADOR Security Manager

VADOR Resources

(DCInstanca, DCType, etc)

SSH
3rd Levl Protnction

System Resources
(files, network conntections, etc)

FIGURE III Modele de Securite de VADOR

acces aux ressources et aux donnees de VADOR, tels que les fichiers de donnees

des utilisateurs. Les mecanismes comprennent 1'initialisation et la manipulation dy-

namique des politiques de securite associees aux donnees stockees, et 1'autorisation

de 1'execution d'agents bases sur cette politique.

Le Troisieme Niveau est la protection controlee par SSH au niveau du systeme

d'exploitation. L'objectif derriere 1'implantation de ce niveau est de permettre

d'associer la propriete d'un agent a 1'usager qui 1'utilise et d'eliminer Ie concept

du proprietaire d'agents VADORADM. De cette fagon, les serveurs d'execution

(Wrapper) et les fichiers de donnees appartiennent uniquement a 1'utilisateur qui

les a crees, et les acces non autorises sont automatiquement rejetes.

XV11

Patrons de securite

Plusieurs patrons de conception lies a la securite ont ete utilises dans Ie patron Gestion-

naire de Securite:

. U Authentification d'Agent et la Signature d'Agent implantent la classe Codifier

foumie par Ie patron Cryptographic Meta pattern, de sorte qu'un agent puisse etre

signe avant qu'il soit envoye pour des executions de t^che. Tout deux implantent

egalement 1c patron Sender Authentication pour faciliter les precedes de verifica-

tion et d'authentification des expediteurs d'agents

. Le Serveur de Securite est une specialisation du patron Single Access Point. II

controle les acces aux autres serveurs de VADOR et ne peut pas etre evite.

. Le patron Policy foumit la structure de definition du serveur de securite pour les

precedes de verification et d'authentification. II collabore egalement avec Ie patron

Security Manager dans les processus d'autorisation.

. Les patrons Subject Descriptor et Session aident Ie Gestionnaire de Securite a

definir Ie module Descripteur d'Attnbuts de Securite, de sorte que des attributs

relatifs a la secunte ne soient pas mgles aux autres types d'attributs et puissent etre

partages par plusieurs objets dans un meme fil d'execution da serveur.

. Les patrons Protected System, Partitioned Application et Policy servent a etablir la

structure du patron Gestionnaire de Securite.

Plusieurs auti-es patrons de conception participent egalement a la definition du patron

Gestionnaire de Securite, tels que Proxy, Template Method, Strategy, et Visitor. Tous ces

patrons collaborent avec les patrons de securite pour foumir aux concepteurs de systemes

VADOR une approche de conception architecturale basee sur des agents presentant des

caracteristiques de securite evoluees.

XV111

Validation et tests du systeme VADOR

Le patron Gestionnaire de Securite est valide sur la base d'un plan de test elabore selon

les recommandations du Principles of Software Validation Soft-Solutions-Intemational

(2002). Cette approche de validation a ete directement integree dans une demarche

de verification de la fonctionnalite du systeme VADOR puisque cet environment,

developpe a 1'aide du patron Gestionnaire de Securite, correspond en tous points au type

d'applications vers lesquelles Ie patron est oriente. Les tests visent principalement a veri-

fier Ie comportement correct du systeme et la possibilite de configurer Ie contrQle d'acces

aux ressources en fonction des besoins specifiques des usagers et adminstrateurs du sys-

teme.

Les resultats des tests menes sur Ie systeme VADOR tendent a montrer Ie fonctionnement

correct du systeme pour differents types de requetes permises ou non, en fonction des

configurations faites au niveau de la politique de securite. Ces tests permettent done

d'inferer que I'utilisation du patron Gestionnaire de Securite permet de concevoir une

architecture logicielle reutilisable, qui permet de resoudre concretement les problemes de

gestion des acces a un ensemble complexe de ressources distribuees.

Conclusion

U implantation du patron Gestionnaire de Secwite pennet d'aider les developpeurs de

VADOR a controler les acces aux ressources en foumissant une architecture de secu-

rite composee de trois niveaux. Cette architecture logicielle, basee sur une approche

par agent, pennet egalement de controler les processus d'execution de taches asso-

ciees a chaque type d'agent a 1'aide de mecanismes d'identification des usagers et

d'authentification des agents dans Ie systeme.

XIX

Dans sa version actuelle, Ie patron ne permet cependant pas de proteger 1'agent contre des

attaques visant les canaux de transmission. Si 1'agent etait attaque et devenait malveillant,

une execution de tache exigee par son expediteur pourrait ne pas pouvoir etre accomplie.

Eventuellement, des mecanismes de protection des agents bases sur SSH et utilisant la

redirection de ports pourraient etre implantes au niveau du Gestionnaire de Securite afin

de prevenir ce type d'attaques.

TABLE OF CONTENTS

XX

DEDICATION

ACKNOWLEDGMENTS

RESUME

IV

ABSTRACT .

CONDENSE EN FRAN^AIS

TABLE OF CONTENTS

LIST OF TABLES

LISTOFHGURES

LIST OF ABBREVIATIONS AND SYMBOLS . .

LIST OF APPENDICES

VI

Vlll

XX

. XXVI

XXV11

. XXX

. XXXI

CHAPTER 1 INTRODUCTION 1

1. 1 An Overview of the VADOR Framework 1

1.2 VADOR Architecture Design 4

1.2. 1 Global Architecture...................... . . 5

1.2. 2 Application Layer Architecture - The Active Agent Pattern 7

1.2.2. 1 Active Agent Components 7

1.2.2.2 Active Agent Structure and Participants 7

1.2.2. 3 Active Agent Collaboration and Dynamic Behavior . . 9

1.2.2.4 The Sub-Components in the Agent Component . . . 11

1. 3 Explore Security Challenges 12

XXI

1.4 Enhance Security Functionalities Using Security Patterns 13

1.5 Organization of This Work 13

CHAPTER 2 REVIEW OF LFTERATURE

2. 1 Security Defects Classes in Distributed Applications

2.1.1 Landwher's Classification

15

16

16

2. 1.2 Bishop's Classification 17

2. 1.3 The Top Ten Web Application Security Vulnerabilities 18

2. 1.4 Security Defects Related to Design 19

2.2 Review of Security Design Patterns 20

2.2. 1 Background of Design Patterns 20

2.2.2 Template for Security Design Patterns 21

2.2.2. 1 Security Pattern Definitions 21

2.2.2.2 Security Pattern Description 22

2.2.3 Design Patterns for Distributed Applications Secunty 24

2.2.3. 1 Yoder and Barcalow 25

2.2.3.2 Eduardo B. Femandez 25

2.2. 3. 3 Sasha Romanosky 26

2.2.3.4 Cryptographic Meta-pattem 27

2.2.3.5 Open Group 28

Summary 282.2.4

2.2.4. 1 Prevent Stmctural Defects using Security Patterns . . . 28

CHAPTERS SECURITY DEFECTS IN THE VADOR FRAMEWORK . . . 34

3. 1 Security Problems in the VADOR Framework 34

3. 1. 1 Threats to Agents 35

3. 1.2 Threats to Data Files 36

3. 1.2. 1 The Current Situation of VADOR 36

3. 1.2.2 The Fundamental Secunty Problem of VADOR . . 37

XX11

3. 1.2.3 Other Potential VADOR Security Problems 38

3. 1.2.4 Origin of VADOR Security Problems 38

3. 1.2.5 Possible Solutions and Drawbacks 39

3. 1.2.5. 1 Problems of System Integration 39

3. 1.2.5.2 Problems of the Multi-threaded Processes . . 40

3.2 Preview of Security Defects in the VADOR Framework 41

3.2. 1 Improper Use of Multiple Access Points Control 41

3. 2.2 Improper Error Checking 42

3.2. 3 Improper Muld-User Profiles Management 43

3.2.4 Improper Global Information Access Control 43

3.2. 5 Improper Excepdon Handling 44

3.2. 6 Improperly Integrated External Security System 44

3. 3 Summary 45

CHAPTER 4 SECURITY MODEL - FROM JAVA TO THE VADOR H^AME-

WORK 47

4. 1 Security in Java 2 SDK 47

4. 1. 1 J2SDK Security Features Overview 47

4. 1. 2 J2SDK Security Models 49

4. 1.2. 1 The Original Sandbox Model 49

4. 1.2. 1. 1 JDK 1.0 Security Model 49

4. 1. 2. 1. 2 JDK 1. 1 Security Model 50

4. 1.2.2 The Current Security Model 51

4. 1.3 J2SDK Protection Mechanisms 53

4.2 Security in the VADOR Framework 54

4.2. 1 The VADOR Security Features Overview 54

4.2.2 The VADOR Security Model 55

4.2.2. 1 1st Level Protection: Security Server 56

XX111

4.2. 2.2 2nd Level Protection: VADOR Servers .

4. 2. 2. 3 3rd Level Protection: Operating System

4.2.3 The VADOR Protection Mechanisms .

57

58

59

4. 3 Summary 61

CHAPTERS THE SECURITY MANAGER PATTERN 62

5. 1 Active Agent Pattern with Security Manager 62

5. 1. 1 The Extended Interaction Between Participants 63

5. 1.2 The Extended Active Agent Dynamic Behavior 63

5. 2 Security Manager Pattern 65

5.2. 1 Name 66

5.2.2 Context 66

5.2. 3 Problem 66

5. 2.4 Solution 66

5.2. 5 Stmcture 67

5.2.6 Participants 67

5.2.7 Interaction 69

5. 3 Security Manager Pattern Modules 72

5.3. 1 Security Interface Module 73

5. 3. 1. 1 Components 74

5.3.2 Agent Authentication Module 75

5. 3.2. 1 Structure 75

5.3.2.2 Participants 75

5.3.2.3 Interaction 77

5.3.2.4 Related Patterns 79

5. 3. 3 Agent Signature Module 79

5.3.3. 1 Structure 79

5.3.3.2 Participants 79

XXIV

5. 3. 3.3 Interaction 81

5.3.3.4 Related Patterns 82

5. 3.4 Security Server Module 84

5.3.4. 1 Structure 84

5.3.4.2 Participants 85

5. 3.4. 3 Interaction 86

5. 3.4.4 Related Patterns 87

5. 3. 5 Security Attributes Descnptor Module 87

5.3.5. 1 Structure 88

5.3.5.2 Participants 88

5. 3. 5. 3 Related Patterns 90

5.3.6 Security Manager Module 90

5. 3. 6. 1 Stmcture 91

5.3.6.2 Participants 91

5.3.6.3 Interaction 95

5. 3. 6.4 Related Patterns 97

5. 3.7 Consequences...... 97

5. 3. 8 Related Patterns 98

5.4 Summary 99

CHAPTER 6 VALIDATION AND TESTS 102

6. 1 Objectives 102

6. 1. 1 Why Validate the Pattern 103

6. 1. 2 Why Test the Pattern in the VADOR Framework 103

6.2 Management of the Validation and Tests 103

6.2. 1 Plan..... 104

6. 2. 2 Procedures and Expected Results 105

6.2.3 Test Cases and Results 107

XXV

6. 2. 3. 1 Test Cases 107

6.2.3.2 Results of Validation and Tests 109

6.3 Limitations on the Tests 110

6.4 Possible Applicability to Other Systems 111

6.4. 1 Relevance of Other Systems Ill

6.4.2 Extension Points to Other Systems 112

6.4.2. 1 Extension points for Agent Signature 112

6.4.2.2 Extension points for Security Server 112

6.4. 2. 3 Extension points for Security Attributes Descriptor . .. 113

6.4.2.4 Extension points for Security Manager 113

6. 5 Summary 113

CONCLUSION

REFERENCES

APPENDICES

117

. . 122

. . 125

XXVI

LIST OF TABLES

TABLE 6. 1 Security Manager Pattern Validation Plan 104

TABLE 6. 2 Keys Generadon Test Cases and Results 108

TABLE 6. 3 Certificates Exporting, Importing Test Cases and Results 108

TABLE 6. 4 Agent Signature Test Cases and Results 108

TABLE 6. 5 Agent Authentication Test Cases and Results 109

TABLE 6. 6 VADOR Policy Database Table and Value Example 109

TABLE 6.7 Agent Authorization Test Cases and Results 110

TABLE 6. 8 Comparison of Expected and Test Cases Results -1 115

TABLE 6 9 Comparison of Expected and Test Cases Results-2 116

XXV11

LIST OF FIGURES

FIGURE I La Structure du Patron de Agent Actif xi

FIGURE II Stmcture du patron Gestionnaire de Securite xiv

FIGURE III Modele de Securite de VADOR xvi

FIGURE 1. 1 The VADOR Architecture Design 5

FIGURE 1. 2 The Active Agent Pattern Components 8

FIGURE 1. 3 The Active Agent Pattern Stmcture 8

FIGURE 1. 4 Active Agent Collaboration 10

FIGURE 1.5 Sub-Components in the Agent Component 11

FIGURE 2. 1 MVC 21

FIGURE 3. 1 The Fundamental Security Problem of VADOR 37

FIGURE 4. 1 JDK 1.0 Security Model 49

FIGURE 4.2 JDK 1. 1 Security Model 51

FIGURE 4.3 The Current J2SDK Security Model 52

FIGURE 4.4 The Domain Composition of a Java Application Environment . . 53

FIGURE 4. 5 The J2SDK Protection Mechanisms 54

FIGURE 4. 6 VADOR Security Model 56

XXVlll

FIGURE 4.7 The Domain Composition of the VADOR Framework 59

FIGURE 4. 8 The VADOR Protection Mechanisms 60

FIGURE 5. 1 Extended Active Agent Pattern Interaction Diagram 64

FIGURE 5.2 Stmcture of the Security Manager Pattern 67

FIGURE 5. 3 Security Manager Pattern Interaction 70

FIGURE 5.4 Signed Agent Verification Algorithms 71

FIGURE 5.5 Security Manager Pattern Modules Structure and Relationship . . 73

FIGURE 5. 6 Security Interface Module Components 74

FIGURE 5.7 Agent Authentication Module Class Diagram 76

FIGURE 5. 8 Agent Authentication Module Interaction Diagram 78

FIGURE 5.9 Agent Signature Module Class Diagram 80

FlGURE5. IO Agent Signature Module Interacdon Diagram 82

FiGURE5.Il Agent Signature Algorithms 83

FIGURE 5. 12 Security Server Module Class Diagram 84

FIGURE5.13 Security Server Module Interaction Diagram 86

FIGURE 5. 14 Security Attributes Descriptor Module Class Diagram 88

FIGURE 5. 15 Security Manager Module Class Diagram 91

FIGURE 5. 16 Security Manager Module Interaction Diagram 95

XXIX

FIGURE 5. 17 Extended Active Agent Pattern Sequence Diagram 101

XXX

LIST OF ABBREVIATIONS AND SYMBOLS

CERCA CEntre de Calcul en Recherche Applique

VADOR Virtual Aircraft Design and Optimization fRamework

MDO Multidisciplinary Design Optimization

JDK Java Development Kit

SDK Standard Development Kit

JVM Java Virtual Machine

SSH Secure Shell

SecurP Secure design Pattern project

XXXI

LIST OF APPENDICES

APPENDDC I SECURITY DEFECTS CLASSES IN DISTRIBUTED APPLI-

CATIONS 125

1. 1 Landwher's Classification 125

1.2 Bishop's Classification 126

1. 3 The Top Ten Web Application Security Vulnerabilities 127

1.4 Security Defects Related to Design 129

APPENDDCH SECURITY DESIGN PATTERNS 133

11. 1 Yoder and Barcalow 133

11.2 Eduardo B. Femandez 134

11. 3 Sasha Romanosky . 135

11.4 Cryptographic Meta-pattem 137

11.5 Open Group . 139

CHAPTER 1

INTRODUCTION

The Virtual Aircraft Design Optimization fRamework (VADOR) is a Multidisciplinary

Design Optimization (MDO) framework which has been developed at CERCA (CEntre

de Calcul en Recherche Applique) and Ecole Polytechnique in collaborating with Bom-

bardier Aerospace. Based on a client-server architecture developed using object-oriented

design patterns and the Java programming language, VADOR is built as a mobile agent

envu-onment that meets the requirements of a MDO software framework for aeronautical

applications.

This introduction presents an overview of the VADOR framework, introduces the moti-

vation and objectives of this research, and oudines the organization of this document.

1.1 An Overview of the VADOR Framework

MDO is a emerging discipline which provides methodologies and tools to tackle the

formidable challenges of integrating high-fidelity physical models in a computation based

design environment and to allow the synergism of mutually interacting disciplines to be

fully exploited (Trepanier (1999)). It is now a vast field of research which finds applica-

tion in all areas of engineering. For example, in aeronautics, coupled disciplines need to

drive MDO research, as each design department is responsible for specific aspects of the

engineering work required to design an airplane, but is also required to account for needs

from other department in a search for overall acceptable designs.

A framework is one of the components that are involved in the deployment of an MDO

methodology. It is also one of the sources of increase in efficiency of disciplinary opti-

mizations and sensitivity computations and of the development of specific MDO method-

ologies and strategies (Sobieszczansk-Sobieski and Haftka (1997)).

In the implementation of a design cycle based on MDO methodology, integration is a

major weakness that precludes application development and automatic execution of anal-

ysis processes. The integration of various softwares in a software framework is a favored

solution. The frameworks are ranging from engineering design frameworks to computer

resources management frameworks, most often in a heterogeneous and parallel comput-

ing environment which requires available distributed computing technologies.

Through the use of an MDO framework that supports the integration of components of

MDO applications, designers would be able to concentrate more on the application than

the programming details. In addition, a common working environment would be provided

by the framework, which would increase the productivity of multidisciplinary projects,

thus reducing the time and the cost.

As a MDO framework, the objective of VADOR is to enable the seamless integration of

commercial and in-house analysis applications in a heterogeneous, distributed computing

environment, and to allow the management and sharing of data by the various departments

of an aerospace organization.

In order to meet the MDO requirements and the needs of Bombardier Aerospace, five key

characteristics have been identified for the VADOR framework:

. Distributed system which is developed using Object-Oriented methodologies with

implementation in the Java programming language.

This characteristic provides the VADOR Framework with the capacity to seam-

lessly integrate commercial and in-house analysis applications in a heterogeneous,

distributed computing environment, and to allow the deployment of automatic de-

sign optimization algorithms based on the framework.

Distribution also improves efficiency and scalability of the VADOR framework and

provides users with a flexible and configurable data model, in which the evolving

requirements of engineers can adequately be satisfied using computational-based

design-and-analysis programs. This distributed system also provides capabilities

for the automation and integration of various processes used by engineers, supports

and promotes collaboration and data sharing.

. Manipulation of the user data in its native format

The VADOR Framework treats all the data as objects. Design-and-analysis data is

encapsulated in objects, named DataComponents, that refer to the actual data stored

in files. The DataComponents contain an appropriate set of attributes required for

data management, but leave the data itself in the files that are being encapsulated.

. Encapsulation of engineering applications

Engineering applications are treated as distinct objects in the VADOR frame-

work. These components, named StrategyComponents, encapsulate the design-

and-analysis methodologies or processes. The StrategyComponents represent the

basic methods and the data flows required to transform data in a given process. The

StrategyComponent can include user programs which can create the date files en-

capsulated in the DataComponents. The programs are usually executable legacy

programs to be executed on a specific set of machines on the network.

. Graphical user interface

The VADOR Framework offers a graphical user interface which is the visual part

of the Java program and will be running on users' machines, the users create and

manipulate interactively their own DataComponents and StrategyComponents in

the graphical user interface applications.

. Saving data in the database

The DataComponent and StrategyComponent objects are saved in a database. The

present architectural design supports the separation of the basic data, usually con-

tained in files and potentially rather large, from the descriptive infonnation. Only

the descriptive information is stored in the database.

In order to reduce the risks related to architectural issues, and based on the above com-

ponents, the VADOR framework applies a very recent approach to architectural design

which involves heavy reliance upon design patterns and pattern languages to realize the

distributed framework and improve its performance.

In the VADOR project, numerous previously published design patterns have been used

to solve fundamental maintenance, evolution, distribution and concurrency problems en-

countered in the design and realization of the VADOR framework. The use of design

patterns in the context of distributed software architectures is still a relatively recent topic

for which research is very active. In the case of implementing the VADOR framework,

great care has been taken to propose an architectural design of the framework which is

both scalable and extensible. This results in a reusable framework architecture.

The design of the VADOR framework also relies on the development and evolution of a

new design pattern, named the Active Agent pattern, which is based on the Active object,

Command, Proxy, Visitor and Strategy patterns. This pattern tries to resolve concurrency

problems in the distributed framework, and works as a mobile agent.

1.2 VADOR Architecture Design

In order to increase flexibility, scalability, reusability, and robustness, the VADOR frame-

work design decouples the architecture into numerous autonomous modules, which are

represented as the classical three layers: Presentation Layer, Application Domain Layer,

and persistent Data Layer. As illustrated in figure 1. 1, the architecture is expressed as a

set of components. Through the layering of different services, the proposed framework

architecture should allow for easy evolution of the framework as the needs evolve. (Chen

(2004))

«applicatlon»
DB Explorer

Interactive application
providing administrative
level management of
database tables

«appllcatlon»
VadorGUI

Interactive application
providing user access to
data management and
execution control

Presentation Layer

. «executable»
Librarian

server daemon providing
data and strategy component
management ser/ices

«executable»

Executive

Server daemon providing
strategy component
execution services Application Domain Layer

I

«executable»

DataBascClient

Interface client usinq IDBC

I

Database

«cxecutable»

Wrapper
Server daemon providing
remotely Invocable
application execution

.<<executable»

AnalysisAppllcatlon
Executable engineering

I

«flle»

DataComponentFile
Result date files

«executable»
Wrapper_Sertflet

Server daemon
providing remote
file transfer services

Persistent Data Layer

FIGURE 1. 1 The VADOR Architecture Design

1.2.1 Global Architecture

The following components are included in the global VADOR modules:

1. The Presentation Layer

. The VadorGUI provides a graphical user interface that lets users create and

manipulate interactively their own Data and Strategy Components; these com-

ponents form the basis of data and process infomiation

. The DBExplorer is a client-side program that provides a graphical user inter-

face that allows communications with the DataBase Client to directly manip-

ulate the database, where the components created in the framework are stored.

The DBExplorer is a system administration tool, as opposed to the VadorGUI,

which is an interface targeted toward engineering users

2. The Application Domain Layer

. The Librarian Server is responsible for the management of DataComponents

and StrategyComponents, and of the interaction with the Database

. The Executive Server is responsible for the execution of the commands issued

by users through the VadorGUI, and for sending back execution results to the

Librarian when an analysis step has completed

. The Wrapper and the Wrapper Servlet are the remote CPU Servers interfaces,

which are called by the Executive Server and that create the DataComponents

and start the execution of the analysis applications

. The Analysis Application programs are the legacy applications that are en-

capsulated in the framework

3. The Data Layer

. The DataComponents Files are the files that store results of all engineering

applications

. The DBMS stores the descriptions of all components directly managed by

the framework, including the description of DataComponents and Strategy-

Components

1.2.2 Application Layer Architecture - The Active Agent Pattern

The application domain layer constitutes the core of VADOR System and comprises two

main servers: Executive Server and Librarian Server. Most of the functionalities to pro-

cess data and tasks in the VADOR framework reside in this layer, which is implemented

using specialization of the Active Agent pattern.

The Active Agent pattern is based on the Active Object, Command, Proxy, Visitor, and

Strategy patterns. It decouples the method executions from method invocation, so that

it can enhance concurrency and simplify synchronized access to objects that reside in

their own threads of control. It also decouples the method execudon from the execution

platform by encapsulating method executions in mobile agents. The objective is to solve

problems related to the concurrency, scalability and flexibility of the framework. (Chen

(2004))

1.2.2.1 Active Agent Components

The VADOR System is an agent based system that represents a specialized Active Agent

pattern. It is implemented on top of the Java Virtual Machine (IVM). Three main com-

ponents compose the Active Agent pattern: Server, Client, and Agent. As illustrated in

figure 1.2, both server and client run on top of the JVM. They may run in the same or

different machines. Agents run on the VADOR Server, they interact with their end-user

via the VadorGUI.

1.2.2.2 Active Agent Structure and Participants

The Active Agent pattern consists of several internal participants, that cooperate to pro-

vide services to an external client. The pattern structure is illustrated in figure 1.3.

application
agent

agent

Vador System Vador System

JVM

Client

(Management)

network

JVM

Server

(Support)

FIGURE 1.2 The Active Agent Pattern Components

oseate
Qient Agent Us^

agent owner

seairi i i
1 SecyrityManager i

oonoreteAgent place

Ciona^teAgent Bc&cutionPaace

FIGURE 1. 3 The Active Agent Pattern Structure

. Client: The client creates and manipulates the agents using the standard interfaces

provided by the pattern. In the context of the VADOR framework, Clients represent

applications that directly perform tasks on behalf of the framework users, such as

the VadorGUI.

. User: Agent sender that is identified through a unique identifier (id) in the system.

When a user creates an agent through one of the VADOR applications, his id is

included in the agent, and this agent becomes his delegate.

. Agent: The Agent abstract class is the visible and extensible part of the Active

Agent pattern, it defines the abstract behavior of the agent, which includes, in the

case of the VADOR framework, the call function and the can_mn function.

. ConcreteAgent: ConcreteAgent classes are subclasses of Agent. They implement

the behavior related functions to execute the concrete tasks. For instance, the Open-

Strategy Agent loads the StrategyComponent object from the Database, and the

SaveStrategy Agent saves the StrategyComponent object in the database.

. SecurityManager: This class specifies the Agent access control security policy, it

contains all the operations made available on the agent components. It was planned,

but not implemented in the VADOR prototype.

. ExecutionPlace: This class specifies the agent's computational environment,

which corresponds to the place where it was created as well as where it currently

resides. In the VADOR framework, the Execution Places are the VADOR Servers,

such as the Executive Server and the Librarian Server.

1.2.2.3 Active Agent Collaboration and Dynamic Behavior

In order to accomplish tasks using the VADOR framework, the Active Agent components

need to collaborate with each other. As illustrated in figure 1.4, clients, such as VadorGUI,

create agents; the agents then migrate to an execution place (the VADOR Server), which

calls the standard agent operation (call function). Depending on the agent's security

policy that is enforced by a Security Server in the system, and the Security Manager

10

on behalf of the execution place, the operation is executed, or not, on the related agent

instance.

Client I ExecutionPlace | Agent] ConcreteAgent SecurityManager

CreateAgentO

calK)

callO

can_run()

anAccessO

doOperationQ

FIGURE 1.4 Active Agent Collaboration

Three phases are involved in the dynamic behavior of the Acdve Agent pattern:

1. Agent construction and sending

A client creates an Agent object that includes the VADOR User, concrete VADOR

Object, Vador Visitor interface and Vador Proxy objects. The Agent object then

uses the Vador Proxy to send itself to the next Vador Server.

2. Agent execution

After receiving the Agent object, the Vador Server calls its call function to start

the execution. A runnable Agent object then dynamically loads the concrete Vador

Visitor and uses it to execute the task. Before the agent does any operation, the

Vador Server should request the Security Manager to enforce security policy to

check the Agent's pennission. Since the security policy is not available, and the

Security Manager was not implemented, so that the security policy enforcement

process was not developed in the VADOR prototype.

3. Completion

The execution result is sent back by the Vador Server to the client.

11

1.2.2.4 The Sub-Components in the Agent Component

Four sub-components compose the Agent component in the Active Agent pattern. They

are illustrated in figure 1. 5.

Vador User

Vador Object

Vador Visitor

Vador Visitor

Itinerary

Vador Proxy

Vador Proxy

FIGURE 1.5 Sub-Components in the Agent Component

Vador User: The Vador User object carries information on the agent sender (User).

for example, user id and user name, etc.

Vador Object: This is an abstract component which carries actual data on which

the agent needs to operate. Examples of the Vador Object include StrategyCompo-

nent, DataComponent, etc.

Vador Visitor: This is an execution class that includes information on how to

execute a task.

12

. Itinerary: The Vador Itinerary contains agents' mobility information and their

navigation among multiple destinations. It includes several Vador Proxy objects.

Each Vador Proxy represents a destination server that the agent wants to go to.

1.3 Explore Security Challenges

As a MDO framework and distributed application that provides a mobile agent based

architecture, the VADOR framework benefits from data transmission and sharing between

designers and engineers over a heterogeneous, distributed computing environment. The

Internet is thus a the major component of the transmission media.

However, secunty is a central challenge that derives from the characteristics of the

VADOR framework, and this research is mainly motivated by this challenge, which con-

sistsoftwo aspects:

1. Virus, hackers, human defaults, the risk always exists when information is being

transmitted via the Internet. These risks require to develop security mechanisms

in the VADOR framework, so that they can protect the system and user data from

threats or attackers.

2. Security policies usually are not available at the time when a system is in its building

phase, but need to be defined and/or updated, and enforced to secure the system in

later stages. The security policy was not initially defined in the VADOR prototype,

but the functionality to flexibly specify a security policy was required for protecting

the agent based system. As the development is moving onto the stage of releasing

the VADOR framework for operadonal use at Bombardier Aerospace, an Access

Control Policy needs to be defined. The objective of this security policy is to control

the access to users' data files, the scope of this control is the security attributes of

the data files, including their subjects, objects, and operations. With enforcement

13

of the access control policy, unauthorized access to the data files are not generally

pennitted as this would be in violation of the policy.

1.4 Enhance Security Functionalities Using Security Patterns

Motivated by the challenge of defining and implementing a valid security policy for the

VADOR framework, this research conducts efforts on the enhancement of security func-

tionalities using security design pattern concepts. The objective is to identify the main

security issues involved in VADOR framework operations, preview security defects re-

lated to the functional design of the framework that may be exploited by threats and cause

problems, and identify solutions to these problems using security design patterns. These

security patterns will then be integrated into the Active Agent component - The Security

Manager, which implements the Protected System pattern, and in which the VADOR ac-

cess control security policy could be specified. This protection mechanism should control

all operations made available by the agent components through each agent proxy.

1.5 Organization of This Work

This work is organized in the following parts:

. chapter 2 reviews some of the existing security defect classifications for distributed

applications, it also reviews security design patterns that could be used to prevent

the security defects and to solve security problems introduced by the defects.

. chapter 3 identifies security problems of the VADOR framework, previews the secu-

rity defects that may cause problems from a design point of view, and then identifies

approaches using security design patterns to prevent the defects.

14

chapter 4 will introduce security model and mechanisms in the VADOR framework,

that are used to prevent security defects introduced in chapter 3 and protect the

VADOR System from threats.

chapter 5 presents the Security Manager pattern that consists of the security design

patterns identified in chapter 2.

chapter 6 gathers and analyzes validation and testing infomiation of the Security

Manager pattern using the VADOR framework as an experimental example.

Finally, the last chapter concludes on this research and discusses future works.

15

CHAPTER 2

REVIEW OF LITERATURE

"Traditionally, defects represent the undesirable aspects of a software's quality." (IBM

(2002)). A software defect can cause a system to fail in its operation. A security defect

of a software can be exploited that may result in unauthorized modifications of data, or

disclosure of infonnadon which affects the system's reliability and security, or robustness.

The omission of security issues during a software development is the cause of security

defects, the reason is either that the security policy is not generally available, or because

it just seems easier to postpone secunty concerns.

Knowledge of security defects and appropriate approaches that could prevent them is

important to ensure reliable operation and to preserve the integrity of stored information.

These topics were the focus of defect classification studies that were conducted to make

distributed systems secure and to improve the reliability of software, and of security

design patterns studies that were conducted to prevent the defects from design and to

improve the flexibility and extensibility of the software.

This chapter will review the available literature on security design patterns and defect

classifications, specify the defect categories that may exist in distributed applications

and could be prevented using secure and reliable design patterns, then summanzes and

specifies the security patterns that can solve security problems in the design and prevent

the defects introduced.

16

2.1 Security Defects Classes in Distributed Applications

Since the early 1970s, many researchers have been working on classifying software de-

fects. They have published several reports concerning the methods of defect analysis,

detection, correction, and categorized discovered defects into classes, or organized them

into databases. The objectives of their classifications were to provide defect informa-

tion to software developers, help them find approaches to prevent, detect, and correct the

defects to build more robust systems.

This section reviews some of the recently published software defects or security flaws

classification schemes in relation with distributed applications, and concludes on each of

them by analyzing the possibilities of finding approaches that can prevent defects during

the design phase using design pattern concepts. Details of the defect categories and

limitations are outlined in Appendix I.

2. 1.1 Landwher's Classification

Landwehr et al. (1994) provided a taxonomy for computer program security flaws to-

gether with an appendix that carefully documents 50 actual security flaws. His classi-

fication scheme categorized security flaws using three attributes: By Genesis, By Time

of Introduction, and By Location. The goal was to help developers detect or correct the

flaws. (See Appendix 1. 1 for details).

By analyzing the categories and focusing on the flaws which were introduced during

software (by location) design (by time of introduction) and caused by design errors (

genesis), this classification may help to define defects related to design. However, it is

primarily related to security flaws in operating systems that have been built and released

to operational use, so that it is difficult to find appropriate approaches related to security

design patterns for avoiding the security flaws introduced.

17

2.1.2 Bishop's Classification

Bishop (Bishop (1995)) presented a taxonomy for security vulnerabilities, examined

through vulnerabilities in the UNDO operating system. The objective of his work was

to improve security of existing systems, and to help developers in writing programs with

minimal exploitable security flaws. It is a guide for maintainers and software imple-

menters to improve the security of these flawed systems or softwares. He categorized

security faults that exist in UNDO operating systems and networks into four classes: Zm-

proper protection. Improper Validation, Improper Synchronization, and Improper Choice

of Operand or Operation. See Appendix 1.2 for details).

Bishop's taxonomy of security flaws (2. 1.2) focused on application-level and programming-

level problems based on six axis:

. The nature (cause) of a flaw based on PA (BISBEY II and HOLLINGWORTH

(1978)) categories.

. The time of introduction based on conclusions by Landwehr (Landwehr et al.

(1994)) "Time of Introduction" category into "System Problem" and "Procedure

Problem".

. The exploitation domain that describes direct impact of a security flaw.

. The effect domain that describes the indirect impact of a security flaw.

. The minimum number of components to exploit the vulnerability that analyzes the

conditions of introducing a flaw.

. The source of the identification of the vulnerability provides the information on

identifying a security flaw.

18

These axis may be useful for helping analysts look at characteristics of a security flaw,

and analyze problems in the detection and elimination of vulnerabilities, they may also

help to identify defects related to design.

He mentioned "prevention of flaws using 'abstracdon' to collect small parts and opera-

dons lumped together with well defined interfaces providing the only access to the internal

representation and implement the abstraction properly", this approach could be realized

by using security design pattern concepts. However, there was no detailed approaches

introduced to prevent specified security flaws, and it is also difficult to identify security

design patterns to prevent the security flaws introduced.

Because this taxonomy was defined based on the existing security defects classifications,

such as PA (BISBEY II and HOLLINGWORTH (1978)) and Landwehr (Landwehr et al.

(1994)), it overlapped the previous works in someway.

2.1.3 The Top Ten Web Application Security Vulnerabilities

The Open Web AppUcation Secunty Project OWASP(OWASP (2003)) conducts research

on web application security. The Top Ten Documentation Project published a list of the

most critical web application security flaws, that is becoming a de-facto standard for web

application security, and that has been used by commercial and educational organizations

for projects planning and execution.

OWASP's list of top ten web application security vulnerabilities (Appendix 1.3) represents

the most probable flaws in web application with detailed description on each of them,

including the environments affected, examples and references on how to determine if you

are vulnerable.

The most useful part of this list is the information on how to protect yourself. Although

the approaches for protection are too general from a design point of view, they provide

19

some key elements that are needed for prevention strategies. For example, to protect a

web application from broken access control, it mentions that "the most important step is

to think through an application's access control and capture it in a web application security

policy ". This can help to design strategies to prevent broken access control by defining

a valid security policy, and by applying it to the access control mechanism. However, it

didn't specify the defects that may be specifically introduced during the design process,

and the defect classes are too general for hiring security design patterns to prevent their

introduction.

2. 1.4 Security Defects Related to Design

The Secure design Patterns (SecurP) project (Guibault et al. (2004)) focused its efforts on

classifying security defects related to the design phase in the development of distributed

applications that could breach security functionalities as required by the Common Criteria

(CSRC (1999)). That work also focuses on flaws that could be prevented using security

design patterns. The defects are categorized into Structural Defects and Functional De-

fects according to the security problems addressed by the defects. (See Appendix 1.4 for

details).

The increasing need of data communications between organizations requires the common

software defects concerning security and reliability to be classified, so that they can be

prevented in the design phase using design pattern concepts, and the classification can be

applied and customized by different organizations to fulfil their own needs.

Motivated by the above context, the first objective of this work is to help developers in

building more secure and reliable software systems. Based on the first objective, the

project focused efforts on the categorization of defects that are related to the design phase

in the development process. These defects could be introduced by an absent, ambiguous

or improper design, exploited by threats during operations and lead to risks to assets of

20

a system. They could be prevented by applying security design patterns, so that it can

enhance the security functionalities of the system.

Using this defect classification scheme, it is easier to identify security problems intoro-

duced by the defects and apply security design patterns to prevent them.

2.2 Review of Security Design Patterns

2.2.1 Background of Design Patterns

In Object-oriented Design, the design patterns solve problems in similar context to the

patterns applied in buildings and towns, "Each pattern describes a problem which occurs

over and over again in our environment, and then describes the core of the solution to

that problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice." (Alexander et al. (1977)). Design patterns in software

engineering are expressed in terms of objects and interfaces instead of walls and doors.

One of the most famous framework was the Model-View-Controller (MVC) framework

for Smalltalk (Krasner and S.T. (1988)), it is an example of a powerful reusable frame-

work that uses design patterns.

The MVC framework divided the user interface design problems into three parts: Data

Model, View, and Controller. The Data Model layer contains the computational aspects

of the program, the View presents the user interface, and the Controller contains control

aspects of the application, which interacted between the user and the view.

The purpose of this structure is to separate objects among the different parts of an appli-

cation, with each part having its own rules for managing data. The proposed stmcture

also controls the communication between the user, the GUI and the data, and it care-

21

Controller View

Data model

FIGURE 2. 1 MVC

fully separates the responsibilities among the parts. The objects in the three parts talk to

each other using a restrained set of connections, which are implemented as a set of a few

predetermined communication channels.

In other words, design patterns describe how to establish communication between the ob-

jects while hiding their data models and methods from each other. Keeping this separation

has always been an objective of good object oriented programming.

2.2.2 Template for Security Design Patterns

2.2.2.1 Security Pattern Definitions

Cooper (1998) cited some useful definitions of design patterns that have emerged as the

literature in the field has expanded:

. "Design patterns constitute a set of rules describing how to accomplish certain tasks

in the realm of software development."(Pree, 1994)

. "Design patterns focus more on reuse of recumng architectural design themes,

22

while frameworks focus on detailed designed... and implementation. "(Coplien &

Schmidt, 1995).

. "A pattern addresses a recurring design problem that arises in specific design situa-

tions and presents a solution to it"(Buschmann, et. al. 1996)

. "Patterns identify and specify abstractions that are above the level of single classes

and instances, or of components."(Gamma, et al. 1993)

Based on the above given definitions, Schumacher and Roedig (2001) presented defini-

tions of Security Patterns and Security Pattern System:

. Security Patterns: A security pattern describes a particular recurring secunty

problems that arises in specific contexts and presents a well-proven generic scheme

for its solution.

. Security Pattern System: A security pattern system is a collection of security pat-

terns, together with guidelines for their implementation, combination and practical

use in secunty engmeenng.

2.2.2.2 Security Pattern Description

With the additional aspects that turn a pattern into a security pattern, Schumacher and

Roedig (2001) introduced the key elements of security patterns by following the Manda-

tory Elements Present pattern (Meszaros and Doble (1996)) and using the terminology

given in the Common Criteria (CSRC (1999)):

. Name: Certainly security patterns are not different from normal patterns with re-

gard to their name. The name of the pattern becomes a part of the vocabulary of

23

the community. It should be easy to remember and refer to. A good name should

be evocative and give an image of what the pattern might be about.

Aliases (Optional): The aliases section lists other names by which this security

pattern might be known.

Context (and Related Patterns): Based on a scenario the context of the security

pattern is illustrated. The general conditions under which the problem does occur

and which forces do emerge are described. It is also useful to list context setting

security patterns. As some countermeasures may introduce other vulnerabilities,

additional security patterns should be considered in the related patterns section.

The same is also true of problems that are solved partly or could not be considered

within the given security pattern. The way a pattern hierarchy will be formed in the

related patterns section.

Problem: The Problem statement defines the problem that will be solved by the

security pattern. The major aspects of the problem are elaborated by the viewpoint

of the Forces to be solved. In the field of security, a problem occurs whenever

a system component is protected in an insufficient way against abuse. Generally

speaking, we have to deal with generic Threats, i.e. a potential for the violation of

security. A threat is a possible danger that exploits vulnerabilities.

Solution: This section describes the Solution to the Problem. Appropriate solu-

tions are determined by the Context of the pattern. According to certain Security

Objectives (that may be written down in Security Policies), Countenneasures have

to be applied in order to reduce the Risk. It is useful to warn from pitfalls (how

does this pattern becomes an Anti-Pattem) and refer to variants of the pattern.

Structure (Optional): Using certain diagrams to illustrate the Structure of a secu-

nty pattern.

24

. Interaction (Optional):Using certain diagrams to illustrate Interactions between

the participants of a security pattern.

. Consequences (Optional): Security has impacts on many other requirements such

as performance and usability. Thus it could be helpful to enlist the Consequences

of the application of a security pattern. The benefits and drawbacks of a security

pattern can be discussed.

. Examples (Optional): In order to illustrate the application of a security pattern,

concrete Examples could be provided. Useful are code or configuration samples as

well as some sketches.

2.2.3 Design Patterns for Distributed Applications Security

As the Internet services have been growing dramatically in recent years, more and more

distributed applications have been developed for providing data communication services,

security issues are parts of the measurement for qualifying such applications.

Because threats and attacks are constantly evolving in distributed applications to exploit

the systems' defects, and put systems at risk, designers are faced with chaUenges of

incorporating into theu- designs specific mechanisms to detect and prevent such secunty

breaches.

In most cases, effective security features are learned from experiences, and are not always

shared among designers, so that the novice designers have to deal more and more with

security even though they are not experts in the domain. Security design patterns have

a great importance here because they can effortlessly bring novice designers to a higher

security level. Defects can then be prevented by automatically applying the knowledge of

wiser designers.

25

This section reviews some of the security design patterns related to the design of dis-

tributed applications' security functionalides. These patterns can be referred to the cause

of design to prevent the security defects that may be exploited. Appendix II describes

these patterns and the problems that they can solve in details.

2.2.3.1 Yoder and Barcalow

Yoder and Barcalow (Yoder and Barcalow (1998)) were among the first to adapt design

pattern concepts to information security, they introduced seven patterns that represent an

architecture patterns scheme for enabling application security: Single Access Point pro-

vides a security module and a way to log into Ae system, Checkpoint organizes security

checks and their repercussions. Roles organizes users with siinilar security privileges,

Session localizes global information in a multi-user environment. Full View With Errors

provides a full view to users and shows exceptions when needed, Limited View allows

users to only see what they have access to, and Secure Access Layer integrates application

security with low level security.

These patterns are a good start for information security, but they are insufficient to cope

with the issues that arise when securing a distributed application. In addition, the intro-

duction of these patterns are too general to be applied directly to solve security problems.

(See Appendix 11. 1 for detailed description).

2.2.3.2 Eduardo B. Femandez

Femandez introduced several design patterns for secure distributed applications. They

are outlined in the following: Object Filter and Access Control Framework combine the

functions of authentication, access control, and object filtering to constrain a client to

access objects in specified ways defined by the client rights, the Authenticator Pattern

26

describes a general mechanism for providing idendfication and authentication to a server

fromi a client. Authorization, Role-Based Access Control, and Multilevel Security corre-

spend to the most common models for security in a newly built system. The last three

patterns can be applied at all levels of the system.

Most of the security patterns introduced by Femandez are concerned with building secu-

rity models or frameworks for distributed applications, and may be used to solve security

problems for these issues, but the author didn't present the collaboration between these

patterns, therefore, before applying them to build security models or frameworks in dis-

tributed applications, they must be reorganized and specified. (See Appendix 11.2 for

detailed description).

2.2.3.3 Sasha Romanosky

Sasha Romanosky (Romanosky (2001)) presented eight patterns in a template format that

was adapted from the Object Oriented design pattern template developed by the Gang

of Four (Gamma et al. (1994)). The intent was to fulfil the gap of security patterns

for distributed systems introduced by Yoder and Barcalow (Yoder and Barcalow (1998)),

and to supplement Security Principles, Security Policies, and Security Procedures. The

patterns are: Authoritative Source of Data, which recognizes the correct source of data,

Layered Security, which configures multiple security checkpoints. Risk Assessment and

Management, which helps to understand the relative value of information and protecting it

accordingly, 3rd Party Communication, which helps to understand the risks of third party

relationships, The Security Provider, which leverages the power of a common security

service across multiple applications. White Hats, Hack Thyself, which tests your own

security by trying to defeat it, Fail Securely, which designs systems to fail in a secure

manner, and Low Hanging Fruit, which takes care of the "quick wins".

According to Romanosky, these patterns are essentially secunty best practices that can

27

assist the reader in identifying and understanding existing patterns, and enable the rapid

development and documentation of new best practices. In reality, they cannot be directly

applied to solve security problems addressed by defects, because they need to hire other

security patterns for the practice. (See Appendix 11.3 for detailed description).

2.2.3.4 Cryptographic Meta-pattem

Braga et al. (1998) presented a set of nine cryptographic design patterns according to

four fundamental objectives of cryptography: confidentially, integrity, authentication,

and non-repudiation: Information Secrecy keeps the secrecy of information. Message In-

tegrity avoids corruption of a message. Message Authentication authenticates the origin

of a message. Sender Authentication avoids refusal of a message. Secrecy with Authenti-

cation proves the authenticity of a secret, Secrecy with Signature proves the authorship of

a secret, Secrecy with Integrity keeps the integrity of a secret. Signature with Appendix

separates message from signature, and Secrecy with Signature with Appendix separates

secret from signature.

The nine patterns were then abstracted into a generic object-oriented Cryptographic Meta-

pattern to define a generic software architecture to cryptography, and instantiated into a

meta-pattem stmcture and dynamics.

These patterns describe methodologies for using cryptographic techniques. They are

useful for solving problems and prevent security defects concerning user data protection,

communication protection, and management of cryptography. (See Appendix 11.4 for

detailed description).

28

2.2.3.5 Open Group

In the draft of "Guide to Security Patterns" by The Open Group (OpenGroup (2002)), a

set of security patterns were defined and can be used to provide a security framework for

building a secure system. They were categorized into Entity Patterns, Structural Patterns,

Interaction Patterns, Behavior Patterns, and Available System Patterns according to theu-

scope.

Most of the introduced security patterns in this draft deal with systems' availability, rather

than reliability and security. However, the Entity Patterns and the Interaction Patterns

represent the basic strategies for protecting systems and communication channels. (See

Appendix 11.5 for detailed description).

2.2.4 Summary

Based on the surveys of security defects (Section 2. 1) and security design patterns (Sec-

tion 2.2) in distributed systems, this section summarizes and specifies the patterns that

could be used in the design of distributed applications' security functionalities to solve

security problems and prevent the defects introduced in the SecurP defect classification

(Section 2. 1.4).

2.2.4.1 Prevent Structural Defects using Security Patterns

1. Group 1:

. Security Design Patterns:

Protected System, Policy Enforcement Point, Single Access Point, Security

Context.

29

Security Problems Solved:

Protect system resources against unauthorized access to or/and illegal opera-

dons on data.

Security Defects Prevented:

Untmsted Interface.

2. Group 2:

. Security Design Patterns:

Security Context.

. Security Problems Solved:

Manage and access to contextual properties to restrict dangerous privilege and

verify the security concerns.

. Security Defects Prevented:

Monolithic Application.

3. Group3:

. Security Design Patterns:

Risk Assessment and Management.

. Security Problems Solved:

Keep track of the security relevant correctly, understanding the relative value

of information and protecting it accordingly.

. Security Defects Prevented:

Improper Security Auditing.

4. Group 4:

Security Design Patterns:

Cryptographic Meta-pattem.

30

Security Problems Solved:

Protect communications and properly use cryptography, so that the parties that

were involved in the communications cannot deny their participants, and user

data or system security functions can be protected.

Security Defects Prevented:

Improper Communication Protection, Insecure Use Cryptography.

5. Group5:

Security Design Patterns:

Limited View, Object Filter and Access Control Framework, The Authenti-

cator. Authorization, Authoritative Source of Data, Recoverable Component,

Checkpointed System, Cold Standby, Joumaled Component.

Security Problems Solved:

Protect user data from interception, intermpdon, modification, and deletion.

Security Defects Prevented:

Improper User Data Protection.

6. Group 6:

Security Design Patterns:

Check Point, Object Filter and Access Control Framework, The Authenticator,

Authorization Roles, Role-Based Access Control, Multilevel Security.

Security Problems Solved:

Enforce Security Policy properly, so that a system can be protected from deny

of services or data disclosure.

Security Defects Prevented:

Authentication/Identification Inadequate.

7 Group?:

31

. Security Design Patterns:

Roles, Role-Based Access Control, Multilevel Security.

. Security Problems Solved:

Users can only gain access to data which they have right to access to, so that

the data can be protected from unauthorized access.

. Security Defects Prevented:

Improper Security Management

8. GroupS:

Security Design Patterns:

Limited View, Object Filter and Access Control Framework, The Authentica-

tor. Authorization.

Security Problems Solved:

Protect a user's identity, so that it will not be discovered or misused by the

others.

Security Defects Prevented:

Improper Protection of Privacy.

9. Group 9:

. Security Design Patterns:

Full View With Errors, Limited View, Object Filter and Access Control

Framework, The Authenticator, Authorization, Subject Descriptor, Recover-

able Component, Checkpointed System, Cold Standby.

. Security Problems Solved:

Protect system security functions, so that they will not violate the system's

security policy or disclose data.

. Security Defects Prevented:

Improper Protection of System Security Functions.

32

10. GrouplO:

. Security Design Patterns:

Recoverable Component, Checkpointed System, Cold Standby, Comparator-

Checked Fault-Tolerant System, Joumaled Component, Hot Standby, External

Storage, Replicated System, Error Detection/Correction.

. Security Problems Solved:

Prevent monopolizing the resources by users and provide availability of ca-

pacities caused by failure of the system.

. Security Defects Prevented:

Improper Utilization of Resource.

11. Group 11:

Security Design Patterns:

Check Point, Session, Full View with Errors, Limited View, Object Filter and

Access Control Framework, The Authenticator, Authorization.

Security Problems Solved:

Protect systems from breaking access attempts.

Security Defects Prevented:

Improper System Access Control.

12. Group 12:

. Security Design Patterns:

Secure Access Layer, Layered Security, 3rd Party Communication, The Secu-

rity Provider, Secure Communication, Secure Association.

. Security Problems Solved:

Build trusted path/channels, so that they can provide assurance that the com-

33

munications between the users and the security functions, or/and between the

security functions and the other systems are correct and secure.

. Security Defects Prevented:

Untrusted Path/Channels.

34

CHAPTER 3

SECURITY DEFECTS IN THE VADOR FRAMEWORK

The VADOR framework is a distributed, multi-threaded, and multi-user application, it

uses Internet technology to make data communications available to users from differ-

ent locations and on different machines. To secure the communications from attacks,

approaches to prevent security defects should be considered in the early stage of its de-

velopment.

The subject of this chapter is security defects in the VADOR framework. Section 3.1

is an overview of the VADOR security problems, then section 3.2 previews the security

defects that may cause problems.

3. 1 Security Problems in the VADOR Framework

In the VADOR framework, there are four servers or hosts that cooperate using the Active

Agent. They are the VadorGUI server, the Librarian server, the Executive server, and

the Wrapper server. When a user mns the VADOR application, the VadorGUI server

starts. It runs on the host where the user requires to execute a design process and retrieves

the execution results. The request is sent to the Executive server, which is responsible

for managing the execution of the StrategyComponenents and creating DataComponents

according to the request. The executive server dispatches an Active Agent to the Librarian

server, which is the manager of DataComponents and StrategyComponents, to fetch the

necessary data from the database for the process. Then the agent passes the task and data

to the Wrapper server for starting the analysis application and create the DataComponents.

35

The VADOR framework is an instance of a mobile agent environment. It benefits from the

implementation of the Active Agent Pattern (Chen (2004)), which can help the system to

be flexible, extensible and easier to maintain. However, it has to face the security threats

to the agent and user data:

o Threats to agent: threats that can affect the agent during its migration, and may

affect servers.

o Threats to user data: threats that can affect a specific user data file when there is a

command that needs to be executed on it.

This section analyzes these threats and their cause in the context of the VADOR frame-

work, and specifies the security problems that ensue.

3.1.1 Threats to Agents

In the VADOR framework, the Executive server communicates with the Librarian server

through Active Agent's migration. When the Executive server receives a new process

execution request from a user, it dispatches an agent to the Librarian server, to get data

from the database, then the agent migrates back to the Execudve server and sets the data

to continue the process.

The threats to agent's migration could come from a malicious agent that attacks the

servers, or from the servers that attack an agent.

In the case of the agent that attacks the servers, it is assumed that the agent has been

attacked by a malicious third party when it was passing over the network, or sent by a

malicious Executive server. In that case, the agent's code or state may have been mod-

ified. For example, when the agent migrates on the Librarian server, instead of sending

36

a "select" data to the database, it may "delete" data. When the agent moves back to the

Executive server, it may report the incorrect data and cause the Executive server to pursue

the process in a wrong way, or it may modify the server's code to cause the server to

malfunction.

In the case where the servers attack the agent, it may be assumed that, for instance,

the Librarian server has been attacked and has become a malicious server. When the

agent migrates on it, it may modify the agent's state to cause the agent to report incorrect

information to the Executive server, or it may modify the agent's code and cause the agent

to be harmful to the Executive server when it returns back.

Both cases can result in system malfunctions and process failures.

3.1.2 Threats to Data Files

Because data files are the places where the analyzed results are stored, protecting the data

files is the fundamental security concern of the VADOR framework.

This section introduces the actual situation of the VADOR framework, the fundamental

and potential security problems that may exist in VADOR, and then it analyzes the causes

of the problems, possible solutions and drawbacks of the solutions.

3. 1.2.1 The Current Situation of VADOR

The VADOR application requires to remotely execute commands on different hosts on

behalf of VADOR users. In the current implementation, a data directory, named VADOR,

is created initially within the user's file system and the owner of this directory is the user.

However, the user needs to open this directory's pennission to other users in a group,

because when a task is to be remotely executed by the VADOR system, it is executed by a

37

Wrapper on any machine and the Wrapper belongs to a user named VADORADM, which

needs to read or write files in the user's VADOR directory. As a result, the files created

by \ADORADM in the user's VADOR directory are owned by VADORADM.

3.1.2.2 The Fundamental Security Problem of VADOR

The fundamental problem of the VADOR system is that VADORADM owns the files

inside the user's VADOR directory.

Actually, when the VADOR system remotely executes a task to create a file, it is a Wrap-

per belonging to VADORADM which creates the file, and writes it into the user's VADOR

directory. In this way, VADORADM is the owner of the file. And as the owner, VADO-

RADM can manipulate the files without the permission of the user who owns the VADOR

directory.

Figure 3. 1 illustrates a potential security problem with an example of executing the "rm"

command on a remote machine through the VADOR system.

User 1:
nn /homeAJser2/VADOR/*.* Uffirt

Pemiission Owner Group File
nvx-x- vadoradm vador filel (nmoved)
rwx-!i~ ()ser2 vador fite2

VADORADM: rm/hom(/User2/VADOR/*,*

Runs VADOR system 1:.
Starts ̂ i Belongs to

FIGURE 3. 1 The Fundamental Security Problem of VADOR

This example shows that when Userl wants to remove aU files in User2's VADOR direc-

tory via the VADOR system, it is a Wrapper that belongs to VADORADM which executes

38

the "rm" command in the User2's VADOR directory. In this case, because filel was cre-

ated by VADORADM or has been changed owner to VADORADM, it can be removed.

File2 is owned by the user, and members of the group don't have the penmssion to read

or write to it, thus, it won't be removed.

As a result, the fact that VADORADM owns all the files created by the system, allows

any user to use the system to remove files in other user's VADOR directories. How to

protect users' data files is the first challenge in securing the VADOR framework.

3. 1.2.3 Other Potential VADOR Security Problems

Section 3. 1. 2. 2 discussed some fundamental security problems of the VADOR system:

the files that are created by the VADOR system are owned by the user VADORADM,

and can be remotely manipulated by VADOR users because Wrappers belong to VADO-

RADM and perform the manipulation.

However, other problems may also exist. For example, in figure 3. 1, when User2 himself

needs to modify file2 using the VADOR system, he has to grant read and write permissions

to VADOR group members. Indeed, correct execution of VADORADM which is the

owner of the Wrapper server that executes the commands on behalf of users is based on

group permissions of the files that need to be manipulated. This can cause file2 to be

modified by other VADOR group users without notifying user User2.

3.1.2.4 Origin of VADOR Security Problems

The original idea of having a VADOR user VADORADM who owns the Wrappers and

the files in VADOR user's directories came from two considerations:

39

. Having only one Executive server for the system and one Wrapper server on every

machine;

. Maintain the consistency of the database by permitting only the user VADORADM

to manipulate the files on disk.

However, in a multi-user environment with multiple access points, to realize this idea is

not easy. It requires well designed mechanisms for controlling access from the multiple

access points, or dealing with the multi-threaded task execudon.

3. 1.2.5 Possible Solutions and Drawbacks

Ideally, the solution to these problems in the VADOR system would be to secure the files

by giving the ownership of the files to the users, and at the same time, to keep having

only one Executive server for the system, one Wrapper server on every machine, and of

course, maintaining the consistency of the database. These requirements have been met

through the use of SSH2 (SSH (2004)) and Expect (Libes (1995)) scripts in the VADOR

system. The drawbacks to this solution are new problems that need to be solved:

1. Problem of the system integration: Instead of using the SSH2 and Expect applica-

tion, how to integrate SSH2 to the system.

2. Problem of file access control for multi-tbreaded processes: How to get permission

from a user when there is a multi-threaded process requiring access to his file.

3. 1. 2. 5. 1 Problems of System Integration

In the current VADOR system, SSH2 and Expect scripts are working together to imple-
ment file access control.

40

The reason of using SSH2 is that the SSH2 uses host key (public key and private key)

identificadon to secure the communication over the network, when a remote user requires

to logon a local machine, there is no password needed for authentication. However, a

passphrase will be asked either when the user logs on to his machine (using SSH-Agent)

or when he is trying to remotely logon to another machine (without SSH-Agent). This

passphrase will not be transferred over the network; it is used for encrypting the user's

private key for the authendcation purposes.

Because the Wrapper server is the final executive of the SSH commands, to type the

passphrase for every coimnand is impossible (especially when the commands are written

in a scnpt file). In practice, the passphrase will be asked to the user by the VadorGUI

at logon and will be transmitted by the VadorGUI to the Executive and Wrappers when

needed during a VADOR session. The Expect script solved this problem by allowing to

pass the passphrase as an answer to the SSH command in a simulated tenninal.

Even though SSH and Expect solved tfae file access problem for the VADOR application,

they have not been integrated into the VADOR framework, and can only be applied on

UNDO operating systems. Another problem is that the passphrase has to be entered from

the VadorGUI by the user, and passed through the Executive server on to the Wrapper

server by the active agent. How to protect the passphrase during the transfer and how to

integrate the SSH and Expect into the VADOR architecture are the main design challenges

relating to file access control in the VADOR system.

3. 1. 2. 5. 2 Problems of the Multi-threaded Processes

The previous section discussed using SSH2 and Expect scripts for file access control in

the VADOR system, but they can only control file access for a single request execution

on a specified file. VADOR users usually require multi-threaded processes in the course

of design, which needs to synchronously or recursively execute more than one command

41

on different files by different Wrappers. In this case, in order to access the files, the user

needs to ask for the file owners' passphrases, and passes them with the commands to the

Wrappers for the authorization.

Since a multi-threaded process may be a long procedure, for example, it may take several

days to complete the tasks, it is difficult for the user to be aware of when he has to ask for

a passphrase from which file's owner. This is another problem that arises with the current

file access control in the VADOR framework.

3.2 Preview of Security Defects in the VADOR Framework

As any other distributed applicadon, such as the Unix operadng system, security defects

may also exist in the VADOR framework. If these defects cannot be prevented by appro-

priate approaches, they may cause serious security problems. In the VADOR framework,

the primary security problem is the user data file protection discussed in section 3. 1.

This section previews some of the security defects that may exist in the VADOR frame-

work regarding user data protection, and analyzes the causes of the defects and their

effects.

3.2.1 Improper Use of Multiple Access Points Control

The first security defect of the VADOR framework is that the VADOR framework has

multiple access points.

The main reason lies in the fact that VADOR consists of many servers. These servers are

the components of the framework, they may reside on different machines, or the same

machine on different ports, and each of them provides specific services to the VADOR

system.

42

When a user requires to execute a task using the VADOR system, the task will be passed

through every server that provides access to a separate service, so that the user can get

access to each of the points on the entire system. For example, a task first gets to the

Executive server to be executed, and than to the Librarian Server to obtain stored data

component information, and back to the Executive for further proce sing, and onto a

Wrapper server for final execution.

These multiple access points may possibly allow users to get through a back door and

allow them to view or edit sensitive data. It is thus difficult to control information flow

and secure the system.

Allowing only the user VADORADM to gain access to data files is the original idea for

controlling access to data files from the multiple access points, but because of the im-

proper control mechanism, it caused the fundamental and other potential security prob-

lems introduced in section 3. 1.2.2 and 3. 1.2.3.

3.2.2 Improper Error Checking

This can be considered as a combination of authentication and validation defects, such

as Unvalidated Parameters and Broken Access Control vulnerabilities defined by the

OWASP project (OWASP (2003)).

The reason is that the secunty policy was not available when the VADOR framework was

initially designed. However, the system needs to be secured from break-in attempts, and

needs to take actions depending on the severity of a mistake that the user could make,

so that lots of checking code may be needed to authenticate or validate a user in order to

protect user data from unauthorized access.

This error checking code can make it difficult to debug and maintain the system, in the

sense that a security policy may be defined at a later point and changed over the life of

43

the system.

3.2.3 Dnproper MuIti-User Profiles Management

The management of multi-user profiles is another potential security defect of the VADOR

framework.

The VADOR framework is a multi-user application, its users may share similar (e. g.,

groups of users) or have individual security profiles in order to access shared or individual

data files, and their profiles may overlap or change over time.

Because a system administrator needs to manage security permissions for users depending

on their profiles, when the number of users is large, it is hard to custoinize and manage

security profiles for each person.

3.2.4 Improper Global Information Access Control

This defect occurs when there are many objects that need to access shared values, but

these values are not unique through the system.

This is a problem related to VADOR's multi-user and multi-threaded characteristics. In

order to secure the system, the VADOR system keeps track of global information for each

thread or process, such as usemame, or their respective privileges, the infonnation is then

stored in a private, single global location. But when the threads or processes share a

common global address space for task execution, their private global infonnation cannot

be shared. The defect may also make code and APIs very complex because of the passing

around of many objects.

This defect causes the problems of the multi-threaded processes discussed in section

44

3. 1.2.5.2.

3.2.5 Improper Exception Handling

Improper exception handling, or error handling may occur during normal operation, but

the source lies in an improper design.

Because VADOR users may have different privileges to access data files, they should

be prevented from viewing information that they do not have pennission for. In that

context, an attacker may attempt to perform some illegal operation to gain access to pro-

tected infonnation, while at the same time, an authorized user may also perfonn improper

operations. It then becomes difficult to distinguish between the two conditions, so that

exception handling designed to protect from an attacker may be improper for a legal user.

The condition code to determine which operation is legal could be very complex and

difficult to test. If an exception cannot be handled properly, users may get confused on

what is available to them, it may also disclose information to attackers, or crash a server.

This defect maybe prevented using Full View with Errors pattern or Limited View pattern.

The Full View with Errors may notify users with error message when they perform illegal

operations without unnecessary revealing internal details. The Limited View only lets

users see what they have access to (See section 2. 2. 3. 1 for detailed description).

3.2.6 Improperly Integrated External Security System

The VADOR applicadon needs to communicate with other pre-existing systems. If the

integration of security mechanisms with the systems is improperly planed, it may become

the weakest security point and the most susceptible to break-ins. For example, VADOR

uses the MySQL database system on a remote server to store meta data, and the user data

45

files that correspond to the meta data are stored on hosts on behalf of VADOR. If break-in

attacks exploit defects in the integration wiA the database, this may lead to risks to the

user data files.

The reason of this improper integration generally lies in the interfacing problems with

the external security systems which is sometimes difficult and often not well documented

with respect to security. In addition, external systems may not have sufficient security. If

the developers put checks in the application wherever it communicates with other systems,
code will become very difficult to maintain.

The Secure Access Layer pattern may help to prevent this defect wiA building applica-

tion security arround existing operating system, networking, and database security mech-

anisms, or building own low-level security mechanism on top of the low-level secunty,

then build a secure access layer for communicating in and out of the program (See section

2.2. 3. 1 for detailed description).

3.3 Summary

The VADOR framework is a multi-user, multi-threaded, mobile agent based distributed

application with muldple access points. As for other distributed applications, such as

the UNDO operating system, security defects need to be prevented using appropriate ap-
preaches during early stage of the development.

In order to maintain the two aspects of the VADOR framework: one Executive server for

the system and one Wrapper server on each machine, and the data consistency, the fun-

damental and other potential VADOR security problems may be introduced by exploring
security defects existing in the VADOR system.

This chapter previewed several secunty defects that exist in the VADOR framework, in-

46

eluding Improper Multiple Access Points Control, Improper Error Checking, Improper

Multi-User Profiles Management, Improper Global Information Access Control, Im-

proper Exception Handling, and Improper Integrated External Security System.

As mentioned, the Improper Multiple Access Points Control defect may be exploited
and lead to risks to the agent or user data files, and is considered to constitute the most

fundamental security problem of VADOR (See section 3.2. 1 for details). Furthermore, the

objecdve of VADOR security is to first solve fundamental security problems rather than

other potential problems, thus, this work will mainly focus on the prevention of Improper
Multiple Access Points Control rather than the other defects.

Although the SSH and Expect scripts have been used in the system for resolving the data

file access problems, they make it difficult to integrate SSH into VADOR, and to control

multi-threaded processes.

To solve the security problems and protect the VADOR system from threats, first, the

security defects should be addressed, and then they should be prevented using appropriate

design approaches. Earlier prevention of the security defects, less cost and better results in

building the system, so that it will be very effective to develop defects prevention design

approaches using design pattern concepts in earlier stage of the system development.

A Security Manager pattern is proposed based on a study of acmal security defects ex-

isting in the distributed system, that uses security design patterns. The objective of de-

veloping the Security Manager is to prevent security defects in the VADOR framework,

protect the system from threats, and solve the security problems regarding data file access
in VADOR.

Chapter 5 will introduce the Security Manager pattern in details.

47

CHAPTER 4

SECUMTY MODEL FROM JAVA TO THE VADOR FRAMEWORK

As introduced in section 1.2, the VADOR System is an agent based distributed system

that represents a specialized Active Agent pattern. It is implemented on top of the JVM,

using the Internet as its major transmission media component.

In this context, risk exists that infonnation being transmitted via the Internet, agents or

data files could be threatened. The main reason for this lack of security is that improper

system design may lead to security defects, that threats could exploit to attack the system.

Security defects in the VADOR framework have been studied in chapter 3. This chapter

will introduce a security model and mechanisms in the VADOR framework, that are used

to prevent security defects and protect the VADOR System from threats.

Section 4. 1 will introduce the Java 2 SDK security architecture, that provides low level

protection mechanisms to the VADOR System. The VADOR Security Model will be

introduced in section 4. 2, it constitutes the Security Manager in the Active Agent pattern

(Section 1. 2.2), as well as the Security Manager pattern, that will be developed in chapter
5.

4.1 Security in Java 2 SDK

4. 1.1 J2SDK Security Features Overview

The Java 2 SDK (J2SDK - Java 2 Standard Development Kit) security architecture is

policy-based, and allows for fine-grained access control. When code is loaded, it is as-

48

signed "permissions" based on the security policy currently in effect. Each pennission

specifies a permitted access to a particular resource, such as "read" and "write" access

to a specified file or du-ectory, or "connect" access to a given host and port. The policy,

specifying which permissions are available for code from various signers/locations, can

be initialized from an external configurable policy file. Unless a permission is explicitly

granted to code, it cannot access the resource that is guarded by that permission. These

new concepts of permission and policy enable the SDK to offer fine-grain, highly config-

arable, flexible, and extensible access control. Such access control can be specified for

applets and all other Java code, including applications, beans, and servlets.

The Java Security API is a Java core API, built around the java. security package (and

its subpackages). The first release of Java Security in JDK (Java Development Kit) 1.1

contains a subset of cryptographic functionality, including APIs for digital signatures

and message digests. In addition, there are abstract interfaces for key management and

certificate management.

JDK 1.2 contains substantial security features enhancements based on the JDK 1. 1-

policy-based, easily-configurable, fine-grained access control; new cryptographic ser-

vices, new certificate and key management classes and interfaces; three new tools (key-

tool, jarsigner, and policytool) have been added for key management, signature genera-

tion and verification, and security policy management.

In JDK 1.3, several security enhancements have been made to the cryptographic services
and the security tools.

Security enhancements for JDK 1.4 include providing support for dynaniic policies,

adding several packages and APIs for Certification, Authentication, and Cryptographic
services, and three new tools (kinit, Mist, and ktab) have been added for obtaining, list-

ing, and managing Kerberos tickets. Instead of loading security policies through a class

loader and binding them to the class loader's lifetime, the support for dynamic policies al-

49

lows dynamically querying of security policies when they are needed by security checks.

4.1.2 J2SDK Security Models

Access control has evolved to be far more fine-grained than in earlier versions of the Java

platform since JDK 1.2. This section introduces security models in the Java Security
Architecture Extensions.

4.1.2.1 The Original Sandbox Model

4. 1. 2. 1. 1 JDK 1. 0 Security Model

The original security model provided by the Java platform is known as the sandbox model,

which existed in order to provide a very restricted environment in which to run untrusted

code obtained from the open network. This model is illustrated in figure 4. 1.

Local Code Remo e Code

JVM Full Access
to Resources

STOP
Sandbox

Restricted
Access

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4. 1 JDK 1.0 Security Model

Participants in this model are listed as the following:

50

. Local Code: is trusted code that has full access to vital system resources, such as

the file system.

. Remote Code: is downloaded code (an applet) that is not trusted and can access

only the limited resources provided inside the sandbox.

. JVM: Java run time system that organizes trusted code to access resources and

untmsted code that is limited to the sandbox.

. Security Manager: is a class that is responsible for determining which resource

accesses are allowed in the security model and subsequent platforms.

. System Resources: are vital system resources that include files, network con-

nections, etc. Access to crucial system resources is mediated by the JVM and is

checked in advance by the Security Manager class that restricts the actions of a

piece of untrasted code to the bare minimum.

4. 1. 2. 1. 2 JDK 1. 1 Security Model

JDK 1. 1 introduced the concept of "signed applet". In this model, signed applets, together

with their signatures, are delivered in the JAR (Java Archive) format. As illustrated in

figure 4.2, a digitally signed applet is treated as local code, with full access to system
resources, if the public key used to verify the signature is trusted by the end system that
receives the signed applet. Unsigned applets still run in the sandbox.

A new participant has been added into this model:

Trusted Signed Code: is remote code that was signed with the sender's private key
and verified using a trusted public key by its receiver. It is treated as local code that

has full access to system resources.

Local Code Remote Code

Trusted
Signed

Code

51

JVM Full Access
to Resources

Sandbox
Restricted

Access

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4. 2 JDK 1. 1 Security Model

4. 1.2.2 The Current Security Model

JDK 1.2 introduced a number of improvements over JDK 1. 1, and the later versions have

done many enhancements to the new security architecture introduced in JDK 1. 2. The

current J2SDK security model is illustrated in figure 4. 3. This model is introduced for

the following purposes:

Fine-grained access control.

Easily configurable security policy.

Easily extensible access control stmcture.

Extension of security checks to all Java programs, including applications as well as

applets.

Make internal adjustment to the design of security classes, (including the Securi-

tyManager and ClassLoader classes) to reduce the risks of creating subtle security
holes in future programming.

52

Local or Remote Code (signed or not)

Security Policy

domainl

JVM Full Access
to Resources

doinai.n2

domai

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4. 3 The Current J2SDK Security Model

In the current J2SDK security model, code runs with different permissions, and there is

no built-in notion of trusted code, all code, regardless of whether it is local or remote, can

be subject to a security policy.

Two participants have been added to this model:

. Security Policy: defines the set of permissions available for code from various

signers or locations and can be configured by a user or a system administrator. Each

permission specifies a permitted access to a specified file or directory or connect

access to a given host and port. Security policies are queried dynamically while

they are needed by security checks.

. Domains: contain code organized by the run time system, each of which encloses

a set of classes whose instances are granted the same set of permissions. As illus-

trated in figure 4. 3, code belonging to domain 1 and domain2 is granted full access

to resources. The domain4 code is restricted exactly the same as the original sand-

box. The domain3 code lies in between, it has more accesses allowed than the

53

sandbox, but less than full access.

4.1.3 J2SDK Protection Mechanisms

The protection domain concept serves as a convenient mechanism for grouping and iso-

lation between units of protection. A Domain can be scoped by the set of objects that are

currently directly accessible by a Principal, where a Principal is an entity in the computer

system to which pennissions, and as a result, accountability, are granted. The sandbox

utilized in JDK 1.0 is one example of a protection domain with a fixed boundary, existing

object accessibility rules remain valid under the current security architecture.

Protection domains generally fall into two distinct categories: system Domain and Appli-

cation domain. The domain composition of a Java application environment is illustrated

in figure 4.4. It is important that all protected external resources, such as the file sys-

tern, the networking facility, and the screen and keyboard, be accessible only via system
domains.

Appl App2 App-n

System Domain

netl/0 filel/0 AWT rinter

FIGURE 4. 4 The Domain Composidon of a Java Application Environment

The Java application environment maintains a mapping from code (classes and instances)

to their protection domains and then to their permissions. The context of this mapping is

54

that a domain conceptually encloses a set of classes whose instances are granted the same

set of permissions. Protection domains are determined by the policy currently in effect.

This mapping is illustrated in figure 4.5.

Class -------> Domain ------^> permissions

,' e. class-\.
i d. class-'t

; c. class*. »'
\ b. clasy'^' *<

\ a. class-/-"

Classes in
Java run time

domain A

domain B

Pennissions

Parmissions

Security Policy

FIGURE 4. 5 The J2SDK Protection Mechanisms

Each domain (system or application) may also implement additional protection of its in-

temal resources within its own domain boundary. For example, the VADOR application

needs to support and protect internal concepts such as DCInstances, creations and retriev-

ing. Because the semantics of such protection is unlikely to be predictable or enforceable

by the Java 2 SDK, the protection system at this level is left to the application developers.

Nevertheless, the J2SDK provides helpful primitives to simplify the developers' tasks.
One such primitive is the SignedObject class.

4.2 Security in the VADOR Framework

4.2.1 The VADOR Security Features Overview

In addition to the policy-based, easily-configurable, fine-grained access control derived

from Java (4. 1. 1), the VADOR security architecture also provides Certificate and Key
Management, and SSH based Data File Management.

55

Different from the J2SDK, the VADOR security requires multi-level security policies,

each level being responsible of a VADOR Server. For example, the first level policy is

responsible of the Security Server. The Executive Server and Librarian Server also have

their own policies. The policies, specifying which permissions are available from vari-

ous agent senders, can be defined and initialized by the VADOR administrator when the

VADOR servers are started. Unless a permission is explicitly granted to an agent, it cannot

access the resource that is granted by that permission. These concepts of permission and

policy enable VADOR to offer easily-configurable, flexible, extensible and fine-grained
access control.

The VADOR security uses Keytool provided by Java for Key generation and Certificate

management. The VADOR administrator is responsible for generating keys and managing

certificates for every VADOR user using Keytool.

SSH is used for system data file Management in VADOR. This means that instead of

controlling accesses to data files through a VADOR external security policy, the frame-

work controls the accesses using SSH within the operating system. This concept has been

introduced in chapter 3.

4.2.2 The VADOR Security Model

Associated with the current J2SDK security model, the VADOR security model provides

muldlevel protections to the VADOR framework, including multilevel security policy en-

forcement, security managers, and protection domains. Figure 4. 6 illustrates this model.

The VADOR security model has the following protection levels and participants:

56

VADOR Agent - External

Policy

Security Server

Access to ,^.^»g«,t
Resources Douln l*t L*nl Profctlen

(Vador Sacucity Servar

Security Server Security Manager >'***d °" JVM>

Resources

Tru. fd agut VADOR
Domain

Security

Policy

2nd Lmnl Protaction

VADOR Servera

Full Access VMOR ̂ plication <V»DOR SemrB)
to Resources *

Sy tun Donwin

VADOR Security Manager

VADOR Rasources

(DCInstance, DCType, etc)

SSH

3rd Level Erotaction

System Rasources

(files, network conntectiona, etc) <os)

FIGURE 4. 6 VADOR Security Model

4.2.2.1 1st Level Protection: Security Server

Protection domains in this level are organized by VADOR Security Server based on the
JVM.

VADOR Agent: is remote code that is signed by a VADOR client with its private

key, and sent by the client to execute on a specified host on behalf of the VADOR

system.

External Security Policy: defines the permissions available for the signed VADOR

agent and can be configured by the VADOR administrator. These permissions spec-

57

ify pennitted connecting accesses to hosts and ports that will allow the agent to
work.

. Security Server: is based on the Java run time system to organize trusted agent
code to access resources.

. Trusted Agent Domain: contains the agent code organized by the JVM and has

been granted the permission specified by the External Security Policy. A trusted

agent domain has the right to access resources, but cannot be guaranteed full access,

because the permissions are specified by the second level VADOR Security Policy
for accesses to the VADOR and system resources.

. Security Server Security Manager: a class that is responsible of verifying and
authenticating a signed agent.

4.2.2.2 2nd Level Protection: VADOR Servers

VADOR Servers organize protection domains at this level to permit or limit accesses to

the Resources that include both VADOR Resources and System Resources.

. Resources: include both resources in the VADOR system such as meta-data of

DCInstance or DCType, and System Resources such as files, or network connec-

tions.

. VADOR Security Policy: is the second level security policy in the VADOR secu-

nty model. It defines the set of permissions available for the trusted agent and can

be specified by the VADOR administrator. Each of these permissions specifies a
pennitted access to VADOR Resources associate to data files or directories stored

as System Resources.

58

. VADOR Servers: organize tmsted code to access the VADOR Resources and/or

System Resources.

. VADOR Application Domain: contains trusted code organized by the VADOR

Servers and has full access to the VADOR Resources.

. System Domain: contains trusted code organized by the VADOR Servers and has

full access to the System Resources.

. VADOR Security Manager: is a class defined in the VADOR security model that

is responsible for determining which resource accesses within the VADOR system
are allowed.

. VADOR Resources: are internal resources in the VADOR framework. They in-
elude meta-data infonnation stored in the database such as DCInstance and DC-

Type. They are associated with System Resources.

4.2.2.3 3rd Level Protection: Operating System

In addition to the VADOR server protection, the System Resources have an extra level of

protection enforced by the operadng system using SSH. The participants in that level are:

. System Resources: include files, network connections, etc. The System Resources
in the VADOR framework are also considered as internal resources.

. SSH: Secure Shell system that functions as the third level security policy and se-

curity manager. It controls accesses to System Resources by VADOR applications

via the System Domain.

59

4.2.3 The VADOR Protection Mechanisms

As introduced in the J2SDK protection mechanisms (section 4. 1.3), there are two protec-

tion domains: Application Domain and System Domain. A Domain is the set of objects

that are currently directly accessible by a Principal, where a Principal is an entity in the

computer system to which permissions are granted. Application Domains can only access

external resources, such as the file system and network facility, via System Domains.

Based on the above architecture, VADOR framework security architecture organizes the

protection domains into three categories: Trusted Agent Domain, VADOR Application

Domain, and System Domain. The domain composition of the VADOR framework is

illustrated in figure 4. 7. The VADOR Agent can only access resources via the Trusted

Agent Domain. Internal VADOR resources, such as DCInstance, DCType, are accessible

only via the VADOR Application Domain, and the external system resources, such as file

system and network facility are accessible only via the System Domain.

VftDOR
Agent 1

VADOR
Agent2

VADOR
Agent-n

Trusted Agent Domain

Resources

VADOR Application Domain ; System Domain

DCInstance DCType Filel/0 netl/0

FIGURE 4. 7 The Domain Composition of the VADOR Framework

As a Java application, the VADOR framework also maintains mapping from code (classes

and instances) to their protection domains and then to their pennissions. However, as il-

lustrated in figure 4. 8, additional protection of resources has been implemented. A multi-

60

level mapping has been defined, and multilevel protection domains have been introduced

in the VADOR framework.

Class ------^

/ .. d9.SU - ^ - - - -
' - - -'».. '''»'
I d. claaa . " , ,o

; c-cl"\, -?'
. b.aiu*>\'
\ .. ClB..^ /\

Domain " -^- Permissions

(Class- Domain Paramiaaiona)

domain »

'' s» domain M.
/ .. cl»«« . ^'^

' d. alar '',
\ b. cl... /- d°Min *2

PTniaaiona

Painiaaiona

Penttiaaiona

ClraaB in

V»DOR Samra

<fc^ WUXIR Sacuiity Policy

Classes in
Java run time

"^\ domain B

' e. claa* "*'

\ a. clr* T'-
%s. , -'

Claaa^a in

V»DOR Sarvra

donain B2

PanniBBiona

PermiaaionB

ParmiBBionn

VM10R Security Policy

External Security Policy

FIGURE 4. 8 The VADOR Protection Mechanisms

In figure 4. 8, Trusted Agent Domain A and B are detennined by the External Security Pol-

icy currently in effect, these domains enclose the classes in Java run time, their instances

are granted the same set of permissions which are specified by the external security policy.

In order to access the internal VADOR Resources or System Resources, instances of the

classes in the domain A or domain B need to be granted the same set of permissions

which are specified by the second level VADOR Security Policy. This security policy
determines the domain Al, A2, Bl, or/and domain B2, these domains enclose the classes

in the VADOR servers and could be either VADOR application domains that can access

VADOR resources, or System Domains that can access system resources.

61

4.3 Summary

This chapter has introduced the VADOR Security Model that represents the Security

Manager which participates in the Active Agent pattern, as well as the Security Manager

pattern which will be further developed in chapter 5.

Based on the J2SDK Security Extension, which provides the low level protection mecha-

nisms, the VADOR Security Model defines multi-level protection for the VADOR frame-

work: Security Server level, VADOR Server level, and Operating System level. Each

level implements its own protection mechanisms to prevent security defects (Chapter 3. 2)

in the VADOR framework, and protect the VADOR system from threats (Section 3. 1).

The multi-level protection mechanisms constitute the most significant VADOR security

feature. This protection is policy-based, easily-configurable, and provides fine-grained

access control, cryptographic services based on secure key and certificate, and SSH based

data file management.

Chapter 5 will move on to introduce of the Security Manager pattern, which implements
the VADOR Security Model.

62

CHAPTER 5

THE SECURITY MANAGER PATTERN

In the VADOR global architectural design, most of the functionalities to process data and

tasks within the framework reside in the Application Domain Layer (Section 1.2). This

layer constitutes the core of the VADOR System, it is implemented using a specialization

of the Active Agent pattern.

However, in the VADOR prototype, the VADOR System focused on solving problems

related to concurrency, scalability, and flexibility of the framework. Although a Security

Manager had been planned to participate in the Active Agent pattern, it was not imple-
mented.

As the needs related to security issues increased during the release of the VADOR frame-

work for industrial usage at Bombardier Aerospace, security policy enforcement and sys-
tern protection processes have become required.

Based on the above context, the VADOR Security Model (Chapter 4) is designed to fulfill

the security requirements of the VADOR System. It is implemented using a speciaUzation

of the Security Manager pattern, that corresponds to the Security Manager in the Active
Agent pattern.

5.1 Active Agent Pattern with Security Manager

When the Security Manager participates in the Active Agent pattern (see section 1.2.2 for

its full description), the Security Server becomes an intennediate Execution Place, which

cannot be by passed. In other words, no matter which Vador Server an Agent object

63

migrates to for its execution, at first, it must be authenticated and verified by the Security

Server. Then, when the Vador Server invokes the authenticated agent's call() function,

and before starting task execudon, the Security Manager, on behalf of the server, should

check that the agent's pemiission allows this task execution. As for the Security Server,

the Security Manager cannot be by passed.

The first level and second level protection introduced in the VADOR Security Model

(Section 4. 2.2) are implemented as the Security Server and the Security Manager.

5.1.1 The Extended Interaction Between Participanfcs

In the original active agent collaboration illustrated in figure 1.4, in order to accomplish

tasks, clients, such as the VadorGUI, create agents and send them to an execution place

(the Vador Server), which calls the standard agent operation (call() function). Depending

on the agent's security policy, the operation is executed, or not, on the related agent

instance (See Chen (2004) for details).

When the Security Manager pattern participates in the Active Agent pattern, an additional

Execution Place (Security Server) is added to the Application Domain layer. It specifi-

cally provides authentication and verification services to the VADOR framework. Figure

5. 1 illustrates the extended Active Agent pattern interaction.

5.1.2 The Extended Active Agent Dynamic Behavior

The Active Agent dynamic behavior (see section 1. 2. 2. 3 for details) also has been ex-

tended by the Secunty Manager's participant. Agent signature, authentication, and per-

mission checking processes have been added to the three phases. The details of this

extension are illustrated in figure 5. 17 (See page 101).

64

Client

I

ExecutfonPlace

I

createAndSlgnAgfentO

ExocuttonPlace
(SscuritySenrer)

Agent SecuiityManager

vefliyAgemO

verflyO

IKvcrffyAgentO - hue) callQ callO

If (canAccessQ - true) ̂an_run0

canAccessQ

doOperaUonO

canAcccssQ

FIGURE 5. 1 Extended Active Agent Pattern Interaction Diagram

1 Agent Creation, Signature, and Sending

A client creates and signs an Agent (Original Agent) object, that includes a unique

identifier (id) of the Original Agent and an id of the Signed Agent. The Signed

Agent then migrates to an Execution Place (Vador Server) via the Vador Proxy.

2. Agent Authentication, Permission Checking, and Execution

Agent Authentication: Before the Vador Server invokes the Original Agent's

call() function to start task execution, it must authenticate and verify the

Signed Agent object. So it creates and signs a Security Agent object, and in-

eludes the Security Agent id and the Signed Agent id in it. The Security Agent

object then migrates to its Execudon Place (the Security Server) where a Se-

curity Manager resides, and perfonns two authentication processes based on

the agents' ids: Security Agent Authentication (See section 5. 3.4 for details)

and Signed Agent Authentication (See section 5. 3. 6 for detailed descnption).

65

. Agent Permission Checking: If both the Security Agent and the Signed

Agent were verified, the Vador Server can invoke the Original Agent's call()

function. Before the task execution starts, the Security Manager, on behalf of

the Vador Server, enforces VADOR Security Policy to check that the agent's

pennissions correspond to its task execution request.

. Agent Execution: If the request is granted, the agent will dynamically load

the concrete Vador Visitor class and use it to execute the task. If the task

requires access to system data, before it is executed, the SSH subsystem will

perform an authentication process to verify the agent's sender (Vador User) at

the operadng system level. The agent then can gain access to the system data

only if its sender has been authenticated.

3. Completion

The execution result is sent back to the client by the Vador Server.

5.2 Security Manager Pattern

Chapter 4 introduced the VADOR security model and mechanisms to protect the system.

This chapter will present the Security Manager pattern , that is a Security Pattern System

represents the stmcture of the security model, and is implemented in the VADOR security
system.

The Security Manager pattern is a combination of three stmctural security design patterns:

Protected System, Partitioned Application, and Multilevel Security. These patterns work

together to help the Security Manager build the VADOR security architecture, and divide

it into several independent modules, easier to validate.

The pattern description is based on the format introduced in secdon 2. 2.2.2.

66

5.2.1 Name

Security Manager

5.2.2 Context

The VADOR system is a multi-user, multi-threaded, client-server architecture, mobile

agent based, distributed application. The characteristics of VADOR require that the sys-

tern be capable of allowing access to many users for working on different machines, to

a limited set of resources, on behalf of the system at the same time. This capability also

includes protecting the system resources from attacks. Specifically, preventing security

defects from system design, so that it can control accesses to resources, and stop attackers

from exploiting the defects.

5.2.3 Problem

1. An Acdve Agent may be attacked and its status may be changed during its migra-

tion, a malicious agent can then attack data files.

2. It is difficult to validate an Active Agent on behalf of a Vador Server, because

VADOR consists of many servers, and each of them represents an access point.

5.2.4 Solution

1. An Active Agent sender signs the agent using its private key before sending it. An

agent receiver applies Security Server to authenticate and verify the agent using a

certificate that corresponds to the public key before allowing the agent to execute
tasks.

67

2. Each Vador Server owns a Security Manager for checking permissions that are de-

fined for this server by VADOR Security Policy. If the agent's requests are permit-

ted, the agent can then execute tasks on the Vador Server.

5.2.5 Structure

Figure 5.2 illustrates the structure of the Security Manager Pattern.

authenticate

Client SecurityServer

aecurityAttri tes

SecurityManager SecurityContext l*t Lw'1 prot«ction= vad°'- S.curity S.rver b>..d on JVM

aecurityAttrlbutes Functionality: Agant Authentic*tlon/Verific»tion
PolicyEnforcer

SecurityVisitor PollcyApplicator P°li°y Bnforod: Exfrnal Policy - sign»tur« Vrificatlon
policy

guar

securityAttributes

SecurityManager SecurityContext

securityAttributes

mnctionaUty: Ta*k Exacution Panurion Chacking

2nd Lavl Frotaction: Vador Sarvara

FolicyEnforce

SecurityVisitor
policy

PolicyApplicator
Policy Enforced: Vador Policy

SSH authenticata ^ ;'
->.. SSH Se 3rd Lavl Profctlon: Oparating SytMi

ninction»lity: V»dor Oaer Authenticatlon/Varlflcation

Policy Enf oread: Sytun Policy

FIGURE 5. 2 Stmcture of the Security Manager Pattern

5.2.6 Participants

Client

o Any VADOR User or Vador Server that creates, signs, and sends active agents,

or any Vador Server that receives, authenticates, verifies, and checks pemiis-
sions on a signed agent .

68

o An agent sender client sends the signed agent with a unique identifier of the

original agent and an identifier of the signed agent.

o An agent receiver client verifies the signed agent using its identifier and cer-

tificate. The certificate is defined by the administrator and corresponds to the

public key that is in pair with the private key, which the sender client uses to

sign the agent.

SecurityServer

o It is an Execudon Place that is responsible of a signed agent authentication

and verification.

o Its SecurityManager implements and extends the same interfaces and abstract

classes as the security manager on the other execution places.

o It enforces External Policy that is defined by administrator and initialized

when the Security Server starts.

SecurityManager

o Every Execution Place has its own SecurityManager that implements and ex-

tends the same interfaces and abstract classes.

o The security managers on behalf of the execution places represent their se-

curity guards, and are responsible of security issues. For example, the Se-

curity Server's Security Manager is responsible of agent authentication and

verification, the other VADOR Servers' Security Managers are responsible of

permission checking before allowing an agent to execute tasks.

SecurityContext

o Every Execution Place has its own Security Context that implements and ex-

tends the same interfaces and abstract classes.

69

o The Security Context on behalf of the execution place represents its security

attributes, including user attributes, subject attributes, and object or informa-

tion attributes.

. SecurityVisitor

o Every Execution Place has its own Security Visitor that implements and ex-

tends the same interfaces and abstract classes.

o The Security Visitor, on behalf of the execution place, represents its security

policy enforcer, that is responsible of checking permissions according to the

policy which it enforces.

. PolicyApplicator

o Every Execution Place has its own PolicyApplicator that implements and ex-

tends the same interfaces and abstract classes.

o The Policy Applicator, on behalf of the execution place, represents its security

policy, that is responsible of performing actual algorithms for checking if

execution requests match the permissions that are defined by the policy.

. SSH Server

o A security server resides on the operating system and provides the lowest level

protection of VADOR.

o It is responsible of system policy enforcement to authenticate and verify a

VadorUser that creates and sends an agent at the operating system level.

5.2.7 Interaction

Figure 5. 3 illustrates interaction of the Security Manager Pattern.

70

SnaidtySBivufS) S«uirit»*g«lt ucuifl>M«l»g»r(S) SecuiftyMananerfc)

t

cnatcAndSlBnAgentdtLsecurtiyAgent, td_o I gen<

cillQ .mrifyAgaot

(ld_..culty*9Ut)

U(teu)
v»lfyXg«nt

|ld_<M;l«ln«guitl

wiDyAgentO

vertfyAgentO

authemfcatcd-nue

ullO

lf(tiue) caiLJunQ

do-operatlonO

FIGURE 5. 3 Security Manager Pattern Interaction

. A Client creates and signs an Active Agent using the Private Key which was defined

in the External Security Policy by the administrator (a Certificate that corresponds

to the Public Key exported to an Execution Place by the administrator). The client

then sends the agent to the Execution Place for task executions.

. When an Execution Place (Vador Server) receives the agent (called Original Agent),

before allowing it to execute tasks, it must authenticate the Original Agent and

verify the agent's signature. The Vador Server (Client) creates and signs another

Active Agent, called Security Agent, in which the Original Agent is included. This

client then sends the Security Agent to a specified Execution Place - Security Server

for the authentication and verification processes.

. When the Security Server receives the signed Security Agent, it invokes the agent's

call() function, this function then calls the Security Server's Security Manager to

perform the authentication and verification processes using the Certificates that was

imported by the administrator that corresponds to the agent sender's Public Key.

71

The Security Agent's callQ function requires the Security Server's Security Man-

ager to perform two steps for the agent's verification and authentication: the first,

verifies the Security Agent, if the Security Agent could be verified, it then verifies

the Original Agent. Figure 5.4 illustrates the verification algorithms.

public boolean verify(String certname, SignedObject so)
{

boolean can_verify;
try
{

FilelnputStream certfis = new FilelnputStream(certname);
CertiflcateFactory cf= CertificateFactory. getlnstance("X. 509");
Certificate cert = cf.generateCertiflcate(certfis);
PublicKey pubKey = cert.getPublicKeyO;
Signature veriflcationEngine = Signature. getlnstance("SHAlwithDSA", "SUN");
if (so.verify(pubKey, verificationEngine))
{

can_verify = true;
}
else
{

can_verify = false;
}

}
catch (Exception ex)
{

}

return can_verify;

System. err. println(ex. toString());

FIGURE 5. 4 Signed Agent Verification Algorithms

If both of the Security Agent and the Original Agent can be authenticated and

verified, the Security Server sends "authenticated = true" feedback to its sender

to inform that the Original Agent's signature has been verified, which means that

the agent has not been attacked during its migration. If either of the agents could

not be authenticated or verified, they both will be discarded.

When the Execution Place receives an agent "authenticated = tme" feedback, it

-72

invokes the Original Agent's call() function, Aat calls the Security Manager on

behalf of the Execution Place and passes it the Security Context. The Security

Manager then applies VADOR Security Policy defined for the Execution Place by

the administrator.

. If the agent's Security Context matches the permissions defined by the VADOR

Security Policy, the Original Agent can then perform the do0peration() on the Ex-

ecution Place, otherwise, the agent will be discarded.

5.3 Security Manager Pattern Modules

The VADOR security model implements a specialization of the Security Manager pattern

that consists of sets of packages and interfaces, in which the Security Manager pattern

modules are represented. These modules are listed as the following:

1. Security Interface Module

2. Agent Authentication Module

3. Agent Signature Module

4. Security Server Module

5. Security Attributes Descriptor Module

6. Security Manager Module

Figure 5. 5 illustrates the structure and relationship between the modules.

73

«derive»

0
«lmerrace»

->Securirylmerface

«dertve»'!' «deriv.»
«execuiable»
SecurityManager

In collaborates with all the other
security modules to perform Agent
Authemlcatlon and Aulhorizatlon
mechanisms, so that It can control
access to system resources and
protect data and information.

I
I
I

«executable»
AgentAinhemlcailon

It consists of the Agem Signature
and SecuritySener modules, and
performs (he agem authentication
and verification processes to
proten the system at the flrsl level.

I I

I
« derive »

I

«execuiab]e»

AoentSlgnalure
Sign an agent before it migrates
to another execution place for task
execution. The agent signature will
then be used for authentication of
the agent's sender at the execution
place.

«execinable»
SecurltyAltrlbuTesDescrlpior

Provides access to securfty-relevant
anribuies. Include User Altribirtes,
Subject Altribuies, and Object or
Information Attritiutes obtained
by the Security Server from the agent
authentication process.

I
I

«executable»
SecurirkSenffir

An execution place. It Is responsible
of agent signature verfflcation, the
agem's authentication, and information
collection.

FIGURE 5. 5 Security Manager Pattern Modules Stmcture and Relationship

5.3. 1 Security Interface Module

The Security Interface Module provides interfaces to all the security related modules in

the VADOR system, including the Agent Authentication that consists of the Agent Sig-

nature. Security Server, Security Manager, and Security Attributes Descriptor modules.

This module has been integrated into the Active Agent's NetworkTool Module, in which

a set of VADOR system interfaces has been defined.

74

Intefacea

or

Abstract Claasna

IVadorSigner

AbstractVadorSigner

IVadorProxy

VadorProxy

ISerrerThread

ServerThread

Intarfaca IVadorSecurityAttributesDescriptor
of

Security Attributaa Descriptor VadorSecurityAttributesDescriptor

Conponanta

Intnrfacn of Agant Signatur*

Interface of Sacurity Server

Int«r£ac« of Sacurity N»n»g«r

Snrvicaa

Provides interfaces of Agent Signature
services to VadorServers for signing
agents before sending them to a remote
VadorServer for task execution.

Defined in Active Agent's NetworkTools
module. Provides an interface af local

representitive of the remote Security
Server.

Defined in Active Agent's NetworkTools
module. Provides an interface of a

Security Server Thread launched by the
Securit Server.

Provides interface to concret security
attributes descriptor classes (i. e,

ServerSession) to keep track of security
attributes.

Defines interfaces for Security Managers
SecurityVisifcors, and PolicyApplicators
to perform access control mechamisms
in the Vador System.

IVadorSecurityManager

AbstractVadorSecurityManager

ISecurltyVisltor

AbstractSecurityVisltor

IPolicyApplicator

AbstractPolicyAppllcator

FIGURE 5. 6 Security Interface Module Components

5.3. 1.1 Components

As illustrated in figure 5.6, the Security Interface Module consists in the following com-

ponents:

Agent Signature Module Interface provides services to VADOR servers to sign

an agent before sending it to remote VADOR Servers for task execution.

Security Server Module Interface provides an interface of a local representative

of the Security Server to a VadorUser or Vador Server. It provides an abstract

ServerThread class to be extended by a concrete SecurityServerThread class, so

that it can be launched by the Security Server for executing a specified task.

Security Attributes Descriptor Module Interface provides interface and abstract

security attributes descriptor to concrete classes that may keep track of security

-75

attnbutes. For example, the concrete ServerSession class.

. Security Manager Module Interface defines interfaces for Security Managers,

Security Visitors, and PolicyApplicators that are on behalf of VADOR Servers to

perform access control mechanisms to the VADOR system.

5.3.2 Agent Authentication Module

The Agent Authentication Module consists of the Agent Signature and Security Server

modules. It is responsible of the first level protection of the VADOR system - Agent Au-

thentication and Verification. The objective is to manage agent signature for the agent's

sender, and authenticate the signed agent for the agent receiver. It uses security mecha-

nisms provided by the JVM for agent signature and verification processes.

5.3.2.1 Structure

Figure 5.7 presents the stmcture of the Agent Authentication Module.

5.3.2.2 Participants

. Client

o Any VadorUser or Vador Server that may create and send an Active Agent to

a remote Execution place for task execution.

o Before sending the agent, it signs the agent by applying its VadorSigner.

. VadorSigner

o On behalf of the Client, applies a Cryptographic Algorithm for agent signa-

ture.

76

signedAgent = C. signAgent(VadorAgent)

sendAgent(signedAgent)

S. receive(signedAgent)

I
I

Client

+sendAgent:boolean

verified = V.verify(signedAgent)

return (verified)

VadorServer

+receive:void

VadorSigner

+signAgent: boolean

Cryptographic

Al orithm

v

SecurityServer

+ verify: boolean

Private Ke Certificate

FIGURE 5. 7 Agent Authentication Module Class Diagram

o Uses the PrivateKey generated by the VadorUser to sign the agent.

VadorServer

o Any Vador Server that may receive a signed Active Agent from the Client.

o Before allowing the agent task execution on the server, it must authenticate

the agent by verifying its signature.

SecurityServer

o On behalf of the VADOR System, applies the same Cryptographic Algorithm

as the Client for the agent's verification and authentication.

77

o Uses a Certificate corresponding to the VadorUser's PublicKey to verify the

agent's signature.

. Cryptographic Algorithm

o Any Cryptographic Algorithm provided by cryptographic service providers

for Java security applications.

o Is the same for both agent signature and verification.

. PrivateKey

o Generated for VadorUser, and stored in a keystore that belongs to the user.

o Together with a PublicKey, forms a key pair.

o Used for agent signature.

. Certificate

o Is the PublicKey generated for VadorUser, and exported to the SecurityServer

as a Certificate of the PublicKey.

o Together with the PrivateKey, consists of a key pair.

o Used for agent verification.

5.3.2.3 Interaction

The Agent Authentication Module interaction is illustrated in figure 5.8

Clients create VadorAgent objects and apply VadorSigners to sign the VadorAgents.

The VadorSigners apply Cryptographic Algorithms and use PrivateKeys to sign the

agents.

78

VadorSi ner Client VadorServer Securit Server

ll: slgnAgentO/adorAgent) I

I 2: signedAgent

ti
3: sendAgent(signedAglent)

I 4: receive(signedAgent)
4. 1: verlfy(signedAgent)

5: verified

6: continue

FIGURE 5. 8 Agent Authentication Module Interaction Diagram

. Clients send the SignedAgents to remote VADOR Servers for task execution.

. VADOR Servers receive the SignedAgents from Clients, and then verify the agents'

signatures by applying the SecurityServer's verification processes.

. According to security protocols, the SecurityServer applies the same Cryptographic

Algorithms as the VadorSigner, and uses the Certificate import from the Clients to

verify the agents' signatures.

. If the agents' signatures can be verified, the VADOR Servers will allow the agents

to execute tasks on them. Otherwise, the agents will be discarded.

79

5.3.2.4 Related Patterns

. Cryptographic Meta pattern (Braga et al. (1998)): The VadorSigner represents

the Codifier class, and the SecurityServer represents the Decodifier class in the

pattern.

. Sender Authentication pattern (Braga et al. (1998)): It is the base of this module,

because both can guarantee that information have a genuine and authentic sender, in

such a way that the sender cannot repudiate the infonnation that its receiver believes

was sent by the sender.

5.3.3 Agent Signature Module

The Agent Signature Module is responsible of VadorAgent signature before an agent

migrates to another execution place for task execution. The objective of agent signature

is to authenticate the agent's sender at the execution places and protect the destination

resources. This module allows the execution places to distinguish malicious agents from

their original copies by verifying their signature, so that they can decline it, but accept the

authenticated one to execute tasks on them.

5.3.3.1 Structure

The structure of the Agent Signature Module is illustrated in figure 5. 9.

5.3.3.2 Participants

Clients

80

interface

fVarforSfaner

1-sfgnAg»nt:SiffnedObject

SignedObject signedObject

= Signer, s lgnAgent(VaorUsEr, VadorAgent)

Client

generateKeyO (Generaior. genKeyO;!

signQ (Slgnature. slgnO;)

Signer

Sensltzable

AbstrsuxVadoiSffiner

-signedAgencSigncdObject __

+AbstractVadorSigncr

+slgnAgent:SlgnedObJect

#ffenerateKey:PrlvacsKey

A lgn:StgnedObjec

Serlalizable

VadarSigner

-keyGenerator.VadorKeyCenerator

-priv:PrlvateKey

-5lgnedAgent:SignedObJect

-s ignature:VadorSlg nature

+VadorSlgner

#generateKey:PrivateKey

ffslgn:SignedObject

slgnAgentQ

(

generateKeyO;

signQ;

}

Serlaltzable

VadorKeyGenerator

-ksname:Strlng

-spass:char[]

-alias:String

-kpass:char[]

Generator -priv:PrivateKey

ffVadorKeyGenerator

ffgenKey:PrivateKey

Signature

Serialtzable

VadorSlg nature

agent: Object

so:SignedObJec(

ffVadorSignature

#sign:Signed Object

FIGURE 5.9 Agent Signature Module Class Diagram

o Any Vador Server that may apply its signers to sign the agents that have been

created.

o VadorUsers (agents' owners) and agents provide infonnation to the Vador-

Signers.

. IVadorSigner

o Is an interface to the VadorSigner class.

o Provides an abstract signAgentQ method that needs to be implemented.

. AbstractVadorSigner

o Is an abstract class that implements the interface IVadorSigner, and its signA-

gent() method.

81

o Provides two abstract methods: the generateKeyO method for key generation,

and the sign() method for signature process.

. VadorSigner

o Extends the AbstractVadorSigner class.

o Provides signature services to the CUents.

o Implements the abstract generateKeyO method by applying the VadorKey-

Generator class.

o Implements the abstract sign() method by applying the VadorSignature class.

. VadorKeyGenerator

o Provides services to the VadorSigner.

o Generates a PrivateKey for agent signature according to users' information

provided by the VadorSigner.

. VadorSignature

o Provides services to the VadorSigner.

o Signs the agent according to the requests from VadorSigner using the Pri-

vateKey provided by the VadorSigner.

5.3.3.3 Interaction

The Agent Signature Module Sequence Diagram illustrated in figure 5. 10 presents the

interaction between the participants in this module.

. A Client invokes the signAgentQ method in the AbstractVadorSigner to obtain a

SignedObject out of a VadorAgent object. It provides it with the information about

the VadorAgent owner (VadorUser), and the agent object that needs to be signed.

82

Cllint AbrtractVadoiSi ner

1 SlnneUOBJect - slgnAgemc/adorUs 'r. VadorAaem)

VadorKcvCentrator

1 Z- PrtvaeKey - gsneraieKevO

1 3: SlgnedObJect . sfgnQ

1. 1. 1: creae<yadortJsail

11.2; createC/adortnen)

1. 2. 1. PrivaeKev- aenteiO

1. S. 1: agnedObJect - slgn(Prt»alaK«^

VadorSt nauire

-t

FIGURE 5. 10 Agent Signature Module Interaction Diagram

. The Abstract VadorSigner creates a concrete VadorSigner, and requires it to perfonn

the generateKeyO method to obtain a PrivateKey from the agent owner's keystore.

Then it applies the sign() method to obtain a SignedObject using the given Pri-

vateKey.

. A concrete VadorSigner creates a VadorKeyGenerator object and invokes its

genKeyO method to get a PrivateKey. It also creates a VadorSignatare object, and

then invokes its sign() method to get the SignedObject. Figure 5. 11 illustrates the

agent signature algorithms in the VadorSignature class.

5.3.3.4 Related Patterns

. Cryptographic Meta pattern: This module represents the Codifier class in the

Cryptographic Meta pattern, it is responsible for the signature process.

. Sender Authentication pattern: In Sender Authentication pattern, the Signer class

has the same utilities as this module.

83

package Vador. NetworkTools. lVadorSecurityManager. AgentSignature;
import Vador.NetworkTools.*;
import java.security.*;
import JavaJo.*;

public class VadorSignature implements Serializable

Object agent = null;

protected VadorSignature (Object agent)
{

this. agent = agent;
}

protected SignedObject sign(PrivateKey priv)
{

try
{

Signature dsa = Signature.getlnstance("SHAlwithDSA", "SUN");
Serializable s_agent = (Serializable)(agent);
SignedObject so = new Signed0bject(s_agent, priv, dsa);

}

catch (Exception e)
{

System.err. println(e.toStringO);
}

return so;

FIGURE 5. 11 Agent Signature Algorithms

. Template Method pattern (Gamma et al. (1994)): The abstract AbstractVador-

Signer class defines the skeleton of agent signature algonthms in the signAgentQ

method, and lets its subclass-VadorSigner redefine certain steps of the algorithms

without changing the structure.

84

5.3.4 Security Server Module

The Security Server Module defines a new Execution Place, that is a Vador Server re-

sponsible of VadorAgent signature verification, the agent's authentication, and infomia-

tion collection. It is a single access point to the other VADOR Servers and cannot be

bypassed, it has its own Security Manager to enforce the External Security Policy for the

verification and authentication processes.

5.3.4.1 Structure

The stmcture of the Security Server Module is illustrated in figure 5. 12.

SP. mqutit(SubjtctlD. R*lourc«ID&;

Client

inlerface

IVadorfroxy

VaforPraxy

interface

SefverTlireaif

SeiverTliread

SA - SP. crea. ttAndSlgnAgent(SubJfcct)D, RtSDurcelDi;

SP.connecttSS);

SP.andAgentlSA);

SlgnedAgent

SecuritySemiSecurltyHanager uard

SecurityServerProxy

ss

SccurityScrvcr

I

SS. rac«l»i6A);

ST = SS.Iunch(newSecurityServerThreadbuard));

ST. tnalSign«dAgerrttSA»;

StCurltySeiverThread

treatSignedAgs nt(SA)

(

guard. nequestiSA. nequast)

?

FIGURE 5. 12 Security Server Module Class Diagram

85

5.3.4.2 Participants

. Clients

o Any Vador Server that may send requests to the SecurityServer for verifying

signature of its received agents.

o Provides Subjectld and ResourceID obtained from the agents to the Security-

Server via a 5ecurityServerProxy object.

. SecurityServerProxy

o Extends the abstract VadorProxy class defined in the VADOR System.

o Provides a local representative for the SecurityServer.

. SignedAgent

o An object created by the SecurityServerProxy.

o Is responsible of signing a VadorAgent object using security attributes pro-

vided by the SecurityServerProxy

. SecurityServer

o A Vador Server that provides agent signature verification service to its clients.

o Applies its Security Manager for the authentication and verification processes.

. SecurityServerThread

o Extends the Thread class defined in java.net package.

o Launched by the SecurityServer for coinmunicating with a specified client.

o Applies the SecurityServerSecurityManager assigned by the SecurityServer

to verify a SignedAgent.

. SecurityServerSecurityManager

86

o Extends the AbstractVadorSecurityManager class defined in the SecurityMan-

ager module (See section 5. 3. 6 for details).

o It is an instance of the SecurityManager module.

o Specifically deals with VadorAgent signature verification(VadorAgent authen-

tication).

5.3.4.3 Interaction

Interaction between the Security Server Module participants is illustrated in figure 5. 13.

[SecurftySeiVBrPrcw tcunwStnt tnjrtnMinui

1. _.. .. _!
I r recfuestpubJeciiO.RtfsourceSD)

11. t;<creale»
SlcnedAnerrt

SeuirltvS erveiTh read

1. 3 12. can.wnfy- request gn^dAflEn^requestt

13. 1, 3 return can.verily 3. 1. 2. l"V8riTv(SionedAoent)

4: return caft. vsnr/

FIGURE 5. 13 Security Server Module Interaction Diagram

A Client sends request with a Subjectld and ResourceID to the SecurityServer via

its SecurityServerProxy.

The SecurityServerProxy creates and signs a VadorAgent object with information

provided by the Client.

The SecurityServerProxy then connects to the Security Server, sends the SignedA-

gent object via the channel, and waits for a return message.

87

. The SecurityServer launches a SecurityServerThread to deal with the request.

. The SecurityServerThread receives the SignedAgent object from its proxy, then

applies its SecurityManager to verify the object's signature.

. The SecuritySeryer's SecurityManager venfies the SignedAgent's signature, then

returns the result to the SecurityServerThread.

. The SecurityServerThread returns the result to the SecuntyServer.

. The result finally returns to the Client by the SecwityServer via its proxy.

5.3.4.4 Related Patterns

. Proxy pattem(Gamma et al. (1994)) is applied to the Security Server module.

A client's request can only be sent to the Security Server via the Security Server

Proxy.

. Single Access Point pattern (Yoder and Barcalow (1998)): the Security Server

module is a specialization of the Single Access Point pattern. It provides a security

module to control access to the other VADOR Servers, and cannot by by passed.

. Policy(Guibault et al. (2004)) is used by the Security Server Security Manager to

enforce security policy for the signature verification processes.

5.3.5 Security Attributes Descriptor Module

The Security Attributes Descriptor Module provides access to security-relevant attributes

of an entity on whose behalf operations are to be performed. Types of the security at-

tributes include User Attributes, Subject Attributes, and Object orlnfonnation Attributes.

88

This module allows an operation to specify a subset of the attributes for which it re-

quires access, by specifying a SecurityAttributeType. This way the VadorSecuritySub-

jectDescnptor will not be affected when a new attribute is added to a filtered SecurityAt-

tributeList.

5.3.5.1 Structure

Figure 5. 14 represents structure of the Security Attributes Descriptor Module.

SecurityAttributeList attributes

» SS. oetAttrlbutcfQ;

SecurityAttribureLIst anributesl

= SS. getAttributes(SecuriryAttributeType type);

Client

Interface

/ VatfofSecurftyAttffbutesDescffpzor

i-gasAttrtbtft»s:S«ctirftyAtt/fbttt»L/sc

I

VwSofSecurftyA ttrfbutesDescTfptor _ _ J

getAttributesQfretum SecurityAttributeLlst}

getAttributes(SecurityAttrfbuteTypetype>

(return SccurityAttributeList)

I

SecurliyAitrlbuieType

+BctAttributcs:SccurityAttribuieLlst

attributes:SecurityAttrtbutcL1si

SanrarSesslon SecurltyConi...

operation

add(SecurItyAttribute attribute)

does not affect the

VadorSecurityAttributesDescriptor.

SecurltyAttrlbuteLlst

-attribute: SecurityAttribute

+add:vold

SecurityAttribute

-type:SecurftyAttrlbuteType

FIGURE 5. 14 Security Attributes Descriptor Module Class Diagram

5.3.5.2 Participants

. Client

o Any entity in the VADOR System that needs to access security-relevant at-

tributes to perform an operation.

89

o Accesses to the security-relevant attnbutes via the Security Attributes De-

scriptor Module.

. IVadorSecurityAttributesDescriptor

o Provides an interface to the Security Attributes Descriptor Module.

. VadorSecurityAttributesDescriptor

o Implements the functions defined by the IVadorSecurityAttributesDescriptor.

o Defines abstract methods that will be implemented by concrete VadorSecu-

rityAttributesDescriptors.

. SecurityAttributeList

o Contains sets of SecurityAttributes.

o New SecurityAttributes can be added into the SecurityAttributeList by apply-

ing its add() function.

. SecurityAttribute

o Defines SecurityAttributes and distinguishes them by their SecurityAttribut-

Type.

. SecurityAttributeType

o Deifnes types of SecurityAttributes. For example, KEYINFO, OBJECT, and

SUBJECT.

. ServerSession

o A concrete class that extends the abstract Vador5ecuri(yAttributesDescriptor.

o Created by a VadorSecurityManager on behalf of a ServerThread to keep

track of the security-relevant attributes associated with that Ser^erThread, so

90

that the attributes can be used by the operations on behalf of the same Server-

Thread.

o If the ServeiThread is closed, the ServerSession is also closed.

. SecurityContext

o a concrete class that extends the abstract VadorSecurityAttnbutesDescriptor.

o created by a VadorSecurityManager. to describe security-relevant attributes

provided by a VadorAgent, then it will be passed to a SecurityVisitor for

permission checking.

o if the permission is granted by the PolicyApplicator, the SecuntyContext wiU

be added to the previous SeverSession for later usage.

5.3.5.3 Related Patterns

. This module is an instance of Subject Descriptor pattern (OpenGroup (2002)) It

provides access to security-relevant attributes on an entity, adds new attributes to

the list without affecting the attributes descriptor, and allows operations to specify

a subset of the attributes by specifying an attribute type.

. The ServerSession implements the Session pattern (Yoder and Barcalow (1998)).

A ServerSession object can hold all of the security-relevant attributes that need to

be shared by many objects in the same ServerThread.

5.3.6 Security Manager Module

The Security Manager Module performs two level access control mechanisms to the

VADOR system: Active Agent Authentication and Authorization. This module is the

91

core of the VADOR security architecture, it in collaborates with all the security modules

to control access to the VADOR system resources and protect the data and information.

5.3.6.1 Structure

Figure 5. 15 represents the structure of the Security Manager Module. OtherServerSe-

curityManager, OtherServerSecurityVisitor, and OtherServerPolicyApplicator represent

the SecurityManager, SecurityVisitor, and PolicyApplicator that stand on behalf of the

VADOR Servers other than the SecurityServer.

OSM. request(signedAoem, req)

IfreD-VERIFT^USENT
return OSM. vertMslanedAaent);

W req-CHECK_PERMtSSION
securitvContext - OSM. fleiSecurt^CantejrtO;
reium OSM. request. atlowed(securttvContext);

lfreq-USE5SH
securftvCoittein - OSM. getSecuri^ComaxiO;
return OSM. use^SH[securttvComeM);

verfMslflned&oent)

return SSM. requestOslO"edAgem, VERIFY^UjEMT;

IKslanedAnentls'rertfled)
raquest.allowedtsecurityComexO
1

return OPAaccept(OSV, securitvComB>tt);

ch eck. pol lc><OPA securttyContext)

return QPAmatch.pollcvtsecurftvComexQ;

InterTace
JMKtorSwurity«uwg»r

A<nirtWKtorfKuntyMuMffej-

+ request: baol
+ request, a Quwed:bw^
.f-wnfy.bwit
+u». SH:frt»u/

Interface
ISeeun'tyWaitor

.t-ched^piilKpbwtS

AbstrfcQeciirityVisitw

Inierface
iPoltCfAppficator

-f-aixxptiHud
+nuhA.pu&T:(wu(

AltftrKlPoliCyAwliestiu-

+is<.vefitbwil
+ matdi. puUtybacl

OSM
OthtiSirvBiSemrityMuiagcr

-OSV: OtherSenerSecurtr^lsltar
-0 PA-OlherSenerPolic^rtppl icator
-SSM:Securh^ener3ecurtTyManssef

+request.allDWBd:bDol
+vertVbool
+USE-SSH:COOI

osv
OtheiS eiverScuirttyVI silor

+chei:lGpollcy:bool

OUieiServerf'al IcyApp llntor

+accept:bool
+match,pollcv. bool

SBCurityServeiSecurttyManaBBr

-SSV;?ecurtt^5enerSecurt^Vlsltor

S^l -SPASecurit^enerfoltc^pllcator

+ request, allow
+vertrytboDl
+useJ5H:bool

StCuritySciveiSecurttrVtsltor

+checK. pollcy:bool

SeairitySeiVBrPolliyAiapllntnr

+accept:bool
+match.policvhool

check. policvCPAsecuritvConl exi]
(

SPAmatch.polfcv(sacurt^Conle)rt);

accepl(OSV. securtt\ComerO

return QSV.chECk.pollcvOhls, securitvComexti(

accept CSV, securttvContext)
(

return SSy.chEC<pollcv(thls, securttyCantext);

FIGURE 5. 15 Security Manager Module Class Diagram

5.3.6.2 Participants

. Client

92

o Any entity in the VADOR System that needs to access to VADOR Servers to

complete a task.

o In order to access VADOR Servers' resources, a client must be verified and

obtain pennission via the Security Manager Module.

IVadorSecurityManager

o Is an interface of the Security Manager to all the VADOR Servers.

o Provides an abstract requestQ method that needs to be implemented.

AbstractVadorSecurityManager

o Is an abstract class that implements the interface IVadorSecurityManager and

its requestQ method.

o Provides three abstract methods to its subclasses: method verify () authen-

ticates and verifies a signed agent object, method request_allowed() checks

permissions on a verified agent object, and method use_SSH() performs SSH

protection mechanisms if they are required by a Vador Server's security pol-

icy.

SecurityServerSecurityManager

o Extends the AbstractVadorSecurityManager class.

o Provides a SignedAgent authentication and verification services to the other

VADOR Servers, for example, Executive, Librarian, and Wrapper servers.

o Implements the abstract verifyQ, request_allowed(), and use_SSH() methods

defined by its supper class.

OtherServerSecurityManager

o Extends the AbstractVadorSecurityManager class.

93

o Acts on behalf of a specified Vador Server, and provides permission checking

services on a verified (by the SecurityServerSecurityManager') ActiveAgent

for the Vador Server.

o Implements the abstract verifyQ, request_allowed(), and use_SSH() methods

defined by its supper class.

ISecurity Visitor

o Is an interface of the Security Visitors to all the Security Managers that act on

behalf of the VADOR Servers.

o Provides an abstract check_policy() method that needs to be implemented.

AbstractSecurityVisitor

o Is an abstract class that implements the interface ISecwityVisitor.

o Provides the abstract check_policy() method to its subclasses.

SecuritySer^erSecurity Visitor

o Extends the AbstractSecurityVisitor class and implements the abstract check_

policyO method.

o Acts on behalf of the SecurityServerSecurityManager, and provides authenti-

cation and verification services to the Security Manager.

o Provides SecurityContexts to SecurityServerPolicyApplicator for the actual

authentication and verification algorithms.

OtherServerSecurityVisitor

o Extends the AbstractSecurityVisitor class and implements the abstract check_

policyO method.

o Acts on behalf of a specified Vador Server's Security Manager, and provides

permission checking services to the Security Manager.

94

o Provides SecurityContexts to a PolicyApplicator that acts on behalf of the

same Security Manager for the actual permissions checking algorithms.

. IPoIicyApplicator

o Is an interface of the PolicyApplicators to all the Security Managers that act

on behalf of the VADOR Servers.

o Provides abstract acceptQ and match_policy() methods that need to be imple-

mented.

. AbstractPoIicyAppIicator

o Is an abstract class that implements the interface IPolicyApplicator.

o Provides the abstract acceptQ and match_policy() methods to its subclasses.

. SecurityServerPolicyApplicator

o Extends the AbstractPolicyApplicator class and implements the abstract ac-

cept() and match_policy() methods.

o Acts on behalf of the SecurityServerSecurityManager, and collaborates with

the SecurityVjisitor to perform actual authentication and verification algo-

rithms by consulting Ae External Security Policy which is initialized by the

VADOR administrator.

. OtherServerPoUcyAppIicator

o Extends the AbstractPolicyApplicator class and implements the abstract ac-

cept() and matcb_policy() methods.

o Acts on behalf of a specified Vador Server, and collaborates with the Secu-

rityVisitor to perform actual permission checking algorithms by consulting

VADOR Security Policy of this server which is initialized by the administra-

tor.

95

5.3.6.3 Interaction

Interaction between the Security Manager Module participants is illustrated in figure 5. 16.

SSM

'. r6('"esl(sl»"edA«e^r^>r^l7 , -VER]FY. ACENT): request(s nedAoent. VERIFT^CE...

1. 1. 2: createO

. 1. 3: getsecurttvcontext(sf ed&gent)

1. 1.4: acceptpSV.securitvConiext)

1. 1. 4. 1: check-polic^Kthis securhyContexl)

1. 1. 4. 1. 1: maich-p II y(securitvComexi)

I
.2: IT(req--CHECK. PERHISSION or LBE-SSH) gelSecurDvConlextO

osv
1.3; createQ

1. 4: craata(0

1. 5: accept(OSV, secu iivContexi)

! 1. 5. 1: theck. polil"i<thl5, 5ecurilvComext)

1. 5. 1. 1: mat[h_[|nl[ct<securitvConle)n)

^

FIGURE 5. 16 Security Manager Module Interaction Diagram

A Client invokes the requestQ method of an OtherServerSecurityManager (OSM)

that stands on behalf of a Vador Server, and passes its request with security contexts

to this Security Manager. The request can be either VERIFV AGENT, CHECKING

PERMISSION, or USE SSH, and the security contexts contain the security infor-

mation related to this Client.

96

. If a Client passes the VERIFY AGENT request to an OSM, the OSM will become

a Client to the SecurityServerSecurityManager (SSM), it then invokes the requestQ

method of the SSM, forwards the VERIFY AGENT request and the security con-

texts to the SSM.

. When the SSM receives a VERIFY AGENT request from its client, it first creates

two objects on the Security Server: a SecurityServerSecurity Visitor (SSV) and a

SecurityServerPolicyApplicator (SPA). Then, it gets Security Contexts from the

SignedAgent passed by the client, invokes the SPA'S acceptQ method, passes the

SSV object and the secunty contexts as parameters. The SPA'S accept() method

accepts the SSV as its visitor and allows it to visit its policy (External Security

Policy) using its match_policy() method.

. If a Client passes a CHECKING PERMISSION request to an OSM, the OSM will

first check if the security contexts contain a verified state, if it is true, it then invokes

its own request_allowed() method, forwards the security contexts to it to continue

checking processes, otherwise, it passes a VERIFY AGENT request to the SSM as

descnbed above.

. If a Client passes a USE SSH request to an OSM, the OSM will first check if

the security contexts contain a verified state, if it is true, it then invokes its own

use_SSH() method, forwards the security contexts to it to condnue using SSH pro-

cesses, otherwise, it passes a VERIFY AGENT request to the SSM as described

above.

. In both cases of an OSM performing a reqwst_allowed() or a use_SSH() methods,

at first, the OSM: needs to create two objects on the same server: an OtherServer-

Security Visitor object (OSV) and an OtherServerPolicyApplicator (OPA). Then, it

gets Security Contexts that were obtained by the SSM and saved in a Securtiy Ses-

sion, invokes the OPA's acceptQ method, passes the OSV object and the security

97

contexts as parameters. The OPA's acceptQ method accepts the OSV as its visitor

and allows it to visit its policy (VADOR Security Policy) using its match_policy()

method.

. The OSV returns the results to the OSM, the OSM then forwards the result to its

server.

5.3.6.4 Related Patterns

. The SecurityServerSecurityManager and the OtherServerSecurityManager repre-

sent the Guard, the Security Visitors represent Ae Policy, and the PolicyApplicators

represent the Rule in the Policy Pattern (Guibault et al. (2004)).

. The Security Visitors cooperates with the PolicyApplicators and implement the Vis-

itor Pattern (Gamma et al. (1994)), so that the VADOR system can add a new

security related operation to a Security Visitor without changing operations on the

PolicyApplicators.

. The PolicyApplicators use the Strategy Pattern (Gamma et al. (1994)) to define

permission checking algorithms.

5.3.7 Consequences

Introducing a separate Security Server from the other VADOR Servers helps to

avoid the Security Server monopolies the access control processes. This approach

enhances management flexibility of the VADOR system. In addition, it divides re-

sponsibilities among different servers, which can improve time deducdon of access

control processes.

The Security Managers act on behalf of the servers can help dynamically define

98

and load security policy for every server that is involved in the VADOR system, so

that one Vador server's security policy change will not affect the others and prevent

them from working properly.

. Although the Security manager of the Security Server perfonns verification and

authentication processes to control accesses to all the other VADOR Servers, it is

not the only access point into the VADOR system. The other VADOR Servers'

Security Managers also represent access points to the system. The difference is that

the first one acts on behalf of the Security Server to control accesses to the other

VADOR Servers, while the others control accesses to VADOR Resources.

5.3.8 Related Patterns

. The Protected System pattern (Guibault et al. (2004)) describes the stmcture of the

Security Manager, in which access to a set of resources by various clients can be

controlled.

. The Policy pattern isolates policy enforcement activities into one dedicated compo-

nent - Security Visitor to ensure that these activities are done correctly and in proper

sequence.

. The Partitioned Application pattern constmcts Security Managers on behalf of

VADOR Servers. It aUows Security Managers to perform simple tasks rather than

having only one complex Security Manager for the whole system. Having these

Security Managers facilitates the security management, especially in VADOR, be-

cause some tasks require different privilege levels and security pennissions.

. The Subject Descriptor pattern provides a convenient abstraction for managing se-

curity relevant attributes. Since the Security Server's Security Manager is used for

identifying the subject, and a Security Manager of an Execution Place is later used

99

to authorize (or deny) the subject access to resources, this abstraction is particularly

useful in VADOR.

Many other patterns are also involved in the Security Manager pattern , and they

have been described in the modules (see section 5. 3).

5.4 Summary

This chapter introduced the Security Manager pattern, that represents the security archi-

lecture of the VADOR system, formalizes the prevention approaches to the VADOR secu-

rity defect introduced in section 3. 2, and then provides solutions to the VADOR security

problems (See Chapter 3). The main objective of using this pattern is to control access

to VADOR data files, and it can be realized by separating authentication and verification

processes on a centralized Security Server from permission checking processes on an-

other individual Vador Server, such as Executive Server, Librarian Server, and Wrapper

Server.

The Security Manager pattern consists of six modules (see section 5. 3 for detailed de-

scription): the Security Interface Module provides interfaces to all the security related

modules in the VADOR system, the Agent Authentication Module is responsible of the

first level protection of the VADOR system - Agent Authentication and Verification, the

Agent Signature Module is responsible of VadorAgent signature before an agent mi-

grates to another execution place for task execution, the Security Server Module defines a

Vador Server responsible of VadorAgent signatiire verification, the agent's authentication,

and infonnation collection, the Security Attributes Descriptor Module provides access to

security-relevant attributes of an entity on whose behalf operations are to be perfonned,

and the Security Manager Module coorperates with all the security modules control ac-

cess to the VADOR system resources and protect the data and information.

100

This chapter has described the Security Manager pattern by introduction of its contexts,

problems, solutions, structure, interactions, and so on, the chapter 6 will focus on valida-

tion and testing of this pattern in the VADOR system.

VadorOWect

vlsKi/aaoroniBd)

SeuilhManaaer

«crsa1e» "(Vada rtJser. VsdarOfaJe cf)

<-<crea1a»'?/adorUser,VadorObje(;d

I
I

sendW88ssige^l638agfl_RequesQ I

can_run()

{can_access0==tnj^}

accsplC/adDiVisitoO

putResuttfVaclorOojactt

(VQriiyAg8nt==lrue}

VadorVltlta

VadorServwThroad

vertfrAflentQ

qusiyO

I sendO 8i;U;hit8ssage_RequesO

verjfyAgentO

102

CHAPTER 6

VALIDATION AND TESTS

Previous chapters introduced the VADOR framework, the security problems and defects

that exist in the original VADOR architectural design, and the possible solutions to the

problems introduced. Then a security design pattern, named Security Manager pattern

has been defined to prevent the security defects and resolve the security problems from

design, so that it may be applied to build a security architecture for VADOR, specifically,

to control accesses to its data files.

This chapter will focus on validation and tests of the 5'ecurity Manager pattern in

VADOR.

6. 1 Objectives

Based on the objectives of this work as introduced in secdon 1.4, the objective of Val-

idation and Tests is to validate and test the Security Manager pattern (See Chapter 5)

that implements the Protected System pattern (Guibault et al. (2004)) and other security

design patterns introduced in Chapter 2, and in which the protection mechanisms should

control all operations made available by the agent components through each agent proxy.

The validation and tests processes will insure that the Security Manager pattern is able to

control accesses to VADOR system's resources, specifically, data files, and increase the

applications usability and reliability, and reduce long-term costs.

1 3

6.1.1 Why Validate the Pattern

The Security Manager pattern consists of six modules (See section 5. 3 for detailed de-

scription), each of them participates as a specific protection mechanism of the VADOR

security architecture and is responsible for it. Many seciuity design patterns also have

been implemented in these modules to solve specific security problems. However, since

the Security Manager pattern has been defined using a static technique (paper review), it

may be more effective in finding, correcting and preventing problems at an earlier stage

of a development process, but its functionalities and run-time behavior need to be demon-

strated and analyzed using dynamic technique, such as testing.

6.1.2 Why Test the Pattern in the VADOR Framework

In order to validate the Security Manager pattern, some tests need to be made, specifically,

these tests should focus on controlling accesses to VADOR system's resources. The

reason of using the VADOR framework to test this design pattern is that VADOR is an

instance of the type of distributed application towards which the Security Manager pattern

is targeted. VADOR's system resources need to be protected from attacks of malicious

users or agents.

6.2 Management of the Validation and Tests

According to the Principles of Software Validation introduced by Soft Solutions Inter-

national (Soft-Solutions-Intemational (2002)), proper validation of software includes the

planning, execution, analysis, and documentation of appropriate validation activities and

tasks (including testing or other verification). Security Manager pattern validation is also

based on the software life cycle, but instead of an entire software, it focuses on the specific

104

Security issues.

The detailed validation will be described in the following subsections.

6.2.1 Plan

Based on a study of the security defects prevention requirements and related control ac-

cess problems in VADOR, this section introduces the validation plan that specifies how

the process will be controlled and executed.

As table 6. 1 describes, the validation is planned in three steps, each step will validate one

of the functionalities required to control access to VADOR system's resources using the

Security Manager pattern.

TABLE 6. 1 Security Manager Pattern Validation Plan
Steps Plans

1 Validate and test

Security Policy
initialization

Validate and test
verification and

authentication processes

Validate and test

authorization processes

Required Fimctionalities

External Security Policy defines privilege
of an agent to access VADOR servers and
is initialized by the VADOR administrator.

The VADOR Security Policy defines
privileges of a verified agent to access

VADOR resources and is initialized by the
PolicyApplicator based on user
information defined in database.

A client signs an agent before
it is sent. A VADOR server verifies

an agent after receiving it by consulting
the External Security Policy

A VADOR server authorizes an agent to
access VADOR resources on its behalf

by consulting the VADOR Security Policy

105

6.2.2 Procedures and Expected Results

This section will specify procedures that were established for the validation tasks and

expected results from the validation procedures.

. Procedures

1. Demonstrate initialization of the External Security Policy using the Keytool

program provided by the Java Security package. The initialization of the

VADOR Security Policy will be demonstrated through the validation of au-

thonzation processes.

2. Test verification and authentication of agents, including test of the Agent Sig-

nature using a Private Key to sign an agent by its creator and sender, and test

of the Agent Authentication using the Certificate corresponding to the Pub-

lie Key by the VADOR Security Server if the agent receiver (agent execution

place) requires it.

3. To test agent authorization processes, the VADOR Security Policy must have

been defined, and related VADOR user information, such as group, privilege

and permissions to access resources should have been saved in the VadorPol-

icy database table. In addition, the agent should have been verified by the

Security Server via the verification processes. Then the testing procedure fo-

cuses on the Security Manager, that acts on behalf of the VADOR server where

the agent has moved on for task execution. The functionalities of the Security

Manager will be tested including access control management, such as sending

an agent to the Security Server for verification processes, and creating a Se-

curityVisitor object to visit the VADOR Security Policy that is initialized by

PolicyApplicator object, which is also created by the Security Manager.

. Expected Results

106

A VADOR administrator will be able to generate key pau-s and save them into

Keystores on VADOR servers for all VADOR users that will be permitted to

create, sign, and send agents on these servers based on a defined External

Security Policy. Then the key certificates will be exported from these servers

and imported onto the VADOR Security Server by the administrator.

Private Keys on VADOR Servers can be selected by VADOR users to sign

agents, and Key Certificates on the Security Server can be selected to verify

the signed agents. But VADOR users will not be able to select Private Keys

or Certificates using incorrect Keystore, key, or certificate information, such

as alias or password.

If an agent was signed successfully, it will be sent to another VADOR server.

Otherwise, it cannot be sent, and a sendAgent_failed message will be returned

to its sender.

If the Security Server cannot find a certificate to verify a signed agent using

key infonnation provided by the agent, or if the Security Server cannot de-

codify the signed agent using a fine certificate, the agent will not be authenti-

cated. An authentication_failed message will then be returned to the VADOR

server that required the verification. Otherwise, the agent is authenticated, and

an authentication_succeed message will be returned.

If a VADOR server receives an authentication_failed message from the Secu-

rity Server, it discards the received signed agent, and forwards the authenti-

cation_ failed to the agent sender. If it receives authentication_succeed mes-

sage, it wiU continue its agent authorization processes.

If the VADOR server's PolicyApplicator cannot initialize VADOR Secunty

Policy from the VadorPolicy table in the VADOR database using the VADOR

user's information that comes with the agent, or it cannot match the agent's

requests to its sender's privilege, it will return FALSE to the VADOR server,

107

so that the agent will not be authorized to execute a task on the VADOR

server. The VADOR server then wiU discard the agent, and return an au-

thorization_failed message to the agent sender.

- If the agent can be authorized, the PolicyApplicator returns TRUE to the

VADOR server, so that the agent will be permitted to execute tasks on that

server.

6.2.3 Test Cases and Results

This section will demonstrate test cases that correspond to the validation plan and are

conducted in accordance with the established procedures. Then, results will be gathered

from the test cases and evaluated by comparing them with the expected results introduced

in section 6.2.2.

6.2.3.1 Test Cases

. Login as VADOR administrator, use the Java Keytool program to generate several

security key pairs using different aliases and passwords, and save them in one or

different Keystore(s) on VADOR servers. Test cases and results of the key pairs

generation are described in table 6. 2.

. Use the Keytool to export certificates from the VADOR servers to the VADOR

Security Server, and then import the certificates onto the Security Server for the

signed agent verification and authentication purpose. Table 6.3 shows the test cases

and results of the certificates exporting and importing onto the Security Server.

. Login as different VADOR users, try to use both correct and incorrect key informa-

tion to sign agents on the VADOR Servers. The test cases and results are showed

in table 6.4.

108

TABLE 6. 2 Keys Generation Test Cases and Results
Server Keystore KeystorePass Key Alias Key Pass

sl-kl
Executive sl s 1-pass sl-k2

sl-k3
s2-kl

Librarian s2 s2-pass s2-k2
s2-k3

sl-kl-pass
sl-k2-pass
sl-k3-pass
s2-kl-pass
s2-k2-pass
s2-k3-pass

TABLE 6. 3 Certificates Exporting, Importing Test Cases and Results
From Server Keystore KeystorePass Key Alias Key Pass Certificate

sl-kl sl-kl-pass sl-kl-cert
Executive sl s 1-pass sl-k2 sl-k2-pass sl-k2-cert

sl-k3 sl-k3-pass sl-k3-cert
s2-kl s2-kl-pass s2-kl-cert

Librarian s2 s2-pass s2-k2 s2-k2-pass s2-k2-cert
s2-k3 s2-k3-pass s2-k3-cert

TABLE 6. 4 Agent Signature Test Cases and Results
Server

Executive

Executive

Executive
Librarian

Librarian

Librarian

Keystore
sl
sl
sl
s2
sl
s2

Keystore Pass

s2-pass
s 1-pass
s 1-pass
s2-pass
s 1-pass
s2-pass

Key Alias
sl-kl
sl-k2
sl-k3
s2-k2
sl-k2
s2-k3

Key Pass

sl-kl-pass
sl-k2-pass
sl-k2-pass
s2-kl-pass
sl-k2-pass
s2-k3-pass

Result

sendAgent failed
agent sent

sendAgent failed
sendAgent failed
sendAgent failed

agent sent

. Login as different VADOR users, use both correct and incorrect certificates to verify

a signed agent on the Security Server, and sometimes change the signed agent status

so that it may become a malicious agent. Table 6.5 shows the Agent Authentication

test cases and results.

109

TABLE 6. 5 Agent A thentication Test Cases and Results
Peivate Key Certificate Agent Status

sl-kl
sl-k2
sl-k3
s2-k2
sl-k2
s2-k3

sl-kl-cert

s2-k2-cert
sl-k2-cert

s2-k3-cert
sl-k2-cert

s2-k3-cert

no change
no change
changed

no change
changed

no change

Result

authentication succeed

authentication failed
authentication failed

authentication failed

authentication failed

authentication succeed

Login as different users, use both user names that do and do not exist in the Vador-

Policy database table to test agent senders privileges and the agent authorization.

If an user name exists, try to match operation requests from the agent to the user's

privileges in the database table. Table 6.6 illustrates the VadorPolicy database table

and values for the test cases. The test cases and results of the Agent Authorization

are shown in table 6.7.

TABLE 6. 6 VADOR Policy Database Table and Value Example
UserID Usemame group Read Write Execute

1 ul groupl tme true true
2 u2 group 1 tme false true
3 u3 group 1 true true tme
4 u4 group2 tme false true
5 u5 group2 true false false
6 u6 group2 tme false true

6.2.3.2 Results of Validation and Tests

Section 6.2.3. 1 demonstrated some test cases that followed the validation plan (See sec-

tion 6.2. 1 for details) and were conducted in accordance with the established procedures

introduced in secdon 6. 2. 2.

110

TABLE 6,

User Name

ul
ul
ul
u2
u2
u2
u3
u3
u3
u4
u4
u4
u5
u5
u5
u6
u6
u6

u-unknown
u-unknown

u-unknown

7 Agent Authorization Test
Agent Request Return

Read

Write
Execute

Read
Write

Execute

Read
Write

Execute

Read
Write

Execute

Read
Write

Execute

Read
Write

Execute

Read
Write

Execute

tme

true

true

true

false

tme

true

true

true

true

false

true

true

false

false

true

false

true

false

false
false

Cases and Results

Result

agent executes tasks
agent executes tasks
agent executes tasks
agent executes tasks
agent is discarded

agent executes tasks
agent executes tasks
agent executes tasks
agent executes tasks
agent executes tasks
agent is discarded

agent executes tasks
agent executes tasks
agent is discarded
agent is discarded

agent executes tasks
agent is discarded

agent executes tasks
agent is discarded
agent is discarded
agent is discarded

This section will compare the results of the test cases to the expected results introduced

in section 6.2. 2, and conclude the comparison in table 6. 8 and 6. 9.

6.3 Limitations on the Tests

Because the VADOR system has not setup the SSH port forwarding to manage com-

munication between different domains, the Active Agent can only migrate between the

VADOR servers reside in the same domain. Therefor, the validation and tests are also

limited to the VADOR servers that are in the same domain.

Ill

Only Executive server and Librarian server have been selected for the tests purpose, be-

cause they represent the most specific VADOR servers that may send and receive Active

Agent for task executions. However, the tests are only limited to the specific security

issue, which is to control access to system resources, so that server and agent protection

are not included in the tests.

Since the SSH protection mechanisms are managed by operating systems, it was not tested

within the Security Manager pattern.

6.4 Possible Applicability to Other Systems

As mentioned in secdon 6. 1, the main objective of the validation and tests is to insure that

it is able to control access to VADOR system's resources.

By introduction of relevance and extension points, this section discusses the possibility of

applying the Security Manager pattern to other systems, specifically, distributed systems.

6.4.1 Relevance of Other Systems

As introduced in Chapter 1, VADOR is built as a mobile agent environment that meets the

requirements of a MDO software framework for aeronautical applications. Specifically,

it is a distributed system that uses the Internet as communication media, and allows many

users work in the same environment, on the same system resources at the same time.

However, threats can affect the agent during its migration, they can also affect a specific

user data file when there is a command that needs to be executed (See section 3. 1 for

detailed description).

Same as the VADOR system, threats can also affect agent and user data in other agent

based distributed systems, in which the Internet is used as communication media. The

112

solution of control access to system resources in the VADOR systems should be able to

be applied in other distnbuted systems.

6.4.2 Extension Points to Other Systems

The Security Manager pattern provides several extension points, they can be easily ex-

tended by other distributed systems to build security architectures for controlling access

to the systems' resources. These extension points are represented in the Security Interface

module, in which the following parts are include:

1. Extension points for Agent Signature

2. Extension points for Security Server

3. Extension points for Security Attributes Descriptor

4. Extension points for Security Manager

6.4.2.1 Extension points for Agent Signature

A new concrete VadorSigner class can extend the AbstractVadorSigner provided by the

Interface of Agent Signature, so that it can apply different cryptographic algorithms to

sign an agent before sending it.

6.4.2.2 Extension points for Security Server

Extend the abstract VadorProxy and ServerThread provided by the Interface of Security

Server, other distnbuted systems can easily implement Security Servers for agent authen-

tication and verification. A new concrete SecurityServerProxy can extend the VadorProxy

113

to act as a local representative of the Security Server. A new concrete SecurityServer-

Thread that is launched by the SecurityServer is an extension of the ServerThread.

6.4.2.3 Extension points for Security Attributes Descriptor

Other distributed systems can extend the abstract VadorSecurityAttributesDescriptor de-

fined in the Interface of Security Attributes Descriptor, so that they can create new con-

crete security attributes descriptor classes for keeping track of secunty attributes.

6.4.2.4 Extension points for Security Manager

Three extension points are defined by the Interface of Security Manager: the Abstract-

VadorSecurityManager, the AbstractSecurityVisitor, and the AbstractPolicyApplicator.

Other distributed systems can extend them to create concrete SecurityManager, Secu-

rity Visitor, and PolicyApplicator classes for all servers that act on behalf of the systems,

so that they can perform agent authorization process for the systems.

6.5 Summary

Chapter 5 statically defined and validated the Security Manager pattern, that is defined

to build VADOR security architecture, so that it can solve security problems and prevent

security defects related to access control mechanisms in VADOR framework.

As the Objectives that is introduced in the beginning, this chapter dynamically validates

the Security Manager pattern by demonstrating and testing it in the VADOR system. The

management of these validation and tests including a plan, procedures and expected re-

suits, test cases and results, and finally, a comparison of the expected results and the test

114

results show that the Security Manager pattern can be implemented to fonnalize security

mechanisms, and can help to build security architecture in VADOR, so that security de-

fects and problems related to control accesses to system resources can be prevented and

solved.

115

TABLE 6. 8 Comparison of Expected and Test Cases Results -1
Expected Result

The VADOR administrator is

able to generate Key pairs and
save them into specific Keystores
using the Java Keytool program
The VADOR administrator is

able to export and import the Key
Certificates

An agent sender is able to sign
the agent using an existing

Private Key by providing correct
Key and Keystore information,

and then the signed agent can be
sent. Otherwise, if the sender

provides incorrect information
of a Key or Keystore, the agent
cannot be signed and sent. A
sendAgent_failed message

will be returned to this sender

The Security Server is able to use
correct Key Certificates to verify

signed agents for the other VADOR
servers. If provided certificate

information is correct and it can

de-codify a signed agent using
the certificate, it will return a

authentication_succeed message
to the VADOR server, otherwise,

it wiU return a authentication_failed

message to the VADOR server

Test Cases Result

Sets of Key pairs have been
generated and saved in specific
Keystores by the administrator

using Keytool program
Key Certificates have been

exported from the VADOR servers
and imported into the VADOR

Security Server by the administrator
using the Keytool program

When a sender provides correct Key
and Keystore information of an

existing Private Key, the agent could
be signed and then sent by this sender.
When the Key or Keystore information

is incorrect, the agent sender could
not sign and send the agent, but

received a sendAgent_ failed
message

When provide a correct Key Certificate
to the Security Server, and the signed

agent status (for example, sender
information or requests) has not been
changed, the Security Server returns

authentication_succeed to the
VADOR server. When a incorrect

certificate information provided, or the
certificate is correct, but the signed

agent status has been changed,
so that the Security Server cannot
de-codify the signed agent, then
a authentication_failed message

is returned to the VADOR server that

required the verification and
authentication

116

TABLE 6.9 Comparison of Expected and Test Cases Results - 2

Expected Result
If a VADOR server receives the

authentication_succeed message
from the Security Server, it will
continue the agent authorization

processes. Otherwise, if it
receives message

authentication_failed,

it will discard the agent and
forward authorization_failed

message to the agent sender
If information of an agent sender

cannot be found in the VadorPolicy
table, or the agent's requests do not

match its sender's privileges, the
agent cannot be authorized to execute

tasks on the VADOR server. Otherwise,
if the sender's infonnation

can be found in the VadroPolicy
table in database, and the sender's

privileges match the agent's requests,
the agent will be authorized to execute

tasks on the VADOR server

If an agent has been verified by the
Security Server and authorized by a
VADOR server, it will be allowed to

operate and execute tasks on that VADOR
server. Otherwise, if an agent has been
verified by the Security Server, but not
authorized by a VADOR server, it will
not be allowed to operate and execute

tasks on that VADOR server, but will be
discarded by the server, and then its

sender will receive a authorization_ failed

message from the server

Test Cases Result

When a VADOR server receives a respond
message from the Security Server, if

the message is authentication_succeed,
it continues on the agent authorization

processes, if the message is
authentication_failed, it discards

the signed agent, and forwards the
message to the agent's sender

When an agent sender's information
cannot be found in the VadorPolicy
database table, the agent cannot be

authorized. When the agent sender's
information is found in the table,

if the agent's requests do not match
its sender's privileges,

the agent cannot be authorized.
When the agent sender's information is

found in the VadorPolicy table, and
the agent's requests match its sender's
privileges defined in the VadorPolicy

table, the agent can be authorized
When an agent has been verified by the

Security Server, and also has been
authorized by a VADOR server, it is

allowed by the VADOR server to execute
tasks on it. When an agent has been
verified by the Security Server, but

cannot be authorized by a VADOR server,
it cannot execute tasks on that VADOR

server, and is discarded by that server,
then the server sends a

authorization_failed message to the
agent sender

117

CONCLUSION

Multi-user, multi-threaded distributed applications allow users working at different loca-

tions and sharing the same resources, to work more efficiently and at a lesser cost. The

drawback is that systems' security defects may be exploited by malicious users, and cause

security problems to the systems, such as secret information being exposed to attackers.

As introduced in Chapter 1, VADOR is an instance of a distributed application, in which

resources can be shared by many users. In this context, VADOR users expect to be able

to benefit from the many advantages in functionalities provided by the system, and take

advantages of the many possibilities offered by a multi-user environment. At the same

dme, VADOR has to face the challenge of dealing with security defects and problems

related to control accesses to its resources by different users.

Based on the characteristics of VADOR, this thesis focuses on VADOR security archi-

tectural design, so that the security defects that might cause security problems related to

access control can be prevented.

In order to prevent security defects and solve security problems at an early stage of the

development. Chapter 2 reviewed the available literature on security design patterns and

defect classifications, specified the defect categories defined by the Secure design Patterns

(SecurP) Project (Guibault et al. (2004)). This project introduced the defects that may

exist in distributed applications and could be prevented using secure and reliable design

patterns. This chapter then summarized the security design patterns into groups, so that

they could be used to prevent the defects introduced and solve security problems.

As introduced and analyzed in Chapter 3, threats can affect an agent during its migra-

tion, and they can also affect user data files during command execution. In addition,

VADOR has a fundamental security problem, that is the VADORADM owns the files

118

inside VADOR users' directories, so that a user's data files could be remotely manipu-

lated by other users. Although this chapter has reviewed several security defects in the

VADOR framework, the Improper Multiple Access Control Points defect may be ex-

plaited and lead to risks to the agent or user data files, and is considered to constitute the

most fundamental security problem.

To prevent the Improper Multiple Access Control Points defect and protect system re-

sources, the VADOR security model has been introduced in Chapter 4. Based on the Java

2 SDK security model, the VADOR security model consists of the following three levels

protection to the VADOR system:

1. 1st level protection: Security Server that is based on JVM, and applies External

Security Policy defined by the administrator using Keytool provided by the Java.

2. 2nd level protection: Security Managers that act on behalf of the VADOR Servers,

and apply VADOR Security Policy defined by the administrator and stored in the

VADOR database.

3. 3rd level protection: Operating system that enforces the protection mechanisms

using SSH.

Based on the studied secunty defect and mechanisms to protect resources in the VADOR

system, which is an instance of a distributed applications, the Security Manager pattern

is defined to help security architects in developing security access control mechanisms in

VADOR framework, so that the security defects and problems related to control accesses

to the system resources can be prevented and solved.

As introduced in Chapter 5, the Security Manager pattern consists of the following six

modules. Each of the modules is responsible of specific functionalities related to the pre-

vention of security defects and aimed at solving specific aspects of the security problems.

These modules are required by the Security Manager pattern:

119

. The Security Interface Module provides a programming interfaces to the other mod-

ules, so that the Security Manager pattern can be easily implemented by the other

applications.

. The Agent Authentication Module manages the process of signing an agent before

it is sent. It also deals with the verification and authentication of the signed agent

after it was received by a Vador server.

. The Agent Signature Module acts on behalf of the Agent Authentication Module,

and provides agent signature services to an agent sender.

. The Security Server Module acts on behalf of the Agent Authentication Module,

and is responsible of signed agent verification and authentication that a Vador server

requires.

. The Secunty Attnbutes Descriptor Module keeps track of Security Contexts that

are needed for verification, authentication, and authorization processes.

. The Security Manager Module collaborates with all the other modules to provide

services to specific VADOR servers, including the Security Server.

The following existing design patterns or security patterns have been implemented in the

Security Manager pattern's modules:

. Cryptographic Meta pattern and Sender Authentication pattern are implemented by

the Agent Authentication Module.

. Cryptographic Meta pattern, Sender Authentication pattern and Template Method

pattern are implemented by the Agent Signature Module.

. Proxy pattern, Single Access Point pattern, and Policy pattern are implemented by

the Security Server Module.

120

. Subject Descriptor pattern and Session pattern are implemented by the Security

Attributes Descriptor Module.

. Policy pattern. Visitor pattern, and Strategy pattern are implemented by the Security

Manager Module.

. Protected System pattern and Partitioned Application pattern are also implemented

by the Security Manager pattern to describe the structure.

Three levels of protection have been defined using the Security Manager pattern and the

higher two levels have been tested in the VADOR system, these levels are:

. VADOR Security Server applies External Security Policy to verify and authenticate

agents.

. VADOR Servers apply VADOR Security Policy to authorize verified agents.

. SSH server apply operadng system security policy to control accesses to data files

by VADOR servers' authorized agents. Since the SSH protection mechanisms are

managed by operating systems, and have been implemented in the VADOR proto-

type, they were not tested within the Security Manager pattern.

The currently defined Security Manager pattern focuses on the protection of system re-

sources from agent attacks, these protection mechanisms cannot protect agents once they

are sent out for tasks. However, several future works are needed to extend the pattern to

provide full protection to both on site and transmitted information:

. Provide secure communication channels to systems, so that agents won't be inter-

mpted, intercepted, or modified during their traveling.

. Integrate the External Security Policy inidalization mechanisms into the system, so

that it can reduce manual works and secure Key management.

121

. Integrate SSH protection mechanisms into the system, so that instead of commu-

nicating with the operating system, the systems can control accesses to data files

directly, reduce risks of coinmunications, and solve the potential problems of sys-

tern integration and multi-threaded processes introduced by the use of SSH (See

section 3. 1. 2. 5 for detailed description).

122

REFERENCES

ALEXANDER, C., ISHIKAWA, S., SILVERSTED^, M., JACOBSON, M.,

HKSDAHL-KING, I, AND ANGEL, S. (1977). A pattern language. Technical report,

Oxford University Press New York.

BISBEY D, R. AND HOLLINGWORTH, D. (1978). Protection analysis project final

report. ISI/RR-78-13, DTIC AD A056816, USC/Information Sciences Institute.

BISHOP, M. (1995). A taxonomy of unix system and network vulnerabilities.

http://seclab.cs. ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-10.pdf.

BRAGA, A. M., RUBIRA, C. M. F. AND DAHAB, R.

(1998). Tropyc: A pattern language for cryptographic software.

http'J/jerry. cs. uiuc. edu/~plop/plop98/final_submissions/P25.pdf.

CHEN, B. (2004). A Pattem-Based Framework Architecture for Distributed Engineering

Applications. Master thesis, Ecole Polytechnique de Montreal.

COOPER, J. W. (1998). The Design patterns, Java Companion. Addison-Wesley

CSRC (1999). Common criteria for information technology security evaluation. Tech-

nical report, National Institute of Standards and Technology.

FERNANDEZ, E. B. (1999). The authenticator pattern.

http://jerry. cs. uiuc. edu/~plop/plop99/proceedings/Fernandez4/Authenticator3. PDF.

123

FERNANDEZ, E. B., HAYS, V. AND LOUTREL, M.

(2001). The object filter and access control framework.

http://jerry. cs. uiuc. edu/~plop/plop2k/proceedings/Femandez3/Femandez3. pdf.

FERNANDEZ, E. B. AND PAN, R. (2001). A pattern language for security models.

http://jerry. cs. uiuc. edu/~plop/plop2001/accepted_submissions/PLoP2001.

GAMMA, E., HELM, R., JOHNSON, R. AND VLISSIDES, J. (1994). Design Patterns

- Elements of Reusable Object-Oriented Software. Addison-Wesley.

GUffiAULT, R, CHEN, B., LAFLAMME, S., VALLET, M. -G. AND WANG, Y. (2004).

Secure design patterns: State-of-the-art, software defects and patterns specification.

Technical report, Ecole Polytechnique de Montreal.

IBM (2002). Orthogonal defect classification for design and code.

http:/Avww. research. ibm. com/softeng/ODC/ODC. HTM.

KRASNER, G. AND S.T., P. (1988). A cookbook for using the model-view-controller

user interface paradigm in smalltalk-80.

LANDWEHR, C. E., BULL, A. R., MCDERMOTT, J. P. AND C, W. S.

(1994). A taxonomy of computer program security flaws, with examples.

http://chacs. nrl. navy. mil/publications/CHACS/1994/1994landwehr-acmcs. pdf.

LIBES, D. (1995). Exploring Expect, A Tcl-Based Toolkit for Automating Interactive

Programs. O'Reilly.

MESZAROS, G. AND DOBLE, J. (1996). A pattern language for pattern writing.

http://hillside. net/palterns/Writing/pattems. html.

124

OPENGROUP, T. (2002). Guide to security patterns - draft 1.

http://\vww. opengroup. org/security/gsp. htm.

OWASP (2003). The ten most critical web application security vulnerabilities.

http://www. owasp. org/documentation/topten.

ROMANOSKY, S. (2001). Security design patterns.

http-J/'www. cgisecurity. com/lib/securityDesignPattems. pdf.

SALAS, A. AND TOWNSEND, J. (1998). Framework requirements for mdo application

development. AIAA Paper 98-4740.

SCHUMACHER, M. AND ROEDIG, U. (2001). Security engineering with patterns.

http://jerry. cs. uiuc. edu/~plop/plop2001/accepted_submissions/PLoP2001/.

SOBffiSZCZANSK-SOBIESKI, J. AND HAFTKA, R. (1997). Multidisciplinary

aerospace design and optimization. Structural Optimization. Survay of recent devel-

opments.

SOFT-SOLUTIONS-INTERNATIONAL (2002). Software validation ethos.

http .'//www. ssi-ltd. com/services/software-validation. asp.

SSH (2004). Ssh web tutorial.

TREPANffiR, J.-Y. (1999). Mdo - multidisciplinary design optimization. CERCA. An

overview of the field of Multidisciplinary Design Optimization(MDO).

YODER, J. AND BARCALOW, J. (1998). Architectural patterns for enabling applica-

don security. http://st-\vww. cs. uiuc. edu/users/hanmer/PLoP-97/Proceedings/yoder. pdf

125

APPENDIX I

Security Defects Classes in Distributed Applications

1.1 Landwher's Classification

. Categories:

1. By Genesis: The genesis provides basis for understanding how a security

flaw finds its way into a program, so that they can be prevented, detected, or

corrected by different strategies. It includes Intentional and Inadvertent flaws.

The Inadvertent flaws were categorized into the following subclasses:

- Validation Error(Incomplete/Inconsistent)

- Domain Error (Including Object Re-use, Residuals, and Exposed Repre-

sentation Errors

- Serialization/aliasing (Including TOCTTOU Errors)

- Identification/Authentication Inadequate

- Boundary Condition Violation (Including Resource Exhaustion and Vio-

lable Constraint Errors)

- Other Exploitable Logic Error

2. By Time of Introduction: The time of introduction of a security flaw is the

point of a software life cycle where the flaw was introduced, including Dw-

ing Development, During Maintenance, and During Operation. It can help

developers understanding the weakness in the software development process

and focus their efforts on the flaws corresponding to specified processes.

3. By Location: The location is that part of the software (operating system or

application) or hardware where the error lies.

126

. Limitations

1. This taxonomy is limited in focusing on the flaws that occur in operating

system rather than in other distributed application programs.

2. Provides approaches to evaluate problems in built systems rather than ap-

preaches that could prevent the problems during design in a development pro-

cess.

1.2 Bishop's Classification

Categories

1. Improper protection.

- Improper Choice of Initial Protection Domain: The vulnerabilities in this

class involve incorrectly set permissions when the system starts; these are

configuration errors.

- Improper Isolation of Implementation Detail: By their nature, these flaws

arise because of multiple paths to a single object.

- Improper Change: Raws of this category occur when data that is meant

to be consistent is not consistent; essentially, one misplaces tmst in the

integrity of the data.

- Improper Naming: At the user level, handling improper naming simply

means detecting objects in the user's protection domain with the same

name.

- Improper Deallocation or Deletion: When an object is improperly deal-

located or deleted, the object containing the data is released but the data

is not erased.

127

2. Improper Validation: It means that insufficient checks are made upon data,

and the failure to do so creates a secunty problem.

3. Improper Synchronization:

- Improper Indivisibility: This category involves operations which need to

be atomic but are interruptible.

- Improper Sequencing: It refers to the incorrect ordering of operations.

4. Improper Choice of Operand or Operation: This type of flaw can arise in

one of two ways: an abstraction operation may be chosen incorrectly, or the

implementation may be poorly (incorrectly) chosen.

. Limitations

1. The taxonomy focuses on classifying security flaws in the UNIX operating

systems, the security flaws in other software applications are not classified.

2. It presents rough detection and prevention mechanisms, but formal approaches

for flaw prevention are not well developed enough.

1.3 The Top Ten Web Application Security Vulnerabilities

. Categories

1. Unvalidated Parameters: Information from web requests is not validated be-

fore being used by a web applicadon.

2. Broken Access Control: Restrictions on what authenticated users are allowed

to do are not properly enforced.

3. Broken Account and Session Management: Account credentials and session

tokens are not properly protected.

128

4. Cross-Site Scripting (XSS) Flaws : The web application can be used as a

mechanism to transport an attack to an end user's browser.

5. Buffer Overflows: Web application components in some languages that do

not properly validate input can be crashed and, in some cases, used to take

control of a process.

6. Command Injection Flaws: Web applications pass parameters when they ac-

cess external systems or the local operating system. If an attacker can embed

malicious commands in these parameters, the external system may execute

those commands on behalf of the web application.

7. Error Handling Problems: Error conditions that occur during nomial opera-

tion are not handled properly.

8. Insecure Use of Cryptography: Web applications frequently use cryptographic

functions to protect information and credentials. These functions and the code

to integrate them have proved difficult to code properly, frequently resulting

in weak protection.

9 Remote Administration Flaws: Attackers can consume web application re-

sources to a point where other legitimate users can no longer access or use the

application.

10. Web and Application Server MisconGguration: Having a strong server con-

figuration standard is critical to a secure web applicadon

Limitations

This list represents only a set of security vulnerabilities that occur in distributed

web applications, it provides infonnation on approaches to protect web applications

from each flaw that is listed, but these vulnerabilities are very general.

129

1.4 Security Defects Related to Design

Categories

1. Security Structural Defects: This category represents the defects related to the

system structure, and could be exploited to lead risks.

- Untmsted Interface: An interface provides a black box picture of each

system module, it constrains access to a protected resources of a system,

limits the operation that can be performed, or limits the user's view to a

subset of the data. An interface is untmsted if it cannot provide the above

services to protect the module that it represents.

* Problems: A system may fail in access control policy enforcement,

illegal operations, data or information disclosure.

- Monolithic Application: A monolithic application is a complex system

in which individual system modules are not specified, so that security

concerns need to be verified for the entire application.

* Problems: It is difficult to restrict dangerous privilege and verify the

secunty concerns.

2. Security Functional Defects: Most of the security defects were categorized

into this class, because they could be exploited by threats and directly repre-

sent risks to the system's functionalities, and cause damage to the system.

- Improper Security Auditing: Improperly recognizing, recording, storing,

and analyzing information related to security relevant activities.

* Problems: The resulting audit records cannot be examined to keep

track of the security relevant activities correctly, so that the poten-

tial violation of the system security functions cannot promptly be de-

tected.

130

Improper Communication Protection: The identity of a party participat-

ing in a data exchange cannot be assured, including incapability to request

and generate evidence of the origin/recipient of information.

* Problems: The originator denies having sent the information, the

recipient denies having received the information.

Insecure Use of Cryptography: Including improper design in crypto-

graphic key management or cryptographic operation functions.

* Problems: Weak protection on user data or system security functions

such as authentication/identification, non-repudiation.

Improper User Data Protection: Including improper security policy spec-

ification and improper security policy enforcement by system security

functions.

* Problems: Violation on user data, including interception, intermp-

tion, modification, and deletion.

Inadequate Authentication/Identification: Inadequately establish and ver-

ify a claimed user identity, so that users are associated with the improper

security attnbutes (e. g. identity, groups, roles, security or integrity lev-

els).

* Problems: Security functions cannot enforce security policies prop-

erly, it may cause deny of services or data disclosure.

Improper Security Management: Including improper management of sys-

tern security funcdon data (i. e., banners), security attributes (i. e.. Access

Control Lists), security functions (i. e., selection of functions), and im-

proper definition of security roles.

* Problems: System and user data disclosure, unauthorized access to

confidential information because of a user may gaining access to data

which he/she does not have right to access.

131

Improper Protection of Privacy: Including improper protecdon of Anonymity,

Pseudonymity, Unlinkability, and Unobservability.

* Problems: A user's identity is discovered and misused by other users.

Improper Protection of the System Security Functions: Improper integrity

and management of the mechanisms that provide the system security

functions and to the integnty of system security function data, which are

the administrative databases that guide the enforcement of the security

policy.

* Problems: Violation on the system security policy, data disclosure.

Improper Utilization of Resource: System security functions do not prop-

erly support the availability of required resources such as processing ca-

pability and/or storage capacity. Including improper support on Fault

Tolerance, Priority of Service, and Resource Allocation.

* Problems: Unavailability of capabilities caused by failure of the sys-

tern, resources cannot be allocated to the more important or time-

critical tasks and could be monopolized by lower priority tasks, the

system does not provide limits on the use of available resources,

therefore it cannot prevent users from monopolizing the resources.

Improper System Access Control: Improper controlled user's session

establishment. Including improper limitation on scope of selectable at-

tributes and multiple concurrent sessions, improper session locking and

establishment, and improper access banners and history.

* Problems: The system access control may be broken by attackers'

breaking access attempts.

Untrusted Path/Channels: The communication path between users and

the system security functions, and the communication channel between

the system security functions and other FT products or systems are un-

132

trusted.

* Problems: The system cannot provide assurance that the communi-

cations between the users and the security funcdons, or/and between

the security functions and the other systems are correct and secure,

so that the Untrusted Channel may cause repudiation of participants,

and the Untrusted Path may be modified or disclosed to untmsted

applications.

Limitations

This defect classificadon represents only the security defects that occur in dis-

tributed applications and that concern the systems' security stmcture or functional-

ity design. It doesn't specify defects that may exist in systems' physical assets or

other development processes (ex., in hardware or in coding).

133

APPENDK H

Security Design Patterns

11. 1 Yoder and Barcalow

1. Single Access Point: Providing a security module and a way to log into the system.

. problems: A security model is difficult to validate when it has multiple "front

doors", "back doors", and "side doors" for entering the application.

2. Check Point: Organizing security checks and their repercussions.

. problems: An application needs to be secure from break-in attempts, and

appropriate actions should be taken when such attempts occur. Different or-

ganizations have different security policies and there needs to be a way to

incorporate these policies into the system independently from the design of

the application.

3. Roles: Organizing users with similar security privileges.

. problems: Users have different security profiles, and some profiles are sim-

ilar. If the user base is large enough or the security profiles are complex

enough, then managing user-privilege relationships can become difficult.

4. Session: Localizing global information in a multi-user environment.

. problems: Many objects need access to shared values, but the values are not

unique throughout the system.

5. Full View With Errors: Provide a full view to users, showing exceptions when

needed.

134

. problems: Users should not be allowed to perform illegal operations.

6. Limited View: Allowing users to only see what they have access to.

. problems: Users should not be allowed to perform illegal operations.

7. Secure Access Layer: Integrating application security wiA low level security.

. problems: Application security will be insecure if it is not properly integrated

with the security of the external systems it uses.

11.2 Eduardo B. Femandez

1. Object Filter and Access Control Framework: Femandezefa/. (2001) defined

an object filter pattern and access control framework for distributed applications.

This framework combines the functions of authentication, access control, and ob-

ject filtering to constrain a client to access objects in specified ways defined by the

client rights.

. problems: In distributed systems, data or services requested by clients may

need to be furnished to control the type of data provided. Also, these services

may need to be restricted to be used by only some users in specific ways.

2. The Authenticator Pattern: Femandez (1999) introduced the Authenticator Pat-

tern to describe a general mechanism for providing identification and authentication

to a server from a client. It has the added feature of allowing protocol negotiation

to take place using the same procedures. The pattern operates by offering an au-

thendcation negotiation object which then provides the protected object only after

authentication is successful.

. problems: How to protect distributed objects while there are a vanety of

accesses to a distributed system.

135

Femandez and Pan (2001) discussed three design patterns that correspond to the

most common models for security in a new built system: Authorization, Role-Based

Access Control, and Multilevel Security. These patterns can be applied at all levels

of the system.

3. Authorization: Represents the elements of an authorization mle as classes and as-

sedations to control active entides getting access to resources in any computational

environment.

. problems: How to describe allowable types of accesses (authentications) by

active computational entities (subjects) to passive resources (protection ob-

jects).

4. Role-Based Access Control: Represents the elements of a role as classes and

associations to assign rights to users according to their roles in an institution.

. problems: How to assign rights to users according to their roles in an institu-

tion.

5. Multilevel Security: Assigns classifications or clearances to users and data, so that

the users can access documents based on their clearances and the sensitivity levels

of data and documents.

. problems: How to determine access in an environment with security classifi-

cations.

11.3 Sasha Romanosky

1. Authoritative Source of Data: Recognizing the correct source of data.

. problems: If an application or user blindly accepts data from any source then

it is at risk of processing potentially outdated or fraudulent data. Therefore, an

136

application needs to recognize which, of possibly many sources, is the single

authority for data. Are you assured the data you are using is the cleanest and

most accurate? In other words, is the data coining from a legitimate source or

from an unknown party?

2. Risk Assessment and Management: Understanding the relative value of informa-

tion and protecting it accordingly.

. problems: Whenever information needs to be transferred, stored or manip-

ulated, the privacy and integrity of that data needs to be reasonably assured.

Hardware and software requu-e protection from misconfiguration, neglect and

attack. Under-protection of any of these could drive a company to bankruptcy

(or legal battle) and overprotection is a waste of resources.

3. 3rd Party Communication: Understanding the risks of third party relationships.

. problems: Two companies in a business relationship may tmst each other,

but to what degree? Specifically, when two businesses exchange information,

users and/or applications will requu-e access to privileged resources. How

can access be granted while at the same time protecting both organizations?

Additionally, how can this be managed in such a way that is neither overly

complex nor dangerously simplistic?

4. The Security Provider: Leveraging the power of a common security service across

multiple applications.

. problems: When disparate applications seek to provide their own security

services, privacy, synchronization and management of data becomes unneces-

sarily complex. Moreover, applications may not provide the security features

or strength required, risking the overall integrity of the data. These applica-

tions may be communicating in securely or they maybe using weak or inap-

propriately vulnerable methods. Without a common security infrastmcture,

137

the management becomes unnecessarily difficult and risks the security of the

entire environment.

5. White Hats, Hack Thyself: Testing your own security by trying to defeat it.

. problems: How can you be assured of the tme security of your system without

real world testing?

6. Fail Securely: Designing systems to fail in a secure manner.

. problems: In the event of a failure or misconfiguration of an application

or network device, would the result be a more, or less secure environment?

that is, would the consequence result in a user performing a given operation

unprotected; or a device passing unauthorized infonnation?

7. Low Hanging Fruit: Taking care of the "quick wins".

. problems: Good security is a cycle that requires intelligent planning, carefal

implementation and meaningful testing. Unfortunately, administrators, devel-

opers and managers may not have the time or opportunity to properly com-

plete this cycle. Therefore, taking advantage of the quick wins maybe the

only opportunity to establish reasonable security.

11.4 Cryptographic Meta-pattem

1. Information Secrecy: Keep the secrecy of information.

. problems: How a message can be sent from a sender to a receiver in such a

way that a third person cannot possibly read its content?

2. Message Integrity: Avoid cormption of a message.

138

. problems: How can a message receiver determines if the message was modi-

fled or replaced after being sent or before its arrival to him?

3. Message Authentication: Authenticate the origin of a message.

. problems: How can genuine messages be distinguished from spurious ones?

4. Sender Authentication: Avoid refusal of a message.

. problems: How to guarantee that messages have genuine and authentic

senders, in such a way that the sender cannot repudiate a message that a re-

ceiver believes was sent by him?

5. Secrecy with Authentication: Prove the authenticity of a secret.

. problems: How can a sender authenticate an encrypted message without loss

of secrecy?

6. Secrecy with Signature: Prove the authorship of a secret.

. problems: How can a receiver prove authorship of an encrypted message

without loss of secrecy in such a way that its integrity and origin authentication

is also implicitly granted?

7. Secrecy with Integrity: Keep the integrity of a secret.

. problems: How to preserve the integrity of an encrypted message without

loss of secrecy?

8. Signature with Appendix: Separate message from signature.

. problems: How to reduce the storage space required for a message and its

signature while increasing the performance of the digital signature protocol?

9 Secrecy with Signature with Appendix: Separate secret from signature.

139

. problems: How to reduce the memory necessary to store a message and its

signature, while increasing system performance, without loss of secrecy?

10. Cryptographic Meta-pattern: Define a generic software architecture to cryptog-

raphy.

. problems: How to design a flexible object-oriented inicro-architecture for a

cryptographic design pattern in order to increase object reuse?

H.5 Open Group

1. Protected System: Stmcture a system so that all access by clients to resources is

mediated by a guard which enforces a security policy.

. problems: How to protect system resources against unauthorized access.

2. Policy Enforcement Point: Isolate policy enforcement to a discrete component of

an information system; ensure that policy enforcement activities are performed in

the proper sequence.

. problems: How to invoke policy enforcement functions in the correct se-

quence in a system that needs to enforce policy, while access is attempted to

a resource which is subject to the policy.

3. Subject Descriptor: Provide access to security-relevant attributes of an entity on

whose behalf operations are to be performed.

. problems: How to access security-relevant attributes of an entity.

1. Secure Communication: Ensure that mutual security policy objectives are met

when there is a need for two parties to communicate in the presence of threats.

140

. problems: How to secure a communication channel between two protected

systems with security policy objectives applicable, so that threats such as

eavesdropping, impersonation, and tampering can be prevented.

2. Secure Association: Establish and maintain a security relationship, between two

entities that wish to communicate securely, in line with mutual secunty policy ob-

jectives, across a communication link that is subject to a well-known set of com-

munication related threats.

. problems: How to manage the life cycle of state containing the details of a

security relationship between two entides, where the entities need to engage

in some joint activity.

3. Security Context: Provide a container for, and mediate access to, security at-

tributes and data relating to a particular process, operation or action.

. problems: How to manage and access to contextual properties which may

influence the behavior of secunty related functions such as access control,

auditing, message protection and so on.

1. Recoverable Component: Structure a component so that its state can be recovered

and restored in case the component fails.

. problems: How to restore or recover state of a component, while the compo-

nent fails.

2. Checkpointed System: Stmcture a system which can be "rolled back" to a known

valid state.

. problems: How to return the system to a previous state that is known to

be valid, while component failures, errors in processing, data entry errors,

or operator errors cause the system state to become cormpt, erroneous, or

otherwise defective.

141

3. Cold Standby: Structure a system so that the service provided by one component

can be resumed from a different component.

. problems: How to implement a recovery mechanism that will suffice for all

forms of fault or failure, up to and including the complete destruction of a

component (as by fire or other environmental failure).

4. Comparator-Checked Fault-ToIerant System: Structure a system so that an in-

dependent failure of one component will be detected.

. problems: How to detect component faults quickly, or to detect component

faults at a specific point during processing, to prevent component faults from

causing system failures.

5. Jouroaled Component: Record changes to a component's state so that the state

can be restored using incremental updates to a previous version of the state if nec-

essary.

. problems: How to protect a system state from failures which cormpt state

information.

6. Hot Standby: Structure a system which permits state updates to originate from

multiple components, preserves the state of the overall system and of each transac-

tion in the face of failures, and guards against loss of integrity due to incomplete

application of transactions or changes.

. problems: How to protect multi-component transactional systems which are

often susceptible to state cormption because of failure of communication

links, communication protocols, storage media, or other system elements.

7. External Storage: Stmcture a system which isolates processing from state man-

agement, so that system state is kept in a single high-integrity repository regardless

of the number of processing elements or points of presence included in the systena.

142

. problems: How to assure availability of fa-ansaction services in the face of
failure of communication links, communication protocols, or other system

elements.

8. Replicated System: Stmcture a system which allows provision of service from

multiple points of presence, and recovery in case of failure of one or more compo-

nents or links.

. problems: How to assure availability of transaction services in the face of
failure of communication links, communication protocols, or other system

elements.

9. Error Detection/Correction: Add redundancy to data to facilitate later detection

of and recovery from errors.

. problems: How to deal with errors that happen to data that resides on storage

media or in transit across communication links.

	SKM_C550i23121114070
	SKM_C550i23121114100

