POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Design patterns for distributed application security

Auteur:
Author:
Date: 2004

Type: Mémoire ou thése / Dissertation or Thesis

Yun Wang

JEA . Wang, Y. (2004). Design patterns for distributed application security [Master's
Reférence: thesis, Ecole Polytechnique de Montréal]. PolyPublie.

Citation: 'https://publications.polymtl.ca/24532/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/24532/

Directeurs de
recherche: Francois Guibault
Advisors:

Programme

Program: Unspecified

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/24532/
https://publications.polymtl.ca/24532/

UNIVERSITE DE MONTREAL

DESIGN PATTERNS FOR DISTRIBUTED APPLICATION SECURITY

YUN WANG
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

DECEMBRE 2004

© Yun Wang, 2004.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

DESIGN PATTERNS FOR DISTRIBUTED APPLICATION SECURITY

présenté par: WANG Yun

en vue de 1’obtention du diplome de: Maitrise &s science appliquées

a été diiment accepté par le jury d’examen constitué de:

M. QUINTERO Alejandro, Doct., président
M. GUIBAULT Francois, Ph.D., membre et directeur de recherche
M. FERNANDEZ José M., Ph.D., membre

iv

DEDICATION

To all my family members.

Without your support, this would not have been possible.

ACKNOWLEDGMENTS

I would like to thank my director, professor Frangois Guibault for guiding me through
my research to complete a Master at Ecole Polytechnique de Montréal. I thank professor
Guibault for being so patient to provide me the insight to tackle different problems, read
several drafts of my thesis and make invaluable comments. I also would like to thank
my committee members: professor Alejandro Quintero and professor José M. Fernandez

who have accepted to evaluate this thesis.

I am grateful to all of my family members, for their support and encouragement over the
years. I would not have been able to make it this far without their support in so many

different endeavours and for being great friends.

I thank Dr. Suzanne Sirois and Dr. Dongging Wei who brought me opportunities to de-
velop my interests in research. I also thank professor Jean-Yves Trépanier who gave me
invaluable advices and comments on my research related subjects. Thanks to my col-
leagues Amadou N’diaye, Babak Mahdavi, Bin Chen, Daojun Liu, Djamel Bouhemhem,
Marie-Garbrielle Vallet, Qun Zhou, Sébastien Laflamme, and Yuanli Wang who provided
me much needed support during my research activities. Thanks to all my friends and
everybody in CERCA and school who supported me and made sure that I maintained my

sanity.

This acknowledgement would not be complete without mentioning my best friend Qing-
song Xiao Bach and some very special people who have always been with me and given

me lot of encouragement and happiness.

vi

RESUME

Dans le développement des applications et des logiciels, la sécurité est souvent ignorée a
1’étape du prototype, soit parce que la politique de sécurité n’est pas disponible, ou parce
qu’il semble plus facile de remettre & plus tard les soucis de sécurité. Cette omission rend

le déploiement du systéme final beaucoup plus difficile.

AN

Ce mémoire présente le patron "Gestionnaire de Sécurité", un patron de conception archi-
tectural qui établit une architecture de sécurité utilisant trois niveaux de mécanismes de
contrdle d’acces et six modules. L’ objectif de ce patron est d’aider a intégrer la politique
de sécurité liée au contrdle d’acces a n’importe quelle étape dans le cycle de développe-
ment de la plate-forme VADOR et de permettre de prendre en compte les questions de
sécurité plus facilement et de fagon plus flexible pour différents organismes ayant des

politiques de sécurité diverses.

Le patron Gestionnaire de Sécurité est utilisé dans le cadre du développement de la plate-
forme VADOR, un projet qui a été initié afin de fournir une plate-forme pour la concep-
tion optimale multidisciplinaire (MDO). VADOR a été développé au CERCA en collab-
oration avec Bombardier Aéronautique, qui a fourni la grande majorité des applications
d’analyse, des processus a automatiser ainsi q’un environnement industriel pour la vali-

dation du systeéme.

Pour répondre aux exigences d’une plate-forme MDO (Salas and Townsend (1998)), une
architecture multicouche et client/serveur a été proposée pour la plate-forme VADOR.
Le patron Agent Actif, un patron de conception architectural global, a ét€ développé pour
construire la plate-forme d’agent mobile VADOR. 11 est basé sur des composants logiciels
de base, des langages, des protocoles standards et les principes de conception Orienté-
Objet. 11 permet I’exécution automatique des processus d’analyse et le mouvement des

données 2 travers un réseau distribué d’ordinateurs hétérogénes et comporte un GUI (In-

vii

terface Usager Graphique) qui permet aux utilisateurs de fonctionner interactivement.
Il a également la capacité de la gestion de base de données permettant aux utilisateurs

d’accéder a I’information et de visualiser les résultats d’analyse intermédiaires et finaux.

Le prototype de la plate-forme VADOR a été développé et utilisé chez Bombardier Aéro-
nautique comme une plate-forme MDO. Il passe actuellement a 1’étape de deploiment
pour répondre aux exigences spécifiques des clients, y compris I’intégration des poli-
tiques de sécurité, car les mesures de sécurités n’ont pas été définies dans le prototype

initial.

Ce mémoire se concentre sur le développement d’une architecture orientée vers la sécurité
pour la plate-forme VADOR et le développement d’un patron "Gestionnaire de Sécurité"
basé sur cette architecture, Comme composant du patron Agent Actif, le patron Ges-
tionnaire de Sécurité aidera 2 créer un modele de sécurité pour VADOR afin de faciliter
I’intégration des politiques de sécurité pour exigences de sécurité dans divers organismes.
Le Gestionnaire de Sécurité résout les problémes spécifiques de sécurité liés aux requétes

d’acces aux ressources du systeme dans la plate-forme VADOR.

viii

ABSTRACT

In software applications’ development, security is often ignored at the stage of prototype,
the reason being either that the security policy is not readily available, or that it seems
easier to postpone security concerns. This omission makes the deployment of the system

more difficult.

This thesis presents the Security Manager pattern, an architecture design pattern that
builds security architecture with three level access control mechanisms and six modules.
The objective of this pattern is to help to integrate the security policy related to access
control at any stage in the development cycle of VADOR framework, and makes address-
ing security concerns easier and more flexible for different organizations with various

security policies.

The Security Manager pattern is used in the development of the VADOR framework, a
project that was initiated with the objective of developing a Multi-disciplinary Design
Optimization (MDO) framework. It has been developed at CERCA, in collaboration with
Bombardier Aerospace, who provided actual analysis applications, design processes in

need of automation and test ground for the framework.

To meet the MDO framework’s requirements (Salas and Townsend (1998)), a multi-layer,
client-server architecture has been proposed for the VADOR framework, the Active Agent
pattern, a global architecture design pattern has been developed to construct the VADOR
mobile agent framework. It is based on standard basic software components, languages,
and protocols, and extensively uses object-oriented principles. It provides automatic ex-
ecution of processes and the movement of data across a distributed network of heteroge-
neous computers, and comprises a client GUI to allow users to operate interactively, it is
also linked to a database management system providing users access to information and

intermediate visualization of final analysis results.

ix

The VADOR framework prototype has been developed and used in Bombardier Aerospace
as a MDO framework, it is currently moving onto the implementation stage to meet cus-
tomers’ specific requirements, including the integration of security policies, as the secu-

rity issues were not defined in the initial prototype.

This thesis is going to focus on the development of a security architecture in the VADOR
framework, then a Security Manager pattern will be defined based on the security archi-
tecture. As a component of the Active Agent pattern, the Security Manager pattern will
help to create a VADOR security model, so that it can facilitate the integration of secu-
rity policies for security requirements from different organizations, and solve the specific
security problems related to control accesses to system resources in the VADOR frame-

work.

CONDENSE EN FRANCAIS

Ce document présente le développement du patron Gestionnaire de Sécurité, un patron
de conception orienté vers la sécurité qui comporte six modules et définit des mécan-
ismes de protection divisés en trois niveaux. Ce patron vise & proposer une architecture
de conception pour VADOR, une application répartiee, multi-utilisateur et multi-fil. Le
patron Gestionnaire de Sécurité vise 4 permettre aux concepteurs d’éviter certains défauts
liées a la sécurité au moment de la conception et résoudre des problémes spécifiques de

sécurité.

Le patron Gestionnaire de Sécurité est mis en application et validé dans le systeme
VADOR en tant qu’une des composantes du patron Agent Actif. L objectif principal
de cette mise en application du patron est d’éviter certains défauts de sécurité et de ré-
soudre des problémes de sécurité liés & ’acceés anx commandes et aux ressources gérées
par le systtme VADOR. Par ailleurs, la validation et les essais d’utilisation du patron

Gestionnaire de Sécurité au sein du systetme VADOR.

Les patrons Gestionnaire de Sécurité et Agent Actif

Le systtme VADOR est un environnement de gestion de données et d’exécution de tiches
d’analyse basé sur une approche de distribution utilisant le concept des agents mobiles
qui met en application le patron Agent Actif (Chen (2004)). Tel qu’illustré a la figure
I, le prototype de VADOR était congu de telle sorte qu’un Gestionnaire de Sécurité soit
responsable des aspects de sécurité dans le systeme. Cependant, étant donné que la poli-
tique de sécurité de VADOR n’avait pas été définie lors de la conception du prototype,
le Gestionnaire de Sécurité n’a pas été réalisé, et les responsabilités liées a la sécurité

n’ont pas été prises en compte. Le systtme VADOR est maintenant passé a une nou-

x1i

velle phase de développement, comprenant entre autre un déploiement dans plusieurs dé-
partements techniques chez Bombardier Aérospatiale. Dans ce contexte, les questions de
sécurité lors des échanges de données et d’exécution des tiches d’analyse par différents
groupes d’ingénieurs au sein de la compagnie ont pris une importance grandissante, parti-
culierement lorsque ces échanges et ces exécutions de tdches impliquent des sites distants

connectés par Internet.

Le développement d’une politique de sécurité et des outils de gestion de cette politique
est devenu une enjeu important du développement de VADOR, particuli¢rement dans la
perspective ot plusieurs industries peuvent potentiellement étre intéressées a déployer le

systéme, pour lesquelles la politique de sécurité devra étre spécifiquement adaptée.

. Create
Gﬂ It 1 = A@nt USET

agent ownher

sacurity | [

Agent | SecurityManager |
concreteAgent place
ConcreteAgent ExecutionPlace

FIGURE I La Structure du Patron de Agent Actif

Problémes de sécurité dans le systeme VADOR

Congu dés le départ comme une application distribuée et multi-utilisateurs, le systéme

VADOR fournit aux ingénieurs un environnement de conception efficace et bien adapté

Xii

3 leurs besoins de collaboration au sein de I’entreprise. Cependant, puisque Internet est
le principal média de transmission de I’information entre les applications réparties basées
sur une technologie d’agents mobiles, la sécurité représente un défi central qui dérive des

caractéristiques méme de la plate-forme VADOR.

L’un des problémes fondamentaux de sécurité de la plate-forme est li€ a la fagon dont
les taches sont déclenchées a distance sur les différents ordinateurs afin de réaliser une
séquence d’analyse. Dans le prototype de VADOR, un utilisateur unique nommé VADO-
RADM devait posséder les objets d’exécution (Wrappers) et les fichiers résultant des
analyses, et ce, dans les répertoires de chacun des utilisateurs de fagon a ce que le sys-
t2me VADOR puisse représenter sans restriction chaque utilisateur lors de la manipulation

des dossiers d’autres utilisateurs.

Ce probleéme a été résolu au niveau du systéme d’exploitation, en utilisant SSH afin de
laisser des utilisateurs de VADOR autres que VADORADM posséder leurs propres ob-
jets d’exécution de tiches et leurs dossiers dans leurs répertoires. Cependant, d’autres
problémes potentiels de sécurité existent toujours dans la plate-forme VADOR, tel que
’intégration de SSH 2 la plate-forme et des probleémes dans I’utilisation de processus

multi-fils pour 1’exécution simultanée de tdches multiples.

Ces problémes peuvent induire des défauts de sécurité liés 2 une conception incorrecte
de I’architecture de sécurité de VADOR. Ces défauts peurent étre exploités a des fins
malicieuses. Ils incluent le contrdle incorrect de point d’accés multiples , la vérification
déficiente des erreurs, la mauvaise gestion des profile-utilisateurs, un contrdle déficient de
Paccés a I’information, la mauvaise manipulation d’exceptions, et I’ intégration déficiente

des aspects de sécurité de systemes externes.

Tous ces défauts peuvent mener, d’une fagon ou d’une autre, 4 des problémes de contrdle
d’acces, principalement au niveau de la gestion des ressources des utilisateurs de VADOR.

Par ailleurs, des mécanismes de contrdle définis incorrectement peuvent également poser

xiii

des problémes fondamentaux de sécurité au niveau de la plate-forme. Dans ce contexte,
1’architecture de sécurité de VADOR cherche principalement a fournir des mécanismes
de protection et de contrdle flexibles pour 1’ensemble des ressources de la plate-forme

VADOR.

Structure et modules du patron Gestionnaire de Sécurité

Motivé par les besoins de contrdle d’acces aux ressources de VADOR, un patron Ges-
tionnaire de Sécurité est développé et intégré a la plate-forme. L’objectif de ce patron
de sécurité est de fournir un canevas architectural de sécurité pour la plate-forme, ca-
pable d’empécher des défauts et des problémes de sécurité liés au contrdle d’acces aux

TesSSOurces.

Le patron Gestionnaire de Sécurité est basé sur des patrons de sécurité existants, et se
compose de six modules prenant chacun une part de responsabilité dans la mise en place
de mécanismes de protection au niveau du controle d’acces aux ressources. Tous ces
modules travaillent ensemble pour établir la structure du patron, tel qu’illustré & la figure

IL.

e Le Module d’Interface de Sécurité fournit des interfaces a tous les modules reliés
4 la sécurité dans la plate-forme VADOR, favorisant I’intégration du patron dans

une architecture logicielle déja existante.

o Le Module d’Authentification d’Agent se compose des modules Serveur de Sécu-
rité et Signature d’Agent. Ce module est responsable de contrbler le premier niveau

de protection du systéme VADOR - I’authentification et la vérification des agents.

e Le Module de Signature d’Agent participe au premier niveau de protection en

signant un agent qui est envoyé pour 1’exécution d’une téche.

mqemtesmmcmmmmsa4camaccasasspRemmersesmssesseesasens

authenticate
---| Client | ~| SecurityServer
securlityAttributes
guard

Xiv

1st Level Protection: Vador Security Server based on JVM
I SecurityManager]_9] SecurityContext]

securityAttributes Functionality: Agent Authentication/Vaerification

PolicyEnforcer\y/
| SecurityVisitor | | Policyhpplicator] Policy Enforced: External Policy - Signature Verification

\/ securityAttributes

guar . | I
_; Securit: text
W ecur tycontex 2nd Lavel Protection: Vador Servers

securityAttributes

Functionality: Task Execution Permission Checking
PolicyEnforcer\r’

policy Policy Enforced: Vador Policy
SecurityVisitor PolicyApplicator

E S5H authenticate E """"""""" H 3rd Level Protection: Operating System
'

Funcotionality: Vador Usar Authentication/Verification

Policy Enforcad: System Policy

FIGURE II Structure du patron Gestionnaire de Sécurité

Le Module de Serveur de Sécurité participe également au premier niveau de pro-
tection et collabore avec le module de signature d’agent, de sorte qu’il puisse véri-

fier la signature d’un agent et I’authentifier.

Le Module de Description des Attributs de Sécurité permet d’accéder aux at-
tributs relatifs & la sécurité d’une entité au nom de laquelle des opérations doivent

étre exécutées et de séparer ces attributs des autres caractéristiques des objets.

Le Module Gestionnaire de Sécurité organise tous les modules afin qu’ils fonc-
tionnent ensemble pour fournir aux autres serveurs de VADOR les fonctionnal-
ités spécifiques li€es a la sécurité. A titre d’exemples, le Gestionnaire de Sécurité,
en réponse 2 une requéte du Serveur de Sécurité, fournit des services de contrdle
d’acces, pour le premier niveau des mécanismes de protection, soit la vérification et
1’ authentification des agents. Par ailleurs, le Gestionnaire de Sécurité, en réponse a
une requéte de 1’ Executive Server, fournit des services de contrdle d’acces pour le

deuxiéme niveau des mécanismes de protection, soit I’autorisation d’un agent.

XV

Trois niveaux de mécanismes de protection

Tel que mentionné ci-dessus, les problémes fondamentaux de sécurité dans le systeme de
VADOR ont été résolus en utilisant SSH au niveau du systéme d’exploitation. Cependant,
d’ autres problémes potentiels de sécurité pourraient apparaitre, en raison de possibles dé-
fauts dans les mécanismes de sécurité des différentes applications qui composent le sys-
t®me. Spécifiquement, les défauts dans le contrdle d’acces au systtme VADOR pourraient
permettre 1’accés non autorisé aux ressources du systéme, tels que les fichiers de données

des utilisateurs. L'utilisation de SSH ne permet pas de se prévenir ce type de probleme.

Afin de protéger les ressources tant contre les défauts au niveau de VADOR qu’au niveau
du systéme d’exploitation, des mécanismes structurés en trois niveaux de protection sont

définis dans le patron Gestionnaire de Sécurité, tel qu’illustré a la figure II1 :

e Le Premier Niveau est contrdlé par le Gestionnaire de Sécurité a travers le Serveur
de Sécurité. Ce niveau est basé sur les mécanismes de sécurité fournis par la Java
Virtual Machine (JVM), et permet de respecter une politique de sécurité externe,
dans laquelle des clefs de sécurité sont définies et initialisées par 1’administrateur
de VADOR. L’ objectif de ce niveau est de contrdler les acces aux ressources du
systtme VADOR, tels que les objets de VADOR. Les mécanismes associ€s a ce

niveau comprennent la vérification et 1’authentification des agents.

e Le Deuxiemes Niveau de mécanismes de protection est contrdlé par les Ges-
tionnaires de Sécurité qui agissent au nom des autres serveurs de VADOR (en-
droits d’exécution). Ce niveau permet de faire respecter la politique de sécurit€ de
VADOR, dans laquelle les privileges des utilisateurs sont définis et stockés dans
la base de données de VADOR. Cette politique peut &tre initialisée dynamique-
ment. Elle est nécessaire au Gestionnaire de Sécurité pour la vérification des per-

missions d’exécution des processus. L’objectif de ce niveau est de contrdler les

XVi

External
VADOR Agent e Bpcuzity
Policy

Security Server
Access to
Resources

Trusted Agent
Domain

1st Lavel Protaction

(Vador Security Server

Security Server Security Manager based on JVM)

Resources
Domain B
Security
Policy

2nd Level Protection
VADOR Servers

VADOR
Full Access {VADOR Servers)

VADOR Application
Domain

to Resources

VADOR Resources
(DCInstance, DCType, etc)

System Resources
(files, network conntections, etc)

FIGURE 111 Modéle de Sécurité de VADOR

acces aux ressources et aux données de VADOR, tels que les fichiers de données
des utilisateurs. Les mécanismes comprennent ’initialisation et la manipulation dy-
namique des politiques de sécurité associées aux données stockées, et I’autorisation

de ’exécution d’agents basés sur cette politique.

e Le Troisieme Niveau est la protection contrélée par SSH au niveau du systeme
d’exploitation. L’objectif derriere I’implantation de ce niveau est de permettre
d’associer la propriété d’un agent a ’usager qui I’utilise et d’éliminer le concept
du propriétaire d’agents VADORADM. De cette fagon, les serveurs d’exécution
(Wrapper) et les fichiers de données appartiennent uniquement a 1’utilisateur qui

les a créés, et les acces non autorisés sont automatiquement rejetés.

xvii

Patrons de sécurité

Plusieurs patrons de conception liés a la sécurité ont été utilisés dans le patron Gestion-

naire de Sécurité:

o L’ Authentification d’Agent et la Signature d’Agent implantent la classe Codifier
fournie par le patron Cryptographic Meta pattern, de sorte qu’un agent puisse &tre
signé avant qu’il soit envoyé pour des exécutions de tiche. Tout deux implantent
également le patron Sender Authentication pour faciliter les procédés de vérifica-

tion et d’authentification des expéditeurs d’agents.

e Le Serveur de Sécurité est une spécialisation du patron Single Access Point. 11

controle les accés aux autres serveurs de VADOR et ne peut pas €tre €vité.

e Le patron Policy fournit la structure de définition du serveur de sécurité pour les
procédés de vérification et d’authentification. Il collabore également avec le patron

Security Manager dans les processus d’autorisation.

e Les patrons Subject Descriptor et Session aident le Gestionnaire de Sécurité a
définir le module Descripteur d’ Attributs de Sécurité, de sorte que des attributs
relatifs i la sécurité ne soient pas mélés aux autres types d’attributs et puissent étre

partagés par plusieurs objets dans un méme fil d’exécution du serveur.

e Les patrons Protected System, Partitioned Application et Policy servent a établir la

structure du patron Gestionnaire de Sécurité.

Plusieurs autres patrons de conception participent également a la définition du patron
Gestionnaire de Sécurité, tels que Proxy, Template Method, Strategy, et Visitor. Tous ces
patrons collaborent avec les patrons de sécurité pour fournir aux concepteurs de systémes
VADOR une approche de conception architecturale basée sur des agents présentant des

caractéristiques de sécurité évoluées.

xviii

Validation et tests du systeme VADOR

Le patron Gestionnaire de Sécurité est validé sur la base d’un plan de test élaboré selon
les recommandations du Principles of Software Validation Soft-Solutions-International
(2002). Cette approche de validation a été directement intégrée dans une démarche
de vérification de la fonctionnalité du systtme VADOR puisque cet environment,
développé a I’aide du patron Gestionnaire de Sécurité, correspond en tous points au type
d’applications vers lesquelles le patron est orienté. Les tests visent principalement & véri-
fier le comportement correct du systeme et la possibilité de configurer le contrdle d’acces
aux ressources en fonction des besoins spécifiques des usagers et adminstrateurs du sys-

téme.

Les résultats des tests menés sur le systtme VADOR tendent & montrer le fonctionnement
correct du systéme pour différents types de requétes permises ou non, en fonction des
configurations faites au niveau de la politique de sécurité. Ces tests permettent donc
d’inférer que I’utilisation du patron Gestionnaire de Sécurité permet de concevoir une
architecture logicielle réutilisable, qui permet de résoudre concrétement les problémes de

gestion des acces & un ensemble complexe de ressources distribuées.

Conclusion

L’implantation du patron Gestionnaire de Sécurité permet d’aider les développeurs de
VADOR 2 contrdler les acceés aux ressources en fournissant une architecture de sécu-
rité composée de trois niveaux. Cette architecture logicielle, basée sur une approche
par agent, permet également de contrdler les processus d’exécution de tiches asso-
ciées a chaque type d’agent a 1’aide de mécanismes d’identification des usagers et

d’authentification des agents dans le systeme.

Xix

Dans sa version actuelle, le patron ne permet cependant pas de protéger I’agent contre des
attaques visant les canaux de transmission. Sil’agent était attaqué et devenait malveillant,
une exécution de tiche exigée par son expéditeur pourrait ne pas pouvoir étre accomplie.
Eventuellement, des mécanismes de protection des agents basés sur SSH et utilisant la
redirection de ports pourraient &tre implantés au niveau du Gestionnaire de Sécurité afin

de prévenir ce type d’attaques.

XX

TABLE OF CONTENTS

DEDICATION o e e e e e e e e e e e e e e e e iv
ACKNOWLEDGMENTS ottt i e et e e e e e e v
RESUME . . & . ot e e e e e vi
ABSTRACT . . . o o e e e e e e e e e e e e viii
CONDENSEENFRANCAIS it X
TABLEOF CONTENTS i it e e e e e e e XX
LISTOFTABLES o o it e e e e e e e e e e e XXVi
LISTOFFIGURES i e e e e Xxvil
LIST OF ABBREVIATIONS ANDSYMBOLS XXX
LISTOFAPPENDICES ittt et e et e e XXXi
CHAPTER 1 INTRODUCTION 1
1.1 An Overview of the VADOR Framework 1

1.2 VADOR Architecture Design 4
1.2.1 Global Architecture oo 5

1.2.2 Application Layer Architecture - The Active Agent Pattern 7
1.2.2.1 Active AgentComponents. 7

1.2.2.2 Active Agent Structure and Participants 7

1.2.2.3 Active Agent Collaboration and Dynamic Behavior . . 9

1.2.2.4 The Sub-Components in the Agent Component 11

1.3 Explore Security Challenges 12

1.4 Enhance Security Functionalities Using Security Patterns

1.5 Organizationof ThisWork

CHAPTER 2 REVIEW OF LITERATURE

2.1 Security Defects Classes in Distributed Applications

2.1.1 Landwher’s Classification

2.1.2 Bishop’s Classification

2.1.3 The Top Ten Web Application Security Vulnerabilities

2.1.4 Security Defects RelatedtoDesign

2.2 Review of Security DesignPatterns

2.2.1 Background of Design Patterns

2.2.2 Template for Security DesignPatterns

2.2.2.1 Security Pattern Definitions

2.2.2.2 Security Pattern Description

2.2.3 Design Patterns for Distributed Applications Security

2231 YoderandBarcalow

2232 EdvardoB.Fermmandez

2233 SashaRomanosky

2234 Cryptographic Meta-pattern

2235 OpenGroup0t

224 Summaryo e e e e e e e e e e e e
2.2.4.1 Prevent Structural Defects using Security Patterns .

CHAPTER 3 SECURITY DEFECTS IN THE VADOR FRAMEWORK . . .

3.1 Security Problems in the VADOR Framework

3.1.1
3.1.2

Threats to Agents v v v v v ittt
ThreatstoDataFiles
3.1.2.1 The Current Situationof VADOR
3.1.2.2 The Fundamental Security Problem of VADOR

xxi

13
13

15
16
16
17
18
19
20
20
21
21
22
24
25
25
26
27
28
28
28

34
34
35
36
36
37

XXii

3.1.2.3 Other Potential VADOR Security Problems 38

3.1.2.4 Origin of VADOR Security Problems 38

3.1.2.5 Possible Solutions and Drawbacks 39

3.1.2.5.1 Problems of System Integration 39

3.1.2.5.2 Problems of the Multi-threaded Processes . . 40

3.2 Preview of Security Defects in the VADOR Framework 41
3.2.1 Improper Use of Multiple Access Points Control 41

3.2.2 ImproperErrorChecking 42

3.2.3 Improper Multi-User Profiles Management 43

3.24 Improper Global Information Access Control 43

3.2.5 Improper Exception Handling 44

3.2.6 Improperly Integrated External Security System 44

33 SUMMAIY v o e e e e e e e e e e e 45

CHAPTER 4 SECURITY MODEL - FROM JAVA TO THE VADOR FRAME-

WORK e 47

4.1 SecurityinJava2SDK 00000, 47
4.1.1 J2SDK Security Features Overview 47
412 J2SDK SecurityModels 49
4.1.2.1 The Original Sandbox Model 49

4.12.1.1 JDK1.0SecurityModel 49

4.12.1.2 JDK 1.1 Security Model 50

4.1.2.2 The Current Security Model 51

4.1.3 J2SDK Protection Mechanisms 53

4.2 Security in the VADOR Framework 54
4.2.1 The VADOR Security Features Overview 54

422 The VADOR SecurityModel 55

4.22.1 1stLevel Protection: Security Server 56

XXiii

4222 2nd Level Protection: VADOR Servers 57

4.2.2.3 3rd Level Protection: Operating System 58

4.2.3 The VADOR Protection Mechanisms 59

43 SUMMArY v v e e e e e e e e e e 61
CHAPTER 5 THE SECURITY MANAGER PATTERN 62
5.1 Active Agent Pattern with Security Manager 62
5.1.1 The Extended Interaction Between Participants 63

5.1.2 The Extended Active Agent Dynamic Behavior 63

5.2 Security ManagerPatterno oL 65
521 NamMe v it e e e e e e e e e e e 66

522 ConteXt . . v v v v v e e e e e e e e e e e e e 66

523 Problem e 66

524 Solution e e 66

525 SHUCHIIE . . . v v v v v o v e v e e e et e e e it e e 67

52.6 Participants e 67

527 Interaction v i vt 69

5.3 Security Manager Pattern Modules 72
5.3.1 Security InterfaceModule 73
53.1.1 Componentso ov v iii i 74

5.3.2 Agent AuthenticationModule 75
5321 Structure e e 75

5322 Participants0 e 75

5323 Imteraction 77

5324 RelatedPatterns, 79

5.33 AgentSignatureModule 0oL 79
5331 Structure 79

5332 Participants e 79

XX1v

53.33 Interaction vttt 81

5334 RelatedPatterns 82

5.34 SecurityServerModule 84
53.4.1 Structureo a e e e 84

5342 Participants 0o 85

5343 Interaction 86

5344 RelatedPatterns 87

5.3.5 Security Attributes DescriptorModule &7
5351 Structure h e e e e 88

5.3.52 Participants 88

5.3.53 RelatedPatterns 90

5.3.6 Security ManagerModule 90
5361 Structure 91

5.3.6.2 Participants 91

5.3.63 Interaction 95

5.3.64 RelatedPatterns 97

537 CONSEqUENCES . . . » v v v v v v v v e e e e e e e 97

53.8 RelatedPatterns, 98

54 SUMMAIY . . . v o v v o o v v it e e e e e e e e e e e e 99
CHAPTER 6 VALIDATION AND TESTS 102
6.1 Objectives« . i i i e e e e e e e e e 102
6.1.1 Why ValidatethePattern 103

6.1.2 Why Test the Pattern in the VADOR Framework 103

6.2 Management of the Validationand Tests 103
621 Plan e e e e e 104

6.2.2 Procedures and ExpectedResults 105

623 TestCasesandResults v o v v v v v v v v v v v 107

XXV

6231 TestCases 107

6.2.3.2 Results of Validationand Tests 109

6.3 LimitationsontheTests 110

6.4 Possible Applicability to Other Systems 111
6.4.1 Relevance of Other Systems 111

6.4.2 Extension Points to Other Systems 112

6.4.2.1 Extension points for Agent Signature 112

6.4.2.2 Extension points for Security Server 112

6.4.2.3 Extension points for Security Attributes Descriptor. . . 113

6.4.2.4 Extension points for Security Manager 113

6.5 Summary e e e e e e e e e e 113
CONCLUSION e e e e e e e e 117
REFERENCES et e e e e e e 122

TABLE 6.1

TABLE 6.2

TABLE 6.3

TABLE 6.4

TABLE 6.5

TABLE 6.6

TABLE 6.7

TABLE 6.8

TABLE 6.9

XXV1

LIST OF TABLES
Security Manager Pattern ValidationPlan 104
Keys Generation Test Casesand Results 108
Certificates Exporting, Importing Test Cases and Results 108
Agent Signature Test Casesand Results 108
Agent Authentication Test Cases and Results 109
VADOR Policy Database Table and Value Example 109
Agent Authorization Test Cases and Results 110
Comparison of Expected and Test Cases Results-1. 115

Comparison of Expected and Test Cases Results -2 116

FIGURE 1

FIGURE II

FIGURE III

FIGURE 1.1

FIGURE 1.2

FIGURE 1.3

FIGURE 1.4

FIGURE 1.5

FIGURE 2.1

FIGURE 3.1

FIGURE 4.1

FIGURE 4.2

FIGURE 4.3

FIGURE 4.4

FIGURE 4.5

FIGURE 4.6

LIST OF FIGURES

La Structure du Patron de Agent Actif

Structure du patron Gestionnaire de Sécurité

Modele de Sécurité de VADOR

The VADOR Architecture Design

The Active Agent Pattern Components.

The Active Agent Pattern Structure

Active Agent Collaboration

Sub-Components in the Agent Component

................................

The Fundamental Security Problem of VADOR

..........

JDK 1.0 Security Model

JDK 1.1 Security Model

The Current J2SDK Security Model

The Domain Composition of a Java Application Environment

The J2SDK Protection Mechanisms

VADOR Security Model

......................

XXVii

FIGURE 4.7

FIGURE 4.8

FIGURE 5.1

FIGURE 5.2

FIGURE 5.3

FIGURE 5.4

FIGURE 5.5

FIGURE 5.6

FIGURE 5.7

FIGURE 5.8

FIGURE 5.9

FIGURE 5.10

FIGURE 5.11

FIGURE 5.12

FIGURE 5.13

FIGURE 5.14

FIGURE 5.15

FIGURE 5.16

XXviii

The Domain Composition of the VADOR Framework 59
The VADOR Protection Mechanisms 60
Extended Active Agent Pattern Interaction Diagram 64
Structure of the Security Manager Pattern 67
Security Manager Pattern Interaction 70
Signed Agent Verification Algorithms 71
Security Manager Pattern Modules Structure and Relationship . . 73
Security Interface Module Components 74
Agent Authentication Module Class Diagram 76
Agent Authentication Module Interaction Diagram 78
Agent Signature Module Class Diagram 80
Agent Signature Module Interaction Diagram 82
Agent Signature Algorithms 83
Security Server Module Class Diagram 84
Security Server Module Interaction Diagram 86
Security Attributes Descriptor Module Class Diagram 88
Security Manager Module Class Diagram 91

Security Manager Module Interaction Diagram 95

XXiX

FIGURE 5.17 Extended Active Agent Pattern Sequence Diagram 101

CERCA

VADOR

MDO

JDK

SDK

JVM

SSH

SecurP

LIST OF ABBREVIATIONS AND SYMBOLS

CEntre de Calcul en Recherche Appliqué

Virtual Aircraft Design and Optimization fRamework
Multidisciplinary Design Optimization

Java Development Kit

Standard Development Kit

Java Virtual Machine

Secure Shell

Secure design Pattern project

XXX

XXXi

LIST OF APPENDICES

APPENDIX 1 SECURITY DEFECTS CLASSES IN DISTRIBUTED APPLI-

CATIONS e 125

I.1 Landwher’s Classification 125

I.2 Bishop’sClassification 126

1.3 The Top Ten Web Application Security Vulnerabilities 127

1.4 Security Defects RelatedtoDesign 129
APPENDIX II SECURITY DESIGN PATTERNS 133
II.1 YoderandBarcalow 133
II.2 EduardoB.Fermnandez 134
II.3 SashaRomanosky, 135
II.4 Cryptographic Meta-pattern 137

ILS OpenGroup v v vt i it e i e e e e e e e 139

CHAPTER 1

INTRODUCTION

The Virtual Aircraft Design Optimization fRamework (VADOR) is a Multidisciplinary
Design Optimization (MDO) framework which has been developed at CERCA (CEntre
de Calcul en Recherche Appliqué) and Ecole Polytechnique in collaborating with Bom-
bardier Aerospace. Based on a client-server architecture developed using object-oriented
design patterns and the Java programming language, VADOR is built as a mobile agent
environment that meets the requirements of a MDO software framework for aeronautical

applications.

This introduction presents an overview of the VADOR framework, introduces the moti-

vation and objectives of this research, and outlines the organization of this document.

1.1 An Overview of the VADOR Framework

MDO is a emerging discipline which provides methodologies and tools to tackle the
formidable challenges of integrating high-fidelity physical models in a computation based
design environment and to allow the synergism of mutually interacting disciplines to be
fully exploited (Trépanier (1999)). It is now a vast field of research which finds applica-
tion in all areas of engineering. For example, in aeronautics, coupled disciplines need to
drive MDO research, as each design department is responsible for specific aspects of the
engineering work required to design an airplane, but is also required to account for needs

from other department in a search for overall acceptable designs.

A framework is one of the components that are involved in the deployment of an MDO

methodology. It is also one of the sources of increase in efficiency of disciplinary opti-
mizations and sensitivity computations and of the development of specific MDO method-

ologies and strategies (Sobieszczansk-Sobieski and Haftka (1997)).

In the implementation of a design cycle based on MDO methodology, integration is a
major weakness that precludes application development and automatic execution of anal-
ysis processes. The integration of various softwares in a software framework is a favored
solution. The frameworks are ranging from engineering design frameworks to computer
resources management frameworks, most often in a heterogeneous and parallel comput-

ing environment which requires available distributed computing technologies.

Through the use of an MDO framework that supports the integration of components of
MDO applications, designers would be able to concentrate more on the application than
the programming details. In addition, a common working environment would be provided
by the framework, which would increase the productivity of multidisciplinary projects,

thus reducing the time and the cost.

As a MDO framework, the objective of VADOR is to enable the seamless integration of
commercial and in-house analysis applications in a heterogeneous, distributed computing
environment, and to allow the management and sharing of data by the various departments

of an aerospace organization.

In order to meet the MDO requirements and the needs of Bombardier Aerospace, five key

characteristics have been identified for the VADOR framework:

¢ Distributed system which is developed using Object-Oriented methodologies with

implementation in the Java programming language.

This characteristic provides the VADOR Framework with the capacity to seam-
lessly integrate commercial and in-house analysis applications in a heterogeneous,

distributed computing environment, and to allow the deployment of automatic de-

sign optimization algorithms based on the framework.

Distribution also improves efficiency and scalability of the VADOR framework and
provides users with a flexible and configurable data model, in which the evolving
requirements of engineers can adequately be satisfied using computational-based
design-and-analysis programs. This distributed system also provides capabilities
for the automation and integration of various processes used by engineers, supports

and promotes collaboration and data sharing.

e Manipulation of the user data in its native format
The VADOR Framework treats all the data as objects. Design-and-analysis data is
encapsulated in objects, named DataComponents, that refer to the actual data stored
in files. The DataComponents contain an appropriate set of attributes required for

data management, but leave the data itself in the files that are being encapsulated.

¢ Encapsulation of engineering applications
Engineering applications are treated as distinct objects in the VADOR frame-
work. These components, named StrategyComponents, encapsulate the design-
and-analysis methodologies or processes. The StrategyComponents represent the
basic methods and the data flows required to transform data in a given process. The
StrategyComponent can include user programs which can create the date files en-
capsulated in the DataComponents. The programs are usually executable legacy

programs to be executed on a specific set of machines on the network.

e Graphical user interface
The VADOR Framework offers a graphical user interface which is the visual part
of the Java program and will be running on users’ machines, the users create and
manipulate interactively their own DataComponents and StrategyComponents in

the graphical user interface applications.

e Saving data in the database

The DataComponent and StrategyComponent objects are saved in a database. The
present architectural design supports the separation of the basic data, usually con-
tained in files and potentially rather large, from the descriptive information. Only

the descriptive information is stored in the database.

In order to reduce the risks related to architectural issues, and based on the above com-
ponents, the VADOR framework applies a very recent approach to architectural design
which involves heavy reliance upon design patterns and pattern languages to realize the

distributed framework and improve its performance.

In the VADOR project, numerous previously published design patterns have been used
to solve fundamental maintenance, evolution, distribution and concurrency problems en-
countered in the design and realization of the VADOR framework. The use of design
patterns in the context of distributed software architectures is still a relatively recent topic
for which research is very active. In the case of implementing the VADOR framework,
great care has been taken to propose an architectural design of the framework which is

both scalable and extensible. This results in a reusable framework architecture.

The design of the VADOR framework also relies on the development and evolution of a
new design pattern, named the Active Agent pattern, which is based on the Active object,
Command, Proxy, Visitor and Strategy patterns. This pattern tries to resolve concurrency

problems in the distributed framework, and works as a mobile agent.

1.2 VADOR Architecture Design

In order to increase flexibility, scalability, reusability, and robustness, the VADOR frame-
work design decouples the architecture into numerous autonomous modules, which are
represented as the classical three layers: Presentation Layer, Application Domain Layer,

and persistent Data Layer. As illustrated in figure 1.1, the architecture is expressed as a

set of components. Through the layering of different services, the proposed framework

architecture should allow for easy evolution of the framework as the needs evolve. (Chen

(2004))

. <<application>>
% DBExplorer
Interactive application

<<application>>
VadorGul
interactive application

remotely Invocable
application execution

providing remote
file transfer services

Vi v

————7 [

A4 W

<<executable>>
DataBaseClient
Interface client using |DBC

Detabase

FIGURE 1.1 The VADOR Architecture Design

1.2.1 Global Architecture

<<executable>>
AnalysisApplication
Executable engineering

<<file>>

'
— DataCompanentFile
Result date files

providing administrative providing user access to Presentation Layer
level management of data management and

database tables execution control

| v v

| . <<executable>> <<executable>>

I Librarian Executive

I — server daemon providing fte — e - Server daemon providing

| data and strategy component strategy component .

| management services execution services Application Domain Layer
| |

| {

| W

| <<executable>> <<executable>>

| Wrapper Wrapper_Servlet

| teme—— Server daemon providing L Server daemon

|

|

|

|

i
|
I
!
|
|
{ Persistent Data Layer
|
|
|
|
|

The following components are included in the global VADOR modules:

1. The Presentation Layer

e The VadorGUI provides a graphical user interface that lets users create and

manipulate interactively their own Data and Strategy Components; these com-

ponents form the basis of data and process information

e The DBExplorer is a client-side program that provides a graphical user inter-
face that allows communications with the DataBase Client to directly manip-
ulate the database, where the components created in the framework are stored.
The DBEXxplorer is a system administration tool, as opposed to the VadorGUI,

which is an interface targeted toward engineering users
2. The Application Domain Layer

e The Librarian Server is responsible for the management of DataComponents

and StrategyComponents, and of the interaction with the Database

e The Executive Server is responsible for the execution of the commands issued
by users through the VadorGUI, and for sending back execution results to the

Librarian when an analysis step has completed

e The Wrapper and the Wrapper Servlet are the remote CPU Servers interfaces,
which are called by the Executive Server and that create the DataComponents

and start the execution of the analysis applications
e The Analysis Application programs are the legacy applications that are en-
capsulated in the framework
3. The Data Layer
e The DataComponents Files are the files that store results of all engineering
applications

e The DBMS stores the descriptions of all components directly managed by
the framework, including the description of DataComponents and Strategy-

Components

1.2.2 Application Layer Architecture - The Active Agent Pattern

The application domain layer constitutes the core of VADOR System and comprises two
main servers: Executive Server and Librarian Server. Most of the functionalities to pro-
cess data and tasks in the VADOR framework reside in this layer, which is implemented

using specialization of the Active Agent pattern.

The Active Agent pattern is based on the Active Object, Command, Proxy, Visitor, and
Strategy patterns. It decouples the method executions from method invocation, so that
it can enhance concurrency and simplify synchronized access to objects that reside in
their own threads of control. It also decouples the method execution from the execution
platform by encapsulating method executions in mobile agents. The objective is to solve
problems related to the concurrency, scalability and flexibility of the framework. (Chen

(2004))

1.2.2.1 Active Agent Components

The VADOR System is an agent based system that represents a specialized Active Agent
pattern. It is implemented on top of the Java Virtual Machine (JVM). Three main com-
ponents compose the Active Agent pattern: Server, Client, and Agent. As illustrated in
figure 1.2, both server and client run on top of the JVM. They may run in the same or
different machines. Agents run on the VADOR Server, they interact with their end-user

via the VadorGUL

1.2.2.2 Active Agent Structure and Participants

The Active Agent pattern consists of several internal participants, that cooperate to pro-

vide services to an external client. The pattern structure is illustrated in figure 1.3.

< ~
Vador System Vador System
JVM JVM
_ network
Client < > Server
(Management) (Support)

FIGURE 1.2 The Active Agent Pattern Components

create
dient | Agemt User
agent owner
_ seeurity | |
Agent | SecurityManager
concreteAgent l place
ConcreteAgent ExecutionPlace

FIGURE 1.3 The Active Agent Pattern Structure

o Client: The client creates and manipulates the agents using the standard interfaces
provided by the pattern. In the context of the VADOR framework, Clients represent

applications that directly perform tasks on behalf of the framework users, such as

the VadorGUI.

User: Agent sender that is identified through a unique identifier (id) in the system.
When a user creates an agent through one of the VADOR applications, his id is

included in the agent, and this agent becomes his delegate.

Agent: The Agent abstract class is the visible and extensible part of the Active
Agent pattern, it defines the abstract behavior of the agent, which includes, in the

case of the VADOR framework, the call function and the can run function.

ConcreteAgent: ConcreteAgent classes are subclasses of Agent. They implement
the behavior related functions to execute the concrete tasks. For instance, the Open-
Strategy Agent loads the StrategyComponent object from the Database, and the

SaveStrategy Agent saves the StrategyComponent object in the database.

SecurityManager: This class specifies the Agent access control security policy, it
contains all the operations made available on the agent components. It was planned,

but not implemented in the VADOR prototype.

ExecutionPlace: This class specifies the agent’s computational environment,
which corresponds to the place where it was created as well as where it currently
resides. In the VADOR framework, the Execution Places are the VADOR Servers,

such as the Executive Server and the Librarian Server.

1.2.2.3 Active Agent Collaboration and Dynamic Behavior

In order to accomplish tasks using the VADOR framework, the Active Agent components

need to collaborate with each other. As illustrated in figure 1.4, clients, such as VadorGUI,

create agents; the agents then migrate to an execution place (the VADOR Server), which

calls the standard agent operation (call function). Depending on the agent’s security

policy that is enforced by a Security Server in the system, and the Security Manager

10

on behalf of the execution place, the operation is executed, or not, on the related agent

instance.
ICIientl |ExecutionPIac:| |Agent| [ConcreteAgentl | SecurityManagerl
CreateAgent()
cali()
call()
fanAccess(_
can_run()
doOperation()

FIGURE 1.4 Active Agent Collaboration

Three phases are involved in the dynamic behavior of the Active Agent pattern:

1. Agent construction and sending
A client creates an Agent object that includes the VADOR User, concrete VADOR
Object, Vador Visitor interface and Vador Proxy objects. The Agent object then

uses the Vador Proxy to send itself to the next Vador Server.

2. Agent execution
After receiving the Agent object, the Vador Server calls its call function to start
the execution. A runnable Agent object then dynamically loads the concrete Vador
Visitor and uses it to execute the task. Before the agent does any operation, the
Vador Server should request the Security Manager to enforce security policy to
check the Agent’s permission. Since the security policy is not available, and the
Security Manager was not implemented, so that the security policy enforcement

process was not developed in the VADOR prototype.

3. Completion

The execution result is sent back by the Vador Server to the client.

11

1.2.2.4 The Sub-Components in the Agent Component

Four sub-components compose the Agent component in the Active Agent pattern. They

are illustrated in figure 1.5.

Vador User

Vador Object

Vador Visitor

Vador Visitor

Itinerary

Vador Proxy

Vador Proxy

FIGURE 1.5 Sub-Components in the Agent Component

e Vador User: The Vador User object carries information on the agent sender (User).

for example, user id and user name, etc.

e Vador Object: This is an abstract component which carries actual data on which
the agent needs to operate. Examples of the Vador Object include StrategyCompo-

nent, DataComponent, etc.

e Vador Visitor: This is an execution class that includes information on how to

execute a task.

12

e Itinerary: The Vador Itinerary contains agents’ mobility information and their
navigation among multiple destinations. It includes several Vador Proxy objects.

Each Vador Proxy represents a destination server that the agent wants to go to.

1.3 Explore Security Challenges

As a MDO framework and distributed application that provides a mobile agent based
architecture, the VADOR framework benefits from data transmission and sharing between
designers and engineers over a heterogeneous, distributed computing environment. The

Internet is thus a the major component of the transmission media.

However, security is a central challenge that derives from the characteristics of the
VADOR framework, and this research is mainly motivated by this challenge, which con-

sists of two aspects:

1. Virus, hackers, human defaults, the risk always exists when information is being
transmitted via the Internet. These risks require to develop security mechanisms
in the VADOR framework, so that they can protect the system and user data from

threats or attackers.

2. Security policies usually are not available at the time when a system is in its building
phase, but need to be defined and/or updated, and enforced to secure the system in
later stages. The security policy was not initially defined in the VADOR prototype,
but the functionality to flexibly specify a security policy was required for protecting
the agent based system. As the development is moving onto the stage of releasing
the VADOR framework for operational use at Bombardier Aerospace, an Access
Control Policy needs to be defined. The objective of this security policy is to control
the access to users’ data files, the scope of this control is the security attributes of

the data files, including their subjects, objects, and operations. With enforcement

13

of the access control policy, unauthorized access to the data files are not generally

permitted as this would be in violation of the policy.

1.4 Enhance Security Functionalities Using Security Patterns

Motivated by the challenge of defining and implementing a valid security policy for the
VADOR framework, this research conducts efforts on the enhancement of security func-
tionalities using security design pattern concepts. The objective is to identify the main
security issues involved in VADOR framework operations, preview security defects re-
lated to the functional design of the framework that may be exploited by threats and cause
problems, and identify solutions to these problems using security design patterns. These
security patterns will then be integrated into the Active Agent component - The Security
Manager, which implements the Protected System pattern, and in which the VADOR ac-
cess control security policy could be specified. This protection mechanism should control

all operations made available by the agent components through each agent proxy.

1.5 Organization of This Work

This work is organized in the following parts:

e chapter 2 reviews some of the existing security defect classifications for distributed
applications, it also reviews security design patterns that could be used to prevent

the security defects and to solve security problems introduced by the defects.

e chapter 3 identifies security problems of the VADOR framework, previews the secu-
rity defects that may cause problems from a design point of view, and then identifies

approaches using security design patterns to prevent the defects.

14

chapter 4 will introduce security model and mechanisms in the VADOR framework,
that are used to prevent security defects introduced in chapter 3 and protect the

VADOR System from threats.

chapter 5 presents the Security Manager pattern that consists of the security design

patterns identified in chapter 2.

chapter 6 gathers and analyzes validation and testing information of the Security

Manager pattern using the VADOR framework as an experimental example.

Finally, the last chapter concludes on this research and discusses future works.

15

CHAPTER 2

REVIEW OF LITERATURE

“Traditionally, defects represent the undesirable aspects of a software’s quality.” (IBM
(2002)). A software defect can cause a system to fail in its operation. A security defect
of a software can be exploited that may result in unauthorized modifications of data, or

disclosure of information which affects the system’s reliability and security, or robustness.

The omission of security issues during a software development is the cause of security
defects, the reason is either that the security policy is not generally available, or because

it just seems easier to postpone security concerns.

Knowledge of security defects and appropriate approaches that could prevent them is
important to ensure reliable operation and to preserve the integrity of stored information.
These topics were the focus of defect classification studies that were conducted to make
distributed systems secure and to improve the reliability of software, and of security
design patterns studies that were conducted to prevent the defects from design and to

improve the flexibility and extensibility of the software.

This chapter will review the available literature on security design patterns and defect
classifications, specify the defect categories that may exist in distributed applications
and could be prevented using secure and reliable design patterns, then summarizes and
specifies the security patterns that can solve security problems in the design and prevent

the defects introduced.

16

2.1 Security Defects Classes in Distributed Applications

Since the early 1970s, many researchers have been working on classifying software de-
fects. They have published several reports concerning the methods of defect analysis,
detection, correction, and categorized discovered defects into classes, or organized them
into databases. The objectives of their classifications were to provide defect informa-
tion to software developers, help them find approaches to prevent, detect, and correct the

defects to build more robust systems.

This section reviews some of the recently published software defects or security flaws
classification schemes in relation with distributed applications, and concludes on each of
them by analyzing the possibilities of finding approaches that can prevent defects during
the design phase using design pattern concepts. Details of the defect categories and

limitations are outlined in Appendix I.

2.1.1 Landwher’s Classification

Landwehr et al. (1994) provided a taxonomy for computer program security flaws to-
gether with an appendix that carefully documents 50 actual security flaws. His classi-
fication scheme categorized security flaws using three attributes: By Genesis, By Time
of Introduction, and By Location. The goal was to help developers detect or correct the

flaws. (See Appendix I.1 for details).

By analyzing the categories and focusing on the flaws which were introduced during
software (by location) design (by time of introduction) and caused by design errors (
genesis), this classification may help to define defects related to design. However, it is
primarily related to security flaws in operating systems that have been built and released
to operational use, so that it is difficult to find appropriate approaches related to security

design patterns for avoiding the security flaws introduced.

17

2.1.2 Bishop’s Classification

Bishop (Bishop (1995)) presented a taxonomy for security vulnerabilities, examined
through vulnerabilities in the UNIX operating system. The objective of his work was
to improve security of existing systems, and to help developers in writing programs with
minimal exploitable security flaws. It is a guide for maintainers and software imple-
menters to improve the security of these flawed systems or softwares. He categorized
security faults that exist in UNIX operating systems and networks into four classes: Im-
proper protection, Improper Validation, Improper Synchronization, and Improper Choice

of Operand or Operation. See Appendix 1.2 for details).

Bishop’s taxonomy of security flaws (2.1.2) focused on application-level and programming-

level problems based on six axis:

e The nature (cause) of a flaw based on PA (BISBEY II and HOLLINGWORTH
(1978)) categories.

e The time of introduction based on conclusions by Landwehr (Landwehr et al.
(1994)) "Time of Introduction” category into "System Problem" and "Procedure

Problem".
e The exploitation domain that describes direct impact of a security flaw.
e The effect domain that describes the indirect impact of a security flaw.

e The minimum number of components to exploit the vulnerability that analyzes the

conditions of introducing a flaw.

e The source of the identification of the vulnerability provides the information on

identifying a security flaw.

18

These axis may be useful for helping analysts look at characteristics of a security flaw,
and analyze problems in the detection and elimination of vulnerabilities, they may also

help to identify defects related to design.

He mentioned "prevention of flaws using ’abstraction’ to collect small parts and opera-
tions lumped together with well defined interfaces providing the only access to the internal
representation and implement the abstraction properly”, this approach could be realized
by using security design pattern concepts. However, there was no detailed approaches
introduced to prevent specified security flaws, and it is also difficult to identify security

design patterns to prevent the security flaws introduced.

Because this taxonomy was defined based on the existing security defects classifications,
such as PA (BISBEY II and HOLLINGWORTH (1978)) and Landwehr (Landwehr e? al.

(1994)), it overlapped the previous works in someway.

2.1.3 The Top Ten Web Application Security Vulnerabilities

The Open Web Application Security Project OWASP(OWASP (2003)) conducts research
on web application security. The Top Ten Documentation Project published a list of the
most critical web application security flaws, that is becoming a de-facto standard for web
application security, and that has been used by commercial and educational organizations

for projects planning and execution.

OWASP’s list of top ten web application security vulnerabilities (Appendix 1.3) represents
the most probable flaws in web application with detailed description on each of them,
including the environments affected, examples and references on how to determine if you

are vulnerable.

The most useful part of this list is the information on how to protect yourself. Although

the approaches for protection are too general from a design point of view, they provide

19

some key elements that are needed for prevention strategies. For example, to protect a
web application from broken access control, it mentions that ”the most important step is
to think through an application’s access control and capture it in a web application security
policy ”. This can help to design strategies to prevent broken access control by defining
a valid security policy, and by applying it to the access control mechanism. However, it
didn’t specify the defects that may be specifically introduced during the design process,
and the defect classes are too general for hiring security design patterns to prevent their

introduction.

2.14 Security Defects Related to Design

The Secure design Patterns (SecurP) project (Guibault ez al. (2004)) focused its efforts on
classifying security defects related to the design phase in the development of distributed
applications that could breach security functionalities as required by the Common Criteria
(CSRC (1999)). That work also focuses on flaws that could be prevented using security
design patterns. The defects are categorized into Structural Defects and Functional De-
fects according to the security problems addressed by the defects. (See Appendix 1.4 for

details).

The increasing need of data communications between organizations requires the common
software defects concerning security and reliability to be classified, so that they can be
prevented in the design phase using design pattern concepts, and the classification can be

applied and customized by different organizations to fulfil their own needs.

Motivated by the above context, the first objective of this work is to help developers in
building more secure and reliable software systems. Based on the first objective, the
project focused efforts on the categorization of defects that are related to the design phase
in the development process. These defects could be introduced by an absent, ambiguous

or improper design, exploited by threats during operations and lead to risks to assets of

20

a system. They could be prevented by applying security design patterns, so that it can

enhance the security functionalities of the system.

Using this defect classification scheme, it is easier to identify security problems intro-

duced by the defects and apply security design patterns to prevent them.

2.2 Review of Security Design Patterns

2.2.1 Background of Design Patterns

In Object-Oriented Design, the design patterns solve problems in similar context to the
patterns applied in buildings and towns, “Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use this solution a million times over, without
ever doing it the same way twice.” (Alexander et al. (1977)). Design patterns in software

engineering are expressed in terms of objects and interfaces instead of walls and doors.

One of the most famous framework was the Model-View-Controller (MVC) framework
for Smalltalk (Krasner and S.T. (1988)), it is an example of a powerful reusable frame-

work that uses design patterns.

The MVC framework divided the user interface design problems into three parts: Data
Model, View, and Controller. The Data Model layer contains the computational aspects
of the program, the View presents the user interface, and the Controller contains control

aspects of the application, which interacted between the user and the view.

The purpose of this structure is to separate objects among the different parts of an appli-
cation, with each part having its own rules for managing data. The proposed structure

also controls the communication between the user, the GUI and the data, and it care-

21

FIGURE 2.1 MVC

fully separates the responsibilities among the parts. The objects in the three parts talk to
each other using a restrained set of connections, which are implemented as a set of a few

predetermined communication channels.

In other words, design patterns describe how to establish communication between the ob-
jects while hiding their data models and methods from each other. Keeping this separation

has always been an objective of good object oriented programming.

2.2.2 Template for Security Design Patterns

2.2.2.1 Security Pattern Definitions

Cooper (1998) cited some useful definitions of design patterns that have emerged as the

literature in the field has expanded:

e “Design patterns constitute a set of rules describing how to accomplish certain tasks

in the realm of software development.”’(Pree, 1994)

e “Design patterns focus more on reuse of recurring architectural design themes,

22

while frameworks focus on detailed designed... and implementation.”(Coplien &

Schmidt, 1995).

e “A pattern addresses a recurring design problem that arises in specific design situa-

tions and presents a solution to it”’(Buschmann, et.al.1996)

o “Patterns identify and specify abstractions that are above the level of single classes

and instances, or of components.”(Gamma, et al.1993)

Based on the above given definitions, Schumacher and Roedig (2001) presented defini-

tions of Security Patterns and Security Pattern System:

e Security Patterns: A security pattern describes a particular recurring security
problems that arises in specific contexts and presents a well-proven generic scheme

for its solution.

e Security Pattern System: A security pattern system is a collection of security pat-
terns, together with guidelines for their implementation, combination and practical

use in security engineering.

2.2,.2.2 Security Pattern Description

With the additional aspects that turn a pattern into a security pattern, Schumacher and
Roedig (2001) introduced the key elements of security patterns by following the Manda-
tory Elements Present pattern (Meszaros and Doble (1996)) and using the terminology
given in the Common Criteria (CSRC (1999)):

e Name: Certainly security patterns are not different from normal patterns with re-

gard to their name. The name of the pattern becomes a part of the vocabulary of

23

the community. It should be easy to remember and refer to. A good name should

be evocative and give an image of what the pattern might be about.

Aliases (Optional): The aliases section lists other names by which this security

pattern might be known.

Context (and Related Patterns): Based on a scenario the context of the security
pattern is illustrated. The general conditions under which the problem does occur
and which forces do emerge are described. It is also useful to list context setting
security patterns. As some countermeasures may introduce other vulnerabilities,
additional security patterns should be considered in the related patterns section.
The same is also true of problems that are solved partly or could not be considered
within the given security pattern. The way a pattern hierarchy will be formed in the

related patterns section.

Problem: The Problem statement defines the problem that will be solved by the
security pattern. The major aspects of the problem are elaborated by the viewpoint
of the Forces to be solved. In the field of security, a problem occurs whenever
a system component is protected in an insufficient way against abuse. Generally
speaking, we have to deal with generic Threats, i.e. a potential for the violation of

security. A threat is a possible danger that exploits vulnerabilities.

Solution: This section describes the Solution to the Problem. Appropriate solu-
tions are determined by the Context of the pattern. According to certain Security
Objectives (that may be written down in Security Policies), Countermeasures have
to be applied in order to reduce the Risk. It is useful to warn from pitfalls (how

does this pattern becomes an Anti-Pattern) and refer to variants of the pattern.

Structure (Optional): Using certain diagrams to illustrate the Structure of a secu-

rity pattern.

24

o Interaction (Optional):Using certain diagrams to illustrate Interactions between

the participants of a security pattern.

e Consequences (Optional): Security has impacts on many other requirements such
as performance and usability. Thus it could be helpful to enlist the Consequences
of the application of a security pattern. The benefits and drawbacks of a security

pattern can be discussed.

e Examples (Optional): In order to illustrate the application of a security pattern,
concrete Examples could be provided. Useful are code or configuration samples as

well as some sketches.

2.2.3 Design Patterns for Distributed Applications Security

As the Internet services have been growing dramatically in recent years, more and more
distributed applications have been developed for providing data communication services,

security issues are parts of the measurement for qualifying such applications.

Because threats and attacks are constantly evolving in distributed applications to exploit
the systems” defects, and put systems at risk, designers are faced with challenges of
incorporating into their designs specific mechanisms to detect and prevent such security

breaches.

In most cases, effective security features are learned from experiences, and are not always
shared among designers, so that the novice designers have to deal more and more with
security even though they are not experts in the domain. Security design patterns have
a great importance here because they can effortlessly bring novice designers to a higher
security level. Defects can then be prevented by automatically applying the knowledge of

wiser designers.

25

This section reviews some of the security design patterns related to the design of dis-
tributed applications’ security functionalities. These patterns can be referred to the cause
of design to prevent the security defects that may be exploited. Appendix IT describes

these patterns and the problems that they can solve in details.

2.2.3.1 Yoder and Barcalow

Yoder and Barcalow (Yoder and Barcalow (1998)) were among the first to adapt design
pattern concepts to information security, they introduced seven patterns that represent an
architecture patterns scheme for enabling application security: Single Access Point pro-
vides a security module and a way to log into the system, Check Point organizes security
checks and their repercussions, Roles organizes users with similar security privileges,
Session localizes global information in a multi-user environment, Full View With Errors
provides a full view to users and shows exceptions when needed, Limited View allows
users to only see what they have access to, and Secure Access Layer integrates application

security with low level security.

These patterns are a good start for information security, but they are insufficient to cope
with the issues that arise when securing a distributed application. In addition, the intro-
duction of these patterns are too general to be applied directly to solve security problems.

(See Appendix I1.1 for detailed description).

2.2.3.2 Eduardo B. Fernandez

Fernandez introduced several design patterns for secure distributed applications. They
are outlined in the following: Object Filter and Access Control Framework combine the
functions of authentication, access control, and object filtering to constrain a client to

access objects in specified ways defined by the client rights, the Authenticator Pattern

26

describes a general mechanism for providing identification and authentication to a server
from a client. Authorization, Role-Based Access Control, and Multilevel Security corre-
spond to the most common models for security in a newly built system. The last three

patterns can be applied at all levels of the system.

Most of the security patterns introduced by Fernandez are concerned with building secu-
rity models or frameworks for distributed applications, and may be used to solve security
problems for these issues, but the author didn’t present the collaboration between these
patterns, therefore, before applying them to build security models or frameworks in dis-
tributed applications, they must be reorganized and specified. (See Appendix II.2 for

detailed description).

2.2.3.3 Sasha Romanosky

Sasha Romanosky (Romanosky (2001)) presented eight patterns in a template format that
was adapted from the Object Oriented design pattern template developed by the Gang
of Four (Gamma et al. (1994)). The intent was to fulfil the gap of security patterns
for distributed systems introduced by Yoder and Barcalow (Yoder and Barcalow (1998)),
and to supplement Security Principles, Security Policies, and Security Procedures. The
patterns are: Authoritative Source of Data, which recognizes the correct source of data,
Layered Security, which configures multiple security checkpoints, Risk Assessment and
Management, which helps to understand the relative value of information and protecting it
accordingly, 3rd Party Communication, which helps to understand the risks of third party
relationships, The Security Provider, which leverages the power of a common security
service across multiple applications, White Hats, Hack Thyself, which tests your own
security by trying to defeat it, Fail Securely, which designs systems to fail in a secure

manner, and Low Hanging Fruit, which takes care of the "quick wins".

According to Romanosky, these patterns are essentially security best practices that can

27

assist the reader in identifying and understanding existing patterns, and enable the rapid
development and documentation of new best practices. In reality, they cannot be directly
applied to solve security problems addressed by defects, because they need to hire other

security patterns for the practice. (See Appendix I1.3 for detailed description).

2.2.3.4 Cryptographic Meta-pattern

Braga et al. (1998) presented a set of nine cryptographic design patterns according to
four fundamental objectives of cryptography: confidentially, integrity, authentication,
and non-repudiation: Information Secrecy keeps the secrecy of information, Message In-
tegrity avoids corruption of a message, Message Authentication authenticates the origin
of a message, Sender Authentication avoids refusal of a message, Secrecy with Authenti-
cation proves the authenticity of a secret, Secrecy with Signature proves the authorship of
a secret, Secrecy with Integrity keeps the integrity of a secret, Signature with Appendix
separates message from signature, and Secrecy with Signature with Appendix separates

secret from signature.

The nine patterns were then abstracted into a generic object-oriented Cryptographic Meta-
pattern to define a generic software architecture to cryptography, and instantiated into a

meta-pattern structure and dynamics.

These patterns describe methodologies for using cryptographic techniques. They are
useful for solving problems and prevent security defects concerning user data protection,
communication protection, and management of cryptography. (See Appendix I1.4 for

detailed description).

28

2.2.3.5 Open Group

In the draft of “Guide to Security Patterns” by The Open Group (OpenGroup (2002)), a
set of security patterns were defined and can be used to provide a security framework for
building a secure system. They were categorized into Entity Patterns, Structural Patterns,
Interaction Patterns, Behavior Patterns, and Available System Patterns according to their

scope.

Most of the introduced security patterns in this draft deal with systems’ availability, rather
than reliability and security. However, the Entity Patterns and the Interaction Patterns
represent the basic strategies for protecting systems and communication channels. (See

Appendix IL.5 for detailed description).

2.24 Summary

Based on the surveys of security defects (Section 2.1) and security design patterns (Sec-
tion 2.2) in distributed systems, this section summarizes and specifies the patterns that
could be used in the design of distributed applications’ security functionalities to solve
security problems and prevent the defects introduced in the SecurP defect classification

(Section 2.1.4).

2.2.4.1 Prevent Structural Defects using Security Patterns

1. Group 1:

e Security Design Patterns:
Protected System, Policy Enforcement Point, Single Access Point, Security

Context.

29

e Security Problems Solved:

Protect system resources against unauthorized access to or/and illegal opera-

tions on data.
e Security Defects Prevented:
Untrusted Interface.
2. Group 2:
e Security Design Patterns:
Security Context.

e Security Problems Solved:
Manage and access to contextual properties to restrict dangerous privilege and

verify the security concerns.
e Security Defects Prevented:
Monolithic Application.
3. Group 3:
e Security Design Patterns:
Risk Assessment and Management.

e Security Problems Solved:
Keep track of the security relevant correctly, understanding the relative value

of information and protecting it accordingly.

e Security Defects Prevented:

Improper Security Auditing.
4. Group 4:

e Security Design Patterns:

Cryptographic Meta-pattern.

30

e Security Problems Solved:
Protect communications and properly use cryptography, so that the parties that
were involved in the communications cannot deny their participants, and user

data or system security functions can be protected.

e Security Defects Prevented:

Improper Communication Protection, Insecure Use Cryptography.

5. Group 5:

e Security Design Patterns:
Limited View, Object Filter and Access Control Framework, The Authenti-
cator, Authorization, Authoritative Source of Data, Recoverable Component,

Checkpointed System, Cold Standby, Journaled Component.

e Security Problems Solved:

Protect user data from interception, interruption, modification, and deletion.
e Security Defects Prevented:
Improper User Data Protection.

6. Group 6:

e Security Design Patterns:
Check Point, Object Filter and Access Control Framework, The Authenticator,

Authorization Roles, Role-Based Access Control, Multilevel Security.

e Security Problems Solved:
Enforce Security Policy properly, so that a system can be protected from deny

of services or data disclosure.

e Security Defects Prevented:

Authentication/Identification Inadequate.

7. Group 7:

31

e Security Design Patterns:
Roles, Role-Based Access Control, Multilevel Security.
e Security Problems Solved:
Users can only gain access to data which they have right to access to, so that

the data can be protected from unauthorized access.

e Security Defects Prevented:

Improper Security Management
8. Group 8:

e Security Design Patterns:
Limited View, Object Filter and Access Control Framework, The Authentica-

tor, Authorization.

e Security Problems Solved:
Protect a user’s identity, so that it will not be discovered or misused by the

others.

e Security Defects Prevented:

Improper Protection of Privacy.
9. Group 9:

e Security Design Patterns:
Full View With Errors, Limited View, Object Filter and Access Control
Framework, The Authenticator, Authorization, Subject Descriptor, Recover-

able Component, Checkpointed System, Cold Standby.

e Security Problems Solved:
Protect system security functions, so that they will not violate the system’s

security policy or disclose data.

e Security Defects Prevented:

Improper Protection of System Security Functions.

32

10. Group 10:

e Security Design Patterns:
Recoverable Component, Checkpointed System, Cold Standby, Comparator-
Checked Fault-Tolerant System, Journaled Component, Hot Standby, External

Storage, Replicated System, Error Detection/Correction.

e Security Problems Solved:
Prevent monopolizing the resources by users and provide availability of ca-

pacities caused by failure of the system.
o Security Defects Prevented:
Improper Utilization of Resource.

11. Group 11:

e Security Design Patterns:
Check Point, Session, Full View with Errors, Limited View, Object Filter and

Access Control Framework, The Authenticator, Authorization.

e Security Problems Solved:

Protect systems from breaking access attempts.
e Security Defects Prevented:
Improper System Access Control.

12. Group 12:

e Security Design Patterns:
Secure Access Layer, Layered Security, 3rd Party Communication, The Secu-

rity Provider, Secure Communication, Secure Association.

e Security Problems Solved:

Build trusted path/channels, so that they can provide assurance that the com-

33

munications between the users and the security functions, or/and between the

security functions and the other systems are correct and secure.

e Security Defects Prevented:
Untrusted Path/Channels.

34

CHAPTER 3

SECURITY DEFECTS IN THE VADOR FRAMEWORK

The VADOR framework is a distributed, multi-threaded, and multi-user application, it
uses Internet technology to make data communications available to users from differ-
ent locations and on different machines. To secure the communications from attacks,
approaches to prevent security defects should be considered in the early stage of its de-

velopment.

The subject of this chapter is security defects in the VADOR framework. Section 3.1
is an overview of the VADOR security problems, then section 3.2 previews the security

defects that may cause problems.

3.1 Security Problems in the VADOR Framework

In the VADOR framework, there are four servers or hosts that cooperate using the Active
Agent. They are the VadorGUI server, the Librarian server, the Executive server, and
the Wrapper server. When a user runs the VADOR application, the VadorGUI server
starts. It runs on the host where the user requires to execute a design process and retrieves
the execution results. The request is sent to the Executive server, which is responsible
for managing the execution of the StrategyComponenents and creating DataComponents
according to the request. The executive server dispatches an Active Agent to the Librarian
server, which is the manager of DataComponents and StrategyComponents, to fetch the
necessary data from the database for the process. Then the agent passes the task and data

to the Wrapper server for starting the analysis application and create the DataComponents.

35

The VADOR framework is an instance of a mobile agent environment. It benefits from the
implementation of the Active Agent Pattern (Chen (2004)), which can help the system to
be flexible, extensible and easier to maintain. However, it has to face the security threats

to the agent and user data:

o Threats to agent: threats that can affect the agent during its migration, and may

affect servers.

o Threats to user data: threats that can affect a specific user data file when there is a

command that needs to be executed on it.

This section analyzes these threats and their cause in the context of the VADOR frame-

work, and specifies the security problems that ensue.

3.1.1 Threats to Agents

In the VADOR framework, the Executive server communicates with the Librarian server
through Active Agent’s migration. When the Executive server receives a new process
execution request from a user, it dispatches an agent to the Librarian server, to get data
from the database, then the agent migrates back to the Executive server and sets the data

to continue the process.

The threats to agent’s migration could come from a malicious agent that attacks the

servers, or from the servers that attack an agent.

In the case of the agent that attacks the servers, it is assumed that the agent has been
attacked by a malicious third party when it was passing over the network, or sent by a
malicious Executive server. In that case, the agent’s code or state may have been mod-

ified. For example, when the agent migrates on the Librarian server, instead of sending

36

a "select” data to the database, it may "delete" data. When the agent moves back to the
Executive server, it may report the incorrect data and cause the Executive server to pursue
the process in a wrong way, or it may modify the server’s code to cause the server to

malfunction.

In the case where the servers attack the agent, it may be assumed that, for instance,
the Librarian server has been attacked and has become a malicious server. When the
agent migrates on it, it may modify the agent’s state to cause the agent to report incorrect
information to the Executive server, or it may modify the agent’s code and cause the agent

to be harmful to the Executive server when it returns back.

Both cases can result in system malfunctions and process failures.

3.1.2 Threats to Data Files

Because data files are the places where the analyzed results are stored, protecting the data

files is the fundamental security concern of the VADOR framework.

This section introduces the actual situation of the VADOR framework, the fundamental
and potential security problems that may exist in VADOR, and then it analyzes the causes

of the problems, possible solutions and drawbacks of the solutions.

3.1.2.1 The Current Situation of VADOR

The VADOR application requires to remotely execute commands on different hosts on
behalf of VADOR users. In the current implementation, a data directory, named VADOR,
is created initially within the user’s file system and the owner of this directory is the user.
However, the user needs to open this directory’s permission to other users in a group,

because when a task is to be remotely executed by the VADOR system, it is executed by a

37

Wrapper on any machine and the Wrapper belongs to a user named VADORADM, which
needs to read or write files in the user’s VADOR directory. As a result, the files created

by VADORADM in the user’s VADOR directory are owned by VADORADM.

3.1.2.2 The Fundamental Security Problem of VADOR

The fundamental problem of the VADOR system is that VADORADM owns the files
inside the user’s VADOR directory.

Actually, when the VADOR system remotely executes a task to create a file, it is a Wrap-
per belonging to VADORADM which creates the file, and writes it into the user’s VADOR
directory. In this way, VADORADM is the owner of the file. And as the owner, VADO-
RADM can manipulate the files without the permission of the user who owns the VADOR

directory.

Figure 3.1 illustrates a potential security problem with an example of executing the "rm"

command on a remote machine through the VADOR system.

L User 1:

WXeeXee= User2 vador file2
rm /home/User2/VADOR/*.* el e —

.........

User]

Permission Owner Group File
rwx==x--- vadoradm vador filel {removed)

Runs VADOR system

FIGURE 3.1 The Fundamental Security Problem of VADOR

This example shows that when User] wants to remove all files in User2’s VADOR direc-

tory via the VADOR system, it is a Wrapper that belongs to VADORADM which executes

38

the "rm" command in the User2’s VADOR directory. In this case, because filel was cre-
ated by VADORADM or has been changed owner to VADORADM, it can be removed.
File2 is owned by the user, and members of the group don’t have the permission to read

or write to it, thus, it won’t be removed.

As a result, the fact that VADORADM owns all the files created by the system, allows
any user to use the system to remove files in other user’s VADOR directories. How to

protect users’ data files is the first challenge in securing the VADOR framework.

3.1.2.3 Other Potential VADOR Security Problems

Section 3.1.2.2 discussed some fundamental security problems of the VADOR system:
the files that are created by the VADOR system are owned by the user VADORADM,
and can be remotely manipulated by VADOR users because Wrappers belong to VADO-
RADM and perform the manipulation.

However, other problems may also exist. For example, in figure 3.1, when User2 himself
needs to modify file2 using the VADOR system, he has to grant read and write permissions
to VADOR group members. Indeed, correct execution of VADORADM which is the
owner of the Wrapper server that executes the commands on behalf of users is based on
group permissions of the files that need to be manipulated. This can cause file2 to be

modified by other VADOR group users without notifying user User2.

3.1.2.4 Origin of VADOR Security Problems

The original idea of having a VADOR user VADORADM who owns the Wrappers and

the files in VADOR user’s directories came from two considerations:

39

e Having only one Executive server for the system and one Wrapper server on every

machine;

e Maintain the consistency of the database by permitting only the user VADORADM

to manipulate the files on disk.

However, in a multi-user environment with multiple access points, to realize this idea is
not easy. It requires well designed mechanisms for controlling access from the multiple

access points, or dealing with the multi-threaded task execution.

3.1.2.5 Possible Solutions and Drawbacks

Ideally, the solution to these problems in the VADOR system would be to secure the files
by giving the ownership of the files to the users, and at the same time, to keep having
only one Executive server for the system, one Wrapper server on every machine, and of
course, maintaining the consistency of the database. These requirements have been met
through the use of SSH2 (SSH (2004)) and Expect (Libes (1995)) scripts in the VADOR

system. The drawbacks to this solution are new problems that need to be solved:

1. Problem of the system integration: Instead of using the SSH2 and Expect applica-

tion, how to integrate SSH2 to the system.

2. Problem of file access control for multi-threaded processes: How to get permission
from a user when there is a multi-threaded process requiring access to his file.
3.1.2.5.1 Problems of System Integration

In the current VADOR system, SSH2 and Expect scripts are working together to imple-

ment file access control.

40

The reason of using SSH2 is that the SSH2 uses host key (public key and private key)
identification to secure the communication over the network, when a remote user requires
to logon a local machine, there is no password needed for authentication. However, a
passphrase will be asked either when the user logs on to his machine (using SSH-Agent)
or when he is trying to remotely logon to another machine (without SSH-Agent). This
passphrase will not be transferred over the network; it is used for encrypting the user’s

private key for the authentication purposes.

Because the Wrapper server is the final executive of the SSH commands, to type the
passphrase for every command is impossible (especially when the commands are written
in a script file). In practice, the passphrase will be asked to the user by the VadorGUI
at logon and will be transmitted by the VadorGUI to the Executive and Wrappers when
needed during a VADOR session. The Expect script solved this problem by allowing to

pass the passphrase as an answer to the SSH command in a simulated terminal.

Even though SSH and Expect solved the file access problem for the VADOR application,
they have not been integrated into the VADOR framework, and can only be applied on
UNIX operating systems. Another problem is that the passphrase has to be entered from
the VadorGUI by the user, and passed through the Executive server on to the Wrapper
server by the active agent. How to protect the passphrase during the transfer and how to
integrate the SSH and Expect into the VADOR architecture are the main design challenges

relating to file access control in the VADOR system.

3.1.2.5.2 Problems of the Multi-threaded Processes

The previous section discussed using SSH2 and Expect scripts for file access control in
the VADOR system, but they can only control file access for a single request execution
on a specified file. VADOR users usually require multi-threaded processes in the course

of design, which needs to synchronously or recursively execute more than one command

41

on different files by different Wrappers. In this case, in order to access the files, the user
needs to ask for the file owners’ passphrases, and passes them with the commands to the

Wrappers for the authorization.

Since a multi-threaded process may be a long procedure, for example, it may take several
days to complete the tasks, it is difficult for the user to be aware of when he has to ask for
a passphrase from which file’s owner. This is another problem that arises with the current

file access control in the VADOR framework.

3.2 Preview of Security Defects in the VADOR Framework

As any other distributed application, such as the Unix operating system, security defects
may also exist in the VADOR framework. If these defects cannot be prevented by appro-
priate approaches, they may cause serious security problems. In the VADOR framework,

the primary security problem is the user data file protection discussed in section 3.1.

This section previews some of the security defects that may exist in the VADOR frame-
work regarding user data protection, and analyzes the causes of the defects and their

effects.

3.2.1 Improper Use of Multiple Access Points Control

The first security defect of the VADOR framework is that the VADOR framework has

multiple access points.

The main reason lies in the fact that VADOR consists of many servers. These servers are
the components of the framework, they may reside on different machines, or the same
machine on different ports, and each of them provides specific services to the VADOR

system.

42

When a user requires to execute a task using the VADOR system, the task will be passed
through every server that provides access to a separate service, so that the user can get
access to each of the points on the entire system. For example, a task first gets to the
Executive server to be executed, and than to the Librarian Server to obtain stored data
component information, and back to the Executive for further processing, and onto a

Wrapper server for final execution.

These multiple access points may possibly allow users to get through a back door and
allow them to view or edit sensitive data. It is thus difficult to control information flow

and secure the system.

Allowing only the user VADORADM to gain access to data files is the original idea for
controlling access to data files from the multiple access points, but because of the im-
proper control mechanism, it caused the fundamental and other potential security prob-

lems introduced in section 3.1.2.2 and 3.1.2.3.

3.2.2 Improper Error Checking

This can be considered as a combination of authentication and validation defects, such
as Unvalidated Parameters and Broken Access Control vulnerabilities defined by the

OWASP project (OWASP (2003)).

The reason is that the security policy was not available when the VADOR framework was
initially designed. However, the system needs to be secured from break-in attempts, and
needs to take actions depending on the severity of a mistake that the user could make,
so that lots of checking code may be needed to authenticate or validate a user in order to

protect user data from unauthorized access.

This error checking code can make it difficult to debug and maintain the system, in the

sense that a security policy may be defined at a later point and changed over the life of

43

the system.

3.2.3 Improper Multi-User Profiles Management

The management of multi-user profiles is another potential security defect of the VADOR

framework.

The VADOR framework is a multi-user application, its users may share similar (e.g.,
groups of users) or have individual security profiles in order to access shared or individual

data files, and their profiles may overlap or change over time.

Because a system administrator needs to manage security permissions for users depending
on their profiles, when the number of users is large, it is hard to customize and manage

security profiles for each person.

3.2.4 Improper Global Information Access Control

This defect occurs when there are many objects that need to access shared values, but

these values are not unique through the system.

This is a problem related to VADOR’s multi-user and multi-threaded characteristics. In
order to secure the system, the VADOR system keeps track of global information for each
thread or process, such as username, or their respective privileges, the information is then
stored in a private, single global location. But when the threads or processes share a
common global address space for task execution, their private global information cannot
be shared. The defect may also make code and APIs very complex because of the passing

around of many objects.

This defect causes the problems of the multi-threaded processes discussed in section

44

3.1.2.5.2.

3.2.5 Improper Exception Handling

Improper exception handling, or error handling may occur during normal operation, but

the source lies in an improper design.

Because VADOR users may have different privileges to access data files, they should
be prevented from viewing information that they do not have permission for. In that
context, an attacker may attempt to perform some illegal operation to gain access to pro-
tected information, while at the same time, an authorized user may also perform improper
operations. It then becomes difficult to distinguish between the two conditions, so that

exception handling designed to protect from an attacker may be improper for a legal user.

The condition code to determine which operation is legal could be very complex and
difficult to test. If an exception cannot be handled properly, users may get confused on

what is available to them, it may also disclose information to attackers, or crash a server.

This defect maybe prevented using Full View with Errors pattern or Limited View pattern.
The Full View with Errors may notify users with error message when they perform illegal
operations without unnecessary revealing internal details. The Limited View only lets

users see what they have access to (See section 2.2.3.1 for detailed description).

3.2.6 Improperly Integrated External Security System

The VADOR application needs to communicate with other pre-existing systems. If the
integration of security mechanisms with the systems is improperly planed, it may become
the weakest security point and the most susceptible to break-ins. For example, VADOR

uses the MySQL database system on a remote server to store meta data, and the user data

45

files that correspond to the meta data are stored on hosts on behalf of VADOR. If break-in
attacks exploit defects in the integration with the database, this may lead to risks to the

user data files.

The reason of this improper integration generally lies in the interfacing problems with
the external security systems which is sometimes difficult and often not well documented
with respect to security. In addition, external systems may not have sufficient security. If
the developers put checks in the application wherever it communicates with other systems,

code will become very difficult to maintain.

The Secure Access Layer pattern may help to prevent this defect with building applica-
tion security arround existing operating system, networking, and database security mech-
anisms, or building own low-level security mechanism on top of the low-level security,
then build a secure access layer for communicating in and out of the program (See section

2.2.3.1 for detailed description).

3.3 Summary

The VADOR framework is a multi-user, multi-threaded, mobile agent based distributed
application with multiple access points. As for other distributed applications, such as
the UNIX operating system, security defects need to be prevented using appropriate ap-

proaches during early stage of the development.

In order to maintain the two aspects of the VADOR framework: one Executive server for
the system and one Wrapper server on each machine, and the data consistency, the fun-
damental and other potential VADOR security problems may be introduced by exploring

security defects existing in the VADOR system.

This chapter previewed several security defects that exist in the VADOR framework, in-

46

cluding Improper Multiple Access Points Control, Improper Error Checking, Improper
Multi-User Profiles Management, Improper Global Information Access Control, Im-
proper Exception Handling, and Improper Integrated External Security System.

As mentioned, the Improper Multiple Access Points Control defect may be exploited
and lead to risks to the agent or user data files, and is considered to constitute the most
fundamental security problem of VADOR (See section 3.2.1 for details). Furthermore, the
objective of VADOR security is to first solve fundamental security problems rather than
other potential problems, thus, this work will mainly focus on the prevention of Improper

Multiple Access Points Control rather than the other defects.

Although the SSH and Expect scripts have been used in the system for resolving the data
file access problems, they make it difficult to integrate SSH into VADOR, and to control

multi-threaded processes.

To solve the security problems and protect the VADOR system from threats, first, the
security defects should be addressed, and then they should be prevented using appropriate
design approaches. Earlier prevention of the security defects, less cost and better results in
building the system, so that it will be very effective to develop defects prevention design

approaches using design pattern concepts in earlier stage of the system development.

A Security Manager pattern is proposed based on a study of actual security defects ex-
isting in the distributed system, that uses security design patterns. The objective of de-
veloping the Security Manager is to prevent security defects in the VADOR framework,
protect the system from threats, and solve the security problems regarding data file access

in VADOR.

Chapter 5 will introduce the Security Manager pattern in details.

47

CHAPTER 4

SECURITY MODEL - FROM JAVA TO THE VADOR FRAMEWORK

As introduced in section 1.2, the VADOR System is an agent based distributed system
that represents a specialized Active Agent pattern. It is implemented on top of the JVM,

using the Internet as its major transmission media component.

In this context, risk exists that information being transmitted via the Internet, agents or
data files could be threatened. The main reason for this lack of security is that improper

system design may lead to security defects, that threats could exploit to attack the system.

Security defects in the VADOR framework have been studied in chapter 3. This chapter
will introduce a security model and mechanisms in the VADOR framework, that are used

to prevent security defects and protect the VADOR System from threats.

Section 4.1 will introduce the Java 2 SDK security architecture, that provides low level
protection mechanisms to the VADOR System. The VADOR Security Model will be
introduced in section 4.2, it constitutes the Security Manager in the Active Agent pattern
(Section 1.2.2), as well as the Security Manager pattern, that will be developed in chapter
5.

4.1 Security in Java 2 SDK

4.1.1 J2SDK Security Features Overview

The Java 2 SDK (J2SDK - Java 2 Standard Development Kit) security architecture is

policy-based, and allows for fine-grained access control. When code is loaded, it is as-

48

signed "permissions” based on the security policy currently in effect. Each permission
specifies a permitted access to a particular resource, such as "read" and "write" access
to a specified file or directory, or "connect" access to a given host and port. The policy,
specifying which permissions are available for code from various signers/locations, can
be initialized from an external configurable policy file. Unless a permission is explicitly
granted to code, it cannot access the resource that is guarded by that permission. These
new concepts of permission and policy enable the SDK to offer fine-grain, highly config-
urable, flexible, and extensible access control. Such access control can be specified for

applets and all other Java code, including applications, beans, and servlets.

The Java Security API is a Java core API, built around the java.security package (and
its subpackages). The first release of Java Security in JDK (Java Development Kit) 1.1
contains a subset of cryptographic functionality, including APIs for digital signatures
and message digests. In addition, there are abstract interfaces for key management and

certificate management.

JDK 1.2 contains substantial security features enhancements based on the JDK 1.1:
policy-based, easily-configurable, fine-grained access control; new cryptographic ser-
vices, new certificate and key management classes and interfaces; three new tools (key-
tool, jarsigner, and policytool) have been added for key management, signature genera-

tion and verification, and security policy management.

In JDK 1.3, several security enhancements have been made to the cryptographic services

and the security tools.

Security enhancements for JDK 1.4 include providing support for dynamic policies,
adding several packages and APIs for Certification, Authentication, and Cryptographic
services, and three new tools (kinit, klist, and ktab) have been added for obtaining, list-
ing, and managing Kerberos tickets. Instead of loading security policies through a class

loader and binding them to the class loader’s lifetime, the support for dynamic policies al-

49

lows dynamically querying of security policies when they are needed by security checks.

4.1.2 J2SDK Security Models

Access control has evolved to be far more fine-grained than in earlier versions of the Java
platform since JDK 1.2. This section introduces security models in the Java Security

Architecture Extensions.

4.1.2.1 The Original Sandbox Model

4.1.2.1.1 JDK 1.0 Security Model

The original security model provided by the Java platform is known as the sandbox model,
which existed in order to provide a very restricted environment in which to run untrusted

code obtained from the open network. This model is illustrated in figure 4.1.

Local Code RemOTe Code
JVM Full Access é Sandbox
to Resources Restricted
Access

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4.1 JDK 1.0 Security Model

Participants in this model are listed as the following:

50

Local Code: is trusted code that has full access to vital system resources, such as

the file system.

Remote Code: is downloaded code (an applet) that is not trusted and can access

only the limited resources provided inside the sandbox.

JVM: Java run time system that organizes trusted code to access resources and

untrusted code that is limited to the sandbox.

Security Manager: is a class that is responsible for determining which resource

accesses are allowed in the security model and subsequent platforms.

System Resources: are vital system resources that include files, network con-
nections, etc. Access to crucial system resources is mediated by the JVM and is
checked in advance by the Security Manager class that restricts the actions of a

piece of untrusted code to the bare minimum.

4.1.2.1.2 JDK 1.1 Security Model

JDK 1.1 introduced the concept of "signed applet”. In this model, signed applets, together

with their signatures, are delivered in the JAR (Java Archive) format. As illustrated in

figure 4.2, a digitally signed applet is treated as local code, with full access to system

resources, if the public key used to verify the signature is trusted by the end system that

receives the signed applet. Unsigned applets still run in the sandbox.

A new participant has been added into this model:

* Trusted Signed Code: is remote code that was signed with the sender’s private key
and verified using a trusted public key by its receiver. It is treated as local code that

has full access to system resources.

51

Local Code Remote Code

Trusted
Signed
Code

N J—

JVM Full Access ﬁ Sand}?ox
to Resources Restricted
Access

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4.2 JDK 1.1 Security Model

4.1.2.2 The Current Security Model

JDK 1.2 introduced a number of improvements over JDK 1.1, and the later versions have
done many enhancements to the new security architecture introduced in JDK 1.2. The
current J2SDK security model is illustrated in figure 4.3. This model is introduced for

the following purposes:

e Fine-grained access control.

Easily configurable security policy.

Easily extensible access control structure.

¢ Extension of security checks to all Java programs, including applications as well as

applets.

Make internal adjustment to the design of security classes. (including the Securi-
tyManager and ClassLoader classes) to reduce the risks of creating subtle security

holes in future programming.

52

Local or Remote Code (signed or not)

Security Policy

domainl

JVM Full Access
to Resources

Security Manager

System Resources
(files, network connections, etc)

FIGURE 4.3 The Current J2SDK Security Model

In the current J2SDK security model, code runs with different permissions, and there is
no built-in notion of trusted code, all code, regardless of whether it is local or remote, can

be subject to a security policy.

Two participants have been added to this model:

e Security Policy: defines the set of permissions available for code from various
signers or locations and can be configured by a user or a system administrator. Each
permission specifies a permitted access to a specified file or directory or connect
access to a given host and port. Security policies are queried dynamically while

they are needed by security checks.

e Domains: contain code organized by the run time system, each of which encloses
a set of classes whose instances are granted the same set of permissions. As illus-
trated in figure 4.3, code belonging to domainl and domain2 is granted full access
to resources. The domain4 code is restricted exactly the same as the original sand-

box. The domain3 code lies in between, it has more accesses allowed than the

53

sandbox, but less than full access.

4.1.3 J2SDK Protection Mechanisms

The protection domain concept serves as a convenient mechanism for grouping and iso-
lation between units of protection. A Domain can be scoped by the set of objects that are
currently directly accessible by a Principal, where a Principal is an entity in the computer
system to which permissions, and as a result, accountability, are granted. The sandbox
utilized in JDK 1.0 is one example of a protection domain with a fixed boundary, existing

object accessibility rules remain valid under the current security architecture.

Protection domains generally fall into two distinct categories: system Domain and Appli-
cation domain. The domain composition of a Java application environment is illustrated
in figure 4.4. It is important that all protected external resources, such as the file sys-
tem, the networking facility, and the screen and keyboard, be accessible only via system

domains.

System Domain

FIGURE 4.4 The Domain Composition of a Java Application Environment

The Java application environment maintains a mapping from code (classes and instances)

to their protection domains and then to their permissions. The context of this mapping is

54

that a domain conceptually encloses a set of classes whose instances are granted the same
set of permissions. Protection domains are determined by the policy currently in effect.

This mapping is illustrated in figure 4.5.

Class ------- > Domain ----->> Permissions
[T Pemieione.

..... .

:' ! o < <

¥ e otennyennro b [min a |

_--' I

d.clags-~ '|' JPLE

:

[]

L
c.class- »*

' b.clase ""‘~._
'. a. class_ ---- A. m Pam:.ss:.ons
\ 1}
L]
L}

“““““

-
- -

Classes in

Java run time Security Policy

FIGURE 4.5 The J2SDK Protection Mechanisms

Each domain (system or application) may also implement additional protection of its in-
ternal resources within its own domain boundary. For example, the VADOR application
needs to support and protect internal concepts such as DCInstances, creations and retriev-
ing. Because the semantics of such protection is unlikely to be predictable or enforceable
by the Java 2 SDK, the protection system at this level is left to the application developers.
Nevertheless, the J2SDK provides helpful primitives to simplify the developers’ tasks.

One such primitive is the SignedObject class.

4.2 Security in the VADOR Framework

4.2.1 The VADOR Security Features Overview

In addition to the policy-based, easily-configurable, fine-grained access control derived
from Java (4.1.1), the VADOR security architecture also provides Certificate and Key
Management, and SSH based Data File Management.

55

Different from the J2SDK, the VADOR security requires multi-level security policies,
each level being responsible of a VADOR Server. For example, the first level policy is
responsible of the Security Server. The Executive Server and Librarian Server also have
their own policies. The policies, specifying which permissions are available from vari-
ous agent senders, can be defined and initialized by the VADOR administrator when the
VADOR servers are started. Unless a permission is explicitly granted to an agent, it cannot
access the resource that is granted by that permission. These concepts of permission and
policy enable VADOR to offer easily-configurable, flexible, extensible and fine-grained

access control.

The VADOR security uses Keytool provided by Java for Key generation and Certificate
management. The VADOR administrator is responsible for generating keys and managing

certificates for every VADOR user using Keytool.

SSH is used for system data file Management in VADOR. This means that instead of
controlling accesses to data files through a VADOR external security policy, the frame-
work controls the accesses using SSH within the operating system. This concept has been

introduced in chapter 3.

4.2.2 The VADOR Security Model

Associated with the current J2SDK security model, the VADOR security model provides
multilevel protections to the VADOR framework, including multilevel security policy en-

forcement, security managers, and protection domains. Figure 4.6 illustrates this model.

The VADOR security model has the following protection levels and participants:

56

External
VADOR Agent ' Security
Policy

Security Server
Access to
Resources

Trusted Agent

ist Level Protection
Domain

(Vador Security Server

Security Server Security Manager based on JVM)

Resources
Domain :
Security
Policy

VADOR Application
Domain

2nd Level Protection
VADOR Servers
Full Access
to Resources

{VADOR Sexvers)

VADOR Resocurces
(DCInstance, DCType, atc)

System Resources
(files, network conntections, etc)

FIGURE 4.6 VADOR Security Model

4.2.2.1 1st Level Protection: Security Server

Protection domains in this level are organized by VADOR Security Server based on the

JVM.

e VADOR Agent: is remote code that is signed by a VADOR client with its private
key, and sent by the client to execute on a specified host on behalf of the VADOR

system.

e External Security Policy: defines the permissions available for the signed VADOR

agent and can be configured by the VADOR administrator. These permissions spec-

57

ify permitted connecting accesses to hosts and ports that will allow the agent to

work.

e Security Server: is based on the Java run time system to organize trusted agent

code to access resources.

e Trusted Agent Domain: contains the agent code organized by the JVM and has
been granted the permission specified by the External Security Policy. A trusted
agent domain has the right to access resources, but cannot be guaranteed full access,
because the permissions are specified by the second level VADOR Security Policy

for accesses to the VADOR and system resources.

e Security Server Security Manager: a class that is responsible of verifying and

authenticating a signed agent.

4.2.2.2 2nd Level Protection: VADOR Servers

VADOR Servers organize protection domains at this level to permit or limit accesses to

the Resources that include both VADOR Resources and System Resources.

e Resources: include both resources in the VADOR system such as meta-data of
DClnstance or DCType, and System Resources such as files, or network connec-

tions.

e VADOR Security Policy: is the second level security policy in the VADOR secu-
rity model. It defines the set of permissions available for the trusted agent and can
be specified by the VADOR administrator. Each of these permissions specifies a
permitted access to VADOR Resources associate to data files or directories stored

as System Resources.

58

e VADOR Servers: organize trusted code to access the VADOR Resources and/or

System Resources.

e VADOR Application Domain: contains trusted code organized by the VADOR

Servers and has full access to the VADOR Resources.

e System Domain: contains trusted code organized by the VADOR Servers and has

full access to the System Resources.

¢ VADOR Security Manager: is a class defined in the VADOR security model that
is responsible for determining which resource accesses within the VADOR system

are allowed.

e VADOR Resources: are internal resources in the VADOR framework. They in-
clude meta-data information stored in the database such as DClInstance and DC-

Type. They are associated with System Resources.

4.2.2.3 3rd Level Protection: Operating System

In addition to the VADOR server protection, the System Resources have an extra level of

protection enforced by the operating system using SSH. The participants in that level are:

e System Resources: include files, network connections, etc. The System Resources

in the VADOR framework are also considered as internal resources.

o SSH: Secure Shell system that functions as the third level security policy and se-
curity manager. It controls accesses to System Resources by VADOR applications

via the System Domain.

59

4.2.3 The VADOR Protection Mechanisms

As introduced in the J2SDK protection mechanisms (section 4.1.3), there are two protec-
tion domains: Application Domain and System Domain. A Domain is the set of objects
that are currently directly accessible by a Principal, where a Principal is an entity in the
computer system to which permissions are granted. Application Domains can only access

external resources, such as the file system and network facility, via System Domains.

Based on the above architecture, VADOR framework security architecture organizes the
protection domains into three categories: Trusted Agent Domain, VADOR Application
Domain, and System Domain. The domain composition of the VADOR framework is
illustrated in figure 4.7. The VADOR Agent can only access resources via the Trusted
Agent Domain. Internal VADOR resources, such as DCInstance, DCType, are accessible
only via the VADOR Application Domain, and the external system resources, such as file

system and network facility are accessible only via the System Domain.

Trusted Agent Domain

Resources

VADOR Application Domain System Domain

o o o

FIGURE 4.7 The Domain Composition of the VADOR Framework

As a Java application, the VADOR framework also maintains mapping from code (classes
and instances) to their protection domains and then to their permissions. However, as il-

lustrated in figure 4.8, additional protection of resources has been implemented. A multi-

60

level mapping has been defined, and multilevel protection domains have been introduced

-> Permissions

&

in the VADOR framework.
Class =----- '> Domain -
{(Class- -> Domain -’ Persmissions)
o O = T i i (T] e i SR S Eim 2 A
: domain A
PLanil N ' Pl RN
l" “\ : ,". clll::\" domain Al] —’
': a.class = ‘-:—._._:' I : @ class <t
n c.class »’ e -
[} .~ 5 -
1]
1Y

b.class): ’

. i
« a.class, "%,

.
~ L
- -

“~

Classes in
Java run time

1
\ -
| &-class J b

Classas in
VADOR Servers

VADOR Sacurity Policy

domain B

-

~

~ -

VADOR Sarvars

. .
~
LW

=
c.class <
'

ol e >
domain B2 .-

G

1
]
1
1
: Classes in
1
]
]
1
]

VADOR Security Policy

External Security Policy

FIGURE 4.8 The VADOR Protection Mechanisms

In figure 4.8, Trusted Agent Domain A and B are determined by the External Security Pol-

icy currently in effect, these domains enclose the classes in Java run time, their instances

are granted the same set of permissions which are specified by the external security policy.

In order to access the internal VADOR Resources or System Resources, instances of the

classes in the domain A or domain B need to be granted the same set of permissions

which are specified by the second level VADOR Security Policy. This security policy

determines the domain A1, A2, B1, or/and domain B2, these domains enclose the classes

in the VADOR servers and could be either VADOR application domains that can access

VADOR resources, or System Domains that can access system resources.

61

4.3 Summary

This chapter has introduced the VADOR Security Model that represents the Security
Manager which participates in the Active Agent pattern, as well as the Security Manager
pattern which will be further developed in chapter 5.

Based on the J2SDK Security Extension, which provides the low level protection mecha-
nisms, the VADOR Security Model defines multi-level protection for the VADOR frame-
work: Security Server level, VADOR Server level, and Operating System level. Each
level implements its own protection mechanisms to prevent security defects (Chapter 3.2)

in the VADOR framework, and protect the VADOR system from threats (Section 3.1).

The multi-level protection mechanisms constitute the most significant VADOR security
feature. This protection is policy-based, easily-configurable, and provides fine-grained
access control, cryptographic services based on secure key and certificate, and SSH based

data file management.

Chapter 5 will move on to introduce of the Security Manager pattern, which implements

the VADOR Security Model.

62

CHAPTER 5

THE SECURITY MANAGER PATTERN

In the VADOR global architectural design, most of the functionalities to process data and
tasks within the framework reside in the Application Domain Layer (Section 1.2). This
layer constitutes the core of the VADOR System, it is implemented using a specialization

of the Active Agent pattern.

However, in the VADOR prototype, the VADOR System focused on solving problems
related to concurrency, scalability, and flexibility of the framework. Although a Security
Manager had been planned to participate in the Active Agent pattern, it was not imple-

mented.

As the needs related to security issues increased during the release of the VADOR frame-
work for industrial usage at Bombardier Aerospace, security policy enforcement and sys-

tem protection processes have become required.

Based on the above context, the VADOR Security Model (Chapter 4) is designed to fulfill
the security requirements of the VADOR System. It is implemented using a specialization
of the Security Manager pattern, that corresponds to the Security Manager in the Active

Agent pattern.

5.1 Active Agent Pattern with Security Manager

When the Security Manager participates in the Active Agent pattern (see section 1.2.2 for
its full description), the Security Server becomes an intermediate Execution Place, which

cannot be by passed. In other words, no matter which Vador Server an Agent object

63

migrates to for its execution, at first, it must be authenticated and verified by the Security
Server. Then, when the Vador Server invokes the authenticated agent’s call() function,
and before starting task execution, the Security Manager, on behalf of the server, should
check that the agent’s permission allows this task execution. As for the Security Server,

the Security Manager cannot be by passed.

The first level and second level protection introduced in the VADOR Security Model

(Section 4.2.2) are implemented as the Security Server and the Security Manager.

5.1.1 The Extended Interaction Between Participants

In the original active agent collaboration illustrated in figure 1.4, in order to accomplish
tasks, clients, such as the VadorGUI, create agents and send them to an execution place
(the Vador Server), which calls the standard agent operation (call() function). Depending
on the agent’s security policy, the operation is executed, or not, on the related agent

instance (See Chen (2004) for details).

When the Security Manager pattern participates in the Active Agent pattern, an additional
Execution Place (Security Server) is added to the Application Domain layer. It specifi-
cally provides authentication and verification services to the VADOR framework. Figure

5.1 illustrates the extended Active Agent pattern interaction.

5.1.2 The Extended Active Agent Dynamic Behavior

The Active Agent dynamic behavior (see section 1.2.2.3 for details) also has been ex-
tended by the Security Manager’s participant. Agent signature, authentication, and per-
mission checking processes have been added to the three phases. The details of this

extension are illustrated in figure 5.17 (See page 101).

64

| Client I ExecutionPlace 2‘”““’& I ent I ConcreteAgent I SecurityManagsr
— E—— ! EGU! ygarver[
T T !
: 1 : 1 1 1
1 | | | 1
createAndSignAgent(t i :
A P 1
— | | 1
U vefiyAgem() iy : :
I - ! !
1 I 1
1 verifyQ ! 1
[} ! !
1 - I I
' P y !
[} ! g
1 1 ! !
1 » e !
. if{verifyAgent(== lrue) call) callp 1
1 || : =] canAccess() !
|] . == canAccess(
1 1
1 ! !
1 ! ! =
1 ! ! s |
b " 1 L 1
X I | K {canAccess(== true) ?an_mno l doOperation() 1
I ! 1
: 1 ! 1
) | 1 |
1 ! : :

1 byt
i
|
|

FIGURE 5.1 Extended Active Agent Pattern Interaction Diagram

. Agent Creation, Signature, and Sending

A client creates and signs an Agent (Original Agent) object, that includes a unique
identifier (id) of the Original Agent and an id of the Signed Agent. The Signed

Agent then migrates to an Execution Place (Vador Server) via the Vador Proxy.

Agent Authentication, Permission Checking, and Execution

o Agent Authentication: Before the Vador Server invokes the Original Agent’s
call() function to start task execution, it must authenticate and verify the
Signed Agent object. So it creates and signs a Security Agent object, and in-
cludes the Security Agent id and the Signed Agent id in it. The Security Agent
object then migrates to its Execution Place (the Security Server) where a Se-
curity Manager resides, and performs two authentication processes based on
the agents’ ids: Security Agent Authentication (See section 5.3.4 for details)

and Signed Agent Authentication (See section 5.3.6 for detailed description).

65

e Agent Permission Checking: If both the Security Agent and the Signed
Agent were verified, the Vador Server can invoke the Original Agent’s call()
function. Before the task execution starts, the Security Manager, on behalf of
the Vador Server, enforces VADOR Security Policy to check that the agent’s

permissions correspond to its task execution request.

o Agent Execution: If the request is granted, the agent will dynamically load
the concrete Vador Visitor class and use it to execute the task. If the task
requires access to system data, before it is executed, the SSH subsystem will
perform an authentication process to verify the agent’s sender (Vador User) at
the operating system level. The agent then can gain access to the system data

only if its sender has been authenticated.

3. Completion

The execution result is sent back to the client by the Vador Server.

5.2 Security Manager Pattern

Chapter 4 introduced the VADOR security model and mechanisms to protect the system.
This chapter will present the Security Manager pattern , that is a Security Pattern System
represents the structure of the security model, and is implemented in the VADOR security

system.

The Security Manager pattern is a combination of three structural security design patterns:
Protected System, Partitioned Application, and Multilevel Security. These patterns work
together to help the Security Manager build the VADOR security architecture, and divide

it into several independent modules, easier to validate.

The pattern description is based on the format introduced in section 2.2.2.2.

66

5.2.1 Name

Security Manager

5.2.2 Context

The VADOR system is a multi-user, multi-threaded, client-server architecture, mobile
agent based, distributed application. The characteristics of VADOR require that the sys-
tem be capable of allowing access to many users for working on different machines, to
a limited set of resources, on behalf of the system at the same time. This capability also
includes protecting the system resources from attacks. Specifically, preventing security
defects from system design, so that it can control accesses to resources, and stop attackers

from exploiting the defects.

5.2.3 Problem

1. An Active Agent may be attacked and its status may be changed during its migra-

tion, a malicious agent can then attack data files.

2. It is difficult to validate an Active Agent on behalf of a Vador Server, because

VADOR consists of many servers, and each of them represents an access point.

5.2.4 Solution

1. An Active Agent sender signs the agent using its private key before sending it. An
agent receiver applies Security Server to authenticate and verify the agent using a
certificate that corresponds to the public key before allowing the agent to execute

tasks.

67

2. Each Vador Server owns a Security Manager for checking permissions that are de-
fined for this server by VADOR Security Policy. If the agent’s requests are permit-

ted, the agent can then execute tasks on the Vador Server.

5.2.5 Structure

Figure 5.2 illustrates the structure of the Security Manager Pattern.

authenticate .
re-- Client “| SecurityServer
H | I
1
H securityAttriblutes
H guard
' 1st Level Protection: Vador Security Server based on JVM
i I SecurityManaqM SecurityContext |
‘
E securityAttributes Functionality: Agent Authentication/Verification
H FPolicyEnforcer
'
E I SecurityVisitor I | PolicyApplicator , Policy Enforced: External Policy - Signature Verification
.
H policy
L Tt UG
/ securityAttributes
guard . .
% SecurityContext
| SecurityManager l— >| eeuritycon | 2nd Level Protaction: Vador Servers
securityAttributes

Functionality: Task Exacution Permission Chacking

policy Policy Enforced: Vador Policy
SecurityVisitor PolicyApplicator

'

'

i

1

E

' FollcyEnforce
: V
1

'

'

1

H

H
E SSH _a_t_xst-mentitigsf_>i """"""""" H 3zd Leval Protection: Operating System
H

Functionality: Vador User Authentication/Verification

Policy Enforced: System Policy

FIGURE 5.2 Structure of the Security Manager Pattern

5.2.6 Participants

e Client

o Any VADOR User or Vador Server that creates, signs, and sends active agents,
or any Vador Server that receives, authenticates, verifies, and checks permis-

sions on a signed agent .

68

o An agent sender client sends the signed agent with a unique identifier of the

original agent and an identifier of the signed agent.

o An agent receiver client verifies the signed agent using its identifier and cer-
tificate. The certificate is defined by the administrator and corresponds to the
public key that is in pair with the private key, which the sender client uses to

sign the agent.
e SecurityServer
o It is an Execution Place that is responsible of a signed agent authentication

and verification.

o Its SecurityManager implements and extends the same interfaces and abstract

classes as the security manager on the other execution places.

o It enforces External Policy that is defined by administrator and initialized

when the Security Server starts.
e SecurityManager

o Every Execution Place has its own SecurityManager that implements and ex-

tends the same interfaces and abstract classes.

o The security managers on behalf of the execution places represent their se-
curity guards, and are responsible of security issues. For example, the Se-
curity Server’s Security Manager is responsible of agent authentication and
verification, the other VADOR Servers” Security Managers are responsible of

permission checking before allowing an agent to execute tasks.
o SecurityContext

o Every Execution Place has its own Security Context that implements and ex-

tends the same interfaces and abstract classes.

69

o The Security Context on behalf of the execution place represents its security
attributes, including user attributes, subject attributes, and object or informa-

tion attributes.
e SecurityVisitor
o Every Execution Place has its own Security Visitor that implements and ex-

tends the same interfaces and abstract classes.

o The Security Visitor, on behalf of the execution place, represents its security
policy enforcer, that is responsible of checking permissions according to the

policy which it enforces.
e PolicyApplicator

o Every Execution Place has its own PolicyApplicator that implements and ex-

tends the same interfaces and abstract classes.

o The Policy Applicator, on behalf of the execution place, represents its security
policy, that is responsible of performing actual algorithms for checking if

execution requests match the permissions that are defined by the policy.
e SSH Server

o A security server resides on the operating system and provides the lowest level

protection of VADOR.

o It is responsible of system policy enforcement to authenticate and verify a

VadorUser that creates and sends an agent at the operating system level.

5.2.7 Interaction

Figure 5.3 illustrates interaction of the Security Manager Pattern.

70

Citent{C) s‘_"“@mﬂ | SecurityAgent I @M‘ﬂ"lﬂsl I OriginAgent | [SocurityMan nc—l
| | — T T
] :. Sect g ..ld.ﬂﬂ&lnﬂ' ent) E §
] @l verd "
e (1d_sacurityAgent)
:‘ varifyAgent0

1f{true)

verifyAgent
{id_originhgent) lvel"VAg!mO

d_—‘ If{oue) can_rund

authenticated=true

call)

can_access(

: | ff{true) can_runQ

do_operation(}

A
g
o
&

R L) N g
- e = - = —— —I
S ISR

FIGURE 5.3 Security Manager Pattern Interaction

A Client creates and signs an Active Agent using the Private Key which was defined
in the External Security Policy by the administrator (a Certificate that corresponds
to the Public Key exported to an Execution Place by the administrator). The client

then sends the agent to the Execution Place for task executions.

When an Execution Place (Vador Server) receives the agent (called Original Agent),
before allowing it to execute tasks, it must authenticate the Original Agent and
verify the agent’s signature. The Vador Server (Client) creates and signs another
Active Agent, called Security Agent, in which the Original Agent is included. This
client then sends the Security Agent to a specified Execution Place - Security Server

for the authentication and verification processes.

When the Security Server receives the signed Security Agent, it invokes the agent’s
call() function, this function then calls the Security Server’s Security Manager to
perform the authentication and verification processes using the Certificates that was

imported by the administrator that corresponds to the agent sender’s Public Key.

71

e The Security Agent’s call() function requires the Security Server’s Security Man-
ager to perform two steps for the agent’s verification and authentication: the first,
verifies the Security Agent, if the Security Agent could be verified, it then verifies

the Original Agent. Figure 5.4 illustrates the verification algorithms.

)

public boolean verify(String certhame, SignedObject so)
{

boolean can_verify;

try

{
FilelnputStream certfis = new FilelnputStream(certname);
CertificateFactory cf = CertificateFactory.getinstance(*X.509");
Certificate cert = cf.generateCertificate(certfis);
PublicKey pubKey = cert.getPublicKey();
Signature verificationEngine = Signature.getinstance("SHA1withDSA", "SUN");
if (so.verify(pubKey, verificationEngine))
{

can_verify = true;
}
else
{
can_verify = false;

}

}

catch (Exception ex)

{
System.err.printin(ex.toString());

}

return can_verify;

FIGURE 5.4 Signed Agent Verification Algorithms

e If both of the Security Agent and the Original Agent can be authenticated and
verified, the Security Server sends "authenticated = true" feedback to its sender
to inform that the Original Agent’s signature has been verified, which means that
the agent has not been attacked during its migration. If either of the agents could

not be authenticated or verified, they both will be discarded.

e When the Execution Place receives an agent "authenticated = true" feedback, it

72

invokes the Original Agent’s call() function, that calls the Security Manager on
behalf of the Execution Place and passes it the Security Context. The Security
Manager then applies VADOR Security Policy defined for the Execution Place by

the administrator.

e If the agent’s Security Context matches the permissions defined by the VADOR
Security Policy, the Original Agent can then perform the doOperation() on the Ex-

ecution Place, otherwise, the agent will be discarded.

5.3 Security Manager Pattern Modules

The VADOR security model implements a specialization of the Security Manager pattern
that consists of sets of packages and interfaces, in which the Security Manager pattern

modules are represented. These modules are listed as the following:
1. Security Interface Module
2. Agent Authentication Module
3. Agent Signature Module
4. Security Server Module

5. Security Attributes Descriptor Module

6. Security Manager Module

Figure 5.5 illustrates the structure and relationship between the modules.

73

i < <derive> >
<<derive>> |

<<executables> >
SecurityManager
In collaborates with all the other

]

|

|

|

|

]

security modules to perform Agent |
Authentication and Authorization :
[

|

|

|

|

|

mechanisms, so that it can control
access 1o system resources and
protect data and information.

|
|
|
]
|
|
|
I
|
|
|
<<derive>> | | |
| |
|
|
|
|
|
i
|
|
|
|
|

| < <derive> >
Vi v
< <executable> > < <executable> >
AgentAuthentlcation SecurityantributesDescriptor
It consists of the Agent Signature Provides access to security-relevant
and Security Server mocules, and attributes, include User Attributes,
performs the agent authentication Subject Artributes, and Object or
and verification processes to Information Attributes obtained
protect the system at the first level. by the Securlty Server from the agent
| 1 authentication process.
| | |
\
<<executables> > \{(\L
Agentsignature <<executable>> b———e !
Sign an agent before it migrates SecurinSener
to another execution place for 1ask An execution place. it Is responsible
execution. The agent signature will of agent signature verification, the
then be used for authentication of agent's authentication, and information
the agent's sender at the execution collection.
place.

FIGURE 5.5 Security Manager Pattern Modules Structure and Relationship

5.3.1 Security Interface Module

The Security Interface Module provides interfaces to all the security related modules in
the VADOR system, including the Agent Authentication that consists of the Agent Sig-
nature, Security Server, Security Manager, and Security Attributes Descriptor modules.
This module has been integrated into the Active Agent’s NetworkTool Module, in which
a set of VADOR system interfaces has been defined.

74

Intefaces
Components or Services
Abstract Classes
IVadorSigner Provides interfaces of Agent Signature
Interfaca of Agent Signature services to VadorServers for signing
agents before sending them to a remote
AbstractVadorSigner VadorServer for task execution.
Defined in Active Agent's NetworkTools
IVadorProxy module. Provides an interface of local
representitive of the remote Security
VadorProxy Server.
Interface of (Sacurity Server 18 oh d Defined in Active Agent's NetworkTools
erverihrea module. Provides an interface of a
ServerThread Security Server Thread launched by the
Security Server.
Provides interface to concret security
Interface IVadorSecurityAttributesDescriptor attributes descriptor classes (i.e,
of j ServerSession) to keep track of security
Security Attributes Descriptor| VadorSecurityAttributesDescriptor attributes.
IVadorSecurityManager Defines interfaces for Security Managers
SecurityVisitors, and PolicyApplicators
Interface of Security Manager AbstractVadorSecurityManager to perform access control mechamisms
in the Vador System.
ISecurityVisitor
AbstractSecurityVisitor
IPolicyApplicator
AbstractPolicyApplicator

FIGURE 5.6 Security Interface Module Components

5.3.1.1 Components

As illustrated in figure 5.6, the Security Interface Module consists in the following com-

ponents:

o Agent Signature Module Interface provides services to VADOR servers to sign

an agent before sending it to remote VADOR Servers for task execution.

¢ Security Server Module Interface provides an interface of a local representative
of the Security Server to a VadorUser or Vador Server. It provides an abstract
ServerThread class to be extended by a concrete SecurityServerThread class, so

that it can be launched by the Security Server for executing a specified task.

o Security Attributes Descriptor Module Interface provides interface and abstract

security attributes descriptor to concrete classes that may keep track of security

75

attributes. For example, the concrete ServerSession class.

¢ Security Manager Module Interface defines interfaces for Security Managers,
Security Visitors, and PolicyApplicators that are on behalf of VADOR Servers to

perform access control mechanisms to the VADOR system.

5.3.2 Agent Authentication Module

The Agent Authentication Module consists of the Agent Signature and Security Server
modules. It is responsible of the first level protection of the VADOR system - Agent Au-
thentication and Verification. The objective is to manage agent signature for the agent’s
sender, and authenticate the signed agent for the agent receiver. It uses security mecha-

nisms provided by the JVM for agent signature and verification processes.

5.3.2.1 Structure

Figure 5.7 presents the structure of the Agent Authentication Module.

5.3.2.2 Participants
o Client

o Any VadorUser or Vador Server that may create and send an Active Agent to

a remote Execution place for task execution.

o Before sending the agent, it signs the agent by applying its VadorSigner.
e VadorSigner

© On behalf of the Client, applies a Cryptographic Algorithm for agent signa-

ture.

sendAgent(signedAgent)

S.receive{signedAgent)}

signedAgent = C.signAgent{VadorAgent)

Client

76

verified = V.verify(signedAgent) b‘l

return {verified)

l
!
!

VadorServer

+sendAgent:booclean

C

VadorSigner

- ———>

+signAgent:boolean

Cryptographic
Algorithm

+receive:void

A
SecurityServer

T
|
Vi

PrivateKey

+verify:boalean

T
!
|
|

V

Centificate

FIGURE 5.7 Agent Authentication Module Class Diagram

o Uses the PrivateKey generated by the VadorUser to sign the agent.

e VadorServer

o Any Vador Server that may receive a signed Active Agent from the Client.

o Before allowing the agent task execution on the server, it must authenticate

the agent by verifying its signature.

e SecurityServer

o On behalf of the VADOR System, applies the same Cryptographic Algorithm

as the Client for the agent’s verification and authentication.

77

o Uses a Certificate corresponding to the VadorUser’s PublicKey to verify the

agent’s signature.
e Cryptographic Algorithm

o Any Cryptographic Algorithm provided by cryptographic service providers

for Java security applications.

o Is the same for both agent signature and verification.

e PrivateKey

o Generated for VadorUser, and stored in a keystore that belongs to the user.
o Together with a PublicKey, forms a key pair.

o Used for agent signature.
o Certificate

o Is the PublicKey generated for VadorUser, and exported to the SecurityServer
as a Certificate of the PublicKey.

o Together with the PrivateKey, consists of a key pair.

o Used for agent verification.

5.3.2.3 Interaction

The Agent Authentication Module interaction is illustrated in figure 5.8

o Clients create VadorAgent objects and apply VadorSigners to sign the VadorAgents.

e The VadorSigners apply Cryptographic Algorithms and use PrivateKeys to sign the

agents.

78

VadorSigner Client VadorServer SecurityServer

|]
f1: signAgent{vadorAgent) !
|

! 2: signedAgent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|

|
|
|
|
|
|
|
|
3: sendAgent(signedAdlent) :

%-:!

| 4: receive{signedAgent) | |
4.1: verify(signedAgent) i

Stveriﬂe:D
F =

Eﬁ b: continue

FIGURE 5.8 Agent Authentication Module Interaction Diagram

Clients send the SignedAgents to remote VADOR Servers for task execution.

VADOR Servers receive the SignedAgents from Clients, and then verify the agents’

signatures by applying the SecurityServer’s verification processes.

According to security protocols, the SecurityServer applies the same Cryptographic
Algorithms as the VadorSigner, and uses the Certificate import from the Clients to

verify the agents’ signatures.

If the agents’ signatures can be verified, the VADOR Servers will allow the agents

to execute tasks on them. Otherwise, the agents will be discarded.

79

5.3.2.4 Related Patterns

e Cryptographic Meta pattern (Braga ef al. (1998)): The VadorSigner represents
the Codifier class, and the SecurityServer represents the Decodifier class in the

pattern.

e Sender Authentication pattern (Braga et al. (1998)): It is the base of this module,
because both can guarantee that information have a genuine and authentic sender, in
such a way that the sender cannot repudiate the information that its receiver believes

was sent by the sender.

5.3.3 Agent Signature Module

The Agent Signature Module is responsible of VadorAgent signature before an agent
migrates to another execution place for task execution. The objective of agent signature
is to authenticate the agent’s sender at the execution places and protect the destination
resources. This module allows the execution places to distinguish malicious agents from
their original copies by verifying their signature, so that they can decline it, but accept the

authenticated one to execute tasks on them.

5.3.3.1 Structure

The structure of the Agent Signature Module is illustrated in figure 5.9.

5.3.3.2 Participants

e Clients

interface
IvadorSigner

*5ignAgent SignedObject

SignedObject signedObject B‘
= Signer.signAgent(VaorUser,VadarAgent)
|
!
Client Signer

80

Serializable

AbstraceVadorSigner

+AbstractvadorSigner
+signAgent:SignedObject
#oenerateKey. PrivareKey
#sign:-SignedObjecr

-signedAgent:SignedObject | __

Serializable
VadorSigner

generateKey() {Generator.genKey();}

sign() {Signature.sign();}

~keyGenerator:VadorKeyGenerator
-priv.PrivateKey
-signedAgent:SignedObject

-signature:VadorSignature

'}__

+VadorSigner
#generateKey:PrivateKey

#sign:SignedObject

signAgent()

{
generateKey();
sign{;

}

Serializable
vadorKeyGenerator
-ksname:String
-spass:char]]
-alias:String
-kpass:char]]

Generator | _yrjy:privateKey
#vadorKeyGenerator
#genKey:PrivateKey

Serializable
Signature VadorSignature

FIGURE 5.9 Agent Signature Module Class Diagram

agent:Object
sa:SignedObject

#vadorSighature
#sign:SignedObject

o Any Vador Server that may apply its signers to sign the agents that have been

created.

o VadorUsers (agents’ owners) and agents provide information to the Vador-

Signers.

e IVadorSigner

o Is an interface to the VadorSigner class.

o Provides an abstract signAgent() method that needs to be implemented.

e AbstractVadorSigner

o Is an abstract class that implements the interface IVadorSigner, and its signA-

gent() method.

81

o Provides two abstract methods: the generateKey() method for key generation,

and the sign() method for signature process.
e VadorSigner

o Extends the AbstractVadorSigner class.
o Provides signature services to the Clients.

o Implements the abstract generateKey() method by applying the VadorKey-

Generator class.

o Implements the abstract sign() method by applying the VadorSignature class.
e VadorKeyGenerator

o Provides services to the VadorSigner.
o Generates a PrivateKey for agent signature according to users’ information
provided by the VadorSigner.

e VadorSignature

o Provides services to the VadorSigner.

o Signs the agent according to the requests from VadorSigner using the Pri-

vateKey provided by the VadorSigner.

5.3.3.3 Interaction

The Agent Signature Module Sequence Diagram illustrated in figure 5.10 presents the

interaction between the participants in this module.

e A Client invokes the signAgent() method in the AbstractVadorSigner to obtain a
SignedObject out of a VadorAgent object. It provides it with the information about
the VadorAgent owner (VadorUser), and the agent object that needs to be signed.

Client

f 1 Signedobject = slgnAgem(Vadn_rESt{r,VadorAaem)

AbstractVadorSigner

—————

FIGURE 5.10 Agent Signature Module Interaction Diagram

11 create

Vadorsigner

1 2: PrivateKey = generateKey)

1.1.1: crestevadorUsery il

Vado

Generator

82

11.2. create(vadoragent)

g

1 3: SignedObject = sign()

1.2.1; PrivaleKey = genKey)

il

L]

1.2.1: SignedOblect = sign{PrivataKey)

YadorSignature

-
I
[
I
1
l

e s B N

]
I
|
|
[
|

__1

L]
i
|
l
|
|
!

e The AbstractVadorSigner creates a concrete VadorSigner, and requires it to perform

the generateKey() method to obtain a PrivateKey from the agent owner’s keystore.

Then it applies the sign() method to obtain a SignedObject using the given Pri-

vateKey.

e A concrete VadorSigner creates a VadorKeyGenerator object and invokes its

genKey() method to get a PrivateKey. It also creates a VadorSignature object, and

then invokes its sign() method to get the SignedObject. Figure 5.11 illustrates the

agent signature algorithms in the VadorSignature class.

5.3.3.4 Related Patterns

e Cryptographic Meta pattern: This module represents the Codifier class in the

Cryptographic Meta pattern, it is responsible for the signature process.

¢ Sender Authentication pattern: In Sender Authentication pattern, the Signer class

has the same utilities as this module.

83

(" package Vador.NetworkTools.|VadorSecurityManager.AgentSignature;)
import Vador.NetworkTools.*;

import java.security.*;

import java.io.*;

public class VadorSignature implements Serializable

{
Object agent = null;

protected VadorSignature (Object agent)
{

this.agent = agent;

}
protected SignedObject sign(PrivateKey priv)

{
try

Signature dsa = Signature.getinstance("SHA1withDSA", "SUN");
Serializable s_agent = (Serializable)(agent);
SignedObject so = new SignedObject(s_agent, priv, dsa);

}

catch (Exception e)

{
}

return 50,
}
_)

FIGURE 5.11 Agent Signature Algorithms

System.err.printin(e.toString());

e Template Method pattern (Gamma et al. (1994)): The abstract AbstractVador-
Signer class defines the skeleton of agent signature algorithms in the signAgent()
method, and lets its subclass-VadorSigner redefine certain steps of the algorithms

without changing the structure.

84

5.3.4 Security Server Module

The Security Server Module defines a new Execution Place, that is a Vador Server re-
sponsible of VadorAgent signature verification, the agent’s authentication, and informa-
tion collection. It is a single access point to the other VADOR Servers and cannot be
bypassed, it has its own Security Manager to enforce the External Security Policy for the

verification and authentication processes.

5.3.4.1 Structure

The structure of the Security Server Module is illustrated in figure 5.12.

SP.reque st SubjectiD,Re source ID); ﬁ intenface interface
T f/edarfroxy ServerThread
] I
Client Iy i
| |
— Vadorfroxy ServerThread

SA = SP.create AndSignAge ntiSubjectiD,Re source IDY; 5P, ? L?
SP.connectiss); SecuritySe rve rProxy SecurityServerThread
SP.se ndAge ntiSA); D

5T

SignedAgent
g 0 sA

55

SecurityServer

SecurityServerSecurityManager guard
T treatSignedAge ntiSA)
| {
SS.receive (SA); guard.requestSA,reque st)
5T = SS.lunchinew SecuritySe rve rThread {guard)); 4
ST.treatSignedAge ntiSA);

FIGURE 5.12 Security Server Module Class Diagram

85

5.3.4.2 Participants

e Clients
o Any Vador Server that may send requests to the SecurityServer for verifying
signature of its received agents.

o Provides Subjectld and ResourcelD obtained from the agents to the Security-

Server via a SecurityServerProxy object.

SecurityServerProxy

o Extends the abstract VadorProxy class defined in the VADOR System.

o Provides a local representative for the SecurityServer.

SignedAgent

o An object created by the SecurityServerProxy.

o Is responsible of signing a VadorAgent object using security attributes pro-

vided by the SecurityServerProxy.

SecurityServer

o A Vador Server that provides agent signature verification service to its clients.

o Applies its Security Manager for the authentication and verification processes.

SecurityServerThread

o Extends the Thread class defined in java.net package.
o Launched by the SecurityServer for communicating with a specified client.
o Applies the SecurityServerSecurityManager assigned by the SecurityServer

to verify a SignedAgent.

e SecurityServerSecurityManager

86

o Extends the AbstractVadorSecurityManager class defined in the SecurityMan-

ager module (See section 5.3.6 for details).
o It is an instance of the SecurityManager module.

o Specifically deals with VadorAgent signature verification(VadorAgent authen-

tication).

5.3.4.3 Interaction

Interaction between the Security Server Module participants is illustrated in figure 5.13.

' Cilent | lgzmﬁm‘:mﬁl e ¢S ecurityManager

]
i
3
i

13 mqueszﬁubjenlg,_&t-snurce!t))

I

I

I

[Stsmeargen] !

11. <<create>> I
|

|

12 connact{ =1}
L

1 I sendAgentSignedagent

SecurityServerThread

=7 1 131 ccormates >

13 1.1 recetve(Signadagent)
u 1312 vanwventy = mquen@gnamem,mquesl)

1.2.1 werinySignedAgent)

13.1.3 return can_verify

Li
I
I
|
|
|
|
|
|
|
|
|
1.4 rewrn canventy | e ——— — et
[|
|
|
|
|
I
|

L]
1
i
i
i
]
]
i
I

————q

FIGURE 5.13 Security Server Module Interaction Diagram

¢ A Client sends request with a Subjectld and ResourcelD to the SecurityServer via

its SecurityServerProxy.

e The SecurityServerProxy creates and signs a VadorAgent object with information

provided by the Client.

e The SecurityServerProxy then connects to the Security Server, sends the SignedA-

gent object via the channel, and waits for a return message.

87

e The SecurityServer launches a SecurityServerThread to deal with the request.

The SecurityServerThread receives the SignedAgent object from its proxy, then

applies its SecurityManager to verify the object’s signature.

The SecurityServer’s SecurityManager verifies the SignedAgent’s signature, then

returns the result to the SecurityServerThread.

The SecurityServerThread returns the result to the SecurityServer.

The result finally returns to the Client by the SecurityServer via its proxy.

5.3.4.4 Related Patterns

e Proxy pattern(Gamma et al. (1994)) is applied to the Security Server module.
A client’s request can only be sent to the Security Server via the Security Server

Proxy.

¢ Single Access Point pattern (Yoder and Barcalow (1998)): the Security Server
module is a specialization of the Single Access Point pattern. It provides a security

module to control access to the other VADOR Servers, and cannot by by passed.

e Policy(Guibault et al. (2004)) is used by the Security Server Security Manager to

enforce security policy for the signature verification processes.

5.3.5 Security Attributes Descriptor Module

The Security Attributes Descriptor Module provides access to security-relevant attributes
of an entity on whose behalf operations are to be performed. Types of the security at-

tributes include User Attributes, Subject Attributes, and Object or Information Attributes.

88

This module allows an operation to specify a subset of the attributes for which it re-
quires access, by specifying a SecurityAttributeType. This way the VadorSecuritySub-
JectDescriptor will not be affected when a new attribute is added to a filtered SecurityAt-
tributeList.

5.3.5.1 Structure

Figure 5.14 represents structure of the Security Attributes Descriptor Module.

SecurityAttributeList attributes Interface

= S55.getAttributes(; IVadorsecurityAttibutesDescyipror

SecurityArtributeList attributesl

= SS.getAntributes (SecurityAttributeType type), +ootaciibutes: SecurityAttibutel st getAttributes (f{return SecurityAttributeLlst}
T I getAttributes{SecurityAttributeType type)
Ly
: | {return SecurityAttributeList}
i
1 !
VadorsecurityAttributesDescriptor |
Client v i - SecurltyAttributeType
—————— >
+getAttributes:SecurityAttributeLlst
attributes:SecurityAttributeLlst
Serversession SecurityCont...
sS
lTi
SecurityAttributeList SecurityAttribute
a.*

aperatian -attribute:SecurityAttribute —— -type:SecurityAttributeType

add{SecurityAttribute attribute)

~— +add:void

does not affect the

VadorSecurityAttributesDescriptor.

FIGURE 5.14 Security Attributes Descriptor Module Class Diagram

5.3.5.2 Participants

e Client

o Any entity in the VADOR System that needs to access security-relevant at-

tributes to perform an operation.

89

o Accesses to the security-relevant attributes via the Security Attributes De-

scriptor Module.
e IVadorSecurityAttributesDescriptor

o Provides an interface to the Security Attributes Descriptor Module.

VadorSecurityAttributesDescriptor

o Implements the functions defined by the IVadorSecurityAttributesDescriptor.

o Defines abstract methods that will be implemented by concrete VadorSecu-

rityAttributesDescriptors.

SecurityAttributeList

o Contains sets of SecurityAttributes.

o New SecurityAttributes can be added into the SecurityAttributeList by apply-

ing its add() function.

SecurityAttribute

o Defines SecurityAttributes and distinguishes them by their SecurityAttribut-

Type.

SecurityAttributeType

o Deifnes types of SecurityAttributes. For example, KEYINFO, OBJECT, and
SUBJECT.

ServerSession

o A concrete class that extends the abstract VadorSecurityAttributesDescriptor.

o Created by a VadorSecurityManager on behalf of a ServerThread to keep

track of the security-relevant attributes associated with that ServerThread, so

90

that the attributes can be used by the operations on behalf of the same Server-

Thread.

o If the ServerThread is closed, the ServerSession is also closed.
e SecurityContext

o aconcrete class that extends the abstract VadorSecurityAttributesDescriptor.

o created by a VadorSecurityManager. to describe security-relevant attributes
provided by a VadorAgent, then it will be passed to a Security Visitor for

permission checking.

o if the permission is granted by the PolicyApplicator, the SecurityContext will

be added to the previous SeverSession for later usage.

5.3.5.3 Related Patterns

e This module is an instance of Subject Descriptor pattern (OpenGroup (2002)). It
provides access to security-relevant attributes on an entity, adds new attributes to
the list without affecting the attributes descriptor, and allows operations to specify

a subset of the attributes by specifying an attribute type.

e The ServerSession implements the Session pattern (Yoder and Barcalow (1998)).
A ServerSession object can hold all of the security-relevant attributes that need to

be shared by many objects in the same ServerThread.

5.3.6 Security Manager Module

The Security Manager Module performs two level access control mechanisms to the

VADOR system: Active Agent Authentication and Authorization. This module is the

91

core of the VADOR security architecture, it in collaborates with all the security modules

to control access to the VADOR system resources and protect the data and information.

5.3.6.1 Structure

Figure 5.15 represents the structure of the Security Manager Module. OtherServerSe-
curityManager, OtherServerSecurity Visitor, and OtherServerPolicyApplicator represent
the SecurityManager, Security Visitor, and PolicyApplicator that stand on behalf of the
VADOR Servers other than the SecurityServer.

OSM.request(signedAgent, req)
I req=YERIFY_AGENT ™ interface 1} ™ merace)
return OSM.verif(slgnedAgent); . m_'_lmenazg
If req = CHECK_PERMISSION inarface - —
securityContext = OSM.getSecurityCantext(; VadorSacurityManager
return OSM.request_altewed(securityContext); —_— i
if req=USE_SSH +chedk_policycboo! Faceptwid
securityContext = O5M.getSecurityContexi(); +match. palicy:truol
return OSM. use_SSH(securityContext); prequestbonl Fi
A | i
1 | | |
[} AbstractVadorSecurityManager A il i K i
5
renMslgnedAaenl) +request:baol + dhedk_pulicy:boul +acvepthoul
return SSM.requestsignedAgent, VERIFY AGENT; ::qr;mmbﬂl’ +match_pulicy-boat
) s
If {signedlAgent [s verified) #use. SSHiboo! 0 A 7 i
request_allowed(seturityCantext) r L 1
(il
return OPA. atcept(OSY, securityContext); osM |
OtherServerSecurityManager
! -05V:OtharServerSecurttyVisitor SucuryServerSeouityManages
t -OPA:OtherServarPolicyApplicatar .
_____________ » ~55V:SecurityserverSecuritylisitor
-SSM:SecuriServersecuriyManager ssM_ | ~SPASECUrtyServerPolicyspplicator
:xﬁ';;;‘;::‘mn:b“' +request_allowed:baol
g +wverifybool
*+use_SSH:bool +use_SSH:bool
asy \l(SV
OtherServerSecurityVisitor SecurityServerSecurityVisitor check_policy(SPA, securityContext)
;:he:lgpollcy(OPAsecumscumexl) S { on b gl
. match_pol ecurityCantext);
;elum OPAmatch_policy(securityContext); +chack_policy:bool +check_policy.tool }
OtherServerPollcyApplicator SPA Semmysewzrﬁxlllympnnt?r
+atcept:boo! +accept:bool
+match_policy.bool +match_policy:hool
l g e — T
i 1

accept{SSY, securityContext)
§

return SSY. check.pollcy(thls, securityCantext);
}

accept(OSV, securinyContext)
{

| return OSY.check_pallcyQhls, securityContext);
}

FIGURE 5.15 Security Manager Module Class Diagram

5.3.6.2 Participants

e Client

92

o Any entity in the VADOR System that needs to access to VADOR Servers to

complete a task.
o In order to access VADOR Servers’ resources, a client must be verified and
obtain permission via the Security Manager Module.

o IVadorSecurityManager

o Is an interface of the Security Manager to all the VADOR Servers.

o Provides an abstract request() method that needs to be implemented.
e AbstractVadorSecurityManager
o Is an abstract class that implements the interface I'VadorSecurityManager and

its request() method.

o Provides three abstract methods to its subclasses: method verify() authen-
ticates and verifies a signed agent object, method request_allowed() checks
permissions on a verified agent object, and method use_SSH() performs SSH
protection mechanisms if they are required by a Vador Server’s security pol-

icy.
e SecurityServerSecurityManager

o Extends the AbstractVadorSecurityManager class.

o Provides a SignedAgent authentication and verification services to the other

VADOR Servers, for example, Executive, Librarian, and Wrapper servers.

o Implements the abstract verify(), request_allowed(), and use_SSH() methods

defined by its supper class.
e OtherServerSecurityManager

o Extends the AbstractVadorSecurityManager class.

93

o Acts on behalf of a specified Vador Server, and provides permission checking
services on a verified (by the SecurityServerSecurityManager) ActiveAgent

for the Vador Server.
o Implements the abstract verify(), request_allowed(), and use_SSH() methods
defined by its supper class.
o ISecurityVisitor
o Is an interface of the Security Visitors to all the Security Managers that act on
behalf of the VADOR Servers.

o Provides an abstract check_policy() method that needs to be implemented.
o AbstractSecurityVisitor

o Is an abstract class that implements the interface ISecurity Visitor.

o Provides the abstract check_policy() method to its subclasses.
o SecurityServerSecurity Visitor
o Extends the AbstractSecurity Visitor class and implements the abstract check _

policy() method.

o Acts on behalf of the SecurityServerSecurityManager, and provides authenti-

cation and verification services to the Security Manager.
o Provides SecurityContexts to SecurityServerPolicyApplicator for the actual
authentication and verification algorithms.
o OtherServerSecurityVisitor
o Extends the AbstractSecurity Visitor class and implements the abstract check
policy() method.

o Acts on behalf of a specified Vador Server’s Security Manager, and provides

permission checking services to the Security Manager.

94

o Provides SecurityContexts to a PolicyApplicator that acts on behalf of the

same Security Manager for the actual permissions checking algorithms.
¢ IPolicyApplicator
o Is an interface of the PolicyApplicators to all the Security Managers that act
on behalf of the VADOR Servers.
o Provides abstract accept() and match_policy() methods that need to be imple-
mented.

e AbstractPolicyApplicator

o Is an abstract class that implements the interface IPolicyApplicator.

o Provides the abstract accept() and match_policy() methods to its subclasses.
¢ SecurityServerPolicyApplicator

o Extends the AbstractPolicyApplicator class and implements the abstract ac-

cept() and match_policy() methods.

o Acts on behalf of the SecurityServerSecurityManager, and collaborates with
the Security Visitor to perform actual authentication and verification algo-
rithms by consulting the External Security Policy which is initialized by the
VADOR administrator.

e OtherServerPolicyApplicator

o Extends the AbstractPolicyApplicator class and implements the abstract ac-

cept() and match_policy() methods.

o Acts on behalf of a specified Vador Server, and collaborates with the Secu-
rity Visitor to perform actual permission checking algorithms by consulting
VADOR Security Policy of this server which is initialized by the administra-

tor.

95

5.3.6.3 Interaction

Interaction between the Security Manager Module participants is illustrated in figure 5.16.

Client @
[| requestisignedAgen,(ea 3 ;: ifireq==VERIFY.AGENT): request(sfinedAgent, VERIFY_AGE... S5V
=

1,1.1: created

1.1.2: createy

[i.1.3: getsecuritycontext(signedAgent) f
[
1.1.4: accept(SSV, securityContext) 'I

|
|
|
I
|
I
1

A

1.14.1: check-pulicmrﬁ.se:urhy(umext)

1.1.4.1.1: match-ppllfwsecurin/Contexy)
e 1]
——————— |
L" ———————————————————————— T

[i Ez: if{reqy==CHECK_PERMISSION or USE_SSH) getSecurityContext()

oSy
13: crealep__

1.4: create(® H

1.5: accept(ow,secuh\\,&mext)

|
E
|
|
|
|
|
]
|
|
!
T

I| Ls.l: chetk_polio/(!his,5ecuriWComext)
L 1.5.1.1: match_galicy(securityContext)
I

0 |

3

t

!

{

{

{

1

l

|

|

|

|

|

|

|
~——--41H]

————

FIGURE 5.16 Security Manager Module Interaction Diagram

e A Client invokes the request() method of an OtherServerSecurityManager (OSM)
that stands on behalf of a Vador Server, and passes its request with security contexts
to this Security Manager. The request can be either VERIFY AGENT, CHECKING
PERMISSION, or USE SSH, and the security contexts contain the security infor-

mation related to this Client.

96

o If a Client passes the VERIFY AGENT request to an OSM, the OSM will become
a Client to the SecurityServerSecurityManager (SSM), it then invokes the request()
method of the SSM, forwards the VERIFY AGENT request and the security con-
texts to the SSM.

e When the SSM receives a VERIFY AGENT request from its client, it first creates
two objects on the Security Server: a SecurityServerSecurity Visitor (SSV) and a
SecurityServerPolicyApplicator (SPA). Then, it gets Security Contexts from the
SignedAgent passed by the client, invokes the SPA’s accept() method, passes the
SSV object and the security contexts as parameters. The SPA’s accept() method
accepts the SSV as its visitor and allows it to visit its policy (External Security

Policy) using its match_policy() method.

e If a Client passes a CHECKING PERMISSION request to an OSM, the OSM will
first check if the security contexts contain a verified state, if it is true, it then invokes
its own request_allowed() method, forwards the security contexts to it to continue
checking processes, otherwise, it passes a VERIFY AGENT request to the SSM as

described above.

e If a Client passes a USE SSH request to an OSM, the OSM will first check if
the security contexts contain a verified state, if it is true, it then invokes its own
use_SSH() method, forwards the security contexts to it to continue using SSH pro-
cesses, otherwise, it passes a VERIFY AGENT request to the SSM as described

above.

¢ In both cases of an OSM performing a request_allowed() or a use_SSH() methods,
at first, the OSM needs to create two objects on the same server: an OtherServer-
Security Visitor object (OSV) and an OtherServerPolicyApplicator (OPA). Then, it
gets Security Contexts that were obtained by the SSM and saved in a Securtiy Ses-

sion, invokes the OPA’s accept() method, passes the OSV object and the security

97

contexts as parameters. The OPA’s accept() method accepts the OSV as its visitor
and allows it to visit its policy (VADOR Security Policy) using its match_policy()

method.

e The OSV returns the results to the OSM, the OSM then forwards the result to its

Server.

5.3.6.4 Related Patterns

e The SecurityServerSecurityManager and the OtherServerSecurityManager repre-
sent the Guard, the Security Visitors represent the Policy, and the PolicyApplicators
represent the Rule in the Policy Pattern (Guibault ef al. (2004)).

e The Security Visitors cooperates with the PolicyApplicators and implement the Vis-
itor Pattern (Gamma et al. (1994)), so that the VADOR system can add a new
security related operation to a Security Visitor without changing operations on the

PolicyApplicators.

e The PolicyApplicators use the Strategy Pattern (Gamma er al. (1994)) to define

permission checking algorithms.

5.3.7 Consequences

e Introducing a separate Security Server from the other VADOR Servers helps to
avoid the Security Server monopolies the access control processes. This approach
enhances management flexibility of the VADOR system. In addition, it divides re-
sponsibilities among different servers, which can improve time deduction of access

control processes.

e The Security Managers act on behalf of the servers can help dynamically define

98

and load security policy for every server that is involved in the VADOR system, so
that one Vador server’s security policy change will not affect the others and prevent

them from working properly.

e Although the Security manager of the Security Server performs verification and
authentication processes to control accesses to all the other VADOR Servers, it is
not the only access point into the VADOR system. The other VADOR Servers’
Security Managers also represent access points to the system. The difference is that
the first one acts on behalf of the Security Server to control accesses to the other

VADOR Servers, while the others control accesses to VADOR Resources.

5.3.8 Related Patterns

e The Protected System pattern (Guibault et al. (2004)) describes the structure of the
Security Manager, in which access to a set of resources by various clients can be

controlled.

e The Policy pattern isolates policy enforcement activities into one dedicated compo-
nent - Security Visitor to ensure that these activities are done correctly and in proper

sequence.

e The Partitioned Application pattern constructs Security Managers on behalf of
VADOR Servers. It allows Security Managers to perform simple tasks rather than
having only one complex Security Manager for the whole system. Having these
Security Managers facilitates the security management, especially in VADOR, be-

cause some tasks require different privilege levels and security permissions.

e The Subject Descriptor pattern provides a convenient abstraction for managing se-
curity relevant attributes. Since the Security Server’s Security Manager is used for

identifying the subject, and a Security Manager of an Execution Place is later used

99

to authorize (or deny) the subject access to resources, this abstraction is particularly

useful in VADOR.

e Many other patterns are also involved in the Security Manager pattern , and they

have been described in the modules (see section 5.3).

5.4 Summary

This chapter introduced the Security Manager pattern, that represents the security archi-
tecture of the VADOR system, formalizes the prevention approaches to the VADOR secu-
rity defect introduced in section 3.2, and then provides solutions to the VADOR security
problems (See Chapter 3). The main objective of using this pattern is to control access
to VADOR data files, and it can be realized by separating authentication and verification
processes on a centralized Security Server from permission checking processes on an-
other individual Vador Server, such as Executive Server, Librarian Server, and Wrapper

Server.

The Security Manager pattern consists of six modules (see section 5.3 for detailed de-
scription): the Security Interface Module provides interfaces to all the security related
modules in the VADOR system, the Agent Authentication Module is responsible of the
first level protection of the VADOR system - Agent Authentication and Verification, the
Agent Signature Module is responsible of VadorAgent signature before an agent mi-
grates to another execution place for task execution, the Security Server Module defines a
Vador Server responsible of VadorAgent signature verification, the agent’s authentication,
and information collection, the Security Attributes Descriptor Module provides access to
security-relevant attributes of an entity on whose behalf operations are to be performed,
and the Security Manager Module coorperates with all the security modules control ac-

cess to the VADOR system resources and protect the data and information.

100

This chapter has described the Security Manager pattern by introduction of its contexts,
problems, solutions, structure, interactions, and so on, the chapter 6 will focus on valida-

tion and testing of this pattern in the VADOR system.

IIIIIIIIIIIIIIII AR S ——

{varifyAgent==true}

can_accessg

trup)

<<creatas»

a«create»»(VadorUser VadorObjecl
««¢reatar»(VadarUser vadorObject)

{can_access)

=crgale»>

fﬁ ung

H—————

accapi{/adovisitor)

T S —

|
(utorklaer Vhdoriyecy |

| metiod

vadoibaci=ostiRaseng

T i

I
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
1
I
I
|
|
|
|
[
|
{
|
|
|
|
|
|

101

g
2
&
£
£
ol
g
M._
£
2
G
ol
=4 &
8 2
> 13
bl
. =
b0 g
:
g 2
v g
s
II S S
|_|_ o
2
b &
H
9

102

CHAPTER 6

VALIDATION AND TESTS

Previous chapters introduced the VADOR framework, the security problems and defects
that exist in the original VADOR architectural design, and the possible solutions to the
problems introduced. Then a security design pattern, named Security Manager pattern
has been defined to prevent the security defects and resolve the security problems from
design, so that it may be applied to build a security architecture for VADOR, specifically,

to control accesses to its data files.

This chapter will focus on validation and tests of the Security Manager pattern in

VADOR.

6.1 Objectives

Based on the objectives of this work as introduced in section 1.4, the objective of Val-
idation and Tests is to validate and test the Security Manager pattern (See Chapter 5)
that implements the Protected System pattern (Guibault et al. (2004)) and other security
design patterns introduced in Chapter 2, and in which the protection mechanisms should
control all operations made available by the agent components through each agent proxy.
The validation and tests processes will insure that the Security Manager pattern is able to
control accesses to VADOR system’s resources, specifically, data files, and increase the

applications usability and reliability, and reduce long-term costs.

103

6.1.1 Why Validate the Pattern

The Security Manager pattern consists of six modules (See section 5.3 for detailed de-
scription), each of them participates as a specific protection mechanism of the VADOR
security architecture and is responsible for it. Many security design patterns also have
been implemented in these modules to solve specific security problems. However, since
the Security Manager pattern has been defined using a static technique (paper review), it
may be more effective in finding, correcting and preventing problems at an earlier stage
of a development process, but its functionalities and run-time behavior need to be demon-

strated and analyzed using dynamic technique, such as testing.

6.1.2 Why Test the Pattern in the VADOR Framework

In order to validate the Security Manager pattern, some tests need to be made, specifically,
these tests should focus on controlling accesses to VADOR system’s resources. The
reason of using the VADOR framework to test this design pattern is that VADOR is an
instance of the type of distributed application towards which the Security Manager pattern
is targeted. VADOR’s system resources need to be protected from attacks of malicious

users or agents.

6.2 Management of the Validation and Tests

According to the Principles of Software Validation introduced by Soft Solutions Inter-
national (Soﬂ-Solutions-International (2002)), proper validation of software includes the
planning, execution, analysis, and documentation of appropriate validation activities and
tasks (including testing or other verification). Security Manager pattern validation is also

based on the software life cycle, but instead of an entire software, it focuses on the specific

104

Security issues.

The detailed validation will be described in the following subsections.

6.2.1 Plan

Based on a study of the security defects prevention requirements and related control ac-
cess problems in VADOR, this section introduces the validation plan that specifies how

the process will be controlled and executed.

As table 6.1 describes, the validation is planned in three steps, each step will validate one
of the functionalities required to control access to VADOR system’s resources using the

Security Manager pattern.

TABLE 6.1 Security Manager Pattern Validation Plan

| Steps | Plans Required Functionalities |
1 Validate and test External Security Policy defines privilege
Security Policy of an agent to access VADOR servers and
initialization is initialized by the VADOR administrator.

The VADOR Security Policy defines
privileges of a verified agent to access
VADOR resources and is initialized by the
PolicyApplicator based on user
information defined in database.

2 Validate and test A client signs an agent before
verification and it is sent. A VADOR server verifies

authentication processes | an agent after receiving it by consulting

the External Security Policy

3 Validate and test A VADOR server authorizes an agent to

authorization processes access VADOR resources on its behalf

by consulting the VADOR Security Policy

105

6.2.2 Procedures and Expected Results

This section will specify procedures that were established for the validation tasks and

expected results from the validation procedures.

e Procedures

1. Demonstrate initialization of the External Security Policy using the Keytool
program provided by the Java Security package. The initialization of the
VADOR Security Policy will be demonstrated through the validation of au-

thorization processes.

2. Test verification and authentication of agents, including test of the Agent Sig-
nature using a Private Key to sign an agent by its creator and sender, and test
of the Agent Authentication using the Certificate corresponding to the Pub-
lic Key by the VADOR Security Server if the agent receiver (agent execution

place) requires it.

3. To test agent authorization processes, the VADOR Security Policy must have
been defined, and related VADOR user information, such as group, privilege
and permissions to access resources should have been saved in the VadorPol-
icy database table. In addition, the agent should have been verified by the
Security Server via the verification processes. Then the testing procedure fo-
cuses on the Security Manager, that acts on behalf of the VADOR server where
the agent has moved on for task execution. The functionalities of the Security
Manager will be tested including access control management, such as sending
an agent to the Security Server for verification processes, and creating a Se-
curity Visitor object to visit the VADOR Security Policy that is initialized by
PolicyApplicator object, which is also created by the Security Manager.

e Expected Results

106

— A VADOR administrator will be able to generate key pairs and save them into
Keystores on VADOR servers for all VADOR users that will be permitted to
create, sign, and send agents on these servers based on a defined External
Security Policy. Then the key certificates will be exported from these servers

and imported onto the VADOR Security Server by the administrator.

— Private Keys on VADOR Servers can be selected by VADOR users to sign
agents, and Key Certificates on the Security Server can be selected to verify
the signed agents. But VADOR users will not be able to select Private Keys
or Certificates using incorrect Keystore, key, or certificate information, such

as alias or password.

— If an agent was signed successfully, it will be sent to another VADOR server.
Otherwise, it cannot be sent, and a sendAgent_failed message will be returned

to its sender.

— If the Security Server cannot find a certificate to verify a signed agent using
key information provided by the agent, or if the Security Server cannot de-
codify the signed agent using a fine certificate, the agent will not be authenti-
cated. An authentication_failed message will then be returned to the VADOR
server that required the verification. Otherwise, the agent is authenticated, and

an authentication_succeed message will be returned.

— If a VADOR server receives an authentication_failed message from the Secu-
rity Server, it discards the received signed agent, and forwards the authenti-
cation__ failed to the agent sender. If it receives authentication_succeed mes-

sage, it will continue its agent authorization processes.

— If the VADOR server’s PolicyApplicator cannot initialize VADOR Security
Policy from the VadorPolicy table in the VADOR database using the VADOR
user’s information that comes with the agent, or it cannot match the agent’s

requests to its sender’s privilege, it will return FALSE to the VADOR server,

107

so that the agent will not be authorized to execute a task on the VADOR
server. The VADOR server then will discard the agent, and return an au-

thorization_failed message to the agent sender.

— If the agent can be authorized, the PolicyApplicator returns TRUE to the
VADOR server, so that the agent will be permitted to execute tasks on that

SErver.

6.2.3 Test Cases and Results

This section will demonstrate test cases that correspond to the validation plan and are
conducted in accordance with the established procedures. Then, results will be gathered
from the test cases and evaluated by comparing them with the expected results introduced

in section 6.2.2.

6.2.3.1 Test Cases

e Login as VADOR administrator, use the Java Keytool program to generate several
security key pairs using different aliases and passwords, and save them in one or
different Keystore(s) on VADOR servers. Test cases and results of the key pairs

generation are described in table 6.2.

e Use the Keytool to export certificates from the VADOR servers to the VADOR
Security Server, and then import the certificates onto the Security Server for the
signed agent verification and authentication purpose. Table 6.3 shows the test cases

and results of the certificates exporting and importing onto the Security Server.

e Login as different VADOR users, try to use both correct and incorrect key informa-
tion to sign agents on the VADOR Servers. The test cases and results are showed

in table 6.4.

TABLE 6.2 Keys Generation Test Cases and Results

| Server | Keystore | Keystore Pass | Key Alias | Key Pass ||
sl-kl s1-k1-pass
Executive sl s1-pass s1-k2 s1-k2-pass
s1-k3 s1-k3-pass
s2-k1 s2-k1-pass
Librarian s2 s2-pass s2-k2 s2-k2-pass
s2-k3 s2-k3-pass

TABLE 6.3 Certificates Exporting, Importing Test Cases and Results

108

From Server | Keystore | Keystore Pass | Key Alias | Key Pass | Certificate ||
s1-kl sl-k1-pass | sl-kl-cert
Executive sl sl-pass s1-k2 s1-k2-pass | s1-k2-cert
s1-k3 s1-k3-pass | s1-k3-cert
s2-kl s2-kl-pass | s2-kl1-cert
Librarian s2 s2-pass s2-k2 s2-k2-pass | s2-k2-cert
s2-k3 s2-k3-pass | s2-k3-cert
TABLE 6.4 Agent Signature Test Cases and Results
Server | Keystore | Keystore Pass | Key Alias | Key Pass | Result
Executive sl s2-pass s1-k1 sl-k1-pass | sendAgent failed
Executive sl s1-pass s1-k2 s1-k2-pass agent sent
Executive sl s1-pass s1-k3 s1-k2-pass | sendAgent failed
Librarian s2 s2-pass s2-k2 s2-k1-pass | sendAgent failed
Librarian sl s1-pass s1-k2 sl-k2-pass | sendAgent failed
Librarian s2 s2-pass s2-k3 s2-k3-pass agent sent

e Login as different VADOR users, use both correct and incorrect certificates to verify

a signed agent on the Security Server, and sometimes change the signed agent status

so that it may become a malicious agent. Table 6.5 shows the Agent Authentication

test cases and results.

109

TABLE 6.5 Agent Authentication Test Cases and Results

| Peivate Key | Certificate | Agent Status |

Result |

s1-kl s1-k1-cert no change | authentication succeed
s1-k2 s2-k2-cert no change authentication failed
s1-k3 s1-k2-cert changed authentication failed
s2-k2 s2-k3-cert no change authentication failed
s1-k2 s1-k2-cert changed authentication failed
s2-k3 s2-k3-cert no change | authentication succeed

e Login as different users, use both user names that do and do not exist in the Vador-

Policy database table to test agent senders privileges and the agent authorization.

If an user name exists, try to match operation requests from the agent to the user’s

privileges in the database table. Table 6.6 illustrates the VadorPolicy database table

and values for the test cases. The test cases and results of the Agent Authorization

are shown in table 6.7.

TABLE 6.6 VADOR Policy Database Table and Value Example

| UserID | Username | group | Read | Write | Execute ||
1 ul groupl | true true true
2 u2 groupl | true | false true
3 u3 groupl | true | true true
4 u4 group2 | true | false true
5 us group2 | true | false false
6 ub group2 | true | false true

6.2.3.2 Results of Validation and Tests

Section 6.2.3.1 demonstrated some test cases that followed the validation plan (See sec-

tion 6.2.1 for details) and were conducted in accordance with the established procedures

introduced in section 6.2.2.

TABLE 6.7 Agent Authorization Test Cases and Results

| User Name | Agent Request | Return | Result |

ul Read true | agent executes tasks
ul Write true | agent executes tasks
ul Execute true | agent executes tasks
u2 Read true | agent executes tasks
u2 Write false agent is discarded
u2 Execute true | agent executes tasks
u3 Read true | agent executes tasks
u3 Write true | agent executes tasks
u3 Execute true | agent executes tasks
u4 Read true | agent executes tasks
u4 Write false agent is discarded
u4 Execute true | agent executes tasks
u5 Read true | agent executes tasks
us Write false agent is discarded
u5 Execute false agent is discarded
ub Read true | agent executes tasks
ub Write false agent is discarded
ub Execute true | agent executes tasks

u-unknown Read false agent is discarded

u-unknown Write false agent is discarded

u-unknown Execute false agent is discarded

110

This section will compare the results of the test cases to the expected results introduced

in section 6.2.2, and conclude the comparison in table 6.8 and 6.9.

6.3 Limitations on the Tests

Because the VADOR system has not setup the SSH port forwarding to manage com-

munication between different domains, the Active Agent can only migrate between the

VADOR servers reside in the same domain. Therefor, the validation and tests are also

limited to the VADOR servers that are in the same domain.

111

Only Executive server and Librarian server have been selected for the tests purpose, be-
cause they represent the most specific VADOR servers that may send and receive Active
Agent for task executions. However, the tests are only limited to the specific security
issue, which is to control access to system resources, so that server and agent protection

are not included in the tests.

Since the SSH protection mechanisms are managed by operating systems, it was not tested

within the Security Manager pattern.

6.4 Possible Applicability to Other Systems

As mentioned in section 6.1, the main objective of the validation and tests is to insure that

it is able to control access to VADOR system’s resources.

By introduction of relevance and extension points, this section discusses the possibility of

applying the Security Manager pattern to other systems, specifically, distributed systems.

6.4.1 Relevance of Other Systems

As introduced in Chapter 1, VADOR is built as a mobile agent environment that meets the
requirements of a MDO software framework for aeronautical applications. Specifically,
it is a distributed system that uses the Internet as communication media, and allows many
users work in the same environment, on the same system resources at the same time.
However, threats can affect the agent during its migration, they can also affect a specific
user data file when there is a command that needs to be executed (See section 3.1 for

detailed description).

Same as the VADOR system, threats can also affect agent and user data in other agent

based distributed systems, in which the Internet is used as communication media. The

112

solution of control access to system resources in the VADOR systems should be able to

be applied in other distributed systems.

6.4.2 Extension Points to Other Systems

The Security Manager pattern provides several extension points, they can be easily ex-
tended by other distributed systems to build security architectures for controlling access
to the systems’ resources. These extension points are represented in the Security Interface

module, in which the following parts are include:

1. Extension points for Agent Signature
2. Extension points for Security Server
3. Extension points for Security Attributes Descriptor

4. Extension points for Security Manager

6.4.2.1 Extension points for Agent Signature

A new concrete VadorSigner class can extend the AbstractVadorSigner provided by the
Interface of Agent Signature, so that it can apply different cryptographic algorithms to

sign an agent before sending it.

6.4.2.2 Extension points for Security Server

Extend the abstract VadorProxy and ServerThread provided by the Interface of Security
Server, other distributed systems can easily implement Security Servers for agent authen-

tication and verification. A new concrete SecurityServerProxy can extend the VadorProxy

113

to act as a local representative of the Security Server. A new concrete SecurityServer-

Thread that is launched by the SecurityServer is an extension of the ServerThread.

6.4.2.3 Extension points for Security Attributes Descriptor

Other distributed systems can extend the abstract VadorSecurityAttributesDescriptor de-
fined in the Interface of Security Attributes Descriptor, so that they can create new con-

crete security attributes descriptor classes for keeping track of security attributes.

6.4.2.4 Extension points for Security Manager

Three extension points are defined by the Interface of Security Manager: the Abstract-
VadorSecurityManager, the AbstractSecurityVisitor, and the AbstractPolicyApplicator.
Other distributed systems can extend them to create concrete SecurityManager, Secu-
rity Visitor, and Policy Applicator classes for all servers that act on behalf of the systems,

so that they can perform agent authorization process for the systems.

6.5 Summary

Chapter 5 statically defined and validated the Security Manager pattern, that is defined
to build VADOR security architecture, so that it can solve security problems and prevent

security defects related to access control mechanisms in VADOR framework.

As the Objectives that is introduced in the beginning, this chapter dynamically validates
the Security Manager pattern by demonstrating and testing it in the VADOR system. The
management of these validation and tests including a plan, procedures and expected re-

sults, test cases and results, and finally, a comparison of the expected results and the test

114

results show that the Security Manager pattern can be implemented to formalize security
mechanisms, and can help to build security architecture in VADOR, so that security de-
fects and problems related to control accesses to system resources can be prevented and

solved.

TABLE 6.8 Comparison of Expected and Test Cases Results - 1

Expected Result

Test Cases Result

The VADOR administrator is
able to generate Key pairs and
save them into specific Keystores
using the Java Keytool program

Sets of Key pairs have been
generated and saved in specific
Keystores by the administrator

using Keytool program

The VADOR administrator is
able to export and import the Key
Certificates

Key Certificates have been
exported from the VADOR servers
and imported into the VADOR
Security Server by the administrator
using the Keytool program

An agent sender is able to sign
the agent using an existing
Private Key by providing correct
Key and Keystore information,
and then the signed agent can be
sent. Otherwise, if the sender
provides incorrect information
of a Key or Keystore, the agent
cannot be signed and sent. A
sendAgent_failed message
will be returned to this sender

When a sender provides correct Key
and Keystore information of an
existing Private Key, the agent could
be signed and then sent by this sender.
When the Key or Keystore information
is incorrect, the agent sender could
not sign and send the agent, but
received a sendAgent_failed
message

The Security Server is able to use
correct Key Certificates to verify
signed agents for the other VADOR
servers. If provided certificate
information is correct and it can
de-codify a signed agent using
the certificate, it will return a
authentication_succeed message
to the VADOR server, otherwise,
it will return a authentication_failed
message to the VADOR server

When provide a correct Key Certificate
to the Security Server, and the signed
agent status (for example, sender
information or requests) has not been
changed, the Security Server returns
authentication_succeed to the
VADOR server. When a incorrect
certificate information provided, or the
certificate is correct, but the signed
agent status has been changed,
so that the Security Server cannot
de-codify the signed agent, then
a authentication_failed message
is returned to the VADOR server that
required the verification and
authentication

115

116

TABLE 6.9 Comparison of Expected and Test Cases Results - 2

Expected Result

Test Cases Result “

If a VADOR server receives the
authentication_succeed message
from the Security Server, it will
continue the agent authorization
processes. Otherwise, if it
receives message
authentication_failed,
it will discard the agent and
forward authorization_failed
message to the agent sender

When a VADOR server receives a respond

message from the Security Server, if
the message is authentication_succeed,
it continues on the agent authorization
processes, if the message is
authentication_failed, it discards
the signed agent, and forwards the
message to the agent’s sender

If information of an agent sender
cannot be found in the VadorPolicy
table, or the agent’s requests do not

match its sender’s privileges, the

agent cannot be authorized to execute
tasks on the VADOR server. Otherwise,
if the sender’s information
can be found in the VadroPolicy
table in database, and the sender’s
privileges match the agent’s requests,
the agent will be authorized to execute
tasks on the VADOR server

When an agent sender’s information
cannot be found in the VadorPolicy
database table, the agent cannot be

authorized. When the agent sender’s

information is found in the table,
if the agent’s requests do not match
its sender’s privileges,
the agent cannot be authorized.
When the agent sender’s information is
found in the VadorPolicy table, and
the agent’s requests match its sender’s
privileges defined in the VadorPolicy
table, the agent can be authorized

If an agent has been verified by the
Security Server and authorized by a
VADOR server, it will be allowed to
operate and execute tasks on that VADOR
server. Otherwise, if an agent has been
verified by the Security Server, but not
authorized by a VADOR server, it will
not be allowed to operate and execute
tasks on that VADOR server, but will be
discarded by the server, and then its
sender will receive a authorization_failed

message from the server

When an agent has been verified by the
Security Server, and also has been

authorized by a VADOR server, it is
allowed by the VADOR server to execute
tasks on it. When an agent has been
verified by the Security Server, but
cannot be authorized by a VADOR server,
it cannot execute tasks on that VADOR
server, and is discarded by that server,

then the server sends a

authorization_failed message to the

agent sender

117

CONCLUSION

Multi-user, multi-threaded distributed applications allow users working at different loca-
tions and sharing the same resources, to work more efficiently and at a lesser cost. The
drawback is that systems’ security defects may be exploited by malicious users, and cause

security problems to the systems, such as secret information being exposed to attackers.

As introduced in Chapter 1, VADOR is an instance of a distributed application, in which
resources can be shared by many users. In this context, VADOR users expect to be able
to benefit from the many advantages in functionalities provided by the system, and take
advantages of the many possibilities offered by a multi-user environment. At the same
time, VADOR has to face the challenge of dealing with security defects and problems

related to control accesses to its resources by different users.

Based on the characteristics of VADOR, this thesis focuses on VADOR security archi-
tectural design, so that the security defects that might cause security problems related to

access control can be prevented.

In order to prevent security defects and solve security problems at an early stage of the
development, Chapter 2 reviewed the available literature on security design patterns and
defect classifications, specified the defect categories defined by the Secure design Patterns
(SecurP) Project (Guibault et al. (2004)). This project introduced the defects that may
exist in distributed applications and could be prevented using secure and reliable design
patterns. This chapter then summarized the security design patterns into groups, so that

they could be used to prevent the defects introduced and solve security problems.

As introduced and analyzed in Chapter 3, threats can affect an agent during its migra-
tion, and they can also affect user data files during command execution. In addition,

VADOR has a fundamental security problem, that is the VADORADM owns the files

118

inside VADOR users’ directories, so that a user’s data files could be remotely manipu-
lated by other users. Although this chapter has reviewed several security defects in the
VADOR framework, the Improper Multiple Access Control Points defect may be ex-
ploited and lead to risks to the agent or user data files, and is considered to constitute the

most fundamental security problem.

To prevent the Improper Multiple Access Control Points defect and protect system re-
sources, the VADOR security model has been introduced in Chapter 4. Based on the Java
2 SDK security model, the VADOR security model consists of the following three levels
protection to the VADOR system:

1. 1st level protection: Security Server that is based on JVM, and applies External

Security Policy defined by the administrator using Keytool provided by the Java.

2. 2nd level protection: Security Managers that act on behalf of the VADOR Servers,
and apply VADOR Security Policy defined by the administrator and stored in the
VADOR database.

3. 3rd level protection: Operating system that enforces the protection mechanisms

using SSH.

Based on the studied security defect and mechanisms to protect resources in the VADOR
system, which is an instance of a distributed applications, the Security Manager pattern
is defined to help security architects in developing security access control mechanisms in
VADOR framework, so that the security defects and problems related to control accesses

to the system resources can be prevented and solved.

As introduced in Chapter 5, the Security Manager pattern consists of the following six
modules. Each of the modules is responsible of specific functionalities related to the pre-
vention of security defects and aimed at solving specific aspects of the security problems.

These modules are required by the Security Manager pattern:

119

e The Security Interface Module provides a programming interfaces to the other mod-
ules, so that the Security Manager pattern can be easily implemented by the other

applications.

e The Agent Authentication Module manages the process of signing an agent before
it is sent. It also deals with the verification and authentication of the signed agent

after it was received by a Vador server.

e The Agent Signature Module acts on behalf of the Agent Authentication Module,

and provides agent signature services to an agent sender.

e The Security Server Module acts on behalf of the Agent Authentication Module,
and is responsible of signed agent verification and authentication that a Vador server

requires.

e The Security Attributes Descriptor Module keeps track of Security Contexts that

are needed for verification, authentication, and authorization processes.

e The Security Manager Module collaborates with all the other modules to provide

services to specific VADOR servers, including the Security Server.

The following existing design patterns or security patterns have been implemented in the

Security Manager pattern’s modules:
e Cryptographic Meta pattern and Sender Authentication pattern are implemented by
the Agent Authentication Module.

e Cryptographic Meta pattern, Sender Authentication pattern and Template Method

pattern are implemented by the Agent Signature Module.

e Proxy pattern, Single Access Point pattern, and Policy pattern are implemented by

the Security Server Module.

120

e Subject Descriptor pattern and Session pattern are implemented by the Security

Attributes Descriptor Module.

e Policy pattern, Visitor pattern, and Strategy pattern are implemented by the Security

Manager Module.

e Protected System pattern and Partitioned Application pattern are also implemented

by the Security Manager pattern to describe the structure.

Three levels of protection have been defined using the Security Manager pattern and the

higher two levels have been tested in the VADOR system, these levels are:

e VADOR Security Server applies External Security Policy to verify and authenticate

agents.
e VADOR Servers apply VADOR Security Policy to authorize verified agents.

e SSH server apply operating system security policy to control accesses to data files
by VADOR servers’ authorized agents. Since the SSH protection mechanisms are
managed by operating systems, and have been implemented in the VADOR proto-

type, they were not tested within the Security Manager pattern.

The currently defined Security Manager pattern focuses on the protection of system re-
sources from agent attacks, these protection mechanisms cannot protect agents once they
are sent out for tasks. However, several future works are needed to extend the pattern to

provide full protection to both on site and transmitted information:

e Provide secure communication channels to systems, so that agents won’t be inter-

rupted, intercepted, or modified during their traveling.

o Integrate the External Security Policy initialization mechanisms into the system, so

that it can reduce manual works and secure Key management.

121

e Integrate SSH protection mechanisms into the system, so that instead of commu-
nicating with the operating system, the systems can control accesses to data files
directly, reduce risks of communications, and solve the potential problems of sys-
tem integration and multi-threaded processes introduced by the use of SSH (See

section 3.1.2.5 for detailed description).

122

REFERENCES

ALEXANDER, C., ISHIKAWA, S., SILVERSTEIN, M., JACOBSON, M,
FIKSDAHL-KING, 1., AND ANGEL, S. (1977). A pattern language. Technical report,
Oxford University Press New York.

BISBEY II, R. AND HOLLINGWORTH, D. (1978). Protection analysis project final
report. ISI/RR-78-13, DTIC AD A056816, USC/Information Sciences Institute.

BISHOP, M. (1995). A taxonomy of unix system and network vulnerabilities.

http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-10.pdf.

BRAGA, A. M, RUBIRA, C. M. F AND DAHAB, R
(1998). Tropyc: ‘A pattern language for cryptographic software.
http:/fjerry.cs.uiuc.edu/ plop/plop98/final_submissions/P25.pdyf.

CHEN, B. (2004). A Pattern-Based Framework Architecture for Distributed Engineering
Applications. Master thesis, Ecole Polytechnique de Montréal.

COOPER, J. W. (1998). The Design patterns, Java Companion. Addison-Wesley.

CSRC (1999). Common criteria for information technology security evaluation. Tech-

nical report, National Institute of Standards and Technology.

FERNANDEZ, E. B. (1999). The authenticator pattern.
htip:/jerry.cs.uiuc.edu/plop/plop99/proceedings/Fernandez4/Authenticator3.PDF.

123

FERNANDEZ, E. B., HAYS, V. AND LOUTREL, M.
(2001). The object filter and access control framework.

http://jerry.cs.uiuc.edu/plop/plop2k/proceedings/Fernandez3/Fernandez3.pdyf.

FERNANDEZ, E. B. AND PAN, R. (2001). A pattern language for security models.
http://jerry.cs.uiuc.edu/ plop/plop2001/accepted_submissions/PLoP2001.

GAMMA, E., HELM, R., JOHNSON, R. AND VLISSIDES, J. (1994). Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley.

GUIBAULT, F, CHEN, B., LAFLAMME, S., VALLET, M.-G. AND WANG, Y. (2004).
Secure design patterns: State-of-the-art, software defects and patterns specification.

Technical report, Ecole Polytechnique de Montréal.

IBM (2002). Orthogonal defect classification for design and code.
hitp://www.research.ibm.com/softeng/ODC/ODC. HTM.

KRASNER, G. AND S.T,, P. (1988). A cookbook for using the model-view-controller

user interface paradigm in smalltalk-80.

LANDWEHR, C. E., BULL, A. R, MCDERMOTT, J. P. AND C, W. S.
(1994). A taxonomy of computer program security flaws, with examples.

http.//chacs.nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf.

LIBES, D. (1995). Exploring Expect, A Tcl-Based Toolkit for Automating Interactive
Programs. O’Reilly.

MESZAROS, G. AND DOBLE, J. (1996). A pattern language for pattern writing.
http://hillside.net/patterns/Writing/patterns.html.

124

OPENGROUP, T. (2002). Guide to security patterns - draft 1.
http://www.opengroup.org/security/gsp.htm.

OWASP (2003). The ten most critical web application security vulnerabilities.

http://www.owasp.org/documentation/topten.

ROMANOSKY, S. (2001). Security design patterns.
http://www.cgisecurity.com/lib/securityDesignPatterns.pdf.

SALAS, A. AND TOWNSEND, J. (1998). Framework requirements for mdo application
development. AIAA Paper 98-4740.

SCHUMACHER, M. AND ROEDIG, U. (2001). Security engineering with patterns.
http://jerry.cs.uiuc.edu/"plop/plop2001/accepted_submissions/PLoP2001/.

SOBIESZCZANSK-SOBIESKI, J. AND HAFTKA, R. (1997). Multidisciplinary
aerospace design and optimization. Structural Optimization. Survay of recent devel-

opments.

SOFT-SOLUTIONS-INTERNATIONAL (2002). Software validation ethos.

hitp:/fwww.ssi-ltd.com/services/software-validation.asp.
SSH (2004). Ssh web tutorial.

TREPANIER, J.-Y. (1999). Mdo - multidisciplinary design optimization. CERCA. An
overview of the field of Multidisciplinary Design Optimization(MDO).

YODER, J. AND BARCALOW, J. (1998). Architectural patterns for enabling applica-
tion security. http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Proceedings/yoder.pdyf.

125

APPENDIX I

Security Defects Classes in Distributed Applications

1.1 Landwher’s Classification

e C(Categories:

1. By Genesis: The genesis provides basis for understanding how a security
flaw finds its way into a program, so that they can be prevented, detected, or
corrected by different strategies. It includes Intentional and Inadvertent flaws.

The Inadvertent flaws were categorized into the following subclasses:

— Validation Error(Incomplete/Inconsistent)

— Domain Error (Including Object Re-use, Residuals, and Exposed Repre-
sentation Errors

— Serialization/aliasing (Including TOCTTOU Errors)

— Identification/Authentication Inadequate

— Boundary Condition Violation (Including Resource Exhaustion and Vio-
lable Constraint Errors)

— Other Exploitable Logic Error

2. By Time of Introduction: The time of introduction of a security flaw is the
point of a software life cycle where the flaw was introduced, including Dur-
ing Development, During Maintenance, and During Operation. It can help
developers understanding the weakness in the software development process

and focus their efforts on the flaws corresponding to specified processes.

3. By Location: The location is that part of the software (operating system or

application) or hardware where the error lies.

126

e Limitations

1. This taxonomy is limited in focusing on the flaws that occur in operating

system rather than in other distributed application programs.

2. Provides approaches to evaluate problems in built systems rather than ap-
proaches that could prevent the problems during design in a development pro-

CECSS.

L2 Bishop’s Classification

e Categories

1. Improper protection:

— Improper Choice of Initial Protection Domain: The vulnerabilities in this
class involve incorrectly set permissions when the system starts; these are

configuration errors.

— Improper Isolation of Implementation Detail: By their nature, these flaws

arise because of multiple paths to a single object.

— Improper Change: Flaws of this category occur when data that is meant
to be consistent is not consistent; essentially, one misplaces trust in the
integrity of the data.

— Improper Naming: At the user level, handling improper naming simply
means detecting objects in the user’s protection domain with the same

name.
— Improper Deallocation or Deletion: When an object is improperly deal-
located or deleted, the object containing the data is released but the data

is not erased.

127

2. Improper Validation: It means that insufficient checks are made upon data,

and the failure to do so creates a security problem.
3. Improper Synchronization:

— Improper Indivisibility: This category involves operations which need to

be atomic but are interruptible.

— Improper Sequencing: It refers to the incorrect ordering of operations.

4. Improper Choice of Operand or Operation: This type of flaw can arise in
one of two ways: an abstraction operation may be chosen incorrectly, or the

implementation may be poorly (incorrectly) chosen.

e Limitations
1. The taxonomy focuses on classifying security flaws in the UNIX operating
systems, the security flaws in other software applications are not classified.

2. It presents rough detection and prevention mechanisms, but formal approaches

for flaw prevention are not well developed enough.

1.3 The Top Ten Web Application Security Vulnerabilities

e Categories
1. Unvalidated Parameters: Information from web requests is not validated be-
fore being used by a web application.

2. Broken Access Control: Restrictions on what authenticated users are allowed

to do are not properly enforced.

3. Broken Account and Session Management: Account credentials and session

tokens are not properly protected.

128

4. Cross-Site Scripting (XSS) Flaws : The web application can be used as a

mechanism to transport an attack to an end user’s browser.

5. Buffer Overflows: Web application components in some languages that do
not properly validate input can be crashed and, in some cases, used to take

control of a process.

6. Command Injection Flaws: Web applications pass parameters when they ac-
cess external systems or the local operating system. If an attacker can embed
malicious commands in these parameters, the external system may execute

those commands on behalf of the web application.

7. Error Handling Problems: Error conditions that occur during normal opera-

tion are not handled properly.

8. Insecure Use of Cryptography: Web applications frequently use cryptographic
functions to protect information and credentials. These functions and the code
to integrate them have proved difficult to code properly, frequently resulting

in weak protection.

9. Remote Administration Flaws: Attackers can consume web application re-
sources to a point where other legitimate users can no longer access or use the

application.

10. Web and Application Server Misconfiguration: Having a strong server con-

figuration standard is critical to a secure web application

e Limitations

This list represents only a set of security vulnerabilities that occur in distributed
web applications, it provides information on approaches to protect web applications

from each flaw that is listed, but these vulnerabilities are very general.

129

L4 Security Defects Related to Design

e Categories

1. Security Structural Defects: This category represents the defects related to the

system structure, and could be exploited to lead risks.

— Untrusted Interface: An interface provides a black box picture of each
system module, it constrains access to a protected resources of a system,
limits the operation that can be performed, or limits the user’s view to a
subset of the data. An interface is untrusted if it cannot provide the above

services to protect the module that it represents.

% Problems: A system may fail in access control policy enforcement,

illegal operations, data or information disclosure.

— Monolithic Application: A monolithic application is a complex system
in which individual system modules are not specified, so that security

concerns need to be verified for the entire application.

* Problems: It is difficult to restrict dangerous privilege and verify the

security concerns.

2. Security Functional Defects: Most of the security defects were categorized
into this class, because they could be exploited by threats and directly repre-

sent risks to the system’s functionalities, and cause damage to the system.

— Improper Security Auditing: Improperly recognizing, recording, storing,
and analyzing information related to security relevant activities.

* Problems: The resulting audit records cannot be examined to keep

track of the security relevant activities correctly, so that the poten-

tial violation of the system security functions cannot promptly be de-

tected.

130

— Improper Communication Protection: The identity of a party participat-
ing in a data exchange cannot be assured, including incapability to request

and generate evidence of the origin/recipient of information.

* Problems: The originator denies having sent the information, the

recipient denies having received the information.
— Insecure Use of Cryptography: Including improper design in crypto-
graphic key management or cryptographic operation functions.

* Problems: Weak protection on user data or system security functions

such as authentication/identification, non-repudiation.

— Improper User Data Protection: Including improper security policy spec-
ification and improper security policy enforcement by system security

functions.

x Problems: Violation on user data, including interception, interrup-

tion, modification, and deletion.

— Inadequate Authentication/Identification: Inadequately establish and ver-
ify a claimed user identity, so that users are associated with the improper
security attributes (e.g. identity, groups, roles, security or integrity lev-
els).

+ Problems: Security functions cannot enforce security policies prop-

erly, it may cause deny of services or data disclosure.

— Improper Security Management: Including improper management of sys-
tem security function data (i.e., banners), security attributes (i.e., Access
Control Lists), security functions (i.e., selection of functions), and im-
proper definition of security roles.

* Problems: System and user data disclosure, unauthorized access to

confidential information because of a user may gaining access to data

which he/she does not have right to access.

131

— Improper Protection of Privacy: Including improper protection of Anonymity,

Pseudonymity, Unlinkability, and Unobservability.
x Problems: A user’s identity is discovered and misused by other users.

— Improper Protection of the System Security Functions: Improper integrity
and management of the mechanisms that provide the system security
functions and to the integrity of system security function data, which are
the administrative databases that guide the enforcement of the security
policy.

* Problems: Violation on the system security policy, data disclosure.

— Improper Utilization of Resource: System security functions do not prop-
erly support the availability of required resources such as processing ca-
pability and/or storage capacity. Including improper support on Fault

Tolerance, Priority of Service, and Resource Allocation.

* Problems: Unavailability of capabilities caused by failure of the sys-
tem, resources cannot be allocated to the more important or time-
critical tasks and could be monopolized by lower priority tasks, the
system does not provide limits on the use of available resources,

therefore it cannot prevent users from monopolizing the resources.

— Improper System Access Control: Improper controlled user’s session
establishment. Including improper limitation on scope of selectable at-
tributes and multiple concurrent sessions, improper session locking and
establishment, and improper access banners and history.

* Problems: The system access control may be broken by attackers’
breaking access attempts.

— Untrusted Path/Channels: The communication path between users and
the system security functions, and the communication channel between

the system security functions and other IT products or systems are un-

132

trusted.

* Problems: The system cannot provide assurance that the communi-
cations between the users and the security functions, or/and between
the security functions and the other systems are correct and secure,
so that the Untrusted Channel may cause repudiation of participants,
and the Untrusted Path may be modified or disclosed to untrusted

applications.

e Limitations
This defect classification represents only the security defects that occur in dis-
tributed applications and that concern the systems’ security structure or functional-
ity design. It doesn’t specify defects that may exist in systems’ physical assets or

other development processes (ex., in hardware or in coding).

133

APPENDIX 11

Security Design Patterns

II.1 Yoder and Barcalow

1. Single Access Point: Providing a security module and a way to log into the system.

e problems: A security model is difficult to validate when it has multiple “front

doors”, “back doors”, and “side doors” for entering the application.
2. Check Point: Organizing security checks and their repercussions.

e problems: An application needs to be secure from break-in attempts, and
appropriate actions should be taken when such attempts occur. Different or-
ganizations have different security policies and there needs to be a way to
incorporate these policies into the system independently from the design of

the application.
3. Roles: Organizing users with similar security privileges.

e problems: Users have different security profiles, and some profiles are sim-
ilar. If the user base is large enough or the security profiles are complex

enough, then managing user-privilege relationships can become difficult.
4. Session: Localizing global information in a multi-user environment.

o problems: Many objects need access to shared values, but the values are not

unique throughout the system.

5. Full View With Errors: Provide a full view to users, showing exceptions when

needed.

IL.2

134

e problems: Users should not be allowed to perform illegal operations.
Limited View: Allowing users to only see what they have access to.

e problems: Users should not be allowed to perform illegal operations.
Secure Access Layer: Integrating application security with low level security.

e problems: Application security will be insecure if it is not propetly integrated

with the security of the external systems it uses.

Eduardo B. Fernandez

Object Filter and Access Control Framework: Fermnandez et al. (2001) defined
an object filter pattern and access control framework for distributed applications.
This framework combines the functions of authentication, access control, and ob-
ject filtering to constrain a client to access objects in specified ways defined by the

client rights.

e problems: In distributed systems, data or services requested by clients may
need to be furnished to control the type of data provided. Also, these services

may need to be restricted to be used by only some users in specific ways.

The Authenticator Pattern: Fernandez (1999) introduced the Authenticator Pat-
tern to describe a general mechanism for providing identification and authentication
to a server from a client. It has the added feature of allowing protocol negotiation
to take place using the same procedures. The pattern operates by offering an au-
thentication negotiation object which then provides the protected object only after

authentication is successful.

e problems: How to protect distributed objects while there are a variety of

accesses to a distributed system.

IL3

135

Fernandez and Pan (2001) discussed three design patterns that correspond to the
most common models for security in a new built system: Authorization, Role-Based
Access Control, and Multilevel Security. These patterns can be applied at all levels

of the system.

. Authorization: Represents the elements of an authorization rule as classes and as-

sociations to control active entities getting access to resources in any computational

environment.

e problems: How to describe allowable types of accesses (authentications) by
active computational entities (subjects) to passive resources (protection ob-

jects).

Role-Based Access Control: Represents the elements of a role as classes and

associations to assign rights to users according to their roles in an institution.

e problems: How to assign rights to users according to their roles in an institu-

tion.

Multilevel Security: Assigns classifications or clearances to users and data, so that
the users can access documents based on their clearances and the sensitivity levels

of data and documents.

e problems: How to determine access in an environment with security classifi-

cations.

Sasha Romanosky

. Authoritative Source of Data: Recognizing the correct source of data.

e problems: If an application or user blindly accepts data from any source then

it is at risk of processing potentially outdated or fraudulent data. Therefore, an

136

application needs to recognize which, of possibly many sources, is the single
authority for data. Are you assured the data you are using is the cleanest and
most accurate? In other words, is the data coming from a legitimate source or

from an unknown party?

2. Risk Assessment and Management: Understanding the relative value of informa-

tion and protecting it accordingly.

e problems: Whenever information needs to be transferred, stored or manip-
ulated, the privacy and integrity of that data needs to be reasonably assured.
Hardware and software require protection from misconfiguration, neglect and
attack. Under-protection of any of these could drive a company to bankruptcy

(or legal battle) and overprotection is a waste of resources.
3. 3rd Party Communication: Understanding the risks of third party relationships.

e problems: Two companies in a business relationship may trust each other,
but to what degree? Specifically, when two businesses exchange information,
users and/or applications will require access to privileged resources. How
can access be granted while at the same time protecting both organizations?
Additionally, how can this be managed in such a way that is neither overly

complex nor dangerously simplistic?

4. The Security Provider: Leveraging the power of a common security service across

multiple applications.

e problems: When disparate applications seek to provide their own security
services, privacy, synchronization and management of data becomes unneces-
sarily complex. Moreover, applications may not provide the security features
or strength required, risking the overall integrity of the data. These applica-
tions may be communicating in securely or they maybe using weak or inap-

propriately vulnerable methods. Without a common security infrastructure,

137

the management becomes unnecessarily difficult and risks the security of the

entire environment.
5. White Hats, Hack Thyself: Testing your own security by trying to defeat it.

e problems: How can you be assured of the true security of your system without

real world testing?
6. Fail Securely: Designing systems to fail in a secure manner.

e problems: In the event of a failure or misconfiguration of an application
or network device, would the result be a more, or less secure environment?
that is, would the consequence result in a user performing a given operation

unprotected; or a device passing unauthorized information?
7. Low Hanging Fruit: Taking care of the “quick wins”.

e problems: Good security is a cycle that requires intelligent planning, careful
implementation and meaningful testing. Unfortunately, administrators, devel-
opers and managers may not have the time or opportunity to properly com-
plete this cycle. Therefore, taking advantage of the quick wins maybe the

only opportunity to establish reasonable security.

II.4 Cryptographic Meta-pattern

1. Information Secrecy: Keep the secrecy of information.

e problems: How a message can be sent from a sender to a receiver in such a

way that a third person cannot possibly read its content?

2. Message Integrity: Avoid corruption of a message.

138

e problems: How can a message receiver determines if the message was modi-

fied or replaced after being sent or before its arrival to him?

. Message Authentication: Authenticate the origin of a message.

e problems: How can genuine messages be distinguished from spurious ones?
. Sender Authentication: Avoid refusal of a message.

e problems: How to guarantee that messages have genuine and authentic
senders, in such a way that the sender cannot repudiate a message that a re-

ceiver believes was sent by him?
. Secrecy with Authentication: Prove the authenticity of a secret.

o problems: How can a sender authenticate an encrypted message without loss

of secrecy?
. Secrecy with Signature: Prove the authorship of a secret.

e problems: How can a receiver prove authorship of an encrypted message
without loss of secrecy in such a way that its integrity and origin authentication

is also implicitly granted?
. Secrecy with Integrity: Keep the integrity of a secret.

e problems: How to preserve the integrity of an encrypted message without

loss of secrecy?
. Signature with Appendix: Separate message from signature.

e problems: How to reduce the storage space required for a message and its

signature while increasing the performance of the digital signature protocol?

. Secrecy with Signature with Appendix: Separate secret from signature.

10.

ILS

139

e problems: How to reduce the memory necessary to store a message and its

signature, while increasing system performance, without loss of secrecy?

Cryptographic Meta-pattern: Define a generic software architecture to cryptog-

raphy.

e problems: How to design a flexible object-oriented micro-architecture for a

cryptographic design pattern in order to increase object reuse?

Open Group

Protected System: Structure a system so that all access by clients to resources is

mediated by a guard which enforces a security policy.
e problems: How to protect system resources against unauthorized access.

Policy Enforcement Point: Isolate policy enforcement to a discrete component of
an information system; ensure that policy enforcement activities are performed in

the proper sequence.

e problems: How to invoke policy enforcement functions in the correct se-
quence in a system that needs to enforce policy, while access is attempted to

a resource which is subject to the policy.

Subject Descriptor: Provide access to security-relevant attributes of an entity on

whose behalf operations are to be performed.

o problems: How to access security-relevant attributes of an entity.

. Secure Communication: Ensure that mutual security policy objectives are met

when there is a need for two parties to communicate in the presence of threats.

140

e problems: How to secure a communication channel between two protected
systems with security policy objectives applicable, so that threats such as

eavesdropping, impersonation, and tampering can be prevented.

2. Secure Association: Establish and maintain a security relationship, between two
entities that wish to communicate securely, in line with mutual security policy ob-
jectives, across a communication link that is subject to a well-known set of com-

munication related threats.

e problems: How to manage the life cycle of state containing the details of a
security relationship between two entities, where the entities need to engage

in some joint activity.

3. Security Context: Provide a container for, and mediate access to, security at-

tributes and data relating to a particular process, operation or action.

e problems: How to manage and access to contextual properties which may
influence the behavior of security related functions such as access control,

auditing, message protection and so on.

1. Recoverable Component: Structure a component so that its state can be recovered

and restored in case the component fails.

e problems: How to restore or recover state of a component, while the compo-

nent fails.

2. Checkpointed System: Structure a system which can be “rolled back” to a known

valid state.

e problems: How to return the system to a previous state that is known to
be valid, while component failures, errors in processing, data entry errors,
or operator errors cause the system state to become corrupt, erroneous, or

otherwise defective.

141

3. Cold Standby: Structure a system so that the service provided by one component

can be resumed from a different component.

e problems: How to implement a recovery mechanism that will suffice for all
forms of fault or failure, up to and including the complete destruction of a

component (as by fire or other environmental failure).

4. Comparator-Checked Fault-Tolerant System: Structure a system so that an in-

dependent failure of one component will be detected.

e problems: How to detect component faults quickly, or to detect component
faults at a specific point during processing, to prevent component faults from

causing system failures.

5. Journaled Component: Record changes to a component’s state so that the state

can be restored using incremental updates to a previous version of the state if nec-

essary.

e problems: How to protect a system state from failures which corrupt state

information.

6. Hot Standby: Structure a system which permits state updates to originate from
multiple components, preserves the state of the overall system and of each transac-
tion in the face of failures, and guards against loss of integrity due to incomplete

application of transactions or changes.

e problems: How to protect multi-component transactional systems which are
often susceptible to state corruption because of failure of communication

links, communication protocols, storage media, or other system elements.

7. External Storage: Structure a system which isolates processing from state man-
agement, so that system state is kept in a single high-integrity repository regardless

of the number of processing elements or points of presence included in the system.

142

e problems: How to assure availability of transaction services in the face of
failure of communication links, communication protocols, or other system

elements.

3. Replicated System: Structure a system which allows provision of service from
multiple points of presence, and recovery in case of failure of one or more compo-

nents or links.

e problems: How to assure availability of transaction services in the face of
failure of communication links, communication protocols, or other system

elements.

9. Error Detection/Correction: Add redundancy to data to facilitate later detection

of and recovery from errors.

e problems: How to deal with errors that happen to data that resides on storage

media or in transit across communication links.

WOOL 4@!:;4 8

-l
<
|
o
=
2
(=}
=
w
a
w
3
g
3
=
[+
E
-
[=]
a
w
-l
[]
O
]

	SKM_C550i23121114070
	SKM_C550i23121114100

