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RÉSUMÉ

Avec plus de production d’énergie renouvelable (éoliennes, panneaux solaires)
connectés au réseau électrique, il devient important d’équilibrer la charge et la
production alors que la variabilité est un problème pour les ressources renou-
velables. On a étudié les dispositifs de stockage d’énergie, en particulier ceux
qui sont naturellement présents au réseau électrique (tels que les chauffe-eau
électriques, les chauffages électriques, etc. dans les ménages) pourraient devenir
des sources potentielles pour atténuer ce problème de variabilité.

Afin de minimiser le besoin de communication et les efforts de calcul,
un mécanisme de contrôle décentralisé est développé dans cette recherche pour
contrôler la trajectoire de champ moyen d’une grande population de chauffages
électriques pour suivre (ou atteindre) une cible de température. Le contrôle
optimal pour chaque chauffage ou joueur est localement calculé et respecte cer-
taines contraintes. Le problème de contrôle est formulé comme un problème
de commande linéaire quadratique (LQ) avec des entrées contraintes dans la
théorie du jeu de champ moyen, en anglais, Mean Field Game (MFG). Le mé-
canisme de contrôle décentralisé est développé à partir de la solution d’équilibre
du modèle, cette dernière est obtenue lorsque chaque joueur individuel choisit
la meilleure réponse au champ moyen basé sur l’état global de la population.
En choisissant les stratégies optimales, tous les joueurs reproduisissent collec-
tivement le champ moyen de la population. En ce sens, la solution d’équilibre
est un point fixe du système. Dans une configuration de MFG, les joueurs sont
faiblement couplés, ce qui signifie qu’un joueur a une influence négligeable sur
le système global tandis que le comportement de la population entière a un effet
significatif sur chaque joueur individuel.

Dans la première partie, le problème est décrit par un système d’équations
à champ moyen avec les entrées contraintes, en supposant que la distribution de
la température initiale de la population est connue. Le système d’équations est
composé d’un nombre deK d’équations aux dérivées partielles (EDPs) couplées;
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la solution décrit la propagation de la distribution de la population sur un
horizon de contrôle, qui est ensuite utilisée pour calculer l’information de champ
moyenne. Sur la base de l’information du champ moyen calculée, chaque joueur
individuel peut déterminer son contrôle optimal.

La deuxième partie décrit la politique de contrôle qui est adoptée par le
joueur individuel sous les entrées contraintes. Comme il est difficile de calculer la
solution de contrôle optimale exacte au problème de LQ restreint, une politique
de commande est développé qui permet au plus une commutation de contrôles
saturés à des contrôles insaturés, où des contrôles saturés, le cas échéant, se
produisent uniquement au début de l’horizon de contrôle. Après une période de
temps, en fonction de la condition initiale du joueur, les contrôles deviennent
insaturés et par la suite on peut calculer la politique de contrôle optimale en
boucle fermée comme dans un problème de LQ sans contraint sur les entrées.
La condition suffisante pour une telle politique de commande de commutation
unique est proposée et prouvée, et un algorithme numérique pour calculer le
point fixe du système est donné.
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ABSTRACT

With the increasing levels of renewable power generation (wind turbines, solar
panels) connected to power grids, it is becoming important to balance the load
and the generation while variability issue exists for renewable resources. It has
been studied that energy storage devices, in particular those naturally present
in the power system (such as electric water heaters, electric space heaters, etc.
in households), can become potential sources to help mitigate such variability.

In order to minimize the communication bandwidth and computation ef-
forts, a decentralized control mechanism is developed in this research to shape
the aggregate load profile of a large population of electric space heaters in a
power system. Under the control mechanism, the mean-field trajectory (tem-
perature) of the load population is controlled to follow a target temperature,
and the control input for each device is generated locally and must respect cer-
tain constraint. We formulate the problem as a linear quadratic (LQ) tracking
problem with constrained inputs under the mean field game (MFG) settings.
The decentralized mechanism is then derived based on the equilibrium solution
to the formulated model. The equilibrium solution is obtained when each in-
dividual agent of the game chooses a best response to the so-called mass effect
of the population via couplings of their individual dynamics and cost functions;
when all agents choose the optimal strategies, collectively the mass effect should
be replicated. In this sense, the equilibrium solution is a fixed point of the sys-
tem, and can be mathematically characterized by a mean-field (MF) fixed point
equation system. In such MFG setup, agents are weakly coupled, meaning that
an agent has a negligible influence on the overall system while the mean-field
behavior of the population has a significant effect on any individual agent.

In the first part, we formulate the problem by a constrained model, and
propose the MF fixed point equation system under constrained controls. We
assume that the initial temperature distribution of the population is known. The
MF equation system consists of K sets of coupled partial differential equations
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(PDE’s), the solution to which describes the propagation of the probability
distribution of the population, which is then used to compute the mean-field
information. Individual agent can then determine the optimal control under
constraints as a best response to the computed mean-field information.

As it is rather difficult to compute the exact optimal control solution to
the constrained model, in the second part we implement a single switching best
response control policy where saturated controls, if any, happen only at the
beginning of the control horizon. After certain period of time, depending on
individual’s initial condition, controls become unsaturated and we can compute
the optimal control policy thereafter as in an unconstrained LQ problem. We
prove a sufficient condition under which such single switching control policy
is indeed the best response control, and we propose a numerical algorithm to
compute the fixed point of the constrained system.
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CHAPTER 1 INTRODUCTION

1.1 Description of the Problem Studied

With the increasing levels of renewable power generation (wind turbines, solar
panels) connected to power grids, it is becoming important to plan for and op-
timize renewable power generation, so as to manage the peak load, increase the
efficiency and improve the economics of power sources. However, the intermit-
tent characteristics of renewable generation (which amounts to high variability),
although partially predictable, lead in general to a non-optimized power gen-
eration system. When less power is generated from renewable sources due to
lack of source availability, the power plant must make up the gap by utilizing
conventional power sources such as coal or natural gas, or using bulk energy
storage devices such as battery packs, compressed air, etc [Tarroja et al., 2012].
However, these approaches may incur high operating costs, reduce the efficiency
of power generation, and reverse the environmental advantages and the positive
effects of the renewable generation. In this context, energy storage, in particu-
lar that associated with a large number of dispersed devices naturally present
in the power system (such as electric water heaters, electric space heaters, re-
frigerators, etc.), constitutes a readily available alternative to help mitigate the
variability of renewable power generation [Callaway, 2009] (see Figure 1.1). To
accommodate the status of renewable generation, we can reduce the aggregate
power consumption of a population of devices when the generation is low, and
increase the consumption when the generation is at surplus. In order to uti-
lize and control these dispersed devices to manage the load profile of the entire
population, one may model such a large-scale dynamic system as a large-scale
control / optimization problem, and develop a centralized control architecture
whereby each device is individually managed as a best response to each of all
other devices’ control actions; however, this requires significant computation
efforts and a large bandwidth to communicate with and monitor each device. It
also raises privacy issue for data exchange between the central control authority
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and users and/or among users.

Figure 1.1 “Energy Internet” by including house appliances as energy storage
devices. (Source: Leonardo Energy)

Given the challenges of centralized control methods in producing the de-
sired results, a decentralized control mechanism needs to be developed and must
meet the following requirements: (1) Control actions must be locally decided by
each device yet preserve global optimality; (2) The level of data exchange be-
tween the central authority and users must be kept to a minimum; and (3) The
disturbance to users’ load profile relative to the uncontrolled situation must be
kept to a minimum, and there should be no threat to privacy. Past researches
formulate the coordination of a large number of energy storage devices (electric
space heaters) in a power system under the linear quadratic Gaussian (LQG)



3

mean field game (MFG) setup, and lead to a class of decentralized control mech-
anisms that can actually satisfy these three requirements.

1.2 Research Objective

In this research, we extend the study of decentralized control of power sys-
tems with a large number of energy storage devices in [Kizilkale et Malhamé,
2013] under the MFG setup, but we consider the case where the control inputs
for the devices are constrained. We are motivated by this subject as in most
engineering applications control inputs may be constrained due to physical or
design limitations of the system. When control input constraints are imposed,
the system dynamics become non-linear where controls may become saturated,
hence formulating the system under the LQG MFG setup fails in that, as it
turns out, the optimal control solutions can no longer reduce to the solution of
ordinary differential equations (ODE’s). To overcome this difficulty, we propose
to formulate this constrained MF control problem as a coupled system of partial
differential equations (PDE’s) [Huang et al., 2006] to characterize the mean field
effect, and solve the PDE’s for a fixed point as the optimal control solutions.

The contributions of the research consist of the following:

• We present a MF fixed point equation system characterizing the limiting
infinite population Nash equilibrium. The equation system describes the
propagation of the probability distribution of the device population’s tem-
peratures and the optimal control solution under constraint for each device.
We propose a numerical algorithm to find the fixed point solution to the
equation system.

• We develop a sufficient condition under which any device’s optimal control
as a best response to the mean field involves either a single switching from
saturated to unsaturated control, or a control which never saturates. We
establish under this sufficient condition a numerical scheme to compute the
best response controls of the devices.
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• We argue that if all quantities converge to a steady-state equilibrium, the
latter must be the identical in both the constrained and unconstrained
cases. Thus it is only the transient dynamics which are affected by the
saturation effects.

The thesis is thus organized as follows. Chapter 2 presents a literature
review of models and approaches to solve dynamic systems with a large popu-
lation under the mean field games (MFG) framework. Chapter 3 presents the
MFG model and equation system to control the mean temperature of a large
population of electric heaters under constrained control inputs. Each heater
device must respect an input constraint when following its optimal control, and
the mean temperature of the population must follow a set temperature target.
In Chapter 4 we analyze the control policy, present our sufficient condition for at
most single switching best response policies of individuals given a posited mean
field, develop the fixed point equations characterizing the associated equilibrium
mean field, and propose a numerical algorithm to search for the fixed point so-
lution. In Chapter 5 we illustrate the equilibrium solution under constrained
control inputs by numerical studies. Chapter 6 discusses the conclusion and
proposes possible extensions to the subject of study.
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CHAPTER 2 LITERATURE REVIEW

The concept of using household appliances as energy storage devices to adjust
and shape the power demands of the loads on a power network is becoming an
important demand management tool. One strategy is direct load control and
it relies on developing aggregate models to describe the evolution of the mass
probability distribution of a large population of thermostatically controlled loads
(TCL) and to control their aggregate power demand to balance the load and
generation. Different types of TCLs have been explored in the literature, for
example, air conditioners [Callaway, 2009; Koch et al., 2009] and water heaters
[Gustafson et al., 1993; Ericson, 2009]. In general, the aggregate load dynamics
are often described by coupled PDE’s [Laurent et Malhamé, 1994; Malhamé
et Chong, 1985]. As the control of the aggregate load is mostly centralized in
nature, efforts have been made to simplify the control architecture and facili-
tate extension to large scale systems. However, issues still remain in terms of
communication bandwidth and requirement of state observation/estimation for
heterogeneous groups of TCLs.

A class of decentralized control mechanisms for load management of power
systems has been proposed in [Kizilkale et Malhamé, 2013, 2014b,a] based on
the mean field game (MFG) equilibrium solution of linear quadratic Gaussian
(LQG) models with integral control in the cost coefficients. For example, elec-
tric space heaters with diffusion dynamics are controlled to collectively reach
a mean target temperature under a non-cooperative framework in [Kizilkale
et Malhamé, 2013] and under a cooperative framework in [Kizilkale et Mal-
hamé, 2014a]. In [Kizilkale et Malhamé, 2014b] water heaters with Markovian
jump-driven hot water demand models are used as agents under the mean field
control. The equilibrium solution concept used to derive these decentralized
control mechanisms is based on the main results derived in [Huang et al., 2007].
However, the cited literature does not consider constraints on control inputs
when deriving optimal control laws. In contrast, [Bagagiolo et Bauso, 2013]
and [Grammatico et al., 2015] study controls of the power demands of a large
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number of home appliances under an MFG framework, in the presence of sat-
urated controls. A chattering switching control is implemented in [Bagagiolo
et Bauso, 2013], and at equilibrium the mean temperature and the main fre-
quency are regulated at the desired values. In contrast, we shall be dealing
here with piecewise smooth controls. In [Grammatico et al., 2015], a pricing in-
centives scheme is implemented for the entire population based on the current
aggregated power demand where individual control is bang-bang-like switching.
In [Paccagnan et al., 2015], the set of feasible aggregated power trajectories
are characterized such that a population of TCLs can follow them, where each
TCL has a hybrid dynamics and the mode switching rate is constrained. The
control is common to the entire population of TCLs and is announced by the
central authority. The control is implemented as a saturation function such
that it is proportional to the derivative of the desired power trajectory; when
the derivative is too high, the control is saturated to some limiting value. In
this implementation, the individual state of each TCL device should be known
to the central authority at all times in order to compute the required controls.

In general, it is significantly more difficult to find the optimal solution to
an input constrained infinite-horizon LQR problem than the unconstrained case,
and often the solution is computed and approximated by numerical approaches.
An approximation scheme which is widely studied is model predictive control
(MPC), which reduces the infinite-time constrained problem into a finite-time
one by choosing a prediction horizon, and an open-loop optimal solution can be
approximated, for example in [Scokaert et Rawlings, 1998]. One disadvantage
of this approach is that computations are performed online, so it may not be
feasible for applications where short prediction horizon is required and many
state variables are involved. Algorithms are therefore developed by formulating
the constrained problem as a multiparametric quadratic program, and trying
to find a feedback optimal solution that can be computed offline. For exam-
ple, works by [Bemporad et al., 2000; Seron et al., 2000; Grieder et al., 2003]
study how a lookup table can be implemented by computing piecewise affine
(PWA) solutions offline, while the online computation reduces to evaluation of
the function. This significantly reduces the complexity of online computation
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and implementation. The MPC approach, either online or offline, can be applied
when there are constraints on the state variables as well.

Non-MPC methodologies are also explored to appoximate the optimal
solution to the constrained LQR problem. In [Goebel et Subbotin, 2005], a
control problem dual to the constrained LQR problem is studied, which has no
constraint but non-quadratic cost. The value function is then described as a
convex conjugate of the dual value function, and an optimal feedback solution
is constructed based on the gradient of the optimal value function, which can be
numerically propagated backwards from the solution to an appropriate Riccati
equation. An algorithm is proposed to develop a lookup table of the optimal
solution corresponding to all initial conditions at all times. The optimal solu-
tion for a given state is then matched to that obtained from the same initial
condition. In [Hassan et Boukas, 2008], some necessary conditions for optimal-
ity are derived under which an optimal solution is a linear state-feedback with
saturation boundaries. Then the optimal solution is computed from an iterative
numerical approach based on correcting the error between the computed con-
trol at each iteration and the desired control trajectories satisfying the necessary
conditions. In [Heemels et al., 1998], the LQR problem with positive control
constraint is studied. Although no numerical algorithms are proposed to find
an optimal solution, some necessary and sufficient conditions for optimality are
developed under which an optimal solution can be written as a feedback of the
projection onto a closed convex cone of positive controls. The optimal solu-
tion under these conditions can then be solved from the Maximum Principle
or based on the dynamic programming equation. In [Grammatico et al., 2016],
mean field problems under heterogeneous convex state and control constraints
are considered , and several decentralized iteration approaches and conditions
to converge to a fixed point asymptotic Nash equilibrium are proposed. The
approach does not rely on optimal control theory, requires continuous commu-
nication with a central coordinator, and formulates the search for best response
policies as a large size static optimization problem. Works by [Graichen et Petit,
2008; Graichen et al., 2010] study methods to transform the inequalities on the
state and input constraints into equalities through some saturation functions,
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then construct an extended unconstrained system. The optimal solution to the
extended system can then be numerically solved as a two-point boundary value
problem (BVP), where optimality conditions can be derived from the associated
Hamiltonian and the Maximum Principle.
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CHAPTER 3 MEAN FIELD GAME MODEL WITH
CONSTRAINED CONTROL INPUTS

The following notation is used throughout the entire document.

xi(t) Individul agent i’s state (temperature)

xa Outside ambient temperature, assumed to be constant

ρ0 Probability density function (pdf) of initial temperatures

xi0 Initial temperature of agent i, drawn randomly from ρ0

x̄(t) Mean temperature of the population

uifree Free control for agent i to stay at xi0

ui(t) Control which deviates agent i from its xi0

uitotal(t) Total control for agent i where uit(t) = ui(t) + uifree

U i Control constraint which depends on i

y Target mean temperature set by the central authority

z Temperature boundary to maintain users’ comfort levels

3.1 Mean Field Game Model with Constrained Control

We consider a large population of N space heating devices (agents of the game)
in the power grid. It is assumed that a central authority (either the power
system authority or an “aggregator” managing the group of devices) would like
the mean state of all agents to follow a target trajectory. We assume that the
dynamics of each agent i ∈ [N ] := {1, . . . , N} are described by the following
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process
dxi

dt
= −a(xi − xa) + buitotal, t ≥ 0, xi(0) = xi0, (3.1)

where a > 0, b > 0, and xa is the outside ambient temperature. Let xi0 ∈ R
be agent i’s random initial condition, distributed according to some known
probability density function (pdf) ρ0. We assume xa < xi0, ∀i ∈ [N ]. Note
that in this model, the thermostat control of the space heater is replaced by a
continuous control uitotal(t).

It is natural that each device will want to remain at its initial temperature
xi0, which requires a control uifree. Such uifree is considered free in the sense that
in the quadratic cost function defined below we do not penalize devices’ control
efforts to remain at their initial temperatures. Hence we are only interested
in the control effort ui which is required to deviate an agent i from xi0 and
the contribution to moving the mean temperature of the population towards
the target temperature y. Also for the rest of the thesis, we consider only
the deterministic case where there is no noise in devices’ dynamics. We can
reformulate the dynamics in (3.1) by writing uitotal = ui + uifree

dxi

dt
= {−a(xi − xi0) + bui}+ {−a(xi0 − xa) + buifree}, t ≥ 0, xi(0) = xi0. (3.2)

By the definition above of free control uifree, the latter term in (3.2) be-
comes zero, hence we have

uifree , b−1a(xi0 − xa)

which is constant and depends on the individual initial temperature. Recall
that we assume that xa is constant. We then have a simplified dynamics model

dxi

dt
= −a(xi − xi0) + bui , f(xi, ui), t ≥ 0, xi(0) = xi0. (3.3)

Under the control constraint, it is the total control uitot = ui + uifree that
is constrained to a common set of values Utotal , {utotal|umin ≤ utotal ≤ umax}
for all N agents. The constraints umin and umax need to be chosen carefully
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in order to make sense physically. Specifically, we must have 0 ≤ umin ≤
min{uifree,∀i ∈ [N ]}, and umax ≥ max{uifree,∀i ∈ [N ]}. These are imposed
because at t = 0 all uifree should fall within the admissible control set [umin, umax].
Also, the minimum control uitotal that agent i can exert is zero heating, hence
umin ≥ 0. Hence we have the admissible control ui ∈ U i , {ui|umin − uifree ≤
ui ≤ umax − uifree}, where umin and umax meet the conditions mentioned above.
Note in particular that the constraint set for ui depends on the agent i.

The goal is to move the average temperature of the agents’ population
to the target y, while keeping each individual temperature relatively close to
its initial value. In particular, we want to avoid controls ui to become too
aggressive, in which case each individual temperature xi could be moved to
y. Although this satisfies our goal to move the population mean to the mean
target, this will inevitably cause disturbance to users whose initial temperature
is far from the mean target. This motivates the definition of the following cost
function for each agent i, and we define u−i to be the set of controls of agents
other than agent i, i.e. u−i = (u1, u2, · · · , ui−1, ui+1, · · · , uN).

Ji(ui, u−i) =
∫ ∞

0
e−δt[(xi − z)2qt + (xi − xi0)2q0 + (ui)2r]dt, (3.4)

where δ , q0 , r are positive constants and the temperature z serves as a direc-
tion signal to all agents, such that all agents should move toward z but not
beyond. Deviation of temperature from xi0 is penalized by the coefficient q0 in
order to maintain users’ comfort levels by keeping temperatures close to the
initial values. The penalty coefficient qt, defined below, is calculated according
to the integrated difference between the mean field temperature of the entire
population x̄ and the constant target y

qt =
∣∣∣∣∣λ
∫ t

0
(x̄− y)dt

∣∣∣∣∣ + kp(t), (3.5)

where λ > 0 and is constant. x̄ is computed from the propagation of the mass
density of the population, and is defined in (3.9).

The cost function Ji is defined so that any agent i feels the pressure
qt built up from the difference between the mean field temperature x̄ of the
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population and the target temperature y. In the case where y < x̄0, all agents
are asked to reduce their temperatures, and one must have x̄ ≥ y > z > xa. If
qt is to achieve a steady-state, then x̄ must approach y asymptotically. At this
point, one can show that all agents reach an individualized, initial condition
dependent steady-state and maintain the population mean temperature at y.
kp(t) is a positive time-varying term, which provides some initial pressure to all
agents at the beginning of the control horizon, and guarantees a maximum single
switch property of the locally optimal control policy, which will be discussed
in the following chapter. As qt is calculated based on mean temperature x̄,
and the latter becomes deterministic as the number of agents goes to infinity,
qt can be viewed in the limit as a given function of time t, and we then write
Ji(ui, qt). For a posited qt trajectory, each agent chooses its best response ui∗ =
arg minui∈U i Ji(ui, qt) to minimize Ji while respecting the control constraints.
By defining the value function Vi(xi, t) as the optimal cost to go starting from
xi at time t, we write the Hamilton-Jacobi-Bellman (HJB) equation for agent i
to find the optimal ui∗ under constraint

− ∂Vi
∂t

= inf
ui∈U i

(
L(xi, ui, t) + ∂Vi

∂xi
f(xi, ui)

)
, (3.6)

where

L(xi, ui, t) = 1
2e
−δt[(xi − z)2qt + (xi − xi0)2q0 + (ui)2r],

f(xi, ui) = −a(xi − xi0) + bui.

As in the usual MFG set up, we consider a limiting infinite population
situation where the mass effect x̄ characterizing qt, the weight in the cost func-
tion of individual agents, is posited as given. The solution to the HJB equation
describes the optimal control ui∗ as a best response to the mass behavior for
each agent i. However, in contrast to the standard linear quadratic MFG setup
(More background information on standard LQG MFG and its equilibrium solu-
tion can be found in Annexe A.), the dynamics in (3.3), the cost function in (3.4)
and the constraint set U i depend throughout the control horizon on the initial
condition xi0 of the particular agent. To address this difficulty and characterize
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the mass behavior, we still view the population of agents as a continuum, but
approximate the mass dynamics by discretizing the agents’ initial temperature
pdf ρ0. First, we partition the set of initial temperatures into disjoint intervals
Θk, k = 1, . . . , K. We define mΘk(x, t) to be the temperature pdf conditional on
the initial temperature falling in the set Θk. For Θk, k = 1, . . . , K, the initial
conditional pdf mΘk(x, 0) is supported and assumed uniform over the intervals
Θk. Moreover, we attach to an interval Θk a single control policy, taken to
be the one associated with the particle initially at the mean temperature θ̄k
within Θk. In practice we take θ̄k as the center of the interval Θk, where mΘk

is uniform.

We can then compute mΘk(x, t) using the advection equation

∂mΘk(x, t)
∂t

+ ∂

∂x
{mΘkvθ̄k} = 0, (3.7)

where vθ̄k := fk(x, uθ̄k∗ ) = −a(x− θ̄k) + buθ̄k∗ .

The optimal control uθ̄k∗ is obtained from the HJB equation

− ∂Vk
∂t

= inf
u∈U θ̄k

(
Lk(x, u, t) + ∂Vk

∂x
fk(x, u)

)
. (3.8)

Finally, in order to calculate the mean x̄ of the mass, we have

x̄ =
∫ +∞

−∞
xm(x, t)dx, (3.9)

where the mean-field m(x, t) is computed as

m(x, t) =
K∑
k=1

mΘk(x, t)
(∫

Θk

ρ0(α)dα
)
.

The MFG equation system to solve consists of (3.5), (3.7), (3.8) and
(3.9), with k = 1, . . . , K. As discussed below, it corresponds to requiring that
at equilibrium in an infinite population, a fixed point property be satisfied.
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MF Equation System with Constrained Control for t ∈ [0,+∞)

∂mΘk(x, t)
∂t

+ ∂

∂x
{mΘkvθ̄k} = 0, k = 1, . . . , K,

−∂Vk
∂t

= inf
u∈U θ̄k

(
Lk(x, u, t) + ∂Vk

∂x
fk(x, u)

)
, k = 1, . . . , K,

m(x, t) =
K∑
k=1

mΘk(x, t)
(∫

Θk

ρ0(α)dα
)
,

x̄ =
∫ +∞

−∞
xm(x, t)dx,

qt =
∣∣∣∣∣λ
∫ t

0
(x̄− y)dt

∣∣∣∣∣ + kp,

(3.10)

where

Lk(x, u, t) = 1
2e
−δt[(x− z)2qt + (x− θ̄k)2q0 + (u)2r], k = 1, . . . , K,

fk(x, uθ̄k∗ ) = −a(x∗ − θ̄k) + buθ̄k∗ , k = 1, . . . , K.

A fixed point must be found for this system, in the sense that starting from
a posited family of flows

{
mΘk(x, t)

}
, one recovers the same

{
mΘk(x, t)

}
when

solving a family of K advection equations under the associated best response
optimal control laws for each k in (3.10).

The decentralized control mechanism is based on the fixed point of the
MF system which is calculated offline. At the start of the control horizon, the
distribution of initial mean temperature of the population is given so we can
compute x̄0. Depending on the status of generation and demand from loads, the
central authority will determine the temperature target y and a corresponding
parameter z in order to balance the load and generation. For example, when
the objective is to mitigate renewable variability, if the renewable generation is
predicted to be lower than the peak demand, the central authority will require all
devices to decrease their temperatures, and then z < y < x̄0. Based on y, z, and
the initial device population temperatures, the central authority can compute
the trajectory of qt at the fixed point, and transmit the information to all devices
which can in turn compute their control locally (see Figure 3.1). In practice,
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it may be required that the central authority periodically collect samples of
home temperatures to update temperature distribution of the population in
order to correct any error that may happen during the control horizon (periodic
measurements represented by the dotted line in Figure 3.1).

Figure 3.1 Decentralized control mechanism based on fixed point of the MF
system
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CHAPTER 4 CONTROL POLICY AND COMPUTATION OF
THE EQUILIBRIUM SOLUTION

In this chapter, we analyze the structure of the optimal control policy under
constrained control inputs. The optimal solution is based on solving the HJB
equation associated with the best response of agents given qt acting on their cost
function. We then impose a sufficient condition under which control saturation,
if any, occurs only at the start of the control horizon for a finite period of time,
then control becomes unsaturated until the end of control horizon. Thus best
responses are constrained to be at most single switching strategies. Finally we
propose a numerical scheme to compute the single switching control policies
for the devices and to solve the Fokker-Planck equation in the MF equation
system in (3.10). An iterative algorithm is presented to compute the associated
equilibrium solution within the class of at most one switching control strategies.

4.1 Structure of Optimal Control Policies

For a certain agent i, we have the HJB equation defined as in (3.6),

−∂Vi
∂t

= inf
ui∈U i

(
L(xi, ui, t) + ∂Vi

∂xi
f(xi, ui)

)
,

where

L(xi, ui, t) = 1
2e
−δt[(xi − z)2qt + (xi − xi0)2q0 + (ui)2r],

f(xi, ui) = −a(xi − xi0) + bui.

Note from (3.6) that L(xi, ut, t) is a time varying function explicitly depen-
dent on t. For the remainder of our analysis, we perform a change of variable to
make it implicitly dependent on t. Denote x̃i = e−

δt
2 xi, x̃i0 = e−

δt
2 xi0, z̃ = e−

δt
2 z,
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and ũi = e−
δt
2 ui, we have

L(xi, ui, t) = 1
2e
−δt[(xi − z)2qt + (xi − xi0)2q0 + (ui)2r]

= 1
2[(x̃i − z̃)2qt + (x̃i − x̃i0)2q0 + (ũi)2r]

= L̃(x̃i, ũi).

(4.1)

Accordingly, we have

Vi(xi, t) = inf
ui∈U i

Ji(xi, ui, t)

= 2 inf
ui∈U i

∫ ∞
0
L(xi, ui, t)dt

= 2 inf
ũi∈Ũ i

∫ ∞
0
L̃(x̃i, ũi)dt

= inf
ũi∈Ũ i

J̃i(x̃i, ũi, t)

= Ṽi(x̃i, t).

∂Vi
∂t

= ∂Vi

∂Ṽi

∂Ṽi
∂t

= ∂Ṽi
∂t
. (4.2)

∂Vi
∂xi

= ∂Vi

∂Ṽi

∂Ṽi
∂x̃i

∂x̃i

∂xi
= ∂Ṽi
∂x̃i

e−
δt
2 .

˙̃xi = e−
δt
2 (ẋi − δ

2x
i)

= e−
δt
2

(
−a(xi − xi0) + bui − δ

2x
i

)

= e−
δt
2

(
−(a+ δ

2)xi + axi0 + bui
)

= −(a+ δ

2)x̃i + ax̃i0 + bũi.
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∂Vi
∂xi

f(xi, ui) = ∂Ṽi
∂x̃i

e−
δt
2 ẋi

= ∂Ṽi
∂x̃i

( ˙̃xi + δ

2 x̃
i)

= ∂Ṽi
∂x̃i

(−a(x̃i − x̃i0) + bũi)

= ∂Ṽi
∂x̃i

f(x̃i, ũi).

(4.3)

From equations (4.1), (4.2), and (4.3), we can rewrite the HJB equation
in (3.6) in terms of the new variables (x̃i, ũi), and get

− ∂Ṽi
∂t

= inf
ũi∈Ũ i

L̃(x̃i, ũi) + ∂Ṽi
∂x̃i

f(x̃i, ũi)
 . (4.4)

The control input constraint we impose to the agent i is in the form
{ui ∈ U|umin − uifree ≤ ui ≤ umax − uifree}, where uifree, umin and umax are
defined in Chapter 3. By following the same change of variables, we write the
associated input constraint {ũi ∈ Ũ|ũmin − ũifree ≤ ũi ≤ ũmax − ũifree}.

In general, an optimal solution (ũi∗, x̃i∗) to the HJB equation in (4.4) can
be solved numerically using dynamic programming in a backward direction (ũi∗

is the optimal control and x̃i∗ is the corresponding optimal trajectory for agent
i) [Kirk, 1970]. Assuming that we are given (ũi∗, x̃i∗) as an optimal solution to
(4.4), we have

− ∂

∂t
Ṽi(x̃i∗, t) = L̃(x̃i∗, ũi∗) + ∂

∂x̃i
Ṽi(x̃i∗, t)f(x̃i∗, ũi∗). (4.5)

If we differentiate both sides of (4.5) with respect to x̃i and use the chain
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rule on the right side, we get

− ∂

∂x̃i

[
∂

∂t
Ṽi(x̃i∗, t)

]
= ∂

∂x̃i
L̃(x̃i∗, ũi∗) + ∂

∂x̃i

[
∂

∂x̃i
Ṽi(x̃i∗, t)f(x̃i∗, ũi∗)

]
,

− ∂2

∂x̃i∂t
Ṽi(x̃i∗, t) = ∂

∂x̃i
L̃(x̃i∗, ũi∗) + ∂2

∂x̃i2
Ṽi(x̃i∗, t)f(x̃i∗, ũi∗)

+ ∂

∂x̃i
Ṽi(x̃i∗, t)

∂

∂x̃i
f(x̃i∗, ũi∗).

(4.6)

We now define an adjoint variable p̃i(t) such that

p̃i(t) , ∂

∂x̃i
Ṽi(x̃i∗, t). (4.7)

By taking the total derivative to p̃i(t) in (4.7) with respect to time, we
get

dp̃i

dt
= d

dt

[
∂

∂x̃i
Ṽi(x̃i∗, t)

]

= ∂

∂x̃i

[
∂

∂xi
Ṽi(x̃i∗, t)

]
dx̃i∗

dt
+ ∂2

∂x̃i∂t
Ṽi(x̃i∗, t)

= ∂2

∂x̃i2
Ṽi(x̃i∗, t)f(x̃i∗, ũi∗) + ∂2

∂x̃i∂t
Ṽi(x̃i∗, t).

(4.8)

Note that in (4.8), dx̃i∗

dt = f(x̃i∗, ũi∗). Rearranging the terms in (4.6) and using
the results in (4.7) and (4.8), we have

− dp̃i

dt
= ∂

∂x̃i
L̃(x̃i∗, ũi∗) + p̃i

∂

∂x̃i
f(x̃i∗, ũi∗) (4.9)

with a terminal condition p̃i(T ) = pi∞, as T →∞.

Let the Hamiltonian function be defined below, assuming (ũi∗, x̃i∗) an
optimal solution

H̃(p̃i, xi∗, ui∗) = L̃(x̃i∗, ũi∗) + p̃if(x̃i∗, ũi∗). (4.10)
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Then for all admissible controls ui ∈ U i, we must have

H̃(p̃i, xi∗, ui∗) ≤ H̃(p̃i, xi∗, ui). (4.11)

It is therefore shown that given an optimal solution (ũi∗, x̃i∗) to the HJB
equation in (4.4), the optimal solution also satisfies equations in (4.9) and (4.11),
which are conditions for Pontryagin’s Maximum Principle (PMP). As PMP
accommodates constraints more easily, we will try to find an optimal control
law in an analytic form based on the PMP conditions.

Expanding the PMP inequality in (4.11) by using the Hamiltonian defined
in (4.10), we get

H̃(p̃i, x̃i∗, ũi∗, ) ≤ H̃(p̃i, x̃i∗, ũi),
L̃(x̃i∗, ũi∗) +˜̃pif(x̃i∗, ũi∗) ≤ L̃(x̃i∗, ũi) + p̃if(x̃i∗, ũi∗),

(x̃i∗ − z̃)2qt + (x̃i∗ − x̃i0)2q0 + (ũi∗)2r + p̃i(a(xi∗ − xi0) + bũi∗)
≤ (x̃i∗ − z̃)2qt + (x̃i∗ − x̃i0)2q0 + (ũi)2r + p̃i(a(xi∗ − xi0) + bũi),

(ũi∗)2r + bp̃iũi∗ ≤ (ũi)2r + bp̃iũi.

(4.12)

From the inequality in (4.12), we can derive the following optimal control
law for all admissible controls ui ∈ U i using the earlier change of variables where
ũi = e

δt
2 ui, and p̃i = e

δt
2 pi:

Optimal Control Law

ui∗ =


ui−, h(pi) < ui−
h(pi), h(pi) ∈ [ui−, ui+] ,
ui+, h(pi) > ui+

(4.13)

where for an agent i, h(pi) = −br−1pi. ui− = umin − uifree is the lower bound
of the constraint U i, and ui+ = umax − uifree is the upper bound of the con-
straint. Starting from (4.9) and using the earlier change of variables, we have
the following costate equation

ṗi = (a+ δ)pi − qt(xi − z)− q0(xi − xi0), pi(T ) = pi∞. (4.14)
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Suppose that pi is in the form of pi(t) = πi(t)xi(t) + si(t), where πi(t)
and si(t) are two functions to be determined [Sontag, 2013]. For the case where
ui = −br−1pi ∈ [ui−, ui+], i.e. controls are unconstrained, we have

ẋi = −a(xi − xi0) + b(−br−1pi)
= −(a+ b2r−1πi)xi − b2r−1si + axi0,

ṗi = π̇ixi + πiẋi + ṡi,

π̇ixi + πiẋi + ṡi = (a+ δ)pi − qt(xi − z)− q0(xi − xi0),
π̇ixi + ṡi = −πi

(
−(a+ b2r−1πi)xi − b2r−1si + axi0

)
+ (a+ δ)(πixi + si)− qt(xi − z)− q0(xi − xi0)

=
(
(2a+ δ)πi + b2r−1πi2 − qt − q0

)
xi

+
(
(a+ δ + b2r−1πi)si − aπixi0 + qtz + q0x

i
0
)
.

Therefore we have

dπi

dt
= (2a+ δ)πi + b2r−1πi2 − qt − q0. (4.15)

dsi

dt
= (a+ δ + b2r−1πi)si − axi0πi + qtz + q0x

i
0. (4.16)

Equation (4.15) is a scalar Riccati equation, and we have πi(t) > 0, ∀t >
0 [Sontag, 2013]. The trajectories of πi(t) and si(t) when controls are uncon-
strained can be solved from equations in (4.15) and (4.16) respectively for a
given qt in a backwards direction subject to some terminal conditions. For an
infinite control horizon problem, all terminal conditions equal to zero as there
is no terminal cost from the cost function defined in (3.4).

By following a similar approach, we can write the equations for πi and
si when controls are constrained. Considering without loss of generality the
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temperature decrease case, when controls are constrained, i.e. ui = ui−, we have

ẋi = −a(xi − xi0) + bui−,

ṗi = π̇ixi + πiẋi + ṡi,

π̇ixi + πiẋi + ṡi = (a+ δ)pi − qt(xi − z)− q0(xi − xi0),
π̇ixi + ṡi = −πi

(
−a(xi − xi0) + bui−

)
+ (a+ δ)(πixi + si)− qt(xi − z)− q0(xi − xi0)

=
(
(2a+ δ)πi − qt − q0

)
xi

+
(
(a+ δ)si − aπixi0 + qtz + q0x

i
0 − bπiui−

)
.

Therefore we have
dπi

dt
= (2a+ δ)πi − qt − q0. (4.17)

dsi

dt
= (a+ δ)si − aπixi0 + qtz + q0x

i
0 − bπiui−. (4.18)

While based on the optimal control law in (4.13), under a given pressure
qt, the control could go in theory from no saturation to saturation, and then
back to no saturation. The pattern could repeat several times before reaching
the steady-state. We wish to restrict the set of qt by imposing conditions on qt
such that saturation, if any, would only be allowed at the start of the control
horizon until some time ti∗. Past ti∗ the optimal control becomes unsaturated
for the rest of the control horizon. We now discuss the restrict set of qt and a
sufficient condition for such a single switching control policy.
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4.2 Single Switching Control Policy

We still assume without loss of generality the temperature decrease case, where
we have umin = 0, ∀i ∈ [N ] such that the total control cannot be a negative
value to cool down the space. In addition, we assume x̄0 > y > z > xa, and
xi0 > z, ∀i ∈ [N ]. Therefore we have ui− = −uifree. We then require dpi

dt ≤ 0 for
a monotonically decreasing pi. The reason for a monotonic pi is that, suppose
that at some time t′, −br−1pi(t′) < ui−, then the optimal control is saturated,
i.e., ui∗ = ui−. When pi monotonically decreases, the control will become non-
saturated at some t > t′, and remain so until the end of control horizon. Hence,
we eliminate the possibility that the control may go back and forth between
saturation and no saturation.

From (4.14), the monotonicity of costate pi imposes a condition on qt

whereby,

qt ≥
(a+ δ)pi
xi − z

+ q0
xi0 − xi

xi − z
∀i = [N ]. (4.19)

If the given qt satisfies (4.19), then we are guaranteed that the best re-
sponse control policies under such qt have the single switching properties. There-
fore we would like to study under what conditions (4.19) holds. In the following
sections, we produce a lower bound q−t on qt and an upper bound for the right
hand side of (4.19). In order to do so, we shall assume that δ is small enough
that the steady-state mean temperature trajectory x̄ asymptotically reaches the
target y (if δ is too large, we may arrive at a fixed point solution where x̄ settles
at the temperature boundary z; however this is not a desired steady-state). At
the desired steady-state x̄ = y, qt reaches a constant value q∞y . It turns out
that q∞y is the unique constant weight under which all individuals reach their
steady-states, and the mean of the individual steady-states equals to y. Given
the initial mean temperature x̄0 of the population, we can compute the q∞y , as
discussed in the following in details.
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4.2.1 Calculation of q∞y

Proposition 4.2.1. At steady-state if x̄ settles at y, each agent of the population
has an unconstrained control input.

Proof. Suppose that the control input is constrained for agent i at steady-state,
then πi and si follow the ODE’s given in (4.17) and (4.18). Given q∞y , we can
compute the boundary conditions as T →∞,

π̇i = (2a+ δ)πi − qt − q0,

ṡi = (a+ δ)si − aπixi0 + qtz + q0x
i
0 − bπiui−.

subject to boundary conditions at steady-state
0 = (2a+ δ)πi∞ − q∞y − q0,

0 = (a+ δ)si∞ − aπi∞xi0 + q∞y z + q0x
i
0 − bπi∞ui−,

We have

πi∞ = 1
2a+ δ

(
q∞y + q0

)
,

si∞ = − 1
a+ δ

(
−aπi∞xi0 + q∞y z + q0x

i
0 − bπi∞ui−

)
= − 1

a+ δ

(
−πi∞(axi0 + bui−) + q∞y z + q0x

i
0
)

= − 1
a+ δ

(
−πi∞(axi0 − buifree) + q∞y z + q0x

i
0
)

= − 1
a+ δ

(
−πi∞(axi0 − bb−1a(xi0 − xa)) + q∞y z + q0x

i
0
)

= − 1
a+ δ

(
−aπi∞xa + q∞y z + q0x

i
0
)
.

When controls are constrained, the inequality −br−1pi∞ < ui− must hold
at steady-state, where
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pi∞ = πi∞x
i
∞ + si∞

= πi∞xa + si∞

= πi∞xa −
1

a+ δ

(
−aπi∞xa + q∞y z + q0x

i
0
)

= 1
a+ δ

(
(2a+ δ)πi∞xa − q∞y z − q0x

i
0
)

= 1
a+ δ

(
(2a+ δ)

[ 1
2a+ δ

(q∞y + q0)
]
xa − q∞y z − q0x

i
0

)

= − 1
a+ δ

(
q∞y (z − xa) + q0(xi0 − xa)

)
< 0

given that we have z − xa > 0 and xi0 − xa > 0.

Consequently we have

−br−1pi∞ = br−1
[ 1
a+ δ

(
q∞y (z − xa) + q0(xi0 − xa)

)]
> 0 > ui−.

However, the above is in contradiction with the inequality condition that
when controls are constrained we should have −br−1pi∞ < ui− < 0. Recall that
ui− = −uifree = −b−1a(xi0− xa) < 0 in the temperature decrease case. Hence we
can conclude that at steady-state, control inputs cannot be constrained for any
agent of the population.

By Proposition 4.2.1, we can conclude that in the constrained case, all
controls become unconstrained at steady-state. Therefore, all quantities at
steady-states should be identical in both the constrained and unconstrained
cases.

Proposition 4.2.2. Let c1 = a(a+δ)r+b2q0
b2 , the unique q∞y can be computed by

q∞y = c1
x̄0 − y
y − z

.

Proof. Suppose that at steady-state the mean temperature of the population
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x̄ reaches the target y, while control input for any device of the population
should be unconstrained from Proposition 4.2.1. Therefore we have optimal
control ui∗ = −br−1pi, where πi and si are described by (4.15) and (4.16). By
substituting the optimal control into the process equation, we get,

dxi

dt
= −(a+ b2r−1πi)xi − b2r−1si + axi0. (4.20)

At steady-state, we should have dπi

dt = 0, dsi

dt = 0, and dxi

dt = 0. Then we
obtain the following from (4.15)-(4.20),

− (2a+ δ)πi∞ − b2r−1πi2∞ + q∞y + q0 = 0, (4.21)

− (a+ δ + b2r−1πi∞)si∞ + axi0π
i
∞ − q∞y z − q0x

i
0 = 0, (4.22)

− (a+ b2r−1πi∞)xi∞ − b2r−1si∞ + axi0 = 0, (4.23)

where πi∞, si∞, and xi∞ denote values at steady-state. To characterize the q∞y in
terms of xi∞, we first multiply (4.21) by xi∞ and get

− (2a+ δ)πi∞xi∞ − b2r−1πi2∞x
i
∞ + q∞y x

i
∞ + q0x

i
∞ = 0. (4.24)

Then by adding (4.24) to (4.22) we get

−(a+ δ + b2r−1πi∞)si∞ + axi0π
i
∞ − (2a+ δ)πi∞xi∞ − b2r−1πi2∞x

i
∞

+q∞y (xi∞ − z) + q0(xi∞ − xi0) = 0.
(4.25)

From (4.23), we get

si∞ = −(a+ b2r−1πi∞)xi∞ + axi0
b2r−1 . (4.26)

Substituting the result of (4.26) into (4.25), we get

−(a+ δ + b2r−1πi∞)
[
−(a+ b2r−1πi∞)xi∞ + axi0

]
− (2a+ δ)b2r−1πi∞x

i
∞

+ab2r−1xi0π
i
∞ − (b2r−1)2πi2∞x

i
∞ + b2r−1 [q∞y (xi∞ − z) + q0(xi∞ − xi0)

]
= 0.
(4.27)
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Expanding the terms in (4.27), we get,

a(a+ δ)(xi∞ − xi0) + b2r−1 [q∞y (xi∞ − z) + q0(xi∞ − xi0)
]

+ (2a+ δ)b2r−1πi∞x
i
∞

+(b2r−1)2πi2∞x
i
∞ − ab2r−1xi0π

i
∞ + ab2r−1xi0π

i
∞ − (2a+ δ)b2r−1πi∞x

i
∞

−(b2r−1)2πi2∞x
i
∞ = 0.
(4.28)

Only the first two terms remain while the latter terms in (4.28) cancel each
other out, leading to the following expression for q∞y

q∞y = c1
xi0 − xi∞
xi∞ − z

, (4.29)

where
c1 = a(a+ δ)r + b2q0

b2 .

Multiplying by (xi∞ − z) on both sides of (4.29), we get

(xi∞ − z)q∞y = c1(xi0 − xi∞).

By taking expected values on both sides of the above equation given E{xi∞} =
x̄∞ = y at steady-state and q∞t is a constant, we get

q∞t = c1
x̄0 − y
y − z

. (4.30)

Hence we prove Proposition 4.2.2.

In the following analysis, we take the computed q∞t as the upper bound of
qt when searching for the fixed point. Hence, it is expected that x̄(t) ≤ y, ∀t,
and there should be no oscillation around y. In the next section, we produce
a lower bound for qt and an upper bound for the RHS of inequality in (4.19),
from which we define the sufficient condition for the single switch control policy.
Under a given qt, we define

Ψ(xi) = (a+ δ)pi
xi − z

+ q0
xi0 − xi

xi − z
. (4.31)
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Note that as pi = πixi + si, we define Ψ(xi) a function of xi only.

4.2.2 Upper Bound for Ψ(xi) and Lower Bound for qt

Suppose that we apply a constant qt(t) = q∞y , ∀t to (4.14), and we denote xi−(t)
and pi−(t) the resulting state and costate trajectories of any agent. We have

dpi−
dt

= αpi− − (xi− − z)q∞y − (xi− − xi0)q0, (4.32)

where α = a+ δ. By differentiating both sides of (4.32) with respect to time t,
we get

d2pi−
dt2

= α
dpi−
dt
− (q∞y + q0)ẋi−. (4.33)

For t ∈ [0, T ] where T →∞, the solution to (4.33) can be expressed as

dpi−
dt

= eα(t−T )ṗi−(T ) +
∫ t

T
eα(t−τ)[−(q∞y + q0)]ẋi−(τ)dτ

= −(q∞y + q0)eαt
∫ t

T
e−ατ ẋi−(τ)dτ

= (q∞y + q0)eαt
∫ T

t
e−ατ ẋi−(τ)dτ.

(4.34)

Note that ṗi−(T ) = π̇i(T )xi(T ) + πi(T )ẋi(T ) + ṡi(T ), as π̇i, ẋi, and ṡi=0 at
T →∞, we have ṗi−(T ) = 0.

Under q∞y , xi− is monotonically decaying (see (4.46) below for expression
of xi−), hence ẋi− ≤ 0, ∀t, and we verify dpi−

dt ≤ 0, ∀t. This indicates that when
qt(t) = q∞y is applied, (4.19) is satisfied.

From the produced state trajectory xi−(t) and costate trajectory pi−(t), we
produce an upper bound

Ψ(xi−) = (a+ δ)pi−
xi− − z

+ q0
xi0 − xi−
xi− − z

,

such that
Ψ(xi−) ≥ Ψ(xi), (4.35)
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where xi is the state trajectory produced under any qt ≤ q∞y , ∀t, where qt is
defined by (3.5). To see this, when we apply the maximally possible pressure
q∞y to ask each device to decrease the temperature, we are applying the most
aggressive control inputs, hence we must have z < xi− ≤ xi and pi− ≥ pi > 0. For
the right hand side of inequality in (4.35), Ψ(xi−) is obtained when xi and pi are
replaced in Ψ(xi) by xi− and pi− respectively, and we are increasing the numerator
and decreasing the denominator. Hence we must have Ψ(xi−) ≥ Ψ(xi).

By applying the same constant q∞y to x̄0, we can produce a trajectory
x̄−(t) below x̄(t), based on which we can compute a lower bound q−t for qt such
that,

q−t = λ

∣∣∣∣∣
∫ t

0
(x̄−(τ)− y)dτ

∣∣∣∣∣
≤ λ

∣∣∣∣∣
∫ t

0
(x̄(τ)− y)dτ

∣∣∣∣∣
≤ λ

∣∣∣∣∣
∫ t

0
(x̄(τ)− y)dτ

∣∣∣∣∣ + kp(t)

= qt.

(4.36)

Note that as we consider qt ≤ q∞y , ∀t, we do not expect any oscillation of x̄
around y before reaching steady-state. Further, given that each xi− under q∞y is
monotonic towards its steady-state, x̄− should not oscillate around y either.

4.2.3 Sufficient Condition for the Single Switching Control Policy

By adding a proper time varying positive term kc(t) to q−t , we guarantee that
the inequality

q−t + kc ≥ Ψ(xi−) ∀i = [N ]

holds for all t. As we have shown in the previous section that when q∞y is
applied, dpi−

dt ≤ 0, ∀i ∈ [N ], ∀t, we must have q∞y ≥ Ψ(xi−), ∀t. This indicates
that such kc(t) term always exists to guarantee that the inequality above holds,
i.e. Ψ(xi−) − q−t ≤ kc < q∞y − q−t , ∀t. Therefore by combining (4.19), (4.35),
and (4.36) we can write a sufficient condition under which pi(t) is monotonically
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decreasing for the temperature decrease case.

qt + kc ≥ qt − kp + kc ≥ q−t + kc,

≥ Ψ(xi−) ≥ Ψ(xi) ∀i = [N ].
(4.37)

Note that if we desire x̄ to monotonically reach the target y (no oscillations
around y), then the term (qt + kc) would be restricted to no larger than q∞y
during the entire control horizon. Therefore, kc(t) should satisfy Ψ(xi−)− q−t ≤
kc < q∞y − qt, ∀t. In (4.37), Ψ(xi−) can be computed by explicitly expressing
the trajectories of xi− and pi−, which is discussed in the following sections by
adopting the single switching control policy.

Calculation of xi−

Suppose that we apply a constant q∞y to the system, we can then write the
following equations for t ∈ [ti∗, T ], where ti∗ is the time when the control in-
put becomes unconstrained. For simplicity and easiness to read, we omit the
subscript “−” to all variables in the following analysis of this subsection.

When controls are unconstrained, πi and si follow the equations in (4.15)
and (4.16), subject to terminal conditions πi∞ and si∞ respectively.

If we work with an infinite control horizon, i.e. T → ∞, (4.15) becomes
an algebraic Riccati equation, hence we can solve for a constant and positive
solution π∞. We have

π∞ =
−(2a+ δ) +

√
(2a+ δ)2 + 4b2r−1(q∞t + q0)

2b2r−1 . (4.38)

Note that π∞ is independent of agent i. By substituting π∞ into (4.16), we can
solve for si(t) from the resulting equation:
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dsi

dt
= βsi + γi,

β = (a+ δ + b2r−1π∞),
γi = −axi0π∞ + q∞y z + q0x

i
0.

(4.39)

The boundary condition si∞ of (4.39) is obtained by setting dsi

dt = 0 where
steady-state is reached, and we get si∞ = −γi

β . The solution to (4.39) subject to
si∞ is therefore expressed by

si(t) = eβ(t−T )si∞ +
∫ t

T
eβ(t−τ)γidτ

= eβ(t−T )si∞ + γieβt
∫ t

T
e−βτdτ

= eβ(t−T )si∞ + eβt(−γ
i

β
)
e−βτ

∣∣∣∣∣∣
t

T


= eβ(t−T )si∞ + si∞(1− eβ(t−T ))
= si∞.

(4.40)

The resulting si is therefore time invariant but dependent on initial tem-
perature xi0 of each agent. We can therefore have the costate pi for an agent i
written as

pi(t) = π∞x
i(t) + si∞, t ∈ [ti∗,∞)

when control is not saturated.

We already know that when under unsaturated control, i.e. ui ≥ ui−, the
optimal control has the form of ui∗ = −br−1pi. This indicates that if, at the
beginning of the control, the costate p(0) = π∞x

i
0 + si∞ is no greater than some

pimax = −b−1rui−, then during the entire control horizon, the control will never
be saturated as pi(t) is monotonically decreasing when a constant q∞y is applied.
In this case, one can rewrite the process equation by substituting the resulting
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optimal control and get

ẋi = −a(xi − xi0)− b2r−1(π∞xi + si∞)
= (−a− b2r−1π∞)xi + (axi0 − b2r−1si∞)
= κ1x

i + κi2, t ∈ [0,∞).
(4.41)

One can solve for xi in (4.41) subject to initial condition xi(0) = xi0, and
get

xi = eκ1txi0 +
∫ t

0
eκ1(t−τ)κi2dτ,

= eκ1txi0 + eκ1tκi2

∫ t

0
e−κ1τdτ

= eκ1txi0 −
κi2
κ1
eκ1te−κ1τ

∣∣∣∣∣∣
t

0

= eκ1txi0 −
κi2
κ1
eκ1t(e−κ1t − 1)

= (xi0 + κi2
κ1

)eκ1t − κi2
κ1
∀t ∈ [0,∞).

(4.42)

On the other hand, if at t = 0, p(0)i > pimax, then the control will be
saturated in the beginning, until some time ti∗ where pi(ti∗) reduces to pimax.
Then the control will become unsaturated until the end of the control horizon.
We can compute the state trajectory from the process equation by using the
saturated control ui = ui− = −uifree = −ab−1(xi0 − xa) for t ∈ [0, ti∗].

ẋicon = −a(xicon − xi0) + bui−

= −a(xicon − xi0)− b
a

b
(xi0 − xa)

= −axicon + axa.

(4.43)

We use a subscript con to specify that the state trajectory is under con-
strained control. Using the initial condition x(0) = xi0, the solution to (4.43)
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is,

xicon = e−atxi0 +
∫ t

0
e−a(t−τ)(axa)dτ

= e−atxi0 + axae
−at

∫ t

0
eaτdτ

= e−atxi0 + xae
−at(eat − 1)

= (xi0 − xa)e−at + xa, t ∈ [0, ti∗].

(4.44)

For t ∈ (ti∗, T ], pi(t) < pimax, and the control will be unconstrained.
The unconstrained state trajectory xiunc can be explicitly determined by solving
(4.41) and using xicon(ti∗) as the initial condition. We get

xiunc =
xicon(ti∗) + κi2

κ1

 eκ1(t−ti∗) − κi2
κ1
, t ∈ (ti∗,∞). (4.45)

Therefore the complete state trajectory xi−(t) under q∞y for t ∈ [0, ∞)
when the control is constrained at t = 0 is defined by

xi−(t) =


(xi0 − xa)e−at + xa, for t ∈ [0, ti∗](
xi−(ti∗) + κi2

κ1

)
eκ1(t−ti∗) − κi2

κ1
, for t ∈ (ti∗,∞),

(4.46)

where κ1 = (−a − b2r−1π∞) and κi2 = (axi0 − b2r−1si∞). We observe from
equations (4.42) and (4.46) that, for an initial condition xi0, whether the control
is constrained or not in the beginning, the same steady-state value is reached,
which is −κi2

κ1
. This result is consistent with Proposition 4.2.1. We can also

use (4.46) to describe trajectory of xi− when the control is not saturated in the
beginning, by simply setting ti∗ = 0.
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From the equality pi(ti∗) = pimax we can explicitly compute ti∗:

π∞
[
(xi0 − xa)e−at

i
∗ + xa

]
+ si∞ = −b−1rui−,

(xi0 − xa)e−at
i
∗ = 1

π∞

(
ab−2r(xi0 − xa)− si∞

)
− xa,

e−at
i
∗ =

1
π∞

(
ab−2r(xi0 − xa)− si∞

)
− xa

xi0 − xa
,

ti∗ = −1
a

lnAi,

(4.47)

where Ai =
1
π∞ (ab−2r(xi0−xa)−si∞)−xa

xi0−xa
.

Calculation of pi−

When control input is unconstrained for t ∈ (ti∗, ∞], pi−(t) can be expressed as
pi−(t) = π∞x

i
−(t) + si∞.

Under constrained control input for t ∈ [0, ti∗], trajectories of πi(t) and
si(t) are described in (4.17) and (4.18) , subject to boundary conditions π∞ and
si∞ respectively. We can then solve for πi(t) and si(t) in a backwards direction
for t ∈ [0, ti∗]. Hence, the complete trajectory of pi− for t ∈ [0, T ] can be
computed in 2 segments.

4.2.4 Monotone Properties of Ψ(•)

Having explicitly computed xi− and pi−, we would like to further analyze the
sufficient condition defined in (4.37).

Proposition 4.2.3. For any two state trajectories x1, x2 ∈ {xi, i ∈ [N ]}, if
x10 > x20, then x1 > x2, ∀t.

Proof. At any time t, x1(t) and x2(t) have the same pressure coefficient qt(t) to
move towards the target y. Suppose that at certain time t′, x1(t′) = x2(t′), then
they will experience the same pressure qt(t′)(x1(t′) − z)2 = qt(t′)(x2(t′) − z)2
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to decrease their temperatures. However, as x10 > x20, x1 will have a larger
pressure to move towards its initial condition x10 than x2 due to the fact that
q0(x1(t′) − x10)2 > q0(x2(t′) − x20)2. Therefore, at any time when x1 tends to
come close to x2, it will experience a larger “pull force” towards x10, so it will
never come across x2. Hence x1 > x2, ∀t.

We state the following assumption.

A1: For the chosen parameters y, z, a, δ, b, r, and q0, let the following
inequality hold:

x̄0 − y
y − z

≤
(

a

a+ δ
q0

)/(
a(a+ δ)r

b2 + q0

)
.

Proposition 4.2.4. Under A1, there exists an upper bound for the family of
trajectories

{
Ψ(xi−), ∀i ∈ [N ]

}
under q∞y , which is

max
i∈[N ]

{
Ψ(xi−)

}
= Ψ(xmin

− ) = (a+ δ)pmin
−

xmin
− − z

+ q0
xmin

0 − xmin
−

xmin
− − z

∀t,

where xmin
− denotes the state trajectory starting from the minimum initial tem-

perature xmin
0 , and pmin

− is the corresponding costate trajectory.

Proof. Assume we are given x10 and x20, x10 > x20, by Proposition 4.2.3, we
have x1− > x2−. We want to show

(a+ δ)p1−

x1− − z
+ q0

x10 − x1−

x1− − z
<

(a+ δ)p2−

x2− − z
+ q0

x20 − x2−

x2− − z
. (4.48)

From the costate equation,

ṗi = (a+ δ)pi − qt(xi − z)− q0(xi − xi0), pi(T ) = pi∞,

(4.48) is equivalent to
ṗ1−

x1− − z
<

ṗ2−

x2− − z
(4.49)
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under a constant pressure q∞y . Defining the following function

Γ(xi−) = ṗi−
xi− − z

,

if we can show d
dxi−

Γ(xi−) < 0, then for x1− > x2−, we must have Γ(x1−) <
Γ(x2−), hence Proposition 4.2.4 is proved.

We first consider the case where x1− and x2− are both unconstrained.

Γ(x−) = ṗi−
xi− − z

=
d
dt(π∞x

i
− + si∞)

xi− − z

= π∞ẋ
i
−

xi− − z

= π∞[−(a+ b2r−1π∞)xi− + axi0 − b2r−1si∞]
xi− − z

.

d

dxi−
Γ(xi−) = π∞

xi− − z
[
−(a+ b2r−1π∞)

]
− π∞

(xi− − z)2

[
−(a+ b2r−1π∞)xi− + axi0 − b2r−1si∞

]
= π∞

(xi− − z)2

[
−(a+ b2r−1π∞)(xi− − z)

]
+ π∞

(xi− − z)2

[
(a+ b2r−1π∞)xi− − axi0 + b2r−1si∞

]
= π∞

(xi− − z)2

[
a(z − xi0) + b2r−1(π∞z + si∞)

]
= π∞

(xi−−z)2

[
a(z − xi0) + b2r−1(π∞z + −(a+b2r−1πi∞)xi∞−+axi0

b2r−1 )
]

= π∞
(xi− − z)2

[
a(z − xi0) + b2r−1π∞z − (a+ b2r−1πi∞)xi∞− + axi0

]
= π∞

(xi− − z)2

[
(a+ b2r−1π∞)(z − xi∞−)

]
< 0 ∀xi−.

(4.50)
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In the case where x1− and x2− are both constrained, we have

Γ(x−) = ṗi−
xi− − z

= (a+ δ)pi− − q0(xi− − xi0)
xi− − z

− q∞y ,

d

dxi−
Γ(xi−) = 1

xi− − z

(a+ δ)∂p
i
−

dxi−
− q0

− 1
(xi− − z)2

[
(a+ δ)pi− − q0(xi− − xi0)

]

= 1
(xi− − z)2

((a+ δ)∂p
i
−

dxi−
− q0)(xi− − z)− (a+ δ)pi− + q0(xi− − xi0)


= 1

(xi− − z)2

(a+ δ)∂p
i
−

dxi−
(xi− − z)− (a+ δ)pi− + q0(z − xi0)


= 1

(xi− − z)2

(a+ δ)(∂p
i
−

dxi−
(xi− − z)− pi−) + q0(z − xi0)


= 1

(xi− − z)2

[
(a+ δ)(πixi− − πiz − πixi− − si) + q0(z − xi0)

]

= 1
(xi− − z)2

[
−(a+ δ)(πiz + si) + q0(z − xi0)

]
.

(4.51)

Let z = xi− −∆xi, where ∆xi ∈ (0, xi− − xa). Substituting it into (4.51)
we get

d

dxi−
Γ(xi−, t) = 1

(xi− − z)2

[
−(a+ δ)(πixi− + si − πi∆xi) + q0(xi− − xi0 −∆xi)

]

= 1
(xi− − z)2

[
−(a+ δ)pi− + q0(xi− − xi0) + ((a+ δ)πi − q0)∆xi

]
.

(4.52)

By imposing the condition (a + δ)πi − q0 ≤ 0, we have d
dxi−

Γ(xi−) < 0 for
xi− under constrained control inputs. For this condition to hold, we impose
q0 ≥ (a + δ) sup{πi}. The supreme of πi happens at t = 0 when ti∗ = T , which
is independent of agent i and when the control remains constrained just before
the end of the control horizon. From the solution to (4.17), we can compute
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sup{π} by having t∗ = T which goes to ∞.

π = e(2a+δ)(t−t∗)π∞ −
∫ t

t∗
e(2a+δ)(t−τ)(q∞y + q0)dτ

= e(2a+δ)(t−t∗)π∞ − (q∞y + q0)e(2a+δ)t
∫ t

t∗
e−(2a+δ)τdτ

= e(2a+δ)(t−t∗)π∞ +
q∞y + q0

2a+ δ
e(2a+δ)te−(2a+δ)τ ∣∣∣t

t∗

=
(
π∞ −

q∞y + q0

2a+ δ

)
e(2a+δ)(t−t∗) +

q∞y + q0

2a+ δ
,

sup{π} =
q∞y + q0

2a+ δ
, as t∗ →∞.

Note that sup{x} happens when t = 0. Therefore, we should have

q0 ≥ (a+ δ) sup{π}

= a+ δ

2a+ δ
(q∞y + q0)

= a+ δ

2a+ δ
(q∞y + q0),

(2a+ δ)q0 ≥ (a+ δ)
[(
a(a+ δ)r

b2 + q0

)
x̄0 − y
y − z

+ q0

]
,

a

a+ δ
q0 ≥

(
a(a+ δ)r

b2 + q0

)
x̄0 − y
y − z

,

x̄0 − y
y − z

≤
(

a

a+ δ
q0

)/(
a(a+ δ)r

b2 + q0

)
. (4.53)

As long as the parameters are properly chosen to satisfy the condition in
(4.53), we have d

dxi−
Γ(xi−) < 0 for xi− under constrained control inputs.

Therefore we have shown d
dxi−

Γ(xi−) < 0 in either constrained or uncon-
strained case. Hence we have maxi∈[N ]

{
Ψ(xi−)

}
= Ψ(xmin

− ) and we complete
proof of Proposition 4.2.4.

By Proposition 4.2.4, if we choose Ψ(xmin
− ) − q−t ≤ kc < q∞y − q−t we can

guarantee that (4.37) holds for single switching control policy, where Ψ(xmin
− )

and q−t can be explicitly computed.
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Proposition 4.2.5. Under A1, there exists an upper bound for the family of
trajectories

{
Ψ(xi),∀i ∈ [N ]

}
under qt(t) ≤ q∞t , which is

max
i∈[N ]

(a+ δ)pi
xi − z

+ q0
xi0 − xi

xi − z

 = (a+ δ)pmin

xmin − z
+ q0

xmin
0 − xmin

xmin − z
.

Proof. We follow the same approach to prove Proposition 4.2.4 by defining a
function Γ(xi) = ṗi

xi−z , and show d
dxiΓ(xi) < 0 in both constrained and uncon-

strained cases. We can show that in both cases,

d

dxi
Γ(xi) = 1

(xi − z)2

[
−(a+ δ)pi + q0(xi − xi0) + ((a+ δ)πi − q0)∆xi

]
.

Hence as long as the condition for q0 in (4.53) is satisfied, d
dxiΓ(xi) < 0, and

Proposition 4.2.5 is proved.

Remark 1. Given that Ψ(xmin) is an upper bound of
{
Ψ(xi), ∀i ∈ [N ]

}
by

Proposition 4.2.5, for some pressure field candidate qt, if the most demanding
condition qt ≥ Ψ(xmin) is satisfied, then we are guaranteed that all best re-
sponses under such qt are going to have the at most single switching policies.
Thus, this suggests that one can adopt a sequential search algorithm for fixed
point pressure fields such that the successive candidates always produce single
switching best responses by verifying that the condition q(k)

t ≥ Ψ(k)(xmin) is met
at each iteration k = 1, 2, · · · . This algorithm is discussed in the next section.

4.3 Numerical Solution of Advection Equation

It is recognized that the advection equation in (3.7) for each Θk is a balance
equation and conservative. Therefore, if one wishes to conserve probability,
a discretization based on finite volume methods is recommended in [LeVeque,
1992]. By discretizing the x−t plane with time-step k = ∆t and x-step h = ∆x,
we define a grid with points (xj, tn) where xj = jh, j = 0, 1, 2, . . . and tn =
nk, n = 0, 1, 2, . . .. Recall that mΘk(x, t) is defined to be the temperature pdf
conditional on the initial temperature falling in the interval Θk. The solution
mΘk(x, t) to (3.7) should satisfy the integral form of the conservation laws.
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Denote g(mΘk) := mΘkvθ̄k , where vθ̄k = −a(x − θ̄k) + buθ̄k∗ , and uθ̄k∗ is to be
computed from the single switching control law. Then we have∫ xj+1/2

xj−1/2
mΘk(x, tn+1)dx =

∫ xj+1/2

xj−1/2
mΘk(x, tn)dx

−
[∫ tn+1

tn
g(mΘk(xj+1/2), t)dt−

∫ tn+1

tn
g(mΘk(xj−1/2), t)dt

]
.

(4.54)

We define Mn
j as an approximation to the cell average of mΘk(x, tn) for

x ∈ [xj−1/2, xj+1/2) at tn, and the numerical flux F (Mn
j ,M

n
j+1) which is the

average “probability current” through xj+1/2 over the time interval [tn, tn+1]

Mn
j '

1
h

∫ xj+1/2

xj−1/2
mΘk(x, tn)dx,

F (Mn
j ,M

n
j+1) '

1
k

∫ tn+1

tn
g(mΘk(xj+1/2), t))dt.

Accordingly the integral form of the conservation laws in (4.54) can be
expressed as

Mn+1
j = Mn

j −
k

h
[F (Mn

j ,M
n
j+1)− F (Mn

j−1,M
n
j )]. (4.55)

Using a finite difference method such as Lax-Friedrichs or Lax-Wendroff
(see [LeVeque, 1992]), we can numerically solve for Mn

j which is approximation
to the solution mΘk(x, t) on the defined grid. For example, if we use the Lax-
Friedrichs scheme, which has the following form

Mn+1
j = 1

2
(
Mn

j+1 +Mn
j−1

)
− k

2h
(
g(Mn

j+1)− g(Mn
j−1)

)
.

We can therefore write the expression F (Mn
j ,M

n
j+1) as

F (Mn
j ,M

n
j+1) = h

2k (Mn
j −Mn

j+1)

+ 1
2
(
g(Mn

j ) + g(Mn
j+1)

)
.

(4.56)
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Using initial density M0
0 = mΘk(x0, 0), we can get the propagation of an

approximated solution Mn
j on the defined grid points (xj, tn) from (4.55) and

(4.56).

4.4 Equilibrium Solution by Iteration Approach

As the equilibrium solution is a fixed point of the MFG system, we can compute
it using an iterative approach. We propose the following numerical algorithm
where the single switching control policy is adopted.

Given initial mass density m(x0, 0), we first make an arbitrary guess of
a family of mΘk(x, t)0 as the fixed point. Given y, z, and x̄0, we first compute
q∞y , and initialize the algorithm by applying q∞y to the MF equation system
in (3.10). We follow the single switching control policy and solve the set of
advection equations to compute {mΘk(x, t)}, based on which we compute a new
qt candidate. For this new candidate, we verify that the sufficient condition
in (4.19) holds by choosing a proper kp(t), such that all dpi

dt ≤ 0. We repeat
the procedure until mΘk(x, t) converges to a fixed point, from which we get the
equilibrium solution (m∗(x, t), {u∗}).
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Algorithm 1 Compute fixed point of the MFG system

Compute
q∞y
q−t
Ψ(xmin

− )
kc = Ψ(xmin

− )− q−t
Initialize
k ← 0
m(k)(x, 0)← m0(x0)
q

(k)
t ← q∞y
qin ← 0
while

∥∥∥∥q(k)
t − qin

∥∥∥∥∞ > ε do

qin ← q
(k)
t

Compute m(k+1)(x, t), q(k+1)
t

for i = 0 : (T/∆t)− 1 do
kp(i∆t)← 0
while q(k+1)

t (i∆t) < Ψ(xmin(i∆t)) do
kp(i∆t)← kp(i∆t) + ∆k

q
(k+1)
t (i∆t)← q

(k+1)
t (i∆t) + kp(i∆t)

Compute Ψ(xmin(i∆t))
end while
return q

(k+1)
t (i∆t)

end for
return q

(k+1)
t

k ← k + 1
end while
return mK(x, t)

Remark 2. We can always find a sufficiently large kp(t) such that the inequality
qt =

∣∣∣λ ∫ t0(x̄− y)dt
∣∣∣ + kp(t) ≥ Ψ(xmin) holds for all time t. Suppose that at

some kp(t), the above inequality is not satisfied. We can then keep increasing
kp up to kc, then according to (4.37), we must have

∣∣∣λ ∫ t0(x̄− y)dt
∣∣∣ + kc(t) =

(qt − kp) + kc ≥ Ψ(xmin). Therefore it is guaranteed that we can always find a
kp(t) ≤ kc(t), ∀t from the inner loop of the algorithm such that (4.19) holds.
Recall that kc = Ψ(xmin

− )− q−t which can be explicitly computed.

Remark 3. Given the monotone property of Ψ(xi) by Proposition 4.2.5, it is
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sufficient to compare the qt candidate and Ψ(xmin) in the inner loop to check
the validity of (4.19).
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CHAPTER 5 NUMERICAL STUDY

In the numerical study, we make the following assumptions. The distribution of
initial temperature is uniform between 18◦C and 28◦C, hence the initial mean
temperature is 23◦C. We wish to achieve a target mean temperature y of 22◦C
over a 4 hours horizon, and set parameter z in (3.4) to 17◦C so every device will
tend to decrease their temperature. Other parameters used in the simulation
are as follows: xa = 0◦C, a = −0.03, δ = 0.001, b = 0.2, r = 1, q0 = 200, λ = 40.
The constraint we impose is that the total control (ui + uifree) must be always
greater than zero, as it is inadmissible to have a negative control to cool down
the space. Hence for ui, the constraint is ui ≥ −uifree.

We first compute q∞y by

q∞y =
a(a+ δ)r + b2q0

b2

( x̄0 − y
y − z

)
,

=
0.03(0.03 + 0.001) + 0.22 · 200

0.22

(23− 22
22− 17

)
= 40.0046.

When we apply q∞y to the system, we can compute q−t , Ψ(pmin
− , xmin

− ), and
kc, as plotted in Figure 5.1. Before we move on to compute the fixed point,
we verify that in this experiment when q∞y is applied, we do have dpi−

dt ≤ 0 as
illustrated in Figure 5.2. We can also verify that the condition in (4.53) for
the monotone property of Ψ(xi−) is satisfied, hence the upper and lower bounds
of the family of Ψ(xi−) are obtained when taking the lowest and highest initial
temperatures respectively, and the results are demonstrated in 5.3.
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− ), and kc in the temperature decrease case
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Figure 5.2 Plot of dpi−
dt ≤ 0 in the temperature decrease case

Now suppose that we change some parameters such that the condition in
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in the temperature decrease case

(4.53) is violated, for example, we choose y′ = 20◦C and z′ = 17.5◦C. We have

x̄0 − y′

y′ − z′
= 23− 20

20− 17.5 = 1.2,(
a

a+ δ
q0

)/(
a(a+ δ)r

b2 + q0

)
= 0.9676,

x̄0 − y′

y′ − z′
>

(
a

a+ δ
q0

)/(
a(a+ δ)r

b2 + q0

)
.

We plot the family of Ψ(xi−) again under the new parameters, and we notice
that the monotone property does not hold due to the violation of the condition
in (4.53), as shown in Figure 5.4. Note that as the condition is only required
when controls are saturated, the monotone property is therefore violated at the
beginning of the control horizon, but resumes as controls are unsaturated.

We initialize the iteration process by using q∞y , and follow the numerical
algorithm to find the fixed point solution. Figure 5.5 illustrates the evolution of
qt at each iteration which is constructed from the solutions to the MFG system
until convergence. In all iterations, we verify that the condition in (4.19) is
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property is lost when y′ = 20◦C and z′ = 17.5◦C

respected, by showing that qt−Ψ(xmin) ≥ 0, ∀t in Figure 5.6. Hence all costates
pi(t) are monotonically decreasing such that the single switching control policy
is adopted. Figure 5.7 illustrates the proper kp term added to qt in order to
satisfy (4.19). Note that kp obtained from the first iteration is in fact the kc
shown in Figure 5.1, and the required kp in all remaining iterations are less than
kc, which is consistent with Remark 1.

Note that at each iteration, the qt candidate is computed from the propa-
gation of mass density m(x, t) which is approximated by the family of mΘk(x, t).
Figure 5.8 shows the propagation of mass density m∗(x, t) at the converged
fixed point from the numerical algorithm. We start from an initial mass with
uniform distribution, and at steady-state the mass shifts towards lower tem-
perature and we arrive at another uniform distribution. Note that we are
using the Lax-Friedrichs scheme, which is a first order finite volume method
and the edges of the uniform distribution at steady-state are smeared off. By
using a finer x − t grid plane, we can reduce the smearing effects such that
steady-state mass shapes more similar to a uniform distribution, but the CFL
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Figure 5.5 Evolution of qt at each iteration from the numerical algorithm in the
temperature decrease case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (hr)

0

5

10

15

20

25

30

35

40

q
t-

P
s
i

i 1

i 2

i 3

i 4

i 5

i 6

i 7

i 8

i 9

i 10

i 11

i 12

i 13

i 14

i 15

i 16

Figure 5.6 At each iteration qt −Ψ(xmin) ≥ 0, ∀t from the numerical algorithm

(Courant–Friedrichs–Lewy; see [LeVeque, 1992]) condition must always be sat-
isfied in order to ensure stability of the numerical method. Specifically for the
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Figure 5.7 Evolution of kp at each iteration to guarantee dpi

dt ≤ 0 in the temper-
ature decrease case

first-order method, the time-step ∆t and the x-step ∆x must satisfy ν∆t
∆x ≤ 1,

where ν is the magnitude of the drifting velocity of the mass. Also, note that
the partition Θk of initial temperatures should be sufficiently refined in order
to avoid significant ripples in the transient mass probability density.

In Figure 5.9 we take a few particle samples whose initial temperatures
are randomly taken from the initial uniform distribution. We show the single
switching behaviors of control trajectories {ui∗}, and the corresponding state
trajectories {xi∗} under the fixed point qt. From the setup of the quadratic
cost function in (3.4), the particles with higher initial temperatures feel more
pressure to quickly decrease the temperature; however, due to the presence of
the control constraint, their rates of temperature decrease are constrained at
t = 0 (trajectories in red color). On the other hand, particles starting from
lower initial temperatures feel less stress to decrease temperature, and their
controls are not affected by the control constraint (trajectories in blue color). It
is seen that the mean temperature of the population reaches the desired target
temperature of 22◦C at steady- state.

The derived model can also be used in the unconstrained case by simply
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in the temperature decrease case

removing the constraint and let ui ∈ R, ∀i and set all switching time to t = 0.
It is verified that under the same iteration approach we get an equilibrium
solution identical to that in [Kizilkale et Malhamé, 2013].

In the next experiment, we wish to explore the differences in dynamics
under constrained versus unconstrained cases. In particular we are interested in
the mean temperature x̄(t) and trajectories of particle samples starting from the
extreme initial temperatures. Figures 5.10 and 5.11 illustrate the comparison re-
sults. For particles starting from 28◦C, as the imposed control constraints limit
their rates of decrease since the beginning of the control horizon, the tempera-
tures do not fall as fast as they do in the unconstrained case. As a consequence,
qt increases due to a larger error recorded between x̄ and y, as compared to
the unconstrained case at the same point in time. With a larger qt, particles
starting from 18◦C are pressured to contribute more to reduce the global mean
temperature. However, they do not feel enough stress to completely make up
the gap caused by the constrained particles. Once controls become unsaturated,
the constrained particles continue to decrease more than they would do in the
unconstrained case, while the particles with low initial temperatures start to
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Figure 5.9 Trajectories of controls and states at the fixed point in the temper-
ature decrease case

contribute less correspondingly. Eventually at steady-state, all particles includ-
ing the mean temperature have the same values as those in the unconstrained
case. This result is expected as all controls fall within the saturation limits at
steady-state, hence controls are unconstrained.
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Figure 5.10 Comparison of mean temperature x̄(t) trajectories (Left) and com-
parison of fixed point qt (Right) under constrained controls vs. unconstrained
controls

Note that from the demonstrated results, if this control mechanism is to
be put into practice, settling time may be a potential issue, i.e. the mean tem-
perature is only reduced by 1◦C within 5 hours. This is due to the fact that we
rely on monotonicity of the costates in order to implement the single switching
control policy, hence the pressure coefficient qt ≤ q∞y , ∀t, and is overdamped
in reaching the steady-state q∞y . In the next experiment, we wish to introduce
some overshoot in the behavior of qt by increasing the coefficient λ and allowing
qt to increase beyond q∞y during transient. This will violate the monotonicity
property of the costates, but as long as all costates pi(t) do not reach the criti-
cal level picritical = b−1ruifree after control switches to unconstrained, we can still
implement the single switching control policy. Figure 5.12 shows the results in
this case.
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In the next set of experiments, we illustrate the case where all devices
are required to heat when generation is at surplus. The distribution of the
population’s initial temperatures remain the same, and we ask the mean tem-
perature to increase to y = 24◦C. Accordingly, the parameter z is set to 28.5◦C.
Other parameters remain unchanged. The constraint we impose is that the
total control (ui + uifree) must be no greater than some umax = 8, hence for
ui, the constraint is ui ≤ 8 − uifree. In this case, we can still implement the
single switching control policy by imposing that dpi

dt ≥ 0, which implies that
at each iteration, we must have qt ≥ Ψ(xmax). Note that in the heating case,
the monotone property for

{
Ψ(xi), ∀i

}
holds as (4.53) is satisfied. Figure 5.13

shows the evolution of qt to converge to a fixed point, and Figure 5.14 verifies
that qt ≥ Ψ(xmax). As in the temperature decrease case, we need a term kp to
keep the costate trajectories pi monotonic in the heating case, and Figure 5.15
shows evolution of such kp term until fixed point is reached.
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Figure 5.12 An underdamped qt (Left) and the corresponding mean temperature
x̄ (Right) under single switching control policy

Figure 5.16 shows at the fixed point the control and state trajectories
of particles whose initial temperatures are randomly chosen from the initial
mass distribution. It is seen that as the mean temperature moves towards y,
all controls have the single switching behaviors. Contrary to the temperature
decrease case, the particles with lower initial temperatures have their controls
saturated at the beginning of the control horizon, while the controls of the
particles with higher initial temperatures remain unconstrained at all times.
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Figure 5.13 Evolution of qt at each iteration from the numerical algorithm in
the temperature increase case
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Figure 5.14 At each iteration qt−Ψ(xmax) ≥ 0, ∀t from the numerical algorithm
in the temperature increase case
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Figure 5.15 Evolution of kp at each iteration to guarantee dpi

dt ≥ 0 in the tem-
perature increase case
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Figure 5.16 Trajectories of controls and states at fixed point in the temperature
increase case
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CHAPTER 6 CONCLUSION

In this thesis, we present a decentralized control mechanism to utilize a large
number of electric space heaters as energy storage devices to mitigate the vari-
ability of renewable power generation, by letting the mean temperature of the
device population follow a set temperature target, depending on the power gen-
eration status. The control for each device is generated locally and must respect
certain control constraints. The control mechanism is based on the fixed point
solution of the mean field formulation of the model, and we propose a numeri-
cal algorithm to compute an approximation of the fixed point where the desired
mean temperature is reached. The non-linearity of the optimal control law un-
der control constraints makes the computation of the MFG fixed point more
challenging than in the linear quadratic case, requiring the solution of coupled
PDE’s, which moreover depends on the initial conditions of the devices. We de-
scribe an optimal control policy with single switching behaviors which is easy to
implement, and we propose the sufficient condition for such control policy. The
latter condition becomes the basis of an iterative numerical search algorithm
for a fixed point characterizing a Nash equilibrium amongst controlled devices.
We verify that the steady-states in the constrained case are identical to those
in the unconstrained case.

In order to physically implement the developed control architecture, there
are some practical considerations. For example, an infrastructure is required to
facilitate communications between devices and the central authority, such that
enough samples of initial conditions of devices can be read to form an estimate of
their empirical temperature distribution, and the central authority can transmit
the target y and the computed fixed point qt to all devices. Also, given that all
optimal controls to each device need to be generated locally, a controller must
be physically installed on the device. While we may partially leverage the wide
installation and use of smart meters in today’s utility network, certain privacy
concerns may also be raised for such implementation. Also, as seen from the
last experiment of the numerical examples, the single switching control policy



59

based on the monotonicity condition of costates is slow in settling at the desired
mean temperature target. In practice, a faster system response is required in
order to efficiently overcome the variability issue of the renewable generation.

For future work, the existence of a fixed point remains to be proved for
the constrained MFG equation system under a single switching control policy.
We can start from the fact that under the sufficient condition in (4.37), the
set of qt must be bounded within q−t and q∞y , hence we can show that the set
of qt is non-empty, closed, and convex. We can then show that a fixed point
exists by arguing that the set of qt satisfies the conditions of Schauder’s Fixed
Point Theorem. To address the issue of slow response, we may modify the
formulation of qt as well as the sufficient condition in order to allow a more
underdamped and oscillatory trajectory, but the control saturation can only
happen during the first oscillation such that a single switching control policy can
still be implemented. Finally, we wish to extend the analysis to the stochastic
case where a noise process is included in (3.3), and to some multidimensional
model where insulation and temperatures inside walls are considered.
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ANNEXE A BACKGROUND OF LQG MEAN FIELD GAMES

Suppose that we have a system of N non-uniform agents, where each agent i
follows the following stochastic dynamics

dxi = (aixi + biui)dt+ σidwi, t ≥ 0 (A.1)

where 1 ≤ i ≤ N , xi is the state of agent i, ui is the control input (or strategy)
of agent i, and wit is a scalar Wiener process. The initial condition xi(0) is
independent of wit.

We consider a linear quadratic tracking problem by defining the following
cost function,

Ji(ui, x∗) = E
∫ ∞

0
e−ρt

{
(xi − x∗)2 + ru2

i

}
dt, (A.2)

where ρ, r > 0, and x∗ is a deterministic target.

The optimal control law to such LQG tracking problem to minimize
Ji(ui, x∗) is

u∗i = −br−1(Πixi + si), (A.3)

where Πi and si satisfy the following equations.

b2r−1Π2
i − (2ai − ρ)Πi − 1 = 0,

− dsi
dt

= (ai − ρ)si − b2r−1Πisi − x∗.
(A.4)

Note that the equation for Πi in (A.4) is an algebraic Riccati equation
as the control horizon is infinite. Therefore we can explicitly compute Πi ≥ 0,
and compute si in backwards. Therefore we the optimal control u∗i in (A.3) is
unique.
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By substituting (A.3) into (A.1), we get

dxi = (ai − b2r−1Πi)xidt− b2r−1sidt+ σidwi. (A.5)

By taking expectation on both sides of (A.5) and denoting x̄i = E[xi], we
get

dx̄i
dt

= (ai − b2r−1Πi)x̄i − b2r−1si. (A.6)

To consider the tracking problem in mean field game setup, we express
x∗ in terms of the population mean x̄N = 1/N ∑N

i=1 x̄i,

x∗ = γ(x̄N + η), (A.7)

where γ, η > 0. Given a sufficiently large population of N , x̄N becomes deter-
ministic, hence x∗ is deterministic. Note that under this setup, all agents are
weakly-coupled by the x∗ term in the individual cost function.

We then can write the following mean field equation system:

− dsa
dt

= (a− ρ)sa − b2r−1Πasa − x∗. (A.8)

dx̄a
dt

= (a− b2r−1Πa)x̄a − b2r−1sa. (A.9)

x̄ =
∫
A
x̄adF (a), (A.10)

x∗ = γ(x̄+ η), (A.11)

where Πa = rb−2
[
a− ρ

2 +
√(
a− ρ

2

)2 + b2r−1
]
. In the above equation system,

the sequence A = {ai, 1 ≤ i ≤ N} with an empirical distribution function
F (ai). To simplify the notation, the coefficient ai is replaced by a.

Denote β1(a) = −ρ
2 +

√(
a− ρ

2

)2 + b2r−1, and β2(a) = ρ + β1(a). Under
the assumptions that:

1. β1(a) > 0, ∀a ∈ A, and ∫
AM/(β1(a)β2(a))dF (a) < 1, where M = b2γr−1
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2. E[xi(0)] = 0, ∀i

the equation system in (A.8)-(A.11) has a unique bounded solution for an infi-
nite population, i.e. N → ∞. Under this setup, given a posited x∗, all agents
generate optimal controls according to (A.3), and for the solution to the equa-
tion system to be sustainable, the x∗ must be replicated. In this sense, the
unique solution is a fixed point Nash equilibrium of the equation system. The
family of the optimal control policies is decentralized as they are computed
locally by each individual agent as best responses to x∗.

As x∗ is collectively constructed from the mean field of dynamics of agent
i and all other agents of the population, we write Ji(ui, u−i) to indicate its
dependence on control ui and the set of controls of all other agents.

Ji(ui, u−i) = E
∫ ∞

0
e−ρt

{
(xi − γ(x̄+ η))2 + ru2

i

}
dt. (A.12)

For a finite population 1 ≤ N ≤ ∞, the decentralized family of optimal
controls {u∗i} leads to an ε-Nash equilibrium, such that

Ji(u∗i , u∗−i)− ε ≤ inf
ui
Ji(ui, u∗−i) ≤ Ji(u∗i , u∗−i). (A.13)

As the number of population N increases, the equilibrium solution under
the decentralized control policies gets closer to the Nash equilibrium obtained
in the infinite population case.
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ANNEXE B MATLAB CODES

B-1 Main program

The main program to compute the fixed point solution using the iteration al-
gorithm.

1

2 %load the constant parameters r equ i r ed to run the numerica l a n a l y s i s
3 run ( ’ parameters ’ ) ;
4

5 %generate samples o f p a r t i c l e s from a uniform d i s t r i b u t i o n
6 uniform_range=l i n s p a c e (18 ,28 ,100) ’ ;
7 N=length ( uniform_range ) ;%
8

9 i =1;
10

11 %c r e a t e v a r i a b l e s
12 u=ze ro s (N,K) ;
13 x=ze ro s (N,K) ;
14 x_sol=ze ro s (N,K) ;
15 x_sol_cons=ze ro s (N,K) ;
16

17 qt_lb=ze ro s (N,K) ;
18 kp=ze ro s (1 ,K) ;
19 kp_his = [ ] ;
20 qt_lb_his = [ ] ;
21 i n d i c a t o r =0;
22 i nd i c a to r_h i s = [ ] ;
23

24 mean( uniform_range )
25 s i z e ( unique ( uniform_range ) )
26 pause
27

28

29 %i n i t i a l i z e the s t a t e t r a j e c t o r i e s
30 x ( : , 1 )=uniform_range ;
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31 x_sol ( : , 1 )=x ( : , 1 ) ;
32 x_sol_cons ( : , 1 )=x ( : , 1 ) ;
33

34 %compute u_free
35 u_of f s e t=a ∗( xa∗ ones (N, 1 )−x ( : , 1 ) ) /b ;
36

37 %compute qy^ i n f
38 qt_inf=((−a )∗(−a+de l t a ) ∗ r+q0∗b^2)/b^2∗(mean( x ( : , 1 ) )−y (1 ) ) /(y (1 )−z ) ;
39

40 %load the qt_minus and kc computed by us ing qy_inf
41 load ’ qt_minus_kc_variable . mat ’ ;
42

43 t o l=1e−2;
44 qt_new=qt_inf ∗ ones (1 ,K) ;
45 qt_in=qt_new ∗ 0 . 8 ; %i n i t i a l guess f o r qt
46 %kp (1)=kc (1 ) ;
47

48 %compute the cons t ra ined c o n t r o l f o r each i n d i v i d u a l sample
49 uc_min=u_min_total−u_of f s e t ;
50 uc_max=u_max_total−u_of f s e t ;
51

52 qt_his_i=qt_new ;
53 qt_his = [ ] ;
54 xbar_his = [ ] ;
55

56 t_star=ones (1 ,N) ; % t h i s i s the index o f t ∗
57 t_star_his=t ( t_star ) ;
58

59 %−−−−−
60 %to cons t ruc t the exact s o l u t i o n under cons t ra ined c o n t r o l
61 %−−−−−
62 f o r k=2:K
63 %f o r temp dec rea se case
64 x_sol_cons ( : , k )=x_sol_cons ( : , 1 )+b/a∗uc_min . ∗ ( exp ( a∗ t ( k ) )−1) ;
65 end
66 x ( : ,K)=x_sol_cons ( : ,K) ;
67 x ( : , 1 )=x_sol_cons ( : , 1 ) ;
68
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69 %The i t e r a t i v e approach to compute f i x e d po int in terms o f qt
70 whi le max( abs ( qt_in−qt_new) )>t o l
71 qt_his =[ qt_his ; qt_his_i ] ;
72 qt_in=qt_new ;
73

74 pi_theta_old = [ ] ; %pi when c o n t r o l i s not cons t ra ined
75 s_theta_old = [ ] ; %s when c o n t r o l i s not cons t ra ined
76 pi_theta = [ ] ; %pi when c o n t r o l i s cons t ra ined
77 s_theta = [ ] ; %s when c o n t r o l i s cons t ra ined
78 qt_lb=ze ro s (N,K) ; %t h i s i s Ps i under qt candidate in each

i t e r a t i o n
79

80

81 f o r n=1:N
82

83 %s o l v i n g R i c c a t i from backwards f o r p i and s − to be used to
f i n d

84 %switch ing time t ∗
85

86 %generate p i ( t ) and s ( t ) f o r each agent from backwards under
87 %non−cons t ra ined c o n t r o l s
88 [ t , pi_i , s_i ]= pi_s_solut ion ( qt_in , x (n , 1 ) ) ;
89 pi_theta_old =[ pi_theta_old ; pi_i ] ;
90 s_theta_old=[ s_theta_old ; s_i ] ;
91

92

93 %loop to f i n d swi t ch ing time t ∗
94 kk=1;
95 whi le kk<K
96 i f −b/ r ∗( pi_theta_old (n , kk ) ∗x_sol_cons (n , kk )+s_theta_old (n

, kk ) )>uc_min(n)
97 break ;
98 end
99 kk=kk+1;

100

101 end
102

103 t_star (n)=kk ; % t h i s i s t ∗
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104

105 %f o r t \ in [ 0 , t ∗) c o n t r o l cons t ra ined so s t a t e t r a j e c t o r y and
c o n t r o l are known

106 x (n , 1 : t_star (n) )=x_sol_cons (n , 1 : t_star (n) ) ;
107 u(n , 1 : t_star (n) )=uc_min(n) ;
108

109 %s o l v i n g R i c c a t i from backwards f o r p i and s , us ing co n d i t i o n s
at t ∗

110 %as termina l c o n d i t i o n s
111

112 %generate p i e c ew i s e p i and s f o r t \ in [ 0 , t ∗) and t \ in [ t ∗ ,T]
113 [ t , pi_i , s_i ]= pi_s_solut ion2 ( qt_in , x (n , 1 ) , t_star (n) ,uc_min(n) ) ;
114 pi_theta =[ pi_theta ; pi_i ] ;
115 s_theta =[ s_theta ; s_i ] ;
116

117 %to f i n d s t a t e t r a j e c t o r y and optimal p o l i c y under
unconstra ined c o n s t r o l

118 f o r k=t_star (n) :K−1
119 u(n , k )=−b/ r ∗( pi_theta_old (n , k ) ∗x (n , k )+s_theta_old (n , k ) ) ;
120 x (n , k+1)=x (n , k )+delta_t ∗( a ∗( x (n , k )−x (n , 1 ) )+b∗u(n , k ) ) ;
121 end
122

123 qt_lb (n , : ) =((−a+de l t a ) ∗( pi_theta (n , : ) .∗ x (n , : )+s_theta (n , : ) )+q0 ∗(
x (n , 1 )−x (n , : ) ) ) . / ( x (n , : )−z ) ;

124 end
125

126 t_star_his =[ t_star_his ; t ( t_star ) ] ;
127 qt_lb_his=[ qt_lb_his ; qt_lb ( 1 , : ) ] ;
128

129 %compute the c o s t a t e t r a j e c t o r y
130 p=pi_theta .∗ x+s_theta ;
131

132 x_bar=mean( x ) ;
133 [ x_bar , grid_range ,mm]= propagation_of_mass_single_agent10v2 (x , u ,

uniform_range ) ;
134

135 %cons t ruc t qt candidate be f o r e kp i s computed
136 qt_new (1) =0;
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137 f o r k=2:K
138 qt_new( k )=max( qt_minus ( k ) , lambda∗abs ( trapz ( 0 : de lta_t : ( k−1)∗

delta_t , ( x_bar ( 1 : k )−y ( 1 : k ) ) ) ) ) ;
139 end
140

141 xbar_his =[ xbar_his ; x_bar ] ;
142

143

144 %v e r i f i c a t i o n o f the s u f f i c i e n t cond i t i on f o r monotononic c o s t a t e
145 %i n c r e a s e the term kp u n t i l the s u f f i c i e n t cond i t i on i s met
146

147

148 %f o r k=1
149 k=1;
150 kp=ze ro s (1 ,K) ;
151 qt_new (1)=kp (1) ;
152 dpdt ( : , 1 )=(−a+de l t a ) ∗p ( : , 1 )−qt_new (1) ∗( x ( : , 1 )−z ) ;
153 whi le max( dpdt ( : , 1 ) )>0
154 kp (1 )=kp (1) +0.01;
155 qt_new (1)=kp (1) ;
156

157 %r e c a l c u l a t e the best re sponse x and u under the new qt , as
we l l as

158 %dp / dt
159 f o r n=1:N
160 [ x_i_at_k , u_i_at_k , qt_lb_i_at_k , p_i_at_k]=comp_u_x_k(k , t_star (n

) , x_sol_cons (n , : ) , uc_min(n) , x (n , 1 ) , pi_theta_old (n , : ) ,
s_theta_old (n , : ) , pi_theta (n , : ) , s_theta (n , : ) ) ;

161 p(n , k )=p_i_at_k ;
162 x (n , k )=x_i_at_k ;
163 u(n , k )=u_i_at_k ;
164 end
165 dpdt ( : , 1 )=(−a+de l t a ) ∗p ( : , 1 )−qt_new (1) ∗( x ( : , 1 )−z ) ;
166 end
167

168 %f o r k>1
169 f o r k=2:K
170 qt_new (1)=kp (1) ;
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171 kp ( k ) =0;
172 dpdt ( : , k )=(−a+de l t a ) ∗p ( : , k )−q0 ∗( x ( : , k )−x ( : , 1 ) )−qt_new( k ) ∗( x ( : , k

)−z ) ;
173

174 whi le max( dpdt ( : , k ) )>0
175 i f qt_new( k )>=qt_inf
176 qt_new( k )=qt_inf ;
177 break ;
178 end
179 kp ( k )=kp ( k ) +0.01;
180

181 f o r n=1:N
182 [ x_i_at_k , u_i_at_k , qt_lb_i_at_k , p_i_at_k]=comp_u_x_k(k , t_star (n

) , x_sol_cons (n , : ) , uc_min(n) , x (n , 1 : k−1) , pi_theta_old (n , : ) ,
s_theta_old (n , : ) , pi_theta (n , : ) , s_theta (n , : ) ) ;

183 p(n , k )=p_i_at_k ;
184 x (n , k )=x_i_at_k ;
185 u(n , k )=u_i_at_k ;
186 end
187 qt_new( k )=qt_new( k )+kp ( k ) ;
188

189 dpdt ( : , k )=(−a+de l t a ) ∗p ( : , k )−q0 ∗( x ( : , k )−x ( : , 1 ) )−qt_new( k ) ∗( x ( : , k
)−z ) ;

190 end
191

192 qt_his_i ( k )=qt_new( k ) ;
193 qt_his_i (1 )=qt_new (1) ;
194 k
195

196 end
197 kp_his=[kp_his ; kp ] ;
198

199 %check that dpdt<0
200 dpdt=(−a+de l t a ) ∗p−q0 ∗(x−x ( : , 1 ) ∗ ones (1 ,K) )−(ones (N, 1 ) ∗qt_new) . ∗ ( x−z )

;
201 i f max(max( dpdt ) )>0
202 i n d i c a t o r =1;
203 e l s e
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204 i n d i c a t o r =0;
205 end
206 i nd i c a to r_h i s =[ i nd i c a to r_h i s ; i n d i c a t o r ] ;
207

208 max( abs ( qt_in−qt_new) )
209 u_total=u+u_of f s e t ∗ ones (1 ,K) ;
210

211 p lo t ( t , qt_new) ,drawnow
212 hold on
213 end
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B-2 πi(t) and si(t) in the unconstrained case

The program to compute the πi(t) and si(t) trajectories in the unconstrained
case.

1 f unc t i on [ t , pi_theta , s_theta ]= pi_s_solut ion ( qt , x_in i t )
2

3 run ( ’ parameters ’ ) ;
4 t =[0 : de lta_t :T ] ;
5 K=length ( qt ) ;
6 x0=x_ini t ;
7 pi_theta=ze ro s (1 ,K) ;
8 s_theta=ze ro s (1 ,K) ;
9 pi_cons=ze ro s (1 ,K) ;

10 s_cons=ze ro s (1 ,K) ;
11

12 %compute the boundary c o nd i t i o n s assuming at steady−s t a t e
13 p i_in f=care ( ( a−0.5∗ de l t a ) ,b , qt (K)+q0 , r ) ;
14 s_in f=(a∗x0∗ p i_in f+qt (K) ∗z+q0∗x0 ) /(a−de l ta−b^2/ r ∗ p i_in f ) ;
15

16 pi_theta (K)=pi_in f ;
17 s_theta (K)=s_inf ;
18

19

20 f o r k = K:−1:2
21 pi_theta (k−1)=pi_theta ( k )−delta_t ∗(−(2∗a−de l t a ) ∗pi_theta ( k )+b^2∗(1/

r ) ∗( pi_theta ( k ) )^2−qt ( k )−q0 ) ;
22 end
23 f o r k=K:−1:2
24 s_theta (k−1)=s_theta ( k )−delta_t ∗(−(a−de l ta−b^2∗pi_theta ( k ) ∗(1/ r ) ) ∗

s_theta ( k )+a∗x0∗pi_theta ( k )+qt ( k ) ∗z+q0∗x0 ) ;
25 end
26 end
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B-3 πi(t) and si(t) in the constrained case

The program to compute the πi(t) and si(t) trajectories in the constrained case
given the control switch time ti∗.

1 f unc t i on [ t , pi_theta , s_theta ]= pi_s_solut ion2 ( qt , x_init , min_i , uc_min)
2

3 run ( ’ parameters ’ ) ;
4 t =[0 : de lta_t :T ] ;
5 K=length ( qt ) ;
6 x0=x_ini t ;
7 pi_theta=ze ro s (1 ,K) ;
8 s_theta=ze ro s (1 ,K) ;
9

10 p i_in f=care ( ( a−0.5∗ de l t a ) ,b , qt (K)+q0 , r ) ;
11 s_in f=(a∗x0∗ p i_in f+qt (K) ∗z+q0∗x0 ) /(a−de l ta−b^2/ r ∗ p i_in f ) ;
12

13 pi_theta (K)=pi_in f ;
14 s_theta (K)=s_inf ;
15

16 %pi and s f o l l o w the same t r a j e c t o r i e s as in the unconstra ined case
u n t i l

17 %the c o n t r o l switch time t ∗
18 k=1;
19 f o r k = K:−1: min_i+1
20 pi_theta (k−1)=pi_theta ( k )−delta_t ∗(−(2∗a−de l t a ) ∗pi_theta ( k )+b^2∗(1/

r ) ∗( pi_theta ( k ) )^2−qt ( k )−q0 ) ;
21 end
22

23 f o r k=min_i :−1:2
24 pi_theta (k−1)=pi_theta ( k )−delta_t ∗(−(2∗a−de l t a ) ∗pi_theta ( k )−qt ( k )−

q0 ) ;
25 end
26

27 %f o r t =[0 , t ∗ ] , p i and s to be computed from the equat ions in
cons t ra ined

28 %case
29 k=1;
30 f o r k=K:−1: min_i+1
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31 s_theta (k−1)=s_theta ( k )−delta_t ∗(−(a−de l ta−b^2∗pi_theta ( k ) ∗(1/ r ) ) ∗
s_theta ( k )+a∗x0∗pi_theta ( k )+qt ( k ) ∗z+q0∗x0 ) ;

32 end
33

34 f o r k=min_i :−1:2
35 s_theta (k−1)=s_theta ( k )−delta_t ∗(−(a−de l t a ) ∗ s_theta ( k )+a∗x0∗

pi_theta ( k )+qt ( k ) ∗z+q0∗x0−b∗pi_theta ( k ) ∗(uc_min) ) ;
36 end
37

38 end
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B-4 Propagation of the mass density

The program to compute the propagation of the mass density and construct the
mean temperature trajectory using a first order explicit finite-volume method.

1 f unc t i on [ xmean , grid_range ,mm, m_prof i le ]=
propagation_of_mass_single_agent10v2 (x , u , uniform_range )

2 run ( ’ parameters ’ ) ;
3

4 theta =20; %p a r t i t i o n i n i t i a l c o n d i t i o n s in to 40 i n t e r v a l s −−> Theta
5 N=length ( x ( : , 1 ) ) ;
6

7 subrange = [ ] ;
8 f o r i =1: theta
9 subrange =[ subrange uniform_range (1+( i −1)∗N/ theta : i ∗N/ theta ) ] ;

10 end
11

12 x_theta=mean( subrange ) ;
13 g r id_s i z e =1000;
14 grid_lower =10;
15 grid_upper =30;
16 pd=makedist ( ’ Uniform ’ ,18 ,28) ;
17 weight=pdf (pd , uniform_range ) ;
18

19 grid_range=l i n s p a c e ( grid_lower , grid_upper , g r i d_s i z e ) ;%t h i s i s the
g l o b a l grid_range f o r everyone

20 m_prof i le=ze ro s (K, gr id_s ize , theta ) ;
21 delta_x=grid_range (2 )−grid_range (1 ) ;
22

23 f o r i =1: theta ;
24 x_subrange=x(1+( i −1)∗N/ theta : i ∗N/ theta , : ) ;
25 u_subrange=u(1+( i −1)∗N/ theta : i ∗N/ theta , : ) ;
26 f_subrange=a ∗( x_subrange−x_theta ( i ) )+b∗u_subrange ;
27

28

29 dxdt=f_subrange ; %t h i s i s s i z e N/ theta x K
30 dxdt ( : , 1 )=dxdt ( : , 2 ) ;
31

32 m_j_n=ze ro s (K, gr id_s ize ,N/ theta ) ; %f o r s i n g l e subrange with N/ theta
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agents
33 i f i==theta
34 pd=makedist ( ’ Uniform ’ , min ( subrange ( : , i ) ) ,28) ;
35 e l s e
36 pd=makedist ( ’ Uniform ’ , min ( subrange ( : , i ) ) ,min ( subrange ( : , i +1) ) ) ; %

i n i t i a l i z e to smal l uniform d e n s i t i e s with x_theta as midpoint
37 end
38 m_j_n ( 1 , : , : )=repmat (min ( weight (1 ) , pdf (pd , grid_range ) ) , [ 1 , 1 ,N/ theta ] ) ; %

i n i t i a l i z e a l l m_j_n to the same uniform dens i ty s l i c e
39

40 %compute the propagat ion o f the mass by f i r s t order e x p l i c i t method
41 f o r n=1:K−1
42

43 f_star=dxdt ( : , n ) ;
44 f_j=grid_range ;
45 j =1: gr id_s ize −1;
46 f_jp1=f_j ( j +1) ;
47 f_jp1 =[ f_jp1 f_j ( g r i d_s i z e ) ] ;
48 m_jp1=m_j_n(n , j +1 , : ) ;
49 m_jp1=cat (2 ,m_jp1 ,m_j_n(n , gr id_s ize , : ) ) ;
50 j =2: g r i d_s i z e ;
51 f_jm1=f_j ( j−1) ;
52 f_jm1=[ f_j (1 ) f_jm1 ] ;
53 m_jm1=m_j_n(n , j −1 , : ) ;
54 m_jm1=cat (2 ,m_j_n(n , 1 , : ) ,m_jm1) ;
55

56 j =2: gr id_s ize −1;
57 delta_m=m_j_n(n , j +1 , : )−m_j_n(n , j −1 , : ) ;
58 delta_m=[m_j_n(n , 2 , : ) delta_m −m_j_n(n , gr id_s ize −1 , : ) ] ;
59 delta_m2=m_j_n(n , j +1 , : )+m_j_n(n , j −1 , : )−2∗m_j_n(n , j , : ) ;
60 delta_m2=[m_j_n(n , 2 , : )−2∗m_j_n(n , 1 , : ) delta_m2 m_j_n(n ,

gr id_s ize −1 , : )−2∗m_j_n(n , gr id_s ize , : ) ] ;
61

62 f o r index =1:N/ theta
63 de l ta_f ( : , : , index )=m_jp1 ( : , : , index ) .∗ f_jp1−m_jm1 ( : , : , index ) .∗

f_jm1 ;
64 de l ta_f ( : , : , index )=delta_m ( : , : , index ) ∗dxdt ( index , n) ;
65 end
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66

67 m_j_n(n + 1 , : , : )=max(0 , (m_j_n(n , : , : )−delta_t /(2∗ delta_x ) ∗( de l ta_f ) )+
delta_m2 /2) ; %1 s t order

68

69 end
70

71 m_prof i le ( : , : , i )=sum(m_j_n, 3 ) /(N/ theta ) ;
72

73 end
74

75 mm=sum( m_profi le , 3 ) ;
76

77 xmean=ze ro s ( s i z e ( t ) ) ;
78 mm( 1 , : )=mm( 1 , : ) / trapz ( grid_range ,mm( 1 , : ) ) ;
79

80 %compute the mean o f the mass from the propagat ion o f mass dens i ty
81 xmean (1)=sum( grid_range .∗mm( 1 , : ) ) ∗( delta_x ) ;
82 f o r k=2:K
83 mm(k , : )=mm(k , : ) / trapz ( grid_range ,mm(k , : ) ) ;
84 xmean( k )=max(xd , sum( grid_range .∗mm(k , : ) ) ∗( delta_x ) ) ;
85 end
86 xmean=mean( x ) ;
87 end
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