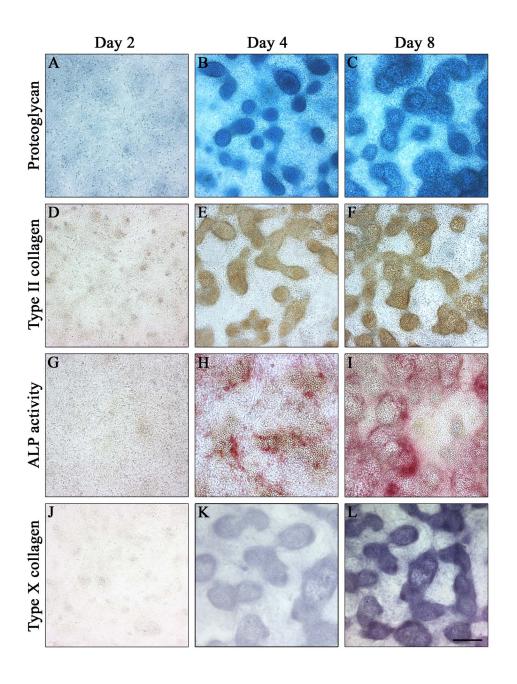


	Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis	
	David Davidson, Antoine Blanc, Dominic Filion, Huifen Wang, Paul Plut, Gerald Pfeffer, Michael D. Buschmann, & Janet E. Henderson	
Date:	2005	
Type:	Article de revue / Article	
Référence: Citation:	Davidson, D., Blanc, A., Filion, D., Wang, H., Plut, P., Pfeffer, G., Buschmann, M. D., & Henderson, J. E. (2005). Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. Journal of Biological Chemistry, 280(21), 20509-20515. https://doi.org/10.1074/jbc.m410148200	

Document en libre accès dans PolyPublie Open Access document in PolyPublie


URL de PolyPublie: PolyPublie URL:	https://publications.polymtl.ca/24230/
Version:	Matériel supplémentaire / Supplementary material Révisé par les pairs / Refereed
Conditions d'utilisation: Terms of Use:	CC BY

Document publié chez l'éditeur officiel Document issued by the official publisher

Titre de la revue: Journal Title:	Journal of Biological Chemistry (vol. 280, no. 21)
Maison d'édition: Publisher:	Elsevier
URL officiel: Official URL:	https://doi.org/10.1074/jbc.m410148200
Mention légale: Legal notice:	This is an Open Access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

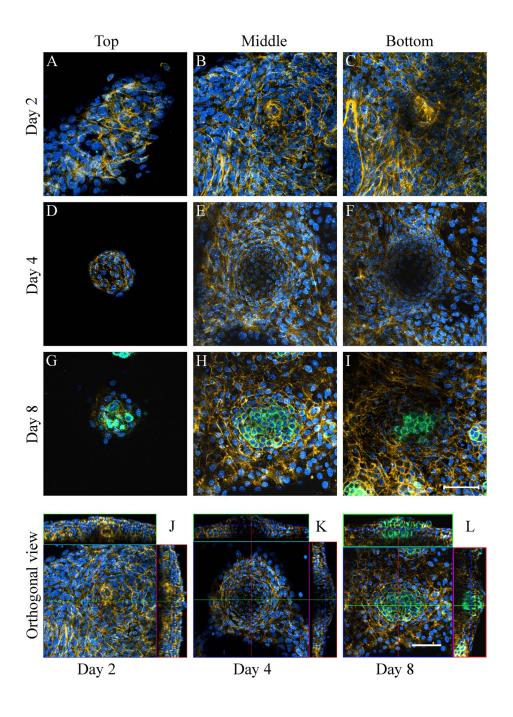

Supplemental Data

Fig S1 Molecular markers of chondrocyte differentiation

Supplemental Data

Fig S2 Confocal laser scanning micrographs of cartilage nodules

Supplemental Data Fig 1 Expression of molecular markers of chondrocyte differentiation in limb bud cell cultures

Cells released from the limb buds of E11.5 mice were plated at a density of 10^7 cells/mL and maintained for 2, 4 or 8 days in medium containing 2% FBS. At the indicated times cultures were fixed with 4% paraformaldehyde and stained with alcian blue (**A-C**) or with a monoclonal antibody raised against type II collagen (**D-F**), to identify cells undergoing chondrogenic differentiation. Fully differentiated, hypertrophic cells were identified by histochemical staining for alkaline phosphatase activity (**ALP**) (**G-I**) or by in situ hybridization with a DIG-conjugated type X collagen anti-sense probe (**J-L**). Scale bar represents 100 µm.

Supplemental Data Fig 2 Confocal laser scanning microscopy of cartilage nodules Cultures were plated and maintained as described in Supplemental Data Fig S1 for 2, 4 or 8 days before fixing with 4% paraformaldehyde and treating with proteases and triton X to permeabilize. Triple staining was performed with Hoescht 33258 (blue, nuclei), TRITC-phalloidin (orange, actin fibres) and a type II collagen antibody that was visualized with an Alexa 488-conjugated secondary antibody (green). Images from the top (A, D, G), middle (B, E, H) and bottom (C, F, I) of each stack show condensations of mesenchymal cells at Day 2 and formation of 3 dimensional nodules by Day 4, which increase in breadth and depth by Day 8. The architecture of the nodules can be seen in the orthogonal view images of Day 2, Day 4 and Day 8 cultures described above (J-L). Scale bar represents 50µm.