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RÉSUMÉ 

L’étude des risques de rupture figure parmi les thématiques les plus abordées dans le domaine de 

la sécurité des barrages. Elle permet à l’ingénieur de prendre des décisions stratégiques, que ce soit 

pour l’implantation, la conception et l’entretien des ouvrages ou pour la préparation des plans 

d’urgence.  

Ce travail de maîtrise traite plus particulièrement de la brèche des barrages en remblai à la suite 

d’une rupture par surverse. L’objectif est de développer un programme de simulation Monte-Carlo 

qui permet d’étudier le risque associé aux hydrogrammes rupture. Ce programme est composé de 

quatre modules ; soit un générateur des variables aléatoires, un estimateur des hydrogrammes de 

rupture, un estimateur des erreurs de convergence, et un générateur d’hydrogrammes par intervalles 

de probabilité. Ce dernier permet d’obtenir pour un cas spécifique de barrages plusieurs 

hydrogrammes de rupture caractérisés par leurs probabilités de récurrence.  

L’approche méthodologique se base sur les règles de pratique définies par la norme HQ 60-00-00 

d’Hydro-Québec. Cette dernière spécifie les paramètres géométriques et temporels de brèche 

communément utilisés au Québec pour l’étude de la rupture de barrage. Dans le cas des barrages 

en remblai, la brèche est représentée par un modèle trapézoïdal. Les paramètres de brèche sont la 

pente des berges 𝑧, le rapport de la base sur la hauteur 𝐵/𝐻 et le temps de formation 𝑡𝑓. Ces 

paramètres sont considérés par le programme de simulation comme des variables aléatoires. 

L’analyse statistique est alors réalisée à partir des 81 cas de rupture regroupés par Wahl (2014). 

Une fois le programme développé, la simulation a été appliquée sur trois cas de barrages. Il s’agit 

de la digue Ouiqui, du barrage Clair et du barrage Caribou. Les résultats montrent alors que la 

méthode normée est toujours plus conservatrice que l’approche probabiliste.  

 



vi 

 

ABSTRACT 

The study of the failure’s risk is one of the main topics in dam safety. It allows the engineers to 

make strategical decisions, whether for construction, conception and maintenance of dams or for 

making the action plan. 

This research deals with the breach in the embankment dam caused by overtopping. The purpose 

is to develop a Monte Carlo simulation programme that evaluate the risk of the failure hydrograph. 

This programme includes four modules: The generator of the random variables, the estimator of 

the failure hydrograph, the estimator of the convergence errors, and the generator of the 

hydrographs by the probability intervals. The latter produce for a specific case of study, several 

hydrographs characterized by their probability.   

The methodological approach is based on the rules of practice defined by the HQ 60-00-00 norm 

of Hydro-Quebec. This norm indicates the geometrical and the temporal parameters of the breach, 

commonly used in Quebec for the study of the dam failures. In the case of the embankment dams, 

the breach is represented by a trapezoidal model. The breach parameters are the ratio of the bottom 

width of the breach to its height 𝐵/𝐻, the slide slope 𝑧, and the failure time  𝑡𝑓. These parameters 

are considered as a random variable by the simulation program. The statistical analysis of these 

variables is realized from 81 cases of break grouped by Wahl (2014).  

Once program developed, the simulation was applied in tree cases of study. It is about the Ouiqui 

dike, the Clair dam and the Caribou dam. The results shows that the standardized method is always 

more conservative than the probabilistic approach.   

 

http://fr.pons.com/traduction/anglais-fran%C3%A7ais/strategical
http://fr.pons.com/traduction/anglais-fran%C3%A7ais/decisions
http://fr.pons.com/traduction/anglais-fran%C3%A7ais/It
http://fr.pons.com/traduction/anglais-fran%C3%A7ais/is
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CHAPITRE 1 INTRODUCTION  

1.1 Mise en contexte  

Les barrages figurent parmi les structures les plus anciennes construites par l’Homme. En effet, les 

premiers ouvrages sont apparus depuis cinq millénaires pour répondre aux besoins 

d’approvisionnement en eau et d’irrigation. De nos jours, l’eau stockée est utilisée dans diverses 

activités telles que la production d’énergie hydroélectrique, la protection contre les crues, la 

navigation et le loisir (Marche, 2008). 

Les techniques adoptées lors de la construction des ouvrages de retenues sont multiples. Elles 

dépendent essentiellement des matériaux de construction choisis. En générale, les barrages se 

regroupent en deux catégories : les barrages rigides et les barrages en remblai. Les barrages rigides 

sont soit en béton, en pierre ou en maçonnerie, tandis que les barrages en remblai sont en terre, en 

enrochement ou en un mélange des deux (ICOLD). 

Les barrages en remblai sont les plus répandus. En effet, 70 % des barrages dans le monde sont en 

remblai (ICOLD). Ils peuvent être répartis en trois catégories (Schleiss & Pougatsch, 2011) : 

 Barrage homogène : Barrage en terre composé par le même type de matériau. Ce dernier 

est constitué en majorité d’argiles et il est relativement imperméable. 

 Barrage à noyau : Barrage en terre ou en enrochement ayant deux composantes distinctes 

soit un noyau central étanche et une partie externe qui le recouvre. La partie externe s’assure 

de la stabilité de l’ouvrage. Elle est composée de terre, d’alluvions ou d’enrochements. Le 

noyau est généralement constitué de terre relativement imperméable comme l’argile, le 

limon, ou la moraine. Il peut être également sous la forme d’une paroi en béton, en béton 

bitumineux ou en acier. 

 Barrage à masque amont : Barrage en terre ou en enrochement constitué d’un matériau 

relativement perméable. Dans ce cas, l’étanchéité est assurée par un masque amont en béton 

(armé ou bitumineux) ou par une géomembrane.  

Lorsqu’un barrage rompt, un volume important d’eau est relâché, ce qui entraîne l’augmentation 

brutale et rapide de l’eau à l’aval de l’ouvrage. L’élévation du niveau d’eau forme une onde de 

submersion. Cette dernière est caractérisée par une hauteur, une vitesse et une durée. Elle progresse 
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vers l’aval selon les caractéristiques du terrain naturel. En général, l’onde de submersion s’atténue 

au fur et à mesure et commence à ressembler à une onde de crue. Elle engendre souvent 

l’inondation d’un large territoire. De plus, elle peut déplacer une grande quantité de sédiments, 

surtout lorsqu’il s’agit des barrages en remblai. Or, l’ampleur du risque dépend principalement des 

enjeux humains, environnementaux et économiques qui y sont impliqués. 

Ainsi, au passage d’une onde de submersion, la population peut subir de l’isolement, des blessures 

et des risques de noyades. Les dégâts matériels se manifestent souvent par la destruction des 

bâtiments et le dysfonctionnement des services publics. Par ailleurs, l’impact sur l’environnement 

se présente généralement par la destruction de la faune et de la flore, l’endommagement du sol 

cultivable, la pollution et l’accumulation des débris.  

Parmi les incidents les plus notables du 19e siècle figure la rupture du barrage South Fork. Ce 

dernier se situait en Pennsylvanie, aux États-Unis. Il était construit à partir de terre et 

d’enrochement. Il avait une hauteur de 22 m, une longueur de 256 m, et une capacité de retenue de 

18,5 106 m3. L’apparition d’une brèche d’environ 128 m de largeur sur la crête de l’ouvrage a fait 

plus de 2 200 morts et des pertes d’environ 100 M$ US (Marche, 2008). 

Selon Marche (2008), les données les plus récentes montrent qu’il se produit environ 1,5 rupture 

de barrage par année. Or, pendant le 19e siècle, le nombre de ruptures variait entre 10 à 40 ruptures 

tous les dix ans. À partir des données recensées par ICOLD (1995), il est possible de constater que 

la défaillance est occasionnée par la capacité insuffisante de l’évacuateur de crue dans 35 % des 

cas et par des problèmes de fondation dans 25 % des cas. De plus, la plupart des ruptures ont lieu 

pendant le premier remplissage. La sécurité des barrages est donc largement influencée par la 

qualité de la conception et de la construction. Par ailleurs, le développement des techniques de 

rupture a permis de diminuer le taux de rupture (pourcentage de rupture / pourcentage de barrages 

construits). En effet, les barrages construits après 1951 présentent un taux de 0,5 %, alors qu’il était 

de 2,2 % auparavant. Le taux global est évalué à 1,11 % pour les barrages en remblai et 0,54 %  

pour les barrages en béton (Marche, 2008). 

La rupture des barrages est donc un phénomène rare, mais ces conséquences demeurent 

désastreuses sur les plans humain, environnemental et matériel. C’est pourquoi il faut se doter des 

outils nécessaires pour prédire un tel événement. Pour déterminer l’onde de submersion, il faut 

entre autres estimer le débit qui est engendré par la démolition du barrage. L’estimation de ce débit 
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nécessite la compréhension des mécanismes de rupture. Or, le barrage peut rompre de plusieurs 

façons. Foster, Fell et Spannagle (2000) présentent une étude statistique enregistrée après 1987 sur 

plus de 11 000 barrages en remblai à travers le monde. Il en résulte que 47 % des ruptures sont 

engendrées par la surverse, 48,7 % sont dues au renard et 4,3 % sont causées par le glissement. 

L’étude de la rupture s’inscrit dans le cadre de la gestion du risque et la protection civile. Elle offre 

aux personnes responsables un moyen pour évaluer la sécurité des barrages, pour déterminer les 

zones menacées et pour mettre en place les mesures d’urgence et d’alerte. Selon Wahl (1998), cette 

étude est un processus à deux étapes : 

 L’étude de la formation de la brèche : Elle consiste à décrire les mécanismes d’érosion, à 

définir les phénomènes physiques impliqués, à évaluer les incertitudes, à prévoir l’évolution 

spatiale et temporelle de la brèche et à développer des méthodes pour estimer le débit de 

brèche. 

 L’étude de la propagation de l’onde de rupture : Elle tient compte de données géologiques 

pour délimiter les zones à risques et pour évaluer les caractéristiques de l’écoulement. 

Ce mémoire traite particulièrement de la formation de la brèche dans les barrages en remblai en 

cas de surverse.  

1.2 Problématique 

Depuis de nombreuses années, plusieurs avancées ont été réalisées dans le domaine de la sécurité 

des barrages et l’analyse de risque. Des études ont accordé une attention particulière à la brèche 

des ouvrages en remblais due au phénomène de surverse. La brèche peut être analysée à partir d’un 

système réel construit en laboratoire. Cependant, ceci peut s’avérer extrêmement coûteux. Une 

solution alternative consiste à utiliser un modèle mathématique.  

Les modèles mathématiques sont utilisés dans de nombreux domaines pour prédire le 

comportement de phénomènes réels. Or, il est difficile, voire impossible, d’avoir la valeur exacte 

d’une grandeur physique. La raison revient principalement à la compréhension des paramètres 

impliqués et de leurs interactions. En effet, il existe une multitude de facteurs qui sont à l’origine 

d’un événement naturel tel que la rupture. Ces facteurs sont tellement nombreux et divers qu’il est 

inconcevable de les étudier dans leurs intégralités. De plus, leurs caractéristiques et leurs degrés 

d’implication sont variables dans l’espace et dans le temps. Il devient ainsi impossible de cerner 
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tous les liens de causalité. Par ailleurs, les données obtenues sur le terrain et en laboratoire sont 

souvent confrontées à l’imprécision des appareils et des outils de mesures. Ainsi, l’estimation des 

phénomènes physiques est limitée. Le passage d’une situation concrète à un modèle théorique 

nécessite toujours plusieurs hypothèses physiques et mathématiques.  

Pour tenir compte de la variabilité des grandeurs physiques, les études ont recours à l’évaluation 

des incertitudes. Ces derniers sont généralement exprimés sous la forme d’un domaine de 

possibilités, appelé intervalle de confiance. Ainsi, les valeurs d’une estimation sont acceptables en 

admettant un certain degré de confiance. Les limites supérieures et inférieures de l’intervalle sont 

souvent associées à une probabilité donnée. Elles permettent de donner un ordre de grandeur à la 

valeur estimée.  

Les résultats finaux d’une simulation sont alors le fruit de plusieurs grandeurs incertaines. Les 

incertitudes individuelles de chaque grandeur se regroupent pour former l’incertitude totale qui 

caractérise les sorties du modèle. Dans les études de risques, l’estimation de ces incertitudes est 

aussi importante que la détermination des caractéristiques de la brèche. Elle constitue également 

un outil essentiel dans la prise de décision. Cette analyse peut se faire en utilisant une approche 

probabiliste qui considère les entrées et les sorties du modèle comme des variables aléatoires.   

Au Québec, la rupture des barrages en remblai est assujettie à la norme HQ 60-00-00. Elle permet 

d’attribuer des valeurs fixes à certains paramètres de brèches en fonction du type de barrage et des 

conditions hydrologiques. Ces valeurs ont été établies en analysant les caractéristiques de ruptures 

antérieures. Ainsi, elles ne reflètent pas les grandeurs réelles, mais offrent plutôt une approximation 

réaliste et sécuritaire de la brèche. Dans ce cas, la qualité de l’estimation devient étroitement liée à 

la fiabilité de la norme. Les règles de bonne pratique sont alors prédisposées à comporter plusieurs 

incertitudes. Par ailleurs, les scénarios étudiés par la norme sont limités. En effet, même si elle 

différencie les ouvrages en enrochement de ceux en béton, elle distingue vaguement les différentes 

propriétés structurales qui peuvent les caractériser. De plus, elle donne très peu d’information sur 

les conditions hydrauliques et sédimentaires. Elle n’offre également aucun détail sur les 

caractéristiques géotechniques du sol. 

À la lumière de cette réflexion, ce projet de maîtrise vient pour traiter de la question suivante : 

Dans quelles mesures les incertitudes des paramètres de la brèche définis par la norme 

HQ 60-00-00 affectent-elles la rupture des barrages en remblai en cas surverse ? 
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1.3 Objectif de recherche 

Pendant la rupture d’un barrage, le débit sortant de la brèche permet de définir les caractéristiques 

initiales de l’onde de rupture. Les zones à risques sont donc influencées par la fiabilité de 

l’hydrogramme de rupture. L’objectif de ce mémoire est de développer un programme 

informatique qui permet d’évaluer les incertitudes relatives à la variation du débit de brèche pour 

un barrage donné.    

1.4 Organisation du mémoire 

Ce mémoire est divisé en cinq sections principales, allant du chapitre 2 à 6 : 

Le chapitre 2 présente une revue de littérature sur la rupture par surverse des barrages en remblai. 

D’une part, il définit les mécanismes de rupture et les différents phénomènes impliqués. D’autre 

part, il explique les méthodes, les équations et les modèles de prédiction. 

Le chapitre 3 explique l’approche utilisée dans ce mémoire. Il présente d’abord le principe de base 

de la méthode de Monte-Carlo. Ensuite, il décrit plus en détail les différentes hypothèses adoptées 

par le programme de simulation. Dans ce cas, il traite de deux volets. Le premier concerne le choix 

des variables aléatoires. Le deuxième aborde la modélisation mathématique de la brèche. Enfin, la 

dernière partie du chapitre présente les différentes étapes de réalisation. 

Le chapitre 4 décrit le programme de simulation développé pour évaluer les hydrogrammes de 

rupture probabilistes. D’une part, il clarifie la structure générale du système. D’autre part, il 

renseigne sur son fonctionnement interne. Pour ce faire, il présente d’abord les interfaces 

utilisateurs et de sortie tout en précisant les différentes options qui s’offrent à l’utilisateur. Ensuite, 

il explique les différents modules qui composent le programme.  

Le chapitre 5 renseigne sur les données utilisées dans l’étude probabiliste. Il décrit d’abord les 

informations assemblées sur la rupture des barrages, leurs sources et leur disponibilité. Ensuite, il 

définit les caractéristiques statistiques des variables aléatoires utilisées dans le modèle de 

simulation. 

Le chapitre 6 présente l’application du programme développé sur des cas types de barrage. D’une 

part, elle permet de vérifier le fonctionnement des différents modules. D’autre part, elle permet de 

comparer les résultats en tenant compte des approches probabilistes et normées. 
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CHAPITRE 2 REVUE DE LITTÉRATURE  

La sécurité des barrages est un domaine très vaste, qui a fait l’objet de plusieurs études. Ces études 

s’orientent principalement vers la collecte de donnée, l’expérimentation et le développement de 

calculs théoriques. En général, elle cherche soit à expliquer les différents phénomènes appliqués, 

soit à développer des méthodes et des outils de prévision ou bien à évaluer l’impact des ruptures 

sur les plans humains, économiques et environnementaux.     

Ce chapitre présente une revue de littérature sur la rupture des barrages en remblai. Il est composé 

de quatre sections. La première définit les types, les modes et les mécanismes de rupture qui 

caractérise les barrages en terre. La deuxième explique les différents modèles mathématiques de 

brèche. La troisième introduit le modèle préconisé par la norme québécoise HQ 60-00-00. La 

quatrième traite des méthodes d’estimation du débit de brèche. Elle se concentre principalement 

sur les approches empiriques, physiques et stochastiques.  

2.1 Rupture des barrages en remblai 

2.1.1 Types de rupture 

Selon le dictionnaire d’ICOLD (International Commission On Large Dams), un barrage rompt 

lorsqu’il est perd sa capacité à emmagasiner de l’eau à la suite de la rupture ou du déplacement du 

sol qui compose le corps de l’ouvrage ou de sa fondation. Il est ainsi possible de distinguer deux 

types de ruptures : la brèche et le glissement. Le glissement se manifeste par un mouvement 

gravitaire du massif de terre composant le barrage, tandis que la brèche concerne les phénomènes 

d’érosion causée par la circulation de l’eau. Cette érosion peut s’enclencher à l’intérieur ou à 

l’extérieur de l’ouvrage (Bonelli, 2001) : 

 L’érosion hydraulique interne  

L’érosion interne représente l’arrachement et l’acheminement des particules de sol à la suite de 

l’infiltration de l’eau dans le barrage ou dans sa fondation. Le transport de ces fragments commence 

généralement par une suffusion qui engendre la redistribution des particules fines. L’arrivée de ces 

granules à l’aval diminue localement la perméabilité du sol et augmente les pressions interstitielles. 

Lorsque ces pressions atteignent un certain seuil critique, elle commence à arracher des particules 

plus grossières. Ensuite, les matériaux enlevés sont transportés par charriage induisant le 
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phénomène de renard. Au fur et à mesure que le sol s’érode, un tunnel se forme dans le corps de 

l’ouvrage reliant ces côtés aval et amont. Par la suite, le creux s’élargit provoquant l’écroulement 

du remblai (Maknoon & Mahdi, 2010). 

 L’érosion hydraulique externe en cas de surverse  

L’érosion externe en cas de surverse (ou de submersion) se manifeste par la désagrégation de la 

surface du remblai dû au débordement de l’eau par-dessus la crête du barrage. La brèche peut 

commencer à des endroits différents à l’aval, selon les propriétés de l’écoulement (régime 

d’écoulement, vitesse…) et des caractéristiques du remblai (type de matériaux, densité, présence 

d’anomalie…). Elle progresse par la suite de manière régressive vers l’amont jusqu’à la rupture de 

l’ouvrage. Les causes de la rupture peuvent être naturelles, humaines ou techniques. En effet, elle 

peut être due à l’augmentation excessive de l’eau dans le réservoir notamment à cause de la 

mauvaise manipulation des vannes d’évacuation ou de l’accroissement des apports sédimentaires. 

Elle peut également être causée par l’abaissement du niveau de la crête dû à un tassement engendré 

par un tremblement de terre par exemple (Schleiss & Pougatsch, 2011). 

2.1.2 Mécanismes de la rupture par surverse 

Les processus d’érosion sont influencés par plusieurs facteurs physiques. Ces facteurs sont 

principalement liés aux caractéristiques du remblai et de l’écoulement. Ainsi, de nombreuses études 

ont été réalisées pour connaître l’incidence de ces paramètres sur le développement de la brèche. 

Cette section reprend les mécanismes de rupture expliqués par Degoutte (2012). Elle décrit 

l’érosion en fonction de la nature, la densité, la cohésion et l’homogénéité du sol. 

  Remblai homogène, non cohésif et compact 

Dans ce cas, les premières fissures apparaissent au pied du talus aval. À cet endroit, l’écoulement 

est turbulent. Il est également caractérisé par de grandes vitesses et des contraintes de cisaillement 

élevées. Par la suite, un affouillement commence à se former sur l’extrémité de l’ouvrage. 

Parallèlement, le niveau aval de l’eau augmente créant ainsi un ressaut hydraulique. Au fur et à 

mesure que l’eau s’écoule, le niveau piézométrique diminue. Les deux côtés de l’écoulement sont 

alors reliés par un chenal. Ensuite, l’arrachement et le transport des matériaux continus sur la 

surface du talus aval par érosion régressive. Ce processus se poursuit sur la crête du barrage jusqu’à 
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ce qu’il atteigne une certaine position critique. La position critique marque le début de la brèche. 

En effet, il ne s’agit plus d’un simple débordement, mais d’un engouffrement de l’eau de la rivière. 

La rupture s’élargit alors rapidement en profondeur puis sur les côtés soit par érosion latérale ou 

bien par glissement du talus. Une fois arrivé au fond de l’ouvrage, le développement vertical de la 

brèche s’arrête. Par contre, l’érosion latérale des rives continue avec la vidange du réservoir. 

 

Figure 2.1 Processus d’érosion dans un barrage en terre homogène, non cohésif et compact (adaptée 

de Degoutte (2012)) 

 Remblai homogène, non cohésif et lâche 

Dans ce type de configuration, la rupture peut commencer dès la première submersion. Elle se 

manifeste par une cavité positionnée à l’extrémité aval de la crête. Ensuite, cette cavité s’élargit 

vers l’aval formant ainsi une ravine. Cette ravine se transforme par la suite en un chenal qui relie 

les deux côtés de l’écoulement. L’érosion commence alors à se déplacer de manière régressive vers 

l’amont et le développement de la brèche se poursuit comme pour le cas précédent.   

 

Figure 2.2 Processus d’érosion dans un barrage en terre homogène, non cohésif et lâche (adaptée de 

Degoutte (2012)) 

 



9 

 

 Remblai cohésif  

Lorsque le sol est cohésif, l’érosion est également initiée au pied du barrage. Elle peut être causée 

par l’effet du jet ou par le changement de direction. Ensuite, elle progresse de manière régressive 

vers l’amont. Or, l’arrachement des matériaux se fait cette fois-ci par bloc (Headcut). La pente du 

barrage prend alors la forme de marche d’escalier, où l’eau s’écoule en cascade. L’énergie 

commence ainsi à se dissiper d’un palier à l’autre. Ensuite, sous l’influence de la chute, la partie 

en saillie de chaque bloc se détache rapidement par renversement. Les marches d’escalier 

augmentent alors en hauteur et diminuent en nombre. Lorsque l’érosion arrive à l’autre extrémité 

de la crête, la brèche se développe comme dans les cas précédents. 

 

Figure 2.3 Processus d’érosion dans un barrage en terre cohésif (adaptée de Degoutte (2012)) 

 Remblai hétérogène 

Les mécanismes d’érosion des barrages hétérogène sont décrits par Wu et al. (2011). Il concerne 

particulièrement les remblais ayant un noyau en argile, en acier ou en béton. Dans ce cas, 

l’arrachement des matériaux peut commencer de manière aléatoire sur la surface du talus aval. 

Durant la phase d’initiation, la progression de la rupture peut se faire soit en surface ou par bloc 

jusqu’à ce qu’elle atteigne la partie centrale. Ensuite, les forces appliquées influencent la stabilité 

du noyau. La rupture peut alors se faire par glissement, par renversement ou par flexion. Les 

matériaux ainsi rompus sont emportés vers l’aval, tandis que le canal de brèche progresse 

rapidement en profondeur puis sur les côtés soit par érosion latérale ou bien par glissement du talus. 
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2.2 Modélisation de la brèche 

2.2.1 Considérations géométriques  

Les formes de brèches présentées dans la littérature sont diverses. Elles sont souvent schématisées 

par des triangles, des rectangles, des trapèzes ou des paraboles. Cette variation provient des 

nombreuses sources d’incertitude qui régissent la rupture des barrages. Pour connaître le modèle 

le plus approprié, Singh, V. P. et Scarlatos (1988) ont comparé les brèches triangulaires et 

rectangulaires du barrage Teton. De cette manière, ils ont conclu que les ruptures rectangulaires 

donnent des résultats plus précis que ceux ayant une forme triangulaire. 

MacDonald et Langridge-Monopolis (1984) distinguent deux formes de rupture. Dans ce cas, la 

brèche prend d’abord une forme triangulaire avec une pente égale à 2. Ensuite, elle devient 

trapézoïdale lorsque l’érosion dépasse la base du barrage. Une approche similaire a été utilisée par 

Macchione (2008) en supposant une pente de brèche constante prédéfinie. Par ailleurs, Houston 

(1985) a révisé le modèle de rupture de MacDonald et Langridge-Monopolis (1984). Il propose 

alors d’utiliser une brèche trapézoïdale avec une pente de 45 degrés et dont la base est égale à la 

hauteur (Singh, V., 1996).  

Par ailleurs, Hahn, Hanson et Cook (2004) suggèrent d’utiliser un modèle dynamique qui tient en 

compte de la variation de la morphologie de la brèche et du taux d’érosion. 

2.2.2 Définition des paramètres de brèche 

Le modèle trapézoïdal de brèche est le plus utilisé pour 

représenter la rupture. Ce schéma est caractérisé par 

plusieurs paramètres, dont la définition peut varier d’une 

référence à l’autre. Selon Wahl (1998), la brèche est définie 

par cinq paramètres : la profondeur, la largeur, la pente des 

rives, le temps d’initiation et le temps de formation. 

 

Figure 2.4 Modèle de brèche 

trapézoïdale 

Lors du recensement des barrages, les dimensions de brèche représentent la géométrie finale de la 

rupture. Ils sont déterminés par des mesures in situ, avec l’analyse de cartes topographiques ou à 

partir de formules de régression. Les équations de régression sont nombreuses dans la littérature. 

Elles expriment généralement la variation des paramètres de brèche en fonction de la hauteur du 
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barrage et des caractéristiques du réservoir. Wahl (1998), recueille les principales méthodes 

utilisées pour la prédiction de la géométrie de la brèche. Dans cette étude, la profondeur (ou la 

hauteur) hb désigne la distance entre le fond de la brèche et la crête du barrage. La largeur 𝐵̅ 

représente la moyenne entre les deux bases du trapèze. Par ailleurs, le facteur de pente Z correspond 

à la valeur moyenne de l’inclinaison des rives (Froehlich, 2008; Wahl, 1998). 

Pour modéliser la rupture, il faut également connaître l’évolution de sa géométrie dans le temps. À 

cet effet, Wahl (1998) distingue deux durées différentes ; soit le temps d’initiation et le temps de 

formation. Le temps d’initiation définit la période comprise entre le début de la surverse et le 

moment où la rupture devient imminente. Dans cet intervalle, les premières fissures apparaissent 

sur la surface du barrage, ce qui constitue un bon indicateur pour prévenir et évacuer la population. 

Or, la brèche peut s’arrêter à tout moment et elle ne semble pas influencer l’hydrogramme de sortie. 

Selon (Wahl, 2014), la phase d’initiation est reliée à l’érosion régressive qui progresse du pied aval 

du talus jusqu’à sa surface amont. Ensuite, la phase de formation commence lorsque la brèche 

atteint le sommet aval de l’ouvrage. À cet endroit, la rupture s’élargit rapidement en profondeur et 

sur les côtés. Le débit sortant devient alors conditionné par le changement de la section transversale 

de la brèche. Lorsque cette section atteint sa taille ultime, le temps de formation prend fin. En 

pratique, ces durées sont déterminées par l’analyse de photographie, à l’aide des mesures de débit 

ou à partir des équations de régression (Froehlich, 2008; Wahl, 1998, 2014). 

2.2.3 Représentation des processus d’érosion 

Une description détaillée de la formation de la brèche permet une prédiction exhaustive de 

l’hydrogramme de rupture. Ainsi, plusieurs modèles ont été conçus pour représenter l’évolution de 

la brèche dans le temps. Ils permettent de reproduire de manière simplifiée les différents 

mécanismes d’érosion. À cet issu, de nombreux chercheurs ont essayé de comprendre les 

phénomènes physiques à l’origine de la rupture.  

La CIGB (1998) distingue cinq types de modèles qui décrivent la formation brèches : 

 Modèle 1 : La brèche est représentée par un seuil qui s’élargit selon une 

formule empirique 

Dans ce modèle, la forme de la brèche est prédéfinie. Les premières fissures apparaissent 

généralement d’une manière soudaine et instantanée sur le sommet du barrage dès que l’eau 
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commence à déborder. Ainsi, seul le temps de formation est considéré lors de la simulation de la 

rupture. La raison est que pendant la phase d’initiation, l’érosion de la surface du barrage ne semble 

pas influencer le débit qui la traverse. Par ailleurs, la largeur finale, le temps et le débit de brèche 

sont déterminés par des formules empiriques issues de cas réel.  

Durant la phase de formation, la variation des paramètres de brèche peut être représentée de 

plusieurs façons. À cet effet, Froehlich (2008) distingue trois schémas ; soit les modèles A, B et C 

(voir figure 2.5). Dans le modèle A, le facteur de pente demeure constant durant tout le processus 

de l’érosion. La base de la brèche est considérée comme nulle jusqu’à ce qu’elle atteigne le fond 

de l’ouvrage. Une fois arrivée au fond, elle prend subitement sa valeur ultime. Dans le modèle B, 

la pente est toujours constante, mais l’ouverture du fond de la brèche augmente graduellement 

durant l’érosion. Dans le modèle C, c’est la pente qui varie, alors que la largeur de la base reste 

stable (Froehlich, 2008). 

 

Figure 2.5 Modèles de brèche (adaptée de Froehlich (2008)) 
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En général, l’évolution de la brèche est considérée comme étant un processus linéaire. Or, plusieurs 

scientifiques recommandent d’approximer la variation des dimensions de brèche par des fonctions 

d’onde sinusoïdale. De cette façon, la rupture évolue selon trois vitesses. À départ, elle progresse 

lentement. À un moment donné, elle accélère avec une tendance linéaire. Finalement, elle ralentit 

lorsque la brèche se rapproche de ses dimensions finales. Selon Wahl (2014), le choix de la 

méthode de développement dépend du cas du barrage étudié (Froehlich, 2008; Wahl, 2014).  

Pour décrire le taux d’érosion, Froehlich (2008)  introduit le paramètre 𝜷 déterminé à partir de la 

formule suivante : 

𝜷 =

{
 
 

 
 
𝒕

𝒕𝒇
                                              𝑷𝒐𝒖𝒓 𝒖𝒏𝒆 𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒍𝒊𝒏é𝒂𝒊𝒓𝒆   

𝟏

𝟐
{𝟏 + 𝒔𝒊𝒏 [𝝅(

𝒕

𝒕𝒇
−
𝟏

𝟐
)]}  

𝑷𝒐𝒖𝒓 𝒖𝒏𝒆 𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝒅𝒆 𝒕𝒚𝒑𝒆

𝒐𝒏𝒅𝒆 𝒔𝒊𝒏𝒖𝒔𝒐ï𝒅𝒂𝒍𝒆
      

                  

 

Équation 2.1 

Où  𝑡, est le temps à un instant donné 

𝑡𝑓, est le temps de formation de la brèche  

La largeur instantanée du sommet de la brèche est alors estimée à partir de l’équation suivante : 

𝒃𝒕𝒊 = 𝜷(𝑩𝒕 −𝑩𝒕𝟎) + 𝑩𝒕𝟎 Équation 2.2 

Par ailleurs, la hauteur de brèche est donnée par la relation suivante : 

𝒉𝒕𝒊 = {
{
𝒃𝒕𝒊
𝟐𝒛
 , 𝑯𝒃 }                     𝑷𝒐𝒖𝒓 𝒍𝒆 𝒎𝒐𝒅è𝒍𝒆 𝑨                                     

𝜷𝑯𝒃                             𝑷𝒐𝒖𝒓 𝒍𝒆𝒔 𝒎𝒐𝒅è𝒍𝒆𝒔 𝑩 𝒆𝒕 𝑪                        
 

Équation 2.3 

Où 𝐵𝑡, est la largeur finale du sommet de la brèche 

𝐵𝑡0, est la largeur initiale du sommet de la brèche (𝐵𝑡0 = 0 pour les modèles A et B) 

𝐻𝑏, est la largeur finale du sommet de la brèche 

𝑧, est le facteur de pentes de rive 

 Modèle 2 : La brèche est représentée par un seuil qui s’élargit selon les 

contraintes appliquées 

Ce modèle utilise également une forme prédéfinie de brèche. Par contre, le développement de la 

rupture n’est pas déterminé à partir d’une formule empirique. Il est fonction de la contrainte de 
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cisaillement moyenne appliquée sur la surface érodable. Parmi les premières études à utiliser ce 

modèle, il y a celle de Cristofano (1965). Elle se base sur le principe d’équilibre des forces qui 

relient les forces de l’écoulement au frottement appliqué sur la surface de la rupture. Ce modèle 

permet alors d’exprimer le taux d’érosion en fonction du débit de brèche. Dans ce cas, la rupture 

prend la forme d’un trapèze, dont la largeur du fond est constante. Par ailleurs, l’inclinaison des 

rives est égale à l’angle de repos du remblai, alors que la pente longitudinale est définie par l’angle 

de frottement interne des matériaux (Fread, 1988 ; Zerrouk, 2004).  

 Modèle 3 : La brèche est représentée par un seuil et un chenal érodable à l’aval  

Dans ce cas, la rupture est considérée comme un canal prismatique de pente uniforme. Sur le 

sommet du canal, l’écoulement est supposé critique. Le débit liquide est alors calculé à partir de la 

formule des déversoirs. Ensuite, la hauteur et la profondeur de l’écoulement sont estimées à 

l’extrémité du talus aval par l’équation de Bernoulli. À cet endroit, le transport des sédiments atteint 

sa capacité maximale. Le volume du sol arraché est alors évalué selon les formules du transport 

solide. Par ailleurs, le développement de la brèche est déterminé à la suite de la combinaison des 

équations de continuité hydraulique et sédimentaire (Macchione & Sirangelo, 1990).  

 Modèle 4 : L’ensemble de la brèche est représenté par un chenal érodable à 

l’aval 

Cette approche permet de modéliser l’érosion progressive de la brèche en considérant la nature non 

permanente de l’écoulement. Pour ce faire, les équations du fluide et du transport solide sont 

résolues par la méthode des différences finies. 

L’écoulement est représenté par les équations unidimensionnelles de Saint-Venant : 

𝜕𝑄

𝜕𝑥
+
𝜕𝐴

𝜕𝑥
+
𝜕𝐴𝑑
𝜕𝑡

= 0 Équation 2.4  

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑄2

𝐴
) + 𝑔𝐴 (

𝜕𝑍

𝜕𝑥
+ 𝑆𝑓) = 0 Équation 2.5  

Où 

 

À, est la section transversale de l’écoulement en (𝑚2) 

𝐴𝑑, est la section transversale de la brèche en (𝑚2) 

𝑆𝑓, est la pente énergétique (m/m) 

𝑍, est la hauteur d’eau (m) 
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Les sédiments sont déterminés par l’équation de continuité d’Exner : 

𝜕𝑄𝑠
,

𝜕𝑥
+ (1 − 𝑝)𝜌𝑠𝐵 +

𝜕𝑧

𝜕𝑡
= 0 Équation 2.6  

Où 

 

𝑄𝑠
,
, est le taux de transport sédimentaire en (kg/s) 

𝐵, est la largeur moyenne du chenal en (𝑚) 

𝜌𝑠, est la masse volumique du matériau solide en (𝑘𝑔/𝑚3) 

𝑧,   est l’élévation du lit en (m) 

L’étude de Macchione et Sirangelo (1988) utilise ce modèle pour simuler l’évolution de la brèche 

dans le temps. Elle inclut également la variation dynamique du volume d’eau dans le réservoir. 

Dans ce cas, la rupture prend d’abord une forme triangulaire ensuite elle devient trapézoïdale 

lorsqu’elle atteint le fond du barrage.  

 Modèle 5 : Le développement de la brèche est déterminé à partir d’un 

processus par étape 

Le cinquième modèle considère le développement de la brèche comme un processus non uniforme. 

Pour ce faire, il décompose la formation de la rupture en plusieurs phases. Chaque phase est 

caractérisée par son type d’écoulement, son processus d’érosion et ses équations de prédiction. Les 

équations de prédiction sont déterminées de manières semi-empiriques. En effet, elles contiennent 

plusieurs paramètres issus des données obtenues sur le terrain et en laboratoire. 

Cette technique permet de traiter localement les interactions entre le sol et les sédiments. Elle tient 

alors compte de l’hétérogénéité du barrage. La formation de la brèche devient ainsi influencée par 

la présence d’un masque aval, d’un noyau central, de filtres et des différents types de matériaux 

constituant le remblai. Par ailleurs, les processus d’érosion peuvent s’arrêter à n’importe quel 

moment, s’il rencontre un facteur limitant. Parmi ces facteurs, il y a la fondation, les appuis, 

l’écoulement à l’aval et la limite de stockage du réservoir (CIGB, 1998).  

Plusieurs expériences menées en laboratoire ont permis de déterminer les différentes phases de 

l’érosion. Or, le nombre de phases peut varier d’une référence à l’autre. Par exemple, le modèle 

numérique SIMBA subdivise le développement de la brèche en quatre étapes. Ces étapes sont 

expliquées en détail par Temple, D. M. et Hanson (2005). 
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2.3 Norme en vigueur 

À cause des incertitudes reliées à la prédiction des paramètres de brèche, plusieurs pays ont mis au 

point leurs propres normes pour la modélisation des ruptures. Ces normes se basent sur des études 

et des observations menées sur des barrages ayant rompu par le passé. L’objectif est d’adopter une 

stratégie réglementée, commune et sécuritaire qui guide l’ingénieur dans sa pratique. À cet égard, 

Hydro-Québec a développé la norme HQ 60-00-00. Cette dernière définit les grandes lignes 

directrices qui régissent la rupture de différents types de barrage. Ainsi, pour la submersion des 

barrages en remblai, la norme fournit les critères suivants (Marche, 2008, p. 45-46) : 

 Critères géométriques : La brèche doit avoir la forme d’un trapèze. Dans ce cas, la largeur 

ultime de la base fait quatre fois la hauteur de l’ouvrage et les rives ont une pente de 45 

degrés. L’inclinaison des rives est modifiable selon les conditions du terrain naturel.  

 Critère temporel : Le temps de formation de la brèche est généralement de 30 min. 

Néanmoins, des durées plus grandes peuvent être considérées pour les barrages ayant un 

masque amont.  

2.4  Estimation du débit de brèche  

2.4.1 Méthodes empiriques  

La méthode empirique permet d’estimer le débit de pointe à la sortie de la brèche en utilisant des 

formules de régression. Ces formules se basent sur les données de barrages ayant rompu par le 

passé. Il s’agit de relier directement l’hydrogramme de rupture avec les paramètres hydrauliques 

qui influence l’érosion. En général, la variation du débit dans le temps est déterminée à partir de la  

durée de la formation de la brèche (Wahl, 1998).  

La régression peut être simple ou multiple. La variable indépendante de la régression simple est 

soit la hauteur du barrage, soit la profondeur d’eau à l’amont, soit le volume d’eau dans le réservoir, 

soit la capacité de stockage, ou bien la combinaison de plusieurs de ces paramètres. Pour relier ces 

paramètres au débit de brèche, les scientifiques utilisent les équations des courbes de tendance ou 

d’enveloppe. Les principales formules employées dans la littérature sont présentées par (Wahl, 

1998, 2004). Elles ont été également retranscrites dans le Tableau 2.1. 
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Tableau 2.1 Équations de régression utilisées dans la littérature (adapté de Wahl (2004)) 

Références Équations  

Kirkpatrick (1977) 𝑄𝑝 = 1,268 (ℎ𝑤 + 0,30)
2,5 

SCS (1981) 𝑄𝑝 = 16,6 (ℎ𝑤)
1,85 

Hagen (1982) 𝑄𝑝 = 0,54 (𝑆. ℎ𝑑)
0,5 

Bureau of Reclamation (1982) 𝑄𝑝 = 19,1(ℎ𝑤)
1,85 (éq. d’enveloppe) 

Singh et Snorrason (1984) 𝑄𝑝 = 13,4 (ℎ𝑑)
1,89 

Singh et Snorrason (1984) 𝑄𝑝 = 1,776 (𝑆)
0,47 

MacDonald and Langridge-Monopolis (1984) 𝑄𝑝 = 1,154 (𝑉𝑤ℎ𝑤)
0,412 

MacDonald and Langridge-Monopolis (1984) 𝑄𝑝 = 3,87 (𝑉𝑤ℎ𝑤)
0,411 (éq. d’enveloppe) 

Costa (1985) 𝑄𝑝 = 1,122 (𝑆)
0,57 

Costa (1985) 𝑄𝑝 = 0,981 (𝑆ℎ𝑑)
0,42 

Costa (1985) 𝑄𝑝 = 2,634 (𝑆ℎ𝑑)
0,44 

Evans (1986) 𝑄𝑝 = 0,72 (𝑉𝑤)
0,53 

Froehlich (1995) 𝑄𝑝 = 0,607 (𝑉𝑤
0,295ℎ𝑤

1,24)  

Parmi les équations les plus anciennes, il y a celle de Kirkpatrick (1977) qui associe le débit de 

pointe avec la hauteur d’eau dans le réservoir. Elle se base sur 13 cas de rupture réelle et 6 cas 

simulés. À partir de ces cas réels, SCS (1981)  a développé une nouvelle relation de puissance. 

Cette relation a été améliorée ensuite par USBR (1982) en utilisant une base de données plus large. 

De manière générale, les méthodes empiriques exploitent directement des informations de cas 

réelles. Or, il existe également des techniques qui utilisent des résultats de simulation numérique. 

À titre d’exemple, Singh, K. P. et Snorrason (1984) ont déterminé le débit de brèche à partir des 

valeurs obtenues avec les logiciels DAMBRK et HEC-1 appliquée sur huit cas de barrage (Wahl, 

1998). 
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Pour connaître l’influence du regroupement d’un ensemble d’éléments sur le débit sortant, 

MacDonald et Langridge-Monopolis (1984) ont introduit un nouveau paramètre ; nommée le 

« facteur de formation de brèche ». Ce dernier représente le produit de la hauteur d’eau avec le 

volume du réservoir. Tandis que Costa (1985) définit le « facteur de barrage » qui est obtenu en 

multipliant la hauteur du barrage avec le volume de stockage.  

Par ailleurs, des recherches ont adopté des régressions multiples pour déterminer le débit de brèche. 

Dans ce cas, l’influence de chaque paramètre est présentée de manière distincte. Par exemple, 

l’équation de Froehlich (1995) utilise deux variables indépendantes ; soit la hauteur et le volume 

d’eau dans le réservoir. Cette équation est développée en se basant sur les données historiques de 

22 barrages. Ensuite, ces données ont été utilisées pour comparer les relations de Froehlich (1995), 

de MacDonald et Langridge-Monopolis (1984), et de Costa (1985). Ainsi, il était possible de 

conclure que la relation de Froehlich (1995) est la mieux adaptée, surtout pour les plus faibles 

débits. La performance de cette relation a été confirmée par Wahl (1998) en utilisant un plus grand 

nombre de données. Il s’agit de 10 cas de rupture additionnels qui s’ajoutent à l’ancienne base de 

données, totalisant ainsi 32 cas de rupture. 

Des recherches ont développé des relations plus complexes qui utilisent non seulement les 

caractéristiques du réservoir et du barrage, mais aussi les paramètres de brèche. Parmi ces relations, 

il y a celle de Soil Conservation Service (1985) qui se présente comme suit : 

𝑄𝑝 = 1100 (
𝑉𝑤ℎ𝑤
𝐴

)
1,35

 
Équation 2.7 

Où 

 

𝑄𝑝, est le débit de pointe en 𝑓𝑡3 𝑠⁄  

𝑉𝑤, est le volume d’eau dans le réservoir au moment de la défaillance en 𝑓𝑡3 

ℎ𝑤, est la hauteur d’eau dans le réservoir au moment de la défaillance en 𝑓𝑡 

𝐴, est la section transversale de la brèche en 𝑓𝑡2 

Cette relation introduit un nouveau paramètre 𝐵𝑟 nommé le « facteur de brèche ». Tel que 𝐵𝑟 =

𝑉𝑤ℎ𝑤

𝐴
. Or, l’équation de Soil Conservation Service (1985)  est valide seulement pour les réservoirs 

dont la hauteur d’eau est inférieure à 103 𝑓𝑡.  

Les équations empiriques développées entre 1977 et 1995 utilisent un nombre limité de données. 

En effet, un maximum de 29 cas de rupture a été exploité durant ces analyses de régression. Pierce 
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(2008), propose de réviser ces formules à partir d’un plus grand échantillon. Cet échantillon 

provient de la combinaison des données de Wahl (1998) avec celle de Pierce (2008). La base de 

données ainsi obtenue comprend 87 cas de rupture. L’application des modèles de régression sur 

ces cas de rupture a permis de produire de nouvelles équations de prédiction (Pierce, Thornton, & 

Abt, 2010). Ces équations sont présentées dans le Tableau 2.2.  

Tableau 2.2 Équations de prédiction développée par Pierce (2008)  

Variable de contrôle Type de régression Équation de prédiction 

H 

Meilleure tendance linéaire  𝑄𝑝 = 0,784 (𝐻)
2,668 

Meilleure tendance curviligne  𝑄𝑝 = 2,325 ln(𝐻)
6,405 

V Meilleure tendance linéaire  𝑄𝑝 = 0,00919 (𝑉)
0,745 

V.H Meilleure tendance linéaire  𝑄𝑝 = 0,00176 (𝑉. 𝐻)
0,606 

V et H Multiple 𝑄𝑝 = 0,038 (𝑉
0,475𝐻1,09) 

V, H et 𝑾𝒂𝒈 Multiple 𝑄𝑝 = 0,863 (𝑉
0,335𝐻1,833𝑊𝑎𝑔

−0,633) 

V, H et L Multiple 𝑄𝑝 = 0,012 (𝑉
0,493𝐻1,206𝐿0,266) 

Note 

 

H, est la hauteur d’eau dans le réservoir ℎ𝑤. En cas de rupture par surverse, s’il n’y a 

pas d’information sur la hauteur d’eau dans le réservoir, la hauteur H est définie par 

la hauteur du barrage ℎ𝑑 

V, est le volume du réservoir au moment de la rupture. Il intègre le volume d’eau dans 

le réservoir 𝑉𝑤  et la capacité de stockage S 

𝑊𝑎𝑔, est la largeur moyenne de la brèche 

𝐿, est la largeur du barrage 

À partir de la nouvelle base de données, Pierce et al. (2010) compare les anciennes et les nouvelles 

équations de prédiction. Il conclut que les modèles antérieurs sont généralement plus conservateurs 

que ceux de Pierce (2008). Il est également possible d’observer une diminution significative de 

l’erreur moyenne. Par exemple, l’équation de Froehlich (1995) présente 460 % d’erreur, tandis que 

son équivalent dans la nouvelle étude a une erreur moyenne de 113 %. Or, une analyse d’incertitude 
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démontre que les relations de Pierce (2008) ont tendance à sous-estimer le débit observé. Par 

contre, ces relations présentent un plus petit intervalle de confiance. Dans ce cas, l’intervalle est de 

 [±0,45, ±0,6], alors que celui de l’ensemble des équations est de [±0,3, ±0,9]. Par ailleurs, il 

est possible de constater que l’augmentation des variables de contrôle améliore la corrélation entre 

les données observées et estimées. 

D’autres facteurs peuvent être à l’origine des incertitudes reliés à l’estimation du débit de brèche. 

L’observation des processus physiques a permis de connaître plusieurs de ces facteurs. À cet issu, 

Xu et Zhang (2009) ont introduit trois nouveaux paramètres à l’étude de régression. Il s’agit de 

l’érodabilité, du type de barrage et du mode de rupture. La particularité de cette étude réside dans 

le fait que les nouvelles variables ajoutées sont représentées par des valeurs qualitatives. Durant le 

développement mathématique des équations de prédiction, les variables discrètes sont remplacées 

par les matrices présentées dans le tableau suivant : 

Tableau 2.3 Variables discrètes des équations de régression de Xu et Zhang (2009) 

Type de barrage Mode de rupture Érodabilité 

𝐚𝐯𝐞𝐜 é𝐜𝐫𝐚𝐧
à 𝐦𝐚𝐬𝐪𝐮𝐞 𝐞𝐧 𝐛é𝐭𝐨𝐧
𝐡𝐨𝐦𝐨𝐠è𝐧𝐞/𝐳𝐨𝐧é

𝑿𝟑𝟏 𝑿𝟑𝟐 𝑿𝟑𝟑
𝟏(𝒆) 𝟎(𝟏) 𝟎(𝟏)

𝟎(𝟏) 𝟏(𝒆) 𝟎(𝟏)
𝟎(𝟏) 𝟎(𝟏) 𝟏(𝒆)

 

𝑋41 𝑋42
Surverse 1(𝑒) 0(1)

Érosion interne 0(1) 1(𝑒)

 
 Érodabilité élevée
Érodabilité moyenne

Érodabilité faible

𝑋31 𝑋32 𝑋33
1(𝑒) 0(1) 0(1)

0(1) 1(𝑒) 0(1)
0(1) 0(1) 1(𝑒)

 

Note : Les nombres à l’extérieur de la parenthèse concernent la régression additive et ceux à 

l’intérieur de la parenthèse sont réservés à la régression multiplicative. 

Dans ce cas, chaque nombre indique la présence ou l’absence d’une caractéristique. En plus de ces 

facteurs, deux variables sont considérées. La première est la hauteur adimensionnelle du barrage, 

défini par la relation 𝐻𝑑 𝐻𝑟⁄ . La deuxième est le « coefficient de la forme du réservoir » exprimé 

par le rapport 𝑉𝑤
1/3 𝐻𝑤⁄ . Ainsi, l’influence de la grandeur du réservoir est prise en compte lors de 

l’estimation du débit. 

L’étude de Xu et Zhang (2009) propose deux modèles de régression. En effet, il y a d’abord le « 

meilleur modèle de prédiction exact ». Ce dernier permet de développer la formule de prédiction 

en utilisant l’ensemble des cinq variables de contrôle. Il s’agit de trouver l’équation de la meilleure 

courbe de tendance qui représente la distribution de l’échantillon. Pour ce faire, 66 cas de rupture 

de barrage ont été utilisés. Ensuite, il y a le « meilleur modèle de prédiction simplifié » qui utilise 
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un nombre plus restreint de facteurs. Dans ce cas, les équations de régression comprennent soit un 

paramètre indépendant, ou bien la combinaison de deux ou trois variables de contrôle. Cependant, 

elles utilisent des bases de données plus larges comparativement au modèle exact. La formule 

choisie comprend alors 71 cas de rupture. Le tableau suivant présente les équations de prédiction 

ainsi obtenue :  

Tableau 2.4 Équations de prédiction des paramètres de brèche présentée par  Xu et Zhang (2009) 

(adapté de Wahl (2014)) 

  

Équations de prédiction Xu et Zhang 

(2009) 

𝒃𝟑 

Type de barrage 

𝒃𝟒 

Mode de rupture 

𝒃𝟓 

Érodabilité 

DC FD  HD  OT  P  HE   ME   LE  

 Le meilleur modèle de prédiction 

exacte : 

𝑸𝒑

√𝒈𝑽𝒘
𝟓/𝟑

= 𝟎, 𝟏𝟕𝟓 (
𝑯𝒅

𝑯𝒓

)
𝟎,𝟏𝟗𝟗

(
𝑽𝒘

𝟏/𝟑

𝑯𝒘

)

−𝟏,𝟐𝟕𝟒

𝒆𝑩𝟒 

𝑩𝟒 = 𝒃𝟑 + 𝒃𝟒 + 𝒃𝟓 

-0,503 -0,591 -0,649 -0,705 -1,039 -0,007 -0,375 -1,362 

 Le meilleur modèle de prédiction 

simplifiée 

𝑸𝒑

√𝒈𝑽𝒘
𝟓/𝟑

= 𝟎, 𝟏𝟑𝟑 (
𝑽𝒘

𝟏/𝟑

𝑯𝒘

)

−𝟏,𝟐𝟕𝟔

𝒆𝑪𝟒 

𝑪𝟒 = 𝒃𝟒 + 𝒃𝟓 

   -0,788 -1,232 -0,089 -0,498 -1,433 

Note : 𝐻𝑟 est la hauteur du barrage de référence =15 m. 

À partir d’une analyse d’incertitude, Xu et Zhang (2009) concluent que les deux modèles de 

régression sont plus performants que ceux de Froehlich (1995) et USBR (1982). De plus, Wahl 

(2014) démontre que le modèle simplifié a le meilleur coefficient de détermination. Il est aussi plus 

adéquat que les relations de Froehlich (1995) et de Pierce et al. (2010) lorsque l’érodabilité est 

élevé. Cependant, Wahl (2014) ne recommande pas d’utiliser les modèles de Xu et Zhang (2009) 
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pour des barrages à faible érodabilité. La raison est que cette propriété est peu présente dans la base 

de données utilisée. En effet, l’étude comporte seulement 7 cas de barrage ayant une faible 

érodabilité.  

De manière similaire, Danka et Zhang (2015) développent des équations empiriques pour la 

prédiction du débit de brèche en considérant les processus physiques de la rupture. Par contre, ils 

utilisent d’autres variables de contrôle dans leurs analyses de régression. Il s’agit de la hauteur (h), 

de la largeur (w) et du type du barrage (t), du mécanisme de rupture (F) et du type de matériaux 

qui composent le remblai (m). Cette fois-ci, le type de barrage permet de différencier ceux qui sont 

composés seulement de remblai et ceux qui contiennent des structures additionnelles. Cette 

variable indique donc la présence de matériau composite. Dans cette étude, les données de 90 cas 

de rupture sont utilisées. Le tableau suivant présente les équations de régressions ainsi obtenues : 

Tableau 2.5 Équations de prédiction du débit de brèche de Danka et Zhang (2015) 

  

Équations de prédiction 

𝒕 

Type de barrage 

𝒎 

Type de matériau 

Composite En terre Grossier  Fin  Organique  

𝑸𝒑 = 𝟐, 𝟓𝟓
𝒉𝟏,𝟏𝟒𝒘𝟎,𝟓𝟖𝒆𝒎

𝒆𝒕
 0,93 0 2,84 2,60 1,47 

𝑸𝒑 = 𝟒, 𝟏𝟓
𝒉𝟏,𝟔𝟕𝒆𝒎

𝒆𝒕
 1 0 3,47 3,20 2,01 

L’analyse de régression de  De Lorenzo et Macchione (2014) a développé une autre approche pour 

intégrer les processus physiques à la prédiction du débit de brèche. Dans ce cas, deux variables de 

contrôle sont utilisées. La première est le coefficient 𝛼0 qui permet de considérer la forme du 

réservoir. La deuxième est le paramètre adimensionnel G qui tient compte de l’érodabilité du 

barrage. Ces deux variables sont représentées par les relations suivantes : 
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𝑊(𝑍) = 𝑊0𝑍
𝛼0 

Équation 2.8 

𝐺 =
 𝑣𝑒
𝑣𝑤

 Équation 2.9 

Où 𝑣𝑒,  est le coefficient du taux d’érosion en (𝑚 𝑠)⁄  :  𝑣𝑒 = (𝑘0 𝐾𝑠
3⁄ )(𝛾𝑔)3 2⁄ .  

𝑣𝑚, est le coefficient de la vidange du réservoir en (𝑚 𝑠)⁄ : 𝑣𝑤 = √𝑔𝑍𝑚
7 2⁄ 𝑊𝑚⁄ .       

𝑊,  est le volume d’eau dans le réservoir en (𝑚3) 

𝑊0, est le coefficient du niveau du réservoir 

𝑊𝑚, est le volume d’eau stocké au niveau de la crête du barrage en (𝑚3) 

𝑍, est le niveau d’eau dans le réservoir en (m) 

𝑍𝑚, est la hauteur du barrage en (m) 

De cette manière, les propriétés physiques des valeurs quantitatives. Ensuite, les débits sont générés 

à partir de simulation numérique. Ces simulations sont réalisées en faisant varier le paramètre G 

entre 0,1 et 1000 et le coefficient 𝛼0 entre 1 et 4. La relation empirique obtenue à partir de cette 

étude se présente comme suit : 

𝑄𝑝
∗ = 0,2293 𝛼0

0,3658𝐺0,485 Équation 2.10 

Où 𝑄𝑝
∗  , est la forme adimensionnelle du débit : 𝑄𝑝

∗ = 𝑸
𝒑
𝑔1/2𝑍𝑚

5/2⁄  

2.4.2 Méthodes physiques  

Selon Wahl (1998), la méthode physique utilise les connaissances de l’hydraulique, du transport 

solide et de la mécanique des sols pour prédire les paramètres et le débit de brèche. Ainsi, elle 

permet non seulement d’évaluer les dimensions ultimes de la brèche, mais aussi d’expliquer le 

processus d’érosion, de la rupture et de l’écoulement de l’eau. Or, il y a une légère distinction à 

faire entre la méthode définie par Wahl et celle présentée dans cette section. En effet, les techniques 

décrites ici s’intéressent particulièrement à l’estimation physique du débit de brèche à l’opposition 

de la méthode empirique, et cela, peu importe la façon employée pour prédire les paramètres de la 

rupture. 

L’étude de Cristofano (1965) présente l’un de premier modèle physique de brèche. Dans ce cas, la 

quantité du sol érodé est déterminée par une méthode itérative. Le débit liquide est estimé à partir 
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de la formule des déversoirs à seuil épais, tandis que l’érosion est reliée à l’écoulement de l’eau 

par l’équation suivante (formule tirée de Zerrouk (2004)) : 

𝑞𝑠
𝑞
= 𝐾𝑐𝑒

−(
λtanФ𝑑

𝐻
)
 Équation 2.11 

Où 𝑞𝑠, est le débit spécifique du sol arraché (𝑚2/𝑠) 

𝑞, est le débit d’eau spécifique qui passe par la brèche (𝑚2/𝑠) 

𝐾𝑐, est une constante 

λ, est la longueur du canal de brèche (𝑚) 

𝐻, est la charge hydraulique au-dessus du fond de brèche (m) 

Ф𝑑, est l’angle de frottement développé du sol 

Cette approche tient compte des caractéristiques du sol par l’angle de frottement développé Ф𝑑. 

Or, l’estimation de ce paramètre demeure incertaine (Fread, 1988 ; Zerrouk, 2004).  

Le modèle de Harris et Wagner (1967) utilise une forme parabolique de brèche, caractérisée par 

une largeur de crête égale à 3,75 fois la hauteur. Dans cette étude, la rupture est supposée 

instantanée. C’est-à-dire que la brèche commence avec le premier débordement d’eau. Le débit 

liquide est alors déterminé par la formule du déversoir à paroi épaisse : 

𝑄𝑤 = √
𝑔𝐴3

𝐵𝑡𝑜𝑝
= √𝑔𝑇𝑌𝑐 

3/2 
Équation 2.12 

Où 𝐴 = 𝐵𝑡𝑜𝑝 𝑌𝑐 , est la superficie de la section transversale de la brèche (𝑓𝑡2) 

𝐵𝑡𝑜𝑝, est la largeur du sommet de la brèche (𝑓𝑡) 

𝑌𝑐, est la hauteur critique de brèche. Elle est égale à 75 % de la différence entre le 

niveau d’eau et le niveau de la crête.  

Le débit solide est estimé par la formule de Schoklitsch (1934). Cette dernière est présentée par 

Zerrouk (2004) comme suit :  
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𝐺 =
86,7

√𝑑
𝑆1,5(𝑄 − 𝐵𝑞0) Équation 2.13 

Où 𝐺, est le charriage du fond en (lb/sec) 

d, est le diamètre des grains en (in) 

𝑆,  est la pente hydraulique en (𝑓𝑡/𝑓𝑡) 

𝐵, est la largeur du canal en (𝑓𝑡) 

𝑞0, est le débit critique par unité de largeur en (𝑓𝑡3 𝑠)⁄  : 𝑞0 = 0,00532 𝑑 𝑆4 3⁄⁄  

En se basant sur ces travaux, Brown et Rogers (1977) ont développé le modèle informatique 

BRDAM. Dans ce cas, la pente des rives est fixée à 450 et la pente longitudinale varie entre 50  et 

200 (Wahl, 1998; Zagonjolli, 2007).  

Pour modéliser la rupture graduelle, Fread (1971) introduit la couche de retardement. Il s’agit d’une 

frontière hypothétique placée à l’intérieur du barrage et qui permet de réduire le débit sortant du 

réservoir. L’écoulement est alors déterminé à la suite de la résolution des équations de St-Venant 

par la méthode des caractéristiques. Ce modèle est réservé aux barrages homogènes en terre. Dans 

ce cas, la rupture est triangulaire et elle se développe avec un angle central constant. Par ailleurs, 

Fread (1977) utilise la méthode des différences finies pour analyser les équations de l’écoulement 

non permanent. La brèche peut prendre une forme triangulaire, rectangulaire ou trapézoïdale. Une 

fois encore, le développement de la rupture est simulé par la méthode paramétrique, tandis que 

l’hydrogramme de sortie est estimé par la formule du déversoir à seuil large. À partir de cette étude, 

Fread (1984) a développé le modèle numérique DAMBRK. Ce modèle a été remplacé ensuite par 

FLDWAV en utilisant la même approche pour prédire les paramètres et le débit de brèche (Fread, 

1993). 

D’autre part, Macchione et Lou (1981) présentent la brèche comme un canal érodable. L’évolution 

de la rupture est alors déterminée en considérant un écoulement non permanent. Pour ce faire, les 

équations de continuité et de conservation de la masse de l’eau ont été résolues par la méthode de 

différence finie en utilisant un schéma implicite. Par ailleurs, trois méthodes sont employées pour 

estimer la quantité des sédiments. La première combine les techniques de Duboys et d’Einstein. La 

deuxième relie la masse du sol érodé à l’énergie cinétique de l’écoulement et la troisième utilise 

l’approche de Cristofano (1965). Le développement de la brèche s’arrête lorsque sa section atteint 

l’équilibre. Ponce et Tsivoglou (1981), ont également développé un modèle mathématique en se 
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basant sur un schéma numérique. Or, ils utilisent la formule de Meyer-Peter et Mueller avec 

l’équation de continuité (Équation d’Exner) pour décrire le transport des sédiments. Ces modèles 

informatiques ont l’inconvénient d’avoir des problèmes d’instabilité numérique lors de l’utilisation 

des schémas implicite (Zerrouk, 2004).   

Le modèle BREACH présenté par Fread (1988 ) est basé sur l’hypothèse d’un écoulement uniforme 

quasi permanent. Cette fois-ci, le modèle ne contient pas de problèmes d’instabilité numérique. Par 

ailleurs, il permet de simuler non seulement des barrages construits par l’Homme, mais aussi ceux 

formés naturellement. De plus, le barrage peut être composé de deux matériaux distincts : l’un dans 

le noyau du barrage et l’autre dans la partie extérieure. Ces matériaux sont caractérisés par l’angle 

de friction, la cohésion, le diamètre des grains d50 et le poids spécifique. Or, les particules de la 

surface aval peuvent être plus grossières que ceux utilisés dans la partie externe. L’utilisateur peut 

également inclure une couverture végétale le long de la surface aval. 

Dans ce modèle, la rupture est supposée graduelle. En effet, lors de la première surverse, l’érosion 

commence sur la surface du talus aval. Un canal rectangulaire est alors formé dans lequel l’eau 

s’écoule selon la loi des déversoirs à seuil large. À ce stade, le fond de la brèche reste au niveau de 

la crête du barrage. Par contre, l’extrémité aval du canal d’érosion se déplace vers l’amont. Ce 

mode de progression s’arrête, lorsque l’érosion atteint une certaine ligne prédéfinie. Une fois cette 

ligne atteinte, la rupture s’élargit en profondeur. Ensuite, la brèche prend une forme trapézoïdale 

dès qu’elle arrive à une hauteur critique. La pente de rive est alors déterminée à partir de l’angle 

de repos du remblai. Enfin, lorsque l’érosion arrive fond du barrage, la hauteur de brèche prend sa 

valeur ultime tandis que le détachement des matériaux continue sur les rives.  

L’équation de transport de sédiment utilisé dans le modèle BREACH est celle de Meyer-Peter et 

Mueller modifié par Smart (1984) : 
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𝑄𝑠 = 3,64 (
𝐷90
𝐷30

)
0,2

𝑃
𝐷2/3

𝑛
𝑆1,1(𝐷𝑆 − 𝛺) Équation 2.14 

Où 𝑄𝑠, est le taux du transport des sédiments en (𝑐𝑓𝑠).  

𝐷30 𝑒𝑡 𝐷90, sont les diamètres de grain correspondent respectivement à 30 et 90 de 

passants en (𝑚𝑚).       

𝐷, est la profondeur hydraulique de l’écoulement réservoir en (𝑚) 

𝑆, est la pente du talus aval du barrage 

𝑃, est le périmètre mouillé du canal  

𝛺, est un paramètre qui dépend du type de sol 

Le modèle BEED présenté par Singh, K. P. et Scarlatos (1985) distingue également l‘érosion de la 

crête du barrage et de son talus aval. Pour ce faire, l’utilisateur spécifie la forme, les dimensions et 

la position de la brèche initiale. Dans ce cas, la rupture apparaît au sommet de l’ouvrage et elle 

prend une forme rectangulaire ou trapézoïdale. Au niveau de la crête, l’écoulement est considéré 

comme critique. Le débit liquide est déterminé par la combinaison de l’équation de conservation 

de la masse et du déversoir à seuil large. Par ailleurs, le débit solide est déterminé par la formule 

du transport par charriage d’Einstein-Brown modifié. La rupture commence à s’élargir lorsque les 

pentes de rives deviennent instables. Cette instabilité est déterminée par la méthode de « contour », 

tandis que le rapport de la hauteur sur la largeur de la base de la brèche reste constant. Sur la face 

aval du barrage, l’écoulement est considéré comme turbulent et la largeur de la rupture est supposée 

égale à celle de la crête. 

La plupart des modèles cités précédemment se basent sur les formules de transport de sédiment. 

Ces formules sont développées pour les rivières dans un cadre bien spécifique. À cet effet, les 

modèles physiques ont généralement de la difficulté à reproduire le développement de la brèche 

conformément aux mécanismes d’érosion observés sur le terrain et en laboratoire (Wahl, 1998). 

Pour étudier la performance du modèle BREACH, Mohamed, M., Samuels et Morris (2001) ont 

analysé l’algorithme et les hypothèses utilisés. Ils ont ainsi révélé les inconsistances du programme 

avec les processus physiques observés. Ces inconsistances peuvent générer des erreurs de 

prédiction importantes, surtout dans les zones proches du barrage. Les chercheurs du H.R. 

Wallingford ont mené plusieurs études pour améliorer le code utilisé. À cette issue, un nouveau 

modèle a été développé. Il s’agit du modèle  HR BREACH présenté par Mohamed, M. A. A. 
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(2002). Dans ce cas, la brèche peut prendre des formes différentes selon les contraintes appliquées. 

L’érosion peut se réaliser de manière uniforme ou par blocs (Headcut). Elle est déterminée soit par 

les équations d’équilibre du transport des sédiments ou bien par les équations d’érosion. Ces 

équations permettent de tenir compte de l’érodabilité du sol. Par ailleurs, la progression de la brèche 

est régie aussi par la stabilité des pentes. Le débit est estimé par l’équation des déversoirs à seuil 

large en utilisant des coefficients de débit variables (Morris, Hassan, Samuels, & Ghataora, 2008). 

Le modèle SIMBA (Simplified Breach Analysis) a été développé par l’équipe de recherche de 

l’USDA-ARS (United States Departement of Agriculture-Agricultural Reseach Service). Il analyse 

les processus d’érosion de la même façon que celle de HR BREACH. En effet, le développement 

de la brèche se fait également sur plusieurs phases. Chaque phase est caractérisée par son 

écoulement et ses mécanismes d’érosion. Dans ce cas, l’érosion se fait seulement en blocs 

(Headcut). Le taux d’érosion est alors déterminé avec l’équation de Hanson et Simon (2001) 

modifiée. Par ailleurs, ce modèle est valide uniquement pour les barrages homogènes en terre avec 

une protection négligeable sur la face aval (Temple, D., Hanson, & Neilsen, 2006). 

Le modèle Firebird regroupe l’ensemble des phases d’érosion sous la même formulation 

mathématique. Pour ce faire, il combine les équations d’hydraulique et du transport des sédiments 

sous la forme d’équations différentielles. L’écoulement est alors représenté par les équations de 

conservation de la masse et quantité de mouvement, tandis que les sédiments sont régis par 

l’équation d’Exner. Ce modèle a été développé à l’École Polytechnique de Montréal. Il est valide 

pour les barrages homogènes en terre qu’ils soient cohésifs ou non (Wang & Kahawita, 2002).  

Un autre modèle est présenté par l’École polytechnique de Montréal pour décrire le développement 

de la brèche. Il s’agit du programme ERODE (Évaluation de la rupture d’un ouvrage par 

déversement et érosion). Dans ce cas, les paramètres de brèche sont déterminés d’une manière 

séquentielle. Pour ce faire, le programme suppose d’abord un débit au pas de temps initial. Ensuite, 

il effectue le calcul sédimentaire et hydraulique en utilisant le modèle de GSTARS. Il vérifie par 

la suite la stabilité des pentes de rives et du thalweg avec la méthode de BISHOP. Si les pentes sont 

instables, les sédiments sont redistribués (Marche, 2008). 
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2.4.3  Méthodes statistiques 

La méthode statistique tient compte des incertitudes sur les paramètres de brèche lors de 

l’estimation du débit. Elle permet ainsi de générer plusieurs scénarios de rupture. Chaque scénario 

est caractérisé par son hydrogramme et sa probabilité de défaillance. Le rapport  IMPACT (2004) 

subdivise l’analyse des incertitudes en deux catégories. : L’analyse stochastique et de sensibilité. 

 Analyse de sensibilité 

L’analyse de sensibilité permet d’évaluer l’influence de la variation des facteurs entrants dans un 

modèle sur les variables de sortie. Pour ce faire, elle identifie d’abord les principales sources 

d’incertitude. Ensuite, elle définit pour chaque source une série de valeur. Les résultats sont ainsi 

générés pour différentes combinaisons. En général, l’étude fait varier un seul paramètre en gardant 

les autres fixes. Ainsi, l’importance de chaque paramètre est testée par rapport au comportement 

du modèle. Enfin, les résultats sont analysés  pour déterminer la sensibilité des différentes variables 

obtenues (IMPACT, 2004). 

Wahl (2004) présente une méthodologie pour évaluer les incertitudes d’un ensemble de paramètres. 

Cette analyse a été réalisée à partir des 108 cas de rupture rassemblés par Wahl (1998). Elle permet 

d’identifier les données aberrantes, d’estimer l’erreur et de définir l’intervalle de la variation des 

incertitudes. Les paramètres étudiés sont la largeur moyenne de la brèche, le temps de défaillance 

et le débit sortant. Ils sont déterminés à partir des équations empiriques utilisées dans la littérature 

et présentés par Wahl (1998). Cette étude permet ainsi de comparer les différentes formules de 

prédiction. Cependant, les paramètres d’entrée ne sont pas disponibles pour tous les cas de rupture. 

Ainsi, seules les données qui ont suffisamment d’information sont utilisées. Chaque relation 

empirique est alors caractérisée par ces propres sources d’information. Pour faire suite à cette 

analyse, Wahl (2004) conclut que les débits estimés sont généralement surévalués. Or, l’équation 

de Froehlich (1995) a tendance à sous-estimer le débit observé. Par contre, elle présente les plus 

faibles incertitudes. 

Par ailleurs, IMPACT (2004) applique l’analyse des incertitudes sur un barrage homogène non 

cohésive. Les variables d’entrée utilisées dans ce modèle sont nombreuses. Elles peuvent être 

subdivisées en quatre catégories. La première représente les paramètres hydrauliques. Elle inclut 

le coefficient du déversoir et le coefficient de friction Manning. La deuxième intègre les propriétés 
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sédimentaires telles que le diamètre des grains 𝐷50 et l’équation du transport des sédiments. La 

troisième est liée aux caractéristiques du sol. Ces caractéristiques sont la cohésion, la densité et 

l’angle de friction. La quatrième est plus spécifique au modèle. Elle comprend le facteur de 

correction des sédiments et le facteur d’érosion hauteur/largeur. En général, chaque variable 

incertaine est définie par une série de cinq valeurs. Par ailleurs, les paramètres de sortie sont 

représentés par la largeur, la hauteur ultime de la brèche, le temps de défaillance et débit sortant. 

Ils ont été estimés à partir du programme HR BREACH. Ainsi, cette étude a permis d’attribuer à 

chaque variable simulée un minimum, un maximum, une moyenne et un intervalle de variation par 

rapport à la moyenne et un autre par rapport à la base.  

 Analyse stochastique 

L’analyse stochastique est une approche probabiliste qui tient compte du hasard dans l’estimation 

des paramètres de brèche. Elle fait souvent référence à la simulation de Monte-Carlo. Cette 

simulation nécessite l’usage d’un code informatique. Dans ce cas, les intrants sont les variables 

incertaines. Elles sont caractérisées par une distribution probabiliste, une moyenne et un écart-type. 

L’algorithme utilisé permet d’effectuer un ensemble de tirage en faisant varier aléatoirement les 

paramètres d’entrée. Il se base sur la loi des grands nombres selon laquelle l’estimation s’améliore 

en augmentant la taille de l’échantillon. Les extrants sont les valeurs des paramètres de brèche. Ces 

valeurs sont souvent conditionnées par un intervalle de confiance prédéfinie. 

Selon IMPACT (2004), le programme HR BREACH inclut un module pour générer les paramètres 

de brèche par la méthode de Monte-Carlo. Il considère ainsi les incertitudes de 9 facteurs. Ces 

facteurs sont le coefficient du déversoir, la rugosité, la cohésion, la porosité, la densité, le diamètre 

des grains 𝐷50, l’angle de friction, le facteur de correction des sédiments et le facteur d’érosion 

hauteur/largeur. Rappelons aussi que la géométrie de la brèche n’est pas prédéfinie dans ce modèle 

selon les caractéristiques des matériaux. Cet outil offre ainsi une simulation à la fois statistique et 

dynamique de la brèche.  

Au lieu d’utiliser les propriétés du remblai comme intrant, Froehlich (2008) emploi directement les 

paramètres géométriques et temporels de la brèche. Dans ce cas, la rupture prend la forme d’un 

trapèze. Les dimensions finales de la brèche sont représentées par la hauteur 𝐻𝑏, la largeur 

moyenne 𝐵̅ et la pente de rive 𝑧. La hauteur 𝐻𝑏 est généralement supposée égale à la hauteur du 

barrage. Par contre, les paramètres 𝐵̅, 𝑧 𝑒𝑡 𝑡𝑓 sont estimés de manière empirique. Ainsi, les 
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informations de 74 cas de rupture de barrage ont été utilisées. Pour ce faire, les valeurs recensées 

ont été d’abord transformées en logarithme. Ensuite, une régression linéaire a été appliquée sur 

l’ensemble des données disponibles. Enfin, les paramètres de brèche ont été estimés à partir des 

formules obtenues. Dans ce modèle, les valeurs incertaines sont la largeur moyenne 𝐵̅, la pente de 

rive 𝑧, le temps de formation 𝑡𝑓 et la profondeur critique de la surverse 𝐻𝑐. Les paramètres de 

brèche ln  𝐵̅, ln 𝑧 et ln 𝑡𝑓 varie selon la loi de Student, tandis que la profondeur  𝐻𝑐 suit la 

distribution lognormal. 

Par ailleurs, Chiganne, Marche et Mahdi (2014) incluent les incertitudes de la crue à la simulation 

de Monte-Carlo. Ils présentent ainsi une méthodologie pour déterminer l’hydrogramme de rupture, 

la probabilité de défaillance et la probabilité de dépassement. Les conditions de rupture sont 

vérifiées à partir du critère de Shields. Les paramètres d’entrées sont le diamètre des grains 𝐷50, le 

débit de crue moyen et le niveau initial de l’eau dans le réservoir. Dans ce cas, le diamètre des 

grains suit une loi uniforme, le débit de crue varie selon la loi de Gumbel, tandis que le niveau 

initial de l’eau suit une distribution normale. Les résultats sont générés pour différents scénarios à 

l’aide du programme ERODE2. Ce dernier permet d’estimer de manière itérative le débit de pointe 

et la durée de la brèche. 

La méthode de Monte-Carlo présente un moyen efficace pour analyser un système complexe. Elle 

utilise un concept simple et facile à comprendre. De plus, elle permet d’évaluer les probabilités de 

défaillance avec une certaine précision. Par contre, elle requiert souvent un grand nombre de 

simulations, ce qui mène à un temps de calcul long et coûteux. Ainsi, plusieurs études proposent 

d’autres méthodes pour limiter le nombre de tirages.  

Hodak et Jandora (2004) utilisent une approche améliorée de la simulation de Monte-Carlo. Il s’agit 

de la méthode d’échantillonnage par hyper cube latin. Elle consiste à utiliser des distributions 

multidimensionnelles pour déterminer les paramètres de brèche. Pour ce faire, elle subdivise 

d’abord le domaine de la variation des paramètres d’entrée en 𝑁𝑇  sous-intervalles équiprobables. 

Ensuite, elle génère une variable aléatoire pour chaque paramètre et pour chaque sou- intervalles. 

En effet, supposons qu’il existe 2 paramètres d’entrée et 3 sous-intervalles. Les variables générées 

pour le premier paramètre sont {𝑥1
1, 𝑥2

1, 𝑥3
1} et les variables du deuxième paramètre 

sont {𝑥1
2, 𝑥2

2, 𝑥3
2}. Le système combine par la suite de manière aléatoire les valeurs des deux 
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paramètres. Ainsi, les ensembles obtenus sont par exemple {𝑥1
1, 𝑥3

2}, {𝑥2
1, 𝑥1

2} 𝑒𝑡 {𝑥3
1, 𝑥2

2}. Enfin, les 

paramètres de sortie sont estimés pour chaque ensemble (Zio, 2013).  

Cette approche a été appliquée par Hodak et Jandora (2004) sur le barrage Koryčany localisé dans 

la rivière Stupávka au sud-est de la République tchèque. Les incertitudes sont considérées pour le 

niveau initial et la surface de l’eau dans le réservoir, les débits sortants du réservoir et de l’exutoire, 

la largeur du fond de la brèche et un coefficient empirique qui tient compte de l’effet de l’érosion.  

Par ailleurs, Froehlich et Goodell (2012) estiment le débit de brèche à partir du modèle de 

Rosenblueth généralisé PEM (Point Estimate Method). Cette méthode permet de limiter le nombre 

de simulations à 2𝑛 tirages aléatoires pour un modèle ayant n paramètres d’entrée. Ainsi, pour 4 

variables stochastiques, il y aura 16 combinaisons. Chaque combinaison est associée à une fonction 

de probabilité. Ces fonctions constituent ensuite des coefficients de pondération qui permettent de 

déterminer la valeur moyenne et l’écart-type du paramètre de sortie. 

Froehlich et Goodell (2012) ont appliqué la méthode PEM sur le barrage Big Bay Lake 

(Mississippi, É.-U.). Les variables aléatoires sont la largeur moyenne 𝐵̅, la pente de rive 𝑧, le temps 

de formation 𝑡𝑓 et le coefficient du débit 𝐶𝑑. À noter que les trois premiers paramètres sont 

déterminés par les équations empiriques de Froehlich (2008). 

Plus récemment, une nouvelle approche a été développée à partir du principe de la boîte noire. Il 

s’agit du réseau de neurones artificiels ANN (Artificial Neural Network). Comme son nom 

l’indique, cette méthode permet d’assimiler la relation entre les paramètres d’entrées et de sorties 

à l’interconnexion entre les neurones biologiques. Dans ce cas, le système est composé de plusieurs 

couches. En général, trois couches sont utilisées ; les couches des intrants, des éléments cachés et 

des extrants. Chaque couche est caractérisée par un ensemble de neurones. Par exemple, la couche 

des intrants peut contenir la hauteur et le volume d’eau du réservoir et la couche des extrants peut 

avoir le débit de brèche. Le principe est que chaque neurone utilise comme intrant les éléments de 

la couche qui le précède. Ainsi, le traitement des données s’exécute en parallèle pour tous les 

éléments et non pas de manière séquentielle. La simulation permet aussi de considérer la force de 

chaque connexion. Pour ce faire, les liaisons entre les neurones sont associées à un poids. Or, il 

existe différents types de réseau. Dans les réseaux feed-forward, les liaisons se font dans un seul 

sens d’un ensemble à l’autre. De plus, il n’y a pas d’interconnexion entre les éléments de la même 
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couche. Cette méthode a été utilisée par Nourani, Hakimzadeh et Amini (2012)  pour simuler 

l’hydrogramme de rupture d’un barrage en terre.  

Hooshyaripor, Tahershamsi et Behzadian (2015) appliquent la méthode de Monte-Carlo sur un 

réseau de neurones artificiels ANN (Artificial Neural Network). Ils utilisent les données de 93 cas 

de rupture. La couche des intrants comprend la hauteur et le volume d’eau dans le réservoir, tandis 

que la couche des extrants inclut le débit de brèche. Dans ce cas, deux approches différentes ont 

été adoptées pour estimer le poids des liaisons. Le premier emploie la technique de Levenberg-

Marquardt (LM) avec quatre éléments cachés. Le deuxième utilise l’Imperialist Competitive 

Algorithm (ICA) avec trois nœuds cachés. Cette étude permet ainsi de comparer les deux types 

d’algorithmes à partir de 1000 tirages aléatoires. Elle conclut alors que le modèle ICA est le plus 

performant compte tenu des données statistiques (le coefficient de détermination 𝑅2, l’erreur 

moyenne absolue MAE…). Par contre, ce dernier sous-estime le débit de brèche comparativement 

à la relation de Froehlich (1995). De plus, Hooshyaripor et al. (2015) déconseillent d’utiliser cette 

simulation pour des débits inférieurs à 100 𝑚3 𝑠⁄ . 

2.5 Synthèse de la revue de littérature 

La rupture des barrages en remblai peut se faire de plusieurs façons selon les phénomènes 

physiques qui y sont impliqués. Ces phénomènes sont principalement liés aux caractéristiques de 

l’écoulement et du sol qui compose l’ouvrage. Pour étudier la rupture des barrages, la brèche est 

souvent représentée par un modèle mathématique. L’objectif principal est de pouvoir évaluer les 

hydrogrammes de rupture à l’aide de relations fonctionnelles. Les scientifiques ont ainsi développé 

plusieurs méthodes d’évaluation. Par contre, l’estimation demeure difficile compte tenu des 

incertitudes qui régissent le processus d’érosion. Or, les ingénieurs continuent d’utiliser la méthode 

normée. Ce mémoire cherche alors à développer un outil qui permet d’évaluer la fiabilité de la 

norme dans le contexte québécois.    
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CHAPITRE 3 MÉTHODOLOGIE 

Afin de mieux comprendre le comportement d’un système naturel, les phénomènes physiques sont 

souvent représentés par un modèle mathématique. Lorsque le système est complexe, les formules 

mathématiques sont résolues par des simulations numériques. Il s’agit d’une démarche à la fois 

mathématique et informatique qui permet de calculer les paramètres d’un modèle. Elle peut se 

manifester soit sous la forme d’un calcul déterministe (éléments finis…) soit par un calcul 

statistique ou probabiliste (Monte-Carlo…) (Besnard, 2002) 

Rappelons que l’objectif principal de ce mémoire est de construire un outil qui permet de générer 

un ensemble d’hydrogrammes pour un cas spécifique de barrage. Ces hydrogrammes sont évalués 

par une approche probabiliste, connue sous le nom de Monte-Carlo. 

Ce chapitre décrit brièvement la méthode adoptée. Il est divisé en deux sections. La première 

explique le concept de base de l’approximation de Monte-Carlo. La deuxième renseigne sur le 

modèle mathématique de brèche considéré par le programme de simulation.  

3.1 Méthode de Monte-Carlo 

La méthode Monte-Carlo est souvent employée lorsque le système contient des entrées 

stochastiques. Dans ce cas, la simulation comporte trois volets soit l’échantillonnage, l’intégration 

et l’analyse des incertitudes.   

3.1.1 Échantillonnage probabiliste  

L’échantillonnage probabiliste consiste à définir un ensemble de variables aléatoires, appelé 

échantillon. Cet ensemble provient d’une population générée selon le principe de la randomisation. 

Pour ce faire, il faut d’abord effectuer plusieurs tirages aléatoires pour chacune des variables 

incertaines. Ensuite, il faut procéder à la sélection des variables qui respectent certains critères. Ces 

critères sont généralement obtenus à partir de l’analyse des données historiques (Savy, 2006; 

Statisique Canada, 2013).  

La sélection des variables aléatoires peut se faire de plusieurs façons. Parmi les plus courantes, il 

y a l’échantillonnage aléatoire simple (EAS). Dans ce cas, la population est caractérisée par les 

propriétés suivantes (Statisique Canada, 2013) : 
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 Les membres de la population ont la même chance d’être sélectionnés. 

 Toutes les combinaisons possibles des membres de la population ont une chance égale de 

faire partie de l’échantillon. 

En général, l’échantillon est caractérisé par des paramètres statistiques qui peuvent varier selon la 

loi de distribution choisie. Parmi les plus communes, il y a la moyenne, la variance, l’écart-type, et 

la covariance. Notons la série de variables aléatoires 𝑥1, 𝑥2, … , 𝑥𝑛, les paramètres statistiques sont 

alors :  

 La moyenne 𝑥̅ = ∑ 𝑥𝑖 = (𝑥1 + 𝑥2 + …  + 𝑥𝑛)/𝑛
𝑛
𝑖=1  Équation 3.1 

 La variance 𝑉𝑎𝑟 =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)

2𝑛
𝑖=1  Équation 3.2 

 L’écart-type 𝑆 = √𝑉𝑎𝑟 Équation 3.3 

 La covariance 𝐶𝑜𝑣 =
𝑆

 𝑥̅
 Équation 3.4 

3.1.2 Intégration 

L’intégration de Monte-Carlo est une technique d’approximation qui permet de calculer des 

valeurs numériques en se basant sur un échantillon aléatoire. Plus précisément, elle estime que la 

grandeur d’une variable aléatoire est égale à son espérance mathématique 𝐸[𝑋] = 𝜇. Ensuite, elle 

détermine l’espérance mathématique à partir de loi forte des grands nombres (Tuffin, 2010).  

Supposons une suite (𝑥𝑛) de variables aléatoires indépendantes et identiquement distribuées, tel 

que ∀𝑖, 𝐸[𝑥𝑖] = 𝜇 <  ∞. La loi forte des grands nombres stipule alors que l’espérance 

mathématique converge presque sûrement vers la moyenne des réalisations lorsque n tend vers 

l’infini (Tuffin, 2010) : 

𝐸[𝑋] = lim
𝑛→∞

𝑥̅𝑛 = lim
𝑛→∞

(𝑥1 + 𝑥2 + … + 𝑥𝑛)/𝑛 Équation 3.5 
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En général, la simulation stochastique utilise plusieurs variables aléatoires à l’entrée du système. 

En effet, supposant  𝑋1, 𝑋2, … , 𝑋𝑚 une série de m variables aléatoires utilisées comme intrant dans 

le modèle et Y le paramètre que l’on souhaite estimer tel que : 

𝑌 = 𝑓( 𝑋1, 𝑋2, … , 𝑋𝑚) Équation 3.6 

Alors,    𝐸(𝑌) = 𝐸(𝑓( 𝑋1, 𝑋2, … , 𝑋𝑚)) = (𝑦1 + 𝑦2 + … + 𝑦𝑛)/𝑛 Équation 3.7 

3.1.3 Analyse des incertitudes 

La méthode de Monte-Carlo est caractérisée par un certain degré de précision. En effet, il existe 

souvent un écart entre la valeur simulée et observée. Dans ce cas, l’erreur d’approximation peut 

être estimée à partir du théorème central limite. 

Supposons une suite (𝑋𝑖)𝑖≥1 de variables aléatoires indépendantes et identiquement distribuées. Le 

théorème central limite suppose que le nombre d’itérations est suffisamment grand pour que la 

variable aléatoire √𝑛
𝑋̅−𝜇

𝑆
  converge vers une loi normale centrée réduite. Il s’agit donc d’une 

approche probabiliste qui permet de définir la marge d’erreur correspondant à un pourcentage de 

risque alpha 𝛼. Ainsi, l’intervalle de confiance est exprimé sous la forme (Tuffin, 2010, p. 14) : 

[𝑋̅ − 𝑧𝛼/2
𝑆

√𝑛
, 𝑋̅ + 𝑧𝛼/2

𝑆

√𝑛
] 

Équation 3.8 

Où 𝑧𝛼, est le quantile correspondant au niveau de risque  1 − 𝛼 déterminé à partir de la 

Table de la loi normale. 

3.2 Modèle de brèche standardisé 

Pour étudier la rupture des barrages, le développement de la brèche est souvent assimilé à des 

relations fonctionnelles. Ces relations peuvent être simples ou complexes. Elles se basent 

généralement sur les connaissances théoriques acquises à la suite de l’observation de cas réelle. 
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3.2.1 Présentation du modèle  

3.2.1.1 Hypothèses  

La rupture des barrages en remblai est un processus complexe qui fait intervenir de nombreux 

facteurs physiques. Or, les formules mathématiques ne peuvent pas intégrer tous ces facteurs. 

Ainsi, les études ont recours à des modèles de brèche simplifiés. Ces modèles ne sont pas forcément 

conformes à la réalité, mais ils constituent un outil essentiel dans l’analyse théorique.   

Dans ce mémoire, le modèle de brèche utilisé tient compte des hypothèses suivantes : 

1. La rupture se fait par temps sec. 

2. Le remblai est homogène. Ainsi, les mécanismes d’érosion ne prennent pas en 

considération la variation des propriétés du sol.  

3. La rupture survient de manière instantanée. Ainsi, le temps d’initiation est négligé et la 

brèche commence avec le premier débordement d’eau.  

4. La brèche est initiée sur le sommet de l’ouvrage. Dans ce cas, le sommet de l’ouvrage est 

placé au niveau de la retenue. 

5. L’érosion se fait de manière uniforme sur la surface de la brèche. Ainsi, le modèle ne 

distingue pas les surfaces mouillées de ceux qui se trouvent au-dessus du niveau d’eau. 

6. La brèche est représentée par un seuil qui progresse de manière linéaire. L’influence des 

forces de l’écoulement est donc négligée. 

7. La forme de la brèche et l’inclinaison des pentes de rives demeurent constantes durant tout 

le processus d’érosion. 

8. L’influence de l’écoulement de l’eau à l’aval n’est pas prise en compte.  

9. L’érosion ne peut s’interrompre avant que la brèche n’atteigne ses dimensions ultimes.  

10. Les fondations du barrage résistent à l’érosion. C’est-à-dire que la brèche s’arrête 

lorsqu’elle atteint le fond de l’ouvrage. La hauteur ultime de la brèche est donc égale à la 

hauteur de la retenue.  
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11. Une fois arrivée au fond du barrage, l’érosion ne se poursuit pas sur les rives même si l’eau 

continue de s’écouler. Ainsi, le temps de formation correspond à la durée entre le début de 

la surverse et le moment où la rupture arrive à la base de l’ouvrage. 

12. La stabilité des pentes de rives est négligée. En effet, le modèle ne tient pas compte de 

l’effet de la résistance interne du sol. 

3.2.1.2 Caractéristiques géométriques et dynamiques   

Les scientifiques assimilent généralement la rupture des barrages à une forme géométrique simple. 

Cette forme se base souvent sur des observations réalisées sur le terrain ou en laboratoire. Plus 

précisément, elle est déduite à partir des dimensions finales de la brèche réelle obtenue à la fin du 

temps de formation. Dans le cas de la surverse, la brèche est représentée souvent par des triangles, 

des rectangles, des trapèzes ou des paraboles. Or, à la suite des analyses comparatives, plusieurs 

études ont prouvé l’avantage de la forme trapézoïdale. Cette représentation est probablement la 

plus utilisée dans la littérature. En effet, en se basant sur les données de Wahl (1998), il est possible 

de constater qu’il y a un seul cas de rupture triangulaire. Le reste est soit trapézoïdal ou indéfini. 

Ainsi, ce mémoire considère la géométrie de la brèche comme un trapèze.  

Par ailleurs, il y a une légère distinction à faire entre les paramètres de brèche définis dans la 

littérature et ceux présentés dans ce mémoire. Cette fois-ci, le modèle utilise le rapport de la base 

sur la hauteur de la brèche𝐵/𝐻, au lieu de se contenter par la hauteur de brèche 𝐻. Le but est de 

faire correspondre le paramètre choisit avec les critères de la norme HQ 60-00-00. En plus de ce 

paramètre, deux facteurs additionnels sont considérés. Il s’agit de la pente de rive 𝑧 et du temps de 

formation 𝑡𝑓.  

Le développement de la brèche ressemble à celui du modèle B présenté par (Froehlich, 2008) (voir 

la section 2.2.3). Lorsque le temps est égal à zéro, les dimensions de la brèche sont nulles. Ensuite, 

elle commence à s’élargir jusqu’à ce qu’elle atteigne sa taille maximale à la fin du temps de 

formation. Dès lors, le développement de la brèche s’achève et sa géométrie se stabilise.  

Dans cette étude, la progression de la brèche est considérée comme linéaire. Ainsi, le taux d’érosion 

est décrit par l’équation 2.1. Par ailleurs, la pente et le rapport de la base sur la hauteur de la brèche 

sont supposés constants durant tout le processus d’érosion : 𝐵 𝐻⁄ = 𝑐𝑡𝑒 𝑒𝑡 𝑧 = 𝑐𝑡𝑒. La figure 3.1 

présente ce modèle de brèche. 
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Figure 3.1 Modèle de brèche utilisée dans le mémoire  

La hauteur instantanée de la brèche est déterminée à partir de la relation suivante : 

ℎ𝑡𝑖 = ℎ𝑑  −   ℎ𝑏𝑖 Équation 3.9 

Où ℎ𝑑, est la hauteur du barrage (𝑚) 

ℎ𝑏𝑖, est la hauteur instantanée du fond de la brèche  (𝑚) 

Or, la hauteur instantanée du fond de la brèche ℎ𝑏𝑖 est estimée à partir de la formule : 

ℎ𝑏𝑖 = {
ℎ𝑑  (1 −  

𝑡

𝑡𝑓
)                𝑡 <   𝑡𝑓                                  

0                            𝑡 ≥   𝑡𝑓                           
 

Équation 3.10 

Où 𝑡

𝑡𝑓
= 𝛽, est un paramètre qui décrit le taux d’érosion   

Ainsi, la largeur instantanée de brèche est calculée à partir de l’équation suivante : 

𝑏𝑡𝑖 = (𝐵 𝐻⁄ ) ∗ ℎ𝑡𝑖 Équation 3.11 

Par ailleurs, la hauteur d’eau instantanée de la brèche est déterminée à partir de la relation suivante : 

ℎ𝑤𝑖
𝑏𝑟 = ℎ𝑤𝑖

𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖 Équation 3.12 

Où ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡, est la hauteur d’eau instantanée à l’amont  (𝑚) 

3.2.2 Évaluation de la vidange du réservoir  

L’hydrogramme de rupture est régi par deux processus dynamiques. Il s’agit du développement de 

la brèche et de la vidange du réservoir. En effet, lorsque le barrage rompt, le volume d’eau stocké 
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dans la retenue est perturbé. Cette perturbation se manifeste généralement par une diminution 

rapide du niveau d’eau dans le réservoir. Or, la cadence avec laquelle l’eau est évacuée définit 

l’ampleur de l’onde de submersion générée à l’aval de l’ouvrage (Marche, 2008).  

Une manière simple pour évaluer le niveau d’eau à chaque instant donnée consiste à utiliser la 

courbe d’emmagasinement. Cette courbe est spécifique à chaque barrage. Elle permet de relier 

directement le volume et la hauteur de l’eau dans le réservoir. La relation volume-hauteur est 

déterminée de manière empirique à partir de plusieurs mesures effectuées sur le terrain. Dans ce 

cas, l’eau est évacuée en admettant une translation verticale du plan d’eau (Marche, 2008).    

Dans cette étude, les paramètres de la courbe de tendance sont spécifiés par l’utilisateur. L’équation 

de la courbe de stockage sera donc présentée dans l’exemple d’application.  

Par ailleurs, le volume du réservoir est estimé à partir de l’équation de continuité : 

𝑑𝑉

𝑑𝑡
= 𝑄𝑖  −   𝑄𝑏 

Équation 3.13 

Où 𝑑𝑉

𝑑𝑡
, est la variation du volume de stockage (𝑚3/𝑠) 

𝑄𝑖, est le débit intrant dans le réservoir  (𝑚3 𝑠⁄ ) 

𝑄𝑏, est le débit intrant de brèche  (𝑚3 𝑠⁄ ) 

Or, le débit intrant dans le réservoir est négligé. Ainsi 𝑄𝑖 = 0.  

À partir de l’équation 3.13, il est alors possible de déduire l’expression du volume instantané : 

𝑉𝑡 = 𝑉𝑡−1  −  𝑄𝑏∆𝑡 Équation 3.14 

Où 𝑉𝒕, est le volume de stockage à l’instant t (𝑚3) 

𝑉𝑡−1 , est le volume de stockage au pas de temps qui précède l’instant t (𝑚3) 

∆𝑡, est le pas de temps  (𝑠) 

En résumé, le modèle utilisé se base sur les hypothèses suivantes : 

1. La rupture se forme en situation d’apports hydrologiques normaux 

2. Durant le développement de la brèche, la surface de l’eau dans le réservoir reste horizontale 
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3.2.3  Estimation du débit de brèche 

L’écoulement de l’eau à travers la brèche est assimilé à celui d’un déversoir trapézoïdal à seuil 

large. Ainsi, le débit de rupture instantané est estimé à partir d’une formule de prédiction tirée de 

la loi d’évacuation des déversoirs. Or, cette formule est déterminée en régime permanent. En effet, 

elle est obtenue à partir de l’équation d’énergie et en admettant un écoulement rapidement varié à 

travers le déversoir. 

L’expression du débit de brèche est présentée par Marche (2008) comme suit : 

𝑄𝑏 = 𝑐𝑣𝑘𝑠 [𝐶𝑟𝑏𝑡𝑖(ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖)

1,5
+ 𝐶𝑡𝑧(ℎ𝑤𝑖

𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖)
2,5
] Équation 3.15 

Où 𝑐𝑣, est la correction de la vitesse d’approche 

𝑘𝑠, est la correction de la submergence possible 

𝐶𝑟 = 1,7 𝑚1 2⁄ 𝑠⁄ , est le coefficient de débit de la partie rectangulaire de la brèche 

𝐶𝑡 = 1,26 𝑚
1 2⁄ 𝑠⁄ , est le coefficient de débit de la partie triangulaire de la brèche 

Le facteur 𝑘𝑠 tiens compte de la submersion à l’aval. Il peut être obtenu à partir de la formule. 

𝑘𝑠 =

{
 
 

 
 1 − 27,8 [

ℎ𝑤𝑖
𝑎𝑣𝑎𝑙 − ℎ𝑏𝑖

ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖

]

3

          
ℎ𝑤𝑖
𝑎𝑣𝑎𝑙 − ℎ𝑏𝑖

ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖

 > 0,67 

1                                                     
ℎ𝑤𝑖
𝑎𝑣𝑎𝑙 − ℎ𝑏𝑖

ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡 − ℎ𝑏𝑖

≤ 0,67  

 

Équation 3.16 

Où ℎ𝑤𝑖
𝑎𝑣𝑎𝑙, est la hauteur d’eau instantanée dans le bief d’aval (𝑚) 

Or, l’écoulement de l’eau à l’aval est négligé. Ainsi,  ℎ𝑤𝑖
𝑎𝑣𝑎𝑙 ≅ 0 et 𝑘𝑠 = 1 

Le coefficient de la correction de la vitesse d’approche 𝑐𝑣 sera également négligé. Ainsi, 𝑐𝑣  = 1 

À partir des équations 3.9, 3.10, 3.11 et 3.12, il est possible de reformuler l’équation 3.15 sous la 

forme : 

𝑄𝑏 = 1,7 (𝐵 𝐻⁄ ) ∗ (𝐻𝑏   
𝑡

𝑡𝑓
)(ℎ𝑤𝑖

𝑎𝑚𝑜𝑛𝑡 −𝐻𝑏  (1 −  
𝑡

𝑡𝑓
))

1,5

+ 1,26 𝑧 (ℎ𝑤𝑖
𝑎𝑚𝑜𝑛𝑡 −𝐻𝑏 (1 −  

𝑡

𝑡𝑓
) )

2,5

 

Équation 3.17 
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3.2.4 Choix des variables aléatoires 

La rupture des barrages en remblai peut se faire de plusieurs façons. Elle est régie principalement 

par des paramètres hydrauliques, géotechniques et sédimentaires. Or, la connaissance de ces 

paramètres est très limitée. Ils sont également assujettis à de nombreuses sources d’incertitudes.  

Les phénomènes physiques sont reliés aux paramètres de brèches par des relations fonctionnelles. 

Ainsi, leurs incertitudes se propagent et affectent les résultats. Les résultats sont à leurs tours 

associées à des valeurs d’incertitude. Dans les modèles de brèche, le nombre de grandeurs 

incertaines augmente la complexité du modèle et la durée de la simulation. Ainsi, la qualité du 

modèle dépend principalement du choix des sources d’incertitudes. L’importance de ces sources 

varie d’un modèle à l’autre. Elles peuvent également dépendre du cas d’étude choisi.  

Dans ce mémoire, les variables incertaines sont les paramètres géométriques et temporels décrits 

par la norme HQ 60-00-00. Il s’agit de la pente ultime 𝑧, du rapport final de la base sur la 

hauteur 𝐵/𝐻 et du temps de formation 𝑡𝑓. Le choix de ces paramètres permet donc de tester la 

fiabilité liée à l’utilisation des règles de bonne pratique.  

Les valeurs normatives sont par définition entachées d’incertitude. En effet, ils représentent une 

approximation grossière des quantités réelles, issues de l’observation de ruptures antérieures. Par 

ailleurs, ils tiennent compte implicitement de tous les phénomènes physiques à l’origine de 

l’érosion. Leurs incertitudes regroupent alors les incertitudes de tous ces phénomènes. De plus, 

l’équation du seuil peut être reformulée en fonction des variables choisies (voir l’équation 3.17). 

Ces variables affectent alors directement l’hydrogramme de rupture.  
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CHAPITRE 4 SYSTÈME DE SIMULATION STOCHASTIQUE 

La simulation de la rupture des barrages en remblai est effectuée à l’aide d’un programme 

informatique. Ce programme utilise le complément VBA (Visual Basic for Applications) inclus 

dans le logiciel Microsoft Excel. Il a été conçu avec le langage Visual Basic ; un langage de 

programmation orienté objet.  

Le chapitre 4 présente une description détaillée du programme développé. Rappelons que l’objectif 

principal de ce travail est d’associer un ensemble d’hydrogrammes à des valeurs probabilistes. Ces 

hydrogrammes tiennent compte des incertitudes liées aux paramètres de brèche, du risque associé 

au débit de brèche et des erreurs relatives au pas de temps de calcul et au nombre d’itération choisit. 

La figure 4.1 présente la structure générale du système de simulation stochastique. 

 

Figure 4.1 Systèmes de simulation stochastique. 

Ce chapitre est réparti en trois sections. La première décrit l’interface utilisateur. La deuxième 

présente les différentes interfaces de sortie. La troisième explique l’organisation, le fonctionnement 

et l’interaction entre les différents modules de programmation.    
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4.1 Interface utilisateur 

L’interface utilisateur se compose de deux sections distinctes (voir figure 4.2). La première 

concerne les données de base utilisées dans le calcul, tandis que la deuxième permet de choisir les 

options de simulations. 

 Données de base 

Cette section permet de saisir les données sur la brèche, le barrage et le réservoir. Les données de 

brèche concernent les trois sources d’incertitudes choisies. Il s’agit de la pente ultime 𝑧, du rapport 

final de la base sur la hauteur 𝐵/𝐻 et du temps de formation 𝑡𝑓. Dans ce cas, l’utilisateur peut 

choisir une distribution uniforme normale ou lognormale pour les trois paramètres de brèche. De 

plus, il doit saisir pour chaque paramètre sa moyenne, son écart-type, son maximum et son 

minimum. 

Les données sur le barrage et le réservoir ne sont pas toutes utilisées par le programme. En effet, 

seules la hauteur de la retenue, la capacité du réservoir et l’équation de la courbe 

d’emmagasinement sont prises en compte dans le modèle. À noter que la courbe 

d’emmagasinement peut être représentée par une équation linaire, polynomiale, lognormale ou de 

puissance. 

  Option de simulation 

Cette section permet de spécifier les options de calcul et d’affichage. Les paramètres utilisés dans 

le calcul sont le nombre d’itérations, le pourcentage de risque, le pas de temps de calcul, et la durée 

de la simulation. À noter que le pas de temps et la durée de calcul sont égaux à ceux utilisés dans 

l’affichage des hydrogrammes de rupture.  

Par ailleurs, les options d’affichage permettent à l’utilisateur de définir les résultats qu’il souhaite 

afficher. Plus précisément, chaque option permet de générer une feuille de calcul distincte. En effet, 

l’option affichage de l’erreur de convergence génère la feuille ErrSimul. L’option affichage des 

résultats des itérations génère la feuille VA. L’option affichage des calculs détaillés de 

débit instantané génère la feuille Cacul_Débit. Enfin, l’option affichage par intervalle de 

probabilité génère la feuille IntervMC. 
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Figure 4.2 Interface utilisateur
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4.2 Interfaces de sortie 

Les paramètres de sortie dépendent des options d’affichage choisies par l’utilisateur. Il existe alors trois interfaces de sortie présentées 

dans des feuilles de calcul distinctes : 

 Feuille ErrSimul :  

Elle présente les erreurs de convergence pour le pas de temps et le nombre d’itérations. 

 

Figure 4.3 Interface de sortie - Feuille « ErrSimul » 
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 Feuille VA :  

Elle contient les variables aléatoires générées par la simulation de Monte-Carlo et leurs incertitudes. 

 

Figure 4.4 Interface de sortie - Feuille « VA » 

 Feuille Cacul_Débit  :  

Elle contient les détails de calcul du débit instantané :  

 

Figure 4.5 Interface de sortie - Feuille « Calcul_Débit » 
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 Feuille IntervMC :  

Elle présente deux types de graphiques. Le premier montre les hydrogrammes de rupture générée par Monte-Carlo pour chaque intervalle 

de probabilité et celui estimé par la méthode normée. La deuxième montre que la courbe enveloppe et la courbe des probabilités de 

dépassement. 

 

Figure 4.6 Interface de sortie - Feuille « IntervMC» 
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4.3 Description du programme 

Le programme de simulation est composé essentiellement de quatre modules. Le premier est le 

générateur des variables aléatoires. Il fournit les valeurs des trois paramètres de brèche nécessaire 

à l’estimation de l’hydrogramme de rupture, la liste des variables aléatoires qui seront réparties par 

intervalle et l’ensemble des essais utilisés dans l’estimation de l’erreur. Le deuxième est 

l’estimateur des hydrogrammes de rupture. Il utilise l’équation du seuil pour évaluer les débits de 

brèche nécessaire à l’estimation de l’erreur et les hydrogrammes de rupture qui seront regroupés 

par intervalle de probabilité. Le troisième est l’estimateur des erreurs de convergence. Il calcule 

les erreurs liées au nombre d’itérations. Enfin, le quatrième est le générateur d’hydrogrammes par 

intervalles de probabilité. Il associe les hydrogrammes de rupture à des valeurs de probabilité en 

considérant un certain niveau de risque. La figure 4.8 présente l’interaction entre ces modules. 

 

Figure 4.7 Modules de la simulation Monte-Carlo 

4.3.1 Générateur de variables aléatoires 

Les programmes informatiques contiennent des algorithmes déterministes qui permettent de 

produire une suite de nombres dont les propriétés statiques s’apparentent à celles des variables 

aléatoires. Les nombres ainsi générés sont appelés variables pseudo-aléatoires. Dans cette étude, 

la liste des valeurs est obtenue à partir de la formule : 
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𝑥1 = (𝑥0 ∗ 𝑎 + 𝑐) ∗ 𝑚𝑜𝑑 2
24 Équation 4.1 

Où 𝑥1, est la nouvelle valeur  

𝑥0, est la valeur qui précède (la valeur initiale est de 327 680) 

𝑎 =  1 140 671 485, 𝑐 =  12 820 163 𝑒𝑡 𝑚𝑜𝑑 224  est le reste de la division par 224. 

Ce générateur est de type congruentiel linéaire et les valeurs obtenues sont uniformément 

distribuées entre 0 et 1. Pour plus de détails sur les différents types de générateurs, il est possible 

de consulter des ouvrages plus spécialisés comme celui de Tuffin (2010).  

De manière générale, les variables pseudo-aléatoires implantées dans les ordinateurs suivent une 

distribution uniforme sur l’intervalle [0, 1]. Afin d’avoir une suite de réalisation uniformément 

répartie sur l’intervalle [a, b], la formule suivante a été utilisée : 

𝑢 =  𝑣 ∗  (a −  b)  + b Équation 4.2 

Où 𝑣, est le nombre aléatoire d’une distribution uniforme sur l’intervalle [0, 1] 

Les variables aléatoires générées peuvent être transformées par la suite en une série de données 

suivant une distribution non uniforme. Ainsi, de nombreux algorithmes ont été développés pour les 

différentes lois de probabilité. Ce travail s’intéresse particulièrement aux distributions normales et 

lognormales.  

 Distribution normale 

Pour générer des nombres pseudo-aléatoires normalement distribués, la méthode polaire est 

utilisée. Cette technique est développée par G. Marsaglia (1964). Elle utilise le concept de la 

méthode d’acceptation-rejet qui permet de passer d’une simulation simple et connue à un tirage 

plus laborieux. Il s’agit de générer deux nombres aléatoires X et Y suivant distribution normale à 

partir de deux coordonnées V1 et V2 uniformément distribués dans le cercle unité. Il faut donc 

générer V1 et V2 au hasard et vérifier qu’ils appartiennent au domaine d’un cercle, c’est-à-dire 

que 𝑉1
2 + 𝑉2

2 ≤ 1. Si tel est le cas, la transformation des coordonnées est acceptée et les variables 

X et Y sont générés. L’algorithme de cette technique est présenté par (Kroese, Taimre, & Botev, 

2011, p. 124) comme suit :  

1) Génération de deux variables pseudo-aléatoires U1 et U2 ∼U (0, 1)   
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2) Détermination des coordonnées paires V1 et V2 ∼U (-1, 1) dans le cercle unité    

𝑉1 = 2𝑈1 − 1 Équation 4.3 

𝑉2 = 2𝑈2 − 1 Équation 4.4 

Calcul de S tel que  𝑓𝑎𝑐 = √−2𝑙𝑛𝑈/𝑆 Équation 4.6 

Le nombre pseudo-aléatoire distribué selon une loi normale centrée réduite N (0,1) est alors 

donné par : 

𝑋 = 𝑉1 ∗ 𝑓𝑎𝑐 Équation 4.7 

𝑌 = 𝑉2 ∗ 𝑓𝑎𝑐 Équation 4.8 

3) Si S > 1, revenir à l’étape 1 

Une fois que le tirage aléatoire est réalisé, une étape additionnelle est ajoutée. Elle consiste à 

générer un nombre pseudo-aléatoire distribué selon une loi normale de moyenne 𝜇 et d’écart-type 

𝜎 à partir de la formule : 

V. A.= X  σ +  μ Équation 4.9 

Il est à noter également que plusieurs simulations ont été réalisées, jusqu’à ce que le nombre généré 

soit compris entre le minimum est le maximum des valeurs de la base de données.  

 Distribution lognormale 

Les variables aléatoires de la distribution lognormale sont déterminées à partir de ceux de la loi 

normale. Les équations qui permettent la transition entre ces deux lois de probabilité sont 

présentées dans plusieurs ouvrages (Ayyub & McCuen, 2011, p. 150). Ainsi, le tirage aléatoire 

suivant la distribution lognormale est réalisé à partir des étapes suivantes : 

1) Calcul de la moyenne μ 𝑙𝑜𝑔 et l’écart-type σ 𝑙𝑜𝑔 de la distribution lognormale à partir des 

formules : 

𝑆 = 𝑉1
2 + 𝑉2

2 Équation 4.5 
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σ 𝑙𝑜𝑔 = √ln [1 + (
σ 𝑛𝑜𝑟𝑚
μ 𝑛𝑜𝑟𝑚

)
2

] 

Équation 4.10 

μ 𝑙𝑜𝑔 = ln(μ 𝑛𝑜𝑟𝑚) −
1

2
σ 𝐿𝑜𝑔

2 
Équation 4.11 

Où 
μ 𝑛𝑜𝑟𝑚 et σ 𝑛𝑜𝑟𝑚 sont respectivement la moyenne et l’écart-type de l’échantillon. 

2) Détermination de la variable aléatoire suivant une distribution normale  

V. A.= eX σ 𝑙𝑜𝑔 + μ 𝑙𝑜𝑔 Équation 4.12 

Où X, est un nombre pseudo-aléatoire distribué selon une loi normale centrée réduite N (0,1). 

3) Si le nombre généré est compris entre le minimum est le maximum des valeurs de la base 

de données, le tirage est accepté. Sinon revenir à l’étape 1.  

4.3.2 Estimateur des hydrogrammes de rupture 

L’estimateur des hydrogrammes rupture permet de déterminer la variation du débit en fonction du 

temps en se basant sur deux sources d’information. La première est saisie par l’utilisateur. Elle 

tient compte de la grandeur de l’ouvrage et du réservoir. La deuxième est fournie par le module 

générateur de variables aléatoires. Elle considère les valeurs des trois paramètres de brèche. À cet 

effet, les débits calculés par le module estimateur des hydrogrammes de rupture sont également 

considérés comme des variables aléatoires.  

La méthode utilisée dans l’estimation du débit repose principalement sur l’équation du seuil. Cette 

équation est expliquée en détail dans la section 3.2.3. Les calculs sont d’abord initiés au temps égal 

à zéro. Dans ce cas, la hauteur de brèche est nulle et la profondeur de l’eau est supposée égale à la 

hauteur du barrage. Ensuite, la hauteur de la brèche commence à évoluer linéairement, jusqu’à ce 

qu’elle atteigne le fond de l’ouvrage. De manière similaire, le niveau d’eau commence à évoluer 

linéairement jusqu’à ce que la vidange du réservoir soit complète. Cette dernière est déterminée à 

partir de l’équation de la courbe d’emmagasinement comme expliquée dans la section 3.2.2. La 

figure 4.8 présente l’algorithme utilisé pour générer les hydrogrammes de rupture : 
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Figure 4.8 Algorithme utilisé pour générer les hydrogrammes de rupture
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4.3.3 Estimateur des erreurs de convergence  

Pour satisfaire les critères de convergence, la méthode de Monte-Carlo nécessite généralement un 

très grand nombre d’itérations. Or, il est impossible de générer une infinité de variables aléatoires. 

Il faut donc définir la taille de l’échantillon qui permet d’avoir une précision convenable. Selon 

Muthén et Muthén (2002), la taille de l’échantillon est régie par une multitude de facteurs. En effet, 

la simulation est influencée, entre autres, par le nombre des paramètres stochastiques, la quantité 

des données disponibles, et leurs distributions. Or, le nombre de tirages est souvent déterminé de 

manière empirique selon l’expérience de l’estimateur. Par ailleurs, des études proposent des 

méthodes plus structurées basées sur l’évaluation de l’erreur.  

Ce mémoire utilise la méthode présentée par Cassettari, Mosca et Revetria (2012). Dans ce cas, le 

nombre d’itérations a été déterminé en se basant sur le calcul de l’erreur quadratique moyenne de 

prédiction pour deux types de facteurs ; soit la moyenne 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et l’écart-type 𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉. 

L’application de l’approximation de Monte-Carlo sur plusieurs intervalles de probabilité a deux 

effets contradictoires sur les convergences des résultats. En effet, la génération des variables 

aléatoires entre des bornes plus rapprochées augmente la convergence de l’erreur. Par contre, la 

diminution du nombre de valeurs utilisée dans l’estimation réduit la convergence. 

La méthode de Cassettari et al. (2012) a été donc adaptée pour chaque intervalle en remplaçant le 

nombre total d’itérations par le nombre d’hydrogrammes générés. À noter que l’estimation de 

l’erreur dépend également du type de distribution. Ainsi, un intervalle avec une plus faible 

fréquence n’aura pas forcément une meilleure convergence que celui dont la fréquence est plus 

élevée. 

La démarche générale pour déterminer l’erreur de convergence est la suivante : 

1) Choix du nombre de simulations Monte-Carlo 𝐾 > 2. Dans cette étude, le nombre d’essais 

sera limité à 𝐾 = 10. 

2) Détermination des bornes de l’intervalle de probabilité et estimation du nombre 

d’hydrogrammes 𝑁ℎ𝑦𝑑𝑟𝑜 à partir du module générateur d’hydrogrammes par intervalle de 

probabilité. 
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3) Calcul du nombre d’itérations de l’intervalle 𝑁𝑖𝑡𝑒𝑟 = 1.5 𝑁ℎ𝑦𝑑𝑟𝑜. Ainsi, le nombre de 

variables aléatoires générées dans chaque intervalle est plus grand que le nombre 

d’hydrogrammes.   

4) Génération des variables avec le module générateur de variables aléatoires pour chaque 

intervalle de probabilité.  

5) Estimation du débit de pointe 𝑄𝑖𝑗
𝑝  pour chaque itération et dans chaque simulation, avec 𝑖 =

 1…𝑁𝑖𝑡𝑒𝑟et 𝑗 =  1…𝐾  à partir du module estimateur d’hydrogrammes de rupture. 

Tableau 4.1 Variables stochastiques générées (adapté de Cassettari et al. (2012)) 

  Numéro d’essai 
  

1 2 3 … 10 

Numéro de 

simulation 

1 𝑄1,1
𝑝

 𝑄1,2
𝑝

 𝑄1,3
𝑝

 … 𝑄1,10
𝑝

 

2 𝑄2,1
𝑝

 𝑄2,2
𝑝

 𝑄2,3
𝑝

 … 𝑄2,10
𝑝

 

3 𝑄3,1
𝑝

 𝑄3,2
𝑝

 𝑄3,3
𝑝

 … 𝑄3,10
𝑝

 

… … … … … … 

𝑁𝑖𝑡𝑒𝑟 𝑄
𝑁𝑖𝑡𝑒𝑟,1

𝑝
 𝑄

𝑁𝑖𝑡𝑒𝑟,2

𝑝
 𝑄

𝑁𝑖𝑡𝑒𝑟,3

𝑝
 … 𝑄

𝑁𝑖𝑡𝑒𝑟,10

𝑝
 

6) Pour chaque essai j et pour chaque itération n, calcul de la moyenne des débits de pointe 𝑄𝑛𝑗
𝑝̅̅ ̅̅ ̅ 

(avec =  1…𝑁𝑖𝑡𝑒𝑟)). 

𝑄𝑛𝑗
𝑝̅̅ ̅̅ ̅ =

∑ 𝑄𝑖𝑗
𝑝𝑛

𝑖=1

𝑛
 Équation 4.13 

7) Pour chaque itération, calcul de la moyenne des  𝑄𝑛𝑗
𝑝̅̅ ̅̅ ̅  : 

𝑀𝐸𝐷𝑀𝐸𝐷(𝑖) =
∑ 𝑄𝑖𝑗

𝑝̅̅ ̅̅𝐾
𝑗=1

𝐾
 Équation 4.14 

8) Pour chaque itération, calcul de l’erreur quadratique moyenne de prédiction à partir de la 

moyenne des simulations : 

𝑀𝑆𝑃𝐸𝑚𝑒𝑑(𝑖) =
∑ [𝑄𝑖𝑗

𝑝̅̅ ̅̅ − 𝑀𝐸𝐷𝑀𝐸𝐷(𝑖)]
2

𝐾
𝑗=1

𝐾
 Équation 4.15 
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9) Pour chaque essai j et pour chaque itération n, calcul de l’écart-type des débits de pointe 

𝑆𝑇𝐷𝐸𝑉(𝑄𝑛𝑗
𝑝 ) : 

𝑆𝑇𝐷𝐸𝑉(𝑄𝑛𝑗
𝑝 )  = √

∑ (𝑄𝑖𝑗
𝑝 − 𝑄𝑛𝑗

𝑝̅̅ ̅̅ ̅)2𝑛
𝑖=1

𝑁𝑖𝑡𝑒𝑟
 Équation 4.16 

10) Pour chaque itération, calcul de la moyenne des  𝑆𝑇𝐷𝐸𝑉(𝑄𝑛𝑗
𝑝 ) : 

𝑀𝐸𝐷𝑆𝑇𝐷𝐸𝑉(𝑖) =
∑ 𝑆𝑇𝐷𝐸𝑉(𝑄𝑖𝑗

𝑝 )𝐾
𝑗=1

𝐾
 Équation 4.17 

11) Pour chaque itération, calcul de l’erreur quadratique moyenne de prédiction à partir de la 

moyenne des écarts-types 𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 : 

𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉(𝑖) =
∑ [𝑆𝑇𝐷𝐸𝑉(𝑄𝑛𝑗

𝑝 )  − 𝑀𝐸𝐷𝑆𝑇𝐷𝐸𝑉(𝑖)]
2𝐾

𝑗=1

𝐾
 Équation 4.18 

12) Détermination des courbes représentant la variation de 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et 𝑑𝑒 𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 en 

fonction du nombre d’itérations. La convergence est vérifiée en observant les oscillations de 

deux courbes. 

4.3.4 Générateur des hydrogrammes par intervalles de probabilités 

Le modèle permet de subdiviser les paramètres de brèche en plusieurs sous-intervalles. Chaque 

sous-intervalle est caractérisé par sa fréquence et son hydrogramme. L’objectif est de fournir à 

l’ingénieur un outil qui lui permettra d’obtenir plusieurs scénarios de rupture avec des probabilités 

différentes et en admettant un certain risque. 

La démarche qui permet de générer les hydrogrammes de rupture par intervalle de probabilité est 

la suivante : 

1) Génération des variables aléatoires et estimation des hydrogrammes pour chaque itération. 

2) Regroupement des débits de brèche par intervalles et calcul des fréquences. Dans ce cas, les 

fréquences correspondent à la probabilité d’apparition des débits de brèche dans un 

intervalle donné.   
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3) Calcul des erreurs de convergence pour chaque intervalle. 

4) Estimation du débit de brèche le plus probable pour chaque intervalle à l’aide de 

l’intégration de méthode de Monte-Carlo (voir section  3.1.2). 

5) Calcul des incertitudes du débit de brèche à partir de l’équation 3.8. La marge d’erreur sera 

ajoutée au débit approximé. À noter que cette marge permet d’apprécier le niveau de risque 

pour une valeur statique du débit. Les valeurs instantanées peuvent être différentes, mais 

moins conservatrices. Par contre, vu que la détermination du temps de formation est un 

processus aléatoire, le débit de pointe se produira à des instants différents. Ainsi, les 

incertitudes du débit de brèche ne peuvent pas être combinées aux incertitudes instantanées. 

En effet, sa grandeur sera incohérente avec les débits générés à chaque instant. 

6) Détermination des hydrogrammes de rupture pour chaque intervalle en tenant compte des 

incertitudes sur le débit de brèche. Dans ce cas, les informations sur les paramètres de brèche 

ne sont pas disponibles. Il est donc impossible d’utiliser directement l’algorithme décrit dans 

la section 4.3.2. Une manière alternative est d’approximer l’hydrogramme par un autre déjà 

existant dans la série des variables aléatoires générées. Cette approche suppose que le 

nombre d’itérations est assez grand pour que la série stochastique contienne un débit égal à 

celui approximé par l’intégration de Monte-Carlo.   
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CHAPITRE 5 BASE DE DONNÉES 

L’étude de la rupture des barrages par une approche probabiliste nécessite un ensemble de données 

statistiques. Ces données peuvent être obtenues par l’analyse des ruptures passées. La qualité de 

l’estimation devient ainsi étroitement liée aux différentes sources d’information considérées dans 

l’analyse.  

Ce chapitre présente la base de données utilisée pour la simulation de la rupture des barrages en 

remblai. Il se compose de trois sections. La première décrit l’historique des ruptures. La deuxième 

montre ces principales caractéristiques. La troisième définit les caractéristiques statistiques des 

différentes variables aléatoires. 

5.1.1 Historique 

De nombreux cas de rupture ont été répertoriés dans l’histoire. Par contre, il fallait attendre les 

années 80 pour avoir une description plus exhaustive de la brèche. Cette description définit les 

paramètres géométriques et temporels de la brèche. Ils sont déterminés par des mesures in situ ou 

à partir de l’analyse de cartes topographiques. Or, ces mesures sont toujours effectuées à la fin de 

la rupture. Il n’existe ainsi aucune donnée sur le développement de la brèche. De plus, les 

informations sur les dimensions de la rupture et le débit de brèche n’étaient pas toujours fournies. 

Plusieurs auteurs ont alors proposé des méthodes pour compléter les données manquantes. Ces 

méthodes se basent sur la formulation empirique d’un ensemble de cas de rupture. Ils sont cités 

dans plusieurs articles et conférences présentés par les organisations de la sécurité des barrages. 

Parmi ces organisations, il y a l’ASDO (Association of State Dam safety Officials) (Wahl, 1998). 

La base de données de Wahl (1998) regroupe 108 cas de rupture. Elle contient les informations sur 

le mode de rupture, le type de remblai, les dimensions de l’ouvrage et le débit de brèche. Dans ce 

cas, les barrages sont formés de terre, d’enrochements ou d’une combinaison des deux. Par contre, 

la plupart des ouvrages répertoriés sont petits. En effet, environ 75 % des cas avaient une hauteur 

inférieure à 15 m. Les relations empiriques utilisées pour déterminer les paramètres de brèches sont 

issues de 20 à 50 cas de rupture. Par ailleurs, ils sont influencés par la disparité des données. Il faut 

donc être vigilant lors de l’utilisation de cette base de données, surtout lorsqu’il s’agit des grands 

barrages. 
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La base de données de Xu et Zhang (2009) regroupent 183 cas de rupture. Ces données proviennent 

de 8 pays différents, mais essentiellement de la Chine et des États-Unis. Cette fois-ci, presque la 

moitié des ouvrages à une hauteur supérieure à 15 m. Par contre, la capacité du réservoir est souvent 

inférieure à 1x108 m3. Ils sont caractérisés par trois nouveaux paramètres. Le premier est le type de 

barrage. En effet, le barrage peut être homogène, zoné, avec noyau ou à masque amont. Les 

barrages homogènes représentent la moitié des cas étudiés. Le deuxième est le type de rupture. La 

rupture inclut l’érosion interne, la surverse et le glissement. La surverse est présente dans plus de 

56 % des cas. Le troisième est l’érodabilité du sol. Cette dernière peut être élevée, moyenne ou 

faible. Elle est évaluée généralement à partir de la composition des matériaux, des conditions de 

compaction, de l’aire de la surface transversale du barrage et du temps de construction. Par ailleurs, 

les propriétés de la base de données demeurent disproportionnées. Il y a alors des situations où elle 

peut être jugée insuffisante ou inappropriée (Wahl, 2014). 

Wahl (2014) a étudié la consistance des paramètres présentés par Xu & Zhang. Il concentre son 

analyse sur l’érodabilité et le temps de formation. Pour se faire, il utilise 75 cas de rupture, pour 

lesquels le mode de défaillance, la hauteur de brèche, le volume et la profondeur d’eau dans le 

réservoir étaient connus. À ces données, il ajoute d’autres sources d’information telle que ceux 

présentés par Pierce et al. (2010). 

Pour ce qui est de l’érodabilité, la recherche de Xu & Zhang se basent tout d’abord sur le type de 

sol, et ensuite sur la compaction. S’il n’y avait pas d’information sur la compaction, l’année de 

construction est prise en compte. Par exemple, une faible érodabilité est attribuée pour les barrages 

construits en 1950. La raison est qu’à cette époque les technologies étaient limitées. Par contre, 

Wahl (2014) considère que le type de sol est le seul facteur adéquat. À cet effet, il attribue quatre 

catégories à l’érodabilité du sol. La première est la catégorie VERIFIED. Elle comprend 22 

barrages, dont le type de sol a été confirmé à partir d’autres sources d’information. La deuxième 

est la catégorie UNKNOWN. Elle comprend 16 barrages dont la classification n’a pas pu être 

vérifiée. La troisième est la catégorie des UNJUSTIFIED. Elle comprend 10 barrages dont les 

données ont été modifiées. La quatrième est la catégorie des NO BASIS. Elle comprend 33 barrages 

dont l’information est absente.  

Par ailleurs, le temps de brèche n’était pas clairement défini par les investigateurs. En effet, selon 

Wahl (1998) la rupture des barrages en remblai est un processus long qui se fait en deux phases. 



60 

 

La première est la phase d’initiation durant laquelle l’érosion du barrage peut s’interrompre. La 

deuxième est la phase de formation durant laquelle la rupture devient imminente. Une description 

plus détaillée de ces notions est présentée dans la section 2.2.2. Ce qui nous intéresse ici est de 

prendre connaissance de la confusion qui peut exister dans les données enregistrées. Selon Wahl 

(2014), la durée de brèche devrait représenter le temps de formation. À cet issu, il compare les 

données de Xu et Zhang (2009) avec d’autres sources d’information. Ainsi, s’il y a un conflit entre 

les données répertoriées, l’information est omise de la base de données. À la suite de cette analyse, 

10 données sur le temps de formation ont été supprimées, 9 ont été vérifiés et 10 autres ont été 

ajoutés. 

5.1.2 Description de la base de données 

La base de données utilisée dans ce mémoire est présentée dans l’annexe A. Elle est fournie par 

Wahl (2014) et elle regroupe 81 cas de rupture qui proviennent de 7 pays différents. Les États-

Unis présentent à elle seule environ 89 %  des cas. Ces barrages sont construits entre 1850 et 1992. 

Plus de 69 % des ruptures ont été enregistrée avant 1980. 

Les barrages ont une hauteur variant entre 2,8 et 93 𝑚 et une capacité de retenue variant entre 

24 700  et 650 000 000 𝑚3. Il y a plus de 75 % de barrage à forte contenance et environ 1,23 % 

de barrage à faible contenance. La répartition des barrages selon leurs contenances est effectuée 

selon les critères de la loi sur la sécurité des barrages. Ces critères sont présentés dans l’annexe B. 

La figure, ci-dessous, présente la répartition des barrages selon leurs types et leurs modes de 

rupture : 
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Figure 5.1 Répartition des données de Wahl (2014) selon leurs types et leurs modes de rupture  

Note 

 

DC = Barrages à masque en béton  

FD = Barrages à masque en béton 

OT = Rupture par surverse 

HD = Barrages homogènes 

ZD =Barrages zonés 

P= Rupture par érosion interne 

La plupart des barrages sont en remblai homogènes. En Effet, ils constituent plus de 71 % des cas 

étudiés. Par ailleurs, l’érosion interne survient avec une fréquence de 50 %  et la surverse avec une 

fréquence de 43 %. 

Dans le cas de la surverse, la différence entre la hauteur d’eau au moment de la défaillance et la 

hauteur du barrage varie entre −18,5 et 9 𝑚. Pour l’érosion interne, elle varie entre −32 et 8 𝑚. 

Le tableau ci-dessous présente la distribution des données à partir de la comparaison de la hauteur 

du barrage avec la hauteur d’eau au moment de la défaillance.  

Tableau 5.1 Distribution des données à partir de la comparaison de la hauteur du barrage HD avec 

la hauteur d’eau au moment de la défaillance hw pour chaque type de rupture. 

Type de rupture 𝒉𝒘 < 𝒉𝒅 𝒉𝒘 = 𝒉𝒅 𝒉𝒘 > 𝒉𝒅 

Surverse 25,71 % 17,14 % 57,14 % 

Érosion interne 85,37 % 2,44 % 12,20 % 
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Par ailleurs, les informations sur l’érodabilité sont disponibles pour 58 % des barrages. Plus de 

40 % des données sont validé par Wahl (2014). Cette catégorie inclut les données vérifiées 

(VERIFIED) et modifiées (UNJUSTIFIED). Les 18 % restant n’ont pas pu être validé, car il n’y 

avait aucune source d’informations qui le permettait. 

La figure ci-dessous présente la répartition des barrages selon leurs érodabilité. 

 

Figure 5.2 Répartition des données de Wahl (2014) selon leurs érodabilité  

Note 

 

HE = Érodabilité élevée 

ME = Érodabilité moyenne 

LE= Érodabilité faible 

VERIFIED = Base de la classification de 

l’érodabilité  

UNJUSTIFIED = La classification de 

l’érodabilité fourni par Xu et Zhang 

(2009) est modifiée par Wahl (2014) en se 

basant sur la documentation disponible 

 

UNKNOWN = La classification de 

l’érodabilité fourni par Xu et Zhang 

(2009) n’a pas pu être vérifiée par Wahl 

(2014) à cause du manque de 

documentations significatives.  

NO BASIS = La classification de 

l’érodabilité fourni par Xu et Zhang 

(2009) est supprimée par Wahl (2014), 

car il n’y a aucune information qui permet 

de la justifier. 
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5.1.3 Analyse des paramètres stochastiques 

5.1.3.1 Type de distribution 

La génération des variables aléatoires s’effectue suivant une loi de probabilité connue. Or, il 

n’existe aucune méthode qui permet de déterminer directement la fonction de densité la mieux 

adaptée pour un échantillon donné. La manière la plus simple consiste à supposer un type de 

distribution. Cette supposition se base souvent sur l’histogramme des fréquences relatives (voir 

l’annexe C.1). En effet, il est possible visuellement de faire l’analogie entre la répartition des 

données et la courbe d’une loi usuelle. Ensuite, cette supposition peut être vérifiée à partir du test 

d’ajustement 𝐾ℎ𝑖2 (voir l’annexe C.2) 

 Rapport de la base sur la hauteur  𝑩/𝑯 

Les informations sur le rapport 𝐵/𝐻 sont disponibles pour 68 cas de rupture de barrage. Leurs 

grandeurs varient entre 0,00 et 19,32 𝑚/𝑚, avec une moyenne de 3,37 𝑚/𝑚. L’écart entre la 

valeur proposée par la norme HQ 60-00-00 et la moyenne des observations est évalué à 19 %. Par 

ailleurs, les données ont été regroupées en 7 classes avec un pas d’environs 2,76 𝑚/𝑚. La figure 

5.3 présente l’histogramme des fréquences relatives pour le rapport 𝐵/𝐻. 

 

Figure 5.3 Histogrammes des fréquences relatives observées et théoriques pour le rapport de la 

largeur sur la hauteur de brèche 
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La figure ci-dessus montre que l’intervalle ]0,00 − 2,76 ] 𝑚/𝑚  regroupe le plus grand nombre de 

données avec une fréquence relative de 51,5 %. La valeur standardisée se trouve dans l’intervalle 

]2,76 − 5,52 ] 𝑚/𝑚 avec une fréquence d’environs 34 %. La chance que le rapport 𝐵/𝐻 excède 

cette catégorie avoisine les 15 %.  

Le type de distribution est vérifié à partir d’ajustement 𝐾ℎ𝑖2 (ou 𝜒2). L’hypothèse nulle 𝐻0 se 

présente comme suit : 𝑙𝑒 𝑟𝑎𝑝𝑝𝑜𝑟𝑡 𝐵/𝐻 𝑠𝑢𝑖𝑡 𝑢𝑛𝑒 𝑙𝑜𝑖 𝑙𝑜𝑔 𝑛𝑜𝑟𝑚𝑎𝑙. La statique de Pearson 𝜒𝑐𝑎𝑙𝑐 
2 est 

alors évaluée à 5,07, tandis que le seuil critique 𝜒𝑐𝑟
2  est estimé à 9,488 en admettant un risque de 

5 %. L’hypothèse de départ est donc acceptée. Le risque de rejetée 𝐻0 alors qu’elle est vraie est de 

28,3 %.  

 Pente moyenne de rive  𝒛 

Les informations sur l’inclinaison des rives 𝑧 sont disponibles pour 68 cas de rupture de barrage. 

Leurs grandeurs varient entre 0 et 6,3 𝑚/𝑚, avec une moyenne de 0,997 𝑚/𝑚. L’écart entre la 

valeur proposée par la norme HQ 60-00-00 et la moyenne des observations est évalué à 0,28 %. La 

figure 5.4 représente l’histogramme des fréquences relatives pour l’inclinaison des rives 𝑧. 

 

Figure 5.4 Histogrammes des fréquences relatives observées et théoriques pour l’inclinaison des rives  

La figure ci-dessus montre que l’intervalle ]0 − 0,9 ] 𝑚/𝑚  regroupe le plus grand nombre de 

données avec une fréquence relative de 52,2 %. La valeur, proposée par la norme, se trouve dans 

0%

10%

20%

30%

40%

50%

60%

70%

]0  - 0,9] ]0,9  - 1,8] ]1,8  - 2,7] ]2,7  - 3,6] ]3,6  - 4,5] ]4,5  - 5,4] ]5,4  - 6,3]

Fr
éq

u
en

ce
 r

el
at

iv
e 

(%
)

Pente z (m/m)

Fréquences relatives observés et théoriques

Fréquence observée Fréquence théorique



65 

 

l’intervalle ]0,9 − 1,8 ] 𝑚/𝑚 avec une fréquence d’environs 38,8 %. La chance que la pente 𝑧  

excède cette catégorie avoisine les 9 %.  

Le type de distribution est vérifié à partir d’ajustement 𝐾ℎ𝑖2 (ou 𝜒2). L’hypothèse nulle 𝐻0 se 

présente comme suit : 𝑙𝑎 𝑝𝑒𝑛𝑡𝑒 𝑑𝑒𝑠 𝑟𝑖𝑣𝑒𝑠 𝑧 𝑠𝑢𝑖𝑡 𝑢𝑛𝑒 𝑙𝑜𝑖 𝑙𝑜𝑔 𝑛𝑜𝑟𝑚𝑎𝑙. La statique de Pearson 

𝜒𝑐𝑎𝑙𝑐 
2 est alors évaluée à 9,23, tandis que le seuil critique 𝜒𝑐𝑟

2  est estimé à 9,488 en admettant un 

risque de 5 %. L’hypothèse de départ est donc acceptée. Le risque de rejetée 𝐻0 alors qu’elle est 

vraie est de 5,8 %. 

 Temps de formation  𝒕𝒇 

Les informations sur le temps de formation 𝑡𝑓  sont disponibles pour 24 cas de rupture de barrage. 

Leurs grandeurs varient entre 0,25 et 8,5 ℎ, avec une moyenne de 1,36 ℎ. L’écart entre la valeur 

proposée par la norme HQ 60-00-00 et la moyenne des observations est évalué à 63,2 %. Par 

ailleurs, les données ont été regroupées en 7 classes, avec un pas d’environ 1,18 ℎ. La figure 5.5 

présente l’histogramme des fréquences relatives pour le temps 𝑡𝑓. 

 

Figure 5.5 Histogrammes des fréquences observées et théoriques pour le temps de formation  

La figure ci-dessus montre que l’intervalle ]0,25 − 1,43 ] ℎ regroupe le plus grand nombre de 

données avec une fréquence relative de 71 %. Cet intervalle contient également la valeur proposée 

par la norme. La chance que le temps  𝑡𝑓 excède cette catégorie est de 29 %.  
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L’histogramme montre également la présence d’une donnée aberrante, soit 8,5 𝑚/𝑚. Elle 

correspond à l’inclinaison des rives observée pour le barrage Oros. Dans ce cas, l’ouvrage est 

considéré de grande contenance avec une hauteur de 35,4 𝑚 et une capacité de réservoir 

de 650 106 𝑚3. 

Pour analyser la distribution des données, la valeur aberrante a été supprimée. L’échantillon se 

retrouve ainsi réduit à 23 cas de rupture, variant entre 0,25 et 3 ℎ et avec une moyenne de 1,05 ℎ. 

L’écart entre la valeur proposée par la norme HQ 60-00-00 et la moyenne des observations se 

retrouve alors réduite à 52 %. Les données ont été ainsi regroupées en 8 classes, avec un pas 

d’environ 0,34 ℎ. La figure 5.6 présente l’histogramme des fréquences relatives ajustées pour le 

temps de formation 𝑡𝑓. 

 

Figure 5.6 Histogrammes ajustés des fréquences relatives observées et théoriques D temps de 

formation  

La figure ci-dessus montre que l’intervalle ]0,25 − 0,59 ] ℎ  regroupe le plus grand nombre de 

données avec une fréquence relative de 39 %. Cet intervalle contient également la valeur proposée 

par la norme. La chance que le temps  𝑡𝑓 excède cette catégorie est de 61 %.  

Le type de distribution est vérifié à partir d’ajustement 𝐾ℎ𝑖2 (ou 𝜒2). L’hypothèse nulle 𝐻0 se 

présente comme suit : 𝑙𝑒 𝑡𝑒𝑚𝑝𝑠 𝑑𝑒 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑓 𝑠𝑢𝑖𝑡 𝑢𝑛𝑒 𝑙𝑜𝑖 𝑙𝑜𝑔 𝑛𝑜𝑟𝑚𝑎𝑙. Le tableau ci-

dessous présente les résultats du test d’ajustement pour les données initiales et ajustées : 
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Tableau 5.2 Statique de Pearson calculée et critique pour les données initiales et ajustées. 

Données Statique de Pearson 

𝝌𝒄𝒂𝒍𝒄 
𝟐

 

Seuil critique 

𝝌𝒄𝒓
𝟐  (Risque de 5 %)  

Données initiales variant entre 𝟎, 𝟐𝟓 et 𝟖, 𝟓 𝒉 3,964 9,488 

Données ajustées variant entre 𝟎, 𝟐𝟓 et 𝟑 𝒉 10,607 11,07 

Dans les cas, la statistique de Pearson 𝜒𝑐𝑎𝑙𝑐 
2  est inférieure au seuil critique 𝜒𝑐𝑟

2 . L’hypothèse de 

départ est donc acceptée. Le risque de rejetée 𝐻0 alors qu’elle est vraie est de 41,2 % pour les 

données initiales et de 6,3 % pour les données ajustées. 

5.1.3.2 Indépendance des données 

D’un point de vue statistique, deux variables aléatoires sont mutuellement indépendantes si le 

comportement de l’une n’influence pas celui de l’autre. Il est alors possible de conclure la pente de 

rive 𝑧 est indépendante du temps de formation 𝑡𝑓 , du moment que la distribution de 𝑧 reste inchangé 

lorsque les valeurs de  𝑡𝑓 varient. L’analyse de l’indépendance est effectuée à partir du test de 

conformité appliquée sur le coefficient de corrélation de Pearson (voir l’annexe C.3). 

 Corrélation entre le rapport 𝑩/𝑯 et la pente 𝒛 

L’hypothèse nulle 𝐻0 du test de conformité se présente comme suit : Le rapport 𝐵 𝐻⁄  et la pente 𝑧 

n’ont pas de corrélation significative. Le coefficient de corrélation de Pearson est évalué à             

𝜌 = −0,0604. Ainsi, la statistique de Student T est estimée à −0,48. Or, la valeur du seuil 

correspondant à un risque de 5 % est de 1,997. L’hypothèse de départ est donc acceptée. Le risque 

de rejeter 𝐻0 alors qu’elle est vraie est de 63,42 %. La figure ci-dessous représente la distribution 

de l’échantillon en fonction du rapport B/H et de la pente z. 
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Figure 5.7 Comparaison de la distribution du rapport de la base sur la hauteur de brèche avec 

l’inclinaison des rives 

 Corrélation entre le rapport 𝑩/𝑯 et le temps  𝒕𝒇 

L’hypothèse nulle 𝐻0 du test de conformité se présente comme suit : Le rapport 𝐵/𝐻 et le temps 

de formation  𝑡𝑓  n’ont pas de corrélation significative. Le coefficient de corrélation de Pearson est 

évalué à 𝜌 = 0,53. Ainsi, la statistique de Student T est estimée à 2,5. Or, la valeur du seuil 

correspondant à un risque de 5 % est de 2,12. L’hypothèse de départ n’est pas donc acceptée, mais  

pour les besoins d’analyse, les paramètres sont considérés indépendants par le modèle. La figure 

ci-dessous représente la distribution de l’échantillon en fonction du rapport B/H et du temps  𝑡𝑓. 

 

Figure 5.8 Comparaison de la distribution du rapport de la base sur la hauteur de brèche avec le 

temps de formation 
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 Corrélation entre la pente 𝒛 et le temps  𝒕𝒇 

L’hypothèse nulle 𝐻0 du test de conformité se présente comme suit : La pente 𝑧 et le temps de 

formation  𝑡𝑓  n’ont pas de corrélation significative. Le coefficient de corrélation de Pearson est 

évalué à 𝜌 = 0,045. Ainsi, la statistique de Student T est estimée à−0,174. Or, la valeur du seuil 

correspondant à un risque de 5 % est de 2,12. L’hypothèse de départ est donc acceptée. Le risque 

de rejetée 𝐻0 alors qu’elle est vraie est de 86,5 %. La figure, ci-dessous, présente la distribution de 

l’échantillon en fonction de la pente 𝑧 et du temps  𝑡𝑓. 

 

Figure 5.9  Comparaison de la distribution du temps de formation avec l’inclinaison des rives 
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CHAPITRE 6 EXEMPLES D’APPLICATION  

Le programme de simulation développé tient principalement compte de deux sources 

d’information. La première utilise les caractéristiques statiques des données historiques. La 

deuxième considère les propriétés du barrage et du réservoir. Les hydrogrammes générés sont ainsi 

spécifiques à l’ouvrage étudié.  

Le chapitre 6 applique la simulation stochastique sur trois cas de barrages. Ces barrages sont de 

même type (terre), mais de capacité de retenue différente. Le premier cas est la digue Ouiqui ; un 

ouvrage à forte contenance. Le deuxième est le barrage Clair ; un ouvrage à contenance moyenne. 

Le troisième est le barrage Caribou ; un ouvrage à faible contenance. Ce travail va permettre d’une 

part de comparer les résultats des méthodes probabilistes et stochastiques. D’autre part, de 

connaître l’influence de la contenance sur les résultats de la simulation. 

Ce chapitre est réparti en trois sections. Chaque section est spécifique à un cas type de barrages. 

Elle définit ses caractéristiques, explique le paramétrage utilisé et présente les résultats obtenus.  

6.1 Digue Ouiqui 

La digue Ouiqui est située dans la région du Saguenay–Lac-Saint-Jean. Elle est construite sur 

l’extrémité ouest du lac Kénogami à environs 37 𝑘𝑚 de la ville de Saguenay (voir la figure 6.1). 

Elle se retrouve entre les bassins versants du lac Kénogami et de la Belle Rivière. Cet ouvrage fait 

ainsi partie des 12 ouvrages de retenue qui constituent le réservoir Kénogami. En effet, ce dernier 

est formé à partir de trois barrages (Portage-des-Roches, Pibrac-Est et Pibrac-Ouest) et de neuf 

digues (Ouiqui, de la Baie-Cascouia, de la Coulée-Gagnon, Pibrac-Est, Pibrac-Ouest, de Creek 

Outlet-1, de Creek Outlet-2, de Creek Outlet-3 et de Moncouche) (Hydro-Québec, 2002). 
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Figure 6.1 Localisation de la digue Ouiqui (obtenu à partir du répertoire des barrages du (CEHQ)) 

6.1.1 Caractéristiques de l’ouvrage 

Construite en 1924, la digue Ouiqui est considérée comme un barrage en terre à fortes contenances. 

Elle a une hauteur de 17,9 m, une longueur de 420 m et une capacité de retenue est de 490 106 m3. 

Les conséquences en cas de rupture sont considérées comme très importantes. La fiche technique 

du barrage est présentée dans l’annexe D.1.  

Le bassin versant du lac Kénogami à une superficie de 3 492 𝑘𝑚2. Situé dans une région 

montagneuse, il draine environ 40 % des eaux de la réserve faunique des Laurentides. Il se déverse 

ensuite dans les rivières Chicoutimi et aux Sables. La Figure 6.2 représente la courbe 

d’emmagasinement du réservoir Kénogami, tirée du rapport d’Hydro-Québec (2002).  

 

Figure 6.2 Courbe d’emmagasinement du lac Kénogami 
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La discrétisation de la courbe d’emmagasinement a permis de définir la relation entre le niveau et 

le volume de l’eau dans la retenue. Cette relation est présentée par l’équation 6.1. 

NivH𝑤 = 8,637 𝑉
0,3618 + 60 Équation 6.1 

Où NivH𝑤, est le niveau de l’eau dans le réservoir (𝑚) 

𝑉, est le volume de l’eau dans le réservoir (ℎ𝑚3) 

6.1.2 Paramétrage de la simulation 

 Variables aléatoires 

Le tableau ci-dessous présente les caractéristiques des variables aléatoires à l’entrée du modèle : 

Tableau 6.1 Paramétrage des variables aléatoires 

   Loi de 

distribution 

Moyenne  Écart-

Type 

Minimum Maximum 

Rapport B/H (en m/m) Lognormale 3,37 3,20 0 19,32 

Pente de rive z (en m/m) Lognormale 0,997 0,91 0 6,30 

Temps de formation 𝒕𝒇 

(en h)1 

Lognormale 1,05

(1,37)1 

0,867

(1,74)1 

0,25

(0,25)1 

3      

(8,50)1 

 Caractéristiques du barrage et de la retenue 

Les caractéristiques du barrage qui influence la simulation de Monte-Carlo sont : la hauteur de la 

retenue de 13,7 m, la capacité de retenue de 490 106 m3 et l’équation 6.1. 

                                                 

1 Le temps de formation est généré suivant deux scénarios. Le premier est placé à l’extérieur de la parenthèse. Il 

représente les caractéristiques des données ajustées obtenues à la suite de la suppression de la valeur aberrante (voir 

section 4.4.1.3). Le deuxième est placé à l’intérieur de la parenthèse. Il représente les caractéristiques statistiques de 

l’ensemble des données. À noter que les résultats présentés sont générés à partir des données ajustées sauf indication 

contraire. 
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 Pas de temps de calcul et durée de la simulation 

Le pas de temps est choisi en vérifiant la stabilité numérique des volumes d’eau sortants de la 

brèche à la fin du temps de formation (voir figure 6.3). Dans ce cas, le pas de temps choisi est 

de 𝛥𝑡 = 40 𝑠. Par ailleurs, la simulation de Monte-Carlo est effectuée pour une durée 24 ℎ. 

 

Figure 6.3 Volume sortant de la brèche à la fin du temps de formation en fonction du pas de temps  

 Niveau de confiance 

Sauf indication contraire, les calculs sont effectués en admettant un risque de 5 %. 

 Nombre d’intervalles 

L’hydrogramme de rupture est généralement défini par son débit de brèche et par son temps de 

formation. Le rapport 𝐵/𝐻 et la pente de rive 𝑧 restent des propriétés intrinsèques utilisées dans le 

calcul des valeurs instantanées du débit. Ainsi, les probabilités sont calculées pour des intervalles 

de temps de formation  𝑡𝑓. En pratique, les pas de temps nécessaires pour observer des différences 

significatives sur les zones inondables sont souvent de 5 min. La durée des intervalles est donc 

fixée à 5 min. Les hydrogramme de rupture sont alors regroupés en 33 intervalles pour les données 

ajustées et en 99 intervalles pour l’ensemble des données. 

 Nombre d’itération  

Le nombre d’itérations choisi est de 1 million. Ce choix est vérifié à la suite de l’analyse de l’erreur 

quadratique moyenne de prédiction de la moyenne 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et de l’écart-type 𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 (voir 

section 4.3.3). Plus précisément, la convergence des résultats est vérifiée pour les intervalles ayant 
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une fréquence supérieure à 5 %. Dans ce cas, les hydrogrammes à très faible probabilité (inférieurs 

à 5 %) ne sont pas considérés dans l’étude de la rupture.  

Les figures 6.4.a à 6.b  présentent la variation des erreurs de prédiction 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et  𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 

obtenue à partir des données ajustées pour les trois intervalles les plus probables. Pour mieux 

visualiser l’oscillation des facteurs d’erreur, seuls les résultats ayant un nombre d’itérations 

supérieur à 10 000 sont affichés. 

  

Figures 6.4.a et 27.b Erreurs de prédiction de la digue Ouiqui estimées respectivement à partir de 

la moyenne et de l’écart-type pour l’intervalle ]20-25] min ayant une fréquence de 7,59 %  

  

Figures 6.28.a et 28.b Erreurs de prédiction de la digue Ouiqui estimées respectivement à partir 

de la moyenne et de l’écart-type pour l’intervalle ]25-30] min ayant une fréquence de 8,09 % 
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Figures 6.29.a et 6.b Erreurs de prédiction de la digue Ouiqui estimées respectivement à partir de 

la moyenne et de l’écart-type pour l’intervalle ]30-35] min ayant une fréquence de 8,02  

6.1.3 Variables aléatoires générées 

Les paramètres géométriques et temporels de la brèche sont générés de manières individuelles à 

partir de 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 de tirages aléatoires. Leurs caractéristiques statiques sont définies par la base 

de données sur les barrages (voir section 5.1.3). L’annexe E présente la distribution de ces 

paramètres et leurs principales caractéristiques.  

À noter que ces paramètres ne sont pas liés à un cas spécifique de barrage. Par contre, ils permettent 

d’estimer les valeurs aléatoires du débit de brèche. Or, ce dernier tient compte aussi de la grandeur 

de l’ouvrage et des propriétés du réservoir. Dans le cas de la digue Ouiqui, le débit de brèche est 

évalué suivant deux scénarios (voir section 6.1.2-Pramaétrage des variables aléatoires). 

 Scénario 1 : Données ajustées 

Le débit de brèche générée varie entre 220 et 25 388 𝑚3/𝑠 avec une moyenne de 4 487 𝑚3/𝑠 et 

un écart-type de 2 998 𝑚3/𝑠. La figure 6.30 présente la distribution du débit de brèche obtenue à 

partir des données ajustées. 



76 

 

 

Figure 6.30 Distribution du débit de brèche de la digue Ouiqui générée à partir des données ajustées  

La distribution du débit de brèche suit une loi lognormale. Les intervalles les plus probables sont 

[1 419 − 2 617[ 𝑚3/𝑠 avec une fréquence de 23,3 % et [2 617 − 3 816[  𝑚3/𝑠 avec une 

fréquence de 23,2 %. Or, la valeur du débit de brèche évalué par la méthode normée est de 

5 490 𝑚3/𝑠. Elle se trouve ainsi dans l’intervalle [5 014 − 6 213[  𝑚3/𝑠. avec une fréquence 

d’environs 11 %. La chance que le débit excède cette catégorie avoisine les 20 %. 

 Scénario 2 : Données initiales 

Le débit de brèche générée varie entre 214 et 25 232 𝑚3/𝑠 avec une moyenne de 4 405 𝑚3/𝑠 et 

un écart-type de 2 911 𝑚3/𝑠. La figure 6.31 présente la distribution du débit de brèche obtenue à 

partir des données initiales. 
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Figure 6.31 Distribution du débit de brèche de la digue Ouiqui générée à partir des données initiales  

La distribution du débit de brèche suit une loi lognormale. Les intervalles les plus probables sont 

[1 406 − 2 597[  𝑚3/𝑠 avec une fréquence de 23,5 % et [2 597 − 3 788[  𝑚3/𝑠 avec une 

fréquence de 23.5 %. Or, la valeur du débit de brèche évalué par la méthode normée est de 

5 490 𝑚3/𝑠. Elle se trouve ainsi dans l’intervalle [6 171 − 7 360[  𝑚3/𝑠. avec une fréquence 

d’environs 11 %. La chance que le débit excède cette catégorie avoisine les 20 %. 

Le tableau 6.2 permet de comparer les débits de brèches obtenues à partir des deux scénarios pour 

différentes valeurs de probabilité. 

Tableau 6.2 Débit de brèche obtenu pour différentes valeurs de probabilités  

Probabilité de non-dépassement  𝒑( 𝑸𝒑 < 𝑸𝒑
𝒎𝒂𝒙) 25 % 50 % 75 % 95 % 

𝑸𝒑
𝒎𝒂𝒙 des données ajustées (𝒎𝟑/𝒔) 2 437 3 704 5 628 10 275 

𝑸𝒑
𝒎𝒂𝒙 des données initiales (𝒎𝟑/𝒔) 2 414 3 651 5 522 10 013 

Les deux scénarios ont pratiquement la même distribution du débit de brèche. Par contre, les 

résultats obtenus avec les données ajustées sont plus conservateurs que ceux estimés avec les 

données initiales. 
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Le tableau 6.3 présente les probabilités de dépassement et de masse liées aux valeurs proposées par 

la norme : 

Tableau 6.3 Probabilités obtenues à partir des valeurs de la méthode normée  

  Valeur obtenue à 

partir de la norme 

Probabilité de 

masse  

𝒑(𝑿 = 𝑿𝒏𝒐𝒓𝒎𝒆) 

Probabilité de 

dépassement 

𝒑(𝑿 > 𝑿𝒏𝒐𝒓𝒎𝒆) 

Rapport B/H (en m/m) 4 10,4 % 26,2 % 

Pente de rive z (en m/m) 1 48 % 34 % 

Temps de formation 𝒕𝒇 (en h) 0,5 94 % 80,6 % 

Débit de brèche  𝑸𝒑 (𝒎𝟑/𝒔) 5 490 0,01 % 26,3 % 

6.1.4 Intervalles de probabilité générée 

Le temps de formation est subdivisé en 33 intervalles de 5 min. Chaque intervalle est caractérisé 

par sa fréquence et par son hydrogramme de rupture. La fréquence correspond à la probabilité que 

le débit de brèche survienne entre les deux bornes de l’intervalle. Par ailleurs, l’hydrogramme est 

généré par l’approximation de Monte-Carlo en considérant un risque de 5 %.   

La figure 6.32 montre que la norme se positionne dans l’intervalle le plus probable avec une 

fréquence de 8,09 %. La probabilité que le temps de formation se trouve dans un intervalle de plus 

faible valeur est 14 %. 
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Figure 6.32 Répartition du débit de brèche par intervalle de temps de formation de la digue Ouiqui 

Or, le débit de brèche estimé par la méthode normée demeure plus conservateur que ceux 

approximés par Monte-Carlo. En effet, le plus grand débit généré par intervalle de probabilité est 

de 4 674 m3/s. Il compte un écart de 14.8 % par rapport à celui de la norme. La figure 6.33 présente 

les hydrogrammes de rupture générés par les deux méthodes. 

 

Figure 6.33 Hydrogrammes de rupture de la digue Ouiqui, générés par intervalle de probabilité 

(courbes en gris) et hydrogramme estimé par la méthode normée (courbe orange)  

 Les hydrogrammes de rupture générés par intervalles de probabilité semblent être en décalage 

régulier par rapport au temps. Cette observation peut se justifier par l’hypothèse de départ qui 

estime que le débit de brèche est atteint lorsque la durée est égale au temps de formation. Il est 
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ainsi possible de relier directement ce débit au paramètre temporel. Pour ce faire, la courbe 

enveloppe des hydrogrammes de rupture a été approximée par une fonction polynomiale de degré 

2. La figure 6.34 permet d’associer les débits de brèche aux temps de formation et aux probabilités 

cumulées. 

 

Figure 6.34 Courbes d’enveloppe et de fréquences de la digue Ouiqui 

6.1.5 Hydrogrammes de rupture et incertitudes 

La génération des résultats par intervalles de probabilité donne lieu à plusieurs scénarios de rupture. 

L’importance de ces scénarios est évaluée à partir des fréquences de débit de brèche. De cette 

manière, l’utilisateur peut choisir les hydrogrammes qu’ils lui semblent appropriés pour son étude. 

Pour la digue Ouiqui, seuls les trois intervalles les plus probables seront analysés. Le tableau 6.4 

présente leurs principales caractéristiques.  

Tableau 6.4 Caractéristiques des trois intervalles les plus probables de la digue Ouiqui généré pour 

un risque de 5 %  

Intervalle de tf (min) Fréquence Débit de brèche (m3/s) Marge d’erreur (m3/s) 

]𝟐𝟎, 𝟐𝟓] 7,59 % 4 647 10,5 

]𝟐𝟓, 𝟑𝟎] 8,09 % 4 624 11,3 

]𝟑𝟎, 𝟑𝟓] 8,02 % 4 612 4,42 
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La marge d’erreur présentée par le tableau ci-dessus concerne le nombre d’hydrogramme utilisé 

dans l’approximation de Monte-Carlo. Elle est calculée à partir de l’erreur de prédiction moyenne 

des débits de brèches. Cette valeur ne doit pas être confondue avec les incertitudes estimées pour 

un niveau de confiance donnée. Le tableau 6.5 présente les marges d’erreur de débit de brèche 

obtenues pour différentes valeurs de risque. 

Tableau 6.5 Incertitudes du débit de brèche en m3/s de la digue Ouiqui  

Niveau de risque 

(1-α)2 

Intervalles de tf (min) 

0.1 % 1 % 5 % 10 % 

]𝟐𝟎, 𝟐𝟓] 38 20 23 19 

]𝟐𝟓, 𝟑𝟎] 37 29 22 18 

]𝟑𝟎, 𝟑𝟓] 36 28 22 18 

Les trois intervalles ont pratiquement les mêmes valeurs d’incertitudes. Leurs grandeurs sont très 

faibles par rapport à celle du débit de brèche. En effet, l’écart entre la moyenne des simulations et 

les bornes de l’intervalle est d’environ 1 %. Ainsi, l’influence du risque est négligeable sur les 

hydrogrammes de rupture générés. 

Par ailleurs, l’estimation du débit de brèche résulte de la combinaison de l’ensemble des variables 

spatio-temporelles générées aléatoirement. Ainsi, les valeurs spécifiques du rapport, de la pente de 

rive et du temps de formation déterminées par intégrations ne sont pas liées directement à 

                                                 

2 La notion du risque est associée à l’intervalle de confiance du débit de brèche. Un risque de 5 % correspond ainsi à 

un niveau de confiance de 95 %. Prenons l’exemple de temps de formation variant entre ]20, 25] min caractérisé par 

un débit de brèche de 4 647 m3/s. Dans ce cas, l’incertitude du débit est de 23 min 3 s/s. Autrement dit, la chance que 

la vraie valeur du débit de brèche se trouve entre 4 624 (4 647 - 23 min 3 s/s)  et  4 670 (4 647 + 23 min 3 s/s)  est  de 

95 %. 
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l’hydrogramme de rupture. Le tableau 6.6 présente les paramètres de brèche approximés par la 

méthode de Monte-Carlo.  

Tableau 6.6 Paramètres de brèche de la digue Ouiqui approximés par la méthode de Monte-Carlo 

Intervalle de tf    

(min) 

Rapport B/H          

(en m/m) 

Pente de rive z       

(en m/m) 

Temps de formation 𝒕𝒇 

(en min) 

]𝟐𝟎, 𝟐𝟓] 3,268 0,976 22,6 

]𝟐𝟓, 𝟑𝟎] 3,270 0,974 27,5 

]𝟑𝟎, 𝟑𝟓] 3,272 0,979 32,5 

Les trois intervalles ont pratiquement les mêmes valeurs de rapport B/H et de pente z. Par ailleurs, 

la norme surestime le rapport d’environ 18 % et la pente d’environ 2.4 %. 

Les figures ci-dessous présentent les hydrogrammes de rupture générée pour les trois intervalles 

les plus probables et celui estimé par la méthode normée.  

 

Figure 6.35 Hydrogrammes de ruptures de la digue Ouiqui générés pour les trois intervalles les plus 

probables 
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6.2 Barrage Clair 

Le barrage Clair est situé dans la région Chaudière-Appalaches. Il est construit sur l’extrémité Est 

du lac Clair, à environ 10 𝑘𝑚 du village Sainte-Perpétue (voir figure 6.36). Le réservoir Clair a 

une superficie de 16,1 ℎ𝑎, soit 9 % de celle du bassin versant. Le réseau hydrographique est 

alimenté par les bassins versants des rivières Saint-Jean (73 𝑘𝑚2) et Ouelle (844 𝑘𝑚2).  

 

Figure 6.36 Barrage Clair (obtenu à partir du répertoire du (CEHQ)) 

6.2.1 Caractéristiques de l’ouvrage 

Construit en 1972, le barrage Clair est un ouvrage en terre à faible contenance. Il a une hauteur de 

2  𝑚 et une longueur de 110 𝑚 et une capacité de retenue de 273 360 𝑚3. La fiche technique du 

barrage est présentée dans l’annexe D.2. 

L’équation de la courbe d’emmagasinement est approximée à partir de la hauteur et de la capacité 

de retenue. Cette relation est présentée par l’équation 6.2. 

H𝑤 = 2,718 𝑉
0,3618 Équation 6.2 

Où H𝑤, est la hauteur de l’eau dans le réservoir (𝑚) 

𝑉, est le volume de l’eau dans le réservoir (ℎ𝑚3) 
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6.2.2 Paramétrage de la simulation 

 Variables aléatoires 

Les variables aléatoires utilisées dans la simulation de la rupture du barrage Clair ont les mêmes 

caractéristiques statistiques que celles de la digue Ouiqui (voir tableau  6.1). Dans ce cas, seul le 

scénario avec les données ajustées est utilisé. 

 Caractéristiques du barrage et de la retenue 

Les caractéristiques du barrage qui influence la simulation de Monte-Carlo sont : la hauteur de 

retenue de 1,7 m, la capacité de retenue de 273 360 m3 et l’équation 6.2. 

 Pas de temps de calcul 

Le pas de temps choisi est le même que celui de la digue Ouiqui ; soit de 𝛥𝑡 = 40 𝑠. Par ailleurs, 

la simulation de Monte-Carlo est effectuée pour une durée 24 h. La vidange totale du réservoir est 

atteinte à 6 h 11 min. 

 Niveau de confiance 

Sauf indication contraire, les calculs sont effectués en admettant un risque de 5 %. 

 Nombre d’intervalles 

Le type et le nombre d’intervalles de probabilité utilisés pour le barrage Clair sont les mêmes que 

ceux présentés pour la digue Ouiqui. 

 Nombre d’itérations 

Le nombre d’itérations choisi est de 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. Les figures 6.37.a à 39.b présentent la variation des 

erreurs de prédiction 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et  𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 obtenue à partir des données ajustées pour les trois 

intervalles les plus probables.  
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Figures 6.37.a et 37.b Erreurs de prédiction du barrage Clair estimées respectivement à partir de 

la moyenne et de l’écart-type pour l’intervalle ]20-25] min ayant une fréquence de 7,59 % 

  

Figures 6.38.a et 38.b Erreurs de prédiction du barrage Clair estimées respectivement à partir de 

la moyenne et de l’écart-type pour l’intervalle ]25-30] min ayant une fréquence de 8,09 % 

  

Figures 6.39.a et 39.b Erreurs de prédiction du barrage Clair estimées respectivement à partir de 

la moyenne et de l’écart-type pour l’intervalle ]30-35] min ayant une fréquence de 8,02 % 
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6.2.3 Variables aléatoires générées 

Les paramètres géométriques et temporels de la brèche sont générés de manières individuelles à 

partir de  1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 de tirages aléatoires. Leurs caractéristiques statiques sont les mêmes que celle 

obtenue pour la digue Ouiqui (voir l’annexe E). 

Dans le cas du barrage Clair, le débit de brèche générée varie entre 1,2 et 133 𝑚3/𝑠 avec une 

moyenne de 23,5 𝑚3/𝑠 et un écart-type de 15 𝑚3/𝑠. La figure 6.40 présente la distribution du débit 

de brèche obtenue à partir des données ajustées. 

 

Figure 6.40 Distribution du débit de brèche du barrage Clair  

La distribution du débit de brèche suit une loi lognormale. L’intervalle le plus probable est  

[13,8 −  20[ 𝑚3/𝑠 avec une fréquence de 23.4 %. Or, la valeur du débit de brèche évalué par la 

méthode normée est de 29,4 𝑚3/𝑠. Elle se trouve ainsi dans l’intervalle [26,4 − 32,6[ 𝑚3/𝑠. avec 

une fréquence d’environs 11 %. La chance que le débit excède cette catégorie avoisine les 20 %. 

Par ailleurs, la probabilité que le débit de brèche soit égal à la valeur de la norme est de 1,8 %, 

tandis que la probabilité de dépassement est évaluée à 25,2 %. 

6.2.4 Intervalles de probabilité générée 

La répartition des hydrogrammes par intervalles de probabilité du barrage Clair ressemble à celle 

de la digue Ouiqui. Par contre, les valeurs du débit sont plus faibles. Or, le débit de brèche estimé 

par la méthode normée demeure plus conservateur que ceux approximés par Monte-Carlo. En effet, 
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le plus grand débit généré par intervalle de probabilité est de 6,5 m3/s. Il compte un écart de 14 % 

par rapport à celui de la norme. La figure 6.41 présente les hydrogrammes de rupture générés par 

les deux méthodes. 

 

Figure 6.41 Hydrogrammes de rupture du barrage Clair générés par intervalle de probabilité 

(courbes en gris) et hydrogramme estimée par la méthode normée (courbe orange) 

Les hydrogrammes de rupture générés par intervalles de probabilité semblent être en décalage 

régulier par rapport au temps. Ainsi, la courbe d’enveloppe des hydrogrammes de rupture a été 

approximée par une fonction polynomiale de degré 2. La figure 6.42  permet d’associer les débits 

de brèche aux temps de formation et aux probabilités cumulées. 

 

Figure 6.42 Courbes d’enveloppe et de fréquences du barrage Clair 
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6.2.5 Hydrogrammes de rupture et incertitudes 

Comme pour la digue Ouiqui, seuls les trois intervalles les plus probables seront analysés pour le 

barrage Clair. Le tableau 6.7 présente leurs principales caractéristiques.  

Tableau 6.7 Caractéristiques des trois intervalles les plus probables du barrage Clair généré pour un 

risque de 5 % 

Intervalle de tf  (min) Fréquence Débit de brèche (m3/s) Marge d’erreur (m3/s) 

]𝟐𝟎, 𝟐𝟓] 7,59 % 24,9 0,056 

]𝟐𝟓, 𝟑𝟎] 8,09 % 24,7 0,059 

]𝟑𝟎, 𝟑𝟓] 8,02 % 24,6 0,023 

Par ailleurs, le tableau 6.8  présente les marges d’erreur de débit de brèche obtenues pour différentes 

valeurs de risque. 

Tableau 6.8 Incertitudes du débit de brèche en m3/s du barrage Clair  

Niveau de risque 

 (1-α)3 

Intervalles de tf (min) 

0.1 % 1 % 5 % 10 % 

]𝟐𝟎, 𝟐𝟓] 0,20 0,16 0,12 0,10 

]𝟐𝟓, 𝟑𝟎] 0,19 0,15 0,11 0,10 

]𝟑𝟎, 𝟑𝟓] 0,23 0,15 0,11 0,09 

 

                                                 

3 La notion du risque est associée à l’intervalle de confiance du débit de brèche. Pour l’intervalle ]20, 25] min, le risque 

que la vraie valeur du débit se trouve à l’extérieur de l’intervalle ]24,9 –  0,12 −  24,9 +  0,12] m3/s est de 5 % 
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Les trois intervalles ont pratiquement les mêmes valeurs d’incertitudes. Leurs grandeurs sont très 

faibles par rapport à celle du débit de brèche. En effet, l’écart entre la moyenne des simulations et 

les bornes de l’intervalle est d’environ 1 %. Ainsi, l’influence du risque est négligeable sur les 

hydrogrammes de rupture générés. 

Les figures ci-dessous présentent les hydrogrammes de rupture générée pour les trois intervalles 

les plus probables et celui estimé par la méthode normée.  

 

Figure 6.43 Hydrogrammes de ruptures du barrage Clair générés pour les trois intervalles les plus 

probables 

6.3 Barrage Caribou 

Le barrage Caribou est situé dans la région Bas-Saint-Laurent. Il est construit à l’ouest du lac 

Caribou, à environ 12 𝑘𝑚 de la ville Dégelis (voir figure 6.44). Le réservoir Caribou a une 

superficie de 3,5 ℎ𝑎.  
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Figure 6.44 Localisation du barrage Caribou (obtenu à partir du répertoire du (CEHQ)) 

6.3.1 Caractéristiques de l’ouvrage 

Le barrage Caribou est un petit barrage en terre utilisé pour des activités récréatives et de 

villégiature. Il a une hauteur de 1  𝑚  et une capacité de retenue de 35 200 𝑚3. La fiche technique 

du barrage est présentée dans l’annexe D.3.  

L’équation de la courbe d’emmagasinement est approximée à partir de la hauteur et de la capacité 

de retenue. Cette relation est présentée par l’équation 6.3. 

H𝑤 = 3,63 𝑉
0,3618 Équation 6.3 

Où H𝑤, est la hauteur de l’eau dans le réservoir (𝑚) 

𝑉, est le volume de l’eau dans le réservoir (ℎ𝑚3) 

6.3.2 Paramétrage de la simulation 

 Variables aléatoires 

Les variables aléatoires utilisées dans la simulation de la rupture du barrage Caribou ont les mêmes 

caractéristiques statistiques que celles de la digue Ouiqui (voir tableau 6.1). Dans ce cas, seul le 

scénario avec les données ajustées est utilisé. 
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 Caractéristiques du barrage et de la retenue 

Les caractéristiques du barrage qui influence la simulation de Monte-Carlo sont : la hauteur de 

l’ouvrage de 1 m, la capacité de retenue de 35 200 m3 et l’équation 6.3. 

 Pas de temps de calcul et durée de la simulation 

Le pas de temps choisi est le même que celui de la digue Ouiqui ; soit de 𝛥𝑡 = 40 𝑠. Par ailleurs, 

la simulation de Monte-Carlo est effectuée pour une durée 24 ℎ. La vidange totale du réservoir est 

atteinte à 3 h 9 min 

 Niveau de confiance 

Sauf indication contraire, les calculs sont effectués en admettant un risque de 5 %. 

 Nombre d’intervalles 

Le type et le nombre d’intervalles de probabilité utilisés pour le barrage Caribou sont les mêmes 

que ceux présentés pour la digue Ouiqui. 

 Nombre d’itération 

Le nombre d’itérations choisi est de 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. Les figures 6.45.a à 47.b présentent la variation des 

erreurs de prédictions 𝑀𝑆𝑃𝐸𝑚𝑒𝑑 et  𝑀𝑆𝑃𝐸𝑆𝑇𝐷𝐸𝑉 des trois intervalles les plus probables.  

  

Figures 6.45.a et 45.b Erreurs de prédiction du barrage Caribou estimées respectivement à partir 

de la moyenne et de l’écart-type pour l’intervalle ]20-25] min ayant une fréquence de 7,59 % 



92 

 

  

Figures 6.46.a et 46.b Erreurs de prédiction du barrage Caribou estimées respectivement à partir 

de la moyenne et de l’écart-type pour l’intervalle ]25-30] min ayant une fréquence de 8,09 % 

  

Figures 6.47.a et 47.b Erreurs de prédiction du barrage Caribou estimées respectivement à partir 

de la moyenne et de l’écart-type pour l’intervalle ]30-35] min ayant une fréquence de 8,02 % 

6.3.3 Variables aléatoires générées 

Les paramètres géométriques et temporels de la brèche sont générés de manières individuelles à 

partir de  1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 de tirages aléatoires. Leurs caractéristiques statiques sont les mêmes que celles 

obtenues pour la digue Ouiqui (voir l’annexe E). 

Dans le cas du barrage Caribou, le débit de brèche générée à une moyenne de 5,7  𝑚3/𝑠 et un écart-

type de 3,4 𝑚3/𝑠. La figure 6.48 présente la distribution du débit de brèche obtenue à partir des 

données ajustées. 
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Figure 6.48 Distribution du débit de brèche du barrage Caribou 

La distribution du débit de brèche suit une loi lognormale. L’intervalle le plus probable est  

[3 −  4,6[ 𝑚3/𝑠 avec une fréquence de 24.8 %. Or, la valeur du débit de brèche évalué par la 

méthode normée est de 7,5 𝑚3/𝑠. Elle se trouve ainsi dans l’intervalle [6,2 −  7,7[ 𝑚3/𝑠 avec une 

fréquence d’environ 13 %. La chance que le débit excède cette catégorie avoisine les 21 %. 

Par ailleurs, la probabilité que le débit de brèche soit égal à la valeur de la norme est de 7 %, tandis 

que la probabilité de dépassement est évaluée à 22,3 %. 

6.3.4 Intervalles de probabilité générée 

La répartition des hydrogrammes par intervalles de probabilité du barrage Caribou ressemble à 

celle de la digue Ouiqui. Par contre, les valeurs du débit sont plus faibles. Or, le débit de brèche 

estimé par la méthode normée demeure plus conservateur que ceux approximés par Monte-Carlo. 

En effet, le plus grand débit généré par intervalle de probabilité est de 6,5 m3/s. Il compte un écart 

de 14 % par rapport à celui de la norme. La figure 6.49 présente les hydrogrammes de rupture 

générés par les deux méthodes. 
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Figure 6.49 Hydrogrammes de rupture du barrage Caribou générés par intervalle de probabilité 

(courbes en gris) et hydrogramme estimée par la méthode normée (courbe orange) 

Les hydrogrammes de rupture générés par intervalles de probabilité semblent être en décalage 

régulier par rapport au temps. Ainsi, la courbe d’enveloppe des hydrogrammes de rupture a été 

approximée par une fonction polynomiale de degré 2. La figure 6.50 permet d’associer les débits 

de brèche aux temps de formation et aux probabilités cumulées. 

 

Figure 6.50 Courbes d’enveloppe et de fréquences du barrage Caribou 

6.3.5 Hydrogrammes de rupture et incertitudes 

Comme pour la digue Ouiqui, seuls les trois intervalles les plus probables seront analysés pour le 

barrage Caribou. Le tableau 6.9 présente leurs principales caractéristiques.  
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Tableau 6.9 Caractéristiques des trois intervalles les plus probables du barrage Caribou générés pour 

un risque de 5 % 

Intervalle de tf  (min) Fréquence Débit de brèche (m3/s) Marge d’erreur (m3/s) 

]𝟐𝟎, 𝟐𝟓] 7,59 % 6,37 0,014 

]𝟐𝟓, 𝟑𝟎] 8,09 % 6,27 0,014 

]𝟑𝟎, 𝟑𝟓] 8,02 % 6,19 0,006 

Par ailleurs, le tableau 6.10 présente les marges d’erreur de débit de brèche obtenues pour 

différentes valeurs de risque. 

Tableau 6.10 Incertitudes du débit de brèche en m3/s du barrage Caribou  

Niveau de risque 

(1-α)4 

Intervalles de tf (min) 

0.1 % 1 % 5 % 10 % 

]𝟐𝟎, 𝟐𝟓] 0,049 0,038 0,029 0,024 

]𝟐𝟓, 𝟑𝟎] 0,046 0,036 0,027 0,023 

]𝟑𝟎, 𝟑𝟓] 0,045 0,035 0,027 0,022 

Les trois intervalles ont pratiquement les mêmes valeurs d’incertitudes. Leurs grandeurs sont très 

faibles par rapport à celle du débit de brèche. En effet, l’écart entre la moyenne des simulations et 

les bornes de l’intervalle est d’environ 1 %. Ainsi, l’influence du risque est négligeable sur les 

hydrogrammes de rupture générés. 

                                                 

4 La notion du risque est associée à l’intervalle de confiance du débit de brèche. Pour l’intervalle ]20, 25] min, le risque 

que la vraie valeur du débit se trouve à l’extérieur de l’intervalle ]6,37–  0,029, 6,37 + 0,029] m3/s est de 5 % 
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Les figures ci-dessous présentent les hydrogrammes de rupture générée pour les trois intervalles 

les plus probables et celui estimé par la méthode normée.  

 

Figure 6.51 Hydrogrammes de ruptures du barrage Caribou générés pour les trois intervalles les plus 

probables 
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CHAPITRE 7 CONCLUSION ET RECOMMANDATIONS 

La rupture des barrages est souvent accompagnée par des effets néfastes, voire catastrophiques, sur 

les personnes, la faune, la flore et les biens. Ainsi, plusieurs études s’intéressent à évaluer l’onde 

de submersion générée et les risques qu’ils lui soient associés. Or, la prévention des risques passe 

tout d’abord par une bonne estimation des débits sortants de la brèche. Dans le cas des barrages en 

remblai, la brèche se forme souvent par érosion progressive. Cette érosion est régie par plusieurs 

phénomènes physiques liés à la composition de l’ouvrage et aux caractéristiques de l’écoulement. 

La complexité de ces phénomènes rend l’estimation difficile et entacher d’incertitudes. 

L’objectif de ce travail de maîtrise est de construire un programme informatique qui offre à 

l’ingénieur plusieurs scénarios de rupture. Chaque scénario est caractérisé par son hydrogramme 

de rupture et sa probabilité de récurrence. Ils sont déterminés par l’approximation de Monte-Carlo 

tout en considérant un certain niveau de risque. Les variables aléatoires utilisées sont liées 

directement aux paramètres géométriques et temporels de la brèche. Les phénomènes physiques 

qui interviennent dans le processus d’érosion sont alors considérés de manière implicite. Le choix 

des tirages aléatoires se retrouve ainsi simplifié. De plus, les paramètres retenus dans le tirage 

correspondent à ceux utilisés par la norme HQ 60-00-00. Cette dernière est employée au Québec 

dans toutes les études de sécurité hydraulique des barrages. Dans le cas des barrages en remblai, 

les paramètres définis par la norme sont la pente ultime des berges de la brèche 𝑧, le rapport final 

de la base de la brèche sur sa hauteur 𝐵/𝐻 et le temps de formation 𝑡𝑓.Cet outil permet alors de 

comparer les hydrogrammes générés par la méthode probabiliste avec celui de la norme. Il est ainsi 

possible d’évaluer la fiabilité du scénario utilisé dans la pratique en vigueur. 

Dans ce travail, la norme surestime les débits de brèches pour les trois barrages choisis. Il serait 

intéressant de simuler la propagation de l’onde de rupture pour les hydrogrammes générés par les 

méthodes probabiliste et normée. Ainsi, il sera possible de juger de l’impact de la surestimation du 

débit standardisé sur les zones à risque. 

Le programme de simulation vient ainsi élargir le champ d’incertitudes pris en compte lors de 

l’étude des ruptures de barrages. En effet, la méthode de Monte-Carlo est souvent utilisée lors de 

l’évaluation de la propagation de l’onde de submersion. Par contre, elle est rarement employée 

pour l’approximation des hydrogrammes à la sortie de la brèche. Pour une simulation plus 
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complète, cet outil pourra alors être jumelé aux programmes qui permettent de faire un calcul de 

laminage de crue et aux logiciels qui simulent la propagation de l’onde de rupture. 

Or, il faut se rappeler que le programme développé utilise un modèle de brèche standardisé. Ce 

modèle considère la brèche comme un seuil trapézoïdal qui s’élargit de manière linéaire. Ainsi, 

l’érosion évolue à travers le remblai de manière uniforme. Il est vrai que l’application des 

incertitudes directement sur les paramètres de brèches inclut implicitement les facteurs liés à 

l’hydraulique, au transport solide et à la mécanique des sols. Par contre, le processus de 

développement se base sur plusieurs hypothèses physiques et mathématiques. Paradoxalement, ces 

hypothèses sont elles-mêmes la source de plusieurs incertitudes. De plus, la hauteur initiale de l’eau 

dans le réservoir est susceptible de comporter plusieurs incertitudes, tandis que le modèle propose 

une valeur de départ fixe pour cette variable. 

Par ailleurs, il faut accorder une attention particulière au cas d’étude choisi lors de l’application du 

programme. En effet, la base de données est limitée par le nombre d’ouvrages recensés. L’analyse 

de ce recensement montre que les données comportent plusieurs disparités. Par exemple, les 

données de Wahl (2014) ne sont pas recommandées pour des ouvrages ayant une faible érodabilité. 

Il est à noter aussi que la simulation de Monte-Carlo ne permet pas de connaître le paramètre le 

plus influençant dans l’analyse des incertitudes. De plus, l’application de cette méthode donne des 

intervalles de confiance très restreints. Ainsi, le niveau de risque choisit pour les débits de brèche 

à une incidence négligeable sur les hydrogrammes de rupture générés. Or, l’influence de ce risque 

sur les résultats est étroitement liée à la variance des débits de brèche. Il existe principalement trois 

causes qui peuvent être à l’origine des faibles variances. La première est le générateur aléatoire qui 

donne des résultats très rapprochés. Le deuxième est dû aux choix des variables aléatoires. En effet, 

plusieurs scientifiques ont démontré que les incertitudes peuvent varier selon les paramètres 

choisis. Enfin, la troisième est liée à l’équation utilisée pour la prédiction du débit de brèche. 

À partir de cette réflexion, il est possible de conclure que le programme de simulation possède 

quelques limitations malgré sa contribution dans la simulation stochastique des ruptures de barrage. 

Ces limites peuvent être franchies de plusieurs façons. Par exemple, il serait envisageable d’inclure 

la hauteur d’eau du réservoir dans l’analyse des incertitudes. En effet, de nombreuses études ont 

démontré l’importance de ce paramètre dans l’estimation du débit de brèche. Ainsi, l’incidence du 

risque pourra être plus significative.  
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ANNEXE A – BASE DE DONNÉES 

Tableau A.1 Base de données de Wahl (2014) 

 Observed breach geometry  

No. Dam name Location Year 
Built 

Year 
Failed 

Dam 
Type 

Dam 
height  

Hd 
 (m) 

Reservoir 
capacity  

Vd  
(x 106 
m3) 

Erodibility Failure 
mode 

Volume of 
water above 

breach 
invert  

Vw 
 (x 106 m3) 

Depth of 
water above 

breach 
invert 

Hw  
(m)  

Height  
Hb  

(m) 

Top 
width  

Bt 
(m) 

Bottom 
width  

Bb 
(m) 

Average 
width 
Bavg  
(m) 

Slide 
slope  

Z:1 
(h:v) 

Peak 
Outflow 

rate  
Qp  

(m3/s) 

Failure 
time  

Tf 

 (h) 

Basis for 
Erodibility 

classification 

1 Apishapa É.-U. 1920 1923 HD 34,1 22,5 HE P 22,2 28 31,1 91,5 81,5 86,5 0,44 6850   VERIFIED 

2 Banqiao China 1956 1975 DC 24,5 492 HE OT 607,5 31 29,5 372 210 291 0,3 78100   VERIFIED 

3 Castlewood É.-U. 1890 1933 DC 21,3 4,23 ME OT 6,17 21,6 21,3 54,9 33,5 44,2 0,5 3570 0,5 VERIFIED 

4 Coedty U.K. 1924 1925 DC 11 0,31 HE OT 0,311 >11 11 67 18,2 42,7 2,22 
 

0,25 VERIFIED 

5 Davis Reservoir É.-U. 1914 1914 FD 11,9 58 HE P 58 11,58 11,9 21,3 15,4 18,3 0,25 510 
 

UNJUSTIFIED 

6 Dells É.-U. 1908 1911 DC 18,3 13 HE OT 13 18,3 18,3 112,8 
   

5440 0,67 UNKNOWN 

7 Elk City É.-U. 1925 1936 DC 9,1 0,74 ME OT 1,18 9,44 9,14 45,5 27,7 36,6 1 
 

0,83 VERIFIED 

8 Frankfurt Germany 1975 1977 HD 9,8 0,35 LE P 0,352 8,23 9,75 9,2 4,6 6,9 0,4 79   UNKNOWN 

9 French Landing É.-U. 1924 1925 HD 12,2 
 

ME P 3,87 8,53 14,2 41 13,8 27,4 0,97 929   UNJUSTIFIED 

10 Frias Argentina 1939 1970 FD 15 0,25 ME OT 0,25 15 15 62 
   

400 0,25 VERIFIED 

11 Hart É.-U. 1920 1986 HD 10,8 
 

HE P 6,35 10,7 10,8 106,6 41,2 73,9 3,03 
  

UNKNOWN 

12 Hatfield É.-U. 1908 1911 DC 6,8 12,3 HE OT 12,3 6,8 6,8 
  

91,5 
 

3400   UNKNOWN 

13 Hell Hole É.-U. 1964 1964 HD 67,1 30,6 ME P 30,6 35,1 56,4 175,1 66,9 121 0,96 7360 0,75 VERIFIED 

14 Horse Creek É.-U. 1911 1914 FD 12,2 21 HE P 12,8 7,01 12,8 76,2 70 73,1 0,83 3890 3 UNJUSTIFIED 

15 Johnstown É.-U. 1853 1889 ZD 38,1 18,9 ME OT 18,9 24,6 24,4 128 61 94,5 1,38 8500 0,75 VERIFIED 

16 Kelly Barnes É.-U. 1948 1977 HD 11,6 0,505 HE   0,777 11,3 12,8 35 18 27,3 0,85 680 0,5 UNKNOWN 

17 Lake Francis É.-U. 1899 1899 HD 15,2 0,865 HE P 0,789 14 17,1 30 10,4 18,9 0,65 
 

  UNJUSTIFIED 

18 Lake Latonka É.-U. 1965 1966 HD 13 4,59 ME P 4,09 6,25 8,69 49,5 28,9 39,2 1,18 
 

  VERIFIED 

19 Little Deer Creek É.-U. 1962 1963 HD 26,2 1,73 HE P 1,36 22,9 27,1 49,9 9,3 29,6 0,75 1330 0,33 VERIFIED 

20 Lower Otay É.-U. 1901 1916 DC 41,2 49,3 ME OT 49,3 >39,6 39,6 172 93,8 133 1 
 

1 VERIFIED 



106 

 

Tableau A.1 Base de données de Wahl (2014) (suite) 

 Observed breach geometry  

No. Dam name Location Year 
Built 

Year 
Failed 

Dam 
Type 

Dam 
height  

Hd 
 (m) 

Reservoir 
capacity  

Vd  
(x 106 
m3) 

Erodibility Failure 
mode 

Volume of 
water above 

breach 
invert  

Vw 
 (x 106 m3) 

Depth of 
water above 

breach 
invert 

Hw  
(m)  

Height  
Hb  

(m) 

Top 
width  

Bt 
(m) 

Bottom 
width  

Bb 
(m) 

Average 
width 
Bavg  
(m) 

Slide 
slope  

Z:1 
(h:v) 

Peak 
Outflow 

rate  
Qp  

(m3/s) 

Failure 
time  

Tf 

 (h) 

Basis for 
Erodibility 

classification 

21 Lower Two Medicine É.-U. 1913 1964 HD 11,3 19,6 ME P 25,8 11,3 11,3 84 50 67 1,5 1800 
 

UNJUSTIFIED 

22 Lyman É.-U. 1913 1915 ZD 19,8 49,5 ME P 35,8 16,2 19,8 107 87 97 1 
  

UNJUSTIFIED 

23 Lynde Brook É.-U. 1871 1876 DC 12,5 2,52 ME P 2,88 11,6 12,5 45,7 15,3 30,5 1,22 
  

UNKNOWN 

24 Mammoth É.-U. 1916 1917 DC 21,3 13,6 ME OT 13,6 21,3 21,3 
  

9,2 
 

2520 3 UNJUSTIFIED 

25 Martin Cooling Pond Dike É.-U. 1978 1979 FD 10,4 136 HE P 136 8,53 12,8 
  

186 
 

3115 
 

VERIFIED 

26 Oros Brazil 1960 1960 ZD 35,4 650 LE OT 660 35,8 35,5 200 130 165 1   8,5 VERIFIED 

27 Otter Lake É.-U. 
 

1978 HD 6,1 0,15 ME P 0,109 5 6,1 17,1 1,5 9,3 1,28 
  

UNKNOWN 

28 Potato Hill Lake USA 1947 1977 HD 
  

ME OT 0,105 > 7,77 7,77 26,2 6,8 16,5 1,25 
  

UNKNOWN 

29 Prospect USA 1914 1980 HD 
  

HE P 3,54 1,68 4,42 91,4 85,4 88,4 0,69 116 2,5 UNKNOWN 

30 Quail Creek USA 1984 1988 HD 24 50 ME P 30,8 16,7 21,3 72,1 67,9 70 0,1 3110 1 UNKNOWN 

31 Rito Manzanares É.-U. 
 

1975 HD 7,3 0,0247 HE P 0,0247 4,57 7,32 19 7,6 13,3 0,77 181 
 

VERIFIED 

32 Sheep Creek USA 1969 1970 HD 17,1 1,43 ME P 0,91 14,02 17,1 30,5 13,5 22 0,5 
  

UNKNOWN 

33 Shimantan China 
 

1975 HD 25 94,4 HE OT 117 27,4 25,8 446 288 367 0,32 30000   VERIFIED 

34 Spring Lake É.-U. 1887 1889 HD 5,5 0,135 ME P 0,136 5,49 5,49 20 9 14,5 1 
  

UNJUSTIFIED 

35 Statham Lake É.-U. 1955 1994 HD 5,5 
 

ME OT 0,564 5,55 5,12 23,8 18,2 21 0,54 
  

UNKNOWN 

36 Swift É.-U. 1914 1964 FD 57,6 37 ME OT 37 47,85 57,6 225 225 225 0 24947 0,25 VERIFIED 

37 Teton USA 1976 1976 ZD 93 356 ME P 310 77,4 86,9 237,9 64,1 151 1 65120   VERIFIED 

38 Trial Lake É.-U. 
 

1986 HD 
  

ME P 1,48 5,18 5,18 25,2 16,8 21 0,82 
  

UNKNOWN 

39 Upper Pond É.-U. 
 

1984 HD 5,2 0,22 ME OT 0,222 5,18 5,18 25,4 7,6 16,5 1,71 
  

UNKNOWN 

40 Wilkinson Lake USA 1956 1994 DC 3,2 
 

HE P 0,533 3,57 3,72 35,5 22,5 29 1,74 
  

UNKNOWN 

41 Winston USA 1904 1912 DC 7,3 0,664 ME OT 0,662 6,4 6,1 21,3 18,3 19,8 0,2 
 

  UNJUSTIFIED 

42 Big Bay Dam USA 1992 2004 ZD 15,6 17,5 ME P 17,5 13,5 13,56 96 70,1 83,2 0,95 4160 0,92 VERIFIED 
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Tableau A.1 Base de données de Wahl (2014) (suite) 

 Observed breach geometry  

No. Dam name Location Year 
Built 

Year 
Failed 

Dam 
Type 

Dam 
height  

Hd 
 (m) 

Reservoir 
capacity  

Vd  
(x 106 
m3) 

Erodibility Failure 
mode 

Volume of 
water above 

breach 
invert  

Vw 
 (x 106 m3) 

Depth of 
water above 

breach 
invert 

Hw  
(m)  

Height  
Hb  

(m) 

Top 
width  

Bt 
(m) 

Bottom 
width  

Bb 
(m) 

Average 
width 
Bavg  
(m) 

Slide 
slope  

Z:1 
(h:v) 

Peak 
Outflow 

rate  
Qp  

(m3/s) 

Failure 
time  

Tf 

 (h) 

Basis for 
Erodibility 

classification 

43 Bullock Draw USA 1971 1971 HD 5,8 1,13 
 

P 0,74 3,05 5,79 13,6 11 12,5 0,21 
  

NO BASIS 

44 Butler É.-U. 
 

1982 HD 
   

OT 2,38 7,16 7,16 68,6 56,4 62,5 0,85 810 
 

NO BASIS 

45 Clearwater Lake USA 1965 1994 HD 
   

OT 0,466 4,05 3,78 26,7 18,9 22,8 1,03 
  

NO BASIS 

46 East Fork Pond USA 1978 1978 HD 13,4 
  

P 1,87 9,8 11,4 22,2 12,2 17,2 0,44 
  

NO BASIS 

47 Emery É.-U. 1850 1966 HD 16 0,5 
 

P 0,425 6,55 8,23 13,7 7,9 10,8 0,35 
  

NO BASIS 

48 Euclides de Cunha Brazil 1958 1977 HD 53 13,6 
 

OT 13,6 58,2 53 131 
   

1020 
 

NO BASIS 

49 Fred Burr É.-U. 1947 1948 HD 16 0,63 
 

P 0,75 10,2 10,4 
    

654 
 

NO BASIS 

50 Goose Creek É.-U. 1903 1916 HD 6,1 10,6 ME OT 10,6 4,47 4,1 30,5 22,3 26,4 0,5 565 0,5 VERIFIED 

51 Haas Pond É.-U. 
 

1984 HD 4 
  

P 0,0234 2,99 4 12,2 9,1 10,7 0,38 
  

NO BASIS 

52 Hatchtown É.-U. 1908 1914 ZD 18,9 15 HE P 14,8 16,8 18,3 180 140 151 2,42 3080 1 VERIFIED 

53 Hutchinson USA 1960 1994 HD 
   

OT 1,17 4,42 3,75 37,7 29,1 33,4 1,14 
  

NO BASIS 

54  Iowa Beef Processors USA 1971 1993 HD 4,6 0,333 
  

0,333 4,42 4,57 18,3 15,3 16,8 0,33 
  

NO BASIS 

55 Ireland #5 II USA 1946 1984 HD 5,2 
  

P 0,16 3,81 5,18 15,5 11,5 13,5 0,38 110 
 

NO BASIS 

56 Johnston City USA 1921 1981 HD 4,3 0,575 
 

P 0,575 3,05 5,18 13,4 2 8,23 1 
  

NO BASIS 

57 Kraftsmen É.-U. 
 

1994 HD 
   

OT 0,177 3,66 3,2 19,2 9,8 14,5 1,48 
  

NO BASIS 

58 La Fruta USA 1930 1930 HD 12,5 
 

ME P 78,9 7,9 14 63 54,6 58,8 0,3 
  

VERIFIED 

59 Lake Avalon É.-U. 1894 1904 HD 14,5 7,75 
 

P 31,5 13,7 14,6 137,6 122,4 130 0,52 2320 2 NO BASIS 

60 Lake Genevieve USA 1930 1985 HD 7,6 
   

0,68 6,71 7,92 29 4,6 16,8 1,54 
  

NO BASIS 

61 Lake Philema USA 1965 1994 HD 
   

OT 4,78 9 8,53 50 44,4 47,2 0,33 
  

NO BASIS 

62 Lambert Lake USA 1957 1963 HD 16,5 
  

P 0,296 12,8 14,3 10,6 4,6 7,62 0,21 
  

NO BASIS 

63 Laurel  Run É.-U. 
 

1977 HD 12,8 0,385 
 

OT 0,555 14,1 13,7 68 2,2 35,1 2,4 1050 
 

NO BASIS 

64 Lawn Lake USA 1903 1982 HD 7,9 0,9 HE P 0,798 6,71 7,62 29,5 14,9 22,2 0,96 510 
 

VERIFIED 
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Tableau A.1 Base de données de Wahl (2014) (suite) 

 Observed breach geometry  

No. Dam name Location Year 
Built 

Year 
Failed 

Dam 
Type 

Dam 
height  

Hd 
 (m) 

Reservoir 
capacity  

Vd  
(x 106 
m3) 

Erodibility Failure 
mode 

Volume of 
water above 

breach 
invert  

Vw 
 (x 106 m3) 

Depth of 
water above 

breach 
invert 

Hw  
(m)  

Height  
Hb  

(m) 

Top 
width  

Bt 
(m) 

Bottom 
width  

Bb 
(m) 

Average 
width 
Bavg  
(m) 

Slide 
slope  

Z:1 
(h:v) 

Peak 
Outflow 

rate  
Qp  

(m3/s) 

Failure 
time  

Tf 

 (h) 

Basis for 
Erodibility 

classification 

65 Lily Lake É.-U. 1913 1951 HD 
   

P 0,0925 3,35 3,66 11,3 10,3 10,8 0,13 71 
 

NO BASIS 

66 Lower Latham É.-U. 
 

1973 HD 8,2 7,08 
 

P 7,08 5,79 7,01 123,4 35 79,2 6,3 340 
 

NO BASIS 

67 Melville  USA 1907 1909 ZD 11 
 

ME P 24,7 7,92 9,75 40 25,6 32,8 0,7 
  

VERIFIED 

68 Merimac Upper Lake USA 1939 1994 HD 
   

OT 0,0696 3,44 3,05 15,5 12,9 14,2 0,41 
  

NO BASIS 

69 Mossy Lake USA 1963 1994 HD 2,8 
  

OT 4,13 4,41 3,44 45,8 37,2 41,5 1,24 
  

NO BASIS 

70 Noppikoski SE 1966 1985 HD 18,5 0,7 
 

OT 1 
       

0,38 NO BASIS 

71 North Branch É.-U. 
 

1977 HD 5,5 
   

0,0222 5,49 
     

29,4 
 

NO BASIS 

72 Otto Run É.-U. 
 

1977 HD 5,8 
   

0,0074 5,79 
     

60 
 

NO BASIS 

73 Pierce Reservoir É.-U. 
 

1986 HD 
   

P 4,07 8,08 8,69 37,2 23,8 30,5 0,77 
  

NO BASIS 

74 Puddingstone USA 1926 1926 HD 15,2 0,617 
 

OT 0,617  >15,2 15,2 91,4 
   

480 0,25 NO BASIS 

75 Rainbow Lake É.-U. 
 

1986 HD 14 
  

OT 6,78 10 9,54 62,9 14,9 38,9 2,52 
  

NO BASIS 

76 Renegade Resort Lake É.-U. 1970 1973 HD 
   

OT 0,0139 3,66 3,66 4,6 0 2,29 0,63 
  

NO BASIS 

77 Salles Oliveira Brazil 1966 1977 HD 35,1 25,9 
 

OT 71,5 38,4 35 
  

167 
 

7200 2 NO BASIS 

78 Sandy Run É.-U. 
 

1977 HD 8,5 0,0568 
 

OT 0,0567 8,53 
     

435 
 

NO BASIS 

79 Timber Lake É.-U. 1926 1995 HD 9,3 
  

OT 1,8 7,33 7,32 62,2 51,2 56,7 1,5 
  

NO BASIS 

80 Trout Lake É.-U. 1894 1909 HD 7,6 
  

OT 0,493 8,53 8,53 41,5 10,9 26,2 1,79 
  

NO BASIS 

81 Wheatland É.-U. 1893 1969 HD 13,5 11,5 
 

P 11,6 12,2 13,7 53,8 41 43,5 0,75 
 

1,5 NO BASIS 
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 Note : 

Dam Type (Types de barrage) 

DC Dams with core walls (Barrages avec noyau) 

FD Concrete-faced dams (Barrages à masque en béton) 

HD Homogenous dams (Barrages homogènes) 

ZD zoned-fill dams (Barrages zonés) 

  

Failure mode (Types de ruptures) 

OT  Overtopping (Surverse) 

P  Seepage erosion/piping (Érosion interne) 

  

Erodibility (Érodabilité) 

HE  High erodibility (Érodabilité élevée) 

ME  Medium erodibility (Érodabilité moyenne)  

LE  Low erodibility (Érodabilité faible) 

  

Basis for Erodibility classification (Base de la classification de l’érodabilité) 

VERIFIED La classification de l’érodabilité qu’elle soit fournie par Xu et Zhang (2009) 

ou ajoutée à la base de données est vérifiée par Wahl (2014) 

UNJUSTIFIED La classification de l’érodabilité fourni par Xu et Zhang (2009) est modifiée 

par Wahl (2014) en se basant sur la documentation disponible. 

UNKNOWN La classification de l’érodabilité fourni par Xu et Zhang (2009) n’a pas pu 

être vérifiée par Wahl (2014) à cause du manque de documentations 

significatives. 

NO BASIS La classification de l’érodabilité fourni par Xu et Zhang (2009) est supprimée 

par Wahl (2014), car il n’y a aucune information qui permet de la justifier. 
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ANNEXE B – BARRAGES À FORTE ET FAIBLE CONTENANCE 

(EXTRAIT DE LA LOI SUR LA SÉCURITÉ DES BARRAGES) 

Au Québec, la sécurité des barrages est assujettie à la loi sur la sécurité des barrages en vigueur 

depuis le 11 avril 2002. Elle distingue deux catégories de barrage : les barrages à forte et à faible 

contenance (CEHQ) : 

o Les barrages à forte contenance sont : 

 Les barrages d’une hauteur d’au moins 1 𝑚 , dont la capacité de retenue est supérieure 

à 1 000 000 𝑚3. 

 Les barrages d’une hauteur d’au moins 2.5 𝑚 , dont la capacité de retenue est supérieure 

à 30 000 𝑚3. 

 Les barrages d’une hauteur d’au moins 7,5 m, sans égard à la capacité de retenue. 

o Les barrages à faible contenance sont : 

 Les barrages d’une hauteur de 2 𝑚 et plus qui ne figure pas dans les critères des barrages 

à forte contenance 
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ANNEXE C – REPRÉSENTATION GRAPHIQUE ET TESTS 

STATISTIQUES 

ANNEXE C.1 HISTOGRAMMES 

Les graphiques de type histogramme sont souvent utilisés pour décrire les caractéristiques des 

variables aléatoires. Ils se basent sur les techniques de discrétisation qui permettent de réorganiser 

et de regrouper les données selon plusieurs classes. Les résultats sont alors affichés sous la forme 

d’un diagramme à barre. Ils sont caractérisés par leur nombre, leur intervalle de variation, leur 

largeur et leur hauteur. Ces caractéristiques sont décrites en détail par plusieurs ouvrages de 

statistique appliquée. Dans cette étude, les formules et les méthodes utilisées sont tirées de Singh, 

V. P., Jain et Tyagi (2007, p. 42-47). 

Le nombre de classes est calculé à partir de la règle de Sturges : 

𝑁 = 1 + 3.3 log10 𝑛 

Où 𝑛, est le nombre de données observées 

Les intervalles de variation sont de type ]𝐿𝑖𝑚𝑖𝑛𝑓;  𝐿𝑖𝑚𝑠𝑢𝑝], où 𝐿𝑖𝑚𝑖𝑛𝑓 et 𝐿𝑖𝑚𝑠𝑢𝑝 sont 

respectivement les limites supérieures et inférieures de l’intervalle. 

Par ailleurs, les largeurs des barres sont supposées égales. Leurs hauteurs sont déterminées par un 

calcul normalisé des fréquences relatives. Ainsi, la hauteur de chaque classe estimée à partir de la 

relation suivante : 

𝐹𝑟𝑒𝑞𝑖 =
𝑁𝑖
𝑐

𝑁
 

Où 𝐹𝑟𝑒𝑞𝑖, est la fréquence relative de la classe i 

𝑁𝑖
𝑐, est le nombre de cas d’étude qui se trouve dans la classe i 

En général, les histogrammes permettent d’avoir une vue d’ensemble sur la répartition des données. 

Il est ainsi plus facile d’identifier et d’interpréter le comportement de l’échantillon. Ils donnent 

également une idée sur l’asymétrie des données, l’ordre de grandeur des variables aléatoires et la 

présence de données aberrantes et la présence de plusieurs modes. 
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ANNEXE C.2 TEST D’AJUSTEMENT 𝑲𝒉𝒊𝟐 

Les tests d’ajustement (ou d’adéquation) sont utilisés pour vérifier si un échantillon est compatible 

avec une loi de probabilité. Le principe de ces méthodes est le suivant : tout d’abord, il faut 

admettre une hypothèse nulle 𝐻0 selon laquelle l’échantillon suit une probabilité donnée. Ensuite, 

il faut spécifier l’hypothèse alternative. 𝐻1. Une fois les hypothèses spécifiées, les données 

observées sont transformées en des valeurs théoriques. Enfin, la décision se fait en comparant 

l’observation avec l’estimation et en admettant un certain niveau de risque. Dans cette étude, les 

formules et la méthode utilisée sont tirées de Lejeune (2010, p. 264-271). 

La démarche générale employée pour analyser l’adéquation d’une loi de distribution partir du test 

𝐾ℎ𝑖2 est la suivante : 

1) Formulation des hypothèses :  

𝐻0: 𝑙
′é𝑐ℎ𝑎𝑛𝑡𝑖𝑙𝑙𝑜𝑛 𝑠𝑢𝑖𝑡 𝑙𝑎 𝑙𝑜𝑖 𝑑𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝 

𝐻1: 𝑙
′é𝑐ℎ𝑎𝑛𝑡𝑖𝑙𝑙𝑜𝑛 𝑛𝑒 𝑠𝑢𝑖𝑡 𝑝𝑎𝑠 𝑙𝑎 𝑙𝑜𝑖 𝑑𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝 

2) Détermination du risque 𝛼. Dans cette étude, un risque de 5 % est admis, ce qui correspond 

à un niveau de confiance de 95 %. 

3) Détermination du degré de liberté DDL : 

𝐷𝐷𝐿 = 𝑁 − 1 − 𝑘 

Où 𝑁, est le nombre de classes de l’histogramme 

𝑘, est la dimension de la loi de probabilité choisit 

Pour la normale et la lognormale, il existe deux paramètres d’estimation ; soit la moyenne et l’écart-

type. Ainsi, l’équation du degré de liberté est reformulée sous la forme : 

𝐷𝐷𝐿 = 𝑁 − 3. 

4) Évaluation du seuil critique 𝜒𝑐𝑟
2  à partir de la table de la loi 𝑘ℎ𝑖2. Il correspond à la 

probabilité de dépassement égale au risque admis. 

5) Estimation des probabilités 𝑝𝑖 pour chaque classe i 
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𝑝𝑖 = 𝑝(𝑥 ≤ 𝑙𝑖𝑚𝑖
𝑠𝑢𝑝) − 𝑝(𝑥 ≤ 𝑙𝑖𝑚𝑖

𝑖𝑛𝑓
) 

6) Estimation de l’effectif théorique 𝐶𝑖. C’est-à-dire le nombre d’observations 

qu’aurait la classe i si la distribution était gaussienne. 

𝐶𝑖 = 𝑁𝑝𝑖 

7) Estimation de la statistique de Pearson 𝜒𝑐𝑎𝑙𝑐
2  

𝜒𝑐𝑎𝑙𝑐
2 =∑

(𝑂𝑖 − 𝐶𝑖)
2

𝐶𝑖

𝑛

𝑖=1

 

Où 𝑂𝑖 = 𝑁𝑖
𝑐, est l’effectif observé dans la classe i 

8) Interprétation des résultats : 

𝑆𝑖  𝜒𝑐𝑎𝑙𝑐
2 ≤ 𝜒𝑐𝑟

2 , 𝑙′ℎ𝑦𝑝𝑜𝑡ℎé𝑠𝑒 𝐻0 𝑒𝑠𝑡 𝑎𝑐𝑐𝑒𝑝𝑡é𝑒  

𝑆𝑖  𝜒𝑐𝑎𝑙𝑐
2 > 𝜒𝑐𝑟

2 , 𝑙′ℎ𝑦𝑝𝑜𝑡ℎé𝑠𝑒 𝐻0 𝑒𝑠𝑡 𝑟𝑒𝑗𝑒𝑡é𝑒, 𝑒𝑡 𝑙
′ℎ𝑦𝑝𝑜𝑡ℎé𝑠𝑒 𝐻1 𝑒𝑠𝑡 𝑎𝑐𝑐𝑒𝑝𝑡é𝑒  

9) Détermination du risque de rejeter 𝐻0 alors qu’elle est vraie à partir de la statistique 𝜒𝑐𝑎𝑙𝑐
2  

de la table de la loi 𝑘ℎ𝑖2. 
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ANNEXE C.3 TEST SUR LE COEFFICIENT DE CORRÉLATION DE PEARSON 

L’étude de la relation entre deux variables consiste à observer de manière conjointe leurs 

comportements. Cette relation peut s’exprimer par une quantité mathématique appelée covariance. 

Soit deux variables aléatoires X et Y,  la covariance est donnée par : 

𝑐𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

𝑛 − 1
 

Les variables sont indépendantes si 𝑐𝑜𝑣(𝑋, 𝑌) = 0. La covariance permet alors de savoir si une 

relation existe entre deux séries de données. Par contre, elle ne donne aucune information sur 

l’ampleur de la liaison, surtout lorsque les variables n’ont pas les mêmes unités. Une manière 

simple pour évaluer cette liaison consiste alors à utiliser le coefficient de corrélation de Pearson : 

𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝑆𝑥𝑆𝑦
 

Ce coefficient varie entre -1 et 1. Il vérifie l’existence de la relation linéaire entre deux variables. 

Ainsi, si le couple (X, Y) bivarient normalement et si 𝜌 = 0, alors les variables aléatoires X et Y 

sont indépendante. Or, cette estimation comporte des incertitudes. En effet, il est difficile d’avoir 

une valeur 𝑑𝑒 𝜌 exactement égale à 0. Ainsi, il est possible d’admettre que des variables sont 

indépendantes pour des valeurs de 𝜌 proche de 0. 

La démarche suivante est adoptée pour inclure les incertitudes dans l’évaluation de l’indépendance 

de deux variables aléatoires normalement distribuées (Savy, 2006, p. 157-160) : 

1) Formulation des hypothèses :  

𝐻0: 𝑙𝑒𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑋 𝑒𝑡 𝑌 𝑛
′𝑜𝑛𝑡 𝑝𝑎𝑠 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑎𝑐𝑡𝑖𝑣𝑒 

𝐻1: 𝑙𝑒𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑋 𝑒𝑡 𝑌 𝑜𝑛𝑡 𝑢𝑛𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑔𝑛𝑖𝑓𝑎𝑐𝑡𝑖𝑣𝑒 

2) Détermination du risque 𝛼. Dans cette étude, un risque de 5 % est admis ce qui correspond 

à un niveau de confiance de 95 % avec n-2 degrés de liberté 

3) Évaluation du seuil critique 𝑇𝑐𝑟 à partir de la Table de la loi Student et avec  𝑛 − 2 degrés 

de liberté. 
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4) Suppression des observations avec des valeurs manquantes. Les séries aléatoires X et Y 

aurons alors le même nombre de données.  

5) Calcul du coefficient de corrélation 𝜌. 

6) Évaluation du percentile 𝑇 associé au coefficient de corrélation 𝜌 à partir de la formule de 

Student avec  𝑛 − 2 degrés de liberté : 

𝑇 = √𝑛 − 2
𝜌

√1 − 𝜌2
 

7) Interprétation des résultats : 

Si  𝑇 ≤ 𝑇𝑐𝑟, l’hypothèse 𝐻0  est acceptée. Les variables X et Y sont donc indépendantes 

Si  𝑇 > 𝑇𝑐𝑟 , l’hypothèse 𝐻0  est rejetée. Les variables X et Y sont donc dépendantes 

8) Détermination du risque de rejeter 𝐻0 alors qu’elle est vraie à partir de la statistique 𝑇 de la 

Table de la loi Student. 

Remarque : Pour une distribution lognormale, les données sont d’abord transformées en des 

variables normalement distribuées 𝑋𝑛𝑜𝑟𝑚 = ln (𝑋) 𝑒𝑡 𝑌𝑛𝑜𝑟𝑚 = ln (𝑌) avant d’effectuer le test 

d’indépendance. 
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ANNEXE D – FICHES TECHNIQUES DES BARRAGES SELON LE 

RÉPERTOIRE DU CEHQ 

ANNEXE D.1 DIGUE OUIQUI 

 

Figure D.1 Fiche technique de la digue Ouiqui tirée du répertoire du CEHQ  
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ANNEXE D.2  BARRAGE CLAIR 

 

Figure D.2 Fiche technique du barrage Clair tirée du répertoire du CEHQ 
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ANNEXE D.3  BARRAGE CARIBOU 

 

Figure D.3 Fiche technique du barrage Caribou tirée du répertoire du CEHQ 
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ANNEXE E – DISTRIBUTION DES VARIABLES ALÉATOIRES  

Le programme de simulation développé dans ce mémoire considère les paramètres de brèche 

comme des variables aléatoires. Ces paramètres sont la pente des berges 𝑧, le rapport de la base sur 

la hauteur de brèche 𝐵/𝐻 et le temps de formation 𝑡𝑓. Or, les caractéristiques statistiques de ces 

tirages aléatoires dépendent exclusivement de la base de données. Ainsi, la distribution de ces 

paramètres demeure la même du moment que le nombre d’itérations est suffisamment grand, quel 

que soit le barrage étudié. Cette annexe présente la distribution des paramètres de brèche obtenue 

à partir des données de Wahl (2014). 

ANNEXE E.1 DISTRITBUTION DU RAPPORT DE LA LARGEUR SUR LA HAUTEUR DE 

BRÈCHE  

 

  

Type de 

distribution    

: 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

Taille de 

l’échantillon 

: 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

Minimum : 0,06 𝑚 𝑚⁄  

Maximum : 19,32 𝑚 𝑚⁄  

Moyenne : 3,27 𝑚 𝑚⁄  

Écart-type : 3,75 𝑚 𝑚⁄  

  

Figure E.1 Distribution du rapport de la largeur sur la hauteur de brèche 
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ANNEXE E.2  DISTRITBUTION DE LA PENTE DE RIVE 

 

  

Type de 

distribution    

: 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

Taille de 

l’échantillon 

: 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

Minimum : 0,018 𝑚 𝑚⁄  

Maximum : 6,3 𝑚 𝑚⁄  

Moyenne : 0,997 𝑚 𝑚⁄  

Écart-type : 0,812 𝑚 𝑚⁄  

  

Figure E.2 Distribution de l’inclinaison des pentes de rives de la brèche 

ANNEXE E.3 DISTRITBUTION DU TEMPS DE FORMATION 

 

  

Type de 

distribution    

: 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

Taille de 

l’échantillon 

: 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

Minimum : 15 𝑚𝑖𝑛 

Maximum : 180 𝑚𝑖𝑛 

Moyenne : 58,8 𝑚𝑖𝑛 

Écart-type : 35,3 𝑚𝑖𝑛 

  

Figure E.3 Distribution du temps de formation obtenue avec les données ajustées 
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Type de 

distribution    

: 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

Taille de 

l’échantillon 

: 1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

Minimum : 15 𝑚𝑖𝑛 

Maximum : 510 𝑚𝑖𝑛 

Moyenne : 83,7 𝑚𝑖𝑛 

Écart-type : 77,25 𝑚𝑖𝑛 

  

Figure E.4 Distribution du temps de formation obtenue avec les données initiales 

 


