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RESUME

Dans les techniques de mesures tridimensionnelles, les dimensions et la géométrie des éléments
sont déterminées sur la base des coordonnées de points. Ces points peuvent étre recueillis a partir
de méthodes avec ou sans contact. Malheureusement, toutes ces méthodes posseédent aussi bien

des avantages que des inconvénients.

Les données issues de mesures sans contact comme la triangulation laser ou les techniques de
projection de franges lumineuses se caractérisent par une précision faible, mais une forte densité
de points. Les mesures avec contact, quant a elles, produisent des points de faible densité, mais

avec une plus grande précision.

Ainsi, il est souhaitable de développer un procédé qui permet la fusion de deux ensembles de

données, tout en conservant les avantages et en minimisant les inconvénients.

Cette theése présente une méthode de fusion, insensible a les caractéristiques des données d'entrée,
en particulier dans le cas de mesure sans contact ou les propriétés des points recueillis dépendent
a la fois de la méthode de mesure et de la stratégie choisie. Ce procédé est applicable pour les

surfaces a forme libre.

Dans les méthodes présentées, deux ensembles de données, issues d'une surface, sont recueillis.
Un premier ensemble provient de mesure sans contact et fournit des informations complétes sur
l'objet mesuré. Le deuxiéme ensemble résulte de mesures avec contact et représente des points

caractéristiques utilisés pour corriger le premier ensemble.

Deux méthodes de détermination des points caractéristiques sont proposées, appelées marqueurs
matériels et virtuels. En ce qui concerne les marqueurs matériels, des €léments spéciaux, faits en
billes en céramique, sont congus, fabriqués et montés magnétiquement sur la surface ou il est
permis. Les centres de ces billes, déterminés a 1'aide des données de mesures avec et sans contact,
sont des paires de points caractéristiques correspondants, utilisés pour la fusion. Quant aux
marqueurs virtuels, les points correspondants sont déterminés a partir de mesure sans contact, sur

la base de points recueillis directement sur la surface mesurée, en utilisant la méthode de contact.

Ces deux méthodes sont testées sur des pieces industrielles réelles. Pour les marqueurs matériels
d'un plan, une aube de turbine et un couvercle de moteur ont été utilisés. En plus, pour les

marqueurs virtuels un réservoir de carburant d'un avion a été utilisé. Les résultats de marqueurs



virtuels sont similaires aux résultats de la simulation par ordinateur. De meilleurs résultats ont été
obtenus lorsque la distance entre les points de caractéristique était plus bas. L'incertitude de la

mesure a été diminuée de plus de 40%.
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ABSTRACT

In coordinate measuring techniques dimensions and geometry of elements are determined on the
basis of coordinates of points. These points can be collected using contact and non-contact
methods. Unfortunately every method apart from its advantages has also disadvantages.

Data from non-contact measurements like laser triangulation or structured-light projection
techniques is characterized by a low precision but high density of points. Contact measurements

derive low density of points but with higher precision.

It is desirable to develop a method which allows merging two sets of data, maintaining the
advantages and minimizing disadvantages. This thesis presents a method of data fusion
insensitive to the characteristics of the input data, especially in case of non-contact
measurements, where the properties of gathered points depend both on the measuring method and

chosen strategy. The method is applicable for freeform surfaces.

In the presented method two sets of data from a surface are gathered. One set comes from non-
contact measurements and provides complete information about the measured object. The second
set comes from contact measurements and represents characteristic points used to correct the first

set.

Two methods of characteristic points’ determination were proposed called material and virtual
markers. In material markers special features made of ceramic balls in magnetic mount were
designed and manufactured. The centres of these balls were determined using data from non-
contact measurements and contact measurements forming pairs of corresponding characteristic
points used for fusion. For virtual markers corresponding points from non-contact measurements
were determined based on points gathered directly from the measured surface using contact

method.

Both methods were tested on real parts from the industry. For material markers a plane, a turbine
blade and an engine cover were used. For virtual markers additionally a fuel tank of a plane was

used.

Results from virtual markers are similar to results from computer simulation. Better results were
obtained when the distance between characteristic points was lower. Uncertainty of the

measurement was decreased by more than 40 %.
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CHAPTER 1 INTRODUCTION

In contrast to conventional metrology, coordinate measuring techniques rely on computer
processing of point coordinates gathered on the part surface. These points are used to characterise
measured surface or feature. When large number of points are measured more complex

information about the measurand is provided.

Points can be collected using contact and non-contact sensors. In the case of contact
measurements high precision coordinates are obtained. The main disadvantages of this approach
are the small number of measurement points and the long measuring time. Industry seeks faster
and more thorough inspection of machined parts in order to shorten product process development
time. An attractive solution is applying non-contact methods where much data of the whole

object is gathered in a short time albeit with lower precision.

Unfortunately, every method has its advantages and disadvantages. The complexity and
requirements of modern products means that it is often desirable to combine data from two
measuring techniques. Therefore, in my dissertation | elaborated a method which allows

combining two sets of data, maintaining the advantages and minimizing disadvantages.

1.1 Description of the problem

Results from the measuring process represent the true value of the inspected diameter with some
level of uncertainty. It is caused by accuracy of the used, environmental conditions, measuring
process etc. Results are burdened with two types of errors: random, which are unpredictable and

systematic which are repeatable.

In coordinate metrology there are two methods of points collection: contact and non-contact.
Contact measurement provides high accuracy data but density of points is low. Non-contact
measurements are less accurate than contact measurements due to the presence of both systematic
and random errors. But measurement data covers the inspected part with high density point cloud.

Properties of both methods of points collection are presented in Fig. 1.1.



— actual curve

o~ o points from contact measurements

== points from non-contact measurements

shape deduced from contact measurement

Fig. 1.1: Contact and non-contact measurements of a curve

As we can see from Fig. 1.1 measurement performed only in a non-contact way is characterized
by high inaccuracy. Points from contact measurement are characterized by high accuracy,
whereas a small number of points can make that the information deduced from them does not

represent the actual state.

Inaccuracy of a measurement, which is much more significant in case of non-contact
measurements, is caused by both systematic and random errors. Random errors are represented as
noise in point cloud from non-contact measurement. Systematic errors are caused by measuring

process and the non-contact device and increase the total inaccuracy of results.

As sample devices to present coexistence of measuring errors a measuring arm and a CT scanner

were used. Below it is shown, how systematic errors affect the results.

The first system is a coordinate measuring arm equipped with a laser scanner. In [45] the effect of
the measuring strategy on the measuring results was described. Five different measuring

strategies were chosen (marks of the axes are presented in Fig. 1.2 (5)).

1) The rotary axes (“A”, “C”, “E”, “G”) were immobile, only tiltable axes (“B”, “D”, “F”) were

used in the process of data acquisition.
2) Axis “A” was rotated by 180°, during the measurement only tiltable axes were moved.

3) Axes “A” and “G” were rotated by 180°, during the measurement only tiltable axes were

moved.

4) The rotary axes were immobile, only tiltable axes were moved but the surface was measured

three times in the row.
5) Movement in all seven axes.

The first strategy is the simplest one and can be used in a very limited number of cases, where a

part can be measured with a single scanning path without employment of rotary axes. In the



second and third strategies before the measuring process one or two axes respectively were
rotated by 180° but during the measurement their positions were not changed. In the fourth
strategy the same surface was measured three times so individual scans overlapped. In many
situations in real measurements it is impossible to avoid overlapping of scans which might be
caused by the complex shape of the surface or unsuitable properties for optical measurements.
The last strategy represents the situation in which big parts with quite complex shape are

measured. Then all joints are rotated to cover the part with a laser beam.

These strategies are presented in Fig. 1.2

81)/\" N z)/\A . 3/\wa

180° 180°

Fig. 1.2: Measuring strategies

Using these strategies a planar surface was measured and cross-sections of the resulting point

clouds were analysed. The cross-sections are presented in Fig. 1.3.
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Fig. 1.3: Cross-sections of point clouds along the scanning direction for all strategies

As can be seen from Fig. 1.3 results from a measurement using measuring arm equipped with a
laser scanner are burdened with two types of errors: systematic and apparently, random. In Fig.
1.3 both types are visible and appear with the same order of magnitude. In Fig. 1.3a systematic
error is marked with a black line. As it can be seen the value of systematic error is around 160
um while random error is up to 40 um. It means that systematic errors are the main component of

the total error.

Another example in which a non-contact measurement provides systematic errors is computed
tomography (CT). In computed tomography the part is placed on a rotary table and X-rayed by
beam in the form of a line or a cone. Then for each rotation position of the part its 2D image is
collected by the detector. From all images the data is processed to create 3D volume rendering of
the part. The results depend on many factors. Important factors are: proper positioning of the part
on rotary table, set voltage and current of the X-ray tube and also the algorithm used to detect the
border between the material and the air.

To show how the CT measurement process introduces systematic errors affecting results the

plano-parallel plate presented in Fig. 1.4 was used.



Fig. 1.4: Plano-parallel plate

The plate was measured on a CT scanner and an STL file of the outer surface was created as the
internal structure is not an object of my concerns. Then the plate was calibrated on a coordinate
measuring machine (CMM) using a high density of points. These points were used to create a
CAD model of the plano-parallel plate.

The mesh of triangles (STL) was transformed to the coordinate system of the reference CAD

model, created using CMM data, using best-fit algorithms.

Table 1.1 presents geometrical parameters of the used plano-parallel plate computed for CMM

reference data and from CT measurement.

Table 1.1 : Geometrical parameters of the plano-parallel plate.

Characteristic Reference (CMM) CT measurement
distance between planes, 16.139 16.745

mm

radius of the cylinder, mm 23.417 22.436

Table 1.1 shows how non-contact measurement differs from the reference. The distance between
two planes is here defined as a mean value from two distances for two directions - between a
plane and centre of gravity of the other plane. A plane is calculated by Gaussian fitting to the

measured points while centre of gravity is calculated as average value of coordinates of all points.



The radius has the value of Gauss cylinder fitted to data. For CT measurement this is about 0.6
mm higher while the radius is almost 1 mm lower, which shows that only scaling is not adequate.
In order to present the nature of the distortion introduced by the measurement process a cross-

section was extracted. It is presented in Fig. 1.5.
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Fig. 1.5: Cross-section of CT data

As can be seen, results are affected by systematic and random errors. The cross-section should be
linear, at that scale, while it appears concave. According to manufacturer specification flatness is
of 63.3 nm which is negligible. When a line is fitted to this data using Gaussian method its
position relative to the true value is incorrect. For this reason the measured height of the plate is
also different from the reference. Fig. 1.6 shows a graphic comparison of the CT measurement
minus the CAD model.



Fig. 1.6: Comparison between CT measurement and CAD model

As presented results showed, non-contact measurements introduce two types of error to the result
— systematic and random. So why would not the operator use only contact method which are not

susceptible to measurement conditions and provide more accurate data?

In almost all branches of industry, the production of parts requires thorough inspection of the first
article and to some extent also every part made. Often, manufactured parts have to be assembled
with others so their dimensions should conform to specific tolerances. Depending on the industry
and function of the part, tolerances can have different values so inspection should be performed

with proportional uncertainty.

On the other hand, measurement should be conducted as quickly as possible to decrease the total
time and thereby the cost of the part production. Fast inspection is often contrary to the high

accuracy measurement, which is time-consuming.

To solve this problem and to overcome limitations, an accurate and fast inspection method is
needed. An idea is to combine data from two measuring methods that have different properties.
The first method is accurate but rather slow. The second one is very quick but its accuracy is
lower. Fusion of these two methods would provide high accuracy data in relatively short time.
The contact measurement may be conducted only periodically if the non-contact method is found
to have repeatable systematic errors.

Furthermore, time and costs of the measurements are not the only issues. There are some parts
which cannot be measured using only contact methods. The sample part is a membrane keyboard



where areas around pads can be measured using contact methods while pads cannot. Their typical
activation force is of 0.4 N. For example the pad would move during measurement with a TP20
Renishaw probe, which trigger force in Z direction is 0.75 N, and the measurement would be

disrupted.

Another example is a traction network depicted in Fig. 1.7 for trams.

Fig. 1.7: Traction network

We can observe increase in the power of traction vehicles and an increase of their speed. This
causes increase of technical requirements that traction network contact line must meet. Traction
network must hang at a certain height. Too big a sag results in an incorrect cooperation between
bow collector (pantograph) and the network which is particularly important at high speeds.
Therefore, the height of traction network is controlled. Previously, it was measured using a
contact measurement with special collector mounted on a traction vehicle but pressure on the
traction line affects results. A recently developed method for this height control involves the use
of vision systems. As it was shown non-contact methods provide two types of errors — systematic
and random. Systematic errors can significantly change the results. In this case the use of two
types of measurements, contact and non-contact, could also help. The whole traction network
could be measured using the vision system and the result could be corrected using points
gathered in contact way in places of network fastening — traction poles.

These examples showed that sometimes fusion of data from two measuring systems is a necessity
not dictated solely by time or economic reasons. This makes the subject of data fusion relevant

for research.



1.2 General objectives

The main objective of the present research is to fuse data of the same surface but obtained from
different measuring methods. Some data may be derived from non-contact measurements like
laser triangulation or structured-light projection technique and is characterized by a low precision
but high density of points (HDLP). Other data may come from contact measurements and has low
density of points but also higher precision (LDHP). The proposed approach is mainly suitable for
freeform surfaces because in this case compensation of systematic errors is more complicated and
standard methods cannot be used. The main goal is to increase the precision of one set of data,
using the HDLP and LDHP sets.

1.3 Hypothesis

The precision of non-contact measurements can be increased by modelling point cloud on the
basis of information from more accurate device. Using the proposed methods complex surfaces

as well as simple ones with complex dimensions can be treated.



10

CHAPTER 2 LITERATURE REVIEW

2.1 Coordinate measuring technique

Coordinate measuring techniques are going through rapid developments thanks to the automation
of measurements, the integration with CAD / CAM systems and the use of computer analysis and
archiving of results. The first and still most common device used in coordinate metrology is the
coordinate measuring machine (CMM). The accuracy of a CMM depends on the type of
construction and on the measuring head. It is in the range of tens of microns, down to tenths of a

micron. For part inspection two technologies can be used: contact and non-contact [27, 37].

In contact measurements high accuracy points from a surface are acquired by physical contact
with the surface. The most obvious advantages are a lack of susceptibility to viewpoint or
lighting conditions and an ability to inspect regions that cannot be reached by light beam.
Another advantage is that CMM equipped with a contact probe can be used to extract features
information from a small number of points [26]. The disadvantages are slower measuring speed
than in case of non-contact measurements, limitations in the size of the part and the necessity to
fasten the measured object [33], which is particularly significant for freeform surfaces [7] and big
parts, which require much surface coverage and mechanical motion respectively. Note that when
measuring a part with a CMM there are different sources of error like machine and part errors but
also triggering probe and probe tip errors [39] . And also there are many factors affecting

accuracy of touch trigger probes. Some of them were analysed in [64].

It is worth noticing that the set of measured points only constitute a small sample of the measured
feature or surface. For this reason the quality and quantity of information obtained from a CMM
depend on the number and distribution of measuring points [34]. Also as CMM software does not
detect discontinued areas some information can be lost [63]. There is a need to find a compromise
between the number of measuring points and measuring time. From an economic point of view
the smallest sample should be chosen, but form errors require finding the maximum values of
form deviations from a full-field inspection [40]. Depending on the task, point acquisition by
CMM can be conducted in point-to-point and continuous scanning ways [37]. When points are
collected in continuous mode, the density of points for a given time is higher, but so is

uncertainty [62].
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Nowadays faster and more thorough inspection of machined parts in order to shorten product
development and production time is requested. An attractive solution is applying optical methods
where data from the whole object is gathered in a short time. Unfortunately in optical methods
larger uncertainty of points appears that reduces the benefit from higher density of points [37].
Optical methods include: triangulation, ranging, interferometry, structured lighting and image

analysis.

A short comparison of contact and non-contact measuring methods was presented in the

following subchapter.

2.2 Contact versus non-contact measurements

Both contact and non-contact measuring systems have their pros and cons. Contact systems give
accurate data. Moreover scanning and routine operations can be repeated by using created
measuring programmes. On the other hand, programming of measurement for complex
components is tedious and the digitization is time-consuming. Non-contact scanning is fast and
generates high density point cloud but resolution is limited and noise appears. Large memory is

required to process the data [27].

In order to compare data from contact and non-contact measurements, both should be put into the
same coordinate system. A common method of alignment is the use of three spheres located in
the measuring space. They are measured together with the inspected part by all sensors. Then
relation between centres of balls from different systems is calculated. Subsequently rotation and
translation matrices are computed to minimize distances between these points [27]. To improve
this kind of matching, spheres should have high diameters and should be as far as possible from
each other [37]. There are also other methods to align part in the coordinate system. They are

described below.

2.3 Part in the coordinate system

As in the process of measurement, the important issue is the location of the measuring part. There
are a number of methods to define the position of the part in the coordinate system of the
measuring device. The first type of alignment is by using some initial points and then by
minimizing distances between measured and design points. This method is often called Best Fit

Alignment. Another solution is the 3-2-1 approach where six points on three mutually
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perpendicular planes are measured [51, 52]. Alas this method is only applicable for parts with
plane surfaces [38]. There is also a method similar to the first one but where features are used
instead of points. For the location of part in the measuring space dedicated tools and features can
be used [38].

There are some problems with CAD-directed dimensional measurements. The first one is that
actual measured point can be different from the intended ones. This is because of the lack of
knowledge about the exact transformation between the device and the measured object and also
due to dimensional errors of the part [38]. Uncertainty of the part’s localization is small relative
to the size of the part, but more than one order of magnitude than the tolerances allowed by the

manufacturing operation [21].

When the part is correctly localized in the measuring volume measuring plan shall be created.

The process is described in the following subchapter.

2.4 Measuring plan

A serious limitation in coordinate measurements is the need for skilled workers to prepare the
measuring plan. When defining the measurement plan, a basic problem is the selection of the
number and location of the measuring points. The three most common methods are blind
sampling: uniform sampling (not efficient, especially when small number of points is measured),
Latin Hypercube Sampling (uniform projection of the samples on each of the axis of the
hyperplane) and Hammersley sequence (compared to the first method, this approach gives a
pleasant, less clumped pattern) [14]. The measuring plan is crucial to avoid false conformity

positives [1].

In order to design the measuring plan, two kinds of information can be used: a priori information
from the machining process or measurement of similar part and in-process information called

adaptive measuring plan [40, 1].

There are three factors important in the process of optimization a sampling plan: time, accuracy
and completeness of the measurement. For economic reasons, the number of measuring points
should be limited but it is highly probable that a small number of points cannot adequately

represent the inspected feature [15].



13

For contact measurements, a sampling strategy presented by Colosimo et al. in [9] can be chosen.
The authors suggested choosing measuring points in the areas, where according to the
construction requirements, deviation from the nominal value is the most important. This reduces

the time and the cost of the measurement while providing crucial information.

For freeform surfaces, because it is not always clear where control points should be located, the
conventional method is to create a grid of measuring points on 2D plane and project it on the
surface. Subsequently, the obtained structure/pattern or only nodes of the grid are measured with

the CMM. The disadvantage of this approach is that it is not relevant for complex shapes [33].

Also the best strategies for optical measurements were analysed. A procedure was presented for
creating automatic scanning plan. First, an initial plan is generated and tested. Then it is verified
whether all points can be measured with this initial plan and then if necessary, it is modified.
Next, on the basis of critical points, scan directions and paths are generated. Finally, depth of

field and occlusions are checked [32].

Another approach was presented by Seokbae et al. in [51]. At the beginning, a complex part is
divided into some functional surfaces. This is performed on the basis of distances between critical
points obtained from the initial scanning. The existence of critical points simply means that the
surface on which they appear cannot be measured by a single pass of the scanner. Distances
between these points are longer than the length of the laser stripe or the angles between their
normal vectors are bigger than doubled the view angle. After these operations a scan path is
generated. Finally, depth of field and occlusions are checked. This way, scan directions can be

modified or added to generate a final scan path.

When a laser scanning plan is generated, a few constraints need to be satisfied. The first one is
the angle between the surface normal and incident laser beam called view angle. It should be less
than the value set for a given sensor. The part should also be within the length of the stripe
generated by the laser emitter. Measured points need to be on a certain range of distance from the
laser source. Determination of the measuring plan should take into account the lack of
interference with the measurand and proper preparation of the surface being measured [66].

As was mentioned earlier, from the engineering point of view the number of measuring points

should be limited [40]. This speeds up the inspection time of the part.
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Edgeworth et al. [15] presented the iterative sampling method to determine a measuring plan on
the basis of surface normal measurements. To this end, deviations of points’ location and surface
normal from the nominal values were used. Afterwards, they created interpolating curves to
predict the form error appearing between pairs of measuring points. This curve allows deciding
whether the next measuring points are required to complete, within desired confidence limits, the
measurement and selecting locations for the next sample. Their algorithm can also be used to
identify outliers in a scanned surface data, because outliers can affect significantly the accuracy
of the measurement. The limitation of this method is the necessity of having the nominal

geometry which prevents its use, for example, in reverse engineering.

To create an adaptive measuring plan a curvature-based approach can be adapted. In this strategy
points are concentrated in the areas with higher curvature [60].

Recently, to automate the measuring plan Kriging model began to be used. This model was
developed based on works of G. Krige and initially used in mining. Kriging model allows
interpolating the response at any location. This is performed by having design of experiment,

where stochastic parameters are defined. Prediction value py(x) can be expressed by the equation

[14]:

() = B +r(ORG (Y — B1) 21

where x is any predicted point, y is a corresponding response at points belonging or not to the
designed experiment, r(x) is a vector of the correlation values between the predicted point x and
all points of the design of experiments and Ry is the correlation matrix of the design points, 8 is a

set of coefficients. Basically Kriging model is used to iteratively update a measuring plan [40].

In [14] authors presented a strategy for adaptive inspection of parts to limit the number of
measuring points. Their method can be adapted for big freeform surfaces, which makes it useful
in various industries. The procedure starts with the measurement of initial points which are
determined by the Hammersley sequence. Then, first a Kriging model is built. The model allows
for iterative addition of points to the design of the experiment. Points are chosen on the areas at
risk. The loop is ended when probability of the surface conformity is not smaller than a required
confidence interval. Authors tested their algorithm for big parts from the aeronautic industry like:

forward pressure bulkhead, upper part of a cockpit and landing gear compartment. Similar
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approaches were presented also in [40] and [1]. Unfortunately, it is still time-consuming contact

inspection.

Based on developed measuring plan the inspection is performed using selected measuring

method.

2.5 Triangulation scanning

As it was mentioned there are few non-contact measuring methods. They include: triangulation,
ranging, interferometry, structured lighting and image analysis. In my dissertation | focused
mainly on laser scanners based on triangulation because of their broad use in industry.
Triangulation scanners are more accurate and cheaper [37] than other non-contact measuring
techniques and are faster than tactile methods [57]. Regrettably the uncertainty of laser scanners
results is one order of magnitude higher than for contact probes [17]. The working principle of
triangulation is as follows. A laser plane is sent by the transmitter to the measured part. The
illumination by the laser of the inspected surface is observed by a CCD (charge-coupled device)
camera. This gives 2D coordinates of points that are the intersection of the laser beam and the
measured surface. The distance between optical centre and measured surface can be calculated

from following equation [36]:

fd
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where f is the focal length, d is the triangulation base, a is the signal peak on the CCD array and 6

is the incident angle. The geometric dependencies are presented in Fig. 2.1.

— Laser
source

Optical Laser
s Center spot

sensor

a,

r

¥
m = =
L

Fig. 2.1: Working principle of laser triangulation [36]
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The uncertainty can be computed from the above equation and not including external factors

(apart from incident angle) like for instance environmental conditions [36]:

RZ
Or ® 27 0a 2.3

where o, is the uncertainty of the photodetector array.

For the uncertainty calculation, the use of a sensor precision as a sensor accuracy is common and
accurate if the variance of the sensor does not change around the measuring range, as it is most
influencing factor [36].

The third coordinate value is determined on the basis of the position of the scanner in determined

coordinate system or in the coordinate system of the device moving the scanner [11, 57, 18].

Apart from advantages of laser scanning like high speed, high-resolution and non-contact
sensing, this method has also some limitations. There are many factors affecting laser scanning
accuracy. The most important seems to be the properties of the measured surface like reflection,
chemical composition of the material, microstructure and roughness. The best measurement
results can be obtained with surfaces that produce a good diffuse reflection at the same
wavelength as the laser source [57]. Therefore, a special preparation of the part is necessary in
some instances. For example specular or transparent surfaces should be covered for example with
special layers [57, 51] of white powder. Moreover geometric obstruction, like relative position
between the sensor and the measured surface can affect laser scanning measurement [57, 61, 49].
Ultimately, the combined effects of environment, operation error, data processing, fitting and

transformation error must be considered [61].

There are two main strategies when laser scanning is conducted. The first is a global strategy
where orientation changes of the scanner during the measurement are minimized. In the second
one, called multi-oriented strategy, the laser scanner passing over the surface is swivelling to
maintain the laser beam normal to the surface during the entire measurement. However, it was

proved that differences between both strategies are insignificant [37].

The most important disadvantage of optical measurements seem to be the lack of knowledge
about the measurement uncertainty [37] and how to determine the best methodology for the
measurement. To this end, factors affecting the accuracy of laser scanning were widely analysed

and discussed by many authors.
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In [12] it was shown that when the laser beam is perpendicular to the surface the highest number
of points is acquired. Equally important are the distance between the surface and the device and
the angle between the laser beam and the normal vector to the surface. A higher resolution is
obtained when the sensor is close to the measured surface [57] and at small incident angles [59].
It was also showed that the intensity of the laser should be specified according to the surface
colour, shape and roughness. Concerning the surface colour, for most common lasers with red
colour of the beam, the best results are obtained for red surface, then for green and blue
respectively [58]. Experimental equation used to calculate number of acquired points according
to sensor-to-surface distance, longitudinal angle of measurement and relative reflection rate of the

measured surface can be determined and then used to correct the measurement [58].

It is important to acquire points over the entire surface. It seems to be obvious that if fewer points
are acquired, the quality of scanning is poorer. Additionally, gaps appear in the data that need to
be filled by mathematical calculations on the basis of existing points. Moreover, filling gaps is

performed according to user-defined parameters. This results in an unknown error.

Concerning illumination conditions, measurements should be conducted in the absence of
external light. Although the best results are obtained with the absence of light, this approach is
not convenient for many measuring tasks. For this reason often mercury vapour lamps (MVL) are
used. This solution is better than halogen illumination regardless of the material of the measured
part [3].

In [11] it was presented that errors in laser scanning are caused by two main sources. First is the
influence of the laser interaction with the surface. Second are defects and distortions caused by

the lenses.

2.6 Registration process

Results of laser triangulation measurement can be strongly affected by improper registration
process. For instance, for large parts or objects with complex geometry it is impossible to
measure the whole part with a single pass of the scanner. This is another inconvenience in

triangulation based measurements.

An important issue in the registration process is that, all scans from different viewpoints need to

be transformed into a common coordinate system [20].
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There are different approaches to perform this task. The simplest approach seems to be the use of
three coordinate balls (3CB) to calculate relations between paired merging views [26]. When
using 3CB it is necessary to minimize obstruction of the part by the balls. In determination of

rigid transformation following objective function is minimized [26]:
_ 2
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where T is the matrix for rigid body transformation, p;; is the jth measurement coordinate on the

ith surface patch, and gj; is the corresponding nearest point.

Another approach to provide a common coordinate system was presented by Kuang-Chao et al.
[30]. In their method first a set of data is considered as fixed and to this data a surface is fitted.
The second set is mobile and is transformed to the frame of the first set. Then a blending area is

selected and the minimization function is applied in this area.

2.7 Data processing

Data from 3D optical digitization are known to be noisy, inaccurate and presenting gaps. Authors
in [31] suggested adding quality indicators like complete “k” and accurate t” to numerical
representation of a point cloud. In previous works noisy “6” and dense “p” indicators were listed.
Noisy indicator 6 is connected with sampling errors. Dense indicator p depends on user’s scan
planning and as the name suggests specifies the density of a point cloud. The completeness shows

the importance of existing gaps and the accuracy is a notion of uncertainty.

The common approach to reducing noise is the use of a median filter where point coordinates are
replaced by the median values of sets of points from the closest neighbourhood. The drawback is
that it is not appropriate for sharp edge features [27]. In a similar way, average filter is also used,

but in this case the average value is used instead of the median.

Also very important is the removal of outliers before the fitting process because they can affect
the alignment [50]. They do not belong to the measured surface and should not be treated as such.
2.8 Measuring accuracy

Some terms can be presented concerning the quality and utility of measurements. Accuracy is

defined by how well the measuring point agrees with the point which is the intersection between



19

laser beam and the measured surface. Precision is a variation from sets of measurements from the
same intersection point [36]. Measurement error is defined by the difference between measured
and true values. Uncertainty is defined as follows: non-negative parameter characterizing the
dispersion of the quantity values being attributed to a measurand, based on the information used
[29]. Uncertainty, in simplification, can also be defined as a collection of all measurement errors
[16].

Generally, measurement error can be divided into two categories: systematic and random. The
systematic one has always the same value under the same measuring conditions and random error
depends on factors affecting laser scanning [57]. In some cases systematic error can be predicted.
Ratio between random and systematic error should be small [17] so that compensation of

systematic error will give desirable results.

Concerning errors in a laser scanning, it was noticed that, when the projected angle is around Q°
the random error is the highest but when projected angle increases the systematic error increases.

When scan depth is larger the influence of the projected angle is smaller [17].

A method intended to separate systematic from random error was presented in [56]. To this end a
reference plane was measured with different scan depth. The distances between planes were
considered to be systematic errors as a function of scanning depth and standard deviation on one

plane indicated random error.

2.9 Error compensation of laser scanning and system calibration

In order to overcome the accuracy limitations of laser scanning, attempts to compensate the error

were made.

In [5] Bracun et al. presented tests results of a one-shot triangulation system. They measured a
surface illuminated by a number of light sheets and observed that the curvature of the stripe

increases for stripes further from the central one.

Xi et al. [65] presented a method for laser scanner’s error compensation. For this purpose an
artefact composed of a ball fastened at a constant distance from a reference plane was used. They
observed that measurement error, calculated from the distance between the centre of the ball and
the plane, depends on angle and scan depth so an empirical formula for error estimation was

determined and used to compensate the errors in actual measurements.
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Common approach to calibrate vision systems uses the tip of a CMM probe as a target. The
positions of the tip, from optical measurement are determined in various locations in space and
are compared with positions indicated by the readout system of the CMM. The ball is used
because its view is circular from all angles and its centre position can be calculated easily [52]. A

similar approach is also presented in [58].

Santolaria et al. [49] presented another method for camera calibration. For this purpose they
created an artefact in the form of an artefact with a set of calibration points. Positions of points
from optical measurement were compared with calibrated values and analysed for different

positions and angles of the camera.

To obtain knowledge about the measuring error of a particular device, a quick verification test
can be performed as in [56] in which a reference plane was measured for different positions and
orientations of the laser scanner. Then, a least squares plane was fitted to all points. The fit

residuals provide a value for the maximum expected measurement error.

2.10 Multisensory architectures and data fusion

Another approaches to overcome the accuracy limitations of non-contact measurements are
multisensory architectures and data fusion. Multisensory architectures are applicable to reduce
uncertainty, improve reliability, increase coverage or decrease measuring time. Sensors can be
integrated in different ways: mounting of contact and optical probes in the same frame or one

measurand can be inspected by separate devices [62, 50]. Sensors registration is necessary.

A classification of data fusion methods was presented by Boudjemaa et al. in [4]. Authors named
four methods of fusion: fusion across sensors, fusion across attributes, fusion across domains and
fusion across time (filtering). In fusion across sensors the same property is measured by different
sensors. In fusion across attributes different quantities, but connected with the same experimental
situation, are measured by different sensors. In fusion across domains the same attribute over
various ranges or domains are measured by different sensors. Finally, fusion across time, merges

new data with historical information.

Representation of data from different measurement methods in the same coordinate system was
the impetus that has triggered the researches on methods of fusion of these measurements [50].

The purpose was to take the most appropriate information from each of the method. That
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improves the quality and completeness of the measurement. On one hand accuracy of laser
scanners is one order of magnitude less than for tactile probe and with much noise but on the
other hand triangulation scanning yields data with high density in a short time. That is why
recently, integration of contact and non-contact systems is gaining attention [61]. Data fusion
may overcome the limitations and drawbacks of the individual sensors like for instance low speed
of CMMs [34]. Also, sometimes single sensor cannot derive complete information about the
object [62].

Several methods for data fusion were presented. Many authors proposed to use information from
non-contact device to create a coarse CAD model of the measured object. Then having a priori
knowledge about the part, inspection is performed by contact probe [62, 52, 8, 35]. It is
particularly important when the CAD model of the measured object is not available [27].

A similar approach was presented by Carbone et al. in [7]. The integration method is at the level
of aggregation of the information, not a physical integration. First, a vision system digitizes the
physical object with a structured light scanner, with a mean error within 0.1mm. Then, data is
ordered and filtered. After these operations in the CAD environment, curves are reconstructed
and a rough model is created. This model has an accuracy of 0.5 mm which is sufficient to create
a collision-free measuring path. The rough model is used for digitization and inspection of the
part with a CMM. The first digitization Bezier surfaces are created. Finally the created Bezier
surfaces are used to perform the inspection again, until the required reconstruction accuracy is

achieved.

Freeform surfaces can also be represented by a few parametric equations like Coons patches, B-
splines and NURBS (Non-Uniform Rational B-Splines). B-spline can be expressed by the

following equation [34]:

s(u,v) = X 250 Bip(u) - By g(v) - ¢y 25

where: n,, n, are the number of control points in the uz and v directions; ¢;; (i=0,1,..., ny_4,
j=0,1,...,n,_, are the n (n=n, X n,) control points and B;,(u), Bjq(v) are the normalized B-

splines of degree p and g for the zand vdirections respectively.

Measuring points with corresponding location parameters [uk,vk] can be represented by [34]:

u—1 r—1
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where: xj;, yij, z;; are the coordinates of the B-spline surface control points d;.

In another approach for data fusion, during the measurement, large range devices are used first.
Subsequently for specific features devices with smaller range but higher resolution are used. The
objective is to limit measuring time. High-resolution measurements are applied only for a limited

number of critical positions or features [62].

There are also methods [53, 54] in which data from non-contact sensor is used to determine a set

of surface points that are re-measured in a tactile way.

A common approach is to measure the part with different devices and then replace
features/surfaces which cannot be measured by one method by data from a more suitable one. For
example, when a measured part has small cylindrical holes which cannot be measured by an

optical system, the information about these features are obtained from contact measurement [62].

Another common approach to data fusion uses scanning of geometric surfaces with laser scanner
and on measurement of accurate features by contact CMM. Then connection between both
measurements is created [26]. For this case the mutual position of the sensors is calibrated [27].
For this purpose, calibration targets are used [52]. In [6] authors presented the most common
method to calibrate integrated systems composed of CMM and laser scanner. In this method a
ball is attached to the CMM’s table and is measured by both contact and optical probes. The
drawback of this method is that it is accurate only if measurement is performed in the vicinity of

the calibration position.

Another method for high- and low-resolution data fusion was presented by Jamshidi et al. in [27]
and [26]. CMM and Laser Scanner (LS) data registration uses three balls. Then both sets of data
are converted to IGES format. Subsequently, data from CMM are used to reduce the data from
LS. If features scanned by CMM are in the neighbourhood of the same features from LS, the LS
data, within a desired tolerance, are wiped out and replaced by their CMM’s equivalent. At the
end, all features from contact measurement are attached to the mesh of triangles from optical
measurement. Unfortunately their method can only be used to improve measurement of the part

with precision features and is not suitable for freeform surfaces, as for research presented in [61].
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There are also some commercial solutions for data fusion. One of them, called VAREA initially
generates a triangular patch by the use of a vision system and then the digitization process is
performed on a CMM. It cannot process freeform surfaces [34].

An interesting approach was presented in [55]. The authors proposed a method of data fusion
from multi-resolution sensors. After measurement of a part using two types of devices features in
both are detected. Then Points of Interest (POI) or Regions of Interest (ROI) are used to create
the merged model. Points/regions from both methods that are closer to initial model are taken to
create the merged model. Authors did not present how their algorithm would work for freeform

surfaces without other features.

The subject of data fusion was also considered by Hannachi et al. [22]. In their approach the most
accurate system reconstructs the outline of the object, while the less accurate one is used to
characterize its 3D surfaces. In this approach distortions in measurements of the surfaces are not

corrected.

Senin et al. in [50] used the ICP algorithm for data fusion. A point cloud from optical
measurement is iteratively aligned to data from a CMM by finding corresponding points. They
also augmented fixed point set to cope with the lack of point co-localization and so improved the
registration result. The method requires having points arranged on a regular grid. Therefore as an
optical measurement method only structured light scanning can be used. Triangulation laser
scanners cannot be used because it is difficult to find specific point in the high density,

unorganized point cloud that corresponds to point obtained with the use of CMM.

Colosimo et al. [10] proposed a method of data fusion via Gaussian models. This method uses
kriging to predict the coordinates of points based on multiple measurements but putting different
weights to data from different sensors.

2.11 Iterative closest point algorithm

In [27, 26] and [50] the merging process was performed by the use of the iterative closest point
(ICP) algorithm, where points from overlapping areas are used to find transformation.

Generally in the ICP algorithm, an optimal transformation matrix to move one set of points

relatively to another fixed point set is iteratively determined [50].
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The ICP algorithm starts with two meshes between which the initial estimation of the rigid-body
transformation is calculated. Subsequently, at each iteration the transformation is refined by the
selection of new corresponding points in both meshes. Points are chosen from the overlapping
areas. The best rotation and translation matrices are determined as to minimize the distance
between both meshes [20, 19].

There are two approaches to the ICP algorithm: point-to-point (pt2pt) and point-to-plane (pt2pin).
In the pt2pt algorithm, at each iteration, points from the moving set are associated with the
closest points from the fixed set and transformation between corresponding points is calculated.
In pt2pln algorithm instead of choosing a point from the fixed set, the new closest point is
determined on the plane passing through the closest point from the fixed set. Authors proved that
pt2pln gives better results [50].

The alignment error in the ICP algorithm is given by equation [19]:

2
E= 2?:1((Rmpi +tm—q)- Tli) 2.9

where (R,,, t,,) are rotation and translation respectively, (p; g:) are point-pairs from moving and
fixed mesh respectively from set of k pairs, n; is a normal vector of plane passing through gi

(taking into account the points from nearest neighbourhood).

The main disadvantage of the ICP algorithm is that errors from each scans are cumulated [26].
The transform is calculated based on overlapping areas so if points from this region are burdened
with error, position of mobile cloud is not optimal. This is particularly visible in the case of a
merger of multiple scans. Another limitation of the ICP algorithm is that some features/surfaces
need more constraints. In vision systems this problem can be avoided by the use of other
constraints, such as colour [19].

In general the ICP algorithm is not matched to the specific problem. It is rather treated as a black
box where implementation is not optimized regarding the form of the data. Therefore some points

from different datasets cannot be found in exactly the same position of the measurand [50].

To sum up, the most important advantages of the ICP algorithm include: no pre-processing of
data and features extraction are required, independency on the shape representation and it is

handling all of six degrees of freedom. The disadvantages are, that the ICP cannot be easily
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adapted to the weighted least squares extensions, uncertainties of points can be different and the

ICP algorithm is sensitive to outliers [2].

Variations of the ICP algorithm exist. In [23] IRF (iterative registration and fusion) and pure ICP
algorithms were compared. The IRF consists of two steps. First ICP is used to register data from
different sensors or viewpoints, and then a Kalman filter is used to fuse aligned data. The Kalman
filter uses a series of measurements that contain noise to estimate unknown variables with higher
precision. It was proved that the IRF algorithm is less affected by the number of measurements

than ICP but requires an initial estimation of the underlying surface.

2.12 Frontier of knowledge

Recent method of data fusion [50] dedicated to freeform surfaces has many limitations. One is
the requirement for the data to follow a regular grid. When data from non-contact measurement is
aligned to the data from contact measurements, the dimensional errors of measuring points have a
significant influence on the accuracy of this transform. Thus it is impossible to map one set of
points exactly to another [33]. ICP algorithm is a rigid transformation and it is only about getting
more precise alignment sensitive to noise. There is also no scaling. This means that relations
between points do not change, the whole point cloud is treated as a single object. Therefore point

cloud modelling is not complete and no real improvement is obtained.

To show how ICP works the following simulation was performed and is presented in Fig. 2.2.

"o, == 'l
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X
Fig. 2.2: Application of ICP algorithm to HDLP and LDHP data
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The analysed curve is a straight line, so this is the true value. From this line high precision points
were gathered. They are the LDHP data. The red dotted line is a representation on HDLP data.
This type of data is distorted relative to the true curve/surface which will be shown based on real
measurements later on. Red, thin arrows represent the distance between HDLP data and the true
value. Then using HDLP and LDHP data the ICP algorithm was applied. In this algorithm, at

each iteration, the error calculated from equation 2.9 is minimized [19].

The HDLP data after application of the ICP algorithm is transformed (rotated and translated) to
the green dotted line presented in Fig. 2.2. The mean distance between the true value and HDLP
before and after application of the ICP algorithm was calculated. Then the ratio of improvement

was calculated from the equation 2.10

. dist —dist
ratiogy,, = —2Lre—E. 100 % 2.10

distpefore

where ratio;n,, is the ratio of improvement, distyefore IS the mean distance before application of

the ICP algorithm and dist,s, IS the mean distance after application of the ICP algorithm.
In the presented case the ratio of improvement was of 44.8 %.

The main drawbacks of the ICP algorithm is that the amplitude of initial distortion does not
decrease. The HDLP data was only rotated and translated. Additionally HDLP data at X=0
having coordinates exactly the same as true value after application of the ICP algorithm is remote

from the true value almost by the value of initial distortion’s amplitude.

2.13 Objectives

The aim of the thesis is to develop a method for fusion of data from two measurements of
fundamentally different nature: high density low precision (HDLP) and low density high
precision (LDHP). In the research freeform surfaces were included due to the inconvenience of
their inspection and description. The proposed method is insensitive to the nature of the input
data. The method is to be treated on the basis of data from tactile method, laser triangulation
(measuring arm equipped with a laser scanner and self-positioning laser scanner) and CT scanner

to assess its versatility.

In the proposed method, the processing is carried out on a point cloud and not on surfaces as is
used in computer graphics. The reason for this approach is that surface fitting to the point cloud is
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somehow averaging or rounding. It is also important to properly choose the number of B-spline
control points. To many control points make the surface over-fitting the noisy data and too small
a number of points under-fits the data [34]. Therefore in this thesis any parametric surfaces were
used because their form and shape depend on user-defined parameters. The human factor as the
subjective factor should be avoided. There is also some probability that one operator, creating a
surface from the same point cloud, will not do this in the same way every time, which shows the
inconvenience of the method. It adds errors that cannot be estimated and included in the final
result. In order to merge the measurements from two different methods, fusion at the level of data

was done.

To sum up, the proposed method should enable improvement of point cloud from non-contact

measurements based on some characteristic points from contact measurements.
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CHAPTER 3 METROLOGICAL CHARACTERISTICS OF NON-
CONTACT TRIANGULATING LASER SCANNING MEASUREMENTS

Triangulation scanners are more accurate and cheaper than other non-contact measuring
techniques and are faster than tactile methods. As laser scanner is the main non-contact
measuring method considered within this thesis, its properties were analysed. Some of the factors
affecting its measurement accuracy are [61]:

1. projected angle;

2. laser scanning depth;

3. environmental effects;

4. operational error: influence of the operator and measuring strategy;

5. data processing;

6. surface properties: reflectivity, colour, chemical composition, microstructure and roughness.

The first two factors were widely examined by many authors. It has been shown that higher
resolution is obtained when the distance between the laser scanner and the measured surface is
shorter. As for the projected angle it is recommended to keep the triangulation plane orthogonal

to the measured surface.

To examine the influence of the scanning depth a special test stand, presented in Fig. 3.1, was
created. It allows testing only one factor at the time.
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Fig. 3.1: Test stand for examination of factors affecting accuracy of laser scanning

On the test stand the influence of scanning depth was tested. A single line of a white reference
cube was measured and a Gaussian line was fitted to data. In Fig. 3.2 the range of results for
distances between measured line and the laser scanner for series of measurements depending on

scanning depth is presented.
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Fig. 3.2: Influence of the scanning depth

The "+" sign means higher scanning depth than nominal (described in the specification of the

scanner) and "-" means lower scanning depth.
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It is noted that an increase of the distance between the measured object and the laser scanner
increases the range of results. Another situation occurs when the distance from the scanner to the
plane has been reduced in relation to the optimal position, which depends on focal length and is

provided by the manufacturer.

Regarding environmental effects, the impact of external illumination were tested. Different types
and different intensities of lighting were used. The same test stand as for Fig. 3.1 was used. A
single line, which straightness measured on a CMM was 7 um, was measured using the laser
scanner. The scanner was positioned perpendicular to the measured part and at the most optimal
scanning depth, according to manufacturer’s specification. Different types of lighting were used:
darkness — absence of lighting, glow-tube lamp, halogen and mercury lamp. The illuminance was
controlled by the use of a lux meter. The analysed parameters were: straightness of the measured

line and number of gathered points. Results are presented in Fig. 3.3.
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Fig. 3.3: Influence of the external lighting on the results, the whiskers represent max/min values

As can be inferred from the above figure, there is a correlation between lighting and the obtained
results. In the absence of lighting RMS error of a line fitted to the data is the highest. It decreases
with increasing light intensity. Stronger lighting allows obtaining better results from the same
surface. This may be due to the fact that with higher lighting less data points is collected — less

projected beam is reflected on the detector, and so an appearing noise is smaller.

In the next phase of the research a halogen lamp with adjustable lighting power was used. Three
values were set: 31 Ix, 370 Ix and 520 Ix. Results are presented in Fig. 3.4 and Fig. 3.5.
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Fig. 3.5: The number of measurement points for the halogen lamp - different powers, the
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As can Dbe sees better results are obtained for higher power of the halogen lamp.

The influence of the measuring strategy was tested and described in details in [46]. Five

strategies were chosen: parallel, cross, chaotic, parallel with joints and parallel-roll. The basic

ones are presented in Fig. 3.6. In the parallel strategy, scanning of the plane is performed along

one direction, so with minimal overlap. In cross scanning, individual scans are crossing at right

angle, giving a lot of overlapping scans. A frequent change of directions of scanning is apparent.

In chaotic scanning there are frequent changes of directions of the scan but the individual scans

overlap minimally. The fourth strategy called parallel with joints is the same as parallel but with

smooth movements in joints and the last strategy parallel-roll is the same as parallel but with roll

of laser head.
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a) b) c)
il & &

Fig. 3.6: Measuring strategies: a) parallel, b) cross, ¢) chaotic [46]

Straightness of cross sections were analysed for all strategies. The cross strategy has about twice
the value of the straightness compared to the parallel and chaotic strategies showing the
significance of overlapping scans. Straightness in different sections for the parallel with joints
strategy is close to the cross strategy and to the parallel and chaotic strategies. It can be explained
with the axis of rotation, around which cyclical turns of joints were being made. It is
recommended, if it is possible, to limit overlapping of scans and also frequent changes in the

scanning direction.

The influence of point cloud processing on the accuracy of results was presented in [42]. The
experiment was conducted on data from the measurement of an element with small diameter and
simple geometry — a ceramic ball. The data was obtained from the non-contact measuring method
— laser triangulation. The point cloud (results of non-contact measurement) were processed in
different ways: creating a mesh of triangles, and filtered with the median filter, and the average
filter. The parameters taken into account in the analysis were the radius of the sphere (hominal
value of 3.5 mm) and sphericity error (nominally less than 0.13 pm). Results are presented in

Table 3.1.

Table 3.1 : The values of the determined radius for different ways of data processing [42]

raw data m_esh of average filter median filter
triangles
mean, mm 3.410 3.385 3.372 3.406
st. dev. pm 16.3 23.7 16.3 16.3
max. value, mm 3.442 3.419 3.403 3.437

min. value, mm 3.381 3.335 3.345 3.377
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The first issue to note is comparison of the determined radius value with the nominal value. For
the raw point cloud the value of radius is of 90 um smaller than the nominal value. This may be
due to a small radius of curvature but also due to absorption of the laser beam by the material of
the ball. Referring to the effects of average and median filters on the "raw" point clouds it can be
seen that the average filter decreases the mean value of the determined radius by about 30 um
more than the median filter. It should also be noted that the mesh of triangles, which is a routine
procedure in most software for the analysis of point clouds resulted in an increase of dimension
error from 90 pm (for raw data) to about 120 um. It is therefore important that actions used to

process point clouds were individually selected to the specific data.

The values of sphericity error for all types of data were also analyzed. Results are presented in
Table 3.2.

Table 3.2 : The values of sphericity error for the point clouds [42]

mesh of ) -
raw data ) average filter median filter
triangles
mean, um 346 230 292 338
st. dev. um 81.8 55.0 44.2 70.9
max. value, um 524 332 402 477
min. value, um 233 145 232 226

Taking into account the sphericity error it can be seen that the mesh triangles reduces the error to
the greatest extent. Creating a mesh of triangles also reduces the volume of data. It is however
primarily improvement in visual look of a point cloud representing the ball, which is not
connected with the accuracy of measurements. Considering Table 3.1 and Table 3.2 it can be
concluded that for small parts when it is important to determine their diameter it is preferable to
work on raw point cloud or to improve the look of a cloud, for computer graphic, to use median
filter. In general the use of filters to measurements of small parts disrupts the results. Based on

this conclusion in all research, whenever small balls were measured, the raw data was used.
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In non-contact measurements the properties of the measured surface are very important. The
influence of the roughness, determined by the roughness standards, and of reflectivity was
analysed. The research was fully described in [43]. Sample standards of roughness are presented
in Fig. 3.7.

Fig. 3.7: Sample standards of roughness

Standards of roughness were divided into scattering and reflective (both can be seen in Fig. 3.7).
From both groups four standards with different parameters of roughness were chosen. As a
roughness parameter Ra was used. An effort has been made to choose sample with similar Ra
parameters from both reflective and scattering standards. Selected eight samples were measured

using contact surface profilers and parameters are presented in Table 3.3.

Table 3.3 : Selected standards of roughness [43]

Reflective surface (Ra, pm) Scattering surface (Ra, pm)
33.0 26.7
9.1 9.4
4.7 5.1

0.9 1.4
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Measurements were performed in the perpendicular and parallel direction to the surface
roughness profile. In each direction for each surface a series of 10 measurements were
performed. Sections perpendicular to roughness profile were measured. The non-linear trend was
removed, similarly as measuring roughness using contact profiler, and straightness of these lines
were determined. From ten values of straightness for each section their averages and standard

deviations were calculated.

Results are presented in the Tables 3.4 and 3.5. Table 3.4 includes the mentioned parameters for

reflective surfaces, while Table 3.5 includes the parameters for scattering surfaces.

Table 3.4 : Straightness of cross-sections for reflective surfaces [43]

perpendicular parallel
Ra, pm straightness, pm st. dev., pm straightness, pm st. dev., pm
33.0 225 25.7 184 59.6
9.1 64 12.6 113 59.3
4.7 68 22.1 64 47.1
0.9 68 28.4 69 30.7




Table 3.5: Straightness of cross-sections for scattering surfaces [43]

36

perpendicular parallel
Ra, pm straightness, pm st. dev., pm straightness, pm st. dev., um
26.7 116 18.6 91 5.1
9.4 60 12.1 48 4.6
5.1 54 7.2 45 3.9
1.4 53 5.8 43 3.8

Results are also presented in graphs. Straightness for reflective and scattering surfaces are shown

in Fig. 3.8 and Fig. 3.9 respectively.
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Fig. 3.8: Straightness of cross-sections for reflective surfaces
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Scattering surface
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Fig. 3.9: Straightness of cross-sections for scattering surfaces

The first thing, which should be noted, is that straightness of sections is higher in case of
reflective surfaces than for scattering. It shows how reflective surfaces are improper for non-
contact measurements. For this type of surfaces standard deviation of conducted measurements is
higher in case of parallel scanning.

Much better results were obtained for scattering surfaces. It can be noted that with decrease of the
roughness both straightness and standard deviation decrease. For scattering parts the measured
surface is better reproduced by the scanner. Higher roughness reflects the laser beam so standard
deviation is higher. For scattering surfaces more accurate and stable results are obtained when the

part is measured in the direction parallel to the roughness profile.

It can be concluded that in order to reduce the impact of the measured surface properties on the

results part should be prepared for measurement, for example by applying appropriate coating.

The presented results helped to understand the nature of non-contact measurements and to
conduct in future this type of measurements in the best manner, to achieve as high accuracy as

possible.
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CHAPTER 4 PROPOSED METHOD OF DATA FUSION

4.1 Theory

The general idea of data fusion method is presented in Fig. 4.1. The inspected part is measured
using a non-contact method. It covers the whole part with high density and high coverage point
cloud. Then using a contact method a set of characteristic points is gathered from the part (A).
They will be used to correct the point cloud from non-contact measurement. These characteristic
points can be represented by material or virtual markers. Both methods were developed and
presented below. Then having a set of characteristic points from contact method a corresponding
set (B) is sought in point cloud from non-contact method. Before this, it is ensured that both data
are in the same coordinate system. Having two sets of characteristic points a matrix relation
functions between them is determined (correcting vectors). It says how much and in which
direction points from the B set should be transformed to be at the positions of corresponding
points from A set. All pairs of points are considered separately, so relation between them
changes. Then based on correcting vectors, correction vectors are determined. These are vectors
which should be added to all points from the initial cloud to correct it. Their values depend on
correcting vectors and their distances to each point from the cloud. Detailed equations are

presented in the following subchapters.
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Fig. 4.1: General idea of data fusion method

The point cloud from non-contact measurement should be corrected because as it was already
mentioned resulting point cloud is distorted by systematic errors. This property of non-contact
measurement was presented in Fig. 1.3. A reference planar surface with low flatness error was
measured using a measuring arm equipped with a laser scanner. From the whole point cloud from

the measurement cross-sections were analysed.

The amplitude and frequency of changes depend on many factors from which the most important

IS measuring equipment. As in my tests | mainly used measuring arm fitted with a laser scanner
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systematic errors of non-contact measurement were simulated based on data from this device.
The amplitude of systematic changes was set as 100 um. Their frequency depends on measuring
strategy and experience of the operator. For the testing of presented method the assumed
frequency of 1/200 mm.

For the purpose of testing various fusion approaches a sine shape was used for the simulation of

systematic errors coming from non-contact measurements as shown in Fig. 4.2,
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Fig. 4.2: Simulation of systematic errors from non-contact measurements

Results from non-contact measurement were presented as continuous line to show the high

density of points from inspection using this method.

4.1.1 Determination of characteristic points using material markers

To determine characteristic points which could be measured using both contact and non-contact
methods special features were used. As non-contact measurements are burdened with systematic
errors but also with noise single points used as characteristic one would not be relevant. From this
reason it was decided to use balls which are attached to the measured surface. For both methods

determination of characteristic points is similar.

Contact method (for each ball):

- single points are gathered from the surface of a ball,

- to these points a Gaussian sphere (with known diameter) is fitted,

- centre of the Gaussian sphere is a characteristic point,
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- procedure is repeated for all balls attached to the surface which gives the first set of

characteristic points (from contact method).

Non-contact method:

- the whole surface of the part is measured together with the surfaces of the attached balls,
- the points belonging to each ball are segregated,

- to all points belonging to one ball a Gaussian sphere (with known diameter) is fitted,

- centre of the Gaussian sphere is a characteristic point,

- procedure is repeated for all balls attached to the surface which gives the second set of

characteristic points (from non-contact method).

In this procedure a characteristic point is an average value from many gathered points. This way,
the errors of individual points are averaged and positions of characteristic points are more

reliable. It is particularly important for the non-contact measurements.

In order not to introduce additional errors the used balls should have high precision. Among

many materials ceramic balls were chosen, as they are manufactured with small sphericity errors.
The first thing to do was to select a material with the best optical properties. The chemical
composition of the ball should ensure that the laser beam is neither scattered nor absorbed by the
surface. In the research four materials were tested: silicon nitride, tungsten carbide, zirconium
oxide and aluminium oxide. They are presented in Fig. 4.3.

a) d)

Fig. 4.3: Different materials of ceramic balls: a) silicon nitride, b) tungsten carbide, ¢) zirconium

oxide, d) aluminium oxide

A simple test was performed. It was checked whether the laser beam intersects with the real
surface of the ball. Location of measuring points outside the ball demonstrates significant surface
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reflectivity, and gathering points inside the ball demonstrates absorptivity of ball’s material. Balls
of different materials were measured and their diameters were determined and compared to

nominal values. The comparison is presented in Table 4.1.

Table 4.1 : Results of measurements of balls made of different materials [44]

Nominal diameter, Measured diameter, Measured-nominal,

Material

mm mm mm
silicon nitride 12.700 12.765 0.065
tungsten carbide 6.350 7.910 1.560
zirconium oxide 15.875 15.451 -0.424
aluminium oxide 12.700 12.417 -0.283

Comparing the difference between the measured and nominal diameter it can be seen that
material with the best optical properties is silicon nitride. Tungsten carbide has high reflective

properties, while zirconium oxide and aluminium oxide absorb the laser beam.

Further studies were performed on balls made of silicon nitride. Balls with a diameter ranging
from 12 mm to 5 mm were used to determine the smallest one which position can be measured
with relatively high accuracy using non-contact method. Small diameter is desired not to obscure
the measured surface. The first tested parameter was sphericity error. Its value for each diameter

was shown in Fig. 4.4.
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Fig. 4.4: Sphericity error for different diameters [44]

The curve of sphericity as a function of balls diameter may indicate a negligible effect of the
radius of curvature on values of sphericity. It is rather due to properties of surfaces,

environmental conditions and errors of the measuring device.

More important parameter is the stability of the position of the centre of the ball. Results are

presented in Fig. 4.5. 3D centre deviation was calculated from the following equation:

3D_dev = /0% + 0f + 0f 4.1

where oy, oy, o, are standard deviations from a series of 20 measurements of the fixed ball,

separately for each direction.
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Fig. 4.5: Determination of ball's position [44]

It can be seen that the stability of centres of balls determination is maintained at a similar level up
to the ball with a diameter of 7 mm. Subsequently a rapid increase is noticeable. This is due to the
fact that in smaller balls percentage of random points and noise is much higher. From the smaller

surface smaller number of points is collected so that any noise is more significant.

Based on the presented research ceramic balls with a diameter of 7 mm made of silicon nitride
were used to make material markers. Being aware that gluing of markers to the surface is
troublesome and can damage the measured surface markers were designed and made that can be

fixed to the surface magnetically. For this purpose metal sleeves presented in Fig. 4.6 were used.
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Fig. 4.6: Metal sleeve for material markers

From one end a neodymium magnet was glued, from the other the ceramic ball. The made

markers are presented in Fig. 4.7.

Fig. 4.7: Material markers

The next thing to examine was the influence of coverage of data on positioning of material
markers. In low data coverage measurement only the upper area of the surface is measured as in
Fig. 4.8a while in high data coverage measurement all available area of the ball’s surface is

measured as in Fig. 4.8b.
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Fig. 4.8: Ball's data coverage (2D view)

For the ceramic ball made of silicon nitride with higher diameter (12.700 mm) it was checked
whether high cover data, obtained from more scans that overlap each other, has better accuracy.
As comparison parameters sphericity, sphere diameter and stability of the centre position were

chosen. Results are presented in Table 4.2.

Table 4.2 : Parameters of the measured ball - data coverage [46]

parameter Low data coverage High data coverage
sphericity, pm 176 394
diameter, mm 12.758 12.751

Ox, pm 34 10

Gy, Lm 37 19

Gz, Lm 61 24

Sphericity error is more than twice as large for high coverage measurements as a result of
overlapping scans. The difference between the calculated diameters for both manners of
measurement is insignificant and smaller than 8 um. It also does not differ much from the

nominal value which is 12.700 mm. It can be concluded that low coverage measurement gives



47

enough information to determine the diameter, so for economic reasons this strategy is

recommended.

Problem of ball’s accurate measurements was also considered by [28]. Authors found generation

of profiles and their matching as very important issue.

In case of determination of position it is better to gather more coverage data. Instability of the
centre calculated on the basis of standard deviations in each direction is 79 um and 33 um for

low and high density measurements respectively.

This research has proven the significance of the measurement strategy and therefore the

tremendous influence of the operator.

The final step was to check the influence of scanning strategy for a grid of material markers

attached to the surface. A special artefact presented in Fig. 4.9 was created.

Fig. 4.9: Artefact with material markers

Using the artefact the impact of the measuring strategy on ball artefact measured geometry was
analysed. The reason to consider this case was to explore how selected measurement strategies
affect the measured positions of the material markers. Measurements were performed using a

measuring arm equipped with a laser scanner with five different strategies. These strategies were:

. S1. single scan,
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S2. perpendicular scans,

S3. chaotic scan,

S4. single scan with intensive work of joints,
S5. high coverage scan.

Strategies were similar to those performed on a plane and presented in [44]. They are presented in
Fig. 4.10.
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Fig. 4.10: Measuring strategies: a) single scan, b) perpendicular scans, c¢) chaotic scan, d) single

scan with intensive work of joints, €) high coverage scan [41]

The artefact was measured on a Zeiss Accura CMM to obtain positions of the markers

represented by the centres of the balls and to treat them as true values. From point clouds

gathered from non-contact measurements for each strategy, the centres of balls were determined.

Then centres of balls from laser scanning were aligned to centres of balls from CMM on the basis

of the least sum of squares. Deviations between positions of the markers from non-contact

measurement and contact measurement for all strategies are presented in Fig. 4.11. For deviations

amplification factor of four was applied to make them more readable.
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Fig. 4.11: 3D and 2D deviation diagrams for strategies: a) single scan, b) perpendicular scans, c)

chaotic scan, d) single scan with intensive work of joints, e) high coverage scan [41]
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Table 4.3 shows values of deviation for all strategies for the analysed markers.

Table 4.3 : Total deviations for each strategy [49]

strategy Max. dev., mm Min. dev., mm Mean of dev., mm
single scan 3.509 0.408 1.864
perpendicular 3.397 0.661 1.807

scans

chaotic scan 4,711 1.122 2.665

single scan with

intensive work of 2.647 0.628 1.628
joints

high coverage 1.130 0.231 0619
scan

Where: max. dev. is maximal difference between position from contact and non-contact
measurement, min. dev. is minimal difference between position from contact and non-contact

measurement, mean of dev. is mean value of this difference.

From the above table it can be seen that the highest deviations are for the chaotic scan strategy
and the smaller deviations for the high coverage scan strategy. It is observed that coverage of data
should be high to improve the accuracy, but often changes of scanning direction are not
recommended as they can affect the measuring process. All further experiments with the use of

material markers were performed respecting these directives.

4.1.2 Determination of characteristic points using virtual markers

The second method of determination of characteristic points uses so called virtual markers. This
method eliminates the necessity of fastening additional features to the surface. These features
cover the measured surface and a gap in information of the measured surface appears. The

flowchart for the virtual markers method is presented in Fig. 4.12.
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Fig. 4.12: Flowchart of virtual markers method [48]

First, the measured part to avoid movement when the probe contacts with the surface. Three
precision balls (3CB) are fixed around the part on the measuring table to which the part was
fixed, so as not to hinder the measurement of the part. Those balls ensure a common coordinate
system for the two sets of data coming from the sensors. Then, the part and the 3CB are measured
using the laser scanner or more generally using non-contact sensor, and the coordinate measuring
machine (CMM) or other equipment measuring in the contact manner. The contact points are
gathered on a regular grid in order to have evenly distributed data.
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The relation between the balls centres from both sensors is analysed and characterized by a rigid-
body transformation. This transformation matrix is then applied to the whole point cloud from the

non-contact measuring system.

After these operations the main part of the virtual markers method can begin. The first set of
characteristic points comes from contact measurements. A regular grid of points was gathered.
Then around these points virtual spheres are defined. As both measurements were in a common
coordinate system, each sphere includes points from the point cloud — non-contact measurement.
For all spheres separately, the average coordinates from these points are computed. This gives a
second set of characteristic points coming from the non-contact method and corresponding to the
data from the contact method. The diameter of the spheres is determined to be minimal but
enclose at least fifteen points from non-contact method. Bigger diameter would make the method
insensitive to the curvature of the measured surface. Smaller diameter would not give reliable
average value. The process of determination of the second set of characteristic points is illustrated
in Fig. 4.13.

Fig. 4.13: Determination of a characteristic point pair: a) « - point cloud from laser scanner, ® -
point from the CMM; b) determination of virtual sphere around the point from the CMM,; c)

selection of points inside the sphere (¢); d) average of points from inside the sphere © -

characteristic point, corresponding to the point from the CMM (®) [48]
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4.1.3 Description of the data fusion method

The concept for combining of data from different measurement methods is to determine in both
types of data corresponding characteristic pairs of points. It can be done using the two methods
described above — material or virtual markers. In each pair the coordinates of the point from
(LDHP) low density high precision measurement (contact measurement) is treated as a reference
for the corresponding point from (HDLP) high density low precision (non-contact) measurement.

These pairs of points are presented in Fig. 4.14 for simulated data.
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Fig. 4.14: Pairs of corresponding points

Nonetheless, in real measurements the uncertainty of these characteristic points, for both contact
and non-contact methods, is non-zero. The larger the ratio of non-contact measurement
uncertainty to contact measurement uncertainty, the influence of contact measurement on non-

contact measurement is larger.

Therefore it was decided to treat two points from a pair as two measurements of the same
quantity performed using two devices with different uncertainty. A typical behaviour in this case
is the use of weighted average, where the weights are dependent on the uncertainty of each

measurement. It is calculated according to the equation:

N e .
— Zi=1wl xl 4'2

X =
avg Z?’=1 w;

where x,,, is a weighted average of N measurements, x; are subsequent measurements and w; are

the weights dependent on the uncertainties of each measurement.
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To minimize the variance of the weighted average the inverse-variance weighting method known
from statistics was used. Inverse-variance weighting is typically used in statistical meta-analysis
to combine the results from independent measurements. The advantage of this method is that the

inverse-variance weighted average has the least variance among all weighted averages.

According to this method w; = % where o7 is the variance of the th measurement.

The uncertainty of the weighted average can be calculated from the equation:

Oppe = —— 4.3

Z{jvzlwi
The behaviour of the inverse-variance weighting method can be illustrated through the example
of two measurements of the same quantity using devices with different uncertainties as in a pair

of corresponding points as shown in Fig. 4.15.

25
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£ measurementl
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+ weighted average
5
0
measurements of the same measurand

Fig. 4.15: Inverse-variance weighting method for a pair of points

As it can be seen from the graph the weighted average differs little from the measurement having
five times lower uncertainty and also has lower uncertainty than each separate measurement.
Therefore this point is taken as a point from low density high precision measurement instead of
the initially gathered point. This approach allows taking into account the situation when the
uncertainty of a LDHP measurement is not much lower the uncertainty of HDLP measurement.

Then the information from low precision method influence more on the measurement result.



55

After finding corresponding pairs of points in both types of data, fusion is performed. As
characteristic points from low density high precision measurements (the weighted average from
two points as described above) are considered as a reference, the transformations are being
performed in such a way to transform points from high density low precision measurements as
close as possible to the position of corresponding points from the LDHP measurements,
considering the fact that the shape of the surface/curve between characteristic points should not
be deformed as a result of the merger.

The direction and value of the correction is described by correcting vectors. The correcting
vectors are computed as a difference in the coordinates of characteristic points from LDHP
measurements and corresponding points from HDLP measurements. The transformations of all
points from the point cloud are calculated based on all correcting vectors and distances from

them, according to the equation:

ZVeipw;
Zw;

Cor_vect = 4.4

where Vc; are correcting vectors at characteristic points (difference between points from LDHP
and HDLP measurements), Cor_vect; are correction vectors at each point of the point cloud, w;

are weights dependent on the distances D; from each characteristic point to the points from the
cloud. Closer vectors should have a bigger influence but still for each point from the point cloud,
all correction vectors (from characteristic points) should be used. Each point from a point cloud is
treated as a separate object, which means it is transformed in its own direction by its own value.
Thus the relations between the points from the cloud change. The explanatory scheme is
presented in Fig. 4.16.

2% ¢ 4
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@
4 ‘ ‘A 34 ;J 7 @ characteristic points from HDLP
7 S
3 h. l". ; .® v < q ® - points from a point cloud
Vo A ‘q_. ‘ i Ve, - correcting vectors at characteristic points
£ 9 P

- Cor_vect; - correction vectors at each point from point cloud

"o<'

Fig. 4.16: Concept of correcting vectors [47]
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In the next step different ways of determination the weights w; were studied to choose the one
having the best properties. To make the operation of the fusion algorithm more visible tests on
weights were performed on a planar curve. Initial distortion was increased to make improvement

provided by data fusion method more visible. Eight different methods for weights determination

1 1 1 1 1 1

L1
were selected: 75' 0’ b2’ D%’ 13D2’ 1307 13D¥

e~P_ The results was presented in Fig. 4.17
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Fig. 4.17: Test on different methods of weight determination
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Fig. 4.17 (continued): Test on different methods of weight determination
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Fig. 4.17 (continued): Test on different methods of weight determination

As can be seen from Fig. 4.17a and Fig. 4.17b for those weights the curve after correction is
discontinuous at the positions of characteristic points. Curves from Fig. 4.17c-g are continuous
and at the places of characteristic points, these points from distorted data (HDLP marked red)
after the fusion (blue curve) are exactly at positions of corresponding points from low density
high precision method (black dots). The black curve reflects the actual shape of the tested curve.
For these weights (Fig. 4.17c-g) the initial distortion coming from HDLP method is corrected
perfectly at the characteristic points. It can be seen that the mean distance between corrected and
actual curve is much lower than the distance between initially distorted and actual curve.
Nevertheless between characteristic points low amplitude ripples appear. And also some parts of
the waves from initial distortion being on one side of the actual shape are dragged to the other
side. Summarizing, the initial distortion (HDLP data) having low frequency and high amplitude is

transformed to high frequency distortion with lower amplitude.
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A different situation occurs in the case presented in Fig. 4.17h. Here an improvement comparing
to the initial distortion is achieved but the obtained curve is smooth. The function used here for

weights determination is called the reliability function known from reliability theory.

4.1.4 The reliability function

In reliability theory the reliability function Re(%) is used in life data analysis. This function gives
the probability of an item operating for a certain amount of time without failure. It is a function of
time. The function is presented as a probability distribution function i.e. x % reliability at t hours.
A commonly used in reliability engineering distribution is the exponential distribution. This type
of distribution is used to model the lifetime of units that have a constant failure rate. The
probably distribution function (pdf) of the exponential distribution is given by the following

formula:
f(t) = e 45
where A (lambda) is the sole distribution parameter.

From the above equation, formula for the reliability function for the exponential distribution can

be determined as follows:
Re(t) =1-— fot/le-/'lsds =1 [1—e ] = et o

The reliability function for the exponential distribution for different X is presented in Fig. 4.18.
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Fig. 4.18: Reliability function

It can be noted that with the decrease of the A parameter the rate of change of the function
decreases. The characteristics of the 1-parameter exponential distribution were discussed by

Kececioglu [13]. Some of them are:

o The scale parameter is % = m , where m is mean time between failures, or to failure.

o With the decrease of A, the distribution is stretched out to the right.

e  The distribution starts at t = 0 and decreases thereafter exponentially and monotonically

with time. It is convex.

The initial research showed that this function for weights determination has good properties for
the data fusion but appropriate value for A parameter must be set. It cannot be constant for all
cases. It should be connected with the distance between characteristic points. If they are spaced
less frequently the influence of each one on the surrounding part of the point cloud should have a
wider range. To ensure this A should be small and its value will be determined in the next

subchapter.

4.1.5 Determination of A parameter

To establish how to determine the A parameter depending on the distances between characteristic
points, first the developed method of data fusion was applied to a line and an arc. At first the

distance between characteristic points was constant and A was changed. For the best case the
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dependency between this distance and A was determined. Tests performed for a line are presented

in Fig. 4.19. Dots represent pairs of characteristic points.
w; = e AP 4.7

where w; is the weight, D is the distance between characteristic points and the paired point from

the point cloud and A is the reliability function for the exponential distribution.
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Fig. 4.19: Research on A determination on the example of a line
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Fig. 4.19 (continued): Research on A determination on the example of a line
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As can be seen from Fig. 4.19a-c if the A parameter is to big the curve obtained after fusion
contains ripples between characteristic points which did not exist on the initial distortion. On the
other hand Fig. 4.19f and g show that if the A parameter is too small, the performed fusion is not
efficient. From the above graphs Fig. 4.19e for A=0.12 shows that for this function the initial

distortion is retained as the best and also the ratio of improvement is high and exceeds 90%.

According to the already presented information about characteristics of reliability function for the
exponential distribution for less dense distribution of characteristic points the A parameter should

be bigger. It can be selected using the following formula:
A=— 4.8

where Cis a constant and dist is the distance between characteristic points. Using the information
about the distance and A parameter from the simulation presented in Fig. 4.19, C = 1.8.

This constant was also calculated for the arc, which is presented in Fig. 4.20. Initial distortion
was increased to make improvement provided by data fusion method more visible. Dots represent

pairs of characteristic points.
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Fig. 4.20: Research on A determination on the example of an arc
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Fig. 4.20: (continued): Research on A determination on the example of an arc

Here similarly as for the line for the first three values of A (Fig. 4.20a-c) the curve obtained after
fusion contains ripples between characteristic points which did not exist on the initial distortion.
For small values of A (Fig. 4.20f and g) the performed fusion is not efficient. Here the distances
between characteristic points were of the same order as for the line. Also for A=0.12 (Fig. 4.20e)
the obtained results were the most satisfactory. For this case the value of the constant Cis C =
1.8.

Based on these research the final form of the weights used for the determination of correction

vectors in data fusion method is:

_18 h.
w; = e dist ! 4.9

This function was checked for different density of distribution of characteristic points. The
evaluation of the method was also done numerically by determination of ratio of improvement.

The ratio of improvement was calculated using equation 2.70.

Results for different number of characteristic points and thus different distances between them

are presented in Fig. 4.21 for a line and in Fig. 4.22 for an arc.
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Fig. 4.21: Data fusion for a line - different density of markers

The results of data fusion for a line for different density of markers are presented in Table 4.4.



Table 4.4 : Results of data fusion for a line

No of Mean distance between

characteristic TR Ratio of improvement, %
. characteristic points, mm

points

10 20.0669 88.01

15 13.3779 93.63

30 6.6890 98.03
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Then the simulation was performed for an arc. Initial distortion was increased to make

improvement provided by data fusion method more visible.
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Table 4.5 : Results of data fusion for an arc

No of Mean distance between

characteristic TR Ratio of improvement, %
. characteristic points, mm

points

10 23.6689 54.10

15 15.7885 75.22

30 7.8969 92.34

The results presented in Fig. 4.21 and Fig. 4.22 demonstrate the validity of the use of the
proposed method of data fusion together with the described method of weights determination. As
we can see for more characteristic points the ratio of improvement is higher. The data fusion
method does not distort the shape of the initial errors for any number of characteristic points for

none of the presented curves.

The next step is to take into account the uncertainties of the two types of measurements used to
obtain LDHP and HDLP data. The uncertainty budged was done for data fusion method using
virtual markers.

4.1.6 Uncertainty analysis

For each point from point cloud its position after fusion P, ¢ is calculated from the following

equation:
Py s = Py g + Cor_vect 4.10

where: P, ¢ is a position of this point before data fusion, Cor_vect is a correction vector

determined for this point.
Correction vectors for each point from a cloud are calculated separately from the equation 4.4.

1) Uncertainty of correcting vectors Vc;:

Ve = Peym — Ps 411
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where Py 1S position of characteristic point from LDHP method (CMM-coordinate measuring

machine), Py s is position of characteristic point from HDLP method (LS-laser scanner.

As it was mentioned before, the position of characteristic point from LDHP method is replaced
by the weighted average and takes the following form.
‘/C:PAVE_PLS 4.]2
According to equation 4.3 uncertainty of Pyyg depends on weights associated with the positions
Pcym and Prs. Weights are inversely proportional to the variances of Peyy and Pg.

1

U(Paye) = J — 413

u2(Peym) u2(PLs)

u(Peym) = P’% 4.14

(0.98 um for Zeiss Accura used in tests)

where Pypg 1S @ maximum permissible probing error [24].

u(PLs) = “yﬁs) 4.15

where u(LS) is uncertainty of a measuring system with a laser scanner, n is an average number of

points used to calculate characteristic point from HDLP method, for used scanner n=20.
u(Prs) =10.76 pm
u(PAVE)z 098 um

The uncertainty of correcting vectors can be expressed by the following equation:

u(Vp) = \/uz(PAVE) + u?(Pys) 4.16
For used devices:
u(V;) =10.80 pm

2) Uncertainty of correction vectors Cor vect:

Correction vectors are calculated as a weighted average from correcting vectors. Uncertainty of
weighted average is equal to weighted average of uncertainties of the individual values, so:

xuVe)w;

S 417

u(Cor_vect) =
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As uncertainties for all correcting vectors are the same, uncertainty of each correction vector is

equal to uncertainty of correcting vectors:
u(Cor_vect) =10.80 pm

3) Total uncertainty of the point cloud after fusion:

u(Pa_f) = \/uz (Pb_f) + u? (Coryect) 418
u(Pb_f) = u(LS) =48.10 um
u(Pa_f) =49.30 um

The uncertainty introduced by the proposed method is 1 um which constitutes 2% of the
uncertainty of the device having the highest uncertainty. Fig. 4.23 presents three curves. Red is
the distorted line (representation of HDLP data), black curve represents the nominal curve and
blue is the distorted line after correction. Dots represent characteristic points named as markers

and rounds around them are the uncertainties.
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Fig. 4.23: Data fusion with uncertainties of characteristic points

4) Uncertainty after taking systematic errors into account:

According to I1SO standard [25] the expanded measuring uncertainty should contain apart from
uncertainties coming from the used devices or measuring method also systematic error. Based on

the quoted standard the uncertainty of the proposed method takes the following form:
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U =Kxu(P,s)+ bl 4.19

where K is a coverage factor (k=2 for coverage probability of 95%), u(P,¢) is the final

uncertainty of the proposed method, b is a systematic error.

As it can be seen from Fig. 4.23 the systematic error changes but its maximal value is equal to
100 um before data fusion and 14.67 um after data fusion. As it was mentioned the data fusion
method introduces uncertainty of 1 um but benefits from decrease of systematic errors are much
more significant. From equation 4179 the maximal expanded uncertainties Uy, ¢ and U, ¢ before

and after data fusion respectively are equal to:
Up ; = 2 X 48.10 + 100 = 196,20 pm
Uy s = 2% 49.30 + 14.67 = 113,27 pm

It means a reduction of uncertainty of more than 40% is achieved.

The uncertainties of the whole distorted curve and the corrected curve are presented as dashed
lines in Fig. 4.24. Green dashed line is the uncertainty of HDLP data while the orange one is the
uncertainty of corrected line after fusion of HDLP and LDHP data. Having known the nominal
shape we could determine the systematic error for each single point and it varies from 0 to the

maximal value.
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Fig. 4.24: Results of data fusion taking expanded uncertainty into account

Fig. 4.24 shows that the proposed data fusion method improved precision of HDLP data but also
decreased its uncertainty. The high density of points a characteristic of HDLP measurement

method, was maintained. The presented results showed that from two types of data HDLP and
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LDHP data with main pros of both was obtained. The output data has high density of points and
their precision is high - HDHP.

4.2 Methodology

The experiment was conducted using two types of measuring devices from the field of coordinate
metrology. The first type enables gathering measuring points using contact method and the other
enables gathering high density of points in a non-contact way. To obtain LDHP data two CMMs
were employed. First one is a Legex 9106 with basic parameters listed in Table 4.6. Its full
specification is included in ANNEX A.

Table 4.6 : The specification of Legex 9106

Accuracy

Enmpe, m (0.50+L/1000)

Pwmpe, pm 0.45

The second model of CMM used for research was Accura 7 by Zeiss. The full specification is
included in ANNEX B.

Table 4.7 : The specification of Accura 7

Accuracy

Empe, pm (1.7+L/333)

Pmpe, pm 1.7

To provide HDLP data two non-contact systems working on the principle of triangulation were
used. First was a Creaform Handyscan REVscan, which is a self-positioning system. The second
one was a Metris Laser scanner MMCS80 fixed to a measuring arm. The main parameters of the
REVscan are presented in Table 4.8 and the parameters of the MMCB80 are in Table 4.9. The full
specification is included in ANNEX C
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Table 4.8 : The specification of REVscan

Measurement Rate, measures/s 18 000
Resolution, mm 0.100 mm
Accuracy, mm Up to 0.050
Volumetric Accuracy* 0.020 mm + 0.200 mm/m

Volumetric Accuracy! (with
MaxSHOT 3D)

0.020 mm + 0.025 mm/m

1 Based on the 1SO 10360 standard, volumetric accuracy is defined as a size-dependent value.

Table 4.9 : The specification of MMC80

Stripe width (Y), mm 80
Accuracy (26), um 35
Max data rate, real pts/sec? 24
Points per stripe? 800
Max speed, stripes/sec 30

2 Metris points-per-second and points-per-stripe specifications state real scan points only. No

interpolation techniques are used to oversample the point clouds.
All research were conducted using the following methodology.

For material markers it consists of following steps:

1 the inspected part is rigidly fixed to the measuring table,

2 material markers are evenly distributed on the measurand,

3. material markers are measured using a CMM,

4.  centres of balls measured using a CMM are determined based on Gaussian fitting — first

set of characteristic points,



10.

11.

12.
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for the evaluation of the method mutually perpendicular lines are measured from the
part’s surface using a CMM - the lines create a net,

the whole part together with material markers are measured using non-contact method,
centres of balls measured using non-contact method are determined based on Gaussian
fitting — second set of characteristic points before alignment,

using equation 2.4 a rigid body transformation between points from step 4 and step 7 is
determined,

rigid body transformation is applied to points from step 7 which gives second set of
characteristic points,

the same rigid body transformation is applied to point cloud from non-contact method
(step 6),

using two sets of characteristic points the data fusion method described above in this
chapter is applied,

for the evaluation, point clouds before and after data fusion are compared to a net of

mutually perpendicular lines from step 5.

For virtual markers it consists of following steps:

1.
2.

the inspected part is rigidly fixed to the measuring table,

three coordinate balls are fixed around the measurand, assuring their maximal separation
(for big inspected parts, the balls were fixed directly to the surface of the part),
coordinate balls are measured using a CMM,

centres of balls measured using a CMM are determined based on Gaussian fitting,

a grid of evenly distributed points are gathered from the surface of a measurand using a
CMM — first set of characteristic points,

for the evaluation of the method mutually perpendicular lines are measured from the
part’s surface using a CMM - the lines create a net,

the whole part together with three coordinate balls are measured using non-contact
method,

centres of balls measured using non-contact method are determined based on Gaussian

fitting,
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9.  using equation 2.4 a rigid body transformation between points from step 4 and step 8 is
determined,

10. the rigid body transformation is applied to point cloud from non-contact method (step 7),

11. second set of characteristic points is determined using a method of virtual markers
described above in this chapter,

12. using two sets of characteristic points the data fusion method described above in this
chapter is applied,

13. for the evaluation, point clouds before and after data fusion are compared to a net of

mutually perpendicular lines from step 6.

All calculations needed to perform the data fusion method were coded and calculated using
Matlab environment. Comparison of point clouds before and after fusion with reference data

were performed using Catia CAD software.

4.3 Results and discussion

The experiment was conducted for two methods used for determination of characteristic points:

material markers and virtual markers. The results were presented in [47, 48].

4.3.1 Results and discussion for material markers

Preliminary results of developed data fusion method with the use of material markers were
presented in journal paper [47]. Then, after improvement in the weights w; from equation 4.4
results were updated and presented in this sub-chapter. As a first part to evaluate the proposed
method of data fusion the reference cube was used. The cube is made of aluminium and painted
white. Its size is (100x95x100) mm. The cube’s upper surface flatness was measured as 26 pm on
the ACCURA 7 CMM. The cube with material markers is presented in Fig. 4.25. In this case

markers were glued to the surface because aluminium is not a magnetic material.
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Fig. 4.25: The cube with material markers [47]

As it was described in the methodology, for the evaluation, a few lines on point cloud were
measured and compared with corresponding lines measured on a CMM — reference data.
Numerical results are presented in Table 4.10. They show the average values of distances
between point clouds before and after fusion and reference data from a CMM. The shortest

distances between two sets are sought.

Table 4.10 : The cube - results of data fusion with material markers

Average distance Average distance
No of section (non-contact — (non-contact — Ratio of improvement,
reference) before reference) after %
fusion, mm fusion, mm
S1 0.0407 0.0221 45.7
S2 0.0183 0.0008 95.6
S3 0.0027 0.0003 88.9

S4 0.0111 0.0038 65.8
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From Table 4.10 it can be seen that the data fusion method decreased the average distance
between point cloud and the reference data from the CMM. It can also be concluded that for these

sections improvements of average distances are between around 46 % and 96%.

The proposed method of data fusion was also evaluated using freeform surfaces. As a first
example of this type of surface, a turbine blade with dimensions (200x120) mm was used. The
blade offers a realistic industrial freeform however given the size of the markers the sharp radii of
curvature such as those found on the leading and trailing edges are excluded from the study.

Material markers were distributed on its surface forming a regular grid as presented in Fig. 4.26.

Fig. 4.26: Turbine blade with material markers [47]

Similarly to previous part as reference data mutually perpendicular lines creating a net were
measured on a CMM additionally to the measurements of the balls. Then both point clouds,
before and after data fusion were compared with the net. For point clouds obtained from the non-
contact device two types of input data were used: raw point cloud and cloud after creation of
mesh of triangles which decreases the number of points. For both point clouds, before and after
fusion, an analysis on statistical distribution of distances between these clouds and reference data
was performed. Always the closest point was searched. For all distances, weights based on
frequency of appearance were assigned. Next a weighted average was calculated. Results are
presented in Table 4.11.
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Table 4.11 : Turbine blade - results of data fusion with material markers

Form Average distance (non-  Average distance (non- . .

of Ratio of improvement,
. contact — reference) contact — reference) o

point - . %)

cloud before fusion, mm after fusion, mm

mesh 0.3705 0.3106 16.2

raw 0.2236 0.2112 55

Analysing the above table we notice that for raw point cloud the obtained ratio of improvement is
around three times lower than in case of mesh of triangles. It is caused by the fact that in raw
point cloud the ratio of random errors to systematic errors is higher. What can also be noticed is a
higher average distance between point cloud and reference data before fusion for mesh of
triangles. It is the effect of formation of mesh of triangles. As in measurements of ceramic balls,
where for example creation of mesh of triangles from raw data resulted in an increase of

dimension error from 90 um to about 120 pm.

Table 4.11 shows that the maximum value of improvement is by 59.9 um. This is about 80 % of
the accuracy of the measuring system: scanner plus arm (40 um + 34 pym = 74 pm). It was
obtained for the mesh. In case of raw point cloud, the improvement is lower which is caused by

noise in unprocessed data.

Another example of freeform surface used to evaluate the proposed method was the engine cover
of a car. As it is an element which comprises openings, only a continuous surface with a
dimension of (600x180) mm was used to perform data fusion. The engine cover with markers on

its surface is presented in Fig. 4.27.
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Fig. 4.27: Engine cover with material markers [47]

For the engine cover similar actions as for the turbine blade were performed. From the surface
mutually perpendicular lines creating a net of reference data were measured on a CMM
additionally to the measurements of the balls. Then both point clouds, before and after
application of the proposed method, were compared with the net. For point clouds obtained from
the non-contact device two types of input data were used: raw point cloud and cloud after

creation of mesh of triangles which decreases number of points.

Similarly as in case of turbine blade for point clouds before and after application of the data
fusion, an analysis on statistical distribution of distances between points from these clouds and
closest points from reference data was performed. Then a weighted average was calculated.

Table 4.12 : Engine cover - results of data fusion with material markers

Form Average distance (non-  Average distance (non- . .

of Ratio of improvement,
. contact — reference) contact — reference) o

point . . Yo

cloud before fusion, mm after fusion, mm

mesh 0.0825 0.0794 3.8

raw 0.0740 0.0727 1.8
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The engine cover is much bigger than a turbine blade but its curvature is lower. Similar
comparisons as for the blade were performed. Table 4.12 shows improvement in the accuracy of
the point cloud from laser scanner after application of data fusion. The improvement is lower
than for turbine blade but also input data is burdened with smaller error, by one order of
magnitude. Also the distances between each markers were higher which is due to the size of the

part.

Analysing the above table we can notice that, similarly as for turbine blade, for raw point cloud
the obtained ratio of improvement is lower than in case of mesh of triangles. It is caused by the
fact that in raw point cloud the ratio of random errors to systematic errors is higher. Also here the
higher average distance between point cloud and reference data before fusion for mesh of
triangles was noticed. It is the effect of formation of mesh of triangles. As in measurements of
ceramic balls, where for example creation of mesh of triangles from raw data resulted in an

increase of dimension error from 90 um to about 120 pm.

Analysing the above results the following conclusions are inferred. Better results are obtained
when the distance between characteristic points is smaller — the same number of characteristic
points distributed on a smaller surface. It was also presented in the results from the computer

simulation.

The initial average distance between point cloud and reference data is higher for mesh of
triangles as creation of triangles distorts the shape of a point cloud.

Lower improvement is obtained for raw data. It is caused by the fact that in this type of data ratio

of random errors to systematic ones is higher.

The obtained results are worse than results from simulation. It is caused by instability of
determination of positions of balls. This research were presented in sub-chapter 4.1.1.

Next part includes results for evaluation of the data fusion method using virtual markers, where
the problem of instability in determination of position of the marker does not appear.
4.3.2 Results and discussion for virtual markers

The results of developed data fusion method with the use of virtual markers were presented in the

journal paper [48]. To evaluate the developed method of data fusion three parts were selected.
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The first test part was a planar surface represented by a granite table to which four balls were
attached using a peripheral frame to ensure a common coordinate system for optical measurement
and CMM data. This part is shown in Fig. 4.28.

Fig. 4.28: Planar test part. White markers are used for self-positioning. They enable to determine

scanner’s relative position to the part [48]

The planar part was measured together with the reference ball frame using the Legex 9106 and
the Creaform Handyscan. The CMM measured two sets of parallel lines mutually perpendicular
to create a grid. This reference data was used for validation of the method. Then, at the
intersections of all lines single points were gathered, which gave 754 points. These points were
considered to be characteristic points from contact measurements and the basis to find
corresponding points on the point cloud, using the virtual markers method. The principle of
CMM measurements is shown in Fig. 4.29. The orange dots represent reference data from a
CMM. They were gathered from the surface for evaluation of the method. Point clouds (data
from non-contact measurement) before and after fusion were compared with this data. Blue dots,
gathered separately from the surface by single points CMM measurement, were used to perform
data fusion.
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Fig. 4.29: Principle of CMM measurements of the part (the actual number of points varies for
different part geometry). - - reference data for evaluation of the method, ® - characteristic points

used for data fusion [48]

Before application of the proposed method a mesh of triangles was created from the non-contact
point cloud to limit the number of points and so the computing time. As it was described for
previous parts the point clouds before and after application of the proposed method were
compared with data obtained from calibration of the surface performed with the CMM. The
comparison was performed in the Catia CAD software. An example of comparison between data

from the CMM and the point cloud from the optical measurement is presented in Fig. 4.30.
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Fig. 4.30: Comparison between data from a CMM and a point cloud [48]
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For point clouds before and after data fusion their distances to the reference data were
determined. Also, statistical distributions of these distances were calculated. For all distances,
weights based on frequency of appearance were assigned. Next for the whole point cloud a
weighted average was calculated. The weighted average is calculated from following equation
4.2, where weights depend on frequencies of appearance of distances (left column of the colour
bar from Fig. 4.30)

For comparison with a point cloud the closest points to these from a CMM were searched. To
check the influence of the size of selected virtual markers, three diameters were selected 10 mm,

20 mm and 30 mm. Numerical results are presented in Table 4.13.

Table 4.13 : Planar surface - comparison of point clouds with data from the CMM [48]

® — diameter Average distance Average distance
_ (non-contact — (non-contact — Ratio of
of virtual reference) before reference) after improvement, %
marker, mm fusion, mm fusion, mm
10 0.20429 0.00028 99.86
20 0.20429 0.00034 99.83
30 0.20429 0.00054 99.74

The above table shows that before application of the proposed method the average distance
between the point cloud (aligned using four coordinate balls) and data from CMM was higher
than 0.200 mm. It was caused by both misalignment between the two sets of data and errors in
the positions of points in the point cloud. The results show how for a very simple feature non-
contact measurement can be inaccurate. The application of the developed fusion method
decreased the weighted average of distances by three orders of magnitude. In the evaluation
weighted average was used as some distances repeat. If a certain value of distance repeats more
often it has bigger influence on the calculated average, as in Fig. 4.30. It can also be noted that

for a smaller size of the virtual marker sphere, a smaller average distance is obtained.
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The proposed method was also evaluated on freeform surfaces which are common in modern
products. The same parts as for material markers were used. The freeform surface test parts were
measured using the Accura 7 and the Metris laser scanner MMCS8O0 fixed to a measuring arm.

The first example of freeform surface is a turbine blade with dimensions (200x120) mm. The part
together with the 3CB is presented in Fig. 4.31.

Fig. 4.31: Turbine blade with the 3CB for referencing [48]

First the part was measured on a CMM. It relied on measurements of two sets of parallel lines
mutually perpendicular to create a net. Similarly as for the part in Fig. 4.29. This net was treated
as reference data for evaluation of the method. Then, from the whole surface 113 points, arranged
in a regular grid were gathered. These points were considered to be characteristic points from
contact measurement and the basis to find corresponding points on the point cloud using the

already described virtual markers method.

Since the turbine blade is an element with high curvature a small diameter for the virtual markers
was chosen. The diameter was 6 mm. Data from the non-contact device had two forms: raw point

cloud and mesh of triangles with fewer points.

A statistical analysis of the distances between point cloud and data from the CMM was
performed in the Catia CAD software for point clouds before and after application of the method.
The distance is between a point from a CMM and the closest point from the point cloud. For all
distances, weights characterizing frequency of appearance, of a particular distance in the whole
point cloud, were assigned. Subsequently a weighted average was determined. Results are
presented in Table 4.14.
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Table 4.14 : Turbine blade - comparison of point clouds with data from the CMM [48]

Form Average distance (non-  Average distance (non- . .

of Ratio of improvement,
. contact — reference) contact — reference) o

point - . %)

cloud before fusion, mm after fusion, mm

mesh 0.2770 0.0743 73.18

raw 0.2085 0.0492 76.40

To visualise the obtained results cross-sections of point clouds in the places of the part where
reference data were gathered were made. Cross-sections were made for point clouds before and
after data fusion. These point clouds were in the coordinate system of CMM data. A sample

results for one cross-section are presented in Fig. 4.32.
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Fig. 4.32: Comparison of cross-sections of point clouds before and after fusion with reference
data [48]

Table 4.14 shows the usefulness of the proposed method for a freeform surface. For both forms
of data the obtained ratio of improvement was similar. For mesh of triangles it was about 73%
and for raw point cloud about 76% compared to the data before data fusion. For this part the
average distance between characteristic points was 12 mm. Based on Table 4.5 it can be assumed
that the dependency between ratio of improvement and distance between markers for simulation
data is linear. If the distance between markers was 12 mm then the ratio of improvement should
be around 80 %.
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This shows the ability to transfer the method tested on simulation data onto real data.

As for all previous examples the initial (before data fusion) average distance between point cloud
and reference data is higher for mesh of triangles, comparing to raw data.

Analysing Fig. 4.32 it can be noted how the fusion pulled the point cloud from non-contact

method closer to the reference, which proves improvement in precision.

Another example of freeform surface used to evaluate the proposed method was the engine cover
of a car. As this element contains openings, only a continuous area with dimensions of (600x180)
mm was used to perform data fusion. The engine cover together with the 3CB on its surface are

presented in Fig. 4.33.

Fig. 4.33: Engine cover with the 3CB [48]

First the part was measured on a CMM along two sets of parallel lines mutually perpendicular to
create a net. This net was treated as data for evaluation of the method, similarly to previous parts.
Then, 62 points, arranged in a regular grid were gathered. These points were considered to be
characteristic points from contact measurement and the basis to find corresponding points on the
point cloud, using the virtual markers method described in sub-chapter 4.1.2.

For the engine cover similar actions as for the turbine blade were performed. The engine cover
has higher curvature than a plane so a small diameter for the virtual markers was chosen.
Similarly as in previous case, mutually perpendicular lines creating a net, measured on a CMM
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were treated as reference data. Both point clouds, before and after application of the proposed
method were compared with this reference. Data from the non-contact device had two forms: a
raw point cloud and mesh of triangles with fewer points.

An analysis on statistical distribution of distances between point cloud and data from the CMM
was performed for point clouds before and after application of the data fusion method in Catia
software. Distance is determined from a point from a CMM to the closest point from a point
cloud. For all distances, weights based on frequency of appearance were assigned. Subsequently

a weighted average was determined. Results are presented in Table 4.15.

Table 4.15 : Engine cover - comparison of point clouds with data from the CMM [48]

Form Average distance (non-  Average distance (non- . .

of Ratio of improvement,
. contact — reference) contact — reference)

point - . %

cloud before fusion, mm after fusion, mm

mesh 0.0638 0.0341 46.55

raw 0.0575 0.0327 43.13

Here the number of gathered characteristic points with regard to the size of the part was smaller
than for the turbine blade but also the shape of this part was less complicated. The mean distance
between characteristic points was about 110 mm. Also in this case ratio of improvement was
similar for both forms of input data. It was about 47 % and 43 % for mesh and raw data
respectively. We should also pay attention to the distance before application of data fusion. It is
much smaller than for turbine blade. It is due to good optical characteristics of the measured
surface and simplicity of the shape. For this part again higher distance between point cloud

before fusion and reference data was observed for mesh of triangles.

The developed method of data fusion was also evaluated based on data from measurements of big
part from aircraft industry — fuel tank, which was not included in [48]. The plane part had a
length of around 1000 mm and a maximal diameter of 450 mm. The reason to use such part was
to show how big parts can be measured fast and with sufficient accuracy, which is highly
desirable from economic point of view. Fig. 4.34 shows the selected part mounted on the

measuring table of a CMM.
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Fig. 4.34: Measurand — plane part

To the part, three coordinate balls were glued to ensure a common coordinate system for data
from both contact and non-contact measurements. They were distant from each other as far as

possible to make the determination of coordinate system more stable.

From the surface of the fuel tank 456 characteristic points were measured using a CMM with a
tactile probe. The mean distance between these points was 40 mm — this value was used as one of
the parameters in the data fusion method. Then, keeping the same rule as for previous parts, the
whole surface was measured using the CMM creating an additional net of mutually perpendicular
lines. This was the reference data for the data fusion method evaluation. Both point clouds,
before and after application of the proposed method were compared with this reference. In this
case to limit processing time only mesh of triangles was used for analysis.
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An analysis on statistical distribution of distances between point cloud and data from the CMM
was performed for point clouds before and after application of the data fusion method in Catia
CAD software. Distance is determined from a point from a CMM to the closest point from a
point cloud. For all distances, weights based on frequency of appearance (more distances with the
same value give higher frequency) were assigned. Subsequently a weighted average was

determined. Results are presented in Table 4.16.

Table 4.16 : Plane part - comparison of point clouds with data from the CMM

Average distance (non- Average distance (non-
contact — reference) before  contact — reference) after Ratio of improvement, %
fusion, mm fusion, mm
0.0801 0.0356 55.56

To visualize changes presented in the above table a graphical comparison from Catia CAD
software is given. Comparison before data fusion is presented in Fig. 4.35 while comparison after
fusion in Fig. 4.36.
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Fig. 4.35: Distances between point cloud from non-contact measurement and reference data

before data fusion
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Fig. 4.36: Distances between point cloud from non-contact measurement and reference data after

data fusion
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It can be noted that the maximal distance was decreased by more than 150 pm. Data fusion also
decreased the average distance. The biggest improvement can be observed in areas where the

initial distortion was the highest — right area of Fig. 4.35.

| also wanted to analyse the character of the changes. An important issue is whether systematic
errors were corrected or only inaccuracy of alignment was removed. For this purpose in Fig. 4.37
| presented one of the lines from Fig. 4.35 and Fig. 4.36. It can be observed how data fusion

moved the points from the point cloud closer to the reference data.
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¥ mm Fig. 4.37: Cross section of a point cloud - plane part

As it is presented in Fig. 4.37 the initial cross-section of the point cloud (orange dots) has not
undergone only rigid body transformation which would shift, rotate or scale it. Areas which are
on one side of the reference data (blue dots) stay on the same side but are much closer to the true

value. The initial distortion has been decreased. Corrected data is marked grey.

To make the improvement more visible, the most susceptible area of the curve, the area of the

edge was magnified and presented in Fig. 4.38.
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X mm Fig. 4.38: The magnified edge from Fig. 4.37

As we can see from Fig. 4.38 the random error represented by noise was not removed. However,

the main goal of the method was achieved, the systematic error was decreased.

An important advantage of the presented data fusion method is visible when we want to
characterize the curve, which is magnified in Fig. 4.38, using only characteristic points from
contact method — not the additional, reference measurement. It is shown in Fig. 4.39.
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Fig. 4.39: The curve characterization using characteristic points from contact method
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Big, black dots are the characteristic points from contact method used for fusion. If we had only
this data the reconstructed curve would look like the black curve. The important information
about the edge would be lost. The edge was detected by non-contact measurement, so after data
fusion information about the inspected part is complete and more precise than only non-contact

measurement.

The developed method of data fusion was also evaluated based on results from CMM and CT

scanner measurements of the plano-parallel plate presented in Fig. 1.4,

To show utility of the data fusion method described in this thesis it was assessed how systematic
errors from the CT measurement process can be reduced. To perform fusion I chose some points
from measurements on a CMM, from data used for the CAD model creation. 20 points for each

planar surfaces and 15 points from the cylinder were used.

To analyse improvement of the accuracy of data from non-contact measurement provided by the
use of contact measurement, the resulting point cloud was compared with the reference model.

Comparison of geometrical parameters before and after data fusion is presented in Table 4.17.
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Table 4.17 : Comparison of geometrical parameters for the plano-parallel plate.

Data after
Reference (CMM) CT measurement )
fusion
distance between
planes, mm 16.139 16.745 16.140
radius of the 23.417 22.436 23.383

cylinder, mm

Table 4.17 shows that these two parameters from data after fusion tend to the value represented
by reference data. When the parameter for non-contact measurement were higher than the
reference, it stayed higher but much closer to this reference and when before fusion it was lower
it stayed lower but more accurate. To make the nature of changes more visible then for the cross-
section from Fig. 1.5 a second cross-section in the same location but for data after fusion was
added. It is presented in Fig. 4.40.

Cross-section of a plane
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Fig. 4.40: Comparison of cross-sections before and after data fusion
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The graph shows that the proposed fusion method decreased the systematic error represented by
the original U-shaped distortion. The improvement is also apparent from the 3D comparison with
the CAD model depicted in Fig. 4.41.

Fig. 4.41: Comparison between data after fusion and CAD model

The most evident observation is that the scale of the difference form reference data is reduced by
a factor of 4. On the edges we can see the highest difference between the point cloud and the
CAD model, which was also apparent for data before fusion. This is the feature of many non-
contact measurements like laser triangulation or CT scanning. In these areas strong noise occurs
and also reconstruction algorithms have segregation problems; attributing points to particular
surfaces. Also, in the central part of the plate there are many points lying on both sides of the

fitted planes, which is caused by noise.

Table 4.18 shows how the data fusion method influences the range of points coordinates for

geometric features fitted to specific areas of point clouds — two planes and cylinder.



Table 4.18 : Range of points coordinates for fitted features

97

CT measurement

Data after fusion

upper plane, mm 0.339
lower plane 0.321
radius of the cylinder, mm 0.155

0.104

0.096

0.153

Range for the cylinder remained unchanged while for both planes it was decreased three times.

This is caused by the fact that in CT measurements distortions representing systematic errors

appear in surfaces parallel to the measuring table of a CT scanner. So, for the cylinder which axis

were perpendicular to the measuring table, systematic errors did not occur, they were not limited

by data fusion method and the range is caused by noise.

This shows that proposed method of data fusion can be used for data from different measuring

devices.
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CHAPTER 5 CONCLUSIONS

This thesis presents a novel method of data fusion. All data comes from coordinate
measurements. In these techniques point coordinates gathered on the part surface are processed
to characterise the measured surface or feature. More points are measured more complex

information about the measurand is provided.

In coordinate metrology points can be collected using contact and non-contact sensors. In the
case of contact measurements high precision coordinates are obtained. The main disadvantages of
this approach are the small number of measurement points and the long measuring time. Faster
and more thorough inspection of machined parts in order to shorten product process development
time is required by modern industry. Non-contact methods are attractive solutions. In this way

much data over the whole object is gathered in a short time albeit with lower precision.

Every method has its advantages and disadvantages. Therefore it is often desirable to combine
data from two measuring techniques. In such a way that cons are limited and pros are maintained.
Methods of data fusion from literature were presented. Many of them are not applicable to
freeform surfaces, which are very common. Even the methods of data fusion dedicated to
freeform surfaces have many limitations. ICP algorithm is often used. It is a rigid transformation.
Therefore point cloud modelling is not complete and no real improvement is obtained.

The main objective of this dissertation was to fuse data of the same surface but obtained from
different types of measuring methods. The proposed approach is suitable for freeform surfaces.
The main goal was to increase the precision of the non-contact HDLP set of data, using the
contact LDHP set.

In the data fusion method first, the part was measured using a non-contact method. Then using a
contact method a set of characteristic points was gathered from the part. These characteristic
points can be represented by material or virtual markers. Then a set of corresponding points was
sought in point cloud from non-contact method. Based on these two sets a matrix relation
functions between them was determined. It was used to determine correction vectors for all points

from the cloud needed for correction.
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Based on research, as material markers, ceramic balls made of silicon nitride with the diameter of
7 mm were used. The balls were glued into specially designed magnetic fixture. Thanks to this

they could be put on the measured surface and materialise characteristic points.

The next method developed for determination of characteristic points is the method called virtual
markers. In this method, after ensuring a common coordinate system, a regular grid of points is
gathered using contact method. Then around these points virtual spheres were created. Each
sphere included points from the point cloud — non-contact measurement. For all spheres
separately, the average coordinates from these points were computed. This gives a second set of
characteristic points coming from the non-contact method. The diameter of the spheres is
determined to be minimal but enclose at least fifteen points from non-contact method. Bigger

diameter would make the method insensitive to the curvature of the measured surface.

Characteristics on non-contact measuring methods were analysed. It was shown that data form
non-contact type of measurement is burdened with random and systematic errors. The systematic
errors cause distortion of the point cloud and are the ones which are intended to be corrected by

the developed method.

Non-contact measurements are susceptible to many factors like: projected angle, scanning depth,
environmental effects, influence of the operator and measuring strategy, data processing or
measured surface properties. The factors were analysed to develop the best manner of non-

contact measurements conduction.

Most of the research was conducted on laser scanner working on the principle of triangulation. It
was shown that higher resolution is obtained when the distance between the laser scanner and the
measured surface is shorter. Concerning projected angle it is recommended to keep the

triangulation plane orthogonal to the measured surface.

For environmental effects, the impact of external illumination was tested, using different types
and different intensities of lighting. It was shown that stronger lighting yields better results from
the same surface. This may be due to the fact that with higher lighting fewer data points are
collected.

Also the influence of the measuring strategy was tested in details. Five strategies differing in the

involvement of the arm’s joints, changes in scanning direction and overlapping of scans. The
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tests results suggests to limit overlapping of scans and also frequent changes in the scanning
direction.

Research on point cloud processing showed that for small parts when it is important to determine
their diameter it is preferably to work on raw point cloud or to improve the look of a cloud to use
a median filter. Creation of mesh of triangles, although it limits the number of points and thus
decreases computing time, provides additional error in position and diameter of features and

surfaces.

Knowing the nature of non-contact measurements the developed method of data fusion was
evaluated. Both methods of characteristic points determination were tested. Fusion using material
markers was tested on three surfaces: plane, turbine blade and engine cover. Fusion using virtual
markers was tested on the same surfaces (as plane bigger part was used). Additionally big part
from aircraft industry was used for evaluation of the method using virtual markers. Evaluation

was also performed through computer simulation for two planar curves: line and arc.

First, the material markers method was applied at the planar part of the reference cube was used.
Point clouds before and after fusion were compared with reference data by determination of
average distance between them. Results showed that the data fusion method decreased the
average distance between point cloud and the reference data. It can also be concluded that
precision of measurement was improved from 46 % to 95%, depending on the selected reference

line.

The proposed method of data fusion was also evaluated using freeform surfaces. First a turbine
blade was used. It offers a realistic industrial freeform. As in previous case both point clouds,
before and after data fusion were compared with the reference data. For point clouds obtained
from the non-contact device two types of input data were used: raw point cloud and cloud after
creation of mesh of triangles. For both point clouds, before and after fusion, an analysis on
statistical distribution of distances between these clouds and reference data was performed.
Always the closest point was searched. For all distances, weights based on frequency of
appearance were assigned. Then a weighted average distance for evaluation of the method was
calculated. It was noticed that for raw point cloud the obtained ratio of improvement is around
three times lower than in the case of mesh of triangles. It is caused by the fact that in raw point

cloud the ratio of random errors to systematic errors is higher. Also higher average distance
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between point cloud and reference data before fusion for mesh of triangles was noticed. It is the
effect of formation of mesh of triangles, which affects shape, diameter and position of surfaces
and features. A similar situation occurred for measurements of ceramic balls, where for example
the creation of mesh of triangles from raw data resulted in an increase of dimension error from 90
um to about 120 um. The maximal improvement for this part was higher than 16 %, less than for
the plane. It is caused by higher curvature of the blade. Lower improvement was obtained for raw

point cloud, which is caused by noise in the unprocessed data.

The next freeform surface was the engine cover of a car. For this part similar actions as for the
turbine blade were performed. Both point clouds, before and after application of data fusion
method, were compared with the reference. Both raw point cloud and cloud after creation of
mesh of triangles were used. An analysis on statistical distribution of distances between points
from these clouds and closest points from reference data was performed. Then a weighted

average was calculated.

Results showed that in this case the improvement is lower than for turbine blade but also input

data is burdened with smaller error, which is caused by smaller curvature of the part.

It was noticed that, as for turbine blade, for raw point cloud the obtained ratio of improvement is
lower than in the case of mesh of triangles. It is caused by the fact that in raw point cloud the
ratio of random errors to systematic errors is higher. Also here the higher average distance
between point cloud and reference data before fusion for mesh of triangles was noticed. It is the

effect of formation of mesh of triangles.
The method of data fusion was also tested using the virtual markers method.

First the method was evaluated using computer simulation for two planar curves: line and arc.
Different density of characteristic points was tested. For the highest distance between
characteristic points (~20 mm) the improvement was of almost 90 % and for the lowest (~7 mm)

more than 98 %.

Then the simulation was performed for an arc. Here for similar distances between characteristic
points the improvement was between 54 % and 92 %. The obtained results demonstrated the
validity of the proposed method of data fusion. For more characteristic points the ratio of
improvement is higher. The data fusion method does not distort the shape of the initial

measurement error for any number of characteristic points for none of the presented curves.
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Then for evaluation, the same parts as for material markers were used, although the plane was
replaced by granite table with higher dimension than the reference cube. For all parts three
coordinate balls were fixed on or around the measured part to ensure a common coordinate
system. To have reference data the parts were measured by gathering a net of mutually

perpendicular lines using contact method.

The first part was the plane represented by a granite table. Before application of the proposed
method a mesh of triangles was created from the non-contact point cloud to limit the number of
points and so the computing time. Similarly as in all previous parts the point clouds before and
after application of the proposed method were compared with reference data. For point clouds
before and after data fusion their distances to the reference data were determined and so statistical
distribution of these distances were calculated. Then the weighted average distance was
calculated. To check the influence of the size of selected virtual markers, three diameters were
selected 10 mm, 20 mm and 30 mm. It was noted that for a smaller size of the virtual marker

sphere, better results were obtained.

For all sizes of virtual markers the results showed that the application of the developed fusion
method decreased the weighted average of distances by three orders of magnitude. It should be
highlighted that the shape is simple and the number of characteristic points used for fusion was
high.

The proposed method was also evaluated on freeform surfaces. The first example of freeform
surface was a turbine blade. A net of lines was measured using contact method to get reference
data for comparison. Both point clouds, before and after application of the proposed method were
compared with this reference. Data from the non-contact device had two forms: raw point cloud

and mesh of triangles with fewer points.

A statistical analysis of the distances between point clouds before and after fusion and reference

data was performed and weighted average was determined.

Results show the usefulness of the proposed method for a freeform surface. For both forms of
data the obtained ratio of improvement was similar. For mesh of triangles it was about 73% and
for raw point cloud about 76% compared to the data before data fusion. It is few times more than
for material markers. Simulation showed that the dependency between ratio of improvement and

distance between markers for simulation data is linear. If the distance between markers was 12
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mm then the ratio of improvement should be around 80 %. This shows the ability to transfer the

method tested on simulation data onto real data.

Similarly as for all previous examples the initial (before data fusion) average distance between

point cloud and reference data is higher for mesh of triangles, comparing to raw data.

Then the method was evaluated on the engine cover of a car. For the evaluation point clouds
before and after fusion were compared with the reference data from contact measurements of the
analysed surface. Based on statistical distribution of distances point cloud — reference data
average distance was calculated. Data from the non-contact device had two forms: a raw point

cloud and mesh of triangles with fewer points.

Here for bigger part but smaller curvature and smaller number of characteristic points the
obtained improvement was of 47 % and 43 % for mesh and raw data respectively. It should be
noted that the distance before application of data fusion was much smaller than for turbine blade.
It is due to good optical characteristics of the measured surface and simplicity of the shape. For
this part again higher distance between point cloud before fusion and reference data was observed

for mesh of triangles.

The developed method was also evaluated based on data from measurements of big part from
aircraft industry — fuel tank. Point clouds before and after fusion were compared with reference
data from contact measurement and average distances point cloud — reference data were
determined. In this case to limit processing time only the mesh of triangles was used for analysis.
It was noted that data from non-contact measurement was improved by almost 56 % and the
maximal distance point cloud — reference data was decreased by more than 150 um. The biggest

improvement can be observed in areas where the initial distortion was the highest.

Based on cross-section of point cloud it was observed how data fusion moved the points from the

point cloud closer to the reference data. It was observed that the systematic error was decreased.

An important advantage was revealed be the presence of edge (wrinkle) on the surface. As this
area was not measured when gathering points using the contact method (characteristic points),
this detail would be lost. But the edge was detected by non-contact measurement, so after data
fusion information about the inspected part is complete and more precise than only from non-

contact measurement.
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Based on uncertainty analysis presented in subchapter 4.1.6 it was shown that a reduction of
uncertainty was achieved. For the devices used the uncertainty was decreased by more than 40%.

The presented results showed that the set objectives have been met. Two sets of data with
fundamentally different nature were fused. A first set, from non-contact method, is characterized
by a low precision but high density of points (HDLP). A second set comes from contact
measurements and has low density of points but also higher precision (LDHP). Results showed
that based on both sets one set with high precision and high density of points (HDHP) was

achieved.
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APPENDIX A - THE SPECIFICATION OF LEGEX 9106
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Length standard

Guide system

Max. drive speed,
mm/s

Max. acceleration,
G

Ultra-high accuracy linear encoder (glass scale with virtually zero

thermal expansion coefficient)

Air bearing (linear guide: LEGEX 322)

200

0.1 (0.06: LEGEX 322)

Range
X-axis, mm 910
Y-axis, mm 1010
Z-axis, mm 605
Resolution, pm 0.01
Accuracy
Empe, um (0.50+L/1000)
Pmpe, pm 0.45
Work Tabela
Material Cast iron
Size, mm 950 x 1050
Tapped insert, mm M8 x 1.25
Work piece
Max. height, mm 856
Max. load, kg 800
Mass (main unit), 6500

kg




APPENDIX B - THE SPECIFICATION OF ACCURA 7
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Length standard Linear encoder (zero-dur scales with patented thermally neutral frame)
Guide system Air bearings
Max. drive speed, 520
mm/s
Max. acceleration, 0.24
G
Range
X-axis, mm 900
Y-axis, mm 1200
Z-axis, mm 700
Accuracy
Ewmpe, pm (1.7+L/333)
Pmpe, um 1.7
Work Tabela
Material Granite
Tapped insert, mm M8 x 1.25
Work piece
Max. height, mm 800
Max. load, kg 1300




APPENDIX C -

THE SPECIFICATION OF REVSCAN
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Weight, g

Dimensions, mm
Measurement Rate, measures/s
Laser Class

Resolution, mm

Accuracy, mm

Volumetric Accuracy?

Volumetric Accuracy® (with
MaxSHOT 3D)

Stand-Off Distance, mm
Depth of Field, mm
Laser Cross Area, mm
Software

Output Formats

980
160 x 260 x 210
18 000
Il (eye-safe)
0.100 mm
Up to 0.050

0.020 mm + 0.200 mm/m

0.020 mm + 0.025 mm/m

300
+ 150
210 x 210

V Xelements

.dae, .fbx, .ma, .obj, .ply, .stl, .txt, .wrl, .x3d, .x3dz, .zpr

! Based on the 1SO 10360 standard, volumetric accuracy is defined as a size-dependent value.



APPENDIX D — THE SPECIFICATION OF MMC80

115

Stripe width (), mm

Start measuring range, mm
Measuring range (Z), mm
Accuracy (20), um

Max data rate, real pts/sec?
Points per stripe?

Max speed, stripes/sec
Temperature compensation
Sensor weight, g

Laser power Class

Localiser compatibility

80
100
100

35

24
800

30
No
410

Class 2M

Metris MCA (6 and 7 axis)
Metris K-Scan (all variants)

Romer/Cimcore Infinite/Stinger (6 and 7 axis)

Faro Platinum/Titanium/Fusion/Quantum (6 and 7 axis)

2 Metris points-per-second and points-per-stripe specifications state real scan points only. No

interpolation techniques are used to oversample the point clouds.



