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RESUME

La scoliose est une deformation tridimensionnelle complexe du systeme musculo-

squelettique qui est couplee, du point de vue biomecanique, a une rotation transversale
des corps vertebraux et qui peut entramer une cyphose anonnale de la colonne

thoracique et / ou une lordose de la colonne lombaire. Les patients severement affectes
doivent subir une chirurgie corrective par osteosynthese qui consiste a instrumenter la

colonne en utilisant trois types d'implants : les tiges, les vis et les crochets afin d'exercer

des forces sur les vertebres de sorte a corriger les deformations. Pour simuler les

con-ections internes des vertebres et de la surface exteme sous 1'effet de forces extemes

variables, plusieurs chercheurs ont applique differentes methodes pour simuler la

procedure de chirurgie. Un modele d'elements finis, qui cependant n'inclut pas les tissus
mous, a ete developpe a 1'Hopital Sainte Justine de Montreal pour simuler la deformation

de la cage thoracique et des vertebres sous 1'effet d'un traitement. La strategic de

chirurgie conventionnelle est basee sur 1'experience du medecin et un modele

preoperatoire 3D du patient qui peut etre mis a jour par recalage d'informations de
positionnement intraoperatoires (Bucholz 1994). L'objectif global de ce projet de
maTtrise est de simuler 1'effet d'une chimrgie sur la surface exteme du tronc avant

d'effectuer Ie traitement afin de foumir au chimrgien un outil qui va lui permettre de

prendre de meilleures decisions dans Ie choix de la strategic. Un modele personnalise 3D
du tronc est obtenu par recalage d'un modele preoperatoire 3D des structures osseuses

obtenu a partir des images a rayons-X et la surface exteme 3D du tronc obtenue a partir

d'un systeme de numeriseurs 3D de la compagnie InSpeck Inc, M.ontreal.

Les objectifs specifiques de ce projet consistent a (1) analyser et ameliorer manuellement

la qualite du maillage 3D decrivant Ie volume delimite par la surface exteme du tronc et
la surface des stmctures osseuses sous jacentes pour eviter des elements non valides et

ameliorer la precision des resultats de simulation, (2) developper et evaluer un

algorithme dynamique d'elements finis pour simuler la deformation des stmctures a

travers Ie temps, (3) calculer les conditions aux frontieres en se basant sur un ensembles
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de reperes anatomiques identifies sur les vertebres avant et apres la chimrgies, (4) valider

1'algorithme propose et evaluer les erreurs de precision en comparant les resultats
simules sur un modele synthetique et les resultats de la meme simulation obtenus a partir

du logiciel ANSYS sur Ie meme modele, (5) Definir et mesurer une metrique d'erreur

pour evaluer Ie modele propose a partir de donnees reelles d'un patient.
Nous avons d'abord obtenu un maillage du tronc complet d'un patient. La qualite du

maillage a ete ensuite evaluee a 1'aide d'un parametre approprie decrivant Ie rapport

d'aspect calcule sur 1'ensemble des tetraedres composant Ie maillage, et Ie resultat

analytique indiquait que certains tetraedres avaient une forme geometrique non valide
dans la region d'intersection entre Ie maillage des tissus mous et Ie maillage des
vertebres. Etant donne que les tetraedres non valides affectent severement la

convergence vers la solution de 1'equation differentielle numerique du systeme, ces
demiers ont ete reajustes manuellement. Les donnees reelles etant limitees a un seul

patient, les operations sur Ie maillage ont ete effectuees de fa^on specifique au patient

utilise pour 1'evaluation du modele.

Le developpement de la methode d'elements finis a ete effectue en deux etapes. La

premiere etape etait de choisir un polynome lineaire comme fonction d'interpolation

pour former un espace lineaire continu dans chaque tetraedre et calculer son gradient
interne. La matrice globale de rigidite est obtenue par assemblage des matrices de

rigidite des tetraedres, qui sont calculees selon differentes lois de comportement

(elastique lineaire ou hyper-elastique non lineaire) et les parametres biomecaniques

specifiques a la region d'appartenance du tetraedre. La seconde etape est de constmire

une equation differentielle dynamique. Dans notre projet, une methode d'integration

implicite a etc implementee et plusieurs facteurs comme la complexite et la precision des

resultats ont ete analyses afin de determiner Ie schema optimal. Pour foumir une

procedure de deformations successives Ie schema d'integration de Newmark a ete choisi

pour resoudre 1'equation differentielle ordinaire a travers Ie temps.
Les conditions aux frontieres sont definies en se basant sur differents schemas de

defonnation. Dans Ie cas de deplacements pures, Ie deplacement d'un point est effectue
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Ie long d'une ligne consideree comme la courbe d'interpolation lineaire entre deux

extremites qui designent la position d'un ensemble de reperes anatomiques identifies sur

les vertebres avant et apres la chimrgie. Le pas de deplacement est divise de fa^on

uniforme par un facteur de dix et Ie deplacement est effectue de fa^on graduelle jusqu'a

atteindre 1'etat d'equilibre final. Le schema d'application de forces consiste a considerer

une serie de ressorts dont une extremite pointe toujours vers la position finale d'equilibre

et se deplace Ie long de la courbe lineaire d'interpolation. L'autre extremite produit une

force elastique sur chaque vertebre et entrame Ie tronc complet a se deformer pour

atteindre 1'etat d'equilibre.

La validation de 1'algorithme propose a ete effectuee en comparant les resultats obtenus

par la deformation d'un ensemble d'objets synthetiques simples a 1'aide du code

implemente a ceux obtenus avec Ie logiciel ANSYS. La distance entre les surfaces des

objets deformes par ANSYS et ceux deformes par 1'algorithme propose a ete calculee.

Une analyse quantitative des resultats obtenus a ete effectuee afin d'estimer la precision

du modeles propose. Finalement, une comparaison des resultats de simulation sur les

donnees reelles d'un patient a permis d'effectuer une evaluation preliminaire du modele

propose. Un modele d'elements finis utilisant une propriete d'elasticite lineaire avec des

deplacements purs a foumi de meilleurs resultats. La distance moyenne entre les surfaces
simulees et les surfaces reelles est de 10.2607mm. Le classement par ordre du meilleur

au plus pire est Ie modele d'element finis avec deplacements purs suivi du modele avec
un schema lineaire d'application de forces et enfin un modele base sur un schema non

lineaire d'application de forces.

Nous avons demonb-e, a travers ce projet, la faisabilite d'utiliser une methode d'elements

finis pour simuler 1'effet d'une chirurgie correctnce de scoliose sur la surface exteme du

tronc. Cependant, la complexite du corps humain rend difficile la construction d'un

maillage precis des differentes stmctures du tronc qui devrait inclure les differents

organes ainsi que les interactions entre eux. Notre modele etant limite a la surface
exteme du tronc et la surface des stmctures osseuses sous jacentes, il ne peut pas

atteindre une haute precision. Par consequent, une meilleure precision des resultats de
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simulation necessiterait Ie developpement d'un maillage plus raffine des differentes

structures du tronc humain incluant les proprietes mecaniques des differents organes.
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ABSTRACT

Scoliosis is a complex three-dimensional defomiity of the musculo-skeletal system that

is biomechanically coupled with a transverse rotation of the vertebral bodies and may be

accompanied by abnormal kyphosis of the thoracic spine and /or lordosis of the lumbar

spine. Severely affected patients must take corrective surgery by spine instmmentation

with osteosynthesis, which uses three implantable elements: rod, hooks and screws to

introduce forces on the vertebrae and to reduce the spinal deformities. To simulate the

effect of deformation of internal vertebrae and the external surface under varied external

forces, many researchers have applied different methods to simulate the procedure of

surgery, and a good finite element model, which however does not include soft tissue,

has been developed in Ste. Justine Hospital of Montreal to simulate the deformation of

the rib cage and vertebrae. The traditional surgery strategy is based on the doctor's

experience and the patient's three-dimensional preoperative model which can be updated

with the real treated case to register it with intraoperative localization (Bucholz 1994).

The global objective of this MSc project is to simulate the effect of surgery on the

external surface of the tmnk before scoliotic surgery and provide an approach to

simulation to help the doctor make better decisions before surgery. A personalized 3D

model is directly constructed by registering a preoperative 3D model built from patient's

X-ray and his 3D external trunk surface coming from 3D image Capturer (InSpeck Inc,

Montreal).

Specific objectives of this project consist of (1) analyze and enhance manually the

quality of the acquired 3D mesh of the integral trunk to avoid bad elements and improve

the simulated result, (2) develop and evaluate a dynamic finite element algorithm to

simulate the procedure of deformation of the patient's internal surface over time, (3)

compute the boundary conditions based on the position of points on vertebrae before and

after surgery, (4) validate our algorithms and error accuracy by comparing our simulated
results with theoretic values and ANSYS software simulated results, (5) define and



measure the error distance metric which is used to evaluate the model from real data for

one patient.

We first obtained a complete tmnk mesh for one patient. The mesh quality was then

evaluated by a suitable aspect ratio parameter defined on a tetrahedron, and the analytic

result indicated there are some tetrahedrons with bad geometric shape on the intersection

region between the external soft tissue mesh and the vertebral mesh. The bad
tetrahedrons severely influenced the convergence of the numerical differential equation

solver, and thus are manually readjusted. Since we only obtained a single patient's data,

all the operations on the mesh are only implemented on this scoliotic patient s data set.

The development of the finite element method was undertaken in two steps. The first

step is to choose a linear polynomial as interpolation function, to fonn a linear

continuous space in each tetrahedron and compute its inner gradient. The global stiffness

matrix is obtained by assembling each small tetrahedral stiffness matrix, which is

computed according to a different constitutive law (linear or nonlinear hyperelastic) and

the specific biomechanical parameters in the region where it is situated. The second step

is to constmct a dynamic differential equation. In our project, the implicit integration

method is implemented and its many factors such as time complexity, and accuracy of

the result, are compared to determine the final scheme. To form a successive

deformation procedure, the Newmark integration scheme was chosen to solve the

ordinary differentiation equation over time.

The boundary conditions are defined based on various deformation schemes. The point

displacement in the pure displacement algorithm is designed along a line interpolation

curve between the two ends, which come from the preoperative and postoperative

radiographic data about key points on each vertebra. The displacement is evenly divided

into ten parts and gradually moves to the final equilibrium state. The force application

scheme constructs a series of springs for which one end always points at the final

balance position and also moves along a line interpolation curve. Its other end produces
an elastic force on each vertebra and causes the whole tmnk to move and deform to the

equilibrium state.
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The validation of algorithms is executed by implementing the deformation of some

simple synthetic objects by using both our code and the ANSYS software, and by

computing the distance error between the surfaces of two deformed results. The

quantitative analysis is used as a reference to estimate the accuracy of our deformable
model.

Finally, the analysis of error between the simulated result of our model and the patient's

clinical data are computed to evaluate our model. The linear elasticity based on finite

elements with pure displacement achieves the best simulation result, whose average

distance error is only 10. 2607 (mm) after averaging the distance error in two directions.

Next best is the linear finite element force application. The order from best to worst is

linear finite element pure displacement, linear finite element force application, and non-

linear finite element force application.

The work carried out in the framework of this project showed that using the finite

element method to simulate scoliotic surgery is feasible. But because the complexity of

the human body leads to difficulty in constructing an accurate human trunk mesh, which

should reHect all human organs and the relationship of connection between them, our

model, which only includes vertebra, coarse ligaments and soft tissue, cannot achieve

very high simulation accuracy. Consequently, a better simulation would require the

development of clearer mesh definition and research on the biomechanical properties of

human organs.
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CONDENSE

Introduction

Le but ultime de ce projet de maltrise est de developper un modele d'elements finis pour

imuler 1'effet d'une chirurgie correctrice de la scoliose sur la surface exteme du tronc.

Durant les cinq demieres annees plusieurs modeles mathematiques complexes ont ete

etudies et plusieurs donnees experimentales ont ete acquises afin de decrire les

deformations biomecaniques du tronc humain.

Etant donne que chaque organe du tronc humain possede ses proprietes specifiques, les

modeles de simulation proposes ont ete developpes de fa?on specifique a 1'application

d'interet et par consequent les modeles physiques sous-jacents ont ete configures selon

les besoins de 1'application. Certains modeles biomecaniques bases sur les elements finis

ont ete developpes pour simuler Ie mecanisme de correction des deformations

scoliotiques sous 1'effet d'un traitement sur une geometrie specifique de patients

(Patwardan 1990, Wynarskyl991, Aubin 1993). Ces etudes ont montre comment une

meilleure correction pourrait etre obtenue mais Ie mecanisme biomecanique complexe de

la deformation de la colonne sous 1'effet d'un traitement n'est pas encore clairement

documente. Un des modeles biomecaniques qui a ete developpe pour la simulation de

traitement de deformations scoliotiques est base sur la geometric personnalisee de la

colonne vertebrale et de la cage thoracique obtenue par reconstruction 3D

radiographique. (Aubin 1995). Ce modele a ete utilise pour simuler Ie traitement par

corset sur les stmctures osseuses du tronc. Meme si ce modele permet d'identifier les

points de chargement qui peu vent entramer une meilleure correction, ce modele ne prend

pas en consideration 1'action des tissus mous sous 1'effet d'un chargement.

Ce projet de recherche vise a foumir a 1'orthopediste un outil qui lui permettra de

simuler 1'effet d'une chirurgie correctrice de la scoliose sur la surface exteme du tronc.

L'outil permettra ainsi de montrer au patient son apparence apres la chirurgie selon les

differentes strategies possibles. Le patient pourra ainsi participer a la decision dans Ie

choix de la strategic.
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Une premiere etape consiste a construire un modele geometrique de 1'ensemble des

structures anatomiques du tronc. Celui-ci est obtenu a partir d'un recalage du modele 3D

des stmctures osseuses obtenu par reconstruction radiographique et la surface exteme du

tronc obtenue par des numeriseurs 3D. Ensuite un maillage tetraedrique est genere entre
la surface exteme du tronc et la surface des stmctures osseuses du tronc. La deuxieme

etape consiste a developper un modele d'elements finis def amiable du tronc, en

associant des proprietes mecaniques aux differents elements tetraedriques, afin d'evaluer

1'effet d'une chirurgie correctrice de la scoliose sur la geometric exteme du tronc. Ce

modele physique sera en mesure de propager 1'effet d'un chargement sur la colonne

vertebrale sur les autres stmctures du tronc jusqu'a la surface exteme du tronc. Le

resultat sera compare a la surface exteme du tronc acquise avec les numeriseurs 3D apres

la chimrgie afin de valider Ie modele. Une fois valide, Ie modele permettra la simulation

de la geometric exteme du patient pour differentes strategies operatoires. Par consequent,

Ie choix d'une strategic optimale sera possible grace a la visualisation 3D du resultat

simule.

Etat de 1'art

Anatomic et proprietes biomecaniques de la colonne vertebrale

Le tronc humain est compose d'une stmcture osseuse complexe et de ligaments qui

protegent les organes internes et qui sert de support aux stmctures extemes. Le squelette

est compose de trois parties : les vertebres, la cage thoracique et Ie bassin. La colonne

vertebrale, axe medial osteo-articulaire du corps humain, assure trois types de fonctions

biomecaniques principales (White 1990): dynamique (transmission du chargement entre

les parties inferieures et superieures du corps), cinematique (pennettant des mouvements

physiques) et protectrice (de la moelle epiniere). Ses vertebres se composent de deux

parties distinctes : un bloc osseux anterieur, appele corps, et un anneau osseux posterieur

appele arc neural. Entre les vertebres. Ie disque intervertebral transmet les forces de

compression entre deux vertebres. En plus des disques un ensemble de ligaments
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pennettent de lier deux vertebres adjacentes. Le thorax qui est une zone cylindrique est

compose de douze paires de cotes qui sontjointes par Ie sternum.

La scoliose

La scoliose est definie comme une deformation tridimensionnelle complexe de la

colonne vertebrale sur Ie plan frontal qui implique des deformations au niveau des

vertebres, de la cage thoracique (entramant une asymetrie appelee gibbosite) et du

bassin. Dans la majorite des cas, la scoliose apparaTt juste avant et a 1'adolescence

pendant la poussee de croissance. En general, la colonne et Ie squelette vont continuer a

se deformer en 1'absence de traitement. Lorsque la deformation est tres severe (angle de

Cobb >40 degres) et que la progression continue meme si des traitements non

chirurgicaux ont ete effectues alors une chimrgie correctrice s'impose.

Techniques de modelisation

La methode d'elements finis tient compte des proprietes physiques des materiaux lors de

la simulation de deformations. Cette approche decrit une forme a 1'aide d'un ensemble

d'elements de base (triangles, quadrilateres, tetraedres) et des fonctions de forme a

support compact. Ce qui permet des representations continues du materiau avec des

niveaux variables de continuite. Un modele d'elements finis est completement defini par

Ie choix de ses elements, ses fonctions de forme et une parametrisation globale reliant les

differents espaces de parametres. B a ete largement utilise pour calculer des deformations

de tissus mous sous 1'effet de contraintes mecaniques. Meme si les modeles masse-

ressort ont ete developpes dans Ie domaine du graphisme pour leur simplicite et leur

implementation performante les modeles d'elements finis sont plus utilises dans Ie

domaine de biomecanique etant donne qu'ils sont senses atteindre une meilleure

precision dans la simulation des deformations.

Une fonction <!?{x, t) associe une configuration de reference a une configuration

courante qui peut s'exprimer comme une addition du deplacement a la position originale

dans la configuration de reference. La mesure fondamentale de deformation est decrite
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par Ie gradient de deformation V<? =1 +Vu(I eta.nt la matrice identite). Nous avons

choisi la propriete elastique de Cauchy pour simuler la deformation du materiau car la

deformation depend uniquement de la valeur courante du gradient de deformation et non

de toute 1'information temporelle du mouvement.

Etant donne Ie vecteur normal unitaire n de la surface, la force de traction spatiale

t(x, n) peut etre exprimee comme une fonction de a-(x) : t{x, n)= o-(x)n qui est
exprimee dans Ie systeme Eulerien de la configuration de reference. On peut alors

transformer la relation entre la pression et Ie gradient de deplacement dans Ie systeme

lagrangien et obtenir ainsi Ie premier tenseur de pression de Piola-Kirchhoff.

O-(X) - det(VO(x))o-(x)(v<D(x)' )-1, ^ = ^>(x)
Comme Ie tenseur de pression n'est pas symetrique la ou Ie tenseur de Cauchy est

symetrique une transformation du premier tenseur de Piola-Kirchhoff en 1c multipliant

par V0(x)- nous permet d'obtenir Ie second tenseur symetrique de Piola-Kirchhoff

5=V<D(z)-lcr(x)

Notre algorithme utilise un modele d'elements finis avec des elements tetraedriques a

quatre noeuds avec des fonctions de forme lineaires et suit la procedure d'elements finis

decrite ci-dessous.

(a) Diviser Ie milieu continu representant Ie materiau en un nombre fini d'elements. Dans

chaque element construire Ie champ de deformation par interpolation a partir de certains

sommets en utilisant des fonctions de base qui decrivent pour chaque sommet comment

les variables qu'il contient influencent la fonction continue de deformation du materiau.

(b) Pour chaque element, exprimer la composante de 1'equation d'equilibre en terme de

fonctions d'interpolation et de deplacements des elements noeuds.

(c) Resoudre Ie systeme complet comme un assemblage de ses elements pour obtenir les

deplacements des noeuds a travers tout 1'objet modelise.

Nous avons assemble la matrice locale de rigidite de 1'equation d'equilibre dans chaque

tetraedre dans une matrice de rigidite globale crease. Les forces appliquees sur chaque
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noeud P consistent en sa propre force d'inertie et la somme des forces provenant de

noeuds adjacents denotes par :

Fi=^FW=^ k-k+Ek'k. =kpK+^kw k.

Ou-

TE v[p } : est la somme sur tous les tetraedres appartenant au voisinage du sommetPp .

Ces expressions definissent la relation entre la force appliquee sur un nceud et Ie

deplacement des noeuds adjacents.

En general, cette loi d'elasticite lineaire n'est valide que pour les deplacements inferieurs

a 10% de la taille totale da champ de deformation. Pour simuler de larges deformations,

nous avons utilise des elements de Saint Venant-Kirchhoff, qui peuvent simuler des

materiaux hyper-elastiques isotropiques. La formulation de sa fonction d'energie

potentielle est donnee par

W=^E:C:E-=^E, C^E^
En derivant la fonction d'energie, Ie second tenseur de Piola-Kirchhoff peut etre

represente en fonction du tenseur de Cauchy-Green :

3W
s=

3£
= Atr[E)l + 2jUE

ou 2 et /^ sont les constantes Lame qui sont reliees aux valeurs mecaniques decrivant

les proprietes elastiques du materiau c. a.d. Ie module de Young £et Ie ratio de Poisson

v par la relation :

vE^, £"

A=(l+v)(l-2v)' ^=W^) . Le module de Young E caracterise la rigidite du

materiau alors que Ie ratio de Poisson v represente son incompressibilite. Etant donne

que la relation entre la pression et la tension est lineaire, ce materiau est physiquement

lineaire. D'un autre cote la relation non lineaire entre E et VM exprime une non

linearite geometrique c. a. d. une elasticite avec de grand deplacements. Ces relations sont
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utilisees pour representer Ie comportement biomecanique d'un materiau elastique qui

obeit a la loi de Saint Venant-Kirchhoff.

Une equation generate du mouvement est obtenue en rajoutant une composante

d'amortissement. Cette equation est aussi appelee 1'equation Lagrangienne.

p^cd^=f{x}^-^X\ Xe^
t(x)=a{x)n XeF,

p : densite massque

ou c: coeficient d' amortissent du materiau
/: force exteme volumique

t : force exteme surfacique

Le modele d'elements finis peut finalement etre discretise en un ensemble de vecteurs

noeuds X . Pour un calcul statique, la relation pression-tension

implique /(x)+V . o- = 0. L'energie potentielle de deformation d'un materiau elastique

peut etre calculee a partir de son tenseur de deformation et des coefficients Lame. Ainsi,

Ie tenseur de pression interne deduit a partir de 1'energie potentielle de defonnation du

volume et la pression exercee sur la surface exteme constitue 1'equation dynamique de

mouvement decrivant la deformation d'un materiau elastique. Dans la plupart des

methodes d'integration implicites nous avons choisi 1'algorithme de Newmark. Pour

resoudre Ie systeme algebrique non lineaire nous avons utilise la methode de Newton-

Raphson combine avec 1'algorithme de recherche lineaire.

Methodologie

Acquisition des donnees

Nous avons utilise des cameras 3D de la compagnie InSpeck pour numeriser la surface

exteme du tronc de patients scoliotiques. Ce systeme foumit en sortie un modele

geometrique 3D de la surface representee a 1'aide d'un ensemble de facettes

triangulaires. Un modele de la surface complete du tronc d'un patient est compose de

49,470 sommets et 98,401 triangles. Les images radiographiques postero anterieur (PAO)
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et laterale QLAT) des patients sont btenues dans un systeme de positionnement qui

comporte un objet de calibrage. Suite a la procedure de calibrage, des reperes

anatomiques sont identifies sur les images de vertebres et de cotes et apparies sur la paire

de vues PAO et LAT. Un modele 3D personnalise d'un ensemble de six points par

vertebre et un modele filaire de la cage thoracique sont ainsi reconstruits par stereo-

radiographie. Enfin, un modele surfacique plus complet est obtenu en deformant un

dictionnaire de vertebres de specimens cadaveriques obtenu par 'CT scans' en utilisant

comme points de controle les reperes anatomiques reconstmits. Un maillage tetraedrique

a ete ensuite genere en respectant la surface exteme obtenue.

Modele d'elements finis du tronc

Pour simuler 1'effet d'une chimrgie correctrice de la colonne vertebrale sur la surface

exteme du tronc on fait propager Ie resultat de la chirurgie sur la colonne jusqu'a la

surface exteme du tronc en defonnant Ie maillage tetraedrique genere entre la surface

exteme du tronc et la surface des structures osseuses sous jacentes. Comme les forces

appliquees sur la colonne lors d'une chirurgie ne sont pas connues on se sert des

deplacements effectues sur un ensemble de reperes anatomiques suite a une chirurgie.

Ainsi, nous avons implemente deux types de conditions aux frontieres. Ces conditions

aux frontieres sont definies par la courbe de deplacement, 1'amplitude de la force et sa

direction. Elles sont determinees en comparant la position d'un ensemble de reperes

anatomiques avant et apres chirurgie et les valeurs intennediaires sont obtenues par une

methode d'interpolation.

La configuration initiale du maillage a ete d'abord pretraite afin d'eviter des elements

invalides. De meme les deplacements ont ete effectues de fa^on graduelle jusqu'a

atteindre la position d'equilibre. Etant donne la position finale des points aux frontieres,

une force de traction sur chaque point doit etre evaluee. Pour chaque force, on doit

calculer dynamiquement son amplitude et sa direction a chaque increment de temps. Une

force ressort a ete appliquee sur les points aux frontieres.
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Pour eviter les problemes de divergence, tout comme les deplacements 1'amplitude de la

force est incrementee graduellement. Nous avons utilise 1'algorithme d'integration de

Newmark qui est bien decrit dans 1'annexe.

Pour resoudre 1'equation d'equilibre pour des materiaux elastiques de nature non lineaire

une methode numerique robuste a ete utilisee. La methode de Newton a ete utilisee pour

minimiser la fonction d'energie de deformation en approximant 1'energie totale W a

1'aide de fonctions quadriques. Cependant, la methode standard de Newton n'etant pas

appropriee nous avons ameliore la stabilite numerique de notre methode en calculant

1'increment de chargement de fagon adaptative.

Pour effectuer une validation quantitative de 1'approche proposee la deformation d'un

objet synthetique a ete simulee par notre methode et Ie logiciel commercial ANSYS.

Enfin, une evaluation du modele propose a ete effectuee a partir de donnees reelles d'un

patient. Les configurations preoperatoires et postoperatoires des stmctures osseuses ont

ete utilisees pour simuler la deformation appropriee sur la surface exteme du tronc avant

la chimrgie. Le resultat de la simulation est ensuite compare a la surface exteme reelle

du tronc acquise apres la chimrgie.

Resultats et discussion

Pour comparer les resultats des simulations dans differentes conditions d'implementation

nous avons calcule la distance bidirectionnelle entre la surface simulee et la surface

reelle du tronc du patient acquise apres la chirurgie. L'analyse de ces resultats a

demontre que Ie modele d'elements finis base sur une propriete d'elasticite lineaire avec

des deplacements purs permet d'atteindre une meilleure precision de simulation. La

distance moyenne est seulement de 10. 2607 (mm). Le modele base sur un schema

lineaire d'application de force offre une mains bonne precision et enfin Ie modele Ie

mains interessant est celui base sur un schema non lineaire d'application de force.

Le modele non lineaire est probablement mains interessant dans 1'experience que nous

avons conduite car la deformation obtenue sur la surface exteme du tronc suite a la

chirurgie ne semble pas comporter une composante de rotation de grande amplitude.
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La qualite du maillage que nous avons utilise n'etait pas adequate. En effet, certains

tetraedres avaient une forme allongee et la taille des differents tetraedres vane de fagon

importante. Cette variabilite affecte considerablement nos resultats puisque ga implique

des matrices de rigidite mal conditionnees lorsque Ie volume de certains tetraedres est

presque nul.

Une generation d'un maillage precis integrant les differentes structures anatomiques du

tronc humain n'est toujours pas disponible; Ie maillage que nous avons utilise a

certainement besoin d'etre raffine afin de representer les differentes structures

anatomiques avec une meilleure resolution.

Conclusion et travaux futurs

Ce projet porte sur la simulation de 1'effet d'une chirurgie correctrice de la colonne

vertebrate sur la surface exteme de patients scoliotiques. Nous avons utilise Ie modele

d'elements finis pour representer les differentes structures anatomiques du tronc. Apres

avoir construit une equation differentielle dynamique pour decrire la procedure de

defonnation nous avons teste differentes methodes de resolution du systeme d'equations

non lineaires et nous avons considere differentes proprietes de materiaux. Nous avons

d'abord constmit une structure deformable pour representer Ie tronc a 1'aide de plusieurs

sortes de tissus avec des proprietes differentes. Ensuite nous avons considere deux types

de conditions aux frontieres en se basant sur les modeles 3D preoperatoire et

postoperatoire des stmctures osseuses d'un patient scoliotique. Enfin, nous avons

implemente la deformation dynamique pour des modeles elastiques lineaire et non

lineaire et nous avons evalue quantitativement la difference entre la surface du tronc

simule et la surface reelle du tronc du patient acquise apres la chirurgie.

Nous avons constmit Ie modele dynamique a partir da modele statique. Apres avoir

acquis la relation statique entre les sommets de chaque element et les forces internes et

extemes exercees sur lui nous avons rajoute deux composantes (1'acceleration et la

vitesse) et deux parametres (la masse du materiau et 1'amortissement) dans 1'equation

statique. Nous avons ainsi obtenu une equation dynamique qui permet de simuler les
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mouvements successifs d'une deformation a 1'aide d'une equation differentielle ordinaire

d'ordre deux. Finalement, nous avons reussi a developper un solveur numerique stable

qui combine differentes techniques numeriques comme la methode iterative de Newton,

Ie chargement incremental adaptatif et la recherche lineaire. Cependant, pour gerer la

non linearite d'un materiau qui obeit a la lot de Saint Venant-Kirchhoff la simulation doit

etre conduite de fa^on complete afin d'eviter des bifurcations et des problemes de

singularite de la matrice de rigidite.

Dans Ie futur, on devrait ameliorer la qualite du maillage et utiliser des algorithmes

automatiques pour prevenir les tetraedres invalides afin d'ameliorer la robustesse du

modele. Les mesures des proprietes mecaniques des organes devraient etre effectuees in

vivo afin de foumir des parametres qui refleteraient mieux la realite physique.

D'autre part, comme Ie modele d'elements finis non lineaire consomme des ressources

considerables de calcul et de memoire une parallelisation de 1'algorithme serait d'une

grande utilite. En effet, une meilleure precision devrait etre atteinte puisque une

meilleure resolution d'elements finis pourra etre consideree.
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CHAPTER: 1 INTRODUCTION

Biomechanics has studied complex mathematical models and produced a large amount

of experimental data for representing the deformation of the human trunk. Computer

graphics has proposed many algorithms for the fast computation of deformable bodies,

but often at the cost of ignoring physics principles. During the past five years, there has

been growing interest in the medical and computer science field, in the simulation of

medical procedures. Under the terminology "medical virtual reality" proposed by Satava

(Satava 1996), the first generation of medical simulators applied the concept of

navigation and immersion to three-dimensional anatomical datasets. Most of today's

medical simulation systems have a tendency to represent physical phenomena and, more

specifically the realistic modeling of tissue. This will not only improve current medical

simulation systems, but will considerably enlarge the set of applications and the

credibility of medical simulation such as virtual surgery simulation, which requires the

combination of many disciplines.

Since each organ of the human tmnk is special, present medical simulations are proposed

within their special medical research field and the physical models are constructed

according to different requirements. Cotin (Cotin 1997) proposes a real-time simulator to

represent the deformation of the liver by using the linear finite element method. But for

most materials, the linear elastic model is only valid for small displacements. For large

displacements, more complex non-linear models have been introduced, such as the

Mooney-Rivlin model (Bro-Nielsen 1995, Sagar 1994) or the Saint Venant Kirchhoff

(Terzopoulos 1988, Bro-Nielsen 1995, Kaiss 1996) where the stress/strain relationships

are no longer linear. Additional physical constraints may be considered, such as

incompressibility. Picinbono (Picinbono 2001) introduces a nonlinear finite element

model to improve the accuracy of liver simulation.

Some finite element biomechanical models applied to the treatment of scoliosis were

developed to simulate the mechanism of spinal deformation on a typical geometry of a

scoliotic patient (Patwardan 1990, Wynarskyl991, Aubin 1993). These studies showed



how a better correction could be obtained, but the mechanically complex spinal action

was still not described clearly. In them, certain simulation models are used to study the

mechanism of brace treatment of scoliosis and seek more effective treatment of the

brace. One of them is a biomechanical finite element model for scoliotic deformities

which has been developed on a personalized finite element model of the scoliotic rib

cage (Aubin 1995). This model of spine and rib cage was constructed very accurately

from medical data, and contains about 3000 elements representing the osseo-ligamentous

components of the tmnk. The parameters of the model come from in-vitro morphometric

measures and were validated by the comparison with the deformation of various

orthopedic treatments. The pressure from the brace is converted into nodal forces to be

exerted on the finite element model. The simulations apply loads laterally on the convex

side and on the anterior thorax opposite to the rib hump, with a system that mechanically

constrains the posterior rib hump to move backward. It was used to simulate deformation

in fifteen scoliotic adolescents presenting thoracic curves (Cobb: 22°-36°) treated by the

Boston brace.

Although the model of spine and brace is a very exciting breakthrough in predicting the

spine deformation under loads, this work does not consider the inHuence of the soft

tissue which exists around the bones and spine. Since the human tmnk is mainly made up

of soft tissue, the medical consequences of soft tissue modeling are very important. Soft

tissue modeling, i.e., the modeling of soft tissue mechanics and deformation, has been

identified as a key technology for the development of advanced medical simulation

(RCAMI 1996). To achieve such advanced simulations, it is essential to model the

phenomena occurring at the geometrical, physical and physiological levels. Although the

3D recovery technology of anatomical structures from medical images is relatively

mature, a lot of research effort is still needed for the physical modeling of human tissue.

This kind of model should contain not only the skeletal factors, but also some soft organs

which are very important to predict the form of the final deformed skeleton and the

external surface of the tmnk, which is the primary concern of the patient.



This research project is interested in the problems encountered by orthopedists who

correct the deformations of the scoliotic trunk by surgery. The results of simulation can

predict the postoperative external surface of the trunk model, and allow the scoliotic

patient to receive optimal treatment by the design of personalized surgery. Doctors can

also get some infonnation about the effect of treatment and the patient can see her

postoperative trunk shape before surgery.

To create the geometric description of the human trunk, we first acquire a set of discrete

data which produces an integral 3D human trunk model. It is difficult to analytically

handle the discrete data as a 2-D entity. So, in our project, we choose a volume

expression method to approximate the 3D model. Because in space the tetrahedron is the

simplest geometric element, yet sufficient when combined with other tetrahedra to form

any complex shape, we choose it as our geometric description of each finite element.

Although we construct a human trunk, the defonnation of the trunk is not only decided

by the interaction between it and exterior forces, but also by the many other factors that

constrain its final shape, such as muscle and skeletal structure, which play an important

role in human trunk activities. Our model is reconstmcted based on knowledge of

anatomy and biomechanics, which provide us a great deal of valuable information to

constmct human model. Based on these theories, we will finally create an integral trunk

model consisting of many connected organs.

A finite element model of the deformable musculo-skeletal system is developed to

evaluate the scoliotic patient's external shape after the spinal surgery. This mathematical

geometric model will be capable of analyzing external shape in response to surgical

loading and will be validated from the patient's postoperative external surface. The

model can allow the simulation of the external surface of the trunk according to the

variation of orthotic design parameters. Further, the model will be based on estimates of

the mechanical properties of human tissue, although no active neuromuscular

involvement is considered. Finally, the results of this analysis can provide a

biomechanical rationale for clinical observations regarding the external outcome of

surgical treatment for scoliosis.



The remainder of the thesis is organized as follows:

Chapter 2 -STATE OF THE ART. First we review the state of art of the anatomy of the

spine and describe the main biomechanics of some organs of the human tmnk. Second,

we discuss the vertebral deformity of a scoliotic patient and clinical treatment. Third, we

review some current modeling techniques and describe the finite element method that we

use. Finally, to obtain accurate biomechanical properties of human tissues, we examine

some publications and models that contain some relevant data. Then we describe our

research objectives in the last section.

Chapter 3-METHODOLOGY. In section 1, we describe the clinical external and

internal mesh models of one scoliotic patient. In sections 2 and 3, we design and

implement the boundary conditions on the patient's finite element model to deform the

patient's vertebra, and solve a dynamic equation to acquire patient's postoperative

external surface. In sections 4 and 5, we define the biomechanical properties of different

tissues and validate our model with the definition of a metric.

Chapter 4 - SIMULATION RESULTS. In this chapter, we present our validation and

simulation results.

Chapter 5-DISCUSSION. Our experimental results and some issues occurring in the

experiments are analyzed in this chapter.

Chapter 6-CONCLUSION AND FUTURE WORK.



CHAPTER : 2 STATE OF THE ART

2. 1 Anatomy and biomechanics of spine

The human trunk consists of a complex structure of bones and ligaments which protects

the internal organs and sustains the external membranes. Its skeleton comprises three

parts: vertebrae, rib cage and pelvis.

2. 1. 1 Anatomy of vertebrae

The spinal coluinn, the medial osteo-articular axis of the human body, performs three

principal biomechanical functions (White 1990): dynamic (transmission of load between

upper and lower parts of body), cinematic (penrdtting physical motion) and protective

(medullar cordon). It consists of multi-articulate connection of from 32 to 34 vertebrae

which can be divided into five parts based on geometry: cervix (Cl to C7), thorax (Tl to

T12), lumbar (LI to L5), sacrum (Sl to S5 fused together) and coccyx (3 to 5 all fused

together). From the front side, the healthy spine is rectilinear and symmetric but in the

sagittal plane, the vertebral column forms four curves, anterior convex for cervical and

lumbar region and posterior convex for the sacrum and thorax. In general, the natural

posture increases the flexibility and capability of absorption of shock and maintains the

rigidity and stability of the spinal column.
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Figure 2.1: Element of spine column (www.espine. com)
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Figure 2.2: Anatomy of lumbar vertebra (taken from www.espine. com)
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Figure 2.3: Lateral view of thoracic vertebra (White 1990)

A vertebra is composed of two distinct parts (figure 2. 2, 2. 3): an anterior osseous block

called the body, and a posterior osseous ring or neural arch.

The cortical structure of the vertebral body encloses the sponge bone cell: the inferior

and superior facets are concave and represent the vertebral plateaus. The intervertebral

discs transmit the forces of compression between two vertebrae and the existence of the

nucleus assures the mechanical properties of vertebral plateaus.

The neural arch, formed by cortical bones, has two pedicles and two laminas: the marrow

is protected by the medullar canal. Four articular facets are situated on the articular

apophysis (two superior and two inferior). Their orientation, which goes from the three

great parts (cervical, thoracic and lumbar), defines the possible motion of the spinal

column. The articular facets especially affect rigidity with vertebral torsion, which

augments between T7-T8 (thoracic seventh and eighth vertebrae) and L3-L4 (third and

forth vertebrae) with a peak between T12-L1. The costo-vertebral and costo-transversal

facets, which are supported by transversal apophysis, connect with the ribs. A number of



ligaments and muscles also join transversal apophysis to which the other end, the thorny

apophysis, joins two laminas. The vertebral mass continuously increases between the

first cervical and the fifth lumbar vertebra, which allows the mechanical adaptability of

the forces applied on each vertebra.

2.1.2 Intervertebral discs

When submitted to forces and moments, the intervertebral discs represent 20-30% of the

length of the whole spine. The anisotropic disc is composed of three parts: the central

portion with a gelatin-like consistency named "nucleus pulposus" and a fibrous fold to

hold it tightly in place, called "annulus fibrosis" or "fibrous ring" as shown in the

following figure. The annulus is attached to the center of the cartilaginous plateau and to

the osseous vertebral body around it.

,. NUCLEUS

Figure 2.4: Constitution of intervertebral disc (White 1990)

Under compression, pressure appears at the center of nucleus and drives away the

adjacent stmcture (see figure below). Without the internal pressure, the compression

acting on the vertebra is concentrated on the periphery of the adjacent plateau and can

cause the rupture of vertebral body.
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Figure 2.5: Compression of intervertebral disc (taken from

www.mayfieldclinic.com/PE/PE-AnatSpine.htm)

The discs are submitted to tension forces in the physiologic motion of frontal and sagittal

flexion. The shearing constraint comes from the axial rotation of the trunk relative to the

pelvis. When a person is in normal position, the discs are submitted to compressive

forces equal to three times the weight on them, while in dynamic charge, the forces are

double.

The loading forces are of two distinct types: short and intense application or small

amplitude during a long period. Also, the properties of the discs vary over time due to

wear. So, they could irremediably degenerate under the action of much constraint, or

break because of wear.

Figure 2.6: Internal constraint (White 1990)

The constraint reaction on the annulus is more complex (figure 2. 6). Its exterior layer

supports the constraint of tension in the tangent direction and in the fibrous direction. For

the interior layer, the layout is the same with less amplitude and the axial tension forces

are replaced by compression forces.

Under tension load, the shearing constraint (perpendicular to the fiber) is much increased

and cannot be canceled by the annular stmcture, so that the risk of rupture is higher with

tension force than with compression.



The flexion causes traction of the convex side of the vertebra, and compression of the

concave side, and the intervetebral discs support the tension and compression. The effect

of the flexion moment exerted on the discs produces two obvious states, as mentioned

above.

The shearing constraint causes the load of torsion in the axial as well as the horizontal

plane, and the magnitude depends on the distance to the axis of the applied constraint. If

the fibrous orientation is consistent with the constraint normal, the shearing load may

cause mpture of the intervertebral disc.

2. 1.3 Ligaments

In addition to the intervertebral discs joining the centra and the synovial joints between

the facets, a series of ligaments bind together adjacent vertebrae. The spinous processes

are connected by interspinous ligaments and the arches have thin elastic sheets between

them. These interarculate ligaments are called ligamenta flava (yellow ligaments).

Running along the tips of the spinous processes is the superspinous ligament. Caudally it

is continued morphologically and functionally with and by the coalesced tendons of

vertebral muscles and thoracolumbar fascia. Even this fibrous tissue is very weak or

entirely absent between the spinous processes of the last lumbar and the sacral vertebrae.

Llgamentum Flavum

r>\

Facct..,Y
Capsuliry;
Liaeunent

K
. rtransverse

Ligament

lnt«r8pino»»y \~:
r .

Posterior
-ongltudlnal

'Ligament

Figure 2.7: Main ligaments involved in thoracic spine (taken from

www.spineuniverse.com)
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Three of the more important ligaments in the spine are the ligamentum flavum, anterior

longitudinal ligament and the Posterior Longitudinal Ligament (figure 2.7). The

following table lists all ligaments around the spine and their limits (Bridwell 2004).

The Ligamentum Flava forms a cover over the dura mater, a layer of tissue that protects

the spinal cord. This ligament connects under the facet joints to create a small curtain

over the posterior openings between the vertebrae. The ligaments retain a certain tension

when the column is in neutral position so that some compression is introduced to

increase spinal stability. They possess a larger proportion of elastic fiber which permits

support of large loads without deformation and niinimizes the chance of pinch of spinous

marrow between two adjacent osseous structures when an abmpt variation is introduced.

The Anterior Longitudinal Ligament attaches to the front (anterior) of each vertebra.

This ligament mns up and down the spine (vertical or longitudinal).

The Posterior Longitudinal Ligament mns up and down behind (posterior) the spine and

inside the spinal canal (Bridwell 2004).

The biomechanical properties of Longitudinal Ligaments are similar to those of the

ligament flavum and some pre-constraint exists in them. Its value is ten times smaller

than that of yellow ligament.

Besides the intervertebral ligaments, thoracic vertebrae have ribs associated with them.

The heads of the ribs articulate with vertebral bodies, and the tubercles of the ribs

articulate with transverse processes. The head of the first rib fits snugly into a depression

fanned by the costal fovea on the caudal edge of the last cervical vertebra, the edge of

the intervertebral disc, and the costal fovea on the cranial edge of the first thoracic

vertebra. Local ligaments hold the head of the rib closely to the vertebrae.

The head of the second rib fits into corresponding fovea between the first and second

thoracic vertebrae. In addition to local ligaments similar to those of the first rib, a strong

intercapital ligament (also called the conjugal ligament) mns dorsal to the intervertebral

disc between the heads of the second ribs. A similar arrangement is found on subsequent

ribs except the most caudal ones. (These articulate with the centmm of only one vertebra

and not at the intervertebral space.)



11

Each intercapital ligament running over an intervertebral disc also has cranial and caudal

branches as it leaves the rib head. These attach to the dorsal surfaces of corresponding

adjacent vertebrae. The intercapital ligaments do not cause an elevation in the Hoor of

the vertebral canal. They arise developmentally from the same tissue as the intervertebral

discs and take the place of part of that structure.

Table 2. 1: Primary spinal ligaments

Spinal Region Limits

Head rotation & lateral flexion

Extension

Axis & Atlas

Axis-Sacrum

Axis-Sacrum

Ligament

Alar Axis-skull

Anterior Atlantoaxial Axis & Atlas

Posterior

Atlantoaxial

Ligamentum Nuchae Cervical

Anterior

Longitudinal

Posterior

Longitudinal

Ligamentum Flavum Axis-Sacrum

Thoracic &

Lumbar

Lumbar Flexion

Lumbar Lateral flexion

Sacroiliac joints Stability & some motion

Sacroiliac joints Stability & some motion

Sacroiliac joints Stability & some motion

Sacroiliac joints Stability & some motion

Supraspinous

Interspinous

Intertransverse

Iliolumbar

Sacroiliac

Sacrospinous

Sacrotuberous

Flexion

Flexion

Extension & reinforces front of

annulus fibrosis

Flexion & reinforces back of

annulus fibrosis

Flexion

Flexion
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2. 1.4 Thoracic rib cage
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Figure 2.8: Thoracic rib cage (taken from www.pdh-odp.co.uk)

The thoracic rib cage (figure 2.8) shelters the vital organs of the human body and

protects the spine from front and lateral impact: The frontal rigidity against load is bigger

than the posterior. In the motion of flexion, extension, lateral Hexion and torsion, the

thoracic cage carries two and a half times rigidity which can be measured only in the

ligamental presence. Under compression, the spinal rigidity has only a quarter of the

value without rib cage; under traction, the thorax increases the axial rigidity by 40% and

the normal column has two and a half times more rigidity than the scoliotic column. The

osseous and cartilaginous stmcture of the thoracic cage joins together to absorb the

energy of stress.
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Figure 2.9: One rib (taken from www.pdh-odp. co.uk)

The thorax, a closed cylindric cave, is composed of twelve pairs of ribs which are

divided into three categories and close on the sternum. The first seven ribs are

respectively attached on the sternum by the cartilaginous joints. The next three are fused

at the junction with the cartilage of the sternum. The last two float but support the
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abdominal muscles. The space and position ofthoracic cage relative to the spinal column

increase the inert moment for the loading of the torsion or flexion. Moreover, the

thoracic cage can rigidify the vertebral column through the costo-vertebral and costo-

transversal joints with many ligaments: the costo-vertebral articulation joins the costal

head at the sub-adjacent and upper-adjacent vertebrae through ligaments of the costal

facet (superior and inferior costal articular facets). The costal facets of transversal

apophysis support the three ligaments attached at costal tuberosity (costo-transversal

joints). The synovial joints (articular capsule) connect the rib heads with intervertebral

discs.

Rotation only occurs in certain loadings, because of the geometric curve of rib. The

connection between ribs reduces the flexibility relative to each costal element (25 mm of

defonnation/lON) and produces the accompanying displacement (a superior loading

produces a superior displacement and medial and posterior displacement).

Rigidity of the lateral costo-vertebral joint is high, especially in the medial ribs. The

joints appear less rigid in superior or interior loading but the behaviors are completely

contrary to the stemo-costal joint.

2.1.5 Abdomen

The interior abdominal wall is composed of muscles which protect the internal organs

(Figure 2. 10). The contraction of rectus abdominis, internal external obliques and

transversus abdominis involves the variation of pressure in the abdomen: peritoneal

liquid and viscera have a closed and defonnable volume. The volume change of the

thoracic cage is accompanied by a volume change of the abdominal cavity (Deschamps

et al. 1988).
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Pectoralis major

Serratus
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Obliquus sxternus
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lliacus

Figure 2. 10: Lateral view of abdominal muscles (taken from Basma. jian 1977)

Muscles exist between two layers of adipose and their disposition can be seen from

outside or inside. The compressible part in the abdomen allows the load transfer between

the abdominal external wall and the lumbar part of vertebral column. The abdomen

appears as an oval ball on the quasi-vertical points, and it is surrounded by an elastic

membrane and connected to the thoracic cage and the vertebral column.

The rectus abdominis descends from each rib at the medial line and sternum to the

anterior part of the pubis. The external oblique begins from the costal edge of the eighth

back rib and inserts on the anterior middle of the iliac crest until the pubis. The internal

oblique is attached on the costal cartilage of the four back ribs and the pubis, and

occupies the space surrounded by the rectus abdominis and the external oblique. The

transversus abdominis joins the abdomen at its periphery. Its strong contraction during

expiration increases the abdominal pressure and pushes the diaphragm up. It inserts at

the level of the lumbar vertebra and the iliac crest and overlaps with the costal origin of

diaphragm.



2.1.6 Pelvis
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Figure 2.11: Posterior view of pelvis (taken from www.mgh.org)

The pelvis (figure 2:11) is divided into three parts: hip bone, sacrum and coccyx, while

the pubic symphysis joins the hip bone together.
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Figure 2.12: Coxal bones (taken from

nsd.kl2. mi.us/nwhs/staff/departments/science)

The hip bone or coxal bone (figure 2. 12) holds the hemispheric cavity (acetabulum) and

joins the crest of the femur. It consists of three joint bones: ilium, pubis and ischium; and

the pubis is combined at the level of the cotyloid cavity. The iliac bone protects the low

part of the abdomen and the iliac crest, the thick contour on the upper border, and

supports the muscles. Sacro-iliac articulation constitutes the union of two bones and

realizes the transfer of body weight, and the solid ligaments limit the relative motion. In

fact, the weight is transferred to the superior end of the sacrum so that its inferior end

and coccyx rise.

Five vertebrae are united by four intervertebral ossified bodies to fonn the sacrum, which

is joined to the fifth lumbar vertebra through one thick disc. The sacral wings form the

lateral part of the first sacral vertebra. The coccyx, four atrophic joint vertebrae, extends
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the sacrum through cartilaginous articulation. A woman's pelvis is more spacious than a

man's: the hip bones are more separated, the sacrum is larger and less curvy, the pubic

branch is longer and the distance between the ischial tuberositys is longer.

2.2 Scoliosis

This section discusses some concepts about idiopathic scoliosis, which is our main

experimental object, and the origin of our data. The main characteristics of this disease

appear geometrically in the deformation of tmnk.

2.2. 1 Idiopathic scoliosis

Scoliosis is defined as three-dimensional defonnation of the spine in the coronal (front

view) plane which implies the deformation of the vertebrae of the thoracic cage (an

asymmetry called gibbosity) and the pelvis (Senet 1984, Deacon 1987, Stokes 1987). It

occurs in approximately 2% of women and in less than 0.5% of men, and usually starts

in the early teens or pre-teens and may gradually progress as rapid growth occurs.

Idiopathic scoliosis should also be conceptualized as a three dimensional defonnity,

however; twisting of the spine is coupled with curvature producing deformity in both

coronal and sagittal (side view) planes. Idiopathic scoliosis (without evident cause) is

more usual (i. e. 85% to 90% cases) and mainly appears in the course of growing up. The

exact etiology of idiopathic scoliosis is not yet determined, but it is thought to be due to

multiple factors. Although the exact genetics is unclear, the observation that idiopathic

scoliosis is more common within families suggests the presence of an inherited trait. A

number of hypotheses about its pathogenesis can be found: hereditary trait (Machida

1999), asyinmetry of muscular force (Bagnall 2000, Burwell 2000, Roaf 1966)

asymmetric growth of vertebrae (Burwell 1992, Roaf 1966) or ribs (Sevastik 1997) and

hormonal origins. The pathomechanics of scoliosis also evokes many hypotheses, but

like its origin, the difference between the cause, and its result of the rupture of spinal

equilibrium, is difficult to specify
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2.2.2 Deformation of vertebra

Besides the global spinal deformation, scoliosis also causes the local deformation of

vertebral geometry. The cuneiform deformation (figure 2. 13) of the vertebral body on the

apical zone promotes the process of scoliotic deformation (Burwell 1992). The neural

arch makes an important morphological adaptation to react to the enforced dissymmetric

loading by atrophy of the concave side (under pressure) and hypertrophy of the convex

side. Finally, the pedicles and apophysis are orientated towards the concave side of curve

(Perdrioller 1979).
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Figure 2. 13: Deformed vertebra (Aubin 1997)

2.2.3 Clinical treatment

Although most scoliosis is of unknown cause, there does appear to be a developmental

connection in many cases. Most cases of scoliosis occur just before and during

adolescence, when children are going through a growth spurt. The progression continues

at a slowed rate of about 0.4° per year (Ascani 1986) after skeletal maturity, increasing if

the patient has a Cobb angle greater than 50° or a highly rotated curve apex (Weinstein

1981, 1983). In general, the higher the curve apex location is, the greater the expected

curve progression (Ascani 1986, Peterson 1995, Weinstein 1981). Usually, the spine and

skeleton would continue deforming with time without suitable treatment. Figure 2. 14

shows the progression of spinal deformation of scoliotic patient with time.
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Figure 2.14: Scoliosis progression over several years (Stagnara 1988)

Treatment choice in adolescent idiopathic scoliosis is determined by a complex process

which includes consideration of the patient's physiologic (not chronologic) maturity,

curve magnitude and location, and potential for progression. The goal of treatment is to

stop the progression of the curve and prevent deformity. The following table gives a

basic reference for which treatment the patient should take according to his spinal curve.

Table 2.2: Adolescent idiopathic scoliosis treatment

Curve (degrees)

<20°

>20° < 25°

25°-30°, 5° documented progression

30°-40°

>40°

Treatment

Observation

4 month x-rays

Brace

Brace

Consider surgery

2.2.3.1 Observation and repeated examinations

Small curves measuring less than 20-25 degrees that do not require brace treatment

should be observed during periodic exaininations of four to six months or 1 year

intervals based on their size. Observation remains a form of treatment because any 5

degree increase in the size of the curve may change the course of treatment.
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2.2.3.2 Bracing treatment

Bracing may be used when the curve measures between 25 to 40 degrees on an X-ray,

and during skeletal growth. The type of brace and the amount of time spent in the brace

will depend on the severity of the condition. It is a form of nonoperational treatment to

prevent scoliosis progression. Several types of braces have been developed with an aim

to apply the correct forces at strategic places on the tmnk. Its treatment is adopted to

prevent further deformation of the spine and trunk. Bracing has been shown to be an

effective method to prevent curves from getting worse. Meantime, some radiographic

techniques make it possible to follow the evolution of curves and to validate or dispute

the use of brace equipment in the treatment of scoliotic defonnations. But biomechanics

of orthotic treatments is a relatively new field and traditionally the treatment is based on

the empiricism and the expertise of doctor.

2.2.3.3 Surgical treatment

Non-surgical treatments are usually prescribed when the Cobb angle scoliotic deformity

is less than 40 degree). When the deformity is very severe (Cobb angle>40 degrees) and

keeps progressing and other non-surgical treatments are invalid, a surgical correction is

required (Bradford 1987). The popular technique is the fusion of some vertebral levels to

hold the correction until the spine is solid (approximately one year). The surgical

principal objectives are:

1. reducing the deformity (straighten the spine as much as possible),

2. assuring the maintenance of operating segmentation so as to fuse the spine bone,

3. stopping the progression of the deformity

4. protecting the nerves and spinal cord from further damage,

5. improving the patient's appearance.

When corrective surgery of scoliosis is undertaken, two types of approaches can be

chosen: anterior and posterior. For idiopathic scoliosis, the posterior approach (posterior

exposure of vertebral column) is more frequently adopted. The principal types of

posterior instmmentation are: Hamngton, Luque, CD (Cotrel-Dubosset), TSRH (Texas



20

Scottish Rite Hospital) and Colorado. The correction of spinal curve can also be gotten

by the combination of the mechanical behaviors of vertebrae when the objects (screws

and hooks) connected with metal stalk are implanted, as the following figure shows:
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Figure 2.15: Example of instrumentation CD (Lonstein 1995)

Posterior surgical approach

This approach to scoliosis surgery is done through a long incision on the back of the

spine (the incision goes the entire length of the thoracic spine).

. After making the incision, the muscles are then stripped up off the spine to allow

the surgeon access to the bony elements in the spine.

. The spine is then instrumented (screws are inserted) and the rods are used to

reduce the amount of the curvature.

. Bone is then added (either the patient's own bone, taken from the patient's hip, or

artificial bone), which in turn incites a reaction that results in the spine fusing
together.

. This fusion process usually takes about 3 to 6 months, and can continue for up to
12 months.

For patients who have a severe deformity and/or those who have a very rigid curvature,

an anterior release of the disc space (removal of the disc from the front) may first be

required. This involves approaching the front of the spine either through an open incision

or with a scope (thoracoscopic technique) and releasing the disc space. After the discs at
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the appropriate levels of the spine have been removed, bone (either the patient's own

bone and/or artificial bone) is added to the disc space to allow it to fuse together. After

the disc has been released and fused, the posterior portion of the scoliosis surgery

described above is perfonned.

Anterior surgical approach

For curves that are mainly at the thoracolumbar junction (T12-L1), scoliosis surgery can

be done entirely as an anterior approach.

. This approach to scoliosis surgery requires an open incision and the removal of a

rib (usually on the left side). Through this approach the diaphragm can be

released from the chest wall and spine, and excellent exposure can be obtained

for the thoracic and lumbar spinal vertebral bodies.

. The discs are removed and this loosens up the spine.

. Screws can then be placed in the vertebral bodies and a reduction of the curvature

obtained and held with a rod.

. Bone is added to the disc space (either the patient's own bone, taken from the

patient's hip, or artificial bone), to allow the spine to fuse together.

. This fusion process usually takes about 3 to 6 months, and can continue for up to

12 months.

Because of the non visibility of the trajectory of screws in the vicinity of spinal marrow,

nerve ends and blood vessels, the most delicate phase of whole approach is the

perforation which pennits placement of the pedicle hook-screw in the vertebrae for

instrumentation. Before a patient receives the perforation and placement of screws, the

doctor must define his strategy: to decide the entrance points in the vertebra, the

direction of perforation and the diameter and length of screws. Then, the operation

scheme and data is carefully laid out, generally in 2D form (radiographic projection of

studied scenes). Then, the doctor transforms mentally all the visible elements related to

the operation zone, and uses anatomical knowledge so that the images can reasonably

produce a 3D anatomical and pathologic impression (Bainvill 1998). However, in 9 to
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45% of errors of placement of screws (Merloz 1999); the simple 2D images seem sub-

optimal when they are used as the plan to implement the placement of pedicle screws.

Costoplasties (rib shortening or lengthening) may correct scoliotic deformity. But, one

does not completely understand the correction's effect on the human spine. To study the

mechanisms between them, Grealou (Gealou 2000) used the finite element model of

human rib cage and spine, which has been built at Ste. Justine Hospital, to develop a

biomechanical modeling method of rib surgeries. He built a three-dimensional geometric

model of each patient's spine and rib cage to investigate the correction mechanisms. His

simulation shows that the costoplasties produce slight geometric modification in rib and

vertebrae, which indicates the internal loads are transmitted from the ribs to the vertebrae

in rib surgeries, as well as from the vertebrae to the ribs in spine instrumentation.

However, the definition of mechanical properties and boundary conditions of the model,

which decides the biomechanical behavior of the model during the simulation, limits the

accuracy of the results and the effect of the rib and vertebral growth was not taken into

consideration. To further study the effect that rib surgeries could reestablish the force

balance transmitted to the spine, to slow down the scoliotic defonnation progression,

Carrier (Carrier 2002) also adopted the Ste. Justine finite element model to simulate the

influence of rib surgeries on the correction of the scoliotic defonrdties. First, she

employed six patients' personalized FE models to examine the rib surgery parameters'

influence and to attain their optimal configuration. An approach based on experimental

designs and interpolation techniques was applied to solve the optimization problem of

FE modeling. Second, she integrated the bone growth modeling into the rib shortening or

lengthening model. A modeling of the ligaments' stress relaxation is used to represent

the influence of the loads of rib surgeries over time so that the model can simulate the

evolution of the trunk geometry after 24 months. Her simulation shows that the elements

representing the rib hump and the axial rotation of vertebrae vary greatly and the loads

induced on the vertebral end-plates can reduce the progression of scoliotic deformation.

The biomechanical FE model is also used to confirm the long-term correction effect of
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rib surgeries. However, her model does not consider the inHuence of loads due to gravity

and muscle forces.

On the other hand, to directly examine the effect of scoliotic spine surgical

instmmentation on spinal correction, Petit (Petit 2004) used multi-body modeling to

simulate spinal instmmentation procedures on 82 patients undergoing spinal correction.

Their vertebrae are modeled as rigid bodies whose transfomiation describes the vertebral

rotation from preoperadve to postoperative geometry. His simulation confirms that the

average centers of vertebral rotation are adequate to describe the intervertebral joints of a

biomechanical model and can be used to predict the short-term effect of spinal surgery.

2.3 Modeling techniques

Research on deformation simulation of the human tmnk and virtual surgery covers a

number of themes which range from medical imaging to robotics. In spite of its

complexity, recently a lot of experimental results have been presented, and many

problems in the domain discussed.

A defonnable model represents a tmnk or an anatomical structure, i.e., a certain volume

with soft biological tissue which one will want to touch, deform and cross. Thus it

should guarantee a certain biomechanical reality. This is why one calls deformable

models "physical" i.e., they are models from which the deformations are derived from

the laws of the mechanics of the continuum medium. Although such models have been

used for the stmctural analysis and modeling of interactions between fluids and solids for

a long time, their use for animation or time-reality applications like simulation, is more

recent, in particular under the impulse of work of D. Terzopoulos (Terzopoulos 1987,

1988). The deformable models can represent the geometrical and physical approximation

of the object. The degree and nature of the realized approximations give the condition to

achieve realism in the obtained model.

In general it is impossible to solve the equations of mechanics in the analytical method.

Therefore, one must have recourse to numerical analysis to find a solution. However any
numerical calculation is restricted on a discretized field on which one works and the
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geometrical approximation of the field is applied. There are several ways to represent the

object in a discrete field. The first stage is to divide it into elementary subfields. For

example in two dimensions, an object can be represented by a collection of points,

spheres, or polygons. Thus this stage makes it possible to define the basic fonns on

which the equations of the problem will be approximated, which corresponds to fixing

the number of degrees of freedom. The quality of the discretization depends, of course,

on the number of subfields which one uses to describe the object. Then one can

differentiate the structured geometrical models, i.e., those where the subfields have a

topological relation with their neighbors, and the non-stmctured models where the

elements can move freely amongst one another. Here, we will give some typical methods

which are essential to approach physical simulation, although they are not exhaustive.

We classify them into different categories.

2.3.1 Deformation of geometric surface

This class of algorithms is only an initial first step because they do not consider the

intrinsic physical properties of deformable objects, but only consider the surfaces of

objects to determine their forms. Some of them also apply partial physical properties in

deforming the surface.

2.3. 1. 1 Free-form deformation

Historically, computer-assisted geometrical design (CAD) was one of the first fields to

use techniques of deformation of objects. The designers wanted to be able to handle and

refine the digital representation of their object. From then, the curves of Bezier and the

family of splines were produced, including curves of interpolation, B-splines, rational

splines, non-uniforms (NURBS). They all define a smooth curve with a few values in 1,

2 or 3 dimensions (see Bartels 1987, Farin 1990 for a more complete reference). These

curves and associated surfaces will generally be defined by control points whose

displacement will modify the aspect of the curve in an intuitive way (see figure 2. 16). A

direct manipulation technique, allowing the B-spline curve or surface to be manipulated
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with points that lie on the curve itself, also offers an alternative to control vertex

manipulation (Bartels 1989).

Figure 2.16: Four control points, their defined curve of Bezier and tangents at the

beginning and end of the control polygon.

2.3. 1.2 Deformations of space

Another way of modifying overall the shape of an object is to deform the space in which

it resides. One can for example replace coordinate x by - x to carry out a symmetrical

transformation. The transformations can be much more complex and have the advantage,

by deforming all space, to be applied as well to polygonal surfaces, splines, and

parametric implicit surfaces. Figure 2. 17 illustrates this idea.

t

(a) (b)

Figure 2. 17: Deformation of space illustrated on a model of the giraffe: the original

grid (a) and the deformed one obtained after a local deformation (b).

This work began with Ban- (Ban- 1984) and consisted of metric functions of IR into

IR (causing rigid deformations, folding, tapering) which could be combined to give

complex effects. Sederberg and Parry generalized this approach (Sedeberg 1986) by the

introduction of the FFD, or Free-Form Deformation. The object is imbedded in a grid

which could be deformed, each cell of the grid involving with it the points which it
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contains by means of interpolations using Bernstein polynomials. Extensions, involving

the separation into several sub-areas of the defonning grid (Coquillart 1990) or using

multiresolution (MacCracken 1996) (grids capable of arbitrary topology due to use of

algorithms of subdivision) are presented. We mention also a method which infers, by the

use of least squares, the direct modification of the grid to what one wants, subject to the

position of points of the surface (Hsu 1992).

2.3.1.3 Implicit surface

The surface of an object can also be represented implicitly, rather than explicitly, using

polygons or splines. One creates a scalar field in all of space, and the surface is defined

as the place where this field has a given value. These fields generally derive from

potential and equipotential surfaces or iso-surfaces. This potential is often a monotone

function of the distance to a skeleton, which can be a point, a segment or any other more

complex form (Nicholas 1990).

This formulation has many interesting properties: according to whether the value of field

at a point in space has a lower or higher value than the iso-value, one can judge if it is

inside or outside the object, which allows in particular a very fast detection of collisions.

The combination of several implicit objects can be very simple by applying the various

potentials which generate them, which also allows the management of objects with

variable topology. The iso-surface is divided naturally when the two components

separate.

On the other hand, the visualization of such surfaces is more complex since their

polygonalisation is difficult. One will be able to use the algorithms of the cubic marching

(Wyvill 1986; Bloomenthal 1987, 1988), the local grids (Desbmn 1996) or the method

based on particles (Witkin 1994) to render them.

The overall approach, then, is to define the surface of an object using the potential

method. Its animation will consist in animating the skeletons which generate it, changing

the surface consequently, maintaining continuity or changes of topology. One will
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modify manually only the few positions of these skeletons, which are generally precise

masses, leaving this task to generating models.

These geometrical methods were especially presented as an introduction because some

will be referred to again later. They have the advantage of being generally very fast and

offering a great control on the deformation produced. On the other hand, they cannot be

applied directly to the case where the movement is directly created by the user since the

user's skill will decide the result. One will thus use rather generating models, which will

simulate laws of behavior, more or less physical, and will thus generate automatically the

movement of the object. There exist many generating methods and we will describe the

principal families of them in what follows.

2.3.2 Mass-spring model

When one endeavors to represent a soft object, the simplest and most intuitive model is

undoubtedly the mass-spring network. It consists in modeling the object by a collection

of points connected to each other by line. The points represent specific masses, and the

lines are regarded as springs. With each iteration, one calculates the forces exerted by
each spring on both its ends. These forces are expressed according to the variation of

length of the spring and its stiffness. One can then calculate the new positions of the

masses by integrating their motion equations. There are several reasons for the success of

this model. First of all, it is very effective because calculations are very simple. In

particular it is possible to use several mass-spring models to simulate a complex scene.

For example, Nedel models the muscles of a virtual human with surface networks of a

mass-spring (Nedel 1998a, 1998b). Moreover, this intuitive model makes it possible to

add many improvements. For example, one can change the behavior of the springs and

their stiffness to build non-linear and non-homogeneous models (D'aulignac 1999a,

Boux 1999) or anisotropic (Bourguignon 2000). On the other hand, the principal defect

of this model is the necessity to discretize the directions along which the forces are

exerted inside material. Indeed, the forces are completely directed following the edges

which make up the geometrical grid. The implication of this property is that the total
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behavior of the simulated object will depend on the geometry of the grid, and more

particularly of the distribution of the directions of the edges. Many works involve the

improvement of the behavior of this model. For example, Y. Chen proposes a relatively

sophisticated mass-spring network including various types of springs (structural springs,

shearing springs and flexion springs) in order to simulate the deformation of a muscle at

the time of its contraction (Chen 1998). It is also possible to improve the realism the of

mass-spring model by imposing on the springs a behavior derived from experimental

measurements (Bourguignon 2000), or by adjusting the stiffness of the springs so that the

model reaches the desired behavior (D'aulignac 1999b). 0. Deussen proposes methods

to improve a mass-spring model in several ways (Deussen 1995). He starts by optimizing

the distribution of the vertices of the grid using an iterative decomposition of the field in

diagrams of Voronoi. Then he calculates the value of the masses distributed to each

vertex so as to preserve the moments of inertia of orders 1 and 2 inside the model.

Lastly, he deduces the stiffness from the springs by identifying his model with a linear

elastic model. Similarly, A. Gelder proposes a formula making it possible to calculate the

stiffness of the springs so that the mass-spring model approaches as much as possible its

linear elastic counterpart discretized by the finite element method (Gelder 1997). Lastly,

one can quote work of Desbrun, who proposes an algorithm of integration allowing to

stabilize and to accelerate the calculation of the deformations of a mass-spring model

(Desbrun 1999). Some of its properties and limits are summarized as follows, so as to

provide us some reference to decide which physical model is more suitable for our

purpose.

. The mass-spring model as a physically-based model is ideal to form a dynamic

and deformable object and its parameters have obvious physical connotations so

as to be easy to understand and to specify in accordance with different needs. Its

rate of animation can change with the specification of the length of each step time

so as to reach a real-time and interactive simulation under certain non-rigid

conditions. Since the mass-spring model reflects interaction between a node and
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its neighbor nodes which are relatively independent of other nodes, i.e. its local

nature, parallel algorithms may be applied to accelerate rendering.

An object which has the character of a continuum is approximated using a

discrete model which is obtained by the computation and control of some discrete

elements. The number of extracted points depends on the requirements of

accuracy to approximate a geometric surface and corresponding expense of

computation time. Although it solves the numeric computation problem on the

computer, the error of approximation is also attained. The final result of the

approach is always stated as a set of points in space and the original continuity of

the solution has been lost.

The basic mass-spring elastic model does not allow enforcing certain global

properties, such as the incompressibility of some tissues. One way is to compute

tissue volume when we solve the motion equation and to add pressure forces to

mesh nodes located in the tissue surface in order to maintain constant volume.

The lattice is tuned through its spring constants, and proper values for these

constants are not always easy to derive from measured material properties. The

adjustment of these parameters (mass, damping and stiffness) will be extremely

time-consuming because the parameters influence each other and the anisotropy

of our modeled object, human trunk.

In addition, certain constraints are not naturally expressed in the model. For

example, incompressible volumetric objects or thin surfaces that are resistant to

bending are difficult to model in a mass-spring system. But these phenomena can

sometimes be modeled using additional springs, with an increase in

computational cost.

Mass-spring systems sometimes exhibit a problem referred to as "stiffness"

which can occur when spring constants are large, such as modeling a nearly rigid

object, or hard constraints due to physical interactions, such as a non-penetration

constraint between a defonnable object and a rigid object. In modeling, when

instability occurs due to the high rigidity and unfit time step of integration, we
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have to adopt small time step to reach numerically stable integration, which slows

the process of simulation.

. Mass-spring modeling can directly represent an object's local properties and thus

facilitate the rendering of anisotropic, nonlinear and non-homogeneous tissue

structure.

2.3.3 inite element model

The finite element method is a method which takes account of the physical properties of

material to simulate a deformable material. In industry, the finite element method in

mechanics and mathematics has been applied for several decades. They mainly use the

continuous model. The literature on the subject often discusses methods that are too

accurate and too expensive, whereas the required visual result in animation does not

require such a precise model. It is somewhat difficult to understand, but the general

method can be explained more simply. This technique can be used to study not only the

static positions of balance but also the dynamic evolution of objects in the course of

time. Calculation is often very long. Although it also has a lot of disadvantages,

preventing its broad application, it also has obvious advantages.

The following description is much simplified and the reader should refer to (Segeriind

1984, Bathe 1996, Kass 1997 and Zienkiewicz 2000) for more details.

The surface and volume representation of the finite element model are the most widely

used in engineering. The approach describes a shape as a set of basic elements (triangles,

quadrilaterals, tetrahedrons), where shape functions with limited support are defined

(Zienkiewicz 2000a). This leads to continuous representations with varying levels of

continuity. A finite element model is fully defined by the choice of its elements, its shape

function and its global parameterization between parameter spaces Q and R (for

fie ̂ surfaces and QeR3for volumes). For surfaces that are neither topologically
planar nor cylindrical, the parameterization can be problematic. Finite elements with

C° continuity, where the shape node consists of a vertex position are similar to finite
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difference methods. Similarly, Bezier spline , B-splines or Hermite splines can be seen

as finite elements with specific shape functions.

The first application of finite element method to animation was done by Gourret et al in a

simulation of contact between a defomiable hand and a ball (Gourret 1989). The

response to collisions is somewhat empirical and the modeling of the fingers is simple,

but the simulation allows a complex deformation. The matrices are recalculated when the

knuckles move more than ten degrees. Simulation takes a long time to calculate and

dynamics was removed in order not to slow down it more.

Later Collier et al produced a fabric modeler using square elements in two dimensions

(Collier 1991). Chen and Zeltzer tried using them to animate human muscles (Chen

1992). Their elements are very complex (20 nodes each) and they use only 2 per muscle.

The muscles are seen imposing forces by the medium of the tendons which connect them

to the bones. Although using the principles of fonnal dynamics, their simulation of a few

tens of nodes is very slow.

Bro-Nielsen and Cotin used an interesting idea in 1996 by noticing simply that only the

displacement of the nodes of the surface is relevant visually (Bro-Nielsen 1996). The

matrix system can be rewritten by separating these nodes from those of the interior. This

method, called condensation by the authors, leads to a matrix system which now relates

only to the surface nodes which are much less numerous, but which on the other hand

lost the structure of the middle of the matrix. This process, traditionally in physics, had

already been applied in (Gourret 1989).

James and Pai (James 1999) proposed a method based on the same principle, but in

which they updated the inverse of the tangent matrix. When the user handles a virtual

tool to deform the object, few nodes pass from moving state to rest state, and conversely.

The authors pointed out that the matrix inverse was modified only little in fact in these

cases. The influence of a point is limited to a column of the matrix and a mathematical

trick makes it possible to quickly update the matrix using pre-calculations to reach real-

time animation.
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In his thesis (Cotin 1997), Cotin proposed a method imposing constraint once on the

displacement of the object. He uses the interesting property of superposition of the finite

elements in linear elasticity, which says that the deforaiation of object resulting from

displacement of a point is the sum of those which would be produced by

displacements, x y and z separately applied in each direction X , Y and Z . A double

displacement will simply create a double deformation due to the linear character of the

system of equations. The problem is that one cannot know the created deformation when

one at the same time handles more than one point. Summing each deformation created

by the moved points will lead to an exaggerated deformation. Cotin, however, does not

apply any part and only represents the mutual influence of the moved nodes. The inverse

of the tangent matrix will determine displacements of different nodes. One can thus

move several vertices, but at the price of calculating the inverse of a matrix.

One of the defects of these three methods (Bro-Nielsen 1996, James 1999, Cotin 1997) is

that all the precalculated matrices could no longer be used when any modification of the

topology of the object (a simple notch or a major cutting) occurs. Another disadvantage

is that their model is static so that it is very sensitive to external loading. When the

loading leaves the object abruptly, the object returns immediately to its original

equilibrium position without any dynamic oscillation.

Finite element models have been used widely to compute soft tissue deformations under

mechanical constraints. In the past few years, real-time finite element models have been

developed as an alternative to spring models. Sagar (Sagar 1994) developed a virtual

environment for eye surgery simulation where the cornea defonnation is modeled as a

non-linear elastic material CMooney-Rivlin material). The finite element solver computed

the cornea defomiation every second while the graphics module was able to provide a

lOHz refresh rate. In (Cotin 1996), Cotin et al. describe a hepatic surgery simulator

where the liver is represented as a linear elastic volumetric model with static constraints.

By pre-computing the response of surface vertices to position constraints, the liver model

can be deformed in real-time. Furthermore, the force-feedback computation and the liver

deformation computation can be decoupled to achieve optimal haptic display (500Hz)
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and visual display (30Hz). Similarly, Bro-Nielsen (Bro-Nielsen 1996) decreased the

computation time of a linear elastic model with a seini-implicit scheme, by condensing

and explicitly inverting the reduced stiffness matrix in a preprocessing stage. Video

frame-rates of 15-20 frames/second were obtained with this method. By taking

advantage of the linear nature of the static or dynamic equation, the methods of Cotin

(Cotin 1996, 1997) and Bro-Nielsen (Bro-Nielsen 1996) decrease the computation time

of finite element models by at least factor of 100. However, such optimizations are not

compatible with the topological change entailed by suturing or cutting, where the

stiffness matrix must be updated.

In conclusion, finite element models are well suited to compute accurate and complex

deformation of soft tissue. However, it is extremely time-consuming on a moderately

powerful workstation using finite element models. But for linear elastic models, only

valid for small displacements, it is possible to reduce computation time. Unlike spring

models, there is no restriction on the stiffness value of the model with respect to the time

step when using semi-implicit or static schemes. We list its series of properties below

compared with mass-spring to help us to choose correct model related to deformation of

spine and soft tissue.

. Finite element method provides us a more realistic simulation to real world and

human models with fewer nodes which reduce the computation and complexity

of the system. Because mass and stiffness matrices are derived by numerical

integration over the elements, pre-processing the matrices leads to significant

reduction of computation time during actual simulation.

. The finite element method is well suited to interactive definition of objects with

free-form surfaces and numerical methods to process continuous objects.

FEM methods have been extensively studied in numerical analysis. They are

often regarded as a more rigorous representation of tissue physics than mass-

spring models, because they do not discretize the equations of motion and they

produce a solution over the entire domain. However, their computational cost
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tends to be greater than mass-spring models, especially when nonlinear elastic

models and dynamic simulation, as in our research, are considered.

The method is built on physical mechanism which is used to deduce the behavior

by minimizing the energy of a system which consists of a solution of dynamic

equation of Lagrange. The integration of local discretized nodes which forms the

local depiction of motion of the deformed object requires a matrix calculation at

each time step, which may prevent interactivity and cause the impossibility of

real-time animation.

On the other hand, the behavior of each material, such as elastic, inelastic or

plastic, holding different characteristics, is described by a special equation which

can be solved in selecting the proper method and implementation routine. Based

on having no general equation to embody a universal substance, our choice of the

equation and method to simulate dynamic deformed object must be

corresponding to its proprieties.

Similarly, no general software can be applied in all deformable materials and

every parameter designated to modify the object intuitively must lie in special

situation. Attaining the more intuitive, more universal and simpler model to

manipulate a variety of materials is a major research field in computer graphics.

In application, forces enforced on object must be converted to their equivalent

discrete force vectors, which requires numerically integrating distributed forces

on the volume at each time step and increases computation time.

If the topology of the object changes during simulation, or the object shape

changes beyond small deformation limits, the mass and stiffness matrices must be

re-evaluated at the time of simulation. The great cost of this in time prevents real-

time and interactive performance.

When a human tissue domain is treated by finite element method, its change is

very great after deformation since human tissue can stretch greatly. This violates

the basic assumption of the method that is originally developed to compute

functions or a vector field over a fixed domain. For a similar reason, the method
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has difficulty dealing with change on tissue topology, barring a prohibitive

computational cost.

The performance of current soft tissue models are summarized in Table 2. 3. Mass-spring

models have been developed in computer graphics for their simple and efficient

implementation. But finite element models are mostly used in biomechanics because

they aim at modeling accurate deformations as in our project. We select the finite

element model also because our model demands very high accuracy, in order to be

comparable with real defonnable anatomical tissue. On the other hand, its disadvantage

(slowness of computation) does not greatly prohibit the implementation of deformation

since our model is not required to work in a real time environment. Finally, visualization

of finite elements is well suited for graphics hardware since it consists in rendering

visible elements. As a conclusion, finite element models are well suited to compute

accurate and complex deformation of soft tissue which arises in our trunk model.

Table 2.3; Comparison of mass-spring and finite element method

Deformation Accuracy Computation Time Visualization

Finite

Element Excellent Slow Excellent

Model

Spring Model Good Fast Good

2.3.3. 1 Finite element physical model

Consider a body in an initial state at time t=0 which is shown in figure (2. 18). Its

domain in the initial state is called the reference configuration which is referred to by
various equations in describing the motion of the body and deformation. The domain of

current configuration which is also called deformed configuration is denoted by^2, and

its boundary is denoted F. The vector X for a given material point in the initial domain

does not change with time and is called material coordinates or Lagrangian coordinates.
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x is the position vector in the current configuration and it gives the spatial position

which is also called Eulerian coordinates. The function (^(X, t) maps the reference

configuration to the current configuration and can be given by the addition between its

original position and its displacement as illustrated by figure 2. 18:
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Figure 2.18: Undef armed (initial) and deformed (current configuration) of a body

^{X, t)=X+u(X, t} (2. 1)

A fundamental measure of deformation is described by the deformation gradient

V0=7+V« ( I matrix identity) which must be subject to the constraint

3 = det(V(P) > 0 to ensure that material volume elements remain positive. The

deformation gradient is a direct measure which maps a differential line element in the

reference configuration into one in the current configuration.

We choose the Cauchy elastic material to simulate deformable material because the

deformation only depends on the current value of the deformation gradient and not on

the history of the motion. In a Lagrangien reference configuration, the defonnation

tensor can be described as a symmetrical 3x3 matrix which is denoted by

C = V^'V0 (2. 2)

(Picinbono 2001, eq. 1.2). It is invariant in rigid transformation, i.e. translation and

rotation. One usually uses the right Cauchy Green deformation tensor C to compute the

second Piola-Kirchhoff stress and work. However, the work done may depend on the
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deformation history or load path. This tensor also comprises the part of the non-rigid

deformation. In this variation, there are two types of variables.

As the following figure (figure 2. 19(b)), the defonnation of a cube is divided into two

types. One type of variables makes the deformation stretch respectively along three axes

and these three variables separately are put in the diagonal in the Cauchy Green

tensor C. For example, the variable which makes the cube stretch along the Z axis can be

denoted by

(2. 3)^ = f^r + r^r + f3£i2 = r^t. ra0i = ic22'l^J +l-3TJ +lij 'l^J'l^JII
(Picinbono 2001, eq. 1. 5). The three other elements of the Cauchy Green tensor

(symmetrical matrix) represent the shearing of the surface on which they act with respect

to the neighboring surface (figure 2. 19(c)).
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(a) Status at rest (b) stretching (c) Shearing

Figure 2. 19: Components of the deformation of a cubic (Picinbono 2001)

For instance, the shearing between the XOY and YOZ planes is denoted by

3(p3<p , 3y/3^- , 3^ 3C f9(?^ F3<?
9x 3z 3^ 3z 3x 3z 1, 3^: J I, 3z

(2. 4)

(Picinbono 2001, eq. 1. 6). Green strain tensor £ measures the difference of the square of

the length of an infinitesimal segment in the current (deformed) configuration and the

reference (undefonned) configuration. It can be expressed in tenns of Cauchy Green and

displacement gradients by

E=^{C-l)=^(Vut +^u+Vu'Vu)
^

(2. 5)
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(Picinbono 2001, eq. 1.7). It also retains the invariance of Cauchy Green tensor in rigid

body motion.

Like the Cauchy Green tensor, the three diagonal elements (c^, Sy, s^)ofE represent

the stretching of the volume element in three directions of space. The three other

elements Yxy. Yxz'Tyz represent shearing in the volume element. The tensor E is

expressed in terms of these six components of deformation as follows:

^-^+^k2 +^2+^2)

£y=uy+^(u2y+v2y+w2y)
;^-. 4(MZ2+VZ2+W22) (2'6)
Y^ = (", + v, )+ (",«, + v, Vy + w,Wy)
y^ = (Mz + vj+ (u, M, + v, v, + W, W, )
7y. =(u. +vy)+(uyu. +VyV, +W^)

(Picinbono 2001, eq. 1. 8). If one only retains the linear part of the tensor £, one can

directly deduce the linear mechanics of elastic deformation of the continuous mediums,

which is represented by:

£=:1(VM(+VM)

1
2e

£=2 7xy
. ^

2£..

'xz -ys

V..
y^ where
2s.

2
(2. 7)

(Picinbono 2001, eq. 1. 9). Usually, the deformation of material is driven by two types of

forces which act on the deformation domain. The voluminal force can be applied to the

whole or partial domain of the object, as in the case of gravity. However, the surface

force can only be exerted on the object's boundary.

In a continuous medium, adjacent parts push or pull each other via certain surface areas.

Such a force, called the traction force, should be measured per unit area. After the

theorem of conservation of linear momentum and angular momentum, and the Cauchy

theorem are applied to the volume element inside the relevant body, the traction force

t(x, n) depends on the Cauchy stress tensor o-^). Given the spatial normal unit vector n

of the surface, the spatial traction force t(x, n) can be expressed as a function of<r{x)
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t{x, n)= a(x)n which is expressed in the Eulerien reference configur tion. One

transforms the relationship between the stress and displacement gradient into Lagrangien

reference configuration and obtains the first Piola-Kirchhoff stress tensor:

a(x) = det(V<D(z))(T(x)(vo(xy)-l, x = Q(x) (2. 8)
(Picinbono 2001, eq. 1.2). Because the stress is not symmetrical whereas the Cauchy

tensor is symmetric, one transforms the first Piola-Kirchhoff by multiplying V^(z)-l to

obtain the second symmetric Piola-Kirchhoff tensor

S=^X)~la(x) (2. 9)

(Picinbono 2001, eq. 1. 2). It is often used to compute the work by multiplying the rate of

Green strain tensor, which is denoted by the gradient of the velocity field in the reference

configuration of the material coordinate system. Thus they are called the conjugate pair
in the sense of work. The conjugate relationship is used to develop the weak forms of the

momentum equation: measurement of stress and strain rate which are conjugate in work

can be used to construct principles of virtual work.

2.3.3.2 Linear model

Linear elastic volumetric finite element models have been widely used to model the

deformation of soft tissue. In such cases, the stress/strain relationship is represented by a

linear equation: F = KX . The stiffness mabnx ^depends on the rest shape geometry, the

Young modulus £ and the Poisson ratio parameters. In most cases, only C° elements are

used, leading to simple shape functions. Owing to the fast speed and simplicity of the

linear finite element, it has been broadly applied to the simulation of human tissue in the

medical field in spite of its limited ability to validate the change of material. We initially
present a deformable model founded on linear elasticity and the finite element method.

Our algorithm uses a FEM with 4-node tetrahedral elements with linear shape functions.
We have chosen this element because:

. In a mesh composed of 4-node tetrahedral elements, each node has a relatively

small number of neighbors. This results in fewer non-zero elements in the
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stiffness matrix and less expensive computation. Higher order elements such as 6-

node hexahedral elements, on the other hand, produce denser stiffness matrices.

. 4-node tetrahedral elements simplify the integration of the derivatives of the

potential energy. This integration is essential for computing the stiffness matrix.

Precise integrations for higher order elements are expensive, and usually require

numerical integration techniques such as Gaussian quadrature with more Gauss

points.

. A tetrahedron does not self-penetrate. As a result, the penetration problem is

reduced to pairwise element-element problem. A higher order element can

deform and result in self-intersection, which makes the penetration problem much

more complicated.

A finite element procedure is usually divided into three parts:

(a) Divide the continuum into a finite number of parts (elements). In each element,

construct the continuum field by interpolating on certain points using a certain simple

function which describes how quantities vary continuously within elements; its behavior

is specified by a finite number of parameters.

(b) For each element, express the component of the equilibrium equation in terms of the

interpolation functions and the element's node displacements.

(c) Solve the complete system as an assembly of its elements to obtain the node

displacements over the whole object.

In our project, we adopt the finite element of type P^ (polynomial of degree one) as the

interpolation function. Because the approximation of using this shape function belongs to

the Hilbert space H^ (Sobolev space with L^ norm), it is sufficiently smooth to solve the

second order differential equations, which include all PDEs used in this work. One

discretizes the elastic energy of defonnation and the displacements u inside each

tetrahedron is expressed as the interpolation function of its four vertices:

u{x)=^N, {x)u,.
7=0

(2. 10)
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Figure 2.20: Finite element of tetrahedron type

The displacement gradient can also be denoted by:
3

VM=^M^. ®V^. (2. 11)
J=0

(Picinbono 2001, eq. 2. 5), where ' ® ' indicates tensor product i.e. u®v= u, v.. Because

the displacement gradient is constant inside each tetrahedron, on the entire grid, it is

represented by a piecewise constant function.

Now, the linear potential energy inside one tetrahedron can be represented as the

function of displacement:

Wl(T)=^ut^li]u, withBf=A(N, ®N,)+^(N, -N,)i, (2. 12)
(Picinbono 2001 eq. 2. 9). The {B^k;j, k =1... 3}are symmetric (3x3) matrices which
represent the local stiffness matrix in the tetrahedron.

This potential energy also describes the current energy contained in the tetrahedron.

When it is separately differentiated by four tetrahedral vertices P , we can obtain the

forces acting on each vertex and the force inside the tetrahedron which is approximated

by the interpolation function. One can divide the force on each vertex into two parts,

which is denoted by
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^ {T) = S [5^ ]^, = [5,- ]^ + $; [5;7 ]«, (2. 13)
y=o j=o

J*P

(Picinbono 2001 eq. 2. 11). The forces of the first part return the vertex to its rest position

and the forces of the second part make the vertex move toward its neighbor which

produces the force on it. This mechanism allows the external force to spread to the whole

domain and produce defonnation through the nodal displacement.

Now, we assemble the small local stiffness matrix of the equilibrium equation in each

tetrahedron into a global, large but sparse stiffness matrix. The forces on each node

P consist of its own inertia force and the sum of forces coming from its adjacent nodes

connecting it by an edge and are denoted by

Fi=^W=^ kw K+g[^k- =b-K+^k']., (2. i4)

J*P

where

Tev[Pp): sum on all tetrahedrons pertaining to the vicinity of vertex? and A is in the

set of tetrahedrons: sum on all edges pertaining to the vicinity of vertex P (Picinbono

2001 eq. 2. 12). The expressions define the relationship between the force fanned on a

node and its and its adjacent nodes' displacements.

2.3.3.3 Limits of the linear elastic model

Although linear elasticity has many advantages due to the simplicity of the equations and

possibilities of optimization, it nevertheless presents a strong restriction, namely, that it

is limited to small displacements. The linear relation between strain and stress is not

appropriate because it does not model large defonnations exactly. The linearity is

derived from the assumption of small deformations. It is admitted in general that this law

of linear elasticity is valid only for displacements lower than the 10% of the total size of

the defomied field (Fun 1993, Maurel 1998). Actually, that means that it is necessary to

restrict displacements to be small enough so that the rotations generated by these
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displacements can be approximated by translations, because due to using the linearized

tensor of deformation, the model is no longer invariant w.r. t. rotation. When a volume

element undergoes a rotation, it is interpreted as an increase in the elastic energy, which

results in a distortion. First of all, we highlight the limitations of the elastic linear model,

in particular the problems raised by the absence of invariance w.r. t. rotation.

When a linear elastic model takes a total rotation, one could imagine solving the problem

by a change of suitable reference mark. But in the majority of cases, there is only part of

simulated object which undergoes a rotation compared to the other part of field. It is in

particular the case where a part of the object is fixed and that the rest is subjected to local

rotation. Figure 2. 21 shows a cylinder whose lower part is fixed. The higher part is

subjected to a force directed along the right line. (b) Represents the defomiations done

by several successive forces. A dilation of the model is observed at the places where it

undergoes a rotation. The cause is, during the deformation, a linear trajectory which is

the reason for dilation. This dilation is unrealistic, since it occurs only in the plane of

rotation. The same cylinder model of nonlinear Saint Venant-Kirchhoff elasticity is

deformed under the same successive force whose direction is towards the right, like

nonlinear model (Figure 2. 21 (c)) but the dilation does not occur on its top.

t

(a) Original (b) Linear (c) Nonlinear

Figure 2.21: Deformations of a linear elastic cylinder (a) original (b) linear elasticity

and (c) nonlinear elasticity

For large global deformations of soft tissue in human body, the limits show the elastic

linear model is not suitable when the model undergoes large displacements. The spinal

deformation correction executed in Ste. Justine Hospital implies the material and
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geometric non-linearity must be taken into account in simulating the defonnation of

human soft tissue (Perie2004). So, nonlinear models have to be considered to enhance

the accuracy of simulation.

2.3.3.4 Nonlinear finite element model

Although the law of linear elastic strain has been used in small deformations in the

elastic material, we can also improve their biomechanical behavior by adding the

possibility of modeling anisotropic materials. However, even if these deformable models

enable us to simulate the anatomical structural deformations which we require for

medical deformation prediction, the limit is their linear elastic behavior. Because of the

use of a linear relation between the deformation tensor E and the gradient of

displacement VM , the models are no longer invariant by rotation. This results in

distortions far from reality as soon as the assumption of small displacements is not valid

any more. This is why we will be interested in a non-linear model. Non-linear elasticity

is in general used when the principal objectives are precision and the biomechanical

reality of the deformation. Vidrascu uses an incompressible model of Mooney-Rivlin to

simulate the defonnations of the liver (Vidrascu 1999). By using decomposition of field,

calculations only require several minutes. Vuskovic and Kauer use non-linear liver

models (neo-Hooke law and Veronda-Westmann model) to evaluate the constants of

elasticity by identifying the simulated deformations and measured data in vivo (Vuskovic

1999a, 1999b, 2000, Kauer 1999). Non-linear elastic models are used to simulate the

deformations of other bodies, such as the brain, in order to predict the deformations

generated by the brain shift or the appearance (or the ablation) of a tumor (Kyriacou

1998, 1999), or skin with the aim of studying elasticity (Tsap 1998). Picinbono

introduces nonlinear Saint Venant-Kirchhoff elastic finite elements to simulate the

deformation of human soft tissue (liver), which overcomes the shortcoming of linear

finite elements, which only allows a displacement of less than 10% of mesh size.

Moreover, with the introduction of impressibility constraints, the model displays the

more real deformation of living tissue of human body (Picinbono 2001). For the



45

simulation of gynecological surgery, Szekely et al use a model of Mooney-Rivlin

(Szekely 1998, 2000a and 2000b) which presents the deformation in real time by the

means of a large scale parallelization (Rhomberg 1999). Zhuang uses an elastic model

with large displacements to simulate the manipulation of objects in a virtual environment

(Zhuang et al 1999, 2000). In addition, Hirota use three different types of nonlinear

hyperelastic materials to simulate the bending motion of the human leg. The finite

element method is employed to discretize the continuum model of non-rigid objects and

the fast marching level set method is used to pre-compute a distance field for each

undeformed body. He applies the penalty finite element formulation based on the

concept of material depth to make the contact force a continuous function and

analytically integrate the forces over contact surfaces. In the solution of the algebraic

equations, he combines quasi-viscous Newton's iteration and adaptive-step size

incremental loading with a predictor-corrector scheme. Finally, a quasi-static implicit

finite element method is implemented to show a realistic contact effect of human soft

tissue (Hirota 2002).

2.3.3.5 Hyperelastic material

The relation between stress and strain is determined by a constitutive equation. Several

types of constitutive equations have been fonnulated (JVtarsden 1983). Since the problem

addressed by our project involves biomechanical behavior of human organic tissues

whose properties have not completely been understood, we choose the category of

hyperelastic materials to describe the deformation of a human organ which exhibits a

kind property of conservation of energy like hyperelastic material. A material is called

elastic if the first Piola-Kirchhoff stress tensor at a point in material can be described

only as a function of deformation gradient at that point (Marsden 1983). Whereas a

m terial is called hyperelastic if there exists an elastic potential function W , also called

the strain energy function per unit volume of the undeformed configuration and can be

represented by a scalar function of strain of deformation tensors, whose derivatives with

respect to a strain component determines the corresponding stress component.
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S=2
9W 9W

(2. 15)
3C 3£

(Belytschko 2000, p. 235). The total defonnation energy in domain £2 is denoted by

£=^X (2. 16)

If the material is isotropic and homogeneous, the function of potential energy W is

completely characterized by the principal invariants of the Cauchy-Green deformation

tensor C. These invariants are the coefficients of the eigen polynomial det(C-Az) and are

written with respect to C

I, (c)=tr(c)=C,

/, (C)^{MC))2-». (C2)}^{(C,, )2-C,, C, } (2. 17)
/3(c)-det(c)=^C,, C,, C,3

(Belytschko 2000, p. 238). The potential energy function of any hyperelastic material

can be described as a polynomial function of the three invariants:

W=W{l,, I^, I,}. (2. 18)

Since the third invariant describes the local variation of volume, the deformation of

incompressible materials can be constrained, such as 73 = 1. One way of reinforcing the

incompressibility is to introduce a multiplier of Lagrange or a constrained penalty

function to ensure 1^=1. When ̂ 3 ̂  1, an internal pressure is produced to oblige the

material to find a balance guaranteeing its incompressibility.

Saint Venant-Kirchhoff element, which can simulate isotropic hyperelastic materials, is

applied to our nonlinear finite element simulation. Its potential energy formulation can

be defined as:

W=^E:C:E=^E, C,^ (2. 19)

(Belytschko 2000, p. 226) where the symbol ':' denotes the contraction of a pair if

repeated indices which appear in the same order. By differentiating the potential with

respect to the Green strain, the second Piola-Kirchhoff tensor can be represented as the

function of the principal invariants of Cauchy-Green tensor:
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S=^=/itr(E)l+2, uE (2. 20)

where 2 and // are the Lame constants which are related to the classic mechanic values

describing the properties of elastic materials, i.e. the Young modulus £ and the Poisson

ratio v by the relationship:

VEy .. Ey
^(l+v)(l-2v)' //=2(T^) (Belytschko 2000, p.228). The Young modulus E,

characterizes the stiffness of material, while the Poisson ratio v represents its

incompressibility. Since the relation between stress and strain is linear, this material is

physically linear. On the other hand, the nonlinear relation between E and Vu

expresses a geometrical nonlinearity, i.e. elasticity in large displacements. These

relations are used to completely represent the biomechanical behavior of elastic material

which obeys the Saint Venant-Kirchhoff material characteristics.

2.3.3.6 Equilibrium equations

The total force acting on an elementary volume is the summation of the off-balance

internal force (the divergence of the stress) and the external volumetric force. In the

equilibrium state, the residual of force, vanishes.

a<7,
R=-^-+pf, -pv. =Q mQ (2. 21)

(Belytschko 2000, p. 146), where a{x, t) is Cauchy stress, f(x, l} force per unit mass.

v(x, t) the velocity, p{x, t) the density.

The equation is, in general, not easy to satisfy. The difficulty stems from the fact that the

equation, often referred to as a strong form, is a condition for every elementary volume

in the material. The weak form or the principle of virtual work is obtained by converting

the strong fonn into a condition for the entire region made of the material. The weak

form enables the derivation of the finite element method that provides approximate

solution of the equation. Here the principle of virtual work is derived.
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Suppose the object is moving with an arbitrary or virtual velocity^ . At the equilibrium

state, the residual force R does not d any work. The total virtual work 5W done in the

volume Q is also zero

SW = jj v;
^

9x,
. +pf, -pv, \dQ=Q (2.22)

Q ^ u-^j

Using the chain rule and the Gauss theorem, we obtain the equilibrium as following

§W = Ja&lo-^- ^fff^+ ^fif,vdQ-:^[Sv, t. dT=0
Q oxj - ^ ". ' T^T . 1"

(2. 23)

(Belytschko 2000, p. 147-148) where t is traction force which depends on the

orientation of the surface and ' n^ ' denotes the number of space dimensions. Given the

spatial normal vector n of the surface, the spatial traction force t is?, = o-y. n^. .

Note that qualifier "virtual" is used to make physical quantities hypothetical ones.

Virtual velocity is not the actual velocity of the object; hence virtual work is not an

actual energy increase, either. They are mathematical instmments to derive nodal forces

in finite element methods. In the final algorithm, there are no virtual quantities. As a

result, a general motion equation is derived with an added damping item which is also

called Lagrangian motion equation:

d2u du

dt2 ~ dt
t{x)=ff{x)n

Pu:^-+ct^=f(x)^. a(x), Xen

XeFi (2. 24)

p: mass density

where c: damping coefficient of material
/ : density of volumic force

t: density of surface force

(Picinbono 2001, eq. 1. 17). The finite element model can finally be discretized as a set of

node vectors X . For static computation, the stress-strain relationship leads

to/(x)+V-<7=0 . The following figure summarizes the reciprocal relationship

between different variables. The defomiation potential energy of elastic material can be



49

calculated by its deformation tensor and Lame coefficients. Then, the internal stress

tensor deduced from the deformation potential and the voluminal and external surface

stress form the dynamic motion equation to describe the deformation procedure of elastic

material.

0(Z)=X+M

Displacements

C-VQ'VQ

£=I[VM'+VM+VM'VI(]

Deformation tensor: Strain

Defonnation potential.

W=^-(?r£)2+/;?r£2

Second Piola-Kirchoff stress tensor:

S = A(trE}l + 2juE

Forces Stress tensor

Motion equation:

^di-fW^^}
First Piola-Kirchoff stress tensor o-(x) :

9W
5(0, X)=VO(x)-lcr(z)=

3£

Figure 2.22: Transformation relationship between parameters (Picinbono 2001)

2.3.3.7 Solution of dynamic system

The most general approach for the solution of dynamic response of stmctural systems is

the direct numerical integration of dynamic equilibrium equations. This involves, after

the solution is defined at time zero, the attempt to satisfy dynamic equilibrium at discrete

points in time. Most methods use equal time intervals at ̂ t, 2^t, 3/St, ---, N^t. All
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approaches can fundamentally be classified as either explicit or implicit integration

methods.

The explicit finite elements are more often applied in systems of particles and benefit

from its flexibility. The principle is as follows: when one writes the equilibrium

equations on each element of the system, one is able to express the force which each

vertex produces according to displacements of the neighbor vertices. One simply

integrates these forces for each point, rather than seeking to find the position of

equilibrium that these forces create by solving the matrix system. Thus, explicit schemes

are simpler to compute and may not require matrix inversion.

Most finite element methods make use of implicit finite elements and attempt to satisfy

the differential equation at timer, after the solution at time t-^lt is found. The global

solution of a system guarantees that the final positions are all compatible, satisfying all

the equations overall. Although the method requires the solution of a set of equations at

each time step, larger time steps may be used. Implicit schemes are unconditionally

stable whereas explicit schemes are only conditionally stable.

In most implicit integration methods, we mainly used the Newmark algorithm

(Zienkiewicz 2000b, Reddy 1993) in our work. To solve the nonlinear algebraic system,

we used a Newton-Raphson method with linear search algorithm (see Appendix A).

2.4 Choice of materials and mechanical properties

The existing literature on the mechanical properties of human tissues is abundant, but

relatively scarce when one looks for exact, comprehensive and representative data. There

is a large scatter and uncertainty in the material properties of human tissue, according to

sex, age, body size, etc. Furthermore, there may be large differences found in tissue

properties within an individual at different parts of the body (Haug 1995).

The properties of organic tissues are being actively studied in biomechanics, and several

models have been proposed based on stress-strain data obtained from in-vitro

experiments. However, due to the limitations of measurement technology, those models

have not been rigorously validated (Miller 2000). Some general important properties are
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known about most biological tissues. These properties include 1) infinite energy with

zero volume, 2) highly nonlinear stress strain relationship, and 3) anisotropy.

However, complex material properties such as plastic and viscoelastic phenomena

generally observed in soft tissue expenments may be neglected if the deformation is

small or if it is perfomied over a period of time that suffices for recovery processes in

living organism. For the long term prediction of body tissue, a simplified constitutive

model based on piecewise, isotropic, quasi-incompressible, linear elastic and non-linear

hyperelastic material description is assumed.

A model of elasticity is considered as a large displacement model if it derives from a

strain tensor that is a quadratic function of the deformation gradient. The Saint Venant-

Kirchhoff model is a generalization of the linear model for large displacements, and it is

a particular case of hyperelastic materials. Its basic energy equation is the same as the

hyperelastic energy equation, but now E stands for the complete Green strain tensor: the

material is applied to represent the deformation of all tissues which can be specified by

different mechanic properties.

A tmnk is principally composed of the spine, rib cage, lungs, diaphragm and many

organs which are situated in abdominal cavity (stomach, intestine... ). Many muscular

layers cover the organs and play an important role in the adjustment of position of the

organ and motion of trunk. Our model does not represent the muscular reaction and an

isotropic linear and nonlinear elastic material is used to form muscle and soft tissue.

The model is mainly composed of three distinct parts, soft tissue, vertebra and ligament.

The mechanical properties of the spine are selected from (Aubin 1995, Shirazi-Adl 1984,

Teo 2003). A spine is composed of very complex different materials which have

different biomechanical parameters. Their property values have been listed in table 2.4,

which are used to simulate the finite element model of the thoracic vertebrae T10-T11

and have different value at different parts of a single vertebra.
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Table 2.4: Vertebral material properties used in the finite element model

Component Name Young's Modulus (MPa) Poisson's Ratio Reference

Cortical Bone 10000

Cancellous Bone 100

End plate 500

Bony Posterior

Element

Disc-Annulus

Disc-Nucleus

Annulus Fiber

Intertransverse

Ligaments

Capsular

Ligaments

Supraspinous

Ligaments

Interspinous

Ligaments

Ligamentum

Flavum

Anterior

Longitudinal

Ligaments

Posterior

Longitudinal

Ligaments

3500

4.2

1

500

58.7

32.9

15.0

11.6

19.5

20.0

0.30

0.2

0.25

0.25

0.45

0.499

(Shirazi-Adl 1984)

(Shirazi-Adl 1984)

(Frymoyer 1991,

Shirazi-Adl 1984)

(Shirazi-Adl 1984,

Teo 2001)

(Shirazi-Adl 1984,

Tea 2001)

(Shirazi-Adl 1984,

Teo 2001)

(Shirazi-Adl 1984)

(Teo 2003)

(Teo 2003)

(Tea 2003)

(Qiu 2003, White

1990)

(Teo 2003)

(Tea 2003)

20.0 (Teo 2003)
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In our model, which simplifies the stmcture of vertebra, only two types of materials are

used to describe the whole spine, namely the vertebra and the ligament between them.

The soft tissue is also simplified as one material. In (Aubin 1995, Perie 2004), some

different material properties listed below (table 2. 5) are used to constmct a personalized

finite element model including the spine, rib cage or abdomen for each scoliotic patient

in the LIS3D Laboratory of Ste. Justine Hospital of Montreal. But their mechanical

properties are still not personalized and are only measured from the extrapolation of

cadaveric data. We have investigated much of the literature and collected some

mechanical properties about abdominal, fat and skin soft tissue (table 2.6) which is

adopted as a reference to specify the properties of soft tissue in our model.

Tissue

Cortical bone

Poisson's Ratio Reference

Table 2.5: Material biomechanical parameters of rib cage and vertebra

Young's Modulus

(MPa)

(Aubin 1995, Perie

2004)
5000 0.30

Cortical bone
10000

(sternum)

Cancellous bone 1000

Rib bone 5000

0.1

0.3

0.1

(Aubin 1995, Perie

2004)

(Aubin 1995, Perie

2004)

(Aubin 1995, Perie

2004)
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Table 2.6: Mechanic properties of soft tissue used in the literature

Tissues

Skin

Lung

Abdomen

Abdomen

Abdomen

Young's Modulus

(MPa)

lOOkPa

2. 5gm/cm

Spring

Incompressible

body 4.7kPa

Brick element

1.7kPa

Abdomen

Abdomen

Abdomen

Abdomen

Abdominal wall

Abdominal cavity

Elastin

Collagen

Thoracic aorta

Abdominal aorta

Muscle, along fibers 0.5

Muscle, across
0.79

fibers

Fat 5xl0-3

Poisson's Ratio Reference

0.3

0-20kPa

0-301ePa

1M

0.01M

0.6

IxlO3

0.62

1.2

Skin

Fat

Skin

0.5

IxlO-3

0.09

0.2

0.45

Bischoff et al 2000

Matthews et al 1972

Macklem et al 1983

Dietrich et al 1990

Sundaram et Feng

1977

Belytschko et al 1978

Marras et al 1991

Ueyoshi et al 1985

Erdman et al 1997

Delphine Perie

Delphine Perie

Fung 1993

Fung 1993

Duck 1991

Duck 1991

Duck 1991

Duck 1991

Samani 1999

Samani 1999

Schnabel 2001

Schnabel 2001
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The material properties in our model are fundamentally described by the Young's

modulus and the Poisson ratio. The Poisson ratio is used to characterize the

incompressibility of material. It will be chosen near to 0. 5 to improve the stability of the

solution. On the other hand, although the Young's modulus really characterizes the

elasticity of material, it is very difficult to measure on the tmnk in vivo. Indeed, human

organs being filled with blood, they will no longer have the same behavior ex-vivo where

a part of the blood has mn out, or has coagulated. Many works are undertaken to

measure the biomechanical characteristics of bodies, of humans or animals (Davies

1999, Maass 1999). An interesting method is proposed by Vuskovic to determine in a

noninvasive way the values of the elastic coefficients used in the laws of behavior

(Vuskovic 1999a, 1999b, Vuskovic 2000, Kauer 1999). They apply an instmment at a

point, which appears as a prolonged tube of a handle, which can be used as well in open

surgery, in laparoscopy, or at the time of ex-vivo experiments. The principle is to place

the end of the tube on the surface of the tmnk, and to exert a suction force there. Then a

part of the tmnk is absorbed towards the interior of the tube, and a camera records the

profile of the deformation. Their results will be followed to see if they can be used for

our further modeling.

Defonnable models, based on the elastic laws Neo-Hook and Veronda-Westmann

(Veronda 1970, Fung 1993), are used to simulate the same experiment. Then the

coefficients of these models are adjusted so as to find the same defomiation exactly.

Unfortunately, the latest publications state only preliminary experiments carried out on

the kidney. However, they obtain values of the Young's modulus between 500 and 800

MPa, which corresponds rather well to the values suggested by other teams.

2.5 Objective

The first objective of our project was to predict the long term effect of brace treatment on

the patient's trunk, which required building a system to show a consecutively dynamic
procedure of deformation. The external force from the brace is also a variable over time.

This first motivation was the principal reason for considering a dynamic system.
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We did not use an existing FEM software package, such as ANSYS, because our

algorithm pennits us more flexibility in the adjustment of time, force and the

displacement of constraint points during deformation. Furthermore, we can add the

constitutive model of a new material to more appropriately simulate the behavior of

biological tissue.

Our global objective is to develop an integral deformable model to build a physical

model of the human tmnk, integrating soft tissue with the bone stmcture to simulate the

effect of surgery on the external shape of the tmnk. This would provide doctors a visible

environment of surgical simulation before surgery and simulate the effect of different

surgical schemes, and also help the doctor to devise a better treatment strategy. The

overall goal is divided into the following detailed objectives:

1. Analyze and enhance manually the quality of the acquired 3D mesh of the

integral trunk to avoid bad elements and improve the simulated result.

2. Develop and validate a dynamic finite element algorithm to simulate the

procedure of deformation of the patient's external surface over time.

3. Compute the boundary conditions based on anatomical landmarks on the

vertebrae before and after surgery.

4. Validate our algorithms and error accuracy by comparing our simulated results

with theoretic values and ANSYS software simulated results.

5. Define and measure the error distance metric which is used to evaluate the model

from real data for one patient.
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CHAPTER: 3 METHODOLOGY

This chapter gives detailed implementation schemes. At first, acquisition of data is

described and three types of data, internal spine and rib cage, external surface before

surgery and some key points on the spine after surgery are presented. Finite element

construction discusses the discretization problem and its basic assemblage.

One type of nonlinear hyperelastic material with different properties is used to construct

different parts of the human tmnk which includes three types of materials: bone,

ligament and soft tissue in our model. The hyperelastic Saint Venant-kirchhoff finite

element model is used to construct different parts of human tmnk. The main reason is

that its biomechanical parameters directly come from Young's modulus and Poisson's

ratio which are popularly used in mechanics so that we can acquire the accurate

parametric value of bone, soft tissue. In the solution of dynamic equation, there are two

types of integration methods (explicit and implicit). Implicit method is adopted for its

accuracy and stability. Finally, we describe the validation methods which are

implemented to estimate the error compared with the deformation of clinic scoliosis

patient.

3. 1 Acquired data

3.1.1 External surface from InSpeck system

A recent development allowing acquisition of the human trunk surface is the 3D

Capturer equipment of InSpeck. This system is compact, portable and easy to use.

Conceived for the digitalization of objects of free fonn, the 3D Capturer acquires

geometrical information in 3D as well as texture color of surface, with volume of

1100x800x800 mm (Figure 3. 1). This optical non-contact digitizer without contact can

carry out an acquisition in 0. 3 seconds. The reconstruction of the surface uses the

principles of interferometry (Moire projection and triangulation). In fact, a halogenous

lamp emits white light through fringes on the surface to be measured. A CCD camera
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acquires the information and the co-ordinates of points on surface are btained by

triangulation. The following figure shows a basic InSpeck set-up which comprises three

cameras in different directions connected to a control computer.

Figure 3.1: InSpeck Digitizer with four cameras

We use InSpeck cameras to obtain the external surfaces of a scoliotic patient's trunk

which modeled using polygons. Figure 3. 2 shows the external surface of a specific

scoliotic patient's tmnk which has been constructed and triangulated by InSpeck system.

The patient's external triangularized surface model comprises 49, 470 points and 98, 401

triangles.

; ,-.--__..,
Figure 3.2: Patient's external surface reconstructed by InSpeck

There are some defects on the surface, for example, it is not a closed surface, and there

are two large holes on two ends and some small holes, which come from the surface

reconstmction technique of InSpeck.
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3.1.2 Internal surface

Since an external surface only is not sufficient, further meshing which contains some

internal organs will be implemented to obtain a whole tmnk which only includes one

form of tetrahedron finite element. For that, we must acquire the structural information

of certain internal organs and combine internal and external meshes to fonn a more

realistic deformable trunk model.

The X-ray apparatus below is used to attain a patient's PAO and LAT radiographic

images, on which anatomical landmarks are manually identified. Finally, anatomical

primitive free-form deformation is performed based on these control points to

reconstruct the 3D spine and rib cage model (Figure 3.4).

Figure 3.3: Acquisition of X-ray image
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Figure 3.4: Deformable personalized rib cage

But since the data, which only represents the object's surface, is not of the type we need,

the remeshing procedure has been done to transform the surface polygon mesh into a

tetrahedral mesh, maintaining the external shape. At the same time, the experimental

parameter which are used in the Ste. Justine model, representing mechanical properties
of bone, are also retained.

In the context of the finite element method, the more vertices and elements that are

applied, the more accurate is the approximation. But too many vertex and elements

increase the computation time and memory use of the computer, so that the vertices can

not increase without limitation. Because our project is built on single 32 bit architecture

machine and the memory is 640M, we can not process meshes with too many vertices

and elements. After some tests, the number of vertices of the meshed object was reduced

to less than 30, 000 so that the method could run in a reasonable amount of time. 30, 000

points are accurate enough for our cun-ent tmnk mesh and running time is several hours

with ten iterations in the nonlinear dynamic integration solution. In summary, our final

mesh should have less than 30, 000 vertices, i.e. 90, 000 variables.
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3.2 Finite element model of trunk

The following stage consists of discretizing the elastic problem in order to allow the

calculation of a numerical solution. At the time of this discretization, it should be

possible to apply to the model a set of constraints on the boundary. In our case, the

boundary condition is defined on the internal points which move along specified paths

by displacement or applying forces to them, so that external surface can correspondingly

change under the interaction of internal forces during defonnation.

When we exert forces on some special internal points, the forces will propagate inward

and outward until they reach the external boundary and form a dynamic equilibrium on

boundary. We can also obtain the distribution of all forces on the whole trunk mesh.

The first thing to be done is to assemble the global stiffness matrix of the system starting

from the elementary stiffness matrices of the vertices and the edges. Once this matrix is

assembled, the problem can be written in the fonn [K]u = F . This matrix K is of

dimension (3Nx3N) where N is the number of vertices of the mesh. The whole system

contains 3N unknowns and 3N equations, which express the internal elastic forces

exerted on each vertex of the mesh according to the local field of displacements. The

displacement u of the vertices of the grid is then obtained by solving the system using

the direct factorization or iterative method. It should be noticed that the matrix K is

sparse since the elementary matrix is non zero only when there is an edge connecting the

vertex. The sparsity of the matrix generated by the integrator is best represented in

block-fashion: for the system with N vertices, we deal with a 3Nx3N matrix, whose

non-zero entries are represented as dense 3x3 matrices of scalars. The matrix is

represented as an array of SNrows; each row is a linked list of the non-zero elements of

that row, to accoinmodate possible mn-time changes in the sparsity pattern. The (dense)

vectors that are multiplied by this matrix are stored simply as n element arrays of three

component vectors.
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Generally, in a regular tetrahedral mesh, each vertex is only connected to ten edges. It is

important to consider this property, in order to optimize computing times, by using data

structures adapted to sparse systems.

Finally, the data necessary to calculate the forces are directly stored in a data structure

related to the grid. In our case, we have built a data structure containing vertices, edges

and tetrahedrons. For each tetrahedron, we store the list of its vertices and edges, each

vertex with its current position, and the elasticity constants E and u. We also have a

triangle concept to represent the surface of the grid. In this case, each external face

knows the tetrahedron to which it belongs, as well as its three vertices. This concept of

triangulation of the surface makes it possible to calculate the nomial more efficiently,

which will be useful for rendering the object and for calculating the integration of

external forces on the surface. They will also be useful to model contact with other

surfaces and external objects.

We use the laws of deformation deriving from the mechanics of continuous media to

exhibit the biomechanical behavior of the human trunk in order to guarantee the physical

realism of its behavior. The linear elasticity produces a good efficiency and makes it

possible to apply several methods of acceleration and optimization. Moreover, the

relative simplicity of the equations that it generates allows an intuitive interpretation of

different behaviors, which makes it possible to make many improvements there. In linear

elastic deformation, since the stiffness matrix, the inversion of which costs most of

computation time, remains invariable, we only compute it one time at the beginning of

the deformation. Furthermore, the boundary condition is easily added to the linear
stiffness matrix.

3.2. 1 Derivation of boundary conditions

In order to obtain non-trivial solutions of the dynamic equation, some special boundary

conditions which are described as displacement and external forces are included in our

project. In scoliotic surgery simulations, the forces during the surgical impact are usually

unknown but the vertebral moving position in surgery can be recorded. Thus, in this
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work, two kinds of boundary conditions are implemented. These boundary conditions are

exclusively given by the prescribed displacement curve and force value and direction.

They are determined by the comparison of many key points on the spine between pre-

surgery and post-surgery and the intermediate values are obtained by interpolation
method.

To begin, a series of points which are located on preoperative and postoperative

vertebrae are got by radiography as in following figure. The red points are related to

preoperadve and the green points are postoperative points. Each point among them is

accurately computed and matched as the same point on the undeformed and defomied

spine. The points are used to deform the pre-constructed spine model to match the

particular patient's spine. Six anatomical landmarks are used to define one vertebra, one

on the center of the superior endplate, one on the center of inferior endplate of vertebra,

and four on the superior and inferior tips of the left and right pedicles, as in the following

figure, where two points define the superior and inferior centers of plate of the vertebra.

Figure 3.5: Points on preoperative and postoperative vertebrae

Figure 3.6: A vertebra defined by six points
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The points of the tetrahedral mesh are matched with points of radiograph. From

radiography, we acquire a dataset which describes the whole internal rib cage and the

spine of patient with each six points per vertebra, sixty points per a rib, and four points

per sternum. The points are used to construct the patient's internal surface stmcture. But

unfortunately, the constructed patient does not have the preoperative points on the pelvis,

so that the model does not contain the pelvis. The following figure displays the patient's

tetrahedralized rib cage mesh and the points which are used to locate the position of each

vertebra and rib.

Figure 3.7: Rib cage and points of radiograph

The tetrahedral mesh of the spine and the rib cannot map any spatial point to its vertex

because it has been attained by deforming the high-resolution surface model and

reducing the number of its vertices to 9,464, to reduce computation time and memory.

However, in implementing the FEM, all displacement and force application must be

appropriately switched to operations on vertices of the mesh. So we associate each red

point to the point of the tetrahedral mesh closest to it.

In scoliotic surgery, the doctor corrects the defomied spine by instmmentation and

fusion which are not operations on rib. Second, we do not have the postoperative points

on rib cage so that we have no information about the postoperative position of rib cage.

Consequently, we do not implement any force and displacement on the rib, but only on

the spine. So, the following procedures are performed:

. Remove all red points which are used to define the rib and sternum, except the

red points relative to the spine which have 102, six per vertebra;
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. Locate the vertices on spinal mesh most closing to each red point.

As the figure follows, each red point is mapped to a vertex (blue) of the mesh to which

the displacement or force is applied.
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Figure 3.8: Spatial points (red) are mapped to vertices (blue) of mesh

In searching for the closest points, owing to the resolution of the tetrahedral mesh, some

spatial points may have the same closest point on the mesh. In our experiment, we find

there are two points having the same close vertex. We apply the algorithm that when a

spatial point (red) finds a closest point which has been matched to a previous one, the

point is mapped to the next closest vertex.

3.2.2 Derivation of displacement

Although two preoperative and postoperative point datasets have been acquired, they are

not the vertices on the spinal mesh. We need to define the displacement of points on the

spinal mesh. To begin, we compute the vector of each pair of points between pre- and
post-surgery and display those on the following figure, where the red points define the

preoperative points, and the green define the postoperative points. The green lines

describe the moving curve of points. But, because the red points are not vertices on the

mesh, we need to reevaluate another set of points and the displacement track.



66

i S'*
*' f!

Figure 3.9: Definition of displacement

The vectors which are estimated through the preoperative and postoperative spatial

points are used to compute the displacement of vertices on the mesh. As illustrated in the

following figure, A and B are the accurate preoperative and postoperative points from a

radiograph and the point C is the vertex closest to A on the mesh. The actual

displacement vector AB is applied to the point C and makes C moving the same relative

vector CD to point D.

D

B

Figure 3.10: Evaluation of displacement

The actual displacement points on the tetrahedral mesh are different from the measured

data on the radiograph. The following figure shows the displacement (yellow) of the

vertices of the mesh and the moving trail (green) of their associated points.
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Figure 3.11: Trail of displacement of vertices of mesh and relevant points

The deviation distance between each pair has been computed and is shown on the

following histogram, and some statistical properties are listed in table 3. 1.

Distace derivation of key points
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Figure 3. 12: Histogram of deviation of key points

Table 3. 1: Deviation of key points

Maximal distance Average distance Standard deviation

(mm) (mm) of distance (mm)

6.95 2.7872 1.2528
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3.2.3 Selection of displacement step

There are still two questions that remain to be answered: how to obtain the initial guess

and how far to proceed in a selected displacement direction. In our first case, we define

the displacement boundary conditions which completely determine the deformation of

the surface of the human trunk. At first, the initial configuration x=0 is given so as to

avoid an illegal configuration where a special tetrahedral element whose orientation is

reversed may be contained in mesh. For the same reason, the displacements of

constrained components are not suddenly applied to reach the final balance status. They

are gradually incremented based on a linear time function schedule, as shown in the

following figure:

0 10 t(sec)

Figure 3.13: Displacement function

At time zero, the object has static balance status without any constraint condition and

then the displacements of all constraint vertices (102 points) are gradually changed to

reach the final position at the tenth second in time. In the time schedule, we choose one

second as a time step and iterate twenty time steps so as to guarantee that the dynamic

equation can attain the final static equilibrium.
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3.2.4 Application of force

For some points, instead of displacement, we apply forces on the boundary points on the

spine to defonn the soft tissue. The implementation of force application is based on the

following considerations which relate to situations observed in the nonlinear solution:

. Illegal configuration: in the solution of pure displacement of boundary points,

when the displacement of equal distance is applied at each iteration, the

configuration in the solution of nonlinear finite element often leads to an illegal

configuration in some intermediate time steps because the equal displacement of

each point is unrealistic. As shown in the following figure, in (a), ABCD

configuration satisfies the right-hand mle which does not produce a negative

gradient, but at next step, since the A point moves faster than other three points

and goes to the other side of the BCD plane, the tetrahedron is reversed and its

negative gradient prevents the assembling of the gradient matrix.

A C

-- D D

B B

Figure 3.14: (a) Normal tetrahedron (b) Reversed (illegal) tetrahedron

This phenomenon persists even when the time step is reduced and the displacement

curve is adjusted. The main cause derives from the unreasonable definition of the

displacement path. However, the illegal configuration does not occur in linear finite

element system, because of the linear motion of all points. So in linear deformation, the

pure displacement and force application on each particular point can be implemented,
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but in the nonlinear system, only force application is given because the illegal

configuration of tetrahedron which happens in solving procedure, prevents reaching the

final stable status in the application of pure displacement.

. Realistic and robust: displacement constraint often makes a deformable object

move in an artificial environment and the special points reach a particular

position at each step which do not exist in reality. If the constrained point

coordinate at each step can be determined by a specialist or acquired by actual

measurement in surgery, the deformation procedure is reasonable and can be

accomplished. Conversely, if the moving curve of constrained point is randomly

defined, as in our experiment, to equally discretize the line between the beginning

and the final position of each point, the deformation may exhibit a kind of

artificial design, and may even go into an impossible state such as the intersection

of two tissues during the deformation. However, application of force on each

point does not enforce the point to move strictly to a special point at the next step

and makes deformation smoother and realistic. During the deformation at each

step, the position of each key point is adjusted by the dynainical spring force with

different distance so as to avoid the inversion of the tetrahedron. When the

incremental step continues, the solution is cascaded into the next step if some key

points do not move to ideal position at the last step.

Given the final positions of the boundary points, a kind of traction force on each point

must be designed to make the special points move toward its final position. For each

force, we must dynamically compute its value and direction at each time step. Based on

the characters that their positions are uncertain at each step, we apply the force of spring

form on boundary points. As the following figure, one end of spring is fixed on the

vertebral vertex and its another end moves along a straight line form A to C byB which

is defined by the beginning and final positions of boundary points. Such scheme

guarantees the vertices (A) on vertebra always move toward the final boundary points

(C) wherever they are during deformation.
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Figure 3.15: Construction of spring force

During defomiation, spring constants must be carefully specified because this is a very

sensitive factor in influencing the final accuracy. In principle, the bigger the spring

constant, the closer to point (C) is the final position of point (A) and the more accurate is

the result. But, two aspects must be considered in the numerical solution of the

differential equation: if the forces produced by the spring are very large, the solution

may be divergent and to make it convergent, the time step must be correspondingly

reduced. In some reasonable range where the computing time is acceptable, we can

reduce the time step and increase the spring constant to improve the solution accuracy.

At the same time, the too strong spring force also causes the same illegal configuration

as in the application of pure displacement.

In the application of forces on points, to reduce the probability of divergence which is

caused by the abmpt and non-continuous force, we designed a scheme that makes the

force gradually increase and be smoother. Like the application of displacement, we

slowly move one end of the spring along line (AC) and adjust the speed of motion of

point (C) to control the value of force on vertices (A) on vertebra. Considering the

computation time and the accuracy which is influenced by the time step, especially in the
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nonlinear case where one iteration takes about twenty minutes in our computer (1. 4 G

CPU 512M Memory), we choose ten iterations and equal linear interpolation on line

(AC) in time interval of ten seconds to move point C, whose motion function is shown in

following figure:

f(C)

0 10 t(sec)

Figure 3.16: Spring moving configuration

Based on the above scheme of spring motion, we try to use spring constant as large as

possible because increasing its value will reduce the error between the final position of

point A and point C, which is in accordance with the actual physical position deriving

from radiograph. Since the biggest Young's modulus in our project is associated with the

vertebra, with the value 5000 (10 N/m2), after testing and adjustment of time step under
the convergence and comparing the accuracy of the final error, we chose 10 (106 N/m)

as the spring constant so that its produced force was sufficient to cause the deformation

of spine. The error between the final position of point (A) and the ideal position (C) is

given in Chapter 4.

3.3 Solution and construction of dynamic equation

After obtaining the basic relationship between the displacement and the stress force, we

must construct a dynamic equation to describe the dynamic procedure of deformation. In
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the following section, we use the Newmark integration method to form the dynamic

equation and describe some techniques to accelerate and enhance the convergence of

solution.

3.3.1 Integration algorithm

We used the Newmark integration algorithm which is described in Appendix A. Since

we are simulating biomedical tissues, the natural frequency is usually not large.

Therefore we can use relatively large time steps to acquire stable simulations.

(Zienkiewicz 2000a) shows that lumping can even improve accuracy for some problems,

by error cancellation. It can be shown that in transient approximation the lumping

process introduces additional dissipation of energy and it can help in canceling out

numerical oscillation. Computation of mass comes from the calculation of volume of

each tetrahedron and its density which is set as a fixed constant in our simulation.

However, the density can also be acquired based on relevant anatomical study. The

following scheme expresses the Newmark integration procedure we used:
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1.

2.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Initial conditions and initialization of parameters:

Set u° ,u°, u° =0, n=0, t=0; compute mass M matrix, specify integration

parameters ft and y

Calculate integration constants:

1 1 1

bl=~^' bl=jA. ' bl=is-i- b'=yAt1'1
by=l+ yAtb^, b^ = zff(l + yb^ - y}

For each time t = A?, 2Af, 3Ar . . .

Compute dynamic stiffness K and damping C matrices

Form effective stiffness matrix K =K+ b^M +b^C

Calculate effective load vector:

Fn+l =F"+I +M(^M" -b^u'1 -b,u")+c(b, u" -b,un -b,un)
Compute Jacobian J(u)

Modify J(u) for essential boundary conditions

Solve for node displacement vector JM = -J R

Calculate node velocities and accelerations:

M"+l =b, (un+l-un)+b, un+b,u"
M"+I =b, (u'l+l-un)+b^un+b, u'1
Update displacements, counter and time:

u" = un+\u" = un+\iin = iin+\n ^n+l, t^t+/lt

13. Check energy balance

14. Output; if simulation not complete, go to 3.

Figure 3. 17: Algorithm ofNewmark implicit integration (Belytschko 2000, p. 324)

3.3.2 Numerical methods for minimization

To solve the equilibrium equation with elastic materials of n n-linear nature, a relatively

robust numerical method called "algorithmically consistent tangent stiffness" is used

Belytschko 2000, p. 337). To update the tangent stiffness, a continuum tangent scheme
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which relates rates, or infinitesimal increments, of stress and strain, an algorithmic

scheme is used to approximate finite increments of stress and strain. When the

incremental stress-strain relation is obtained through consistent linearization of the stress

update algorithm, the consistent algorithmic scheme can be used to update the tangent
stiffness matrix.

Newton's method finds the minimum of the deformation energy function by repeatedly

approximating the total energy W with quadratic functions. But, the standard Newton

procedure is not suitable for the algorithmic scheme because the computation of the

derivative is difficult and too time consuming. In our algorithm, we improve the stability

of the numerical method by combining the secant Newton method and adaptive-stepsize

incremental loading. In the secant Newton iterative method, all variables are updated

from their values at the end of the previous time step, i.e., the last converged point, as

opposed to at the last iteration. This avoids non-converged values of stress and internal

variables from erroneously driving the constitutive equation.

3.3.3 Adaptive time step

When the constraint points on mesh gradually move, or the forces which are applied on

boundary points increase, each incremental step perfonns a Newton iteration. Owing to

the imprecision of linear approximation of the motion of constraint points and the

unreasonable time configuration (ten time steps in ten seconds), some intennediate steps

often go into an illegal configuration where some tetrahedral elements have reversed

orientation. The illegal configuration obstructs the assembly of the stiffness matrix. A

mechanism to ameliorate the situation is applied in our algorithm. During iteration, as

soon as an illegal configuration is detected, the time step size is automatically reduced to

half and the solution is cascaded into the next step. The detection mechanism of the

negative gradient corresponding to a reversed element is repeatedly executed in each

finite element assembling. As long as a reversed element appears, the time step size is

automatically reduced to half until the assembling procedure is finished or the number of

reduction reaches a specified value. We also apply another mechanism to accelerate the
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computation: the time step is doubled when the iteration solution does not encounter an

illegal element in three time steps or (a specified number of time steps).

Although the self-adaptive tinie step is applied to both the linear and nonlinear solver,

illegal elements are not observed in the linear solution owing to the linearity of gradient

assembly. It is only used in this case to improve the robustness of the nonlinear solver, to

improve convergence, and to get rid of the artificial influence of the configuration in the

control of the deformation path.

3.3.4 Selecting search direction and length

Nearly all solutions start with an initial guess and proceed in a given search direction in a

step by step manner. Finding the proper direction in the high-dimension search space is

critical for the algorithm's efficiency. Several different methods exist to determine the

best direction.

The maximum gradient descent method chooses the direction of the forces (i. e. the

negative of the residual for each step). This method is very slow because it takes many

steps for a local force to propagate through the entire mesh. Furthennore, it is impossible

for this method to predict rapid force changes caused by the deformation of soft tissue.

Conversely, the Newton-Raphson method uses the derivative of the forces (i. e. the

stiffness matrix), which provides information about how the forces vary as a function of

deformation. Each Newton step consists of the computation of the residual, computation

of the stiffness matrix, and solution of a linear system. The process continues until the

residual drops below a given tolerance. The method is adopted as a basic algorithm and

is associated with the line search method to improve the solution of nonlinear systems.

One must also define how far to go in a given search direction after computing the initial

value. If the function is smooth, and the initial value is close to the solution, a full step

towards the linear solution can safely be taken. However, the nonlinearity of the system

often causes the divergence at a full step and brings the mesh into illegal configuration.

Our nonlinear solution procedures iteratively search for the solution until some

convergence tolerance is satisfied. The solution procedure thus involves determining the
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two aspects of the search for the solution; the procedure must determine the "length" and

the "direction" of the update to the current best guess of the solution.

Our nonlinear procedure uses Newton algorithm with the linear search factor V^ to

detennine the length of the update vector. The maximum iteration number is also used to

control the searching number along the update direction.

During each iteration solution, two criteria are both adopted for assessing convergence
based on the norm of the residual forces. The first is an "absolute" tolerance while the

second is a "relative" tolerance. The "absolute" tolerance is an indication of "small" in

terms of the numerical precision displayed for a given calculation. Depending on the

platfonn, the various formulations used throughout a calculation, and details of the

implementation, the level of numerical "noise" in a calculation may limit how close to

zero the solution procedure is able to make the norm of the residual. The second

tolerance examines the "relative" error. This compares the norm of the residual at the

end of the iteration with the norm of the residual at the first iteration. The solution

procedure stops if either condition is satisfied.

In solving of nonlinear equations, divergence phenomena are universal, and their

frequency is determined by various factors, of which an important one is the time step.

Too large a time step leads to divergence, and too small a time step wastes too much

computing time. A mechanism of automatic adjustment of time or load increment is used

in the iterative solution procedure. A divergence limitation is set to determine if a time

step should increase or decrease in the iterative solution procedure. When the residual

exceeds the divergence limitation, which is set at 10, 000 in nonlinear iteration, the

solution is judged to have diverged, so, a half time step is taken before recomputing. The

time step will also be increased by two if the residual is always less than the divergence

limitation during the following five iterations. The algorithm is shown in the following
figure:
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Outer loop: Adaptive adjustment of time and load (increase or decrease

time step by factor 2)

Middle loop: Newton iteration, i = 0,1, 2, . .

Compute stiffness matrix K and residual R

lf\\R(u]\<£^OT\\R{u]\<£^
Terminate Newton iteration

AM = -K(u, )-I R(u^ ) : Linear system solution

unewton = ui + AM : Full NeWtOn Step

nner loop: line search, s = 1. ^ 1//. ..

lf\\R({l-^+su^\<\\R(u]\

"w =(l-s}u, +su^^
Tenninate line search

Figure 3.18: Algorithm of nonlinear system solver

3.3.5 Linear system solution

No matter what system (linear or nonlinear) is implemented, a linear equation must be

solved in the end. There are two kinds of linear system solvers (direct or iterative

methods) which have their own advantages and disadvantages. The direct LU

factorization with pivot solver has much higher precision than the iterative method at

each solution. But it needs much computing time to decompose the matrix into LU form

and solve the two triangular matrix equations. Because it is more accurate than iterative

method, it is applied to our linear finite element system.

In the nonlinear finite element system, we use the Newton iteration method, which

depends on the stable solution of the linear system, and the iterative method, which

solves the final linear system. In the linear system solution, the accuracy of the solution

is sacrificed in favor of speed. Since the degree of nonlinearity of the equation is high,
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the residual is not greatly reduced by a single Newton iteration. Consequently,

computing an exact solution for each linear system does not improve the convergence

rate of the Newton iteration. Given a large error tolerance, iterative linear system

solution methods converge more quickly than the direct method. For this reason, our

linear solver in Newton iteration uses an iterative linear system solver.

The linear systems constructed in our finite element method are symmetric, sparse, and

usually positive definite. Around a bifurcation point, however, the matrix of the system

is sometimes not only indefinite but also nearly singular. The (bi)conjugate gradient

method tends to behave in an erratic manner. An implementation of the generalized

minimum residual method (GMRES) with diagonal preconditioning (Seager 1988) is

both efficient and stable. The iteration is terminated when the residual has been reduced

to one thousandth of the absolute value of the first computed residual. This strategy

keeps the computation time for solving the linear system relatively low without slowing

down the convergence of the Newton iteration.

3.4 Mechanical properties of tissue

An integral human tmnk should consist of many materials with different properties

which express the behavior of different tissue. To avoid the complexity of division of

organs in mesh construction, and due to the unavailability of the mechanical properties

of many tissues, we simplify the tmnk model to three types of materials. Various

parameters of material properties are assigned to tetrahedral elements in order to

approximate the mechanical properties. The parameters are specified in the following
table.
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Table 3.2: IVIechanical properties of trunk model

Component name Young's modulus (MPa) Poisson's ratio

Vertebra and rib bone 5000 0.30

Ligament 7. 38 0.45

Soft tissue 0. 55 0. 30

3.5 Validation method

In our program, we have integrated many open source codes into our code to speed up

our program and reduce the development time. In the solution of the linear system of

linear finite element, we have used the spooles 2. 2 library to solve linear systems of

equations, including the direct factorization method with pivoting, which exhibits good
stability.

The NOX and LOCA-object-oriented nonlinear solver package is used to constmct the

solving method of the nonlinear system, including Newton's method with some different

linear search schemes. After linearization of the nonlinear system, the acquired matrix of

the linear system is not always positive definite, and it is sometimes even singular. We

used the iteration method of Generalized Minimum Residual method (GMRES) with

diagonal preconditioning in the Atzec (a massively parallel iterative solver library for

solving sparse linear systems) library to optimize the solution and improve the

robustness of convergence of nonlinear system, but the program is only run on a single
computer.

Finally, although we have obtained the simulated results in both linear and nonlinear

finite element systems, the validation of the algorithm was not investigated. To validate

our simulation, we carried out some experimental investigations to simulate the

defonnation of a real object. Some accurate and general aspects of finite element

modeling of deformable objects can be gathered by studying simple objects under the

impacts of predefined load.
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We adopted the defonnation case of a simple real beam, which is used to serve as the

basis for additional evaluation and qualification of ANSYS capabilities by ANSYS

incorporation. We can find the theoretical result and the result of ANSYS simulation

about the deformation in the ANSYS manual. Thus, we compared our simulated result

with the theoretical value, which only presents the maximal defonnation displacement.

We also used the ANSYS FEM commercial software to deform the object and compared

the result with our deformed result under the same loading. Since ANSYS does not

provide very good support for tetrahedral finite element with four vertices, we choose the

ANSYS SOLID5 element which is a 3D hexahedral element with eight nodes.

The beam is designed with length I, height h , and thickness t as shown in the following

figure and table. One of its ends is fixed to a wall and its other free end is loaded with an

axial force, an in-plane shear force and an out-of-plane shear force, all of magnitude F .

The problem is to determine the deflections s^, £y and e^ at the free end due to these

loads (ANSYS). A static deformation scheme is adopted in the three deformed models

because only the final stable status is necessary to compare the results.

The geometry of the beam is described in the table below and its mechanical properties

are considered as a linear material relevant to the ANSYS Solid5 element property. First

we generated its mesh using hexahedral finite elements with 8 nodes that also use the

linear interpolation function. Four vertices of the hexahedral finite element at the end of

the beam are fixed during deformation. The other four vertices are loaded with 1 pound

force separately along the X, Y and Z axes as the F's of following figure show. We

applied a static scheme with one step time to our algorithm, and to the ANSYS

algorithm, to respectively acquire their simulated results. Finally, we compared the
difference of the defonned hexahedral mesh between our simulation and ANSYS based

on maximum and average error distance.
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Figure 3. 19: Straight cantilever beam problem sketch

Material properties

£=10 xl06(psi)
y= 0.3

Table 3.3: Parameters of deformed beam

Geometric properties Loading

l=6{in)
/i - 0. 2 (m) F=1(Z6)
t=0. l(in)

3.5.1 Metric of error

To attain the quantitative error analysis, we computed some indices to present the

difference between two surfaces: S^^ (surface of the trunk after surgery) and S^

(deformed surface of the trunk using our model). The error evaluation is mainly based on

the Euclidean distance (mm) from all the points on a surface to the other surface and is

expressed in the following formulae:
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Mean distance :£_^ (s^, S^J= ̂ 1 'Zd(x_. S^)+ ̂ d(y^, S^
Hausdorff distance: E^ (s^, S,^ ) = max| max d(x, S ,^ ), max d{y, S^} \

Standard deviation: S

yes,

-'\2
fp^p+^,,n-l .

\. . 5:^-^)
+N_-1..

^

posop ' i" sim ix£S^,̂ uS^

In our project, we have computed the nearest distance from a discrete point set to a

polygonal surface, so we have used the maximum distance as metric instead of the

Hausdorff distance.
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CHAPTER: 4 SIMULATION RESULTS

4.1 Introduction

The aim of this chapter is to de cribe how to obtain an accurate simulation and to

demonstrate the advantage of the proposed algorithm as a computational method in a

setting reasonably close to what real data collection procedures will provide. In other

words, the simulation results are meant to give a glimpse of what our computational

method can offer, and to show that the final integrated model will enable the

constmction of accurate models of biological systems. At the same time, we have also

selected one set of real data to simulate a physical deformation in order to validate our

algorithm by comparing our results with results produced by ANSYS commercial FEM

software and theoretical values. We also estimate how close to real deformation our

algorithm and scheme are, on the real data set.

Some research on accurate values of mechanical parameters describing human tissue in

the biomechanical field has been done. We selected some relatively accurate values such

as Aubin s bone parameters, which have been confirmed as valid, to test and compare

the effects of real deformation. By comparison of parameters in several papers, we can
get some valid values.

In this section, we present the experimental results of soft tissue prediction within the

spinal surgery plan. The experiments are carried out on the basis of geometrical models

derived from a patient's radiographic data and her external surface, acquired before

surgery. These data are approximately divided mainly into three parts to represent

patient s vertebra, soft tissue and the ligaments between vertebrae, and are given

different mechanical properties (this classification is very rough in comparison with the

complex and delicate stmcture of the real human trunk). Since we have acquired the

same patient's postoperative external geometric 3D surface model from the InSpeck 3D

digitizer system, we concentrate our effort on the quantitative evaluation of the external

geometry of the simulation. Because our model is constmcted using different types of



85

material (linear elastic and hyperelastic) and different solution methods, we discuss them

in a separate section.

4.2 Validation of model

To acquire precise error evaluation, we adopt the same real bean model which has been

hexahedralized by ANSYS in the validation of our model with ANSYS software.

\.

Figure 4.1: Hexahedral mesh produced by ANSYS

The above figure shows a 3D hexahedral solid mesh with Solid5 element property in

ANSYS. We implemented the deformation on the mesh separately using our algorithm

and ANSYS with the same loading, including application of axial and shear forces on the

four nodes of the free end.
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Figure 4.2: Error distribution of undeformed model (a) Distance from our model to

ANSYS deformed surface, (b) Distance form ANSYS deformed surface to our

model

To accelerate the procedure of distance error computation and to avoid the complexity of

an analytic solution and time-consuming searching algorithm, we applied numeric

approximation, using the octree method to execute space searching and to approximate

the distance from a point to a plane. We also set certain tolerances to control the final

accuracy and computing time, which may cause some numerical error. After many

experiments, we selected a tolerance value and computed the distance error between our

undeformed mesh and the undeformed mesh used by ANSYS to confirm that the

tolerance does not c use any error. We measure the distance error between two

undeformed meshes, and we have shown their error distribution in the above figure. The

results show that the error is zero on both undeformed meshes, which means the initial

parameter setting has no inHuence on later deformed meshes.

4.2.1 Linear force application

We implemented three simulations based on the force application on the four nodes on

the free end with the four nodes fixed at other end during deformation. We respectively

applied different forces in each deformation, X-axis axial force, Y-axis and Z-axis shear
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forces, and we show the three simulation results. The static one step implicit integration

method is applied to obtain the final deformed beam. The error distance metric between

two deformed objects is evaluated on each surface and their error analysis and histogram

are shown in the following figure.
e&fane*
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Figure 4.3: Error distribution and its histogram of X-axis deHection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model
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Figure 4.4: Error distribution and its histogram of Y-axis deflection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model
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Figure 4.5: Error distribution and its histogram of Z-axis deflection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model



90

From the figure showing error distribution, we can conclude that the error is

concentrated on the free end, on which the forces are applied. We will compare the

quantitative error in the following section, to provide a reference to evaluate the accuracy

of our system.

4.2.2 Nonlinear force application

In the nonlinear FEM application, we applied the Saint Venant Kirchhoff finite element,

which is extension of linear FEM model for large displacement. In small displacement, it

should approach the simulation of linear FEM model. We evaluate its deformation under

the effect of external forces, which put 1 pound forces on the four nodes of the free end

of the beam with the four nodes of its other end fixed. After the static one step iteration,

we obtain the stable balance status and compute the error between our simulated

defomied model and the ANSYS linear defonned model. The following figures show the

error distribution on the surface of each deformed model and their histogram.
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Figure 4.6: Error distribution and its histogram of X-axis deflection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model
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Figure 4.7: Error distribution and its histogram of Y-axis deflection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model
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Figure 4.8: Error distribution and its histogram ofZ-axis deflection (a) Distance

from our model to ANSYS deformed surface, (b) Distance from ANSYS deformed

surface to our model

4.2.3 Conclusion

In the following tables, we present the simulated beam deflection separately along three

axes using our linear and nonlinear FEM, and ANSYS linear FEM. We compute some

statistical parameters to show the difference between them. In the third table, we also list

the maximal distance error between our simulation and theory. Ratio refers to the

simulation result divided by the theoretical result.
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Deflection, DeOection^

Point number

Maximum error (in)

Average error (in)

Ours

ANSYS

Ours

ANSYS

Ours

ANSYS

Total

Ours

Standard deviation (in) ANSYS

Total

Maximum

displacement (in)

Relative error: Average

en-or/maximum

displacement

3.0xl0-5

0.2311%

0.086

4.7674%

Deflection,

Table 4.1: Comparison of linear deflection simulation between ANSYS and our

model

Method

Parameters

204

204

1.4603x10' 0.0219 0.0133

4. 0741x10' 0. 0219 0.0133

6. 9327x10- 0. 0041 0. 0025

2. 3275xl0'y 0.0042 0. 0025

3.756x10' 0.0041 0.0025

7.2615x10" 0.0064 0.0038

5. 6367x10' 0.0064 0.0039

6. 1407x10" 0.0064 0.0038

0.4173

0.5991%
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Table 4.2: Comparison of nonlinear deflection simulation between ANSYS and our

model

ethod

Parameters

Point number

Maximum error (in)

Average error (in)

Standard

(in)

deviation

Maximum

displacement (in)

Relative error:

average

error/maximum

displacement

Ours

ANSYS

Ours

ANSYS

Ours

ANSYS

Total

Ours

ANSYS

Total

Deflectionx

204

204

1.4603x10-

4. 0741x10-

6.8602x10-

2. 3982x10"

3. 55x10'

7.2579x10-

5. 7019x10'

6. 1172x10-

3.0xl0-5

0.2287%

DeHectionv

0.0219

0.0220

0.0041

0.0042

0. 0041

0.0064

0.0064

0.0064

0.0859

4.773%

Deflection

0. 1872

0. 1894

0.0425

0.0430

0. 0427

0.0534

0. 0539

0.0536

0.2415

17. 598%
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Table 4.3: Comparison of maximal displacement of deflection simulation between

theory and our model

Theory

Linear algorithm

Ratio of linear

Nonlinear algorithm 2. 994x10

Ratio of nonlinear 0.9983

DeHectionx (in)

3.0x10'

2.9965x10-

0.9988

Deflectiony (in)

0. 108

0. 8593x10-

0. 7957

0. 8594x10-

0. 7957

Deflectionz (in)

0.432

0.41731

0.966

0. 24151

0. 5591

From the above tables, the error between the algorithm of our linear FEM and ANSYS is

small, and has the biggest 4. 7674% relative error difference in the y-axis deflection

simulation. In the comparison with theoretic maximal displacement, the ratio is only

0.79. But, in the simulation procedure, we find that when we increase the fineness of the

mesh, which means using smaller finite elements, the simulated value gradually
approaches the theoretic value.

In our nonlinear FEM comparison with ANSYS linear FEM, when the defonnation is

very small as in the case of x-axis and y-axis deHection, the simulation of our nonlinear

FEM is close to that of linear FEM. But in the z-axis deflection simulation, we found a

much bigger difference, the 17. 6% relative error with ANSYS and 0. 5591 ratios with

theoretic value of linear FEM. This is mainly because the z-axis deflection is a large

defonnation with 0. 417 inch displacement compared with its 0. 1 width. The results also

confirm that our nonlinear FEM algorithm is correct and its simulated result is within an

acceptable tolerance.

4.3 Patient's model

We have obtained the radiographs and the surfaces of a scoliotic patient's trunk before

and after the surgical correction of her spine. We used the model of her preoperative

tmnk to defonn and simulate her postoperative trunk. To evaluate our results, we
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compared our simulated result with her clinical data. In following section, we describe

the collected mesh data of the patient.

4.3.1 Patient's real surface after surgery

After patient's surgery, her external surface is directly acquired from the InSpeck

machine, which gives a triangulated surface; also, key points on her internal vertebrae

are acquired from her radiograph. To obtain an integral model whose internal and

external geometries are in accordance with a single co-ordinate system, we apply a

global rigid registration method to adjust the external surface as the following figure,

which will be used as a precise postoperative reference to compute the error of our

simulated results.

Figure 4.9: Rigid registration

4.3.2 Patient's 3D model before surgery

In order to validate our algorithm in real data, we apply it to a patient's dataset which has

been processed using some basic data rectification. Her internal rib cage and vertebra

from radiograph and external surface from the 3D digitizer camera InSpeck have been

registered, to form a whole human trunk. After tetrahedralizing the internal and external

surfaces, we acquire a solid 3D model of the patient's trunk as in the following figure.
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Figure 4. 10: Patient's 3D mesh model (a) Surface (b) Rib cage (c) Ligament

Although we have the patient's 3D mesh, there exist some shortcomings because of the

shortage of information on the structure of the integral tmnk, which is simply made of a

patient's surface, vertebra and rib cage. The blue color in the above figure shows the

patient's soft tissue and surface; the green is her vertebrae and rib cage, and the red is

some divided tissue corresponding to the ligament between vertebrae and rib cage.

According to anatomy, the ligament should be a kind of heterogeneous material in

different directions and its properties and stmcture are different in different positions.

Since the ligament data is unavailable from the deformed the rib cage model, and to

reduce the difficulty in meshing of accurately dividing the different ligaments in

different junctions, we separated a part of the area around the vertebrae as the ligament,

which is considered as homogeneous material, and assigned general material properties
to it.

A trade-off between the availability of data and the accuracy of trunk stmcture has been

made. The green part in above figure (a), which belongs to the rib cage, has broken

through the surface, which is not reasonable. The error mainly comes from four sources:

1. The collection of radiographic internal and surface data occurs at different times.

Because of that, the internal and external data are not completely consistent

although the patient tries to keep a fixed posture when the data are captured.

2. The influence of respiration: when the patient respires, her tmnk's internal organs

and the external surface all move. When we put the data into a whole trunk, their
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inconsistency causes the unconventional phenomenon that some bone is outside

the skin.

3. The accuracy of the registration method: the accuracy of the thin plate spline

registration, which is used to synthesize internal and external mesh, depends on

the accuracy, position and number of marks on surface, the position of the marks

is not very precise and their number is limited, so that the approximation method

introduces some error.

4. The approximation of the rib cage and vertebra: the patient's internal model is

created by defonmng a standard model of a normal human rib cage. The

reference points are placed on it, as the basis of defonnation, are introduced by

manual insertion of points on a radiograph. The procedures and approximation of

the internal organ causes the internal mesh not to match the patient's actual organ

accurately enough so that there is inconsistency between the internal and the

more precise external mesh.

We have two options to deal with this problem: cutting the rib outside the surface and

making the external surface closed, which holds the human anatomical structure and

loses some internal infonnation of the rib; or leaving the bone outside of the skin,

retaining all geometric information from acquired data. We choose the second scheme to

keep all data information although the mesh violates the conventional human anatomical

structure.

4.3.3 Mesh quality analysis

For the finite element method, the simplicial elements of the mesh should be well-shaped

to ensure accuracy and stability of the solution. Large angles reduce interpolation

accuracy. Small or large angles increase the condition number of the stiffness matrix.

Poorly conditioned elements slow down solvers and introduce large round-off errors. To

reduce the bad elements, a metric must be defined to evaluate the mesh quality. The
metric is defined as:
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Aspect ratio = r (radius of circumscribed sphere)/R (radius of inscribed sphere)x3. This

means that the minimum (and ideal) quality ratio is 1. 0 for regular tetrahedron, i. e. where

all sides are of equal length. Conversely, larger values indicate poorer mesh quality.

A traditional method based on histograms is used to address grid quality assessment. It

gives the mesh a statistical sense of cell quality throughout the entire domain. We apply

the color distribution on each tetrahedron to indicate the mesh volume and quality, and a
histogram to show their statistical character.

In the following figure, the tetrahedral volume of the meshed trunk model varies from

1x10 (mm )to 3. 5xl03(mm3) which is very unbalanced. Its histogram shows there is a

small quantity of tetrahedrons with large volume. The extreme unevenness of the

distribution should be reduced after some processing (merging and subdivision of

tetrahedron). Figure 4. 12 also shows the distribution of the aspect ratio which is mainly

concentrated in range (l~1. 8xl04). But a few tetrahedrons have a bad ratio (>

approximately 3x10 ) which indicates the tetrahedrons have a very thin and long shape.
They are mainly in the region where the trunk surface and the bone intersect and there

has been a poor match between surface triangulation of trunk and bone. Consequently,

we manually regulate the bad tetrahedra when they severely influence the progress of
equation solution.
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Figure 4.11: Distribution of mesh volume
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Figure 4. 12: Mesh quality analysis

4.4 Linear elastic model

In this section, we describe two types of deformation simulation based on linear elastic

model. The deformations move the boundary points on vertebral mesh through
displacing the points or applying forces on the points. We will present some statistical

data results and compare their effects.
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4.4. 1 Pure displacement

First, the deformation of the tmnk is computed stepwise with ten iterations and each time

step causes the deformation to advance one tenth of the whole distance. The total time

length is ten seconds and one iteration takes one second. When the dynamically

deformed model reaches stable status after more than ten seconds, we obtain the

following figures, which describe the distribution of stress on the patient's tmnk surface

and her vertebrae.
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Figure 4. 13: Distribution of principal stresses on surface
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Figure 4. 14: Distribution of principal stresses on vertebrae
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We present the three principal stress distributions which show patient's trunk and

vertebrae enduring great force to counteract the deformation caused by the surgical

vertebral correction. Because the inferior part of the patient's vertebra deforms very

seriously and the correction of vertebra is concentrated in the low part of spine, our result

shows that her lower vertebra deform greatly much and bears bigger stress.

4.4.2 Distance error analysis

To compare our simulation results in different implementation conditions and to provide

some quantitative analysis, we calculate the distance from each point on our simulated

tmnk surface to a reference model which derives from the same patient's postoperative

geometric model, and compute the distance from each point on the reference model to

the simulated trunk surface. Since the preoperative and postoperative models give only

part of the patient's tmnk, without head, ami and leg, and the omitted part is not the

same, we reduce them to a standard size by cutting the upper and lower part of trunk

using two horizontal planes and compute the error distance of points between the two

planes. In figure 4. 15 the front error distribution is shown and figure 4. 16 shows the back

error distribution. These distance errors are from the deformed to the reference model.
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Figure 4. 15: Distance distribution of the front error from deformed to reference

model
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Figure 4. 16: Distance distribution of back from the deformed to reference model

Error distance for ribs outside the trunk is omitted. In the above figure, we can observe

that there are still some rib bones outside the surface because of the drawback of the

initial mesh. During deformation, the connecting topological structure of the mesh does

not change and the final result still keeps the bone outside. Although they occur on the

external surface, they are excluded from the error distance statistics.

The error distribution figures show that the error distribution is not even. The error is

mainly concentrated on front upper chest and the biggest error occurs on the right

shoulder, where those values are up to 50 mm. From the patient's preoperative image, the

patient's surgery mainly deforms her middle and lower vertebra, and the right lumbar

part of the external surface has larger change after surgery

dbtancf
sa.t

Figure 4. 17: Distance distribution of error from reference to deformed model
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Figure 4. 17 shows the error distribution from the reference surface, i.e. the patient's

clinic data, to our simulation surface. It leads to a similar conclusion that the error

mainly concentrates on front upper chest and that most error occurs on the right

shoulder. But its maximal and average error distances are apparently less than the error

distances from our simulated surface to the reference surface, and the number of points

on the surface is much greater than our optimized surface and its resolution is very high

so as to represent patient's surface more accurately.

We also present the histogram of error in the following figures; the left figure (blue) is

the error distance distribution from the surface of simulated model to the surface of the

patient's postoperative model and the right figure (red) is in the opposite direction, so

that the error is computed from the patient's to our simulated surface. From the statistics

of the points on the histogram, we find the number of points on our simulated surface has

been reduced to 1460 and the points chosen to compute error distance on reference

surface are 51549.
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Figure 4. 18: Histogram of error distance (blue on surface of our simulation, red on

surface of reference)

4.5 Linear application of force

To execute the smoother defonnation procedure, we substitute the pure displacement on

each key point (102 points on the vertebra mesh) with the force boundary condition on

each point, which attracts each point to the destination position. We also define the ten

iterations to make the key points arrive at the final position; each step makes them
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approach one-tenth of the way along the path. After many iterations, we obtain the final

stable status, and the stresses on each point which counteract the effect from external

forces and form a dynamic balance. The following figures show the distribution of three

principal stresses on surface of tmnk and vertebrae. According to the stress distribution,

we can judge that the patient's lower trunk and internal lower vertebrae undergo the

much great pressure after surgery correction.

Since it is unlike the pure displacement application, the force boundary condition must

define the value of force at each key point. Because we use the spring force to move

these points toward the destination, the bigger the spring constant, the closer to

destination is to the final position of the moved point. But too large a force may drive the

system to an unstable situation in the numerical solution. After many trials, we assigned

the spring constant 1.0x10 (N/m) which makes the differential equation arrive at the

final stable solution in a reasonable number of time steps (about 10 steps). The following

two figures show the three principle stress distributions on the deformed surface and the

internal vertebrae of our simulated model.

Figure 4. 19: Distribution of principal stresses on surface
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Figure 4.20: Distribution of principal stresses on vertebrae

4.5.1 Distance error analysis

We also computed the error distance from the surface of our simulated model to the

standard clinic reconstmcted model, and the error distance from the standard model to

ours. Like the displacement, because the two models do not have the same size after the

head and legs are removed from the patient's model, to obtain the comparison on the

same part of tmnk, we also selected two positions above and below cutting planes to get

the same part of trunk between them and compute the surface error distance in two

directions. Figure 4. 21 presents the front error distribution from our simulated model to

patient's postoperative clinical data, and figure 4.22 shows the back error distribution,

where these distance errors are from the deformed to the reference model. Figure 4. 23

shows the distribution of distance on the reference model, from its surface to the surface

of our defonned model. The histogram of the distance error is also shown in figure 4. 24,

where the blue is the error distribution on the surface of our model, and the red is the

error distribution on the surface of the standard clinical model.
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Figure 4.21: Distance distribution affront error from deformed to reference model

Figure 4.22: Distance distribution of back from deformed to reference model
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Figure 4.23: Distance distribution of error from reference to deformed model
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Figure 4.24: Histogram of error distance (blue on surface of our simulation, red on

surface of reference)

4.5.2 Residual of spring distance

Unlike the displacement boundary, the key points on vertebrae on which the spring

forces are implemented do not move to specified positions. At the final balance status,

the position of the moved points must remain a certain distance from their ideal

positions, so that the external forces still remain in the end to keep the tmnk deformed.

Although increasing spring constants can reduce the tolerance distance, as we discussed

above, too large a spring force could cause instability, and require a smaller time step

and more computation time to reach equilibrium. We have used a spring constant as

large as 1.0xl07(N/m), and the final tolerance has been very small (see table below).
Some statistical analysis results are given in the following figure and table.
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Figure 4.25: Histogram of tolerance error

Table 4.4: Tolerance error at final balance

Point Maximum error Average error Standard

number (mm) (mm) deviation

Linear finite

element 102

pure displacement

0.2990 0.0562 0.0555

With 102 moved points, their final position is very little from the ideal position as the

table shows the maximal distance is 0.2999 (mm), the mean is 0.0562 (mm), and the

standard deviation 0.0555 (mm). Compared with the error of the simulated result of our

model which is about 10 (mm), their inHuence on deformed result can be ignored.

4.6 Non-linear application of force

When an object deforms beyond 10% of its volume, the accuracy of linear FEM

simulation declines with the increase of degree of defomiation. Also, when an object

rotates, it produces unnecessary deformation. However, the nonlinear FEM gives more

precise estimation at the cost of increased computation time, complexity of the

algorithm, and difficulty of convergence of the nonlinear equation solver. To improve

the accuracy of our simulation under great deformation of soft tissue, we implement an
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algorithm of nonlinear finite element and obtain some conclusions. Because the pure

displacement implementation for nonlinear finite element still produces divergence in

spite of the great reduction of the time step, we use instead spring force to slowly move

the key points.

As in the linear system, we solve the dynamic system by dividing total time (10 seconds)

into 10 time steps and each time step makes the key points undergo one tenth of the

deformation. After the deformation reaches stable status, we obtain the stress

distributions on the surface of the trunk and vertebrae, which are displayed in the

following figures, based on its three principal stresses. The stress distribution also shows

that the deformation forces are mainly concentrated on the lower part of the patient's

tmnk to correct her lower vertebrae, which had serious deformation before surgery.

Figure 4.26: Distribution of principal stresses on surface

Figure 4.27: Distribution of principal stresses on vertebrae
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We also assign a relatively big value 1.0x10 (N/m) to the spring constant to drive the

nonlinear finite element to final stable status. Unlike the linear situation, the convergence

of the equation of nonlinear finite element is very sensitive to the nonlinear parameter

settings, boundary conditions and different materials. Some finite element materials can

undergo deformation under more severe compression; for example, the Mooney-Rivlin

hyperelastic material can endure 200% deformation with a stable solution. We select the

Saint Venant-Kirchhoff hypoerelastic material which can accommodate nonlinear

deformation below 100%. After more than ten iterations, we attained the final stable

status.

4.6.1 Distance error analysis

To evaluate our deformed model, we again compute the distance error from our

simulated model to the clinic standard model and from clinic standard model to our

simulated model. As in the linear situation, we only evaluate the middle part of tmnk

between two cutting planes in order that the two models have a common surface to

compare. Figure 4. 28 shows the distribution of distance error on the front surface of the

patient's trunk, and figure 4. 29 shows the distribution of error on the back surface of her

tmnk.

We also draw the distance distribution (figure 4. 30) on the surface of the standard

clinical model which is based on the distance computation from its surface to the surface

of our deformed model.

The histogram of the distance error is also shown in figure 4.31 where the blue is the

error in the surface of our model and the red is the error distribution on the surface of the

standard clinic model.
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Figure 4.28: Distance distribution of front error from deformed to reference model

Figure 4.29: Distance distribution of back from deformed to reference model

^ »J

Figure 4.30: Distance distribution of error from reference to deformed model
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Figure 4.31: Histogram of error distance (blue on surface of our simulation, red on

surface of reference)

4.6.2 Residual of spring distance

We apply some spring forces on the key points on vertebrae until the model reaches a

balance status. Of course, when the forces are removed, the model will go back to the

undeformed situation. To maintain the deformed status, we keep the spring forces which

are determined by the distance between the coordinates of the points and specified points

defined as the ideal positions to which the key points should move. The gap distance can

be reduced with the increase of the spring constant, but at the final equilibrium status, the

springs always remain extened to keep the deformed tmnk. The lengths are shown in

figure 4. 32 and table 4. 5. From analysis of the statistical results, the maximal distance

between the 102 moved points and their postoperative positions is 0.263 (mm), mean

distance is 0.0514 (mm), and the standard deviation 0.0439 (mm). So the small distance

gap can be ignored compared with the error 10 (mm) of our simulated model.
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Table 4.5: Tolerance error at final balance

Maximum error Average error Standard
Point number

(mm) (mm) deviation

102 0. 2630 0.0514 0.0439
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CHAPTER : 5 DISCUSSION

As summarized in the following table, we used finite element methods with different

boundary conditions and different material types to acquire the final deformed surface

and compute some quantitative indexes to compare their effects. The Euclidean distance

metric was used to compute the distance error in two directions: one is from the

simulated surface (postoperative surface) to the reference surface (postoperative standard

model) and the other is from the reference surface to the simulated surface. Their

maximum and average error and standard deviation are also listed in table.



117

Table 5.1: Analysis of simulation of three FEM

Method

Parameter

Point number

Maximum

error

Average

error

Standard

deviation

Simulation

Reference

Simulation

(mm)

Reference

(mm)

Simulation

(mm)

Reference

(mm)

Total (mm)

Simulation

(mm)

Reference

(mm)

Total (mm)

Linear finite

element

pure

displacement

1460

48080

45.6589

50.7616

11.6171

10. 2195

10.2607

9. 1513

7. 8796

7. 9235

Linear finite Non-linear finite

element element

force application force application

1460

48076

45.6632

50.7633

11.6174

10.2203

10.2615

9. 1519

7. 8805

7. 9243

1450

46972

47.3865

52. 5780

11. 8449

10.2661

10.3134

9.6047

8. 2029

8.2526

From the above analysis we conclude that the linear elasticity based finite element

method with pure displacement achieves the best simulation result, where the average

distance error is only 10.2607 (mm) after averaging the distance error in two directions.

Next is linear finite element force application. The order from best to worst is linear

finite element pure displacement, linear finite element force application, and non-linear

finite element force application.
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The two linear methods show very little difference and their average error index have a

maximum error difference of only 0.002 (mm). Since the linear finite element method

with force application has the distance tolerance of springs between the key points at the

final equilibrium status and the posteroperative extended landmark position to keep the

deformed model, this leads to a slightly bigger error.

The distance error of nonlinear FEM is also very near to linear FEM, and the difference

range of the average error is within 0.05 (mm). In this simulation, the nonlinear FEM

does not produce as good a result as we expect. This is mainly because the patient's

tmnk after surgery does not undergo large rotation or deformation so that the advantage

of nonlinear finite element does not appear.

To quantify the effect of our simulation, we computed the difference between the pre and

post operative surfaces of trunk. Their maximum distance is 143. 738 (mm) and the

average distance is 40. 7889 (mm). The ratio of the maximal distance error of our best

linear pure displacement is 35. 315% and the ratio of average distance error is 25. 156%.

This shows that our simulation approaches the postoperative external surface and may,

with some improvements, accurately predict postoperative appearance.

The following table lists the initial configuration of our deformable model and the

computation time of different finite element methods. The nonlinear model uses almost

twice time as much as the linear model under the same configuration. Most of the time is

consumed by the force and stiffness matrix computations because the stiffness matrix

must be recomputed at each time step in nonlinear model.
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Method

Parameter

Computation time(1. 4 G

Table 5.2: Computation analysis

Linear model
Liner model with Nonlinear model

with spring
pure displacement * ~ with spring force

force

CPU 512M Mem)

Rib cage

Iteration time

Ih lOmin

20,689
Number of and SPine
tetrahedron Soft tissue 86,557

Ligament 16, 895

Number of nodes

Simulation time (sec)

22, 336

10

10

Ih 20min 2h 32min

Based on our experiments, we clearly must discuss the following problems. First, the

quality of the mesh we used for experiments is not good enough; for example, some of

its tetrahedrons have a very thin and long shape, and the tetrahedrons vary very greatly in

size and shape. This variation directly affects our result, and even makes the stiffness

matrix ill-conditioned when some tetrahedrons have zero volume. In large defonnations,

some tetrahedrons will change into zero or negative volume (according to the right-hand

sign definition of volume), which makes the gradient computation in tetrahedron

impossible and prevents the assembly of the stiffness matrix, even though we reduce the

integration time step.

We have shown that our proposed algorithm and constmcted models are suitable and

robust in simulating the deformation of anatomical models. On the other hand, we are

now constmcting a more accurate model which can describe the human trunk with more
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internal tissues, by using volume mesh. However, accurate simulation in the sense that

one can confidently control the numerical error compared to real subjects, is quite

difficult at this point. The difficulty is not only due to the problems in computational

methods, but also (and more importantly) due to the premature state of the art of

biomechanics: there are great difficulties in building mathematical models of real

biological tissues. First of all, the material models (constitutive laws) of tissues are not

yet established. Even if it could be assumed that a simple constitutive law can be applied,

there is no equipment or method that can measure heterogeneous in vivo material

properties of tissues.

At present, there exist no accurate mechanical parameters in the biomedical field to

describe the mechanical properties of human tissue because the behavior of human tissue

is different in different situations, such as tissue in vivo or ex vivo. Another difficulty is

that different people, even different parts of the trunk of the same person, also have

different properties. Since applying the same parameters on the whole trunk is not

reasonable, more research in the biomedical field is needed to find a set of relatively

good parameters to reach a more realistic deformable model. We at least need three types

of parameters, one for tissue, one for ligament and one for bone (whose linear parameters

can be obtained from Aubin [Aub95]). Finally, although some values of general

parameters can be attained from medical measurement, they are not completely adapted

to our application so that some discrepancy appears between our deformable model and

the real deformed skeleton of the patient.

Generally, a smooth surface is better than a polygonal surface because it looks more

realistic on computer screens and can be easily detected by human visual systems. But

the smoothness of the surface does not help the physics simulation. Many mechanical

parts have mathematically-defined smooth curved surfaces. Some of the surfaces of

internal organs (like the liver) certainly look smooth. Although initial object boundaries

in the reference configuration are smooth, the domain of the PDE and the shape of the

finite element mesh do not always match. The PDE can be integrated within curved

boundaries by adjusting the weights and positions of quadrature points. However, such
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decoupling may make the meshing process more difficult. On the other hand, the

smoothness requirement of shape functions is directly related to the order of the PDE.

The linear bases for tetrahedral elements are sufficient for the PDEs used for our

defonnable object where the PDE is only second order. Of course, the continuity must be

increased as the order of the PDE increases. By using shape functions with a broader

basis, the continuity of the defonnation function can be achieved. However, a broader

basis results in denser stiffness matrices. Consider a trilinear hexahedral element. The

size of the stiffness matrix is23x23. If a tricubic B-Spline is used, the size jumps

to 4 x4 , and the latter is computationally impractical. The area-integration smoothing

technique is preferable when high curvature surfaces are treated and normal smoothing

techniques may be more efficient. Ultimately, the differential equations decide how

smooth the surface should be.

Second, an accurate mesh representation of human trunk with different tissues is still not

available; our mesh does not accurately represent the body's anatomical structure. When

we created the mesh based on medical images, we just segmented the vertebrae, the ribs,

and all the rest of the body, which is represented by soft tissue. This is unrealistic and

results in inaccuracy in the experimental results.

Third, the purpose of our finite element simulation program is to demonstrate the

usefulness of our algorithm to predict the defonnation of external surface of human

tmnk. Thus, the error estimate is essential to the evaluation of the system. The numerical

errors contained in the computed results come from several factors. An important one

comes from the discretization procedure. All physical phenomena are described in the

fonn of partial differential equations (PDEs) and discretization CFEM in our project)

converts the PDEs into algebraic equations. When the final solution of the nonlinear

equation is found, putting the solution back into the original PDEs, one would find that

the solution does not satisfy the PDEs. They would have non-zero values (residual errors

measured as volumetric forces). The residual error does not vanish even if the nonlinear

solver finds an exact solution for the algebraic equations since the algebraic equations

are different from the original PDE. A residual error (force) implies that the solution also
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contains an error (measured as position). This error in the solution is introduced by

discretization; hence it is called the discretization error. The discretization error is mainly

introduced by the shape and size of each element. The polynomial orders of shape

functions can also adjust the error. But it is hard to estimate the discretization error

before computation (a priori error estimation). Most methods estimate the error from

residual error (a posteriori error estimation) (Babuska 1984).

Sparse matrices reduce the need for memory and some iterative methods speed up the

solution of the equations. Since the matrices are very large, general matrix methods do

not fit our requirements. In particular, matnx inversion is very slow or impossible on

such a large matrix. But because the use of an implicit integration method generates

large unhanded sparse linear systems, we can solve these systems through a conjugate

gradient (CG) or generalized Minimum Residual Method (GMRES) iterative method.

GMRES methods exploit sparsity quite easily, since they are based solely on matrix-

vector multiplies, and require only rudimentary sparse storage techniques.
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CHAPTER : 6 CONCLUSION AND FUTURE WORK

6. 1 Conclusion

This project was a simulation of postoperative body deformation of scoliotic patients.

We applied the finite element method to achieve the simulation. After constructing a

dynamic differential equation to describe the deformation procedure, trying different

methods to solve the nonlinear algebraic equations and different values of material

properties, we obtained the expected results. We first constmcted the deformable trunk

stmcture which consists of three types of tissues with different material properties.

Second, we have designed two types of boundary conditions based on preoperative and

postoperative anatomical landmarks on vertebrae which are measured from a scoliotic

patient's X-rays. Third, we have implemented the dynamic deformation of linear and

nonlinear elastic models and quantitatively compared their simulated results with the

patient's postoperative clinical data.

We devoted a great part of our work to the development of deformable models allowing

the representation of the human trunk, on which a variety of defonnation drivers were

applied. We select the scoliotic patient's trunk model, which can be made of a variety of

shape elements such as tetrahedra with different degrees of freedom, to implement the

deformation test. To simplify and decrease the computation time, our model consisted of

simplicial tetrahedron volumes with degrees of freedom consisting of 4 nodes. The

model allows the results to be more quickly obtained and rendered, because computation

in each tetrahedron is reduced to one Gauss quadrature point.

We have constructed the dynamic model from the static model. After we have acquired

the static relationship between the vertices of each finite element, and the internal and

external forces exerted on it, we add two items (acceleration and velocity) and two

parameters (material mass and damping) into the static equation so as to acquire a

dynamic equation to simulate the successive motion of defonnation, modeled by an

ordinary differential equation of order 2.
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There are two types of methods to solve the ordinary differential equation: explicit and

implicit methods. We have implemented the explicit and implicit methods on linear and

nonlinear models with an adaptive time step adjustment. The results of the explicit

method show a dynamic sequence which exhibits the successive deformation of soft

tissue under the external forces. In the linear and nonlinear models, we have also

observed that if we assign a very small value to parameters which express the stiffness of

material i.e. very soft material, the deformation is very fast. In contrast, in experiments,

the deformation seems slow when very rigid material parameters are applied. To use a

larger time step, we resort to implicit methods to accelerate the solution of the

differential equation.

We have applied the Newmark implicit integration method to the linear finite element

model. It guarantees the stability of the linear system unconditionally by controlling the

range of parameter values. Meanwhile, we can also control the deformation speed by

assigning Newmark integration's parameters different values. The experimental results

have shown that the implicit integration is more stable and accurate because the same ten

time iterations give the implicit method a longer deformation process than the explicit

method.

We have evaluated the error of defonnation between the simulated result of our

deformable model and a realistic postoperative tmnk, and selected suitable physical

parameters (Young's modulus and Poisson's Ratio) according to the comparative error.

Finally we succeeded in developing a stable solver that combines various numerical

techniques such as Newton iteration, adaptive incremental loading, two-point predictor,

and line search. However, to handle the nonlinear Saint Venant-Kirchhoff material with

high rigidity, the simulation must be carried out as a full dynamic simulation to avoid

bifurcation and indefinite stiffness matrix problems.

6.2 Future work

In the future, we should try to improve the quality of our mesh and use some dynainic

algorithms to prevent occurrence of bad tetrahedra, thus increasing the robustness of the
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FEM. In the experiments, we only used the simplicial finite element (tetrahedron with

four nodes). Although it can approximate any geometric shape accurately and with low

computation time, its stability during the solution of the dynamic equation is relatively

lower than other geometric forms. In the future, we may try other finite element forms

such as the hexahedron. Our tetrahedron element has C continuity which means the

interpolation function or shape function is a polynomial of order 1. To improve the

continuity, the tetrahedron element with ten nodes or thirty degrees of freedom can be

implemented, which requires that each finite element consist of ten nodes. This will

change the mesh stmctures. A mixture of different finite element stmctures, such as a

mixture of hexahedron and tetrahedron, is also a research direction which may improve

stability and accuracy of the nonlinear equation.

To build a high-fidelity mathematical model of the subject, we should also consider the

incompressibility of biological tissue, because biological tissues contain 60-70% water,

which is nearly incompressible. Therefore, an accurate material model should exhibit

incompressibility. While the fluids are incompressible, the underlying protein networks

are compressible. The use of biphasic constitutive laws is a possible way to simulate

both incompressible and compressible phases (Mow 1980, Donzelli 1995).

The parameters we used for material properties were derived from the extrapolation of

cadaveric data, and therefore they are different from those of living tissues. In research

on properties of human organs, in vivo measurement is preferred and can produce more

accurate parameters. Its development will help us to obtain better results. Besides, if the

human anatomical stmcture includes sliding contacts between different tissues, frictional

properties on interfaces should also be estimated by the method and be taken into

consideration in model constmction.

Dynamic error estimation as an index to evaluate the biomechanical simulation system is

a very important research direction. It is the basis and premise for a finite element

method involving a dynamic self-adaptive mesh, which might reduce computation and

improve accuracy. The technology of the error estimates can be used to indicate if the

error has exceeded the threshold and if the finite element mesh should be adjusted
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(Zienkiewicz 2000). At present, at least three aspects of the mesh can be adjusted. If the

element sizes are adjusted, the method is called h-adaptive ("h" is usually the choice of

symbol for the step size i.e., element size. With an h-adaptive method, the FEM analysis

can be started with a coarse mesh, and, according to the a posteriori error distribution,

the mesh can be locally refined until a sufficient accuracy is achieved. If polynomial

order is adjusted, it is called p-adaptive. And finally, if the position of an element is

moved (relocated), it is called r-adaptive. The dynamic mesh adjustment with error

estimate can potentially relax the convergence criteria in solving the equation. In our

simulation, our present mesh has been fixed so that it cannot adjust in a way compatible

with local accuracy, but the adaptive method is very valuable to reduce computation time

and improve accuracy. In our future model, the h-adaptive method can be considered as

research direction to enhance the adaptability of our model because it can easily control

the local mesh quality.

The balance of accuracy and speed needs to be considered in the mesh construction. The

most decisive factor for computation time is the complexity of the problem. Fast

simulations can be achieved by simplifying (hence reducing the fidelity of) the

simulation models. The time complexity of FEM computation is roughly linear relative

to the number of elements. The simplest way to reduce the computation time is to use

fewer elements. So reduction of unnecessary elements at a specified accuracy is helpful

to quickly simulate deformation. As mentioned above, mesh refinement and coarsening

locally is very effective in reducing the number of elements (Hirota G. 2002).

The combination of linear and nonlinear finite elements can reduce computation time

and the complexity of mesh structure. Although human tissues exhibit nonlinear and

inelastic behavior, we can implement the material properties only in a local region and

some simple linear and elastic models in the rest of the model so as to reduce the

computation time and complexity of assembly of FEM.

Since the nonlinear FEM consumes too much time and memory, the parallelization of

computation is a good choice to achieve better results. In the processing of finite

elements, most of the computation is local to each finite element. For example, force and
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stiffness matrix computations can be performed for a small collection of elements

making it possible to use parallel algorithms. The final assembly of forces and matrices

can be done by a parallel summation algorithm. Thus, parallelization can be

implemented to improve execution speed.
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APPENDIX A:

Implicit iterative algorithm

FORMULATION OF DYNAMIC EQUATION

In 1959 Newmark presented a family of single-step integration methods for the solution

of structural dynamic problems for blast and seismic loading. During the past 40 years

Newmark's method has been applied to the dynamic analysis of many practical

engineering sti-uctures. In addition, it has been modified and improved by many other

researchers (Wilson).

In general, there is no closed-form solution to the system of differential equations (A. l).

We have to solve it approximately by numerically integrating along the time dimension.

Namely, given all information up to the current time step ̂ , we have to solve the

following system for time step t ^ repeatedly:

Mu"+l + CM"+I + K(un+l)= FD +1 
(A. l)

(Zienkiewicz 2000a, p. 513). F"+l is the external force exerted on object. In our case, it

will mainly be produced by the external spring force.

Note that at time?^;, the information at all the previous time-stepsfg, - . -, ^, is considered

as known. Namely u',u' and ii' are known for i=0, ---n.

In the following, we apply the popular Newmark algorithm to the dynamic system to

solve our linear and nonlinear equation. The Newmark recurrence scheme is one single-

step integration method. Namely it only uses the known values at time t to solve (A. l),

while ignoring the history before t^i- The Newmark recurrence scheme is as follows:

un+l =un+^tnu+]-(l-^t2iin+]-/3/lt2un+l
2V' '"/"' " ' 1r~' " (A. 2)

u"+l =un+{l-7}Atiit +y^tun+l

(Zienkiewicz 2000a, p. 515), where ̂  and y are values between (0, 1). For convenience,

we represent this system as:

R(u'l+')=0 (A. 3)
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Note that when/? ̂ 0, (A. 3) is a nonlinear system of M"+I because it appears in the

nonlinear term K[u ). This leads to an implicit algorithm, such that at each time step,

we have to solve a nonlinear system ofM"+l.

Solving a nonlinear system requires a Newton iteration type of algorithm. Namely, at

3^
each iteration, we have to compute the differential matrix

3u n+1
and then solve a

different linear system at each iteration. Although we can avoid the cost of inverting a

differential matrix at each iteration by applying an iterative solver, such as a conjugate

gradient solver, the cost of computing the differential matrix alone at each iteration is

computationally intractable. We usually have to go through multiple iterations at each

time step t^. Therefore, an implicit integration algorithm makes simulation much slower

for a FEM mesh of even moderate size. When y8 = 0, the unknown u"+ does not appear

in the nonlinear termK[u"+l). This makes (A. 3) a linear system ofii . In particular, we

choose the central difference method with y = ^- This leads to the following equalities:

Un+^U"+UnAt+^UnAt2
2

un+l =u"+^(un+ult+l)^t (A. 4)

Mun+l =Fn+l-Cu"+l-K(u"+l)
Now we have converted the nonlinear system to three linear systems. Note that the first

two equations are simple algebraic expressions, which are computationally cheap to

evaluate.

In general the mass matrix M is a sparse matrix, but not diagonal. Therefore the third

equation requires solving a large sparse linear system. Furthermore, the time step /St^ is,

in general, not a constant, therefore it is impossible to preprocess the system by

computing the inverse (or the LU decomposition) of this large sparse matrix. We

approximate the distributed mass with concentrated masses by lumping the mass matrix

(Zienkiewicz 2000a, Reddy 1993): each row vector in the mass matrix is replaced by a
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single value on the diagonal entry, which is equal to the sum of all the values in the

corresponding row vector. At first glance, this approximation may look unacceptable.

Actually it is mathematically equivalent to a special type of numerical volume

integration algorithm for linear element: nodal Gauss quadrature. Numerical volume

integration basically means sampling the value of the integrand at one or multiple points

within the integration volume and then approximating the volume integration with a

weighted sum of the sampled values. Given a linear finite element, if we sample exactly

at the nodes of the element, (Zienkiewicz 2000b) shows that the mass matrix is

automatically a diagonal matrix. Furthermore such a diagonal matnx is identical to the

one obtained by lumping the original mass matrix. Hence the diagonal approximation of

the mass matrix is simply an approximation with a low order numerical integration.

Intuitively we can also consider this diagonal mass matrix as approximating the mass

with concentrated point mass at the nodal points of mesh. The original non-diagonal

mass matrix is also an approximation of the inertia property of the continuum, including

the total mass and moment of inertia. However this approximation still treats the mass as

if it is distributed. The diagonalization process is equivalent to approximating the mass

continuum as concentrated masses at each nodal point of the mesh. By doing this, we

basically convert the distributed mass to a particle system.

As for any implicit integration algorithm, stability is always a concern. The time

integration algorithm is unconditionally stable for2y5 > y > y^,. For other combinations

the algonthm may be conditionally stable or unconditionally unstable. The

combination fi = ^, y = ^,, known as the trapezoidal rule, leads to a second order

accuracy and to a maximum dissipation of the higher energy items in time, and

unconditionally stable modes. According to (Reddy 1993), for the zero damping

1
Newmark's method is conditionally stable if y> y^,, ft< y^ and At <

&>" rA-P

So the central difference recurrence scheme is conditionally stable when the time step

satisfies the following:
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Zff<- (A. 5)
&>"

where co^^ is the maximum natural frequency of the dynamic system (A. l).

In the dynamic case the linearization follows the time domain discretization. The usual

procedure expresses the displacements at the present time t+/It as a function of the

displacements u, velocities and accelerations at the time t , leading to a Newmark- y3

time integration scheme. Finally, we obtain a balance equation:

K(u't+l)du=Fn+lext-F(un+l]Ilt (A. 6)
Solving the equation implies calculation of the gradient stiffness matrix K at each

iteration. This method is called full Newton-Raphson. This is very expensive in the finite

element analysis and therefore a modified procedure is usually used. One way is to use

the gradient matrix from the first time step. This method is called the initial stress

method and it usually leads to more iterations as the solution advances over time. To

accelerate convergence, we use a Newton-Raphson with line search algorithm in each

iteration as described below.

Newton-Raphson algorithm

After discretizing the continuous time system using the Newmark method, we obtain a

nonlinear multidimensional equation. The Newton-Raphson method is considered as the

most robust and this locally efficient solver is applied to the solution of the final

nonlinear algebraic equation. The method makes explicit use of the derivative of the

function for which we wish to find the zero. If we suppose we know more local

information about f(u), such as that used in developing a Taylor expansion of the

function about the point/(i<o), we can often find the zeroes more quickly. Suppose we

have reason to believe that there is a zero of f(u) near the point Kg . The Taylor

expansion for f{u) about Up can be written as:

/(")=/k)+//k)("-"o)+r^o)("-"o)2+- (A 7)
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Let us drop the temis of this expansion beyond the first order term, and write:

/(")-/("o)+//("o)("-"o) (A-8)

After we set f(u}=0to find the next approximation, Mp to the zero of f{u), we can

apply U^=UQ- ^/ \ as an iteration scheme to converge on the final zero solution.
<uo

/

/(")
tangent

line

solution

Figure A. l: Schematic representation of the Newton-Raphson method showing the

iteration from the initial guess UQ to the next approximation u^ to the zero of the

function f[u)

The Newton-Raphson method is illustrated graphically here for a simple monotonic

function/(u). The iteration from Kg, an initial guess for the zero of/(u), involves

drawing the tangent to f(u) from the point (MO, /(M())) until it intersects the / = 0 axis.

The point of intersection is the next approximate value u,. The process is repeated until

the change in the intersection point is smaller than the requested tolerance or precision,

i.e. until |/(u; )| < f for some specified tolerance e. The convergence of the method could
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be invalid if an initial guess for Kg was too close to any point with /= 0, in which case

the initial step from Uy to M; is quite large, possibly far away from the zero of interest in

the application. To improve the Newton Raphson method's convergence ability, we

apply a linear search method to compute the optimal solution in each Newton iteration.

We optimize the objective along a given \me: opt{f{u+s/^u): s>0}, where M is a

previous displacement point and 5 is a non-negative scalar, and u is the tangent

direction vector of the point. A tolerance, and maximal search times, could be used to

control the times of line search.

Tn the line search algorithm initially the displacements are updated with

<-«:+1+.A< (A. 9)

(Zienkiewicz 200b p. 30). where s is a parameter between 0 and 1 that is determined

iteratively by a line search procedure. Convergence is checked by observing

displacement parameter changes or the energy norm.

|AM;|^^, K"+l||<£,, 7?"+l=(F"+l)CT'-(F'l+l)int(M"+l) where s, and e, are the
tolerances for the displacement change and energy norm respectively. Convergence can

also be determined by comparison of relative residual norms ||7?," || < f||^"+l |

(Zienkiewicz 200b p.30). If convergence is not attained, the displacements are updated

by u^ = M,"+ + ^Au, " and the iterations continue. When the solution diverges or

convergence is not achieved after a number of iterations, the tangent stiffness matrix K

is revised using the current estimated geometry and the equilibrium iterations continue.

To update the stiffness matrix, any of four methods can be adopted:

. Broyden's first method

. Davidon

. Davidon-Fletcher-Powell

. Broyden-Fletoher-Goldfarb-Shano (BFGS).

According to (Hallquist 1987) these methods involving a line search are slightly more

expensive in tenns of the computation but lead to more stable progress. Details of these
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methods can be found in (Luenberger 1984). For our purpose, we will use the BFGS

method because of large number of unknowns and limited memory.

One of the advantages of using this algorithm is that the determinant of the global

stiffness matrix K and the change in the condition number of ̂  can be easily computed

in order to control the updates, especially in the situations when ^becomes nearly

singular and the condition number very large (Matthies 1979). All the methods

mentioned earlier for solving the nonlinear equations are in fact algorithms for

minimization for convex problems (Luenberger 1984). In our situation, the potential

energy of deformation is the function which needs to be minimized in order to find the

solution. As long as the potential energy of deformation remains strictly convex, all

those methods will converge. The methods will fail when the energy is no longer a

convex function. In this case, a different approach is needed and the problem is still open

(Gao 1995, 1996, 1997 and 2000). For example, a particular case is the situation when

the energy becomes semi-positive definite, which is the buckling situation. However, for

this particular case there are some algorithms that permit us to pass over this limit point,

but only for some stmctures that can exhibit either a snap-through or a snap-back

phenomenon.
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