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Abstract  

This article studies the impact of collaboration and co-inventorship network 

characteristics of Canadian nanotechnology inventors on the quality of their inventions. 

We investigate the impact of four types of variables on patent quality, using the number 

of claims as a proxy for quality: (a) the presence of highly central inventors; (b) the 

presence of star inventors; (c) repeated collaboration; (d) international collaboration. We 

show that the presence of more central inventors and of stars in the research team has a 

positive influence on patent quality, while repeated collaboration has a negative impact. 

Patents owned by foreign organisations, controlling for whether assignees are firm, yields 

patents of higher quality. 
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1. Introduction 

As an alternative to the three classical locations where innovation takes place (which are 

non-profit institutions, profit-seeking firms and the minds of individual inventors), Allen (1983) 

introduced the concept of collective invention. The key to understanding a phenomenon of 

collective invention is in the exchange and free circulation of knowledge and information within 

groups of socially connected (but often competing) agents rather than in the inventive efforts of 

particular firms or individuals. The open sharing of information thus results in a fast knowledge 

accumulation, high invention rates and possibly higher value innovations. A large number of 

historical examples are documented in the literature: for instance, the wide informal knowledge 

trading between engineers in competing minimill firms in the US steel industry (von Hippel, 

1987; Schrader, 1991), and the knowledge sharing in a cluster of wireless communication firms 

in Denmark (Dahl and Pedersen, 2004), but the most commonly cited example is the open 

knowledge sharing culture in Silicon Valley (Saxenian, 1994). 

The concept of collective invention is convenient for describing the dynamics of knowledge 

sharing through various innovation networks. The network of innovators is an interpersonal 

network of individuals, who collaborate and exchange information to produce innovations and 

scientific knowledge. These inventors and scientists work in universities, research centers or 

industrial R&D departments. There is usually no formal agreement among the researchers; 

however, they frequently take part in the development of a patent or the creation of a scientific 

article. Social network analysis is increasingly used to analyze the way these innovators are 

interconnected. Within the research community which investigates the innovation networks it is 

widely presumed that two innovators, who have worked together on at least one patent or one 

scientific article, will keep in touch afterwards in order to exchange information or to share some 

knowledge assets (Agrawal et al., 2006). The patent documents and bibliometric data can thus be 

exploited to map the complex web of social ties among innovators, to measure the extent of 

collaboration behaviour and to construct representations of innovation networks. 

This paper is a part of a project aimed at understanding the influence of collaboration and of 

networks on innovation creation and on the quality of innovation in Canadian nanotechnology, 

measured by patents. While networks are an important indicator of the „insertion of inventors into 
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the broader social structure of relationships‟1, the importance, form and localisation of the 

relationships are also relevant. This work investigates the impact of four types of variables on 

patent quality: (a) network centrality of an inventor of the team in the Canadian co-inventorship 

network; (b) the presence of star inventors within the patent team; (c) repeated collaboration 

between team members; (d) international collaboration. Different network structures and 

characteristics have different impacts on knowledge sharing between individuals and their 

organisations, thereby greatly influencing innovation creation. The evolution of the network 

structure and of the collaboration patterns of inventors has an impact on innovation quality. We 

show that patents generated by inventors that are more widely connected and more central (and 

hence potentially have access to a larger pool of knowledge) but have collaborated less 

repeatedly in the past, produce inventions of greater quality. In addition, the presence of star 

inventors in the research team has a positive influence on patent quality. We also suggest that 

patents owned by foreign organisations, controlling for whether assignees are firms, yields 

patents of higher quality. 

The article is organised as follows. Section 2 describes the theoretical framework underlying 

the study. Section 3 introduces the data and the methodology used in the analysis that follows. 

Section 4 presents the evolution of the four indicators of collaborative patterns. Section 5 

presents the statistical analysis aiming to identify the factors that explain patent quality. Finally, 

section 6 concludes.  

2. Theoretical framework 

Sociologists have been using social network analysis to study the behaviour of individuals 

for a great number of years (see for instance Granovetter, 1973; Burt, 1987, 1992). Following in 

their footsteps, Breschi and Lissoni (2004 and 2005) and later Balconi et al. (2004) constructed 

the network of collaborative relationships linking Italian inventors using data on patent co-

inventorship from the European Patent Office (EPO). The links between individuals have 

however been modelled in the literature in a number of different ways. Cantner and Graf (2006) 

proposed to build the networks of innovators based on technological overlap, which is a measure 

                                                 
1 We are grateful to the editors for this turn of phrase. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 4 

of closeness of the technological field of two scientists. They also described the evolution of the 

innovator network of the town of Jena in Germany using information on scientific mobility. 

Singh (2005) inferred collaborative links among individuals using a social proximity graph, 

which he also constructed from patent collaboration data. Other researchers, Fleming et al. 

(2007) for instance, adopted the co-inventorship of patents as an appropriate device to derive 

maps of social relationships between inventors and to build their networks. In this study, we 

adopt the co-inventorship of patents as links between inventors to create the network of ties 

between these individuals. 

Nevertheless, there is a number of limitations regarding the use of patents. Based on 

interviews with inventors, Fleming et al. (2007) warned that patent co-inventorship links differ 

significantly in their strength and information transfer capacity. In addition, since their decay 

rates vary greatly, a substantial number of old ties remain viable even if the relation does not 

exist anymore. Moreover, measuring collaboration using solely patent co-inventorship links may 

admittedly omit a number of relationships between inventors that chose to only patent a 

proportion of their inventions (Sorenson et al., 2006) while protecting the remainder of their 

intellectual property with other more appropriate means (Levin et al., 1987; Klevorick et al., 

1995). However, according to McNiven (2007), 88% of the intellectual property instruments used 

by Canadian nanotechnology companies are reported to be patents or pending patents. An 

important limitation of patent information is its inability to infer the interaction mechanisms and 

processes between inventors or the quality of these interactions (Murray, 2002). Finally, another 

shortcoming of the patent use for the study on innovation is the fact that inventor affiliation 

information does not generally appear in patent documents and its identification thus requires a 

second source of information. 

While the majority of the inventors named on industrial patents are probably employees of 

the assignee, there is an increasingly important phenomenon of academic patenting that should 

not be neglected. In fact, the characteristics of the network structures differ depending on whether 

they contain purely industrial or also academic researchers. A wide literature on the so-called 

„academic‟ patents exists (see the survey of Foray and Lissoni, 2010 for instance). Balconi et al. 

(2004) observe that academic inventors that enter the industrial research network are, on average, 

more central than non-academic inventors - they exchange information with more people, across 
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more organizations, and therefore play a key role in connecting individuals and network 

components. Academics also have a tendency to work within larger teams and for a larger 

number of applicants than non-academic inventors. Although we have not yet identified the 

academic inventors in our database, we suspect that in a relatively new field such as 

nanotechnology, the proximity to science (Meyer, 2000) implies that academics have a non 

negligible contribution to patenting. The network structure should therefore resemble that of 

Balconi et al. (2004). 

Numerous authors have used patent „quality‟ measures as a proxy for patent „value‟ (whether 

technological or economical) to study what influences the importance of a patent using a number 

of indicators such as citations (Trajtenberg, 1990), patent family size (Lanjouw et al., 1998), 

patent renewal decisions (Wang et al., 2010), the number of claims (Lanjouw and Schankerman, 

2004) or complex combinations of the above (Bonaccorsi and Thoma, 2007). The findings from 

the aforementioned research studies nevertheless reveal some interesting properties of the 

innovation networks. Wang et al. (2010) for instance use a network of patent citations to show 

that a high brokerage (intermediary position measured by betweenness centrality) has a negative 

impact on the patent renewal decision in the early stage of a patent‟s life and a non significant 

impact in the mature stage. When citations are used as a proxy for patent quality, the impact of 

brokerage has a positive effect on patent quality. Different patent quality measures are thus 

influenced differently by various indicators. Considering these impacts of centrality measures, we 

hypothesise that a better network position of inventors has a positive impact on patent quality: 

H1 An inventor in a more central position contributes to patents of a higher quality. 

Cohen and Levinthal (1990) suggested that it may be necessary not only to invest in basic 

research inside the firms, but also to hire the best possible research personnel, which they call 

“star scientists”. Supporting this argument, Zucker et al. (1998b) show that rates of firm founding 

and of new product introduction are related to the connections of the companies to “star” 

university scientists. Zucker et al. (1998a) also confirm that the number of products in 

development and on the market are positively influenced by collaborative research (evidenced by 

coauthored publications) with star scientists. The authors further show that 50% of stars affiliated 

with firms have patented discoveries versus only 15.6% of the non affiliated university stars. The 
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patenting of discoveries by stars is an indication of expected commercial value of their 

discoveries. Extending the concept of star scientist to star inventor, we hypothesise that: 

H2 The presence of a star inventor and a larger number of star inventors in the patent team 

enhances patent quality. 

Newman (2001) showed that the probability of a pair of scientists collaborating increases 

with the number of other collaborators they have in common, and that the probability of a 

particular scientist acquiring new collaborators increases with the number of his or her past 

collaborators. Former collaborations are also found to be determinant of the future success. 

Repeated collaborations with the same partner foster mutual trust and confidence. A higher 

frequency of collaboration between two inventors hence leads to a more profound research 

relationship, which may involve an exchange of information of higher quality and a transmission 

of a greater amount of valuable scientific knowledge, which should result in greater 

innovativeness. Cowan et al. (2005) claimed that previous collaborations increase the probability 

of a successful collaboration and Fleming et al. (2007) argued that an inventor‟s past 

collaboration network will strongly influence subsequent productivity. Not only should repetitive 

collaborations have a positive impact on the company‟s innovative production, it should also 

have an impact on the scope of patents. With repetitive collaboration, however, interactions 

between individuals may become more of a routine, rendering stepping off the beaten track more 

difficult as time goes by (Cattani and Ferriani, 2008), forcing a certain cognitive alignment 

(Baum and Ingram, 2002). While there is a wide literature on repeated collaboration and trust-

building (see for instance Gulati, 1995; Kogut, 1989), very few authors address the impact of 

repeated collaboration on patent quality or patent value. Because of the routinisation of 

collaboration that it implies, we thus hypothesise that repeated collaboration has a negative 

impact on patent quality and that it overcomes the potential benefits from acquiring new 

collaborators (and hence to potentially have access to new knowledge). 

H3 The presence pairs of inventors that have repeatedly worked together in the patent team 

decreases patent quality. 

Other researchers who adopted the network approach have also included geographical 

aspects into their models. Gittelman (2007) argued that the geography of the research 
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collaborations has distinct impacts on the firms‟ scientific contribution and their inventive 

productivity. The work of the collocated research teams results in scientifically more valuable 

knowledge, whereas the more dispersed research groups are more likely to produce commercially 

valuable technologies. While it is not the scope of the paper to tackle the interaction between 

geographical proximity and social proximity, Gittelman‟s argument suggests that foreign owned 

patents, which imply a more dispersed research team, would tend to generate more commercially 

valuable technologies emanating from patents with possibly a greater number of claims. We 

therefore propose the following hypothesis: 

H4 Foreign ownership of a patent increases patent quality. 

3. Data and methodology 

3.1 Data 

In order to build the network of Canadian nanotechnology inventors we used the patent co-

inventorship data contained in the Nanobank database. Nanobank is a public digital library 

comprising data on nanotechnology articles, patents and federal grants, as well as firms engaged 

in using nanotechnology commercially. As such, it is a very unique and comprehensive dataset. 

The Nanobank patent database is based on data extracted from the United States Patents and 

Trademarks Office (USPTO) database. This is the only patent database which provides the 

geographical location of the address of each inventor (unlike the Canadian Intellectual Property 

Office database (CIPO) or the European Patent Office (EPO)). The use of the USPTO database 

instead of the CIPO for the analysis of the Canadian nanotechnology may have caused a certain 

bias in the data, but we consider it minimal, since Canadian inventors usually patent both in 

Canada and in the US. The much larger and easily accessible nanotechnology American market 

offers them a greater potential than the nanotechnology market in Canada. 

From the Nanobank database we have selected the patents in which at least one inventor 

resides in Canada (5067 patents), which we define as Canadian nanotechnology patents, 

regardless of the assignee‟s location. We have employed additional filters2 using the keyword 

                                                 
2 The resulting nanotechnology patent database therefore includes the patents that have both been identified in 
Nanobank and by using the keywords used by Porter et al. (2008). 
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search strategy of Porter et al. (2008), which enabled us to select only the patents which are 

strictly related to nanotechnology and created a Canadian nanotechnology patent database which 

comprises 1443 patents from 1979 to 2005. Because we use the intersection of two datasets that 

were built using two different methodologies and keyword strategies, we are confident that we 

truly measure nanotechnology patents in Canada. The concept of social network analysis defined 

above was used to identify the connections between all the nanotechnology inventors of these 

patents and to construct representations of the networks. The use of the social network analysis 

program PAJEK was instrumental in building these representations of innovation networks and in 

analyzing their architectures. The analysis of these collaborative networks enables us to 

understand the co-inventorship characteristics of the inventors in Canadian nanotechnology 

clusters.  

We have created 11 subnetworks corresponding to five-year moving windows starting from 

1989 and finishing in 2004 (as shown in Figure 1) in order to track the evolution of the 

collaboration and network properties over time. Constructing the network for each year 

separately would alter the connectivity of the networks. Using only the patents granted in a given 

year would not capture the relationships created before and maintained through this particular 

year. We chose to work with the subnetworks created during an interval of five years as we 

assume that relationships between any co-inventors who appeared together on one USPTO patent 

lasts 5 years on average during which information and scientific knowledge can be actively 

exchanged. Five-year moving windows thus more accurately reflect the evolutionary structure of 

a collaboration network. As Canadian nanotechnology patenting in the period prior to 1989 is 

rather sporadic, our sample starts with the first year where at least 20 Canadian nanotechnology 

patents were issued. In addition, we did not include the year 2005 as it is only partially covered 

by Nanobank. Furthermore, we also removed from the sample the patents which do not have an 

assignee yet. As a consequence, our sample consists of 1218 patents, to which 1794 inventors 

have contributed.  

We analyze the cooperation relationships existing in each of these five-year intervals. Figure 

1 shows the size of each of the eleven subnetworks corresponding to the five-year intervals. The 

size is determined by the number of inventors (vertices) which are present in the subnetwork. 

Some of the inventors are included in all of the subnetworks (if they worked on several patents 
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spread throughout the years), some of them just in the few initial ones after which their 

nanotechnology scientific interest faded away, and some have started contributing to 

nanotechnology research only recently. The figure also includes the number of patents which 

were used for building the particular subnetwork of each time interval. The number of patents has 

increased faster (15.62% per year) than the number of inventors (15.29% per year) hence 

suggesting that the sector benefits from a critical mass of inventive individuals. 

 

Figure 1: Number of inventors and patents used in each subnetwork 

3.2 Model 

In this article we use the number of claims as an indicator of a patent quality. Patent claims 

are a series of numbered expressions describing the invention in technical terms and defining the 

extent of the protection conferred by a patent (the legal scope of the patent). A high number of 

patent claims is an indication that an innovation is broader and has a greater potential 

profitability. It has been frequently suggested and empirically demonstrated (see for example 

Tong and Frame, 1994) that the number of claims is significantly and consistently indicative of 

higher value patents. The conclusions of most of the papers on patent value reviewed by van 

Zeebroeck and van Pottelsberghe de la Potterie (2011, in press) are supportive of the positive 

association of the number of claims with patent value. Lanjouw and Schankerman (2004) have 

suggested that specifically in the biotechnology field, the number of claims is the most important 

indicator of patent quality. However, there are some shortcomings related to the use of claims as 
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 10 

a patent quality indicator as well. According to Lanjouw and Schankerman (2001), the number of 

claims also depends on the technology field (drugs and health, chemical, and electronic 

inventions have more claims per patent, while patents protecting mechanical and other types of 

inventions have fewer claims), the ownership types (in each field the US-owned patents have on 

average a higher number of claims than foreign-owned ones, while Japanese-owned patents have 

on average the lowest number of claims) and on the time (the mean number of claims per patent 

has increased over time). 

In our analysis, the number of claims is used as a proxy for the patent quality, and hence as a 

measure of the success of the innovation process. Because the dependent variable is a count 

measure, we use the pooled cross-section3 data to estimate the number of claims of each patent. A 

Poisson regression is generally appropriate for this purpose (Hausman et al., 1984): 

Pr Y  y  exp x 
 x 
y!









  

The particularity of this model resides in the fact that both the probability of a given number 

of events, Pr(Y = y), and the variance of the number of events is equal to the (x). The Poisson 

process therefore makes a strong assumption that the variance is equal to the mean, which implies 

that there is no overdispersion (when the variance exceeds the mean) in the sample. In general, 

the negative binomial is generally employed to correct for this overdispersion which causes for 

the standard errors to be underestimated, and hence for significance of the coefficients to be 

overestimated. The negative binomial formulation usually takes the form: 

  exp x   

where , the error term follows a Gamma distribution. The specification of the 

overdispersion is therefore: 

Var Y  E Y  1E Y   
                                                 
3 We have omitted the subscript t from the equations because only 328 organisations have more than one patent. We 
are thus analysing the data as a cross-section rather than as a panel, but accounting for possible time effects with year 
dummy variables. 
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Because the claims of each individual patent are considered in this analysis, a firm that has 

been granted a patent will appear more than once in the database. To account for the non 

independence of the observations generated by this formulation, our model allows for intragroup 

correlation, each corresponding to an individual firm. Using the cluster option of the nbreg 

procedure of Stata 10 allows the observations to be independent between groups, but not 

necessarily within groups. We are aware that a number of inventors may have worked for various 

organisations, which would hence compromise our assumption of independence across groups. 

This phenomenon is however relatively infrequent throughout the database. 

In contrast to the stable augmentation observed for the number of inventors and the number 

of patents, Figure 2 shows that the average number of claims has declined during the first half of 

the sample and steadily increased in the second half of the sample.  

 

Figure 2: Average number of claims per patent in each subnetwork 

3.3 Explanatory variables 

The independent variables used in the negative binomial regressions to explain the number of 

claims of a patent are described below. A number of variables are used to test each hypothesis. 

The variables are presented in the order of the hypotheses that they contribute to validating. 

The first hypothesis takes into consideration the collaborator‟s collaborators, their 

collaborators, and so on. Here we first adopt a network approach in which a structure of the entire 
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net of complex relationships is analyzed and characterized. There are two main indicators of 

centrality which can be measured in disconnected networks: degree centrality and betweenness 

centrality. Degree centrality of an inventor in a co-patenting network is based on the number of 

co-inventors with whom this inventor has collaborated. Inventors with higher values of degree 

centrality are found in more central positions in the subnetwork. They are directly connected to 

more inventors and thus have more potential sources of scientific knowledge at their disposal and 

better opportunities to spread information further. This makes them important for the 

transmission of information through the network. These inventors are highly important for a firm 

because of their numerous direct connections and thus their ability to potentially shape the 

company‟s economic outcome. We thus expect this variable to have a positive effect on patent 

quality (H1). Degree centrality however does not always correlate with the power and influence 

an inventor might have over the network. This is better measured by betweenness centrality. 

Betweenness centrality of a vertex is defined as the proportion of all shortest distances 

between pairs of other vertices in the network that include this vertex (de Nooy et al., 2004). An 

inventor is more central if a large proportion of the shortest paths between pairs of other 

inventors in the subnetwork have to „go through him‟. In other words, if one person at one end of 

the network wanted to „send‟ a message to another person in another part of the network, the 

shortest path would be the one which involves the smallest number of intermediaries to „transmit‟ 

the message. The individuals often found on these shortest paths have higher values of 

betweenness centrality. Betweenness centrality is therefore based on the inventor‟s importance to 

other inventors as an intermediary and it measures his „control‟ over the interactions between 

other inventors and thus over the flow of knowledge in the subnetwork. As such, an important 

intermediary should have a positive influence on patent quality (H1). An inventor with many 

direct connections (high degree centrality) might not be very powerful as an intermediary (not 

very high betweenness centrality) and in terms of access to information he might be in fact 

dependent on others.  

For the first two measures of individual centrality within the network, we calculate the 

average value over the team contributing to each patent, as well as the maximum value 

corresponding to the individual that is the most central. The first indicator measures the degree 

centrality of an inventor (AveDegcent and MaxDegcent), i.e. the number of direct connections of 
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that inventor, while the second measure characterises the degree to which an inventor acts as an 

intermediary for the network (AveBtwcent and MaxBtwcent). Four different indicators will 

therefore contribute to the testing of the first hypothesis (H1). 

The most central inventors are not necessarily the most prolific inventors. Most inventive 

output in nanotechnology is produced by a small proportion of the most prolific inventors. These 

highly productive scientists are generally called “star scientists” and their important role has been 

much discussed in the literature. In this paper, we define these prominent researchers in our 

dataset based on patent quantity only. We thus extend the concept of star scientist to star 

inventor. To test the second hypothesis (H2), we use two types of indicators corresponding to 

four variables. The first counts the number of patents per inventor and takes the average over the 

patent team (AvePatperinv) and the maximum value among these inventors (MaxPatperinv). This 

simple indicator allows the identification of star inventors, those individuals that have contributed 

to 20 or more patents. Having identified the stars, we measure the number of star inventors 

(NbStar) involved in the patent production and include a dummy variable to identify whether the 

patent team involves at least one star inventor (dStar). In order not to exacerbate the bias 

attributed to the fact that in the beginning of the sample, inventors may already be star inventors, 

we sum the patents of each inventor since 1979, and not 1989. Otherwise, experienced inventors 

who retired in the early 1980s would not appear as star inventors. That said, there are two ways to 

consider the „quality‟ of inventors. The first consists in counting the number of patents to which 

each inventor has contributed up to the year of the patent examined („experience measure‟). The 

road to stardom hence becomes gradual for these career-prolific inventors. The second focuses on 

the intrinsic potential capacity of the inventor and considers that if an inventor eventually 

becomes a star it is because he or she is an extraordinary individual to start with. We therefore 

count the total number of patents of this individual, regardless of the patent granting date, to 

identify the stars („career measure‟). Unfortunately, as we cannot foresee the future, inventors 

who started their career towards the end of the sample will never qualify for stardom in this case. 

While for the former, experience would be the key ingredient to increasing patent quality, for the 

latter, innovation potential is the most important aspect. Having run the regressions with both 

types of quality measures, we found that despite its flaws, the latter measure has the most 

influence on the number of claims of a patent. These are the results presented in this paper. 
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An important aspect of the research aims to identify whether repeated collaboration (H3) 

contributes to increasing the quality of patents. We construct a variable that counts the number of 

prior co-invention occurrences between any two inventors (PriorColl). We then calculate the 

maximum number of these occurrences associated with each inventor of each patent team 

(MaxPriorColl) as well as the average across the research team (AvePriorColl). Two indicators 

are thus used to validate the third hypothesis (H3). Our first analysis showed a negative impact of 

more frequently repeated collaboration. A further investigation revealed that there was a wide 

gap between patents owned by firms and patents owned by other institutions. To take these 

differences into account, we introduce an interactive dummy variable, dFirm, to modulate the 

number of prior collaborations between any two inventors of the team. This dummy variable 

takes the value 1 if the patent assignee is a firm and 0 otherwise. 

Finally, to account for the foreign ownership of patents (H4), we include a dummy variable 

that takes the value 1 if the patent assignee is foreign and the value 0 otherwise (Canadian), 

dForeign. Because a number of foreign assignees are firms, the dummy variable described in the 

previous paragraph also plays the role of a control variable to that effect. We have investigated 

whether the patent team involved foreign inventors as well as the proportion of these foreign 

inventors in the team, but none of these measures were significant in the regressions.  

The descriptive statistics of these variables are presented in appendix. Because these 

variables vary considerably during the 15 years of our sample, the next section present the 

evolution of the main indicators that will be used in the regressions. As a consequence, year 

dummy variables are also added to the regression to take into consideration all other aspects of 

the indicators‟ evolution that are not explained by the other independent variables. 

4. Descriptive statistics on the evolution of collaborative patterns 

Although our data does not permit the use of standard panel data analyses, which would take 

into consideration the evolution of the characteristics, time is nevertheless important in the 

regression analysis that follows. As such, simple descriptive statistics (Table 2) are not explicit 

enough to get a feel of the data. In this section we thus present the four sets of indicators which 

characterize the nanotechnology collaborative relationships corresponding to each of the four 

hypotheses presented above. While the first hypothesis relates to the position of an individual in 
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the network, the last three hypotheses require the disassembling of the entire network into 

collaborating pairs to describe the nature and frequency of collaborative activities between these 

innovating couples. Let us consider each family of variables in turn. 

4.1 Inventor centrality position (H1) 

Before turning to the centrality measures, let us examine collaboration in general. The 

average size of collaboration teams, as represented here by the average number of co-inventors in 

one patent, has gradually increased from less than 2.8 to well over 3.4 co-inventors per patent 

(Figure 3). For the entire period examined, there is on average 3.34 inventors per patent. This 

implies that Canadian inventors have increased their tendency to collaborate more intensively and 

to share information with a greater number of researchers than in the past. This may also 

represent the increasingly complex nature of nanotechnology projects requiring larger teams. 

 

Figure 3: Average number of co-inventors in a patent per five-year period 

An important advantage of the network approach consists in the fact that indicators derived 

from it take into consideration all the network relationships and not only the immediate 

collaborators or collaborations. The yearly average measure of betweenness centrality presented 

in the graph below (Figure 4) is normalised, while the yearly average measure of degree 

centrality is not. In the regressions, we will use the normalised values for both indicators. A non 
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normalised measure of degree centrality is easier to relate to as it simply represent the average 

number of direct collaborators of an individual within the network during a 5-year period. 

Both measures of centrality have a fairly clear decreasing tendency from 1992 onwards. One 

possible explanation resides in an increasing specialisation of nanotechnology: a few highly 

central inventors are slowly disappearing and more inventors in less central positions within 

numerous nanotechnology specializations emerge. These inventors may play a very important 

role within their specialization and may exert a great control over the local specialized 

subnetwork. For instance, they would be the first to be aware of any new development in the 

field. In general, the number of intermediaries is increasing, implying a greater redundancy in 

terms of access to knowledge. 

  

Figure 4: Indicators of average degree centrality and betweenness centrality (normalised and X 10 000) in 
each subnetwork 

4.2 Star inventors (H2) 

Even though the number of star inventors has been steadily rising, their share in the total 

number of inventors has decreased substantially (from about 6% to almost 1%). The share of 

patents which were created in collaboration with star inventors (see Figure 5) rises initially (from 

30% to almost 36%) but then starts its downward trend and reaches almost 22% in the most 

recent years. As the nanotechnology fields develops, the importance of star inventors diminishes. 

This is in part due to the fact that we cannot measure the number of patents that early career 
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inventors of the latter part of the sample will produce in the future. This is a limitation of our 

study. We have no means of identifying these potential future star-inventors. 

 

Figure 5: Share of patents created in collaboration with at least one star inventor 

4.3 Repeated collaboration (H3) 

Figure 6 shows both the number of collaborative links (pairs) existing in each interval as well 

as the total number of all collaborations which took place between all of these pairs. The fact that 

the number of the collaborations increases faster than the number of collaborating pairs is 

indicative of an increased intensity of cooperation activity throughout the years. In other words, 

repeated collaboration is becoming more frequent in Canadian nanotechnology. 

Around 34% of all the collaborative relations between pairs of inventors in period examined 

involve repetitive collaborations. In some cases the collaborative relationships proved to be very 

fruitful, as the most frequent collaboration between a pair of inventors was repeated 50 times 

(i.e., the collaborating pair are named inventors on 50 patents together). The highest number of 

patents filed together by the same inventors during any five-year period is 35. Most of the 

relationships between a pair of inventors are, however, one time collaborations (resulting in only 

1 patent). Figure 7 shows the share of the repetitive collaborations out of the total number of 

collaborations starting at around 15%, then steadily increasing in time and reaching 35% of all 

collaborations in recent years.  
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Figure 6: Number of collaborating pairs and collaborations per five-year period 

 

Figure 7: Proportion of repeated collaborations with the same partners per five-year period 

4.4 International collaboration (H4) 

Finally, we have located the addresses of all inventors in the database to identify the 

proportion of this collaboration that occurs across frontiers. International research relationships 

represent relatively high shares of collaborative activities (20%-30%). The overall collaboration 

pattern has changed slightly over time, the two most important developments being the gradual 
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decrease in the frequency of the international joint research partnerships in the first half of the 

sample followed by an increasing internationalization in the latest years (see Figure 8). The 

evolution of the proportion of foreign collaboration is surprisingly similar to that of the number 

of claims per patent presented above in Figure 2. This strong similitude, on average would tend to 

support Gittleman‟s (2006) argument according to which dispersed research groups produce more 

commercially valuable technologies, potentially with a greater number of claims. Unfortunately, 

this relation never materialised in the regressions4. 

 

Figure 8: Proportion of the collaborations that involve foreign inventors 

Not only do Canadian inventors collaborate with foreign inventors, but also a large 

proportion of the patents are owned by foreign entities, although the trend is decreasing and a 

larger proportion of the intellectual property remains in Canada (see Figure 9). The V-shaped 

curve of international collaboration is thus not observed in terms of foreign ownership of patents. 

                                                 
4 In our regression analyses, we have tested both whether patent teams were composed of Canadian and foreign 
inventors and whether assignees were foreign to measure the importance of international collaboration on patent 
quality. Although the former is more representative of the geographical spread of teams, the variable was never 
significant in the regressions, while the latter was significant. As a consequence, only the results with the significant 
foreign ownership dummy variable will be presented. 
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Figure 9: Proportion of patents owned by firms, foreign organisations and foreign firms 

5. Results 

In general, the regression results (see Table 1) confirm most of our hypotheses with a few 

notable exceptions. Whether we consider the average degree centrality of inventors of the patent 

team, or the degree centrality of the most central inventor of the team, both measures have a 

positive influence on the number of claims of the patent to which they have contributed. The first 

hypothesis (H1) is thus validated. The same cannot be said for the intermediary position 

(betweenness centrality) of individual inventors. While the average measure is not significant, the 

maximum value is positive and significant. It would thus appear that what influences most the 

value of a patent is to have at least one good „intermediary‟, whose betweenness centrality is 

high. Because the average value is not significant, we suggest that too much redundancy, caused 

by a large number of „intermediaries‟ in the team „through which‟ knowledge potentially flows, 

does not influence patent value. 

To follow on the measure of inventor quality, we find that the fact that a team has 

contributed to more patents (AvePatperinv) on average does not influence patent value. Using the 

maximum number of patents per inventor only yields a weakly significant positive impact. In 

contrast, the fact that within the team there is at least one star inventor and the more stars there 

are both have a positive influence on the number of claims associated with a patent, hence 

validate the second hypothesis (H2). It is not so much the number of patents that counts but the 
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potential for a large contribution to patenting that influences patent value. Star inventors thus 

have an impact. 

Turning now to repeated collaborations, we find that in general, the more any two inventors 

have collaborated in the past (whether the maximum or the average value is used), the less the 

patent to which they have also contributed is likely to present more claims, i.e. the coefficient of 

MaxPriorColl is negative5. Our third hypothesis (H3) is thus validated. To test whether this is 

true for patents owned by firms, we include an interactive dummy variable (MaxPriorColl x 

dFirm) in the regression to account for prior collaboration only when assignee organisations are 

firms. Including such an interactive term in the regression implies that the resulting coefficient of 

the variable relating to prior collaboration for the firms is the sum of the coefficients of 

MaxPriorColl and of MaxPriorColl x dFirm. Because the sum of the coefficients remain 

negative, we can say that controlling for the type of assignee, prior co-invention has a lesser 

negative effect for firms. One of the most plausible explanations for this result is that repeated co-

invention limits the opportunities of a team to tap into new knowledge, hence reducing the 

potential value of the resulting innovation, hence supporting the intuition of Cattani and Ferriani 

(2008) on the co-participation in movie production. New knowledge is accessible from inventors 

to which the team members are connected (measured by the centrality indicators) and by new 

team members. Although the sum of the coefficients of AvePriorColl and of AvePriorColl x 

dFirm (the results of which are presented in the appendix) yields a slightly larger negative value 

than that of MaxPriorColl and of MaxPriorColl x dFirm, because the mean AvePriorColl is 55% 

of the mean value of MaxPriorColl, the overall contribution (the mean value multiplied by the 

sum of the coefficients) to patent quality is less negative. This suggests that new team members 

to the firm (who contribute to reducing the overall mean of the variable) probably bring fresh 

knowledge to the team, but not enough to change the overall sign of the joint coefficient. 

                                                 
5 The results with the mean number of prior collaborations (AvePriorColl) across the research team are presented in 
appendix. 
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Table 1: Regression results 

  (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  

H1 

AveDegcent 0.0101 ***               
 (0.0032)                
MaxDegcent   0.0074 ***             
   (0.0014)              
AveBtwcent     0.0082            
     (0.0063)            
MaxBtwcent       0.0077 ***         
       (0.0026)          

H2 

AvePatperinv         0.0022        
         (0.0022)        
MaxPatperinv           0.0031 *     
           (0.0016)      
NbStar             0.0969 ***   
             (0.0290)    
dStar               0.2196 *** 
               (0.0638)  

H3 

MaxPriorColl -0.0358 *** -0.0362 *** -0.0313 *** -0.0323 *** -0.0335 *** -0.0368 *** -0.0424 *** -0.0434 *** 
 (0.0112)  (0.0112)  (0.0110)  (0.0112)  (0.0113)  (0.0112)  (0.0110)  (0.0111)  
MaxPriorColl x dFirm 0.0279 ** 0.0293 ** 0.0275 ** 0.0259 ** 0.0296 *** 0.0297 *** 0.0346 *** 0.0369 *** 
 (0.0121)  (0.0121)  (0.0118)  (0.0120)  (0.0115)  (0.0116)  (0.0113)  (0.0118)  

H4 dForeign 0.1302 ** 0.1053 * 0.2183 *** 0.1797 *** 0.2280 *** 0.1946 *** 0.1864 *** 0.1713 ** 
 (0.0617)  (0.0587)  (0.0694)  (0.0594)  (0.0750)  (0.0713)  (0.0681)  (0.0712)  

 dFirm 0.1454 ** 0.1345 ** 0.1732 *** 0.1689 *** 0.1687 *** 0.1576 ** 0.1534 ** 0.1442 ** 
  (0.0624)  (0.0630)  (0.0621)  (0.0612)  (0.0644)  (0.0637)  (0.0624)  (0.0629)  
 Constant 2.6950 *** 2.7096 *** 2.7144 *** 2.7212 *** 2.7156 *** 2.7174 *** 2.7508 *** 2.7580 *** 
  (0.1614)  (0.1644)  (0.1563)  (0.1567)  (0.1582)  (0.1583)  (0.1641)  (0.1713)  
                  
 Year dummies yes  yes  yes  yes  yes  yes  yes  yes  
                  
 ln(alpha) -1.1862 *** -1.1950 *** -1.1706 *** -1.1814 *** -1.1681 *** -1.1738 *** -1.1844 *** -1.1843 *** 
  (0.1681)  (0.1755)  (0.1660)  (0.1701)  (0.1677)  (0.1669)  (0.1729)  (0.1746)  
                  
 Clusters 328  328  328  328  328  328  328  328  
 N 1218  1218  1218  1218  1218  1218  1218  1218  
 Mean Wald chi2(20) 258.32  294.22  173.18  206.16  183.26  219.60  204.69  199.46  
 Log pseudolikelihood -4803.41 *** -4798.75 *** -4811.92 *** -4806.00 *** -4813.40 *** -4810.21 *** -4804.41 *** -4804.53 *** 
Note: ***, **, * represent significance at the 1%, 5% and 10% levels respectively. 
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Finally, our results also support Gittelman‟s (2007) assertion that foreign collaboration 

fosters more commercially valuable innovation. Our fourth hypothesis (H4) is thus also validated. 

Year dummy variables were included in all the regressions but are mostly non significant with 

the exception of the four most recent years where they have a positive and significant effect. 

6. Conclusions 

The purpose of this work was to study the influence of various collaboration indicators 

between inventors on the quality of the invention output. Four sets of indicators were introduced 

to track the changes of the Canadian nanotechnology collaboration patterns during the period of 

1989-2004 using five-year moving-average windows: inventor centrality within the collaboration 

network, star-inventorship, repeatedness of collaboration, and international collaboration. These 

indicators reveal important evolutionary changes of the collaborative environment in Canadian 

nanotechnology.  

We study two properties of the position of inventors within the nanotechnology collaboration 

network: degree and betweenness centrality. As time progresses, we observe that on average, 

individuals occupy less central positions (average degree centrality and betweenness centrality 

are both decreasing). This is probably a consequence of the increasing nanotechnology 

specialization as the field develops and more applications in a wide range of domains are found. 

Although this reflects our impression from consulting nanotechnology scientists, this remains a 

speculation and our current research consists in identifying the various niches of expertise, both 

academic and industrial, in Canada. Inventors in highly centralized networks make use of a clear 

network centre which enables knowledge to spread easier. The observed decreasing average 

centrality could thus contribute to slowing down knowledge transmission through the network. 

When we examine the impact of both centrality measures on patent quality, we however find that, 

more central inventors contribute to increasing patent quality (H1). From a management point of 

view, however, our results suggest that inventors should be encouraged to develop more 

relationships with important knowledge sources, i.e. highly connected individuals.  

We observe that Canadian nanotechnology inventors have an increasing tendency to build 

collaborative ties with a higher number of partners and to collaborate on nanotechnology projects 

more intensively than they have done in the past. The presence of star-inventors on a patent team 
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has a positive influence on the quality of the resulting invention (H2). Although we are not able 

to properly measure whether an individual has the making of a star-inventor (recent inventors 

have not registered enough patents), we suspect that the impact would be even stronger if we 

could measure their future production. Applications of nanotechnology are becoming more 

complex requiring larger collaborative teams. These collaboration indicators possibly imply that 

Canadian nanotechnology inventors have been increasingly able to diffuse greater amounts of 

valuable scientific knowledge among a higher number of other inventors and therefore both to 

emit and to absorb more knowledge spillovers. Nurturing collaboration teams with fresh 

knowledge from distinct research environments leads to an increased opportunity for innovative 

recombination of that knowledge and thus enhances inventors‟ future creativity. If the fresh 

knowledge is provided by a team composed of a greater number of star-inventors, patent quality 

is also enhanced. 

Nanotechnology inventors also tend to return for subsequent collaborations to the same 

partners with whom they have already collaborated within the past five years. Repeated 

collaborations with the same partner lead to a more profound research relationship, which may 

involve an exchange of information of higher quality (e.g., a rare or undisclosed knowledge), but 

unfortunately tends to limit access to novel knowledge, if these inventors are not also well 

connected to a number of other inventors (in a more central position in the network). Our results 

show a negative effect of repeated co-inventorship on the patent quality (H3). Firms would thus 

benefit from building more diverse teams of inventors that have not collaborated in the past. For 

instance, involving two star-inventors that have worked on a number of projects together would 

not have the same benefit as involving two unrelated star-inventors. If the average proportion of 

repeated collaboration continues to rise (as shown by Figure 7), this tendency should worry firms 

concentrating in nanotechnology development activities. 

Another aspect of team diversity stems from international collaboration. Although we could 

not show that teams composed of foreign inventors had a positive influence on patent quality as 

the strong similarity between Figure 2 and Figure 8 would have us believe, we nevertheless show 

that patents of foreign assignees are of a higher quality (H4), the delocalisation of invention 

teams being implied by foreign ownership. As the Canadian expertise continues to develop, and 
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the proportion of foreign ownership continues to diminish (as shown in Figure 9), we recommend 

that international collaboration remains a non negligible part of the way inventors work. 

An important limitation of this work resides in the lack of information about the inventors 

themselves. A large literature has studied academic patenting and found scientists-inventors to be 

more central and to play an important role in knowledge diffusion through the network. We are 

currently in the process of merging our patent data with scientific article data that contains the 

affiliation of all authors in order to distinguish the inventors that are academics from those that 

are not. Distinguishing between the academic stars and the industrial stars may shed some light 

on who are the real star inventors and how they become stars. The second limitation of this study 

lies in the patent quality proxy used for patent value. Although a number of scholars use the 

number of patent claims as a proxy, increasingly, hybrid measures that combine numerous 

indicators are preferred to infer patent quality. We are therefore in the process of gathering patent 

citations as well as patent renewal information to verify the robustness of our results. Another 

line of future research is concerned with the contribution of each type of inventor to the value of 

future patents. For instance, is there a difference between the effect of repeated collaborations 

between academic inventors, who generally have access to a larger scientific network, and that of 

industrial inventors? 

Acknowledgements 
Beaudry acknowledges financial support of the Social Science and Humanities Research 

Council of Canada (grant no. 820-2006-0064). We are indebted to the careful editing of the 

editors of this special issue. We acknowledge helpful comments from two anonymous referees as 

well as from the editors of this special issue. We are grateful for the help on databases provided 

by Martin Trépanier. Ahmad Barirani provided research assistance. None of these, however, are 

responsible for any remaining errors. 

References 
Allen, R.C. (1983) Collective invention. Journal of Economic Behaviour and Organization 4, 1-

24. 

Agrawal, A., Cockburn, I. and McHale, J. (2006) Gone but not forgotten: Knowledge flows, 

labour mobility and enduring social relationships. Journal of Economic Geography 6, 571-591. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 26 

Balconi, M., Breschi, S. and Lissoni, F. (2004) Networks of inventors and the role of academia: 

An exploration of Italian patent data. Research Policy 33, 127-145. 

Baum, J.A.C. and Ingram, P. (2002) Interorganizational learning and network organizations: 

Toward a behavioral theory of the 'interfirm‟, In: Augier, M. and March, J.G. (eds.), The 

Economics of Choice, Change, and Organization. Essays in the Memory of Richard M. Cyert. 

Edward Elgar, Cheltenham UK. 

Breschi, S. and Lissoni, F. (2004) Knowledge networks from patent data: Methodological issues 

and research targets. In Glänzel W., Moed H. and Schmoch U. (eds), Handbook of 

Quantitative S&T Research, Kluwer Academic Publishers. 

Breschi, S. and Lissoni, F. (2005) “Cross-firm” inventors and social networks: localised 

knowl-edge spillovers revisited. Annales d‟Economie et de Statistique 79/80, 189-209. 

Bonaccorsi, A. and Thoma, G. (2007) Institutional complementarity and inventive performance 

in nano science and technology. Research Policy 36, 813-831. 

Burt, R.S. (1987) Social contagion and innovation: Cohesion versus structural equivalence. The 

American Journal of Sociology 92, 1287-1335. 

Burt, R.S. (1992) Structural Holes: The Social Structure of Competition. Harvard University 

Press, Cambridge, MA. 

Cantner, U. and Graf, H. (2006) The network of innovators in Jena: An application of social 

network analysis. Research Policy 35, 463-480. 

Cattani, G. and Ferriani, S.  (2008) A core/periphery perspective on individual creative 

performance: Social networks and cinematic achievements in the Hollywood film industry. 

Organization Science 19, 824-844. 

Cowan, R., Jonard, N. and Zimmermann, J.-B. (2005) Bilateral collaboration and emergent 

networks. SSRN Working Papers. 

Dahl, M.S. and Pedersen, C.O.R. (2004) Knowledge flows through informal contacts in industrial 

clusters: myth or reality? Research Policy 33, 1673-1686. 

de Nooy, W., Mrvar, A. and Batagelj, A. (2005) Exploratory Social Network Analysis with 

Pajek. Cambridge University Press, Cambridge. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 27 

Fleming, L., C. King, III,  and Juda, A. (2007) Small worlds and regional innovation. 

Organization Science 18, 938-954. 

Foray, D. and Lissoni, F. (2010) University research and public–private interaction. In: 

Rosenberg, N., Hall, B. (Eds.), Handbook of Economics of Technical Change, North 

Holland/Elsevier. 

Gittelman, M. (2007) Does geography matter for science-based firms? Epistemic communities 

and the geography of research and patenting in biotechnology. Organization Science 18, 724-

741. 

Granovetter, M.S. (1973) The strength of weak ties. American Journal of Sociology 78, 1360-

1380. 

Gulati, R. (1995) Social structure and alliance formation patterns: a longitudinal analysis. 

Administrative Science Quarterly 40, 619-652. 

Hausman, J., Hall, B.H. and Griliches, Z. (1984) Economic models for count data with an 

application to the patents and R&D relationship. Econometrica 52, 909–938. 

Klevorick, A. K., Levin, R., Nelson, R. and Winter, S. (1995) On the sources and significance of 

interindustry differences in technological opportunities, Research Policy 24, 185–205. 

Kogut, B. (1989) The stability of joint ventures: reciprocity and competitive rivalry. The Journal 

of Industrial Economics 38, 183–198. 

Lanjouw, J.O., Pakes, A. and Putnam, J. (1998) How to count patents and value intellectual 

property. The uses of patent renewal and application data. Journal of Industrial Economics 46, 

405–432. 

Lanjouw, J.O. and Schankerman, M. (2001) Characteristics of patent litigation: a window on 

competition. RAND Journal of Economics 32, 129-151. 

Lanjouw, J.O. and Schankerman, M. (2004) Patent quality and research productivity: Measuring 

innovation with multiple indicators. The Economic Journal 114, 441–465. 

Levin, R.C., Klevorick, A.K., Nelson, R.R. and Winter, S.G. (1987) Appropriating the returns 

from industrial research and development. Brookings Papers on Economic Activity 3, 783–

820. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 28 

McNiven, C. (2007) Overview and discussion of the results of the pilot survey on 

nanotechnology in Canada, Statistics Canada, Catalogue no. 88F0006XIE, no. 005. 

Meyer, M. (2000) Patent citations in a novel field of technology - What can they tell about 

interactions between emerging communities of science and technology? Scientometrics 48, 

151-178. 

Murray, F. (2002) Innovation as co-evolution of scientific and technological networks: exploring 

tissue engineering. Research Policy 31, 1389-1403. 

Newman, M. E. J. (2001) Clustering and preferential attachment in growing networks. Physical 

Review 64, 025102. 

Porter, A. L., Youtie, J., Shapira, P. and Schoeneck, D. J. (2008) Refining search terms for 

nanotechnology. Journal of Nanoparticle Research 10, 715-728. 

Saxenian, A. (1994) Regional Advantage: Culture and Competition in Silicon Valley and Route 

128. Harvard University Press, Cambridge, MA. 

Schrader, S. (1991) Informal technology transfer between firms: Cooperation through 

information trading. Research Policy 20, 153-170. 

Singh, J. (2005) Collaborative networks as determinants of knowledge diffusion. Management 

Science 51, 756-770. 

Sorenson, O., Rivkin, J.W. and Fleming, L. (2006) Complexity, networks and knowledge flows. 

Research Policy 35, 994-1017. 

Tong, X. and Frame, J.D. (1994) Measuring national technological performance with patent 

claims data. Research Policy 23,133-141. 

Trajtenberg, M. (1990) A penny for your quotes: patent citations and the value of innovations. 

RAND Journal of Economics 21, 172–187. 

van Zeebroeck, N. and van Pottelsberghe de la Potterie, B. (2011) Filing strategies and patent 

value, Economics of Innovation and New Technology 20, in press. 

von Hippel, E. (1987) Cooperation between rivals: Informal know-how trading. Research Policy 

16, 291-302. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 29 

Zucker, L.G., Darby, M.R. and Armstrong, J. (1998a) Geographically localized knowledge: 

Spillovers or markets? Economic Inquiry 36, 65-86. 

Zucker, L.G., Darby, M.R. and Brewer, M. (1998b) Intellectual human capital and the birth of 

US biotechnology enterprises. American Economic Review 88, 290-306. 

Wang, J-C., Chiang, C-H. and Lin, S-W. (2010) Network structure of innovation: can brokerage 

or closure predict patent quality? Scientometrics 84, 735-748. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 30 

7. Appendix 

Table 2: Descriptive statistics (mean, standard deviation and correlations) 

 Variable Mean Std. Dev. 1 3 4 5 6 7 8 9 10 11 12 13 14 
1 NbClaims 24.22 (16.70) 1.00             
3 AvePatperinv 13.19 (17.37) 0.09 1.00            
4 AveDegcent 12.14 (12.58) 0.19 0.83 1.00           
5 NbStar 0.65 (1.09) 0.16 0.70 0.79 1.00          
6 MaxPatperinv 21.47 (27.07) 0.13 0.90 0.87 0.83 1.00         
7 MaxDegcent 18.27 (18.86) 0.22 0.69 0.94 0.76 0.83 1.00        
8 AveBtwcent 3.61 (6.19) 0.10 0.75 0.76 0.58 0.76 0.67 1.00       
9 MaxBtwcent 7.77 (12.60) 0.15 0.64 0.78 0.68 0.79 0.79 0.90 1.00      

10 dFirm 0.80 (0.40) 0.16 0.27 0.34 0.25 0.31 0.35 0.20 0.22 1.00     
11 dForeign 0.49 (0.50) 0.19 0.48 0.64 0.45 0.54 0.65 0.46 0.51 0.33 1.00    
12 dStar 0.33 (0.47) 0.19 0.77 0.80 0.85 0.84 0.79 0.58 0.62 0.30 0.50 1.00   
13 MaxPriorColl 4.06 (8.02) 0.07 0.69 0.56 0.64 0.69 0.49 0.50 0.53 0.19 0.29 0.58 1.00  
14 AvePriorColl 2.22 (5.07) 0.03 0.72 0.45 0.38 0.53 0.31 0.45 0.31 0.15 0.21 0.46 0.79 1.00 

Note: Average and Maximum degree centrality and betweenness centrality have been normalised (X 10 000) 
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Table 3: Regression results with the mean number of prior collaboration 

  (1')  (2')  (3')  (4')  (5')  (6')  (7')  (8')  

H1 

AveDegcent 0.0093 ***               
 (0.0025)                
MaxDegcent   0.0065 ***             
   (0.0012)              
AveBtwcent     90.4651            
     (56.0373)            
MaxBtwcent       63.3072 ***         
       (19.5203)          

H2 

AvePatperinv         0.0041 *       
         (0.0024)        
MaxPatperinv           0.0026 **     
           (0.0012)      
NbStar             0.0744 ***   
             (0.0257)    
dStar               0.2066 *** 
               (0.0657)  

H3 

AvePriorColl -0.0641 *** -0.0636 *** -0.0570 *** -0.0574 *** -0.0666 *** -0.0643 *** -0.0692 *** -0.0734 *** 
 (0.0229)  (0.0232)  (0.0219)  (0.0220)  (0.0227)  (0.0224)  (0.0215)  (0.0214)  
AvePriorColl x dFirm 0.0526 ** 0.0556 ** 0.0484 ** 0.0500 ** 0.0535 ** 0.0543 ** 0.0612 *** 0.0633 *** 
 (0.0233)  (0.0238)  (0.0226)  (0.0225)  (0.0221)  (0.0224)  (0.0219)  (0.0219)  

H4 dForeign 0.1273 ** 0.1080 * 0.2142 *** 0.1802 *** 0.2099 *** 0.1935 *** 0.1854 *** 0.1673 ** 
 (0.0618)  (0.0593)  (0.0681)  (0.0605)  (0.0746)  (0.0717)  (0.0690)  (0.0700)  

 dFirm 0.1404 ** 0.1298 ** 0.1701 *** 0.1622 *** 0.1596 ** 0.1540 ** 0.1492 ** 0.1406 ** 
  (0.0635)  (0.0640)  (0.0628)  (0.0621)  (0.0650)  (0.0645)  (0.0632)  (0.0637)  
 Constant 2.7136 *** 2.7317 *** 2.7177 *** 2.7383 *** 2.7166 *** 2.7318 *** 2.7652 *** 2.7681 *** 
  (0.1561)  (0.1619)  (0.1505)  (0.1555)  (0.1523)  (0.1532)  (0.1632)  (0.1689)  
                  
 Year dummies yes  yes  yes  yes  yes  yes  yes  yes  
                  
 ln(alpha) -1.1884 *** -1.1943 *** -1.1740 *** -1.1811 *** -1.1738 *** -1.1758 *** -1.1828 *** -1.1865 *** 
  (0.1698)  (0.1761)  (0.1666)  (0.1705)  (0.1675)  (0.1685)  (0.1735)  (0.1758)  
 Clusters 328  328  328  328  328  328  328  328  
 N 1218  1218  1218  1218  1218  1218  1218  1218  
 Mean Wald chi2(20) 257.44  293.25  172.94  205.91  197.23  229.02  211.71  210.23  
 Log pseudolikelihood -4802.27 *** -4799.20 *** -4810.02 *** -4806.18 *** -4810.20 *** -4809.10 *** -4805.33 *** -4803.33 *** 
                  
Note: ***, **, * represent significance at the 1%, 5% and 10% levels respectively. 
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