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Abstract

This paper examines how firm growth is influenced by the strength of the industrial cluster in 

which the firm is located.  The paper presents econometric estimates of firm-level growth 

models for 56 two-digit industries in the UK.  In about half of these industries, there is a 

positive and statistically significant association between firm growth and own-sector 

employment.  Significant associations between firm growth and other-sector employment are 

less common, but where these arise they are generally negative.  We find that a weak rule of 

thumb applies in the great majority of industries: own-sector effects are positive or 

insignificant, while other-sector effects are negative or insignificant.  Cluster effects are 

strongest in manufacturing, manufacturing-related or in key parts of the infrastructure, but 

weaker in services.
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I. Introduction

Research on clusters in some specific industrial sectors has found evidence that firms in 

strong industrial clusters often grow faster than average.  The objective of this paper is to 

explore whether this conclusion applies across all industrial sectors, or if not, which sectors 

enjoy such cluster effects and which do not.

To this end, the paper presents econometric estimates of firm-level growth models 

for a range of 56 two-digit industries in the UK.  In common with earlier work (Swann, 1998; 

Baptista and Swann, 1999; Swann and Prevezer, 1996; Beaudry, 2001; Cook et al., 2001; 

Pandit et al., 2001), the strength of the cluster is measured here by own-sector employment 

(employment in the firm's own 2-digit sector within its county), other-sector employment 

(employment in all other 2-digit sectors within its county), and several other variables

including employment diversity.  Rosenthal and Strange (2003) refer to these own-sector and 

other-sector effects as localisation effects and urbanisation effects respectively.  

The earlier studies cited above – which relate to computing, biotechnology, 

aerospace, broadcasting and financial services – found that own-sector effects tend to be 

positive while other-sector effects are often negative.  Or, to be more precise, companies 

located in clusters that are strong in their own sector (ceteris paribus) tended to grow faster 

than average, while companies located in clusters that are strong in other sectors, but not in 

their own (ceteris paribus) tended to grow slower than average.  In what follows we shall 

focus on two questions.  First, does this pattern apply more generally as a rule of thumb in a 

wide range of sectors across the economy?  Second, in which sectors do we find the strongest 

clustering effects?

It is well recognised, of course, that co-location on its own does not necessarily yield 

economic advantage.  Several qualitative studies and surveys have demonstrated that co-

located companies do not necessarily expect to gain much from proximity to their neighbours.  
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But if companies from the same sector co-located in the same region tend to grow faster than 

average, then that is suggestive.  Research on clustering is a classic example of the virtues of 

using a portfolio of research methodologies.  Detailed case studies will tell us a lot about the 

detailed processes through which clustering brings economic benefits (e.g. Saxenian, 1994).  

By contrast, the broad-brush econometric approach of this paper captures a “bird’s-eye” view 

of clustering in the UK, without the detail.

This paper uses a firm-level approach to study lifetime growth of firms located 

within industrial clusters.  Most studies have used cluster-level approaches to examine 

employment growth or new firm formation (see for instance Henderson et al. (1995); 

Rosenthal and Strange, 2003; and Combes, 2000).  This method used by Swann et al. (1998) 

and others has shown that firms grow faster individually when located with their peers while 

controlling for the firm characteristics.  In a sense, this type of analysis lies mid-way between 

detailed case studies and cluster-level approaches.

The structure of the paper is as follows.  Section II describes the logic behind the 

simple lifetime growth model used in the paper.  Section III describes the data and data 

sources used in this study.  Section IV presents and comments on the econometric results.  

Section V concludes.

II. Theoretical interpretation of models

A number of authors have examined the growth of industrial sectors within clusters.  For 

instance, Glaeser et al. (1992), Combes (2000) and Henderson et al. (2003) have all tried to 

explain some form or another of employment growth within industry-cluster tandems with 

various specialisation, concentration, competition and diversity characteristics.  Our goal in 

this paper is not to replicate these analyses for the UK, but to examine the growth of firms 

within clusters as opposed to the growth of clusters.
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In earlier work we have looked at three broad categories of econometric models that 

analyse the performance of companies in clusters.  One is the lifetime growth model analysed 

here.  Another is a model of entry into clusters (Swann, 1998).  Rosenthal and Strange (2003) 

have used similar methodologies to analyse the birth of new firms within clusters and the 

employment within these new firms.  And the third is the analysis of innovation or patenting 

in clusters (Baptista and Swann, 1998; Beaudry and Breschi, 2003).

The econometric approach taken in this paper tries to identify whether firms located 

in strong clusters (with strong industry and/or a strong science base) grow faster than isolated 

firms.  In its simplest form, a model of the lifetime growth of the firm can be estimated using 

employment as a measure of cluster strength.  In the model, the trend growth of the firm is 

treated as a function of cluster employment – both in the firm’s own sector, and in all other 

sectors (both in terms of scale and diversity measures).  The model also takes account of any 

potential effects of a strong science base and other regional and sectorial “fixed effects” on the 

trend rate of growth of a firm.  Accordingly, the model estimates a trend rate of growth, but 

also makes allowance for the possibility that growth may be influenced by clustering with 

similar firms, with dissimilar firms, or near the science base.

Figure 1 introduces the lifetime growth model in a very simple way.  The graph 

shows (hypothetical) growth paths for employment in one stereotypical firm located in a 

cluster and another located outside a cluster.  Because the vertical axis is on a log scale, the 

concave shape of the growth path implies that growth rates are high when the firm is young 

but tail off thereafter.  This is to be expected, since small firms can achieve very high growth 

rates from a small base that could not be sustained when the firm gets larger.  The growth path 

for the firm in a cluster lies above that for the isolated firm.  The rate of growth at the start is 

greater and although growth rates are similar in maturity, the firm located in a cluster achieves 

a higher absolute size.
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Suppose that all firms grow along these growth paths, and that we take a sample of 

firms at a particular date.  Suppose also that the census we use only records firms when they 

reach a certain age or a certain size – this is true of the FAME database used for our work.  

More precisely, suppose that this census only records firms when they progress to the right of 

the line SS.  Then the sample of firms from inside a cluster will lie along the upper growth 

path to the right of SS and the sample from outside a cluster will lie along the lower growth 

path to the right of SS.

Figure 1

Patterns of Employment Growth, for firms inside and outside clusters

In this case, we can see that if we fit two straight lines to these data - one for the cluster and 

the other for outside the cluster - then these are roughly parallel to each other.  This is slightly 

unexpected, since the actual growth paths are certainly not parallel to each other.  But it 

happens because the data represent an incomplete census of firms.  If we estimate a lifetime 

growth model, where log size is regressed on age, then the cluster effect may show up as a 

higher intercept rather than a steeper slope.  This was what we found in several previous 

studies (Swann, 1998).

What sort of sample selection bias will arise from this inevitable absence of small 

and new firms?  It means that the fitted lines shown in Figure 1 have a flatter slope but a 

higher intercept than they would if we had complete data on all firms.  And, as we measure 

the cluster effects by the intercept rather than the slope, this sample selection biases the cluster 

effects upwards.

The traditional lifetime growth model first estimated for this paper is based on this 

simple construct.  The format is as follows:
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where:

 cIne : is employment in firm n from sector i at cluster c; [CieEmp]

agen is the age of firm n; [Age]

   cIie : is total employment in sector I in cluster c; [OwnEmp]

   cIje : is total employment in all sectors other than I at cluster c; [OthEmp]

Vv are other cluster strength variables;

Dc represents cluster dummy variables;

Di corresponds to the sectorial dummy variables.

u is a disturbance term.

The variables used in this lifetime growth analysis are described in section III below.  

Probably the two most important shift variables in the model are what we shall call own-

sector [OwnEmp] and other-sector [OthEmp] employment in that cluster.  The first shift 

variable, own-sector, represents the extent of the localisation, or Marshall-Arrow-Romer 

(MAR), externalities, and is measured by the total number of employees in the same sector as 

firm n and located in the same cluster c as the firm.  The second shift variable, other-sector, 

represents the scale of urbanisation, or Jacobs, externalities, and is measured by the total 

number of employees in all sectors except that of firm n and located in the same cluster c as 

the firm.  The diversity aspect of urbanisation externalities is measured using a standard 

employment Herfindahl index2 [Emp2Herf].  

Thus the model estimates the trend rate of growth (), the coefficient of the age of 

the firm [Age], but also makes allowances for the fact that growth may be influenced by the 

presence of similar firms (1) i.e. from the same sector [OwnEmp], or of other firms (2), i.e. 
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from other sectors [OthEmp].  In principle, 2 ln ejc can be replaced by a sum of effects, one 

for each sector at cluster c, but given the likely collinearities, this was thought impractical.  

The coefficients of the growth rate dummy variables, dc and di, allow us to measure whether 

companies in particular clusters and sectors grow faster than in others.  

As indicated above, the dependent variable (ln en) [ln CieEmp] is not limited in its 

range, so OLS can safely be applied to equation (1).  Standard tests for the normality of the 

residuals, however, often reject OLS so we only report the negative binomial regression 

summarised results (the full results are provided in an unpublished working paper available 

upon request from the authors):
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where the expected number of employees of a firm is an exponential function of its age, of the 

extent of the own sector and other sectors employment as well as other cluster strength and 

firm specific variables, and where  is defined as in equation (2).

Immediately, there are some problems with this approach.  Three of the most 

important are as follows.  First, it is a simple model of organic growth.  But how does it cope 

with non-organic growth: with mergers, acquisitions and dispersals?  If such companies are 

added to Figure 1 they will distort the picture.  The data sources used indicate whether a 

company is a holding company, whether it has subsidiaries or whether it is a subsidiary.  It 

also indicates whether accounts are consolidated.  Accordingly, the approach taken here is

simply to make a crude adjustment using dummy variables.  As far as possible we have tried 

to avoid double counting where a subsidiary is both treated as a firm in its own right and as a 

consolidated part of a larger conglomerate.  Wherever possible we work only with the smaller 

entity.  Only 11% of firms are consolidated and a minority of their subsidiaries appear in the 
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database because they do not file employment figures for their subsidiaries, so these 

companies are de facto eliminated from our database.3, 4

The second problem is that of heteroskedasticity.  A quick glance at Figure 1 

suggests that we would not necessarily expect the variance of actual (log) firm size around the 

growth path to be constant.  We might expect this variance to increase with the age of the firm 

– and indeed the econometric work does find this.  We have explored whether the 

heteroskedasticity can be modelled adequately by assuming that variance is proportional to the 

square of age, 22)var( Ageu  , in which case we would work with a simple transformation 

of equation (1).  However, we found that this approach does not capture the character of the 

heteroskedasticity.  Various other simple functional forms were examined in an attempt to 

model the heteroskedasticity of the data without success.  The form of the heteroskedasticity is 

more complex.  Accordingly, we report robust standard errors (White, 1980) to allow for this 

heteroskedasticity.

The third problem is that of endogeneity.  If own-sector employment is used as an 

explanatory variable in the lifetime growth model, we have a situation where the LHS variable 

  cIne :ln   is a part of an aggregate variable on the right hand side:     cIie :ln  as shown 

below:
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This endogeneity itself leads to two problems.  First, if the focus of our interest is the effect of 

employment in all other companies, then the coefficient 1 is an overestimate, because the 

right-hand side variable for aggregate own-sector employment includes the dependent variable 

for company employment.  The second problem is a potential simultaneity bias.  This arises 
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because the fact that the dependent variable is included in the aggregate employment measure 

means that the disturbance term in equation (1) cannot be independent of the own-sector 

employment aggregate.

One strategy for dealing with these econometric issues would be to create an 

aggregate for own-sector employment in all other companies.  However that is not as easy as 

it sounds.  To subtract company employment from aggregate county employment only makes 

sense if companies operate from a single plant.  That may be true for a large number of small 

companies, but these companies (accounting for only small employee figures) are unlikely to 

introduce significant problems.  The real problems derive from companies with large 

employment figures, but these are most likely not to be single plant companies.  To subtract 

these company employment figures (spread over many plants in several regions) from 

employment in one region makes no sense at all, and would introduce serious problems.

The endogeneity issue was examined using two-stage least squares and comparing it 

to the OLS results using a Hausman test as well as a Davidson and MacKinnon (1993) 

augmented regression test.  The latter involves replacing the potentially endogenous right-

hand-side variables with the predicted values of those right-hand-side variables, where the 

predicted values are a function of all exogenous variables.  This test identified a problem of 

endogeneity in 9 of the 56 industries under consideration (SIC codes 21, 22, 32, 36, 45, 51, 

52, 55 and 74).  In all of these industries, there was also evidence of non-normality of the 

residuals.  Results will thus be treated with the appropriate care.

The reader may wonder why we use a single census in this lifetime growth model 

rather than looking at year to year growth rates, which would avoid some of these problems.  

There are two reasons.  First, as much of the literature has demonstrated, year-to-year 

company growth is more or less random – this is an old idea, dating back to the work of Hart 

and Prais (1956).  Accordingly it would be difficult to make much headway in trying to model 
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the factors that influence differences in year-to-year growth rates, because this is so volatile 

and so unpredictable.  Second, while we can build up reasonable time series data on many 

companies, it is harder for some of the smaller companies in our sample.  So while we could 

look at longer-period growth rates for some, we cannot do this for all - especially the smaller 

companies in our sample.  And since small firms seem to be most dependent on clusters for 

superior performance, then it is especially important to include them in our sample.  So while 

this lifetime growth model is a rough and ready method it is a natural approach to take in 

building up this bird’s eye view.

III. Data

Databases of regional data and company data were merged to construct the data used in this 

study.  Regional data was obtained from the Office of National Statistics (ONS) Regional 

Trends database and from their data service.  The FAME database from Bureau Van Dijk was 

used to extract the UK company data required for this study. From these data sources, four 

categories of variables were identified: employment, representing the size of the industry; firm 

type, categorising a company amongst its peers; economic data, illustrating cluster economic 

strength; and regional characteristics, showing general cluster strength.  From the different 

databases available for this study, ten variables were extracted.  Table 1 summarises the 

variables used in the lifetime growth model and Table 2 presents basic statistics for these.  In 

the lifetime growth model, the left-hand side variable is the number of firm employees 

[CieEmp].

TABLE 1

Description of Variables Used in Model
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TABLE 2

Elementary Statistics

The source of company data used in this study, FAME, gives data at the firm level 

rather than at the establishment level.  The use of firm data raises some issues that need to be 

discussed here. How is a firm allocated to a region?  Do any biases or inaccuracies arise from 

the use of firm data or the allocation of a multi-plant firm to one single region?  Is it better to 

use data by establishment or by firm? 

How is a firm allocated to a region?  We allocate each firm to the region in which its 

headquarters are based.  This means that the value of the cluster strength variable relating to a 

specific firm is measured as the level of employment in the region where that company’s 

headquarters are based.  In the case of single establishment firms, this allocation process 

seems unproblematic.  But in the case of larger firms with plants in several locations 

(including some overseas) this may seem more questionable.  In part, of course, the reason for 

our allocation process is a pragmatic one.  FAME only indicates the address of company 

headquarters: it neither gives a list of other plants nor an indication of what proportion of 

activity is located in each place.

Do any biases or inaccuracies arise from the use of firm data or the allocation of 

multi-plant firm to one single region?  In the case of a multi-plant firm, the cluster strength at 

its headquarters is not necessarily an accurate measure of the extent to which the firm as a 

whole benefits from a cluster.  It might seem more appropriate to compute some sort of 

weighted average across all the regions in which the company is located, though for pragmatic 

reasons (described above) that is not possible. From this point of view, the use of a cluster 

strength variable relating to company headquarters rather than this weighted average could be 

seen as a problem of errors-in-variables.  And as is well known, errors-in-variables does 
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generally lead to biases in estimated parameters.  In simple bivariate models this bias is 

towards zero, though in multivariate models the bias can go in either direction, depending on 

the detailed correlation structure of the explanatory variables.  

We can, however, identify one assumption under which there is no such bias from 

allocating the firm to the region in which its headquarters are located.  Suppose we can divide 

the firm’s activities into those that are location-critical and those that are not.  The first group 

contains activities that benefit from location in a cluster while the second group contains other 

activities that do not benefit from the cluster.  If we assume that the firm conducts all location-

critical activities at or near its headquarters, then the extent to which the company benefits 

from location in a cluster depends only on the strength of the cluster in which the company’s 

headquarters are located.  By contrast, the strength of the clusters in which other activities are 

located is not important.  In this case, the appropriate measure of cluster strength to use in our 

analysis is the strength of the cluster in which the firm’s headquarters are located – and not a 

weighted average.  In this case, therefore, there would be no bias from our process of 

allocating the firm to one region.

Is the above assumption a reasonable one?  In some case studies exploring the 

reasons why firms wish to locate their offices in strong clusters, Paton et al. (2007, Chapter 6) 

found that it is often essential to locate key R&D activities, or other activities involving high-

level strategic interaction with customers and suppliers, at the company headquarters within a 

strong cluster.  More generally, it is commonly found that a company’s domestic R&D, at 

least, tends to be located at or near company headquarters (Howells, 1984, 1990).  Moreover, 

interaction with customers and suppliers in a cluster is essential for competitive success in a 

wide range of industries (von Hippel, 1988).  So there does seem to be some support for this 

assumption.
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On the other hand, if the above simplifying assumption is not valid, and it is not the 

case that all location-critical activities take place at or near company headquarters, then a bias 

can arise.  It is hard to generalise about the direction of this bias.  If, as is the case for many 

large companies, their headquarters are located in London or the South-East of England while 

its plants are spread across the country, then the cluster strength variable that we use would 

exceed the ideal weighted average described above.  This means that our measured 

explanatory variable sometimes over-estimates the relevant measure of cluster strength. 

Simple intuition might suggest this upward measurement error would bias the associated 

parameter towards zero but the realities of measurement error bias in a multivariate context 

are more complex and preclude such a generalisation.

In view of the above issues, would it be better to use establishment data rather than 

firm data in a model of this sort?  In our view, the answer to that is “no”.  There is admittedly 

no problem of how to allocate an establishment to a region.  However, to treat the 

establishment as the basic unit of analysis in our growth model would create even worse 

problems, because that would overlook the essential interdependencies within a firm.  For 

example, suppose a firm has two establishments: the headquarters, located in a strong cluster, 

where all the location-critical activities go on; and a production plant, located in another 

region without a strong cluster.  We cannot understand the growth of employment at the 

production plant by reference to the characteristics of its region alone.  The growth of 

employment there will be highly dependent on the success of activities at headquarters, and to 

understand that we need to take account of the characteristics of the cluster in which the 

headquarters are located.

From the company database, FAME, employment for 136,304 firms was extracted.  

This database contains many more firms, but not all company records contain employment 

data for 1998.  When employment in 1998 was missing, the figures for 1997 or 1999 were 
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used as a proxy.  Turnover and some other variables were considered as alternative measures 

of firm size, but these were rejected for a variety of reasons, including the problem that the 

number of usable observations available from the FAME database would drop considerably.  

Section II noted that small and very young companies are excluded from the database.  This 

sample selection bias is likely to bias estimates of cluster effects upwards and that needs to be 

born in mind when interpreting the results. The region within which the firm operates as well 

as the main sector of operation were also added to the database as dummy variables, [Dc] and 

[Di] at the one-digit and two-digit levels.  

To provide a time frame in order to approximate firm growth, the age of the firm in 

1999 was calculated from the year of incorporation [Age].  We are aware that firms that have 

changed their name or have been purchased by other firms might have a different age from the 

value calculated using the year of incorporation, but this represents a minority of companies in 

this database.  So without a more accurate account of the age of the firm, the age from the year 

of incorporation to 1999 was used in this study.  As mentioned before, the status of the 

company is also of interest and will be characterised by three dummy variables: whether the 

firm is consolidated or not, [Dcons], if it is a holding company, [DHold] and whether it is a 

subsidiary, [Dsubs].

As Table 2 shows, the average firm has been in business for more than 20 years and 

employs more than 180 people.  Roughly 11% of firms in the database file consolidated 

accounts, 20% are holding companies, and 41% are subsidiaries.  As can be deduced from the 

standard deviation, the type of firms included in the study, and certainly their size and age, are 

highly diverse.

Regional economic strength is measured by employment characteristics which are 

computed at NUTS5 level 3 for each two-digit UK SIC code (rev. 1992).6, 7 Regional 

employment figures for 1998 were obtained from the UK Annual Employment Survey.  These 
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employment figures were utilised to construct three regional variables at the NUTS level 3: 

own-sector employment [OwnEmp], other-sector employment [OthEmp], and a measure of 

employment diversity [Emp2Herf].  Own-sector employment corresponds to the number of 

employees in the county where firm n operates and are working in the same sector as firm n.  

Other-sector employment in that case represents all other employees in that county (the total 

working population of the county less employment within the same sector as firm n).  

Employment diversity for each county is measured by a Herfindahl index based on the variety 

of employees in different sectors.  This variable will help determine whether a diverse 

environment is beneficial to firm growth.

In this paper, OwnEmp will represent the extent of the localisation externalities, 

while urbanisation externalities, which refer to the scale and diversity of the local environment 

will be split into two variables: OthEmp, for the scale of urbanisation effects, and Emp2Herf, 

for the diversity aspect.  In essence, we use other-sector effects as measures of the scale of 

urbanization externalities, as in Rosenthal and Strange (2003), and a Herfindahl index of 

employment as the diversity measure of Jacobs externalities, as in Henderson et al. (1995) and 

Glaeser et al. (1992).  

A second source of regional data consists of a measure of expenditure on research 

and development [R&D] in each region of the UK in 1997.  These data were provided by the 

Office of National Statistics data service.  Unfortunately in this case, data is only available at 

the NUTS level 2 (36 groups of counties) because of the way it is collected.8 The database 

provides separate estimates of research and development expenditures emanating from 

business [R&DBus], public [R&DGov] and higher education [R&DHE] institutions.  For the 

majority of counties, business research and development is the main constituent of total R&D 

expenditure.  Indeed, for the entire country, business R&D expenditure represents a share of 

68.5%, Government, 11% and Higher Education, 20.5% (1997 data).  Population density was 
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also introduced in the analysis to control for a scale effect.  Data for the UK population in 

1997 at the NUTS level 3 was obtained from the Office of National Statistics 9, 10.

IV. Results

We estimated equations (1), OLS, and (3), negative binomial, for 56 two-digit industries.  In 

the interests of brevity, we shall only report here a summary of the main parameters of 

interest.  The complete regression results (both OLS and negative binomial) are available in 

an unpublished working paper available upon request from the authors.

Our principal interest in this paper is to examine the effects of localisation (own-

sector employment) and urbanisation (other-sector employment and diversity) on firm growth.  

These effects are summarised in Figures 2 and 3.  Figure 2 shows a scatter plot of the 

estimated regression parameters for own-sector employment and other-sector employment, 

while Figure 3 shows a scatter plot of the estimated regression parameters for own-sector 

employment and the Herfindahl index of employment diversity.  

In Figure 2, the majority of the sub-sectors lie in the bottom right quadrant where the 

coefficient of own-sector employment is positive and that of other-sector employment is 

negative.  When the effect of own-sector employment on growth is positive, this implies that a 

firm located in a cluster that is strong in its own industry has a tendency to grow faster than a 

firm that is not surrounded by its peers.  Conversely, when the effect of other-sector 

employment on growth is negative, this means that a firm located in a district that is 

dominated by employment in other sectors will tend to grow slower than average.  This 

negative effect may be due to congestion and competition in overcrowded clusters; in other 

words, the urbanisation externalities have a detrimental effect on firm growth.
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Figure 2

Coefficients on Own-Sector and Other-Sector Employment

Two-digit industry regressions

Figure 3

Coefficients on Own-Sector Employment and Employment Herfindahl

Two-digit industry regressions

Turning to Figure 3, the coefficient on the Herfindahl index is negative in over 64% 

of cases (36 out of 56).  This means that a more diverse employment environment (low 

Herfindahl) has a positive effect on firm growth.  This is in accord with Audretsch and 

Feldman’s (1999) finding that diversity matters more than specialisation in industrial clusters.  

Figure 3 also shows a large number of industries in the bottom right quadrant where own-

sector employment has a positive effect and diversity has a negative effect.  In this quadrant, 

firms that are co-located with others from the same industry but in a generally diverse 

employment environment will grow faster than the rest.

Figures 2 and 3 show the absolute magnitudes of estimated parameter coefficients.  

But to draw reliable conclusions from our regression results, we need to consider not just the 

absolute magnitude of coefficients but also their statistical significance.  This is done in 

Tables 3 and 4.  Both contain 9 cells, in three rows and three columns.  The columns refer to 

the sign and significance of the own-sector coefficients, while the rows refer to the sign and 

significance of the other-sector coefficients (Table 3) or of the employment Herfindahl

coefficients (Table 4).

Turning first to Table 3, the left-hand column shows sectors for which the own-sector 

regression coefficient is negative and significantly different from zero at the 10% level.  The 

middle column shows all the sectors for which the own-sector regression coefficient is not 



18

significantly different from zero at the 10% level.  The right-hand column shows sectors for 

which the own-sector regression coefficient is positive and significantly different from zero at 

the 10% level.  Turning to the rows, the top row shows sectors for which the other-sector 

regression coefficient is positive and significantly different from zero at the 10% level.  The 

middle row shows all the sectors for which the other-sector regression coefficient is not 

significantly different from zero at the 10% level.  The bottom row shows sectors for which 

the other-sector regression coefficient is negative and significantly different from zero at the 

10% level.  

What does Table 3 tell us?  Starting with the own-sector effects, we find that in 

slightly under a half of the industries (23 out of 56, or 41%), there is a positive and 

statistically significant association between firm growth and own-sector employment.  We 

find that the greater number of these are manufacturing sectors.  In most of the other industries 

(a further 29 out of 56, or about 52%), there is no significant association.  In a few (4 out of 

56, or about 7%) there is a significant but negative association.  Turning next to the other-

sector effects, we find that in almost two thirds of industries (36 out of 56, or 64%), there is 

no significant association between firm growth and other-sector employment.  But in a 

majority of sectors where there is a significant association, it is a negative one (13 out of 56, 

or 23%) rather than a positive one (7 out of 56, or 12%).  

TABLE 3

Summary of Own Sector (Localization) and Other Sector (Urbanization) Effects, by Two-

Digits Industrial Sector

TABLE 4

Summary of Own Sector (Localization) and Diversity (Urbanization) Effects, by Two-Digits 

Industrial Sector
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Turning now to Table 4, we find a slightly smaller proportion of non-significant 

associations between firm growth and diversity of employment (35 out of 56, or 62%).  In

nine sectors (16%), there is a positive and significant association between firm growth and the 

Herfindahl index of employment diversity – meaning that firms grow faster when employment 

is less diverse in a cluster.  On the other hand, in 12 sectors (21%) there is a negative and 

significant association between firm growth and the Herfindahl index - meaning that firms 

grow faster when there is more employment diversity.

Two Questions

We said in the introduction that we would focus on two main questions in this study.  First, 

does the pattern of positive own-sector effects and negative other-sector effects found in some 

earlier studies apply more generally as a rule of thumb over a wide range of sectors?   Second, 

which are the sectors with the strongest clustering effects?  Let us address these two questions 

in turn.

We referred to a rule of thumb from earlier studies.  We can state this in two ways.  

The strong rule of thumb is that own-sector effects are significant and positive, while other-

sector effects are significant and negative.  The weak rule of thumb is that own-sector effects 

are significant and positive or insignificant, while other-sector effects are significant and 

negative or insignificant.

Table 3 shows that the strong rule of thumb only applies in a minority of industries.  

In only 11 out of 56 (or 20% of) sectors are own-sector effects positive and significant while 

other-sector effects are negative and significant  But the weak rule of thumb applies in the 

great majority of industries.  In 47 out of 56 industries (about 84%) we find that own-sector

effects are positive or insignificant, while other-sector effects are negative or insignificant.
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In answer to this first question, therefore, we can say that the results of earlier studies 

do indeed apply over a wide range of sectors.  There are 8 exceptions, and these are essentially 

service industries.  This result is consistent with that of Combes (2000) which identified five 

service sectors that benefited from a larger local economy (density measured by the ratio of 

total local employment to the local area, a variable closely related to our other-sector

variable).  

Next, we turn to the second question: where are the strongest cluster effects?  From 

Table 3 and 4, we can identify those sectors where the own-sector clustering effect is positive 

and significant at the 10 % level.  Many of these are manufacturing sectors (e.g. textiles, 

clothing; leather; wood products; rubber and plastic; non-metallic mineral products; office 

machinery and computers; radio, television and communication equipment; motor vehicles, 

trailers and semi-trailers; other transport equipment).  Many of these industries are also 

identified in Henderson et al. (1995) as benefiting from localisation externalities.  Others are 

manufacturing-related (agriculture; mining; construction; extraction of crude petroleum and 

natural gas, and related services), or relate to key parts of the infrastructure (electricity, gas, 

steam and hot water supply; air transport, water transport; education).  Rather fewer are in 

services (retail trade; insurance and pension funding; activities auxiliary to financial 

intermediation; other business activities).

Negative own-sector effects are found in a few service industries: recycling; auxiliary 

transport activities; hotels and restaurants; and real estate activities.  In two of these (hotels 

and restaurants, real estate), the other-sector effects are positive and significant, suggesting 

that companies in such sectors benefit from location in a general purpose cluster with 

companies from other industries, but not from co-location with others in their own industry.  

In contrast to the results of Henderson at al.  (1995) for the high-tech sectors, we find 

that other-sector effects (a measure of Jacobs or urbanisation externalities) do not play an 
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important role in the development of high-tech sectors, while the own-sector effects 

(localisation externalities) are generally positive.

In general, when we compare the two aspects (size and diversity) of urbanisation 

externalities, we find that in most industries one effect is significant when the other is not.  In 

short, while it is quite common to find that one measure of Jacobs externalities or another is 

important, it is rare to find that both are significant at the same time (only 5 out of 56, or 9%).

Effects of Other Variables

While the effects of the other variables in equation (1) are not our main concern here, a brief 

summary is useful.  The coefficient on age in the regression should be interpreted as the trend 

rate of growth for the company - see Figure 1.  For all but 4 of the regressions, this trend rate 

of growth is positive.  The median rate of growth is one per cent per annum.  This may seem 

rather low, but remember that because of the sample selection characteristics mentioned above 

(Figure 1), this is the trend rate of growth amongst older companies.

Population density was introduced in the model to take account of a scale effect - the 

hypothesis that companies in more densely populated areas grow faster.  This variable has a 

positive coefficient in about 64% of regressions (36 out of 56).

The sign of coefficients for the R&D variables depend on what type of R&D is 

involved.  For Business R&D, only 36% are positive.  For Government R&D, 57% are 

positive.  But for Higher Education R&D, 54% are positive.  These differences are in line with 

observations by Dasgupta and David (1994), who point out that public research is organised to 

disseminate and spill over, while private R&D is not.  The positive and significant coefficients 

in sector 0 (agriculture) are not surprising since rates of return to public-based agricultural 

research are known to be high (e.g. Griliches, 1992).
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For all three dummy variables, the vast majority of estimated parameters are positive.  

As expected, consolidated firms appear to grow faster than average.  Being part of a greater 

organisation, either as a subsidiary or as a holding company, has a lesser - but still positive -

effect on firm growth.

V. Conclusions

The main objective of this paper was to take a bird’s eye view of clustering in the UK, and 

examine whether companies located in strong clusters (or districts) performed better than 

average.  In particular our focus is on the two questions set out in the introduction.  First, do 

the results from earlier studies of computing, biotechnology, aerospace and financial services 

generalise to a broad range of industries.  Specifically, do we continue to find that own-sector 

effects are positive while other-sector effects are negative?  Second, which sectors show the 

strongest clustering effects?

Starting with first question, we find that in slightly under half of the industries, there 

is a positive and statistically significant association between firm growth and own-sector 

employment.  In most of the other industries, there is no significant association, though in a 

few there is a significant but negative association.  Turning to the other-sector effects, we find 

that in almost two thirds of industries, there is no significant association between firm growth 

and other-sector employment.  But in those remaining sectors where there is a significant 

association, it is generally a negative one.

We showed that a weak rule of thumb applies in the great majority of industries.  In 

most industries we find that own-sector effects are positive or insignificant, while other-sector

effects are negative or insignificant.  In short, if there are any significant clustering effects, 

this is the form they generally take.



23

A positive own-sector employment effect can be interpreted as evidence of 

localisation (or Marshall-Arrow-Romer) externalities.  In contrast, a positive other-sector 

employment effect can be interpreted as evidence of urbanisation scale (or Jacobs) 

externalities.  But in addition, it is common to use diversity measures to test for urbanisation 

effects.  In this paper, we have therefore taken two different approaches to measuring 

urbanisation externalities: a scale measure (the other-sector effect) and a diversity measure 

(the Herfindahl index).  In general, the scale measure of urbanisation appears to be detrimental 

to firm growth, while the diversity of employment measure appears to be beneficial for firm 

growth.

Turning to our second question, where are the strongest cluster effects?  We saw that 

many of these are to be found in manufacturing or manufacturing-related industries, or in key 

parts of the infrastructure, but fewer are in services.  By contrast, negative own-sector cluster 

effects are found in a few service industries.

In conclusion, we can draw out one implication of these findings for policy.  In the 

UK, the development of successful industry clusters is seen as an important part of industrial 

policy (DTI 1999, 2001; DETR 2000).  Our results suggest that in slightly under half of the 

industries considered, companies co-located with others from their own sector tend to grow 

faster than average.  We could describe these as industries that enjoy beneficial cluster effects.  

As noted already, they tend to be concentrated in manufacturing or key parts of the 

infrastructure.  Fewer service industries enjoy these beneficial cluster effects, and they are 

concentrated in utilities, transportation, retail and financial services.  The rationale for cluster 

policy would appear strongest when it is focussed on those industries that enjoy such cluster 

effects.
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TABLE 1

Description of Variables Used in Model

Variable Units Description Source Year

CieEmp Units Number of employees of each firm [en] Bureau van Dijk FAME database 1998

Age Units Number of years since the incorporation of the firm [agen] Bureau van Dijk FAME database 1998

DCons Discrete
Dummy variable taking the value 1 if the company files consolidated accounts, and 0 

otherwise
Bureau van Dijk FAME database 1998

DHold Discrete Dummy variable taking the value 1 if the firm is a holding company, and 0 otherwise Bureau van Dijk FAME database 1998

DSubs Discrete Dummy variable taking the value 1 if the company is a subsidiary, and 0 otherwise Bureau van Dijk FAME database 1998

OwnEmp Units
Total employment in own two-digit UK SIC (rev.  1992) industrial sector per NUTS 3 

region
[eic] ONS, UK Annual Employment Survey 1998

OthEmp Units
Total employment in other two-digit UK SIC (rev.  1992) industrial sectors per NUTS 

3 region, i.e.  without own employment
[ejc] ONS, UK Annual Employment Survey 1998

Emp2Herf Index
Employment diversity measured by a Herfindahl index of two-digit UK SIC (rev.  

1992) industrial sectors per NUTS 3 region
ONS, UK Annual Employment Survey 1998

R&D Millions Total expenditure in research and development per NUTS 2 region ONS 1997

R&DBus Millions Expenditure in private research and development per NUTS 2 region ONS 1997

R&DGov Millions Expenditure in public research and development per NUTS 2 region ONS 1997

R&DHE Millions Expenditure in higher education research and development per NUTS 2 region ONS 1997

PopDens Inhabitants/km2 Population density per NUTS 3 region

[Vv]

ONS 1997

Di Discrete Sector dummy variables, for each 60 two-digit UK SIC (rev.  1992) codes [Di] ONS, UK Annual Employment Survey 1998

Dc Discrete Cluster dummy variables, for each NUTS 3 region [Dc] Bureau van Dijk FAME database 1998

Note : The means of the cluster variables such as OwnEmp, OthEmp, Emp2Herf, PopDens, R&D, R&DBus, R&DGov and R&DHE were weighted using the number of firms 

in each cluster.
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TABLE 2

Elementary Statistics

Variable n Mean Standard Deviation Minimum Maximum

CieEmp 137816 186 2020 1 185580

Age 137816 20.25 17.83 0 99

DCons 137816 0.1148 0.3188 0 1

Dhold 137816 0.2046 0.4034 0 1

Dsubs 137816 0.4018 0.4903 0 1

OwnEmp 137816 73161 145620 1 640326

OthEmp 137816 1259081 1327576 24406 3614792

Emp2Herf 137816 0.0615 0.0076 0.0470 0.0785

R&D 137816 811.85 531.26 6.17 1514.08

R&DBus 137816 470.42 273.87 2.59 978.41

R&DGov 137816 81.28 66.40 0.01 260.80

R&DHE 137816 260.15 293.40 0 729

PopDens 137816 1730.78 1812.08 7.83 4513.42
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TABLE 3

Summary of Own Sector (Localization) and Other Sector (Urbanization) Effects

by Two-Digit Industrial Sector

Coefficient on Own Sector Employment (localisation effects)

negative non significant positive

2 2 3

S55 (**, *) M23 ( , **) M17 (** , **) S62 (* , ***)

S70 (*** , **) M27 ( , *) M30 (*** , **)p
o
si

ti
v
e

2 25 9

S37 (*** , ) M02 ( , ) S41 ( , ) M01 (*** , ) S61 (*** , )

S63 (** , ) M05 ( , ) S50 ( , ) M14 (** , ) S66 (** , )

M15 ( , ) S51 ( , ) M19 (** , ) S80 (* , )

M20 ( , ) S60 ( , ) M22 (** , )

M21 ( , ) S64 ( , ) M25 (** , )

M24 ( , ) S71 ( , ) M34 (*** , )

M28 ( , ) S72 ( , )

M29 ( , ) S73 ( , )

M31 ( , ) S75 ( , )

M33 ( , ) S85 ( , )

S90 ( , )

S91 ( , )

S92 ( , )

S93 ( , )

S95 ( , )

n
o
n

 s
ig

n
if

ic
a

n
t

0 2 11

M36 ( , **) S65 ( , **) M10 (*** , **) S40 (*** , ***)

M11 (*** , ***) S45 (*** , **)

M18 (*** , *) S52 (* , *)

M26 (*** , ***) S67 (* , *)

M32 (*** , ***) S74 (* , **)

M35 (*** , *)

O
th

e
r-

S
e
c
to

r 
E

m
p
lo

y
m

e
n

t 
(u

rb
a
n

is
a
ti

o
n

 e
ff
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ts

)

n
e
g

a
ti

v
e

Note: *** shows significance at the 1 % level, ** shows significance at the 5 % level and * shows significance at 
the 10 % level.  M represent sectors related to manufacturing (secondary sectors) as well as primary sectors 
(agriculture, mining, etc.), S identify tertiary sectors, mainly services.
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TABLE 4

Summary of Own Sector (Localization) and Diversity (Urbanization) Effects

by Two-Digit Industrial Sector

Coefficient on Own Sector Employment (localisation effects)

negative non significant positive

0 6 3

M02 ( , ***) S60 ( , ***) M17 (** , **)

M23 ( , **) S73 ( , ***) M26 (*** , ***)

M29 ( , **) S91 ( , *) M34 (*** , *)

p
o

si
ti

ve

3 18 14

S37 (*** , ) M05 ( , ) S41 ( , ) M10 (*** , ) S40 (*** , )

S55 (** , ) M15 ( , ) S50 ( , ) M11 (*** , ) S45 (*** , )

S70 (*** , ) M20 ( , ) S64 ( , ) M14 (** , ) S52 (* , )

M21 ( , ) S65 ( , ) M18 (*** , ) S66 (** , )

M24 ( , ) S72 ( , ) M25 (** , ) S67 (* , )

M27 ( , ) S75 ( , ) M30 (*** , ) S80 (* , )

M28 ( , ) S90 ( , ) M32 (*** , )

M31 ( , ) S95 ( , ) M35 (*** , )

M33 ( , )

M36 ( , )

n
o
n

 s
ig

n
if

ic
a
n

t

1 5 6

S63 (** , ***) S51 ( , *) M01 (*** , ***) S61 (*** , *)

S71 ( , *) M19 (** , *) S62 (* , **)

S85 ( , **) M22 (** , ***) S74 (* , **)

S92 ( , *)

S93 ( , *)

C
o
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t 
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t 
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Note: *** shows significance at the 1 % level, ** shows significance at the 5 % level and * shows significance at 
the 10 % level.  M represent sectors related to manufacturing (secondary sectors) as well as primary sectors 
(agriculture, mining, etc.), S identify tertiary sectors, mainly services.
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FIGURE 1 Patterns of Employment Growth, for firms inside and outside clusters
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APPENDIX A

Two-Digit UK Standard Industrial Classification (rev.  1992)

Description
01 Agriculture, hunted and related service activities 40 Electricity, gas, steam and hot water supply
02 Forestry, logging and related service activities 41 Collection, purification and distribution of water
05 Fishing, operation of fish hatcheries and fish farms; Service activities 

incidental to fishing
45 Construction

10 Mining of coal and lignite; Extraction of peat 50 Sale, maintenance and repair of motor vehicles and motorcycles; Retail sale of 
automotive fuel

11 Extraction of crude petroleum and natural gas; Service activities incident to 
oil and gas extraction excluding surveying

51 Wholesale trade and commission trade, except motor vehicles and motorcycles

14 Other mines and quarrying 52 Retail trade, except motor vehicles & motorcycles; Repair of personal goods
15 Manufacture of food products and beverages 55 Hotels and restaurants
17 Manufacture of textiles 60 Land transport; transport via pipelines
18 Manufacture of wearing apparel; Dressing and dying of fur 61 Water transport
19 Tanning and dressing of leather; Manufacture of luggage, handbags, etc.  62 Air transport
20 Manufacture of wood and of products of wood and cork, except furniture; 

Manufacture of articles of straw and plaiting materials
63 Supporting and auxiliary transport activities; Activities of transport agencies

21 Manufacture of pulp, paper and paper products 64 Post and telecommunications
22 Publishing, printing and reproduction of recorded media 65 Financial intermediation, except insurance and pension funding
23 Manufacture of coke, refined petroleum products and nuclear fuel 66 Insurance and pension funding, except compulsory social security
24 Manufacture of chemicals and chemical products 67 Activities auxiliary to financial intermediation
25 Manufacture of rubber and plastic products 70 Real estate activities
26 Manufacture of other non-metallic mineral products 71 Renting of machinery, equipment without operator, personal & household goods
27 Manufacture of basic metals 72 Computer and related activities
28 Manufacture of fabricated metal products, except machinery & equipment 73 Research and development
29 Manufacture of machinery and equipment nec 74 Other business activities
30 Manufacture of office machinery and computers 75 Public administration and defence; Compulsory social security
31 Manufacture of electrical machinery and apparatus nec 80 Education
32 Manufacture of radio, television and communication equipment 85 Health and social work
33 Manufacture of medical, precision & optical instruments, watches & clocks 90 Sewage and refuse disposal, sanitation and similar activities
34 Manufacture of motor vehicles, trailers and semi-trailers 91 Activities of membership organisations nec
35 Manufacture of other transport equipment 92 Recreational, cultural and sporting activities
36 Manufacture of furniture, manufacturing nec 93 Other services activities
37 Recycling 95 Private households with employed persons
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NOTES

                                                

1 This research was funded by Stanford University as part of the SIEPR project on Silicon 

Valley and its Imitators.  We are grateful to the Office of National Statistics for providing 

data.  We acknowledge helpful comments from the associate editor, Simon Parker, and two

anonymous referees as well as from our partners in this research programme, notably Ashish 

Arora, Alfonso Gambardella, Paul Romer, Annalee Saxenian, and also discussions with Gary 

Cook and Naresh Pandit, and the earlier work of Rui Baptista developing econometric models 

of entry, growth and innovation.  None of these, however, are responsible for any remaining 

errors.
2 More complex measures of diversity exist in the literature (see Henderson et al., 1995; 

Glaeser et al., 1992; or Combes, 2000).  In our regressions, we tried these different  measures, 

but the simplest Herfindahl worked best and will be used in this paper.
3 There are two ways to treat the consolidated account problem.  First, holding companies can 

be treated separately from their subsidiaries.  A problem then arises when we encounter 

subsidiaries of subsidiaries.  Second, dummy variables for holding companies and 

consolidated accounts can be introduced.  This second method is preferred because it does not 

reduce the sample size more than is necessary.  Another issue is how we should treat entry by 

and growth of multi-sector firms.  In this study, such companies were only counted in the 

principal sector where the firm was active in the sample year.  That may be an unsatisfactory 

assumption when the firm has diversified from one original sector into others, but in the 

absence of detailed information on such diversification in each firm, this seems a reasonable 

working assumption.
4 We have checked for the robustness of the regressions with respect to outliers that may arise 

from firms filing consolidated accounts, and found no such problem: coefficients and standard 

errors showed only slight variations when such observations were removed.
5 NUTS: Nomenclature des Unités Territoriales Spatiales.  In the UK, NUTS level 1 

corresponds to 11 regions, while NUTS level 3 represents the 65 counties.
6 The use of NUTS level 3 data is an improvement on some previous studies (which used 

NUTS levels 1 and 2), but because of this regional disaggregation, we had to compromise on 

the industrial disaggregation.  In an ideal world, we would have NUTS level 3 data using 3- or 
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4-digit industrial codes.  However, for the present study the 56 two-digit industrial codes 

(1992 rev.) give a sufficient disaggregation for our immediate interest.
7 A description of these codes is provided in appendix A.
8 This is somewhat unsatisfactory, since the cluster is generally smaller than a NUTS 2 area -

really more in line with a NUTS 3 area.  However, studies such as Glaeser et al. (1992) and 

Jaffe et al. (1993) have shown that external effects of the kind that are explored here seem to 

grow stronger as the regional unit becomes smaller.  Any bias introduced here should be to 

underestimate the strength of clustering effects.  Nevertheless, the use of regions as a spatial 

unit has some administrative sense.  In some countries, for example, government policies and 

incentives towards new industries are to some extent defined at a regional level.  
9 For England and Wales, this data was obtained from the British office, while for Scotland, 

population estimates were provided by the Scottish office.
10 One of the problems encountered with data published by the Office of National Statistics, 

especially within Regional Trends, is the change in the classification of the regions.  For a 

number of years now, and probably since the introduction of the Scottish Parliament and the 

Welsh Assembly, the boundaries of various ‘official’ regions in Scotland and Wales have 

changed and no longer correspond strictly to the NUTS level 3 regions.  It was however 

possible to obtain proxy measures for the NUTS level 3 regions from the various government 

offices responsible to provide this information to Eurostat, the European office of statistics.
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