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RÉSUMÉ 

Cette thèse vise à explorer le rôle et l’impact de la collaboration au niveau des activités liées à 

la protection de la propriété intellectuelle par le biais de brevets sur la « qualité » de ces derniers 

dans les domaines de la biotechnologie et de la nanotechnologie au Québec. Nous examinons ici 

plusieurs mesures ou proxy normalement associés à la « qualité » des brevets. La thèse vise à 

répondre à la question suivante : Existe-t-il des associations possibles entre les attributs de la 

collaboration université/industrie et la qualité d’un brevet? Le réseau de collaboration regroupe 

des scientifiques œuvrant au sein des universités et des industries (Motohashi & Muramatsu, 

2012). De plus, la propriété de brevets d’origine “universitaire” par les entreprises est souvent 

considérée comme l’un des canaux essentiels des liens université-industrie (Bray & Lee, 2000; 

Bulut & Moschini, 2009; Y. Wang, Hu, Li, Li, & Li, 2015; Y. Wang, Huang, Chen, Pan, & 

Chen, 2013; Y. Wang, Pan, Chen, & Gu, 2013). Selon des études exploratoires antécédentes en 

matière de brevets et de propriété intellectuelle, on recense relativement peu d’articles portant sur 

l’impact des réseaux de collaboration sur les activités de brevetage et sur la « qualité » des 

brevets au Canada. Dans cette thèse, nous examinons l’impact de ces réseaux, représentés par les 

liens entre des inventeurs et détenteurs de brevets avec les universités et les entreprises. Des 

facteurs tels le financement, le nombre d’années d’expérience de l’inventeur, les caractéristiques 

des réseaux de co-invention et de co-publication sont considérés afin d’estimer la « qualité » des 

brevets issus de la collaboration université/industrie au Canada. Sterzi (2013) a constaté que les 

brevets universitaires appartenant à des entreprises sont d’une qualité supérieure lorsqu’ils sont 

initialement assignés aux universités. Cette thèse vise donc aussi à mesurer l’impact des divers 

types de cessionnaires de brevets sur la « qualité » de ceux-ci, tout en considérant les liens 

université-entreprise.  

Nos travaux ont étudié la « qualité » des brevets générés par les inventeurs universitaires au 

Canada et qui ont été assignés à une université ou au gouvernement et les ont comparés à la 

qualité des brevets détenus uniquement par l’industrie. La première question que cette thèse 

aborde est la suivante: les brevets qui sont générés par au moins un inventeur issu du milieu 

universitaire (résidant au Canada) et assignés à une université sont-ils d’une « qualité » moindre 

que ceux appartenant seulement à une entreprise? Également, en considérant le rôle du 

gouvernement en tant qu’entité du secteur public, nous posons la seconde question suivante : les 
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brevets qui sont générés par au moins un inventeur issu du milieu universitaire (résidant au 

Canada) et assignés au gouvernement sont-ils d’une « qualité » moindre que ceux appartenant 

seulement à une entreprise? Nous posons également des questions similaires afin de mesurer 

l’impact des cessionnaires gouvernementaux et universitaires sur la « qualité » des brevets, afin 

de comparer les impacts des cessionnaires publics par rapport aux cessionnaires industriels sur la 

« qualité » de l’invention. 

En outre, cette thèse cherche à expliquer comment les caractéristiques spécifiques des 

inventeurs influencent la qualité des brevets issus de la collaboration université/industrie. Par 

conséquent, cette thèse vise également à répondre à la question suivante : comment les 

caractéristiques des chercheurs affectent leur capacité à générer des brevets de meilleure 

« qualité »? Des variables telles que le nombre d’années d’expérience et la collaboration avec de 

prestigieux inventeurs détendeurs de brevets sont considérées. De plus, nous avons observé 

l’impact des caractéristiques du réseau de co-invention et de co-publication sur la « qualité » des 

brevets. Nous avons donc mesuré si les brevets générés par les inventeurs situés dans des réseaux 

de co-inventeurs ou de co-auteurs très centraux sont d’une « qualité » supérieure à celle des 

brevets générés par les inventeurs moins centraux. En outre, cette recherche vise à déterminer si 

les brevets issus d’une combinaison brevet-article ou d’une combinaison brevet-subvention sont 

d’une « qualité » supérieure à ceux qui n’ont pas de telles combinaisons, soit des articles et 

brevets publiés par les mêmes équipes sur les mêmes thèmes de recherche et objets d’application. 

Pour évaluer l’impact des attributs de la relation université-industrie sur la « qualité » des 

brevets, notre méthodologie consiste en l’estimation de régressions binomiales négatives 

classiques et à zéro-augmenté, Tobit, et à variables instrumentales pour les moindre carrés 

ordinaires (2SLS) afin de prendre en considération l’endogénéité potentielle de nos modèles. Nos 

mesures ou proxy de la « qualité » des brevets comprennent le nombre de citations, le nombre de 

revendications, un indice de type Herfindahl des citations en amont, et un indice de type 

Herfindahl des citations en aval. Ce type d’indice mesure la diversité des documents cités par un 

brevet en particulier et la diversité des brevets qui citent ce brevet.  

Nos résultats montrent que les brevets générés par au moins un inventeur universitaire et 

appartenant au secteur public (gouvernement et université) citent une moins grande diversité de 

documents et sont moins cités que ceux issus du secteur privé (industriels). Nos résultats 
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montrent aussi que les brevets détenus par les institutions publiques sont moins diversifiés que 

les brevets détenus par le secteur privé. Par conséquent, les brevets attribués aux firmes sont 

susceptibles d’avoir obtenu plus de citations que les brevets de sources publiques (Popp, 2006; 

Popp, Santen, Fisher-Vanden, & Webster, 2013). Nos résultats sont cohérents avec les études 

antérieures de Popp (2006) and Popp et al. (2013). 

Nous avons utilisé la méthode « fréquence de termes et fréquence de documents inverse » (TF-

IDF) qui est une technique d’exploration de données classique permettant de mesurer la 

similitude entre les différentes combinaisons de paires de brevets et d’articles, afin d’identifier 

les paires brevet-article que nous allons utiliser. Nos résultats démontrent que l’impact des paires 

brevet-article sur la « qualité » des brevets est négatif pour les variables nombre de citations et 

nombre de revendications. 

De même, nous avons utilisé la méthode TF-IDF pour mesurer la similitude des brevets et des 

subventions pour trouver les paires brevet-subvention. Nos résultats suggèrent qu’il n’y a un effet 

négatif des paires brevet-subvention sur le nombre de citations. Cependant, les paires brevet-

subvention affectent positivement l’indice Herfindahl des citations obtenues.  

 

Mots clés : collaboration université–industrie, qualité des brevets, propriété des brevets, 

cessionnaires universitaires, cessionnaires gouvernementaux, cessionnaires industriels, paires 

brevet-article, paires brevet–subvention, biotechnologie, nanotechnologie 
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ABSTRACT 

This thesis aims to explore the role and impact of collaborative patenting on the “quality” of 

Biotechnology and Nanotechnology patents in Quebec. We examine a number of measures or 

proxy measures that are normally associated with the “quality” of patents. This study seeks to 

answer the following question: Is there any association between university–industry 

collaboration attributes and a patent’s quality? The collaboration network includes university 

and industrial researchers and scientists (Motohashi & Muramatsu, 2012). Furthermore, the 

ownership of academic patents by corporations is often addressed as one of the essential channels 

of university–industry ties (Bray & Lee, 2000; Bulut & Moschini, 2009; Y. Wang et al., 2015; Y. 

Wang, Huang, et al., 2013; Y. Wang, Pan, et al., 2013). According to prior exploratory studies in 

patenting and intellectual property, there is a lack of attention given to the impact of the co- 

patenting network on the patent “quality” in Canada. In this research we explore the impact of 

these networks, represented by inventors’ and assignees’ ties to universities and corporations. 

Furthermore, particular factors including funding, inventors’ career age, characteristics of the 

inventors’ co-network, and publications are used to estimate the “quality” of joint patents granted 

to Canadian inventors and/or organisations. Sterzi (2013) found that academic patents owned by 

firms are of a higher quality when initially assigned to the universities. This study aims to 

measure the impact of the patent ownership structure on patent “quality”, when the university–

industry linkage is considered. 

We investigated the “quality” of patents generated by academic inventors in Canada and 

assigned to the university or the government and compared it with the “quality” of patents 

privately held by industry. The first question that this research addresses is: Are patents 

generated by at least one academic inventor (residing in Canada) and assigned to the university 

of a lesser “quality” than those owned by a firm? Likewise, in regard to the role of government, 

as an entity of the public sector, we pose the following question: Are patents generated by at 

least one academic inventor (residing in Canada) and assigned to the government of a lesser 

“quality” than those owned by an industry firm? To answer the above questions we estimated 

the impact of government assignees and academic assignees on patent “quality”, in order to 

compare the impacts of the public assignees and industrial assignees on invention “quality”. 
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Furthermore, this study seeks to explain how the inventors’ specific characteristics influence 

the “quality” of patents that stem from university–industry collaboration. Therefore, this thesis 

also aims to answer the following question: How do the researchers’ characteristics affect their 

opportunities to generate patents of a higher “quality”? Variables such as career age and 

collaboration with prestigious patent inventors are considered. Moreover, we observed the 

impact of the co-invention and co-authorship network characteristics on patent “quality”. We 

therefore measured whether patents generated by inventors that are highly centralized in the co-

inventor or co-authorship networks are of a higher “quality” than patents created by inventors 

that occupy less centralized positions. Furthermore, this research aims to assess whether patents 

issued from a patent–paper pair or patent–grant pair are of a higher “quality” than those without 

such a link, i.e. articles and patents published by the same teams and on the same research topics 

and application objects. 

To assess the impact of university–industry linkage attributes on patent “quality”, our 

methodology uses classic and zero-inflated negative binomial regressions, Tobit, and two-stage 

least-squares regressions (2SLS) to account for potential endogeneity problems. Our measures or 

proxies of patent “quality” include the number of forward citations, the number of claims, a 

Herfindahl index of backward citations, and a Herfindahl index of forward citations. This type of 

index measures the diversity of documents cited by the patent, and the diversity of patents that 

cite this particular patent. 

Our findings show that patents generated by at least one academic inventor and owned by the 

public sector (government and university) are of a lesser “quality” measured by both number of 

forward citations and a Herfindahl index of backward citations, than those of private (industrial) 

assignees. Our findings also reveal that patents owned by public institutions are less diversified 

than privately held patents. Therefore, the patents assigned to the corporations are likely to have 

obtained more citations than public patents (Popp, 2006; Popp et al., 2013). Our results are 

consistent with the former studies of Popp (2006) and Popp et al. (2013). 

We used the Term Frequency and Inverse Document Frequency (TF-IDF) method as a classic 

data mining technique to measure the similarity between patents and papers, in order to identify 

the patent–paper pairs. Our results show that the impact of patent–paper pairs on patent “quality” 

is negative for the number of forward citations and number of claims variables.  
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Likewise, we used the TF-IDF method to measure the similarity of patents and grants to find 

the patent–grant pairs. Our results suggest there is a negative effect of patent–grant pairs on the 

number of forward citations. In contrast, patent–grant pairs positively affect the Herfindahl index 

of forward citations.  

 

Keywords: University–Industry Collaboration, Patent Quality, Patent Ownership, Academic 

Assignees, Government Assignees, Industrial Assignees, Patent–Paper Pairs, Patent–Grant 

Pairs, Biotechnology, Nanotechnology 
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 INTRODUCTION CHAPTER 1

Both biotechnology and nanotechnology are strongly science-based and useful in various other 

technologies (Motoyama, 2014). In this research, both the biotechnology and nanotechnology 

industry in Canada are examined.  

The biotechnology sector has been rapidly growing, with a market of $200 billion in 2009, 

showing an annual growth rate of 10.2% during the period 2005 to 2009 (Soh & Subramanian, 

2014). The health care and medical domains are the largest biotechnology application sectors, 

covering 66.2% of total biotechnology market value (Silber, 2010; Soh & Subramanian, 2014). 

The majority of the biotechnology firms located in Canada have been established from spin-offs 

of the regional universities and research facilities, such as the University of British Columbia 

(UBC). The annual research funding assigned to UBC reached CAD$350 million, an increase of 

over 250% over the previous 5 years (Groote & Gee, 2005). The provincial government in BC 

allocated over CAD$450 million for life-science researches in BC, showing the high priority of 

the governmental sector in developing biotechnology in that province (Groote & Gee, 2005). 

Canadian biotechnology firms are however predominantly located in Quebec and Ontario (L. A. 

Hall & Bagchi-Sen, 2002). 

Regarding nanotechnology, Genet, Errabi, and Gauthier (2012) found that 90% of all 

nanotechnology SME firms are located in Europe, the US and Canada. Large and very large 

nanotechnology firms are mostly situated in Europe (48%), US/Canada (24%), and Asia (21%) 

(Genet et al., 2012). The US, as a leader of nanotechnology among the world, considers 

nanotechnology as one of the “22 National Key Technologies and Strategic Technologies in 

2005” (Liu & Guan, 2016, p. 222). More than ten government agencies in the US supported the 

World Technology Evaluation Center at Loyola College to work on nanotechnology projects 

during 1996–1998 (Liu & Guan, 2016). Liu and Guan (2016) analyzed inter-organizational 

partnership in the field of nanoenergy in the US, and found collaboration between 

nanotechnology partners was fragmented across various integrated inter-institutional 

collaboration network components. The authors investigated the collaboration between different 

players engaging in small components as a salient factor. They found that particular universities 

and corporations are located in the center of the network, serving as a bridge between different 

entities. The components are highly integrated and all of the partners can reach each other 
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directly and indirectly. Thus, information exchange can span the network widely and very fast 

(Liu & Guan, 2016). According to the network observations, the University of California and 

Massachusetts Institute of Technology (MIT) were located in the center and served as a bridge to 

diffuse the knowledge across the network (Liu & Guan, 2016).  

Like nanotechnology, biotechnology as a science-based industry is an interesting, 

multidisciplinary field of study in the university–industry linkages (UILs) literature (Soh & 

Subramanian, 2014). UILs significantly affect economic growth in science and technology-based 

sectors (Cohen, Nelson, & Walsh, 2002; Mansfield, 1992; Soh & Subramanian, 2014). 

Transferring universities’ discoveries to industry is essential in the life sciences, in order for 

inventions to be commercialized (George, Zahra, & Wood Jr, 2002; Murray, 2002; Soh & 

Subramanian, 2014). Scholars have found that university–industry collaboration leads to new 

product development as well as generating patents (Deeds & Hill, 1996; Shan, Walker, & Kogut, 

1994; Soh & Subramanian, 2014). Particularly in the biotechnology sector, firms and universities 

can gain important benefits from their alliances, especially as biotechnology firms have a 

considerable experience in engaging in UILs (Rothaermel & Deeds, 2006; Soh & Subramanian, 

2014). Various studies show that collaboration with industry and among academic scientists is 

crucial to develop and maintain a strong biotechnology domain (Liebeskind, Oliver, Zucker, & 

Brewer, 1996; Oliver, 2004; Zucker, Darby, & Armstrong, 2002). Different kinds of 

collaboration are required, including the participation between academic scholars at the same 

university, collaboration of academic scientists between different universities, and the alliance 

between academic scientists and their industrial partners (Oliver, 2004). 

Zavale and Macamo (2016) assessed the kind of knowledge university and industry transfers 

through the UILs in low-income and developing countries, and how it is transferred. They 

categorized the interaction channels in three groups: embodied knowledge, disembodied 

knowledge and resources (Zavale & Macamo, 2016). Embodied knowledge is structured 

according to informal and personal interaction of scientists at universities with their partners 

within firms (Zavale & Macamo, 2016). This knowledge is mostly shaped through informal 

meetings, academic consultation and student internships in companies (Zavale & Macamo, 

2016). Disembodied knowledge is science-based and produces codified knowledge such as 

patents (Zavale & Macamo, 2016). This knowledge enables the licensing of academic patents by 

corporations, as well as co-authorship of articles by academic and industrial scientists (Zavale & 
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Macamo, 2016). As a third channel, resources include funding and contracting to universities for 

research projects, or assigning grants for equipment and infrastructure to universities and 

academic research facilities (Zavale & Macamo, 2016).  

Researchers have found that in low-income and developing countries, UILs are essentially 

structured by embodied knowledge transfer involving informal and personal interaction rather 

than disembodied knowledge (Kruss, Adeoti, & Nabudere, 2012; Zavale & Macamo, 2016). The 

low-income countries lack sufficient infrastructure, policies to protect university and industry 

interactions, and resources to build UILs. Therefore, the developing and less developed countries 

hardly engage in UILs as a knowledge-intensive process, and university and industry 

participation instead is based on informal interactions (Kruss et al., 2012; Zavale & Macamo, 

2016). According to (Zavale & Macamo, 2016), government intervention is crucial to build 

effective UILs. Government can take action by defining specific rules and policies by which to 

engage and to connect all partners and networks to shape the embodied, disembodied and 

resource knowledge-based UILs (Zavale & Macamo, 2016).  

Likewise, various scholars have explored different university and industry partnership channels 

and their scope in most developed countries (Hershberg, Nabeshima, & Yusuf, 2007; Veugelers 

& Del Rey, 2015; Zavale & Macamo, 2016). The licensing of academic scientists’ patents by 

industry is considered as one of university and industry interaction channels (Bray & Lee, 2000; 

Bulut & Moschini, 2009; Y. Wang et al., 2015; Y. Wang, Huang, et al., 2013; Y. Wang, Pan, et 

al., 2013). 

The aforementioned studies show there is no sole university–industry collaboration channel. 

Some scholars divided the UILs as market-based or non-market-based. Cases where corporations 

contracted universities, or where industry licensed patents, were associated with the market-

based view (Mowery & Ziedonis, 2015). Various scholars analyzed the impact of UILs on the 

academic performance of the universities in terms of number of publications and number of 

article citations (Salimi, Bekkers, & Frenken, 2015). Some former scientists measured the impact 

of university–industry collaboration on the performance of the corporations (Chai & Shih, 2016; 

George et al., 2002; Motohashi, 2005). The university–industry interaction can be studied as a 

dual interaction, with effects on both sides (Chai & Shih, 2016). A university is not an entity that 

is exogenous to industry, i.e. it can be considered as an endogenous variable which can be 
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influenced by industry (Chai & Shih, 2016). In the literature on UILs, some researchers have 

observed the impact of university and industry linkage on innovation outcomes (Motohashi & 

Muramatsu, 2012).  

There is extensive literature that measures innovation performance, patent quality, patent value, 

and innovation importance using various proxy measures; there are overlaps among mentioned 

domains and the boundaries are blurred (Hagedoorn & Cloodt, 2003). Significant numbers of 

researchers use patent citation as a measure of innovation performance (Hagedoorn & Cloodt, 

2003). Patent citation is also commonly used as a proxy to measure patent quality (Hagedoorn & 

Cloodt, 2003). Likewise, Petruzzelli, Rotolo, and Albino (2015) measured innovation importance 

according to the number of forward patent citations. Scholars found that there is a positive 

association between patent importance and the number of patent citations (Briggs, 2015; 

Hagedoorn & Cloodt, 2003; Harhoff, Narin, Scherer, & Vopel, 1999). Therefore, a patent 

citation seems to be the preferred and most commonly used indicator to measure patent quality 

and importance (Briggs, 2015; Mariani & Romanelli, 2007; Schettino, Sterlacchini, & Venturini, 

2013). 

Petruzzelli et al. (2015) assessed patent importance using various drivers, including the number 

of claims and technology scope, leading a patent to have a strong influence in subsequent 

innovation development (Petruzzelli et al., 2015). Scholars have investigated the influence of 

firms engaged in several technology domains on patent quality, and patent importance in 

subsequent technologies, bearing in mind the overlaps in the existent literature regarding patent 

quality and importance (Petruzzelli et al., 2015; Singh, 2008). Scientists have used the breadth of 

technology measured by 1 minus the Herfindahl index of backward citations to calculate the 

technological variety of patents as another patent quality indicator (Petruzzelli et al., 2015; 

Singh, 2008).  

Researchers reveal the ability to extensively search the information from different domains to 

provide knowledge accumulation for firms and scientists (Fleming, 2001), leading to the 

generation of patents of outstanding importance (Petruzzelli et al., 2015). Singh (2008) also 

measured the impact of the Herfindahl index of the regional distribution of patents across 

different geographical locations on patent quality. Singh’s (2008) investigations showed that 

cross-regional R&D collaboration has a moderating effect on R&D distribution, which is 
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negatively related to innovation quality. The lack of cross-regional knowledge integration is a 

potential explanation for lower innovation value for distributed patenting activities across various 

geographical locations (Singh, 2008). Petruzzelli et al. (2015) showed that a greater technology 

scope is associated with a greater number of forward citations from subsequent non-

biotechnology patents. 

Bonaccorsi and Thoma (2007) used the number of claims to measure patent quality. Inventors 

have to demonstrate the novel aspect of their invention in the claims in order to be highly legally 

protected. A higher number of claims increases the probability that scientists can rely on the 

patent, leading the patent to be cited more by subsequent patents (Petruzzelli et al., 2015). 

Considerable efforts have also been undertaken to examine U–I collaboration, with the result 

that there is no single channel observed and used to transfer knowledge: University–industry 

knowledge interactions, licensing of academic patents by corporations, and patent–publication 

links, are all highlighted as science-based UILs. The Bayh–Dole Act passed during the 1980s 

gives permission to federal contractors including universities to claim the patents funded by the 

government, providing more authority for universities to keep their intellectual property rights 

(Kenney & Patton, 2009). Moreover, it standardizes procedures for the researches funded by 

government, to better control and clarify the process of the projects (Kenney & Patton, 2009; 

Sampat, Mowery, & Nelson, 2004). Through granting licensing authority to the universities, the 

number of patents emanating from universities and research facilities increased, although the 

quality of patents held by universities is less known (Motohashi & Muramatsu, 2012). The 

measurement of innovation quality varies across different regions and technology domains 

(Petruzzelli et al., 2015; Popp, 2006; Popp et al., 2013). For instance, Petruzzelli et al. (2015) 

examined how determinant factors of patent quality differently influence patent citations across 

different domains. Petruzzelli et al. (2015) used six factors to analyze patent importance, 

including: technology breadth, novelty, number of claims, scope, use of the scientific knowledge 

in generating the patents, and the existence of collaboration for the invention. Their study 

revealed that the number of claims positively affects an invention’s influence as measured by the 

patent’s number of forward citations in non-biotechnology fields, while this factor has an 

inverted U-shaped effect in the biotechnology field. 
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We found no adequate literature that measures the impact of university and industry linkages 

on patent quality in biotechnology and nanotechnology in Canada, while controlling for the 

patent ownership structure and patent–publication links. Magerman, Looy, and Debackere (2011) 

reported no significant difference between the forward citations of patents belonging to patent–

publication pairs and those of patents that are not associated with these pairs. In this research we 

measure, or proxy for, the “quality” of patents using different factors including forward patent 

citations, number of backward citations, and number of claims (Dang & Motohashi, 2015; 

Hirschey & Richardson, 2004; Narin, Noma, & Perry, 1987; Schettino et al., 2013; Wu, Chang, 

Tsao, & Fan, 2016). We also contribute to the measurement of patent “quality” by using the 

patents’ technological breadth identified by 1 minus the Herfindahl index of technological 

concentration.  

In addition, we sought to answer whether academic patents that are privately held by 

corporations are of a higher quality than that owned by public assignees. The ownership of 

academic patents by corporations is one of the UILs channels examined in this study. We 

compared the impact of patents assigned to universities and government with that of industrial 

assignees for patents generated by academic inventors residing in Canada. The novel method in 

the technology-science literature coined “patent–paper pairs” was used to investigate the link 

between patents and scientific publication. “Patent–paper pairs” were associated with the 

inventor(s) of a patent listed as the author(s) of the article(s) in a similar subject within a short 

time frame after a patent was granted (Lissoni & Montobbio, 2006; Magerman et al., 2011; 

Magerman, Looy, & Debackere, 2015; Murray, 2002). 

The remainder of this thesis is structured as follows: Section 2 describes the conceptual 

framework of this study, including a literature review on the patent ownership structure, patent–

paper pairs, UILs, and patent quality which justifies the proposed hypotheses of this 

investigation; Section 3 explains the research questions and proposed hypotheses; Section 4 

describes the data and methodology; in Section 5, the data’s descriptive statistics are presented; 

Section 6 summarizes the results; Section 7 shows the general discussion; and finally in Section 

8, the conclusions are highlighted. 
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 LITERATURE REVIEW CHAPTER 2

 

2.1 Biotechnology and nanotechnology in Canada 

This section is focused on Canadian biotechnology and nanotechnology. Biotechnology started 

in laboratories in 1970 in universities with the support of public research institutions, and then 

this industry started to expand to include small science-based corporations (Gilding, 2008). This 

technology was especially the target of research institutes and universities, venture capital firms 

and multinational pharmaceutical corporations, benefiting from collaborations across regions and 

countries in drug discovery and the creation of commercial products (Gilding, 2008). 

Biotechnology is an enabling technology involved in several domains. A large number of 

scientists are working in biotechnology firms’ R&D divisions to initiate new products aimed at 

generating more revenues (Traore & Rose, 2003). The number of biotechnology firms located in 

Canada increased from 282 in 1997 to 385 in 1999, rising 27% for this period, and their revenues 

more than doubled (Traore & Rose, 2003). Their revenues increased from CAD$813 million to 

CAD$1.9 billion (Traore & Rose, 2003). The latest data for the biotechnology domain in Canada 

was gathered in 2005. Statistics Canada revealed Canada gained CAD$4.2 billion in revenue and 

employed 13,000 people, of which 8,391 of employees hired in the private and public sector 

worked in R&D in the biotechnology domain in 2005 (BiotecCanada, 2015).  

Biotechnology is a process that works on living organisms to produce products; therefore, it 

represents the integration of life science and technology (Dorockis & Boguś, 2014). The 

technology has applications ranging from food starter cultures and genetic modification to 

pharmaceuticals and detergents, as well as products for agriculture and forestry (Dorockis & 

Boguś, 2014). Biotechnology requires high-quality research infrastructure with qualified 

scientists, taking a high investment risk to accomplish biotechnology projects (Dorockis & 

Boguś, 2014). While the US, Canada and specific Western European countries, as developed 

countries, hold an outstanding position in the biotechnology domain, many developing countries 

have also recently started to invest in the biotechnology domain; for instance, China, Malaysia, 

India, Singapore and the Philippines (Dorockis & Boguś, 2014). In terms of biotechnology, the 

US holds the largest and most diversified position in the world. Canada is 5 years behind the US 
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in terms of development in the biotechnology sector (L. A. Hall & Bagchi-Sen, 2002). The 

biotechnology industry in Canada has doubled in size between 1994 and 1997 and the number of 

firms has increased from 121 to approximately 300; while revenues for biotechnology increased 

from CAD$353 million to CAD$1.1 billion (L. A. Hall & Bagchi-Sen, 2002). Today, the 

biotechnology sector in Canada contributes CAD$40 billion to the economy (BiotecCanada, 

2015). 

The strategic collaboration of universities, industries and government in Quebec (especially 

Montreal and Quebec City) position the province as a leader in the bio-pharmaceutical sector in 

Canada, with a strong technological infrastructure is also in place in Ontario (especially 

Toronto), while British Columbia (mainly Vancouver) contributes valuable university–industry 

research (L. A. Hall & Bagchi-Sen, 2002). Biotechnology is a science-based, multidisciplinary 

industry. There are various studies that show the collaboration between academic and industry 

scientists is crucial in biotechnology to develop and maintain the technology. Therefore, different 

kinds of collaboration are required, including the participation between academic scholars at the 

same university, collaboration of academic scientists between different universities, and the 

alliance between the academic scientists and their industrial partners (Oliver, 2004).  

Nanotechnology is an emerging technology that enables the manufacture of new products and 

tools. Considering the impact of this technology on economic improvement, over CAD$3 billion 

of government funding was assigned to nanotechnology up to 2007 (Niosi & Reid, 2007). 

Nanotechnology is a technology entailing work at the 0.1–100 nm scale (Niosi & Reid, 2007). 

“Nanotechnology involves the intentional manufacture of large-scale objects whose discrete 

components are less than a few hundred nanometers wide” (Niosi & Reid, 2007, p. 432). As 

such, the technology depends upon research and tools from diverse fields including molecular 

biology, electronics, materials science, and physics (Niosi & Reid, 2007), using engineered nano-

materials in engineering, space, medicine and technology applications (Bera & Belhaj, 2016).  
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2.2 Biotechnology and nanotechnology patents 

The Canadian Intellectual Property Office (CIPO) is a Special Operating Agency (SOA) of 

Industry Canada and it has two goals: (a) administrating the Intellectual Property (IP) rights 

including patents, industrial designs, and trademarks; and (b) facilitating the use of the 

intellectual property system and its utilization (McMaster, 2007). About 7% of all firms located 

in Canada use intellectual property to keep the novelty rights of their innovations (McMaster, 

2007). Among the 39,600 patent applications filed in Canada (including foreign inventors), only 

2% were filed only in Canada, while 95% were also filed in the US (McMaster, 2007). 

Canadians filed 8,200 patent applications in the US in 2004, 50% more than the patents filed in 

Canada (McMaster, 2007), and corresponding to the sixth rank in the world after the US 

(190,600), Japan (65,000), Germany (20,000), China (17,000) and South Korea (17,000) 

(McMaster, 2007). During the period 1963 to 2015, Canada filed a total of 124,000 patents in the 

US, ranking eighth after the US (6 million including U.S. and foreign origin inventors and 3 

million generated by U.S. based inventors), Japan (1 million), Germany (408,000), the United 

Kingdom (165,000), France (153,000), South Korea (152,000), and Taiwan (139,000) (US Patent 

and Trademark Office, 2015). 

 

2.2.1 Patent Quality 

In large-scale patent-econometric studies, scholars use different indicators to measure or to 

proxy for patent quality. For instance, Narin et al. (1987) used the number of backward citations 

to measure patent quality, i.e., the number of previous patents that are quoted as references in a 

focal patent document (Narin et al., 1987). Other scholars use number of backward citations in 

the non-patent literature to examine patent quality (Carpenter, Cooper, & Narin, 1980; Hirschey 

& Richardson, 2004). Because the non-patent literature is scientific in nature, this measure 

indicates the scientific grounding of a patent. Taking a different approach, Manuel Trajtenberg 

(1990) applied incremental forward citations as an attribute to estimate patent quality. The 

number of patent forward citations tallies the number of times that a focal patent is cited in 

subsequent patents within a period of 5–10 years after the patent application year (Manuel 

Trajtenberg, 1990). 
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Hirschey and Richardson (2001) used the Current Impact Index (CII), Science Linkage (SL), 

and Technology Cycle Time (TCT) indicators to examine patent quality. The CII identifies the 

number of citations that a corporation has received in the most recent 5 years divided by the 

expected average number of citations that similar high technology companies received (Hirschey 

& Richardson, 2001). SL is a measure to analyze the link between a patent (as technology) to 

science through scientific publications that are listed on the front page of a patent document as 

“other references cited” (Hirschey & Richardson, 2001). The TCT measures the time that has 

passed between the current patent and the previous generation of the patent, thus calculating the 

length of the cycle between the current technology and the prior stage of the technology 

(Hirschey & Richardson, 2001, 2004). New emerging technologies have a short cycle time (4 or 

5 years), while mature technologies have a long cycle time (average 15 years or more) (Hirschey 

& Richardson, 2004).  

In a later work by the same authors, Non-Patent References (NPRs), Citation Index (CI), and 

TCT are used by Hirschey and Richardson (2004) to assess patent quality. The NPR variable 

links to scientific publications cited on the front page of the patent application and includes 

books, articles, and brochures (Hirschey & Richardson, 2004).  The NPR variable determines 

how close the patent is to scientific publications in a given year (Hirschey & Richardson, 2004). 

The CI measures the number of forward citations obtained in patent applications in a current 

year, for patents granted to the corporation in the most recent 5 years (Hirschey & Richardson, 

2004). 

Goetze (2010) used three indicators to assess patent quality. First, the author used the number 

of International Patent Classifications (IPC) in which a patent is filed to build and assess an 

indicator of patent quality. Second, he also used patent net citation measured as the cumulative 

number of citations that inventor i obtains from subsequent patents (issued by inventor j) minus 

self-citations associated to patents generated by the same inventor i. Finally, the authors used an 

indicator that identifies the portion of foreign inventors (indicated by dissimilar country location) 

among all co-inventors for jointly generated patents to assess patent quality.  

Motohashi and Muramatsu (2012) measured patent quality by the number of inventors, patent 

forward citations (number of forward self-citations and number of forward non-self citations), 

number of claims, and a generality index. Generality index determines the breadth of the 
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domains in which patent is cited, measured by the number of forward citations (Motohashi & 

Muramatsu, 2012). 

Schettino et al. (2013) also constructed a composite patent quality indicator as suggested by 

Lanjouw and Schankerman (2004). Schettino et al. (2013) used family size, patent forward 

citation, patent backward citation, and number of claims to construct a composite metric to 

measure patent quality. Family size calculates the number of jurisdictions that are required to 

protect the same innovation activity; it also measures the patent survival span. For instance, the 

time between a patent’s expiration and application is highly associated with the family size  

(Harhoff, Scherer, & Vopel, 2003). 

Patent quality is also often measured by patent renewal information, number of citations, and 

number of claims (Dang & Motohashi, 2015). However, patent renewal information has a 

shortcoming in terms of timeliness and does not reflect recent changes in patent quality (Dang & 

Motohashi, 2015). Dang and Motohashi (2015) therefore used number of claims to measure 

patent quality.  

Thompson (2016) analyzed patent quality metrics and found the inventiveness of the patent 

application’s claims to be associated to patent quality. He therefore used patent number of claims 

as a metric to measure patent quality (Thompson, 2016). The author also states that typical 

research investigates the prior art of each patent. Thus, the use of the number of backward 

citations exclusively is not a sufficient metric for patent quality, because it does not show the fact 

that patents with a high number of claims obtain more backward citations (Thompson, 2016).  

Patent application is based on a “first to invent” philosophy and as such the legal status of 

previous patents is fundamental to analyze the novelty of patents (Wu et al., 2016). Patent quality 

indicators are related to legal status (LS) of patents evaluated by number of claims (Wu et al., 

2016). Essentially, patent quality measures the potential future value of patents and offers 

valuable direction for policy makers to better monitor the market (Wu et al., 2016). Lawyers, by 

contrast, consider legal consistency and certainty to assess patent quality. For lawyers, legal 

certainty is a main priority whereas patentability requirements and novelty are secondary 

concerns (Burke & Reitzig, 2007). There is extensive literature regarding patent quality; a 

summary is presented below in Table 2.1.  
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Table 2.1 : Patent quality indicators 

Variable Detailed description of measure 

Number of backward citations to the non-patent 

literature (Non-Patent References, NPR) 

(Carpenter et al., 1980) 

• Shows the number of non-patent references 

that are actively quoted by patent, and refers to 

scientific citations in patent document. 

Number of backward citations to patent 

literature 

(Narin et al., 1987) 

• Identifies the number of patent references 

that are actively quoted by a patent. 

Incremental forward citations 

(Manuel Trajtenberg, 1990) 

 

• Demonstrates the number of times that a 

focal patent is quoted as a relevant state during 

an examination of subsequent patent 

applications filed within a period of 5–10 years 

after the focal patent application. 

 

Current Impact Index (CII) 

 

Science Linkage (SL) 

 

Technology Cycle Time (TCT) 

 

(Hirschey & Richardson, 2001) 

 

• CII shows the number of patent citations that 

a company has obtained during the most recent 

5 years divided by anticipated number of 

patent citations that similar high-tech 

companies gained. 

 

• SL links patents to scientific publications 

through the “other references cited” on the 

front page of the patent document. 

 

• Technology Cycle Time (TCT) demonstrates 

the time that has passed between current patent 

and previous generation of the patent. 
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Table 2.1 : Patent quality indicators (Cont’d) 

Variable Detailed(description(of(measure 

Citation Index (CI) 

Technology Cycle Time (TCT) 

Non-Patent References (NPR) 

 

(Hirschey & Richardson, 2004) 

 

 

•  CI measures the number of citations received 

in subsequent patents in the current year, for 

patents granted to a company in the most 

recent 5-year period. 

•  TCT determines the time that has passed 

between current patent and previous generation 

of the patent. 

• NPR is associated to the scientific citations in 

patent document. 

 

Number of International Patent Classification 

(IPC) subclasses 

Net citations 

Inventor co-location  

(Goetze, 2010)  

• Number of IPC subclasses is the number of 

international classification subclasses in which 

a patent is filed.  

• Net citations indicates the cumulative number 

of citations that inventor i received from 

subsequent patents (generated by other 

inventors j) minus patent self-citations (issued 

by inventor i). 

• Inventor co-location identifies the share of 

foreign inventors, identified by dissimilar 

country location, among all co-inventors. 

Number of inventors 

Patent forward citations (number of forward self-

citations and number of forward non-self 

citations) 

Number of claims 

Generality index 

(Motohashi & Muramatsu, 2012) 

• Patent forward citations was measured by the 

number of forward self-citations and number of 

forward non-self citations 
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Table 2.1 : Patent quality indicators (Cont’d and end) 

 

Patent quality has attracted the attention of numerous scholars, who have used the terms patent 

quality, value, importance, and influence interchangeably (Petruzzelli et al., 2015; Singh, 2008).  

Among the antecedent factors of patent quality, patent citation is the most common measure 

quality (Hagedoorn & Cloodt, 2003; Jung & Lee, 2014). As patent citation is a noisy proxy to 

measure patent quality, there are some considerations regarding using citation to measure quality. 

Factors affecting patent citations include proximity of the inventors (Gittelman, 2007), and the 

rigor of decision making by subsequent patent examiners to cite prior art of the patent (Gress, 

2010). Whether or not we know about the patent examiner’s decision and qualification, the 

existence of citations shows the prior art of patents (Jung & Lee, 2014).  

 

Variable Detailed(description(of(measure 

Number of claims 

Backward citations 

Forward citations 

Family size 

(Schettino et al., 2013; Seol, Lee, & Kim, 2011) 

• Number of claims contained in the patent. 

• Number of backward citations shows the 

number of prior patents cited in a focal patent.  

Number of forward citations identifies the 

number of times a focal patent is cited in 

subsequent patents.  

• Family size calculates the number of 

jurisdictions that are required to protect the 

same innovation activity, and the time between 

patent application and expiration (Harhoff et 

al., 2003). 

Patent number of claims 

(Dang & Motohashi, 2015; B. Wang & Hsieh, 

2015; Wu et al., 2016)  

• Number of claims contained in a patent. 
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2.2.2 Patent Value 

Many methodologies have been proposed to evaluate the monetary value of each patent 

(Harhoff et al., 1999; Harhoff et al., 2003). Patent value identifies the present value assessed by 

patent examiners on a patent value scale (Reitzig, 2003). Some scholars count patent forward 

citations to measure patent value (Lerner, 1994), as they did for patent quality (see the previous 

section). Other researchers examine the probability of patents being granted to investigate patent 

value (Ernst, Legler, & Lichtenthaler, 2010). Harhoff et al. (2003) posit that patent value can be 

considered as a firm’s asset value. Therefore, to assess patent value, the observable effects of 

patents on pricing, costs, and also number of products being patented are observed. 

Simultaneously, unobservable effects of patents on owners’ competitors are examined (Ernst et 

al., 2010; Reitzig, 2004).  

Several approaches to assessing patent value have been developed. These methodologies, 

which can be categorized as the contemporary approaches, include cost-based, market-based, 

design-around-based, and income-based approaches (Reitzig, 2004). Among the contemporary 

approaches, cost-based methodology concentrates on the costs required to develop the products 

being patented (Ernst et al., 2010; Sherry & Teece, 2004). The market-based approach compares 

a patent with similar patents previously sold in the market (Takalo, 2002). The design-around-

based method computes the costs to develop equivalent products according to the patent claims. 

It identifies the costs required to design a product having the same results as a patented product 

(Gallini, 1992). The income-based approach estimates the patent contribution as the economic 

benefits of a patent for a company including its cash flow. The future cash flow of a company is 

therefore counted in this methodology (Ernst et al., 2010). 

Hsieh (2013) stressed that it is difficult to measure patent value before the patent’s 

commercialization. Hsieh (2013) suggested four independent variables from the factor analysis to 

assess patent value in the early stage of the commercialization process: General Management 

Benefit, General Management Risks, Offensive Benefits, and Cost-Related Risks. Essentially, 

the author observed both benefit and risk indicators to assess patent value. The variable General 

Management Benefits contains indicators that bring benefits for corporations, for instance 

increased revenues, increased business diversification, facilitating welfare progress, and offering 

new business opportunities (Hsieh, 2013). The component General Management Risks includes 
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increased market risks, boosted production and development risks, and increased charges for 

litigation. Offensive Benefits are associated to increased market share, increased citation, and 

increased litigation. As a fourth component, Cost-Related Risks relates to patent maintenance 

costs and patent application expenses (Hsieh, 2013). Finally, according to the patent value 

assessment, Hsieh (2013) proposed short-term and long-term further commercialization 

strategies for each group of patents, considering a combined benefits and risks approach. 

B. Wang and Hsieh (2015) used a fuzzy method to measure patent value according to 

10 criteria categorized into three groups: patent strategic value, patent protection value, and 

patent commercialization value. The first group, patent strategic value, includes competiveness 

and innovativeness of a patent, business potential, and organization growth (B. Wang & Hsieh, 

2015). The second group, patent protection value, includes patent quality indicators and patent 

residual life cycle time (B. Wang & Hsieh, 2015). According to B. Wang and Hsieh (2015), 

patent quality indicators are associated to patent number of claims and licensing status of patents.  

The third group, patent commercialization value, relates to obtaining revenue from a patent 

application in a relevant-industry domain (B. Wang & Hsieh, 2015). It is essential for firms to 

have an intellectual property valuation when they engage in an acquisition process or strategic 

appliances (Phillips, McGlaughlin, Ruth, Jager, & Soldan, 2015). Patent valuation therefore has a 

significant impact on certain business activities due to firms’ alliances or acquisitions (Breitzman 

& Thomas, 2002; B. Wang & Hsieh, 2015).  

2.3 University–Industry Linkage 

A review of the literature on university and industry collaboration reveals a number of different 

paradigms that can appropriately be used to investigate UILs. For instance, joint R&D activities, 

co-patenting, and co-authorship of scholars at universities and at firms are all defined as factors 

in university and industry participation (Abramo, D’Angelo, Di Costa, & Solazzi, 2009; Baba, 

Shichijo, & Sedita, 2009; Motohashi, 2005).  

George et al. (2002) examined the impact of university-industry (U–I) alliances on the firm’s 

number of patents as well as financial performance and R&D expenses of the corporation. They 

considered all alliances (formal agreements) that the firm had entered into by the end of 1995, 

horizontal linkages including joint R&D, patent swaps, technology transfers, and joint ventures, 

as well as vertical links including outsourcing and distribution links. The results of that study 
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demonstrated that corporations with UILs generate more patents than firms without university 

assistance. Furthermore, firms engaging in UILs have lower R&D expenses than companies 

without such a link (George et al., 2002). However, according to George et al.’s (2002) research, 

U–I participation does not enhance the companies’ financial performance. 

Motohashi (2005) analyzed the impact of UILs on the performance of both small and large 

corporations. He found that small firms tend to exhibit better performance than larger companies 

when collaborating with universities. Small firms and young companies cannot compete with 

large corporations in terms of tangible assets (Motohashi, 2005). Therefore, small companies can 

employ UILs as a practical means to develop new products. In Motohashi (2005) survey, UILs 

included both formal (for instance, joint R&D activities, training, and patent licensing) and 

informal activities (consultation services). Motohashi (2005) found the objectives of U–I 

collaboration to include the development of new products, licensing technology, paper 

publication, enhancement of human resource management, discovering the potential for joint 

R&D participation, and improving the skills required for project management. 

Balconi and Laboranti (2006) used Social Network Analysis (SNA) to structure the 

collaboration between the various players in a mutual network. They considered each professor 

as a vertex to collaborate with other partners. They built a UILs network using cases where 

professors were listed as inventors of patents, but patents were assigned to firms. The impact of 

UILs on professors’ scientific performance was measured by the number of article citations. 

Balconi and Laboranti (2006) found that UILs offered the opportunity for professors to increase 

their publication citations. Further, Balconi and Laboranti (2006) constructed a U–I co-inventor 

network, where there was at least one academic scientist listed among industrial inventors’ 

names. Their research revealed two common patterns for situations where patents generated by 

academics are assigned to companies (Balconi & Laboranti, 2006). In the first pattern, patents 

are issued as a result of collaboration between academic inventors and industrial assignees 

(Balconi & Laboranti, 2006). In the second, the corporation defines a project that is then 

accomplished by the university (Balconi & Laboranti, 2006).  

Various scholars measured the co-authorship of publications to reconstruct university and 

industry participation (Abramo et al., 2009; Balconi & Laboranti, 2006). Abramo et al. (2009) 

examined the impact of co-authorship of university researchers with their industry colleagues on 
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research performance. They found that academic researchers who jointly published articles with 

their industrial partners attained a higher research performance than scholars without such a link. 

Research performance was rated by number of articles published, together with publication 

contribution calculated by number of co-authors (Abramo et al., 2009). However, Abramo et al. 

(2009) found that the impact factor of journals containing articles by U–I researchers was 

generally lower than for those containing articles co-authored by other players. Moreover, 

university–private publications did not demonstrate a higher multidisciplinary value than other 

publications (Abramo et al., 2009). 

Baba et al. (2009) tested the impact of mutual patenting on firm’s innovation performance, 

measured by number of patents generated. To that end, they studied the impact of co-invention 

networks of both “Pasteur scientists” and “Star scientists” on the number of registered patents. 

“Pasteur scientists” are academic scientists who have published a large number of articles as well 

as generating patents. According to the examination conducted by Baba et al. (2009), the 

inclusion of “Pasteur scientists” in collaborative networks has a significantly positive impact on 

the number of patents. The impact of  “Star scientists” on firm’s performance is more modest, 

compared to “Pasteur scientists” (Baba et al., 2009). 

Several scholars have examined how UILs affect patent value (Belderbos, Cassiman, Faems, 

Leten, & Van Looy, 2014; Motohashi & Muramatsu, 2012). They proposed different hypotheses 

to measure the impact of UILs on innovation performance, and found that patents with UILs 

obtain greater value than those not linked to corporations.   

  Motohashi and Muramatsu (2012) categorized UIL patents as jointly invented or joint-

application UIL patents. In joint application, university and industry jointly file the patent 

application, while joint invention is related to the inventors from university and industry who 

jointly generate patents; it is essentially concentrated on the inventors (Motohashi & Muramatsu, 

2012). Motohashi & Muramastsu’s (2012) results highlight that jointly invented patents have 

higher value, measured by patent forward self-citation and non-self citation, than jointly applied 

patents. Motohashi and Muramatsu (2012) constantly swapped patent quality and value terms 

containing the same concept and measures. 

Motohashi and Muramatsu (2012) learned that UIL patents obtain a higher number of forward 

non-self citations than patents solely generated by either companies or universities. Furthermore, 
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jointly invented patents achieve more generality than patents issued without corporation 

assistance, on a generality index referring to the range of the citing patent, measured by the 

number of forward citations (Motohashi & Muramatsu, 2012).  Comparing small and large firms, 

Motohashi and Muramatsu (2012) found that patents generated by small firms through UILs 

have higher quality than those issued by large corporations. As we described in Section 2.2.1, 

Motohashi and Muramatsu (2012) measured patent quality by the number of inventors, patent 

forward citations (number of forward self-citations and number of forward non-self citations), 

number of claims, and a generality index. This difference could be attributed to the many high 

technology start-up companies that receive more UILs patent non-self citations (Motohashi & 

Muramatsu, 2012). 

A number of scholars have investigated the impact of co-patenting and co-ownership on 

innovation performance (Belderbos et al., 2014; Belderbos, Faems, Leten, & Looy, 2010; 

Hagedoorn, 2003). A survey of the innovation management literature highlights an open 

innovation system. Such a system offers opportunities for partners to receive information via a 

variety of internal and external channels (Belderbos et al., 2014; Cassiman & Veugelers, 2006; 

Chesbrough, Vanhaverbeke, West, Eds., & 2006). Partners can then integrate knowledge from 

these sources and allocate information to innovation processes to develop new products 

(Belderbos et al., 2014; Cassiman & Veugelers, 2006). The debate on co-patenting addresses the 

complexities of collaboration with external partners (Belderbos et al., 2010; Hagedoorn, 2003). 

Belderbos et al. (2010) found a negative link between co-patenting share and corporate financial 

performance. Similarly, Hagedoorn (2003) earlier cited co-patenting as a policy that corporations 

tend to avoid. However, the investigations carried out by Belderbos et al. (2014) focused on the 

ownership aspect of co-patenting and the complexities of how to share intellectual property 

among partners, ultimately revealing the effects of co-ownership on the value creation process of 

firms. 

Chai and Shih (2016) assessed the impact of U–I co-funding on corporations’ innovative 

outcomes performance. They analyzed projects supported by the Danish National Advanced 

Technology Foundation (DNATF) that were co-funded by universities and companies. Their 

sample was sorted according to small and medium sized corporations (SMEs), young 

corporations, and project size. Chai and Shih’s (2016) study reveal two perspectives for U–I 

participation. According to the first view, the university is considered as an exogenous entity that 
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has a linear effect on corporations’ performance (Chai & Shih, 2016; Mansfield, 1995). As a 

second perspective, U–I participation entails more complexities, in a bidirectional relation (Chai 

& Shih, 2016; Murray, 2002). Thus, science can be affected by technology, and the university is 

an entity endogenous to the technology (Chai & Shih, 2016). Chai and Shih (2016) measured 

three dimensions of firm’s performance: number of patents, number of publications, and number 

of cross-institutional publications. They found that for SMEs and large projects, funded 

corporations issued more publications than unfunded firms. For young corporations as well as 

firms involved in large projects, companies issued significantly more patents up to 4 years after 

corporation funding (Chai & Shih, 2016). For all three samples, the number of cross-institutional 

publications was significantly enhanced for corporations that obtained funding as compared to 

unfunded companies, observed 3 years after funding (Chai & Shih, 2016). Bearing in mind the 

massive amount of literature on UILs, a summary of the research is highlighted in Table 2.2. 

Table 2.2 : University–Industry Linkage  

Title University–Industry 

Collaboration 

Results  

The effects of business–

university alliances on 

innovation output and 

financial performance 

 

Domain: Publicly traded 

biotechnology companies  

(George et al., 2002) 

 

Includes all alliances (formal 

agreements) that the firm has 

entered into by the end of 1995; 

horizontal linkages include joint 

R&D, patent swaps, technology 

transfers, and joint ventures, 

whereas vertical links include 

outsourcing and distribution 

links 

 Indicator of innovative output: 

Number of patents issued to the 

firm under USPTO, number of 

products on the market, and 

number of products under 

development 

- Companies with UILs generate 

more patents than firms without 

university assistance 

- Firms with U–I collaboration 

have lower R&D expenses than 

companies without such a link 

- U–I participation does not 

enhance the firm’s financial 

performance  
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Table 2.2 : University–Industry Linkage (Cont’d) 

Title University–Industry 

Collaboration 

Results  

Assess the impact of U–I 

collaboration on new 

technology-based firms’ 

performance 

 

Domain: 

Small startup firms in Japan 

(Motohashi, 2005) 

 

Joint R&D activities, training, 

technology licensing, 

consultation 

Objective of U–I collaboration is 

development of new products, 

licensing the technology, paper 

publication, enhancement of 

human resource management, 

discovering potential for joint 

R&D participation, and 

improving the skills required for 

project management 

- Small firms tend to exhibit better 

performance than large 

corporations through UILs 

University–Industry 

interactions in applied 

research: 

Domain: The case of 

microelectronics (academic 

centers for electronics in 

Italy) (Balconi & Laboranti, 

2006) 

- Patents generated by professors 

at universities and assigned to 

corporations 

- Co-invention of academic and 

industrial inventors (at least one 

academic scientist is listed 

among industrial inventors’ 

names for a patent) 

- Academic inventors can perform 

better in terms of scientific 

publications by building relations 

with industry  
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Table 2.2 : University–Industry Linkage (Cont’d) 

Title University–Industry 

Collaboration 

Results  

Assess the role of “Pasteur 

scientists” and “Star 

scientists” co-invention 

network on firms’ R&D 

outcome, measured by 

number of registered patents 

Domain:Advanced materials 

field(Baba et al., 2009) 

Co-invention of “Pasteur 

scientists” and “Star scientists”  

- Mutual patenting network of 

“Pasteur scientists” increases the 

number of registered patents, 

while the impact of  “Star 

scientists” co-patenting on number 

of patents is more modest in 

comparison 

Assess the impact of 

university and private sector 

collaboration to jointly 

publish articles (co-

authorship) on research 

performance, journal impact 

factor, and multidisciplinary 

of publication (Abramo et 

al., 2009) 

Domains: Polymer materials 

science and technology, 

industrial chemistry, 

electronics, applied physical 

chemistry, chemical 

fundaments of technology, 

principles of chemical 

engineering, molecular 

biology, applied 

pharmaceutical technology 

Co-authorship of articles in 

international journals 

-Researchers who jointly publish 

articles with their industrial 

partners have better research 

performance than scholars without 

such a link 

-Research performance examined 

by number of articles published by 

scientists and sum of publication 

contributions calculated by 

number of co-authors 

- The impact factor of journals 

containing collaborative articles 

(published by U–I researchers) is 

generally lower than those co-

authored by other players 

- University–private publications 

do not demonstrate a higher 

multidisciplinary value than other 

publications 
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Table 2.2 : University–Industry Linkage (Cont’d) 

Title University–Industry 

Collaboration 

Results  

Assess the impact of UILs 

on patent value and compare 

the value of jointly invented 

and joint-application UIL 

patents. 

(Motohashi & Muramatsu, 

2012) 

UILs joint-invention and UILs 

joint-application of patent 

 

Indicators to evaluate patent 

value: 

Number of patents, patent 

forward citations (number of 

forward self-citations and 

number of forward non-self 

citations), number of claims, and 

a generality index 

- Jointly invented patents have 

greater technological value in 

terms of UILs patent forward self-

citation and non-self citation than 

jointly applied patents 

- UIL patents gain a higher 

number of forward non-self 

citations than those patents solely 

generated by companies or 

universities 

- Jointly invented patents achieve 

more generality than other patents 

issued without corporate assistance 

-Small firms tend to obtain greater 

value for UIL patents than patents 

generated by the large 

corporations 

-Small firms’ UIL patents tend to 

reveal more generality than those 

of large corporations 
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Table 2.2 : University–Industry Linkage (Cont’d and end) 

Title University–Industry 

Collaboration 

Results  

Measuring impact of U–I 

mutual funding on the 

corporation’s performance 

by number of patents, 

number of publications, and 

number of cross-institutional 

publications 

(Chai & Shih, 2016) 

Jointly funding corporations by 

university and industry (shared 

budget) 

-For SMEs and large projects, 

funded corporations issued more 

publications than unfunded firms  

- Young corporations and firms 

involved in large projects issue 

significantly more patents up to 4 

years after corporation funding 

-The number of cross-institutional 

publications is significantly 

enhanced for corporations that 

obtained funding compared to 

unfunded companies (for three 

years after funding) 

 

 

2.3.1 Co-invention and co-authorship network 

Innovative activities occurring in different regions and economic growth are the main concerns 

of economic geography (Lee, 2015). Localized knowledge spillovers (LKSs) target the 

geographical proximity of different partners engaging in innovative activities in cluster(s), for 

instance: firms, inventors, and research facilities (Lee, 2015).  Spatial concentration of different 

actors located in clusters can improve the knowledge exchange and diminish general costs 

through increasing the number of researchers, mobility and personal collaboration opportunities 

(Lee, 2015). The social network in the high technologies such as biotechnology can span 

different geographical areas across the world, and it is not bound to the local region (Coe & 

Bunnell, 2003; Gertler & Levitte, 2005; Lee, 2015). Among the collaboration networks, co-

invention is associated with patents generated by more than one inventor (Cantner & Graf, 2006; 
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Ejermo & Karlsson, 2006; Lee, 2015). There are different kinds of participation including co-

invention, co-authorship, strategic alliances and also informal and personal relationship of 

different actors (Sun, 2016). 

To analyze social network collaboration, the multidisciplinary technique of social network 

analysis (SNA) has been developed by sociologists and then accomplished with the use of 

mathematics and statistics (Cantner & Graf, 2006). It is applied in the fields of sociology, 

marketing, computing and industrial engineering (Cantner & Graf, 2006). There is a wide range 

of studies that use SNA for their network analysis. For instance, Cowan and Jonard (2004) used 

SNA to measure the impact of network characteristics on performance through simulation. Jaffe, 

Trajtenberg, and Henderson (1993) compared the impact of social proximity and geographical 

proximity on knowledge spillovers. They found that social proximity significantly affects 

knowledge spillovers, to a greater degree than geographical proximity (Cantner & Graf, 2006). 

Sun (2016) used SNA to map the correlation of different partners in the patents co-assignship 

network. We explained in Section 4.3 the network measures used to analyze the co-invention and 

co-authorship network centrality in our study. 

Walsh et al. (2016) identified different forms of co-invention activities including co-invention 

(with customers, suppliers, competitors), co-assignees (which concentrates on the share of 

intellectual property among different patentees), and any formal and informal collaboration 

(excluding co-invention and co-assignees) in the US. The authors demonstrated that 

approximately 23% of triadic patents (patents registered in Japan and the EPO and granted by the 

USPTO, year 2000–2003) reflect non-co-invention collaboration; 10% of such patents include 

collaboration with customers, 4% with universities, and 12% with suppliers. For the co-inventor 

network, collaboration is divided among suppliers (5%), customers (4%), competitors (1%), 

firms (2%), universities (2%) and government organizations (0.5%). Walsh et al.’s (2016) results 

show that in the US, it is rare to jointly generate patents with competitors’ participation. 

Furthermore, their findings indicate that for the large firms, the extent of collaboration is 13% 

with suppliers (including co-invention, co-assignees, and formal and informal collaboration 

excluding co-invention and co-assignees); and 35% of those suppliers were partners for joint 

invention. Likewise, 11% of collaborations exist with customers (30% of those customers were 

partners for co-invention) and 4% with universities (in 40% of those partnerships, customers 

were engaged as co-inventors) (Walsh et al., 2016).  
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2.4 Research gap 

In science-based industries, the product development process is based on a collaborative 

network of academic scientists and other public research institutes with industrial scholars 

(George et al., 2002; Oliver, 2004). Biotechnology and nanotechnology are science-based 

domains that drive other industries forward (Baba et al., 2009; Niosi & Reid, 2007; Oliver, 

2004). Therefore, the university–industry linkage is crucial in the biotechnology and 

nanotechnology fields (Baba et al., 2009; Niosi & Reid, 2007; Oliver, 2004). In the 

biotechnology sector, collaborations between universities and other players, including firms and 

research facilities, are deemed essential for actors to compete and survive in this competitive area 

(Bowie, 1994; Oliver, 2004; Peters, Groenewegen, & Fiebelkorn, 1998). Various researchers 

highlight the strategic role of U–I alliances (Bowie, 1994; Liebeskind et al., 1996; Oliver & Julia 

Porter, 1997) and demonstrate that such linkage significantly increases the number of patents as 

an essential source of market value (Shaker, 1996). Patents are indeed an important requirement 

of the product commercialization process (Almeida, 1996; Grant & Baden-Fuller, 1995). 

Biotechnology is considered to be one of the few domains where the ideas and knowledge 

generated in universities and research labs can be transferred to firms quickly (Baba et al., 2009; 

Cohen et al., 2002). Many start-up biotechnology firms use intellectual property as one of their 

key assets to protect the rights over their idea generation (Arora & Merges, 2004; Gans, Hsu, & 

Stern, 2002; Giuri et al., 2007). This helps explain why only one third of patents generated by 

individual inventors have no collaborative ties with other partners (Wagner-Dobler, 2001). 

Conversely, the proportion of inventors in mutual networks issuing patents serves to highlight the 

prevalence of collaboration in the biotechnology and nanotechnology domains (Wagner-Dobler, 

2001).  

The impacts of U–I collaboration on scientific and technological production have been 

measured by several factors. Various researchers have examined the role of U–I collaboration on 

patent licensing, article publication, production performance, and R&D productivity (Branstetter 

& Nakamura, 2003; Hausman, Hall, & Griliches, 1984; Motohashi, 2005). Motohashi (2005) 

reveals that small start-up firms achieve a greater productivity from the collaborative network. 

Other studies assumed that networks of scientists and those of inventors have distinctive social 
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structures, although in some aspects, their activities overlap (Murray, 2002; Partha & David, 

1994).  

Traditional bibliometric methods are often used to assess UILs (Henderson & Cockburn, 1994; 

Podolny & Stuart, 1995; Zucker, Darby, & Brewer, 1998) and also to measure how such ties 

affect overall performance, specifically where science-based technology is concerned 

(Henderson & Cockburn, 1994; Zucker et al., 1998). Murray (2002) identified three traditional 

university–industry collaborative networks: the citation of papers in patents; the publication of 

papers by firms and industrial scientists; and the co-publication of papers by academic scientists 

and industrial inventors. Murray (2002) proposed a novel concept dubbed “patent–paper pairs” to 

understand which aspects of science and technology are linked together, and simultaneously to 

identify which firms or scientists have a significant impact on science and technology. The 

patent–paper pairs concept is based on the premise that both scientists and inventors contribute to 

idea generation through publications and patenting. This methodology tries to identify which 

patents and papers are paired, linking science and technology (Ducor, 2000; Leopold, May, & 

Paaß, 2005; Murray, 2002). A number of authors have used an accurate content analysis to 

measure the similarity between patents and papers in order to identify such pairs (Lubango & 

Pouris, 2010; Murray, 2002; Podolny & Stuart, 1995). Patent–paper pairs are the patents and 

papers that are issued from the same project (Murray, 2002). Lubango and Pouris (2010) studied 

70 patents from the USPTO, EPO, and WIPO and found 58 patents (82%) initiated by scientists 

from South African universities linked to articles. They surmised that authors have a propensity 

to generate patents and to publish articles at the same time. Magerman et al. (2011) studied the 

impact of patent–paper pairs on citation flows and demonstrated that there is no significant 

difference between the forward citations of patents belonging to patent–paper pairs and those of 

patents that are not associated to these pairs. However, their findings did reveal that publications 

linked to a patent received significantly more citations compared with publications without a 

patent counterpart.  

With respect to prior literature studying UILs, there is still a lack of attention given to 

measuring the impact of patent–paper pairs on patent quality by considering different quality 

factors such as number of claims, patent forward citations and patent backward citations.  
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Furthermore, as discussed in Section 2.3, the licensing of academic patents by corporations is 

addressed as a channel to connect the universities and research facilities to the private sector. 

There is a large amount of research on patent ownership structure (Crespi, Geuna, Nomaler, & 

Verspagen, 2010; Henderson, Jaffe, & Trajtenberg, 1998a; Lissoni, Montobbio, & Seri, 2010; 

Motohashi & Muramatsu, 2012; Mowery & Ziedonis, 2002; Sampat, Mowery, & Ziedonis, 2003; 

Sterzi, 2013).  

Kenney and Patton (2009) raised criticisms of the Bayh–Dole Act, stating that claiming 

university ownership of patents is a dysfunctional procedure, with information asymmetries and 

potentially inconsistent intentions between the inventors and universities. It is not economically 

efficient, as it causes a delay in licensing and prevents inventors from commercializing their 

inventions in a timely manner (Kenney & Patton, 2009). Thus, they proposed two substitute 

solutions for patent ownership. First, inventors would be free to decide whether the ownership of 

their patents would lie with either universities and corporations (Kenney & Patton, 2009). This 

approach encourages inventors’ entrepreneurship, as they can choose between public and private 

patentees, considering the advantages and disadvantages of each option (Kenney & Patton, 

2009). Second, the inventors would make all their inventions publically available through a 

strategic public domain, and the university administration would not be involved in licensing 

(Kenney & Patton, 2009). Kenney and Patton (2011) argue that university ownership is not 

crucial in Europe and Japan. The inventors build extra intermediaries between themselves and 

the competitive market by licensing their patents in the Technology Licensing Offices (TLOs) 

(located at universities) instead of with corporations (Kenney & Patton, 2009, 2011). Audretsch, 

Lehmann, and Warning (2005) and Thursby, Fuller, and Thursby (2009) reveal that U.S. 

professors assign a significant number of patents to corporations instead of universities, even as 

university employees.  

There is an important debate in many countries regarding which institution can own the 

intellectual property rights. In Canada, different universities have different approaches to owning 

patents; for instance, the University of British Columbia owns the patents generated by its 

scientists, while at Simon Faster University patents are owned by the inventors (Rasmussen, 

2008). The link between Intellectual Property and R&D grants and its impact on innovation 

performance is still disputed (Hanel, 2006). Several scholars have assessed the impact of public 
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assignees (including government and university) on patent quality and then compared patents 

privately held by corporations (Bessen, 2008; Crespi et al., 2010; Lissoni et al., 2010; Mowery & 

Ziedonis, 2002; Popp, 2006; Popp et al., 2013; Sterzi, 2013). Most researchers assumed that 

patents assigned to the governments were related to more essential needs and would tend to be 

cited more (Popp, 2006; Popp et al., 2013).  

Former research has not given adequate attention to measuring the impact of patent assignees 

across different institutions (including university, industry and government) on patent quality in 

the biotechnology domain in Canada. Therefore, we set out to measure patent quality associated 

with public assignees versus private assignees in this study, for patents generated by academic 

inventors residing in Canada. Moreover, we are going to examine the impact of various network 

structure on innovation performance. 
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 RESEARCH QUESTIONS AND HYPOTHESES CHAPTER 3

 

3.1 Patent ownership and patent quality 

Prior to the Bayh–Dole Act, universities, profit or non-profit organizations, and public 

institutions were obligated to give the permission for their inventions to the government that 

funded their research (Grimaldi, Kenney, Siegel, & Wright, 2011). A significant change took 

place after 1980, giving the authority for the innovation ownership to universities and other non-

profit organizations. Bayh–Dole deals with the ownership of patents granted through the federal 

government. Research facilities, universities, and other public institutions under the Bayh–Dole 

Act can decide about the ownership of patents. Hence, universities can hold the ownership right 

to their patents, instead of the government (Grimaldi et al., 2011; Henderson et al., 1998a; 

Sampat et al., 2003). This law supports patent commercialization in universities (Grimaldi et al., 

2011; Henderson, Jaffe, & Trajtenberg, 1995, 1998).  

The Bayh–Dole Act which changed patent ownership policy in the US does not exist in 

Canada; instead, each university has its own policy for making a decision regarding patent 

ownership (Atkinson-Grosjean, House, & Fischer, 2001; Hoye, 2006; Kenney & Patton, 2011). 

For instance, at Waterloo, inventors can own their patents (Kenney & Patton, 2011). In 1989 the 

Intellectual Property policy was reformed in Canada from the first-to-invent to first-to-file policy 

(Hanel, 2006). Furthermore, the duration of the patent grant was changed from 17 to 20 years 

(Hanel, 2006). In first-to-invent, when two persons claim the same patent, the USPTO evaluates 

the contribution of each inventor to determine who has the right to the patent. In first-to-file, the 

patent is granted to the first inventor who files the patent application.  Hoye (2006) surveyed 37 

Canadian universities and found there are four different intellectual property policies existing at 

universities in Canada: (1) the university reserves the right of first offer on IP conducted from its 

academic research, in any circumstance—this is called the “First Offer” policy; (2) inventors 

share the revenues resulting from their patents with the university, when inventors commercialize 

the patents; (3) inventors share the patents’ revenues with the university when the university 

commercializes the patent; and (4) the university makes an agreement with inventors to consider 
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different thresholds for various revenue levels, to decide the revenue distribution between 

university and inventor (Hoye, 2006).  

With the “First Offer” policy, the university has the right to assess all the academic inventions 

that would be interesting for the inventors to commercialize, then the university owns and 

commercializes the innovation (Hoye, 2006). This policy occurs in the universities containing the 

TLOs. Among the 37 Canadian universities surveyed by Hoye (2006), 30 have TLOs, of which 

13 reserve the First Offer right of university ownership, while the other 17 do not (Hoye, 2006). 

In this policy individual inventors can only own their patents if the university is not interested to 

commercialize the inventor’s patents; still, however, there are some universities that control the 

patent licensing by individual inventors. For instance, at McGill University, inventors need the 

approval of the TLOs located at the university to commercialize their inventions (Hoye, 2006). 

Many European countries along with Canada have used government tools to encourage 

innovation commercialization from universities (Rasmussen, 2008). Canada has a long history of 

state and provincial involvement to commercialize innovation (Atkinson-Grosjean et al., 2001; 

Rasmussen, 2008; Slaughter & Leslie, 1997). A survey of innovation commercialization 

procedures in Canada would be interesting in several aspects: (1) Canada has a decentralized 

education system which makes government intervention difficult (Slaughter & Leslie, 1997); (2) 

in Canada there are extensive federal programs that support innovation commercialization; (3) 

Canada has a large public research sector and a small domestic market, as European countries do 

(Rasmussen, 2008). Canadian universities spent CAD$36.4 million on Intellectual Property 

management in 2003, allotted to: external resources (25%), licensing revenues (36%), 

institutional grants (29%), and institutional allocations (10%) (Rasmussen, 2008). 

The reform that occurred in 1989 in Canada, associated with the change in the Intellectual 

Property Rights policy to first-to-file, dramatically increased the number of patent applications 

issued by foreign and domestic inventors residing in Canada (Hanel, 2006). This reform 

significantly increased R&D grants specifically in the pharmaceutical industry. Canada is ranked 

third, after the US and Japan, for the number of patents arising from grants per dollar allotted 

(Hanel, 2006), as R&D grants have significantly increased the number of patents (Hanel, 2006; 

M. Trajtenberg, 2000). However, the increasing number of patents doesn’t necessarily improve 

the innovation quality (Hanel, 2006). Rafiquzzaman and Mahmud’s (2002) studies reveal the 
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quality of Canadian patents has improved compared to other G-7 countries (United States, 

Canada, France, Germany, Italy, Japan, and the United Kingdom) except the US, when quality is 

measured by the number of patent citations. 

Likewise, to assess the impact of patent ownership structure on innovation outcome in the US, 

Mowery and Ziedonis (2002) examined the impact of the Bayh–Dole Act on patent content at the 

Columbia U., U. of California, and Stanford University, both before and after 1980. Mowery and 

Ziedonis (2002) used forward citations following six-year windows as an index to measure the 

“importance” of patents. The forward citations show the influence of citing patents on 

subsequent patents. “Generality” is an index to show different technology classes associated with 

citing patents (Mowery & Ziedonis, 2002). Accordingly, a higher “generality” value shows the 

higher number of technology fields involved in citing patents (Mowery & Ziedonis, 2002).  

The explorations of Mowery and Ziedonis (2002) demonstrate that there is no evidence of 

decline in the “importance” or “generality” of patents after 1980. However, the patents tend to be 

less significant and less general than those issued by highly experienced universities both before 

and after 1980, while being initially assigned to companies after the Bayh–Dole Act (Mowery & 

Ziedonis, 2002). The studies of these universities, which are among the top patent holders in the 

United States, illustrate that the number of biomedical patents increased both before and after 

1980. Hence, the passage of Bayh–Dole did not bring significant contributions to this increasing 

number of biomedical patents. Accordingly, Mowery and Ziedonis (2002) reveal that patenting is 

more relevant to factors other rather than Bayh–Dole. They argue that patent quality is more 

likely linked to the history of inventors and patentees. They indicate that Bayh–Dole facilitates 

the entrance of inexperienced inventors to generate patents. However, their explorations illustrate 

that the impact of Bayh–Dole on patent content was modest. Moreover, they found that the 

“importance” and “generality” of the University of California (UC) and Stanford University 

patents did not decrease after the Bayh–Dole Act came into force. In contrast, Henderson et al. 

(1998a) determined that the importance and generality of university patents declined after the 

passage of Bayh–Dole. According to the Bayh–Dole Act literature, more attention has been paid 

to measuring inventors’ experience in patenting predating Bayh–Dole (Henderson et al., 1998a; 

Mowery & Ziedonis, 2002). Mowery and Ziedonis (2002) compared patents issued by qualified 

universities after 1980 with patents assigned to companies less experienced in patenting, pre-

1980. They proposed that the decline in post-1980 patents is more related to new, inexperienced 
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academics or public institutions as patentees, rather than being related to Bayh–Dole. Their 

results thus show that the decline in post-1980 patent quality is more affected by the 

qualifications of new inventors than by changes made by the new ownership rights legislation. 

By contrast, Henderson et al. (1998a) conclude that the decline of academic patents is associated 

with the large number of patents issued by small firms after the passage of Bayh–Dole.  

However, the number of patents developed by university scientists increased after the Bayh–

Dole Act came into effect. The main purpose of Bayh–Dole is that the majority of valuable 

university patent technologies are unexploited (Motohashi & Muramatsu, 2012). Therefore, 

university ownership of intellectual property rights results in significant contributions to industry 

(Motohashi & Muramatsu, 2012). The process of patent commercialization at universities is 

facilitated through shifting patent ownership to the universities themselves and restructuring 

academic scientists’ intellectual property rights. As a consequence, these scientists tend to 

develop more patents (Henderson et al., 1998, 1998a; Motohashi & Muramatsu, 2012; Sampat et 

al., 2003). Through granting licensing authority to the universities, the number of patents at 

universities and research facilities is increased, although the quality of patents held by 

universities is less known (Motohashi & Muramatsu, 2012). 

Bessen (2008) stated that individual inventors in a low-technology paradigm might not obtain 

high patent value, however this does not mean that they issue low quality patents. Instead, it 

shows that small inventors might receive less value through issuing patents (Bessen, 2008). 

However, other inventors involved in small firms may generate very valuable patents, as well as 

those in large corporations (Bessen, 2008). In a high-technology market (Silicon Valley, for 

instance), small firms can offer their patents to the market and there is an opportunity for large 

firms with great financial assets to purchase their innovations (Bessen, 2008).  

There is a huge difference in patent value between different categories of patentees (Bessen, 

2008). Small and individual patentees, firms with less than 500 employees, and non-profit 

organizations obtain on average less than half the value compared with patents granted to large 

corporations (Bessen, 2008). However, this does not hold true for small and individual inventors 

in a high-technology market (Bessen, 2008). Small firms can be fit perfectly into the technology 

market, with high demand for acquisition of small firms’ innovation outcomes by large 

technology-driven corporations (Bessen, 2008).  
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3.1.1 Government assignees versus private-sector assignees 

Numerous scholars have investigated the links between patent ownership and patent quality 

(Crespi et al., 2010; Henderson et al., 1998a; Lissoni et al., 2010; Motohashi & Muramatsu, 

2012; Mowery & Ziedonis, 2002; Sampat et al., 2003; Sterzi, 2013). Popp et al. (2013) assessed 

the impact of assignees’ type on the patent citations at six energy technologies fields including: 

Hybrid, Nuclear, Solar, Wind, Efficiency, and Fuel Cell. Popp et al. (2013) defined different 

dummy variables to identify various assignees’ institutions including U.S. government, industry, 

university, other research facilities and U.S. government child patents. Popp et al. (2013) defined 

two dummy variables according to the government assignees. First, a dummy variable for 

government assignees was set at 1, where patents were assigned to the U.S. government 

laboratories (Popp et al., 2013). Second, U.S. government child patents were also set at 1, where 

patents were privately held by a corporation but cited at least one patent that was assigned to the 

U.S. government (Popp et al., 2013). Popp et al.’s (2013) outcomes demonstrated that the results 

vary across different technology domains (fuel cell, solar energy and wind); government patents 

obtained higher quality. However, only 1.4% of patents in the wind sector were assigned to the 

government. For the remaining domains, the government assignees received fewer citations 

(Popp et al., 2013).  

Likewise, Popp (2006) discovered that government patents are not cited more frequently in 

subsequent patents than other types of assignees. This result can be explained by the nature of the 

government projects. They have greater risk than other research projects but government has 

enough resources to take the risk; private companies cannot take such tremendous risks. The U.S. 

government patents obtained 22% less citations than private patentees (Popp et al., 2013). 

According to Popp’s (2006) findings, the government patents tended to receive more citations 

after 1981 compared to patents issued before 1981. There can be two possible explanations: first, 

patents concentrated more on applied science before 1981, while later patents were linked to 

more basic knowledge and so tended to be cited more than before (Popp, 2006).  

The second explanation involves the nature of government patents accomplished at 

laboratories, which seems to have changed over time (Popp, 2006). Particular policy actions took 

place in 1980 to shift patent ownership from the public to the private sector; these include the 

Stevenson–Wylder Technology Innovation Act of 1980, the Bayh–Dole Act of 1980, and the 
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Federal Technology Transfer Act of 1986 (Popp, 2006). The Technology Innovation Act 

launched a technology transfer office to engage all federal laboratories (Popp, 2006). The Federal 

Technology Transfer Act of 1986 deals with the collaborative R&D projects run with the 

cooperation of government laboratories and private corporations (Popp, 2006). Accordingly, the 

shift in the nature of government patents encouraged private corporations to cooperate with the 

government in patenting, causing the government patents to be cited more after 1981 (Popp, 

2006). However, the government patents were still not cited as frequently as patents held by 

corporations (Popp, 2006; Popp et al., 2013). The above results show that as the nature of 

government patents changed over time, privately owned patents became more appropriate for the 

commercialization and marketing of innovations, and thus were cited more (Popp, 2006; Popp et 

al., 2013).  

As we discussed above, the results may vary according to the domains and regions (Popp, 

2006; Popp et al., 2013). With respect to the former studies, U.S. government child patents that 

were assigned to firms obtained greater quality in terms of patent citations than government 

patents (Popp, 2006; Popp et al., 2013). There is still a lack of attention given to measure the 

impact of government assignees on the quality of biotechnology patents issued by inventors 

residing in Canada. Therefore, in this section, we seek an answer to the question, “Do public 

patents obtain more quality than patents that were privately assigned by the corporations?” 

Therefore, this thesis proposes a hypothesis regarding the impact of government assignees on 

quality of patents generated by academic inventors. 

 

Hypothesis 1: Patents generated by at least one academic inventor and exclusively owned by 

the government are of a lesser “quality” than those owned by industrial assignees. 

 

In most of the literature reviewed in the previous and current chapters, scholars have used 

various indicators that they claim measure, or is a proxy for, “quality”. A few scholars have 

warned that these proxies are just that, proxies, and do not measure quality per se. These 

indicators may measure impact, usage, generality or diversity of prior art or of future 

applications, etc. In this thesis, although we use the term “quality” as a general term, it is meant 
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as implying impact, usage, diversity, etc. The next chapter will define the exact indicators that 

will be used for this purpose.  

 

3.1.2 Academic assignees versus industrial assignees 

Patent ownership depends on a variety of legislation and institutional factors. Certain countries 

have their own intellectual property strategy. Essentially, universities in those countries tend to 

own their inventions instead of companies. For instance, in the UK and the Netherlands, 

universities are able to manage their inventions in accordance with internal policies (Lissoni, 

2012). Similarly, professors can keep the privilege of their inventions in Scandinavian countries 

and Germany (Lissoni, 2012). The status of these countries in regard to academic patenting is 

outstanding. Furthermore, certain universities may own the inventions of their scientists through 

internal intellectual property policies (Lissoni, 2012). Thus, professors have high control over 

their inventions and they tend to keep their own patent rights (Lissoni, 2012). Conversely, there 

is a lower proportion of academic ownership in certain other countries, where universities have 

less control over their assets (Lissoni, 2012). 

Sterzi (2013) identified that there is still a lack of attention given to measuring the impact of 

patent ownership including university and firms on patent quality. Comparing the quality of 

patents owned by universities with the quality of company-owned patents during the period 

1990–2001, Sterzi (2013) found that academic patents owned by firms show greater quality in 

the first year of patent application compared to those assigned to universities and other research 

facilities. However, this difference diminishes and then disappears over time, with an increase in 

citations of academic patents. This is due to the fact that patents acquired by companies mostly 

target direct commercial benefits in the short term, while those owned by universities and other 

public institutions tend to answer scientific questions that have an impact over longer periods 

(Czarnitzki, Hussinger, & Schneider, 2012; Sterzi, 2013). Firms’ patents obtained 44% higher 

forward citations than academic patents in first three years after patent application date, however 

this rate diminished to 23% after six years (Sterzi, 2013). 

Lissoni et al. (2010) and Crespi et al. (2010) also investigated whether there is a link between 

patent ownership and patent quality. Lissoni et al. (2010) assessed patent quality for five 
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European countries (Sweden, Italy, the Netherlands, France, and Denmark). They found that 

patents owned by industry are of a greater quality compared to patents owned by universities. 

Likewise, Crespi et al. (2010) measured the value of academic patents in six European countries 

(the Netherlands, Spain, France, Italy, the UK, and Germany). Crespi et al. (2010) were unable to 

find any evidence to identify a relationship between ownership and patent quality. 

However, analyzing the patents owned by universities is not a fundamental indicator for 

university science and technology linkage (Meyer, 2003). Instead, patents owned by at least one 

academic inventor may be more essential to measure science–technology transfer (Meyer, 2003).  

In previous studies, there is inadequate research to measure the quality of patents generated by 

academic inventors residing in Canada and owned across different institutions including 

universities and corporations. Therefore, we suggested the following hypothesis in this study to 

measure the impact of academic patents on patent quality: 

 

Hypothesis 2: Patents generated by at least one academic inventor and assigned to universities 

and other academic research facilities are of a lesser “quality” than those owned by industrial 

assignees. 

As discussed in Section 3.1, the Bayh–Dole Act deals with patents that receive public grants 

from the government but are accomplished by and assigned to the universities. We highlighted 

the impact of the Bayh–Dole Act on “importance” or “generality” of the patents in Section 3.1. 

In this study we set out to examine the so-called “quality” of patents assigned to the universities 

and other research facilities in cases where the inventor(s) received public funding from the 

government. We wanted to assess the impact of government grants on patent “quality” in those 

cases. We discuss in detail the impact of the Bayh–Dole Act on patent quality in Sections: 2.4, 

3.1, 3.1.1, and 3.1.2. 

Thus, we propose a hypothesis including government funding, academic assignees and patent 

quality, presented below: 
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Hypothesis 2A: Patents generated by at least one academic inventor and assigned to the 

university tend to rank higher in terms of “quality” when grants were received from the 

government. 

 

3.1.3 Network collaboration characteristics and patent quality 

There are various examinations assessing the influence of scholars’ research collaboration 

network on patents generated by corporations (Gilding, 2008; Guan & Chen, 2012; Mariani, 

2004; Tether, 2002). Furthermore, there are studies that measure the impact of different players’ 

network position on their partners’ performance, where the actors’ knowledge flows in 

interactive networks (Bettencourt, Kaiser, & Kaur, 2009; Chen & Guan, 2010; Cowan & Jonard, 

2004; Guan & Chen, 2012; Schilling & Phelps, 2007).  

Previous studies investigated the impact of various actors’ network structure, where their 

connectivity centers on the partners’ innovation outcomes (Bettencourt et al., 2009; Chen & 

Guan, 2010; Cowan & Jonard, 2004; Guan & Chen, 2012; Schilling & Phelps, 2007). Guan and 

Chen (2012) assessed the influence of network position on patenting at the national level, 

including the countries playing crucial roles as knowledge creators. Schilling and Phelps (2007) 

examined the firms’ network characteristics on industrial innovations.  

Xiang, Cai, Lam, and Pei (2013) structured the new model to integrate the patent citation and 

co-invention network. They considered the patent citation as explicit, codified knowledge which 

is easily identified through the patent document. Co-inventors first engage in a long process of 

sharing non-codified knowledge; however, various face-to-face relationships between different 

partners is required to effectively shape the co-invention networks (Bresman, Birkinshaw, & 

Nobel, 2010; Szulanski, 1996; Uzzi, 1996; Xiang et al., 2013). The co-inventors network is 

associated with tacit knowledge, which is non-codified and more difficult to track. Various 

personal relationships are required to transfer such knowledge. Xiang et al. (2013) believed the 

patent citation doesn’t show the whole picture of knowledge exchange; therefore they considered 

the network properties of co-inventors as a complementary entity to complete the whole picture 

of knowledge transfer. Incorporating both the patent citations and the co-invention networks 

comprehensively reflects the true extent of knowledge transfer between different partners, 
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including explicit as well as tacit knowledge (Xiang et al., 2013). Various scholars have explored 

the network properties of knowledge transfer (He & Fallah, 2009; Marquetoux, Stevenson, 

Wilson, Ridler, & Heuer, 2016; Xiang et al., 2013). They reveal a clustering co-efficient as a 

measure of network cohesion; where information in the short path with high density can broadly 

diffuse faster (He & Fallah, 2009; Marquetoux et al., 2016; Xiang et al., 2013). 

Betweenness centrality is measured according to the geodesic path in the network; it 

demonstrates how frequently the actors between all actor pairs are located in the network’s 

shortest path (Gilsing, Cloodt, & Bertrand–Cloodt, 2016). Gilsing et al. (2016) investigate the 

impact of betweenness centrality on innovation performance. Actors that occupied a highly 

centralized network tend to obtain high reputation, power and innovation performance (Gilsing, 

Nooteboom, Vanhaverbeke, Duysters, & van den Oord, 2008). Essentially, betweenness 

centrality provides players faster access to strategic information, among other benefits, and 

facilitates the broad spread of information through the whole network (Gilsing et al., 2016). The 

central position allows actors to control the information flow as well as the information visibility 

in the network (Burt, 1995). Therefore the actors dealing with high betweenness centrality are 

situated in the crossroads of strategic information and tend to obtain better innovation 

performance (Gilsing et al., 2016). Hagedoorn and Cloodt (2003) used four indicators including 

R&D input, patent citations, number of patents, and generating new products to build a 

composite structure to measure innovation performance as the latent variable. Patent citation and 

prior art of patents were found as the most common proxy to measure patent quality (Hagedoorn 

& Cloodt, 2003). Therefore, in this section, we want to find out whether government patents or 

university patents obtain more or less citations when the inventors are highly centralized in the 

co-invention or co-authorship network. Previously, we discussed the impact of both government 

and academic assignees on patent quality. We suggested both government and university patents 

are likely to receive less citation than patents privately held by corporations. This study seeks to 

answer the following question: Do co-invention and co-publication network characteristics have 

a significant influence on patent quality? This research observes the influence of the scholars’ 

clustering method and its correlated network positions of the university patents.  

Accordingly, we proposed the following hypotheses including interactive variables of 

assignees (government and university) and co-invention and co-authorship network centrality: 
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Hypothesis 3A: Patents generated by at least one academic inventor and owned by the 

government are of a lesser quality than industrial assignees, even when the academic inventor(s) 

is highly centralized in the co-invention network. 

Hypothesis 3B: Patents generated by at least one academic inventor and owned by the 

government are of a lesser quality than industrial assignees, although the academic inventor(s) is 

highly centralized in the co-publication network. 

Hypothesis 4A: Patents generated by at least one academic inventor and assigned to universities 

and other academic research facilities are of a lesser quality than industrial assignees, although 

the academic inventor(s) is highly centralized in the co-invention network. 

Hypothesis 4B: Patents generated by at least one academic inventor and assigned to universities 

and other academic research facilities are of a lesser quality than industrial assignees, even when 

the academic inventor(s) is highly centralized in the co-publication network. 

 

3.2 Patent–paper pairs and patent quality 

A number of scholars have explored various metrics to find a good proxy measures of 

innovation quality, as inspired by the scientometric literature and also as initiated by Manuel 

Trajtenberg (1990) (Jaffe, Trajtenberg, & Henderson, 1992; Narin, Hamilton, & Olivastro, 1997). 

There is ample evidence in the science–technology linkages literature expressing patent citations 

as a very good proxy for innovation performance, while various patent quality indicators are 

examined (B. H. Hall, Jaffe, & Trajtenberg, 2005; Harhoff et al., 1999). Bonaccorsi and Thoma 

(2007) selected multiple indicators used by B. H. Hall and Trajtenberg (2004), Henderson et al. 

(1998a), and Lanjouw and Schankerman (2004) to measure innovation productivity. The authors 

categorized the patent inventors in three groups. The first group is composed of patent inventors, 

where all inventors are also named as author(s) of scientific publication(s) in nano science and 

technology (NST). The second group consists of inventors who have no scientific publication in 

NST. The third group comprises patent inventors, where at least one of the inventors has 

published article(s) in the nanotechnology domain. Analyzing the impact of each inventor 

category on patent quality, Bonaccorsi and Thoma (2007) discovered the quality of patents solely 



 41 

generated by the inventors community to be lower than patent quality linked to the author–

inventor network. 

Haeussler and Sauermann (2013) presented evidence on the social impacts of authorship and 

inventorship on innovation performance. Scientists share their ideas through publications and can 

receive recognition from other researchers through citations of their scientific articles, and also 

through benefits such as increased salaries and consulting opportunities, as positive outcomes of 

their inclination to authorship (Haeussler & Sauermann, 2013; Merton & 1973). Inventorship is 

also rewarding, however; academic inventors can receive peer recognition in their professional 

network from patenting, in addition to the revenues they can generate by licensing their 

innovations and ideas (Dasgupta & David, 1987).  

Murray and Stern (2007)  studied the impact of intellectual property on knowledge diffusion, 

putting patent–paper pairs at the heart of their research strategy. They indicated that inventors 

tend to both publish articles and issue patents, and particularly that half of the publications in the 

field of nature biotechnology are linked to patents within five years of publication. Murray and 

Stern (2007) categorized the patent–paper pairs in two groups: pre-grant period with no formal 

Intellectual Property Right (IPR), and post-grant period including IPR associated to the time 

period during which articles are published. Their findings demonstrate that the citation rate of 

publications associated to patent–paper pairs declines after the patents are granted (see also 

Heisey and Adelman (2009) and Kang, Ryu, and Lee (2009).  

Various scholars have suggested that IPR offers financial and social benefits for innovative 

activities (see for instance Hellmann (2007) and Kitch (1977), while others abide by the “anti-

common” perspective, arguing that IPR has a negative impact on innovations. The debate 

between these two approaches points to the question of how IPR affects a researcher’s inclination 

to generate more knowledge in future scientific activities. Some scholars take the approach that 

IPR is more akin to “privatizing” knowledge and thus prevents knowledge flows between 

researchers’ ideas and their exploration (Argyres & Liebeskind, 1998; Heller & Eisenberg, 

1998). Murray and Stern (2007) explored whether there is a difference in the citation rate of 

publications that are patented. According to their findings, as well as those of Heisey and 

Adelman (2009), intellectual property acquisition has a negative impact on knowledge 
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application by subsequent scientists. Thus, the number of publication citations decreases after 

patents are granted.  

Likewise, Magerman et al. (2015) used text mining to find patent–paper pairs. They explored 

the forward citation of publications belonging to such pairs and compared the citation rate with 

that of un-paired articles. They concluded that publications with a patent counterpart received 

more citations than scientific publications that were unconnected to patents. Furthermore, they 

found that patenting activities do not hinder research activities. Instead, involvement in patenting 

activities has a significantly positive impact on the research footprint of authors (Feldman, 

Kenney, & Lissoni, 2015; Magerman et al., 2015). 

A survey of the literature on patent–paper pairs and the impact on innovation performance 

reveals that less attention has been directed to assessing the impact of such pairs on patent 

quality; different patent quality indicators have been chosen for measuring this impact. This 

paper therefore aims to answer the following question: Do patent–paper pairs have a higher 

quality than other patents that are not linked to such publications? With this debate in mind, the 

following hypothesis is therefore proposed: 

Hypothesis 5: Patents invented by at least one inventor who has also authored a scientific article 

in a similar field within a short time frame are of a higher quality compared with patents that 

have been developed without close links to publications. 

3.3 Patent–grant pair and patent quality 

Kang and Park (2012) investigated the impact of government R&D support on biotechnology 

patents in Korea. They found that government funds positively affect firms’ innovation, while 

financing holds a positive influence on domestic and international collaborations (Kang & Park, 

2012). Kang and Park (2012) further concluded that inter-firm collaborations positively affect 

corporations’ innovation. Moreover, Kang and Park (2012) reveal that government grants related 

to R&D projects have a positive influence on firms’ patents. Government improves the 

innovation rate by supporting R&D projects.  

Block and Keller (2009) investigated the top 100 published patents in R&D magazines for the 

period of the 1970s through 2006. Block and Keller (2009) discovered approximately 90 percent 

of the best-awarded innovations in the US received government grants. Accordingly they 
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proposed that government funding is positively related to firms’ innovation through the positive 

link of government granting and internal R&D resources (Block & Keller, 2009). Likewise, there 

is a positive association of government funds and external collaborations (Block & Keller, 2009). 

The external collaborations also positively influence patenting (Block & Keller, 2009). 

Consequently, government grants affect innovation directly as well as indirectly, through both 

internal and external R&D collaboration resources (Block & Keller, 2009).  

De Jong and Freel’s (2010) findings reveal that granting in R&D projects diminishes the 

geographical distance obstacles to finding a valuable partner located in a distant region. Several 

scholars have found that R&D resources positively affect corporations’ innovation performance 

(Belussi, Sammarra, & Sedita, 2010; Freel, 2003; Kang & Park, 2012; Parthasarthy & 

Hammond, 2002; Romijn & Albaladejo, 2002).  L. A. Hall and Bagchi-Sen’s (2007) 

investigations imply that government funding definitely affects the R&D intensity in U.S. 

biotechnology corporations. Furthermore, firms’ R&D intensity is positively correlated with 

innovation performance (L. A. Hall & Bagchi-Sen, 2002, 2007; Kang & Park, 2012). Scholars’ 

investigations identify several funding sources that might affect the scientists’ activities leading 

to patenting (Geuna, 2001; Geuna & Nesta, 2006; Goldfarb & Henrekson, 2003; Guerzoni, 

Taylor Aldridge, Audretsch, & Desai, 2014; Gulbrandsen & Smeby, 2005). Guerzoni et al. 

(2014) discovered that academic scientists are encouraged toward patent invention, when they 

obtain funding from their own academy.  On the other hand, academic scholars have lower 

propensity to be issued patents (Guerzoni et al., 2014), when gaining financial support from non-

academic institutions or corporations.  

Gulbrandsen and Smeby’s (2005) findings are not consistent with those of Guerzoni et al. 

(2014). Gulbrandsen and Smeby (2005) found that those scientists who obtain external funding 

collaborate more than those with no financial support from corporations. Moreover, Gulbrandsen 

and Smeby (2005) suggested that scholars with industrial funding can generate more patents and 

accomplish more commercial activities than those with no firms’ funding.  

There are no prior explorations that solely examine the correlation of financial support and 

commercial activities (Gulbrandsen & Smeby, 2005).  Few scholars reveal that increasing the 

number of patents and boosting university entrepreneurship programs can increase the number of 

contracts (Geuna & Nesta, 2006). Gulbrandsen and Smeby (2005) findings emphasize that 
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academic scientists who gain industrial funding gradually collaborate with other partners at 

universities, foreign research facilities, firms, and their colleagues at the same department. 

Furthermore, Gulbrandsen and Smeby (2005) results illustrate that collaboration and industrial 

funding are positively associated with patent invention and commercial output.  

Guan and Yam (2015) examined the impact of public funding on innovation performance, 

measured by the number of patents as one of the indicators of innovation performance, in Beijing 

in the 1990s. Guan and Yam (2015) categorized the government funding in three categories:  

Direct Earmarks, Special Loans, and Tax Credits. Money that comes from the Direct Earmarks is 

assigned to equipment, renewal, procurement, and new product development for the projects 

engaging in high risk (Guan & Yam, 2015). This financial resource is assigned to high-priority 

projects in national technology development in China (Guan & Yam, 2015). China’s government 

offers Special Loans to firms, which must be paid back, when the firms cannot obtain loans from 

the bank easily (Guan & Yam, 2015). Under the Tax Credits, companies can obtain tax 

exemptions or reductions over the three years after the corporation released its product(s) into the 

market (Guan & Yam, 2015).  Their outcomes show all the government financial support is not 

related to the patents generated at either high-tech or general firms (Guan & Yam, 2015). Direct 

Earmarks is negatively related to the patents generated by the firms (Guan & Yam, 2015). These 

results show that the government funding system in China does not perform efficiently, and that 

the funding system in that country should be restructured to provide more market information on 

the funding process (Guan & Yam, 2015).  

Therefore, this study seeks an answer to the following question: “Do federally funded patents 

tend to obtain more citations?” We thus postulate that: 

 

Hypothesis 6: Patents generated by at least one academic inventor in Canada who received 

grants from a government in a similar field of patenting within a short time frame obtained 

significantly higher patent quality. 

 

As we discussed in Section 3.1.3, we considered whether co-publication or co-invention 

network centralization has a significant effect on patent citations, as a patent quality indicator 
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(Xiang et al., 2013). Therefore, in this thesis, we measured whether the patents in patent–grant 

pairs obtain higher quality than patents without such a link, when the academic inventors occupy 

a highly centralized co-publication network.    

 

Hypothesis 6A: Patents generated by at least one academic inventor who received grants from 

a government in a similar field of patenting within a short time frame are of a higher quality, 

even when the inventors are highly centralized in the co-publication network. 

 

3.4 Star scientists and patent quality 

A number of studies explore the impact of faculty prestige on scholars’ involvement with 

industrial patents (Geuna & Nesta, 2006; Perkmann, King, & Pavelin, 2011; Siegel, Wright, & 

Lockett, 2007). Bercovitz and Feldman’s (2011) findings indicate that “star scientists” bring 

significant value to joint team members. Zucker and Darby (1996) defined star scientists as the 

best partners of the biotechnology firms who had published at least forty genetic studies in 

GenBank1 (Zucker & Darby, 1996, 2001; Zucker et al., 2002; Zucker et al., 1998). Furukawa and 

Goto (2006a, 2006b) likewise considered “core scientists” as industrial scholars who had 

published large numbers of scientific articles and obtained remarkably numerous paper citations. 

Baba et al.’s (2009) findings imply, in contrast with prior studies, that the most effective 

university–industry collaborations are associated with “Pasteur scientists” instead of star 

scientists. Pasteur scientists are those essential players in the university–industry knowledge 

transfer network who have published qualified articles as well as generating patents (Baba et al., 

2009).  

                                                

1 GenBank is a NIH genetic sequence database that covers the DNA DataBank of Japan, the European Molecular 

Biology Laboratory (EMBL), and GenBank at NCBI. !
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Hong and Su (2013) determined that social proximity and university prestige characterize the 

bridges among non-local scholars at universities and corporations who jointly develop new 

products. Collaboration with prestigious universities offers credibility for corporations in 

presenting product quality (Hong & Su, 2013). Various scholars indicate that firms tend to 

collaborate with top-tier rather than second-tier universities, regardless of the distance between 

them (J. D. Adams, 2005; Hong & Su, 2013; Laursen, Reichstein, & Salter, 2011).  

Bercovitz and Feldman (2011) found that partners maintained interest in collaborating with star 

scientists regardless of the geographical distance, when the scientists’ reputation is considered. 

These researchers also determined that the value of the scientists’ reputation can compensate for 

the negative impact of coordination costs over a distance. However, Bercovitz and Feldman 

(2011) outcomes indicate there is no evidence to demonstrate that scientists’ reputations 

encourage distant participation. They offer two possible explanations. First, because 

opportunities to work with star scientists are in high demand, there are ample numbers of local 

partners available to collaborate with them (Bercovitz & Feldman, 2011). It is not beneficial for 

the star scientists to suffer traveling expense and long-distance collaboration cost, when they can 

easily collaborate with local partners (Bercovitz & Feldman, 2011). Second, many star scientists 

cooperate with scholars at start-up companies that are located close to the universities (Bercovitz 

& Feldman, 2011).  

Thus, this study aims to identify the relationship between academic star scientists and 

university involvement with firms. It seeks to the answer the following question: Do more 

prestigious academic faculties raise the likelihood of academics to generate high-quality 

patents?  

Perkmann et al. (2011) suggested that the association of scientists’ qualifications and 

university–industry linkage depends on the field, and that this relationship differs in various 

disciplines. They demonstrated that the faculty chair has a positive influence on corporation 

engagement in technology-oriented fields. Various scholars have discovered that the quality of 

both university and industrial firm increases the likelihood of university–industry linkage 

(Breschi, Lissoni, & Montobbio, 2007; Geuna & Nesta, 2006; Stephan, Gurmu, Sumell, & Black, 

2007). Thus, in this study, we seek an answer to the following question: Do star scientists 

positively affect the quality of an innovation outcome? Hence, the next hypothesis: 
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Hypothesis 7: Patents generated by star scientists receive more numerous citations than patents 

issued without engaging prestigious scholars. 

In this section we proposed hypotheses regarding the impact of patent–paper pairs, patent 

ownership, and patent–grant pairs on patent quality. The Bayh–Dole Act passed during the 1980s 

gives the authority for the universities to retain their intellectual property rights. There are 

debates over supporting public patent ownership versus favoring industrial assignees. Supporters 

of academic ownership say it encourages scholars’ incentives at universities to generate new 

products and ideas, leading to economic growth (Sampat, 2006). Licensing is one of the channels 

by which universities can contribute to innovation commercialization (Sampat, 2006). However, 

the impact of public ownership is not so clear on other channels of knowledge transfer (Sampat, 

2006). Licensing of academic patents by the corporations is considered as one of the significant 

channels of UILs. There is extensive literature that measures the impact of UILs on innovation 

performance.  

In this research we are aware of the concerns regarding the use of patent citations or claims as 

proxies for patent “quality” (Alcacer & Gittelman, 2004; Jung & Lee, 2014). However, while the 

inventors filing the patent might not be aware of the examiners’ backgrounds and qualifications, 

or the number of examiners, the presence of the prior art of the patents demonstrates the 

existence of the associated former knowledge in the patent (Jung & Lee, 2014). Some scholars 

have found that the aggregate citations are a meaningful proxy for the knowledge flows (Jaffe, 

Trajtenberg, & Fogarty, 2000; Jung & Lee, 2014); and Jung and Lee (2014) used patent citation 

as a reasonable proxy for the knowledge flows. We used forward citations, number of claims and 

Herfindahl index of both forward and backward citations to measure patent quality. 
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 DATA AND METHODOLOGY CHAPTER 4

4.1 Data and variables 

Three data sources were applied in this exploration to find potential patent–paper pairs: the 

United States Patent and Trademark Office (USPTO) for patents2 and Elsevier’s Scopus for 

papers.3 The Scopus database includes authors’ names, their affiliations, publication date, title 

and abstract for each scientific article. The USPTO provides information on the inventors’ names 

and their addresses, the assignees’ names and their addresses, patent application and granting 

dates, the number of claims, etc. First, all the papers and patents in Canada in which at least one 

author or one inventor had an address or an affiliation in Canada were extracted. This exercise 

yielded a database of 563,684 scientists having published 180,719 articles, giving 1,013,450 lines 

representing article-scientist pairs, and a database of 14,082 inventors having generated 16,392 

patents, giving 51,315 patent-inventor pairs. These two databases were merged using a roughly 

unique ID for each individual (i.e., identifying the individuals who had common names in both 

patents and papers4). From this merged database, we selected only the patents and articles 

belonging to scientists-inventors residing in the province of Quebec. The data sample for the 

patent–paper pairs research in this study was restricted to the patents generated by academic 

inventors residing in Quebec, because the very detailed funding data required for this study only 

exists in this province. This study hence covers the data belonging to 2,517 scientists and 

inventors residing in Quebec who were involved in patenting and in publishing activities during 

the period 1985 through 2005 in the biotechnology and nanotechnology domains. These 

individuals were involved in filing 1,110 patents over this period. 

                                                

2 Canadian biotechnology and nanotechnology inventors generally patent in the US in addition, or in lieu of, 

patenting in Canada (Beaudry & Kananian, 2013). Furthermore, the Canadian Intellectual Property Office (CIPO) 

does not provide consistent addresses for inventors, which adds to the difficulty of disambiguating inventor’s names. 

3 Scopus generally links authors with their affiliations, which greatly facilitates matching with the USPTO database 

and with disambiguation of names. Because of the large number of individuals to match for this research, this 

database was therefore favoured.  

4 Better precision is not necessary prior to the data mining similarity analysis. 
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As funding is crucial in patenting, the third database applied in this research is related to public 

grants and contracts. Thus, the Quebec University Research Information System (Système 

d’Information sur la Recherche Universitaire—SIRU), provided by the Quebec Ministry of 

Education, was used. This database contains information for the yearly amounts of contracts and 

grants obtained by Quebec academics. Out of the 372,967 records of SIRU, we selected the 

grants and contracts of the 2,203 Quebec scientists-inventors identified by the patent-paper 

selection exercise. Yearly public and private funding was calculated for each academic scientist 

residing in Quebec, as both grants and contracts were measured in this observation. In addition, 

for all 2,679 Canadian university scientists-inventors that collaborated with Quebec Academic-

inventors, we extracted funding information from the Tri-Council Agencies (the Natural Science 

and Engineering Research Council – NSERC; the Canadian Institutes of Health Research – 

CIHR; and the Social Sciences and Humanities Research Council – SSHRC). 

In this analysis, the information from the USPTO, SIRU and Scopus databases was grouped in 

two datasets. The first dataset contains 53,577 observations linked to biotechnology and 

nanotechnology inventors in Canada for the period 1996 to 2005. There were 10 rows, 

representing as many years, for each inventor, some of which are the academic-inventors 

described above, covering different information regarding the grants, contracts, article citation 

numbers, career age and tens of other variables through 1996 until 2005. This very detailed 

yearly information for each inventor, is then aggregated at the patent level (only for the relevant 

years – i.e. that of the patent application) according to the unique patent identification number, 

and comprises of 1,110 patents. Since there might be more than one inventor linking to each 

patent, the average of grants, contracts, and other indicators associated with inventors has been 

calculated for each unique patent. In other words, all the variables that were initially measured at 

the academic-inventor-year level and then grouped (averaged) at the patent level for all the 

academic inventors. On caveat of this method is that as we do not have the amount of funds 

provided to industrial scientists, only the public and private funds that transit via university 

accounts are considered in this study.  
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4.2 Dependent variables 

Many scholars have used various patent indicators that they claim are good proxies for the 

“quality” of patents, including the number of patent backward citations, the number of forward 

citations, the number of claims, the number of IPC-subclasses, patent renewal times, and the 

number of patent applicants as dependent variables (Carpenter et al., 1980; Goetze, 2010; 

Hirschey & Richardson, 2004; Narin et al., 1987; Manuel Trajtenberg, 1990). For instance, the 

number of forward citations counts the number of times that patents have been cited in 

subsequent patents during the 5-year period after the patents were granted (Burke & Reitzig, 

2007; Manuel Trajtenberg, 1990). The number of backward citations counts the number of 

patents referenced as citations in the patent document (Burke & Reitzig, 2007; Narin et al., 

1987). Henderson et al. (1998a) used the Herfindahl index as a measure of patent concentration. 

Bonaccorsi and Thoma (2007) constructed a quality index built from different quality factors 

such as the number of forward citations, the number of backward citations, family size and the 

number of claims. Bonaccorsi and Thoma (2007) integrated 1 minus the Herfindahl index of 

backward citations as a component of their originality index. A higher value of originality index 

demonstrates patents are less concentrated, and hence more diversified (Henderson et al., 1998a). 

The dependent variables of this investigation are therefore amongst the commonly used proxies 

for determining patent “quality”. The following variables have been selected for this purpose in 

this study: the number of patent forward citations [NbFCit5t], the number of claims [NbClaimst], 

1 minus the Herfindahl index of forward citations [HerfIndexFCit5t], which is an index of the 

diversity of the patent classes of the pool of patents that cite a particular patent, and 1 minus the 

Herfindahl index of backward citations [HerfIndexBWCitt], which is a measure of the diversity of 

the patent classes of the prior knowledge that a particular patent cites. 
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4.3 Independent variables 

The variable Grant3t measures the average amount of grants raised by each academic inventor 

residing in Quebec over the 3 years prior to the patent application.5 Similarly, Contract3t 

measures the amount of contract funding raised over the past 3 years, averaged among the 

Quebec academic inventors named on the patent document6. Payne and Siow (2003) found a 

small but positive impact of funding on the rate at which researchers have contributed patents. 

Separating grants from contracts, Beaudry and Kananian (2013) concluded that grants have little 

or no effect on the number of patent citations, finding an inverted U-shaped relationship with the 

number of claims. Thus, Beaudry and Kananian’s (2013) outcomes suggest a substitution effect 

between grants and contracts. Contracts, however, have a positive impact on both the number of 

citations and the number of claims.  

The scientists and inventors team itself may influence the quality of the resulting patent, as 

scientists and inventors tend to work in a group and do not generally work alone. Beaudry and 

Schiffauerova (2011) assessed the impact of the network characteristics of Canadian 

nanotechnology inventors on patent quality measured by the number of claims. The researchers 

discovered that more central individuals in terms of betweenness centrality (i.e., good 

intermediaries) produce a higher patent quality (Beaudry and Schiffauerova (2011). Conversely, 

J. C. Wang, Chiang, and Lin (2010) found that high brokerage has a negative impact on the 

patent renewal decision, where high brokerage is similar to the intermediary position and 

measured by betweenness centrality.  

In these studies, the network vertices represent the scientists or inventors, and the edges 

between the vertices correspond to the collaborative links between scientists or inventors leading 

to articles or patents (Carrington, Scott, & Wasserman, 2005). The co-authorship and co-

                                                

5 We have no means by which to evaluate the amount of funding raised by out of Quebec inventors and invested by 

the assignees. This variable is a control for the capacity of the academic team to raise funds.  

 

6 All grants and contracts monetary values have been deflated using the consumer price index to consider constant 

dollar values. 
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invention networks of scientists and inventors were respectively mapped in this study by using 

the social network analysis software Pajek. 

Certain intermediary nodes are indeed crucial for bridging between various clusters and sub-

clusters to diffuse information, knowledge and financial resources between different players 

(Ebadi & Schiffauerova, 2015). Betweenness centrality is a measure that identifies such 

gatekeepers in the network (Ebadi & Schiffauerova, 2015). Betweenness centrality shows the 

frequency of the node located between pairs of other nodes, occupying the shortest path of a 

graph (Szczepański, Michalak, & Rahwan, 2016). Essentially, betweenness centrality is a way to 

measure control of flow, knowledge in our case, in the network (Ebadi & Schiffauerova, 2015; 

Freeman, 1978; Marquetoux et al., 2016; Szczepański et al., 2016). Technically, betweenness of 

node k is defined as the share of time that node i can reach to node j through node k on the 

shortest path between node i and node j (Borgatti, 2005; Ebadi & Schiffauerova, 2015). 

Betweeness centrality is calculated by a formula, presented below, where i and j occupy a 

network as non-adjacent nodes (Ebadi & Schiffauerova, 2015): 

  Equation 4.1 

A high value of betweenness centrality for node k characterizes the essential control of node k 

in diffusing the flow between two other non-adjacent nodes, represented by node i and j (Ebadi 

& Schiffauerova, 2015; Wasserman & Faust, 1994). 

A clustering coefficient identifies the probability that node i and j are connected to node k, 

when node i and j are directly connected to each other (Marquetoux et al., 2016). The clustering 

coefficient shows the cliquishness of the network (Ebadi & Schiffauerova, 2015; Marquetoux et 

al., 2016; Watts & Strogatz, 1998). Scholars with a high clustering coefficient tend to tightly 

cluster to increase their connectivity; as a result, knowledge can transfer rapidly among players 

(Ebadi & Schiffauerova, 2015). The clustering coefficient specifies the triangle of actors who 

build a cluster, and it is calculated by the local clustering coefficient (Ebadi & Schiffauerova, 

2015).The local clustering coefficient of a node i is measured by the number of two adjacent 

nodes that connect to node i to build a cluster as triangle nodes, divided by the number of all 

three nodes that are connected together in the cluster (Watts & Strogatz, 1998), as presented 

below: 
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Thus, the overall clustering coefficient is calculated by the average of local clustering 

coefficients divided by the number of nodes representing vertices in the network of players, as 

demonstrated by the formula: 

 Equation 4.2 

In this study, to characterize the researchers’ positions within three-year7 interactive networks, 

a number of indicators were constructed: betweenness centrality (BtwCentArt3t) and cliquishness 

attributes (CliqnessArt3t), of individual scientists both belonging to the co-publication network, 

averaged over all inventors of a particular patent. Furthermore, the co-invention network was 

characterized by a third and a fourth variables: Betweenness centrality (BtwCentPat3t) measures 

the importance of an inventor as an intermediary in the co-invention8 network (Freeman, 1978), 

averaged over all academic inventors of a given patent; Cliquishness represents the likelihood 

that the direct neighbours of researchers are also connected to each other (Nooy, Mrvar, & 

Batagelj, 2011) in the co-invention network (CliqnessPat3t), averaged over all researchers of a 

given patent. 

The literature generally finds individuals who are most productive in terms of technological 

outputs generally produce most papers (Balconi & Laboranti, 2006; Calderini, Franzoni, & 

Vezzulli, 2007; Meyer, 2006; Van Looy, Ranga, Callaert, Debackere, & Zimmermann, 2004). 

The intrinsic individual quality is probably what drives this high production and constitutes a 

latent variable in this analysis. It is therefore important to measure this quality. The average 

                                                

7 The time window for building the networks differs from one study to another, when collaboration history is 

reviewed. Schilling and Phelps (2007) used 3-year windows to map the firm collaboration network. In contrast, 

Gulati and Gargiulo (1999) estimated 5-year windows. Thus, different combinations of 3- and 5-year subnetworks 

were calculated in this study to build the network metrics, and the 3-year subnetworks were chosen as the most that 

yielded the most consistent result. 

8 The average betweenness centrality of scientists in the co-invention network is also calculated; but as this variable 

never showed any significance in the results, it was eliminated from the models.  
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number of article citations obtained by academic inventors in the past 3 years is calculated as a 

first proxy of “scientific quality” in this analysis (ArtCit3t) as quality on the science side may 

drive quality on the technology side. A second proxy for individual quality is associated with the 

type/reputation of the research chair held by academic inventors in their careers. According to 

this measurement, the variable (MaxChairt) is defined as an ordinal variable, taking the value 0 if 

an academic inventor never held a chair, the value 1 for an industrial chair, the value 2 for an 

NSERC or CIHR chair and the value 3 for a Canada research chair.  

Furthermore, the “career” age (Aget) of a scientist is included as a proxy for real age, as the 

impact of the scientist’s age on patent quality is estimated. Career age corresponds to the average 

age during the whole period in which an inventor appears in the database from raising funds, 

publishing articles or patenting. This control variable expresses the fact representing older 

scientists maybe more creative (Cole & Cole, 1973; Kyvik & Olsen, 2008; Merton & 1973). 

Conversely, particular researchers believe scholars may make their most important discoveries 

before the age of 40 (C. W. Adams, 1946; Gieryn, 1981; Stern, 1978; Zuckerman, 1977).  

 

4.3.1 Patent–paper pairs methodology 

Several researchers have employed various methodologies to construct patent–paper pairs. 

Murray and Stern (2007) tried to match the articles and papers published in Nature 

Biotechnology Journal by asking experts to find the connection between the matched articles and 

papers. Ziedonis (2012) used an “Inventor-based matching” algorithm to extract the patent–paper 

pairs. Ziedonis’s (2012) algorithm is structured around the names of inventors who participated 

in both patenting and publishing. Two assumptions were necessary for this methodology: first, 

inventors who contributed to publications were considered as the link between science and 

technology; second, the patent application year was close to the publication date, within 2 years 

either side of the patent application date (Ziedonis, 2012). While Murray and Stern (2007) 

limited their patent–paper pairs to one patent linked to one publication, Ziedonis (2012) matched 

a number of common publications to a single given patent. 

A number of researchers used text-mining tools to find inventors who were also named as 

authors in a similar domain (Lissoni, Montobbio, & Zirulia, 2013). Lissoni and Montobbio 



 55 

(2006) selected the potential patent–paper pairs as those for which at least one inventor published 

scientific articles during the period [t - 2, t + 2], where t corresponds to the patent’s application 

date. In one of their methods (they compared five), Lissoni and Montobbio (2006) calculated the 

cosine similarity between the patent and paper documents to measure content similarity. Lissoni 

and Montobbio (2006) identified the top 10% of potential patent–paper pairs as the actual patent–

paper pairs, with similarity measures ranging from 0.145 to 0.75. Ducor (2000), however, 

discovered that authors were not always matched with the inventors who published (Haeussler & 

Sauermann, 2013).  

A similar methodology to Magerman et al. (2011, 2015) was used in this study. In Magerman 

et al.’s (2011, 2015) methodology, content similarity was measured to analyze the similarity of 

titles and abstracts of patents and papers, where at least one inventor was listed as an author of 

the publication. All the words of these documents were first indexed, and then evident stop 

words were removed. The vector space was created based on a document-by-term matrix 

generated from the patent and paper documents (Magerman et al., 2011, 2015; Salton, Wong, & 

Yang, 1975). The patent and article documents occupied the rows of the matrix, and particular 

distinctive terms extracted from the documents were added as the columns (Magerman et al., 

2011, 2015). Then, a Term Frequency and Inverse Document Frequency (TF-IDF) method was 

used as a classic data mining technique (Magerman et al., 2011, 2015). Term Frequency and 

Inverse Document Frequency (TF-IDF) was used to find the term frequencies of the words in the 

documents, in order to measure the similarities between the patent and paper documents 

(Magerman et al., 2011, 2015).  

In our research, the potential patent–paper pairs were first identified by selecting the patents 

originated by the authors-inventors network. According to our examination, 22,688 potential 

biotechnology patent–paper pairs were therefore extracted, with at least one of the inventors 

publishing at least one article in the period [t - 2, t + 2], where t corresponds to the patent 

application date. Moreover, 20,003 patent–paper pairs were discovered as potential 

nanotechnology patent–publication pairs originating in Canada. The text mining software 

Rapidminer was used to calculate the cosine similarity between the paired patent and paper 

documents. In this test, the similarity measures ranged from 0 to 0.78 for biotechnology, and 

from 0 to 0.53 for nanotechnology (theoretically, similarity measures range from 0 to 1). As with 

the methodology of Lissoni and Montobbio (2006), patent–paper pairs were selected from the top 
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10 percentile of the similarity in our observation. This roughly corresponds to a similarity 

measure of 0.30 for both biotechnology and nanotechnology samples. A dummy variable (dPPP) 

was created, taking the value 1 if the patent had a paper counterpart (i.e., the patents and papers 

are similar enough according to the top 10 percentile measure) and 0 otherwise. Then, this 

threshold was examined to see whether it yielded significant results in the regression models. 

Accordingly, 249 actual nanotechnology patent–paper pairs and also 376 biotechnology patent–

paper pairs9,10 were discovered in Canada, while the 0.30 threshold was used to measure the 

similarity. Because of the poor performance of this dummy variable in our regressions, and that 

regarding the threshold selected, we reverted to using the original measure of similarity in our 

regressions (Similarity). Results using the dummy variable dPPP, will therefore not be reported 

in this thesis.  

 

4.3.2 Patent–grant pairs methodology 

A review of the literature reveals a lack of attention to the topic of patent–grant pairs. To 

research this linkage, we measured the similarity of grants titles (from the Tri-Council Agency 

database) and patent titles (extracted from the USPTO database) using Rapidminer. First, we 

found the inventors (associated with our patent sample) who received grants from the federal 

government. Then, to increase our selection accuracy we applied the condition below to narrow 

the time window, in order to find the linkage between a patent and its relevant grants: 

[Year patent application-2] <= Year grant<= [Year patent application] 

The potential patent–grant pairs were therefore selected where public grants were assigned to 

inventors during a maximum of two years preceding the patent application year, and no further 

than the patent application year. Then, to improve the selection process, we assessed the 

similarity of the field associated with both patents and grants. We deleted the potential patent–

                                                

9 These patent–paper pairs were all checked individually to ensure that no two individuals with the same name were 

mistakenly associated in patent–paper pairs. 

10 Note that the nanobiotechnology field overlaps both biotechnology and nanotechnology; hence the total number of 

patent–paper pairs (PPP) found is less than the sum of both numbers of PPP.!



 57 

grant pairs where inventors received grants in the biotechnology domain and generated patents in 

nanotechnology, or vice versa. We also kept the instances of inventors who received grants in 

either nanotechnology or biotechnology and generated patents in the combined field of 

nanobiotechnology which intersects both fields. 

In our sample, there were 1,110 patents, which were associated with 4,131 patent–scientist 

pairs. We merged our patent–scientist pairs table (including those 4,131 records) with the Tri-

Council Agencies database including 202,586 records, yielding 10,768 lines. Therefore, we 

applied the above-mentioned procedure to find potential patent–grant pairs, yielding 1,456 lines. 

Then, we measured the content similarity of titles of patents and grants belonging to potential 

patent–grant pairs that were extracted so far. Finally, we aggregated our data according to the 

patent identification and calculated the maximum and minimum similarity measure for each 

patent. As a result, we had a sample covering 1,110 observations including the maximum and 

minimum similarity, which arose from the patents and grants for each unified patent. Finally, we 

checked the significance of the similarity variable in our analysis model to find the threshold of 

the similarity between patents and grants. Various similarity values were tested, ranging from 

0.05 to 0.5. Finally, the threshold similarity of 0.1 was selected as a limit of the similarity. In this 

research, we generated a dummy variable associated with the patent–grant pairs. It equals 1 when 

the patent is part of a patent–grant pair, otherwise 0. Accordingly, 41 patent–grant pairs were 

identified in this research. In our measurement models, we used patent–grant pairs as a dummy 

variable and not as a similarity variable. 

 

4.4 Model specification 

4.4.1 Impact of patent–paper pairs on patent quality 

To analyze the impact of the patent–paper similarity [Similarity] variable on patent quality, 

several methods have been applied in this research. We used the Wu-Hausman test to find 

whether there is endogeneity in our model. The number of forward citations (NbFCit5t), the 

number of claims (NbClaimst) (both transformed by taking the natural logarithm) 1 minus the 

Herfindahl index of backward citations (HerfIndexBWCitt) and 1 minus the Herfindahl index of 

forward citations (HerfIndexFCit5t) were measured as the dependent variables. According to the 
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results, our model (including the patent–paper similarity attribute) does potentially suffer from 

endogeneity problems, when the number of claims (NbClaimst) and 1 minus the Herfindahl index 

of forward citations (HerfIndexFCit5t) are examined as the dependent variables 

(HerfIndexBWCitt and HerfIndexFCit5t are both normal continuous variables; therefore we didn’t 

apply logarithms for both Herfindahl variables). 

There are several possible explanations for this endogeneity. First, unobserved heterogeneity 

may plague the analysis because of poor data quality. Accordingly, an effort was made to clean 

the data to accurately match the name of scientists and inventors in this research. This step was 

performed manually and as such is not immune from human errors. Second, the number of patent 

citations was assumed to be linked to the total average of contracts received by academic 

inventors (Contract3t). However, the contracts are also probably related to the amount of grants 

raised (Grant3t) (Beaudry & Schiffauerova, 2011), which is one of the explanatory variables in 

this test. Thus, the contracts were observed as an endogenous variable in this examination.  

To correct for potential endogeneity, the two-stage least-squares (IVRegress 2SLS) regressions 

were estimated. The average amount of contracts (in constant CAD$) raised over three years 

(Contract3t) is highly correlated with particular variables, which are treated as instruments. 

Three instrumental variables are used to estimate the average amount of contracts: the average 

amount of past contracts received in the same university (Contract3Ut-2), the average amount of 

grants for equipment and infrastructure obtained by inventors (GrantEI3t-1), and the number of 

innovation loops (Loopt). The average amount of past contracts received in the same university 

(Contract3Ut-2) shows that universities that traditionally collaborate a great deal with industry are 

probably closer to the so-called third mission of universities. The average amount of grants for 

equipment and infrastructure raised by academic-inventors (GrantEI3t-1) is related to the sharing 

of important biotechnology and nanotechnology infrastructure that is often encouraged to ensure 

the survival of these laboratories. The number of innovation loops (Loopt), as suggested by 

Beaudry and Kananian (2013), measures the number of times academic inventors received funds 

from companies for research purposes, when these firms simultaneously own these patents. Thus, 

researchers having closer links with industry are likely to attract more contracts.  

In this analysis, various lag structures were estimated for the instrumental variables. A two-

year lag was selected for universities’ past contracts (Contract3Ut-2). Likewise, for the equipment 
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and infrastructure grants (GrantEI3t-1), a one-year lag yields the most consistent results. 

Moreover, we used the Sargan test to verify whether our instrumental variables were valid, the 

tests confirms that our instrumental variables are valid. Please refer to Table E.1–Table E.2. We 

used the IVRegress 2SLS procedure to account for potential endogeneity (these results are 

summarized in Table E.1, Table E.2, Table 6.3, and Table 6.5). 

Equation 4.3 below presents the instrumental variable model where the average of contracts 

(Contract3t) is the endogenous variable, and where the instrumental variables include 

universities’ past contracts (Contract3Ut-2), equipment and infrastructure grants (GrantEI3t-1), 

and number of innovation loops (Loopt). This is the first stage of the 2SLS regression. The 

second stage of the model estimates the number of forward citations [NbFCit5t], the number of 

claims [NbClaimst], 1 minus the Herfindahl index of forward citations [HerfIndexFCit5t] and 1 

minus the Herfindahl index of backward citations [HerfIndexBWCitt] (see Equation 4.4).  

 Equation 4.3 

 

Equation 4.4 

Understandably, not all models will exhibit endogeneity problems, and as such, only Equation 

4.4 will be estimated, i.e. without the first stage equation). The Wu-Hausman test results imply 

there is no endogeneity for number of forward citations (NbFCit5t) and 1 minus the Herfindahl 

index backward citations (HerfIndexBWCitt) (refer to appendix Table E.1–Table E.2). 

As robustness checks, we also estimated models on the number of citations and claims (as 

opposed to the natural logarithm of these two measures) using Poisson regressions. A Poisson 

model is demonstrated below in Equation 4.5, where y represents the dependent variable and x 

the independent variable: 
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  where β is the coefficient and ε is a residual Equation 4.5 

 
Equation 4.6 

 

Equation 4.7 

Our models suffered from over-dispersion and we couldn’t use the Poisson model in our 

analysis. We therefore had to estimate negative binomial regressions which do not impose that 

the mean is equal to the variance as it is the case in Poisson regressions. The negative binomial 

regression (nbreg) is demonstrated below: 

 
Equation 4.8 

 

If α = 0 then the Poisson models is the appropriate model; otherwise, if then there is 

over-dispersion, and negative binomial regression (nbreg) is the correct model. Beta as the 

regression coefficient is a measure of how strongly each predictor variable influences the 

dependent variable.  

Finally, all the variables have been transformed by Z Score grand mean centered to normalize 

the variables and hence minimize multicollinearity problems when using interactive variables (Z 

= x – µ / σ, µ = mean and σ = standard deviation) to measure impact of patent–paper similarity 

on patent quality. The corresponding results are shown in Table 6.2 (NbFCit5t), Table 6.3 

(NbClaimst), Table 6.4 (HerfIndexBWCitt), and Table 6.5 (HerfIndexFCit5t).  
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4.4.2 Impact of public assignees versus industrial assignees on patent quality 

To compare the quality of patents assigned to the public sector with patents privately held by 

corporations, several models were used in this study. Whether to use the Tobit model or the 

Ordinary Least Square (OLS) method was addressed as a primary question in the analysis. Since 

there is a significant number of 0 values, the Tobit model (left censored) was chosen as the more 

appropriate model to analyze the natural logarithm of the number of forward citations 

[NbFCit5t], 1 minus the Herfindahl index of forward citations [HerfIndexFCit5t], and 1 minus the 

Herfindahl index of backward citations [HerfIndexBWCitt]. The Tobit model is the econometrics 

model initially proposed by Tobin (1958) to demonstrate the relationship between a non-negative 

dependent variable (yi) and independent variables (xi). Finally, the Tobit regression model was 

used for the natural logarithm of number of claims [NbClaimst].  

 

 
Equation 4.9 

  if   Equation 4.10 

Where µ is a normal distribution with Means=0 and Variance=σ2 : 

 Equation 4.11 

 

y* represents a latent model, x demonstrates the independent variables, and y is a linear 

combination of independent variables (X1, X2,..., Xm). 

To measure the impact of patent ownership structure on NbFCit5t, NbClaimst, HerfIndexBWCitt, 

and HerfIndexFCit5t, Equation 4.4 was used. We used the square root of the clustering 

coefficient of the co-publication network (all averaged) to normalize this variable. Moreover, the 

natural logarithm of betweenness centrality of both co-publication and co-invention network is 

measured in the final model in order to normalize centrality variables. We tested the square effect 

of each variable to examine both the linear and non-linear effect of the variables (quadratic 

effect). Therefore, we added the square variables when there was a significant effect. Finally, we 

added the interactive variables to measure the impact of academic or government assignees on 

Y = β0 +β1X1 +β2X2 +β3X3 +...+βmXm

yit = yit
∗

yit = 0
yit
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yit
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patent quality, when inventors were situated in a highly centralized co-invention and co-

authorship network. As a next step, we tested whether there is endogeneity in our model or not. 

Once again, the IVRegress 2SLS method was the most appropriate model for the analysis. To 

analyze the endogeneity, IVRegress was used along with the Wu-Hausman and Sargan tests. 

Results are shown in Table F.1–Table F.4 in the appendix. The Wu-Hausman test’s results 

illustrate that there is no endogeneity for the number of forward citations [NbFCit5t], the number 

of claims [NbClaimst], or 1 minus the Herfindahl index of forward citations [HerfIndexFCit5t] 

and 1 minus the number of Herfindahl index of backward citations [HerfIndexBWCitt]. The 

results are identified in Table F.1 (number of forward citations [NbFCit5t]), Table F.2 (number of 

claims [NbClaimst]), Table F.3 (Herfindahl index of backward citations [HerfIndexBWCitt]), and 

Table F.4 (Herfindahl index of forward citations [HerfIndexFCit5t]) in the appendix. For both the 

Wu-Hausman and Sargan tests we investigated two potential endogenous variables: the average 

dollar amount of contracts (Contract3t) and of grants (Grant3t) as an endogenous variables. 

We selected two groups of variables to measure the two different models for endogeneity in 

our analysis. First, we considered the average value of contracts (Contract3t) as an endogenous 

variable, and Contract3Ut-2, GrantEI3t-1, and Loop as instrumental variables, as discussed in the 

previous section 4.4.1. Second, instead of average value of Contract (Contract3t), we assumed 

the average value of grants that inventors received in a given year (Grant3t) as an endogenous 

variable. The average value of former grants that the same university obtained (Grant3Ut-1), and 

the average value of grants for equipment and infrastructure received by inventors (GrantEI3t-2) 

were treated as instrumental variables. According to the Sargan test results, our instrumental 

variables were valid in both models. However, the Wu-Hausman test results demonstrate that 

endogeneity is not apparent or not appropriately measured in the second approach, where the 

average value of grants that inventors received (Grant3t) was assumed as an endogenous 

variable. 

Then, we measured the robustness of our model. The number of forward citations (NbFCit5t) 

and number of claims (NbClaimst) are both count measures. Moreover, in our observations, there 

were a significant number of forward citations (NbFCit5t) assigned to 0 (543 observations out of 

1110). Therefore, the Zero-inflated negative binomial (Zinb) method was assumed to be an 

appropriate measurement for the forward citations (NbFCit5t) (as a dependent variable), where 

there is an excess of zeros in the dependent variable. We compared the Zinb test versus the 
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standard negative binomial method to find which technique was most appropriate for the number 

of forward citations (NbFCit5t). The Vuong test systematically rejected the standard negative 

binomial method for forward citations (NbFCit5t). Accordingly, the Zinb method was chosen as 

the correct method to analyze the number of forward citations (NbFCit5t). The Zinb test results 

are shown in Table B.1–Table B.3 of the appendix. The Zero-inflated negative binomial (Zinb) 

model is present below: 

 

  with probability of qi 

  
with probability of (1-qi)

 
Equation 4.12 

Where λ respects the equations below for binomial negative: 

   if  
 

Equation 4.13 

 

Once again, as our model suffered from over-dispersion, so the Zero-inflated Poisson model 

(Zip) was not applicable to the number of forward citations (NbFCit5t) or to the number of 

claims (NbClaimst). 

The Herfindahl index of forward citations (HerfIndexFCit5t) and backward citations 

(HerfIndexBWCitt) were continuous dependent variables for which there was no “found” 

endogeneity, and therefore standard OLS regression models were selected for them.  

Similarly to the previous section, the final model used Tobit for the (NbFCit5t) variable, since 

48% of the total of forward citations (NbFCit5t) sample (543 out of 1110 patent observations) 

equals 0, as results are shown in Table 6.8. To determine whether public assignees are involved 

in fewer multidisciplinary domains compared to industrial assignees, we used the Herfindahl 

index indicator—either the Herfindahl index of backward citations (HerfIndexBWCitt), results 

are determined in Table 6.10, or the Herfindahl index of forward citations (HerfIndexFCit5t) 

variables, results are implied in Table 6.11.  
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4.4.3 Impact of patent–grant pairs on patent quality  

To measure impact of patent–grant pairs on NbFCit5t, NbClaimst, HerfIndexBWCitt, and 

HerfIndexFCit5t, Equation 4.4 was used.  

To assess the impact of the dummy variable associated with patent–grant pairs on patent 

quality, we first tested for endogeneity and robustness. The Wu-Hausman test outcomes reveal 

that endogeneity is not present in our model, when (Grant3t) was examined as the endogenous 

variable. Therefore, considering the significant number of zeros, we used Tobit for NbFCit5t, 

HerfIndexBWCitt, and HerfIndexFCit5t. We used the natural logarithm of NbFCit5t to normalize 

this variable. HerfIndexBWCitt and HerfIndexFCit5t were multiplied by 100. We used OLS 

regressions for the natural logarithm of NbClaimst  as there is always at least one claim for the 

patent and there was no 0 assigned to this variable. The corresponding results are presented in 

Table 6.15 (NbFCit5t), Table 6.16 (NbClaimst), Table 6.17 (HerfIndexBWCitt), and Table 6.18 

(HerfIndexFCit5t). 

Previous researchers have attempted to investigate the factors bridging science and technology. 

Among these factors, grants and contracts, joint invention and authorship, and specific features 

of individual scholars (e.g., reputation and career age) have been highlighted. In advanced 

biotechnology and nanotechnology, scholars deeply and broadly engage in U–I collaborations 

(Lee, 2016). Scientists and firms are not bound by their collaboration networks in local areas but 

have expanded their partnership areas to distant universities, corporations, and individuals to 

provide better opportunities, tapping the skills and knowledge of their distant partners (Lee, 

2016). Past literature shows an increasing trend for joint invention and publication activities 

among scientists at firms and universities (Lee, 2016; Wuchty, Jones, & Uzzi, 2007).  Teams are 

more productive in accumulating knowledge and encouraging better innovation performance at 

universities and corporations (Singh & Fleming, 2009). Scholars located in the center of the 

collaborative network have access to strategic information and can control and widely distribute 

information flow in the network.  
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 DESCRIPTIVE STATISTICS CHAPTER 5

Before presenting the results, the descriptive statistics of variables are briefly presented in 

Table 5.1. Moreover, the correlation matrix is provided in Table K.1–Table K.3 in the appendix. 

The examination of these descriptive statistics should give us insight and the anticipated results 

presented in the sixth chapter of this thesis. 

Table 5.1 : Descriptive statistics 

Variable Nb Obs Mean Std. Dev. Min Max 
Dependent variables 

     NbFCit5t 1110 1.4649 2.7838 0 42 
NbClaimst 1110 18.4153 16.1117 1 151 
HerfIndexFCit5t 1110 0.8213 0.2602 0 1 
HerfIndexBWCitt  1110 0.7253 0.2978 0 0.9872 
Independent variables 

     Grant3t 
a 1110 316,827.7 1,021,492 0 8,170,096 

Aget 
a 1110 12.7511 4.2974 1 21 

MaxChairt 
b 1110 0.5162 0.8689 0 3 

ArtCit3t
a 1110 17.1270 41.2803 0 712 

BtwCentArt3t
a 1110 4.801 10.318 0 76.6230 

CliqnessArt3t  a 1110 22.6845 14.3057 0 117.8727 
BtwCentPat3t

 a 1110 299.814 880.071 0 6466.6890 
CliqnessPat3t

 a 1110 5,583.617 3764.399 0 10,000 
dNanoEx 1110 0.1640 0.3704 0 1 
dGovAssigneet

 d 1110 0.0315 0.1748 0 1 
dAcAssigneet

d 1110 0.1604 0.3671 0 1 
dPGP 1110 0.0369 0.1887 0 1 
Similarityt 1110 0.1494 0.1458 0 0.7773 
Endogenous variables 

     Contract3t 
a, c 1110 240,149.2 1,078,342 0 10,600,000 

Instrumental variables 
     Contract3Ut-2 

a, c 1110 22,564.86 26,837.2 0 95,158.06 
GrantEI3t-1 

a, c 1110 17,570.03 130,513.9 0 2,561,704 
Loop e 1110 0.2252 0.4179 0 1 

Notes: (a) All the variables have been averaged over all academic inventors that contributed to a given patent; (b) Only 
this variable uses the maximum value of all academic inventors (MaxChair); (c) Only endogeneity exist in the model 
including patent–paper similarity, there is no endogeneity for the model associated to patent–grant pairs and also the 
model to measure the impact of patent ownership structure on patent quality; (d) These variables are calculated 
according to the exclusive government assignees (dGovAssigneet) and exclusive academic assignees (dAcAssigneet); 
(e) This variable is the independent variable for  the model to assess the impact of patent ownership structure on 
patent quality and it is the instrumental variable for  the model including patent–paper similarity. 
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5.1 Patent–paper pairs 

Figure 5.1 illustrates the total number of patents and the number of those belonging to patent–

paper pairs in the fields of biotechnology and nanotechnology, over the period examined in the 

regression analysis. This graph shows a highly volatile evolution of the number of patents over 

the years, while 20% of these patents were linked to patent–paper pairs (demonstrated in Figure 

5.1).  

 

 

 

 

 

 

 

 

Figure 5.2 shows that patents that were part of patent–paper pairs were generally less cited 5 

years after their official grant year, suggesting that their quality is less than those that do not have 

such links. This graph supports our results presented in Table 6.2, which shows the negative 

impact of patent–paper pairs on patent citation. Figure 5.2 shows the decreasing trend of patent–

paper pairs over time. The difference between the number of citations of patents belonging to 

patent–paper pairs and citation of patents not linked to publications also decreases until finally 

the numbers converge in 2005 (NbFCit5t 
PPP - NbFCit5t 

Non-PPP = 0.0157, t = 2005). This graph 

shows that if we increase our time window beyond 2005, there will likely be no significant 

difference between patents belonging to patent–paper pairs and patents without such a link, as 

stated in the discussion of future research in Chapter 7. 

 

 Figure 5.1 : Total number of patents generated by academic inventors in Canada and total 
of patent–paper pairs for biotechnology and nanotechnology in Quebec. 
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According to our results indicated in Table 6.3, patent–paper pairs should have a negative 

impact on number of claims. However, as is shown in Figure 5.3, this difference is very slight. 

As we discussed above, if we observe results over a longer period, the difference might tend to 

be not significant beyond 2005. 

 

 

 

 

 

 

 

 

 

Figure 5.2 : Total number of citations after 5 years per patent, for patents that are part of a 
patent–paper pair or not, in the combined fields of biotechnology and 
nanotechnology in Quebec. 

 

Figure 5.3 : Total number of claims per patent, for patents that are part of a 
patent–paper pair or not, in the combined fields of biotechnology and 
nanotechnology in Quebec. 
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5.2 Publics assignees versus industrial assignees 

Approximately 30% of patents in the study were assigned to academic institutions (shown in 

Figure 5.4). In this study, we observed academic assignees, government assignees, and industrial 

assignees. 

   

 

 

 

 

 

 

 

 

 

 

As represented in Figure 5.5, patents assigned to universities and other research facilities 

received fewer citations than patents assigned to non-academic patentees. This graph supports 

our results presented in Table 6.8; that is, a negative impact of academic assignees on patent 

forward citations. Likewise, the government patentees tended to receive fewer citations than non-

government patentees, as presented in Figure 5.7. Thus, patents assigned to public patentees 

received less citations than patents assigned to the non-public patentees. Our results presented in 

Table 6.8–Table 6.9 substantiate the graphs in Figure 5.5–Figure 5.8. 

 

 

 

Figure 5.4 : Total number of patents by type of assignee (academic, government, industrial, 
hospital and individual assignee) in biotechnology and nanotechnology in Canada. 
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Figure 5.6 : Total number of claims per patent for type of assignee (academic-
assignee and non-academic assignee) in biotechnology and 
nanotechnology in Canada. 

 

Figure 5.5 : Total number of citations per patent for type of assignee (academic-assignee 
and non-academic assignee) in biotechnology and nanotechnology in 
Canada. 
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Figure 5.7 : Total number of citations per patent for type of assignee 
(government-assignee and non-government assignee) 
in biotechnology and nanotechnology in Canada. 

 

Figure 5.8 : Total number of claims per patent for type of assignee (government-assignee and 
non-government assignee) in biotechnology and nanotechnology in Canada. 
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As Figure 5.9 reveals, patents privately assigned to industry obtained more forward citations 

than those assigned to public patentees. We expected this result, as we compared the patent 

citations associated with public patentees (including university and government) with patents 

assigned to industrial assignees (refer to Table 6.8).  

 

 

Figure 5.9 : Total number of citations per patent for industrial and non-industrial 
assignees in biotechnology and nanotechnology in Canada. 

 

 

Figure 5.10 : Total number of claims per patent for industrial and non-industrial assignees 
in biotechnology and nanotechnology in Canada. 
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5.3 Patent–grant pairs 

As implied in Figure 5.11, patent–grant pairs negatively affect patent citations. That is, patents 

that are part of patent–grant pairs obtain fewer citations than patents without such a link, as 

indicated in Table 6.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 : Total number of forward citations for patent–grant pairs and non-patent–grant 

pairs. 

Figure 5.12 : Total number of claims for patent–grant pairs and non-patent–grant pairs. 
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As Figure 5.13 determines the average amount of public funding (operating costs and 

infrastructure grants) and private funding (contracts) in constant Canadian dollars obtained per 

academic inventor. Beaudry and Allaoui (2012) discovered a slightly higher proportion of grants 

compared to contracts. This sample eliminates scientists that do not patent, and that may not have 

as close a link with industry as their academic inventor colleagues.  

 

 
Gress (2010) analyzed the USPTO patent citation trend for the period 1963–2002, measuring 

patent originality by the number of forward citations, and patent generality by the number of 

backward citations. A patent backward citation is generated once when a patent is issued, while 

patent forward citations are continuously being added over time (Gress, 2010). Another 

difference between generating patent forward citations and backward citations is associated with 

the citation procedure. Backward citations are generated when a patent was filed, while for 

forward citations, we have the whole dataset and therefore are able to measure the number of 

patent citations in subsequent patents going back to the year that a focal patent was granted. 

 

Figure 5.13 : Average amount (for each patent) of contracts and grants (in constant 
Canadian dollars) which academic inventors received in Quebec for 
the combined fields of biotechnology and nanotechnology. 
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Gress (2010) calculated the ratio of patent forward citations to backward citations in different 

domains. According to Gress’s (2010) research, the ratio of forward citations to backward 

citations radically decreased for specific domains including Mechanical, Chemical, Electrical, 

Drugs and medical, Computers and communications. The computer and software domain slowly 

expanded its influence until reaching a peak in 1999; then its ratio suddenly decreased to the 

situation pre-1975. Gress (2010) implies that this descent can be explained by the increasing 

accuracy of either citing or classifying the patents. 

Our descriptive data shows a negative trend for the forward citations of patents associated with 

patent–paper pairs, either public and private assignees, and patent–grant pairs. Therefore, we 

examined the ratio of forward citations to backward citations for patents generated by academic 

inventors (residing in Canada) in the biotechnology and nanotechnology domains, with graphs 

presented in Figures 5.14–5.16. 
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Our results reveal a negative trend of the ratio of forward citations to backward citations. It 

seems patents tend to summarize former knowledge as the prior art of the patents instead of 

offering novel ideas.  According to Gress’s (2010) studies, the negative trend of this ratio 

demonstrates that patents are becoming more general (generality measured by backward 
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Figure 5.15 : Forward citation to backward citation ratio in bioexclusif domain 
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Figure 5.16 : Forward citation to backward citation ratio for nanoexclusif in Canada 



 76 

citations) instead of more original (originality measured by the forward citations). There are 

several potential explanations for the negative trend of forward citations in biotechnology and 

nanotechnology. The first explanation is mentioned above—increasing generality of patents 

instead of the originality. Further, the negative trend of forward citations might be related to the 

proximity of corporations. Gittleman’s (2007) findings show that geographical proximity among 

biotechnology firms leads the patents (generated by the corporations) to be highly cited in 

subsequent patents. However, the collaboration of the distant partners mostly leads to the papers 

that are cited in the patents (Gittelman, 2007).  Therefore, there are several other potential 

explanations that can be investigated.  

It is not essentially accurate to conclude that the novelty of the patents in biotechnology and 

nanotechnology in Canada decreased because of the negative trend of the forward citations as the 

originality measure, and this question can be studied in further research. It would be interesting 

to find out whether the negative forward citation trend is more related to the novelty of the 

patents (measured by forward citations as the originality factor), or, indeed whether it is more 

associated with a change in patenting policy.  
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 RESULTS CHAPTER 6

 

This section presents the results for the impact of patent–grant pairs, patent–paper pairs and 

academic and government assignees on patent “quality” as measured by the number of forward 

citations (NbFCit5t), the number of claims (NbClaimst), 1 minus the Herfindahl index of forward 

citations (HerfIndexFCit5t) and 1 minus the Herfindahl index of backward citations 

(HerfIndexBWCitt). 

 

6.1 Impact of patent–paper pairs on patent quality 

The results of evaluating impact of patent–paper pairs on patent quality are presented in Table 

6.2–Table 6.5. Table 6.1 presents a summary of the analysis models applied in this study to 

measure the impact of patent–paper pairs on patent quality.  

Table 6.1 : Summary of measurement models used to examine the impact of patent and paper 
similarity (associated to patent–paper pairs) [Similarityt] on patent quality 

 Endogeneity test Analysis models 

Number of forward 
citations  

2SLS  regression 
(ivregress) [NbFCit5t] 

Regression (regress) [NbFCit5t] 

Number of claims  2SLS  regression 
(ivregress) [NbClaimst] 

2SLS regression (ivregress) [NbClaimst]: There is 
endogeneity 

First regression: Regress [Contract3t] a 

Herfindahl index of 
forward citations  

2SLS  regression 
(ivregress) 
[HerfIndexFCit5t] 

2SLS regression (ivregress) [HerfIndexFCit5t]: 
There is endogeneity 

First regression: Regress [Contract3t] a 

Herfindahl index of 
backward citations  

2SLS  regression 
(ivregress)  
[HerfIndexBWCitt] 

Regression (regress)   [HerfIndexBWCitt] 

 

As mentioned in the fourth chapter, we used the Sargan test to measure whether our 

instrumental variables were valid or not. Then, we applied the Wu-Hausman test to assess 
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whether we could reject H0 that the variables that are exogenous. Our findings show that our 

instrumental variables are valid (indicated in Table 6.3 and Table 6.5) and that according to the 

Wu-Hausman test, we can reject H0 for the number of number of claims [NbClaimst] and 

Herfindahl index of forward citations [HerfIndexFCit5t], implying that we can reject the H0 that 

there are exogenous variables in these models. Therefore, the results demonstrate endogeneity for 

the number of claims [NbClaimst] and 1 minus the Herfindahl index of forward citations 

[HerfIndexFCit5t], when the average value of contracts (Contract3t) is considered as the 

endogenous variable (indicated in Table 6.3 and Table 6.5). Accordingly, [Contract3t] is an 

endogenous variable, instrumented by [Contract3Ut-2], [GrantEI3t-1], and [Loop]. Endogeneity 

results of forward citations and Herfindahl index of backward citations (as the dependent 

variables) are presented in Table E.1 and Table E.2 in the appendix. Our results show there is no 

endogeneity for forward citations and Herfindahl index of backward citations, while average 

value of contracts (Contract3t) is measured as the endogenous variable.  

Our results show there is a negative impact of patent–paper pairs [Similarityt] on patent quality, 

as presented in Table 6.2–Table 6.5. Therefore, we reject Hypothesis 5 regarding number of 

forward citations and number of claims. We cannot accept Hypothesis 5 considering Herfindahl 

index of forward and backward citations, since they are not significant. 

Our results demonstrate that patents generated by a highly centralized co-publication network 

[BtwCentArt3t] positively affect the number of forward citations, but have a negative effect when 

the patent is assigned to the university [dAcAssigneet × BtwCentArt3t]. The impact of a patent 

that is located in a highly centralized co-invention network on the number of forward citations is 

not significant, but it is positive when the patent is linked to the publications [Similarityt × 

BtwCentPat3t]. Our outcomes reveal that the patent–paper pair has a negative impact on patent 

forward citation, but when the inventors are situated in a highly centralized co-invention 

network, the results change to be positive, as shown in Table 6.2. Regarding the number of 

claims, inventors located in a highly centralized co-invention network tend to obtain a higher 

number of claims, but when the centrality is further boosted the number of claims diminishes, as 

presented in Table 6.3. 

 

  



 79 

Table 6.2 : Impact of patent and paper similarity (associated with patent–paper pairs) on the 
number of forward citations [NbFCit5t] – Regression results 

Variables FC (1)  FC (2)   
[Contract3t] a 0.0321  0.0331  
  (0.0255)  (0.0253)  
[Grant3t] a -0.0426  -0.0075  
  (0.0302)  (0.0280)  
[Aget] a -0.1754 *** -0.1773 *** 
  (0.0221)  (0.0220)  
[Aget 

a]2  -0.0640 *** -0.0647 *** 
  (0.0158)  (0.0157)  
[MaxChairt ] 

a 0.0218  0.0035  
  (0.0237)  (0.0209)  
[ArtCit3t] a -0.0443 * -0.0471 * 
  (0.0244)  (0.0245)  
[BtwCentArt3t ] a 0.0711 *** 0.0495 ** 
  (0.0262)  (0.0244)  
[BtwCentPat3t] a -0.0251  0.0039  
  (0.0364)  (0.0348)  
[(BtwCentPat3t)a]2 -0.0418  -0.0440 * 
  (0.0261)  (0.0265)  
dAcAssigneet -0.1046 * -0.1341 ** 
  (0.0613)  (0.0543)  
dNanoEx 0.3340 *** 0.3280 *** 
  (0.0569)  (0.0572)  
Similarityt a -0.0429 ** -0.0448 ** 
  (0.0218)  (0.0222)  
dAcAssigneet × [Grant3t] a  0.1130 *   
  (0.0607)    
dAcAssigneet ×  MaxChairt a -0.0895 *   
  (0.0496)    
dAcAssigneet × [BtwCentArt3t] a  -0.1023 *   
  (0.0543)    
dAcAssigneet × [BtwCentPat3t] a  0.1359 *   
  (0.0719)    
Similarityt × [Grant3t] a    0.0492 * 
    (0.0270)  
Similarityt a × [MaxChairt] 

a   -0.0056  
    (0.0232)  
Similarityt a × [BtwCentArt3t] a    -0.0013  
    (0.0228)  
Similarityt a × [BtwCentPat3t] a    0.0418 * 
    (0.0246)  
Constant 0.6957 *** 0.6920 *** 
  (0.0392)  (0.0397)  
Nb observations 1083  1083  
Log Likelihood -1081.4  -1084.23  
R2 0.12197  0.11738  
R2 Adjusted 0.10879  0.10413  
P value 0.0000  0.0000  

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation. 
Moreover, ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table 6.3 : Impact of patent and paper similarity (associated with patent–paper pairs) on the 

number of claims [NbClaimst] – IV Regression Two-stage least squares (2SLS) results 

Variables CL (1) CL (2) 
[Contract3t] a -0.2352 *** -0.2427 *** 
  (0.0904)  (0.0864)  
[Grant3t] a 0.1464 ** 0.1184 ** 
  (0.0582)  (0.0528)  
[Aget] a 0.0669 ** 0.0694 ** 
  (0.0275)  (0.0275)  
[Aget 

a] 2  -0.0149  -0.0105  
  (0.0200)  (0.0197)  
[MaxChairt ] 

a 0.0124  0.0086  
  (0.0296)  (0.0263)  
[ArtCit3t] a -0.0206  -0.0191  
  (0.0314)  (0.0312)  
[BtwCentArt3t ] a -0.0811 ** -0.0668 ** 
  (0.0327)  (0.0301)  
[BtwCentPat3t] a 0.1586 *** 0.1492 *** 
  (0.0484)  (0.0457)  
[(BtwCentPat3t)a]2 -0.1514 *** -0.1453 *** 
  (0.0363)  (0.0361)  
dAcAssigneet 0.0353  -0.0172  
  (0.0770)  (0.0684)  
dNanoEx 0.3410 *** 0.3400 *** 
  (0.0716)  (0.0717)  
Similarityt a -0.0608 ** -0.0695 ** 
  (0.0271)  (0.0275)  
dAcAssigneet × [Grant3t] a  -0.1784 **   
  (0.0772)    
dAcAssigneet ×  MaxChairt a 0.0118    
  (0.0619)    
dAcAssigneet × [BtwCentArt3t] a  0.0638    
  (0.0705)    
dAcAssigneet × [BtwCentPat3t] a  0.0048    
  (0.0894)    
Similarityt × [Grant3t] a    0.0288  
    (0.0334)  
Similarityt a × [MaxChairt] 

a   -0.0623 ** 
    (0.0287)  
Similarityt a × [BtwCentArt3t] a    0.0172  
    (0.0285)  
Similarityt a × [BtwCentPat3t] a    -0.0452  
    (0.0305)  
Constant 2.7034 *** 2.6902 *** 
  (0.0550)  (0.0545)  
Nb Observations 1083  1083  
Chi Square 98.5088  101.7190  
R2 0.0487  0.0483  
R2 Adjusted 0.0345  0.0340  
Wu-Hausman 0.0202   0.0121   
Sargan 0.1646   0.2773   

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation. 
Moreover, ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table 6.4 : Impact of patent and paper similarity (associated with patent–paper pairs) on the 
Herfindahl index of backward citations [HerfIndexBWCitt] – Regression results 

Variable HBC (1)  HBC (2)   
[Contract3t] a 0.0156 * 0.0184 ** 
  (0.0083)  (0.0082)  
[Grant3t] a -0.0195 ** -0.0153 * 
  (0.0096)  (0.0090)  
[Aget] a 0.0178 ** 0.0170 ** 
  (0.0071)  (0.0071)  
[Aget 

a]2  0.0080  0.0093 * 
  (0.0051)  (0.0051)  
[MaxChairt ] 

a 0.0063  0.0013  
  (0.0077)  (0.0068)  
[ArtCit3t] a 0.0050  0.0041  
  (0.0079)  (0.0079)  
[BtwCentArt3t ] a 0.0176 ** 0.0077  
  (0.0084)  (0.0079)  
[BtwCentPat3t] a 0.0040  0.0144  
  (0.0117)  (0.0112)  
[BtwCentPat3t]2 -0.0102  -0.0162 * 
  (0.0084)  (0.0086)  
dAcAssigneet 0.0080  -0.0010  
  (0.0195)  (0.0177)  
dNanoEx -0.0062  -0.0069  
  (0.0181)  (0.0182)  
Similarityt a -0.0035  -0.0030  
  (0.0072)  (0.0073)  
dAcAssigneet × [(Grant3t) a]  0.0161    
  (0.0198)    
dAcAssigneet ×  MaxChairt a -0.0271 *   
  (0.0163)    
dAcAssigneet × [(BtwCentArt3t ) a ] -0.0576 ***   
  (0.0180)    
dAcAssigneet × [(BtwCentPat3t) a ] 0.0486 **   
  (0.0227)    
Similarityt × Grant3t   -0.0006  
    (0.0086)  
Similarityt a × [MaxChairt] 

a   -0.0009  
    (0.0075)  
Similarityt a × [(BtwCentArt3t) a ]   -0.0106  
    (0.0075)  
Similarityt a × [(BtwCentPat3t) a]    0.0202 ** 
    (0.0079)  
Constant 0.7971 *** 0.8003 *** 
  (0.0127)  (0.0128)  
Nb observations 986  986  
Log Likelihood 174.679  172.31  
R2 0.0350  0.0303  
R2 Adjusted 0.0190  0.0143  
P value 0.0043  0.0177  

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation. 
Moreover, ***, **, * show significance at the 1%, 5%, and 10% levels. 
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Table 6.5 : Impact of patent and paper similarity (associated with patent–paper pairs) on the 
Herfindahl index of forward citations [HerfIndexFCit5t] – IV Regression Two-stage least squares 
(2SLS) results 
Variables HFC (1)   HFC (2)   
[Contract3t] a -0.0690 ** -0.0682 ** 
  (0.0293)  (0.0279)  
[Grant3t] a 0.0220  0.0158  
  (0.0189)  (0.0171)  
[Aget]a 0.0151 * 0.0163 * 
  (0.0089)  (0.0089)  
[Aget 

a]2  0.0013  0.0032  
  (0.0065)  (0.0064)  
[MaxChairt ] 

a 0.0127  0.0116  
  (0.0096)  (0.0085)  
[ArtCit3t] a 0.0111  0.0128  
  (0.0102)  (0.0101)  
[BtwCentArt3t] a -0.0016  -0.0034  
  (0.0106)  (0.0097)  
[BtwCentPat3t] a 0.0209  0.0185  
  (0.0157)  (0.0147)  
[(BtwCentPat3t)a]2 -0.0159  -0.0191  
  (0.0118)  (0.0116)  
dAcAssigneet -0.0008  -0.0010  
  (0.0250)  (0.0221)  
dNanoEx -0.0411 * -0.0411 * 
  (0.0232)  (0.0231)  
Similarityt a 0.0063  0.0083  
  (0.0088 ) (0.0089)  
dAcAssigneet × [Grant3t] a -0.0232    
  (0.0250)    
dAcAssigneet ×  [MaxChairt]a -0.0008    
  (0.0201)    
dAcAssigneet × [BtwCentArt3t] a  -0.0056    
  (0.0229)    
dAcAssigneet × [BtwCentPat3t] a  -0.0091    
  (0.0290)    
Similarityt × [Grant3t] a    -0.0088  
    (0.0108)  
Similarityt a × [MaxChairt] 

a   -0.0248 *** 
    (0.0093)  
Similarityt a × [BtwCentArt3t] a    0.0098  
    (0.0092)  
Similarityt a × [BtwCentPat3t] a    0.0017  
    (0.0098)  
Constant 0.8388 *** 0.8387 *** 
  (0.0178)  (0.0176)  
Nb Observations 1083  1083  
Chi Square 17.4014  28.5234  
P value 0.3601  0.0274  
Wu-Hausman 0.0088   0.0062  
Sargan 0.6142   0.7087  

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation. 
Moreover, ***, **, * show significance at the 1%, 5%, and 10% levels.  

 



 83 

Table 6.6 : Summary of results for the impact of patent–paper pairs similarity 

 Forward 
citations 

[NbFCit5t] 

 

Herfindahl index of 
forward citations 
[HerfIndexFCit5t]  

Number of claims 
[NbClaimst] 

 

Herfindahl index 
of backward 

citations 
[HerfIndexBWCitt]  

Similarityt a Significant 
and negative 

(--) 

Not significant Significant and negative 

(--) 

Not significant 

Notes: a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation. 
Futhermore, +++, ++, + as well as ---, --, - show significance at the 1%, 5%, and 10% levels, respectively, in 
different directions (positive or negative), for instance: -0.8190 ***  (indicated by ---), -2.1959 * (identified by -
), and 28.1833 *** (determined by +++). 

 

 

 

 

 

Our results demonstrate that inventors occupying a highly centralized co-publication network 

positively affect technological breadth, measured by the Herfindahl index of patent backward 

citations. This finding reveals that inventors who are located in a highly centralized co-

publication network tend to engage in more technology domains. However, when a university 

owns the patent, the results of the highly centralized co-publication network on the technology 

concentrations are negative. A highly centralized co-invention network positively acts on 

technological breadth while interacting either with academic assignees [dAcAssigneet × 

BtwCentPat3t] or patent–publication pairs [Similarityt × BtwCentPat3t], though without 

interacting with other variables it does not have a significant effect. 

6.2 Impact of patent ownership structure on patent quality 

All results associated with the impact of patent ownership structure are presented in Table 6.8–

Table 6.11. Furthermore, we measured the robustness of our model as well as tested for potential 

endogeneity. Results are shown in the appendix F in Table F.1–Table F.4 for the endogeneity 

tests and in Table B.1–Table B.7 for the robustness checks. Our results demonstrate that although 

our instrumental variables are valid (see Sargan test results in Table F.1–Table F.4), potential 

endogeneity does not seem to be present in our model when the average amount of grants 

(Grant3t) is measured as an endogenous variable (see the Wu-Hausman test in Table F.1–Table 

F.4). The summary of measurement models used in this analysis is shown in Table 6.7 below to 

assess the impact of patent ownership structure on patent quality.  
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Table 6.7 : Summary of measurement models applied (in this study) to assess the impact of 
public assignees versus industrial assignees on patent quality 

 Endogeneity Test Robustness Test Final models 
Number of forward 
citations  
 

2SLS  regression 
(ivregress) [NbFCit5t] 
 

Zero-inflated binomial 
regression (zinb) 
(NbFCit5t) 

Tobit regression 
(tobit) [NbFCit5t] 
 

Number of claims  
 

2SLS  regression 
(ivregress) [NbClaimst] 

Negative binomial 
regression (nbreg) 
(NbClaimst) 

Regression (regress) 
[NbClaimst] 

Herfindahl index of 
forward citations  

2SLS  regression 
(ivregress)   
[HerfIndexFCit5t] 

Regression (regress) 
[HerfIndexFCit5t] 

Tobit regression 
(tobit)  
[HerfIndexFCit5t] 

Herfindahl index of 
backward citations  

2SLS  regression 
(ivregress) 
[HerfIndexBWCitt] 

Regression (regress) 
[HerfIndexBWCitt] 

Tobit regression 
(tobit)  
[HerfIndexBWCitt]  

 

The results to assess the impact of patent ownership structure on patent quality are summarized 

in Table 6.13 below. We generated the dummy variable [dAcAssigneet] to define exclusive 

academic assignees, as well as the [dGovAssigneet] variable to determine exclusive government 

assignees in our analysis. The industrial assignee is considered as the omitted variable in this 

study, therefore in our model we compared the impact of public assignees (including universities 

and government) with that of industrial assignees, on patent quality. As our findings demonstrate, 

the patents publicly held by academic assignees and government obtained fewer citations than 

those privately assigned. Furthermore, our outcomes reveal the public patentees were involved in 

less diversified technology domains than industrial patentees were. Therefore, we validate 

Hypotheses 1 and 2 in terms of negative impact of public patentees on patent forward citations 

and Herfindahl index of backward citations. We cannot accept Hypotheses 1 and 2 regarding 

number of claims and Herfindahl index of forward citations, as these results are not significant.  

Our results show that the average of grants [Grant3t] has a negative impact on technological 

breadth (Herfindahl index of backward citations); however, the increasing amount of grants that 

academic inventors received caused the Herfindahl index of backward citations to increase. 

Career age of academic inventors [Aget] positively affects the patent forward citations; 

nevertheless, career age negatively affects patent forward citations to a high degree.  Conversely, 

career age has a negative impact on technological concentration; but academic inventors with 

high career age obtain greater technological breadth. Academic inventors situated in highly 

centralized co-publication networks [BtwCentArt3t] obtain less technological breadth, although 
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by increasing betweenness centrality, they engage in more technology domains. Inventors who 

occupy highly clustering coefficients [CliqnessPat3t] in co-invention network receive more 

claims, though by increasing the clustering coefficient, they obtain fewer claims. 

Our results suggest that patents generated by inventors in a highly centralized co-publication 

network and owned by a university [dAcAssigneet × BtwCentArt3t] have a positive impact on the 

number of claims, while [BtwCentArt3t] is not significant without interacting with other 

variables, as demonstrated in Table 6.9. Moreover, our outcomes imply that both scientists’ 

career age and academic ownership have a negative impact on technological breadth; however, 

when these variables are multiplied as interactive variables, the results are positive. When the 

career age is highly boosted, the patents generated by inventors with high career age and owned 

by the university have a non-significant effect on technological breadth, as shown in Table 6.10. 

Similar to the results we obtained regarding the impact of patent–publication pairs on patent 

quality, patents situated in a highly centralized co-publication network have a negative impact on 

technological breadth as measured by the Herfindahl index of backward citations, when 

interacting with academic assignees. Likewise, patents that are owned by the university and 

issued by inventors positioned in a highly centralized co-publication network have a negative 

impact on technological breadth, even when co-publication centrality is boosted. Conversely, 

patents that are situated in a highly centralized co-invention network are associated with higher 

technology concentration when interacting with university ownership, as demonstrated in Table 

6.10.  

  



 86 

Table 6.8 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Tobit results 

Variables  FC (3) FC (4) FC (5) FC (6) FC (7) 
Grant3t 0.0039  0.0042  0.0047  0.0046  0.0037  
  (0.0080)  (0.0080)  (0.0082)  (0.0080)  (0.0080)  
Aget 0.2770 *** 0.2800 *** 0.2797 *** 0.2857 *** 0.2798 *** 
  (0.0391)  (0.0389)  (0.0389)  (0.0392)  (0.0388)  
[Aget]2 -0.0136 *** -0.0138 *** -0.0138 *** -0.0140 *** -0.0138 *** 
  (0.0017)  (0.0016)  (0.0016)  (0.0017)  (0.0016)  
MaxChairt  0.0248  0.0214  0.0213  0.0202  0.0203  
  (0.0449)  (0.0448)  (0.0448)  (0.0447)  (0.0447)  
ArtCit3t -0.0699 ** -0.0656 ** -0.0658 ** -0.0651 ** -0.0645 ** 
  (0.0288)  (0.0287)  (0.0288)  (0.0287)  (0.0287)  
BtwCentArt3t

  0.0803 * 0.0776  0.0769  0.0750  0.0825 * 
  (0.0476)  (0.0474)  (0.0475)  (0.0474)  (0.0476)  
CliqnessArt3t  -0.1557 * -0.1509 * -0.1480 * -0.1588 * -0.1478 * 
  (0.0831)  (0.0829)  (0.0836)  (0.0829)  (0.0829)  
[CliqnessArt3t ]2 0.0167 ** 0.0162 ** 0.0159 ** 0.0170 ** 0.0161 ** 
  (0.0073)  (0.0073)  (0.0073)  (0.0073)  (0.0073)  
BtwCentPat3t -0.0234  -0.0326 * -0.0320 * -0.0330 * -0.0335 * 
  (0.0183)  (0.0185)  (0.0186)  (0.0185)  (0.0185)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0777  -0.0583  -0.0600  -0.0605  -0.0564  
  (0.0959)  (0.0977)  (0.0978)  (0.0975)  (0.0976)  
dNanoEx 0.5375 *** 0.5390 *** 0.5387 *** 0.5494 *** 0.5415 *** 
  (0.1024)  (0.1019)  (0.1019)  (0.1020)  (0.1018)  
dGovAssigneet   -0.4503 ** -0.3659  2.7605  -0.2087  
    (0.2247)  (0.3820)  (2.0556)  (0.3334)  
dAcAssigneet    -0.2158 * -0.2161 * -0.2118 * -0.2164 * 
    (0.1111)  (0.1111)  (0.1109)  (0.1110)  
dGovAssigneet × Grant3t     -0.0111      
      (0.0408)      
dGovAssigneet × Aget       -0.5010    
        (0.3570)    
dGovAssigneet × [Aget]2       0.0179    
        (0.0147)    
dGovAssigneet ×          -0.2294  
BtwCentArt3t         (0.2374)  
Constant -0.7954 *** -0.7435 *** -0.7485 *** -0.7708 *** -0.7530 *** 
  (0.2761)  (0.2751)  (0.2757)  (0.2760)  (0.2750)  
Constant (Sigma) 1.1320 *** 1.1263 *** 1.1263 *** 1.1244 *** 1.1256 *** 
 (0.379)  (0.0377)  (0.0377)  (0.0376)  (0.0376)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 135.78  143.07  143.15  145.97  144.02  
Pseudo R2 0.0515  0.0542  0.0543  0.0553  0.0546  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses.  
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Table 6.9 : Impact of academic assignees and government assignees on the number of claims 
[NbClaimst] – Regression results 

Variables CL (3)  CL (4)  CL (5)  CL (6)  
Grant3t 0.0021  0.0009  0.0041  0.0038  
  (0.0052)  (0.0052)  (0.0056)  (0.0057)  
Aget 0.0119 ** 0.0130 ** 0.0133 ** 0.0123 * 
  (0.0061)  (0.0060)  (0.0066)  (0.0067)  
MaxChairt  -0.0019  -0.0037  -0.0004  -0.0006  
  (0.0292)  (0.0292)  (0.0293)  (0.0293)  
ArtCit3t -0.0370 ** -0.0362 * -0.0378 ** -0.0371 ** 
  (0.0186)  (0.0186)  (0.0186)  (0.0187)  
BtwCentArt3t

  -0.0377  -0.0201  -0.0398  -0.0355  
  (0.0325)  (0.0309)  (0.0326)  (0.0330)  
CliqnessArt3t  -0.0372 ** -0.0352 ** -0.0369 ** -0.0362 ** 
  (0.0177)  (0.0178)  (0.0178)  (0.0179)  
BtwCentPat3t -0.0180  -0.0219  -0.0174  -0.0175  
  (0.0135)  (0.0136)  (0.0138)  (0.0139)  
CliqnessPat3t 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
[CliqnessPat3t]2 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0610  -0.0626  -0.0573  -0.0539  
  (0.0635)  (0.0638)  (0.0639)  (0.0641)  
dNanoEx 0.4014 *** 0.3966 *** 0.3977 *** 0.3972 *** 
  (0.0670)  (0.0671)  (0.0671)  (0.0673)  
dGovAssigneet  -0.0110  -0.0164  -0.0115  -0.0789  
  (0.1415)  (0.1417)  (0.1416)  (0.5990)  
dAcAssigneet  -0.1926 * -0.0913  0.0811  0.0661  
  (0.1020)  (0.0797)  (0.2337)  (0.2345)  
dGovAssigneet  × Grant3t       -0.0205  
        (0.0282)  
dGovAssigneet × Aget       0.0185  
        (0.0425)  
dGovAssigneet ×        -0.1044  
BtwCentArt3t       (0.1537)  
dGovAssigneet ×        0.1751  
BtwCentPat3t       (0.1548)  
dAcAssigneet  × Grant3t     -0.0193  -0.0189  
      (0.0148)  (0.0149)  
dAcAssigneet × Aget     -0.0116  -0.0107  
      (0.0159)  (0.0160)  
dAcAssigneet ×  0.1230 *   0.1452 ** 0.1411 * 
BtwCentArt3t (0.0714)    (0.0736)  (0.0739)  
dAcAssigneet ×    0.0286  0.0264  0.0289  
BtwCentPat3t   (0.0414)  (0.0424)  (0.0425)  
Constant 2.5315 *** 2.4987 *** 2.5003 *** 2.5067 *** 
  (0.1301)  (0.1286)  (0.1349)  (0.1360)  
Nb observations 1110  1110  1110  1110  
Log Likelihood -1333.14  -1334.40  -1331.78  -1330.30  
R2 0.0804  0.0783  0.0827  0.0851  
R2 Adjusted 0.0687  0.0665  0.0684  0.0674  
P value 0.0000  0.0000  0.0000  0.0000  
Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table 6.10 : Impact of academic assignees and government assignees on the Herfindahl index of 

backward citations [HerfIndexBWCitt] – Tobit results   

Variables HBC (3)  HBC (4)  HBC (5)  HBC (6)  
Grant3t -3.5835 *** -4.0213 *** -4.1213 *** -3.9320 *** 
  (0.8930)  (0.8809)  (0.9198)  (0.9436)  
[Grant3t]2 0.2913 *** 0.3276 *** 0.3333 *** 0.3168 *** 
  (0.0723)  (0.0709)  (0.0744)  (0.0767)  
Aget -2.4630 *** -2.3854 *** -3.1368 *** -3.0260 *** 
  (0.8743)  (0.8710)  (0.9469)  (0.9524)  
[Aget]2 0.1560 *** 0.1482 *** 0.1742 *** 0.1707 *** 
  (0.0373)  (0.0372)  (0.0403)  (0.0406)  
MaxChairt  -1.4641  -1.7369  -1.6456  -1.7210  
  (1.1762)  (1.1659)  (1.1638)  (1.1648)  
ArtCit3t 1.1789  0.9448  0.9968  1.0385  
  (0.7376)  (0.7362)  (0.7338)  (0.7357)  
BtwCentArt3t

  -19.3000 *** -15.1000 *** -15.1000 *** -14.8000 *** 
  (5.0120)  (4.5945)  (4.5974)  (4.6214)  
[BtwCentArt3t]2 3.3418 *** 2.4069 *** 2.5053 *** 2.5115 *** 
  (0.9533)  (0.8669)  (0.8693)  (0.8733)  
CliqnessArt3t  0.3740  0.5006  0.4969  0.5355  
  (0.7123)  (0.7121)  (0.7100)  (0.7128)  
BtwCentPat3t 0.9332 * 0.5825  0.5581  0.4888  
  (0.4812)  (0.4922)  (0.4954)  (0.5018)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0011 *** 0.0011 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.8986  2.7843  2.2537  2.2075  
  (2.5088)  (2.5089)  (2.5122)  (2.5124)  
dNanoEx 4.2932  4.0600  3.9541  4.1029  
  (2.6672)  (2.6592)  (2.6510)  (2.6630)  
dGovAssigneet -15.9000 *** -16.7000 *** -16.6000 *** 41.9676  
  (5.6721)  (5.6604)  (5.6294)  (54.9805)  
dAcAssigneet -3.0103  -10.9000 *** -40.7000 *** -39.7000 *** 
  (4.0612)  (3.1551)  (13.3118)  (13.3060)  
dGovAssigneet ×        -1.4342  
Grant3t       (5.3341)  
dGovAssigneet ×        0.0676  
[Grant3t]2       (0.4357)  
dGovAssigneet × Aget       -6.3567  
        (9.3957)  
dGovAssigneet ×        0.1902  
[Aget]2       (0.3775)  
dGovAssigneet ×        14.2206  
BtwCentArt3t       (41.3865)  
dGovAssigneet ×         -4.7572  
[BtwCentArt3t]2       (8.8873)  
dGovAssigneet ×        5.3655  
BtwCentPat3t       (6.4303)  
dAcAssigneet  ×      4.4057  4.2226  
Grant3t     (2.9462)  (2.9490)  
dAcAssigneet  ×      -0.3459  -0.3293  
[Grant3t]2     (0.2361)  (0.2364)  
dAcAssigneet × Aget     4.4044 * 4.2923 * 
      (2.3324)  (2.3323)  
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Table 6.10 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results (Cont’d and end) 

Variables HBC (3)  HBC (4)  HBC (5)  HBC (6)  
dAcAssigneet ×      -0.1256  -0.1220  
[Aget]2     (0.1015)  (0.1015)  
dAcAssigneet ×  14.6620    -5.4047 * -5.8158 * 
BtwCentArt3t (11.6808)    (3.0493)  (3.0678)  
dAcAssigneet ×   -3.6725 *       
[BtwCentArt3t]2 (2.2062)        
dAcAssigneet ×    4.9531 *** 4.4546 *** 4.5128 *** 
BtwCentPat3t   (1.6185)  (1.6500)  (1.6497)  
Constant 67.1451 *** 68.6378 *** 73.6572 *** 72.5337 *** 
  (6.1761)  (6.0907)  (6.5620)  (6.5913)  
Constant (Sigma) 31.7717 *** 31.7001 *** 31.5222 *** 31.4730 *** 
  (0.7538)  (0.7521)  (0.7477)  (0.7466)  
Nb observations 1110  1110  1110  1110  
Chi Square 124.85  129.23  141.88  145.71  
Pseudo R2 0.0125  0.0129  0.0142  0.0146  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Our results show that both government assignees and the betweenness centrality of the co-

invention network have a non-significant effect on the number of Herfindahl index forward 

citations. However, patents generated by academic inventors in a highly centralized co-invention 

network and owned by the government contribute to a higher Herfindahl index of forward 

citations [dGovAssigneet × BtwCentPat3t], as demonstrated in Table 6.11.  

  



 90 

Table 6.11 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results   

Variables HFC (3)  HFC (4)  HFC (5) HFC (6)  
Grant3t -0.2792  -0.2794  -0.2959  -0.3822  
  (0.2535)  (0.2544)  (0.2705)  (0.2767)  
Aget -6.9125 *** -6.9137 *** -7.4708 *** -7.1349 *** 
  (1.2185)  (1.2169)  (1.3515)  (1.3499)  
[Aget]2 0.3344 *** 0.3344 *** 0.3511 *** 0.3318 *** 
  (0.0515)  (0.0516)  (0.0568)  (0.0567)  
MaxChairt  0.6352  0.6353  0.6641  0.8310  
  (1.4049)  (1.4049)  (1.4060)  (1.3980)  
ArtCit3t 5.9378 ** 5.9339 ** 5.8178 ** 5.3950 ** 
  (2.3228)  (2.3324)  (2.3352)  (2.3263)  
[ArtCit3t]2 -1.1408 ** -1.1405 ** -1.1142 * -1.0112 * 
  (0.5657)  (0.5667)  (0.5681)  (0.5655)  
BtwCentArt3t

  -0.3917  -0.4006  -0.3776  -0.3792  
  (1.5484)  (1.4885)  (1.5568)  (1.5625)  
CliqnessArt3t  -1.1490  -1.1480  -1.1591  -1.2072  
  (0.8480)  (0.8507)  (0.8518)  (0.8500)  
BtwCentPat3t 0.7224  0.7204  0.7421  0.6001  
  (0.5846)  (0.5990)  (0.6076)  (0.6103)  
CliqnessPat3t 0.0003  0.0003  0.0003  0.0004  
  (0.0004)  (0.0004)  (0.0004)  (0.0004)  
Loop -4.2984  -4.2880  -4.1883  -3.8730  
  (3.0528)  (3.0678)  (3.0840)  (3.0662)  
dNanoEx -6.9714 ** -6.9721 ** -6.9275 ** -7.2082 ** 
  (3.2447)  (3.2459)  (3.2482)  (3.2392)  
dGovAssigneet -2.9347  -2.9374  -2.8446  43.8251  
  (6.8528)  (6.8558)  (6.8506)  (71.0542)  
dAcAssigneet 2.5975  2.4746  -17.5000  -17.6000  
  (4.9149)  (3.8314)  (17.0338)  (16.9270)  
dGovAssigneet × Grant3t       0.0622  
        (1.3830)  
dGovAssigneet × Aget       -15.9000  
        (12.6867)  
dGovAssigneet × [Aget]2       0.7704  
        (0.5420)  
dGovAssigneet × BtwCentArt3t       11.7813  
        (7.4346)  
dGovAssigneet × BtwCentPat3t       26.3748 ** 
        (12.5475)  
dAcAssigneet  × Grant3t     0.1974  0.2751  
      (0.7562)  (0.7536)  
dAcAssigneet × Aget     2.6291  2.2809  
      (3.1468)  (3.1263)  
dAcAssigneet × [Aget]2     -0.0703  -0.0511  
      (0.1365)  (0.1356)  
dAcAssigneet × BtwCentArt3t -0.0841    -1.3988  -1.3352  
  (3.4311)    (3.5635)  (3.5497)  
dAcAssigneet × BtwCentPat3t   0.0466  -0.4194  -0.2170  
    (2.0972)  (2.1298)  (2.1178)  
Constant 122.0000 *** 122.0000 *** 127.0000 *** 127.0000 *** 
  (8.1727)  (8.0984)  (8.9235)  (8.9115)  
Constant (Sigma) 36.4351 *** 36.4352 *** 36.4056 *** 36.1490 *** 
  (1.0454)  (1.0454)  (1.0445)  (1.0366)  
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Table 6.11 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results (Cont’d and end) 

Variables HFC (3)  HFC (4)  HFC (5) HFC (6)  
Nb observations 1110  1110  1110  1110  
Chi Square 77.3436  77.3435  79.5135  93.0638  
Pseudo R2 0.0101  0.0101  0.0104  0.0122  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses 

 

Below in Table 6.12, the linear and non-linear effects (quadratic effect) of variables are 

presented. We tested the quadratic effect of the independent variables and excluded the squared 

variables, when there was a non-significant effect of the (squared) variables. This helped us to 

have a better estimation and it decreased the probability of multicollinearity.  

Table 6.12 : Linear and non-linear effect (quadratic effect) of variables to measure impact of 
public assignees on patent quality 

 FC 
WO/Sq 

FC 
W/Sq 

CL 
WO/Sq 

CL 
W/Sq 

HBC 
WO/Sq 

HBC 
W/Sq 

HFC 
WO/Sq 

HFC 
W/Sq 

Grant3t     NS ---   
(Grant3t)2      +++   
Aget --- +++   +++ ---/-- +++/++/+ --- 
(Aget )2  ---    +++  +++ 
ArtCit3t       ++/+ ++ 
(ArtCit3t )2        - 
BtwCentArt3t     NS ---   
(BtwCentArt3t )2      +++/++   
CliqnessArt3t ++/+ NS       
(CliqnessArt3t)2  ++/+       
CliqnessPat3t   NS ++/+     
(CliqnessPat3t)2    --/-     
Notes: WO/Sq (without squared variable) shows the impact of a variable without squared variables (linear impact), 
while W/Sq (with squared variable) demonstrates a quadratic effect. Selected models are bold and underlined. 
Furthermore, +++, ++, + as well as ---, --, - show significance at the 1%, 5%, and 10% levels, respectively, in 
different directions (positive or negative), for instance: -0.8190 ***  (indicated by ---), -2.1959 * (identified by -), 
and 28.1833 *** (determined by +++). 

We tested whether patents funded by government and assigned to the universities were of a 

higher quality, as proposed in Hypothesis 2A. Our results imply that university patents funded by 

government are more diversified; however, number of claims and patent citation variables are not 

significant. Therefore, we validate Hypothesis 2A in terms of Herfindahl index of backward 

citations, but we cannot approve Hypothesis 2A for number of forward citations, number of 

claims and Herfindahl index of forward citations. 
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Moreover, our findings reveal the government patents that were surrounded by inventors in a 

highly centralized co-invention network [dGovAssigneet × BtwCentPat3t] (defined in Hypothesis 

3A) tended to likely engage in more differentiated fields. Therefore, we reject Hypothesis 3A in 

terms of Herfindahl index of forward citations, while we cannot accept the hypothesis for 

number of claims, Herfindahl index of backward citations and number of forward citations. 

We cannot accept Hypothesis 3B including the negative impact on quality of government 

patents generated by inventors occupying nodes in a highly central co-publication network 

[dGovAssigneet × BtwCentArt3t]. Thus, we reject Hypothesis 3B for four patent quality 

indicators including number of claims, number of forward citations, and Herfindahl index of both 

backward and forward citations. 

Furthermore, academic inventors established in a highly centralized co-invention network 

[dAcAssigneet × BtwCentPat3t] (determined in Hypothesis 4A) were involved in diversified 

technological domains, when the patents were publicly assigned by universities. Therefore, we 

reject Hypothesis 4A considering number of Herfindahl index backward citations. We cannot 

accept Hypothesis 4A for number of claims, number of forward citations and Herfindahl index of 

forward citations. Our findings demonstrate that patents generated by inventors that occupy a 

highly centralized position in the co-publication network (BtwCentArt3t) were less diversified, 

measured by 1 minus the Herfindahl index of backward citations as the technology breadth 

(HBC). The impact of the co-publication clustering coefficient is not significant on patent 

forward citations; however highly central co-publication clusters tend to receive more citations in 

subsequent patents. Our findings show patents generated by inventors occupied in a highly 

centralized co-publication network [dAcAssigneet × BtwCentArt3t] (indicated in Hypothesis 4B) 

were associated with a greater number of claims, when these patents were publicly assigned to 

the universities, but, they were less diversified. Thus, we approve Hypothesis 4B in terms of 

number of Herfindahl index backward citations. However, we reject Hypothesis 4B considering 

number of claims. We cannot accept Hypothesis 4B for number of forward citations and 

Herfindahl index of forward citations.  
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Table 6.13 : Summary of results on impact of academic assignees and government assignees on 
patent quality 

 Forward 
citations 

[NbFCit5t] 
 

Herfindahl index of 
forward citations 
[HerfIndexFCit5t]  

Number of claims 
[NbClaimst] 

 

Herfindahl index of 
backward citations 
[HerfIndexBWCitt]  

dAcAssigneet Significant 
and negative 
(--/-) 

Not significant Not significant Significant and 
negative 
(---/--) 

dGovAssigneet Significant 
and negative 
(--/-) 

Not significant Not significant Significant and 
negative (---/--) 

dAcAssigneet  × Grant3t Not significant Not significant Not significant Significant and 
positive (+), not 
significant in the 
model without claims 
 

dGovAssigneet × 
BtwCentArt3t 

Not significant Not significant Not significant Not significant 

dAcAssigneet × 
BtwCentArt3t 

Not significant Not significant Significant and 
positive (+/++) 

Significant and 
negative (-/--) 

dGovAssigneet × 
BtwCentPat3t  

Not significant Significant and 
positive (+/++) 

Not significant Not significant 

dAcAssigneet × 
BtwCentPat3t 

Not significant Not significant Not significant Significant and 
positive (+++/++) 

Notes: +++, ++, + as well as ---, --, - show significance at the 1%, 5%, and 10% levels, respectively, in different 
directions (positive or negative), for instance: -0.8190 ***  (indicated by ---), -2.1959 * (identified by -), and 
28.1833 *** (determined by +++). 

 

6.3 Impact of patent–grant pairs on patent quality 

All of the results linked to patent–grant pairs are shown throughout Table 6.15–Table 6.18 in 

this section. Moreover, the results associated with endogeneity testing are shown in Table G.1–

Table G.4 in the appendix, and robustness results are indicated in Table C.1–Table C.2 (in the 

appendix). Our results demonstrate the patents belonging to patent–grant pairs obtain fewer 

forward citations than patents that are not linked to such pairs. The [dPGP] variable is significant 

and negative, as shown in Table 6.15. However, patents linked to patent–grant pairs obtain a 

higher Herfindal index of forward citations [HerfIndexFCit5t] (indicated in Table 6.18), as they 

are more diversified and engaged in technology fields across multiple disciplines. 

Our findings show our instrumental variables are valid (since if the p-value associated with the 

Sargan test is not significant then the instrumental variables are valid); see the Sargan test results 

in Table G.1–Table G.4. We defined four dependent variables, including: number of forward 
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citations [NbFCit5t], number of claims [NbClaimst], Herfindahl index of forward citations 

[HerfIndexFCit5t], and Herfindahl index of backward citations [HerfIndexBWCitt]. According to 

the p-value associated with the Wu-Hausman test, we cannot reject H0 (defined above) for all 

four dependent variables, taking into consideration that the p-value is not significant (< 0.05). 

Thus, we cannot reject the H0. The results show the average of grants variable (Grant3t) is 

exogenous and the endogeneity doesn’t exist for the number of forward citations [NbFCit5t], 

number of claims [NbClaimst], Herfindahl index of forward citations [HerfIndexFCit5t], and 

Herfindahl index of backward citations [HerfIndexBWCitt]. We measured whether the variable is 

endogenous or exogenous. The summary of measurement models used in this analysis is shown 

in Table 6.14 below. 

 

Table 6.14 : Summary of measurement models used (in this research) to investigate the impact of 
patent–grant pairs on patent quality 

 Endogeneity test Robustness test Final models 
Number of forward 
citations  

2SLS  regression 
(ivregress) [NbFCit5t] 

Zero-inflated binomial 
regression (zinb) 
[NbFCit5t] 

Tobit regression 
(tobit) [NbFCit5t] 

Number of claims  2SLS  regression 
(ivregress)   [NbClaimst] 

Negative binomial 
regression (nbreg)  
(NbClaimst) 

Regression (regress) 
[NbClaimst] 

Herfindahl index of 
forward citations  

2SLS  regression 
(ivregress) 
[HerfIndexFCit5t] 

Regression (regress)   
[HerfIndexFCit5t] 

Tobit regression 
(tobit) 
[HerfIndexFCit5t] 

Herfindahl index of 
backward citations  

2SLS  regression 
(ivregress) 
[HerfIndexBWCitt] 

Regression (regress)  
[HerfIndexBWCitt] 

Tobit regression 
(tobit) 
[HerfIndexBWCitt] 

 

Our results demonstrate that patent–grant pairs appear in fewer forward citations than patents 

without such a link, as presented in Table 6.15. However, they receive a greater Herfindahl index 

of forward citations, as shown in Table 6.18. 

Moreover, as a complementary result, our outcomes reveal that while inventors receive more 

publication citations, they receive fewer patent citations in subsequent patents, as shown in Table 

6.15.  
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Table 6.15 : Impact of patent–grant pairs on the number of forward citations [NbFCit5t] – Tobit 
regression results 

Variables FC (8) FC (9) FC (10) FC (11) FC (12) 
Grant3t 0.0034 

 
0.0034 

 
0.0046 

 
0.0033 

 
0.0045  

  (0.0079)  (0.0078)  (0.0079)  (0.0078)  (0.0079)  
Aget  0.2761 *** 0.2678 *** 0.2654 *** 0.2676 *** 0.2651 *** 
  (0.0389)  (0.0390)  (0.0391)  (0.0390)  (0.0392)  
[Aget]2  -0.0137 *** -0.0132 *** -0.0131 *** -0.0132 *** -0.0131 *** 
  (0.0016)  (0.0017)  (0.0017)  (0.0017)  (0.0017)  
MaxChairt  0.0235  0.0295  0.0316  0.0294  0.0315  
  (0.0448)  (0.0447)  (0.0447)  (0.0447)  (0.0447) 

 

ArtCit3t  -0.0657 ** -0.0667 ** -0.0671 ** -0.0666 ** -0.0668 ** 
  (0.0287)  (0.0286)  (0.0286)  (0.0287)  (0.0287)  
BtwCentArt3t  0.0834 * 0.0818 * 0.0823 * 0.0823 * 0.0830 * 
  (0.0470)  (0.0468)  (0.0468)  (0.0471)  (0.0471)  
CliqnessArt3t  -0.1470 * -0.1344  -0.1357 * -0.1347  -0.1361 * 
  (0.0825)  (0.0821)  (0.0821)  (0.0822)  (0.0821)  
[CliqnessArt3t]2  0.0156 ** 0.0147 ** 0.0145 ** 0.0147 ** 0.0145 ** 
  (0.0072)  (0.0072)  (0.0072)  (0.0072)  (0.0072)  
BtwCentPat3t  -0.0294  -0.0332 * -0.0312 * -0.0333 * -0.0312 * 
  (0.0184)  (0.0184)  (0.0184)  (0.0184)  (0.0184)  
CliqnessPat3t

  0.0000  0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
dAcAssigneet -0.2246 ** -0.2008 ** -0.2065 ** -0.2009 ** -0.2067 ** 
  (0.0929)  (0.0929)  (0.0930)  (0.0929)  (0.0930)  
dNanoEx 0.5372 *** 0.5704 *** 0.5642 *** 0.5699 *** 0.5635 *** 
  (0.1020)  (0.1022)  (0.1023)  (0.1023)  (0.1024)  
dPGPt   -0.8190 *** -2.1959 * -0.7896 ** -2.1897 * 
    (0.2467)  (1.1836)  (0.3609)  (1.1845)  
dPGPt × CliqnessArt3t      0.4069    0.4111  
     (0.2804)    (0.2825)  
dPGPt × [CliqnessArt3t]2     -0.0017    -0.0017  
     (0.0014)    (0.0015)  
dPGPt × BtwCentArt3t       -0.02938 

(0.26404) 
 -0.03475 

(0.28133) 
 

Constant -0.7296 *** -0.7007 ** -0.6915 ** -0.6999 ** -0.6902 ** 
  (0.2756)  0.2755  0.2765  0.2756  0.2767  
Sigma 1.1281 *** 1.1223 *** 1.1214 *** 1.1223 *** 1.1213 *** 
  0.03774  0.03751  0.03748  0.03751  0.03748  
Statistics           
Nb observations 1110  1110  1110  1110  1110  
Chi Square 140.986 *** 152.998 *** 155.499 *** 153.01 *** 155.514 *** 
Pseudo R2 0.0534  0.0580  0.0589  0.0580  0.0589  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table 6.16 : Impact of patent–grant pairs on the number of claims [NbClaimst] – OLS regression 
results 

Variables CL (7) CL (8) CL (9) CL (10) CL (11) 
Grant3t -0.0002  -0.0002  -0.0002  -0.0001  -0.0001  
  (0.0051)  (0.0051)  (0.0052)  (0.0052)  (0.0052)  
Aget 0.0134 ** 0.0133 ** 0.0131 ** 0.0133 ** 0.0132 ** 
  (0.0060)  (0.0060)  (0.0060)  (0.0060)  (0.0060)  
MaxChairt  -0.0038  -0.0040  -0.0040  -0.0037  -0.0037  
  (0.0292)  (0.0292)  (0.0293)  (0.0292)  (0.0293)  
ArtCit3t -0.0385 ** -0.0385 ** -0.0386 ** -0.0395 ** -0.0395 ** 
  (0.0185)  (0.0185)  (0.0185)  (0.0186)  (0.0186)  
BtwCentArt3t -0.0160  -0.0159  -0.0157  -0.0189  -0.0185  
  (0.0308)  (0.0308)  (0.0308)  (0.0310)  (0.0311)  
CliqnessArt3t  -0.0348 ** -0.0348 ** -0.0359 ** -0.0345 * -0.0351 * 
  (0.0177)  (0.0177)  (0.0179)  (0.0177)  (0.0179)  
BtwCentPat3t -0.0184  -0.0182  -0.0178  -0.0177  -0.0175  
  (0.0134)  (0.0134)  (0.0134)  (0.0134)  (0.0135)  
CliqnessPat3t 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
[CliqnessPat3t]2 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
dAcAssigneet -0.0210  -0.0221  -0.0226  -0.0217  -0.0221  
  (0.0591)  (0.0593)  (0.0594)  (0.0594)  (0.0594)  
dNanoEx 0.4024 *** 0.4007 *** 0.4000 *** 0.4016 *** 0.4011 *** 
  (0.0670)  (0.0673)  (0.0674)  (0.0674)  (0.0674)  
dPGPt   0.0329  -0.2362  -0.0921  -0.2362  
    (0.1310)  (0.5859)  (0.2008)  (0.5860)  
dPGPt × CliqnessArt3t      0.0619    0.0357  
      (0.1314)    (0.1364)  
dPGPt × BtwCentArt3t       0.1211  0.1104  
        (0.1474)  (0.1530)  
Constant 2.4744 *** 2.4746 *** 2.4806 *** 2.4756 *** 2.4790 *** 
  (0.1288)  (0.1289)  (0.1295)  (0.1289)  (0.1296)  
Nb observations 1110  1110  1110  1110  1110  
Log Likelihood -1335.86  -1335.83  -1335.72  -1335.49  -1335.45  
R2 0.0759  0.0759  0.0761  0.0765  0.0766  
R2 Adjusted 0.0666  0.0658  0.0652  0.0656  0.0648  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  
Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 
 

 

 



 97 

Table 6.17 : Impact of patent–grant pairs on the Herfindahl index of backward citations 
[HerfIndexBWCitt] – Tobit results 

Variables HBC (7) HBC (8) HBC (9) HBC (10) HBC (11) 
Grant3t -3.7775 *** -3.7752 *** -3.7722 *** -3.8250 *** -3.8204 *** 
  (0.8847)  (0.8847)  (0.8855)  (0.8878)  (0.8879)  
[Grant3t]2 0.3135 *** 0.3132 *** 0.3129 *** 0.3180 *** 0.3176 *** 
  (0.0715)  (0.0715)  (0.0716)  (0.0718)  (0.0718)  
Aget -2.5374 *** -2.5056 *** -2.4986 *** -2.4823 *** -2.4539 *** 
  (0.8745)  (0.8784)  (0.8830)  (0.8801)  (0.8868)  
[Aget]2 0.1587 *** 0.1571 *** 0.1569 *** 0.1559 *** 0.1548 *** 
  (0.0374)  (0.0376)  (0.0377)  (0.0377)  (0.0379)  
MaxChairt  -1.5190  -1.5304  -1.5307  -1.5078  -1.5083  
  (1.1754)  (1.1757)  (1.1757)  (1.1760)  (1.1760)  
ArtCit3t 1.1454  1.1448  1.1456  1.1072  1.1061  
  (0.7382)  (0.7382)  (0.7382)  (0.7398)  (0.7397)  
BtwCentArt3t -17.1000 *** -17.1000 *** -17.1000 *** -17.4000 *** -17.4000 *** 
 (4.6043)  (4.6065)  (4.6065)  (4.6157)  (4.6160)  
[BtwCentArt3t]2 2.7635 *** 2.7756 *** 2.7756 *** 2.7929 *** 2.7939 *** 
  (0.8665)  (0.8670)  (0.8670)  (0.8671)  (0.8671)  
CliqnessArt3t  0.2715  0.2658  0.2721  0.2791  0.3021  
  (0.7164)  (0.7165)  (0.7210)  (0.7165)  (0.7219)  
BtwCentPat3t 1.1265 ** 1.1366 ** 1.1339 ** 1.1564 ** 1.1477 ** 
  (0.4795)  (0.4803)  (0.4815)  (0.4810)  (0.4821)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
dAcAssigneet -3.3943  -3.4647  -3.4632  -3.4377  -3.4300  
  (2.3738)  (2.3810)  (2.3810)  (2.3805)  (2.3806)  
dNanoEx 4.2352  4.1470  4.1525  4.2434  4.2663  
  (2.6810)  (2.6909)  (2.6918)  (2.6940)  (2.6953)  
dPGPt   1.9835  3.7538  -2.4546  3.2635  
    (5.2264)  (23.2695)  (7.9829)   (23.3498)  
dPGPt × CliqnessArt3t      -0.4066        -1.4134  
      (5.2080)       (5.4236)  
dPGPt × BtwCentArt3t       6.7336       7.0148  
        (9.9655)   (10.0234)  
dPGPt ×        -0.0525      -0.0494  
[BtwCentArt3t]2       (0.1660)     (0.1664)  
Constant 67.5917 *** 67.4395 *** 67.3774 *** 67.4019 ***    67.1738 *** 
  (6.1616)  (6.1745)  (6.2254)  (6.1762)  (6.2379)  
Constant (Sigma) 32.0067 *** 32.0054 *** 32.0052 *** 31.9959 *** 31.9947 *** 
  (0.7595)  (0.7595)  (0.7595)  (0.7592)  (0.7592)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 108.963  109.107  109.113  109.716  109.784  
Pseudo R2 0.0109  0.0109  0.0109  0.0110  0.0110  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  
Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table 6.18 : Impact of patent–grant pairs on the Herfindahl index of forward citations 
[HerfIndexFCit5t] – Tobit results 

Variables HFC (7) HFC (8) HFC (9) HFC (10) HFC (11) 
Grant3t -0.3369  -0.3430  -0.3430  -0.3458  -0.3458  
  (0.2479)  (0.2473)  (0.2473)  (0.2472)  (0.2472)  
Aget -7.0573 *** -6.7590 *** -6.7410 *** -6.8228 *** -6.8171 *** 
  (1.2130)  (1.2189)  (1.2213)  (1.2192)  (1.2221)  
[Aget]2 0.3392 *** 0.3230 *** 0.3224 *** 0.3261 *** 0.3259 *** 
  (0.0514)  (0.0517)  (0.0517)  (0.0517)  (0.0518)  
MaxChairt  0.6353  0.4584  0.4528  0.4290  0.4280  
  (1.4046)  (1.4028)  (1.4031)  (1.4021)  (1.4022)  
ArtCit3t 5.4109 ** 5.9396 ** 5.9238 ** 5.8975 ** 5.8945 ** 
  (2.3012)  (2.3093)  (2.3100)  (2.3050)  (2.3055)  
[ArtCit3t]2 -1.0414 * -1.1765 ** -1.1717 ** -1.1507 ** -1.1500 ** 
  (0.5622)  (0.5653)  (0.5656)  (0.5643)  (0.5644)  
BtwCentArt3t -0.2447  -0.1608  -0.1747  -0.0074  -0.0128  
  (1.4794)  (1.4745)  (1.4751)  (1.4804)  (1.4825)  
CliqnessArt3t  -1.0484  -1.1493  -1.1239  -1.1700  -1.1639  
  (0.8478)  (0.8450)  (0.8491)  (0.8446)  (0.8494)  
BtwCentPat3t 0.8149  0.9440  0.9347  0.9344  0.9324  
  (0.5795)  (0.5786)  (0.5794)  (0.5783)  (0.5791)  
CliqnessPat3t 0.0004  0.0004  0.0004  0.0004  0.0004  
  (0.0004)  (0.0004)  (0.0004)  (0.0004)  (0.0004)  
dAcAssigneet 2.7620  1.8908  1.9252  1.8708  1.8795  
  (2.8782)  (2.8826)  (2.8852)  (2.8804)  (2.8834)  
dNanoEx -6.9269 ** -8.0948 ** -8.0662 ** -8.2388 ** -8.2312 ** 
  (3.2444)  (3.2550)  (3.2568)  (3.2563)  (3.2584)  
dPGPt   28.1833 *** 38.6921  37.2859 *** 39.5847  
    (7.7279)  (35.6108)  (11.6503)  (35.6158)  
dPGPt ×      -2.3444    -0.5404  
CliqnessArt3t     (7.7340)    (7.9059)  
dPGPt ×         -8.7258  -8.6017  
BtwCentArt3t       (8.1139)  (8.3186)  
Constant 122 *** 120 *** 120 *** 121 *** 121 *** 
  (8.1185)  (8.1396)  (8.1633)  (8.1293)  (8.1573)  
Constant  36.4698  36.3184  36.3188  36.2921  36.2926  
 (Sigma) 1.0463 *** 1.0410 *** 1.0410 *** 1.0402 *** 1.0402 *** 
Nb observations 1110  1110  1110  1110  1110  
Chi Square 75.9482  90.3957  90.4881  91.533  91.5376  
Pseudo R2 0.0099  0.0118  0.0118  0.0120  0.0120  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  
Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

We analyzed the linear and non-linear effect of variables presented in Table 6.19 below:  
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Table 6.19 : Linear and non-linear effect (quadratic effect) of variables to measure impact of 

patent–grant pairs on patent quality 

 FC 

WO/Sq 

FC 

W/Sq 

 

CL 

WO/Sq 

CL 

W/Sq 

HBC 

WO/Sq 

HBC 

W/Sq 

HFC 

WO/Sq 

HFC 

W/Sq 

Grant3t     NS ---   

(Grant3t)2      +++   

Aget  --- +++   +++ --- +/++ --- 

(Aget )2  ---    +++  +++ 

ArtCit3t        ++/+ ++ 

(ArtCit3t )2        --/- 

BtwCentArt3t      NS ---   

(BtwCentArt3t )2      +++   

CliqnessArt3t + NS       

(CliqnessArt3t)2  +       

CliqnessPat3t   NS ++/+     

(CliqnessPat3t)2    -     

Notes: WO/Sq (without square variable) shows the impact of a variable without squared variables (linear impact), 
while W/Sq (with squared variable) demonstrates a quadratic effect. Selected models are bold and underlined. 
Furthermore, +++, ++, + as well as ---, --, - show significance at the 1%, 5%, and 10% levels, respectively, in 
different directions (positive or negative), for instance: -0.8190 ***  (indicated by ---), -2.1959 * (identified by -), 
and 28.1833 *** (determined by +++). 

 

According to our results, we reject Hypothesis 6 in terms of number of forward citations, since 

the patents linked to patent–grant pairs [dPGPt] receive fewer citations than other patents without 

such a link. However, we accept Hypothesis 6 when considering the Herfindahl index of forward 

citations [HerfIndexFCit5t], as the patents receive more citations and are more diversified. We 

can’t accept Hypothesis 6 when considering number of claims (NbClaimst) and Herfindahl index 

of backward citations [HerfIndexBWCitt], since the results are not significant. Furthermore, we 

couldn’t find any significant effect of patent–grant pairs [dPGPt] on patent quality when dealing 

with inventors who occupied in highly clustering coefficient co-publication networks [dPGPt × 

CliqnessArt3t] as well as high co-publication network centrality [dPGPt × BtwCentArt3t]. 
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Accordingly, we cannot accept Hypothesis 6A proposing that there is a relationship between the 

two measured phenomena including patent quality as the dependent variable and patent–grant 

pairs dealing with inventors who occupied nodes in the highly centralized co-publication network 

as the independent variables. In Table 6.20, the results are summarized. 

 

Table 6.20 : Summary of results for patent–grant pairs  

Variables Forward 
citations 

[NbFCit5t] 

 

Herfindahl index 
of forward 
citations 

[HerfIndexFCit5t]  

Number of 
claims 
[NbClaimst] 

 

Herfindahl index 
of backward 

citations 
[HerfIndexBWCitt]  

Patent–grant pairs [dPGPt]  Significant 
and negative 
(---/--/-) 

Significant and 
positive (+++) 

Not significant Not significant 

PGPt × CliqnessArt3t Not significant Not significant Not significant Not significant 

dPGPt × BtwCentArt3t  Not significant Not significant Not significant Not significant 

Notes: +++, ++, + as well as ---, --, - show significance at the 1%, 5%, and 10% levels, respectively, in different 
directions (positive or negative); for instance: -0.8190 ***  (indicated by ---), -2.1959 * (identified by -), and 
28.1833 *** (determined by +++). 

A key question in this research on patent quality concerns what the number of citations, the 

number of claims or the Herfindahl index actually measures. Is it really the patent “quality,” as is 

often claimed in the literature? Patent citations measure the “use” of the patent as prior art cited 

in other patents, which implies how other technologies build upon a specific patent. Likewise, 

claims in a patent define the extent or the scope of the protection granted by the patent. The 

Herfindahl index, as a third element of this analysis, measures the diversification of technologies 

that patents engage. This research discovered a negative impact of the patent–paper pairs on 

patent quality, including the number of forward citations and number of claims. Prior studies 

have concluded there is no significant impact of patents that have paper counterparts on patent 

citation flows (Magerman et al., 2011). Moreover, this study corroborates former findings and 

further suggests that patents owned by universities yield a smaller number of citations in the 

technology world (Lissoni et al., 2010; Sterzi, 2013). The proximity between academic science 

and applied technology is generally crucial for knowledge transfer. However, the two fields do 

not seem to hold equal importance when it comes to having an impact in the technology world. 
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This exploration found that academic inventors holding a prestigious chair negatively impact the 

number of citations of the patents to which they contribute. 

Collaboration networks among inventors are crucial to their innovation activities and their 

scientific performance, as inventors rarely work unaccompanied and isolated. Prior research have 

found that patents prevent competitors from capturing the market, while occupying better 

brokerage positions (Blind et al. 2009). To have a whole picture of knowledge transfer including 

explicit and tacit knowledge, both patent citation and measuring the network properties of the co-

invention and co-authorship networks are required. Inventors that engage in the short path with a 

high degree of centrality and clustering can broadly and rapidly spread the information between 

different partners (Xiang et al., 2013). Our results reveal that better brokerage positions will only 

go so far to improve patent quality. Network positions that are too central and intermediary are 

eventually associated with declining quality.  

Considering the impact of government assignees on patent citations, our study is consistent 

with Popp et al. (2013) and Popp (2006). The academic and government assignees obtain fewer 

citations than patents held by private-sector assignees. Furthermore, our findings show that 

patents assigned to government or universities and other research facilities engage in less 

diversified technology domains than patents that are privately held by corporations. Finally, our 

outcomes showed that patents belonging to patent–grant pairs obtained fewer patent forward 

citations, but are more diversified and engaged in multidisciplinary technology sectors, compared 

to patents not paired with grants. 

It seems the nature of government patents has changed over time (Popp, 2006). As argued by 

Kenney and Patton (2009, 2011) in assessing the Bayh–Dole Act, university ownership of 

patents may actually impede innovation commercialization in a competitive market. 

Furthermore, several scholars have examined the impact of university, government and 

corporation patentees on patent quality (Bessen, 2008; Crespi et al., 2010; Lissoni et al., 2010; 

Mowery & Ziedonis, 2002; Popp, 2006; Popp et al., 2013; Sterzi, 2013). Past researchers have 

supposed that patents assigned to government laboratories would concentrate on essential needs 

and would be more likely to be cited than patents held by private corporations (Popp, 2006; Popp 

et al., 2013). However, the results of the present research show that government patents tend to 

obtain fewer citations than privately assigned patents. This conclusion is consistent with previous 
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studies including Popp (2006) and Popp et al. (2013) which demonstrated the positive 

contribution of private assignees on patent citations in the energy sector. 
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 CONCLUSION AND RECOMMENDATIONS CHAPTER 7

A number of scholars have used patent data to analyze R&D outcomes, measuring firms’ 

technological position in the competitive market, patent quality and value (Petruzzelli et al., 

2015; Reitzig & Puranam, 2009). The first question that we should answer is, what is patent 

quality? Significant numbers of studies have investigated key indicators to measure patent 

quality. Duch-Brown and Costa-Campi (2015) state that patent citations reveal the intrinsic 

quality of the patents. Briggs (2015) present patent citation as the extensively common proxy of 

patent quality. With respect to former scholars, the forward citation and also the prior art of the 

patent have been used as the common measure of patent quality, showing the importance of the 

patents in knowledge spillovers (Briggs, 2015; Hagedoorn & Cloodt, 2003; Harhoff et al., 1999). 

Hagedoorn and Cloodt (2003) imply there is a positive association between a patent’s importance 

and its number of citations in subsequent patents. 

The difference in patent quality and value is blurred. Singh (2008) interchangeably used patent 

quality and value in his research. Prior works have attempted to measure patent value and 

influence in subsequent technology development, rather than the number of patents (Singh, 

2008). Some authors found that the number of patent citations is positively associated with the 

direct indicators that measure patent value, including market value (B. H. Hall et al., 2005), 

renewal rate (Harhoff et al., 1999), and expert value evaluation (Albert, Avery, Narin, & 

McAllister, 1991). Singh (2008) defined patent quality as the number of patent forward citations. 

Singh (2008) tested technological breadth as the variable to assess patent quality. Technological 

breadth was calculated by 1 minus the Herfindahl index of cited patents in a focal patent (patent 

backward citations) as the measure of patent concentration. Singh’s (2008) studies reveal that 

patents that are more diversified (higher number of Herfindahl index of backward citations) are 

of a greater quality than patents involved in fewer technology domains.   

Petruzzelli et al. (2015) used technological breadth as the indicator to measure innovation 

influence measured by the number of forward citations. Conversely, according to Petruzzelli et 

al.’s (2015) research, being involved in various technology domains doesn’t affect the patent 

citation in the biotechnology domain. However, it negatively affects the patent influence in 

subsequent innovation (measured by the number of citations) in non-biotechnology domains. 

Petruzzelli et al. (2015) reveal that patent importance and influence varies according to the 
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domain. A possible explanation of the negative impact of high technology breadth on patent 

citations would be the complexity of the integration of various technology fields (Koput, 1997), 

low technology absorptive capacity (Cohen & Levinthal, 1990; Petruzzelli et al., 2015). 

However, Petruzzelli et al.’s (2015) research shows that high value of patent scope is linked to a 

greater number of forward citations non-biotechnology domain. 

In this research, we used the number of patent forward citations, the number of claims and 1 

minus the Herfindahl index of both forward and backward citations as proxies for patent quality 

indicators. We measured the impact of patent–paper pairs, patent ownership structure, and 

patent–grant pairs on patent quality, finding a negative impact on patent citations. With the 

passage of the Bayh–Dole Act, universities became involved in patenting and licensing their 

innovations, and they undertook enormous effort to set up their internal process for the 

Technology Transfer Office (TTO) to commercialize their innovations (Sampat, 2006). After the 

Bayh–Dole Act, universities have the right to decide what to patent and how to patent, giving 

universities the opportunity to license their patents for their own beneficial interest rather than for 

the public interest (Sampat, 2006).  

Some scholars consider the Bayh–Dole Act as “possibly the most inspired piece of legislation 

to be enacted in America over the past half-century,” suggesting that “more than anything, this 

single policy measure helped to reverse America’s precipitous slide into industrial irrelevance” 

(Sampat, 2006). 

While the Bayh–Dole Act has unquestionably facilitated university innovation transfer and 

commercialization in some cases, this is not true for all cases (Sampat, 2006). The importance of 

patents and commercialization of patents was not well recognized during the passage of the 

Bayh–Dole Act and afterward (Sampat, 2006). Neils Reimers, the manager of the Cohen-Boyer 

licensing program, stated: “Whether we licensed it or not, commercialisation of recombinant 

DNA was going forward.… A non-exclusive licensing program, at its heart, is really a tax… but 

it’s always nice to say ‘technology transfer’” (Reimers, 1998; Sampat, 2006).  

Likewise, regarding the ownership of the patents by the public sector (including the 

government) instead of private contractors, there are serious debates between supporters and 

opponents of private patent ownership (Sampat, 2006). Vannevar Bush (as the “Director of the 

Wartime Office of Scientific Research and Development”) stated that giving the authority to 



105 

private contractors to retain their rights to license patents would encourage the corporations to 

significantly engage in producing new products and to commercialize the innovations from 

government-funded projects (Sampat, 2006). Conversely, opponents of private patent ownership 

have argued that the government gives the economic power to the large corporations at the 

expense of the small firms, by offering the opportunity for the corporations to own the 

innovations (Sampat, 2006). 

Over the past quarter of the twentieth century, the corporations’ role in defining the projects for 

the universities has enormously increased. In the wake of the Bayh–Dole Act, universities can 

decide how to act to license their innovations (Sampat, 2006). By monitoring how the universities 

make decisions on licensing, and how universities consider the public interest rather than self-

interest when making such decisions, the public ownership system can be amended (Sampat, 

2006).   

Like every research, this study has some limitations. First, only the number of forward citations 

and Herfindahl index of backward and forward citations, and the number of claims were used to 

measure the patent quality in this research, since only these four indicators were accessible in the 

data for testing. There are, however, more indicators that could be used to measure patent quality, 

including the number of IPC-subclasses, patent renewals, patent families, and number of 

applicants (Goetze, 2010; Schettino et al., 2013; Seol et al., 2011). The methodology of the 

present research is consistent with previous studies. However, in order to truly measure patent 

quality, more complex indicators could be applied in further research.  

The second limitation is associated with the scope of the data. The data used in this observation 

merely covers biotechnology and nanotechnology patents originating in Canada and cannot be 

generalized to other disciplines or to other geographical regions. 

In terms of patent ownership structure, transferring technology to the private sector seems to be 

advisable, as the government and academic patents in this study tended to receive fewer citations. 

According to the results of Popp (2006) and Popp et al. (2013), U.S. government child patents, 

however, frequently obtained more citations than government parent patents. Frequently when a 

government child patent was assigned to the private sector, it cited at least one other patent that 

was assigned to the government. In light of such findings, it would be interesting to measure the 

citations of Canadian government child patents in future research. Researchers could measure the 
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quality of patents that are privately held by corporations but that cite at least one patent assigned 

to the government. Accordingly, they could integrate the government contribution (generated 

from government laboratories) in privately held patents, to apply the added value by government 

to the commercialization of patents owned by the corporations.  

Based on this study, where the citations of government patents in Canada were examined, two 

dummy variables can be defined for further research. One dummy variable can be set at 1, where 

the patent is assigned to the government in Canada, as defined in this research. A second variable, 

for the Canadian government child patents, can also be set at 1, for patents held by a private-

sector assignee and citing at least one patent that is assigned to the government in Canada. 

Patent citation in Canada across institutions including university, government and corporations 

was examined in this research. The citation of prior art might be different, however, across 

different countries. Therefore, inference of patent quality according to the prior art of the patents 

could be complicated (Alcácer, Gittelman, & Sampat, 2009). Nevertheless, evaluation of patent 

citations across different regions and nations could be applied in future research. Briggs’s (2015) 

outcomes demonstrated that patents assigned to multiple countries obtain more forward citations 

than patents issued in a single country. Briggs’s (2015) research also showed that patent co-

owners in different geographical locations increase patent quality. Accordingly, the impact of 

joint assignees on patent quality could be studied. 

In some cases the examiners and patent applicants add the prior art to patent citations. 

Accordingly, the proportion of examiners and patents applicants significantly affects the patent’s 

number of backward citations. A higher proportion of patent applicants are linked to a higher 

number of patent examiners’ citations. Therefore, the impact of the number of patent examiners 

on patent prior art citations can be investigated in future research.  

The number of examiners varies across different technology domains. In the communication 

and electronics fields there is a large number of examiners (Alcácer et al., 2009). Moreover, the 

prior art of citations is related to the technology domain, region, examiner’s experience, and 

relative proportion of examiners and patent applicants. All of these factors could be considered 

and addressed in further research to measure the quality and value of the patents associated with 

patent citations’ prior art (Alcácer et al., 2009).  
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Measurement of the Herfindahl index of the inventors’ geographical distribution can be 

addressed in a future study to investigate the impact of the inventors’ cross-regional distribution 

network on patent quality in Canada. In this research we examined the impact of network 

clustering coefficient and betweenness centrality associated with the co-invention and co-

authorship network on patent quality.  

Regarding the patent–paper pairs, we found a negative impact of patent–paper pairs on the 

number of patent citations. However, according to Magerman et al. (2015), publications that are 

linked to patents receive significantly higher citations than papers without such a link. This result 

shows that patenting doesn’t threaten scientific activity.  The impact of patent–paper pairs on 

patent quality in other high-technology domains could be further investigated. Moreover, 

measurement can be done at the individual and corporation level to determine if there is any 

difference in the results. That is, the research can compare patent–paper pairs engaging individual 

scholars with those involving scientists in public and private institutions. According to our 

descriptive data, there is a decreasing trend of patents belonging to patent–paper pairs. Figure 5.3 

shows a decreasing difference between citations of patents in patents–paper pairs and patents not 

linked to publications, with the two numbers converging by the year 2005. Likewise, as shown in 

Figure 5.4 in regard to number of claims, the difference between patent–paper pairs and patents 

without such a link tends to be not significant. Thus, increasing the research time window beyond 

2005 may show that the difference in number of citations and number of claims will change 

further over a longer period, becoming even less significant.  

Further research is clearly required to disentangle the role of academic inventors in the 

technology world, in regard to their position within the scientific and technological networks. 

What benefits accrue from university patents and from patents to which academics contribute? 

Again the researcher must ask, what is patent quality? What indicators are relevant at the 

individual patent level? This investigation has shown that all indicators are not interchangeable; 

they imply very different concepts used as proxies for quality, for lack of better indicators. The 

results obtained are highly dependent on the proxy type used to measure a particular concept. 

Empirical researchers therefore must tread with care in the realm of patent quality indicators. To 

quote Hagedoorn and Cloodt (2003, pp. 1365-1366), given “the variety in constructs, 

measurements, samples, databases, industries and country settings and inconsistency in 

definitions, it is of no surprise that there appears to be hardly any clear understanding of the 
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concept and measurement of innovative performance.”  This research has taken due account of 

such concerns in assessing the impact of academic and government patent ownership, and of 

patent–paper pairs and patent–grant pairs, on patent quality, and finding the impacts negative. 

The results point clearly to the conclusion that academic and government patent ownership, as 

well as contributions by academic inventors, lack positive impact on patent quality.  
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APPENDIX A – VARIABLES DESCRIPTION 

Table A.1 : Description of Variables 

Dependent Variables Description of Variables 

NbClaimst Log of number of claims in the patent document.  
We generated the natural logarithm of number of claims ln 
(NbClaimst). 

NbFCit5t  Log of number of forward citations in citing patents, during the 
5 years following the granting year ln (NbFCit5t +1). 
We generated the natural logarithm of number of forward 
citations with left censored. 

HerfIndexFCit5t  Herfindal index of forward citations  

This is a measure to demonstrate the technological 
concentration of the patent. High value of the HerfIndexFCit5t 
variable demonstrates that the patent involves a variety of 
technologies. We multiplied by 100 to normalize this variable 
(HerfIndexFCit5t × 100). 

HerfIndexBWCitt  Herfindal index of backward citations  

This is a measure to demonstrate the technological 
concentration of the patent as the technological breadth. High 
value of the HerfIndexBWCitt variable demonstrates that patent 
involves in varieties of technologies. We multiplied by 100 to 
normalize this variable (HerfIndexBWCitt × 100). 

Independent Variables 

Aget  Average “career” age of the academic inventors of the patent. 
This variable has been averaged over all academic inventors 
who contributed to a given patent. 

BtwCentPat3t  Average value amongst the academic inventors of the patent of 
the 3-year co-invention (patents) individual network 
betweenness centrality. 
We used the natural logarithm of betweenness centrality ln 
(BtwCentPat3t × 104 +1). This variable has been averaged over 
all academic inventors who contributed to a given patent. 
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Table A.1 : Description of Variables (Cont’d) 

Dependent Variables Variables description 

CliqnessPat3t  Average value amongst the academic inventors of the patent of 
the 3-year co-invention (patents) individual network clustering 
coefficient (cliquishness) (CliqnessPat3t × 104). 

CliqnessArt3t 
 Average value amongst the academic inventors of the patent of 

the 3-year co-publication (articles) individual network 
clustering coefficient (cliquishness). 

We used the square root of the clustering coefficient of the co-
publication network (all averaged) to normalize this variable 
Sqrt (CliqnessArt3t ). 

BtwCentArt3t Average value amongst the academic inventors of the patent of 
the 3-year co-publication (articles) individual network 
betweenness centrality.  

This variable has been averaged over all academic inventors 
who contributed to a given patent. We used the natural 
logarithm of betweenness centrality ln (BtwCentArt3t× 104  +1). 

Grant3t  Average value amongst the academic inventors of the patent of 
the amount of grants received by the academic inventors of the 
patent over the three years prior to the patent application.  
This variable has been averaged over all academic inventors 
who contributed to a given patent. We used the logarithm of ln 
(Grant3t +1). 

ArtCit3t  Average value amongst the academic inventors of the patent of 
the number of article citations received by their publications.  

This variable has been averaged over all academic inventors 
who contributed to a given patent ln (ArtCit3t +1). 

dAcAssigneet 

 

Dummy variable taking the value 1 if the assignee of the patent 
is an academic institution 

dGovAssigneet Dummy variable taking the value 1 if the assignee of the patent 
is an government 

dNanoEx Dummy variable taking the value 1 if the domain of the patent 
is exclusively nanotechnology (i.e. excluding 
nanobiotechnology) 

Similarityt Similarity between patents and papers 
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Table A.1 : Description of Variables (Cont’d and end) 

Dependent Variables Variables description 

dPGPt Dummy variables set equals 1 when the patent is linked to the 
grants (similar content) within a short time frame (maximum 2 
years) before patent application date. 

MaxChairt  Maximum value amongst the academic inventors of the patent 
of the ordinal variable representing the “best” chair occupied by 
an academic (0 = no chair, 1 = industrial chair, 2 = NSERC or 
CIHR chair, 3 = Canada Research Chair). 

Endogenous variables  

Contract3t  Average value amongst the academic inventors of the patent of 
the amount of contracts received by the academic inventors of 
the patent over the three years prior to the patent application. 
This variable has been averaged over all academic inventors 
who contributed to a given patent. We used the natural 
logarithm of average of contract received by the academic 
inventors of the patent ln (Contract3t +1). 

Instrumental variables 

Contract3Ut-2  Average value amongst the academic inventors of the patent of 
the total amount of contracts received by their university over 
the past three years. 
This variable has been averaged over all academic inventors 
who contributed to a given patent. We used the natural 
logarithm of this variable ln (Contract3Ut-2 +1). 

GrantEI3t  Average value amongst the academic inventors of the patent of 
the amount of grants for equipment and infrastructure over the 
past three years. 
This variable has been averaged over all academic inventors 
who contributed to a given patent. We used the natural 
logarithm of this variable ln (GrantEI3t +1). 

Loopt  Average value amongst the academic inventors of the patent of 
the number of innovation loops to which they have contributed 
(such a loop exists when the research of the named academic 
inventors of the patent has been funded by the assignee of the 
patent) to which they have contributed: Loopt 
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APPENDIX B –TEST ROBUSTNESS FOR PATENT OWNERSHIP 

STRUCTURE 

 

Table B.1 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (13–17)) 

Variables FC (13)  FC (14)  FC (15)  FC (16)  FC (17)  
Grant3t -0.0077  -0.0038  -0.0034  -0.0036  -0.0042  
  (0.0096)  (0.0100)  (0.0102)  (0.0100)  (0.0100)  
Aget 0.3712 *** 0.3806 *** 0.3806 *** 0.3902 *** 0.3806 *** 
  (0.0501)  (0.0498)  (0.0498)  (0.0502)  (0.0497)  
[Aget]2 -0.0176 *** -0.0182 *** -0.0182 *** -0.0185 *** -0.0182 *** 
  (0.0021)  (0.0021)  (0.0021)  (0.0021)  (0.0021)  
MaxChairt  0.1234 * 0.0832  0.0824  0.0805  0.0827  
  (0.0632)  (0.0640)  (0.0641)  (0.0640)  (0.0638)  
ArtCit3t -0.0843 ** -0.0509  -0.0507  -0.0506  -0.0493  
  (0.0363)  (0.0384)  (0.0384)  (0.0384)  (0.0384)  
BtwCentArt3t 0.0541  0.0105  0.0100  0.0090  0.0162  
  (0.0598)  (0.0620)  (0.0621)  (0.0621)  (0.0622)  
CliqnessArt3t  -0.2039 * -0.1924 * -0.1905 * -0.2035 * -0.1881 * 
  (0.1057)  (0.1066)  (0.1072)  (0.1066)  (0.1065)  
[CliqnessArt3t]2 0.0206 ** 0.0188 ** 0.0186 ** 0.0199 ** 0.0186 ** 
  (0.0092)  (0.0091)  (0.0092)  (0.0091)  (0.0091)  
BtwCentPat3t -0.0623 *** -0.0781 *** -0.0778 *** -0.0794 *** -0.0788 *** 
  (0.0233)  (0.0247)  (0.0247)  (0.0248)  (0.0247)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.1241  -0.0749  -0.0760  -0.0760  -0.0731  
  (0.1193)  (0.1214)  (0.1215)  (0.1213)  (0.1213)  
dNanoEx 0.6402 *** 0.6262 *** 0.6268 *** 0.6362 *** 0.6322 *** 
  (0.1212)  (0.1205)  (0.1205)  (0.1209)  (0.1205)  
dGovAssigneet   -0.7768 *** -0.7124  3.3786  -0.3944  
    (0.2854)  (0.4700)  (2.5934)  (0.4402)  
dAcAssigneet   -0.4415 *** -0.4421 *** -0.4386 *** -0.4412 *** 
    (0.1399)  (0.1399)  (0.1397)  (0.1397)  
dGovAssigneet × Grant3t     -0.0088      
      (0.0509)      
dGovAssigneet × Aget       -0.7210    
        (0.4692)    
dGovAssigneet × [Aget]2       0.0282    
        (0.0197)    
dGovAssigneet ×          -0.3743  
BtwCentArt3t         (0.3195)  
Constant -0.9836 *** -0.9006 ** -0.9049 ** -0.9417 *** -0.9211 *** 
  (0.3501)  (0.3506)  (0.3514)  (0.3517)  (0.3504)  
Inflate           
Grant3t -0.0080  0.0021  0.0019  0.0013  0.0008  
  (0.0699)  (0.0568)  (0.0566)  (0.0575)  (0.0558)  
Aget 0.1901  0.0454  0.0453  0.0473  0.0450  
  (0.1825)  (0.0593)  (0.0592)  (0.0591)  (0.0584)  
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Table B.1 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (13–17)) 
(Cont’d and end) 

Variables! FC (13)!! FC (14)!! FC (15)!! FC (16)!! FC (17)!!
MaxChairt  2.4458 ** 0.7605 * 0.7582 * 0.7450  0.7550 * 
  (1.1628)  (0.4472)  (0.4456)  (0.4574)  (0.4427)  
BtwCentArt3t -1.6670 ** -1.9219  -1.9221  -1.8973  -1.9153  
  (0.7080)  (1.1784)  (1.1751)  (1.1927)  (1.1775)  
CliqnessArt3t  0.3738  0.0411  0.0414  0.0389  0.0433  
  (0.2418)  (0.1403)  (0.1400)  (0.1395)  (0.1373)  
ArtCit3t 0.2966  0.7215 * 0.7218 * 0.7160 * 0.7179 * 
  (0.2741)  (0.4108)  (0.4096)  (0.4181)  (0.4072)  
BtwCentPat3t -0.4346 * -0.4942 * -0.4938 * -0.4872 * -0.4949 * 
  (0.2279)  (0.2772)  (0.2763)  (0.2783)  (0.2740)  
Constant (Inflate) -9.9839 * -3.1570 ** -3.1528 ** -3.1434 ** -3.1238 ** 
  (5.2268)  (1.5146)  (1.5076)  (1.5461)  (1.4951)  
Constant (lnalpha) 0.3635 *** 0.3056 *** 0.3055 *** 0.2992 *** 0.3017 *** 
  (0.0799)  (0.0908)  (0.0907)  (0.0920)  (0.0913)  
Nb observations 1110  1110  1110  1110  1110  
Log Likelihood -1733.70  -1727.58  -1727.57  -1726.12  -1726.89  
Chi Square 98.26  110.50  110.53  113.42  111.88  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  
Zero obs  543.00  543.00  543.00  543.00  543.00  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table B.2 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (18–21)) 

Variables FC (18)  FC (19)  FC (20)  FC (21)  
Grant3t -0.0031  -0.0043  -0.0071  -0.0039  
  (0.0100)  (0.0102)  (0.0103)  (0.0100)  
Aget 0.3800 *** 0.3893 *** 0.3750 *** 0.3727 *** 
  (0.0498)  (0.0501)  (0.0499)  (0.0534)  
[Aget]2 -0.0182 *** -0.0185 *** -0.0180 *** -0.0179 *** 
  (0.0021)  (0.0021)  (0.0021)  (0.0023)  
MaxChairt  0.0818  0.0812  0.0853  0.0824  
  (0.0639)  (0.0640)  (0.0644)  (0.0638)  
ArtCit3t -0.0502  -0.0485  -0.0518  -0.0507  
  (0.0384)  (0.0384)  (0.0384)  (0.0384)  
BtwCentArt3t 0.0079  0.0134  0.0147  0.0111  
  (0.0621)  (0.0624)  (0.0619)  (0.0621)  
CliqnessArt3t  -0.1892 * -0.1998 * -0.1905 * -0.1945 * 
  (0.1066)  (0.1076)  (0.1066)  (0.1067)  
[CliqnessArt3t]2 0.0185 ** 0.0197 ** 0.0188 ** 0.0189 ** 
  (0.0091)  (0.0092)  (0.0091)  (0.0091)  
BtwCentPat3t -0.0772 *** -0.0797 *** -0.0809 *** -0.0776 *** 
  (0.0247)  (0.0251)  (0.0247)  (0.0247)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0778  -0.0742  -0.0734  -0.0769  
  (0.1214)  (0.1213)  (0.1211)  (0.1223)  
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Table B.2 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (18–21)) 
(Cont’d and end) 

Variables! FC (18)!! FC (19)!! FC (20)!! FC (21)!!
dNanoEx 0.6272 *** 0.6402 *** 0.6302 *** 0.6278 *** 
  (0.1205)  (0.1211)  (0.1205)  (0.1205)  
dGovAssigneet -0.6753 ** 3.8675  -0.7800 *** -0.7759 *** 
  (0.3200)  (2.7428)  (0.2852)  (0.2853)  
dAcAssigneet -0.4408 *** -0.4357 *** -0.8545 ** -0.7481  
  (0.1398)  (0.1397)  (0.3464)  (0.8153)  
dGovAssigneet × Grant3t   0.0340      
    (0.0600)      
dGovAssigneet × Aget   -0.7693      
    (0.5050)      
dGovAssigneet × [Aget]2   0.0307      
    (0.0215)      
dGovAssigneet × BtwCentArt3t   -0.3998      
    (0.3359)      
dGovAssignee × BtwCentPat3t -0.2663  -0.4121      
  (0.3754)  (0.4449)      
dAcAssigneet  × Grant3t     0.0422    
      (0.0324)    
dAcAssigneet× Aget       0.0598  
        (0.1461)  
dAcAssigneet × [Aget]2       -0.0026  
        (0.0064)  
Constant -0.9060 *** -0.9545 *** -0.8565 ** -0.8524 ** 
  (0.3505)  (0.3519)  (0.3519)  (0.3737)  
Inflate         
Grant3t 0.0022  0.0010  0.0072  0.0025  
  (0.0567)  (0.0580)  (0.0592)  (0.0574)  
Aget 0.0458  0.0481  0.0485  0.0454  
  (0.0591)  (0.0587)  (0.0622)  (0.0596)  
MaxChairt  0.7581 * 0.7451  0.7988 * 0.7631 * 
  (0.4454)  (0.4660)  (0.4644)  (0.4516)  
BtwCentArt3t -1.9246  -1.8909  -1.9298  -1.9446  
  (1.1775)  (1.2172)  (1.2595)  (1.1883)  
CliqnessArt3t  0.0409  0.0399  0.0400  0.0380  
  (0.1395)  (0.1371)  (0.1500)  (0.1414)  
ArtCit3t 0.7223 * 0.7110 * 0.7232  0.7315 * 
  (0.4087)  (0.4203)  (0.4423)  (0.4156)  
BtwCentPat3t -0.4945 * -0.4899 * -0.5013 * -0.4965 * 
  (0.2762)  (0.2789)  (0.2948)  (0.2806)  
Constant (Inflate) -3.1561 ** -3.1288 ** -3.3094 ** -3.1706 ** 
  (1.5085)  (1.5701)  (1.6032)  (1.5321)  
Constant (lnalpha) 0.3047 *** 0.2940 *** 0.3020 *** 0.3054 *** 
  (0.0908)  (0.0932)  (0.0905)  (0.0905)  
Nb observations 1110  1110  1110  1110  
Log Likelihood  -1727.31  -1725.05  -1726.74  -1727.50  
Chi Square 111.04  115.57  112.18  110.67  
P value 0.0000  0.0000  0.0000  0.0000  
Zero obs  543.00  543.00  543.00  543.00  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 



131 

Table B.3 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (22–25)) 

Variables FC (22)  FC (23)  FC (24)  FC (25)   
Grant3t -0.0064  -0.0046  -0.0111  -0.0125  
  (0.0104)  (0.0101)  (0.0107)  (0.0114)  
Aget 0.3842 *** 0.3821 *** 0.3730 *** 0.3834 *** 
  (0.0498)  (0.0498)  (0.0532)  (0.0538)  
[Aget]2 -0.0182 *** -0.0183 *** -0.0178 *** -0.0181 *** 
  (0.0021)  (0.0021)  (0.0022)  (0.0023)  
MaxChairt  0.0837  0.0822  0.0861  0.0849  
  (0.0642)  (0.0640)  (0.0647)  (0.0647)  
ArtCit3t -0.0434  -0.0524  -0.0455  -0.0419  
  (0.0387)  (0.0384)  (0.0390)  (0.0394)  
BtwCentArt3t 0.0359  0.0129  0.0468  0.0513  
 (0.0640)  (0.0621)  (0.0644)  (0.0653)  
CliqnessArt3t  -0.1861 * -0.1923 * -0.1848 * -0.1927 * 
  (0.1060)  (0.1065)  (0.1058)  (0.1067)  
[CliqnessArt3t]2 0.0186 ** 0.0189 ** 0.0188 ** 0.0198 ** 
  (0.0090)  (0.0091)  (0.0090)  (0.0091)  
BtwCentPat3t -0.0832 *** -0.0820 *** -0.0896 *** -0.0933 *** 
  (0.0262)  (0.0254)  (0.0270)  (0.0297)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0717  -0.0650  -0.0585  -0.0567  
  (0.1212)  (0.1222)  (0.1226)  (0.1224)  
dNanoEx 0.6193 *** 0.6224 *** 0.6214 *** 0.6339 *** 
  (0.1204)  (0.1206)  (0.1207)  (0.1220)  
dGovAssigneet -0.7803 *** -0.7836 *** -0.7899 *** 3.8427  
  (0.2850)  (0.2857)  (0.2849)  (2.7312)  
dAcAssigneet -0.1809  -0.4828 *** -0.9506  -0.8815  
  (0.1954)  (0.1530)  (0.8282)  (0.8271)  
dGovAssigneet × Grant3t       0.0423  
        (0.0598)  
dGovAssigneet × Aget       -0.7654  
        (0.5034)  
dGovAssigneet × [Aget]2       0.0304  
        (0.0215)  
dGovAssigneet × BtwCentArt3t       -0.4542  
        (0.3342)  
dGovAssigneet × BtwCentPat3t       -0.4035  
        (0.4433)  
dAcAssigneet  × Grant3t     0.0472  0.0485  
      (0.0339)  (0.0339)  
dAcAssigneet× Aget     0.0451  0.0361  
      (0.1540)  (0.1538)  
dAcAssigneet × [Aget]2     -0.0014  -0.0012  
      (0.0067)  (0.0067)  
dAcAssigneet× BtwCentArt3t -0.2744 *   -0.3196 ** -0.3322 ** 
  (0.1421)    (0.1475)  (0.1478)  
dAcAssigneet× BtwCentPat3t   0.0534  0.0529  0.0545  
    (0.0812)  (0.0834)  (0.0832)  
    0.5113  0.5259  0.5125  
Constant -0.9828 *** -0.9025 ** -0.8987 ** -0.9625 *** 
  (0.3524)  (0.3505)  (0.3713)  (0.3734)  
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Table B.3 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Zero-inflated negative binomial model results (robustness test FC (22–25)) 
(Cont’d and end) 

Variables! FC (22)!! FC (23)!! FC (24)!! FC (25)! !
Grant3t -0.0064  0.0010  -0.0003  -0.0051  
  (0.0548)  (0.0563)  (0.0583)  (0.0630)  
Aget 0.0478  0.0462  0.0531  0.0570  
  (0.0549)  (0.0586)  (0.0575)  (0.0566)  
MaxChairt  0.6844  0.7517 * 0.7240  0.6740  
  (0.4581)  (0.4445)  (0.4874)  (0.5508)  
BtwCentArt3t -1.7426  -1.9137  -1.7461  -1.6209  
  (1.2182)  (1.1782)  (1.3125)  (1.4179)  
CliqnessArt3t  0.0450  0.0409  0.0425  0.0398  
  (0.1257)  (0.1382)  (0.1319)  (0.1256)  
ArtCit3t 0.6607  0.7162 * 0.6600  0.6187  
  (0.4206)  (0.4103)  (0.4506)  (0.4784)  
BtwCentPat3t -0.4539 * -0.4849 * -0.4508 * -0.4331  
  (0.2534)  (0.2733)  (0.2710)  (0.2668)  
Constant (Inflate) -2.9091 * -3.1333 ** -3.0872 * -2.9406  
  (1.5325)  (1.5127)  (1.6841)  (1.8450)  
Constant (lnalpha) 0.2867 *** 0.3035 *** 0.2797 *** 0.2610 ** 
  (0.1007)  (0.0914)  (0.1013)  (0.1168)  
Nb observations 1110  1110  1110  1110  
Log Likelihood -1725.71  -1727.37  -1724.19  -1721.44  
Chi Square 114.25  110.93  117.29  122.78  
P value 0.0000  0.0000  0.0000  0.0000  
Zero obs 543.00  543.00  543.00  543.00  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table B.4 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (robustness test HBC (12–15))   

Variables HBC (12)  HBC (13)  HBC (14)  HBC (15)  
Grant3t -3.6579 *** -3.6259 *** -3.5805 *** -3.5856 *** 
  (0.7841)  0.7806  0.7980  0.7806  
[Grant3t]2 0.2978 *** 0.2968 *** 0.2944 *** 0.2926 *** 
  (0.0632)  (0.0629)  (0.0644)  (0.0629)  
NbClaimst 2.9728 *** 2.8988 *** 2.8976 *** 2.6623 ** 
  (1.0517)  (1.0475)  (1.0484)  (1.0585)  
Aget -2.2616 *** -2.1145 *** -2.1241 *** -2.1391 *** 
  (0.7764)  (0.7745)  (0.7754)  (0.7742)  
[Aget]2 0.1396 *** 0.1312 *** 0.1316 *** 0.1318 *** 
  (0.0331)  (0.0331)  (0.0331)  (0.0331)  
MaxChairt  -1.3123  -1.4395  -1.4480  -1.4304  
  (1.0359)  (1.0320)  (1.0330)  (1.0315)  
ArtCit3t 0.9243  1.0090  1.0086  1.0287  
  (0.6529)  (0.6513)  (0.6526)  (0.6510)  
BtwCentArt3t -15.4000 *** -14.1000 *** -14.1000 *** -14.1000 *** 
  (4.0541)  (4.0525)  (4.0577)  (4.0501)  
[BtwCentArt3t]2 2.5502 *** 2.3033 *** 2.2919 *** 2.3119 *** 
  (0.7653)  (0.7654)  (0.7668)  (0.7650)  
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Table B.4 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (robustness test HBC (12–15)) 
(Cont’d and end) 

Variables! HBC (12)!! HBC (13)!! HBC (14)!! HBC (15)!!
CliqnessArt3t  0.4144  0.3718  0.3579  0.4490  
  (0.6334)  (0.6315)  (0.6327)  (0.6332)  
BtwCentPat3t 1.0514 ** 0.7663 * 0.7812 * 0.7387 * 
  (0.4169)  (0.4233)  (0.4267)  (0.4234)  
CliqnessPat3t 0.0010 *** 0.0010 *** 0.0010 *** 0.0010 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.9252  2.1148  2.0605  2.1545  
  (2.1736)  (2.2173)  (2.2218)  (2.2161)  
dNanoEx 2.4129  2.3534  2.3181  2.4415  
  (2.4072)  (2.3965)  (2.4000)  (2.3958)  
dGovAssigneet   -14.4000 *** -10.9000  -40.4000 ** 
    (4.9656)  (8.7998)  (17.9318)  
dAcAssigneet   -5.3922 ** -5.4022 ** -5.4477 ** 
    (2.4889)  (2.4910)  (2.4877)  
dGovAssigneet × Grant3t     -1.3230    
      (4.2070)    
dGovAssigneet × [Grant3t]2     0.0752    
      (0.3370)    
dGovAssigneet × NbClaimst       9.9747  
        (6.5996)  
Constant 60.9051 *** 62.5982 *** 62.5582 *** 63.0079 *** 
  (6.0684)  (6.0867)  (6.0926)  (6.0892)  
Nb observations 1110  1110  1110  1110  
Log Likelihood -5283.18  -5277.07  -5276.94  -5275.91  
R2 0.10  0.11  0.11  0.11  
R2 Adjusted 0.09  0.10  0.10  0.10  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table B.5 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (robustness tests HBC (16–19)) 

Variables HBC (16)  HBC (17)  HBC (18)  HBC (19)  
Grant3t -3.6484 *** -3.5613 *** -3.6141 *** -3.5094 *** 
  0.7811  0.7865  0.7812  0.8000  
[Grant3t]2 0.2994 *** 0.2904 *** 0.2950 *** 0.2874 *** 
  (0.0629)  (0.0635)  (0.0630)  (0.0646)  
NbClaimst 2.9519 *** 2.8640 *** 2.8740 *** 2.6436 ** 
  (1.0488)  (1.0490)  (1.0492)  (1.0605)  
Aget -2.0508 *** -2.1041 *** -2.0986 *** -2.0707 *** 
  (0.7790)  (0.7753)  (0.7756)  (0.7801)  
[Aget]2 0.1293 *** 0.1306 *** 0.1303 *** 0.1307 *** 
  (0.0333)  (0.0331)  (0.0331)  (0.0334)  
MaxChairt  -1.4557  -1.4587  -1.4365  -1.4733  
  (1.0327)  (1.0346)  (1.0324)  (1.0356)  
ArtCit3t 1.0181  1.0205  1.0147  1.0638  
  (0.6515)  (0.6530)  (0.6516)  (0.6545)  
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Table B.5 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (robustness tests HBC (16–19)) 
(Cont’d and end) 

Variables! HBC (16)!! HBC (17)!! HBC (18)!! HBC (19)!!
BtwCentArt3t -14.2000 *** -14.0000 *** -14.1000 *** -14.2000 *** 
  (4.0544)  (4.0786)  (4.0539)  (4.0843)  
[BtwCentArt3t]2 2.3037 *** 2.3009 *** 2.3091 *** 2.3236 *** 
  (0.7656)  (0.7693)  (0.7658)  (0.7709)  
CliqnessArt3t  0.3778  0.3918  0.3755  0.4879  
  (0.6317)  (0.6334)  (0.6318)  (0.6378)  
BtwCentPat3t 0.7660 * 0.7421 * 0.7465 * 0.7175 * 
  (0.4236)  (0.4247)  (0.4255)  (0.4287)  
CliqnessPat3t 0.0010 *** 0.0010 *** 0.0010 *** 0.0010 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.0625  2.1421  2.1308  2.0538  
  (2.2186)  (2.2193)  (2.2183)  (2.2225)  
dNanoEx 2.5024  2.3484  2.3828  2.6914  
  (2.4005)  (2.4016)  (2.3982)  (2.4149)  
dGovAssigneet 37.7652  -9.6071  -15.7000 *** 31.7268  
  (46.8636)  (7.6027)  (5.6690)  (49.1253)  
dAcAssigneet -5.3495 ** -5.4145 ** -5.4165 ** -5.3932 ** 
  (2.4906)  (2.4906)  (2.4903)  (2.4928)  
dGovAssigneet × Grant3t       -1.8590  
        (4.7144)  
dGovAssigneet × [Grant3t]2       0.1429  
        (0.3893)  
dGovAssigneet × NbClaimst       13.7743 * 
        (8.0662)  
dGovAssigneet × Aget -7.9299      -11.2000  
  (7.7856)      (8.9052)  
dGovAssigneet × [Aget]2 0.2780      0.3640  
  (0.3085)      (0.3542)  
dGovAssigneet × BtwCentArt3t   4.6194    3.8870  
    (33.1080)    (36.4719)  
dGovAssigneet ×     -1.8944    -1.1252  
[BtwCentArt3t]2   (7.0657)    (7.8615)  
dGovAssigneet × BtwCentPat3t     2.2066  0.6103  
      (4.7291)  (6.1411)  
Constant 62.0143 *** 62.4970 *** 62.6476 *** 62.2379 *** 
  (6.1093)  (6.0935)  (6.0898)  (6.1211)  
Nb observations 1110  1110  1110  1110  
Log Likelihood -5276.36  -5276.72  -5276.96  -5274.05  
R2 0.11  0.11  0.11  0.11  
R2 Adjusted 0.10  0.10  0.10  0.09  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table B.6 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations – Regression results (to test model robustness HBC (20–23))   

Variables HBC (20)  HBC (21)  HBC (22)  HBC (23)  
Grant3t -3.9543 *** -3.4916 *** -3.5979 *** -3.6123 *** 
  0.8043  0.7732  0.7791  0.7789  
[Grant3t]2 0.3216 *** 0.2869 *** 0.2958 *** 0.2969 *** 
  (0.0647)  (0.0623)  (0.0627)  (0.0627)  
NbClaimst 2.9935 *** 0.4664  2.8931 *** 2.8727 *** 
  (1.0489)  (1.1529)  (1.0454)  (1.0451)  
Aget -2.1260 *** -2.2335 *** -2.3959 *** -2.8269 *** 
  (0.7748)  (0.7671)  (0.7824)  (0.8445)  
[Aget]2 0.1333 *** 0.1373 *** 0.1341 *** 0.1534 *** 
  (0.0331)  (0.0328)  (0.0330)  (0.0360)  
MaxChairt  -1.3389  -1.3990  -1.4320  -1.4053  
  (1.0339)  (1.0217)  (1.0300)  (1.0298)  
ArtCit3t 1.0494  0.8774  0.9464  0.9320  
  (0.6515)  (0.6453)  (0.6505)  (0.6503)  
BtwCentArt3t -14.1000 *** -14.8000 *** -14.4000 *** -14.5000 *** 
  (4.0668)  (4.0140)  (4.0457)  (4.0451)  
[BtwCentArt3t]2 2.2941 *** 2.4087 *** 2.3154 *** 2.3342 *** 
  (0.7692)  (0.7580)  (0.7639)  (0.7637)  
CliqnessArt3t  0.3728  0.3915  0.3595  0.3546  
  (0.6320)  (0.6252)  (0.6303)  (0.6301)  
BtwCentPat3t 0.7361 * 0.7456 * 0.7813 * 0.7943 * 
  (0.4251)  (0.4190)  (0.4225)  (0.4224)  
CliqnessPat3t 0.0010 *** 0.0010 *** 0.0010 *** 0.0010 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.7478  3.1189  2.4125  2.1947  
  (2.2273)  (2.2048)  (2.2165)  (2.2215)  
dNanoEx 2.3626  2.3128  2.4555  2.3310  
  (2.3959)  (2.3724)  (2.3921)  (2.3929)  
dGovAssigneet -14.4000 *** -14.2000 *** -14.3000 *** -14.2000 *** 
  (4.9637)  (4.9158)  (4.9557)  (4.9546)  
dAcAssignee t -8.5723  -37.5000 *** -20.2000 *** -32.2000 *** 
  (5.5021)  (7.0837)  (6.8502)  (11.1811)  
dAcAssignee t  × Grant3t 4.1242 *       
  (2.4502)        
dAcAssignee t  × [Grant3t]2 -0.3241 *       
  (0.1946)        
dAcAssignee t × NbClaimst   12.5190 ***     
    (2.5929)      
dAcAssigneet × Aget     1.2406 ** 3.8637 * 
      (0.5333)  (2.0107)  
dAcAssignee t × [Aget]2       -0.1188  
        (0.0878)  
Constant 62.5415 *** 69.3201 *** 65.9054 *** 68.2413 *** 
  (6.0939)  (6.1842)  (6.2386)  (6.4708)  
Nb observations 1110  1110  1110  1110  
Log Likelihood -5275.62  -5265.35  -5274.32  -5273.39  
R2 0.11  0.13  0.11  0.12  
R2 Adjusted 0.10  0.11  0.10  0.10  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table B.7 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (to test model robustness HBC (24–
27))   

Variables HBC (24)  HBC (25)  HBC (26)  HBC (27)  
Grant3t -3.4633 *** -3.7338 *** -3.7465 *** -3.5822 *** 
  0.7860  0.7785  0.8067  0.8298  
[Grant3t]2 0.2814 *** 0.3020 *** 0.2999 *** 0.2853 *** 
  (0.0635)  (0.0627)  (0.0653)  (0.0674)  
NbClaimst 3.0140 *** 2.7911 *** 0.6050  0.2043  
  (1.0489)  (1.0443)  (1.1460)  (1.1626)  
Aget -2.0523 *** -2.0610 *** -2.8694 *** -2.8182 *** 
  (0.7748)  (0.7719)  (0.8343)  (0.8408)  
[Aget]2 0.1306 *** 0.1272 *** 0.1586 *** 0.1580 *** 
  (0.0330)  (0.0330)  (0.0355)  (0.0359)  
MaxChairt  -1.4844  -1.5157  -1.3735  -1.4146  
  (1.0315)  (1.0286)  (1.0181)  (1.0211)  
ArtCit3t 1.0886 * 0.8617  0.8244  0.8894  
  (0.6525)  (0.6507)  (0.6439)  (0.6468)  
BtwCentArt3t -13.7000 *** -13.1000 *** -13.9000 *** -13.9000 *** 
  (4.0556)  (4.0531)  (4.0208)  (4.0515)  
[BtwCentArt3t]2 2.3582 *** 2.1163 *** 2.3686 *** 2.4028 *** 
  (0.7655)  (0.7651)  (0.7605)  (0.7657)  
CliqnessArt3t  0.4057  0.4990  0.5288  0.6794  
  (0.6314)  (0.6306)  (0.6236)  (0.6299)  
BtwCentPat3t 0.7173 * 0.4597  0.4176  0.3397  
  (0.4239)  (0.4338)  (0.4332)  (0.4398)  
CliqnessPat3t 0.0010 *** 0.0010 *** 0.0010 *** 0.0010 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.9277  2.6764  3.0346  3.0417  
  (2.2183)  (2.2170)  (2.2087)  (2.2131)  
dNanoEx 2.1690  2.1931  1.9599  2.3012  
  (2.3971)  (2.3883)  (2.3606)  (2.3768)  
dGovAssignee t -14.5000 *** -14.9000 *** -14.7000 *** 19.7058  
  (4.9620)  (4.9507)  (4.8835)  (48.2929)  
dAcAssignee t -1.1225  -9.1473 *** -68.4000 *** -68.7000 *** 
  (3.5644)  (2.7758)  (13.4556)  (13.4848)  
dGovAssignee t × Grant3t       -1.7783  
        (4.6356)  
dGovAssignee t × [Grant3t]2       0.1454  
        (0.3828)  
dGovAssignee t × NbClaimst       16.3965 ** 
        (7.9354)  
dGovAssignee t × Aget       -10.6000  
        (8.7489)  
dGovAssignee t × [Aget]2       0.3402  
        (0.3480)  
dGovAssignee t ×        3.7172  
BtwCentArt3t       (35.8107)  
dGovAssignee t ×         -1.2110  
[BtwCentArt3t]2       (7.7180)  
dGovAssignee t ×        0.8541  
BtwCentPat3t      (6.0299)  
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Table B.7 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Regression results (to test model robustness HBC (24–
27)) (Cont’d and end) 

Variables! HBC (24)!! HBC (25)!! HBC (26)!! HBC (27)!!
dAcAssignee t  × Grant3t     4.8840 * 4.7368 * 
      (2.5720)  (2.5791)  
dAcAssignee t  × [Grant3t]2     -0.3730 * -0.3591 * 
      (0.2062)  (0.2068)  
dAcAssignee t × NbClaimst     12.5752 *** 12.9711 *** 
      (2.5868)  (2.5950)  
dAcAssignee t  × Aget     3.9609 * 3.8884 * 
      (2.0357)  (2.0392)  
dAcAssignee t × [Aget]2     -0.1175  -0.1158  
      (0.0887)  (0.0889)  
dAcAssignee t ×  -4.1888 *   -5.3030 ** -5.6224 ** 
BtwCentArt3t (2.5052)    (2.6489)  (2.6701)  
dAcAssignee t ×    4.3246 *** 3.5249 ** 3.5912 ** 
BtwCentPat3t   (1.4365)  (1.4550)  (1.4572)  
Constant 60.8792 *** 63.3674 *** 73.7807 *** 73.5680 *** 
  (6.1680)  (6.0697)  (6.5633)  (6.6081)  
Nb observations 1110  1110  1110  1110  
Log Likelihood  -5275.65  -5272.48  -5253.79  -5249.93  
R2 0.11  0.12  0.15  0.15  
R2 Adjusted 0.10  0.10  0.13  0.13  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

  



138 

APPENDIX C – TEST ROBUSTNESS FOR PATENT–GRANT PAIRS 

 

Table C.1 : Impact of patent–grant pairs on the number of forward citations [NbFCit5t] – Zero-
inflated negative binomial model results (to test model robustness FC (26–30)) 

Variables FC (26)  FC (27)  FC (28)  FC(29)  FC (30)   
Grant3t -0.0058  -0.0061  -0.0063  -0.0063  -0.0065  
  (0.0096)  (0.0096)  (0.0096)  (0.0096)  (0.0096)  
Aget 0.3780 *** 0.3732 *** 0.3693 *** 0.3713 *** 0.3669 *** 
  (0.0499)  (0.0501)  (0.0503)  (0.0502)  (0.0504)  
[Aget]2 -0.0181 *** -0.0178 *** -0.0177 *** -0.0177 *** -0.0175 *** 
  (0.0021)  (0.0021)  (0.0021)  (0.0021)  (0.0021)  
MaxChairt  0.0782  0.0939  0.0968  0.0904  0.0927  
  (0.0628)  (0.0640)  (0.0639)  (0.0638)  (0.0636)  
ArtCit3t -0.0515  -0.0599  -0.0588  -0.0575  -0.0558  
  (0.0382)  (0.0389)  (0.0388)  (0.0388)  (0.0387)  
BtwCentArt3t 0.0241  0.0208  0.0266  0.0249  0.0319  
  (0.0611)  (0.0614)  (0.0613)  (0.0616)  (0.0615)  
CliqnessArt3t  -0.1916 * -0.1759 * -0.1818 * -0.1782 * -0.1850 * 
  (0.1066)  (0.1066)  (0.1067)  (0.1064)  (0.1065)  
[CliqnessArt3t ]2 0.0182 ** 0.0175 * 0.0174 * 0.0176 * 0.0175 * 
  (0.0091)  (0.0091)  (0.0091)  (0.0091)  (0.0091)  
BtwCentPat3t -0.0718 *** -0.0770 *** -0.0742 *** -0.0770 *** -0.0741 *** 
  (0.0237)  (0.0239)  (0.0239)  (0.0238)  (0.0238)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
dAcAssigneet -0.3869 *** -0.3351 *** -0.3501 *** -0.3391 *** -0.3548 *** 
  (0.1157)  (0.1174)  (0.1176)  (0.1175)  (0.1175)  
dNanoEx 0.6262 *** 0.6687 *** 0.6526 *** 0.6633 *** 0.6452 *** 
  (0.1205)  (0.1223)  (0.1223)  (0.1224)  (0.1224)  
dPGP t   -0.8005 *** -3.3708 ** -0.6102  -3.3121 ** 
    (0.3048)  (1.5736)  (0.4251)  (1.5949)  
dPGP t × CliqnessArt3t      0.5489 *   0.5921 * 
      (0.3295)    (0.3401)  
dPGP t × BtwCentArt3t       -0.2209  -0.3036  
        (0.3441)  (0.3629)  
Constant -0.8934 ** -0.8819 ** -0.8510 ** -0.8742 ** -0.8408 ** 
  (0.3514)  (0.3528)  (0.3544)  (0.3527)  (0.3542)  
Inflate           
Grant3t 0.0019  0.0010  -0.0003  0.0005  -0.0011  
  (0.0531)  (0.0555)  (0.0549)  (0.0548)  (0.0540)  
Aget 0.0499  0.0439  0.0433  0.0453  0.0449  
  (0.0620)  (0.0658)  (0.0656)  (0.0647)  (0.0643)  
MaxChairt  0.8083 * 0.8734 * 0.8747 * 0.8576 * 0.8556 * 
  (0.4212)  (0.4860)  (0.4833)  (0.4717)  (0.4679)  
BtwCentArt3t -2.1895 ** -2.2101 * -2.2164 ** -2.2152 ** -2.2178 ** 
  (1.0937)  (1.1428)  (1.1213)  (1.1251)  (1.1052)  
CliqnessArt3t  0.0337  0.0577  0.0566  0.0532  0.0516  
  (0.1466)  (0.1617)  (0.1614)  (0.1563)  (0.1552)  
ArtCit3t 0.8068 ** 0.7866 ** 0.7904 ** 0.7909 ** 0.7941 ** 
  (0.3791)  (0.3989)  (0.3932)  (0.3923)  (0.3870)  
BtwCentPat3t -0.5282 * -0.5214 * -0.5206 * -0.5224 * -0.5209 * 
  (0.2748)  (0.2827) (0.2811)  (0.2807)  (0.2788)  
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Table C.1 : Impact of patent–grant pairs on the number of forward citations [NbFCit5t] – Zero-
inflated negative binomial model results (to test model robustness FC (26–30)) (Cont’d and end) 

Variables! FC (26)!! FC (27)!! FC (28)!! FC(29)!! FC (30)! !
Constant (Inflate) -3.3830 ** -3.4693 ** -3.4575 ** -3.4409 ** -3.4216 ** 
  (1.4682)  (1.6021)  (1.5796)  (1.5713)  (1.5446)  
Lnalpha           
Constant (lnalpha) 0.3244 *** 0.3178 *** 0.3132 *** 0.3151 *** 0.3090 *** 
  (0.0851)  (0.0854)  (0.0853)  (0.0855)  (0.0855)  
Nb observations 1110  1110  1110  1110  1110  
Log Likelihood -1730.3  -1726.91  -1725.43  -1726.7  -1725.07  
Chi Square 105.078  111.849  114.801  112.275  115.532  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  
Zero obs 543  543  543  543  543  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table C.2 : Impact of patent–grant pairs on the Herfindahl index of forward citations 
[HerfIndexFCit5t] – Regression results (robustness test HFC (12–16)) 

Variable HFC (12)  HFC (13)  HFC(14)  HFC (15)  HFC(16)   
Grant3t -0.2627  -0.2723 * -0.2721 * -0.2737 * -0.2734 * 
  (0.1625)  (0.1622)  (0.1622)  (0.1622)  (0.1622)  
Aget -2.1436 *** -1.9837 *** -1.9948 *** -2.0246 *** -2.0640 *** 
  (0.7045)  (0.7063)  (0.7103)  (0.7073)  (0.7128)  
[Aget]2 0.0930 *** 0.0849 *** 0.0853 *** 0.0866 *** 0.0881 *** 
  (0.0300)  (0.0302)  (0.0303)  (0.0302)  (0.0304)  
MaxChairt  0.8024  0.7327  0.7332  0.7237  0.7240  
  (0.9350)  (0.9336)  (0.9340)  (0.9335)  (0.9339)  
ArtCit3t 2.6479 * 2.8469 * 2.8568 * 2.7930 * 2.8172 * 
  (1.5149)  (1.5140)  (1.5161)  (1.5148)  (1.5163)  
[ArtCit3t]2 -0.5853  -0.6394 * -0.6423 * -0.6139 * -0.6198 * 
  (0.3690)  (0.3689)  (0.3696)  (0.3697)  (0.3701)  
BtwCentArt3t 0.5638  0.6028  0.6063  0.7119  0.7364  
  (0.9824)  (0.9804)  (0.9812)  (0.9858)  (0.9876)  
CliqnessArt3t  -0.5803  -0.6176  -0.6275  -0.6299  -0.6622  
  (0.5709)  (0.5700)  (0.5739)  (0.5701)  (0.5746)  
BtwCentPat3t 0.3637  0.4091  0.4129  0.4009  0.4118  
  (0.3791)  (0.3788)  (0.3798)  (0.3789)  (0.3798)  
CliqnessPat3t 0.0002  0.0002  0.0002  0.0002  0.0002  
  (0.0002)  (0.0002)  (0.0002)  (0.0002)  (0.0002)  
dAcAssigneet 1.2685  0.8951  0.8912  0.8872  0.8739  
  (1.8928)  (1.8954)  (1.8965)  (1.8953)  (1.8963)  
dNanoEx -2.7560  -3.1934  -3.2025  -3.2503  -3.2854  
  (2.1569)  (2.1603)  (2.1621)  (2.1609)  (2.1630)  
dPGP   9.9647 ** 7.1507  15.0625 ** 6.9757  
    (4.2138)  (18.7986)  (6.4038)  (18.7967)  
dPGP ×      0.6466    2.0011  
CliqnessArt3t! !! !! (4.2092)!! !! (4.3727)!!
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Table C.2 : Impact of patent–grant pairs on the Herfindahl index of forward citations 
[HerfIndexFCit5t] – Regression results (robustness test HFC (12–16)) (Cont’d and end) 

Variable! HFC(12)!! HFC (13)!! HFC(14)!! HFC (15)!! HFC(16)! !
dPGP ×! !! !! !! -4.9829! ! -5.5914!!
 BtwCentArt3t       (4.7136)  (4.8992)  
Constant 93.2998 *** 92.5549 *** 92.6474 *** 92.7172 *** 93.0234 *** 
  (4.9076)  (4.9075)  (4.9465)  (4.9097)  (4.9568)  
Nb observations 1110  1110  1110  1110  1110  
Log Likelihood -5181.46  -5178.64  -5178.63  -5178.07  -5177.96  
R2 0.0189  0.0238  0.0239  0.0248  0.0250  
R2 Adjusted 0.0081  0.0123  0.0114  0.0124  0.0116  
P value 0.0508  0.0142  0.0218  0.0157  0.0223  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses.  
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APPENDIX D – FIRST STAGE REGRESSION FOR PATENT–PAPER 

PAIRS MODELS 

 

Table D.1 : First stage regression results: [Contract3t]a as an endogenous variable associated with 
the model including the number of claims [NbClaimst] as well as Herfindahl index of forward 
citations [HerfIndexFCit5t] as a dependent variable – Regression results  

Variable Contract (1)  Contract (2)  
[Contract3Ut-2] a 0.2506 *** 0.2690 *** 
  (0.0297)  (0.0295)  
[GrantEI3t-1 ] a 0.0673 ** 0.0731 *** 
  (0.0277)  (0.0277)  
Loop 0.4603 *** 0.4537 *** 
  (0.0584)  (0.0588)  
[Grant3t] a 0.3225 *** 0.2783 *** 
  (0.0367)  (0.0349)  
[Aget] a -0.0548 ** -0.0656 *** 
  (0.0251)  (0.0250)  
[Aget 

a]2  -0.0288  -0.0209  
  (0.0179)  (0.0179)  
[MaxChairt ] 

a 0.0234  0.0333  
  (0.0274)  (0.0245)  
[ArtCit3t] a 0.1003 *** 0.0963 *** 
  (0.0276)  (0.0278)  
[BtwCentArt3t] a 0.0017  -0.0187  
  (0.0308)  (0.0284)  
[BtwCentPat3t] a 0.2042 *** 0.1846 *** 
  (0.0408)  (0.0391)  
[(BtwCentPat3t)a]2 -0.1737 *** -0.1649 *** 
  (0.0290)  (0.0296)  
dAcAssigneet -0.2138 *** -0.2152 *** 
  (0.0699)  (0.0629)  
dNanoEx -0.1336 ** -0.1317 ** 
  (0.0643)  (0.0649)  
Similarityt a -0.0043  -0.0105  
  (0.0247)  (0.0252)  
dAcAssigneet × [(Grant3t) a]  -0.1856 ***   
  (0.0683)    
dAcAssigneet ×  [MaxChairt] a 0.0619    
  (0.0559)    
dAcAssigneet × [(BtwCentArt3t) a ] -0.1265 **   
  (0.0621)    
dAcAssigneet × [(BtwCentPat3t) a ] -0.0832    
  (0.0813)    
Similarityt × [(Grant3t) a]    0.0002  
    (0.0305)  
Similarityt a × [MaxChairt] 

a   -0.0075  
    (0.0262)  
Similarityt a × [(BtwCentArt3t) a ]   -0.0167  
   (0.0259)  
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Table D.1 : First stage regression results: [Contract3t]a as an endogenous variable associated with 
the model including the number of claims [NbClaimst] as well as Herfindahl index of forward 
citations [HerfIndexFCit5t] as a dependent variable – Regression results (Cont’d and end) 

Variable! Contract (1)!! Contract (2)!!
Similarityt a × [(BtwCentPat3t) a]    -0.0284  
    (0.0279)  
Constant 0.1669 *** 0.1554 *** 
  (0.0460)  (0.0468)  
Nb observations 1083  1083  
R2 0.4556  0.4488  
R2 Adjusted 0.4464  0.4395  
P value 0.0000   0.0000   

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard deviation  
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APPENDIX E – ENDOGENEITY TEST FOR PATENT–PAPER PAIRS 

 

Table E.1 : IV Regression Two-stage least squares (2SLS) with number of forward citations 
[(NbFCit5t)], to test endogeneity (in the model including patent–paper pairs similarity 
[Similarityt]) 

Variables FC (31)  FC (32)   
[Contract3t] a -0.0574  -0.0345  
  (0.0727)  (0.0695)  
[Grant3t] a 0.0044  0.0260  
  (0.0468)  (0.0425)  
[Aget] a -0.1778 *** -0.1802 *** 
  (0.0221)  (0.0221)  
[Aget 

a]2  -0.0684 *** -0.0673 *** 
  (0.0161)  (0.0159)  
[MaxChairt ] 

a 0.0257  0.0075  
  (0.0238)  (0.0212)  
[ArtCit3t] a -0.0353  -0.0410  
  (0.0253)  (0.0251)  
[BtwCentArt3t] a 0.0744 *** 0.0497 ** 
  (0.0263)  (0.0243)  
[BtwCentPat3t] a -0.0066  0.0167  
  (0.0389)  (0.0367)  
[(BtwCentPat3t)a]2 -0.0592 ** -0.0567 * 
  (0.0292)  (0.0290)  
dAcAssigneet -0.1177 * -0.1446 *** 
  (0.0620)  (0.0550)  
dNanoEx 0.3213 *** 0.3184 *** 
  (0.0576)  (0.0577)  
Similarityt a -0.0439 ** -0.0463 ** 
  (0.0218)  (0.0221)  
dAcAssigneet × [(Grant3t) a]  0.0952    
  (0.0621)    
dAcAssigneet ×  MaxChairt a -0.0827 *   
  (0.0498)    
dAcAssigneet × [(BtwCentArt3t) a ] -0.1242 **   
  (0.0567)    
dAcAssigneet × [(BtwCentPat3t) a ] 0.1296 *   
  (0.0719)    
Similarityt × [(Grant3t) a]    0.0492 * 
    (0.0268)  
Similarityt a × [MaxChairt] 

a   -0.0067  
    (0.0231)  
Similarityt a × [(BtwCentArt3t) a ]   -0.0045  
    (0.0229)  
Similarityt a × [(BtwCentPat3t) a]    0.0403  
    (0.0245)  
Constant 0.7229 *** 0.7118 *** 
  (0.0442)  (0.0438)  
Nb observations 1083  1083  
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Table E.1 : IV Regression Two-stage least squares (2SLS) with number of forward citations 
[(NbFCit5t)], to test endogeneity (in the model including patent–paper pairs similarity 
[Similarityt]) (Cont’d and end) 

Variables FC (31)  FC (32)   
Chi Square 147.7570  141.5850  
R2 0.11183  0.111459  
R2 Adjusted 0.0985  0.0981  
Sargan 0.1642  0.1085  
Wu-Hausman 0.1901  0.2994  
Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ 
= standard deviation. Moreover, ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses.  In order to test endogeneity in our 
model, we used IV Regression Two-stage least squares (2SLS) with number of forward 
citations [(NbFCit5t)] to validate instrumental variables (through Sargan test) and to 
assess endogeneity (through Wu-Hausman measurement) in the model including patent–
paper pairs similarity [Similarity]. 

 

Table E.2 : IV Regression Two-stage least squares (2SLS) with Herfindahl index of backward 
citations [HerfIndexBWCitt], to test endogeneity (in the model including patent–paper pairs 
similarity [Similarityt]) 

Variables  HBC (28)  HBC (29)  
[Contract3t] a 0.0293  0.0356 * 
  (0.0216)  (0.0207)  
[Grant3t] a -0.0266 * -0.0238 * 
  (0.0142)  (0.0130)  
[Aget] a 0.0183 *** 0.0179 ** 
  (0.0071)  (0.0071)  
[Aget 

a]2  0.0087 * 0.0100 * 
  (0.0052)  (0.0052)  
[MaxChairt ] 

a 0.0057  0.0002  
  (0.0077)  (0.0069)  
[ArtCit3t] a 0.0035  0.0024  
  (0.0081)  (0.0081)  
[BtwCentArt3t] a 0.0169 ** 0.0075  
  (0.0084)  (0.0078)  
[(BtwCentPat3t] a 0.0012  0.0112  
  (0.0123)  (0.0117)  
[(BtwCentPat3t)a]2 -0.0075  -0.0129  
  (0.0092)  (0.0092)  
dAcAssigneet 0.0101  0.0018  
  (0.0196)  (0.0178)  
dNanoEx -0.0037  -0.0039  
  (0.0183)  (0.0184)  
Similarityt a -0.0034  -0.0028  
  (0.0071)  (0.0072)  
dAcAssigneet × [(Grant3t) a]  0.0189    
  (0.0200)    
dAcAssigneet ×  MaxChairt a -0.0280 *   
  (0.0163)    
dAcAssigneet × [(BtwCentArt3t) a ] -0.0541 ***   
  (0.0186)    
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Table E.2 : IV Regression Two-stage least squares (2SLS) with Herfindahl index of backward 
citations [HerfIndexBWCitt], to test endogeneity (in the model including patent–paper pairs 
similarity [Similarityt]) (Cont’d and end) 

Variables ! HBC (28)!! HBC (29)!!
dAcAssigneet × [(BtwCentPat3t) a ] 0.0495 **   
  (0.0226)    
Similarityt × [(Grant3t) a]    -0.0005  
    (0.0086)  
Similarityt a × [MaxChairt] 

a   -0.0006  
    (0.0075)  
Similarityt a × [(BtwCentArt3t) a ]   -0.0099  
    (0.0075)  
Similarityt a × [(BtwCentPat3t) a]    0.0208 *** 
    (0.0078)  
Constant 0.7926 *** 0.7948 *** 
  (0.0142)  (0.0141)  
Nb observations 986  986  
Chi Square 33.8496  28.5664  
R2 0.0323  0.0259  
R2 Adjusted 0.0163  0.0098  
Sargan 0.8981  0.7587  
Wu-Hausman 0.4965  0.3689  

Notes: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and 
σ = standard deviation. Moreover, ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses.  In order to test endogeneity in our 
model, we used IV Regression Two-stage least squares (2SLS) with Herfindahl index of 
backward citations [HerfIndexBWCitt] to validate instrumental variables (through Sargan 
test) and to assess endogeneity (through Wu-Hausman measurement) in the model 
including patent–paper pairs similarity [Similarity]. 
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APPENDIX F – ENDOGENEITY TEST FOR PUBLIC ASSIGNEES 

Table F.1 : IV Regression Two-stage least squares (2SLS) with number of forward citations 
[NbFCit5t], to test endogeneity (in the model related to public assignees) 

Variable FC (33)   

Grant3t -0.0037  
  (0.0063)  
Aget 0.1376 *** 
  (0.0199)  
[Aget]2 -0.0067 *** 
  (0.0008)  
MaxChairt  0.0120  
  (0.0243)  
ArtCit3t -0.0294 * 
  (0.0152)  
BtwCentArt3t 0.0637 ** 
  (0.0275)  
CliqnessArt3t  -0.0860 * 
  (0.0453)  
[CliqnessArt3t]2 0.0094 ** 
  (0.0040)  
BtwCentPat3t -0.0289 *** 
  (0.0108)  
CliqnessPat3t 0.0000  
  (0.0000)  
Loop -0.0460  
  (0.0529)  
dNanoEx 0.3152 *** 
  (0.0549)  
dGovAssigneet 1.9169 * 
  (1.0980)  
dAcAssigneet  0.0486  
  (0.2609)  
dGovAssigneet × Aget -0.3255 * 
  (0.1812)  
dGovAssigneet × [Aget]2 0.0123 * 
  (0.0073)  
dGovAssigneet × BtwCentArt3t -0.1672  
  (0.1248)  
dGovAssigneet × BtwCentPat3t -0.0381  
  (0.1222)  
dAcAssigneet × Aget -0.0226  
  (0.0471)  
dAcAssigneet × [Aget]2 0.0010  
  (0.0020)  
dAcAssigneet × BtwCentArt3t -0.0915  
  (0.0591)  
dAcAssigneet × BtwCentPat3t 0.0364  
  (0.0343)  
Constant 0.1704  
  (0.1448)  
Nb Observations 1110  
Chi Square 154.0940  
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Table F.1 : IV Regression Two-stage least squares (2SLS) with number of forward citations 
[NbFCit5t], to test endogeneity (in the model related to public assignees) (Cont’d and end) 

Variable FC (33)   

R2 0.1211  
R2 Adjusted 0.1032  
P value 0.0000  
Sargan 0.3796  
Wu-Hausman 0.3558  

Notes: ***, **, * show significance at the 1%, 5%, and 
10% levels. Standard errors are presented in parentheses.   
Moreover, in order to test endogeneity in our model, we 
used IV Regression Two-stage least squares (2SLS) with 
number of forward citations [(NbFCit5t)] to validate 
instrumental variables (through Sargan test) and to assess 
endogeneity (through Wu-Hausman measurement) in the 
model associated with academic assignees [dAcAssigneet] 
and government assignees [dGovAssigneet]. 
 

Table F.2 : IV Regression Two-stage least squares (2SLS) with number of claims [NbClaimst], to 
test endogeneity (in the model related to public assignees) 

Variable CL (12)   
Grant3t 0.0024  
  (0.0083)  
Aget 0.0127 * 
  (0.0067)  
MaxChairt  -0.0043  
  (0.0299)  
ArtCit3t -0.0367 ** 
  (0.0185)  
BtwCentArt3t -0.0338  
  (0.0341)  
CliqnessArt3t  -0.0352 ** 
  (0.0178)  
BtwCentPat3t -0.0191  
  (0.0151)  
CliqnessPat3t 0.0001 *** 
  (0.0000)  
(CliqnessPat3t)2 0.0000 *** 
  (0.0000)  
Loop -0.0571  
  (0.0646)  
dNanoEx 0.4003 *** 
  (0.0667)  
dGovAssigneet -0.1608  
  (0.5823)  
dAcAssigneet -0.0898  
  (0.2008)  
dGovAssigneet × Aget 0.0138  
  (0.0417)  
dGovAssigneet × BtwCentArt3t -0.1079  
  (0.1526)  



148 

Table F.2 : IV Regression Two-stage least squares (2SLS) with number of claims [NbClaimst], to 
test endogeneity (in the model related to public assignees) (Cont’d and end) 

Variable CL (12)   
dGovAssigneet × BtwCentPat3t 0.1446  
  (0.1471)  
dAcAssigneet × Aget -0.0117  
  (0.0158)  
dAcAssigneet × BtwCentArt3t 0.1283 * 
  (0.0729)  
dAcAssigneet × BtwCentPat3t 0.0324  
  (0.0422)  
Constant 2.5107 *** 
  (0.1358)  
Nb Observations 1110  
Chi Square 101.0510  
R2 0.0833  
R2 Adjusted 0.0673  
P value 0.0000  
Sargan 0.3731  
Wu-Hausman 0.7867  

Notes: ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses.  
Furthermore, in order to test endogeneity in our model, we 
used IV Regression Two-stage least squares (2SLS) with 
number of claims [(NbClaimst)]  to validate instrumental 
variables (through Sargan test) and to assess endogeneity 
(through Wu-Hausman measurement) in the model associated 
with academic assignees [dAcAssigneet] and government 
assignees [dGovAssigneet]. 
 

Table F.3 : IV Regression Two-stage least squares (2SLS) Herfindahl index of backward 
citations [HerfIndexBWCitt], to test endogeneity (in the model related to public assignees) 

Variable HBC (30)  HBC (31)  HBC(32)   
Grant3t 0.1707  -3.6809 *** 0.1841  
  (0.2742)  (1.0422)  (0.3100)  
Aget -2.8709 *** -1.7022  -2.5304 *** 
  (0.8501)  (1.1074)  (0.9664)  
[Aget]2 0.1630 *** 0.0969 * 0.1507 *** 
  (0.0362)  (0.0570)  (0.0490)  
MaxChairt  -1.7194  -1.6943  -1.7051  
  (1.0645)  (1.1824)  (1.0814)  
ArtCit3t 1.0927 * 1.6471  0.9131  
  (0.6492)  (1.1965)  (1.0067)  
BtwCentArt3t -18.3000 *** -11.6000 ** -18.7000 *** 
  (4.3606)  (4.9068)  (4.8490)  
[BtwCentArt3t]2 3.6349 *** 2.2096 ** 3.6657 *** 
  (0.8069)  (0.8874)  (0.8359)  
CliqnessArt3t  0.6236  1.3282  0.4150  
  (0.6298)  (1.2792)  (1.0572)  
BtwCentPat3t 0.5453  0.1977  0.5597  
  (0.4641)  (0.5578)  (0.5015)  
CliqnessPat3t 0.0008 *** 0.0008 * 0.0009 ** 
  (0.0003)  (0.0004)  (0.0004)  
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Table F.3 : IV Regression Two-stage least squares (2SLS) Herfindahl index of backward 
citations [HerfIndexBWCitt], to test endogeneity (in the model related to public assignees) 
(Cont’d and end) 

Variable HBC (30)  HBC (31)  HBC(32)   
Loop 0.9830  2.8861  1.2004  
  (2.2582)  (2.5732)  (2.3074)  
dNanoEx 1.9904  -5.4342  4.3772  
  (2.3885)  (10.9062)  (9.0446)  
dGovAssigneet  33.4574  78.3231  25.8963  
  (47.0963)  (79.8419)  (60.4809)  
dAcAssigneet  -28.8000 *** -16.0000 * -17.0000 ** 
  (11.1477)  (9.1867)  (8.1395)  
dGovAssigneet × Aget -5.0357  -13.8000  -3.8456  
  (7.8733)  (14.5135)  (10.2152)  
dGovAssigneet × [Aget]2 0.1293  0.4859  0.0859  
  (0.3176)  (0.5729)  (0.4065)  
dGovAssigneet × BtwCentArt3t -1.7334  0.8382  0.0008  
  (34.1091)  (42.2198)  (35.2573)  
dGovAssigneet ×   -1.4610  -0.7137  -1.9859  
[BtwCentArt3t]2 (7.3649)  (9.3236)  (7.7374)  
dGovAssigneet × BtwCentPat3t 4.3165  -1.7083  5.5917  
  (5.2077)  (10.8047)  (6.9898)  
dAcAssigneet × Aget 4.0080 ** 1.2922 * 1.1034 * 
  (2.0146)  (0.6655)  (0.6148)  
dAcAssigneet × BtwCentArt3t 8.7623  -9.6758 * 11.3099  
  (10.3163)  (5.5733)  (13.7255)  
dAcAssigneet ×   -3.1595    -3.4298  
[BtwCentArt3t]2 (1.9222)    (2.1950)  
NbClaimst 2.7231 *** 23.1035  -3.1045  
  (1.0429)  (27.8550)  (22.6838)  
dGovAssigneet  × [Grant3t]2   0.2541    
    (0.5255)    
dGovAssigneet × Grant3t   -2.7738    
    (5.9024)    
[Grant3t]2   0.2818 ***   
    (0.0784)    
Constant 62.8097 *** 8.5052  76.3706  
  (6.4620)  (75.9231)  (62.3383)  
Nb observations 1110  1110  1110  
Chi Square 145.2530  114.3930  132.0290  
R2 0.1136    0.0866  
R2 Adjusted 0.0932    0.0664  
P value 0.0000  0.0000  0.0000  
Sargan 0.8727  0.9505    
Wu-Hausman 0.0968  0.4073  0.2944  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are 
presented in parentheses. In order to test endogeneity in our model, we used IV Regression 
Two-stage least squares (2SLS) for Herfindahl index of backward citations 
[HerfIndexBWCitt] to validate instrumental variables (through Sargan test) and to assess 
endogeneity (through Wu-Hausman measurement) in the model associated with academic 
assignees [dAcAssigneet] and government assignees [dGovAssigneet]. 
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Table F.4 : IV Regression Two-stage least squares (2SLS) with Herfindahl index of forward 
citations [HerfIndexFCit5t], to test endogeneity (in the model related to public assignees) 

Variable HFC 17)   
 

Grant3t -0.2326  
  (0.2484)  
Aget -1.9446 ** 
  (0.7759)  
[Aget]2 0.0787 ** 
  (0.0329)  
MaxChairt  0.8567  
  (0.9507)  
ArtCit3t 2.6851 * 
  (1.5249)  
[ArtCit3t]2 -0.5766  
  (0.3694)  
BtwCentArt3t 0.3293  
  (1.0692)  
CliqnessArt3t  -0.6935  
  (0.5693)  
BtwCentPat3t 0.2513  
  (0.4223)  
CliqnessPat3t 0.0002  
  (0.0002)  
Loop -2.5532  
  (2.0615)  
dNanoEx -2.7444  
  (2.1440)  
dGovAssigneet 20.7692  
  (42.8907)  
dAcAssigneet  -4.7334  
  (10.1798)  
dGovAssigneet × Aget -8.6043  
  (7.0807)  
dGovAssigneet × [Aget]2 0.4065  
  (0.2839)  
dGovAssigneet × BtwCentArt3t 7.4070  
  (4.8816)  
dGovAssigneet × BtwCentPat3t 7.6975  
  (4.7473)  
dAcAssigneet × Aget 0.3158  
  (1.8395)  
dAcAssigneet × [Aget]2 0.0130  
  (0.0799)  
dAcAssigneet × BtwCentPat3t -0.4546  
  (1.3422)  
Constant 94.8889 *** 
  (5.2831)  
Nb Observations 1110  
Chi Square 33.7925  
R2 0.0306  
R2 Adjusted 0.0110  
P value 0.0516  
Sargan 0.2939  
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Table F.4 : IV Regression Two-stage least squares (2SLS) with Herfindahl index of forward 
citations [HerfIndexFCit5t], to test endogeneity (in the model related to public assignees) (Cont’d 
and end) 

Variable HFC 17)   
 

Wu-Hausman 0.9445  
Notes: ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses. In order 
to test endogeneity in our model, we used IV Regression 
Two-stage least squares (2SLS) with Herfindahl index of 
forward citations [HerfIndexFCit5t] to validate instrumental 
variables (through Sargan test) and to assess endogeneity 
(through Wu-Hausman measurement) in the model associated 
with academic assignees [dAcAssigneet] and government 
assignees [dGovAssigneet]. 
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APPENDIX G –ENDOGENEITY TEST FOR PATENT–GRANT PAIRS 
 
Table G.1 : IV Regression Two-stage least squares (2SLS) used with number of forward citations 
[NbFCit5t], to test endogeneity (in the model linking to patent–grant pairs [dPGPt]) 

Variable FC (34)   
Grant3t -0.0008  
  (0.0061)  
Aget 0.1190 *** 
  (0.0183)  
[Aget]2 -0.0059 *** 
  (0.0008)  
MaxChairt  0.0165  
  (0.0243)  
ArtCit3t -0.0321 ** 
  (0.0151)  
BtwCentArt3t 0.0498 * 
  (0.0257)  
CliqnessArt3t × 10 3 -0.0812 * 
  (0.0448)  
[CliqnessArt3t × 10 3]2 0.0085 ** 
  (0.0039)  
BtwCentPat3t -0.0221 ** 
  (0.0103)  
CliqnessPat3t 0.0000  
  (0.0000)  
dAcAssigneet -0.1273 *** 
  (0.0485)  
dNanoEx 0.3243 *** 
  (0.0549)  
dPGPt -0.5512  
  (0.4930)  
dPGPt × CliqnessArt3t  0.0946  
  (0.1310)  
dPGPt × [CliqnessArt3t ]2 -0.0004  
  (0.0007)  
dPGPt × BtwCentArt3t -0.0376  
  (0.1267)  
Constant 0.2685 ** 
  (0.1365)  
Nb observations 1110  
Chi Square 149.8400  
R2 0.1189  
R2 Adjusted   0.1060  
Sargan 0.3622  
Wu-Hausman 0.6416  
Notes: ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses. 
Furthermore, in order to test endogeneity in our model, we used 
IV Regression Two-stage least squares (2SLS) with number of 
forward citations [(NbFCit5t)] to validate instrumental variables 
(through Sargan test) and to assess endogeneity (through Wu-
Hausman measurement) in our analysis model that is associated 
with patent–grant pairs [dPGP]. 
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Table G.2 : IV Regression Two-stage least squares (2SLS) used with number of claims 
[NbClaimst], to test endogeneity (in the model linking to patent–grant pairs [dPGPt]) 

Variable CL (13)   
Grant3t 0.0013  
  (0.0077)  
Aget 0.0131 ** 
  (0.0060)  
MaxChairt  -0.0055  
  (0.0299)  
ArtCit3t -0.0397 ** 
  (0.0185)  
BtwCentArt3t -0.0204  
  (0.0318)  
CliqnessArt3t  -0.0354 ** 
  (0.0178)  
BtwCentPat3t -0.0161  
  (0.0146)  
CliqnessPat3t 0.0001 *** 
  (0.0000)  
[CliqnessPat3t]2 0.0000 *** 
  (0.0000)  
dAcAssigneet -0.0229  
  (0.0591)  
dNanoEx 0.4020 *** 
  (0.0671)  
dPGPt -0.2377  
  (0.5821)  
dPGPt × CliqnessArt3t  0.0357  
  (0.1355)  
dPGPt × BtwCentArt3t 0.1115  
  (0.1521)  
Constant 2.4737 *** 
  (0.1305)  
Nb observations 1110  
Chi Square 92.0642  
R2 0.0765  
R2 Adjusted 0.0647  
Sargan 0.3576  
Wu-Hausman 0.8078  
Notes: ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses.  
Furthermore, in order to test endogeneity in our model, we 
used IV Regression Two-stage least squares (2SLS) with 
number of claims [(NbClaimst)] to validate instrumental 
variables (through Sargan test) and to assess endogeneity 
(through Wu-Hausman measurement) in our analysis that is 
linked to patent–grant pairs [dPGP]. 
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Table G.3 : IV Regression Two-stage least squares (2SLS) with Herfindahl index of backward 
citations [HerfIndexBWCitt] (including patent–grant pairs [dPGPt] variable) 

Variable HBC (33)   HBC (34)   HBC (35)   
Grant3t 0.3428  -4.1803 *** 0.3550  
  (0.2630)  (1.2270)  (0.3040)  
Aget -2.3779 *** -1.4098  -2.4245 ** 
  (0.7947)  (1.2771)  (0.9829)  
[Aget]2 0.1473 *** 0.0839  0.1505 *** 
  (0.0338)  (0.0690)  (0.0517)  
MaxChairt  -1.6251  -1.3833  -1.6257  
  (1.0695)  (1.3425)  (1.0712)  
ArtCit3t 1.1204 * 1.9400  1.0574  
  (0.6566)  (1.3255)  (1.0205)  
BtwCentArt3t -18.3000 *** -12.3000 ** -18.5000 *** 
  (4.0085)  (5.9993)  (4.3480)  
[BtwCentArt3t]2 3.4082 *** 2.0658 * 3.4208 *** 
  (0.7321)  (1.0667)  (0.7497)  
CliqnessArt3t  0.3951  1.3940  0.3235  
  (0.6414)  (1.4439)  (1.0949)  
BtwCentPat3t 1.1129 ** 0.5973  1.1389 ** 
  (0.4512)  (0.6721)  (0.5553)  
CliqnessPat3t 0.0008 *** 0.0007  0.0008 ** 
  (0.0003)  (0.0005)  (0.0004)  
dAcAssigneet -3.4481  -2.0706  -3.4910  
  (2.1050)  (2.8175)  (2.1742)  
dNanoEx 2.0596  -8.8536  2.7983  
  (2.4291)  (12.7737)  (9.4649)  
dPGPt 8.0108  16.8291  7.1501  
  (20.8142)  (30.1423)  (23.4128)  
dPGPt × CliqnessArt3t  -1.9978  -3.8345  -1.8476  
  (4.8351)  (6.6901)  (5.1875)  
dPGPt × BtwCentArt3t 5.6570  1.6362  6.0017  
  (8.9663)  (12.6479)  (9.9429)  
dPGPt × [BtwCentArt3t]2 -0.0784  -0.0193  -0.0810  
  (0.1496)  (0.1948)  (0.1531)  
NbClaimst 2.7497 *** 31.9741  0.8443  
  (1.0565)  (32.2286)  (23.6151)  
[Grant3t]2   0.3333 ***   
    (0.0930)    
Constant 58.4500 *** -15.9000  63.5665  
  (6.1912)  (86.4824)  (63.6504)  
Nb observations 1110  1110  1110  
Chi Square 102.4500  69.9641  95.2508  
R2 0.0802    0.0772  
R2 Adjusted 0.0658    0.0629  
Sargan 0.9355  0.8741    
Wu-Hausman 0.0583  0.2441  0.1661  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented 
in parentheses.  Moreover, in order to test endogeneity in our model, we used IV Regression Two-
stage least squares (2SLS) for Herfindahl index of backward citations [HerfIndexBWCitt] to 
validate instrumental variables (through Sargan test) and to assess endogeneity (through Wu-
Hausman measurement) in our analysis including patent–grant pairs [dPGP]. 
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Table G.4 : IV Regression Two-stage least squares (2SLS) used with Herfindahl index of forward 
citations [HerfIndexFCit5t], to test endogeneity (including patent–grant pairs [dPGPt] variable) 

Variable HFC (18)   
Grant3t -0.3114  
  (0.2324)  
Aget -2.0438 *** 
  (0.7132)  
[Aget]2 0.0873 *** 
  (0.0303)  
MaxChairt  0.7724  
  (0.9515)  
ArtCit3t 2.8438 * 
  (1.5099)  
[ArtCit3t]2 -0.6242 * 
  (0.3679)  
BtwCentArt3t 0.7837  
  (1.0025)  
CliqnessArt3t  -0.6586  
  (0.5707)  
BtwCentPat3t 0.3802  
  (0.4019)  
CliqnessPat3t 0.0002  
  (0.0002)  
dAcAssigneet 0.8912  
  (1.8841)  
dNanoEx -3.3055  
  (2.1493)  
dPGPt 7.0275  
  (18.6626)  
dPGPt × CliqnessArt3t  1.9966  
  (4.3413)  
dPGPt × BtwCentArt3t -5.5991  
  (4.8640)  
Constant 93.1212 *** 
  (4.9400)  
Nb observations 1110  
Chi Square 27.3899  
R2 0.0250  
R2 Adjusted 0.0116  
Sargan 0.1726  
Wu-Hausman 0.8220  

Notes: ***, **, * show significance at the 1%, 5%, and 10% 
levels. Standard errors are presented in parentheses.  
Furthermore, in order to test endogeneity in our model, we 
used IV Regression Two-stage least squares (2SLS) with 
Herfindahl index of forward citations [HerfIndexFCit5t] to 
validate instrumental variables (through Sargan test) and to 
assess endogeneity (through Wu-Hausman measurement) in 
our analysis that is linked to patent–grant pairs [dPGP]. 

  



156 

APPENDIX H – EXTRA FINAL MODELS 

 

Table H.1 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Tobit results FC (35–38) 

Variables FC (35) FC (36) FC (37) FC (38) 
Grant3t 0.0053  0.0043  0.0021  0.0042  
  (0.0081)  (0.0082)  (0.0084)  (0.0080)  
Aget 0.2787 *** 0.2845 *** 0.2780 *** 0.2887 *** 
  (0.0389)  (0.0392)  (0.0389)  (0.0425)  
[Aget]2 -0.0137 *** -0.0139 *** -0.0137 *** -0.0141 *** 
  (0.0016)  (0.0017)  (0.0016)  (0.0018)  
MaxChairt  0.0209  0.0187  0.0202  0.0212  
  (0.0447)  (0.0447)  (0.0448)  (0.0447)  
ArtCit3t -0.0661 ** -0.0639 ** -0.0653 ** -0.0650 ** 
  (0.0287)  (0.0287)  (0.0287)  (0.0288)  
BtwCentArt3t 0.0747  0.0795 * 0.0790 * 0.0788 * 
  (0.0474)  (0.0476)  (0.0474)  (0.0476)  
CliqnessArt3t  -0.1451 * -0.1527 * -0.1493 * -0.1520 * 
  (0.0830)  (0.0838)  (0.0829)  (0.0830)  
[CliqnessArt3t]2 0.0156 ** 0.0166 ** 0.0161 ** 0.0163 ** 
  (0.0073)  (0.0074)  (0.0073)  (0.0073)  
BtwCentPat3t -0.0308 * -0.0330 * -0.0346 * -0.0329 * 
  (0.0186)  (0.0186)  (0.0187)  (0.0185)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0618  -0.0589  -0.0586  -0.0573  
  (0.0977)  (0.0976)  (0.0976)  (0.0982)  
dNanoEx 0.5378 *** 0.5510 *** 0.5407 *** 0.5396 *** 
  (0.1018)  (0.1020)  (0.1018)  (0.1019)  
dGovAssigneet -0.3129  3.1564  -0.4532 ** -0.4521 ** 
  (0.2511)  (2.1022)  (0.2247)  (0.2248)  
dAcAssigneet  -0.2142 * -0.2107 * -0.4068  0.0800  
  (0.1110)  (0.1108)  (0.2544)  (0.5586)  
dGovAssigneet × Grant3t   0.0169      
    (0.0442)      
dGovAssigneet × Aget   -0.5216      
    (0.3662)      
dGovAssigneet × [Aget]2   0.0191      
    (0.0153)      
dGovAssigneet × BtwCentArt3t   -0.2936      
    (0.2464)      
dGovAssigneet × BtwCentPat3t -0.3543  -0.3667      
  (0.3139)  (0.3373)      
dAcAssigneet  × Grant3t     0.0200    
      (0.0238)    
dAcAssigneet × Aget       -0.0505  
        (0.0998)  
dAcAssigneet × [Aget]2       0.0019  
        (0.0043)  
Constant -0.7516 *** -0.7842 *** -0.7190 *** -0.7997 *** 
  (0.2751)  (0.2764)  (0.2760)  (0.2954)  
Constant (Sigma) 1.1260 *** 0.1231 *** 1.1257 *** 1.1263 *** 
 (0.0377)  (0.0376)  (0.0377)  (0.0377)  
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Table H.1 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Tobit results FC (35–38) (Cont’d and end) 

Variables FC (35) FC (36) FC (37) FC (38) 
Nb observations 1110  1110  1110  1110  
Chi Square 144.60  148.63  143.78  143.36  
Pseudo R2 0.0548  0.0563  0.0545  0.0543  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.2 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Tobit results FC (39–42)  

Variables FC (39) FC (40) FC (41) FC (42) 
Grant3t 0.0034  0.0037  -0.0003  -0.0008  
  (0.0080)  (0.0081)  (0.0086)  (0.0088)  
Aget 0.2824 *** 0.2804 *** 0.2910 *** 0.2971 *** 
  (0.0390)  (0.0389)  (0.0425)  (0.0429)  
[Aget]2 -0.0138 *** -0.0138 *** -0.0142 *** -0.0143 *** 
  (0.0016)  (0.0016)  (0.0018)  (0.0018)  
MaxChairt  0.0205  0.0210  0.0178  0.0148  
  (0.0447)  (0.0447)  (0.0447)  (0.0446)  
ArtCit3t -0.0631 ** -0.0665 ** -0.0631 ** -0.0608 ** 
  (0.0288)  (0.0288)  (0.0288)  (0.0288)  
BtwCentArt3t 0.0940 * 0.0792 * 0.0999 ** 0.1043 ** 
  (0.0494)  (0.0475)  (0.0496)  (0.0499)  
CliqnessArt3t  -0.1531 * -0.1495 * -0.1501 * -0.1539 * 
  (0.0828)  (0.0829)  (0.0829)  (0.0838)  
[CliqnessArt3t]2 0.0165 ** 0.0162 ** 0.0165 ** 0.0171 ** 
  (0.0073)  (0.0073)  (0.0073)  (0.0074)  
BtwCentPat3t -0.0343 * -0.0348 * -0.0402 ** -0.0413 ** 
  (0.0186)  (0.0191)  (0.0193)  (0.0195)  
CliqnessPat3t 0.0000  0.0000  0.0000  0.0000  
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0629  -0.0532  -0.0551  -0.0553  
  (0.0976)  (0.0981)  (0.0985)  (0.0984)  
dNanoEx 0.5361 *** 0.5371 *** 0.5370 *** 0.5498 *** 
  (0.1018)  (0.1019)  (0.1019)  (0.1020)  
dGovAssigneet -0.4542 ** -0.4543 ** -0.4653 ** 3.2200  
  (0.2245)  (0.2249)  (0.2247)  (2.1008)  
dAcAssigneet -0.0836  -0.2428 ** -0.0218  0.0339  
  (0.1574)  (0.1234)  (0.5645)  (0.5643)  
dGovAssigneet × Grant3t       0.0226  
        (0.0442)  
dGovAssigneet × Aget       -0.5345  
        (0.3659)  
dGovAssigneet × [Aget]2       0.0195  
        (0.0153)  
dGovAssigneet ×        -0.3247  
BtwCentArt3t       (0.2465)  
dGovAssigneet ×        -0.3561  
BtwCentPat3t       (0.3364)  
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Table H.2 : Impact of academic assignees and government assignees on the number of forward 
citations [NbFCit5t] – Tobit results FC (39–42) (Cont’d and end) 

Variables FC (39) FC (40) FC (41) FC (42) 
dAcAssigneet  × Grant3t     0.0284  0.0291  
      (0.0247)  (0.0248)  
dAcAssigneet × Aget     -0.0654  -0.0717  
      (0.1034)  (0.1033)  
dAcAssigneet × [Aget]2     0.0027  0.0028  
      (0.0044)  (0.0044)  
dAcAssigneet × BtwCentArt3t -0.1313    -0.1422  -0.1508  
  (0.1117)    (0.1157)  (0.1157)  
dAcAssigneet × BtwCentPat3t   0.0335  0.0387  0.0388  
    (0.0663)  (0.0678)  (0.0677)  
Constant -0.7815 *** -0.7426 *** -0.8148 *** -0.8664 *** 
  (0.2773)  (0.2751)  (0.2952)  (0.2971)  
Constant (Sigma) 1.1252 *** 1.1260 *** 1.1238 *** 1.1204 *** 
 (0.0376)  (0.0377)  (0.0376)  (0.0375)  
Nb observations 1110  1110  1110  1110  
Chi Square 144.46  143.33  146.22  152.11  
Pseudo R2 0.0548  0.0543  0.0554  0.0577  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.3 : Impact of academic assignees and government assignees on the number of claims 
[NbClaimst] – Regression results CL (14–18) 

Variables CL (14)  CL(15)  CL(16)  CL(17)  CL(18)   
Grant3t 0.0009  0.0012  0.0012  0.0009  0.0008  
  (0.0052)  (0.0052)  (0.0053)  (0.0052)  (0.0052)  
Aget 0.0140 ** 0.0132 ** 0.0132 ** 0.0123 ** 0.0131 ** 
  (0.0060)  (0.0060)  (0.0060)  (0.0061)  (0.0060)  
MaxChairt  -0.0037  -0.0035  -0.0035  -0.0026  -0.0046  
  (0.0292)  (0.0292)  (0.0292)  (0.0292)  (0.0292)  
ArtCit3t -0.0368 ** -0.0355 * -0.0355 * -0.0356 * -0.0347 * 
  (0.0185)  (0.0186)  (0.0186)  (0.0186)  (0.0186)  
BtwCentArt3t

  -0.0199  -0.0206  -0.0206  -0.0188  -0.0167  
  (0.0309)  (0.0309)  (0.0310)  (0.0310)  (0.0311)  
CliqnessArt3t  -0.0355 ** -0.0361 ** -0.0362 ** -0.0361 ** -0.0349 ** 
  (0.0177)  (0.0177)  (0.0177)  (0.0177)  (0.0178)  
BtwCentPat3t -0.0195  -0.0206  -0.0206  -0.0205  -0.0212  
  (0.0133)  (0.0135)  (0.0135)  (0.0135)  (0.0135)  
CliqnessPat3t 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
[CliqnessPat3t]2 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0795  -0.0674  -0.0675  -0.0649  -0.0655  
  (0.0617)  (0.0634)  (0.0635)  (0.0635)  (0.0634)  
dNanoEx 0.3994 *** 0.3980 *** 0.3980 *** 0.3945 *** 0.3994 *** 
  (0.0670)  (0.0670)  (0.0671)  (0.0671)  (0.0670)  
dGovAssigneet    -0.0134  -0.0114  -0.4977  0.1591  
    (0.1416)  (0.2474)  (0.5049)  (0.2117)  
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Table H.3 : Impact of academic assignees and government assignees on the number of claims 
[NbClaimst] – Regression results CL (14–18) (Cont’d and end) 

Variables CL (14)  CL(15)  CL(16)  CL(17)  CL(18)   
dAcAssigneet    -0.0665  -0.0665  -0.0685  -0.0670  
    (0.0711)  (0.0711)  (0.0711)  (0.0711)  
dGovAssigneet  × Grant3t     -0.0003      
      (0.0259)      
dGovAssigneet × Aget       0.0377    
        (0.0378)    
dGovAssigneet ×          -0.1631  
BtwCentArt3t         (0.1488)  
Constant 2.4729 *** 2.4934 *** 2.4933 *** 2.5035 *** 2.4879 *** 
  (0.1263)  (0.1283)  (0.1285)  (0.1287)  (0.1284)  
Nb observations 1110  1110  1110  1110  1110  
Log Likelihood -1335.09  -1334.64  -1334.64  -1334.14  -1334.03  
R2 0.0772  0.0779  0.0779  0.0788  0.0789  
R2 Adjusted 0.0679  0.0670  0.0661  0.0670  0.0672  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.4 : Impact of academic assignees and government assignees on the number of claims 
[NbClaimst] – Regression results CL (19–22) 

Variables CL (19)  CL(20)  CL (21)  CL (22)  
Grant3t 0.0005  0.0009  0.0031  0.0011  
  (0.0052)  (0.0054)  (0.0055)  (0.0052)  
Aget 0.0128 ** 0.0124 ** 0.0131 ** 0.0141 ** 
  (0.0060)  (0.0061)  (0.0060)  (0.0066)  
MaxChairt  -0.0032  -0.0038  -0.0023  -0.0036  
  (0.0292)  (0.0293)  (0.0292)  (0.0292)  
ArtCit3t -0.0349 * -0.0346 * -0.0357 * -0.0353 * 
  (0.0186)  (0.0186)  (0.0186)  (0.0186)  
BtwCentArt3t

  -0.0191  -0.0162  -0.0218  -0.0197  
  (0.0309)  (0.0312)  (0.0309)  (0.0310)  
CliqnessArt3t  -0.0358 ** -0.0353 ** -0.0366 ** -0.0360 ** 
  (0.0177)  (0.0178)  (0.0177)  (0.0177)  
BtwCentPat3t -0.0213  -0.0208  -0.0191  -0.0208  
  (0.0135)  (0.0135)  (0.0135)  (0.0135)  
CliqnessPat3t 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
[CliqnessPat3t]2 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 
  (0.0000)  (0.0000)  (0.0000)  (0.0000)  
Loop -0.0644  -0.0639  -0.0664  -0.0688  
  (0.0634)  (0.0636)  (0.0634)  (0.0636)  
dNanoEx 0.3992 *** 0.3980 *** 0.3964 *** 0.3975 *** 
  (0.0670)  (0.0672)  (0.0670)  (0.0671)  
dGovAssigneet  -0.1177  -0.0712  -0.0117  -0.0135  
  (0.1615)  (0.5980)  (0.1416)  (0.1417)  
dAcAssigneet  -0.0687  -0.0700  0.0830  -0.0057  
  (0.0711)  (0.0712)  (0.1539)  (0.1974)  
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Table H.4 : Impact of academic assignees and government assignees on the number of claims 
[NbClaimst] – Regression results CL (19–22) (Cont’d and end) 

Variables CL (19)  CL(20)  CL (21)  CL (22)  
dGovAssigneet  × Grant3t   -0.0175      
    (0.0282)      
dGovAssigneet × Aget   0.0178      
    (0.0424)      
dGovAssigneet × BtwCentArt3t   -0.1267      
    (0.1533)      
dGovAssignee × BtwCentPat3t 0.1817  0.1732      
  (0.1352)  (0.1549)      
dAcAssigneet  × Grant3t     -0.0160    
      (0.0146)    
dAcAssigneet × Aget       -0.0051  
        (0.0153)  
Constant 2.5023 *** 2.4980 *** 2.4821 *** 2.4806 *** 
  (0.1284)  (0.1291)  (0.1287)  (0.1341)  
Nb observations 1110  1110  1110  1110  
Log Likelihood  -1333.73  -1333.05  -1334.03  -1334.59  
R2 0.0794  0.0806  0.0789  0.0780  
R2 Adjusted 0.0677  0.0662  0.0672  0.0662  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.5 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt]– Tobit results HBC (36–40) 

Variables HBC (36) HBC (37) HBC (38) HBC (39) HBC (40) 
Grant3t -4.0048 *** -3.9735 *** -3.9252 *** -3.8236 *** -3.7596 *** 
  (0.8859)  (0.8811)  (0.8806 ) (0.8722)  (0.8713 ) 
[Grant3t]2 0.3270 *** 0.3264 *** 0.3214 *** 0.3154 *** 0.3089 *** 
  (0.0714)  (0.0710)  (0.0710)  (0.0702)  (0.0702)  
NbClaimst 3.3849 *** 3.3119 *** 3.0255 ** 0.5512  0.1171  
  (1.1891)  (1.1832)  (1.1947)  (1.2972)  (1.3126)  
Aget -2.5498 *** -2.3791 *** -2.4100 *** -2.5039 *** -2.5454 *** 
  (0.8749)  (0.8718)  (0.8711)  (0.8629)  (0.8617)  
[Aget]2 0.1578 *** 0.1479 *** 0.1487 *** 0.1546 *** 0.1558 *** 
  (0.0373)  (0.0372)  (0.0372)  (0.0369)  (0.0368)  
MaxChairt  -1.5007  -1.6468  -1.6381  -1.5881  -1.5756  
  (1.1716)  (1.1663)  (1.1650)  (1.1538)  (1.1518)  
ArtCit3t 1.1048  1.2052  1.2308 * 1.0588  1.0856  
  (0.7383)  (0.7356)  (0.7350)  (0.7283)  (0.7271)  
BtwCentArt3t

  -17.6000 *** -16.1000 *** -16.1000 *** -16.8000 *** -16.8000 *** 
  (4.5861)  (4.5807)  (4.5757)  (4.5358)  (4.5280)  
[BtwCentArt3t]2 2.8890 *** 2.5973 *** 2.6075 *** 2.7019 *** 2.7176 *** 
  (0.8652)  (0.8647)  (0.8637)  (0.8562)  (0.8547)  
CliqnessArt3t  0.5308  0.4734  0.5659  0.4999  0.6142  
  (0.7151)  (0.7125)  (0.7142)  (0.7051)  (0.7064)  
BtwCentPat3t 1.2289 *** 0.9080 * 0.8764 * 0.8791 * 0.8393 * 
  (0.4726)  (0.4789)  (0.4788)  (0.4737)  (0.4733)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.9606  2.2170  2.2637  3.3603  3.4518  
  (2.4573)  (2.5023)  (2.4996)  (2.4868)  (2.4829)  
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Table H.5 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt]– Tobit results HBC (36–40) (Cont’d and end) 

Variables HBC (36) HBC (37) HBC (38) HBC (39) HBC (40) 
dNanoEx 3.1025  3.0217  3.1236  2.9644  3.0877  
  (2.7131)  (2.6985)  (2.6966)  (2.6693)  (2.6658)  
dGovAssigneet   -16.1000 *** -48.6000 ** -15.9000 *** -55.6000 *** 
    (5.6640)  (20.7079)  (5.6001)  (20.5159)  
dAcAssigneet    -6.3483 ** -6.4085 ** -44.0000 *** -45.2000 *** 
    (2.8181)  (2.8150)  (8.1643)  (8.1718)  
dGovAssigneet ×     12.3585    15.1263 ** 
NbClaimst     (7.5681)    (7.5011)  
dAcAssigneet ×        14.6161 *** 15.0532 *** 
NbClaimst       (2.9752)  (2.9780)  
Constant 57.2654 *** 59.2069 *** 59.7010 *** 66.7906 *** 67.6249 *** 
  (6.8629)  (6.8740)  (6.8730)  (6.9714)  (6.9717)  
Constant (Sigma) 31.9057 *** 31.7270 *** 31.6915 *** 31.3837 *** 31.3289 *** 
  (0.7571)  (0.7527)  (0.7518)  (0.7444)  (0.7430)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 115.56  127.72  130.39  151.79  155.86  
Pseudo R2 0.0115  0.0128  0.0130  0.0152  0.0156  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.6 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (41 – 45) 

Variables HBC (41) HBC (42) HBC (43) HBC (44) HBC (45) 
Grant3t -3.8996 *** -3.8653 *** -4.0043 *** -3.9461 *** -3.8917 *** 
  (0.8995)  (0.8987)  (0.8810)  (0.8796)  (0.8868)  
[Grant3t]2 0.3219 *** 0.3184 *** 0.3298 *** 0.3246 *** 0.3182 *** 
  (0.0726)  (0.0725)  (0.0710)  (0.0709)  (0.0715)  
NbClaimst 3.3094 *** 3.0208 ** 3.3750 *** 3.0043 ** 3.2635 *** 
  (1.1831)  (1.1945)  (1.1836)  (1.1930)  (1.1837)  
Aget -2.3923 *** -2.4237 *** -2.2929 *** -2.3160 *** -2.3635 *** 
  (0.8720)  (0.8712)  (0.8761)  (0.8743)  (0.8719)  
[Aget]2 0.1486 *** 0.1494 *** 0.1452 *** 0.1466 *** 0.1470 *** 
  (0.0372)  (0.0372)  (0.0375)  (0.0374)  (0.0372)  
MaxChairt  -1.6591  -1.6508  -1.6636  -1.6741  -1.6675  
  (1.1664)  (1.1651)  (1.1661)  (1.1638)  (1.1677)  
ArtCit3t 1.2076  1.2286 * 1.2160 * 1.2589 * 1.2193 * 
  (0.7365)  (0.7358)  (0.7352)  (0.7340)  (0.7370)  
BtwCentArt3t

  -16.0000 *** -16.0000 *** -16.2000 *** -16.2000 *** -15.9000 *** 
  (4.5824)  (4.5772)  (4.5787)  (4.5695)  (4.6044)  
[BtwCentArt3t]2 2.5852 *** 2.5912 *** 2.5956 *** 2.6089 *** 2.5988 *** 
  (0.8654)  (0.8644)  (0.8642)  (0.8624)  (0.8681)  
CliqnessArt3t  0.4584  0.5496  0.4792  0.6133  0.5012  
 (0.7130)  (0.7145)  (0.7122)  (0.7137)  (0.7140)  
BtwCentPat3t 0.9220 * 0.8970 * 0.9050 * 0.8647 * 0.8771 * 
  (0.4823)  (0.4820)  (0.4788)  (0.4782)  (0.4800)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0011 *** 0.0011 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.1493  2.1898  2.1594  2.1701  2.2564  
  (2.5049)  (2.5021)  (2.5015)  (2.4963)  (2.5021)  
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Table H.6 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (41 – 45) (Cont’d and end) 

Variables HBC (41) HBC (42) HBC (43) HBC (44) HBC (45) 
dNanoEx 2.9745  3.0818  3.1963  3.4547  3.0201  
  (2.6996)  (2.6975)  (2.7006)  (2.6982)  (2.7017)  
dGovAssigneet -11.7000  -44.0000 ** 49.3545  35.2546  -9.5928  
  (9.9853)  (22.0235)  (52.8270)  (53.1508)  (8.6442)  
dAcAssigneet  -6.3626 ** -6.4217 ** -6.3081 ** -6.3402 ** -6.3746 ** 
  (2.8179)  (2.8148)  (2.8173)  (2.8114)  (2.8172)  
dGovAssigneet ×    12.4865    17.8992 **   
NbClaimst   (7.5931)    (8.1500)    
dGovAssigneet ×  -2.1370  -1.8106        
Grant3t (4.7922)  (4.7945)        
dGovAssigneet  ×  0.1352  0.1008        
[Grant3t]2 (0.3829)  (0.3832)        
dGovAssigneet ×      -10.2000  -14.5000    
Aget     (8.7877)  (8.9988)    
dGovAssigneet ×      0.3672  0.4915    
[Aget]2     (0.3482)  (0.3526)    
dGovAssigneet ×          8.6342  
BtwCentArt3t         (37.7633)  
dGovAssigneet ×           -3.0996  
[BtwCentArt3t]2         (8.0870)  
Constant 59.1633 *** 59.6462 *** 58.4996 *** 58.8448 *** 59.0602 *** 
  (6.8745)  (6.8729)  (6.8925)  (6.8802)  (6.8762)  
Constant (Sigma) 31.7232 *** 31.6869 *** 31.7062 *** 31.6415 *** 31.7157 *** 
  (0.7526)  (0.7517)  (0.7522)  (0.7506)  (0.7524)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 128.06  130.77  129.35  134.19  128.73  
Pseudo R2 0.0128  0.0131  0.0129  0.0134  0.0129  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.7 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (46 – 50) 

Variables HBC (46) HBC (47) HBC (48)  HBC (49) HBC (50) 
rant3t -3.8911 *** -3.9608 *** -3.9266 *** -3.8097 *** -4.3267 *** 
  (0.8861)  (0.8814)  (0.8808)  (0.8991)  (0.9069)  
[Grant3t]2 0.3180 *** 0.3245 *** 0.3217 *** 0.3131 *** 0.3527 *** 
  (0.0715)  (0.0711)  (0.0710)  (0.0726)  (0.0729)  
NbClaimst 3.0326 ** 3.2847 *** 3.0256 ** 3.0086 ** 3.4105 *** 
  (1.1947)  (1.1845)  (1.1947)  (1.1929)  (1.1834)  
Aget -2.3991 *** -2.3613 *** -2.4133 *** -2.3176 *** -2.3945 *** 
  (0.8715)  (0.8726)  (0.8723)  (0.8747)  (0.8713)  
[Aget]2 0.1482 *** 0.1470 *** 0.1489 *** 0.1469 *** 0.1504 *** 
  (0.0372)  (0.0373)  (0.0373)  (0.0374)  (0.0372)  
MaxChairt  -1.6491  -1.6445  -1.6383  -1.6848  -1.5403  
! (1.1669)!! (1.1662)!! (1.1650)!! (1.1656)!! (1.1673)!!
ArtCit3t 1.2349 * 1.2120 * 1.2301 * 1.2750 * 1.2457 * 
  (0.7364)  (0.7357)  (0.7351)  (0.7366)  (0.7352)  
BtwCentArt3t

  -16.0000 *** -16.1000 *** -16.1000 *** -16.2000 *** -16.2000 *** 
  (4.6011)  (4.5803)  (4.5757)  (4.5975)  (4.5937)  
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Table H.7 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (46 – 50) (Cont’d and end) 

Variables HBC (41) HBC (42) HBC (43) HBC (44) HBC (45) 
[BtwCentArt3t]2 2.6072 *** 2.6034 *** 2.6066 *** 2.6269 *** 2.5907 *** 
  (0.8674)  (0.8647)  (0.8638)  (0.8673)  (0.8686)  
CliqnessArt3t  0.5697  0.4775  0.5666  0.6073  0.4779  
  (0.7155)  (0.7125)  (0.7142)  (0.7168)  (0.7124)  
BtwCentPat3t 0.8648 * 0.8859 * 0.8794 * 0.8476 * 0.8722 * 
  (0.4797)  (0.4812)  (0.4807)  (0.4830)  (0.4804)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 0.0011 *** 0.0011 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.2777  2.2345  2.2615  2.1421  1.8286  
  (2.5001)  (2.5023)  (2.4998)  (2.4985)  (2.5111)  
dNanoEx 3.1127  3.0566  3.1195  3.3798  3.0424  
  (2.7007)  (2.6993)  (2.6972)  (2.7086)  (2.6954)  
dGovAssigneet -42.0000 * -17.6000 *** -48.9000 ** 45.3974  -16.2000 *** 
  (25.3144)  (6.4748)  (20.9997)  (55.5026)  (5.6570)  
dAcAssigneet  -6.4146 ** -6.3744 ** -6.4052 ** -6.3506 ** -10.2000  
  (2.8150)  (2.8183)  (2.8154)  (2.8115)  (6.2358)  
dGovAssigneet ×  11.0529    12.5420  17.2524 *   
NbClaimst (8.1005)    (7.9992)  (9.2732)    
dGovAssigneet ×        -3.3542    
Grant3t       (5.4257)    
dGovAssigneet  ×        0.2670    
[Grant3t]2       (0.4469)    
dGovAssigneet ×        -15.1000    
Aget       (10.1526)    
dGovAssigneet ×        0.5080    
[Aget]2       (0.4033)    
dGovAssigneet ×  4.1476      8.6853    
BtwCentArt3t (37.8998)      (41.8561)    
dGovAssigneet ×  ! -1.4901 ! !! !! -2.1903!! !!
[BtwCentArt3t]2 (8.1704)      (9.0495)    
dGovAssigneet ×    2.4750  -0.3993  -0.3069    
BtwCentPat3t   (5.3365)  (5.6385)  (6.8812)    
dAcAssigneet  ×          4.4804  
Grant3t         (2.7747)  
dAcAssigneet ×          -0.3483  
[Grant3t]2         (0.2204)  
Constant 59.5763 *** 59.2616 *** 59.6996 *** 58.7647 *** 59.1942 *** 
  (6.8809)  (6.8743)  (6.8730)  (6.8871)  (6.8739)  
Constant 
(Sigma) 

31.6898 *** 31.7237 *** 31.6915 *** 31.6368 *** 31.6861 *** 

  (0.7518)  (0.7526)  (0.7518)  (0.7505)  (0.7517)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 130.59  127.93  130.39  134.75  130.32  
Pseudo R2 0.0131  0.0128  0.0130  0.0135  0.0130  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 



164 

Table H.8 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (51 – 55) 

Variables HBC(51)  HBC (52)  HBC (53)  HBC(54)  HBC (55)   
Grant3t -4.2386 *** -3.9551 *** -3.8074 *** -3.7914 *** -3.6258 *** 
  (0.8969 ) (0.8783 ) (0.8694 ) (0.8867)  (0.8776)  
[Grant3t]2 0.3449 *** 0.3266 *** 0.3157 *** 0.3091 *** 0.2966 *** 
  (0.0721)  (0.0707)  (0.0700)  (0.0716)  (0.0709)  
NbClaimst 0.6004  3.2957 *** 0.5277  3.4367 *** 0.6583  
  (1.2951)  (1.1796)  (1.2931)  (1.1840)  (1.2965)  
Aget -2.5327 *** -3.1751 *** -3.3401 *** -2.3124 *** -2.4330 *** 
  (0.8620)  (0.9480)  (0.9383)  (0.8716)  (0.8624)  
[Aget]2 0.1580 *** 0.1720 *** 0.1807 *** 0.1474 *** 0.1541 *** 
  (0.0369)  (0.0404)  (0.0400)  (0.0372)  (0.0368)  
MaxChairt  -1.4716  -1.6118  -1.5501  -1.6982  -1.6438  
  (1.1541)  (1.1626)  (1.1500)  (1.1653)  (1.1525)  
ArtCit3t 1.1047  1.1148  0.9692  1.2919 * 1.1507  
  (0.7273)  (0.7338)  (0.7264)  (0.7366)  (0.7289)  
BtwCentArt3t

  -16.9000 *** -16.5000 *** -17.2000 *** -15.7000 *** -16.3000 *** 
  (4.5472)  (4.5678)  (4.5230)  (4.5848)  (4.5395)  
[BtwCentArt3t]2 2.7200 *** 2.6245 *** 2.7309 *** 2.6525 *** 2.7609 *** 
  (0.8598)  (0.8620)  (0.8535)  (0.8647)  (0.8561)  
CliqnessArt3t  0.5145  0.4511  0.4787  0.5102  0.5392  
  (0.7046)  (0.7101)  (0.7027)  (0.7119)  (0.7043)  
BtwCentPat3t 0.8259 * 0.9404 ** 0.9125 * 0.8522 * 0.8184 * 
  (0.4750)  (0.4774)  (0.4723)  (0.4794)  (0.4741)  
CliqnessPat3t 0.0011 *** 0.0011 *** 0.0011 *** 0.0012 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.9446  2.3415  3.4601  2.0116  3.1531  
  (2.4932)  (2.5044)  (2.4884)  (2.5022)  (2.4858)  
dNanoEx 3.0009  3.0058  2.9315  2.8173  2.7432  
  (2.6647)  (2.6921)  (2.6629)  (2.6978)  (2.6679)  
dGovAssigneet -15.9000 *** -15.9000 *** -15.7000 *** -16.2000 *** -16.0000 *** 
  (5.5900)  (5.6453)  (5.5814)  (5.6562)  (5.5909)  
dAcAssigneet  -50.8000 *** -37.8000 *** -76.6000 *** -1.5398  -39.1000 *** 
  (10.1658)  (12.7342)  (14.9044)  (4.0368)  (8.5707)  
dAcAssigneet ×  14.9836 ***   14.6826 ***   14.7581 *** 
NbClaimst (2.9760)    (2.9714)    (2.9712)  
dAcAssigneet  ×  5.3238 *         
Grant3t (2.7534)          
dAcAssigneet ×  -0.4020 *         
[Grant3t]2 (0.2185)          
dAcAssigneet × Aget   4.4093 * 4.6839 **     
    (2.2814)  (2.2603)      
dAcAssigneet ×    -0.1311  -0.1447      
[Aget]2   (0.0994)  (0.0985)      
dAcAssigneet ×        -4.7374 * -5.1288 * 
BtwCentArt3t       (2.8549)  (2.8314)  
Constant 67.0652 *** 65.6480 *** 73.4070 *** 57.3383 *** 64.8543 *** 
  (6.9721)  (7.2833)  (7.3708)  (6.9567)  (7.0421)  
Constant (Sigma) 31.3256 *** 31.6192 *** 31.2749 *** 31.6861 *** 31.3353 *** 
  (0.7430)  (0.7500)  (0.7417)  (0.7517)  (0.7432)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 155.58  135.68  160.05  130.47  155.07  
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Table H.8 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (51 – 55) (Cont’d and end) 

Variables HBC(51)  HBC (52)  HBC (53)  HBC(54)  HBC (55)   
Pseudo R2 0.0155  0.0136  0.0160  0.0130  0.0155  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.9 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (56 – 59) 

Variables HBC (56)  HBC (57)  HBC (58)  HBC (59)  
Grant3t -4.0946 *** -3.9388 *** -4.0898 *** -3.8686 *** 
  (0.8784 ) (0.8703)  (0.9069)  (0.9286)  
[Grant3t]2 0.3323 *** 0.3211 *** 0.3281 *** 0.3085 *** 
  (0.0707)  (0.0700)  (0.0734)  (0.0754)  
NbClaimst 3.1936 *** 0.5383  0.7067  0.2428  
  (1.1790)  (1.2927)  (1.2855)  (1.2985)  
Aget -2.3128 *** -2.4395 *** -3.2094 *** -3.1365 *** 
  (0.8685)  (0.8603)  (0.9340)  (0.9377)  
[Aget]2 0.1432 *** 0.1501 *** 0.1771 *** 0.1757 *** 
  (0.0371)  (0.0368)  (0.0398)  (0.0400)  
MaxChairt  -1.7352  -1.6696  -1.5766  -1.6243  
  (1.1619)  (1.1503)  (1.1465)  (1.1453)  
ArtCit3t 1.0412  0.9159  0.9918  1.0741  
  (0.7346)  (0.7277)  (0.7244)  (0.7250)  
BtwCentArt3t

  -14.9000 *** -15.7000 *** -15.7000 *** -15.7000 *** 
  (4.5802)  (4.5396)  (4.5393)  (4.5549)  
[BtwCentArt3t]2 2.3807 *** 2.5018 *** 2.6370 *** 2.6822 *** 
  (0.8642)  (0.8564)  (0.8582)  (0.8605)  
CliqnessArt3t  0.6146  0.6269  0.6520  0.8250  
  (0.7111)  (0.7042)  (0.7012)  (0.7056)  
BtwCentPat3t 0.5634  0.5688  0.5085  0.4147  
  (0.4906)  (0.4857)  (0.4881)  (0.4936)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0011 *** 0.0011 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.8418  3.8875  3.3375  3.3425  
  (2.5007)  (2.4860)  (2.4846)  (2.4797)  
dNanoEx 2.8445  2.8058  2.6014  2.9614  
  (2.6879)  (2.6607)  (2.6484)  (2.6560)  
dGovAssigneet -16.7000 *** -16.4000 *** -16.3000 *** 31.3499  
  (5.6432)  (5.5839)  (5.5448)  (54.3388)  
dAcAssigneet -10.6000 *** -46.6000 *** -81.0000 *** -81.3000 *** 
  (3.1480)  (8.1987)  (15.4894)  (15.4607)  
dGovAssigneet ×        20.0903 ** 
NbClaimst       (9.0790)  
dAcAssigneet ×    14.1339 *** 14.7948 *** 15.2454 *** 
NbClaimst   (2.9714)  (2.9631)  (2.9605)  
dGovAssigneet × Grant3t       -3.2276  
        (5.3123)  
dGovAssigneet  ×        0.2669  
[Grant3t]2       (0.4376)  
dGovAssigneet × Aget       -14.2000  
        (9.9306)  
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Table H.9 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (56 – 59) (Cont’d and end) 

Variables HBC (56)  HBC (57)  HBC (58)  HBC (59)  
dGovAssigneet × [Aget]2       0.4777  
        (0.3945)  
dGovAssigneet ×        8.1352  
BtwCentArt3t       (40.9264)  
dGovAssigneet ×         -2.2146  
[BtwCentArt3t]2       (8.8466)  
dGovAssigneet ×        0.0089  
BtwCentPat3t       (6.7304)  
dAcAssigneet  × Grant3t     5.4869 * 5.2856 * 
      (2.9158)  (2.9123)  
dAcAssigneet ×      -0.4137 * -0.3950 * 
[Grant3t]2     (0.2334)  (0.2333)  
dAcAssigneet × Aget     4.5052 * 4.4055 * 
      (2.3014)  (2.2964)  
dAcAssigneet × [Aget]2     -0.1259  -0.1233  
      (0.1001)  (0.0999)  
dAcAssigneet ×      -6.2813 ** -6.6850 ** 
BtwCentArt3t     (3.0206)  (3.0316)  
dAcAssigneet ×  4.8062 *** 4.3437 *** 3.8620 ** 3.9386 ** 
BtwCentPat3t (1.6141)  (1.6010)  (1.6289)  (1.6251)  
Constant 60.0498 *** 67.2892 *** 72.0060 *** 71.6971 *** 
  (6.8519)  (6.9503)  (7.3607)  (7.3824)  
Constant (Sigma) 31.5948 *** 31.2752 *** 31.0518 *** 30.9396 *** 
  (0.7495)  (0.7418)  (0.7363)  (0.7336)  
Nb observations 1110  1110  1110  1110  
Chi Square 136.55  159.13  175.35  184.08  
Pseudo R2 0.0136  0.0159  0.0175  0.0184  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 
Table H.10 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (60 – 64) 

Variables HBC (60)  HBC (61)  HBC (62)  HBC (63)  HBC (64)  
Grant3t -3.9237 *** -3.8936 *** -3.8166 *** -3.9207 *** -3.8036 *** 
  (0.8887)  (0.8837)  (0.9022)  (0.8837)  (0.8893)  
[Grant3t]2 0.3218 *** 0.3214 *** 0.3166 *** 0.3244 *** 0.3123 *** 
  (0.0716)  (0.0712)  (0.0728)  (0.0712)  (0.0718)  
Aget -2.6292 *** -2.4565 *** -2.4699 *** -2.3773 *** -2.4380 *** 
  (0.8776)  (0.8745)  (0.8747)  (0.8788)  (0.8744)  
[Aget]2 0.1635 *** 0.1533 *** 0.1540 *** 0.1507 *** 0.1522 *** 
  (0.0374)  (0.0373)  (0.0373)  (0.0376)  (0.0373)  
MaxChairt  -1.4991  -1.6456  -1.6580  -1.6597  -1.6688  
  (1.1760)  (1.1705)  (1.1706)  (1.1704)  (1.1718)  
ArtCit3t 1.0040  1.1105  1.1135  1.1187  1.1279  
  (0.7401)  (0.7374)  (0.7383)  (0.7371)  (0.7387)  
BtwCentArt3t

  -17.9000 *** -16.4000 *** -16.3000 *** -16.5000 *** -16.2000 *** 
  (4.6017)  (4.5959)  (4.5976)  (4.5944)  (4.6194)  
[BtwCentArt3t]2 2.9291 *** 2.6312 *** 2.6193 *** 2.6303 *** 2.6318 *** 
  (0.8682)  (0.8676)  (0.8684)  (0.8672)  (0.8710)  
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Table H.10 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (60 – 64) (Cont’d and end) 

Variables HBC (60)  HBC (61)  HBC (62)  HBC (63)  HBC (64)  
CliqnessArt3t  0.4086  0.3507  0.3357  0.3541  0.3838  
  (0.7164)  (0.7136)  (0.7141)  (0.7133)  (0.7151)  
BtwCentPat3t 1.2660 *** 0.9387 * 0.9523 ** 0.9360 * 0.9038 * 
  (0.4741)  (0.4805)  (0.4839)  (0.4805)  (0.4816)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 1.8361  2.1374  2.0690  2.0855  2.1823  
  (2.4658)  (2.5109)  (2.5135)  (2.5104)  (2.5105)  
dNanoEx 4.4030  4.2896  4.2397  4.4691 * 4.2677  
  (2.6845)  (2.6700)  (2.6711)  (2.6735)  (2.6730)  
dGovAssigneet   -16.1000 *** -11.7000  43.7205  -8.8515  
    (5.6825)  (10.0170)  (52.9790)  (8.6678)  
dAcAssigneet   -6.5898 ** -6.6045 ** -6.5599 ** -6.6154 ** 
    (2.8263)  (2.8261)  (2.8258)  (2.8252)  
dGovAssigneet ×      -2.2185      
Grant3t     (4.8088)      
dGovAssigneet ×      0.1418      
[Grant3t]2     (0.3842)      
dGovAssigneet ×        -9.3993    
Aget       (8.8144)    
dGovAssigneet ×        0.3402    
[Aget]2       (0.3493)    
dGovAssigneet ×          9.3953  
BtwCentArt3t         (37.8921)  
dGovAssigneet ×           -3.4049  
BtwCentArt3t]2         (8.1145)  
Constant 66.2845 *** 68.0948 *** 68.0450 *** 67.6018 *** 67.7868 *** 
  (6.1057)  (6.1145)  (6.1150)  (6.1272)  (6.1215)  
Constant (Sigma) 32.0237 *** 31.8401 *** 31.8362 *** 31.8233 *** 31.8258 *** 
  (0.7599)  (0.7555)  (0.7554)  (0.7550)  (0.7551)  
Nb observations 1110  1110  1110  1110  1110  
Chi Square 107.47  119.90  120.26  121.24  121.15  
Pseudo R2 0.0107  0.0120  0.0120  0.0121  0.0121  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 
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Table H.11 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (65 – 68)  

Variables HBC (65)  HBC (66)  HBC (67)  HBC (68)   
Grant3t -3.8780 *** -3.7441 *** -4.2118 *** -3.8759 *** 
  (0.8839)  (0.9028)  (0.9094)  (0.8809)  
[Grant3t]2 0.3189 *** 0.3093 *** 0.3454 *** 0.3216 *** 
  (0.0713)  (0.0729)  (0.0732)  (0.0710)  
Aget -2.4326 *** -2.3729 *** -2.4707 *** -3.2657 *** 
  (0.8752)  (0.8784)  (0.8742)  (0.9508)  
[Aget]2 0.1520 *** 0.1508 *** 0.1556 *** 0.1779 *** 
  (0.0374)  (0.0376)  (0.0373)  (0.0405)  
MaxChairt  -1.6426  -1.7066  -1.5463  -1.6098  
  (1.1703)  (1.1712)  (1.1718)  (1.1667)  
ArtCit3t 1.1203  1.1393  1.1443  1.0201  
  (0.7375)  (0.7390)  (0.7371)  (0.7356)  
BtwCentArt3t

  -16.4000 *** -16.2000 *** -16.4000 *** -16.8000 *** 
  (4.5951)  (4.6174)  (4.6100)  (4.5827)  
[BtwCentArt3t]2 2.6387 *** 2.6321 *** 2.6205 *** 2.6589 *** 
  (0.8676)  (0.8713)  (0.8717)  (0.8649)  
CliqnessArt3t  0.3574  0.3720  0.3495  0.3288  
  (0.7136)  (0.7158)  (0.7136)  (0.7112)  
BtwCentPat3t 0.9097 * 0.8932 * 0.9095 * 0.9713 ** 
  (0.4828)  (0.4852)  (0.4821)  (0.4790)  
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 0.0011 *** 
  (0.0003)  (0.0003)  (0.0003)  (0.0003)  
Loop 2.1610  2.0591  1.7792  2.2543  
  (2.5107)  (2.5104)  (2.5205)  (2.5130)  
dNanoEx 4.3212  4.4552 * 4.3391  4.2627  
  (2.6700)  (2.6821)  (2.6679)  (2.6639)  
dGovAssigneet -18.0000 *** 47.8149  -16.2000 *** -15.9000 *** 
  (6.4932)  (55.4965)  (5.6767)  (5.6636)  
dAcAssigneet -6.6211 ** -6.6002 ** -9.7915  -38.4000 *** 
  (2.8263)  (2.8234)  (6.2558)  (12.7722)  
dGovAssigneet × Grant3t   -1.6595       
    (5.3803)      
dGovAssigneet × [Grant3t]2   0.0772      
    (0.4394)      
dGovAssigneet × Aget   -7.0349      
    (9.4843)      
dGovAssigneet × [Aget]2   0.2104      
    (0.3811)      
dGovAssigneet ×    15.8289      
BtwCentArt3t   (41.8044)      
dGovAssigneet ×     -4.9212      
[BtwCentArt3t]2   (8.9784)      
dGovAssigneet ×  3.2064  5.0386      
BtwCentPat3t (5.3479)  (6.4935)      
dAcAssigneet  × Grant3t     4.0620    
      (2.7805)    
dAcAssigneet  × [Grant3t]2     -0.3186    
      (0.2209)    
dAcAssigneet × Aget       4.4918 ** 
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Table H.11 : Impact of academic assignees and government assignees on the Herfindahl index of 
backward citations [HerfIndexBWCitt] – Tobit results HBC (65 – 68) (Cont’d and end) 

Variables HBC (65)  HBC (66)  HBC (67)  HBC (68)   
        (2.2888)  
dAcAssigneet × [Aget]2       -0.1349  
        (0.0998)  
Constant 68.0711 *** 67.2377 *** 68.2986 *** 74.5623 *** 
  (6.1136)  (6.1325)  (6.1241)  (6.5683)  
Constant (Sigma) 31.8345 *** 31.7918 *** 31.8062 *** 31.7309 *** 
  (0.7553)  (0.7543)  (0.7547)  (0.7528)  
Nb observations 1110  1110  1110  1110  
Chi Square 120.26  123.63  122.04  127.89  
Pseudo R2 0.0120  0.0124  0.0122  0.0128  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.12 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results HFC (19 – 23) 

Variables HFC (19)  HFC (20)  HFC (21)  HFC (22)  HFC (23)  
Grant3t -0.2675  -0.2787  -0.3451  -0.3180  -0.2631  
  (0.2524)  (0.2526)  (0.2584)  (0.2527)  (0.2532)  
Aget -6.9610 *** -6.9142 *** -6.8790 *** -6.7160 *** -6.9094 *** 
  (1.2161)  (1.2167)  (1.2160)  (1.2191)  (1.2157)  
[Aget]2 0.3348 *** 0.3344 *** 0.3325 *** 0.3223 *** 0.3344 *** 
  (0.0515)  (0.0515)  (0.0515)  (0.0517)  (0.0515)  
MaxChairt  0.6491  0.6359  0.6517  0.7172  0.6737  
  (1.4042)  (1.4046)  (1.4035)  (1.4013)  (1.4049)  
ArtCit3t 5.9785 ** 5.9387 ** 5.9346 ** 5.7786 ** 5.8239 ** 
  (2.3217)  (2.3225)  (2.3210)  (2.3188)  (2.3253)  
[ArtCit3t]2 -1.1393 ** -1.1414 ** -1.1342 ** -1.1041 * -1.1185 ** 
  (0.5653)  (0.5652)  (0.5648)  (0.5641)  (0.5656)  
BtwCentArt3t

  -0.4260  -0.4024  -0.3281  -0.2372  -0.5590  
  (1.4866)  (1.4864)  (1.4865)  (1.4847)  (1.4968)  
CliqnessArt3t  -1.1849  -1.1496  -1.1030  -1.1864  -1.1915  
  (0.8473)  (0.8477)  (0.8473)  (0.8469)  (0.8487)  
BtwCentPat3t 0.7028  0.7235  0.6448  0.6710  0.7515  
  (0.5729)  (0.5831)  (0.5862)  (0.5818)  (0.5837)  
CliqnessPat3t 0.0004  0.0003  0.0003  0.0004  0.0003  
  (0.0004)  (0.0004)  (0.0004)  (0.0004)  (0.0004)  
Loop -3.6996  -4.2953  -4.1195  -4.1290  -4.3467  
  (2.9738)  (3.0501)  (3.0508)  (3.0412)  (3.0495)  
dNanoEx -7.0340 ** -6.9694 ** -6.9305 ** -7.2687 ** -7.0393 ** 
  (3.2439)  (3.2436)  (3.2406)  (3.2443)  (3.2431)  
dGovAssigneet   -2.9325  -14.3000  56.2439  -9.4379  
    (6.8522)  (11.6292)  (69.0434)  (10.1569)  
dAcAssigneet   2.5117  2.5098  2.3280  2.5272  
    (3.4496)  (3.4467)  (3.4391)  (3.4482)  
dGovAssigneet ×      1.5028      
Grant3t     (1.2434)      
dGovAssigneet × Aget       -15.1000    
        (12.2114)    
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Table H.12 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results HFC (19 – 23) (Cont’d and end) 

Variables HFC (19)  HFC (20)  HFC (21)  HFC (22)  HFC (23)  
dGovAssigneet × [Aget]2       0.7724    
        (0.5171)    
dGovAssigneet ×          6.1288  
BtwCentArt3t         (7.1054)  
Constant 123.0000 *** 122.0000 *** 123.0000 *** 122.0000 *** 123.0000 *** 
  (8.0555)  (8.0974)  (8.0923)  (8.1083)  (8.0956)  
Constant (Sigma) 36.4504 *** 36.4351 *** 36.4065 *** 36.3276 *** 36.4194 *** 
  (1.0457)  (1.0454)  (1.0445)  (1.0421)  (1.0449)  
Nb observations 1110  1110  1110  1110  1110  
            
Chi Square 76.5717  77.3430  78.8039  82.5109  78.0882  
Pseudo R2 0.0100  0.0101  0.0103  0.0108  0.0102  
P value 0.0000  0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.13 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results HFC (24 – 27) 

Variables HFC (24)  HFC (25)  HFC (26)  HFC (27)  
Grant3t -0.3598  -0.3523  -0.3169  -0.2721  
  (0.2534 ) (0.2572)  (0.2656)  (0.2526)  
Aget -6.7849 *** -6.6194 *** -6.9522 *** -7.4654 *** 
  (1.2134)  (1.2134)  (1.2208)  (1.3482)  
[Aget]2 0.3266 *** 0.3179 *** 0.3361 *** 0.3506 *** 
  (0.0514)  (0.0514)  (0.0517)  (0.0566)  
MaxChairt  0.6912  0.8058  0.6194  0.6770  
  (1.3995)  (1.3967)  (1.4051)  (1.4046)  
ArtCit3t 5.8664 ** 5.5605 ** 5.9062 ** 5.8207 ** 
  (2.3159)  (2.3142)  (2.3233)  (2.3246)  
[ArtCit3t]2 -1.1135 ** -1.0478 * -1.1325 ** -1.1235 ** 
  (0.5633)  (0.5627)  (0.5654)  (0.5654)  
BtwCentArt3t

  -0.2124  -0.4060  -0.3786  -0.5409  
  (1.4820)  (1.4882)  (1.4870)  (1.4904)  
CliqnessArt3t  -1.1128  -1.2085  -1.1346  -1.1632  
  (0.8440)  (0.8454)  (0.8482)  (0.8474)  
BtwCentPat3t 0.5816  0.6037  0.6905  0.7502  
  (0.5830)  (0.5840)  (0.5872)  (0.5830)  
CliqnessPat3t 0.0004  0.0004  0.0003  0.0003  
  (0.0004)  (0.0004)  (0.0004)  (0.0004)  
Loop -4.0799  -4.0863  -4.2955  -4.1032  
  (3.0383)  (3.0317)  (3.0496)  (3.0696)  
dNanoEx -6.8987 ** -7.2449 ** -6.9448 ** -6.9400 ** 
  (3.2317)  (3.2357)  (3.2436)  (3.2441)  
dGovAssigneet -13.4000 * 47.8610  -2.9748  -2.8286  
  (7.7535)  (71.0240)  (6.8511)  (6.8462)  
dAcAssigneet 2.3178  2.2525  -0.6713  -16.9000  
  (3.4359)  (3.4252)  (7.6453)  (16.7846)  
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Table H.13 : Impact of academic assignees and government assignees on the Herfindahl index of 
forward citations [HerfIndexFCit5t] – Tobit results HFC (24 – 27) (Cont’d and end) 

Variables HFC (24)  HFC (25)  HFC (26)  HFC (27)  
dGovAssigneet × Grant3t   0.0303      
    (1.3799)      
dGovAssigneet × Aget   -16.3000      
    (12.6826)      
dGovAssigneet × [Aget]2   0.7829      
    (0.5418)      
dGovAssigneet × BtwCentArt3t   11.7759      
    (7.4203)      
dGovAssigneet × BtwCentPat3t 28.4374 ** 26.3826 **     
  (11.9891)  (12.5547)      
dAcAssigneet  × Grant3t     0.3364    
      (0.7220)    
dAcAssigneet × Aget       2.6324  
        (3.0245)  
dAcAssigneet × [Aget]2       -0.0739  
        (0.1324)  
Constant 122.0000 *** 122.0000 *** 123.0000 *** 127.0000 *** 
  (8.0669)  (8.0723)  (8.1652)  (8.9103)  
Constant (Sigma) 36.2965 *** 36.1841 *** 36.4300 *** 36.4111 *** 
  (1.0408)  (1.0376)  (1.0453)  (1.0446)  
Nb observations 1110  1110  1110  1110  
Chi Square 86.0052  90.6246  77.5596  79.2735  
Pseudo R2 0.0112  0.0118  0.0101  0.0104  
P value 0.0000  0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.14 : Impact of patent–grant pairs on the Herfindahl index of backward citations 
[HerfIndexBWCitt]– Tobit results HBC (69 – 71) 

Variables HBC (69) HBC (70) HBC (71) 
Grant3t -3.8546 *** -3.8523 *** -3.8469 *** 
  (0.8820)  (0.8820 ) (0.8828)  
[Grant3t]2 0.3186 *** 0.3182 *** 0.3177 *** 
  (0.0713)  (0.0713)  (0.0713)  
(NbClaimst) 3.3550 *** 3.3541 *** 3.3579 *** 
  (1.1886)  (1.1886)  (1.1888)  
Aget -2.4556 *** -2.4243 *** -2.4115 *** 
  (0.8718)  (0.8758)  (0.8804)  
[Aget]2 0.1531 *** 0.1515 *** 0.1510 *** 
  (0.0373)  (0.0375)  (0.0376)  
MaxChairt  -1.5212  -1.5325  -1.5329  
  (1.1711)  (1.1714)  (1.1714)  
ArtCit3t 1.2478 * 1.2473 * 1.2488 * 
  (0.7365)  (0.7364)  (0.7365)  
BtwCentArt3t -16.8000 *** -16.8000 *** -16.8000 *** 
  (4.5891)  (4.5913)  (4.5912)  
[BtwCentArt3t]2 2.7211 *** 2.7329 *** 2.7329 *** 
  (0.8636)  (0.8641)  (0.8641)  
CliqnessArt3t 0.3912  0.3855  0.3970  
  (0.7152)  (0.7153)  (0.7199)  
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Table H.14 : Impact of patent–grant pairs on the Herfindahl index of backward citations 
[HerfIndexBWCitt]– Tobit results HBC (69 – 71) (Cont’d and end) 

Variables HBC (69) HBC (70) HBC (71) 
BtwCentPat3t 1.0899 ** 1.1000 ** 1.0950 ** 
  (0.4780)  (0.4787)  (0.4800)  
CliqnessPat3t 0.0011 *** 0.0011 *** 0.0011 *** 
  (0.0003)  (0.0003)  (0.0003)  
dAcAssigneet -3.3386  -3.4080  -3.4053  
  (2.3656)  (2.3728)  (2.3729)  
dNanoEx 2.9421  2.8557  2.8642  
  (2.7100)  (2.7197)  (2.7203)  
dPGPt   1.9509  5.1673  
    (5.2071)  (23.1908)  
dPGPt × CliqnessArt3t      -0.7388  
      (5.1905)  
Constant 58.6359 *** 58.4885 *** 58.3656 *** 
  (6.9144 ) (6.9254)  (6.9791)  
Constant (Sigma) 31.8911 *** 31.8899 *** 31.8895 *** 
  (0.7567)  (0.7567)  (0.7566)  
Statistics       
Nb observations 1110  1110  1110  
Chi Square 116.91  117.051  117.071  
Pseudo R2 0.0117  0.0117  0.0117  
P value 0.0000  0.0000  0.0000  

Notes: ***, **, * show significance at the 1%, 5%, and 10% levels. Standard errors are presented in parentheses. 

 

Table H.15 : Impact of patent–grant pairs on the Herfindahl index of backward citations 
[HerfIndexBWCitt] – Tobit results HBC (72 – 74) 

Variables HBC (72) HBC (73) HBC (74) 
Grant3t -3.8361 *** -3.8807 *** -3.8748 *** 
  (0.8829)  (0.8861)  (0.8863)  
[Grant3t]2 0.3169 *** 0.3213 *** 0.3207 *** 
  (0.0713)  (0.0716)  (0.0717)  
NbClaimst 3.2788 *** 3.2655 *** 3.2699 *** 
  (1.2047)  (1.2046)  (1.2046)  
Aget -2.4215 *** -2.4025 *** -2.3676 *** 
  (0.8757)  (0.8774)  (0.8842)  
[Aget]2 0.1514 *** 0.1504 *** 0.1491 *** 
  (0.0375)  (0.0376)  (0.0378)  
MaxChairt  -1.5288  -1.5092  -1.5098  
  (1.1713)  (1.1717)  (1.1717)  
ArtCit3t 1.2544 * 1.2202 * 1.2191 * 
  (0.7366)  (0.7384)  (0.7384)  
BtwCentArt3t -16.8000 *** -17.1000 *** -17.1000 *** 
  (4.5916)  (4.6010)  (4.6013)  
[BtwCentArt3t]2 2.7412 *** 2.7556 *** 2.7570 *** 
  (0.8643)  (0.8644)  (0.8644)  
CliqnessArt3t  0.3798  0.3913  0.4194  
  (0.7154)  (0.7154)  (0.7208)  
BtwCentPat3t 1.0997 ** 1.1174 ** 1.1067 ** 
  (0.4787)  (0.4795)  (0.4806)  
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Table H.15 : Impact of patent–grant pairs on the Herfindahl index of backward citations 
[HerfIndexBWCitt] – Tobit results HBC (72 – 74) (Cont’d and end) 

Variables HBC (72) HBC (73) HBC (74) 
CliqnessPat3t 0.0012 *** 0.0012 *** 0.0012 *** 
  (0.0003)  (0.0003)  (0.0003)  
dAcAssigneet -3.5178  -3.4815  -3.4748  
  (2.3901)  (2.3901)  (2.3901)  
dNanoEx 2.7683  2.8721  2.8954  
  (2.7291)  (2.7337)  (2.7345)  
dPGPt -5.3643  -8.3549  -1.5733  
  (19.9155)  (20.5129)  (29.5809)  
dPGPt × CliqnessArt3t      -1.7204  
      (5.4069)  
dPGPt ×  NbClaimst  2.6957  2.3746  2.4420  
  (7.0838)  (7.0980)  (7.1008)  
dPGPt × BtwCentArt3t   5.9256  6.2607  
    (9.9508)  (10.0059)  
dPGPt × [BtwCentArt3t]2   -0.0471  -0.0433  
    (0.1655)  (0.1659)  
Constant 58.6333 *** 58.6444 *** 58.3535 *** 
  (6.9351)  (6.9360)  (6.9958)  
Constant (Sigma) 31.8868 *** 31.8795 *** 31.8777 *** 
  (0.7566)  (0.7564)  (0.7564)  
Nb observations 1110  1110  1110  
Chi Square 117.196  117.662  117.763  
Pseudo R2 0.0117  0.0118  0.0118  
P value 0.0000  0.0000  0.0000  
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APPENDIX I – T-TEST AND TEST OF VARIANCE 

 

Table I.1 : Mean comparison between patent–paper pairs / non-patent–paper pairs groups for 
forward citation 

Over Nb Observations Mean Std.Err. [95% Conf. Interval] 
(NbFCit5t)]      
No patent–paper pairs 940 0.6073 0.0233 0.5615 0.6530 
Patent–paper pairs 170 0.5471 0.0465 0.4558 0.6383 

 

Table I.2 : Test of variances for patent–paper pairs / non-patent–paper pairs 

Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
No patent–paper pairs 940 0.6073 0.0233 0.7151 0.5615 0.6530 
Patent–paper pairs 170 0.5471 0.0465 0.6063 0.4553 0.6389 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 

ratio = sd(0) / sd(1)                                                   f =   1.3914 
Ho: ratio = 1                                                             degrees of freedom = 939, 169 
Ha: ratio < 1                  Ha: ratio!= 1                      Ha: ratio > 1 
Pr(F < f) = 0.9961         2*Pr(F > f) = 0.0078           Pr(F > f) = 0.0039 
 

Table I.3 : Two-sample t-test with equal variances patent–paper pairs / non-patent–paper pairs 

Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
No patent–paper pairs 940 0.6073 0.0233 0.7151 0.5615 0.6530 
Patent–paper pairs 170 0.5471 0.0465 0.6063 0.4553 0.6389 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 
Diff  0.0602 0.0583  -0.0542 0.1746 

diff = mean(0) - mean(1)                                       t =   1.0321 
Ho: diff = 0                                                             degrees of freedom = 1108 
Ha: diff < 0                   Ha: diff != 0                      Ha: diff > 0 
Pr(T < t) = 0.8489         Pr(|T| > |t|) = 0.3022          Pr(T > t) = 0.1511 
 

Table I.4 : Mean comparison between exclusive academic assignees / non-academic assignees 
groups for forward citation  

 Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
(NbFCit5t)]       
Not Academic Assignees 1075 0.6019 0.0214 0.7029 0.5598 0.6439 
Academic Assignees 35 0.4802 0.0991 0.5863 0.2788 0.6816 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 
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Table I.5 : Test of variance for exclusive academic assignees / non-academic assignees 

 Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
Not Academic Assignees 1075 0.6019 0.0214 0.7029 0.5598 0.6439 
Academic Assignees 35 0.4802 0.0991 0.5863 0.2788 0.6816 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 

ratio = sd(0) / sd(1)                                                     f =   1.4374 
Ho: ratio = 1                                                               degrees of freedom = 1074, 34 
Ha: ratio < 1                   Ha: ratio!= 1                        Ha: ratio > 1 
Pr(F < f) = 0.9055         2*Pr(F > f) = 0.1890             Pr(F > f) = 0.0945 
 

Table I.6 : t-test with equal variances for exclusive academic assignees / non-academic assignees 
Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
Not Academic Assignees 1075 0.6019 0.0214 0.7029 0.5598 0.6439 
Academic Assignees 35 0.4802 0.0991 0.5863 0.2788 0.6816 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 
Diff  0.1217 0.1202  -0.1141 0.3575 

diff = mean(0) - mean(1)                                        t =   1.0127 
Ho: diff = 0                                                             degrees of freedom = 1108 
Ha: diff < 0                     Ha: diff != 0                    Ha: diff > 0 
Pr(T < t) = 0.8443         Pr(|T| > |t|) = 0.3114          Pr(T > t) = 0.1557 

 

Table I.7 : Mean comparison between exclusive government assignee / non-government assignee 
groups for forward citations 

Over Nb Observations Mean Std.Err. [95% Conf. Interval] 
(NbFCit5t)]       
Not Government Assignees 932 0.6127 0.0233 0.5670 0.6584 
Government Assignees 178 0.5212 0.0476 0.4277 0.6146 

 
Table I.8 : Test of variances for exclusive government assignees / non-government assignees 

Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
Not Government Assignees 932 0.6127 0.0233 0.7106 0.5670 0.6584 
Government Assignees 178 0.5212 0.0476 0.6354 0.4272 0.6152 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 

ratio = sd(0) / sd(1)                                                  f =   1.2507 
Ho: ratio = 1                                                            degrees of freedom = 931, 177 
Ha: ratio < 1                   Ha: ratio!= 1                     Ha: ratio > 1 
Pr(F < f) = 0.9680         2*Pr(F > f) = 0.0639          Pr(F > f) = 0.0320 
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Table I.9 : t-test with unequal variances for exclusive government assignees / non-government 
assignees 

Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
Not Government Assignees 932 0.6127 0.0233 0.7106 0.5670 0.6584 
Government Assignees 178 0.5212 0.0476 0.6354 0.4272 0.6152 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 
Diff  0.0915 0.0530  -0.0128 0.1959 

diff = mean(0) - mean(1)                                        t =   1.7267 
Ho: diff = 0                                                             Satterthwaite's degrees of freedom = 268.74 
Ha: diff < 0                    Ha: diff!= 0                      Ha: diff > 0 
Pr(T < t) = 0.9573         Pr(|T| > |t|) = 0.0854          Pr(T > t) = 0.0427 
 

Table I.10 : Mean estimation for patent–grant pairs / non-patent–grant pairs groups for forward 
citation 

Over Nb Observations Mean Std.Err. [95% Conf. Interval] 
(NbFCit5t)]      
No patent–grant pairs 1069  0.6110 0.0214 0.5689 0.6531 

Patent–grant pairs 41 0.2597 0.0879 0.0872 0.4322 

 

Table I.11 : Test of variance for patent–grant pairs / non-patent–grant pairs 
Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
No patent–grant pairs 1069 0.6110 0.0214 0.7013 0.5689 0.6531 

Patent–grant pairs 41 0.2597 0.0879 0.5629 0.0821 0.4374 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 

ratio = sd(0) / sd(1)                                                   f =   1.5524 
Ho: ratio = 1                                                             degrees of freedom = 1068, 40 
Ha: ratio < 1                  Ha: ratio!= 1                      Ha: ratio > 1 
Pr(F < f) = 0.9585         2*Pr(F > f) = 0.0829           Pr(F > f) = 0.0415 

 

Table I.12 : Test of means if unequal variance between groups for patent–grant pairs / non-
patent–grant pairs 

Group Obs Mean Std.Err. Std.Dev. [95% Conf. Interval] 
No patent–grant pairs 1069 0.6110 0.0214 0.7013 0.5689 0.6531 

Patent–grant pairs 41 0.2597 0.0879 0.5629 0.0821 0.4374 
Combined 1110 0.5980 0.0210 0.6996 0.5568 0.6392 
Diff  0.3513 0.0905  0.1690 0.5336 

diff = mean(0) - mean(1)                                        t =   3.8824 
Ho: diff = 0                                                             Satterthwaite's degrees of freedom = 44.8991 
Ha: diff < 0                    Ha: diff != 0                     Ha: diff > 0 
Pr(T < t) = 0.9998         Pr(|T| > |t|) = 0.0003          Pr(T > t) = 0.0002  
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APPENDIX J – STANDARD TERMS, APA FORMAT 

Table J.1 : Guide to usage of en dash (–) and hyphen (-) in key phrases in this research 

University–industry 
linkages 

en dash (–) Refers to the links between university and industry 

Authors-inventors hyphen (-) Refers to authors who are also inventors (same person) 

 Author–inventor en dash (–) Refers to an author who is paired with an inventor 
(different people) 

Patent–paper pair en dash (–) Indicates a pair consisting of a patent and a paper 

Patent–grant pair en dash (–) Indicates a pair consisting of a patent and grant 

Co-authorship hyphen (-) Collaborative network of authors 

Co-invention hyphen (-) Collaborative network of inventors 

Co-assignees hyphen (-) Collaborative network of assignees 

Bayh–Dole Act en dash (–) US legislation allowing public patentees (including 
universities) with government funding to claim private 
patent ownership 

Reference: (Publication manual of the American Psychological Association  2010, p. 97) 
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APPENDIX K – CORRELATION MATRIX 

 

Table K.1 : Correlation matrix of the model linked to patent–paper pairs similarity [Similarityt] 
  1 2 3 4 5 6 7 8 
[Grant3t] a 1 1        
[Contract3t] a 2 0.5590* 1       
[Contract3Ut-2] a 3 0.6009* 0.5243* 1      
[GrantEI3t-1] a 4 0.4830* 0.3333* 0.3325* 1     
[Aget] a 5 0.0478 0.0302 0.0586 0.1199* 1    
[MaxChairt ] 

a 6 0.2571* 0.2187* 0.1950* 0.3312* 0.0872* 1   
[ArtCit3t] a 7 0.1705* 0.1824* 0.0949* 0.1194* 0.1932* 0.0890* 1  
[BtwCentArt3t] a 8 0.2231* 0.1762* 0.2408* 0.1738* -0.0104 0.0483 0.4939* 1 
CliqnessArt3t  9 0.0111 0.0743* 0.0433 0.0458 -0.2250* -0.033 0.1018* 0.3290* 
[CliqnessPat3t] a 10 0.1428* -0.015 0.0590* 0.0825* 0.0983* 0.0431 -0.1390* -0.2850* 
[BtwCentPat3t] a 11 -0.3587* -0.1526* -0.2229* -0.0822* 0.0646* -0.0673* 0.1209* 0.1285* 
Loop 12 0.2393* 0.3103* 0.1390* 0.1410* 0.0727* 0.0818* 0.0864* -0.0610* 
dAcAssigneet 13 0.1216* -0.0097 -0.025 0.0636* -0.1127* 0.0391 0.0577 -0.012 
dNanoEx 14 -0.0071 -0.0649* -0.0036 0.0799* 0.0935* -0.0251 -0.0429 0.0108 
Similarityt a 15 0.0856* 0.0177 -0.0223 0.0041 -0.1585* -0.0113 0.1253* 0.1381* 

 

  9 10 11 12 13 14 15 
CliqnessArt3t  9 1       
[CliqnessPat3t] a 10 -0.2286* 1      
[BtwCentPat3t] a 11 0.2561* -0.4697* 1     
Loop 12 -0.1775* 0.0990* -0.1417* 1    
dAcAssigneet 13 -0.1416* 0.1299* -0.2380* 0.2458* 1   
dNanoEx 14 -0.1183* 0.1229* -0.1135* -0.0349 0.0077 1  
Similarityt a 15 0.1314* -0.1021* 0.0334 0.1054* 0.2618* -0.1275* 1 
Note: (a) All the variables have been calculated by Z Score (Z) = x – µ / σ, µ=mean and σ = standard 
deviation. Furthermore, * corresponds to a 1% significance level. 
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Table K.2 : Correlation matrix of the model related to academic [dAcAssigneet] and government assignees [dGovAssigneet] 
Variables  1 2 3 4 5 6 7 8 
NbFCit5t 1 1        
NbClaimst 2 0.1166* 1       
HerfIndexFCit5t  3 -0.1213* 0.0288 1      
HerfIndexBWCitt  4 -0.0146 0.1068* 0.0642* 1     
Grant3t 5 0.0359 0.0047 -0.0539 -0.0021 1    
Aget 6 -0.1205* 0.0749* 0.0016 0.1566* 0.0639* 1   
MaxChairt  7 0.0089 0.0041 0.011 -0.0375 0.2571* 0.1194* 1  
ArtCit3t 8 -0.0783* -0.0844* 0.0205 0.0545 0.1705* 0.1773* 0.0890* 1 
BtwCentArt3t 9 0.0468 -0.0993* -0.0071 -0.0095 0.2231* -0.0181 0.0483 0.4939* 
CliqnessArt3t  10 0.0633* -0.1281* -0.0397 -0.0382 0.024 -0.0811* -0.0392 0.1715* 
BtwCentPat3t 11 -0.0493 -0.0446 0.0235 0.0118 -0.3587* 0.1032* -0.0673* 0.1209* 
CliqnessPat3t 12 0.0042 0.0986* 0.0129 0.0860* 0.1428* 0.0695* 0.0431 -0.1390* 
Loop 13 -0.0545 -0.0078 -0.0399 0.0081 0.2393* 0.1028* 0.0818* 0.0864* 
dNanoEx 14 0.1387* 0.1890* -0.025 0.0526 -0.0071 0.0082 -0.0251 -0.0429 
dGovAssigneet 15 -0.0304 0.0025 -0.0367 -0.0920* 0.0109 0.0033 -0.0301 -0.0182 
dAcAssigneet  16 -0.048 -0.0382 -0.002 -0.0814* 0.1629* -0.1085* 0.0427 0.0422 

 

Variables  9 10 11 12 13 14 15 16 
BtwCentArt3t 9 1        
CliqnessArt3t  10 0.3822* 1       
BtwCentPat3t 11 0.1285* 0.2478* 1      
CliqnessPat3t 12 -0.2850* -0.2405* -0.4697* 1     
Loop 13 -0.0610* -0.1069* -0.1417* 0.0990* 1    
dNanoEx 14 0.0108 -0.1055* -0.1135* 0.1229* -0.0349 1   
dGovAssigneet 15 0.0019 0.0151 -0.1060* 0.0306 -0.0973* 0.0176 1  
dAcAssigneet  16 -0.0257 -0.0876* -0.2281* 0.1272* 0.2463* -0.0079 -0.0789* 1 

Note: * corresponds to a 1% significance level. 
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Table K.3 : Correlation matrix of the model including patent–grant pairs [dPGPt] 

Variables  1 2 3 4 5 6 7 8 
NbFCit5t 1 1        
NbClaimst 2 0.1166* 1       
HerfIndexFCit5t  3 -0.1213* 0.0288 1      
HerfIndexBWCitt  4 -0.0146 0.1068* 0.0642* 1     
Grant3t 5 0.0359 0.0047 -0.0539 -0.0021 1    
Aget 6 -0.1205* 0.0749* 0.0016 0.1566* 0.0639* 1   
MaxChairt  7 0.0089 0.0041 0.011 -0.0375 0.2571* 0.1194* 1  
ArtCit3t 8 -0.0783* -0.0844* 0.0205 0.0545 0.1705* 0.1773* 0.0890* 1 
BtwCentArt3t 9 0.0468 -0.0993* -0.0071 -0.0095 0.2231* -0.0181 0.0483 0.4939* 
CliqnessArt3t  10 0.0633* -0.1281* -0.0397 -0.0382 0.024 -0.0811* -0.0392 0.1715* 
BtwCentPat3t 11 -0.0493 -0.0446 0.0235 0.0118 -0.3587* 0.1032* -0.0673* 0.1209* 
CliqnessPat3t 12 0.0042 0.0986* 0.0129 0.0860* 0.1428* 0.0695* 0.0431 -0.1390* 
Loop 13 -0.0545 -0.0078 -0.0399 0.0081 0.2393* 0.1028* 0.0818* 0.0864* 
dAcAssignee t  14 -0.0673* -0.0135 0.0144 -0.0712* 0.1325* -0.0716* 0.0383 0.0608* 
dNanoEx 15 0.1387* 0.1890* -0.025 0.0526 -0.0071 0.0082 -0.0251 -0.0429 
dPGPt 16 -0.0947* 0.0317 0.0725* 0.0239 0.0577 0.045 0.0431 0.013 

 

 

 

 

 

Note: * corresponds to a 1% significance level. 

Variables  9 10 11 12 13 14 15 16 

BtwCentArt3t 9 1        
CliqnessArt3t  10 0.3822* 1       
BtwCentPat3t 11 0.1285* 0.2478* 1      
CliqnessPat3t 12 -0.2850* -0.2405* -0.4697* 1     
Loop 13 -0.0610* -0.1069* -0.1417* 0.0990* 1    
dAcAssigneet  14 0.0157 -0.0944* -0.2153* 0.0870* 0.2965* 1   
dNanoEx 15 0.0108 -0.1055* -0.1135* 0.1229* -0.0349 0.0041 1  
dPGPt 16 -0.004 -0.0322 -0.0995* 0.0451 0.0202 0.0925* 0.1068* 1 


