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RESUME

Cette these traite du développement d’instrumentation pour I'imagerie médicale optique. Ces
travaux sont centrés sur une application particuliere ; faciliter 'identification des tissus durant
les chirurgies de la thyroide et de la parathyroide. La thyroide est une glande située dans le
cou, attachée au larynx a la hauteur de la pomme d’Adam. Elle est entourée de plusieurs
structures importantes : muscles, nerfs et glandes parathyroides. Ces dernieres controlent la
calcémie et jouent donc un role essentiel dans le corps. Elles sont toutefois de petite taille
et sont tres difficiles a distinguer du gras et des ganglions environnants. L’objectif principal
de cette these est de développer une instrumentation basée sur la microscopie optique pour
permettre l'identification des tissus : thyroide, parathyroide, gras et ganglions, durant les
chirurgies. Les choix sont donc faits en fonction de cette application et du contexte spécifique

des mesures intra-opératoires sur des patients humains.

Plusieurs modalités d’imagerie optique sont identifiées pour atteindre 'objectif : microsco-
pie confocale en réflectance, tomographique par cohérence optique, et mesure de I'autofluo-
rescence des glandes parathyroides. Dans le but d’améliorer leur compatibilité avec ’envi-
ronnement clinique qui requiert stabilité dans le temps et résistance aux vibrations et aux
conditions environnementales, ce projet se concentre sur les implémentations miniaturisables

et basées sur des fibres optiques.

Pour implémenter un systéme d’imagerie en fluorescence a balayage laser rapide, un sys-
teme d’imagerie en fluorescence par encodage spectral est proposé. Bien que 'utilisation de
I’encodage spectral semble a priori incompatible avec le contraste en fluorescence, une implé-
mentation facile a réaliser est proposée. Une seconde version du montage, compatible avec la
clinique et facilitant le développement d’un endoscope, est présentée. La preuve de principe
de cette méthode est faite a 1300 nm, une longueur d’onde qui n’est pas appropriée pour la
fluorescence intrinseque des parathyroides. Pour adresser cette lacune, une nouvelle source
laser a balayage centrée a 780nm a haute puissance (100mW) est montrée. Ces dévelop-
pements sont compatibles avec I'implémentation de la microscopie confocale en réflectance
identifiée pour I'identification des tissus durant les chirurgies de la thyroide. Cela permet de
développer un montage combinant le contraste en réflectance et en fluorescence dans le méme

instrument.

La microscopie confocale en réflectance posseéde une tres grande résolution permettant 1'exa-
men au niveau cellulaire des tissus. Cette technique souffre toutefois d'un faible rapport

signal sur bruit et d'un bruit de tavelure important, réduisant I'interprétabilité des images.
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L’utilisation de fibres a double gaine pour améliorer ce point faible a déja été proposé, mais
la séparation des signaux se propageant dans les deux zones guidantes de la fibre est un défi.
Des coupleurs ont déja été fabriqués en fibre a double-gaine, mais il est prédit qu’il n’est pas
possible de fabriquer un coupleur efficace avec la fibre adaptée a la microscopie confocale.
Une toute nouvelle fibre est congue pour répondre aux besoins spécifiques de la microsco-
pie confocale. Un nouveau design de coupleur en fibre a double gaine couplé a une nouvelle
méthode de fabrication incluant un pré-traitement des fibres est proposé. Le composant fa-
briqué de cette maniere offre des avantages indéniables pour I'imagerie : augmentation du
signal détecté d’un facteur 30, réduction du contraste du bruit de tavelure d’un facteur 4 et
augmentation de la résistance aux vibrations avec un coupleur en fibre optique monolithique

et un montage auto-aligné par 1'utilisation de cette fibre optique.

Ces deux nouvelles améliorations sont combinées dans un microscope tri-modal combinant
la microscopie confocale en réflectance par encodage spectral, I'imagerie en fluorescence par
encodage spectral et la tomographie par cohérence optique. Ce microscope permet I'imagerie
co-enregistrée dans les trois modalités simultanément. La simultanéité est possible par le dé-
veloppement d’un laser a double bande combinant le laser a 780 nm précédemment développé
et un laser a balayage en longueur d’onde a 1300 nm. Un logiciel est développé pour permettre
I’acquisition, le traitement, I'affichage et I'enregistrement des données simultanément sur les
trois canaux. Ce microscope est utilisé pour valider le contraste et les synergies entre les dif-
férentes modalités dans le but de sélectionner les modalités les plus adaptés a I'identification
intra-opératoire des tissus du cou. Des images de tissu thyroidien, parathyroidien, adipeux
et ganglionnaire porcins sont présentées pour montrer les différences entre les tissus dans

chaque modalité.

Un protocole d’imagerie sur des tissus humain ez vivo est élaboré. Les tissus sont imagés en
salle de chirurgie directement apres leur extraction avec un systeme de tomographie par cohé-
rence optique. Cette modalité est choisie, car elle offre une bonne profondeur de pénétration
et un grand champ de vue qui permettent de bien observer les tissus. Un systéme distinct
est utilisé pour mesurer I'autofluorescence des glandes parathyroides humaines. L’étude est
réalisée en collaboration avec le département d’otorhinolaryngologie, particulierement le Dr.
Tareck Ayad qui mene I’étude. Trente patients sont recrutés pour cette étude permettant
d’imager plus de 100 échantillons sains et pathologiques différents et obtenir plus de 160
volumes tridimensionnels distincts. Ces données sont évaluées qualitativement et quantitati-
vement, et comparées avec ’histopathologie qui est le standard de diagnostic médical. Qua-
litativement, des criteres sont établis permettant de distinguer les différents tissus basés sur
les images. Quantitativement, un algorithme de classification des données a base de réseaux

de neurones permet d’identifier automatiquement les tissus en lui présentant une image. Des
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taux de précision de classification supérieurs a 90 % sont atteints en classant les thyroides,
les parathyroides et le tissu adipeux. L’autofluorescence de la thyroide et de la parathyroide
est aussi mesuré, permettant d’estimer la puissance émise par un échantillon. Une des forces
de cette étude est qu’elle inclue des tissus sains et pathologiques pour étendre le champ d’ap-
plication dans les cas de maladie de la parathyroide (adénome parathyroidien) et de cancer
de la thyroide.

Un nouveau protocole est préparé pour reproduire les données dans un contexte in vivo en
prenant des mesures sur des patients durant les chirurgies de la thyroide ou de la parathyroide.
Deux prototypes de sonde a main sont développés pour réaliser des mesures in vivo avec
la tomographie par cohérence optique. Le deuxieme prototype est une sonde en contact,
recouverte par un sac stérile pour prendre des mesures in vivo. La caractérisation de la
sonde correspond bien avec la modélisation numérique réalisée. Huit patients sont recrutés
dans I'étude et plus de 30 spécimens différents sont imagés. L’utilisation des criteres établis
durant I’étude ex vivo pour interpréter les images permet de bien reconnaitre les tissus. La
sonde est rapide a préparer pour les mesures in vivo et facile a utiliser. Un exemple de tissu
mal identifié par le chirurgien, mais correctement identifié avec la sonde est présenté. Cette
étude pilote présente de résultats encourageants et ouvre la voie a une étude de plus grande

importance pour recruter un plus grand nombre de patients.

Les étapes futures envisagées pour ce projet incluent entre autres un recrutement de plus
grande envergure pour les études ex vivo et in vivo. Ce plus grand nombre d’échantillons
permettra de couvrir davantage de cas pathologiques, fréquemment rencontrés lors des chi-
rurgies. Un nouveau design de sonde est proposé a la suite de I'étude pilote in vivo, suivant
les recommandations issues des discussions avec 1’équipe médicale. Ces travaux ont généré
un grand intérét autant pour les contributions en ingénierie optique que pour les nouvelles
perspectives médicales. Ce projet adresse un besoin concret des chirurgiens et promet de

faciliter leur travail dans le futur.
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ABSTRACT

This thesis aims to develop optical imaging instrumentation for mouth and throat tissue
identification. This work is centered on a specific application, helping the surgeons to identify
parathyroid glands during thyroid and parathyroid surgery. The thyroid gland is located in
the neck, attached to the larynx near the Adam’s apple cartilage. This gland is surrounded
by some important structures, namely muscles, nerves and parathyroid glands. The latter
play an important role in controlling the blood calcium level. These glands are very small and
challenging to identify because they can macroscopically look like adipose tissue or lymph
nodes. The main objective of this thesis is to develop dedicated instrumentation for intra-
operative identification of neck tissue to help locate and preserve the parathyroid glands

while removing the thyroid gland.

A few optical imaging modalities have been proposed in literature to help regarding this
difficulty. The ones we have retained are reflectance confocal microscopy (RCM), optical
coherence tomography (OCT) and fluorescence imaging. In order to translate these optical
imaging modalities to a clinical setting, implementations have been selected based on their
potential for miniaturization and robustness to environmental conditions. These implemen-

tations are based on the use of optical fibers and fibered components.

To implement a rapid method for laser scanning fluorescence imaging, a novel spectrally
encoded fluorescence imaging scheme is developed. Albeit fluorescence seems incompatible
with spectral encoding, the implementation suggested here is simple and yields high pixel
density images at high line rates. The proof-of-principle is based on a 1300 nm wavelength-
swept source by imaging fluorescent quantum dots. For this system to be useful in a thyroid
surgery application setting, a novel 780 nm-centered high power wavelength-swept laser is
developed. This source can be used to excite the intrinsic fluorescence of the parathyroid
glands. This allows for the combination of a reflectance and fluorescence imaging in the same

setup.

Reflectance confocal microscopy is another candidate technique for intra-operative tissue
identification, because it allows for high resolution cellular imaging on thick samples. How-
ever, this modality generally suffers from high speckle noise and poor signal-to-noise ratio
as imaging depth increases. The use of double-clad fibers has been proposed in the litera-
ture to alleviate these issues, but signal separation is still complicated. A double-clad fiber
can be used for coherent illumination of the sample through the single-mode core and high

efficiency collection through the carefully designed inner cladding. The challenge is to sep-
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arate the signal traveling in the core from the one traveling in the inner cladding. A beam
splitter approach is generally used, but leads to high losses and vulnerability to mechanical
vibrations and misalignment. Double-clad fiber couplers have been developed in other cases,
but it was thought impossible to fabricate such a coupler for efficient confocal microscopy
through a double-clad fiber. This coupler was developed during the thesis and leads to a

30-fold increase in signal collection and a 4-fold reduction in speckle contrast.

These two aforementioned improvements have been used to combine the three optical imaging
modalities identified as candidates for intra-operative tissue identification: reflectance confo-
cal microscopy, spectrally encoded fluorescence imaging and optical coherence tomography.
A custom microscope was built and allows for simultaneous, co-registered imaging in all three
modalities. This was made possible by the development of a dual-band wavelength-swept
laser based around the 780 nm laser previously demonstrated. A novel imaging software was
also developed by the candidate for real-time acquisition, processing, display and saving of
data in all three channels. Swine ez vivo samples of thyroid, parathyroid, adipose tissue and

lymph node were imaged with the tri-modal microscope.

Moving forward towards the end goal, a research protocol based on OCT imaging on freshly
excised human specimens from surgery was submitted to the institutional ethics committee
for approval. Human tissue samples are imaged in the surgery room on a cart-mounted
OCT imaging system optimized for this application. Thirty patients were recruited in this
study and more than 100 different specimens were imaged, yielding more than 160 different
OCT volumes of 10mm x10mm x10mm. Qualitative and quantitative analysis was carried
out and confirmed with histopathology, the gold standard in medical diagnosis. More than
90 % accuracy was achieved with neural network automated classification. Parathyroid aut-
ofluorescence signal was also detected with a different probe specially designed to measure
extremely low signals. Pathological specimens were also studied to extend the application

field to parathyroid surgery and thyroid cancer surgery.

A new research protocol was then submitted for in vivo measurements during thyroid surg-
eries. Two hand-held imaging probes were developed for intra-operative imaging. Eight
patients were recruited in the study and results are in good agreement with the previous ex
vivo study. The contact imaging probe is easy to handle and can access most tissue in the
surgical opening. The qualitative criteria established during ez vivo imaging proved to be
reliable in an in vivo context. Some tissue mistakenly identified by the surgeon were correctly
identified with the imaging probe. This pilot study showed the potential of optical imaging

for intra-operative tissue identification.

Future steps of this project include the recruitment of more patients to increase the reliability



of the results and extend to more pathologies. This project sparks the interest of the medical
community and targets a real need for surgeons. In the future, this instrument paves the

way towards a reliable instrument to be used in thyroid and parathyroid surgeries.
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CHAPITRE 1 INTRODUCTION

De nos jours, les chirurgies de la glande thyroide font partie des procédures chirurgicales les
plus siires [4, 5]. Cela n’a toutefois pas toujours été le cas. En 1866, Samuel Gross ! comparait
le chirurgien de la thyroide a un boucher : lucky will it be for him if his victim lives long
enough to survive his hard butchery [4]. Heureusement, la médecine a beaucoup évolué et
la pratique de la thyroidectomie est devenue commune et sécuritaire. Theodor Kocher est
considéré comme le pere de la chirurgie de la thyroide. Son travail fut récompensé par un prix
Nobel de médecine en 1909 «pour ses travaux sur la physiologie, la pathologie et la chirurgie
de la thyroide» [6]. Ses travaux ont permis d’établir les bases pour rendre les chirurgies de la

thyroide stires.

1.1 Contexte médical

Plusieurs pathologies peuvent affecter la glande thyroide. Les désordres de la thyroide re-
groupent I’hyperthyroidisme (sur-production d’hormones), I’hypothyroidisme (sous-production
d’hormones), la thyroidite (inflammation de la glande) et les nodules, qui peuvent se révéler
bénins ou cancéreux. Toutes ces conditions peuvent aussi mener a un goitre, c’est-a-dire une
augmentation importante du volume de la glande [7]. L’ablation chirurgicale de la thyroide,
une procédure appelée thyroidectomie, peut étre recommandée pour des cas bénins et pour la
tres grande majorité des cas de cancer [8, 9]. Dans ces derniers cas, la chirurgie peut précéder
un traitement adjuvant tel I'iode radioactif ou parfois la radiothérapie externe qui ont pour
but d’éliminer des cellules cancéreuses qui pourraient potentiellement persister. Au Canada
en 2015, 6300 nouveaux cas de cancer de la thyroide ont été diagnostiqués [10]. Heureuse-
ment, le taux de mortalité est tres faible, 185 personnes étant décédées d’un cancer de la
thyroide en 2010 au Canada. Le traitement chirurgical est donc tres efficace. Le cancer de
la thyroide présente le plus haut taux d’augmentation de nouveaux cas chaque année [10],
il faut donc s’attendre a une augmentation du nombre de thyroidectomies réalisées dans les

prochaines années.

1.1.1 Anatomie

La glande thyroide est une glande située dans le cou [4]. Sa forme est comparée a celle d'un

papillon, car elle est constituée de deux lobes rattachés ensemble par un isthme plus fin

1. Samuel D. Gross a été un des fondateurs de l’association américaine de médecine et le fondateur et
premier président de I'association américaine de chirurgie.



comme on peut 'observer sur la figure 1.1. Elle est attachée au larynx vis-a-vis du cartilage
thyroidien (pomme d’Adam) et aux anneaux supérieurs de la trachée. Elle est recouverte

d’une couche fibreuse appelée capsule dont I’épaisseur varie entre 100 pm et 1 mm.

(@) (b)

S — Thyroid gland

— Glande thyroide gf?% l \

Parathyroid gland

Figure 1.1 (a) Glande thyroide (vue de face). (b) Thyroide et parathyroides (vue de dos).

Plusieurs structures se retrouvent dans cette région du cou. De nombreux vaisseaux sanguins,
dont la carotide et la jugulaire, passent pres de la glande thyroide. La thyroide est elle-méme
tres bien irriguée et contient beaucoup de sang. Plusieurs muscles doivent étre écartés pour
atteindre la glande lors d'une chirurgie. Des nerfs importants dont les nerfs récurrents laryngés

passent tres pres de la glande thyroide et doivent étre identifiés et préservés.

D’autres glandes, appelées glandes parathyroides, sont aussi localisées a proximité de la
thyroide. Les parathyroides normales font environ 3 & 4mm de longueur et ont une forme
légerement allongée. Elles sont accolées a la mince capsule qui entoure la glande thyroide, tel
que montré a la figure 1.1 (b). Leur petite taille et position anatomique pourrait expliquer
pourquoi leur découverte fut aussi tardive [11, 12]. La découverte de la parathyroide est attri-
buée a Richard Owen en 1850. L’identification, la description histologique et le nom ont été
attribués a Ivar Sandstrom, dans un article publié en 1880. Il se passa de nombreuses années
sans que la fonction de ces glandes ne soit découverte. Ces glandes régulent la concentration
de calcium dans le sang a travers la production d’une protéine, I’hormone parathyroidienne.
Cette hormone controle entre autres la réabsorption du calcium et la dégradation des os pour
augmenter la concentration de calcium sanguin. Ce calcium sanguin est impliqué dans la
contraction des muscles. Une défaillance de ces glandes peut entrainer de séveres problemes
osseux et des contractions tétaniques des muscles, pouvant entrainer la mort suite a une obs-
truction des voies respiratoires ou une arythmie. Ces problémes sont toutefois extrémement

rares de nos jours [13], car un suivi post-opératoire de la calcémie est effectué.



1.2 Problématique

Bien que la pratique de la thyroidectomie ait grandement évolué, il existe toujours des risques
de complications post-opératoires [14]. La plus morbide est probablement une atteinte au nerf
récurrent laryngé, qui peut causer la paralysie d’une corde vocale. Cela entraine des problemes
de déglutition et de parole. De nombreux travaux ont été consacrés a cette problématique.
Ces travaux ont mené a de nouvelles pratiques ou le nerf est systématiquement identifié et
protégé. Un nouvel outil sous la forme d’un neurostimulateur permet de vérifier I'intégrité du
nerf durant la chirurgie en mesurant son activité électrique. Cependant, cette complication

est rare, n’advenant que dans 1 a 2% des cas.[15]

La complication la plus fréquente est toutefois 'hypocalcémie, résultat d'une dévasculari-
sation d'une ou de plusieurs glandes parathyroides. Les glandes peuvent avoir été retirées
accidentellement, et peuvent parfois méme se retrouver a l'intérieur de la capsule thyroi-
dienne. Cette hypocalcémie peut étre temporaire, dans 7% a 25% [16] des cas selon les
études. Elle peut aussi étre définitive dans une moindre proportion, de 0.4 a 13.8% [17].
Dans le deux cas, ces complications entrainent une hospitalisation prolongée et des cotits im-
portants pour le systéme de santé, car le patient doit étre pris en charge sur une plus longue
période. En considérant seulement I'augmentation du temps de convalescence post-chirurgie,
les cotits passent de 2 534% & 8 367$ par patient dans les cas d’hypocalcémie post-opératoire
pour les patients sur le territoire québécois [18]. Ceci a aussi un impact important pour le
patient, car lorsque I'hypocalcémie est définitive, il doit prendre des suppléments de calcium
et de vitamine D pour le reste de ses jours. A long terme, il doit aussi <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>