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RESUME

Le procédé de fabrication de I'aluminium consomme énormément d’énergie. Le Canada est
le 4¢ producteur mondial d’aluminium et 90% de la production est effectuée au Québec,
notamment pour son abondance en ressources hydriques. Cette province produit de ’hydro-
électricité a des prix compétitifs et plusieurs producteurs d’aluminium possedent des instal-
lations au Québec. L’entreprise miniere Rio Tinto opére des alumineries dans la région du
Saguenay Lac-St-Jean et est aussi propriétaire d’un systéme de production hydroélectrique,
lui permettant de satisfaire 90% de la demande en énergie de ses alumineries. L’entreprise
achete la portion restante a Hydro-Québec et il est dans leur intérét de gérer efficacement

leur réseau hydroélectrique afin de produire le maximum d’énergie avec 1’eau disponible.

Plusieurs modeles d’optimisation sont utilisés pour gérer efficacement un systéme de produc-
tion hydroélectrique. L’un d’entre eux est le modele a court terme, aussi nommé le probleme
de chargement et de répartition optimal. Un systeme de production hydroélectrique est com-
posé de centrales, qui abritent les turbines. Il existe deux types de centrales : au fil de I'eau
et a réservoir. Les centrales au fil de I'eau possedent peu de réserve d’eau et la puissance gé-
nérée par les turbines dépend principalement du débit de ’eau. Les centrales a réservoir sont
situées a coté d’un barrage permettant de moduler le volume d’eau dans les réservoirs et ainsi
la production de puissance. La solution obtenue par cette optimisation détermine le volume
des réservoirs, les turbines en marche dans chaque centrale et le débit turbiné par chacune
d’entre elle, pour chaque pas de temps, habituellement horaire ou journalier. Ce probleme
est complexe a résoudre, car les fonctions de production sont non convexes et non linéaires.
De plus, chaque turbine a une efficacité différente et les démarrages des turbines doivent étre
limités puisqu’ils causent une usure prématurée de 1’équipement. Enfin, les précipitations
qui tombent sur les bassins hydrographiques sont incertaines, ce qui signifie que les apports
naturels d’eau dans les réservoirs sont inconnus au moment de prendre une décision. Cette
these propose une modélisation du modele a court terme pour le réseau hydroélectrique du

Saguenay Lac-St-Jean, ainsi qu’'une méthode d’optimisation stochastique pour le résoudre.

Tout d’abord, une modélisation déterministe du probleme est proposée, c’est-a-dire que les
apports naturels sont considérés connus. Un algorithme de programmation dynamique permet
de calculer des surfaces de puissance pour chaque centrale qui sont ensuite utilisées comme
fonction objectif dans la méthode d’optimisation en deux phases développée. La premiere
phase, le probleme de chargement, résout un modele non linéaire mixte en nombres entiers.

La deuxieme phase, le probleme de répartition, résout un modele linéaire en nombres entiers.
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Les résultats obtenus avec la méthode proposée sont comparés aux décisions opérationnelles
historiques et démontrent que la méthode permet d’augmenter la production d’énergie. De
plus, une comparaison avec une modélisation en une seule phase confirme que la méthodologie

proposée permet de résoudre rapidement le modele a court terme.

Ensuite, la modélisation déterministe est étendue afin de considérer des apports naturels in-
certains et un modele a court terme stochastique est développé. Une méthode de génération
d’arbres de scénarios, basée sur la minimisation de la distance imbriquée est utilisée afin de
créer les arbres de scénarios utilisés dans le modele d’optimisation, a partir de prévisions
d’apports. L’équivalent déterministe du modele stochastique est résolu, c’est-a-dire qu’un
modele déterministe est résolu a chaque noeud de 'arbre de scénarios. Un horizon roulant
est retenu pour valider le modele d’optimisation. Les prévisions d’apports sont mises a jour
quotidiennement, un arbre de scénarios est généré, le modele stochastique est résolu, la so-
lution du premier noeud est implémentée, les volumes des réservoirs sont mis a jour avec
la vraie réalisation des apports et le processus est relancé pour tout 1’horizon de planifica-
tion. Les résultats numériques comparent la solution obtenue par ’optimisation stochastique
a l'utilisation du scénario médian des prévisions dans 1’horizon roulant et démontrent que
I'utilisation d’'un modele stochastique permet de produire plus d’énergie. Des tests avec des

arbres de scénarios comportant un nombre différent d’étapes et de scénarios sont effectués.

Finalement, la complexité des arbres de scénarios, utilisés dans le modele d’optimisation a
court terme, est étudiée. La méthode de génération d’arbres de scénarios requiert des para-
metres qui sont : le nombre d’étapes, le nombre de noeuds fils par étape et 'agrégation de
chaque étape. L’horizon roulant, comportant la génération des arbres de scénarios et 1'opti-
misation, est défini comme un probleme d’optimisation boite noire et les parametres de la
méthode de génération d’arbres de scénarios sont optimisés. Le probleme consiste a maxi-
miser la production d’énergie de ’horizon roulant en considérant la valeur de ’eau restant
dans les réservoirs a la fin de I'horizon de planification et en pénalisant les démarrages de
turbines. La solution obtenue avec ’arbre permettant de maximiser I’énergie est comparée
avec 'optimisation utilisant des peignes de scénarios pour représenter l'incertitude des ap-
ports naturels. Les résultats numériques démontrent que, dans ce cas précis, I'utilisation d’un
éventail de peignes de scénarios permet d’obtenir des résultats comparables a un arbre de

scénarios complexe, mais que le temps de calcul est grandement diminué.
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ABSTRACT

Aluminium production requires huge amounts of energy. Canada is the fourth largest alu-
minium producer in the world and 90% of the production takes place in Québec, mainly for
its abundant water resources. This province produces hydropower at competitive prices and
many aluminium producers operate in Québec. The mining company Rio Tinto is one of
them and owns many aluminium plants in the Saguenay Lac-St-Jean region. This company
also owns an hydroelectric production system, which allows them to satisfy the demand in
energy of the aluminium plants at a 90% fulfillment. For the remainder, they need to buy
the energy from Hydro-Québec so it is at their advantage to operate the hydropower system

as efficiently as possible, in order to minimize their energy purchase.

Many optimization models are used to manage efficiently hydropower systems. One of them
is the short-term, or unit commitment and loading problem. An hydropower system is
composed of power plants which contains the turbines. There are two types of power plants:
run of the river and power plants with storage reservoir. Run of the river plants have small
water reserve capacities and the power production is mostly influenced by the water flow
of the river. Reservoir power plants are located beside a dam, which is used to control
the volume of water in the reservoirs to modulate power production. The solution to the
short-term scheduling problem determines the optimal unit commitment and loading, the
water flow through the turbines and the volume of water in the reservoirs, for every period,
usually hourly or daily. This problem is complex to solve since the hydropower production
functions are nonconvex and nonlinear. Also, each turbine has a different efficiency and it is
important to limit unit restarts since they cause premature wear to the equipment. Finally,
precipitations that fall on the watersheds are uncertain, which means that the reservoir
inflows are unknown when a decision is taken. This thesis proposes a modeling of the short-
term problem for the Saguenay Lac-St-Jean hydroelectric system, and proposes a stochastic

optimization model to solve it.

First, a deterministic modeling of the problem is proposed, which means that the inflows are
known. A dynamic programming algorithm is used to calculate power production functions
for each power plant, which are then used in the objective functions of a two-phase opti-
mization process. The first phase, namely the loading problem, is a nonlinear mixed integer
program. The second phase, the unit commitment, is a linear integer model. Results obtained
from the two phase optimization process are compared to historical operational decisions and

show that the method increases energy production. Also, a comparison with a modeling of
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the problem in a single optimization model confirms that the proposed methodology allows

to solve rapidly the short-term unit commitment and loading problem.

Second, the deterministic modeling is extended to consider uncertain water inflows in the
reservoirs and a stochastic short-term model is developed. A scenario tree generation method,
based on the minimization of the nested distance, is used to create scenario tree from the
inflow forecasts that are then used as input to the stochastic optimization model. The
deterministic equivalent of the model is solved, which means that a deterministic model is
solved at every node of the scenario tree. A rolling-horizon simulation is used to validate
the optimization models. Inflow forecasts are updated daily, a scenario tree is generated,
the stochastic optimization model is solved, the solution of the first scenario tree node is
implemented, reservoir volumes are updated with the real realizations of the inflows and the
process is relaunched for the whole planning horizon. Numerical results compare the solution
obtained from the stochastic optimization to the solution obtained with the use of the median
scenario of the inflows forecast only and show that the stochastic model allows to produce
more energy. Multiple numerical tests are conducted, with different numbers of stages and

scenarios in the scenario trees.

Finally, the complexity required in the structure of the scenario trees to maximize energy pro-
duction in a rolling-horizon framework is investigated. The scenario tree generation method
requires input parameters which are the number of stages, the number of child nodes at each
stage and the aggregation of the period covered by each stage. The best scenario tree param-
eters are found using a Blackbox optimization formulation of the stochastic short-term unit
commitment and loading problem that maximizes the energy production over the rolling-
horizon. Three comparisons with the stochastic short-term model are conducted. The first
one involves generating a set of scenario trees built from inflow forecast data over a rolling-
horizon. The second replaces the set of scenario trees by the median scenario. The last one
replaces the set of trees by scenario fans. Numerical results show that using a set of scenario
trees is better than using the median scenario, but using scenario fans yields a comparable

solution to using scenario trees with less computational effort.
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CHAPITRE 1 INTRODUCTION

La province de Québec est située sur un territoire riche en rivieres, ce qui en fait un endroit
de prédilection pour la production hydroélectrique. Cette province possede trois pour cent
de la réserve mondiale en eau douce et dix pour cent de son territoire en est couvert. La
production d’aluminium est un processus tres énergivore, résultant du procédé de fusion qui
permet de réduire 'alumine, obtenue a partir de bauxite, par électrolyse. Ce procédé consiste
a faire fondre le mélange d’alumine et de cryolithe dans une cuve, puis a y faire traverser un
courant électrique continu par une anode et une cathode. L’aluminium liquide se dépose ainsi
au fond de la cuve ou il peut étre récupéré. Plusieurs producteurs d’aluminium sont installés
au Québec a proximité de centrales hydroélectriques afin d’alimenter leurs usines en énergie
hydroélectrique. C’est notamment le cas de Rio Tinto, une entreprise miniere qui exploite des
usines de production d’aluminium dans la région du Saguenay Lac-St-Jean. Cette compagnie
est aussi propriétaire d'un systeme de production hydroélectrique lui permettant d’alimenter
la demande en énergie de ses usines a hauteur de 90%. Ils doivent acheter ’énergie manquante
a Hydro-Québec, donc il est primordial pour eux de gérer leur réseau hydroélectrique de
facon efficace pour produire le plus d’énergie possible avec la quantité d’eau disponible afin

de limiter leur achat d’énergie.

1.1 Définitions et concepts de base

La gestion d’un systeme de production hydroélectrique est complexe et nécessite plusieurs
processus d’optimisation. Un tel systeme est constitué de centrales hydroélectriques qui
abritent les groupes turbo-alternateurs, ou turbines, qui transforment 1’énergie mécanique
produite par la pression de I'eau sur les pales de la turbine en énergie électrique. Deux types
de centrales existent : au fil de ’eau et a réservoir. Les centrales au fil de I'eau ont peu de
réserve d’eau et la production d’énergie est surtout influencée par le débit du cours d’eau. Les
centrales a réservoir sont situées a c6té d'un barrage qui permet de moduler la production
d’énergie en variant la hauteur de chute, qui est la différence entre I’élévation de I'eau en
amont et en aval du barrage. Une conduite forcée, aussi connue sous le nom de conduite
d’amenée, relie le barrage a la centrale qui, comme son nom l'indique, permet d’amener 1’eau

a la turbine.

La figure 1.1 montre une vue en coupe d'une centrale hydroélectrique. La centrale hydroélec-
trique B est composée d'un groupe turbo-alternateur dénoté par C et D. Le bief amont, qui

est la hauteur d’eau maximale du barrage est désigné par A. La conduite d’amenée, en F,



amene ’eau retenue par le barrage a la turbine et H est la riviere en aval du barrage, ou le

bief aval est la hauteur d’eau maximale a la sortie.

Figure 1.1 Vue en coupe d’une centrale hydroélectrique. Adaptée avec permission de "Hy-
droelectric dam" par Tomia, 2008. Image sous license GFDL et CC-BY-2.5.

Plusieurs facteurs influencent la capacité de production d’énergie des centrales hydroélec-
triques et le plus important est sans contredit les précipitations qui tombent sur le bassin
hydrographique. Aussi désigné sous le nom de bassin versant, c’est le territoire sur lequel
tombent les précipitations sous forme de pluie et de neige, nommés apports naturels des
réservoirs. Ces données sont incertaines puisque les précipitations ne sont pas connues avant
de prendre une décision pour 'opération du systeme hydroélectrique. Une bonne prévision
des phénomeénes naturels est primordiale afin d’assurer la production d’énergie. Des modeles
mathématiques sont utilisés pour tenter de prévoir le plus fidelement possible les apports
naturels des réservoirs. D’autres modeles d’optimisation sont nécessaires pour répartir la
production de fagon optimale entre toutes les centrales et tous les groupes turbo-alternateurs
d’un systéme de production hydroélectrique. Plusieurs modeles permettent d’effectuer cette

gestion : long terme, moyen terme et court terme.

L’optimisation a long terme est utilisée pour déterminer le potentiel de production futur,
considérant l'incertitude des apports naturels des réservoirs et son horizon est de quelques
années. Elle n’est pas utilisée sur une base opérationnelle réguliere, mais plutot lors de mo-

difications majeures au réseau.

L’optimisation moyen terme est utilisée sur une base hebdomadaire afin d’estimer la quantité

d’eau disponible a la production. Ce modele permet de gérer les réservoirs des centrales et



rend en considération I’écoulement de 1’eau entre les centrales; les niveaux des réservoirs
) )
les apports naturels ainsi que leur incertitude et la demande en énergie, pour ne nommer que

ceux-la.

L’optimisation a court terme est nécessaire afin de déterminer comment répartir ’eau dis-
ponible a la production, obtenue de I'optimisation moyen terme, entre les turbines et les
centrales. Son horizon est court, habituellement des périodes allant de une a 24 heures sur

un horizon d’une a quelques semaines.

Cette these traite uniquement de 'optimisation a court terme.

1.2 Eléments de la problématique

Les problemes d’optimisation a court terme sont complexes a résoudre, car les fonctions de
production hydroélectrique sont non convexes. Elles sont aussi non linéaires et dépendent de
lefficacité des turbines, de la hauteur de chute nette qui est une fonction non linéaire du

débit turbiné et du volume, et, finalement, du débit turbiné unitaire.

La puissance pouvant étre générée par une turbine [106] est donnée par 1'équation :

P =n(Q) x g x Q x ha(v,Q), (L1)

ou P est la puissance en kW, n(Q) est lefficacité de la turbine, g est 1'accélération gravita-
tionnelle en m/s?, @ est le débit turbiné en m?/s, v est le volume du réservoir en hm? et h,,
est la hauteur de chute nette en m. Pour une turbine donnée, la puissance est une fonction du
débit turbiné, de la hauteur de chute nette et de l'efficacité. La hauteur de chute brute est la
différence entre le bief amont et le bief aval. Lorsque I’eau circule dans la conduite d’amenée,
la friction cause des pertes sous forme de chaleur, réduisant I’énergie. Ce phénomene crée des
pertes de charges qui doivent étre considérées dans le calcul de la puissance, avec 'utilisation
de la hauteur de chute nette, qui est la hauteur de chute brute a laquelle les pertes de charge

sont soustraites. La hauteur de chute nette est calculée par :

hn(v, Q) = hy(v) = hi(Q) — »(Q), (1.2)

olt v est le volume du réservoir en hm?, Q est le débit total a la centrale en m?/s, hy est
une fonction non linéaire retournant 1’élévation amont en m, h; est une fonction non linéaire
retournant 1’élévation aval en m et 1 est une fonction non linéaire retournant les pertes de

charge en m.

Une des particularités du systeme étudié est qu’il n’y a pas de représentation analytique des



fonctions de puissance. D’autres caractéristiques du probléeme compliquent sa résolution et

sont expliquées ci-apres.

Efficacité Chaque turbine possede sa propre courbe d’efficacité, ce qui signifie qu’elles ne
produiront pas la méme puissance pour un débit unitaire et une hauteur de chute donnés. A
titre d’exemple pour une turbine, la figure 1.2 montre que le débit turbiné unitaire maximal
est de 48 m3/s. Au-dela de cette valeur, il est nécessaire de déverser de l'eau, ce qui fait
diminuer la puissance et donc l'efficacité. Le rendement maximal de la turbine est obtenu
pour un débit de 41 m?/s. Dans ces conditions, la turbine est opérée dans sa zone optimale,

autant pour maximiser la puissance que la durée de vie de ’équipement.
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Figure 1.2 Efficacité en fonction du débit turbiné unitaire

Zones d’opération interdites Les turbines ont des zones d’opération interdites. Sous cer-
taines conditions d’opération, un vortex peut se former dans la turbine et créer des variations
de pression qui peuvent causer des dommages aux composantes mécaniques. Elles ne doivent
pas étre opérées sous ces conditions. Les zones interdites sont souvent discontinues lorsqu’une

turbine en a plusieurs.

Démarrages de turbines Les démarrages fréquents de turbines réduisent leur durée de
vie. Un démarrage peut étre considéré comme un certain nombre d’heures d’opération. Ainsi,

chaque fois qu’une turbine est démarrée, sa durée de vie est raccourcie. Cette caractéristique



est modélisée en terme de colit de démarrage dans les modeles d’optimisation. La valeur du

colit est calculée par Rio Tinto et est utilisée comme un parametre dans le modele.

Valeur de ’eau L’objectif du modele d’optimisation a court terme est de maximiser 1’éner-
gie produite. Dans un contexte d’application réel, il est crucial d’empécher 'optimisation de
vider le réservoir a la fin de I'horizon de planification puisqu’une continuité est nécessaire
d’une période a l'autre. Si 'eau a la fin de I’horizon de planification n’est pas valorisée,
I'optimisation videra le réservoir afin de turbiner toute l’eau qui s’y trouve, peu importe
qu’elle le soit de fagon efficace ou non puisque de I'énergie sera produite. Dans un modele
d’optimisation déterministe, c’est-a-dire avec un seul scénario d’apports, il y a deux facons
de s’assurer que le réservoir ne sera pas vidé. La premiere est de contraindre le volume final
du réservoir et la seconde est d’avoir une fonction valeur finale de I'eau qui valorise I'eau a
la fin de I'horizon dans l'objectif. Il est possible d’obtenir le volume final du réservoir par
un modele d’optimisation a moyen terme, par exemple. Cela signifie que les apports sont
supposés parfaitement connus tout au long de I’horizon de planification et ainsi le volume

final du réservoir peut étre obtenu et utilisé comme parametre dans le modele d’optimisation.

Or, avec un modele d’optimisation stochastique, dans lequel plusieurs scénarios d’apports
sont considérés, imposer une cible de volume final devient problématique puisque les apports
naturels sont inconnus et que chaque scénario a une probabilité de se réaliser. Cela dit, un
modele d’optimisation a moyen terme peut étre résolu pour tous les scénarios, mais chaque
scénario a une valeur de volume final différente. Ainsi, une cible finale sur le volume pourrait
ne pas étre réalisable pour un autre scénario si l'effet des conditions hydriques est négligé,
ce qui implique que la cible finale est propre a un scénario et que la solution trouvée ne sera
possiblement pas optimale. Une facon de contraindre ’optimisation a ne pas vider le réservoir
est de définir une fonction valeur de l'eau a la fin de I'horizon qui est maximisée. Cette
fonction est construite avec un modele d’optimisation moyen terme a l'aide d’un algorithme
de programmation dynamique stochastique et elle dépend du volume du réservoir. Pour les
besoins de cette these, cette fonction est élaborée par Rio Tinto et utilisée dans 'objectif du

modele d’optimisation a court terme.

1.3 Objectifs de recherche

Cette these, rédigée par articles, a pour objectif de développer un modele d’optimisation
stochastique a court terme pour le réseau hydroélectrique du Saguenay Lac-St-Jean. Le mo-
dele considere toutes les caractéristiques du probleme expliquées précédemment en plus de

tenir compte de I'incertitude liée aux apports naturels des réservoirs. Plus spécifiquement, un



modele d’optimisation stochastique a court terme est développé et permet de déterminer les
volumes des réservoirs, les débits turbinés et les turbines en marche a chaque pas de temps,

pour chaque centrale.

Le réseau hydroélectrique est composé de cinqg centrales hydroélectriques soit : Chute-Savane,
Chute-du-Diable, Shipshaw/Chute-a-Caron, Chute-des-Passes et Isle-Maligne, illustrées a la
figure 1.3. Le réseau est composé de 42 turbines et la capacité installée est de 3100 MW.
Quatre réservoirs sont disponibles et trois d’entre eux ont une capacité de stockage supérieure
a 2000 hm3. Pour les besoins de la thése, le modeéle d’optimisation & court terme est validé
sur un sous-ensemble de centrales, soit Chute-du-Diable et Chute-Savane pour le premier

article et en ajoutant Isle-Maligne pour les deuxieéme et troisiéme articles.

Lac Manouane

Chute-des-Passes

Centrale Chute-des-Passes

Chute-du-Diable
Centrale Chute-du-Diable

Centrale Chute-Savane

Lac-St-Jean

Centrale Isle-Maligne

j Centrale Shipshaw /Chute-a-Caron

Figure 1.3 Réseau hydroélectrique du Saguenay Lac-St-Jean. Les rectangles représentent des
centrales et les triangles des réservoirs.

Le premier objectif consiste a développer un modele d’optimisation déterministe a court terme
pour le réseau hydroélectrique du Saguenay Lac-St-Jean. Cet objectif permet de modéliser le
probléme a court terme et la solution obtenue par I'optimisation est comparée aux décisions
opérationnelles historiques de Rio Tinto. Le deuxieme objectif reprend cette modélisation

mais la modifie pour formuler un modele d’optimisation stochastique, c’est-a-dire que les



apports naturels sont incertains. Une méthode de génération d’arbres de scénarios, qui per-
mettent de représenter I'incertitude des apports dans le modele d’optimisation a court terme,
est utilisée. Finalement, le dernier objectif consiste a déterminer la complexité nécessaire dans
les arbres de scénarios afin d’obtenir une bonne solution au modele d’optimisation a court
terme. Pour ce faire, 'optimisation boite noire est utilisée pour optimiser les parametres de

la méthode de génération d’arbres de scénarios.

1.4 Plan de la these

Le chapitre deux présente une revue de littérature des principales méthodes d’optimisation
court terme déterministes et stochastiques, ainsi que de 'optimisation boite noire. Le troi-
sieme chapitre détaille 'organisation de la these ainsi que la démarche scientifique liant les
articles. Les chapitres quatre, cinq et six présentent les articles. Une discussion générale syn-
thétisant le travail effectué est présentée dans le chapitre sept. Finalement, la conclusion
est exposée au chapitre huit, discutant des limitations de la solution proposée ainsi que des

perspectives de recherche futures.



CHAPITRE 2 REVUE DE LITTERATURE

Les notions présentées dans ce chapitre sont nécessaires a la bonne compréhension des trois
objectifs de recherche présentés dans cette theése. Le premier objectif est de créer un modele
a court terme déterministe. Le second est d’utiliser une méthode de génération d’arbres de
scénarios afin de développer un modele d’optimisation stochastique qui considere I'incertitude
liée aux apports naturels des réservoirs. Le troisieme objectif étudie la complexité nécessaire
dans les arbres de scénarios utilisés dans le modele a court terme, en utilisant 'optimisation

boite noire pour optimiser les parametres de génération des arbres de scénarios.

Ce chapitre est découpé en plusieurs parties. Tout d’abord, le probléeme de chargement et de
répartition déterministe est abordé. Par la suite, les méthodes d’optimisation stochastiques

sont présentées. Finalement, une revue du concept d’"optimisation boite noire" est effectuée.

2.1 Meéthodes déterministes

Le premier objectif de recherche est de développer un modele déterministe. Le probleme
de chargement et de répartition optimal, ou a court terme, est complexe et plusieurs inter-
dépendances existent entre les variables qui composent ce probleme. Le volume et le débit
doivent étre optimisés simultanément, ce qui complique sa résolution. De plus, tel qu’expliqué
a l'introduction, chaque turbine possede une efficacité différente, les turbines ont des zones
d’opération interdites, et il est important de limiter les démarrages. Dans ces modeles, il n’y
a pas d’incertitude et ils sont déterministes [40, 96]. Les fonctions objectif des problemes a
court terme dépendent de la modélisation mais peuvent étre de : maximiser la production
d’énergie, minimiser les cotlits d’opération ou minimiser les pertes de production d’énergie,
par exemple. Les contraintes que I'on retrouve le plus souvent sont : les contraintes hydriques
et les bornes sur les volumes/niveaux des réservoirs et les débits. Les contraintes hydriques

représentent simplement la loi de la conservation de I'eau d’une période a l'autre.

Les principales méthodes de résolution, soient la programmation dynamique, la program-
mation mixte en nombres entiers et la relaxation lagrangienne, sont expliquées ci-apres. Une
revue récente [99] expose les différentes approches pour résoudre ce probleme. 11 est important
de spécifier qu’au Québec, les producteurs doivent absolument transiger avec Hydro-Québec,
ce qui signifie que les prix de ’énergie n’ont pas a étre considérés dans les modeles d’optimi-

sation, ce qui n’est pas le cas dans le reste du monde.



2.1.1 Programmation dynamique

Une des méthodes populaires pour résoudre le probleme de chargement et de répartition
est la programmation dynamique [24]. Cette méthode consiste a décortiquer le probléme en

sous-problémes afin d’obtenir la solution optimale de fagon récursive.

La programmation dynamique comporte des étapes et des états. Chaque sous-probleme est
une étape alors qu’a chaque étape, un état du systeme est défini. La solution est construite
par induction arriére, c¢’est-a-dire que la résolution du probléme commence a la derniere étape
et les sous-problemes sont résolus en reculant d’une étape a chaque fois, jusqu’a ce que tous
les sous-problemes soient résolus. Un de problemes majeurs de cette méthode est que, rapi-
dement, le probleme devient difficile a résoudre compte tenu du nombre de variables. En fait,
il est nécessaire de discrétiser 'espace d’états. Par exemple, en optimisation hydroélectrique,
il faut discrétiser le volume, le débit unitaire, le débit total, sans oublier qu’il faut consi-
dérer le nombre de turbines ainsi que les périodes. Evidemment, cette énumération dépend
de la modélisation du probleme. Un des avantages de la programmation dynamique est que
les non-linéarités sont traitées facilement, puisque toutes les combinaisons de variables sont

évaluées.

Afin d’illustrer la méthode, la programmation dynamique est appliquée au probleme de char-
gement des groupes, qui consiste a déterminer le débit turbiné par chaque turbine, selon un
débit total ) et un volume donné v. Chaque sous-probleme correspond a une turbine et, en
termes de programmation dynamique, une étape. Les états sont s/ € {1,2,...,r} le débit res-
tant & turbiner pour la turbine j et les variables d’optimisation sont ¢ € {1,2, min{g’, Q}},
le débit turbiné par la turbine j, ou @ est le débit maximum de la turbine j. L’objectif est
de maximiser la puissance totale. La solution est retrouvée de fagon récursive en résolvant un
sous-probléme par turbine. Pour j = n, ou n est le nombre total de turbines, la puissance op-
timale est f*/(s/) = P(s?,v), ot v est le volume donné et P est la puissance. Le débit turbiné
optimal est ¢*/ = s7. Pour les autres sous-problémes, c’est-a-dire pour j =n—1,n—2,...,1,
la puissance optimale est donnée par f*(s/) = max, P(s7,v) + [T (s! — ¢7) et le débit

optimal par ¢*/ = s/ qui maximise f*/(s’).

Les auteurs de [7] utilisent la programmation dynamique pour déterminer le nombre de tur-
bines en marche sur une base horaire. Pour ce faire, les étapes sont les heures, les états sont
le nombre de turbines en marche a chaque étape et les variables de décision sont le nombre
de démarrages et d’arréts de turbines a chaque étape. Un compromis entre 1'efficacité de
la puissance produite et des démarrages est minimisé dans la fonction objectif du probleme
de programmation dynamique. Les auteurs ne considerent pas les contraintes hydriques, car

I’élévation amont ne varie pas beaucoup sur des périodes horaires. Pour des systémes hy-
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droélectriques comportant de petits réservoirs, cette hypothese ne peut étre appliquée. Une
autre approche [109] utilise des approximations successives de la programmation dynamique,
afin de contourner le probléme de dimensionnalité. Une fonction de puissance représentant
les pertes est utilisée afin de considérer l'efficacité des turbines, mais les élévations amonts
sont négligées, ce qui est important a considérer lorsque les réservoirs ont des capacités de
stockage relativement petites. Les étapes correspondent aux turbines, et il y a trois vecteurs
d’état : la puissance accumulée des turbines, le débit turbiné total et la puissance maximale
accumulée. Le but du probléme est de maximiser 'efficacité totale du systeme de production
hydroélectrique. Un autre article [80] utilise la programmation dynamique pour résoudre le
probléeme de chargement et de répartition optimal dans le but de maximiser les revenus.
Dans ce cas-ci, I'élévation amont est considérée, en plus des arréts et démarrages des tur-
bines. Une méthode en deux phases, comprenant chacune un algorithme de programmation
dynamique est définie. La premiére phase construit un espace d’états et la seconde résout
le probleme de répartition et de chargement optimal. Cependant, le systeme hydroélectrique
a I’étude comporte un seul réservoir. La modélisation considere les apports de réservoir, les
prix de I'énergie et les disponibilités de turbines, mais ’ajout d’autres réservoirs et centrales

impliquera des temps de calcul beaucoup plus élevés, voire rédhibitoires.

2.1.2 Programmation mixte en nombres entiers

Plusieurs auteurs proposent des méthodes de résolution du probléeme de chargement et de
répartition a l'aide de modeles mixtes en nombres entiers. Ils peuvent étre non linéaires [66]
ou linéaires [49]. les fonctions de production hydroélectrique sont, soit dépendantes de la
hauteur de chute et du débit turbiné, soit linéarisées et dépendent seulement du débit, en
utilisant, par exemple, des fonctions linéaires par morceaux [31, 93] ou par interpolation.
Ces problemes comportent des variables continues pour le volume et le débit turbiné, par

exemple, et des variables binaires pour 'arrét et le démarrage des turbines.

Un des avantages de la formulation non linéaire est que l'effet de la hauteur de chute est
considéré. De plus, les solveurs non linéaires actuels sont puissants et permettent de résoudre
ces problemes. Une formulation non linéaire de la fonction objectif qui dépend du débit
turbiné et du volume est proposée et résolue avec un probleme mixte non linéaire en nombres
entiers [30]. Cette formulation est intéressante, car elle consideére, entres autres, Ueffet de
la hauteur de chute et la pénalisation des démarrages de turbines. Une comparaison avec
un modele linéaire en nombres entiers, dont la fonction de production hydroélectrique varie
linéairement avec le débit seulement, et ce modele non linéaire est effectuée et les résultats

montrent que la formulation non linéaire mixte permet d’obtenir de bons résultats dans un
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temps de calcul satisfaisant, pour un systeéme hydroélectrique de sept réservoirs et centrales.
Pour un systeme de plus grande taille, les temps de calcul seraient beaucoup plus élevés.
Les mémes auteurs proposent une formulation quadratique du probleme [29]. La fonction
objectif comporte un terme pour maximiser les profits et un second pour valoriser ’eau
contenue dans les réservoirs a la fin de I’horizon de planification. La formulation quadratique,
comparativement a une formulation linéaire, permet d’augmenter les profits, mais il n'y a
pas de comparaison avec une formulation non linéaire, ce qui aurait été intéressant, puisque
la comparaison aurait été plus juste. Une autre approche consiste a minimiser les pertes de
puissance [59] et & résoudre la relaxation du modele non linéaire mixte en nombres entiers. A
I’aide d’une méthode de simulation, la solution obtenue est ensuite ajustée afin de respecter
les contraintes hydriques. Cette méthode est intéressante, car la décomposition permet de
résoudre des problemes de grand taille, dans ce cas-ci 95 centrales et 447 turbines, mais
démontre que pour résoudre des problemes réels, les formulations non linéaires mixtes en
nombres entiers doivent étre couplées a des méthodes de simulation et de décomposition,

sinon elles sont impossibles a résoudre.

La modélisation est tres importante dans les modeles linéarisés, car la solution peut étre
grandement influencée par la précision de celle-ci. Habituellement, 'effet de la hauteur de
chute est implicite dans les modeles linéaires. Une technique d’interpolation [65] est utilisée
afin de linéariser les fonctions de production hydroélectrique et considere I'effet de la hauteur
de chute. Un probleme linéaire mixte en nombres entiers est résolu afin de minimiser les
colits d’opérations du plus gros systeme de production hydroélectrique au monde, situé en
Chine. Toutefois, cette modélisation ajoute un grand nombre de contraintes dans le modele
d’optimisation. Des tests sont réalisés pour un réservoir et 32 turbines. Advenant le cas ou il
y a plus de réservoirs, cette modélisation deviendrait rapidement difficile a appliquer, compte
tenu du nombre de variables et de contraintes. Dans [23], les fonctions de production hydro-
électrique sont linéarisées et 1'effet de la hauteur de chute est considéré. Un modele linéaire
mixte en nombres entiers est résolu pour un systéeme comportant un réservoir avec capacité
de pompage. Un gros effort de linéarisation est réalisé et permet une bonne représentation des
fonctions de production, mais tel qu’indiqué par les auteurs, cette technique est difficilement

applicable en pratique, compte tenu de la taille du probleme a résoudre.

Ces méthodes fonctionnent bien, mais plus le systeme hydroélectrique est complexe, plus elles
deviennent lentes en termes de temps de calcul puisque le nombre de variables d’optimisation
explose. Cependant, les solveurs modernes permettent de résoudre des problemes de grande

taille, mais plus le modele est précis, plus difficiles ils sont a résoudre.
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2.1.3 Relaxation lagrangienne

Les problemes d’optimisation hydroélectrique a court terme deviennent rapidement difficiles
a résoudre, car ils comportent un grand nombre de variables d’optimisation. De plus, selon
la modélisation désirée, plusieurs inter-dépendances peuvent étre considérées et compliquent
la résolution des problemes telles l'efficacité des turbines, 'effet de la hauteur de chute, les

zones d’opération interdites ou les démarrages de turbines pour ne nommer que celles-la.

La relaxation lagrangienne [51, 98] permet de simplifier la résolution en séparant le probleme
original en plusieurs sous-problémes faciles a résoudre. Les contraintes liantes, difficiles a
traiter, sont relaxées et un probléeme maitre coordonne la résolution en se basant sur la théo-
rie de la dualité. Pour ce faire, les contraintes liantes, soit les contraintes hydriques, sont
incorporées dans la fonction objectif avec un multiplicateur de Lagrange associé a chacune.
Par la suite, le dual du probleme lagrangien est résolu afin de trouver les valeurs des multi-
plicateurs. Cette fagon de faire permet de trouver une borne inférieure serrée. Des méthodes
de sous-gradients [76], qui sont des méthodes d’optimisation itératives, sont fréquemment

utilisées pour résoudre le dual lagrangien.

Dans l'article [42], une méthode de décomposition en deux phases est proposée. La premiere
phase est une relaxation lagrangienne, qui permet d’obtenir une borne sur la solution et la
deuxiéme phase utilise une méthode de lagrangien augmenté [26] afin d’obtenir une solution
réalisable. La méthode est validée sur un systeme hydroélectrique comportant 4 centrales et
considere l'effet de la hauteur de chute, I'efficacité des turbines, les zones interdites et les
démarrages des turbines sont pénalisés. Les résultats obtenus démontrent que cette méthode
permet d’obtenir des résultats satisfaisants et que les temps de calcul sont raisonnables.
Récemment, ces mémes auteurs [43] ont comparé des méthodes de construction du dual
lagrangien, appliquées au probleme de répartition et de chargement optimal. Dans cet article,
deux méthodes sont comparées : la relaxation des contraintes hydriques et I’ajout de variables
artificielles qui sont relaxées. Afin de s’assurer que les solutions trouvées par le dual sont
réalisable pour le primal, une méthode de lagrangien augmenté est utilisée, ce qui implique
I’ajout d’un terme pour pénaliser les violations de contraintes dans la fonction objectif. Les
turbines sont considérées identiques, ce qui n’est pas le cas en pratique. Les résultats montrent
que la relaxation des contraintes hydriques permet d’obtenir de meilleurs résultats, mais
qu’ils sont dépendants du probleme. Ainsi, si le probleme primal était différent, la conclusion

pourrait aussi I'étre, il est donc difficile de définir quelle méthode est la meilleure.

Une étude récente [44] compare les solutions obtenues par relaxation lagrangienne, program-
mation linéaire mixte en nombres entiers et programmation non linéaire mixte en nombres

entiers. D’un point de vue opérationnel, la relaxation lagrangienne est la méthode qui requiert
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le plus faible temps de calcul et qui peut résoudre des problemes de grande dimension. Or,
son implémentation en pratique requiert beaucoup de connaissances et de programmation,
alors que les modeles mixtes en nombres entiers peuvent étre utilisées plus facilement a ’aide

de solveurs commerciaux.

2.1.4 Autres approches

D’autres approches ont été utilisées afin de résoudre le probleme de répartition et de char-
gement optimal. Par exemple, les algorithmes génétiques [79], des heuristiques basés sur les
fourmilieres [70] ou des réseaux [78], mais ces méthodes requiérent une tres bonne connais-
sance du probléeme pour l'ajustement de parametres, ce qui n’est pas le cas lorsque des
méthodes mathématiques avec preuves de convergence, telles que présentées ci-haut, sont
utilisées. Toutefois, ces méthodes sont utiles pour traiter efficacement des problemes non

convexes, non lisses ou discontinus.

2.2 Meéthodes stochastiques

Le second objectif de recherche est de développer un modele d’optimisation stochastique
a court terme pour le réseau hydroélectrique du Saguenay Lac-St-Jean. Cette section est
constituée de trois parties. La premiere expose la programmation dynamique stochastique, qui
est souvent utilisée pour élaborer la fonction de valorisation de ’eau restant dans le réservoir
a la fin de I'horizon de planification. La seconde partie présente les méthodes d’optimisation
stochastiques utilisées pour résoudre le probleme d’optimisation a court terme. Finalement,

des méthodes de génération d’arbres de scénarios sont présentées.

2.2.1 Programmation dynamique stochastique

Lorsque des apports naturels incertains sont considérés dans le modele d’optimisation a court
terme, il est important de valoriser 1’eau restant dans les réservoirs a la fin de ’horizon de
planification afin d’empécher les réservoirs de se vider. Comparativement a un modele déter-
ministe, un modele stochastique ne peut utiliser de cible finale pour les volumes de réservoirs
puisque le scénario d’apport qui se produira est inconnu. Il est possible de calculer le vo-
lume final pour chaque scénario, mais il est alors problématique de donner une seule valeur
au modele, puisque cette derniére pourrait ne pas étre réalisable pour un scénario donné.
L’optimisation moyen terme permet de gérer les réservoirs d’un systeme de production hy-
droélectrique. Elle est aussi utilisée en optimisation court terme déterministe afin de fournir

le volume final du réservoir ou en optimisation court terme stochastique pour fournir une
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fonction de valeur de I’eau au modele a court terme. La programmation dynamique stochas-
tique [18], qui est une extension de la programmation dynamique, est largement utilisée en
optimisation moyen terme. D’autres méthodes découlent de celle-ci, par exemple la program-
mation dynamique stochastique duale [92] et la programmation dynamique stochastique par
échantillonnage [32], mais pour les besoins de cette revue de littérature, seules les notions
théoriques de programmation dynamique stochastique sont présentées. Tout comme pour la
programmation dynamique, I'inconvénient majeur de la programmation dynamique stochas-
tique est que les problemes deviennent rapidement impossibles a résoudre, compte tenu de

leur taille, surtout que 'incertitude doit maintenant étre discrétisée.

La méthode de programmation dynamique stochastique appliquée a 'optimisation hydro-

électrique moyen terme comporte plusieurs éléments :

— Les états a chaque étape sont notés v : le volume a la période k et a la centrale c. Notons
Si I'ensemble des états.

— Les décisions a chaque étape sont ¢ : le débit turbiné a la période k et a la centrale c.
Notons Ug(vf;) I'ensemble des décisions possibles selon 1'état vy.

— Les variables aléatoires sont dj, : 'apport naturel a la période k pour la centrale c.

A chaque étape, selon I’état du systéme et la réalisation de la variable aléatoire, une puissance
X5 (vs, g5, 05) est produite et elle est cumulative sur toutes les périodes. Il est important de
noter que les apports des réservoirs sont corrélés dans le temps. Devant cette situation,
I'introduction d’une variable hydrologique est nécessaire, afin de considérer les apports de
la période précédente ou toute autre information permettant de bien représenter le systeme

hydroélectrique a I’étude. Ainsi, la variable hydrologique %, peut étre définie ainsi :
U =60, (2.1)

Des politiques sont dites admissibles si une séquence de fonctions © = {pug, ..., un_1} est

telle que g5, = q5.(v5) et qi(vp) € Ug(vs), Vog, € Si, ot N est le nombre de périodes.

L’équation de Bellman, qui permet de calculer la valeur espérée de la puissance pour une
politique admissible, dépend de I’état initial du systeme. Cependant, le principe d’optima-
lité de Bellman stipule que peu importe I’état initial, si 7* = (,uz‘),,u*{, e ,/ﬁv_l) est une
politique optimale pour le probléeme complet, elle ’est aussi pour une politique tronquée
T = (uZEuZ;p---,u?v_l)-

La fonction de récurrence, ou de Bellman, est alors Pg(vg,15) et correspond a la valeur

espérée optimale de la puissance a I’étape k a la fin si le systeme est a ’état v} a I'étape k et
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que la variable hydrologique est ;. Les équations de Bellman a résoudre sont alors :

PEWRUE) = Egug || max (G0k 06 0F) + Py (v 00) | h = 0.1 N = 1(22)
k k\1k

Dans [37], un modele de programmation dynamique stochastique par échantillonnage est
utilisé pour résoudre le probleme d’optimisation des réservoirs. Comparativement a la pro-
grammation dynamique stochastique, cette méthode utilise des scénarios pour les apports
naturels des réservoirs et les probabilités de transition pour passer d’un scénario ¢ au scéna-
rio 7 doivent étre calculées. Cela permet de préserver la persistance des apports d’une période
a l'autre. La particularité de la méthode présentée dans I'article est I'utilisation des prévisions
d’ensembles au lieu de I'historique des apports. L’avantage de ces prévisions, comparative-
ment aux données historiques, est qu’elles sont cohérentes avec les conditions actuelles du
réservoir. De plus, la corrélation spatiale des apports entre plusieurs réservoirs est conservée

puisque différentes réalisations tirées des bases de données historiques sont utilisées.

Tel que décrit dans [32], plusieurs choix de variable hydrologique sont possibles. Par exemple,
I’apport de la période avant ou le meilleur apport prévu. L’introduction de cette variable dans
le modele permet de préserver les caractéristiques du systeme étudié, et le modele donnera une
approximation plus pres de la réalité. En Amérique du Nord, 'indicateur de neige peut étre
un bon choix de variable hydrologique, puisque c’est cette variable qui permet d’approximer
I’apport d’eau dans les bassins lors de la crue du printemps. Dans I’Ouest canadien et au
Saguenay Lac-St-Jean, cette variable prend tout son sens puisque ce sont des régions qui

recoivent beaucoup de précipitations sous forme de neige.

Le défi de la programmation dynamique stochastique n’est pas d’utiliser ’algorithme en soi,
qui est une extension de la programmation dynamique déterministe, mais plutot de choisir
la facon dont sera traitée I'incertitude. Selon la taille du systéme hydroélectrique a 1’étude,
il se peut qu'une modélisation déterministe utilisant la moyenne des apports naturels sur
quelques années soit suffisante afin de résoudre le probléme, tel que présenté dans [95], mais
c’est rarement le cas dans des systémes réels, ou une bonne connaissance de I’historique

permet de prendre de meilleures décisions.

2.2.2 Meéthodes stochastiques pour résoudre le probleme a court terme

Peu d’articles traitent du probleme stochastique a court terme avec apports incertains dans
la littérature. En considérant l'incertitude des apports, les turbines sont utilisées de fagon
plus efficace puisque l'optimisation stochastique est un compromis entre de faibles et de

fortes prévisions d’apports. Par exemple, si les réservoirs sont pleins, le fait de considérer des
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apports incertains lorsque des apports élevés sont prévus empéche I'optimisation de diminuer
le volume d’eau contenu dans les réservoirs et de forcer les turbines dans des zones non
efficaces, ce qui se traduit par des pertes de production d’énergie dans le futur si ces apports

élevés ne se produisent pas.

La majorité des articles qui traitent de I'optimisation court terme stochastique [3] utilisent
des arbres de scénarios pour représenter la distribution des apports incertains. Des modeles
de programmation stochastiques, résolus selon leur équivalent déterministe, c¢’est-a-dire que
chaque noeud de l'arbre de scénarios est un modele d’optimisation déterministe, sont en-
suite résolus. Cette section présente les modeles de programmation stochastique ainsi que

différentes méthodes pour générer des arbres de scénarios.

Programmation stochastique avec recours

Un modele de programmation stochastique comporte des parameétres incertains ou aléatoires.
La solution a ce probleme doit donc étre optimale pour toutes les valeurs que peuvent prendre
ce parametre. Dans le modele a court terme qui nous intéresse, les apports naturels sont
incertains. Les programmes stochastique peuvent étre en deux étapes ou multi-étapes. Les
problemes en deux étapes impliquent deux étapes de décisions. La premiere étape consiste a
prendre une décision avant de connaitre la vraie réalisation de ’apport, alors que la deuxieme
étape consiste a ajuster la décision prise a I’étape précédente lorsque la vraie réalisation de
I’apport est connue. Les problemes multi-étapes sont simplement une extension des modeles
a deux étapes dans lesquels on considere des apports a plusieurs moments : lorsqu’un apport
est révélé, la décision correspondante est ajustée, une nouvelle décision est prise a I'étape
suivante et ainsi de suite. La référence [19] explique la programmation stochastique en détails,
veuillez vous y référer pour plus d’information. En pratique, les équivalents déterministes sont
résolus, ce qui signifie qu'un modele d’optimisation est résolu pour toutes les possibilités, ou
les scénarios, possibles d’apports. Un arbre de scénarios est une représentation discrete d’un
processus stochastique continu et peut étre vu a la figure 2.1. Cet arbre de scénarios a 4
scénarios et les probabilités que chacun se réalisent sont dénotées par 7. Les probabilités de
chaque noeud constituant un scénario sont multipliées pour obtenir la probabilité du scénario.
Par exemple, le premier scénario est constitué des noeuds 1, 2, 3 et 5 et a une probabilité de

0,15 de se réaliser.
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: 0,15

10,15

£ 0,56

10,14

Figure 2.1 Arbre de scénarios avec 4 scénarios et 4 étapes.

Cet arbre est ensuite utilisé comme parametre d’entrée dans le probleme d’optimisation

stochastique multi-étape suivant, comportant une seule centrale hydroélectrique :

jEK iGNj teK pEEt

max x(vr, g1, 01) + > (Z X(%‘ﬂu@)) +)m (Z ‘I)p(vp)) (2.3)

sujet & 0 =vip —vi+¢q , Vie N;VjeK, (
Umin < Vi < Upmae , Vi €N, (

Gmin < G < Gmaz , Vi E N, (

vi,q; >0 , YieN, (

ou K est ’ensemble des scénarios, IV est 'ensemble des noeuds, E est I’ensemble des noeuds
feuilles, N; est le sous-ensemble des noeuds du scénario j, F; est le sous-ensemble du noeud
feuille pour le scénario t, v; est le volume, ¢; est le débit turbiné, ¢, est 'apport pour le noeud
i du scénario N, x(v1, ¢1,91) est une fonction retournant I’énergie produite au premier noeud,
®,(v,) est la fonction valeur de I'eau pour le noeud p € E; et m; est la probabilité du scénario
J- Noter que l'indice 7 + 1 de la variable v;;; prend la valeur du noeud dans I'’ensemble N;.
Par exemple, si N; = {1,3,5,7} et que i =1, i+ 1 = 3, car I'indice prend la valeur du noeud

a la position ¢ = 2 de I'ensemble N;.

Le débit et le volume doivent étre optimisés sans connaitre le scénario d’apport qui se réali-

sera. La fonction objectif (2.3) consiste & maximiser 1’énergie produite & la premiere étape et
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I’espérance de la production d’énergie future, qui consiste en la somme de production d’éner-
gie de tous les scénarios, multiplié par leur probabilité de réalisation. Aussi, le terme de droite
permet de valoriser ’eau restante dans les réservoirs a la fin de 'horizon de planification. Les
contraintes (2.4) sont celles de la conservation de 'eau et les volumes/débits minimums et
maximums sont représentés par les contraintes (2.5) et (2.6). Finalement, la non-négativité

est assurée par les contraintes (2.7).

Les programmes stochastiques sont non anticipatifs, ce qui signifie que les décisions prises a
une certaine étape ne doivent pas étre influencées par le futur, mais plutot par les réalisations
passées. La méthode de résolution habituelle est la création d’arbres de scénarios [35] afin

d’approximer les apports suivant une distribution continue en les discrétisant.

Un des rares articles trouvé sur l'optimisation a court terme stochastique [45] considere les
cotlits de I’énergie et les apports naturels comme des variables incertaines. Une méthode basée
sur celle-ci pourrait étre envisagée, mais des modifications au modele devraient étre réalisées
puisque le probleme est situé dans un contexte de marché de 1’énergie. L’incertitude est
approximée par un arbre de scénarios de sept étapes et chaque étape est une journée divisée
en 24 heures. L’objectif permet de trouver un équilibre entre le plan de production d’une
journée et les profits futurs espérés. Dans [104], dix scénarios sont construits pour simuler
I'incertitude sur les prix du marché et dix autres pour les apports naturels des réservoirs.
Les données historiques et un modele auto-régressif ARIMA (Auto-Regressive Integrated
Moving Average) sont utilisés pour construire les prévisions. Dans le cadre de notre projet,
les prévisions d’ensemble des apports naturels sont disponibles. L’étude montre que le modele
stochastique permet au producteur d’augmenter ses profits et que 'incertitude sur les prix
permet un plus grand profit que U'incertitude sur les apports naturels. Tel qu’expliqué dans
[27], les modeles peuvent étre résolus de facon déterministe afin de diminuer Ueffort de calcul,
mais ils dépendent beaucoup du scénario. Ainsi, une solution optimale pour un scénario
ne le sera pas nécessairement pour un autre. Un arbre de scénarios est alors utilisé afin
de représenter l'incertitude et une probabilité de réalisation identique est donnée a chaque
scénario. Une relaxation lagrangienne est effectuée sur les contraintes de non-anticipativité
et sont pénalisées par la fonction objectif lorsqu’elles sont violées. La méthode donne de
bons résultats, mais le choix du parametre de pénalité est tres important puisqu’il modifie
la qualité de la solution, en plus du nombre d’itérations de l'algorithme. Les auteurs de [83]
considerent que la demande est incertaine et utilisent des arbres de scénarios pour considérer
différents scénarios de demande. L’effet de la hauteur de chute est négligé, ce qui peut poser
probléeme pour des systemes qui comportent plusieurs réservoirs de faible capacité, méme

avec de courtes périodes.
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Génération d’arbres de scénarios

La génération des arbres de scénarios utilisés comme parametres d’entrée au modele d’op-
timisation stochastique est primordiale afin d’obtenir une bonne solution. En pratique, les
données disponibles pour les apports sont souvent énormes et il est nécessaire de générer
un arbre de scénarios basé sur ces données afin d’obtenir une représentation correcte de la

distribution des apports et de pouvoir 1'utiliser dans un modele d’optimisation.

Plusieurs méthodes existent pour obtenir un arbre de scénarios a partir de données d’apports.
Une revue des méthodes permettant de générer des scénarios est présentée dans 'article [61].
Les auteurs de [34] utilisent un modele auto-régressif pour s’ajuster sur les données histo-
riques des prix de I’énergie afin de générer des prix pour le modele stochastique. L’arbre de
scénarios est construit en échantillonnant la distribution du modele ajusté. Une des diffi-
cultés d’utilisation de ce modele auto-régressif est le choix des parametres, car ils ont une
grande influence sur les prix générés subséquemment. De plus, ils sont sensibles aux valeurs

aberrantes, donc il est important de traiter les données d’entrée avant de batir le modele.

D’autres méthodes créent une représentation discrete de la distribution des apports afin
qu’elle corresponde a des propriétés statistiques pré-définies. Dans 'article [56], les quatre
premiers moments, qui sont la moyenne, la variance, 'asymétrie et 'aplatissement de la
représentation discrete correspondent aux quatre moments des scénarios d’apports initiaux
de la distribution continue. Toutefois, cette méthode n’a pas de preuve de convergence et le
nombre de scénarios nécessaires pour atteindre cette correspondance n’a pas de valeur fixe,
ce qui fait en sorte qu’il est difficile d’évaluer le nombre de scénarios nécessaires, méme si
les quatre premiers moments sont identiques. Une autre méthode [82] minimise la distance
imbriquée, qui est une généralisation de la distance de Wasserstein. Cette méthode itere
deux phases jusqu’a ce que la convergence de la distance soit atteinte. La premiere phase
échantillonne a partir de tous les scénarios d’apports initiaux et la deuxiéme phase utilise la
méthode du gradient stochastique afin d’améliorer les valeurs d’apports de certains noeuds
de I'arbre de scénarios. Cette méthode offre 'avantage d’utiliser tous les scénarios d’apports
initiaux afin d’améliorer les valeurs dans ’arbre de scénarios et les quatre premiers moments

correspondent toujours a la distribution continue des apports initiaux.

Une autre revue [35] présente plusieurs approches pour générer un arbre de scénarios incluant
la recombinaison de données, les méthodes de contamination et aussi 'ajustement a des
propriétés statistiques. Récemment, la méthode des copulas [60] a été utilisée pour générer
des arbres de scénarios pour des arbres a deux étapes. Cette méthode offre 'avantage de

traiter les dépendances mieux qu’en considérant seulement leur corrélation.
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La méthode de réduction de scénarios [38, 52] est largement utilisée. Un arbre de scénarios
initial est requis et une sélection directe, ou une réduction inverse est appliquée afin de réduire
le nombre de scénarios et ainsi diminuer le temps de résolution du modele d’optimisation
stochastique. L’effet de la réduction sur la qualité de la solution, appliqué a un systeme de

réservoirs hydroélectriques en cascade est disponible en [108].

Autres approches

D’autres approches pour résoudre le modele d’optimisation a court terme stochastique sont
disponibles. L’optimisation robuste [13] et la programmation par contraintes probabilistes
[103], par exemple. L’optimisation robuste résout des modeles stochastiques qui ont des pa-
rametres incertains dans des ensembles incertains définis. Ainsi, I'optimisation cherche a trou-
ver une solution qui est réalisable peu importe la réalisation du parametre incertain. Dans
[6] un horizon roulant est utilisé et I'optimisation robuste est appliquée aux décisions de la
premiere journée alors que le reste de 'horizon est considéré déterministe. Cette méthode est
intéressante puisque l'incertitude est appliquée aux décisions importantes. Un des problemes
de I'optimisation robuste est de définir I'incertitude. Dans les données historiques accessibles
aux producteurs, certains scénarios d’apports peuvent étre tres faibles et d’autres tres éle-
vés. Ainsi, il est difficile de déterminer quelles sont les meilleures bornes pour les ensembles
d’incertitude, en plus de capturer les non-linéarités présentes. Dans la programmation par
contraintes probabilistes, les contraintes doivent étre respectées selon une certaine proba-
bilité. Un exemple appliqué a un réseau hydroélectrique en cascades se trouve dans [103].
Comme pour 'optimisation robuste, cette méthode exige des parametres et probabilités en

entrée, ce qui est difficile a faire en pratique.

Horizon roulant

Dans un contexte opérationnel, les opérateurs des centrales hydroélectriques recoivent des
prévisions d’apports quotidiennement. Des qu’elles sont disponibles, ils doivent lancer un mo-
dele d’optimisation court terme afin de prendre une décision opérationnelle. Advenant qu’ils
utilisent un modele stochastique avec un arbre de scénarios pour représenter l'incertitude,
seule la décision du premier noeud dans ’arbre de scénarios est utilisée. Des bancs d’essai
en horizon roulant [74] sont utilisés pour imiter cette fagon de faire pour valider les solutions
des modeles d’optimisation stochastiques.

La méthodologie est la suivante. Puisque les prévisions d’apports sont mises a jour quoti-
diennement, un arbre de scénarios est généré, puis les modeles d’optimisation sont résolus

et seule la solution du premier noeud de I'arbre de scénarios est implémentée. Lorsque la
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vraie réalisation de I'apport est révélée, a la fin de la journée, les volumes des réservoirs sont
mis a jour avec cette réalisation et la génération d’arbre de scénarios, ainsi que l'optimisa-
tion sont répétées pour la journée suivante, avec les apports mis a jour. Dans certains cas
[17], la fenétre de I'horizon de planification diminue lorsque les apports sont révélés et dans
d’autres la fenétre de I’horizon se déplace dans le temps [110]. Les auteurs de [33] utilisent un
horizon roulant pour comparer quatre méthodes d’optimisation stochastiques. Les scénarios
d’apports sont mis a jour a chaque fois qu’une décision est prise. La méme méthodologie est

retenue dans cette theése.

2.3 Optimisation boite noire

Le troisieme objectif de recherche consiste a étudier la sensibilité de la structure des arbres
de scénarios sur la gestion des centrales hydroélectriques dans un banc d’essai en horizon
roulant. L’optimisation boite noire est utilisée pour identifier les valeurs des parametres de
la méthode de génération d’arbres de scénarios qui permet d’obtenir une structure d’arbre
qui maximise 1’énergie produite dans 1’horizon roulant. L’optimisation boite noire permet de
traiter des problemes pour lesquels la fonction objectif ou les contraintes peuvent seulement
étre calculés par un code informatique. Les problemes de boites noires sont souvent non lisses,

non convexes et discontinus.

Le probleme non contraint le plus simple est donné par :

min f(x), (2.8)

reR™

ou f est une boite noire.

L’algorithme MADS [10] (Mesh Adaptvie Direct Search) a été développé pour traiter des
problémes de boites noires. Deux principales classes d’algorithmes existent pour traiter ces
problemes : les méthodes de recherche directe, telle MADS, et les méthodes basées sur les
modeles [84]. Dans cette theése, nous présentons seulement les méthodes de recherche directe
puisque ce sont celles qui seront utilisées. Pour les besoins de cette these, I’algorithme de

recherche par coordonnées (CS), 'algorithme PS (Pattern Search) et MADS sont présentés.

2.3.1 Algorithme de recherche par coordonnées (CS)

L’ancétre des méthodes de recherche directe, datant de 1952, est I’algorithme de recherche par
coordonnées [39]. La figure 2.2 illustre la méthode. L’espace d’états est discrétisé en un treillis.

La fonction objectif est évaluée pour un point initial, tel qu’illustré a la figure 2.2a. Ensuite,
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les points de coordonnées nord, sud, est et ouest a ce point initial sont évalués, comme dans
la figure 2.2b. Si un point permet d’abaisser la valeur de la fonction objectif, il est conservé
et défini comme meilleure solution, tel que montré a la figure 2.2c. Advenant le cas ou aucun
point de coordonnée ne permet de diminuer la valeur de la fonction objectif, le treillis est
réduit et la méthode est relancée, tel qu’illustré a la figure 2.2d. Lorsqu’une itération est un
succes, ¢’est-a-dire qu’'un nouveau point diminue la valeur de la fonction objectif, la taille du

treillis est augmentée. L’algorithme s’arréte selon un critere d’arrét pré-défini.
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(a) Point ini- (b) Points de (¢) Le point f* (d) Le treillis
tial coordonnées améliore la fonc- est réduit
tion objectif et
est retenu

Figure 2.2 Algorithme de recherche par coordonnées

2.3.2 Algorithme de recherche par motifs (PS)

L’algorithme PS [55] utilise deux types de déplacements. Le premier se nomme exploratoire.
A partir du point initial, une coordonnée & la fois est modifiée et si la valeur de la fonction
objectif est améliorée, la modification est conservée. Le deuxieme type de déplacement est le
motif. Comme son nom l'indique, les déplacements conservés dans la phase exploratoire sont
appliqués a la solution courante, et le motif est appliqué de nouveau a la nouvelle solution. Si
la valeur de la fonction objectif est améliorée avec cette nouvelle solution, alors le motif est
répété sur cette solution. Sinon, I'algorithme retourne a la phase exploratoire pour trouver un
nouveau motif de déplacement. Une extension de cet algorithme, nommée GPS (Generalized

Pattern Search) [102] propose des modifications a la phase exploratoire.

2.3.3 Algorithme de recherche sur treillis adaptatifs (ML ADS)

L’algorithme MADS [10] est un algorithme qui permet de traiter des problémes d’optimisation
boite noire. MADS est une extension des méthodes de recherche directes présentées ci-haut.
Le domaine réalisable est discrétisé en un treillis dont la taille est ajustée a la fin de chaque
itération. L’algorithme consiste en deux étapes qui sont répétées jusqu’a un critere d’ar-

rét pré-défini. La premiere étape, soit la phase de recherche, évalue différents points situés
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sur le treillis afin de trouver une solution meilleure que la solution courante. Cette étape
est flexible et peut étre ajustée selon les spécificités du probleme. La deuxieme phase, soit
I’étape de sonde, est obligatoire puisque les propriétés de convergence de MADS en découlent.
Un ensemble générateur positif de directions est déterminé et si une solution meilleure que
la solution courante est trouvée, elle est définie comme solution courante. A la fin de chaque
itération de I'algorithme, le treillis est réduit lorsque la solution n’est pas améliorée et aug-
menté lorsqu’une nouvelle solution est trouvée. Cet algorithme est implémenté dans le logiciel
NOMAD [63]. La différence majeure entre MADS et l'algorithme GPS est que MADS a deux
parametres pour le treillis, un pour la taille du treillis et un pour la taille de la sonde, compa-
rativement a un seul pour GPS. Cette différence assure de meilleurs résultats de convergence

théorique, ainsi qu’une meilleure performance en pratique.

La figure 2.3 illustre le fonctionnement simplifié d’un probléeme d’optimisation boite noire.
Des points d’essai x € R™ sont fournis a la boite noire par un logiciel d’optimisation. La
boite noire est évaluée et la valeur de la fonction objectif f(x) est retournée au solveur, qui

propose de nouvelles valeurs pour z.

Boite noire

z € R f(z)

Solveur

Figure 2.3 Optimisation d’une boite noire

Souvent, les fonctions objectif des problemes a optimiser sont tres cotiteuses a évaluer. Une
fonction substitut simulant le méme comportement que la vraie fonction est alors créée car
elle est moins cotiteuse a évaluer et devient la fonction a optimiser. Par exemple, cette fagon
de faire a été appliquée dans [4], afin de déterminer la localisation de capteurs de neige
pour minimiser l’erreur d’interpolation de krigeage. Une bonne approximation des réserves
de neige, surtout lors de la crue du printemps, est essentielle en production hydroélectrique
afin d’éviter les déversements. La vraie fonction objectif de ce probleme n’était pas disponible

a 'utilisateur et c’est ce qui a motivé le choix d’une fonction substitut.

Traitement des contraintes

Une fagon de traiter les contraintes dans un probléme d’optimisation boite noire est la mé-

thode de la barriére extréme. Pour un probléme de minimisation, avec f(x) : R — R et
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I’ensemble réalisable €2, les contraintes sont traitées ainsi :

flz) = { flz) siz e (2.9)

+o00 sinon.

Cette facon de traiter les contraintes implique de ne pas évaluer la boite noire lorsqu’'une
des contraintes du probleme est violée. D’autres méthodes existent, telles la méthode de la
barriere progressive [11] ou du filtre [9], mais ne sont pas exposées dans ce document puisque
la méthode de la barriere extréme est suffisante pour 'utilisation de 'optimisation boite noire

dans cette these.

2.3.4 Applications des méthodes d’optimisation boite noire

Les méthodes d’optimisation boite noire ont été appliquées a de nombreux problemes d’ingé-
nierie avec succes. Dans le domaine de I'hydrologie, I'optimisation boite noire est utilisé par
les auteurs de [4] afin de trouver la localisation optimale pour des GMON, un équipement
utilisé pour mesurer 1’équivalent en eau de la couverture de neige situé dans des endroits
éloignés des bassins hydrographiques. Une autre étude [73] utilise 'optimisation boite noire
pour calibrer les 23 parametres du modele hydrologique HSAMI. Ce modele est utilisé quo-
tidiennement pour générer les prévisions d’apports pour les réservoirs. Plus spécifiquement
appliqué aux turbines d’'un systéme de production hydroélectrique, les auteurs de [5] uti-
lisent I'optimisation boite noire pour déterminer le nombre de turbines ainsi que les périodes
exactes durant lesquelles elles peuvent étre arrétées afin d’étre entretenues. Le troisieme ob-
jectif de cette these consiste a optimiser les parametres de la méthode de génération d’arbres
de scénarios. Dans le méme ordre d’idées, ces auteurs [12] utilisent 'optimisation boite noire

pour ajuster les valeurs des parametres d’un algorithme.

De multiples applications existent dans d’autres domaines. Par exemple, les auteurs de [36] se
servent de 'optimisation boite noire pour déterminer des positions de semi-conducteurs sur
un micro-processeur. Des fonctions de puissance différentes sont considérées et I'optimisation
permet de minimiser la variation de température des semi-conducteurs selon les fonctions de
puissance. Un probléme non linéaire mixte en nombres entiers est résolu avec NOMAD [67].
Un design de moteur synchrone a aimants permanents doit minimiser le poids du moteur
tout en maximisant le couple pour les vitesses de base et maximale. Plusieurs contraintes
non linéaires sont considérées et les variables sont continues, comme le diametre du stator ou
entieres, comme la grosseur du fil utilisé. D’autres applications en génie mécanique utilisent
I'optimisation boite noire pour optimiser la forme des pales d’une turbine [14] ou d'un hélico-

ptere [21]. Un compte-rendu [8] détaille I'optimisation boite noire et de nombreux exemples
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d’application sont présentés. Tous les exemples d’applications démontrent que I'optimisation
boite noire permet de traiter des problemes d’ingénierie complexes pour lesquels il serait
impossible, avec des méthode d’optimisation classiques telles 'optimisation linéaire ou 'op-
timisation en nombres entiers, de trouver une solution puisqu’ils n’ont pas de représentation

analytique des fonctions objectif ou des contraintes.
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CHAPITRE 3 ORGANISATION DE LA THESE

Le but de cette these est de développer un modele d’optimisation stochastique a court terme
pour le réseau hydroélectrique du Saguenay Lac-St-Jean. Dans le chapitre précédent, les mé-
thodes d’optimisation existantes ont été présentées. Souvent, dans la littérature, des modeles
déterministes sont utilisés, car les prévisions d’apports sont mises a jour régulierement. Or,
dans ce contexte, Rio Tinto souhaite utiliser un modele stochastique, car des situations de
prévisions qui ne se produisent finalement pas peuvent faire en sorte que les turbines soient
forcées dans des conditions non efficaces, en plus de diminuer les niveaux de réservoirs inuti-
lement. Dans un contexte opérationnel, le temps de calcul est primordial, alors la complexité
des arbres de scénarios, qui servent a représenter 'incertitude dans le modele d’optimisation

a court terme, est étudiée.

En premier lieu, un modele d’optimisation a court terme déterministe est développé. Les ap-
ports naturels des réservoirs sont supposés parfaitement connus. Pour ce faire, un algorithme
de programmation dynamique est utilisé, avant toute optimisation, afin de créer des surfaces
de puissance maximale pour chaque nombre de turbines en marche et chaque centrale. Ces
surfaces sont ensuite approximées afin d’étre utilisées comme fonction objectif du modele
d’optimisation. Un processus d’optimisation en deux phases est créé. La premiere phase ré-
sout le probleme de chargement a I’aide d’un modele non linéaire mixte en nombres entiers.
La solution obtenue, soit le volume des réservoirs, le débit turbiné et le nombre de turbines en
marche pour chaque centrale sont utilisés comme parametres d’entrée de la deuxieme phase.
C’est un modele linéaire en nombres entiers qui permet de déterminer la combinaison exacte
de turbines en marche pour chaque centrale. Les résultats sont comparés aux décisions opéra-
tionnelles historiques, ainsi qu’aux solutions produites par un modele mathématique en une
phase, englobant le probleme de chargement et de répartition. Ces travaux ont été publiés

dans la revue IEEE Transactions on Power Systems [91] et se trouvent au chapitre 4.

En second lieu, le modele d’optimisation déterministe est adapté afin de considérer I'incer-
titude liée aux apports naturels des réservoirs. Un modele a court terme stochastique est
développé. Une méthode de génération d’arbres de scénarios est retenue afin de représenter
I'incertitude dans le modele d’optimisation a court terme. Afin de valider les résultats, un
banc d’essai est développé. Les prévisions d’apports sont mise a jour quotidiennement et un
arbre de scénarios est généré. Le modele d’optimisation stochastique est résolu, et seulement
la solution du premier noeud dans l'arbre de scénarios est implémentée. Lorsque la vraie

réalisation de I'apport est connue, les volumes des réservoirs sont mis a jour et le processus
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est répété pour le nombre de jours désirés dans I’horizon de planification. Afin de valider
I'utilisation d’'un modele stochastique, les résultats sont comparés a 1'utilisation du scéna-
rio médian des apports seulement dans le banc d’essai. Des essais avec plusieurs nombres
d’étapes dans ’arbre de scénarios ainsi que différents nombres de scénarios sont réalisés. Les
résultats sont présentés dans un article soumis a Furopean Journal of Operational Research

[88] et se trouvent au chapitre 5.

En troisieme lieu, la complexité des arbres de scénarios est étudiée. Le temps de calcul
est un facteur important dans un contexte opérationnel comme celui-ci, et il est important
d’obtenir une solution au modele d’optimisation a court terme dans un délai raisonnable.
Puisque seulement la solution du premier noeud de ’arbre est conservée, une comparaison
entre 'utilisation d’un arbre de scénarios comme représentation de scénarios d’apports versus
I'utilisation d’un peigne de scénarios est effectuée. Le méme banc d’essai que pour le deuxieme
objectif est utilisé, et 'optimisation boite noire est utilisée pour optimiser les parametres de
la méthode de génération d’arbres de scénarios afin de maximiser 1’énergie produite. Une
comparaison est aussi effectuée entre 1'utilisation d’arbres de scénarios et 'utilisation du
scénario médian dans le modele d’optimisation a court terme. Les travaux sont publiés comme
rapport technique dans la série des Cahiers du GERAD [90] ainsi qu’a un journal avec comité

d’arbitrage et sont au chapitre 6.

Finalement, la synthese des trois articles est présentée au chapitre 7 et la conclusion au

chapitre 8.
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CHAPITRE 4 ARTICLE 1 : SELF-SCHEDULING SHORT-TERM UNIT
COMMITMENT AND LOADING PROBLEM

Cet article est publié :

S. Séguin, P. Coté et C. Audet, Self-scheduling short-term unit commitment and loading
problem, IFEE Transactions on Power systems, 31 :1, 133-142, 2016.

Abstract - This paper presents a new method for solving the short-term unit
commitment and loading problem for a specific hydropower system. Dynamic
programming is used to compute maximum power output generated by a power
plant. This information is then used as input of a two-phase optimization pro-
cess. The first phase solves the relaxation of a nonlinear mixed-integer program
in order to obtain the water discharge, reservoir volume and number of units
working at each period in the planning horizon. The second stage solves a li-
near integer problem to determine which combination of turbines to use at each
period. The goal is to maximize total energy produced over all periods of the
planning horizon which consists of a week divided in hourly periods. Start-up of
turbines are penalized. Numerical experiments are conducted on thirty different

test cases for two Rio Tinto Alcan power plants with five turbines each.

Index terms - Hydro unit commitment and loading problem, optimization, non-

linear programming, linear integer programming.

4.1 Introduction

The planning of hydroelectric systems is complex and requires different optimization pro-
cesses. A good planning allows to produce more energy with the same quantity of water,
generating substantial savings for the producer, even with a slight computational improve-
ment [64]. Long-term, medium-term and short-term optimization models are used in order to
manage the resources. Long-term optimization usually follows a few years of planning hori-
zon [27],[71] and establishes future production potential under highly uncertain inflows in the
basins. Medium-term optimization [47] is used to plan the reservoir volumes by estimating
the quantity of water available for hydroelectric production on a weekly basis. Short-term
optimization [40] is mandatory to determine how to split the available water volume in an

optimal way between the turbines of a plant. Each turbine has a different efficiency curve
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which means that for the same water discharge the power will differ. The planning horizon
is a week divided in hourly periods and the problem consists of finding the water discharge
as well as the volume of the reservoir for each plant in order to maximize energy production

and penalize start-ups of turbines. The present work focuses on short-term optimization.

These optimization problems are difficult to solve since the hydroelectric production functions
are nonconvex. They are also highly nonlinear and depend on turbine efficiency, net water
head that is a nonlinear function of the water discharge and reservoir elevation and finally,
water discharge of each unit. Furthermore, turbines have forbidden operating zones, which

complicates the problem.

Short-term unit commitment and loading problem have been studied in the past and many
researches are still undergoing. Many methods have been proposed to solve this problem,
including dynamic programming. In [7], a power generation loss function is used to take into
account the hydro power efficiency in the dispatch of the plants, but considers the forebay
elevation insignificant and neglects the water balance equations. Another approach [109]
maximizes basinwide operating efficiency and changes the scheduling of the units only when
the energy generation or the water discharges exceed a deadband. These assumptions will
cause the optimization solution to differ from the real ones. Formulations of interest must
consider tailrace elevations, penstock losses as well as efficiency of the turbines, which are
often set aside to simplify the problem. A different manner [23] approximates the influence of
the head effect to linearize the power production function, while Ohishi [77] assumes that all
units of a hydropower plant are similar and does not consider different power outputs being
produced by the units. Another widely used method is the lagrangian relaxation to separate
the linking constraints and solve subproblems that are easier to compute [42]. However, this
method usually causes solutions to be slightly infeasible since the linking constraints are
rarely satisfied with the first solutions. Heuristics are then used to obtain a feasible solution.
Not only are the methods different, but the choice of the objective function can vary from
one method to the other. Another formulation of the problem [59] is to minimize the sum
of power losses and solve a relaxed mixed-integer nonlinear problem. Then, a simulation
phase is processed to obtain a feasible solution for the relaxed constraints. Once again, a
two-phase approach is necessary to obtain a feasible solution. In [97], the plant efficiency is
maximized since it is known that water is not used in an efficient way to meet the demand
in energy. Nonlinear approaches [28] have been considered, by linearizing the hydro power
efficiency of the plants and the water level functions, but do not consider the unit commitment
of the plants. Other techniques have been proposed, including genetic algorithms [79], ant
algorithms [70] and network flows [78], but they require parameter tuning before obtaining

solutions, which is not an issue when using mixed-integer formulations, nonlinear problems



30

or lagrangian relaxations, just to name a few. However these methods offer the advantage of

treating efficiently nonconvex, nonsmooth and discontinuous problems.

This paper presents a new approach for modeling the short-term unit commitment and
loading problem that requires a two-phase approach and allows to find a feasible solution
at the end of the first stage. The first optimization dispatches generation among plants and
seeks to maximize total energy production. The second stage uses this solution to select the
unit commitment that maximizes total energy production but also penalizes unit start-ups.

The models are then tested on two hydroelectric plants in series.

The paper is organized as follows. Section 4.1.1 presents the hydroelectric system studied in
this paper and section 4.1.2 presents notation used throughout the paper. Section 4.2 gives
an overview of the problem characteristics. Sections 4.3 presents the mathematical models
developed which are a nonlinear model and a linear integer program. They respectively aim
to solve the loading problem as well as the unit commitment problem. Extensive numerical
experiments are reported in Section 4.4 on thirty test cases for two power plants with five

turbines each, and concluding remarks are drawn in Section 4.5.

4.1.1 Saguenay-Lac-St-Jean hydroelectric system

The models presented in this paper are tested on the Saguenay-Lac-St-Jean hydroelectric
system. It is privately owned by Rio Tinto Alcan in the province of Quebec. In this province,
Hydro-Quebec is a government-owned corporation that generates, transmits and distributes
electricity. Producers are reglemented and need to transit through Hydro-Quebec, which
means that Rio Tinto Alcan cannot bid on the spot market. They sign contracts with the
corporation that are limited in power and in energy and the same fares apply for their
duration. This company operates aluminum plants in that region and can produce 90% of
the energy they need to operate them. The installed capacity is of 3100 MW and is composed
of 42 turbines divided in five hydroelectric plants situated on the Péribonka and Saguenay
rivers. Five reservoirs are available and three of them have a stocking capacity of over 2000
hm3. The hydrographic basins cover an area of about 75 000 km?2. For the remaining 10%
of energy needs, energy is bought at a known fare from Hydro-Quebec. Historically, energy
limits stated in the contracts are practically never reached and this is why the main purpose
of the optimization is to produce the most energy possible with the available water. For the
purpose of this paper, the models are tested on Chute-du-Diable and Chute-Savane plants
that are both composed of five turbines. Specific constraints related to the system need to

be taken into account when developing the model.



4.1.2 Notation

The following notation is used throughout the paper :

kell,2,... K}
ce{l,2,....C}
re{l,2,...,u}

se{l,2,...,n{}

le{l,2,...,nf}

te{l,2,...,T}

fﬁct =

c _
tk —

Xsr (V% a5

index of periods

index of hydroelectric plants

index of hydroelectric plants upstream
of plant ¢

index of surfaces corresponding to number
of active turbines associated to
hydroelectric plant ¢ and period k

index of combinations associated to
hydroelectric plant ¢ and period &

index of turbines of hydroelectric plant ¢
volume of plant reservoir ¢ at period

k (hm3)

water discharge at plant ¢ and period

k (m3/s)

water spillage at plant ¢ and period

k (m3/s)

start-up penalty for any turbine (MW)
power generated by combination [ € nf,

at plant ¢ and period k

1 if surface s is chosen at period k
for plant ¢

0 otherwise

1 if turbine ¢ of combination [

for plant ¢ is working at period k
0 otherwise

1 if combination [ of plant ¢

is chosen at period k

0 otherwise

1 if turbine ¢ of plant c is started
at period k

0 otherwise

power output function for surface s
at period k and plant ¢ (MW)

31
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) inflow of plant ¢ at period k (m?/s)

W duration of period k (h)

¥ conversion factor from water discharge
(m3/s) to (hm3/h)

Cr conversion factor to energy units (GWh)

Usin minimal volume of plant ¢ reservoir (hm?)

VS 0 maximum volume of plant ¢ reservoir (hm?)

Qin minimum water discharge at plant ¢ (m3/s)

4 maximum water discharge at plant ¢ (m3/s).

4.2 Short-term unit commitment and loading problem

The short-term unit commitment and loading problems must determine a production plan to
maximize energy production and penalize unit start-ups. This section describes the characte-
ristics of the problem and presents an optimization model that requires a short computational

time to solve.

4.2.1 Problem description

Power produced by a single hydroelectric generator [106] is given by the equation :

P=n(Q)xgxQ xh, (4.1)

where P is the power output in kW, n(Q) is the turbine-generator overall efficiency, g is the
gravitational acceleration in m/s?, @ is the turbine water discharge in m?/s and h,, the net

water head in m.

For a given turbine, power is a function of the water discharge, the net water head and
the efficiency. Gross head is the difference between forebay and tailrace elevation. When
water runs in the penstock, friction causes heat dissipation, thus diminishing energy. This
phenomena causes a loss that needs to be considered in the power output calculation. Net
water head is obtained from the gross head from which the losses are taken into account. Net

water head is computed by :

hn(v,Q) = hy(v) — (@) = P(Q) (4.2)

where v is the volume of the reservoir in hm?, @ is the total water discharge in m?®/s, h; is

a nonlinear function returning forebay elevation in m, h; is a nonlinear function returning
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tailrace elevation in m and v is a nonlinear function returning friction losses in m.

The focus of this paper are Chute-du-Diable and Chute-Savane plants in the Saguenay-Lac-
St-Jean hydroelectric system. A particularity of the system is that there is no analytical
representation of the tailrace elevation for some plants. The value can only be calculated by
a computer simulation. Since power depends on net water head and water discharge, there is
no analytical representation of the power output functions. This particularity also deprives

us of their derivatives.

Each turbine possesses its own efficiency curve, causing them to produce different power
outputs for the same water discharge and net water head. Also, efficiency depends on water
discharge of the turbine. Fig.4.1 illustrates the efficiency of a turbine as a function of water

discharge for a given net water head at the Chute-du-Diable plant.

Efficiency depending on water discharge
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Figure 4.1 Turbine efficiency as a function of water discharge.

In Fig.4.1, the water discharge of 48 m?3/s generates the greatest power and is called maximum
flow rate. This limit is fixed by the turbine manufacturer. When it is reached, water needs to
be spilled, causing power and efficiency to decrease. Turbines should always be used within

their efficiency zones for these reasons.

Another particularity that complicates the problem is the forbidden zones of operations of
the turbines [50]. Under certain operating conditions, a vortex may occur in the turbine
and create pressure variations that can damage components. These zones are forbidden and

turbine are not operated when these conditions are met.
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Also, unit restarts should be limited since they shorten equipment life [15]. There is also a
cost associated to a unit start-up. It takes into account the history of expenses in maintenance
and repairs in relation with the number of start-ups. This value is laboriously calculated by

Rio Tinto Alcan and becomes a parameter in the optimization models.

One could formulate the energy production optimization problem as a linear integer program
by discretizing unit water discharge, volumes and total water discharge for each turbine,
power plant and period in order to maximize total energy production. However, the number
of optimization variables would be extremely large. For instance, if total water discharge is
discretized from 0 to 900 m?/s, unit water discharge from 0 to 150 m3/s both with steps of 5
m3 /s, with 168 hourly periods for a week and volumes from 46 to 394 hm? discretized in 100
slices, then the number of binary variables would be of the order of 10%. Water discharges are
discretized every 5 m?/s since it is operationally impossible to obtain a finer precision, and
volumes in 100 slices give a good final precision for the hydroelectric system. This suggests

that the number of variables required is unrealistic for a real-time application.

4.2.2 Problem modeling

Power output of a single turbine is a function of two variables of the water discharge and
the volume. However, there is a relation between the net water head and the volume of the
reservoir. For the remainder of the paper, volume will be used to simplify notation. Total
power output of a plant depends on total water discharge, number of working units and
active turbines. Efficiency curves are specific for each turbine, hence unit power output is
different for the same water discharge. Depending on the number of units working, but also
on which units are employed, total power output is different. Instead of working directly
with turbines in the model, fewer variables are needed if active turbines are grouped in
combinations. For example, for the Chute-du-Diable plant, five turbines are available, but
operational restrictions require a minimum of three active turbines. Table 4.2 lists the sixteen
possible combinations. In each column, the numbers represent the actual active turbines.

Table 4.2 Turbine combinations at Chute-du-Diable

’ 3 active turbines \ 4 active turbines \ 5 active turbines ‘

123 145 1234 12345
124 234 1235
125 235 1245
134 245 1345
135 345 2345

A model using combinations of active turbines needs to determine which one to use at each
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period as well as the volume and the total water discharge. For a given volume and turbine,
the power output depends on the water discharge. The same applies to combinations : if

turbines in the combination differ, then the total power output will be different.

A dynamic programming algorithm is used to compute the combination power outputs. For
every discretization of the water discharge, volume and combinations, the algorithm calculates
power outputs. For a given power plant, volume and turbine, the states are s/ = {1,2,...,7}
remaining water to dispatch for turbine j and the variables are ¢/ = {1,2,... , min{¢’, Q}},
unit water discharge for turbine j, where ) is total water discharge and @ is maximum
unit water discharge. The objective is to maximize total power output. The solution is found
recursively by solving a sub-problem for each turbine. For 7 = n, where n is total number
of turbines, optimal power output f*/(s’) = P(s’/,v), where v is the volume and P is power
output. The optimal unit water discharge is ¢*/ = s/. For the other subproblems, that is for
j=n-—1n-2,...,1, optimal power output f*(s’) = max, P(s’,v) + f**1(s’ — ¢/) and

optimal unit water discharge is ¢*/ = s/ that maximizes f*/(s7).

1OPOWer output at Chute-du-Diable Power output at Chute-du-Diable
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Figure 4.2 Power output at Chute-du-Diable.

Fig.4.2a shows curves of the power output depending on the water discharge for all possible
combinations at Chute-du-Diable power plant, for a volume of 376 hm? and Fig.4.2b is a

close-up.

Observe that the power output decreases when the maximum efficiency of the turbine com-
bination has been reached. These curves could be used to model the problem. The objective
of the problem is to maximize total energy generation and a new function corresponding to
the maximum of all combinations can be created. This new function returns the maximum
power that can be generated for a given water discharge, a reservoir volume and a given

number of units. It is represented by the bold curve on Fig.4.2a. This can be generalized for
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the discretization of volumes. One hundred discretizations are done, between the minimum
and maximum reservoir volume and are shown in Fig.4.3a. The interest for this function is
that it gives us an upper bound on the optimal value of the problem for a volume and a gi-

ven water discharge. The changes in the number of active turbines in the combination cause
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Figure 4.3 Power output at Chute-du-Diable.

a problem for modeling this surface since they correspond to nondifferentiable zones. The
contour plot shown in Fig.4.3b illustrates this property. A way to overcome these difficulties
is to create a surface for each number of active turbines in the combination. In this case,
surfaces with three turbines working, four turbines and five turbines are created, as shown in
Fig.4.4. Notice that in Fig.4.2a, the curves between 0% and 55% correspond to combinations
with three active turbines, from 0% to 75% with four active turbines and five active turbines
from 75% to 90 %. As mentioned previously, a dynamic programming algorithm was used
to compute power outputs for each water discharge, combination and volume discretization.
Then, the maximum power output for every water discharge, volume and for each number of
active turbines was retained to create the maximum power output surfaces for each number
of active turbines. Smoothing splines were used to fit the power output data on the discreti-
zation points. The mathematical model must determine one surface per period, giving us at
the same time the number of active turbines. Hence, if a turbine is unavailable for a given
period, surfaces need to be recalculated without considering the unavailable turbine. Thus,
for each plant and each period, the number of surfaces may vary, as well as the surfaces
themselves. The dynamic programming algorithm is computed for every number of active

turbines in the combination as well as for every combination of unavailable turbines and
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Figure 4.4 Power output with different number of active turbines.

power outputs are stored in a database. Models then consult the database, depending on
possible number of active turbines and available turbines. The volume of available water for
production is obtained from the medium-term optimization and is an input to the loading
problem, as well as the initial combination of working turbines. It is denoted g, and is a
parameter for the short-term unit commitment and loading optimization models. The use of
theses surfaces does not allow us to penalize the start-up of turbines, hence the optimization
needs to use a two-stage approach. The first stage is a nonlinear mixed-integer model and
returns the water discharge, reservoir volume as well as the number of active turbines. The
second stage is a linear integer model that determines exactly the combination of turbines to

use at each period in order to minimize the start-up of turbine so that energy is maximized.

A relevant contribution in this method is the pre-processing of the power output surfaces
before any optimization is conducted. This allows to decrease drastically the number of
optimization variables. Also, the creation of the power output surfaces results in smooth
surfaces that can be used in an optimization model. Therefore, derivatives are available and

these surfaces give us an analytical representation of the hydropower functions.

4.3 Mathematical models

This section presents the mathematical models used to solve the short-term unit commitment
and loading problem. The first one distributes generation among plants and the second

determines the active turbines.
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4.3.1 Loading problem

The first optimization consists of a nonlinear mixed-integer program that determines the
water discharge, reservoir volume and number of active turbines at each period for each
power plant. The functions x$.(v5, ) correspond to maximum power output of a given
number of active turbines, for a given water discharge, volume, plant and period. These
functions are smoothing splines that fit the data obtained from the dynamic programming
algorithm. There is one function for each number of active turbines and period since turbines
are not necessarily available all the time. The initial number of active turbines ¢¢; is known.
Refer to Section 4.2.2 for more information on the calculation of maximum power output.
The number of surfaces per plant and period is given by n.

Maximize total energy production :
ny,
max Y > > X (Vs 6) Y (4.3)
ceC keK s=1

subject to :

O = Viy1 — Vg + ywr (g + 9%)

uc

=Y ywrlgi +9;) , VeeC,Vke K\{1} (4.4)
r=1 y

Y yp=1 , VeeC,Vke K\{1} (4.5)

=i . VeeCNs=1lo...nt (4.6)

Urin < V5 < Uppow » VeeCVEe K (4.7)

Trin < @& < Grpge » Vee€CVEe K (4.8)

. >0 , VeeC,\Vke K (4.9)

v, >0 , YeeC\Vke K (4.10)

9. >0 , YVeeC\Vke K (4.11)

Yy €B , VYee C\Vk e K,
, Vs=1,2,...,nj (4.12)
a5, V5,9 € R, Vee C,Vk € K. (4.13)

Constraints (4.4) assure that water balance of the plants are met. The values of v{ and vf
are known and obtained from the medium-term optimization model. Constraints (4.5) force
the model to choose only one surface at each period for each plant and constraints (4.6)

feed the model with the turbines already working at the beginning of the planning horizon.
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Constraints (4.7) and (4.8) represent the physical limits for volume of the reservoirs as well as
the water discharge operational limits. Non-negativity of the variables are taken into account
by constraints (4.9), (4.10) and (4.11). Finally, (4.12) impose binary variables and (4.13) real

variables.

In practice, nonlinear mixed-integer programs require a large amount of computing time
when solving since some variables, in this case those associated to the surfaces, are integer
variables. Luckily, we can prove that solving the continuous relaxation of the surface variables
yS,. of this problem is sufficient to obtain an integer solution on these variables. Solving the
relaxed nonlinear problem will return a solution with integer variables, even though imposing

integer variables has been omitted.

Proposition 4.3.1. Solving the relaxation of integer program (4.3)-(4.13) leads to an integer

solution for variables y,.

Proof. The proof of the result is done by showing that the matrix of constraints for variables
Y%, is totally unimodular. Problem (4.3)-(4.13) can be re-written as follows :

max > > > D NukyrCk (4.14)

weN ceC keK s=1

subject to :
g
dy=1 , VeeC,Vke K\{1} (4.15)
S:gjgl =9 , VeeC\Vs=1,2,...,nj (4.16)
Yy €B , Yee C\Vke K,¥Vs=1,2,...,nj. (4.17)

where 7, is the power for w the feasible set with respect to constraints (4.4) and ¢S, is
the initial combination of turbines working from the medium-term optimization. Since the
variables y$, do not appear in the water balance constraints, the model is written with
the feasible set satisfying constraints (4.4). Thus, 7, is equivalent to x¢.(vg,qf), but for
simplification, v, and ¢f do not appear in the model to make it clear that variables y; only

influence the choice of the surface constraints.

Denote the matrix of coefficients of the constraints for problem (4.14)-(4.17) by A. Wol-
sey [107] shows A is totally unimodular if and only if the following three conditions are
satisfied :

1. Qg5 S {+1,—1,0}v2,j

2. Each column of A contains at most two nonzero coefficients (31", |a;;| < 2).
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3. There exists a partition (M;, Ms) of the set M of rows of A such that each column j

containing two nonzero coefficients satisfies > ey, @ij — > iens, @ij = 0.

Condition 1. is satisfied by Equations (4.15-4.16). Each column of the matrix A has a single

element, which imply that Conditions 2. and 3. are satisfied.

Therefore, A is totally unimodular and there is an integer optimal solution of the continuous

relaxation. O

The following nonlinear relaxed program can be solved, where Y are continuous variable
associated to the surfaces. Maximize total energy produced at each period :

g
max ) D> Xe(vE, 4f) VG (4.18)
ceC keK s=1
subject to :
(4.4) (4.19)
nj;
Y5 <1, VeeCVkeK (4.20)
s=1
(4.6) — (4.10) (4.21)
>0 , VeeCVke K\Vs=1,2,...,nj, (4.22)
Yo€ER , Yee C\Vke K,Vs=1,2,...,nj. (4.23)

Constraints remain the same, except for (4.20) that becomes an inequality and (4.22) and
(4.23) that are the non-negativity constraints for continuous variables associated to the choice

of the surface.

4.3.2 Unit commitment

The solution produced by the nonlinear relaxed program is an input to the unit commitment
problem. The unit commitment model is a linear integer program and it determines the
exact combination of turbines to use in order to maximize total energy production at each
period and penalize start-up of turbines. The initial combination of working turbines Zj, is
known. From the loading problem, water discharge, volume and number of active turbines
are obtained for each period and plant. Power output is then computed with a dynamic pro-
gramming algorithm for every combination corresponding to the number of active turbines,
for given values of volume and water discharge calculated from the loading problem. These

power output values are stored in [, which are parameters in the unit commitment model.
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The number of combinations for a given period and power plant is given by nj, and number

of turbines of a hydroelectric plan by T°.

The optimization problem maximizes energy produced and penalizes turbine start-ups :

nz TC
max Z Z Zﬁfkv’flcka - Z Z dekGCk (4.24)

ceCkeK I=1 ceCkeK t=1
subject to :
g
Y af =1, VeeC,Vke K\{1} (4.25)
=1
TSt — Tp—1Slk—1e S iy » Vee CVk e K,V =1,2,...,nj
. Vt=1,2,...,T¢ (4.26)
xlcl :.’,i'lcl 5 VCE C,Vlz 172,...777,% (427)
xp. € B, Yee C,Vk € K,
. Vi=1,2,...,nf (4.28)

wEB , YeeC\VkeK,
, YI=1,2,...,nf
. Vt=1,2,...,T" (4.29)

The constraints (4.25) ensure that only one combination is chosen at each period. Constraints
(4.26) are the linking constraints between start-up variables and combination choice. Constraints
(4.27) force the initial combination of turbines working. Finally, constraints (4.28) and (4.29)

are the declaration of binary variables.

One of the advantages of solving separately the unit commitment problem is that there is no
approximation of the data, since [} is calculated with a dynamic programming algorithm.
Also, the advantage of a two-phase optimization approach is that it is much easier to solve
a continuous nonlinear model followed with a linear integer model than a single nonlinear

mixed integer problem.

4.4 Computational results

The mathematical models of Sections 4.3.1 and 4.3.2 are tested on two of the five hydroelec-
tric plants that compose the Saguenay-Lac-St-Jean hydroelectric system. These two plants,
Chute-du-Diable and Chute-Savane, are in series and both have five turbines. They were
chosen since they are the smallest sub-system with two plants in series and the motivation is

to validate the optimization developed before expanding to the whole hydroelectric system.
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Also, the models developed are deterministic and the aim of subsequent studies will be to

consider uncertainty in the weather forecasts.

The current procedure used at Rio Tinto Alcan to schedule hydro power production is a
gradient-based method with linear constraints. A short-term optimization software computes
total water discharge at each plant and period. For the unit commitment, a dynamic program-
ming algorithm combined with the engineer’s experience are used to make the final decision.
The purpose of this paper is to develop a fully automatic procedure that gives better, or
at least as good results as currently. The planning horizon of the models is partitioned into
168 hourly periods for one week. Thirty weekly scenarios are tested, all provided from the
historical database. Since data is available every two minutes, a mean per hour of the water
discharge and the volume of the reservoirs is calculated in order to compare results. Initial
volume, final volume and initial combination of working turbines are provided to the model
to make the best possible comparison. The same starting point, in the middle of volume and
water discharge discretizations is given to the model as an initial solution. Inflows of the

basins are assumed known and the computed model is deterministic.

The Ipopt [105] nonlinear solver is used for the first nonlinear program and Xpress-MP [2]
for the second linear program. Numerical experiments are conducted with an Intel Xeon
Processor E5-2650, with 8 cores at 2 GHz and 61 Go of RAM memory. The nonlinear
program has a total of 1680 real variables and 674 constraints. For the second linear integer
program, 7056 binary variables and 26918 constraints are necessary. The number of variables
and constraints for the second model will be less if some turbines are unavailable due to
maintenance or repair at certain periods. Numerical comparisons of our approach versus the
real values show an improvement on 27 out of the 30 test cases, ranging from 0.002 GWh
to 2.145 GWh. The average improvement over all cases is of 0.4 GWh. In the province
of Quebec, a 1 MW h earning represents roughly 40$ in savings for the producer. In this
particular case, an improvement of 0.4 GWh translates into 832 000$ savings for a year.

Our approach is slightly sensitive to the starting point value. We observed that for the three
cases in which our approach did not improve the solution, a better solution was found by
changing the starting point. The computational time to solve the unit commitment model
is very low. The loading problem takes an average of 1.41 seconds and the longest time
is 7.71 seconds. Results obtained with the same initial solution are shown in Table 4.3.
For each hydroelectric plant, total energy, with penalties due to start-ups, both for solution
obtained with the optimizer and the historical database are listed. Also, the difference between
optimized solutions and the historical database are computed. A positive value indicates
that the optimizer produces a better solution than reality and a negative value indicates

the opposite. Also, the total difference of start-ups of turbines is listed. A positive difference
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indicates optimized solution has more starts than real case and a negative difference indicates

real case has more starts.

Table 4.3 Total energy production with same initial solution

Chute-du-Diable|| Chute-Savane Total Diff.

# |Optimized| Real |[Optimized| Real ||Optimized| Real #

GWh |GWh| GWh |GWh|| GWh |GWh|GW h|start
1| 27,12 (26,82| 38,09 |37,93|| 65,21 [64,75]/ 046 | O
2| 31,96 |31,97| 3541 |3525| 67,37 |67,21| 0,16 | 1
3| 33,42 [33,21| 36,55 [36,21] 69,97 (69,42 0,55 | -1
4 22,52 22,07 24,73 |23,80| 47,25 [4587] 1,38 | 0
51 25,01 [25,05| 28,31 |28,12|| 53,32 (53,17 0,15 | -3
6| 29,36 [29,07| 31,68 [30,98]| 61,03 [60,05( 0,98 | 2
7| 22,74 |2287| 30,00 (29,96| 52,74 [52,82(-0,08] 5
8| 32,26 |31,56| 30,18 (29,67| 6244 [61,23] 1,21 | 3
9| 27,29 [26,78| 38,38 |38,42| 65,67 (65,20 0,47 | 1
10 32,06 |31,91|| 36,10 |35,52| 68,16 [67,42] 0,74 | 0
11} 36,67 [36,68| 3841 |38,39( 75,07 |75,07| 0,00 O
12| 28,68 28,30|| 36,59 |36,14| 65,27 [64,44] 0,83 | 0
13) 33,94 [33,93| 3880 |38,72( 72,73 |72,65| 0,08 | O
14| 26,52 |26,15|| 36,76 |36,59| 63,28 [62,74| 0,54 | 1
15| 24,04 |23,54|| 35,29 [35,35| 59,33 |58,88] 0,45 | 1
16/ 33,80 [33,53| 37,85 |37,63| 71,66 |71,16| 0,50 | O
17 31,13 |31,13| 36,54 |36,43| 67,67 |67,56| 0,11 | O
18| 30,18 29,89| 31,84 |31,94| 62,01 [61,83] 0,18 | 2
19 29,10 |28,70|| 31,26 |31,37| 60,36 |60,06| 0,29 | 4
20| 28,57 [28,26] 31,33 [31,32|| 59,90 59,58 0,32 | 3
21| 27,04 [26,96] 29,80 [29,71|| 56,84 |56,67| 0,17 | 1
22| 28,17 |27,83| 30,68 [30,27| 58,84 5810/ 0,75 | -4
23| 25,05 25,11 27,77 [27,57| 52,82 52,68 0,14 | 0O
24| 33,64 [32,67|| 36,97 [3580| 70,61 |6847| 2,15 -1
25| 20,54 [20,64| 22,90 (22,78 43,44 4342|002 2
26| 31,91 [31,87| 35,14 (35,14|| 67,06 |67,01| 0,05 | -2
27| 20,34 20,48 23,41 [23,25| 43,74 |43,73| 0,02 | 3
28| 2948 [29,62| 32,83 [32,79| 62,31 |62,41|-0,11| -2
29| 33,34 [33,34] 36,68 [36,56| 70,02 [69,90| 0,12 | 1
300 29,08 ]29,27| 31,83 |[31,85|| 60,91 |61,12|/-0,21| 3

Fig.4.5 is a histogram comparing energy gain between optimized solution and real test cases.
In twelve out of the thirty test cases, the optimized solution improved the quantity of energy
produced between 0 and 0.2 GW h. For ten other cases, the improvement is between 0.2 and
1.0 GWh. Three cases exceed 1.0 GWh and the largest gain is close to 2.2 GWh. In 27

of these cases the improvement is positive, and in the other 3 the improvement is slightly
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negative.

Histogram of differences of energy produced by optimized
solution and real data

Number of cases

N I

ol SN EE—

02 0 02 04 06 08 1 12 14 16 18 2 22
Difference (GWh)

Figure 4.5 Histogram of differences of energy.

4.4.1 Interpretation of the results

We illustrate the differences between the real and the optimized solutions by analyzing two of
the test cases. These cases were selected since one of them proposes a very different production
plan than the decisions actually taken at the moment. Case 1 fills the reservoir during the

week and case 6 has similar volumes at the beginning and the end of the week.

Since power is a two variable function of the net water head and water discharge, both
graphs are presented. For Chute-du-Diable and Chute-Savane, a graph of the water discharge
comparing optimized solution and reality as well as a graph comparing water heads are

displayed for both cases.

Let us analyze case 1 in details. Fig.4.6a shows the results for Chute-du-Diable power plant.
The graphic on top shows the total water discharge of the plant in m?/s and the graphic
below shows the net water head in m. The period for both graphs is 2 minutes, as in the
historic database. The optimized result over the entire week in hourly periods are transposed
every 2 minutes to allow a visual comparison between historic and optimized results. Even
though a mean per hour of the 2 minute inflows has been computed for the optimization,
the total volume is equivalent for 2 minutes real results and 1 hour optimized solutions. For
each graph, the optimized solution is presented with a dashed line and the real cases with
a filled line. Fig.4.6b shows the results for Chute-Savane. The top graphic of Fig.4.6a shows

the optimized solution in which the total water discharge at the plant is 670 m3/s during
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the whole planning horizon. Graphic on the bottom, on Fig.4.6a, illustrates the water head
is similar throughout all the week for database and optimizer solution. Fig.4.6b on top shows
database solution give a constant water discharge of about 780 m3/s with a higher discharge
at the beginning of the week, and that optimized solution has also a constant solution with
a peak of the water discharge around period 1000. As for the graphic on the bottom, the
optimized water head is higher than database results throughout the week. The solution

provided by the optimizer produces an improvement of 0.462 GW h.
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Figure 4.6 Case 1 water discharge and water head.

For case 6, the solutions for both power plants have strategies different than decisions made
at that moment. Chute-du-Diable’s reservoir is lowered then filled and Chute-Savane is filled,

then lowered and filled once again. Results are presented on Fig.4.7.

These two cases were selected to illustrate important differences. Case 1 fills the reservoir
throughout the week and case 6 keeps reservoir at the same level. These graphs show that the
optimized strategy differ from what was done in reality, and improve the production. Case 1
produces 0.462 GW h more and case 6, 0.982 GW h more. Our models allow us to produce a
solution within a very satisfying computational time of a few seconds. Also, it demonstrates
that the proposed optimization lead to a fully automatic procedure that allows to obtain

results at least as good as the current procedure.

We solved the short-term unit commitment and loading problem with a deterministic model,
which means that no uncertainties are taken into account on the inflows of the basin. It gives

more liberty to the optimization to vary the reservoir volumes knowing exactly water inflows
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Case 6 water discharge and water head
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Figure 4.7 Case 6 water discharge and water head.

that will occur at the next period. Computational results show that the model proposed
could be modified and extended to take into account the uncertainties related to the weather

forecasts.

4.4.2 Benchmarking of the proposed solution

The current procedure at Rio Tinto Alcan combines a gradient-based method with the en-
gineer’s experience. Thus, to validate the proposed optimization method, it is necessary to
compare with a mathematical algorithm that does not apply a post-processing of the results.
In a perfect situation, the output of the gradient-based method could have been used, but the
model does not perform well. Hence, the results obtained with our two-phase optimization

model would not have been a fair comparison since it always performs much better.

We propose the following benchmark : the two-phase models are combined into a single
a nonlinear mixed integer model and solved with the Bonmin [20] software package. The
same dynamic programming algorithm as in Section 4.3.1 is used but instead of computing
surfaces for every number of active turbines in the combination, they are computed for every
combination of turbines since the optimization must be carried out in a single phase. The
continuous variables are : water discharge, water spilled and volume at each period for each
plant. The binary variables are : combination used and startup of turbines at each period, for
each plant. The constraints are the same as for the two-phase models combined. The objective

function is to maximize total energy production and to penalize startup of turbines.
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The benchmark test cases are the ones from Section 4.4 in which all ten turbines are available
at each period of the planning horizon. There are ten such test cases. Table 4.4 summarizes

the results.

Table 4.4 Benchmarking on instances with 10 turbines

Case Benchmark two-phase
GWh | Time m :s || GWh | Time m :s
1 - > 12m 65.21 0:01
7 52.67 0:07 52.74 0:02
9 - > 12m 65.67 0:01
11 75.29 0:09 75.07 0:01
13 72.73 0:11 72.73 0:01
14 63.09 2:53 63.28 0:02
15 59.05 2:33 59.33 <ls
17 67.38 0:09 67.67 <1s
22 58.58 0:09 58.84 0:01
28 61.88 0:25 62.31 0:06

Out of the ten cases, two cannot be solved by Bonmin with the default parameters. After
12 minutes, the solver aborted with an infeasible solution, while the two-phase optimization
process solves these both cases in one second. For two other cases, the benchmark required
more than 2 minutes and again, the proposed two-phase model solves these two cases in less
than 2 seconds. Finally, the proposed method in this paper solves the remaining cases in less

than 6 seconds, which is inferior to the fastest time for Bonmin.

For the test cases solved by both the benchmark and two-phase methods, the final objective

function values are comparable, as seen in Table 4.4.

One may notice the higher values of the objective function for the two-phase optimization
process than for the benchmark. As said previously, the surfaces were computed for every
combination of turbines in the benchmark model. Since all the optimization, which are the
loading and the unit commitment model, needs to be carried out in a single phase, polynomial
equations were used to fit the data. In the two-phase process, the first phase power surfaces
were fitted with splines, but in the second phase, the value of power for a given water discharge
and volume were computed using a dynamic programming algorithm, which means that there
was no approximation on the data. Therefore, there is no way of overcoming this difficulty
when solving the models in a single phase, so that explains the differences in the objective
value. The polynomial equations used to fit the data in the benchmark will inevitably have
over or under estimations, which is not the case with the two-phase optimization. Fig.4.8

illustrates the water heads for both plants and both algorithmic approaches. The results are
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very similar.
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Figure 4.8 Case 9 benchmark and two-phase approach water head.

The comparison between the output of a nonlinear mixed integer model and the two-phase
optimization method developed in this paper shows that our method solves all the proposed
test cases in a computational time that is much faster than in a one phase optimization
process. The computational times increase with the number of turbines. In our test cases,
problems have 10 turbines, but we must keep in mind that some hydroelectric plants have
up to 18 turbines, and the single phase approach with the Bonmin solver cannot solve all

problems.

4.5 Conclusion

Short-term unit commitment and loading problems for the Saguenay-Lac-St-Jean system are
complex to solve since the hydroelectric production functions are nonconvex and nonlinear
and we do not have analytical representations of them. We have proposed a model with a
reasonable number of variables, embedded into a two-stage optimization approach. The first
stage solves the relaxation of a nonlinear mixed-integer program in order to find volume,
water discharge and number of active turbines at each period. The second stage solves a
linear integer model to find the exact combination of turbines that maximizes total energy
but also penalizes start-up of turbines. Dynamic programming is used to calculate total power
output that can be generated by a certain combination of active turbines. This data is then

used as parameters for both models. The pre-processing of the power output surfaces is a
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main contribution to this paper since it decreases the number of optimization variables. Also,
even though tailrace elevations have no analytical representation, the power output surfaces
allows us to use solvers that require derivatives, since they are smooth surfaces and they give
a good representation of the hydropower production functions. The approach proposed in this
paper allows us to find a solution in a computational time that is more than satisfying for
needs of operation and was compared to a large mixed integer nonlinear problem formulation.
Multistarts or variable neighborhood searches [53] will be the subject of future research. Also,
other developments based on this method will involve using uncertainty related to inflows in

order to create a stochastic programming model.
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5.1 Introduction

Hydroelectric producers invest time and resources in developing optimization tools to gain
efficiency in the use of water, since even small improvements lead to significant savings. Short-
term optimization is used at the power plant level to dispatch available water for production
between the turbines. Each turbine has a different efficiency. The amount of water available
for production, or reservoir trajectories, is determined from the medium-term optimization
and considers demand, uncertainty in the inflows, and travel time of the water between the
plants. Short-term optimization is often considered to be deterministic [99] by making the
assumption that the inflows are known [41] or by neglecting water balance constraints [7] at
such a short time scale, but does not allow planning under different forecasts. Also, [86] have

shown that considering uncertainty in short-term decision models may lead to improvements.

The focus of this paper is stochastic optimization applied to the short-term hydropower
optimization problem. By considering uncertain inflows, turbines will be used in a more
efficient manner since the stochastic model results in a compromise between high and low
forecasted inflows. For example, in situations where reservoirs are nearly full, considering
uncertain inflows when high inflows are expected prevents lowering the reservoir and force
turbines into inefficient zones, which results in energy production loss in the future if these

high inflows do not occur.

Few papers have looked specifically into short-term hydropower models with uncertain in-
flows. In [91], a short-term hydropower optimization model treats deterministic inflows. Water
head variations are considered and nonlinearities and nonconvexities of the hydropower pro-
duction function are accounted for. In [45], uncertainty of prices and inflows is considered.
The authors use time series analysis to model the water inflows, which is represented by
a scenario tree in the stochastic programming model. Start-up costs are considered and a
multistage stochastic model is approximated by a two-stage model. A mixed-integer linear
program is used. The net water head is assumed to vary with the water discharge only, so

hydropower production functions depend only on the water discharge.

In [83], the only uncertainty considered is demand. The deterministic model is a linear integer
model, which is an approximation of a nonlinear mixed integer model. Once again, the hydro-
power production function depends only on water discharge. For some hydropower systems,
neglecting the water head is not a possible avenue since many of the reservoirs have small
capacities. Consequently, the water head effect is important in a short-term optimization,

even with short time steps.

Many assumptions are made when solving the short-term unit commitment model, since they
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are complex to solve. They have a large amount of variables, power production functions are
nonlinear and efficiency is different for every turbine. The most common assumption is to

neglect water head variations leading to linear power production functions.

When uncertainty arises and one wants to solve the optimization models, two main streams
of ideas have been applied in the optimization community. Stochastic dynamic program-
ming has been used extensively to solve hydropower optimization models [95, 100], as well
as variants such as sampling stochastic dynamic programming [32] or stochastic dual dyna-
mic programming [92]. These models are well suited for long or medium-term horizons but
for short-term models, the state space is huge and it is very difficult, if not impossible, to
solve them. In order to prevent the optimization process to empty out the reservoirs in the
short-term model, values are assigned to the remaining water at the end of the planning
horizon, which are obtained with stochastic dynamic programming or stochastic dual dyna-
mic programming for example. In [69], a new method to generate inflows, based on periodic
autoregressive models, is used as input to a stochastic dual dynamic programming algorithm

that allows to schedule a hydro-thermal system located in Brazil.

The other stream is stochastic programming. A two-stage stochastic model [19] consists
of two stages of decisions. The first-stage decisions need to be taken without knowing the
realization of the uncertainty in the future, while the second stage decisions are taken when

the uncertainty is revealed.

Usually, uncertainty is represented by scenarios. Each scenario is a possible realization of the
uncertainty. Multiple scenario generation methods have been used in the past to approxi-
mate the distributions of the stochastic parameters. An overview of these methods, as well
as evaluating the quality of a scenario tree is found in [61]. In [34], a periodic autoregressive
process is used to fit historical data of the prices and to generate prices for the stochastic
model. The scenario tree is built by sampling the distribution fitted with the model for the
different nodes. Another method creates a discrete distribution of the uncertain parameter by
matching some specific statistical properties. In [56], the first four moments, mean, variance,
skewness and kurtosis are matched. Multiple pitfalls arise from this method and one must
ensure the scenario tree represents possible outcomes of the uncertainty. A survey of tech-
niques for generating scenario trees appears in [35] and includes recombining of data paths,
contamination method and matching. Also, copulas have been used to generate scenarios for
two-stage stochastic problems [61]. This method offers the advantage of treating dependencies
better than with correlation alone. Other methods are scenario reduction [38, 52]. An initial
scenario tree is required and forward selection, or backward reduction is applied in order to

reduce it and minimize the computational time required to solve the stochastic optimization
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model. The effect of the reduction on the solution accuracy, applied to a cascaded system of

hydropower reservoirs is found in [108].

Other methods to deal with uncertainty on the inflows include robust optimization techniques
[13] and probabilistic constrained programming [103]. Robust optimization solves models that
have uncertain parameters over uncertainty sets. Therefore, the optimization seeks to find a
solution that is feasible regardless of the outcome of the uncertainty. In [6], a rolling-horizon
scheme is used and robust optimization is applied to the decision of day 1 while the rest
of the horizon is considered deterministic. This is interesting as the uncertainty is applied
to the important decisions. A drawback of robust optimization is the formulation of the
uncertainty. In the historical records, some values of inflows may be very low and others very
high. Therefore, it is difficult to define what are the best bounds for the uncertainty set, as
well as capturing any nonlinear dynamics present. In probabilistic constrained programming,
constraints are to be respected given a certain probability. A cascaded hydropower system is
optimized with probabilistic constrained programming in [103]. As with robust optimization,
parameters on security-level and probability measures are to be given to the model, which is

a difficult task in practice.

We contribute to the existing literature by considering inflow uncertainty in the short-term
hydropower model. Few papers have looked specifically in stochastic short-term models and
we extend the modeling proposed in [91] to consider uncertain inflows. For the producer, it
is interesting to consider a stochastic model since it gives a production plan for the whole
planning horizon. Applying the theory outlined in [82], we also detail /provide a nonparametric
scenario generation approach that relies on the information in the history of inflows. We

expand [91] by introducing stochasticity to both the loading and unit commitment problems.

The paper is organized as follows Section 5.2 presents data available for inflows. Section
5.3 describes the method to generate scenario trees. Section 5.4 gives an overview of the
short-term hydropower problem and details the optimization models. Numerical results are

presented in Section 5.5 and final remarks are presented in Section 5.6.

5.2 Scenario fan of inflows

This section presents the data available for the inflows. In the province of Quebec in Canada,
consumers and producers of hydroelectric energy, except Hydro-Quebec, are not allowed to
bid on the spot markets [22]. The province-owned integrated utility performs all power market

activities. Hence, only uncertainty related to inflows in the reservoirs is considered in this

paper.
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Before presenting the method for generating the scenario trees used in the optimization
models, we describe the available data sets. Precipitation forecasts are obtained from Envi-
ronment Canada [1]. A 7 day deterministic precipitation forecast is issued. The 7 day forecast
is split in two groups : the first 3 and the last 4 days. We make the assumption that the
error for both groups is independent from a meteorological point of view, as the correlation
in precipitations between days is negligible. This assumption is motivated by the high varia-
bility of the weather conditions on our watershed from one day to the next. For example, we
could have a few days of snow, followed by no precipitations then a few days of rain. The
last 15 years of historical data of precipitation forecasts is searched for a given number (a)
of precipitation forecasts that are the closest, in precipitation forecast (mm) to the first 3
days, and they are retained. The same is conducted for the second group. Since the error is
assumed independent, the scenarios found for the first and second group are mixed and mat-
ched to create a? precipitation scenarios for the first 7 days. Note that the actual realizations
of precipitation on these days are used as scenarios. Then, considering that the forecast has
no value after 7 days, the 62 years of available history of realizations is appended to all of
the scenarios for the first 7 days with a = 7, yielding a total of a? x 62 = 3038 scenarios of
precipitation for 30 days of prevision. Then, these precipitation scenarios are given as input

to the CEQUEAU hydrological model [25] which outputs inflow previsions for the reservoirs.

Figure 5.1 illustrates this process. The goal of the scenario tree generation method, in Section

5.3, is to create a scenario tree from the scenario fan of inflows.

5.3 Scenario tree generation

The method chosen to construct a scenario tree suitable for the stochastic optimization is
taken from [82, 81]. The method is applied to real hydropower data. First, the structure of
the scenario tree is fixed, then stochastic approximation is used to improve the values of
inflow of the nodes, considering all the data available for every approximation. Improvement
goes on until a convergence criterion, based on the nested distance and explained in Section
5.3.4, is reached.

5.3.1 Fixing the initial scenario tree structure : k-means clustering

The number of stages and the number of nodes per stage of the tree are fixed initially.
Aggregation is necessary since the scenario tree structure can be different from the data

available. The aggregation is straightforward : values of inflows for each day are summed up.

K-means clustering [68] is used to partition the data paths into clusters in order to assign
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Figure 5.1 Building inflow scenarios from a 7 day deterministic precipitation forecast.

initial values to the scenario tree nodes. Note that initially no probabilities are allocated to
the nodes : simply values for the nodes. This clustering method minimizes the distance from
every data point to the mean of the cluster to which it belongs. As an example, the k-means
algorithm is applied to the 3038 inflow scenarios to form a scenario tree which has a structure

as shown in Figure 5.3b.

5.3.2 Improvement of the clusters

The method to improve the scenario tree nodes consists of two steps. First, from the initial
data paths, a random data path, that is not in the paths available, is generated using density
estimation. Next, the distance between this random path and the closest state of the scenario
tree nodes is minimized in a stochastic approximation step in order to improve the tree. This

method is repeated for a given number of iterations and is explained in what follows.

Step I : density estimation

In order to generate a new random path, kernel density estimation is used. We generate a
random path that is close to the distribution of the data paths and conditional on previous
stages. To do so, the conditional probability density function is estimated. For each stage of
the desired scenario tree structure, a value of inflow is generated that is close in distribution

to all of the data paths and incidental to the past.

A random path & = (£4,...,64)T is to be generated using available data paths X% =

(Xd, ..., X%)T where i is the index of available data paths, d is the dimension and K is the
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number of stages. The conditional density estimator [81] is

. n k—1 57 ij _Xz 1
f(&kl&rs - &) ;]le ( ( %W) ></<a<€khkk> X (5.1)

where the dimension d is dropped for clarity, n is the number of available data paths, k is
the kernel and h; and h;, are the bandwidths.

The analytical representation of the actual distribution is not computed, as only samples from
Equation (5.1) are necessary which can be generated quickly. In practice, this is achieved by
assigning weights to every data path available. The closer the observation is to the path, the
higher is the weight. For every stage from 1,...,k — 1, the weights of the data path at each
stage are multiplied. With these weights calculated, a value of inflow is to be generated at

stage k.

Inflow (%)

Stage

Figure 5.2 Generation of a random path based on three available data paths of inflows. The
generated value of inflow for stage 1 is shown with a star marker.

To illustrate refer to Figure 5.2. There are three data paths of inflow. The random value of
inflow has been generated for stage 1 and is located with a star marker. From there, a value
of inflow is to be generated for subsequent stages, always conditional on the past. As per the
figure, it is necessary to find a value of inflow at stage 2 that is consistent with the conditional

distribution. Therefore, weights are calculated as follows, in this case for stage k :

— 57 ij
w1,y G zl_] &é‘g} >m) (5.2)
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where >0 w; =1 and w > 0.
The value of inflow & at stage k is generated as follows. A data path with index ¢* is chosen
randomly among the available data paths at stage & — 1 to satisfy

¥ —1

' wi(fla"wgk’—l) S randu S Zwi(gla'-wgk’—l)a (53>

=1 i=1

where rand,, is chosen from the uniform random distribution on the interval [0, 1]. The cu-
mulative sum of the weights leads to a high probability of picking a data path near an

observation.

The value of inflow &, is obtained by setting the value at stage k
&k = Xp, + rand,, (5.4)

where randnhk is a random value sampled from the kernel estimator using the composition
method [82].

This newly generated inflow value is according to the distribution of density of the current

stage and dependent on the history of all the data paths.

Referring again to Figure 5.2, weights are calculated for the 3 data paths as per Equation
(5.2). Then, a data path is chosen randomly at stage 1 and the solid line has a high probability
of being picked. Consider it is the case. To generate the value of inflow at stage 2, the value of
the solid line at stage 2 is perturbed randomly. This method is then repeated at each stage in
order to generate a random data path and is represented on Figure 5.3a with a thick dashed

line.

It is shown that the choice of the kernel does not have an important effect on the density

estimation [58]. Hence, in this paper, the logistic kernel is used :

1
24

K(€) (5.5)

The bandwidth is the smoothing factor applied to the estimation of the density. Silverman’s
rule of thumb [94] is employed to determine the optimal bandwidth :

~=

hy = o(Xop)n™ T = o(Xp)n 7, (5.6)

where n is the number of data paths, d is the dimension and ¢ is the standard deviation. In

this paper, d = 3 because there are three values of inflows per scenario tree node, representing
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three different reservoirs.

Step II : stochastic approximation

Once the new random path of inflows is generated, a stochastic approximation step is conduc-
ted. This step allows to update the value of some scenario tree states. During this step, a
scenario from the scenario tree, more precisely a path of nodes in the scenario tree is identi-
fied. This path of nodes in the scenario tree minimizes the Wasserstein distance W between
the randomly generated path during Step I of the algorithm, found in Section 5.3.2, and

current scenario tree nodes values.

The Wasserstein distance is minimized as follows :
K
W2 = min 3 [I0(w) — &2 (5.7)
weN —1

where ) are the scenario tree paths, I'(w) are the states corresponding to the nodes in the
path w in the scenario tree, from the set of all possible scenarios €2, and & is the value of
inflow generated randomly at stage k. Referring to Figure 5.3b,
Q=1{(1,2,3,5),(1,2,3,6),(1,2,4,7),(1,2,4,8) }. Equation (5.7) allows to find this path of
nodes and is identified as nodes (1,2, 4, 8) on Figure 5.3b.

To achieve this, a stochastic gradient descent method that minimizes the nested distance is
used. Starting from the root of the scenario tree, W is computed for the children node. The
children node with the smallest value of W becomes the parent node. W is then computed

for the children node of the new parent node and so on until a leaf node has been reached.

The identified path of scenario tree nodes values I'(w) that minimizes the Wasserstein distance
for the current stochastic approximation iteration p = 1,2,... is updated in the following
manner :

[(w)pt1 = L(w)p — VIV, (5.8)

where I'(w) are the values of the scenario tree nodes to improve, «,, is the step-size and VIV,

the gradient of the distance.

The step-size oy, = where p is the stochastic approximation iteration, is chosen since

1
(p+30)3/4 )
it is shown that the method will converge [81] given «, > 0, Y, o, = 00 and 3, () 2 < 0.
As an illustration, consider one iteration of the algorithm and refer to Figure 5.3. First,
a random data path of inflows is generated using kernel density estimation. This can be
seen on Figure 5.3a : it is the thick dashed line. The Wasserstein distance between this new

generated path of inflows and the current values of the scenario tree nodes is minimized and
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(a) Randomly generated path of inflows, shown with thick (b) Scenario tree. The path of nodes in the

dashed line, from three available data paths of inflows. scenario tree that minimizes the Wasserstein
distance is shown in bold.

Figure 5.3 Illustration of the 2 steps of the algorithm. Generation of a random path of inflows
from available data paths of inflows and stochastic approximation to improve the value of
some scenario tree nodes.

a path of nodes in the scenario tree is retrieved for potential improvement. The path of nodes
minimizing this distance is shown on Figure 5.3b. Hence, the value of the inflows for the thick

nodes, which are 1, 2, 4 and 8 will be improved using Equation (5.8).

5.3.3 Probabilities

During the first stochastic approximation iteration, assigned probabilities of the nodes are 0
since, as explained in Section 5.3.1, the scenario tree is initialized with values for the nodes

only.

Node probabilities are updated at every stochastic approximation iteration. A counter is assi-
gned to each node and initialized at 0. Every time a path of nodes minimizing the Wasserstein
distance is retrieved, the corresponding counters of the nodes in this path are incremented
by 1.

Once the stochastic approximation iterations are completed, probabilities are computed by
dividing the counter value by the number of stochastic approximation iterations, which yields

sums of child nodes probabilities equal to 1, as in Figure 5.4.

In a multistage stochastic program, each path from the root to a leaf node represents a scena-
rio. The unconditional probabilities of a scenario is obtained by multiplying the unconditional
probabilities of all the nodes in the scenario, yielding probabilities 7;, where j is the scenario

in Figure 5.4.

An interesting feature of the scenario tree generation method is that the extreme (low and
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Figure 5.4 A scenario tree with node probabilities (over the node) and scenario i probabilities
(indicated with ;)

high) scenarios are accounted for, according to their occurrence in the historical data set.

The law of large numbers insures that the probabilities are asymptotically consistent.

5.3.4 Termination criterion

The scenario tree generation algorithm terminates when the nested distance has converged
to a certain € for the 10 last iterations. Thus, Step I and Step II of the algorithm are repeated
until convergence is obtained. Depending on the inflow forecasts, the number of iterations to
converge varies. As an example, for a given test case, it took an average of 1038 iterations

for the method to converge and generate one scenario tree.

The main advantage of the scenario tree generation method presented in this section is that
all of the data paths are used at every iteration to improve the value of the scenario tree nodes.
By doing so, the underlying discrete distribution of the available data paths, approximated
by a scenario tree, is improved consistently with the data. The scenario trees are prepared

before the optimization is conducted.
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5.4 Stochastic short-term hydropower model

The two-phase deterministic optimization models taken from [91] are updated to consider
stochastic inflows. This section presents the modeling of the short-term problem as well as

the mathematical formulations.

5.4.1 Modeling of the short-term problem

The modeling of the problem considers head-dependency, as well as efficiencies of each tur-

bine. Power P(kW') produced by a single turbine is defined as

P(hn, Q) = 1(Q) X G X Q@ X fn(Qrot, v), (5.9)

where G is the gravitational acceleration (m/s?), @ is the unit water flow and Qy is the
total water flow (m3/s), n(Q) is the efficiency of the turbine and h,, is the net water-head
(m). The net water-head is a function of the forebay elevation hy (m), the tailrace elevation

hy (m) and losses in the penstock ¢ (m) that is given by :

hn(Qtota U) = hf(v) - ht(@tot) - @(Qtot), (5-10)

where v is the volume of the reservoir (hm?). For notational purposes and since there is
a relation between net water head and volume, we consider that power is a function of
the volume and water flow. We propose a modeling with combinations of units instead of
single units. To achieve this, a dynamic programming algorithm, where each sub-problem is
a turbine, is used to calculate the power produced by a combination of units. As an example,
if a power plant has a total of 5 turbines and requires three active turbines, there is a total of
10 combinations of 3 turbines, 5 combinations of 4 turbines and 1 combination of 5 turbines.
Water flows are discretized and the dynamic programming algorithm is executed for each
possible combinations, 16 in this case, for each power plant and discretizations of reservoir

volumes and water flows.

Dynamic programming algorithm

The objective of the problem is to maximize the power output and it is found recursively.
Given state s?, the dynamic programming algorithm seeks to choose decision variables ¢’
that solves :

J(s7) = max P(s7,v) + f97 (7 — ¢f), (5.11)

q]
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.,1, n is the number of turbines at the power plant, s/ €

., min{g’, Q}} the water flow with ¢ maximum water flow. The optimal water

n—1n—2 ..

.,r} is the remaining water to dispatch given the number of discretizations r and
flow is ¢*/ = s/ that maximizes f*/(s’). For j = n, the optimal power output is given by

[(s7) = P(s7).

with 5 turbines requiring at least 3 working, three surfaces are built, more precisely one for 3
turbines working, one for 4 turbines working and one for 5 turbines working. The maximum
power output for every possible combination of number of working turbines is retained for
every discretization of volume and water flow. Such surfaces can be viewed in Figure 5.5. To

We then build a set of surfaces of the maximum power output for each power plant. For a plant
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discretization

Volume discretization
Figure 5.5 Maximum output surfaces

(a) Five turbines in the combination

discretization

obtain them, the dynamic programming algorithm is executed for every number of turbines
in the combination, every discretization of the reservoir volume, every discretization of the
water flow and every power plant. The surfaces of maximum power outputs are then modeled
using polynomial equations in the objective-function of the optimization problem. Modeling
of the hydropower production functions is done by constraining these functions with two
One constrains the water discharge without spill and the other constrains the water discharge
with spill. Therefore, in the optimization problem, we have only one variable of the water
discharge, which combines processed and spilled. But since we are constraining with the two

surfaces.
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different surfaces and that we are maximizing, the model will try and avoid spill since it
reduces power production. When redistributing the total water discharge to the plant, we
can then see if there is some spill or not. There is an upper bound on the water discharge,

which is the maximum including spill.

A two-phase optimization strategy is used to penalize the startup of turbines. The first phase,
namely the loading problem, optimizes values of water discharges, volumes and number of
turbines in the combination for every plant and node. The second phase, namely the unit
commitment problem, uses the solution of the first optimization model to determine the
exact combination of turbines working at each plant and node in the scenario tree. Startups
of turbines are penalized with a fixed cost. Multistage stochastic models are developed for

both optimization phases, in order to consider uncertainty in the inflows of the reservoirs.

5.4.2 Phase I : loading problem

Optimization variables of this nonlinear stochastic multistage mixed integer problem are
water flows, volumes and number of working turbines, for each node and plant in the scenario
tree. There is only one variable for the water flow, but it includes processed and spilled water.
We have shown [91] that relaxing the variables that determine the number of working turbines
leads to an integer solution. Therefore, we solve a nonlinear stochastic multistage continuous
problem, as the coefficients of the matrix of constraints are also totally unimodular given the
stochastic version of the model.

The objective is to maximize total energy production in stage 0, expected energy production
in future stages and expected value of the water remaining in the reservoir at the end of the

planning horizon :

ng ng
max YD XovoCo+ D D7 (Z SoXGsG+ Y @;(v;)) (5.12)

ceC s=1 ceC jeK teEN; s=1 PEE;

subject to 1 x% < U(gf,vf), Vee C,Vi€N,

Vs € {1,2,...,nf}, (5.13)
X < WPe(gE0f),  VYeeO,VieN,
Vs e {1,2,...,n5}, (5.14)

(& C C (&
0; = Viy1 — Vj +ywig;

uC
— Z Ywmq;", Vi e N;,Vj e K,Vce C, (5.15)
m=1
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Sy <1, VieNVeed, (5.16)
Sy1§0:@§0, Vs e {1,2,...,nf},Ve e C,Vi € N, (5.17)

Voin < 0§ <00 Vi€ N,VeeC, (5.18)
Tmin < € < Gpazs Vi€ N,V e C, (5.19)
g >0, Vie N,VeeC, (5.20)

vi >0, VieN,VeeC(, (5.21)

ye; >0, Vse{l,2,...,n{},Vie N,VeeC. (5.22)

Hydropower production surfaces are constrained by (5.13)-(5.14). Water balance constraints
are represented by (5.15) and the choice of a single number of active turbines is shown in
(5.16). Constraints (5.17) are the initial number of active turbines while constraints (5.18)-
(5.19) are the bounds on reservoir volumes and water discharges. Finally, constraints (5.20)-
(5.22) impose nonnegativity. Index i 4 1 of variables vf ; takes the value of the node in the
set N;. For example, if N; ={1,3,5,7} and i = 1, i + 1 = 3 since the index takes the value
of the node at position ¢ = 2 in the set V;.

The above short-term loading problem is described in more details in [91]. We now show
how to integrate a water-value function for the remaining water at the end of the planning

horizon.

Water-value function The water-value function is the expected energy production in the
future at the end of the planning horizon. In a deterministic framework, inflows are known
with certainty, thus volume in the reservoir at the end of the horizon is easier to determine.
In a stochastic framework, it is not possible to give a goal for the volume at the end of
the horizon since it may not be feasible for every scenario. On the other hand, neglecting
this feature will cause the optimization to empty the reservoir at the end of the horizon,
since the objective is to maximize energy. Hence, maximizing the expected value of future
energy production, or water-value function, will prevent the optimization of doing this. The
water-value functions are computed with a stochastic dynamic algorithm [33] at Rio Tinto.

A planning horizon of one year, with weekly time steps is used.

5.4.3 Phase II : unit commitment

This linear stochastic multistage integer model is solved using solution found in Phase I.
The purpose of this model is to determine the on-off schedule of the turbine combinations
(found in Phase I). Given water flows and reservoir volumes found in the loading problem,

the dynamic programming algorithm is used to calculate power outputs for every possible
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combination of turbines, given the number of working turbines found in Phase I, and are
stored in parameter ;. The model maximizes the energy production and penalizes turbine
startups. Initial combination of turbines working at stage 0 is given in Zf,.
The objective is to maximize energy production at stage 0 and future energy production and
penalize startup of turbines at stage 0 as well as future expected startups :

na Tc nf Tc
max Z Co (Z Biozio — Z dfoe) + Z Z (7{? (Z Gi (Z Briwy; — Z dfﬂ) )) (5.23)
eC =1 t=1 t=1

e = = JEK ceC 1IEN; =1

n;
subject to : Z:clcl =1, Vie N,Vee(, (5.24)
=1
riifiie — T fiioe < di, VIE{L 2, 0} Vi€ N, Vj € K, Ve e C,
Ve {1,2,...,T°, (5.25)
T = &, Ve {l,2,...,n5},Vie N,Vee C, (5.26)

xp,di, €B, Vie{l,2,...,n{},Vie N,Vt e {1,2,...,T°},Vee C. (5.27)

The choice of a single turbine combination is given by (5.24). Constraints that allow to
penalize a startup by flagging them is shown in constraints (5.25). The initial combinations
are given in (5.26) and imposition of binary variables are constraints (5.27). Index i — 1 of
parameters f;;_;, takes the value of the node in the set INV;. For example, if N; = {1,3,5,7}
and ¢ = 4, 1 — 1 = 5 since the index takes the value of the node at position : = 3 in the set
Nj.
This two-phase optimization process allows to find a solution efficiently. Also, even though
an approximation of the energy produced is conducted in the first phase, the actual energy
production is retrieved in the second phase, seeing that the actual hydropower production
functions are used to compute the actual energy production given a water discharge and

volume, which are solutions of the first phase.

5.5 Results

This section details the system on which the stochastic hydropower models are tested and

results are presented.

5.5.1 Hydroelectric system studied

The hydroelectric system studied is situated in the Saguenay Lac-St-Jean region in the pro-

vince of Quebec, Canada and is owned by Rio Tinto. For the purpose of this paper, three
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hydroelectric plants, which are Chute-du-Diable, Chute-Savane and Isle-Maligne are consi-
dered. The two first plants have 5 turbines each and the latter has 12. Figure 5.6 represents

the system studied. Triangles represent reservoirs and squares power plants.

Chute-du-Diable
Chute-Savane

Lac-St-Jean
I

Petite décharge TT Isle-Maligne

Figure 5.6 Hydroelectric system studied.

Chute-du-Diable, Chute-Savane and Isle-Maligne plant reservoirs are quite small, respectively
452 hm?, 119 hm? and 171 hm?. In the optimization model, there is no water value function
associated to these plants since they have small reservoirs. Instead, a full reservoir constraint
at the last period is imposed as a goal in the model. The only water-value function used
is for the Lac-St-Jean reservoir, therefore volume of this reservoir at the last period is an
optimization variable. The capacity of this reservoir is of 5596 hm?. Water flow in Petite

décharge is limited by a function dependent on the volume of Lac-St-Jean.

5.5.2 Rolling-horizon procedure

A rolling-horizon methodology is retained to validate the optimization models developed in
this paper. The planning horizon of the rolling-horizon is of 31 days. For every day of the
rolling-horizon, the forecast is for 30 days. For day 1 of the rolling-horizon, previsions are
from days 2 to 31, for day 2 of the rolling-horizon, previsions are from days 3 to 32, and so on.
The stochastic optimization models presented in section 5.4 are solved every day, but only
the solution for the first-stage is retained. Forecasts are updated daily. Once the forecast is
updated, the scenario tree is generated for the corresponding day. The two-phase optimization
process is launched and the first-stage solution is retained, that is : volume, water discharge
and turbine combination. Then, considering the actual realization of the inflow, the water
balance constraints are used to determine the actual volume of the reservoirs at the end of

the period. More precisely, the water discharge from the optimization is combined with the
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actual realization of the inflow in order to calculate the reservoir volumes. The same process is
repeated for the 31 days. In the end, a production plan for 31 days is available, which consists
of the reservoir volumes, total water discharges at the plants and turbine combinations in
use. See [3] for a different approach to rolling-horizon evaluation of short-term hydropower

operation.

The solution obtained from the scenario tree generation is compared to the solution obtained
from the median scenario of the inflows. Therefore, we compare our method to a rolling
median. Every day, the median scenario is found throughout all available scenarios and a

scenario tree of 1 node per stage is solved in a deterministic fashion.

5.5.3 Numerical results

The scenario tree generation method is coded in Matlab [72]. The optimization models are
coded using AMPL [48]. The optimization software for the loading problem, which is the
relaxation of a nonlinear mixed-integer problem, is IPOPT [105] and the unit commitment

model, a linear integer problem, is solved with XPRESS [2].

Six test cases, which consist of monthly periods are available. The biggest problems to
solve have 7 stages with 48 scenarios, 1123 nonlinear variables, 33 linear variables and 1237
constraints for the loading problem and 3475 binary variables and 825 constraints for the

unit commitment problem.

Different stages, more precisely 5, 6 or 7, as well as different number of scenarios, namely 16,
32 or 48 are tested.

Computational time

The average time to construct the scenario tree and to optimize is shown on Figure 5.7. The
average time is in seconds, for a single day in the rolling-horizon procedure, more precisely
for one problem including construction of the scenario tree and optimization of the two-phase
process. It takes less than 5 seconds to build the scenario trees for all test cases, while the
optimization requires more time given higher numbers of scenarios. Less than 42 seconds, for
a single day in the rolling-horizon are necessary to construct the scenario tree and optimize

the two-phase process, which is acceptable in the real operating environment.

The current implementation of the scenario tree generation method and optimization is
tested on three cascaded hydropower plants. For this specific producer, the whole hydropower
systems consists of five hydropower plants, therefore calculation time would be acceptable

for the whole system. Considering another system of, for example, 50 hydropower plants,
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Figure 5.7 Average computational time of scenario tree generation and optimization for one
day in the rolling-horizon.

the actual method would take approximately 350 minutes. The proposed method in this
paper is applicable to a larger system, probably by decomposing the system in smaller sub-
systems. To do so, the system is to be studied and depending on its configuration, distances
between plants and others, modeled in an acceptable manner. Depending on the scope of
the application, the calculation time may or may not be satisfactory. If a producer does not
mind solving a 7 hour model every day, then the computational time is satisfactory. In order
to diminish computing time, an avenue is to solve the model for a given number of days
then weeks. In this way, the number of variables is greatly reduced and so is the computing
time. This model is applicable to a larger hydropower system, but it would be necessary to
decompose the system in sub-systems and review the modeling to diminish the number of

optimization variables, given a producer requiring fast computational time.

Results

Table 5.1 illustrates the difference in energy, in TWh, produced throughout the 31 days
rolling-horizon combined with the value of water remaining in the reservoir at the end of
the planning horizon. This implies that the difference in energy can be compared to annual
production but absolute numbers are unfortunately not thus interpretable. A positive value
indicates the scenario tree method produces more than the median scenario and a negative
value indicates the contrary. For 4 of the test cases, the stochastic solution produces more
energy. For 1 test case, the median scenario solution produces more energy. Finally, for the

August case, the stochastic solution produces more energy with a 5 stage or 6 stage scenario
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Table 5.1 Results for 6 test cases (5 are data sets from the year 2011 and 1 from 2010).
Energy produced by the stochastic solution and the median scenario rolling-horizon is given.

Also, the difference in energy between both solutions is shown.

June 2011

July 2011

August 2011

Nb.
Sc.

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

16
32
48

16
32
48

16
32
48

5 stages

804.5143
804.7050
804.6894

804.0265
804.0251
804.0249

0.4878
0.6799
0.6645

740.2678
740.2783
740.2496

740.0631
740.0631
740.0631

0.2047
0.2152
0.1865

710.1115
710.1108
710.0988

710.0795
710.0794
710.0794

0.0320
0.0314
0.0194

6 stages

804.5059
804.6796
804.6715

804.1495
804.1479
804.1481

0.3564
0.5317
0.5234

740.2698
740.2652
740.2608

740.0665
740.0665
740.0665

0.2033
0.1987
0.1943

710.0783
710.1139
709.9826

710.0733
710.0733
710.0732

0.0050
0.0406
-0.0906

7 stages

804.5171
804.7166
804.7063

804.0881
804.0881
804.0879

0.4290
0.6285
0.6184

740.2676
740.2566
740.2686

740.0578
740.0578
740.0578

0.2098
0.1988
0.2108

710.0693
710.0732
710.0806

710.0867
710.0867
710.0867

-0.0174
-0.0135
-0.0061

September 2

010

September 2

011

October 20

11

Nb.
Sc.

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

Stoch.
(TWh)

Median
(TWh)

Diff.
(TWh)

16
32
48

16
32
48

16
32
48

5 stages

729.5792
729.5841
729.5810

729.3811
729.3821
729.3804

0.1981
0.2020
0.2006

733.0375
733.0530
733.0818

731.6799
731.6799
731.6799

1.3576
1.3731
1.4019

704.7842
704.7847
704.7877

704.8494
704.8494
704.8496

-0.0652
-0.0647
-0.0619

6 stages

729.5856
729.5779
729.5800

729.3917
729.3929
729.3924

0.1939
0.1850
0.1876

732.9971
733.0188
733.0937

731.7773
731.7773
731.7774

1.2198
1.2415
1.3163

704.7690
704.7928
704.7326

704.8636
704.8636
704.8634

-0.0946
-0.0708
-0.1308

7 stages

729.5854
729.5775
729.5834

729.4151
729.4156
729.4139

0.1703
0.1619
0.1695

732.9428
732.9599
732.9702

731.9647
731.9647
731.9648

0.9781
0.9952
1.0054

704.7608
704.7879
704.7873

704.8566
704.8566
704.8567

-0.0958
-0.0687
-0.0694

tree, and the median scenario with a 7 stage. For the 4 test cases for which the scenario tree

produces more energy than the median scenario, average improvements are 0.0679812% for
June, 0.0273551% for July, 0.1620522% for September 2011 and 0.0251653% for September

2010. Despite the low percentages, this represents significant savings for the producer. As an

example, the current value of a 1 GWh improvement, in the province of Quebec, is around
20,0008. Therefore, for June, the 0.0679812% higher production translates into 10,932,489%.
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In-sample stability test

An in-sample stability test allows to verify if the scenario tree generation method is consistent.
It is taken from [62]. Since the scenario tree is generated from random samples, one wants to
verify if the solution given by the optimization, with a different scenario tree each time, give

more or less the same solution. If so, then the scenario tree method is consistent.

As an example, July 2011 and June 2011 data sets were chosen for this verification. For both
data sets, 6 scenario trees were generated with the same number of stages and scenarios.
Then, the optimization was conducted on all of these scenario trees to verify the effect on
the objective function value. Table 5.2 gives, for these two data sets and 6 instances each,

the values of the objective function, for the scenario tree and median scenario methods.

Table 5.2 Objective function values for 6 random scenario trees with the same number of
stages and scenarios, on two data sets.

Data | Inst. Stoch. Median Diff.
(TWh) (TWh) | (TWh)

July 740.2652 | 740.0665 | 0.1987
740.2759 | 740.0665 | 0.2094
740.2725 | 740.0665 | 0.2060
740.2581 | 740.0665 | 0.1916
740.2799 | 740.0665 | 0.2134
740.2878 | 740.0665 | 0.2213
June 804.6715 | 804.1481 | 0.5234

804.6707 | 804.1484 | 0.5223
804.6709 | 804.1474 | 0.5235
804.6824 | 804.1489 | 0.5335
804.6769 | 804.1486 | 0.5283
804.6571 | 804.1472 | 0.5099

S Ol W N RO O W~

Results show that the scenario tree generation method is consistent, as the difference bet-
ween the objective functions of the stochastic and median scenario methods present slight
variations. For the July test case, the median is 0.2077 T'W h, the mean 0.2067 T'W h and the
variance 0.9308 TWh and for the June test case, the median and the mean are 0.5235 TWh
and the variance 0.0516 TWh.

Interpretation of the results

The following figures illustrate the 31 day rolling-horizon backtesting solution more precisely :

water discharge and reservoir levels for the power plants and reservoirs studied in this paper.
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Figure 5.8 Water discharges and reservoir levels for the case June 2011, 5 stages, 16 scenarios.

Figure 5.8 pictures June 2011 data set with 5 stages and 16 scenarios. Solutions obtained
from the scenario tree method and the median scenario are quite similar. Also note that
when a method turbines more water, it is penalized accordingly so it is not advantaged.
The absolute difference between the volume, at the end of the 31 day horizon, between the
solution obtained with the stochastic model and the solution obtained with the deterministic
model is calculated. This volume is then transformed into energy, then added to the method
which has a higher end volume, since it is disadvantaged, given the other method processed

more water throughout the 31 day planning horizon.

Figure 5.9 also illustrates the June 2011 data set with 7 stages and 16 scenarios. Again,

results are very similar.

Without any surprise, the numerical experiments reveal that the solutions to the cases with

more stages are closer to the operational ones because the hydropower system operation is
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Figure 5.9 Water discharges and reservoir levels for the case June 2011, 7 stages, 16 scenarios.

more realistic. For example, Figures 5.8 and 5.9 show that the solutions with 5 and 7 stages
lead to a similar improvement, but the implementation with 7 stages is preferable. Figures
5.9a, 5.9b and 5.9d present reservoir volumes that are more stable than Figures 5.8a, 5.8b
and 5.8d.

The October data set is the only one for which the median scenario produces more energy
for all number of stages. The interest of a stochastic method is to account for uncertainty
in the future. As we compare our method with the median scenario, if the actual realization
of the inflows is close to the median scenario, the stochastic solution will not produce more
energy, as the median scenario depicts correctly the future. In practice, this may happen
during the fall period, for example when low variability exists in the weather and storms
have less chances of developing. This can be seen on Figure 5.10. Each subfigure corresponds
to a reservoir. Figure 5.10a is Chute-du-Diable. The top figure is the day 1 October forecast
and the bottom figure is the day 1 September forecast. For the first 15 days, the October
forecast median scenario is very close to the inflow realization and therefore, as we keep

the day 1 decision only, the median scenario produces more energy. The other subfigures
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Figure 5.10 Comparison of September (lower figures in each subfigure) and October (upper
figures in each subfigure) day 1 data sets. The dashed lines are the minimum and maximum
scenarios. The median scenario is the solid line. The actual realization of the inflows is the
plus sign line.

are represented in the same fashion. Again, Figures 5.10b and 5.10c show that for Chute-
Savane and Lac-St-Jean, the actual inflows in October are very close to the median scenario,
therefore there is no gain in using a stochastic optimization model, as the deterministic
median scenario allows to obtain a good solution. For this unusual October case, solving
the short-term unit commitment and loading problem with a median scenario is acceptable.
This affirmation is to be used with caution as situations like these have a low probability of
occurring. These results show that there is certainly a gain in using a stochastic model for
the short-term hydropower optimization model, as relying on the median scenario offers a

less robust solution than multiple scenarios.
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5.6 Conclusion

This paper presents a stochastic short-term hydropower optimization method which empha-
sizes inflow scenario trees. Few papers looked specifically into stochastic short-term models
and we extend the modeling presented in [91] to consider uncertain inflows. The optimization
method considers inflow uncertainty, head variations and nonlinear and nonconvex relation-
ship between discharge and power output. The scenario tree generation method first uses
kernel density estimation to generate random values of inflows. Then, the path of nodes,
from root to leaf, that minimizes the Wasserstein distance is found in the scenario tree and
the corresponding nodes are updated using stochastic approximation. The process is repeated
until the termination criterion, which is the convergence of the tree in Wasserstein distance,
has been reached. A stability test has shown that the scenario tree generation method is
consistent. A highlight of this method is that it uses all data available at each iteration to
improve the values of the scenario tree nodes. The scenario trees are inputs to a two-phase
optimization process. The first phase, loading problem, allows to find water discharge, volume
and number of turbines working in each plant. The second phase, unit commitment, chooses
the exact combination of turbines to use, to maximize energy production and penalize unit
startups. A major feature of this modeling of the problem is that the water head is not ne-
glected. For this paper, the models are tested on three hydropower plants. A rolling-horizon
procedure is retained on a 31 day planning horizon. The stochastic solution is compared to
the median scenario. Furthermore, fast computation time allows this method to be scaled in
order to be applied in full to the Saguenay-Lac-St-Jean hydroelectric system. Future work
based on this paper consists on investigating the complexity required in the scenario tree
structure. Since a rolling-horizon framework is retained and that only the solution of the

first-stage is kept, tests with scenario fans instead of scenario trees will be conducted.

Notation

The following notation is used throughout the paper :

N set of nodes

E set of leaf nodes

K set of scenarios

C set of hydroelectric plants

uf number of hydroelectric plants upstream of plant ¢ € C'
s€{1,2,...,nf} index of surfaces corresponding to number

of active turbines with

hydroelectric plant ¢ and node &



le{l,2,...,n§}

~~

€{1,2,...,T°}

L

<
=0

flcit =
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index of combinations with

hydroelectric plant ¢ and node

index of turbines of hydroelectric plant ¢
probability of scenario j for plant ¢
volume of plant reservoir ¢ at node

i (hm?)

water discharge at plant ¢ and node

i (m3/s)

start-up penalty for any turbine (M W)
power generated by combination [ € nf

at plant ¢ and node

1 if surface s is chosen at node @
for plant ¢

0 otherwise

1 if turbine ¢ of combination [
for plant c is active at node i

0 otherwise

1 if combination [ of plant ¢
is chosen at node ¢

0 otherwise

1 if turbine ¢ of plant c is started

at node 1

0 otherwise

power for surface s at node i and plant ¢ (MW)

power production function without spillage for surface s and plant ¢
power production function with spillage for surface s and plant ¢
inflow of plant ¢ at node i (m?3/s)

duration of node i (h)

conversion factor from water discharge (m?/s) to (hm3/h)
water-value function for plant ¢ and scenario j

conversion factor to energy units (GWh)

minimal volume of plant ¢ reservoir (hm?)

maximum volume of plant ¢ reservoir (hm?)

minimum water discharge at plant ¢ (m3/s)

maximum water discharge at plant ¢ (m3/s).
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CHAPITRE 6 ARTICLE 3 : SCENARIO TREE MODELING FOR
STOCHASTIC SHORT-TERM HYDROPOWER OPERATIONS PLANNING

Cet article a été soumis a une revue avec comité d’arbitrage le 8 juillet 2016.
Le rapport technique suivant est publié :

S. Séguin, C. Audet et P. Coté. Scenario tree modeling for stochastic short-term hydropower
operations planning. Cahiers du GERAD, (G-2016-54), 2016.

Abstract : The authors investigate the complexity needed in the structure of the scenario
trees to maximize energy production in a rolling-horizon framework. Three comparisons,
applied to the stochastic short-term unit commitment and loading problem are conducted.
The first one involves generating a set of scenario trees built from inflow forecast data over a
rolling-horizon. The second replaces the entire set of scenario trees by the median scenario.
The third replaces the set of trees by scenario fans. The method used to build scenario
trees, based on minimization of the nested distance, requires three parameters : number of
stages, number of child nodes at each stage, and aggregation of the period covered by each
stage. The authors formulate the question of finding the best values of these parameters as
a Blackbox optimization problem that maximizes the energy production over the rolling-
horizon. Numerical experiments on three hydropower plants in series suggest that using a
set of scenario trees is preferable to using the median scenario, but using a fan of scenarios

yields a comparable solution with less computational effort.

Acknowledgments : The authors would like to thank Marco Latraverse at Rio Tinto for
providing data. Also, Alois Pichler for the scenario tree generation method and Stein-Erik
Fleten for collaborating on the stochastic version of the model. Sara Séguin would like to
thank the Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds
de recherche du Québec - Nature et Technologies (FRQNT) and Rio Tinto for their financial
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6.1 Introduction

Short-term hydropower models are used on an operational basis to determine the production
plan of an hydroelectric system. From these models, the reservoir volumes, water flows and

the unit commitment of the turbines in operation are determined. Deterministic models [85]
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in which there are no uncertainties, as well as stochastic short-term hydropower models [16]
have recently been proposed. In this paper, uncertain inflows are considered, based on the

authors previous work [89].

The province of Quebec, located in Canada, is a territory rich in lakes and rivers and 99 % of
its energy production comes from hydropower. Multiple aluminium producers operate plants
in this province since the electrolysis process used to extract aluminium from the bauxite
requires immense amounts of electricity. Rio Tinto is a mining company that operates alu-
minium smelters in the Saguenay Lac-St-Jean region, located in the north of the province.
They are also owners of a hydroelectric system that allows them to produce 90 % of the
energy required for the operations of the aluminium plants. Therefore, it is in their interest
to manage the hydroelectric system in an efficient manner, since they need to buy, from
Hydro-Quebec at fixed priced contracts, the energy shortage to fully operate the smelters.
In an operational context for Rio Tinto, the implementation of the decisions obtained from
the short-term hydropower optimization models are to be taken without exact knowledge
of daily inflows. Inflow scenarios are built based on a 7 day deterministic forecast of preci-
pitations prepared by Environment Canada. The CEQUEAU [75] hydrological model is used
to create inflow scenarios based on the hydraulics of the watershed and on the precipita-
tion forecast. Multiple inflow scenarios are available and one way to treat uncertainty in an
optimization model involves scenario trees and multistage stochastic programs. Many me-
thods have been developed to generate scenario trees. Some of the most popular methods are
moment-matching [57], scenario reduction [54], copulas [60], or minimization of the nested
distance [82], for example. In this paper, the authors specifically use the minimization of the
nested distance to build the inflow scenario trees. As there is no reduction in the number
of scenarios at each iteration, all of the inflow scenarios are used to update the value of the
scenario tree nodes. Also, the minimization of the nested distance implies that the first four

moments, which are mean, variance, skewness and kurtosis are matched.

This method consists of two steps that are repeated until convergence of the nested dis-
tance is achieved. The first step uses kernel density estimation [87] to generate a new inflow
scenario that is close to the distribution of the available inflow scenarios. The second step
uses this newly generated scenario to update the values of the scenario tree nodes based on
the stochastic gradient descent method. This scenario tree generation method requires input
parameters : the number of stages, the number of nodes per stage and the aggregation of

each stage.

In a decision-making operational context, rolling-horizon schemes [74] are used by the hy-

dropower producers to implement the solutions of the stochastic short-term hydropower op-
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timization models. As the inflow previsions are updated daily, a scenario tree is generated,
then the optimization models are solved and the solutions of the first-day are implemented.
Once the actual realizations of the inflows for the reservoirs are known at the end of the day,
reservoir levels are updated with the realization of the inflows and the scenario tree genera-
tion process and optimization is repeated for the next day, with the new forecast. In some
cases [17] the time window is decreased as information becomes available, and in other cases
the time window moves forward in the horizon [110]. In [33], a test bed is used to compare
four optimization algorithms. The forecasts are updated each time a decision is taken and

the same methodology has been retained in this research.

As the scenario tree generation method [89] used in this paper requires input parameters, this
work studies if there is an energy production gain when the scenario tree parameters are op-
timized in an objective of maximizing the energy production throughout the rolling-horizon.
The rolling-horizon scheme, consisting of scenario tree generation and short-term hydropower
optimization is embedded within a Blackbox optimization model. Blackbox optimization is
used when the objective functions or the constraints of a problem can only be calculated
through a computer code, as it is the case in this problem. Blackbox optimization methods
have been applied successfully to many engineering problems [8]. In the field of hydrology,
Blackbox optimization has been used to find the optimal locations for GMONSs [4], which
are devices used to measure snow water equivalent in remote areas of watersheds. Another
study [73] proposes to calibrate the 23 parameters of the hydrological model HSAMI. Tt is
used in the daily forecast of reservoir inflows and parameters relating to evapotranspiration,
snowmelt, inflitration and percolation and finally the routing of surface runoff. An interes-
ting study in reservoir management [46] compares the solution of the reservoir optimization
problem with many reduced scenario trees to determine the effect of this reduction on the
optimization solution. In the same sense, a thorough research [108] aims at finding the opti-
mal level of scenario tree reduction to obtain the best performance for a hydropower reservoir

management problem.

The paper compares three scenario trees approaches to solve the stochastic short-term unit
commitment and loading problem (SSTUL).The first one uses a Blackbox optimization solver
to identify the set of scenario trees that maximizes energy production over the rolling-horizon,
using a methodology similar to that proposed in [12] in which Blackbox optimization is used
to tune algorithmic parameter values. The second one is much simpler, both conceptually
and in terms of computational effort, as it only uses the median scenario. The third one
contains a fan of a limited number of representative scenario trees. Numerical experiments
in an operational context with real data suggest that the computational effort invested in

finding the best set of scenario trees outperforms the median scenario approach, but scenario
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fans produce comparable results in less time.

The paper is organized as follows. Section 6.2 presents the methodology, more precisely the
stochastic short-term unit commitment and loading problems and the rolling-horizon scheme
used to validate the optimization models. Section 6.3 introduces the concept of Blackbox
optimization and exposes the formulation of the rolling-horizon scheme as a blackbox. A case
study is presented in Section 6.4 and numerical experiments are shown in Section 6.5. Final

remarks are given in Section 6.6.

6.2 Methodology

The present section gives a high-level description of the main building blocks necessary for
this work. Each section describes the input and output of each of them, and the authors
voluntarily avoid presenting the technical specificities of each block, but provide references

for detailed descriptions.

6.2.1 Stochastic Short-Term Unit Commitment And Loading Problem

This research targets the stochastic short-term unit commitment and loading problem. In
hydropower operations planning, this model is used on an operational basis to dispatch water
available for production between the turbines and power plants that compose the system.
The model considers head-dependency in the power production functions, efficiencies of each
turbines and turbine startups are penalized. Without presenting the mathematical modeling
of the problem, as it is not the scope of the present research, the contents of this model is
explained for the reader to understand its outcome. In a recent work, the authors have also
considered stochastic inflows in the reservoirs [89]. A scenario tree is used to represent the
uncertain inflows and therefore, the SSTUL model is solved for each scenario tree node. Refer
to paper [91] for more details on the formulation. The SSTUL optimization model consists
of two optimization phases. The first phase, namely the loading problem, maximizes the
expected energy production and reservoir volumes, water flows and total number of turbines
working are determined. The second phase, namely the unit commitment determines the
exact combination of turbines working to maximize energy production and penalize unit

startups.

6.2.2 Rolling-Horizon Scheme

In the context of real operations of a hydropower system, forecasts of the inflows are updated

daily and are denoted ¢y, where h is the day in the rolling-horizon. Therefore, it is necessary to
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take an immediate decision, without exact knowledge of future inflows. By the end of the day,
the actual inflows that occurred throughout the day are known and the reservoir volumes are

updated. This rolling-horizon scheme is then repeated for each day of the planning horizon.

The entire process is composed of five main components and can be viewed on Fig 6.1. The
first one is called the scenario tree generator (STG) and it takes as input the scenario tree
parameters a and k, which are respectively the number of child nodes per stage and the
aggregation of each stage, as well as the fixed parameter D representing the number of stages
of the scenario tree and finally, the daily inflow forecasts denoted ¢;. As its name indicates,
it produces a scenario tree that becomes the input of the second component namely the
stochastic short-term unit commitment and loading problem (SSTUL), which consists of two
elements. The loading problem (LP) is a nonlinear mixed-integer program that determines
the water discharge, reservoir volume and number of active turbines at each node for each
power plant. This information is fed to the unit commitment problem (UC), a linear integer
program and it determines the exact combination of turbines to use in order to maximize
the total energy production at each node and penalize turbines start-up. The output of the
SSTUL is the solution to the SSTUL optimization problem and is used to compute the energy
generation for the first node in the scenario tree, denoted E(h), in which turbine startups
are penalized. From here, the reservoir levels are updated with the actual realization of the
inflows in the component named reservoir level update. These 5 components are iteratively
solved for each time period but only the solution for the first node of the scenario tree is
retained every day, allowing to build a release policy for the whole rolling-horizon. The output
of the rolling-horizon, namely RH (a, k, D) is the summation of the energy generation F(h)
for each day h of the rolling-horizon, more precisely the first node energy generation every
day with startups penalized and the value of the remaining water in the reservoirs at the end

of the rolling-horizon.

Water-value

Parameters
ari SSTUL
(o, k,D) Sctencmo Compute E() +
STG ree LP — UC | energy generation H(a7R’D)
node 1

h=h+1 -
Inflow Regservoir
forecast (¢p) levels update

Figure 6.1 Rolling-horizon scheme. These steps are repeated for each day h of the rolling-
horizon.

The objective is to maximize the total energy production over the whole rolling-horizon, by
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evaluating the energy production for the first stage solution of each day in the rolling-horizon,
penalizing turbine startups and considering the value of the remaining water in the reservoirs,

using water-value functions.

6.2.3 Parameters Of The Scenario Tree

The overall energy estimated over the rolling-horizon depends on the way that the scenario
trees are generated. Generation of these trees depend on a set of three parameters. The
main objective of the present work is to tune the values of these parameters so that the
overall energy is maximized. The authors formulate this question as a Blackbox optimization
problem : find the scenario tree parameter values that maximize the energy production. This

section describes in more details the scenario tree parameters.

The scenario tree generating method requires input parameters : number of stages, number
of child nodes per stage as well as aggregation of each stage. In addition, it requires as input
the inflow scenarios denoted by ¢. As the effect of the number of stages is investigated, it is
kept as a varying parameter. As for the number of nodes per stage and aggregation, they are
treated as Blackbox optimization variables. For a given stage, all nodes must have the same
number of child nodes. Since the inflow forecast is for 30 days, it is necessary to aggregate the
days into stages in the scenario tree in order to reduce the number of optimization variables.

The first stage is not aggregated and hence is not an optimization variable.

Let D be the number of stages, o, the number of child nodes, for each stage ¢ € {1,2,...,D—
1} and &, is the number of days aggregated in stage r € {2,3,..., D}. Fig. 6.2 illustrates a
scenario tree with 4 stages, with a = (1,2,2) and k = (2,12, 15). With an inflow forecast of
30 days, the following is to be satisfied : 7_, k, = 29, as it is the case on Fig. 6.2.

The function that characterizes the scenario tree generation is compactly denoted by :

STG(a, Kk, @), (6.1)

where o € NP1 is the number of child node per stage, & € N”~! is the aggregation of
each stage and ¢ is the collection of inflow scenarios. The scenario tree generation returns
a scenario tree determined by the parameters a and K, the collection of inflow scenarios ¢

and a value of inflow for each reservoir and scenario tree node is returned.
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1 1

1 2 12 15
K2 K3 K4

Figure 6.2 A scenario tree with D = 4 stages

6.2.4 Loading And Unit Commitment Problems

The loading problem takes as input a scenario tree determined by the parameters o, kK and ¢
obtained with STG (e, k, ¢). The loading problem returns the water flows, reservoir volumes
and number of turbines working, for every plant and scenario tree node. The loading problem
maximizes the energy production in the first stage and expected energy production in the
future, subject to water balance constraints and hydropower production functions selection.

The entire model is presented in Section 4.2 of [89].

The function that characterizes the loading problem is compactly denoted by :

LP(STG(a, K, d)). (6.2)

The loading problem is a nonlinear mixed-integer problem, but the relaxation of binary
variables is sufficient [91] to obtain an integer solution over certain conditions. In this specific

case, the energy demand is not considered.

The unit commitment problem takes as input the output of the loading problem, more
precisely the water flows, reservoir volumes and number of turbines working, for every plant
and scenario tree node. It also requires the scenario tree structure as input, determined with
STG(a, k, @). The unit commitment problem consists of maximizing the energy production
in the first stage and expected energy production in the future and penalizes startups of
turbines, subject to turbine selection and turbine startups constraints. The unit commitment

problem returns the turbines working for every plant and scenario tree node. The entire
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model is presented in Section 4.3 of [89].

The function that characterizes the unit commmitment problem is compactly denoted by :

UC(LP(STG(ax, 5, ¢))). (6.3)

The unit commitment problem is a linear integer program.

6.3 Blackbox optimization

This section introduces the concept of Blackbox optimization. Then, the formulation of the
rolling-horizon scheme as a Blackbox optimization problem is exposed. Finally, the validation

of the formulation of the problem as a blackbox is presented.

6.3.1 Blackbox Optimization Concept

Blackbox optimization targets problems in which the objective function and/or constraints
can only be computed through a computer simulation. Blackbox optimization problems are
often nonsmooth, nonconvex and discontinuous. The mesh adaptive direct search method
(MADS) [10] is designed for Blackbox optimization and has been successfully applied to many

engineering problems.

MADS discretizes the state space by defining a mesh whose coarseness is adjusted at the end
of each iteration. The algorithm consists of two steps that are repeated until a predefined
stopping criterion is reached. The first step, namely the search step evaluates different points
that lie on this mesh with the aim of finding a better solution than the current best. This
step is flexible and may be tailored to specificities of the problem. The second step, namely
the poll step is mandatory as the convergence properties of MADS relies on it. A positive
spanning set of directions is determined and if a better solution than current best is found,
it is set as best solution. During the different iterations, the mesh size is reduced when the
algorithm fails to improve the solution and increased when a new best solution is found. The
NOMAD software [63], which is the implementation of the MADS method is used to solve the

Blackbox optimization model.

6.3.2 Blackbox Formulation Of The Rolling-Horizon Scheme

The scenario tree parameters a and & that maximize the energy production throughout the

rolling-horizon are to be identified. A blackbox that takes a tree structure as input, and
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solves the whole rolling-horizon scheme, which contains the scenario tree generation and the
SSTUL optimization problem is defined. It returns the total energy produced throughout the

rolling-horizon.

Mathematical formulation

The scenario tree parameters a and k are the optimization variables provided as input to the
blackbox. The output of the blackbox is the total energy produced, considering startup penal-
ties and value of remaining water in the reservoirs in the rolling-horizon scheme. The SSTUL
optimization variables, which are water discharges, reservoir volumes and turbines working

are internal to the blackbox and are transparent to the Blackbox optimization problem.

Therefore, the Blackbox optimization problem is to maximize total energy produced throu-
ghout the rolling-horizon scheme, with startups penalized and value of the water remaining

in the reservoirs. The output of the blackbox is compactly denoted by :
RH (o, k, D), (6.4)

where D is fixed and is the number of stages in the scenario tree.

The objective function given by Eq.(6.5) is to maximize energy production throughout the
rolling-horizon, considering startup penalties and value of remaining water in the reservoirs.
It relates to the unit commitment problem and since this solution relies on the output of
the loading problem, problems UC and LP are to be solved in order to obtain the value of
RH(a, k, D). In other words, it is necessary to solve the SSTUL problem when solving the

Blackbox optimization problem.

Problem BB :
e RH(a, k,D) (6.5)
D
subject to : > Ky =29, (6.6)
r=2
D—1
2 <[] o <50, (6.7)
q=1

Qg kr > 1, Vge{1,2,....,.D—1} ,Vre{2,3,...,D}. (6.8)

The main difficulty of the problem above resides in evaluating RH (e, k, D). The computa-
tional time required to evaluate the blackbox increases with the complexity of the scenario

trees, rather than with the number of optimization variables. For example, for a 5-stage sce-
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nario tree and a = (1,4, 3, 3), a total of 52 nodes, a single evaluation of RH (e, k, D) takes
32 minutes, on a given data set, while a 6-stage scenario tree and a = (2,5,5,1, 1), a total
of 162 nodes, takes 1 hour. Moreover, there is only a difference of 2 optimization variables

between these scenario tree structures.

Constraints (6.6) are to ensure the aggregation of the scenario tree stages are equivalent to
the inflow forecast, which is 30 days in this paper. Since the first stage is not aggregated
then it is forced to 1. The upper and lower bounds on the number of scenarios are given by
(6.7). Nonnegativity is enforced with constraints (6.8). The number of stages D is kept as a
varying parameter in the numerical experiments in order to evaluate its effect on the results.

Hence, it is fixed for every experiment.

Fig. 6.3 illustrates this process. A scenario tree structure with parameters a and k is given
to the blackbox. The rolling-horizon scheme is then launched. For every day of the rolling-
horizon, scenario trees are built based on the forecast ¢, then the SSTUL is solved, the
first-day solution is kept, reservoir levels are updated with the realization of inflows and the
process is repeated for the whole rolling-horizon. Then, the actual energy production and
expected future production of the remaining water in the reservoirs for the whole rolling-
horizon is calculated, with startups of turbines penalized and is denoted RH (e, k, D). The
optimization solver calls the blackbox simulation with various values of the parameters a
and k. Each time the solver collects the output RH (e, k, D) and from it, it produces new

inputs to the blackbox. The solver terminates when it can no longer improve the solution.

Water-value|
Blackbox input
i SSTUL 8 ;
(a, 5, D) Scfnarl T Compute BE) + . Bl;(}l;}()ox outDp)ut
STG ree LP | uc 1 energy generation W @ K,
node 1
h=h+1 -
Inflow Reservoir
forecast (¢p) levels update
SOLVER

Figure 6.3 The Blackbox optimization solution approach. Index h is the day in the rolling-
horizon framework.
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6.3.3 Blackbox Validation

The scenario tree generation method applied in this paper is stochastic, which means that for
the same set of scenario tree parameters, the inflow values on the nodes of the scenario tree
differ from one evaluation to the other. Therefore, the objective function value RH (e, k, D)
of the blackbox differs for the same structure of scenario trees. The blackbox is validated to
ensure that trying to optimize the scenario tree parameters is relevant. Since the scenario
tree generation method is stochastic, the state space changes dynamically while the solver
is searching for scenario tree parameters values. Therefore, it is important to assess that the
variation of the state space is negligible compared to converging towards a solution. A fixed
scenario tree structure is used and the blackbox is evaluated 100 times with the same set of

scenario tree parameters, on a given data set.

Results of this validation are shown on Fig. 6.4. The number of evaluations of the black-
box corresponding to a given range of objective function values are represented on a his-
togram. The following values were used for the parameters : D = 5, a = (1,1,2,1) and
Kk = (3,6,8,12). One can see that energy production is very similar at every evaluation of the
blackbox, the standard deviation is 7.4622 GWh, compared to a 7.0478 x10° GWh mean.
The values near the mean confirm that the scenario tree generation method is valid, as eva-
luations of the blackbox with the same scenario tree parameters lead to similar values every

time.
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. x 10°
Energy production (GWh)

Figure 6.4 Validation of the blackbox. For the same scenario tree structure, histogram of the
energy production in GWh.
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Exhaustive enumeration versus Blackbox optimization

To assess the pertinence of using a Blackbox optimization problem to find the scenario
tree structure that maximizes the energy production on the rolling-horizon, a comparison
between the solution found with the Blackbox optimization and the global optimal solution

is performed.
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Figure 6.5 Convergence of Blackbox optimization for a 5-stage scenario tree

A 5-stage scenario tree with fixed aggregation of stages k = (3,6,8,12) is chosen since
the state space is relatively small. The problem contains only integer optimization variables,
therefore it is possible to do an exhaustive enumeration of the domain. Considering constraints
on minimal and maximal number of scenarios, there is a total of 331 points in the state space.
Total computational time to run the evaluations cumulates to 27 hours. The best solution
found is a tree with a structure e = (5,1,2,3) and the value of the objective function is
804.63 T'W h. Since the objective function is evaluated at every possible combination of a in

the domain, this is the global optimal solution.

The Blackbox optimization solver NOMAD is used to find the scenario tree that maximizes
the energy production throughout the rolling-horizon. The convergence is shown in Fig. 6.5.
The optimization requires 57 evaluations, but the best solution is found after 23 evaluations.
The time to conduct the optimization is 7 hours. The solution found by NOMAD is a tree
with structure o = (4,5, 1,2) and the objective is 804.63 TW h, which is identical up to the
second decimal to that found by the exhaustive enumeration procedure. The figures shows

clearly that in less than 10 evaluations the objective function is substantially increased.

For this 5-stage scenario tree case, the computational time required by NOMAD is approxi-
mately one fourth of that of the enumeration strategy. The difference between the objective

values obtained with the optimization and enumerating all the state space is negligible. The-
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refore, optimizing the tree structure with NOMAD allows to find an acceptable solution. Since
the scenario tree generation method is stochastic, the objective function value varies for the
same scenario tree structure, so it is difficult to assess if NOMAD found the global solution
or not, but there is an increase in the objective function when the structure of the tree is

optimized, as shown in Fig. 6.5.

The starting point led to an objective function of 804.46 T'W h while the best solution found
is 804.63 T'Wh. The difference between these two values is 0.17 TW h, which is much greater
than the standard deviation of 7.4 GWh and confirms that the maximum found by NOMAD

truly is a maximum and not induced by noise.

6.4 Case study

This sections presents the case study used to validate the optimization models presented in

this research.

6.4.1 Hydropower System

CD
CS

LSJ

PD TT1 IM

Figure 6.6 Hydroelectric system studied. Squares represent power plants and triangles reser-
VOIrS.

The optimization method presented in this paper is tested on a portion of a hydroelectric
system that belongs to Rio Tinto and is shown on Fig. 6.6. It is located in Saguenay in the
province of Québec, Canada. The sub-system consists of 4 reservoirs and 3 power plants in
series, namely Chute-du-Diable (¢D), Chute-Savane (Cs), Lac-St-Jean (LsJ) and Isle-Maligne

(mm). Travel time of the water between plants is neglected. The installed capacity for these



89

3 power plants is about 950 M W. The power plants and reservoirs characteristics are shown

in Table 6.1.

Table 6.1 Reservoir and power plants characteristics

Reservoir and/or  Nb. Reservoir capacity
power plant turbines  (hm?)

CD 5 452

CS 5 119

LSJ - 5596

M 12 171

6.4.2 Structure Of The Data

Six data series are available for numerical experiments. There are 31 days in the rolling-
horizon scheme and every day has a 30-day inflow forecast. Fig. 6.7 shows an example of
scenario trees for the first-day of the rolling-horizon. The scenario trees, in black, are built
from the inflow scenarios, which are shown in grey. Every day, inflow scenarios are received
for the three reservoirs, then a scenario tree generation method, based on the minimization
of the nested distance [81] is used to generate scenario trees approximating the multi-variate

distribution of the inflow forecasts.

Inflow (\%)
Inflow (\%)
Inflow (\%)

Stages Stages

Stages

(a) CD (b) CS (c) LSJ

Figure 6.7 Scenario trees built from inflow forecast scenarios

6.5 Computational experiments

Two types of tests for the optimization of the scenario trees are conducted on the data series

available. First, the aggregation of the stages is fixed arbitrarily and only the structure of the
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scenario tree is optimized, for different values of stages. Therefore, the Blackbox optimization
variables Kk are fixed in the mathematical model BB. For a 5-stage scenario tree, there are
4 Blackbox optimization variables a, which are the structure of stages 2, 3, 4 and 5. For a
9-stage scenario tree, there are 8 Blackbox optimization variables. Second, the structure and
the aggregation of the stages is optimized, for different values of stages. For a 9-stage scenario
tree, there are 16 Blackbox optimization variables, more precisely a are the structure and

the aggregation of each stage.

The solver 1POPT [105] is used for the loading problem, XPRESS [2] for the unit commitment
problem and NOMAD [63] for the Blackbox optimization problem.

6.5.1 Deterministic Optimization With The Median Scenario

In this section, results of the SSTUL with optimized scenario tree parameters are compared
to a deterministic optimization where only the median scenario in the forecast is used. First,
results with optimization of the structure only and a fixed aggregation and second, results
with optimization of the structure and aggregation. Optimizing the SSTUL with a median
scenario comes down to solving a deterministic model. For the producer, comparing the
solution obtained from the stochastic model gives a value on the interest of investing time to

solve a stochastic model.

Basically, the same rolling-horizon scheme for the stochastic method and the deterministic
optimization is used. For the stochastic method, a scenario trees based on the inflow forecast
is generated and the SSTUL model is solved. For the median scenario method, the median

scenario out of all of the inflow scenarios is chosen and a deterministic model is solved.

Optimization of the structure only

The solution obtained with the SSTUL model and optimization of the structure of the scenario

tree is compared to the solution obtained when solving the SSTUL with the median scenario.

Results are presented with a boxplot for every number of stages and all 6 test cases, as seen
on Fig. 6.8a. As an example, take the boxplot for 5-stages. The lower box represents the
first quartile and the top of the box represents the third quartile. The band in the middle of
the box represents the median. The bottom of the line linking the whisker to the box is the
minimum of the data and the top of the line linking the box to the whisker is the maximum
of the data.

For stages ranging from 5 to 9, the boxplot of the difference in energy between the stochastic

solution, for which the scenario trees structure is determined with Blackbox optimization, and
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Figure 6.8 Boxplots of the difference in energy production between stochastic and determi-
nistic optimization

the median scenario is shown. A positive value indicates the stochastic method produces more
energy. As explained previously, since the scenario tree generation method is stochastic, two
standard deviations are required for the difference in energy to be valid and not blackbox
noise, more precisely £16 GWh, and are shown on Fig. 6.8a with the pair of horizontal
dotted-lines.

Fig. 6.8a illustrates that, with an arbitrarily aggregation of the stages, optimizing the struc-
ture of the scenario tree leads to similar results for every given number of stages. Therefore,
the number of stages does not have an important influence on the energy production in the
SSTUL problem.

Optimization of the structure and the aggregation

The solution obtained with the SSTUL model and optimization of the structure and the
aggregation of the scenario tree is compared to the solution obtained when solving the SSTUL

with the median scenario.

Fig. 6.8b illustrates the results for the 6 test cases. For a number of stages varying from 5
to 9, the difference in energy production between the solution obtained using scenario trees

and the solution obtained using the median scenario, a boxplot is displayed.

Fig. 6.8b reveals that optimizing the scenario tree structure and aggregation increases the
difference between the stochastic solution and median scenario given a higher number of

stages. Therefore, the aggregation of the stages is an important parameter in the scenario
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tree generation method, as the difference in energy increases when the number of stages
increases. The best median is obtained with a 5-stage scenario tree, but the 9-stage scenario
tree produces a bigger difference in energy production when using scenario trees instead of
using the median scenario when solving the SSTUL. Therefore, it is an important parameter

since it is difficult to conclude on the best number of stages to use.

6.5.2 Scenario Fans

Relying on the median scenario to implement a decision is highly risky. Often, in hydro-
power optimization, scenario fans are used in the optimization models since they present a
compromise between investing a lot of time and effort in generating the trees and solving
a stochastic multi-stage model and solving a deterministic model. This section presents, for
different number of stages, comparisons with different numbers of scenarios in a scenario fan
fashion, as shown in Fig. 6.9. The same scenario tree generation method that was used pre-
viously is used to generate the trees, given different values of stages and number of scenarios.
For the aggregation, the value obtained during the Blackbox optimization of the scenario
tree structure and aggregation was used, as it is the one that maximizes energy production.
For example, a structure a = (1,25,1,1) is given as input to the STG to obtain a scenario

fan of 25 scenarios and 5 stages.

© © © 9) Scenario 1
S S © © 3 Scenario . . .
o o o © Scenario x
| | | | | |
[ [ [ [ [ |
Stage Stage Stage --- Stage Stage
1 2 3 -+ D1 D

Figure 6.9 Scenario fan with x scenarios and D stages

Multiple tests were conducted on the different test cases. For 5, 6, 7, 8 and 9 stages, scenarios
fans of 3, 6, 9, 15 and 25 scenarios were used as input to the SSTUL model. As explained
previously, since the scenario tree generation method is stochastic, two standard deviations
are required for the difference in energy to be valid and not blackbox noise, more precisely
+16 GWh, and are shown on Fig. 6.10 with the pair of horizontal dotted-lines. Results are
presented in Fig. 6.10. The difference in energy between the energy produced with the solution
obtained using scenario trees and the solution obtained using scenario fans decreases when

the number of scenarios increase. Therefore, solving the SSTUL with a scenario fan containing
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more than 15 scenarios results in the same objective function and does not justify the use of
a complex scenario tree structure. Standard deviation for 15 scenarios is 30.6973 GW h and
for 25 scenarios is 26.4338 GW h. Moreover, a Student’s t-test performed on the distributions
of 15 and 25 scenarios reject the null hypothesis, therefore demonstrating that the difference

in energy is significant and not caused by blackbox noise.
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Figure 6.10 Boxplots of the difference in energy production between stochastic optimization
of the structure and the aggregation of the scenario tree compared to scenario fans

These results demonstrate that using scenario fans instead of complex scenario tree structures
leads to good results and allows to find the solution in a satisfying computational time effort.
Also, the scenario fan results show that the distribution of the total volume of inflows is
preserved if the scenario tree generation method does not alter the scenarios, therefore by
using, in this case, more than 15 scenarios. Moreover, in a rolling-horizon, the decision that
is taken at the first node every day is mostly influenced by the total volume of inflows, rather

than by the structure of the scenario trees that model the distribution of the inflows.

It is important to note that when using scenario fans, only the first node solution is relevant
since the rest of the stages is biased, induced by the deterministic fashion of the scenario fan.
When using scenario trees, non-anticipative constraints appear at each stage, therefore all of
the inflow values contained in the scenario tree are relevant and could be useful in another

context.
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6.6 Conclusion

In this paper, the authors have presented an innovative method to determine if complex
scenario tree structures are required when solving the short-term unit commitment and loa-
ding problem (SsTUL) with uncertain inflows used in a real-time decision making context.
Multistage stochastic programs are used to solve the SSTUL problem and the modeling of
the problem allows to account for head-dependency as well as limited turbine restarts. In an
operational context, a rolling-horizon scheme is used to implement the solutions. Every day,
forecasts of inflows are available. From these, a scenario tree is constructed to represent the
distribution of the inflows, then the optimization models are solved. The solution is imple-
mented and the reservoir volumes are updated once the real realization of the inflows are
known. Only the solution for the first node every day is retained, as new forecasts become
available and that the process is repeated. The scenario tree generation method that is used
requires input parameters, which are the number of stages, child node per stage as well as

the aggregation of each stage.

To measure the benefits of using complex scenario tree structures, the whole rolling-horizon
was modeled as a Blackbox optimization model, to find the scenario tree parameters that
maximize the energy production throughout the rolling-horizon, for different values of the
number of stages. Results are compared with scenario fans and they show that the decision
taken at the first node every day is mostly influenced by the volume of inflows, rather than
the structure of the scenario trees, which means that using scenario fans leads to good results

and requires less computational time.



6.7 Notation

The following symbols are used in this paper :

D

E(h)

h

LP(STG(a, Kk, ®))

q

RH(a, Kk, D)

STG (o, Kk, @)
UC(LP(STG(a, Kk, )))

Pn

number of stages;
energy produced per day h with startups penalized ;
index of the rolling-horizon h = (1,2,...,31) (days);

loading problem function;

index of the number of child nodes per stage r = (1,2, ...

index of the aggregation per stage r = (2,3,...,D);
blackbox function ;

scenario tree generation function;

unit commitment function.

number of child nodes per stage ¢;

aggregation of each stage r (days) ; and

inflow scenarios for every day h in the rolling-horizon.
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CHAPITRE 7 DISCUSSION GENERALE

Ce chapitre expose les travaux, soit les trois objectifs ayant mené a cette these.

Le premier objectif est de modéliser le probleme de chargement et de répartition optimal,
aussi dit a court terme, puis de le résoudre en ne considérant aucune incertitude dans le mo-
dele d’optimisation, plus spécifiquement en développant un modeéle déterministe. Le modele
a court terme est complexe car plusieurs inter-dépendances existent entre les variables du
probleme. La puissance produite par une turbine est une fonction non linéaire du débit tur-
biné et de la hauteur de chute nette. Or, la hauteur de chute nette est aussi une fonction non
linéaire qui dépend, entres autres, du débit total. Chaque turbine a une efficacité différente
et de plus, il est important de limiter les démarrages des turbines, car ils causent une usure
prématurée de I’équipement. Ce premier modele déterministe a mené a une modélisation du
probléeme qui considére toutes les caractéristiques énumérées précédemment. Pour ce faire,
une modélisation par combinaisons de turbines est proposée, et un algorithme de program-
mation dynamique permet de construire des surfaces de puissance maximale pour chaque
centrale avant toute optimisation. Une méthode d’optimisation en deux phases permet de
résoudre le modele a court terme. La premiere phase, soit le probléeme de chargement, est
un modele non linéaire mixte en nombres entiers, et la deuxieme phase, soit le probleme de
répartition, est un modele linéaire en nombres entiers. Les résultats numériques démontrent
que, comparativement a des décisions opérationnelles historiques, le modele performe bien.
De plus, une comparaison avec un modele non linéaire mixte en nombres entiers en une phase
est effectuée et le modele en deux phases proposé permet d’obtenir des solutions réalisables

en un temps de calcul tres court, ce qui n’est pas le cas avec le modele en une phase.

Le second objectif reprend la modélisation déterministe proposée, mais est étendue afin de
considérer des apports incertains dans les réservoirs. Une méthode de génération d’arbres
de scénarios, qui sont une représentation discréte des scénarios d’apports, est retenue afin
de modéliser différents scénarios d’apports dans le modeéle d’optimisation stochastique. La
méthode consiste a minimiser la distance imbriquée a 'aide d’une méthode en deux étapes.
La premiere étape génere un nouveau scénario d’apports en échantillonnant la distribution
des scénarios d’apports et la deuxieme étape modifie les valeurs d’apports dans les noeuds
de I'arbre de scénarios en utilisant une méthode de descente de gradient stochastique. Ces
étapes sont répétées jusqu’a ce que la convergence de la distance soit atteinte. L’équivalent
déterministe d’'un modele stochastique, c’est-a-dire qu’'un modele déterministe est résolu a

chaque noeud de 'arbre de scénarios, est utilisé pour la résolution. Un horizon roulant permet
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de valider la méthode d’optimisation. Puisque les prévisions d’apports sont mises a jour
quotidiennement, un arbre de scénarios est généré, le modele d’optimisation est résolu, la
solution du premier noeud seulement est implémentée, les volumes des réservoirs sont mis
a jour avec la vraie réalisation des apports, puis le tout est relancé lorsque les prévisions
sont mises a jour. Les résultats numériques démontrent que le modele stochastique permet
d’augmenter la production d’énergie, comparativement a 1'utilisation du scénario médian des

apports.

Le troisieme objectif étudie la complexité nécessaire des arbres de scénarios utilisés dans le
modele d’optimisation stochastique. La méthode de génération d’arbres de scénarios nécessite
des valeurs de parametres d’entrée, plus précisément, le nombre d’étapes, le nombre de noeuds
fils par étape ainsi que I'aggrégation de chaque étape. Puisqu'un horizon roulant est utilisé et
que seule la solution du premier noeud est implémentée, nous proposons une méthode pour
déterminer si un arbre de scénarios complexe est nécessaire ou si l'utilisation d’un peigne
de scénarios est suffisant pour obtenir une bonne solution dans le modele d’optimisation a
court terme stochastique. Pour ce faire, un modele d’optimisation boite noire est proposé
pour trouver les valeurs des parametres d’entrée de la méthode de génération des arbres
de scénarios qui permet de maximiser ’énergie produite de I’horizon roulant au complet.
Les résultats numériques démontrent que, dans ce cas précis, des peignes de scénarios sont

suffisants pour résoudre le modele d’optimisation dans un temps de calcul court.
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CHAPITRE 8 CONCLUSION ET RECOMMANDATIONS

Ce chapitre conclut les travaux ayant mené a cette these. Les limitations des solutions pro-

posées sont exposées, ainsi que des améliorations futures a ces travaux de recherche.

Les modeles d’optimisation et les modélisations proposées dans ces travaux se basent sur
certaines hypotheses. D’abord, la modélisation déterministe qui est proposée est une méthode
d’optimisation en deux phases. La premiere phase résout un modele non linéaire mixte en
nombres entiers. Or, nous avons démontré que la matrice des coefficients des contraintes
est totalement unimodulaire, ce qui implique que la résolution de la relaxation linéaire des
variables binaires permet d’obtenir une solution entiere. Cette propriété fait en sorte qu’il
est possible de résoudre un modele non linéaire continu afin d’obtenir une solution entiere,
au lieu d’'un modele non linéaire mixte en nombres entiers. En pratique, cela signifie que les
temps de calculs sont grandement réduits. Seules les contraintes hydriques sont considérées
dans cette modélisation, alors qu’en pratique, il est important d’inclure les contraintes de
demande en énergie, surtout dans le contexte des alumineries. Les salles de cuves nécessitent
énormément d’énergie pour fonctionner et lorsqu’un probleme survient et qu'une salle de cuve
est brusquement arrétée, la gestion du réseau hydroélectrique est a revoir dans I'immeédiat. De
plus, des contrats avec Hydro-Québec obligent Rio Tinto a fournir une demande en énergie de
leur part dans un délai tres court. L’inclusion de ces contraintes dans la modélisation proposée
ne respecte plus I’hypothése que la matrice des coefficients des contraintes est totalement
unimodulaire et un modeéle continu ne peut plus étre utilisé pour résoudre la premiere phase de
la méthode d’optimisation. Or, dans un contexte opérationnel, elles sont essentielles. La perte
de 'hypothese que la matrice des coefficients des contraintes est totalement unimodulaire
implique la résolution d’un probleme difficile a résoudre s’il n’est pas relaxé. La solution
simple a ce probléme est de résoudre un probleme non linéaire mixte en nombres entiers,
mais la taille du probleme fait en sorte qu’il est tres difficile a résoudre et que le temps de
résolution est trop élevé. La modélisation proposée dans cette these devra étre revue ou, du

moins, la méthode de résolution.

Les fonctions de valeur de I’eau, qui valorisent ’eau restant a la fin de I’horizon de planification
dans les réservoirs, sont tres importantes en optimisation court terme puisqu’elles empéchent
I'optimisation de vider le réservoir. Pour cette these, seule une fonction de valeur de 'eau
pour le réservoir du Lac-St-Jean, qui est le plus gros en terme de volume, est utilisée. Deux

constatations découlent de cette approche :

1. Les fonctions valeur de I’eau utilisées pour le réservoir du Lac-St-Jean sont obtenues par
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un algorithme de programmation dynamique stochastique qui résout un modele d’op-
timisation moyen terme. Les fonctions obtenues dépendent du volume du réservoir du
Lac-St-Jean et dans le modele a moyen terme, sept discrétisations des apports naturels
sont effectuées. Les fonctions sont utilisées dans la these, mais il n’y a aucune valida-
tion des fonctions. L'impact de la sensibilité de ces fonctions, c¢’est-a-dire le nombre de
discrétisations des apports, les dépendances entre réservoirs et autres, sur la solution

de 'optimisation court terme n’est pas étudié.

2. Pour les réservoirs Chute-du-Diable et Chute-Savane, une contrainte de réservoir plein
a la fin de I’horizon de planification est imposée pour empécher de vider les réservoirs.
En pratique, ces réservoirs nécessitent aussi des fonctions valeur de I’eau, mais pour les

besoins de la these cette hypothese permet d’obtenir des résultats réalistes.

Ainsi, la complexité nécessaire dans le modele d’optimisation a moyen terme pour obtenir
une bonne solution au modele d’optimisation a court terme doit étre étudiée. Par exemple,
plusieurs variables hydrologiques peuvent étre utilisées dans les modeles a moyen terme et la

facon dont elles affectent la solution du modele a court terme n’est pas claire.

Les prévisions d’apports qui sont utilisées dans cette thése sont basées sur les prévisions de
précipitations déterministes d’Environnement Canada. L’historique des prévisions est ensuite
utilisé pour construire des scénarios de précipitations, basé sur les vraies réalisations de
précipitations selon les prévisions. Un modele hydrologique permet finalement d’obtenir des
scénarios d’apports de réservoirs. Les prévisions sont tres importantes afin d’obtenir de bons
résultats dans les modeles d’optimisation a court terme. Seule cette méthode de génération
d’apports est utilisée dans cette these et il serait intéressant de valider d’autres méthodes
pour générer ces apports afin de quantifier leur impact sur la solution du modele a court

terme.

Dans le méme ordre d’idées, une seule méthode de génération d’arbres de scénarios est utilisée
dans cette these. Plusieurs méthodes de génération d’arbres de scénarios existent et il s’agit
d’un domaine de recherche en soi. Puisque le sujet de cette theése n’est pas d’étudier les
méthodes de génération d’arbres de scénarios mais d’utiliser une méthode flexible permettant
de générer des structures d’arbres différentes, nous avons utilisé une seule méthode. Il serait
intéressant de comparer les résultats obtenus dans cette these avec la génération d’arbres
par minimisation de la distance imbriquée avec, par exemple, SCENRED, une méthode de

réduction pour la génération d’arbres de scénarios.

Concernant l'optimisation des parametres des arbres de scénarios, des comparaisons avec
d’autres solveurs d’optimisation boite noire permettraient de valider la performance de NO-

MAD. Dans la these, nous avons montré que 'utilisation de peignes de scénarios est suffisante
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pour obtenir de bons résultats et que le temps de calcul est grandement diminué. Par contre, si
un autre solveur permet d’obtenir des résultats dans un temps beaucoup plus court, d’autres
tests pourraient étre effectués. Dans la méthodologie proposée, 'algorithme d’optimisation
boite noire génere une nouvelle structure d’arbre de scénarios optimisée pour chaque série de
données. Par contre, en pratique, les réalisations d’apports ne sont pas connues a ’avance et
le choix de la structure d’arbres de scénarios est complexe, puisqu’elle doit étre choisie avant
de connaitre les réalisations d’apports. Une piste de solution pourrait étre de minimiser la

variance de la fonction objectif de plusieurs structure d’arbres, par exemple.

Evidemment, dans le but d’avoir un modeéle stochastique & court terme opérationnel, il est
nécessaire d’ajouter les centrales hydroélectriques manquantes au modele. Cela nécessite le
calcul des surfaces de puissance maximale avec un algorithme de programmation dynamique,
puis d’ajuster un modele polynomial aux surfaces créées afin de les utiliser comme fonction
objectif dans le modele d’optimisation & court terme. Aussi, dans cette these, le temps de
déplacement de l'eau entre les centrales est négligé puisqu’elles sont situées a proximité.
Cependant, avec I'ajout de toutes les centrales, le temps de déplacement doit étre considéré

puisque certaines centrales sont éloignées.

Finalement, pour les ingénieurs de Rio Tinto qui éventuellement utiliseraient ces modeles
d’optimisation, il serait intéressant de développer un outil d’analyse post-optimale pour les
mises hors tension des groupes. Cet outil pourrait assister les ingénieurs lorsque des modifi-
cations au plan de production doivent étre effectuées. Le but ne serait pas de développer un
plan de maintenance des turbines, mais plutot un outil d’analyse de I'impact des changements

de turbines sur la production d’énergie et I’alimentation des alumineries.
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