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RÉSUMÉ 

Les vibrations induites par les écoulements est une préoccupation majeure pour les concepteurs et 

les opérateurs des échangeurs de chaleur. Parmi les nombreux mécanismes d'excitation, 

l'instabilité fluide-élastique a été identifiée comme la source la plus catastrophique de défaillance 

de tube à court terme dans les faisceaux. Par conséquent, un certain nombre de théories ont été 

mis au point pour sa prédiction. Cependant, toutes ces théories ont été développées 

principalement pour l'écoulement de monophasique, même si les faisceaux de tubes dans les 

générateurs de vapeur fonctionnent principalement en écoulement diphasique. 

L'objectif principal de ce projet de recherche est donc d'étendre les modèles théoriques de 

l'instabilité fluide-élastique aux écoulements diphasique, en particulier, par l’instabilité fluide-

élastique dans le sens de l’écoulement avec de multiples tubes flexibles. Le modèle quasi-statique 

a été étudié dans le cadre du projet de recherche en cours. L'étude a été réalisée pour un faisceau 

de tube triangulaire tourné. 

Premièrement, des tests expérimentaux ont été réalisés afin de déterminer les forces quasi-

statiques sur une grappe de tubes soumis à un écoulement diphasique transverse eau-air. Les tests 

ont été effectués pour une série de taux de vide et un nombre de Reynolds (en fonction de la 

vitesse inter tubé), 4Re 7.2 10  . Les forces obtenues et leurs dérivés spatiales en fonction de la 

position du tube central de la grappe ont ensuite été utilisées pour effectuer une analyse quasi-

statique de l'instabilité fluides-élastiques. Les vitesses prévues d'instabilité ont été jugés en assez 

bon accord avec les tests de stabilité dynamique. La stabilité du faisceau de tubes a été trouvée 

en fonction du nombre et de l'emplacement des tubes flexibles. Entant donné que l'effet du 

déphasage a été ignoré à ce stade, l'analyse a confirmé la prédominance du mécanisme contrôlé 

par la rigidité pour provoquer une instabilité fluide-élastique dans le sens de l’écoulement. 

L'effet de désaccorder dans les fréquences naturelles des tubes sur le seuil d'instabilité a aussi été 

exploré. On a constaté que cet effet a en général un effet stabilisant. Cependant, pour un grand 

écart initial dans une population de fréquences, il a été constaté qu’un plus petit échantillon tiré 

de la population plus large puisse parfois avoir un écart inférieur ou supérieur résultant d’une 

grande dispersion des valeurs possibles de la constante de stabilité. 
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Deuxièmement, les forces fluides instationnaires ont été mesurées sur la même grappe de tubes 

lorsque le tube central oscille dans la direction d'écoulement. Il a été trouvé que l’amplitude de la 

force de fluide instationnaire est une fonction dépendant uniquement de la vitesse réduite, et que 

pour des valeurs élevées de la vitesse réduite, elle est indépendante de la vitesse réduite. Les 

forces fluides induites sur les autres tubes ont cependant montré une dispersion importante  

probablement en raison de la faiblesse de la cohérence entre le mouvement du tube central et ces 

forces induites.  

Les forces fluides instationnaires et les forces quasi-statiques obtenues dans la première série 

d'expériences ont ensuite été utilisées pour estimer, d'une part, le retard (déphasage) entre le 

mouvement du tube central et les forces de fluide sur lui-même et d'autre part, le retard entre le 

mouvement du tube central et les forces de fluide produites sur les tubes adjacents. Ce décalage 

temporel a été extrait pour chacun des tubes et le paramètre de retard et obtenu pour les taux de 

vide compris entre 60% et 90%. Ce paramètre de retard a montré une dépendance importante à la 

position du tube et au taux de vide. 

Troisièmement, la masse ajoutée et l'amortissement indépendant de la vitesse de l’écoulement sur 

un tube contraint de vibrer seulement dans la direction de l'écoulement ont été déterminés 

expérimentalement. Il a été observé que la masse ajoutée diminue avec le taux de vide. 

L'amortissement d'autre part, augmente presque linéairement avec le taux de vide jusqu'à environ  

un taux de vide de 40%, puis reste relativement constant jusqu'à un taux de vide de 70%, puis 

enfin diminue à mesure que l’écoulement se rapproché d’un écoulement monophasique de gaz. 

Finalement, avec tous les paramètres nécessaires obtenus, le modèle quasi-statique a été utilisé 

pour prédire la vitesse critique d'instabilité fluide-élastique dans le sens de l’écoulement pour de 

multiples combinaisons de tubes flexibles au sein d’un réseau de tube triangulaire tourné soumis 

à un écoulement diphasique. L'utilisation du paramètre de retard déterminé expérimentalement 

n’affecte pas de manière significative la prédiction de la vitesse critique d'instabilité fluide-

élastique pour les multiples configurations analysées. Les résultats obtenus avec le modèle quasi-

statique, lorsque le paramètre de retard a été omis, étaient toujours en assez bon accord avec les 

données expérimentales. 
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La présente analyse a, en particulier, démontré le potentiel du modèle quasi-stationnaire pour la 

prédiction du seuil d'instabilité fluides-élastiques dans le sens de l’écoulement dans des faisceaux 

de tubes soumis à un écoulement transverse diphasique. 
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ABSTRACT 

Flow induced vibration is a major concern to designers and operators of tube-and-shell heat 

exchangers. Among the several excitation mechanisms, fluidelastic instability has been identified 

to be the most catastrophic source of tube failure in the short term in tube bundles. Consequently, 

a number of theories have been developed for its prediction. However, all these theories were 

developed primarily for single phase flow even though tube arrays in steam generators operate 

mostly in two-phase flow.   

The main goal of this research project is therefore, to extend the theoretical models for 

fluidelastic instability to two-phase flow, particularly, streamwise fluidelastic instability of 

multiple flexible tube arrays in two-phase flow. The quasi-steady model has been studied in the 

scope of the current research project. The study was conducted for a rotated triangular array of 

pitch-to-diameter ratio , 1.5P D  .  

Firstly, experimental tests were performed to determine the quasi-steady forces on a kernel of 

tubes subjected to two-phase air-water cross-flow. The tests were done for a series of void 

fractions and a Reynolds number (based on the pitch velocity), 4Re 7.2 10 .   The forces 

obtained and their derivatives with respect to the static streamwise displacement of the central 

tube in the cluster were then used to perform a quasi-steady fluidelastic instability analysis. The 

predicted instability velocities were found to be in fairly good agreement with dynamic stability 

tests. Array stability was found to depend on the number and location of the flexible tubes. Since 

the effect of the time delay was ignored at this stage, the analysis confirmed the predominance of 

the stiffness-controlled mechanism in causing streamwise fluidelastic instability.  

The effect of frequency detuning on the streamwise fluidelastic instability threshold was also 

explored. It was found that frequency detuning has, in general, a stabilizing effect. However, for 

a large initial variance in a population of frequencies, a smaller sample drawn from the larger 

population was found to sometimes have lower or higher variance resulting in a large scatter in 

possible values of the stability constant.  

Secondly, the unsteady fluid forces on the same kernel of tubes were measured when the central 

tube was oscillated in the flow direction. The measured unsteady streamwise fluid force 

coefficient magnitude was found to be a single valued function of the reduced velocity, and 
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showed no dependence on the reduced velocity for high values of the reduced velocity. The 

cross-coupling fluid force phase, however, showed scatter possibly due to weak coherence 

between the central tube motion and the induced forces. The unsteady fluid forces together with 

quasi-steady forces obtained in the first set of experiments were then used to estimate, firstly, the 

time delay between the central tube motion and fluid forces on itself and secondly, the time delay 

between the central tube motion and the fluid forces generated on the adjacent tubes. The time 

lag/lead was extracted for each of the tubes and the time delay parameter obtained for void 

fractions between 60%-90% due to test loop limitations. The time delay showed significant 

dependence on tube position and void fraction.  

Thirdly, the hydrodynamic mass and flow independent damping on a tube constrained to vibrate 

only in the streamwise direction in the array were experimentally determined. The hydrodynamic 

mass was observed to decrease with void fraction. The damping on the other hand, was found to 

increase almost linearly with void fraction till about 40% void fraction, remained fairly constant 

till 70% void fraction, then decreased as the flow approached single phase gas flow. 

Finally, with all the necessary parameters obtained, the quasi-steady model was used to predict 

the critical velocity for streamwise fluidelastic instability of multiple flexible tubes in a rotated 

triangular tube array subjected to two-phase flow. The use of the experimentally determined time 

delays was found not to significantly affect the reduced critical velocity for streamwise 

fluidelastic instability of the multiple flexible tubes configurations analyzed. The results obtained 

with the quasi-steady model were in fairly good agreement with experimental data. 

The present analysis has, in particular, demonstrated the potential of the quasi-steady model in 

predicting streamwise fluidelastic instability threshold in tube arrays subjected to two-phase 

cross-flow. 
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CHAPTER 1 INTRODUCTION 

In a nuclear power plant, steam generators are used to convert liquid water to steam for purposes 

of driving turbines to produce electricity. Each of the steam generators contains thousands of 

tubes to maximize heat transfer. The “U” bend region of a recirculating-type nuclear steam 

generator experiences two-phase cross-flow that may induce structural vibrations and instability. 

Excessive vibrations could cause tube failure due to fatigue and fretting wear at the supports. 

These failures ordinarily lead to unscheduled plant shutdown and possible leakage of radioactive 

materials resulting in accidents and economic loss. Three mechanisms have been identified to be 

responsible for flow-induced vibrations in these components (Pettigrew & Taylor, 1991): 

turbulent buffeting which results from the unsteady forces developed on a tube due to exposure to 

the random pressure perturbations in the flow field, vortex shedding (flow periodicity) that leads 

to vibrations due to vortices shed when a fluid flows over a bluff body, and fluidelastic instability 

which is a self-excited mechanism in which vibrations result from the competition between 

energy input by the fluid and energy expended by the tubes. Of these vibration mechanisms, 

fluidelastic instability is the most dominant cause of tube failure in the short term, hence a major 

design consideration. As the flow velocity is increased, large tube vibrations occur. The larger the 

amplitude of the oscillation, the larger the resulting fluid dynamic force, leading to a rapid rise in 

oscillation amplitude with velocity. The velocity at which the fluidelastic forces balance the 

damping forces, characterized by a sharp increase in vibration amplitude, defines the threshold of 

fluidelastic instability and is referred to as the critical velocity. It is this critical velocity that is of 

importance to designing against fluidelastic instability.  

Several theoretical models have been developed to deepen the understanding of fluidelastic 

instability phenomenon and estimate the critical velocity. These include the jet-switch model 

(Roberts, 1962), the quasi-static model (Blevins, 1974; Connors, 1970), the quasi-steady model 

(Price & Paidoussis, 1982, 1983), the unsteady model (Chen, 1983a, 1983b; Tanaka & Takahara, 

1980), the semi-analytical model (Lever & Weaver, 1982, 1986a), the quasi-unsteady model 

(Granger & Paidoussis, 1996) and numerical models (Marn & Catton, 1990, 1991). Since these 

models were developed for single phase flow whereas most heat exchangers operate in two-phase 

flow, there is a need to extend and validate them in two-phase flow. All these models are 

carefully reviewed in this study. 
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Most of the reported flow-induced vibration experimental studies in two-phase flow have been 

done using air-water mixtures due to the high cost of operating steam-water loops. This raises the 

question of the validity of experimental results for tubes in a steam generator that, in practical 

situations, operate in steam-water mixtures. To overcome this problem, some researchers have 

used Freon due to the close proximity of its liquid/vapor density ratio to that of water/steam 

(Pettigrew & Taylor, 2009). However, Sawadogo (2016) recently demonstrated that there is no 

significant difference in the critical velocities obtained with both Freon and air-water mixtures. 

Air-water mixture is used in the present study. 

Among the aforementioned fluidelastic instability models, the quasi-steady model (Price & 

Paidoussis, 1982, 1983) was chosen for the current study. This is due to the model’s ability to 

overcome the challenges posed by the other models, namely: the complexity of the two-phase 

flow making the implementation of the semi-analytical model (Lever & Weaver, 1982, 1986a, 

1986b) cumbersome; enhanced experimental effort required by the unsteady model (Chen, 

1983b; Tanaka & Takahara, 1980), the apparent multi-valued functional relation between the 

unsteady fluid force coefficient and the reduced velocity (Inada et al., 2002; Mureithi et al., 2002) 

and weak correlation between the tube displacement and the resulting unsteady fluidelastic forces 

(Mureithi et al., 2002) in two-phase flow. The computational fluid dynamic capabilities, at 

present, still rely on the other theoretical models and are confined to low Reynolds numbers. 

Studies conducted at the Fluid-Structure Interactions laboratory at École Polytechnique de 

Montréal by Shahriary et al. (2007)  and Sawadogo & Mureithi (2014a, 2014b) successfully 

employed the quasi-steady model to investigate fluidelastic instability of tube bundles subjected 

to two-phase cross-flow. This model not only allowed the prediction of the critical velocity for 

instability but also the vibrational response of the cylinder as a result of fluid excitation.  

The most important input parameters for the quasi-steady model are the quasi-steady forces and 

the time delay between tube displacement and the fluid forces generated thereby. Presently, the 

model has only been verified for vibration of a single flexible tube within a rotated triangular 

tube array in the transverse direction to the flow.  

Until recently, most of the analysis on fluidelastic instability had been conducted for the direction 

transverse to the flow, after initial studies showed that fluidelastic instability occurred 

predominantly in that direction. However, recent tube failures at San Onofre Nuclear Generating 
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Station (SONGS) in U.S.A. (S.C.E., 2013) confirmed the possibility of fluidelastic instability 

occurring  in the streamwise direction. 

1.1 Objectives 

The main goal of this Ph.D research project is to extend the existing knowledge on fluidelastic 

instability phenomenon in two-phase flows and validate the quasi-steady model for streamwise 

fluidelastic instability analysis. This is achieved by obtaining the necessary fluid force data 

through experimentation and employing the quasi-steady model to predict the critical velocity for 

streamwise fluidelastic instability of tubes in a rotated triangular array of 1.5P D  . 

To realize the global objective the project is divided into three phases.  In the first phase, the flow 

direction quasi-steady fluid forces are experimentally determined for a central cluster of tubes in 

a rotated triangular array subjected to air-water two-phase flow. The derivatives of these forces 

are also obtained relative to the displacement of the central tube and, as a first approximation, the 

time delay is ignored. A stability analysis is then performed in the framework of the quasi-steady 

model to study the influence of the cross-coupling forces on the streamwise fluidelastic 

instability of the tube array under investigation. The effect of frequency detuning is also 

investigated in this phase. The quasi-steady fluid forces from this phase are passed on to the 

second phase to be used in the estimation of the time delay.  

In phase two, the unsteady fluid forces on the kernel of tubes are measured to obtain the fluid 

force phases necessary for the estimation of the time delay. This is done for various excitation 

frequencies and void fractions. A wide range of flow velocities and frequencies are necessary to 

satisfy the assumption of the quasi-steady model whose input parameters are to be obtained. The 

method adopted for the extraction of the time delay requires the unsteady fluid forces and the 

corresponding quasi-steady fluid forces including their derivatives. The time delay parameters 

obtained in this phase are passed on to phase three. 

Phase three is the analysis stage. Additional experiments are conducted to determine the flow 

independent damping and the hydrodynamic mass which are additional fluid-structure system 

characteristics. The parameters obtained in the previous phases are used to perform fluidelastic 

instability analysis for different configurations of the flexible tubes in the array. The results are 

then compared with dynamic test results in the literature to validate the model in two-phase flow.  
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1.2 Outline of the Thesis  

The thesis begins with an introduction which includes the project objectives, methodology and 

the thesis outline. A detailed literature review follows in Chapter 2, focusing on flow induced 

vibration excitation mechanisms, theoretical models for fluidelastic instability and two-phase 

flow models. 

The results are presented in the form of journal articles (Chapter 3-5). The first paper presented in 

Chapter 3 mainly focusses on the quasi-steady fluid forces. The second paper (Chapter 4) 

introduces the unsteady fluid forces and the time delay while the third paper (Chapter 5) presents 

the complete fluidelastic instability analysis using all the input parameters obtained in the 

previous papers/chapters. Model validation is also done in this chapter by comparing the model 

results with dynamic experiments’ data. 

Finally, a general discussion of the results is made in Chapter 6 and recommendations for future 

work introduced in the Conclusion. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Flow induced excitation mechanisms 

Vibrations induced by fluid flow can be classified into three broad categories (Naudascher & 

Rockwell, 2005) namely forced vibrations, self-controlled vibrations and self-excited vibrations. 

Four excitation mechanisms have been identified for tube bundles subjected to cross–flow 

(Gorman, 1976; Pettigrew et al., 1991; Weaver, 1993): turbulent buffeting which is a forced 

vibration mechanism, vorticity shedding (Strouhal periodicity), and acoustic resonance which are 

self-controlled mechanisms, and fluidelastic instability, a self-excited mechanism. Figure 2-1 

represents a typical vibratory response of a tube in a bundle subjected to cross-flow as a function 

of flow velocity (Blevins, 1990). 

 

Figure 2-1 : Vibratory response of a tube in a bundle as a function of flow speed (Blevins, 1990). 

2.1.1 Turbulent buffeting 

Turbulent excitations result from the unsteady forces developed on a tube due to exposure to the 

random pressure perturbations in the flow field. Random velocity fluctuations from turbulent 

eddies spread over a wide range of frequencies producing random displacements of the tubes 

(Kuppan, 2000). While turbulent buffeting in steam generators is beneficial for heat transfer, the 

small vibration amplitudes caused by turbulence forces have to be estimated to determine the 

effective life of the equipment (Hassan et al., 2003). Turbulent buffeting in tube bundles is 

present at all flow velocities, but is only dominant before the critical velocity for fluidelastic 
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instability and vortex lock-in is reached. A detailed review of turbulent buffeting modeling 

techniques is introduced in Weaver et al. (2000)   

2.1.2 Vortex shedding and general flow periodicities 

Tube bundles subjected to cross-flow are generally excited by periodic fluid forces whose 

frequency vary linearly with flow velocity (Ziada & Oengoren, 1993). This phenomenon of 

periodic excitation is variously referred to in the literature as vortex shedding, periodic wake 

shedding or Strouhal excitation. There are many parameters that can affect the periodicity of 

vortex shedding. These include cylinder arrangement, cylinder pitch, upstream turbulence, 

vibration amplitude, surface roughness, two-dimensionality of the flow and the scale aspect ratio 

(Paidoussis, 1982). Vortex shedding on a single tube is markedly different from that in tube 

arrays where periodic forces have been noted in the upstream rows in single phase fluid flow. 

This periodicity is suppressed by turbulence deeper in the tube array (Weaver, 1993). Different 

array configurations experience different forms of periodicities. For instance, in staggered arrays, 

flow periodicity is caused by alternate vortex shedding from upstream rows whereas jet 

instability is the source of periodicity in normal square arrays (Weaver, 1993; Ziada & Oengoren, 

1993). Ziada & Oengoren (1992) found that the flow structure, hence vortex shedding only occur 

in upstream rows for arrays with pitch-to-diameter,   ,P D  ratio less than 1.5 while it persists 

over the entire array for those with 1.75P D   in an in-line tube bundle configuration.   

Vortex shedding causes fluctuations in the drag forces at a frequency twice that of the lift 

(Weaver et al., 2000) and is scaled using a non-dimensional frequency parameter, Strouhal 

number, tS : 

 v
t

f D
S

U
    (2-1) 

where  vf  is the frequency of vortex shedding, D is the diameter of the cylinder and U  the fluid 

freestream velocity (Bearman, 1984). It is evident from Eq. (2-1) that the value of  tS  depends on 

the flow characteristics. For sub-critical flow  540 Re 2 10   , 0.2tS  , while 0.3tS   for 

supercritical flow regime  6Re 3.5 10   for circular cylinders. The transition between these two 
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regimes is not well defined (Paidoussis, 1982). Detailed discussion of vortex shedding in tube 

bundles may be found in Weaver et al. (1987) and Ziada (2006).     

In a situation where the vibration amplitude is greater than 0.01D  and the mass-damping 

parameter, 
2

m

D




 is not too large, vortex shedding frequency may coincide with the cylinder 

natural frequency resulting in high amplitude oscillations, a phenomenon referred to as “lock-in”. 

To avoid resonance and lock-in due to vortex shedding the natural frequency should be kept 

40%  beyond vf  (Paidoussis, 1982). Alternatively, one may reduce the vibration amplitude by 

increasing the structural damping.  

2.1.3 Fluidelastic instability  

The third excitation mechanism in tube bundles is the fluidelastic instability. This phenomenon 

can be described as a self-excited feedback mechanism between tube motion and fluid forces. If 

the feedback is positive, meaning that the fluid force has a component in the positive velocity 

direction, net damping will decrease as the fluid flow velocity increases. At a certain flow 

velocity, commonly referred to as critical velocity  cU , the net damping of the system vanishes, 

leading to high amplitude tube displacements potentially causing catastrophic failure. The 

spectrum of the response is characterized by a narrow peak revealing the absence of significant 

damping (Pettigrew & Taylor, 1991). To further illustrate what happens when the free stream 

flow reaches the critical velocity, consider a tube array subjected to cross flow as shown in Figure 

2-2.  The general equation of motion of the system may be expressed as: 

           s s s ext
M x + C x + K x = F  (2-2) 

in which,  sM is the structural mass matrix,  sC is the structural damping matrix,  sK  is the 

structural stiffness matrix,  x  is the tube acceleration vector,  x  is the tube velocity vector, 

 x  is the tube  displacement vector and  ext
F  is the fluid force vector for tube array subjected 

to cross flow.  ext
F  includes fluid added mass, fluid damping forces, and fluid stiffness forces 

which are all functions of the tube dynamics. 
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Figure 2-2 : Fluid coupling between adjacent tubes in an array 

The system’s equation of motion can therefore be written as:  

                    
s f s f s f

M + M x + C + C x + K + K x = 0   (2-3) 

where  
f

M  is the fluid added mass,  
f

C  is the fluid damping and  
f

K  is the fluid stiffness. 

The system is considered to be stable if the response motion diminishes with time, while it will 

be unstable if energy is fed into it through self-excitation with the response motion increasing 

with time (Rao, 2004). In order to guarantee system stability, both total damping and total 

stiffness terms in Eq. (2-3) should be positive. 

Instability can be classified as either static or dynamic (Price, 1995). Static instability also known 

as divergence occurs when the negative fluid stiffness exceeds the structural stiffness leading to a 

negative total stiffness. As the total stiffness goes to zero the system’s natural frequency, n , 

shown in Eq. (2-4), also tends to zero. Static instability is therefore characterized by a frequency 

of oscillation approaching zero at stability threshold. Static instability is rarely experienced in 

heat exchanger tube arrays as dynamic instability normally occurs before it. 

 n

K

M
   (2-4) 
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Dynamic instability on the other hand can be caused by two main mechanisms (Chen, 1983a, 

1983b; Paidoussis & Price, 1988): damping controlled and stiffness controlled mechanisms. 

Damping-controlled mechanism is predominant for low mass-damping parameter,  2m D   or 

high fluid density flows. This kind of instability occurs when the fluid force component in phase 

with the cylinder velocity overcomes the mechanical damping force leading to a negative total 

damping in the system. It only requires one-degree-of-freedom in which the destabilizing fluid 

force provides a negative damping effect. Stiffness-controlled instability which is predominant 

for low fluid density flows (high 2m D  ), on the other hand, requires at least two-degrees-of-

freedom (multiple-flexible tubes) such that the relative motion between tubes results in a net 

force that overcomes the structural damping.  

2.1.4 Streamwise fluidelastic instability  

A number of experimental studies (e.g. (Granger et al., 1993; Janzen et al., 2005; Mureithi et al., 

2005; Nakamura et al., 2014; Roberts, 1962, 1966; Violette et al., 2006)) have reported 

observations of streamwise fluidelastic instability in both single- and two-phase flows. Roberts 

(1962), for instance, showed that instability was primarily in the streamwise direction (at least for 

tube rows) in liquid flow. Janzen et al. (2005) reported experimental evidence of streamwise two-

phase flow induced fluidelastic instability in a rotated triangular U-tube array of pitch-to-

diameter ratio, P/D=1.5. They observed streamwise fluidelastic instability in water flow and low-

void fraction  25%  air-water two-phase flow. Mureithi et al. (2005) reported in-plane 

fluidelastic instability for a rotated triangular array with tubes preferentially flexible in the flow 

direction subjected to air flow. Their array 1.37P D  . Mureithi et al. (2005) determined 

streamwise fluidelastic instability for the case of fully flexible array and for a single flexible 

column in a rigid array. They, however, did not observe instability for a single flexible tube in a 

rigid array. Later, Violette et al. (2006) did a comprehensive experimental study of in-plane 

fluidelastic instability of a rotated triangular tube bundle of P/D=1.5 subjected to two-phase flow. 

They reported occurrence of fluidelastic instability for multiple tubes and not for a single tube 

only flexible in the flow direction. Recently, Nakamura et al. (2014) found that fluidelastic 

instability in the flow direction could occur at a lower critical flow velocity than that for the 

transverse flow direction in a fully flexible normal triangular array of small P/D (=1.2) subjected 
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to air flow. What is common in the above studies is the fact that streamwise fluidelastic 

instability was observed for multiple flexible tubes and not for a single flexible tube in a rigid 

array. This, therefore, suggests that streamwise fluidelastic instability is largely fluid stiffness 

controlled, requiring fluid coupling of different tubes in the array.  

Details of the theoretical models for predicting fluidelastic instability in tube arrays subjected to 

cross-flow are discussed in section 2.3.  

2.2 Two-phase flow induced vibrations 

Even though numerous industrial components operate in two-phase flows, studies on vibration 

induced by this type of flow have grown only recently. The main excitation mechanisms in two-

phase flows are turbulence and fluidelastic forces. Generally, forces due to the vortex shedding 

are absent for void fractions in excess of 15% (Taylor et al., 1989). The intensity and nature of 

the excitations induced by two-phase flows depend on several two-phase parameters which 

include void fraction, mass flow rate and flow regimes. 

2.2.1 Two-phase flow models 

The most important parameters in the study of vibrations induced by two-phase flows are void 

fraction, flow velocity and flow regime. Since measuring these parameters are complicated, 

several models have been developed for their estimation. 

2.2.1.1 Homogeneous model 

The homogeneous model assumes a uniform flow through the cross section of the channel with 

the gas and liquid phases traveling at the same velocity. In this model, the void fraction is equal 

to the volumetric flow fraction and is given by: 

 
g

l g

Q

Q Q
 


 (2-5) 

  

where Q is the volumetric flow rate, and the subscripts, g  and, l  denote the gaseous and liquid 

phases, respectively. The average homogeneous mass density and flow velocity of the two phase 

mixture are, respectively, expressed as: 
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  1h g l       (2-6) 

and 

 
g g l l

h

Q Q
U

A

 





  (2-7) 

where A  is the cross-sectional area of the flow channel,   is the mass density and the subscript, 

h  indicates homogeneous quantity.  The pitch velocity,
pU , for tube bundles in cross-flow is 

defined as: 

 p

P
U U

P D



 (2-8) 

where U  is the homogeneous velocity upstream of the tube bundles, P  the pitch spacing 

between tubes and D  the tube diameter. 

The homogeneous model is widely used by researchers due to its simplicity, but under certain 

flow conditions, such as the case of vertical flow against gravity, the slip between the phases 

cannot be neglected. The homogeneous model gives best agreements in bubbly and dispersed or 

mist flow regimes where the entrained phase travels at nearly the same velocity as the uniform 

phase. The model is also the limiting case as the pressure tends towards the critical pressure, 

where the difference in phase densities disappears. Its use is also valid at very large mass 

velocities and at high vapor qualities (Thome, 2010).  

2.2.1.2 Feenstra model 

In the Feenstra et al. (2000) model, void fraction is presented  as a function of the velocity ratio, 

S , flow quality, x ,  and density ratio. A semi-empirical correlation is established between the 

velocity ratio and other flow parameters: 

 

1

1
1 1

g

l

S
x








  
    

  
 (2-9) 

The velocity ratio is given as: 

    
0.5 1

1 25.7
g

l

U
S Ri Cap P D

U


     (2-10) 
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in which, Ri  is the Richardson number and Cap  the capillary number. The Richardson number 

represents the ratio between the buoyancy force and inertial force whereas the capillary number is 

the ratio between viscous force and the surface tension force, thus:  

 2 2

pRi ga G   (2-11) 

and  

 l gCap U   (2-12) 

where, 
p

g

g

xG
U


 , 2  denotes the square of the difference between the liquid and gas phase 

densities, g  is the gravitational acceleration, a  the gap between tubes, 
pG the pitch mass flux, 

l  the absolute viscosity of fluid phase, and  , the surface tension.  The Capillary number 

depends on the void fraction through the gas phase velocity. It therefore follows that calculation 

of the capillary number is an iterative process in which the velocity ratio is calculated using an 

iterative procedure. A better agreement with experimental results obtained using gamma ray 

densitometer has been realized with the Feenstra model compared to the homogeneous model 

(Feenstra et al., 2000).  

2.2.2 Flow regimes 

The nature of flow regimes inside tube bundles is an important factor in any study involving the 

prediction of two-phase flow-induced vibration phenomena, (Pettigrew & Taylor, 1994), 

therefore  should not be neglected. The flow pattern may be influenced by several factors, such as 

surface tension, gravity, flow rates and density ratio of the gas to liquid phase.  

The first flow regimes map in two-phase cross-flow was perhaps established by Grant & Murray 

(1972). Their study was conducted on a segmentally baffled transparent model heat exchanger of 

a rectangular cross section containing 39 tubes of 19 mm diameter and 1.25P D   arranged in a 

rotated triangular configuration. The bundle was subjected to a vertical two-phase cross-flow of 

air-water mixture. Based on visual observations, they distinguished three types of flow regimes: 

bubbly, intermittent and dispersed (spray) flow regimes.  
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Ulbrich & Mewes (1994) studied the flow regimes in a vertical air-water two-phase flow a cross 

a horizontal square inline tube bundle. They used visual observation with the aid of still and 

video photography over superficial liquid and gas velocities of 0.001-0.65 m/s and 0.047-9.3 m/s, 

respectively. Ulbrich & Mewes (1994) identified three distinct flow regimes: a bubbly flow 

regime characterized by a dispersion of roughly spherical gas bubbles, an intermittent flow 

regime characterized by irregular and chaotic distribution of gas in the liquid phase and a 

dispersed regime characterized by a distribution of liquid droplets in the gas phase. The flow 

regime map proposed by Ulbrich & Mewes (1994) and  reproduced in Figure 2-3 is in good 

agreement with 85% of the data they considered, including those of Grant & Murray (1972). 

Noghrehkar et al. (1999) studied the effect of bundle geometry on two-phase flow regimes. Their 

flow regime maps are reproduced in Figure 2-4. The results are similar to those of  Grant & 

Murray (1972), Grant & Chishom (1979), and Ulbrich & Mewes (1994), except that the 

intermittent flow regime was not detected in the flow regime maps of  Grant & Chishom (1979) 

and  Ulbrich & Mewes (1994) for 0.4LJ  m/s  and 9.3GJ  m / s. This was attributed  to the 

difference in methods used to define the flow regimes (Noghrehkar et al., 1999). According to  

Noghrehkar et al. (1999) the effect of bundle geometry on flow regimes is not significant at low 

values of superficial liquid velocities but the transition between bubbly and intermittent flow 

regimes is shifted to the right in the case of staggered tube arrays. Indeed, in staggered tube 

bundles, tubes break up the gas phase into smaller bubbles and pockets of gas and tend to mix the 

two phases, thereby delaying the occurrence of intermittent flow regime. 

Whereas Ulbrich & Mewes (1994) determines the different flow regimes  from the variation of 

pressure drop, Noghrehkar et al. (1999) uses probability density function profiles of the flow 

hence able to detect possible differences in the flow structure deep inside the array and at the 

proximity of the channel wall. These maps are used in the current study to identify approximate 

flow regimes for the different experimental conditions. 
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. 

Figure 2-3 : Flow regime map proposed by Ulbrich & Mewes (1994). B-Bubbly, I-Intermittent and D-

Dispersed 

 

(a) In-line tube bundle      (b) staggered tube bundle 

Figure 2-4 : Flow regime maps proposed by Noghrehkar et al.  (1999): Comparison with Ulbrich 

& Mewes (1994)  map in dotted lines. (a) In-line tube bundle (b) staggered tube bundle 

2.2.3 Added mass (hydrodynamic mass) 

Hydrodynamic mass, hm , is the equivalent external mass of the fluid vibrating with the tube 

(Pettigrew & Taylor, 2003). Hydrodynamic mass is related to the tube natural frequency and is 

expressed as (Carlucci & Brown, 1983): 
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where sm  is the structural mass per unit length, a  the tube angular natural frequency in air and 

  the frequency of vibration.  Hydrodynamic mass per unit length of a tube within a tube array  

may be expressed as (Pettigrew, Taylor, et al., 1989) :  
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in which 
h is the homogeneous two-phase density, D  the cylinder diameter, eD  the hydraulic 

diameter and the ratio eD D the array confinement parameter.  0.96 0.5eD D P D P D    for 

a tube inside triangular tube bundle (Rogers et al., 1984) and  1.07 0.56eD D P D P D   for a 

square tube bundle (Pettigrew & Taylor, 1994). The formulation of Pettigrew, Taylor, et al. 

(1989) yields results in good agreement with experimental data for in-line arrays. It, however, 

underestimates the hydrodynamic mass for staggered arrays, more so for high void fractions. 

Nevertheless, hydrodynamic mass is not a dominant factor in most practical applications since it 

is often only a small fraction of the overall mass, especially at high void fractions. 

2.2.4 Damping 

Damping is a measure of the structure’s ability to dissipate vibratory energy. The total damping 

ratio, T , in two-phase cross flow may be written in the following manner (Carlucci, 1980; 

Pettigrew et al., 1986; Pettigrew & Taylor, 2003): 

 2T V SF F FD            (2-15) 

where  V  is the viscous damping ratio, SF  the squeeze-film damping ratio, F  the friction 

damping ratio, FD  the flow-dependent damping ratio, and 
2  the two-phase damping ratio. 

The friction damping ratio is estimated as: 
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in gases and 
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in liquids. In the above relations, N  is the number of tube spans, L  support thickness, and 
ml , 

the span length. This type of damping, as the name suggests, emanate from friction between tubes 

and tube-supports. 

Fluid viscous damping is given as (Pettigrew et al., 1986): 
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 (2-18) 

where TP  is the equivalent two-phase kinematic viscosity given by (McAdams et al., 1942): 

  1 1TP l g l g       
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 (2-19) 

Viscous damping is generally small for void fractions above 40%  (Pettigrew & Taylor, 2003), 

but significant for lower void fractions.  

Squeeze-film damping ratio can be estimated by (Pettigrew et al., 1986): 

 

1
221 1460

SF

m

N D L

N f m l




          
      

 (2-20) 

Pettigrew & Taylor (1997) proposes a semi-empirical expression for the two-phase damping ratio 

as shown below: 
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 (2-21) 

where    40g gf    for 40%g  ;   1gf   for 40% 70%g   and 

   1 70 30g gf      for 70%g  . 

For the work reported in this thesis, only two categories of damping are considered: flow 

independent and flow dependent damping. Squeeze film and friction damping are not considered 
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since no tube supports are included in the test setup. In the experimental set up used for the 

current work, it is not possible to isolate the two-phase damping from the viscous damping, thus 

the two are measured together as flow independent damping.  

Table 2-1 : Comparison of the physical properties of two-phase mixtures of air-water, steam-water, Freon 

R-11 and Freon R-22 (Feenstra et al., 1995; Feenstra et al., 2002) 

Quantity Air-water Steam-water R-11 R-22 

Temperature  o C  22 260 40 23.3 

Pressure  kPa  101 4700 175 1000 

Liquid phase density  3kg m  998 784 1440 1197 

Gas phase density  3kg m  1.2 23.7 9.7 42.3 

Liquid phase dynamic viscosity  *Pa s  959 103 356 168 

Gas phase dynamic viscosity  *Pa s  18.2 17.8 11.5 12.4 

Liquid phase surface tension  N m  0.073 0.0238 0.0167 0.0074 

Density ratio  L G   832 33 148 28 

Viscosity ratio  L G   46 6 31 13 

 

2.2.5 Types of two-phase mixtures 

A majority of flow-induced vibration studies have been conducted in single phase flow; gas or 

liquid. Additionally, most of the reported experimental studies in two-phase flow are done in air-

water mixture, yet more than one-half of all steam generators operate in steam-water flow 
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(Pettigrew & Taylor, 1994). As is seen in Table 2-1, the main two phase parameters vary from 

mixture to mixture thus, raising the question of the applicability of the laboratory experimental 

results to prototypical steam generator operating conditions. To overcome this challenge, some 

studies (e.g. (Pettigrew et al., 1995), (Pettigrew & Taylor, 2009), (Feenstra et al., 1995) ) have 

used Freon due to the close proximity of its liquid/vapor density ratio to that of water/steam as is 

evident in Table 2-1. However, in the study reported in this report, air-water mixture is used. 

Recently, Sawadogo (2016) demonstrated that there is no significant difference in the critical 

velocity for fluidelastic instability of a rotated triangular tube array of 1.5P D   obtained with 

the array subjected to either two-phase Freon or air-water mixture. 

2.3 Theoretical models for fluidelastic instability 

As an aid to steam generator designers, ASME has recommended some design guidelines in the 

form of stability maps in which fluidelastic instability experimental data for different tube bundle 

geometrical configurations are plotted (Figure 2-5). A lower bound of this data is considered to 

be the stability threshold.  

In as much as the design guideline has been an attempt to standardize steam generator 

production, it fails to provide information on the physics of the problem hence limits room for 

future improvements in steam generator design (Weaver, 2008). A number of models have been 

developed to predict the occurrence and improve understanding of the nature of the phenomenon 

of fluidelastic instability. These models are described in this section.  

2.3.1 Jet-switch model 

Roberts (1962, 1966) was the first to study self-excited oscillations of single and double row of 

cylinders subjected to cross-flow. His investigations showed that instability was primarily in the 

streamwise direction (at least for tube rows). Roberts (1962) considered the flow downstream of 

two adjacent cylinders to comprise two unequal wake regions supplied by a jet flow between 

them as illustrated in Figure 2-6. 
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Figure 2-5 : ASME fluidelastic instability design guideline map for heat exchangers (Weaver, D.S. & 

Fitzpatrick, J. A., 1988) 

He contended that instability would occur if the jet-switching mechanism synchronized with tube 

motion in such a way that net energy was absorbed by the cylinder. Roberts developed a semi-

empirical model relating the critical velocity,  cU , for  fluidelastic instability to the mass-

damping parameter  2m D   in the following manner: 
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where n , D , , m  ,  ,  and K  are the tube natural frequency, the outer diameter of the 

cylinder, the logarithmic decrement of damping, the mass per unit length , the ratio of fluidelastic 

frequency to structural frequency , the fluid density and a constant obtained from experiments, 

respectively. 
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Figure 2-6 : Idealized model of jet-flow between two cylinders in a staggered row of cylinders (Roberts, 

1962) 

The key assumptions of Roberts (1962) model are as follows. First, single or double rows of 

cylinders can be used to model fluidelastic instability in tube arrays. Second, the pressure in the 

wake regions behind the cylinders is constant resulting in a constant pressure difference across 

the jet. Third, the flow separates at the minimum gap between cylinder centers, and fourth, the 

fluid flow is inviscid in the jet region and upstream of the separation points.   As shown in Figure 

2-7, Roberts’ stability boundary is in good agreement with empirical data for higher mass 

damping parameter values while it overestimates the reduced critical velocity,  c nU f D  for 

lower values of mass damping parameter (Price, 1995). It is therefore evident that the jet-

switching model proposed by Roberts (1962, 1966) does not accurately describe the nature of 

fluidelastic instability for the entire range.  To clarify Roberts’  analysis, Seitanis et al. (2005) 

performed experiments in which they varied the mean location of the in-flow flexible tubes. In 

their case, they found negative fluid stiffness to be the excitation mechanism and not jet-

switching as earlier reported by Roberts (1966). Roberts is, however, credited with identifying, 

for the first time, self-excited vibration as a source of failure in heat exchanger tube arrays. He 

also performed dimensional analysis and presented the reduced velocity and damping parameter 

relations which are still being employed in defining stability boundaries to date. 
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Figure 2-7 : Comparison between theoretical and experimental fluidelastic instability boundaries; 

○, multiple flexible tubes in liquid flow; ●, multiple flexible tubes in gas flow; □, single flexible 

tube in gas flow; (─), Roberts(1966); (---), Connors (1970); (…), Blevins (1974). Adapted from 

(Price, 1995) 

2.3.2 Quasi-static model 

This model, developed by Connors (1970), was based on experiments involving a single row of 

cylinders. Connors (1970) observed whirling of alternate cylinders predominantly in either in-

flow or transverse directions. He simulated his observations by moving the two nearby cylinders 

in either a symmetric or antisymmetric patterns and measuring the resulting fluid forces on the 

central cylinder (see Figure 2-8). By performing energy balance for the two directions, Connors 

(1970) managed to derive a relationship between the critical flow velocity for fluidelastic 

instability and the mass damping parameter as shown in Eq. (2-23):  
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where  nf  the cylinder natural frequency and K , the Connors constant, m  cylinder mass per unit 

length including the fluid added mass.  Connors (1970) found the  value of K to be 9.9 for his 

specific case. Blevins (1974) later found the value of K to be dependent on the array geometry 
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and fluid characteristics. Even though Connors equation emanated from data based on a single 

row of cylinders and the assumption that oscillation of neighboring cylinders at the same 

frequency is necessary for fluidelastic instability, the model has been the most widely used in the 

design of various tube bundles with different geometric patterns. Weaver & Elkashlan (1981a) 

studied the influence of mass ratio and damping on fluidelastic instability. They noted, contrary 

to the Connors equation (Eq. (2-23)), that the fluid damping   and mass ratio 2m D  terms are 

not linearly related and re-wrote Eq. (2-23) as follows: 
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in which 1n  and 2n  are additional constants. Weaver & Elkashlan (1981b) established that the 

fluidelastic instability threshold in tube bundles is influenced by the number of rows thereby 

discounting the previous hypothesis by Robbers (1962) and Connors (1970) that a single row of 

tubes could be representative of the whole bundle. They recommended usage of not less than six 

tube rows to obtain typical stability behavior of a tube array.  Weaver & Koroyannakis (1982) 

conducted experiments to study tube array response in both air and water flows. They noted that 

the variation of tube response frequency in water was more pronounced than in air flow, an effect 

they attributed to the effect of surrounding tube vibration mode on the added mass term which is 

more significant in water than air flows. 

Blevins (1974, 1977, 1979a) re-derived Eq. (2-23) by considering the fluid forces to be single 

valued functions of the relative displacements of the neighboring tubes. This assumption was  

later disproved by Price & Paidoussis (1986a) who contended that it is the absolute motion of the 

individual cylinders and not the relative motion between them which is important. Price (1995) 

compared the stability boundaries obtained from available experimental data with that obtained 

by Connors model (Figure 2-7) showing that the quasi-static model underestimates the critical 

velocity for fluidelastic instability. 
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Figure 2-8 : Idealized  cylinder motion of neighboring cylinders used by Connors (1970) during 

force measurements on the central cylinder: (a) symmetric motion (b) antisymmetric motion 

(Païdoussis et al., 2011) 

2.3.3 General unsteady models 

The unsteady models rely on directly measured dynamic fluid forces on the oscillating cylinder. 

Tanaka & Takahara (1980, 1981) measured the fluid dynamic forces generated on neighboring 

tubes by harmonically exciting a central tube in an in-line tube array.  Their assumption was that 

fluid forces on a cylinder, C , in the array are affected only by its own motion and that of the 

immediate neighboring tubes as illustrated in Figure 2-9. 

 

Figure 2-9 : Representation of cylinder numbering system used by Tanaka & Takahara (1980).  

In their stability analysis, Tanaka & Takahara (1980, 1981) obtained a discontinuity in the 

stability boundary curves  for mass ratio in the range of 250 500m D  . This discontinuity 

varied with the value of the logarithmic decrement of damping,  . They concluded that the 

instability mechanisms above and below this range are two different phenomena.  
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Later, Tanaka et al. (1982) conducted unsteady fluid force measurements on a single flexible 

cylinder free to oscillate only in the lift direction in an otherwise rigid array. Discontinuity was 

again observed in the stability curves leading the authors to conclude that it could not be as a 

result of a fundamental change in the instability mechanisms (instability of a single flexible 

cylinder is always due to negative damping (Chen, 1983a)). 

Even though Tanaka & Takahara’s unsteady model display’s good agreement with experimental 

results, the experimental effort involved can be prohibitive for practical heat exchanger design. 

Chen (1983a, 1983b) showed that fluidelastic instability is caused by two distinct mechanisms:  

damping and stiffness mechanisms.  The fluid damping controlled instability is the dynamic 

instability caused by fluid damping forces which, at certain flow velocities, may act as excitation 

mechanism for the structural oscillations leading to a reduction in system damping.  When the 

flow velocity exceeds a certain critical value, the total damping becomes negative and the system 

loses stability.  

The stiffness mechanism results from position dependent fluid forces. The coupling between tube 

vibrations in the array and the fluid flow generate fluidelastic forces which necessarily augment 

the overall system stiffness. With increasing flow velocity, the fluidelastic forces increase leading 

to a decrease in system modal damping. At some critical flow velocity the modal damping 

becomes negative making the system unstable. The existence of the two mechanisms was later 

confirmed by Paidoussis & Price (1988), and Yetisir & Weaver (1993a, 1993b). 

Little (2003) measured the total damping in a fully flexible parallel triangular tube bundle 

subjected to air cross flow and found that the sign of total system damping changes from  positive 

to negative at instability. 

Chen (1983a, 1983b) developed a mathematical model using force measurements obtained by 

Tanaka & Takahara (1980)  in which he coupled the fluid forces with the tube equations of  

motion.  His stability boundary maps were in good agreement with Tanaka & Takahara (1981) 

experimental results. Chen’s model predicted existence of multiple stability regions and 

explained the discontinuity in the experimental results of Tanaka & Takahara (1981) indicating 

the boundary between damping  and stiffness controlled instabilities for velocities less and 

greater than the discontinuity, respectively. However, the existence of practical multiple stability 

boundaries are “doubtful” (Paidoussis et al., 1996).  
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2.3.4 Semi-analytical models 

Lever & Weaver (1982) presented a semi-analytical approach for the determination of the 

fluidelastic instability threshold. They experimentally determined that a single flexible cylinder in 

an otherwise rigid array essentially had the same stability threshold as that of a fully flexible 

array. Lever & Weaver (1982) divided the flow through the cylinder array into wake regions and 

flow channel which they called stream tubes as illustrated in Figure 2-10. From flow 

visualization, they observed that the fluid flowed through the channels with approximately the 

same channel width.  The flow through the stream tubes was assumed to be incompressible, one 

dimensional and friction losses accounted for by a pressure drop term. Fluidelastic excitation was 

assumed to be independent of the wake phenomena thus only perturbations in the stream tubes on 

either side of the flexible tube were considered. In this model, the stream tube disturbance over 

the flow attachment length is considered to be in phase with the tube motion, while a finite time 

delay is required for the disturbance caused by the tube vibration to propagate downstream.  

 

 

Figure 2-10 : Typical flow pattern through a staggered tube array 

The authors assumed the time delay to originate from the fluid inertia and be equal to the time 

required by the flow to reorganize its pattern when the tube vibrates. Lever & Weaver (1982) 

modeled the time delay in the form of a phase lag function  s , as shown in Eq. (2-25), where 
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, , is a phase representing the time delay, 
gU , mean gap velocity, nf , tube vibration frequency 

and s , the distance from the vibrating tube. 
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Since the flow in the stream tubes is dependent on the array geometry and with the knowledge of 

the cross-sectional area in space and time, Lever & Weaver (1982) applied one dimensional 

unsteady Bernoulli’s equation to solve the flow field in the channels. To predict the tube 

response, they integrated the pressures over the flow attachment length on both sides of the tube 

and obtained the fluid forces which are coupled with the tube motion. The stability boundaries 

are then obtained by setting the damping term in the tube equation of motion to zero. Stability 

boundaries obtained by the Lever and Weaver model showed similar trends as experimental data 

in spite of its simplicity as shown in Figure 2-11. The theoretical model of Leaver and Weaver 

(1982) predicted multiple stability boundaries in the lower mass damping parameter regions 

similar to what Chen (1983a) found. 

The manner in which the time delay is presented in the Lever & Weaver model (Eq. (2-25)) was 

challenged by Price (1995) who stated that this semi-analytical model required inclusion of some 

empirical quantities, for example, the pressure drop term used to present the friction losses in the 

array, the attachment and separation points in the channel and the length of the stream tube. 

Leaver & Weaver (1986a, 1986b) studied the effect of these parameters on the model, and 

showed that they had minor effects on the stability boundaries. Varying the time delay parameter 

was, however, found to significantly affect the stability boundary of the Lever & Weaver model 

(Weaver, 2008). 

To further refine the model, Yetisir & Weaver (1993a, 1993b) accounted for in-flow tube motion, 

considered a fully flexible array and introduced a generic function to model the decay of 

perturbations caused by the tube vibrations upstream. They also unconstrained the tube response 

frequency which was constrained by Lever & Weaver (1982) to be equal to the tube natural 

frequency. These modifications by Yetisir & Weaver (1993a, 1993b) showed that fluidelastic 

instability at low mass damping parameters is attributed mainly to the damping mechanism and to 

the stiffness mechanism at high mass damping parameters. No significant differences were 
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reported between the stability boundaries of Yetisir & Weaver (1993b) and those of Lever & 

Weaver (1982). 

 

Figure 2-11 : Theoretical stability boundaries for fluidelastic instability obtained by  Lever & 

Weaver (1986b) for a single flexible tube in a parallel triangular tube array 1.375P  ;   , 

practical stability boundary,   , theoretical stability boundary. 

Initially, the model by Lever & Weaver could only be applied to fluidelastic vibrations of a single 

tube in the lift direction, however, it has since been extended to multiple flexible tubes and has 

recently been used to analyze streamwise fluidelastic instability (Hassan & Weaver, 2016) of a 

tube array in single phase flow.  

2.3.5 Computational fluid dynamic models 

Due to the complexity and relatively large computational resources required to handle fluid-

structure interaction problems, use of computational fluid dynamics (CFD) simulations in the 

study of fluidelastic instability phenomenon in tube arrays started gaining prominence in the 

early 1990s. Marn & Catton (1990) presented a code based on one-dimensional unsteady integral 

approach to investigate flow-induced vibrations in tube bundles. Later, Marn & Catton (1991) 

considered a column of cylinders  in an array of rigid cylinders and assumed the flow to be two-

dimensional. Fluid variables such as pressure and velocity were divided into two parts: one 
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constant part representing the mean and the other fluctuating and solely due to the tube motion. 

The fluid forces obtained by integrating the pressure around the tube were then applied to the 

vibrational equation of motion. Marn & Catton (1992) extended their numerical model to two-

phase flow, however, the analysis was considered too simplistic to be of any practical application 

(Price, 1995).  

Eisinger et al. (1995) developed a finite element model of an in-line tube array using ABAQUS, a 

commercial finite element software and incorporated the same fluid forces used in Chen’s 

(1983a, 1983b) unsteady model. The numerical results were in good agreement with the 

experimental data of Chen & Jendrzejczyk (1983). Schroder & Gelbe (1999b) in an attempt to 

improve their design guidelines for fluidelastic instability (Schroder & Gelbe, 1999a) came up 

with two- and three- dimensional models for a row of flexible tubes. They implemented different 

turbulence models and found that the k   model gave the most satisfactory results. Their 

results for the pressure coefficients obtained from numerical simulation was in good agreement 

with experimental results, nevertheless, the same agreement was not achieved for fluidelastic 

instability patterns. Hassan et al. (2010) developed a numerical estimation for the fluidelastic 

instability threshold in tube arrays. They solved the flow using Reynolds averaged Navier-Stokes 

equations to obtain the fluid force coefficients and used the unsteady model of Chen (1983a) to 

predict fluidelastic instability. The stability boundaries from Hassan et al. (2010) simulations 

were in relatively good agreement with experimental data in the literature.  

The current computational fluid dynamics capabilities still rely on the other theoretical models to 

estimate the critical velocity for fluidelastic instability and are confined to low Reynolds 

numbers. Solving fully coupled Navier-Stokes equations with the tubes equations of motion for 

practical Reynolds numbers will still remain a challenge for CFD techniques in the foreseeable 

future. 

2.3.6 Quasi-steady model 

The quasi-steady model proposed by Price & Paidoussis (1983) assumes that the effect of the 

motion of an oscillating cylinder subjected to cross-flow on the resulting fluid forces is 

exclusively to modify the velocity vector relative to the body, with the resultant drag and lift 

forces being parallel and normal, respectively, to the relative velocity (Figure 2-12). The force 

coefficients in the drag and lift directions are also assumed to be unchanged by the oscillation and 
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can be obtained from measurements or calculations on a stationary body. The quasi-steady 

assumption is only valid when the motion of the cylinder is much slower than the fluid flow 

velocity. According to Blevins (1977)  quasi-steady fluid dynamics is only accurate for 

10pc nU f D  .  

 

Figure 2-12 : Fluid forces on a typical tube in a tube bundle 

Stability analysis of cylinder arrays in fluid cross-flow through quasi-steady approach was first 

attempted by Gross (1975). Gross proposed a criterion for the determination of instability in the 

lift direction, relating the reduced critical velocity, 
pc nU f D , mass damping parameter, 

2m D  , and derivative of the lift coefficient with respect to the angle of incidence, 
yC   , 

in the following manner: 
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Price & Paidoussis (1982, 1983) considered a double row of cylinders in which they assumed that 

the force coefficients  were linear functions of the displacement of the oscillating cylinder itself 

and that of its two adjacent cylinders; as well as the apparent incidence of the resultant velocity 

vector vis-à-vis the streamwise direction. Instead of measuring the coefficients, LC   , and, 

DC   , the authors related them to the coefficients LC y   and DC y   , a relationship they 

later discovered to be incorrect. 

In order to refine this model, Price & Paidoussis (1984, 1985, 1986a, 1986b) and Price et al. 

(1990) suggested that the fluid forces on any cylinder in an array are  directly influenced only by 
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the cylinder’s own motion and its immediate neighbors. They further incorporated a time delay 

between the tube motion and the fluid response based on the time required for the mean flow to 

travel one tube row downstream and the inclination of the wake shed from a cylinder due to the 

latter’s transverse motion. Following the work of Simpson & Flower (1977), Price & Paidoussis 

(1984) accounted for the retardation of the flow approaching a cylinder by multiplying the 

cylinder displacements by a factor  exp D U , where,   is the flow retardation parameter 

taken to be of order 1,   is the eigenvalue and, U  is the gap velocity .  To simplify the model 

and reduce the computational effort required for stability analysis of multiple flexible cylinders, 

Price & Paidoussis (1986a) and Price et al. (1990) proposed a constrained mode reduction 

representing the full array with a small kernel of cylinders decoupled from the rest of the array. 

They then determined the specific inter-cylinder modal pattern (the constrained mode) leading to 

the minimum instability critical velocity. 

Price & Paidoussis (1984) later used the model to analyze the stability of a single flexible 

cylinder in a rigid array and obtained, for values of 10p nU f D  , the following expression for 

the critical flow velocity at the onset of instability in the lift direction: 
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and for the drag direction: 
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In a later work, Paidoussis & Price (1988) demonstrated the effects of the damping and stiffness 

controlled mechanisms by comparing the stability boundaries for a single flexible tube in a rigid 

array and those of a fully flexible array. They concluded that the damping mechanism dominates 

for, 2 300m D   , while stiffness mechanism reigns for, 2 300m D   .  

Granger & Paidoussis (1996) modified the quasi-steady model leading to quasi-unsteady 

analysis. They introduced a memory effect and represented the unsteady fluid dynamic forces as 

a combination of decaying exponentials whose constants are obtained by matching the response 

to experimental data. In as much as the quasi-unsteady model gives better agreement with 
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experimental data for the critical velocity for fluidelastic instability for known constants, it is 

limited to single-flexible cylinder analysis.  

Recently, attempts have been made to apply the quasi-steady model to two-phase flows. 

Shahriary et al. (2007) measured the quasi-static forces in air-water two-phase cross-flow in a 

rotated triangular cylinder array and conducted a stability analysis for single and multiple flexible 

tubes in the framework of quasi-steady model. Their results were in good agreement with 

experimental data. More recently, Sawadogo & Mureithi (2014b) measured both the unsteady 

and quasi-static fluid forces in two-phase air-water cross-flow in a rotated triangular array and 

estimated the time delay. Their quasi-steady stability analysis results using the measured time 

delay showed fairly good agreement with experimental dynamic stability tests in the lift 

direction. 

It should be noted that these fluidelastic instability models were developed and validated for 

single phase flow, hence, the need to investigate their applicability to two-phase flow. Compared 

to the semi-analytical model of Lever & Weaver (1986a, 1986b), the quasi-steady model requires 

more experimental data as input. However, the complexity of the two-phase flow makes Lever & 

Weaver (1986a, 1986b) model difficult to apply for two-phase flow. The unsteady models of 

Tanaka & Takahara (1981) and Chen (1983a, 1983b) rely heavily on experimental data thus 

require considerable experimental effort. Besides, Inada et al. (2002) and Mureithi et al. (2002) 

found the unsteady fluid force coefficient to be a multi-valued function of the reduced velocity in 

air-water and steam-water two-phase flows, respectively. Additionally, Mureithi et al. (2002) 

reported weak correlation between the tube displacement and the generated unsteady fluid forces 

in two-phase steam-water flow. Due to the stated challenges, the quasi-steady model (Price & 

Paidoussis, 1982, 1983, 1984) is used to analyze instability in two-phase air-water flow in the 

current work.   

2.3.6.1 Quasi-steady model: theory and key assumptions  

Since this study is based on the quasi-steady approach, it is important to outline some of its key 

features. Quasi-steady model has been selected since previous works in single-phase flow 

(Paidoussis & Price, 1988; Price & Paidoussis, 1984, 1985, 1986a, 1986b; Price et al., 1990)  and 

two-phase cross-flow (Sawadogo & Mureithi, 2014a; Shahriary et al., 2007) suggest that it is 

more practical in terms of the experimental effort and agreement with experimental data. 
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2.3.6.2 Fluid forces 

Referring to Figure 2-12, the velocity of the fluid relative to the cylinder motion may be 

expressed as:  

  
0.5

2 2

rU U x y   
 

 (2-29) 

By first order approximation, 
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Thus 
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where x  and y are displacements in the streamwise and crosswise directions, respectively, and 

U  is the pitch velocity. 

For small displacements, 
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The steady fluid forces in the streamwise and crosswise directions then become: 
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where  
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with , DF  being the drag force, LF  the fluid lift force on the tube, respectively,  , the fluid 

density, D , the tube diameter, DC , the drag coefficient and LC , the lift coefficient. The fluid 

forces can further be expressed in terms of the drag and lift coefficients by: 
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2.3.6.3 Flow retardation 

As already been mentioned, a time lag exists between tube displacement and the resulting fluid-

dynamic forces. Different authors have interpreted this feature in various ways. Simpson & 

Flower (1977) consider the time lag to be a result of the retardation experienced by the fluid as it 

approaches the vicinity of the cylinder stagnation point.  Lever & Weaver (1982, 1986a) see the 

time delay as the time taken by the flow to readjust itself to the changing flow pattern as the tube 

oscillates. Paidoussis et al. (1984) conceive it as a delay in the viscous wake adjusting itself to the 

fluctuating flow configurations resulting from cylinder vibrations while Granger & Paidoussis 

(1996) associate the time lag to the necessary reorganization of the flow, arising from the 

diffusion-convection of the vorticity generated by the cylinder motion.  

Price & Paidoussis (1984), using potential theory, demonstrated that time lag may be expressed 

as: 

 
D

U
   (2-36) 

where, U , is the flow velocity, D , the tube diameter and,  , the time retardation parameter 

taken to be of order 1.  A few researchers have attempted to experimentally determine this time 

lag. Mahon & Meskell (2010) considered a single flexible tube in a normal triangular tube array 

of  1.32P D   subjected to air flow and measured the time delay between the cylinder motion 

and the resulting fluid forces by integrating the pressure distribution around the cylinder. They 

found the time delay to correspond to Eq. (2-36), with 2.9 . Khalifa et al. (2011) measured the 

time delay between tube vibration and induced flow perturbations at several points around the 

oscillating tube in a rotated triangular tube array of 1.54P D   subjected to air cross-flow. 

However, this is quite different from the time delay between the tube motion and the generated 

fluid forces as the relation between the flow perturbation and the fluid forces acting on the tube is 

not clear. Similarly, Sawadogo & Mureithi (2014b) considered a single flexible tube in a rotated 

triangular array of 1.50P D   subjected to air-water two-phase cross-flow and estimated the 
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time lag in the lift direction by equating experimentally measured unsteady and quasi-steady fluid 

forces. The time lag was found to behave in a similar manner to Eq. (2-36) , but with, , varying 

between 1.7 and 2.7 for void fractions between 60% and 90%. 

2.3.6.4 Effect of time delay on tube motion 

For multiple flexible tube arrays, there exists a time delay, i , between the displacements of a 

tube and the resulting change in fluid forces on the tubes adjacent to it. This delay may be seen as 

the time taken by the fluid to traverse the distance between adjacent tubes. For example, the time 

delay results in an apparent displacement  of a tube, i , in the x  direction of 

   i i i i ix t x t      and  i iy t   in the, y , direction (as viewed from an adjacent upstream 

tube) with i iS U   where iS  is the distance between tubes  and U , the interstitial  velocity 

(Price & Paidoussis, 1984, 1986b) .  

2.3.6.5 Linearization of the fluid forces 

In the expression for fluid force (Eq. (2-35)) DCC  and LCC  are generally nonlinear functions of 

the fluid forces on a tube, C, and the derivatives of the fluid forces with respect to displacement 

of the immediate neighboring tubes. However, for stability analysis, it is sufficient to consider the 

linearized form of the forces, thus: 
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where g  is a time delay term, N is the number of neighboring tubes, i x D   is the 

dimensionless displacement of tube i  in the flow direction and i y D   is the dimensionless 

displacement of tube i  in the transverse direction.  

The fluid forces can then be expressed as (Price & Paidoussis, 1984): 

          Q Q Qg  
0

F F C z K z  (2-38) 
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where 21

2
Q U . The first term on the right hand side of Eq. (2-38) is the vector of steady state 

forces at equilibrium position, the second term is the fluid damping matrix, and the third term is 

the fluid stiffness matrix. z is the displacement vector. 

The steady/quasi-steady forces and consequently the unsteady forces are experimentally 

determined in the present work and the time delay extracted for a kernel of tubes in a rotated 

triangular array subjected to air-water two-phase flow. The quasi-steady force coefficients and 

their derivatives (Eq. (2-35) in addition to the time delay are important inputs for the quasi-steady 

model. 

 

 

 



36 

CHAPTER 3 ARTICLE 1: PREDICTION OF STREAMWISE 

FLUIDELASTIC INSTABILITY OF TUBE ARRAYS IN TWO-PHASE 

FLOWS AND EFFECT OF FREQUENCY DETUNING 

Olala, S. and Mureithi, N. W. (2016) 

Accepted for publication in “Journal of Pressure Vessel Technology (Transactions of the 

ASME)”. DOI: 10.1115/1.4034467 

 

Abstract 

Experimental measurements of the steady forces on a central cluster of tubes in a rotated 

triangular array ( 1.5)P D  subjected to two-phase air-water cross-flow have been conducted. 

The tests were done for a series of void fractions and a Reynolds number (based on the pitch 

velocity), 4Re 7.2 10 .   The forces obtained and their derivatives with respect to the static 

streamwise displacements of the central tube in the cluster were then used to perform a quasi-

steady fluidelastic instability analysis. The predicted instability velocities were found to be in 

good agreement with dynamic stability tests. Since the effect of the time delay was ignored, the 

analysis confirmed the predominance of the stiffness-controlled mechanism in causing 

streamwise fluidelastic instability.  

The effect of frequency detuning on the streamwise fluidelastic instability threshold was also 

explored. It was found that frequency detuning has, in general, a stabilizing effect. However, for a 

large initial variance in a population of frequencies (e.g. 2 7.84  ) , a smaller sample drawn 

from the larger population may have lower or higher variance resulting in a large scatter in 

possible values of the stability constant, ,K  some even lower than the average (tuned) case. 

Frequency detuning clearly has important implications for streamwise fluidelastic instability in 

the steam generator U-bend region where in-plane boundary conditions, due to preload and 

contact friction variance, are poorly defined. The present analysis has, in particular, demonstrated 

the potential of the quasi-steady model in predicting streamwise fluidelastic instability threshold 

in tube arrays subjected to two-phase cross-flows. 
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3.1 Introduction 

Many components especially in the nuclear and chemical engineering industries operate in two-

phase flows; for instance two phase cross-flow occurs in many tube-and-shell type heat 

exchangers such as nuclear steam generators, condensers, boilers, and evaporators. The high 

velocity two-phase cross-flows normally encountered in these heat exchangers, especially the U-

bend region of nuclear steam generators and most shell-and-tube heat exchangers generate 

dynamic fluid forces that may induce structural vibrations. Excessive vibrations often lead to tube 

failures due to fatigue and fretting wear at the supports. A review of the different mechanisms 

that excite tube  vibrations is given in Weaver, D. S. & Fitzpatrick, J. A. (1988). Of these 

vibration mechanisms, fluidelastic instability has the greatest destructive potential in the short-

term due to the resulting large amplitude oscillations. In practice, the onset of this phenomenon is 

estimated by the flow velocity at which the tubes begin to undergo large oscillation. This 

threshold flow velocity, also referred to as the critical velocity, is therefore the most important 

parameter in steam generator design and operation (Chen & Srikantiah, 2001).  Due to its 

detrimental nature, fluidelastic instability has attracted extensive research efforts and many 

theories and semi-empirical models have been developed to predict its onset. These include the 

jet-switch model (Roberts, 1962, 1966), the quasi-static model (Connors, 1970), the quasi-steady 

model (Price & Paidoussis, 1982, 1983, 1984), the unsteady model (Tanaka & Takahara, 1980, 

1981) and the semi-analytical flow channel model (Lever & Weaver, 1982, 1986b). It should, 

however, be noted that these formulations were developed for single phase flow even though 

many heat exchangers operate in two-phase flow  (Pettigrew & Taylor, 1994). 

Fluidelastic instability is governed by two mechanisms: the velocity mechanism and 

displacement mechanism (Chen, 1983a, 1983b). In the case of the velocity mechanism, the 

component of the fluid force proportional to the tube velocity may act as a source of excitation 

leading to fluid-damping-controlled instability (galloping) and generally results in tube vibrations 

in the cross-flow direction. For the displacement mechanism (also known as the stiffness-

controlled-mechanism), the instability results from fluid coupling effects between several tubes in 

an array. Of importance here are the fluid force components that depend on the displacement of a 
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tube and its neighbors. Which of these two mechanisms is dominant depends on the configuration 

of the tube array as well as on the fluid density. Besides, a combination of both effects may occur 

(Austermann & Popp, 1995). 

A number of experimental studies (e.g. (Granger et al., 1993; Janzen et al., 2005; Mureithi et al., 

2005; Nakamura et al., 2014; Roberts, 1962, 1966; Violette et al., 2006)) have reported 

observations of streamwise fluidelastic instability in both single- and two-phase flows. However, 

until recently, streamwise instability of tube arrays has not been a major concern to steam 

generator designers. This is not surprising since most experimental data and analysis results show 

that, fluidelastic instability occurs predominantly in the direction transverse to the flow (Mureithi 

et al., 2005; Weaver & Koroyannakis, 1983). Consequently, the apparent lack of (pure) 

streamwise fluidelastic instability in most of the experimental data used to develop design 

guidelines may have given the impression that streamwise instability was not expected hence 

could not occur. In the past, steam generators were fabricated with large clearances, to deal with 

thermal expansion of the tube/support materials and manufacturing tolerances resulting in both 

large gaps as well as preloads at the tube supports. This partly led to the addition of improved 

tube supports or anti-vibration bars (AVBs) in modern steam generators to constrain tube 

vibration in the cross-flow direction. However, in the U-bend region, these supports may not 

effectively prevent in-plane (streamwise) oscillations leading to the possibility of streamwise 

fluidelastic instability. 

Weaver & Schneider (1983) experimentally investigated, in a wind-tunnel, the effectiveness of 

flat bar supports in stabilizing tubes in the U-bend region. The authors found that flat bar 

supports with small clearances prevented both transverse and streamwise fluidelastic instabilities. 

Tests with scallop bar supports in the same study, however, displayed considerable streamwise 

tube vibrations. Similarly, Weaver & Koroyannakis (1983), simulated the effect of asymmetric 

stiffness on a rotated triangular array subjected to water flow. In this case, straight tubes were 

fixed on beams of different geometries to enable independent variation of stiffness levels in both 

the transverse and streamwise directions.  Fluidelastic instability was found to always occur in 

the direction of least stiffness (lowest frequency). Since transverse oscillations are constrained by 

AVBs in the U-bend region of a steam generator, the direction of lower frequency then would be 

streamwise.  
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To give further insight into the tube-support interaction problem, Feenstra et al. (2014) 

considered the damping effect of dry and wet flat bar supports. They found that, in the absence of 

contact between the tube and wet supports during streamwise tube vibration, less energy than 

expected was dissipated suggesting the possibility of streamwise fluidelastic instability.  More 

recently, Hassan & Weaver (2014) performed numerical simulation of the tube-support 

interaction during streamwise tube motion. The researchers found that, in the absence of preload 

and for low frictional force, minimizing the gap between tubes and the flat AVBs had significant 

destabilizing effects.  

There is now no doubt about the possibility of occurrence of in-plane fluidelastic instability in 

steam generators and heat exchangers following tube failures in a steam generator at San Onofre 

Nuclear Generating Station (SONGS) in California, U.S.A.  in 2012 attributed to streamwise 

fluidelastic instability (S.C.E., 2013). Clearly what remains is to develop predictive tools that 

would enable design against its occurrence.  

As has been shown both experimentally (Violette et al., 2006) and from theoretical analysis 

(Lever & Weaver, 1982; Olala et al., 2014; Sawadogo & Mureithi, 2014a), a single flexible tube 

in an otherwise rigid rotated triangular array can become unstable in the transverse and not in the 

flow direction. This kind of instability is associated with the negative fluid damping arising from 

fluid dynamic forces  acting on the tube due to its own motion hence does not require any 

coupling between tubes. The foregoing therefore suggests that streamwise fluidelastic instability 

in rotated triangular tube bundles depends on fluid coupling between tubes hence is fluidelastic 

stiffness controlled. Even though there are a number of studies on streamwise fluidelastic 

instability reported in the literature, very few are dedicated to two-phase flows (Granger et al., 

1993; Janzen et al., 2005; Mureithi et al., 2005; Nakamura et al., 2014; Roberts, 1962, 1966; 

Violette et al., 2006). Besides, the existing theoretical models for the prediction of fluidelastic 

instability were developed for single phase flow; therefore there is a need for their validation or 

extension to two-phase flows. 

The present study presents steady cross-coupling forces for a kernel of tubes in a rotated 

triangular tube array of pitch-to-diameter ratio of 1.5 subjected to air-water two-phase flow. The 

measured fluid drag force coefficients and their derivatives are then used in the quasi-steady 

model to perform streamwise fluidelastic instability analysis for different flexible tube 
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configurations. The results are compared to those previously obtained from dynamic stability 

tests in the same test loop (Violette et al., 2006).    

3.1.1 Definition of two-phase flow parameters 

In the homogeneous model, the void fraction  , is equivalent  to the volumetric fraction and 

given by: 
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The homogeneous mixture density, h , and the freestream velocity U , are defined as: 
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The pitch velocity 
pU , then becomes: 
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3.2 Theoretical formulation 

The streamwise fluidelastic force per unit length (excluding the hydrodynamic mass) acting on a 

given tube in an array such as the one shown in Figure 3-1 may be expressed as (Price & 

Paidoussis, 1986b): 
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where h  is the fluid density, D  the tube diameter, pU  the pitch velocity, DC  the drag 

coefficient, LC  the lift coefficient and, x  and y  velocity of the tube parallel and transverse to the 

flow, respectively.  A first order Taylor’s approximation of DC  and LC  yields: 
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Here 
0DC  and 

0LC  are the drag and lift coefficients at the tube equilibrium position; and x and y  

are small displacements of the tube in the streamwise and transverse directions, respectively. Due 

to the geometrical symmetry of the array under consideration, 

 0 0L L DC C x C y         (3-7) 

For multiple tubes the linearized drag force coefficient may therefore be expressed as:  
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where DkC  is the drag coefficient of tube k  and, nx  and ny  the displacement of tube n  in the 

drag and lift directions, respectively.  

Consider an array having N  tubes flexible only in the flow ( )x  direction. Taking into 

consideration the fluid added mass, the time lag relative to tube motion (Price & Paidoussis, 

1984) and the linearized drag force coefficient, the x  direction fluid force for tube k  becomes: 
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where am  is the added mass,   the circular frequency of the tube  and   is the time lag (which is 

considered in this expression to include time delays emanating from both apparent adjacent tube 

displacements and flow retardation effects (Price & Paidoussis, 1984)). The added mass may be 

estimated using the formulation of Pettigrew, Taylor, et al. (1989): 

 
 

 

2

2

2

1

4 1

e

a h

e

D D
m D

D D




 
  

  

  (3-10) 

where h  is the fluid homogeneous density and eD D  the confinement parameter given by 

 0.96 0.5 .eD D P D P D   
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In-plane fluidelastic instability of a rotated triangular tube array in cross-flow is predominantly 

stiffness controlled (displacement dependent) (Olala et al., 2014; Olala & Mureithi, 2014; 

Paidoussis & Price, 1988; Violette et al., 2006), requiring the presence of multiple flexible tubes. 

Therefore, as a first order approximation, the negative fluid damping instability generating 

mechanism term ( )ie   may be neglected. The governing equation of motion for the full array 

free to vibrate purely parallel to the flow direction thus takes the form: 
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Subscripts  ‘ s ’ and  ‘ f ’, respectively, indicate ‘structural’ and ‘fluid’ quantities. The fluid 

stiffness term takes the form: 
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with x x D  and  x the reduced displacement vector. The damping factor,   in Eq. (3-11)

includes both the structural and flow-independent damping components.  

In the foregoing formulation, the most important fluid dynamic parameters in fluidelastic 

vibration analysis of multiple flexible arrays are the derivatives of the drag coefficients which 

indicate cross-coupling between the tubes due to fluid flow and the equilibrium drag coefficients. 

In the present study, only the effects of the immediate neighboring tubes are considered. 

3.3  Experimental apparatus  

3.3.1 Two-phase test loop 

The two-phase test loop shown in Figure 3-1 consists of a 1.5 m3 capacity water tank, 1.56 

m3/min centrifugal water pump, a magnetic water flow meter (MAG500), a 15 m3/min 

compressed air supply system and connecting piping. The compressed air is injected into the loop 
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below the test section and the two fluids are homogenized by a mixer. The air flow rate is 

measured using two distinct orifice plates, for low and high flow rates, respectively, located away 

from the test section and connected to a differential pressure transducer and an electronic readout 

system. Pressure at the test section is measured to correct the air flow rate. 

3.3.2 Test Section 

The test section shown in Figure 3-2 has a rectangular cross sectional area of 0.0380 m2 (0.2 m × 

0.19 m). A total of nineteen full tubes and fourteen half tubes are arranged in a rotated triangular 

configuration with pitch-to-diameter ratio, 1.5P D  , each tube having a diameter, 38D   mm.  

The length of each tube is 190 mm. The half tubes are attached to the test section wall to 

minimize wall effect. The number of tube rows in a streamwise column is six or seven. Except 

for the central tube, all the other tubes are rigid and made of Plexiglas. The central tube which is 

made of aluminum, is mounted on an ATI Nano 25 transducer attached to a displacement 

mechanism consisting of a linear motor (Parker Trilogy Ironless Positioner). An Aries smart 

servo-drive AR-04CE is used to control the motor. Four tubes (1, 2, 3 & 4 in) adjacent to the 

central tube are strain gage instrumented. The strain gages are glued to the inner diameter of the 

tubes with epoxy and located as close as possible to the fixed end. Two pairs of diametrically 

opposite strain gages installed at 90° from one another in each tube are used to measure forces in 

the in-flow and cross-flow directions, respectively. The strain gage pairs are connected to a 

Wheatstone bridge in half-bridge configuration. The instrumented tubes are located in the middle 

of the array such that there are four rows upstream and downstream of the instrumented cluster, 

respectively. 
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Figure 3-1 : Two-phase test loop and array configuration 

 

 

Figure 3-2 : Test section 
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(a)                                                                              (b) 

Figure 3-3 : Instrumented tubes (a) central tube mounted on linear motor and (b) instrumented 

neighboring tube 

3.3.3 Test procedure 

3.3.3.1 Drag and Lift forces measurements 

Due to the symmetry of the test section, only the tubes labelled C, 1, 2, 3 and 4 in Figure 3-1 

were instrumented. To calculate the force coefficients and their derivatives, which are necessary 

in the quasi-static/steady fluidelastic instability models, measurement of the steady forces was 

performed. The static strain-force relation was obtained through careful calibration using known 

calibrated weights. Force measurement was achieved by statically displacing the central tube in 

the streamwise direction in increments of 0.026D in the range ±0.13D using the displacement 

mechanism shown in Figure 3-3(a). For each incremental step, the fluid flow was allowed to 

attain steady state before initiating data acquisition. The present study employs an improved 

traverse system (shown in Figure 3-3(a)) as compared to that of Shahriary et al. (2007). Due to 

the unsteadiness of the flow and strain signals, the generated signals were acquired with a 

Labview® program via a National Instruments data acquisition module, NIPXIe-1073 and 

recorded every 0.5 ms over a period of sixty seconds. The mean drag and lift forces were then 

extracted for each tube as a function of the central tube position. All measurements were 

conducted at atmospheric conditions (22°C) and a Reynolds number (based on pitch velocity), 

4Re 7.2 10  . 
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In upward flow, the streamwise (drag) fluid force measured is coupled to a buoyancy force. The 

buoyancy effect is estimated here by letting the water rise above the instrumented tubes in the test 

section and measuring the force in the drag direction, BF . The corrected drag force in two phase 

flow is therefore given by: 

 h
D DM B

l

F F F



    (3-13) 

where DMF  is the measured drag force, h   the homogeneous density of the two-phase mixture 

and l  the liquid density. The buoyancy force acts purely in the drag direction; hence any 

measured lift force in a stagnant fluid is cross-coupling induced, that is, coupling of the force 

sensors’ different measuring axes emanating either from misalignment in sensor/test section 

orientation or inherent in the sensor. The ratio of the lift to drag forces in static fluid may thus be 

used as a cross coupling correction factor for every tube, therefore: 
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where LF  is the corrected lift force, LMF  measured lift force and LSF  the measured lift force in 

stagnant fluid. The force coefficients can then be obtained as: 
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3.4 Experimental results 

3.4.1 Steady fluid force coefficients 

The fluid force coefficients are calculated according to Eqs. (3-15) and (3-16). All the force 

coefficients presented in this section are based on the pitch velocity and are functions of the 
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streamwise displacement of the central tube, C. The fluid forces were measured in water flow and 

two-phase flows with superficial void fractions up to 90%. 

The effect of streamwise displacement of the central tube on both drag and lift force coefficients 

for the instrumented tubes C, 1, 2, 3 and 4 for different void fractions are presented in Figure 3-4 

to Figure 3-8. Figure 3-4 shows the variation of force coefficients for tube C due to its own static 

displacement in the flow direction. The drag coefficient, DCC , basically increases as the static 

displacement increases downstream. This is attributed to higher resistance experienced by the 

flow due to increased blockage as tube C approaches the downstream tube 1. The lift coefficient, 

LCC , on the other hand remains invariant at zero with the streamwise displacement of the central 

tube C. This should be the case due to the symmetry of the tube array under consideration. A 

similar situation holds for tubes 1 and 4 which are located downstream and upstream of tube C, 

respectively.  From Figure 3-1, as tube C approaches tube 1 due to the displacement of tube C 

downstream, tube 1 gets into its wake leading to less and less fluid impinging on tube 1 as the 

central tube gets closer. The foregoing explains the decreasing trend of tube 1 drag coefficient, 

1DC , with increasing displacement of tube C in the flow direction as shown in Figure 3-5. 

Upstream of tube C is tube 4. Downstream displacement of the central tube C leads to decreased 

blockage behind tube 4 leading to increasing drag force hence drag coefficient, 4DC  as presented 

in Figure 3-6(a). The trend of the lift coefficient for both tubes 1 and 4 ( 1LC and 4LC ) is similar to 

that of the central tube C, again, due to geometrical symmetry of the array.  

Figure 3-7 and Figure 3-8 show the influence of the streamwise displacement of tube C on the 

drag and lift coefficients for tubes 2 and 3, respectively. The drag coefficient increases for tube 2 

while it decreases for tube 3 when the central tube is displaced in the flow direction. This is again 

due to the varying blockage in the central column as tube C is displaced downstream. A look at 

the lift coefficients for both tubes (2 and 3) in Figure 3-7(b) and Figure 3-8(b) show that there is 

slight variation for the coefficients. 2LC  is negative for negative displacements and positive for 

positive displacements of tube C. On the other hand, 3LC  is slightly positive for negative 

displacement of tube C while negative for positive displacement of the same tube C. The above 

observation is attributed to the positions of the tubes 2 and 3 in relation to tube C while being 

displaced. The position of tube C slightly modifies the flow direction around these tubes hence 
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the effective fluid forces in the transverse and flow directions. The trend of the drag coefficient 

for each particular tube can therefore be said to depend on whether the central tube moves closer 

or away from it, thereby modifying the flow distribution between them.  Additionally, the drag 

coefficient was found to increase with void fraction till  40%    then start decreasing for all the 

tubes. This tendency may be attributed to changing flow mixture composition hence flow pattern.  

It should be noted that the tests were conducted at the same Reynolds number, meaning that tests 

at higher void fractions were done at more elevated superficial flow velocities than for the lower 

void fractions. The effect on the lift coefficient is very small hence it can be argued that the 

variation of the central tube’s position in the flow direction only significantly affects the drag 

coefficient for the tube array used in the present tests.  

 

 

(a)                                                                (b) 

Figure 3-4 : Variation of tube C drag and lift coefficients with streamwise dimensionless 

displacement of tube C 
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(a)                                                              (b) 

Figure 3-5 : Variation of tube 1 drag and lift coefficients with streamwise dimensionless 

displacement of tube C 

 

  

(a)                                                                        (b) 

Figure 3-6 : Variation of tube 4 drag and lift coefficients with streamwise dimensionless 

displacement of tube C 
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(a)                                                                     (b) 

Figure 3-7 : Variation of tube 2 drag and lift coefficients with streamwise dimensionless 

displacement of tube C 

 

  

(a)                                                                      (b) 

Figure 3-8 : Variation of tube 3 drag and lift coefficients with streamwise dimensionless 

displacement of tube C 
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3.4.2 Drag coefficients derivatives 

As mentioned earlier in this paper, only the central tube, ‘C’, was displaced during the tests. 

Therefore, the derivatives with respect to other tube displacements are inferred to complete the 

fluid-stiffness matrix in Eq. (3-11) and Eq. (3-12). Due to symmetry in the array (Fig. 2-1), they 

can be expressed as shown in Table 3-1. 

Table 3-1 : Equivalent force coefficients derivatives 

Experimental data Equivalent quantities 

Dc cC x   4 4 3 3 2 2 1 1, , ,D D D DC x C x C x C x         

1D cC x   4DcC x   

2D cC x   5DcC x   

3D cC x   6DcC x   

4D cC x   1DcC x   

                       

The variation of the derivatives of the drag coefficients as functions of the streamwise 

displacement of the central tube with respect to void fraction is presented in Figure 3-9. The 

continuous lines represent third order polynomial curve fitting to the data. Also shown in the 

figure are average error bars for the drag coefficient derivatives of each tube. Derivatives for 

tubes ‘C’, 2 and 4 are positive while those for tubes 1 and 3 are negative. For the central tube, 

this derivative ( )DC CC x   decreases approximately linearly from 0% to 60% void fraction then 

increases between 60% and 90% void fractions. Tube 4 drag coefficient derivative 4( )D CC x   

on the other hand shows a continually decreasing trend with void fraction.   

The derivative of the drag coefficient for tube 2, 2( )D CC x   initially increases between 0% and 

40% void fractions then decreases between 40% and 90% void fractions. In the case of tube 3, 

this derivative 3( )D CC x   showed an increasing trend with void fraction between 0% and 90% 
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but with a gentler slope from 40% to 90% void fraction. For tube 1, 1D CC x  , initially decreases 

between 0% and 20% void fractions, then increases nearly linearly with void fraction till 90%.  

These derivatives represent the fluid induced stiffness on a tube as a result of the motion of the 

adjacent tube hence the tube-tube stiffness coupling. The signs of the derivatives are of 

importance. For the two-degree-of-freedom case, it has been shown (Paidoussis & Price, 1988) 

that, the cross-coupling terms in the  
knf

K matrix (Eq. (3-12)) must have opposite signs for 

stiffness-controlled fluidelastic instability to occur. For a larger number of tubes, this relationship 

would, of course, be more complex. 

 

(a)                                                                          (b) 

Figure 3-9 : Variation of the derivative of the drag coefficients with void fraction for (a) tubes C, 

2 and 4 (b) tubes 1 and 3 

3.5 Fluidelastic stability analysis 

Equation (3-11) may be expressed in the generalized coordinate system in the form: 

      t t t  Mq Cq Kq 0   (3-17) 

where ,M C  and K  are the ( )n n  total mass, total damping and total stiffness matrices 

respectively, and  tq  is the ( 1)n  vector of generalized coordinates, whose length, ,n  in this 

case corresponds to the number of flexible tubes.  By defining a state vector  tx  as the  (2 1)n  

vector comprising the generalized coordinates vector, q  and generalized velocity vector q : 
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x ...

q

  (3-18) 

Eq. (3-17) can then be reduced to a first-order state-space differential equation of the form: 

    t tx Bx   (3-19) 

where B  is a (2 2 )n n  matrix defined as: 
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0 I
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  (3-20) 

in which 0  and I  are the zero and unit matrices, respectively. By further assuming that Eq. 

(3-19) admits solutions of the form tex x  , where    represents an eigenvalue and x  the 

corresponding eigenvector, Eq. (3-19) may be reduced to the standard eigenvalue problem: 

 Bx x   (3-21) 

By solving Eq. (3-21), the lowest velocity at which the real part of any eigenvalue becomes null 

defines the critical velocity for fluidelastic instability. The eigenvector x  of Eq. (3-21) assumes 

the following structure: 
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  (3-22) 

in which q  is the  1n  eigenvector of the eigenvalue problem in the physical space. Here, 

again, n  is the number of degrees-of-freedom or as stated earlier, the number of flexible tubes in 

the present case. The vector q  generally appears in complex conjugate pairs and defines the 

system mode shapes. The eigenvalues, which also appear in complex conjugate pairs, take the 

form (Inman, 2001): 
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where 1j    , ni  and i  are the undamped natural frequency and the damping ratio, 

respectively of the thi  mode. Writing the complex eigenvalue as: 

 i i ij      (3-24) 

where  Rei i   and  Imi i  , and comparing Eqs. (3-23) and (3-24) yields, 

 
2 2

ni i i      (3-25) 
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and  

 2| 1|ii ni di        (3-27) 

in which di  is the thi  mode damped natural frequency. Thus the real part of the eigenvalue is 

related to the tube modal damping (Eq. (3-26)) while the imaginary part relates to the modal 

frequency (Eq. (3-27)). 

For tubes each of mass 3.062 kg/m with the damping values presented in Table 3-2 (Olala et al., 

2014) and a natural frequency (in air) of 14 Hz, the stability analysis results follow. No 

assumptions are made regarding the expected tube vibration frequency or vibration modes. Figure 

3-10 shows the tube configuration for a single flexible column while multi-column cases are 

presented in Figure 3-11.  

Table 3-2 : Total damping factor (structural + flow independent) for various void fractions (Olala 

et al., 2014) 

Void fraction 

(%) 

0 10 20 30 40 50 60 70 80 90 

  (%) 1.0 2.4 2.5 3.6 4.0 3.9 4.0 4.1 3.5 3.0 
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As presented in Figure 3-12 the critical reduced velocity for instability, c nU f D  , was found to 

decrease with increase in number of flexible tubes for a single flexible column for all the void 

fractions considered. On the contrary, however, the critical reduced velocity increased with void 

fraction, primarily due to the decrease in mixture density with void fraction.  For flexible tubes 

located in neighboring columns of the array, Figure 3-13, a similar trend as that for flexible tubes 

located in a single column is observed. However, the values of the critical reduced velocity are 

lower for the latter case. For example, two adjacent flexible tubes in a single column are more 

stable than two flexible tubes in neighboring columns. It can therefore be argued that (for a 

particular void fraction or mass damping parameter) the instability threshold for multiple flexible 

tubes depends on the number and relative location of the flexible tubes. This variation can be 

explained in terms of the instability mechanism and flow distribution in the array. Rewriting Eq. 

(3-11) for a two degree-of-freedom system,  

1,1 1,201 2

2,1 2,202

0 0 0

0 0 0

0 0 1

0 0 2

D Da D

h h

D Da D
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X X X
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 
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     

    
       
     

  (3-28) 

where the left-hand side represents structural quantities and the right-hand side the fluid 

quantities. For stiffness controlled instability, it is the cross coupling between tubes due to the 

fluid flow that causes instability, in this case the off-diagonal terms in the last matrix of Eq. 

(3-28).  These off-diagonal terms, as stated earlier,, must be of opposite signs for stiffness-

controlled instability to occur (Paidoussis & Price, 1988). From Figure 3-12 and Figure 3-13 

there is no significant difference in the predicted critical velocity using more than four flexible 

tubes. Since the mechanism causing instability here, is dependent on the fluid coupling between 

tubes, the more the number of the flexible tubes, the stronger the coupling strength. However, the 

present analysis suggests that there is no much benefit in using more than five flexible tubes for 

reliable prediction of the fluidelastic instability threshold for a rotated triangular array. 
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(a)                     (b)                      (c)                      (d)                      (e)                      (f) 

Figure 3-10 : Flexible tubes configuration for stability analysis - single column 

                

 

(a)              (b)                 (c)                   (d)                  (e)                  (f)                   (g) 

Figure 3-11 : Flexible tubes configuration for stability analysis - multiple columns 
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(a)                                                                           (b) 

Figure 3-12 : Effect of the number of flexible tubes on the critical velocity for a column of tubes 

(Refer to Figure 3-10) 

            

(a)                                                                           (b) 

Figure 3-13 : Effect of the number of flexible tubes on the critical velocity for multiple columns 

of tubes (Refer to Figure 3-11) 

3.5.1 Fluidelastic instability results comparison 

Figure 3-14 shows results comparison between the present analysis with the dynamic tests of 

Violette et al. (2006) that were conducted on the same tube array as the one used in the present 

study. The critical reduced velocities predicted by the model are slightly higher, by up to 19%, 
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for the central cluster and 22% for the partially flexible column than those from the dynamic 

tests. The difference may be attributed to assumptions and simplifications made in the present 

analysis. Firstly the quasi-static model itself. The underlying quasi-static assumptions ignore 

unsteady flow effects. Beyond the model limitation, it is also assumed that the flow is 

homogeneous and uniform in the entire bundle enabling replication of the measured fluid forces 

and derivatives to any number and arrangement of flexible tubes. However, this may not 

necessarily be true. In their dynamic instability tests, Violette et al. (2006) found that tube 

instability depended on the location of the tube in the array and the void fraction; instability being 

well developed throughout the flexible array for void fractions lower than 60% while in the case 

of void fractions greater than 80%, the downstream tubes experienced much more developed 

instability than the rest of the array tubes. This phenomenon may partially explain the 

observation in Figure 3-14 (a) where data points from the two methods (experiments and theory) 

converge for lower void fractions and seem to diverge for higher void fractions. Overall, the 

trends of the critical velocities relative to the void fraction are similar for both cases. Even though 

Violette et al. (2006) did not observe instability for the case of a single central column (Figure 

3-10 (f)) flexible only in the flow direction, the current study did obtain instability for this 

configuration, though at relatively high critical velocity. In a wind tunnel dynamic instability test 

for the same tube configuration, Mureithi et al. (2005) obtained, similarly to the present analysis, 

instability for  a single flexible column. It is therefore possible that the limit of the test loop was 

reached before instability could be realized in the work of Violette et al. (2006). 
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(a)                                                                           (b) 

Figure 3-14 : Comparison between present analysis and dynamic stability test (a) Flexible central 

cluster (Figure 3-11(f)) (b) Two-partially flexible columns (Figure 3-11(d))  

 Figure 3-15 presents a comparison between the fluidelastic instability results of the present 

analysis and existing data for the rotated triangular array pattern. The critical reduced velocity is 

plotted against the mass damping parameter. The continuous lines correspond to fixed values of 

the factor K , the Connors proportionality constant which is defined in the following relation: 
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The data from the present analysis tend to follow the same trend as those of Violette et al. (2006) 

and Mureithi et al. (2005)  but collapse well on the 10K  as opposed to 8K  in the latter two 

studies. This difference has been explained at the beginning of this sub-section. Data from 

Pettigrew, Tromp, et al. (1989)  which are for tubes flexible in the direction transverse to the flow 

collapse on 3.7K  reinforcing the fact that instability threshold of tubes preferentially flexible 

in the flow direction is higher than for those flexible in the transverse direction. The results of 

Figure 3-14 and Figure 3-15 confirm the potential of the present analysis method to predict 

fluidelastic instability for rotated triangular tube bundles of similar pitch ratio with tubes flexible 

purely in the flow direction.  

The reader could be rightly wondering why bother then with streamwise fluidelastic instability 

when it has been documented that transverse instability occurs way earlier than the in-plane 
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instability. Recent work by Nakamura et al. (2014)  suggests that for closely spaced tube arrays, 

in their case, a triangular tube array with pitch-to-diameter ratio, / 1.2P D  , in-plane instability 

occurs at a velocity lower than that found for out-of-plane instability. Additionally, improved 

alignment of tubes and the anti-vibration bars (AVBs) resulting in tube-AVB gap uniformity may 

lead to reduced friction damping forces at the tube-AVB contacts hence increasing susceptibility 

to in-plane instability. For tubes with support non-uniformity, the varying boundary conditions of 

the neighboring tubes will generally render the tubes to have different frequencies and mode 

shapes. This variation in frequency, simply called frequency detuning, is more prevalent for non-

uniformly supported tubes. Since streamwise instability is fundamentally a coupled-mode 

instability involving multiple tubes, coupling forces are strongly dependent on the frequency 

differences between tubes. As is shown in subsection 3.5.2, smaller frequency differences 

enhance the cross-coupling and the resulting fluidelastic forces.   

3.5.2 Streamwise fluidelastic instability and effect of frequency detuning 

 Due to varying boundary conditions at the tubes supports and manufacturing imperfections, 

variations of the natural frequencies of steam generator tubes are an unavoidable occurrence. In 

this sub-section the effect of varying tube cross-coupling, via frequency detuning is investigated 

for a central cluster of tubes (Figure 3-11 (f)). The effect of frequency detuning is expressed here 

in terms of statistical variance of tube frequencies from a given mean frequency, here 14 Hz. 

Firstly, statistical populations of 1000 tube natural frequencies with a mean of 14Hz and 

variances 5%, 10% and 20% about the mean are created. From each population, random samples 

of 7 frequencies (for the 7 tubes in Figure 3-11 (f))) are selected and a stability analysis 

performed according to Eq. (3-21). The critical velocity is defined here as the velocity at which 

the real part of the eigenvalue of one of the roots changes sign to positive.  The tube structural 

damping is maintained constant at 0.2%. This is repeated for 1000 samples. Using the obtained 

reduced critical velocity, a corresponding stability constant, K  is calculated for each sample 

using Eq. (3-29).   



61 

 

 

Figure 3-15 : Instability map: comparison of present analysis with published data, ▼ two flexible 

columns in air-water two-phase flow with tubes flexible in flow (present analysis),  two 

partially flexible columns in air-water two-phase flow (present analysis),  flexible central 

cluster in air-water two-phase flow (present analysis),     a fully flexible array in air-water two-

phase flow (present analysis),  axisymetrically flexible tube bundles in air-water two-phase 

flow (Pettigrew, Tromp, et al., 1989), ■ a single flexible column in air flow with tubes flexible in 

flow (Mureithi et al., 2005),  ► a central flexible cluster in air flow with tubes flexible in flow 

(Mureithi et al., 2005),  □ a central flexible cluster in air-water two-phase flow with tubes 

flexible in flow, 28nf  Hz (Violette et al., 2006),    a central flexible cluster in air-water two-

phase flow with tubes flexible in flow, 14nf  Hz (Violette et al., 2006), ▲ two partially flexible 

columns in air-water two-phase flow with tubes flexible in flow (Violette et al., 2006).                     
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(a)                                                                                   (b) 

Figure 3-16 : Evolution of eigenvalue with flow velocity for 90% void fraction, σ2=0 (0% 

detuning) (a) real part (b) imaginary part 

 Figure 3-16 shows the evolution of the eigenvalue real and imaginary parts as functions of pitch 

flow velocity for the case of a cluster of 7 tubes each having a frequency of 14 Hz (zero 

detuning). The two-phase flow homogeneous void fraction is 90%. It is seen in Figure 3-16 (a) 

that the flow has a stabilizing effect at low velocities (positive damping (Eq. (3-26))). However, 

above a velocity of about 4 m/s, one of the modes separates and eventually loses stability at about 

11.5U  m/s when the damping for this particular mode becomes negative. The tube frequencies 

(Eq. (3-27) show no discernible change with flow velocity as shown in Figure 3-16 (b). 

The first two vibration modes of the bundle (Figure 3-11 (f)) corresponding to the eigenvalues of 

Figure 3-16 are shown in Figure 3-17. It should be recalled, from Eq.(3-22), that the mode shapes 

are determined from the eigenvectors. On this figure, the open big circle indicate the tube 

position at an arbitrary time, the open small circle the tubes’ equilibrium positions, the plus signs 

are the tube movement limits and the dot (filled small circle) the tube center. Indicated by the 

arrow is the tube movement direction. The phase angle of each of the tubes is with respect to the 

central tube, Tube 7. The sign of the phase angle indicates whether the specific tube lags or leads 

Tube 7; where a positive phase would mean that the tube being considered leads Tube 7 and vice-

versa.  Figure 3-17 (a) shows the vibration pattern for the first mode (unstable mode) while the 

second mode is presented in Figure 3-17 (b).  A well defined pattern is observed for the relative 

movement of the flexible tubes. It is seen in Figure 3-17 (a) (the unstable mode) that for two 
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neighboring tubes of the same column, the downstream tube leads the upstream tube by a phase 

angle of about 144 . However, for two neighboring tubes in adjacent columns, the downstream 

tube lags the upstream tube by a phase angle of about 69 . An exact opposite scenario is 

observed for the second mode of vibration. Here (Figure 3-17 (b)), the upstream tube leads the 

downstream tube for tubes in the same column by a phase angle of 144 . Similarly, the upstream 

tubes lag the downstream tubes by a phase of 69  for adjacent tubes in neighboring columns. 

 

                     

(a)                                                                          (b) 

Figure 3-17 : Modes of Vibration for 90% void fraction, σ2=0 (0% detuning)  (a) Unstable mode 

(mode 1) and (b) Mode 2 

The same analysis is next repeated for samples of tube frequencies taken from populations with 

5% (variance 2 0.49  ), 10% (variance 2 1.96  ) and 20% (variance 2 7.84  ) frequency 

detuning. In Figure 3-18 the evolution of the eigenvalues for seven different sets of seven 

frequencies (hence seven different clusters of seven tubes) randomly selected from an original 

population with 5% detuning (representing seven different arrays of the same configuration) is 

displayed. The eigenvalue evolutions for 10% and 20% detuning, are shown in Figure 3-19  and 

Figure 3-20, respectively. It is seen that random detuning has no significant effect on the 

minimum critical velocity  11.6 m/s for 5% detuning (Figure 3-18 (a)), 11.6 m/s for 10% 
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detuning (Figure 3-19 (a)) and 11.2 m/s for 20% detuning (Figure 3-20 (a)), respectively.  The 

critical velocity for the tuned case is 11.5 m/s (Figure 3-16). 

    

(a)                                                                                  (b) 

 Figure 3-18 : Evolution of eigenvalue for seven arrays, original population σ2=0.49 (5% 

detuning) (a) real part and (b) imaginary part 

   

(a)                                                                            (b) 

Figure 3-19 : Evolution of eigenvalue for seven arrays, original population σ2=1.96 (10% 

detuning): (a) real part and (b) imaginary part 
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(a)                                                                        (b) 

Figure 3-20 : Evolution of eigenvalue for seven arrays, original population σ2=7.84 (20% 

detuning) (a) real part and (b) imaginary part 

   It should, however, be noted that the frequency variance for individual samples of seven tubes 

can be lower or higher than the original population variance.  The cross-coupling strength 

between neighboring tubes is strongly dependent on relative tube frequencies. The smaller the 

variance the higher the cross-coupling strength between the tubes, resulting in a lower critical 

velocity. Additionally, the value of the individual frequencies also plays a critical role on the 

critical velocity. For large initial population variance, it is possible to get a set of lower 

frequencies than the tuned case resulting in much lower mean frequencies and lower critical 

velocities. This is exemplified by the minimum critical velocity obtained for the 20% detuning 

which was found to be 11.2 m/s, with a mean frequency of 12.9 Hz, as compared to 11. 5 m/s for 

the tuned case (mean frequency of 14 Hz).  

The results of the stability analysis for a large number of samples are summarized in Figure 3-21 

for tube populations with initial frequency variances, 2 0.49   (5% detuning) and 2 7.84   

(20% detuning), respectively. In both cases the population frequency is normally distributed 

about the mean value of 14 Hz. In Figure 3-21(a) the initial population variance is 2 0.49.   

However, the variance (and mean) of a given sample of 7 frequencies can be higher or lower as 

already indicated. In Figure 3-21, the stability constant, ,K  is plotted versus sample frequency 

variance. The value of K   is calculated by Eq. (3-29) and nf   is the average of the seven 

frequencies in this case. Generally the stability constant increases with frequency variance – 
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reflecting the stabilizing effect of frequency detuning. Note also that for a given variance, K  

takes a range of values depending on the frequency combinations and the sample mean 

frequency. While for the tuned array 10.5K , the effect of detuning increases K  to as high as 

16 for 2 0.49   .  

        

(a)                                                               (b)  

Figure 3-21 : Effect of frequency detuning on streamwise stability constant (a) σ2=0.49 (5% 

detuning) and (b) σ2=7.84 (20% detuning) 

The stability results for a frequency detuning of 20% in the original population are shown in 

Figure 3-21(b). The average stability of the tube cluster is much higher than the tuned cluster. 

More importantly, however, is the large scatter in possible K  values. Stability constants as high 

as three times the tuned cluster case are possible. The high K  values make the tube array very 

stable. However, the scatter in the value of K  suggests that the average K  value (shown by the 

solid line in Figure 3-21) is not a reliable indicator of the array stability.  

Figure 3-22 presents analysis done with random frequencies between 14Hz and 2Hz. Here, the 

objective is to investigate the effect of increasing the unsupported span length due to tube 

supports becoming inactive. The tube is approximated by a multispan beam whose modal natural 

frequency is given by (Blevins, 1979b): 
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where i  is a dimensionless frequency factor that depends on the mode number, the boundary 

conditions and the number of spans; E  is the modulus of elasticity of the beam material, I  is the 

moment  of inertia and sl  the unsupported span length. It can be seen from Eq. (3-30) that the 

natural frequency varies roughly as the reciprocal of the unsupported span length squared, 2

sl  . 

Therefore, taking a hypothetical case of three consecutive supports being inactive, the presence of 

the longer span lowers the beam frequency by roughly 0.1. It is also instructive to note that, as 

the length of the span increases (due to several supports being inactive), the frequency of the 

beam increasingly becomes independent of the number of spans as the longer section dominates 

the vibration. Similarly to the case of 20% frequency detuning (Figure 3-21 (b)) a large scatter is 

also observed in the case of span length variation (Figure 3-22). Note, however, that in Figure 

3-22, the frequency range is limited to between 14Hz and 2Hz while in the former case the 

frequencies could be higher or lower than 14Hz, respecting a variance of 7.84 about the mean 

(14Hz). In the latter case (Figure 3-22) the mean of a sample of seven frequencies can get very 

low, hence presence of much lower K  values. From a frequency variance of about 7 (Figure 

3-22), instances of K  values lower than the tuned case start becoming manifest.  Values of K  as 

low as 50% of the tuned case are possible. The variability in the K  values makes it a challenge to 

accurately estimate the stability boundary for in-plane instability for a detuned group of tubes 

(the case in practice). 

This complex stability behavior associated with frequency detuning is tied to the governing 

instability mechanism for streamwise vibrations. For out-of-plane instability, where the damping 

controlled mechanism is dominant, frequency detuning has minimal effect on the critical velocity 

(Cheng, 1994). In all cases, the tube with the lowest frequency would become unstable (assuming 

identical tube damping) at a lower velocity than the others. From a vibration design point of 

view, the choice of stability constant, ,K  is vitally important. The results above suggest that this 

must be done with care for streamwise instability due to possible significant variance in the 

stability constant with frequency detuning. Physically, this leads to the challenge of defining the 

correct in-plane boundary conditions, hence in-plane frequencies for fluidelastic instability 

analysis. In view of the difficulty in controlling tube support/AVB contact conditions, a possible 

remedy is to introduce in-plane AVBs. In-plane AVBs would result in well-defined support 

conditions, similar to the out-of-plane situation. The well-defined support conditions would yield 
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acceptable stability constant, ,K  variance allowing for the possibility of performing in-plane 

fluidelastic instability analysis with the same confidence as that for the out-of-plane direction. 

 

Figure 3-22 :  Effect of random frequency detuning on streamwise stability constant, 

2 14Hz f Hz   

3.6 Conclusion 

Steady fluid forces were measured for a kernel of tubes in a rotated triangular tube array of pitch-

to-diameter ratio, 1.5P D   subjected to air-water two-phase cross-flow. The derivatives of the 

forces were used in the quasi-steady model to estimate streamwise fluidelastic instability of 

multiple flexible tubes in a rotated triangular array. The results were found to be in good 

agreement with dynamic stability tests data of Violette et al. (2006). It was found that the critical 

velocity decreases with increasing number of flexible tubes in a single column. Additionally, a 

single flexible column was found to be more stable than multiple flexible adjacent columns. 
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Since the time delay term was neglected in the present analysis, the results indicate that cross-

coupling forces are more important than the time delay effects in generating streamwise 

instability for the case of multiple flexible tubes in a rotated triangular array. 

Frequency detuning has been shown to strongly affect the stability boundary of a cluster of tubes 

purely flexible in the flow direction, much more than would be the case for out-of-plane 

fluidelastic instability where the damping controlled mechanism dominates. This means that 

estimating conservative values for the stability constant will be a challenge due to this strong 

sensitivity to frequency detuning. In particular, typical stability constants from experimental tests 

may not be conservative if frequency detuning is not carefully controlled. 

Finally, the present analysis demonstrates the potential of the quasi-steady model in predicting 

streamwise fluidelastic instability threshold in tube arrays of the type studied here subjected to 

two-phase cross-flow, with the benefit of reduced experimental effort. 
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VIBRATION OF A TRIANGULAR TUBE ARRAY IN TWO-PHASE 
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Abstract 

Experimental tests were conducted to measure unsteady fluid forces acting on a kernel of tubes in 

a rotated triangular tube array of P/D =1.5 subjected to air-water two-phase flow when the central 

tube was oscillated in the flow direction. The measurements were done for a series of void 

fractions, excitation frequencies and flow velocities with the excitation amplitude maintained at 5 

mm (0.13D). The measured unsteady streamwise fluid force magnitude was found to be a single 

valued function of the reduced velocity, and showing no dependence on the reduced velocity for 

high values of the reduced velocity. The cross-coupling fluid force phase, however, showed 

scatter possibly due to weak coherence between the central tube motion and the induced unsteady 

forces. 

The unsteady fluid forces together with previously measured quasi-steady forces were then used 

to estimate, firstly, the time delay between the central tube motion and fluid forces on itself and 

secondly, the time delay between the central tube motion and the fluid forces generated on the 

adjacent tubes. The time lag was extracted for each of the instrumented tubes and the time delay 

parameter obtained for void fractions between 60%-90%. The time delay showed significant 

dependence on tube position and void fraction.  

Key words: Two-phase flow, tube array, streamwise fluidelastic instability, quasi-steady model, 

Time delay, cross-flow 

4.1 Introduction 

Nuclear steam generator tubes especially those in the U-bend region are subjected to two-phase 

cross-flows that ordinarily lead to tube vibrations emanating from a number of excitation sources, 
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notably: turbulent buffeting, flow periodicities and fluidelastic instability (Pettigrew & Taylor, 

1991). Being the most prevalent source of tube failures in the short term, fluidelastic instability 

has attracted considerable study efforts and several theories have been formulated for its 

modeling. The first study of fluidelastic instability was conducted by Roberts (1962)  in the early 

1960s. Roberts studied the stability behavior of both single and double tube rows subjected to 

cross flow. The streamwise instability of the tube was attributed to a jet-switch mechanism, which 

resulted in motion-dependent changes in pressure distribution around the tubes. The jet-switch 

model could not be easily extended to tube arrays in part due to lack of clearly identifiable jet 

switching in closely packed tube arrays. The next significant contribution was by Connors (1970) 

and Blevins (1974) who proposed what was effectively an aero-elastic model in which tube 

displacement dependent forces created a destabilizing effect via the cross-coupling between 

different degrees-of-freedom. The main assumption of the quasi-static model of Connors (1970) 

is that the vibration characteristics of an oscillating tube may be approximated by the tube’s 

successive static states.  

 Following the work of Connors (1970), other models have been developed. These include the 

quasi-steady model (Price & Paidoussis, 1982, 1983, 1984, 1986b), the quasi-unsteady model 

(Granger & Paidoussis, 1996), the unsteady model (Chen, 1983a, 1983b; Tanaka & Takahara, 

1980, 1981) and the semi-analytical model (Lever & Weaver, 1982, 1986a, 1986b).  These 

theories were developed primarily for single phase flows hence a need for their extension to two-

phase flows. 

 Fluidelastic instability is generally governed by two distinct mechanisms: the damping 

controlled and fluidelastic stiffness controlled mechanisms. The damping controlled instability 

requires only one degree-of-freedom and occurs when the net system damping becomes negative. 

It generally results in tube oscillations in the cross-flow direction. The stiffness controlled 

instability on the other hand results from the cross-coupling between tubes due to the flowing 

fluid, thus requires at least two-degrees-of-freedom.  

A number of studies (Lever & Weaver, 1982; Olala et al., 2014; Sawadogo & Mureithi, 2014a; 

Violette et al., 2006) have shown that a single flexible tube in a rigid tube array becomes unstable 

in the cross-flow direction and not in the streamwise direction. This implies that streamwise 
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fluidelastic instability is predominantly stiffness controlled thus dependent on the fluid coupling 

between tubes.  

Among the aforementioned fluidelastic instability models, the quasi-steady model was used in 

the current study. As observed by Sawadogo & Mureithi (2014b) the quasi-steady model is able 

to overcome the challenges posed by the other models namely: complexity of the two-phase flow 

making implementation of the semi-analytical model (Lever & Weaver, 1982, 1986a, 1986b) 

cumbersome, enhanced experimental effort required by the unsteady model (Chen, 1983a, 1983b; 

Tanaka & Takahara, 1980, 1981), the apparent multi-valued functional relation between the 

unsteady fluid force coefficient and the reduced flow velocity,  U fD (Inada et al., 2002; 

Mureithi et al., 2002) and weak correlation between the tube displacement and the resulting 

unsteady fluidelastic forces (Mureithi et al., 2002) in two-phase flow.  

The most important parameters for the quasi-steady model are the quasi-steady fluid forces and 

the time delay between tube displacement and the fluid forces. Shahriary et al. (2007) measured 

the quasi-steady forces on a central kernel of tubes in a rotated triangular array subjected to air-

water two-phase flow and employed the quasi-steady model to perform stability analysis. The 

analysis in this study was restricted to the cross-flow direction. Recently, Sawadogo & Mureithi 

(2014a)  used the quasi-steady model to perform stability analysis for a single tube constrained to 

vibrate in the transverse direction to the flow in a rotated triangular tube array.  Sawadogo & 

Mureithi (2014a) measured both the quasi-steady and the unsteady forces which were used to 

extract the time lag between the tube motion and the resulting fluid forces. More recently, Olala 

& Mureithi (2016a) conducted streamwise quasi-steady force measurements for a central cluster 

of tubes in the same rotated triangular array used by Sawadogo & Mureithi (2014b). The authors 

performed streamwise stability analysis of multiple flexible tubes using the quasi-steady model 

(with the effect of the time delay ignored) and found the results  to be in fairly good agreement 

with the dynamic stability tests of Violette et al. (2006). The current study is thus a continuation 

of the work reported in Olala & Mureithi (2016a).  

 In the present study, detailed unsteady cross-coupling force and phase measurement results for a 

central cluster of tubes in a rotated triangular tube array of P/D=1.5 subjected to air-water two-

phase cross-flow are presented. The unsteady fluid forces are then used, together with previously 

measured quasi-steady forces (Olala & Mureithi, 2016a) to estimate the time delays between the 
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motion of the central tube and the forces on the neighboring tubes by the same approach used in 

Sawadogo & Mureithi (2014b). The obtained time delays are later used to determine fluidelastic 

stability threshold in the second part of the paper (Olala & Mureithi, 2016c). 

4.1.1 Definition of two-phase flow parameters 

The homogeneous model was used to estimate the two-phase flow parameters in the current 

work. The model assumes a uniform flow through the cross section of the channel with the gas and 

liquid phases traveling at the same velocity. The void fraction  , is equal to the volumetric flow 

fraction and is given by: 
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while mixture density, h , and the free stream flow velocity U  are expressed as: 
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The pitch velocity, ,U defined in terms of the free stream velocity is given by: 
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The Reynolds number, Re,  based on the pitch flow velocity is then expressed as: 

 Re h
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where the homogeneous mixture viscosity, 
tp , is obtained by McAdams relation (McAdams et 

al., 1942): 
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and the gas mass quality x , is given by:  
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4.2 Experimental apparatus  

4.2.1 Experimental Setup  

4.2.1.1 Two-Phase Test Loop 

The two-phase test loop used for the experiments is shown in Figure 4-1. The test loop consists of 

a 1500 l capacity water tank, a 26 l/s centrifugal pump, a water flow meter (MAG500), a 250 l/s 

compressed air supply system and connecting piping.  The compressed air is supplied to the loop 

below the test section and the two fluids are homogenized by a mixer. The air flow rate is 

measured using two distinct orifice plates, for low and high flow rates respectively, located away 

from the test section and connected to a differential pressure transducer. Pressure at the test 

section is measured to correct the air flow rate. All measurements were conducted at atmospheric 

conditions (22° C).  

4.2.1.2 Test section 

The measurement test section shown in Figure 4-2 comprises 19 full tubes and 14 half tubes 

arranged in a rotated triangular configuration. The half tubes are attached to the wall to minimize 

wall effect. Except for the central tube, all the other tubes are fixed, rigid and made of Plexiglas. 

The central tube, made of aluminum, is mounted on a force transducer attached to a displacement 

mechanism consisting of a linear motor (Figure 4-3 (a)). The test section has a flow area of 

0.038 m2 (0.2 m x 0.19 m) and the diameter of each of the tubes is 38 mm with the pitch-to-

diameter ratio P D 1.5. Four tubes (1, 2, 3 & 4 in Figure 4-2) neighboring the central tube are 

strain-gauge instrumented (Figure 4-3 (b)). Two pairs of diametrically opposite strain gauges 

installed at 90° from one another in each tube are used to measure forces in the drag and lift 

directions, respectively. The instrumented tubes are located in the middle of the array such that 

there are four rows upstream and downstream of the instrumented cluster, respectively. A more 

detailed description of the test section can be found in Olala & Mureithi (2016a). 
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Figure 4-1 : Two-phase flow test loop and array configuration 

     

 

Figure 4-2 : Test section for unsteady fluid forces cross-coupling measurements 

L 
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(a)            (b) 

Figure 4-3 : Instrumented tubes (a) central tube mounted on linear motor (b) instrumented 

neighboring tube 

4.2.2 Test procedure 

The instrumented tubes used in this study (labeled C, 1, 2, 3, 4) are shown in Figure 4-1 and 

Figure 4-2. Due to the symmetry of the test section, only force measurements of the tubes marked 

C, 1, 2, 3 and 4 are reported in this paper. Measurements of the unsteady forces were conducted 

for five void fractions: 0% (liquid flow), 60%, 70%, 80% and 90%. The central tube was excited 

at seven different frequencies, using the linear motor, up to 16 Hz. For each void fraction, 

measurements were done for up to twelve different flow velocities and the excitation amplitude 

of the central tube set at 5mm (0.13D) for all the frequencies. This amplitude is equivalent to 

26% of the inter-tube spacing. The choice of the excitation amplitude is informed by the 

necessity to induce measurable cross-coupling effect on the neighboring tubes while at the same 

time minimizing non-linearity that may appear in the unsteady fluid force due to large vibration 

amplitudes. Inada et al. (2002) found the non-linearity in the unsteady fluid force coefficient to be 

negligible for vibration amplitudes ≤0.14D in a square tube array of P/D=1.42. The forcing 

amplitude in Inada et al. (2002) was 33% of the inter-tube spacing. The effect of amplitude on the 

fluid force coefficient was also tested in this study by varying the vibration amplitude from 2mm 

(0.05D) to 5mm (0.13D). For 0.3U  m/s, the change in the force coefficient magnitude and 

phase for tube C was found to be 1.4%-1.8% and 0.1%-3.6%, respectively for 60% void fraction. 
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In the current study, the fluid force and displacement data were acquired at a sampling rate of 

2000 Hz and averaged over 240 seconds. 

4.3 Unsteady fluid force measurements 

The measured force per unit length on the central tube when it is harmonically excited in the 

streamwise direction may be expressed as:   
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where  dhC   and shC  are, respectively, the fluid damping and stiffness coefficients. sm  is the tube 

mass per unit length, hm  the hydrodynamic mass per unit length, D  the tube diameter while U , 

h  and   are the pitch velocity, the fluid homogeneous density and the angular excitation 

frequency, respectively. 
0

i t

cx x e   is the central tube displacement amplitude.   

The unsteady fluid force, ,UnsF  may then be obtained from Eq. (4-7) by removing the tube inertia 

term. Thus 
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The dimensionless damping coefficient, ,dhC  and stiffness coefficient, ,shC   in Eq. (4-8) can then 

be written in terms of the magnitude and phase of the dynamic fluid force coefficient as 
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However, for the fixed instrumented neighboring tubes (labeled 1, 2, 3 and 4), the total measured 

unsteady force represents a coupling force induced by the vibration of the central tube. The tube 

mass, sm , in Eq. (4-7) is therefore absent  in the expression of this cross-coupling force. The dhC ,  
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shC   and hm   consequently represent cross-coupling damping, stiffness and hydrodynamic mass 

components, respectively. Equation (4-8) then becomes, for the fixed tubes: 
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A more elaborate data reduction procedure may be found in Mureithi et al. (2002). 

The measured force for tube C is subject to a phase shift induced by the flow independent 

damping and the electronic measuring devices. This is accounted for by subtracting the phase 

difference obtained at the lowest possible velocity for each void fraction (typically 0.4U   m/s) 

and each frequency from the rest of the measured phases. A similar procedure is performed for 

the fixed surrounding tubes to eliminate the phase induced by the electronic measuring devices. 

Therefore the fluid force phases presented in Figure 4-4 to Figure 4-12 are all corrected as 

outlined above. Only the streamwise unsteady force coefficients are presented in this paper. 

The results of the dynamic fluid force measurements are presented in Figure 4-4 to Figure 4-12. 

The continuous solid line represents a trend line obtained by polynomial “least-square” curve 

fitting to the experimental data.  It is noted that for all the void fractions considered, all the data 

points for the unsteady fluid force coefficient magnitude collapse onto a single curve denoting the 

fluid force coefficient magnitude to be approximately a single valued function of the reduced 

flow velocity,  U fD . The magnitude of the fluid force coefficient also appears to be relatively 

independent of the reduced velocity for high U fD . This, as previously noted by Chen (1987), is 

due to the velocity of the tube being much smaller than the fluid flow velocity at high U fD  

resulting in the transient motion of the tube having no significant influence on the fluid force 

coefficients.  

Figure 4-4 to Figure 4-6 show the magnitude and phase of the fluid force coefficient for liquid 

water flow. It is observed that in water flow, the induced dynamic fluid force magnitudes for 

tubes 1 and 4 which are, respectively, downstream and upstream of the central vibrating tube C 

are equal while the phases are opposite in sign but of similar order of magnitude in general. The 

phase for tube 1 show an increasing trend with an inflection point at 2U fD . The phase 

reaches a maximum at  5U fD . The phase difference for tube 4, however, displays almost a 
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linear trend for the range of the reduced velocity tested.  Similarly, tubes 2 and 3, tube 2 being 

downstream of tube 3, but both on the same side of the central vibrating tube C (as shown in 

Figure 4-1) have effectively equal fluid force coefficient magnitude but opposite phase 

differences.  The phases are negative for tubes upstream (tubes 3 and 4) and positive for the ones 

downstream (tubes 1 and 2) of the central vibrating tube, respectively.  

The unsteady fluid force on the central tube C is much higher than for the rest of the tubes since it 

is the only vibrating tube. Its phase is, however, negative, similarly to the cases of tubes 3 and 4. 

The phases represent the time lag/lead between the displacement of the central tube and the 

motion-dependent unsteady fluid forces on the specific tube. It follows therefore, that the 

dynamic fluid force on tubes 1 and 2 leads the central tube displacement while it lags in the case 

of tubes C, 3 and 4. 

  

(a)                                                                   (b) 

Figure 4-4 : Variation of the unsteady streamwise fluid force coefficient with U fD   for tube C, 

0%   
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(a)                                                                     (b) 

   

(c)                                                                     (d) 

Figure 4-5 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 0%   

(a-b) Tube 1, (c-d) Tube 4 
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(a)                                                                     (b) 

   

(c)                                                                     (d) 

Figure 4-6 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 0%   

(a-b) Tube 2, (c-d) Tube 3 

Representative unsteady fluid force measurement results for two-phase flow are presented in 

Figure 4-7 to Figure 4-12 for 60% and 80% void fractions, respectively. It is seen that the general 

trends of the unsteady fluid force coefficient magnitude and phase are similar to those in water 

flow although the magnitudes differ. In addition, Tube 2 forces show different characteristics for 

two-phase flow. Tube 2 phase is initially positive and increases up to a reduced velocity, 
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4U fD   for the two-phase flows  and then decreases approximately linearly to negative 

values. At 8U fD , the gradient of the fluid force phase changes, the change being more 

pronounced for the 80% void fraction. A better collapse of the phase data is obtained for the 

liquid single phase flow than the two-phase flow. The evident scatter in the two phase data, which 

increases with void fraction, may be attributed primarily to two phase flow intermittency and 

turbulence. Clearly for 60% and 80% void fractions (high void fraction two-phase in general) the 

flow pattern is significantly non-uniform, which reduces the force-displacement correlation or 

coherence. This is more pronounced in the phases corresponding to the cross-coupling forces 

(Tubes 1, 2, 3 & 4). Despite the scatter, the trend of the data is consistent. For the moving tube C 

(Figure 4-7 (b) & Figure 4-8 (b)), the phase scatter is much lower for a specific void fraction.  

The force coefficients for tubes 5 and 6 (Figure 4-1) can be deduced from those of tubes 2 and 3 

due to the symmetry of the array under consideration. Similarly to Tanaka & Takahara (1980) 

observation for a normal square array of 1.33P D   in water flow, the phase between the 

streamwise dynamic fluid force on tube C and the displacement of the central tube, C, in the flow 

direction is negative for both water and two-phase flows in the rotated triangular array of 

1.5P D  .  

The trends of the force coefficient magnitude for the central vibrating tube are also similar to 

those obtained by Sawadogo & Mureithi (2014b) for the transverse oscillation measurements in 

the same test section. In Sawadogo & Mureithi (2014b), the central tube was excited at 

frequencies between 5 Hz-28 Hz with amplitudes set at 3 mm (0.08D) for frequencies up to 11 

Hz and 2 mm (0.05D) for higher frequencies. However, the phases differ in both size and sign. 

Sawadogo & Mureithi (2014b) found the fluid force phase for tube C in the transverse direction 

to be always positive in two-phase flow with values increasing from 0° for small reduced 

velocities to 180° for higher values of U fD . In the streamwise direction, however, the fluid 

force phase for tube C is essentially negative decreasing from 0° to about -50° with increasing 

reduced velocity.  
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(a)                                                                     (b) 

Figure 4-7 : Variation of the unsteady streamwise fluid force coefficient with U fD   for tube C, 

60%   

   

(a)                                                                     (b) 

Figure 4-8 : Variation of the unsteady streamwise fluid force coefficient with U fD   for tube C, 

80%   
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(a)                                                                     (b) 

 

   

(c)                                                                     (d) 

Figure 4-9 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 

60%   (a-b) Tube 1, (c-d) Tube 4 
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(a)                                                                     (b) 

 

   

(c)                                                                     (d) 

Figure 4-10 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 

60%   (a-b) Tube 2, (c-d) Tube 3 
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(a)                                                                     (b) 

 

   

(c)                                                                     (d) 

Figure 4-11 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 

80%   (a-b) Tube 1, (c-d) Tube 4 
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(a)                                                                       (b) 

 

   

(c)                                                                     (d) 

Figure 4-12 : Variation of the unsteady streamwise fluid force coefficient with U fD   for 

80%   (a-b) Tube 2, (c-d) Tube 3 

A negative phase means the fluid force imparts positive damping to the system (Mureithi et al., 

2002). Since the phase difference between the unsteady fluid force on a tube and the 

displacement of the same tube is negative in the streamwise direction (Olala et al., 2014; Tanaka 

& Takahara, 1980), a single flexible tube in an otherwise rigid array has not been observed to 
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experience dynamic instability in the flow direction. The results of the fluid coupling force 

measurement for the tubes adjacent to the vibrating tube C, show that some of the phases are 

positive while others are negative suggesting the possibility of fluidelastic instability for multiple 

flexible tubes in the streamwise direction. This kind of instability has been confirmed for rotated 

triangular arrays by the dynamic tests of Violette et al. (2006), and the fluidelastic instability 

analyses of Nakamura et al. (2014) and Olala & Mureithi (2016a). 

4.3.1 Effect of Void Fraction on the Measured Fluid Forces 

Additional sets of tests were conducted to investigate the effect of void fraction on the unsteady 

fluid force for the central vibrating tube. Here the tube was excited with an amplitude of 3 mm 

for frequencies lower than 11 Hz and 2 mm for higher frequencies to improve signal to noise 

ratio. The data acquisition time was 300 s for frequencies up to 14 Hz, 240 s for 17 Hz-20 Hz and 

120 s for 20 Hz-28 Hz. 

The void fraction effects on the unsteady fluid force when the central tube is excited at three 

different frequencies are shown in Figure 4-13 to Figure 4-15. Similarly to observations made by 

Sawadogo & Mureithi (2014b), the void fraction has no significant effect on the unsteady fluid 

force magnitude and phase between 0% and 80% void fractions for 8-14 Hz frequencies. The 

unsteady fluid force phase data for 90% void fraction, however, diverges from the rest, tending to 

opposite curvature with increasing frequency. At 14 Hz, the 90% void fraction unsteady fluid 

force phase increases from 0° to a peak value of about 20° at 7.3U fD  then decreases with 

increasing U fD . Overall, it appears that in the range 8 Hz-11 Hz (Figure 4-13 and Figure 4-14), 

the void fraction uncertainty has insignificant influence on the fluid force data. This is important 

since the fluid force phase is used to extract the time lag. The evidently changing behavior of the 

dynamic fluid force phase with frequency at high void fractions may be attributed to two-phase 

flow intermittency (Moran & Weaver, 2013; Noghrehkar et al., 1999). 
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(a)                                                                     (b) 

Figure 4-13 : Effect of void fraction on the unsteady streamwise fluid force for 8 Hz Excitation 

(Central tube, C) 

 

   

(a)                                                                       (b) 

Figure 4-14 : Effect of void fraction on the unsteady streamwise fluid force for 11 Hz Excitation 

(Central tube, C) 
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(a)                                                                       (b) 

Figure 4-15 :  Effect of void fraction on the unsteady streamwise fluid force for 14 Hz Excitation 

(Central tube, C) 

Two-phase mixtures are hardly uniform across a flow path. Under certain flow conditions, such 

as vertical flow against gravity, the slip between the phases cannot be neglected. Consolini et al. 

(2006) have demonstrated that among the existing void fraction models, the Feenstra et al. (2000) 

model closely reproduces the behavior of two-phase flows. Since the experimental conditions 

were based on the homogeneous model, the Feenstra et al. (2000) model is used in the current 

work only for comparison. In this model, void fraction is presented as a function of the velocity 

ratio, S , flow quality, x , and density ratio. A semi-empirical correlation is then established 

between the velocity ratio and other flow parameters. The void fraction, , is given by: 

 

1

1
1 1

g

l

S
x








  
    

  
  (4-12) 

where l  and g  are the liquid and gas phase densities. The velocity ratio is expressed as: 

    
0.5 1

1 25.7
g

l

U
S Ri Cap P D

U


      (4-13) 

in which, gU  is the gas phase pitch velocity, lU  the liquid phase pitch velocity, Ri  the 

Richardson number and Cap  the capillary number. 
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    
2

2

l g pRi P D g G      (4-14) 

and  

 
l gCap U    (4-15) 

where P  is the array pitch, D  the tube diameter, 
pG

 
the pitch mass flux, g  the gravitational 

acceleration, l  the liquid absolute viscosity and   the surface tension. The gas phase pitch 

velocity, ,gU  in Eq. (11) and the liquid pitch velocity are then obtained as follows: 
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  (4-16) 

The capillary number, Cap depends on the void fraction through the gas phase velocity, ,gU  as 

shown in Eq.(4-15). Calculation of Cap  is therefore an iterative process in which the velocity 

ratio is calculated starting from an assumed value and iterated until the assumed and calculated 

void fractions agree within a desired degree of precision.  

 The mixture density, 
tp  and the equivalent pitch velocity, 

eqU  are defined as: 

 

 

  2 2

1 ,
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   
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  

  

  (4-17) 

and the gas mass quality, x  is given by:  

 
g g

g g l l
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x

Q Q



 



  (4-18) 

The data for 60% and 90% void fractions in the second series of tests (Figure 4-16 (a) and Figure 

4-17 (a)) were re-analyzed using the Feenstra et al. (2000) model. Due to the limited data points 

obtained with this model, no correction for the electronic measuring devices and flow 

independent damping induced phases were done for fluid force phases presented in Figure 4-16 

and Figure 4-17.  Figure 4-16 (a) and Figure 4-17 (a), which are based on the homogeneous 

model show marked dispersion in the phase data, though, with data for each flow velocity falling 

on a single curve and showing similar trends. The frequencies tested for each flow velocity are 8 
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Hz, 11 Hz, 14 Hz, 17 Hz, 20 Hz, 24 Hz and 28 Hz. The same data, however, when re-plotted with 

the Feenstra et al. (2000) model (Figure 4-16 (b) and Figure 4-17 (b)) with the reduced velocity 

presented in the form   ,eqY U fD   where  
a

bY f D g 


   show all the data, from all the 

flow velocities tested collapse approximately onto a single curve. The quantities a   and b  were 

obtained by minimization of the variance to obtain the values that best collapsed the data. For 

Figure 4-16 (b), a 1.5 and b  1 while for Figure 4-17 (b) a 1.5 and b  6.5. Each flow 

velocity used in the homogeneous model essentially represents a void fraction in the Feenstra’s 

model. It is therefore evident that the homogeneous model averages several void fractions 

thereby masking the true nature of the fluid dynamics. The Feenstra et al. (2000) model accounts 

for the effect of buoyancy and inertia forces on the dispersed phase in the form of Richardson 

number, .Ri  The Capillary number, Cap , on the other hand, incorporates the effect of viscous 

and surface tension forces. A better representation of the two-phase flow physics can therefore be 

obtained with the Feenstra et al. (2000) model.  

It should be noted that no assumption has been made regarding the flow distribution inside the 

tube array in the current study. The void fraction model used, in this case, the homogeneous 

model is used only to estimate the void fraction at which the tests are done and the two-phase 

flow parameters (density, velocity) used for normalizing the fluid force coefficients. Since the 

physical dimensional values of the forces are used in a typical stability analysis, there is no loss 

of accuracy (of the measured fluid force data) originating specifically from the use of the 

homogeneous model.  
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(a)                                                                       (b) 

Figure 4-16 : Unsteady Fluid Force Phase Variation with U fD  for tube C: (a) 60%   (b) 

30 46    

 

   

(a)                                                                       (b) 

Figure 4-17 : Unsteady Fluid Force Phase Variation with U fD  for tube C: (a) 90%   (b) 

55 75    

 



94 

 

4.4 Time delay  

The quasi-steady model presupposes that fluid forces acting on an oscillating tube are wholly 

influenced by its own motion and that of its neighbors. Additionally, two types of time delays are 

considered. For instance, a time delay, i , exists between the displacement of each of the 

neighboring tubes and the resulting changes in the fluid force on the central tube. Viewed from 

the central tube at instant t , this time lag results in an apparent displacement of tube, i , in the 

flow direction, 

      i i i i i ix t x t x t        (4-19) 

where i  is the mean time taken by the wake of the upstream tube to travel from its location to 

the central tube, and  i i ix t   is the distance traversed by tube i  between instants it    and t .  

As a first approximation, i t L U   for a tube in an adjacent row and  2i t L U  for a tube 

located two rows away (Price et al., 1990) in which  1t O   and L  is the distance between 

tube centers in adjacent rows.    

Considering the tube oscillations to be harmonic,  

   0

i t

i ix t x e    (4-20) 

where 0ix  is the amplitude of oscillation, we can therefore write  

           0; it

i i i i i i ix t x t x t x e g x t
 

  


      (4-21) 

where 
 i

ig e


  and i  . Equation (4-19) can thus be re-written for tubes restrained to 

vibrate only in the streamwise direction as: 

       i i i i ix t g x t x t    (4-22) 

The other is the time lag between a tube displacement and the fluidelastic forces generated on 

itself by its own motion. This time delay is thought to originate from the retardation of the flow 

as it approaches an oscillating tube (Price & Paidoussis, 1984, 1986b) or to result from the delay 

in the viscous wake readjusting itself continuously to the boundary condition of the moving tube 

(Paidoussis & Price, 1988). Together with the variation in inter-tube positions, this time lag may 
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lead to fluid-dynamic damping force which can either be positive (stabilizing) or negative 

(destabilizing) (Price & Paidoussis, 1984). Following the work of Simpson & Flower (1977), 

Price & Paidoussis (1984) have shown that this time lag may be represented as 

 
D

U
    (4-23) 

where   is a non-dimensional parameter taken to be of order 1.  

A similar approach as proposed by Sawadogo & Mureithi (2014b) is used in the current work to 

estimate both the time delays from corresponding quasi-steady and unsteady fluid forces. Noting 

the quasi-steady assumption that instantaneous fluid forces acting on an oscillating tube in a flow 

are equal to those acting on the same tube while in a static state at an identical position, the 

expression for the time delay is obtained by equating the two forces (unsteady and quasi-steady). 

This is achieved as follows: The quasi-steady fluid force on a tube purely due to its motion in the 

streamwise direction (in this case the central tube with the added mass removed) in a rotated 

triangular array may be expressed as (Paidoussis & Price, 1988),  
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  (4-24) 

while that on a fixed neighboring tube due to the displacement of the central tube would be 
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where DcC  is the drag coefficient, 0DC  is the drag coefficient at the tube equilibrium position and 

  is the time delay. Subscripts c  and i  denote central and tube index, respectively. 

4.4.1 Time delay due to flow retardation  

Equating Eq. (4-8) to Eq. (4-24) and considering only the “unsteady effects”, that is, ignoring the 

fluid inertia and the steady drag, respectively, in the expressions for the unsteady and quasi-

steady forces yields: 
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    Letting cx D   and reorganizing we get:  
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  (4-27) 

  can therefore be obtained by either equating the real or imaginary parts of both sides of Eq. 

(4-27). However, as noted by Sawadogo & Mureithi (2014b), there is considerable uncertainty in 

the estimation of the fluid added mass, hence in the stiffness coefficient (see Eq. (4-10)). 

Therefore, equating the imaginary parts on both sides of Eq. (4-27) yields 

  
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  (4-28) 

Leading to (for the streamwise direction) 
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  (4-29) 

It should, however, be noted that Eq. (4-29) is only valid when the right hand side of Eq. (4-28) is 

between -1 and 1. Additionally the reduced flow velocity should be high enough ( 1U fD  ) to 

satisfy the quasi-steady model assumption. This condition can be satisfied either by increasing 

the flow velocity or decreasing the excitation frequency. Since the flow rate that could be attained 

by the current experimental loop was limited, and to ensure that the accuracy of the data is 

satisfactory while still meeting the preceding condition, a trade-off was found in the range of 8.7–

9.5 Hz. Again, due to limited water pump capacity, this condition could only be fulfilled for void 

fractions higher than 50%. Therefore, the time delay was only obtained for 60%–90% 

homogeneous void fraction. 
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(a)                                                                     (b) 

 

 

(c)                                                                     (d) 

Figure 4-18 : Time delay due to flow retardation for Tube C: (a, c) 60% void fraction (b, d) 80% 

Void fraction; 2.0   for 60% void fraction and 1.1   for 80% void fraction 

Figure 4-18 displays the results for the time delay ( ) due to flow retardation. For brevity, only 

two void fractions (60% and 80%) results are presented. Figure 4-18 (a-b) shows the variation of 

the time delay with pitch velocity while Figure 4-18 (c-d) presents the time delay plotted against 

the convection time ( D U ). It is seen that the time delay decreases with increasing flow velocity 
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in Figure 4-18 (a, b), meaning that the time delay will tend to zero as the flow velocity 

approaches infinity. Similarly to Mahon & Meskell (2010), Price & Paidoussis (1984) and 

Sawadogo & Mureithi (2014b), it was also assumed in the current work that the time delay would 

be zero at 0D U   thus any value of   at 0D U   was attributed to residual time delay 

produced by measurement electronic devices. This value was therefore, eliminated from all the 

data presented in the present study. With the stated correction, the time delay was found to vary 

linearly with the convection time (Figure 4-18 (c-d)), in agreement with the model proposed by 

Price & Paidoussis (1984); D U  . It was shown earlier that in the frequency range 8 Hz-11 

Hz, there was no significant frequency effect on the unsteady fluid force phase data for various 

void fractions. The effect of frequency on the estimated time delay can thus, as a first 

approximation, be ignored.  

The parameter   was found to be 2.0   for 60% void fraction, and 1.1  for 80% void 

fraction. Similarly for other void fractions,  1.1   for 70% void fraction and 1.1  for 90% 

void fraction.  These values, except for the 90% void fraction show a similar trend as that 

obtained by Sawadogo & Mureithi (2014b) for measurements in the lift direction and the order of 

magnitude of   is consistent with that suggested by Price & Paidoussis (1984); (1)O  . The 

difference in   values for different void fractions is attributed to flow structure evolution that 

characterizes the two-phase flow fluctuations in the array. 

4.4.2 Time delay due to apparent tube displacement 

A similar procedure is employed for the time delay between the displacement of the central tube, 

C, and the induced fluid forces on the neighboring tubes. Equating the streamwise direction 

quasi-steady (Eq. (4-25)) and unsteady forces (Eq. (4-11)) (which represent the fluid cross-

coupling effect between the central vibrating tube and the fixed neighboring tubes), with the 

steady drag in the quasi-steady force and inertia in the unsteady force expressions removed: 
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  (4-30) 

Equating the imaginary parts on both sides of Eq. (4-30)  gives 
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Equation (4-31) can be expressed as   0if   , and solved iteratively to obtain the zero of the 

function  if   which will give the desired value of i . However, the solution obtained strongly 

depends on the initial value, which has to be generally in a narrow basin of attraction. We can 

therefore choose our initial value as 0i L U   or 0 2i L U   since the flow, if it were to travel in 

a straight line between tubes, would approximately take this duration to reach a downstream tube 

depending on whether the tube is one or two rows away, respectively. Thus  

   cos sin 0i
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dhcc

i i i i
D

CD
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  (4-32) 

The dimensionless damping coefficient, ( dhC ) was obtained from the streamwise unsteady fluid 

forces presented in Figure 4-7-Figure 4-12 using Eq. (4-9). The other necessary parameters for 

the time delay estimation: the steady drag coefficient ( 0DC ) and the quasi-steady fluid force 

coefficient derivative DC    were taken from Olala & Mureithi (2016a) 

Figure 4-19 to Figure 4-22 present the time delays between the displacement of the central tube, 

C, and the induced unsteady fluid forces on the neighboring tubes. Here again, the time delay, ,  

is plotted against the flow pitch velocity and also against the convection time with the same 

assumptions as reported in section 4.1. However, the convection time is taken as either L U  or 

2L U  depending on the streamwise separation distance between the particular tube and the 

central tube. The apparent displacement time delays for 60% void fraction are shown in Figure 

4-19 (Tubes 1 and 4) and Figure 4-20 (Tubes 2 and 3). Similarly, the variation of the time delay 

with pitch velocity and the convection time for 80% void fraction are displayed in Figure 4-21 

(Tubes 1 and 4)  and Figure 4-22 (Tubes 2 and 3). 
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(a)                                                                     (b) 

 

  

 

(c)                                                                      (d)          

Figure 4-19 : Time delays due to displacement of tube C for 60%VF (a, c) Tube 1 (b, d) Tube 4; 

2.0   for tube 1, 1.2   for tube 4 
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(a)                                                                       (b) 

 

            

(c)                                                                 (d)           

Figure 4-20 : Time delays due to displacement of tube C for 60%VF (a, c) Tube 2 (b, d) Tube 3; 

1.3   for tube 2, 1.5   for tube 3 
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(a)                                                                     (b) 

 

   

(c)                                                                     (d) 

Figure 4-21 : Time delays due to displacement of tube C for 80%VF (a, c) Tube 1 (b, d) Tube 4; 

1.3   for tube 1, 1.0   for tube 4 
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(a)                                                                     (b) 

 

      

(c)                                                                     (d) 

Figure 4-22 : Time delays due to displacement of tube C for 80%VF: (a, c) Tube 2 (b, d) Tube 3; 

2.2   for tube 2, 1.3   for tube 3 

The trend of the data remains similar to that of the time delay due to flow retardation shown in 

Figure 4-18. However, there is marked scatter in the time delay data associated with the cross-

coupling forces, more so for the tubes downstream of the vibrating central tube, C. The scatter in 

  follows from the unsteady cross-coupling fluid force phases presented in section 3.3 and 
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attributed to two-phase flow intermittency. This lowers the coherence between the tube motion 

and the resulting unsteady forces on the neighboring tubes. Further work is, thus, needed to 

establish the effect of amplitude and frequency vis-à-vis flow regime to improve the results. 

Though  Price et al. (1990) appreciated that the magnitude of this time delay is unknown, they 

proposed a correlation, L U   for a tube one row away. However, in the current study, the 

expression of Price et al. (1990) is modified to L U   with  1O   to account for the flow 

fluctuation in the rotated triangular array which would generally lower the “mean” streamwise 

flow velocity between tubes. The parameter (  ) is shown in Table 4-1 for various void fractions 

and tubes. 

The time delays obtained here will be used in determining the fluidelastic instability threshold 

using the quasi-steady model in the second part of the paper (Olala & Mureithi, 2016c). 

Table 4-1 : Time delay parameter (  ) dependence on void fraction and tube position for the 

adjacent tubes  

Tube Void fraction 

60% 

( ) 

70% 

( ) 

80% 

( ) 

90% 

( ) 

1 2.0 1.4 1.3 1.6 

2 1.3 2.4 2.2 2.7 

3 1.5 1.2 1.3 1.4 

4 1.2 1.0 1.0 1.3 

 

4.5 Conclusion 

Unsteady fluid forces acting on a kernel of tubes in a rotated triangular tube bundle of 1.5P D   

subjected to liquid (water) single phase and air-water two-phase flows were measured when the 
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central tube was oscillated in the flow direction. The streamwise unsteady fluid force coefficient 

magnitude was found to be a single valued function of the reduced velocity (U fD  ). However, 

fluid force phase in two-phase flow, especially those related to the cross-coupling forces 

displayed scatter which increased with void fraction. 

 The measured unsteady fluid forces were then used, together with previously measured quasi-

steady forces (Olala & Mureithi, 2016a), to estimate the time delays for 60%-90% void fractions. 

The time delay between the tube motion and the resulting fluid forces in the streamwise direction 

was found to be consistent with Price & Paidoussis (1984) model: D U  , in terms of order 

of magnitude. However,   values as high as double the value proposed by Price & Paidoussis 

(1984)  were found. Additionally, the time delay between the vibration of the central tube and the 

induced forces on the adjacent tubes was also found to follow the same trend, but with the 

convection time expressed as L U  or 2L U  depending on the separation distance between the 

tubes. The time delay parameter,  , obtained was found to also depend on void fraction. The   

values reported here will be used to perform streamwise fluidelastic stability analysis of multiple 

flexible tubes using the quasi-steady model in the second part of the paper (Olala & Mureithi, 

2016c). 

 

 

 

 

 

 

 



106 

CHAPTER 5 ARTICLE 3: STREAMWISE FLUIDELASTIC 

VIBRATION OF A TRIANGULAR TUBE ARRAY IN TWO-PHASE 

FLOW. PART II: FLUIDELASTIC INSTABILITY ANALYSIS 

Olala, S. and Mureithi, N. W. (2016) 

Submitted to “Journal of Fluids and Structures” on 20th July 2016 

 

Abstract 

Experimental tests were performed to determine the hydrodynamic mass and flow independent 

damping on a tube constrained to vibrate only in the streamwise direction in a rotated triangular 

array of 1.5P D   subjected to air-water two-phase flow.  The measurements were done for 

various void fractions with the tube excitation wholly emanating from the fluid flow. Together 

with previously measured quasi-steady fluid forces and time delay parameters estimated in the 

first part of the paper, the quasi-steady model was used to predict the critical velocity for 

streamwise fluidelastic instability of multiple flexible tubes in a rotated triangular tube array in 

two-phase flow. A single flexible column was found to be more stable than multiple flexible 

columns. The use of the experimentally determined time delays was found not to significantly 

affect the reduced critical velocity for fluidelastic instability of the multiple flexible tube 

configurations analyzed.  

The results obtained with the quasi-steady model were in fairly good agreement with 

experimentally determined critical velocities for specific multiple tubes configurations in the 

same array. The capability of the quasi-steady model to predict fluidelastic instability for multiple 

flexible tubes in a triangular tube array subjected to two-phase flow was therefore verified. It was 

also confirmed that streamwise fluidelastic instability of multiple flexible tubes in a rotated 

triangular array is strongly dependent on the cross-coupling forces as opposed to damping 

controlled instability mechanism.  

Key words: Two-phase flow, tube array, streamwise fluidelastic instability, quasi-steady model, 

Time delay, cross-flow 
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5.1 Introduction 

Flow-induced vibration is a major concern to both designers and operators of tube-and-shell heat 

exchangers. Excessive vibrations may lead to tube failure due to fatigue or fretting wear at the 

supports. The “U” bend region of nuclear steam generators is especially susceptible to such 

failures due to the presence of high speed two-phase cross flow. It is now known that of the 

several tube excitation mechanisms (Pettigrew & Taylor, 1994; Weaver, D. S. & Fitzpatrick, J. A., 

1988), fluidelastic instability (FEI) has the highest potential of causing catastrophic tube damage 

in the short term. As such, a number of theoretical models (Price, 1995) have been developed to 

estimate the critical velocity for FEI. It is important to note that these models were primarily 

formulated for single phase flows, even though a majority of the heat exchangers operate in two-

phase flow (Pettigrew & Taylor, 1994). In addition, the design guidelines currently in use were 

developed using lift direction experimental data. It is therefore necessary to extend the models to 

two-phase flow and validate their applicability for predicting streamwise FEI in tube bundles.  

Streamwise FEI has not been a major concern to steam generator designers since experimental 

data have typically shown that FEI occurs in the lift direction. However, since the tube failure in 

a replacement steam generator (SG)  at the San Onofre  Nuclear Generating Station (SONGS) 

(S.C.E., 2013), great interest has been shown by a number of researchers who have contributed 

relevant data in an attempt to better understand the physics of the phenomenon. 

Roberts (1962) was probably the first author to report streamwise FEI, at least in tube rows 

subjected to liquid flow. However, experimental evidence of streamwise FEI in two-phase flow 

was first reported  by Janzen et al. (2005). The authors observed in-plane FEI for a rotated 

triangular U-tube array of pitch-to-diameter ratio, 1.5P D   subjected to liquid water flow and 

for low void fractions (up to 25%) air-water two-phase flow. Violette et al. (2006) conducted a 

detailed experimental investigation of streamwise FEI for different flexible tube configurations in 

a rotated triangular tube array of 1.5P D   in air-water two-phase flow. The authors found FEI 

to occur for multiple flexible tubes but not for a single tube in the flow direction. Augmenting 

these efforts is  Mureithi et al. (2005) who also demonstrated the occurrence of FEI in the flow 

direction for a rotated triangular array of 1.5P D   subjected to air flow.  Except for Hassan & 

Weaver (2016), all the other authors (e.g Nakamura et al. (2014), Violette et al. (2006), Olala et 

al. (2014), Olala & Mureithi (2016a)) have reported streamwise FEI to only occur for multiple 
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flexible tubes and not a single tube preferentially flexible in the flow direction. FEI has therefore 

been considered to be predominantly stiffness controlled, relying on the cross-coupling between 

tubes due to the fluid flow for its initiation. This is in contrast to tube oscillations in the direction 

transverse to the flow which experience FEI through damping controlled instability mechanism, 

generated by fluidelastic force components that are in phase with the tube’s velocity. As outlined 

in the first part of this paper (Olala & Mureithi, 2016b) the current work is a continuation of the 

work reported in Olala & Mureithi (2016a).  

The main objective in this part of the study is to validate the quasi-steady model (Price & 

Paidoussis, 1982, 1984; Price et al., 1990) for streamwise FEI of multiple flexible tubes subjected 

to two-phase flow. To that end, hydrodynamic mass and the flow independent damping are 

measured for a tube in a rotated triangular tube array of 1.5P D   subjected to two-phase flow 

and constrained to vibrate only in the flow direction. The damping ratios and the hydrodynamic 

mass so obtained are then used, together with the time delay parameters obtained in the first part 

of the paper (Olala & Mureithi, 2016b),  and the previously measured quasi-steady force 

coefficients (Olala & Mureithi, 2016a), to compute the critical velocity for FEI for different 

multiple flexible tube configurations. The results are then compared with those from the dynamic 

tests of  Violette et al. (2006).  

5.2 Experimental apparatus and test procedure 

5.2.1 Experimental setup  

The same two-phase flow loop and test section as presented in the first part of the paper (Olala & 

Mureithi, 2016b) was used for the following measurements. The test loop consists of a water 

tank, a centrifugal pump, compressed air supply system and connecting piping.  The test section 

is a rotated triangular tube array of 1.5P D  . A complete description of the test set up is 

presented in the first part of the paper. For the present case, only the central tube shown in Figure 

5-1 was instrumented. The instrumented tube assembly consists of a rigid tube attached to a fixed 

cantilever beam. The beam has a rectangular cross section of 0.00415 0.025m m  and oriented 

such that the tube assembly is more flexible in the streamwise direction than in the crosswise 

direction resulting in tube frequencies, in air, of 14 Hz and 81Hz, respectively. A pair of strain 

gauges mounted close to the clamped end of the beam is calibrated to measure the fluid forces on 
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the tube. In the present case, the tube excitation is wholly induced by the flow and measurements 

(hydrodynamic mass and damping) were done for the streamwise direction only. 

The strain gauge signals were acquired for each flow condition using a Labview® program via a 

National Instruments data acquisition card at a sampling rate of 1000 Hz over a period of 40 

seconds.  The properties of the two-phase flow were estimated using the homogeneous model. 

 

 

(a)            (b) 

Figure 5-1 : (a) Test section (b) Flexible tube assembly 

5.2.2 Hydrodynamic mass 

The hydrodynamic mass represents the mass of the external fluid which appears to be accelerated 

with the tube (Pettigrew et al., 2001). In the present study, the streamwise hydrodynamic mass 

was determined from the unsteady fluid forces acting on the central vibrating tube presented in 

part one of the paper (Olala & Mureithi, 2016b) according to   2

h Fx sm e G m  ; where 

 Fxe G  is the real part of the transfer function,   is the angular vibration frequency of the tube, 

sm  is the mass of the tube per unit length and hm  the hydrodynamic mass per unit length . This 

was done at low velocities and relatively high frequencies for each void fraction, conditions for 

which fluidelastic forces are considered negligible (Pettigrew, Tromp, et al., 1989). Additionally, 

the hydrodynamic mass was estimated for each void fraction, at low velocities, from the variation 
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of the tube natural frequency in fluid flow using the set-up in Figure 5-1 as follows (Carlucci & 

Brown, 1983):   

 

2

1a
h sm m





  
   

   

  (5-1) 

where a  is the angular natural frequency of tube in air and   the frequency of vibration in fluid 

flow. Results from the two methods were found to be very similar as shown in Figure 5-2(a).  

Figure 5-2 (b) presents the hydrodynamic mass ratio, 
Rm , which is the ratio of the added two-

phase fluid mass to the added mass of the liquid phase ( h lm m ) as a function of the 

homogeneous void fraction. The continuous line represents the predicted hydrodynamic mass 

ratio given by (Pettigrew, Taylor, et al., 1989): 

 
,pred

h
R

l

m



   (5-2) 

where l  and h  are the homogeneous mass densities of liquid and two-phase mixture, 

respectively. The measured streamwise hydrodynamic mass ratio Rm  decreases with void 

fraction as expected since the density of the two-phase mixture decreases with increasing void 

fraction.  

From Figure 5-2, it is evident that Eq. (5-2) generally underestimates the hydrodynamic mass in a 

rotated triangular tube array, more so for high void fractions. This is attributed to the following 

reasons: (i) homogeneous model overestimates the actual void fraction (Consolini et al., 2006; 

Feenstra et al., 2000; Moran & Weaver, 2013), leading to a lower two-phase flow mixture 

density, h , especially for higher void fractions; (ii) distribution of the two phases in the rotated 

triangular array. In Pettigrew et al. (2005) detailed flow measurements using fiber optic probes in 

a rotated triangular tube bundle, the authors found the local void fraction around the tubes to be 

lower than the other regions in the tube array. This localized liquid hold up around the tubes leads 

to a higher measured hydrodynamic mass than predicted for rotated triangular tube arrays. Figure 

5-2(b) shows a comparison between the measured hydrodynamic mass ratios in drag and lift 

(Sawadogo & Mureithi, 2014a) directions. Similarly to  Pettigrew, Taylor, et al. (1989) 
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observation, the hydrodynamic mass in the streamwise direction was found to have no significant 

difference to that in the transverse direction for the array studied in the present work.  

    

(a)             (b)  

Figure 5-2 : Variation of the hydrodynamic mass ratio, Rm  with void fraction: (a) Drag 

comparison (b) comparison between drag and lift directions 

 

Figure 5-3 : Variation of fluid flow independent damping with void fraction in streamwise and 

transverse directions 
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5.2.3 Damping 

Damping is a measure of the system’s ability to dissipate energy from the vibrating tube thereby 

limiting the tube’s vibration response. The tube damping in flow was obtained from its vibration 

response to turbulence excitation (Figure 5-1). The tube’s frequency response spectrum was 

assumed to be equivalent to that of a single-degree-of-freedom system (Pettigrew et al., 1985) 

expressed as: 

 

0.5
2 22

( ) 1 2
n n

X
 

 
 



        
                  

  (5-3) 

where ( )X   is the normalized vibration amplitude,   is the excitation frequency, n  is the 

tube natural frequency in flow and   the total damping ratio. The total damping ratio,  ,  which 

includes both tube structural and flow independent damping is then deduced from the best fit of 

the curve given by Eq. (5-3) to the experimental data by a nonlinear least square regression 

analysis technique outlined in Marquardt (1963).  

Pettigrew et al. (2001) report that damping is fairly constant at flow rates far below the critical 

velocity for fluidelastic instability where coupling between hydrodynamic forces and the tube 

motion is negligible (Pettigrew et al., 1985). Thus, since it is impossible to maintain a stagnant 

two-phase mixture, the total damping in the streamwise direction was measured at three distinct 

but close and relatively low flow velocities for each void fraction. The difference between the 

average of these three damping values and the structural damping yielded the flow independent 

damping. The tube structural damping was measured to be 0.2% in air. 

Figure 5-3 presents the flow independent damping as a function of void fraction. The streamwise 

flow independent damping is seen to increase with void fraction up to about 40% void fraction. 

The damping then remains fairly constant up to 70%. Beyond 70% void fraction, damping 

decreases gradually as the flow approaches single-phase gas flow. A similar observation had been 

made by Pettigrew, Taylor, et al. (1989) for a rotated triangular tube arrays each P/D=1.47 (air-

water), and Feenstra et al. (2002) for a rotated triangular tube array of P/D=1.44 (Freon, R-11). 

Compared to the direction transverse to the flow (Sawadogo & Mureithi, 2014a), damping in the 

streamwise direction is slightly higher as shown in Figure 5-3.  
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5.3 Stability analysis 

The stability analysis performed in the present study is based on the quasi-steady model (Price & 

Paidoussis, 1982, 1983, 1984, 1986a; Price et al., 1990). This model makes the following key 

assumptions: the vibration characteristics of an oscillating tube may be approximated by the 

tube’s successive static states; there exists a time delay between the tube displacement and the 

fluid dynamic forces generated thereby; another time delay exists between the displacement of a 

tube and the resulting changes on an adjacent tube and that the tube velocity is much smaller than 

the flow velocity. 

Considering a multiple-degree-of-freedom system, the governing equation of motion for a tube 

bundle with tubes free to vibrate parallel to the flow direction may be written as: 

                    
s f s f s f
     M M x C C x K K x 0   (5-4) 

where 

            ; ; 2 ;s h ss N N f N N s N N
m I m I m I

  
  M M C   

        2

0 ;h D sf N N s N N
DUC I m I 

 
 C K   

Subscripts ‘ s ’ and  ‘ f ’, respectively, indicate ‘structural’ and ‘fluid’ quantities while x x D  

is the reduced displacement parallel to the flow direction and  x the reduced displacement 

vector. 0DC  is the drag coefficients at the tube equilibrium position,  I  the identity matrix and 

N  the number of flexible tubes. The damping factor,   in Eq.(5-4) includes both the structural 

and flow-independent damping components.  

The fluid stiffness term takes the form: 
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  (5-5) 

where DkC  is the drag coefficient of tube k  and, nx  the displacement of tube n  in the drag 

directions, rg e


 and ig e


 ; r r D U   is the time delay due to flow retardation and 
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k k L U  or  2k k L U  is the time delay due to adjacent tube displacement depending on 

whether the tube is one or two rows away from the reference tube, L  is the row spacing,   is the 

time delay parameter,   is the complex natural frequency of the system while U  is the pitch 

velocity (  U P P D  ) and U  is the freestream velocity. 

It is evident from Eq. (5-4) that the necessary fluid dynamic parameters in fluidelastic vibration 

analysis of multiple flexible arrays using the quasi-steady model (Price & Paidoussis, 1982, 1983, 

1984) are the derivatives of the drag coefficients which indicate cross-coupling between the tubes 

due to fluid flow, the equilibrium drag coefficients and the time delays.  In the present study, only 

the effects of the immediate neighboring tubes are considered. 

5.3.1 Solution method 

Expressing Eq.(5-4) in the generalized coordinate system yields: 

      t t t  Mq Cq Kq 0   (5-6) 

 where ,M C  and K  are the (N )N  total mass, total damping and total stiffness matrices 

respectively, and  tq  is the (N 1)  vector of generalized coordinates, whose length, N,  in this 

case corresponds to the number of flexible tubes. By defining the state vector  tq  as:  

 ( )t

 
 

  
 
 

x

...q

x

  (5-7) 

an equivalent first-order state-space differential equation to  Eq. (5-6) may be written as (Géradin 

& Rixen, 1994): 

    t t Bq Aq 0   (5-8) 

where the  2 2N N matrices B  and A  are defined as: 

 ;
   

    
   

D M K 0
B A

M 0 0 -M
  (5-9) 
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in which 0  is the zero matrix. Assuming a solution of Eq. (5-8) to be in the form  teq q  , 

where    denotes an eigenvalue and q  the corresponding eigenvector transforms Eq. (5-8) to the 

following generalized eigenvalue problem: 

  Aq λBq   (5-10) 

with the complex eigenvector, q  defined as: 

 ...



 
 


 
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x

q

x

  (5-11) 

Here, x  is the  1N   eigenvector of the eigenvalue problem and defines the mode shapes of the 

system. By incrementally increasing the flow velocity and iteratively solving Eq. (5-10) for each 

incremental value of the velocity, the lowest velocity at which the real part of any of the 

eigenvalues vanishes or becomes positive defines the critical velocity for fluidelastic instability. 

That is, the velocity at which the net system damping becomes zero or negative. 

As an illustration, consider a two-degree-of-freedom system (an array with two adjacent tubes 

constrained to vibrate only in the direction parallel to the flow): 
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  (5-12) 

where the left-hand side is associated with the mechanical structure and the right-hand side 

represents the fluid-dynamic quantities. , kDk n D nC C x    , is the derivative of the drag 

coefficient of tube k  relative to the streamwise displacement of tube n , c  and k  are the 

structural damping (including the flow independent damping) and stiffness, respectively, l  is the 

length of the tube while   is one of the complex eigenvalues of the final equations solution, in 

this case, Eq. (5-10). For a purely stiffness-controlled-instability, the exponents in the last term of 

Eq. (5-12) are ignored  0r  , thus the quasi-steady model (Paidoussis & Price, 1988) reduces 

to the  quasi-static model (Blevins, 1974; Connors, 1970) and assumes that fluidelastic instability 

originates entirely from the off-diagonal terms in the fluid stiffness component (the last matrix of 
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Eq. (5-12)), which represent the flow induced cross-coupling between tubes. However, in the 

current study, both stiffness-controlled instability and damping-controlled instability mechanisms 

are considered. The presence of the exponential terms ( re


and ie
 ) make the fluid stiffness 

part a complex number, hence, may produce the fluid negative damping responsible for damping 

controlled instability. Substituting the structural and fluid components of Eq. (5-12) into the 

eigenvalue problem (Eq.(5-10)) yields a complex transcendental function that depends on  , 
r  

and i .  

An iterative Newton method was used to solve the characteristic equation obtained from Eq. 

(5-10). Since convergence to the desired solution by this method strongly depends on the initial 

value chosen for  ( i ), which, generally has to be in a narrow basin of attraction, the tube 

natural frequency was taken as the initial value for all the cases. This is because for a tuned tube 

array in which all the tubes have the same natural frequency, the tube frequency at instability 

remains close to the zero flow natural frequency. No assumptions have been made regarding the 

expected tube vibration frequency and vibration modes. These are direct products of the 

eigenvalue analysis. 

In the stability analysis, for each of the void fractions considered, the quasi-steady fluid force 

coefficients from Olala & Mureithi (2016a) and the time delay parameters from the first part of 

the paper  (Olala & Mureithi, 2016b) are employed. Since the main interest is to determine the 

critical velocity for fluidelastic instability, the linearized quasi-steady fluid force coefficients may 

sufficiently be used in the quasi-steady fluid force expression, hence in the system’s equation of 

motion (Eq.(5-4)). The hydrodynamic mass and flow independent damping are as reported earlier 

in the current paper. The results obtained with the experimentally measured time delay 

parameters ( exp   and expi i  ) are compared with those of dynamic stability tests (Violette 

et al., 2006), those of the classical analysis with 1i    proposed by Price & Paidoussis 

(1984) and the pure stiffness-controlled fluidelastic instability analysis of Olala & Mureithi 

(2016a).  

5.3.2 FEI instability analysis results 

The configurations of the tube bundle analyzed for fluidelastic instability are shown in Figure 

5-4Figure 3-10 for both flexible tubes in a single and multiple columns. These are the same as 
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those used in both  Violette et al. (2006)  and Olala & Mureithi (2016a) to enable direct 

comparison and understanding of the effect of the time delay on streamwise fluidelastic 

instability for a triangular tube array. 

 

(a)              (b)                     (c) 

Figure 5-4 : Flexible tubes configuration for stability analysis (a) single column, (b) two-partial 

columns, (c) Central cluster 

   Firstly, the effect of time delay was investigated for the tube configurations considered in the   

present analysis. Figure 5-5 to Figure 5-7 show the variation of the critical velocity with: (a) void 

fraction,  ,  and (b) mass damping parameter, 22 hm D  . The mass, m , includes both the 

structural and hydrodynamic mass components (Figure 5-2). Similarly, the damping ratio,  , is 

the sum of structural damping and the flow independent damping given in Figure 5-3.  Four 

different cases of time delays are considered for each configuration: experimentally measured 

time delay ( expr i    ), time delay due to flow retardation experimentally obtained with the 

delay parameter for adjacent tubes assumed to be 1 ( exp , 1r i    ), all the time delay 

parameters assumed to be 1 ( 1r i   ), and the case with time delay ignored ( 0r i   ). It 

is seen in Figure 5-5 that for a column of flexible tubes, except for 60% void fraction, there is no 

noticeable difference in the critical velocity for the time delay cases considered. This is because 

the time delays for the tubes upstream and downstream of a vibrating central tube are 

approximately equal to 1 for 70%-90% void fractions (Olala & Mureithi, 2016b), hence almost 

the same time delay values are used for each of the cases. The case of 0r i    however, 
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appears to yield  higher reduced critical velocities, more so for 80% and 90% void fractions, the 

high mass damping parameter cases.      

  

(a)                          (b) 

Figure 5-5 : Effect of the time delay on the reduced critical velocity for a flexible column of tubes 

(Refer to Figure 5-4(a)) 

Figure 5-6 displays the time delay effect comparison for the two partially flexible columns. 

Except for the 70% void fraction case, the reduced critical velocity  cU fD  obtained with the 

experimentally determined time delay parameters and that for the case of zero time delay 

( 0r i   ) are practically equal. The two remaining cases, exp , 1r i     and 1r i   , 

also yield equal values of cU fD  for 70%-90% void fractions. This is not surprising since the 

time retardation parameters, r ,  for these void fractions are equal to one, thus the two cases are 

identical. For the 60% void fraction, 2.0r  . A similar trend is observed for the kernel of 

flexible tubes (Figure 5-7). Here, again, the cU fD  obtained with the experimentally measured 

time delay parameters and those with time delays neglected ( 0r i   ) are approximately 

equal. It is noted that the configuration of the flexible tubes also influences the critical velocity 

for each void fraction. For the cases considered, the single flexible column (Figure 5-5) has the 

highest cU fD  values followed by the two-partially flexible columns (Figure 5-6) and finally the 

central cluster of flexible tubes (Figure 5-7).  It is therefore evident that the mechanism causing 
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streamwise instability is dependent on the fluid coupling between tubes, the more the number of 

neighboring tubes, the stronger the coupling strength.  

   

(a)                       (b) 

Figure 5-6 : Effect of the time delay on the reduced critical velocity for two partially flexible 

columns of tubes (Refer to Figure 5-4(b)) 

   

(a)          (b) 

Figure 5-7 : Effect of the time delay on the reduced critical velocity for a kernel of flexible tubes 

(Refer to Figure 5-4(c)) 
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5.3.3 Model comparison with experiments 

Figure 5-8 to Figure 5-11 present the comparison between the results of the current analysis and 

the experimental tests of Violette et al. (2006). It can be seen that the agreement between the 

theoretical and experimental data is generally fairly good. The reduced critical velocity predicted 

by the quasi-steady model with the measured time delay parameters are slightly higher, by up to 

24% for the two-partially flexible columns (Figure 5-8) and 13% for the flexible central cluster 

(Figure 5-10). Similarly, the classical values of the time delay parameters, 1r i   , (Price et 

al., 1990) yield  percentage errors up to 17% for the two-partially flexible columns (Figure 

5-9(a)) and up to 8% for the flexible kernel (Figure 5-11(a)). A case of purely fluid stiffness 

controlled instability was also considered. For this particular case where 0r i   , the model 

predicted cU fD  values which were up to 21% and 15% over the experimental value for the 

two-partially flexible columns (Figure 5-9(b)) and the flexible central cluster (Figure 5-11(b)), 

respectively. 

 

Figure 5-8 : Comparison between theoretical results ( expr i    ) and experimental data 

(Violette et al., 2006) for two partially flexible columns of tubes (Refer to Figure 5-4(b)) 
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(a)          (b) 

Figure 5-9 : Comparison between theoretical results and experimental data (Violette et al., 2006) 

for two partially flexible columns of tubes (Refer to Figure 5-4(b)) (a) 1r i    (b) 0r i    

The last case ( 0r i   ) results are an improvement over those obtained by Olala & Mureithi 

(2016a) who found predicted values higher than the experimental data by up to 22% and 19% for 

the two-partially flexible columns and the flexible central cluster, respectively. It should be 

remarked that Olala & Mureithi (2016a) did the same analysis with the same input values as  in 

the present case except for the hydrodynamic mass which was determined from a theoretical 

relation (Pettigrew, Taylor, et al., 1989).  

There is no significant difference in the reduced critical velocity,  cU fD , obtained either when 

the time delay is considered  expr i     or when the time delay is neglected  0r i   . 

The results obtained from the present analysis, therefore, suggest that fluidelastic instability of 

multiple tubes in a rotated triangular array purely flexible in the streamwise direction is 

predominantly stiffness controlled. This is in agreement with the dynamic tests of Violette et al. 

(2006) and Mureithi et al. (2005).  Inclusion of the measured time delay term ( ie   ) in the 

quasi-steady model formulation for streamwise fluidelastic instability analysis of multiple 

flexible tubes, thus, appears, in general, not to affect the critical velocity cU fD .  

 



122 

 

 

Figure 5-10 : Comparison between theoretical results ( expr i    ) and experimental data 

(Violette et al., 2006) a kernel of flexible of tubes (Refer to Figure 5-4(c)) 

 

   

(a)                           (b) 

Figure 5-11 : Comparison between theoretical results and experimental data (Violette et al., 2006) 

for a kernel of flexible tubes (Refer to Figure 5-4(c)): (a)   1r i    and (b) 0r i    
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5.4 Conclusion 

Experimental measurements were performed to determine the hydrodynamic mass and flow 

independent damping on a tube in a rotated triangular array of 1.5P D   subjected to air-water 

two-phase flow. The tube was constrained to vibrate only in the flow direction. Together with 

previously measured quasi-steady fluid forces and time delay parameters estimated in the first 

part of the paper, a quasi-steady analysis was conducted to establish the effect of time delay on 

the critical velocity for streamwise fluidelastic instability of multiple flexible tubes in a rotated 

triangular tube array in two-phase flow. A single flexible column was found to be more stable 

than multiple flexible columns in conformity with previous findings.  

The results obtained with the quasi-steady model were compared to experimentally determined 

critical velocities for specific multiple tube configurations in the same array and found to be in 

fairly good agreement. It was therefore verified that streamwise fluidelastic instability of multiple 

flexible tubes in a rotated triangular array are strongly dependent on the cross-coupling forces 

thus stiffness controlled. The present results further demonstrate the capability of the quasi-steady 

model in predicting fluidelastic instability for multiple flexible tubes. It should, however, be 

noted that the aforementioned observations are specific to a rotated triangular array of a specific 

pitch-to-diameter-ratio hence may not necessarily be applicable to other array geometries. 
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CHAPTER 6 GENERAL DISCUSSIONS 

The work presented in this Thesis was motivated by the need to validate the fluidelastic 

instability models presented in Chapter 2 in two-phase flow and extend the candidate model, in 

this case, the quasi-steady model, to analyze fluidelastic instability in the streamwise direction. 

Following replacement steam generator tube failures at San Onofre Nuclear Generating Station, 

U.S.A in 2012 (S.C.E., 2013), streamwise fluidelastic instability became a reality and the need to 

develop predictive tools that would enable design against its occurrence gained prominence.  

In the first paper (Chapter 3), the streamwise quasi-steady fluid force coefficients for a kernel of 

tubes are reported for various void fractions. The steady drag coefficients for different tubes were 

observed to strongly depend on the position of the central tube. Also, for a given position of the 

central tube, the drag coefficient, DC , for each tube varied with the void fraction. These drag 

coefficients  together with their derivatives with respect to the streamwise displacement of the 

central tube are used in the quasi-steady model to predict the critical velocity for fluidelastic 

instability of multiple flexible tubes free to vibrate in the flow direction. The trend of the steady 

force derivatives was found to also vary with the tube location relative to the central tube 

position. This was the case for all the void fractions tested. The effect of the time delay was 

ignored, as a first step, and streamwise fluidelastic instability assumed to be fluid stiffness 

controlled. It was found that the number and location of the flexible tubes greatly influenced the 

array stability. For instance, two flexible tubes on the same column were found to be more stable 

than two tubes on adjacent columns. A single column of flexible tubes was also found to be more 

stable than multiple flexible columns. Likewise the fewer the number of flexible tubes the higher 

the critical velocity estimated. From this analysis, it was observed that the predicted critical 

velocity did not change when at least five flexible tubes were considered. Overall, the results 

were in fairly good agreement with dynamic experimental data. Since the time delay was not 

considered in this analysis, the good agreement between the theoretical and dynamic 

experimental data indicate that cross-coupling forces, represented by the force derivatives, are 

more important in generating streamwise fluidelastic instability of multiple flexible tubes in a 

rotated triangular array.  

The first paper also analyzed the effect of frequency detuning on the estimated critical velocity, 

and in effect, the stability constant used in design. The detuning was introduced artificially by 
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generating random frequency values with a given variance about the tuned tube frequency. 

Though detuning generally stabilizes the tube array, the large scatter in the possible values of the 

stability constant, ,K  makes it a challenge in deciding which value to use in design.  

Most importantly, this analysis demonstrated the potential of the quasi-steady model in predicting 

streamwise fluidelastic instability threshold in tube arrays. 

The second paper (Chapter 4) presents results of the unsteady fluid force measurements for the 

same kernel of tubes used in the work of the first paper and the time delay between the 

displacement of the central tube and the generated unsteady forces on the neighboring tubes, and 

on itself. Here the main goal was to estimate the time delay. The unsteady forces on each tube 

were measured for various void fractions, flow velocities and excitation frequencies of the central 

tube. Appropriate excitation amplitude for the central tube, was firstly, determined to ensure 

measurable fluid forces on the adjacent tubes and minimize non-linearity that could appear in the 

unsteady force due to large amplitude oscillations. The magnitude of the unsteady fluid force 

coefficient was found to have a single-valued functional relation with the reduced velocity 

(U fD ) for the range of void fractions tested. The fluid force coefficient phases on the other 

hand could be represented in a similar manner only for low void fractions. For higher void 

fractions, marked scatter was seen in the phase data, more so for the cross-coupling phases 

suggesting multi-valued functional relations between the force coefficient phases and  U fD . 

The phase trend for the higher void fractions differ from those presented by Sawadogo & 

Mureithi (2014b) who found a single valued functional relation for all the void fractions they 

tested. The authors’ tests were done in the same test section as the current case, except that the 

unsteady forces were measured for a single tube oscillated in the lift direction. The present results 

(high void fraction), however, resemble those of Mureithi et al. (2002) who did their 

measurements in an in-line square array subjected to steam-water flow. The observation may be 

attributed to the level of two-phase intermittency and turbulence which reduces force 

correlations.  

An attempt was made to represent  the high void fraction phase data in terms of the Feenstra et al. 

(2000) void fraction model as opposed to the homogeneous model. It was observed that, with a 

modified representation of the reduced velocity,  * eqY U fD , the data could be collapsed onto a 

single curve suggesting that a better representation of the two-phase flow physics could be 
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realized with the Feenstra’s model. It also became evident that the homogeneous model 

(‘incorrectly’) averages a wide range of void fractions, especially for high void fractions. 

Next, two forms of the time delay (as already stated) were estimated from the unsteady fluid 

forces in the current article (Paper 2-Chapter 4) and the quasi-steady fluid forces presented in 

Chapter 3. This could only be done for void fractions in the range 60%-90% due to water pump 

limited capacity. The quasi-steady model is only valid for 1U fD , meaning that either 1U  

or 1f . However, there is a limit on how low the excitation frequency can go to maintain 

reasonable signal-to-noise ratio. A compromise was therefore found in the 60%-90% void 

fraction range.  

The time delay was found to significantly depend on tube position and void fraction. The 

parameter for the time delay due to flow retardation (the time lag/lead between the displacement 

of a tube and the unsteady fluid forces generated on itself) showed similar trend to the results by 

Sawadogo & Mureithi (2014b) for the lift direction except for the 90% void fraction. Similarly, 

the form of the time delay expression was found to agree with the one suggested by Price & 

Paidoussis (1984) , D U  . The time delay parameter for the time lag due to apparent 

displacement of an adjacent tube could also be expressed in the form i L U   or 

(2 )i L U   depending on whether it is one or two rows away, respectively. The values of the 

time delay parameters were then used in the third part of the project to verify the validity of the 

quasi-steady model.  

In the third paper (Chapter 5), the parameters obtained in the earlier sections of the work were 

used to estimate the critical velocity for fluidelastic instability. Additional measurements were 

done to determine the flow independent damping and the hydrodynamic mass. It should be noted 

that, in the fluidelastic instability analysis performed in the first paper (Chapter 3), the added 

mass was estimated from a semi-empirical formula by Pettigrew, Taylor, et al. (1989). The 

hydrodynamic mass showed a decreasing trend with void fraction. There seemed also to be no 

significant difference between the hydrodynamic mass in the drag and lift (Sawadogo & 

Mureithi, 2014a) directions. However, the formulation by Pettigrew, Taylor, et al. (1989) was 

found to generally underestimate the added mass, as had earlier been observed by the same 

authors. To enable validation of the analysis results, the same flexible tube configurations as 

those tested by Violette et al. (2006) were analysed.  With the experimentally obtained time delay 
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parameters, the quasi-steady model yielded critical velocities in fairly good agreement with 

dynamic instability tests of (Violette et al., 2006). An error of 24% was found for two-partially 

flexible configuration (80% void fraction) and 13% for the flexible central cluster (90% void 

fraction). With the classical values of the time delay parameter, 1i    (Price & Paidoussis, 

1984; Price et al., 1990), the errors were 17% and 8% respectively; while for the case of 

0i   , when the effect of the time delay is ignored, the error became 21% and 15% 

respectively. It appears that the instability of multiple flexible tubes in the flow direction depends 

almost entirely on the fluid stiffness as opposed to the damping mechanism. However, more 

analysis of different flexible tube configurations and re-examination of the time delay extraction 

procedure may be necessary. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

7.1 Contributions 

The following are the main contributions from this work: 

 Measurement and comprehensive study of the streamwise quasi-steady and the unsteady 

fluid forces on a kernel of tubes in a rotated triangular array subjected to air-water two-

phase flow. The quasi-static analysis (quasi-steady model with the time delay ignored) 

using the measured quasi-steady forces confirmed the predominance of the cross-coupling 

fluid forces in causing streamwise fluidelastic instability of a rotated triangular array. The 

study on frequency detuning revealed the uncertainty in the use of the Connors stability 

constant indicating that the use of an average stability constant may be misleading due to 

the strong dependence of K on the frequency variance.  

 Another important outcome of the study is that the phase of the unsteady fluid force in the 

streamwise direction, for high void fractions, in a rotated triangular array subjected to air-

water flow is not a single valued function of the reduced velocity  U fD . Using the 

Feeenstra’s void fraction model, the scattered unsteady fluid force phase data could be 

collapsed onto a single curve as a function of a modified reduced velocity  * eqY U fD ; 

 
a

bY f D g 


  , taking into account the “true” void fraction and effect of gravity . 

 The present work was the first attempt to measure the unsteady cross-coupling fluid 

forces in a rotated triangular array subject to air-water two-phase flows. This was also the 

first attempt to experimentally determine both the time delay due to flow retardation and 

that due to apparent displacement of an adjacent tube for the streamwise direction 

oscillations of a rotated triangular array in air-water two-phase flow. The phase of the 

unsteady cross-coupling force for high void fractions displayed marked scatter possibly 

due to weak coherence. This remains a challenge. 

  The extraction of the time delays made it possible to apply the quasi-steady model to 

two-phase flow and demonstrate the potential of the model in analysing the stability of 

multiple tubes preferentially flexible in the flow direction. 
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7.2 Limitations and challenges 

A number of challenges and limitation were experienced in the course of the project: 

 The pump capacity did not permit the estimation of the time delay for void fractions lower 

than 60%. High velocities that would permit the quasi-steady assumption to be fulfilled, 

1U fD , could not be achieved, for low void fractions, with the current water pump. 

 Air flow rate control valve required close attention during high velocity air flow rate (case 

of high speed high void fraction) since it tended to incrementally open. Whenever such 

discrepancy was noticed, the specific data was discarded. 

 The cross-coupling unsteady fluid force phase exhibited considerable scatter for the high 

void fractions. This could have introduced errors in the estimated time delay, especially 

for tubes downstream of the oscillating central tube. Further investigation is thus 

necessary.    

 The use of the Feenstra’s model enabled collapsing of the unsteady fluid force phase for 

the oscillating tube in high void fraction. Due to limited data ((since the tests were based 

on the homogeneous void fraction model) it was not possible to do a complete analysis 

based on Feenstra’s model.  

7.3 Recommendations for future work 

 Increase the pump capacity to realize higher flow velocity for low void fractions. This 

would allow measurement of the time delay for these void fractions using the method 

employed in this work 

 Replace the manual air flow rate control valve with a self acting automatic control valve 

to improve on the precision of the estimated void fraction. 

 Examine the flow structure around the vibrating tube to provide insight on the physical 

nature of the time delay. 

 Measure the cross-coupling forces in the lift direction to provide complete data for 

fluidelastic instability of a rotated triangular tube bundle of the pitch ratio used in the 

current study. 
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 Repeat the force measurements with the void fraction based on the Feenstra’s model to 

determine the effect of “true” void fraction on the fluid forces. 

 Examine other possible dimensionless parameters representative of the two-phase flow 

physics, e.g Weber number  We  , Womersley number    etc. 

 Extend the investigation to arrays of other geometric configurations. 

Publications 

This PhD project has led to four conference papers and three journal articles. The papers 

submitted to journals are listed as follows: 

 

OLALA, S & MUREITHI, N. W. (2016a). Prediction of Streamwise Fluidelastic Instability of a 

Tube Arrays in Two-Phase Flows and Effect of Frequency Detuning (Paper accepted) Journal of 

Pressure Vessels Technology, Transactions of the ASME. 

OLALA, S & MUREITHI, N. W. (2016b). Streamwise Fluidelastic Vibration of a Triangular 

Tube Array in Two-Phase Flow. Part I: Unsteady fluid forces and time delay estimation (Paper 

submitted to) Journal of Fluids and Structures. 

OLALA, S & MUREITHI, N. W. (2016c). Streamwise Fluidelastic Vibration of a Triangular 

Tube Array in Two-Phase Flow. Part II: Fluidelastic Instability Analysis (Paper submitted to) 

Journal of Fluids and Structures. 



131 

BIBLIOGRAPHY 

Austermann, R., & Popp, K. (1995). Stability Behavior of a Single Flexible Cylinder in Rigid 

Tube Arrays of Different Geometry Subjected to Cross-Flow. Journal of Fluids and 

Structures, 9(3), 303-322. doi: 10.1006/jfls.1995.1017 

Bearman, P. W. (1984). Vortex Shedding from Oscillating Bluff Bodies. Annual Review of Fluid 

Mechanics, 16 195-222. doi: 10.1146/annurev.fl.16.010184.001211 

Blevins, R. D. (1974). Fluidelastic Whirling of a Tube Row. ASME Journal  of Pressure Vessel 

Technology, 96(4), 263-267. doi: 10.1115/1.3454179 

Blevins, R. D. (1977). Fluidelastic Whirling of Tube Rows and Tube Arrays. Journal of Fluids 

Engineering, 99(3), 457 -460. doi: 10.1115/1.3448811 

Blevins, R. D. (1979a). Fluid Damping and the Whirling Instability of Tube Arrays. In S. S. Chen 

& M. D. Bernstein (Eds.), Flow Induced Vibrations (pp. 35 -39). New York: ASME. 

Blevins, R. D. (1979b). Formulas for Natural Frequency and Mode Shape. New York: Van 

Nostrand Reinhold co. 

Blevins, R. D. (1990). Flow-Induced Vibrations (2nd ed.). New York: Van Nostrand Reinhold. 

Carlucci, L. N. (1980). Damping  and Hydrodynamic Mass of a Cylinder in Simulated Two-

Phase Flow. ASME Journal  of Mechanical Design, 102(3), 597-602. doi: 

10.1115/1.3254791 

Carlucci, L. N., & Brown, J. D. (1983). Experimental Studies of Damping and Hydrodynamic 

Mass of a Cylinder in Confined Two-Phase Flow. Journal of Vibration, Acoustics, Stress, 

and Reliability in Design, 105(1), 83-89. doi: 10.1115/1.3269073 

Chen, S. S. (1983a). Instability Mechanisms and Stability Criteria of a Group of Circular 

Cylinders Subjected to Cross-Flow. Part I:Theory. Journal of Vibration, Acoustics, Stress 

and Reliability in Design, 105(1), 51-58. doi: 10.1115/1.3269066 

Chen, S. S. (1983b). Instability Mechanisms and Stability Criteria of a Group of Circular 

Cylinders Subjected to Cross-Flow. Part II: Numerical Results and Discussion. Journal of 

Vibration, Acoustics, Stress and Reliability in Design, 105(2), 253-260. doi: 

10.1115/1.3269095 

Chen, S. S. (1987). A General Theory for Dynamic Instability of Tube Arrays in Cross-Flow. 

Journal of Fluids and Structures, 1(1), 35-53. doi: 10.1016/S0889-9746(87)90170-8 



132 

 

Chen, S. S., & Jendrzejczyk, J. A. (1983). Stability of Tube Arrays in Crossflow. Nuclear 

Engineering and Design, 75(3), 351-373. doi: 10.1016/0029-5493(83)90004-3 

Chen, S. S., & Srikantiah, G. S. (2001). Motion-Dependent Fluid Force Coefficients for Tube 

Arrays in Crossflow. ASME Journal of Pressure Vessel Technology, 123(4), 429-436. doi: 

10.1115/1.1401022 

Cheng, B. (1994). The Mechanisms Underlying Flow-Induced Instability of Cylinder Arrays in 

Cross-Flow : An Investigation of System Parameters. (Ph.D. Thesis, McGill University, 

Montréal, QC, Canada).  

Connors, H. J. (1970). Fluidelastic Vibration of Tube Arrays Excited by Cross Flow. In D. D. 

Reiff (Ed.) Flow-Induced Vibrations in Heat exchangers (pp. 42-56). New York: ASME. 

Consolini, L., Robinson, D., & Thome, J. R. (2006). Void fraction and Two-Phase Pressure 

Drops for Evaporating Flow over Horizontal Tube Bundles. Heat Transfer Engineering, 

27(3), 5-21. doi: 10.1080/01457630500453832 

Eisinger, F. L., Rao, M. S. M., Steininger, D. A., & Haslinger, K. H. (1995). Numerical-

Simulation of Cross-Flow-Induced Fluidelastic Vibration of Tube Arrays and Comparison 

with Experimental Results. ASME Journal of Pressure Vessel Technology, 117(1), 31-39. 

doi: 10.1115/1.2842087 

Feenstra, P. A., Janzen, V. P., & Smith, T. (2014). In-Plane Vibration Damping of a U-Tube with 

Wet and Dry Flat-Bar Supports. Paper presented at ASME 2014 Pressure Vessels & 

Piping Conference, Anaheim, California, U.S.A. (Vol. 4, pp. V004T004A043). doi: 

10.1115/PVP2014-28429 

Feenstra, P. A., Judd, R. L., & Weaver, D. S. (1995). Fluidelastic Instability in a Tube Array 

Subjected to 2-Phase R-11 Cross-Flow. Journal of Fluids and Structures, 9(7), 747-771. 

doi: 10.1006/jfls.1995.1042 

Feenstra, P. A., Weaver, D. S., & Judd, R. L. (2000). An Improved Void Fraction Model for 

Two-Phase Cross-Flow in Horizontal Tube Bundles. International Journal of Multiphase 

Flow, 26(11), 1851-1873. doi: 10.1016/S0301-9322(99)00118-4 

Feenstra, P. A., Weaver, D. S., & Judd, R. L. (2002). Modelling Two-Phase Flow-Excited 

Damping and Fluidelastic Instability in Tube Arrays. Journal of Fluids and Structures, 

16(6), 811-840. doi: 10.1006/Jfls.442 



133 

 

Géradin, M., & Rixen, D. (1994). Mechanical Vibrations - Theory and Application to Structural 

Dynamics (1st ed.). Chichester: John Wiley. 

Gorman, D. J. (1976). Experimental Development of Design Criteria to Limit Liquid Cross-

Flow-Induced Vibration in Nuclear Reactor Heat Exchange Equipment. Nuclear Science 

and Engineering, 61(3), 324-336. 

Granger, S., Campistron, R., & Lebret, J. (1993). Motion-Dependent Excitation Mechanisms in a 

Square In-Line Tube Bundle Subject to Water Cross-Flow : An Experimental Modal 

Analysis. Journal of Fluids and Structures, 7(5), 521-550. doi: 10.1006/jfls.1993.1032 

Granger, S., & Paidoussis, M. P. (1996). An Improvement to the Quasi-Steady Model with 

Application to Cross-Flow-Induced Vibration of Tube Arrays. Journal of Fluid 

Mechanics, 320 163-184. doi: 10.1017/S0022112096007495 

Grant, I. D. R., & Chishom, D. (1979). Two-Phase Flow on the Shell-Side of a Segmentally 

Baffled Shell-and-Tube Heat Exchanger. ASME Journal of Heat Transfer, 101(1), 38-42. 

doi: 10.1115/1.3450927 

Grant, I. D. R., & Murray, I. (1972). Pressure Drop on the Shell Side of a Segmentally Baffled 

Shell-and-Tube Heat Exchanger with Vertical Two-Phase Flow (Report No. NEL-500). 

National Engineering Laboratory, East Kilbride, Glasgow.  

Gross, H. G. (1975). Untersuchung Aerodynamischer Scwingungs-Mechanismen und deren 

Berucksichtigung bei der Auslegung von Rohrbundelwarmetauschern. (Ph.D. Thesis, 

Technical University of Hannover).  

Hassan, M., Gerber, A., & Omar, H. (2010). Numerical Estimation of Fluidelastic Instability in 

Tube Arrays. ASME Journal of Pressure Vessel Technology, 132(4), Art. 041307. doi: 

10.1115/1.4002112 

Hassan, M., & Weaver, D. S. (2014). The Effect of Flat Bar Supports on Streamwise Fluidelastic 

Instability in Heat Exchanger Tube Arrays. Paper presented at ASME 2014 Pressure 

Vessels and Piping Conference Anaheim, California, U.S.A. (Vol. 4, pp. 

V004T004A079). doi: 10.1115/PVP2014-29038 

Hassan, M., & Weaver, D. S. (2016). Modeling of Streamwise and Transverse Fluidelastic 

Instability in Tube Arrays. ASME Journal of Pressure Vessel Technology, 138(5), Art. 

051304. doi: 10.1115/1.4032817 



134 

 

Hassan, M., Weaver, D. S., & Dokainish, M. A. (2003). The Effects of Support Geometry on the 

Turbulence Response of Loosely Supported Heat Exchanger Tubes. Journal of Fluids and 

Structures, 18(5), 529-554. doi: 10.1016/j.jfluidstructs.2003.08.011 

Inada, F., Kawamura, K., Yasuo, A., & Yoneda, K. (2002). An Experimental Study on the 

Fluidelastic Forces Acting on a Square Tube Bundle in Two-Phase Cross-Flow. Journal 

of Fluids and Structures, 16(7), 891-907. doi: 10.1006/jfls.2002.0460 

Inman, D. J. (2001). Engineering Vibration (2nd ed.). New Jersey: Prentice-Hall, Inc. 

Janzen, V. P., Hagberg, E. G., Pettigrew, M. J., & Taylor, C. E. (2005). Fluidelastic Instability 

and Work-Rate Measurements of Steam-Generator U-Tubes in Air-Water Cross-Flow. 

ASME Journal of Pressure Vessel Technology, 127(1), 84-91. doi: 10.1115/1.1849229 

Khalifa, A., Weaver, D. S., & Ziada, S. (2011, July 17-21, 2011). An Experimental Study of the 

Phase Lag Causing Fluidelastic Instability in Tube Bundles. Paper presented at ASME 

2011 Pressure Vessels and Piping Conference, Baltimore, Maryland, USA (Vol. 4, pp. 

211-218). doi: 10.1115/PVP2011-57263 

Kuppan, T. (2000). Heat Exchanger Design Handbook. New York: Marcel Dekker, Inc. 

Lever, J. H., & Weaver, D. S. (1982). A Theoretical Model for the Fluidelastic Instability in Heat 

Exchanger Tube Bundles. ASME Journal of Pressure Vessel Technology, 104(3), 147-

158. doi: 10.1115/1.3264196 

Lever, J. H., & Weaver, D. S. (1986a). On the Stability Behaviour of Heat Exchanger Tube 

Bundles. Part I: Modified Theoretical Model. Journal of Sound and Vibration, 107(3), 

375-392. doi: 10.1016/S0022-460X(86)80114-6 

Lever, J. H., & Weaver, D. S. (1986b). On the Stability Behaviour of Heat Exchanger Tube 

Bundles. Part II - Numerical Results and Comparison with Experiments. Journal of Sound 

and Vibration, 107(3), 393-410. doi: 10.1016/S0022-460X(86)80115-8 

Little, J. (2003). The Effect of Damping on Fluidelastic Instability in Heat Exchanger Tube 

Array. (Master's thesis, McMaster University, Hamilton, Ontario, Canada).  

Mahon, J., & Meskell, C. (2010). Measurement of the Time Delay Associated with Fluid 

Damping Controlled Instability in a Normal Triangular Tube Array. Paper presented at 

ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 

- ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound 



135 

 

Interactions, and Flow-Induced Vibration and Noise, FSI2 and FIV+N, Montreal, QC, 

Canada (Vol. 3, pp. 553-563). doi: 10.1115/FEDSM-ICNMM2010-30495  

Marn, J., & Catton, I. (1990). Flow-Induced Vibration Problem in a Simple Cylinder Array - One 

Dimensional Unsteady Integral Approach In P. H. Rotih (Ed.) ASME Forum on Unsteady 

flow (Vol. FED-Vol. 102, PVP-Vol. 204, pp. 19-21). New York: ASME. 

Marn, J., & Catton, I. (1991). Flow Induced Vibrations in Cylindrical Bundles: Two Dimensional 

Analysis into Normal Modes. In F. B. Cheung & L. E. Hochreiter (Eds.), Numerical 

Modelling of Basic Heat Transfer Phenomena in Nuclear Systems (Vol. HTD-Vol.165, 

pp. 9-14). New York: ASME. 

Marn, J., & Catton, I. (1992). On the Instability of Two Phase Cross Flow through a Staggered 

Cylinder Array. Paper presented at International Symposium on Flow-Induced Vibrations 

and Noise, New York, U.S.A (Vol. 2, pp. 57-68). 

Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. 

Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. 

McAdams, W. H., Woods, W. K., & Heroman, L. C. (1942). Vaporization Inside Horizontal 

Tubes - II: Benzene-Oil Mixtures. Transactions of ASME, 64(3), 193-200. 

Moran, J. E., & Weaver, D. S. (2013). On the Damping in Tube Arrays Subjected to Two-Phase 

Cross-Flow. ASME Journal of Pressure Vessel Technology, 135(3), Artn 030906. doi: 

10.1115/1.4023421 

Mureithi, N. W., Nakamura, T., Hirota, K., Murata, M., Utsumi, S., Kusakabe, T., & Takamatsu, 

H. (2002). Dynamics of an In-Line Tube Array Subjected to Steam-Water Cross-Flow. 

Part II: Unsteady Fluid Forces. Journal of Fluids and Structures, 16(2), 137-152. doi: 

10.1006/jfls.2001.0407 

Mureithi, N. W., Zhang, C., Ruel, M., & Pettigrew, M. J. (2005). Fluidelastic Instability Tests on 

An Array of Tubes Preferentially Flexible in the Flow Direction. Journal of Fluids and 

Structures, 21(1), 75-87. doi: 10.1016/j.jfluidstructs.2005.03.010 

Nakamura, T., Fujita, Y., & Sumitani, T. (2014). Study on In-Flow Fluidelastic Instability of 

Triangular Tube Arrays Subjected to Air Cross Flow. ASME Journal of Pressure Vessel 

Technology, 136(5), Artn 051302. doi: 10.1115/1.4027618 

Naudascher, E., & Rockwell, D. (2005). Flow-Induced Vibrations: An Engineering Guide. New 

York: Dover Publications. 



136 

 

Noghrehkar, G. R., Kawaji, M., & Chan, A. M. C. (1999). Investigation of Two-Phase Flow 

Regimes in Tube Bundles under Cross-Flow Conditions. International Journal of 

Multiphase Flow, 25(5), 857-874. doi: 10.1016/S0301-9322(98)00075-5 

Olala, S., Mureithi, N., Sawadogo, T., & Pettigrew, M. J. (2014). Streamwise fluidelastic forces 

in tube arrays subjected to two-phase flows. Paper presented at ASME 2014 Pressure 

Vessels & Piping  Conference (PVP2014-28153), Anaheim, California, USA (Vol. 4, pp. 

V004T004A014). doi: doi:10.1115/PVP2014-28153 

Olala, S., & Mureithi, N. W. (2014). Streamwise Fluidelastic Instability of Tube Arrays in Two-

Phase Cross-Flow. Paper presented at ASME 2014 International Mechanical Engineers 

Congress and Exposition Montréal, QC, Canada (Vol. 4A, pp. V04AT04A079). doi: 

10.1115/IMECE2014-39234 

Olala, S., & Mureithi, N. W. (2016a). Prediction of Streamwise Fluidelastic Instability of  Tube 

Array in Two-Phase Flows and Effect of Frequency Detuning (Paper submitted) ASME 

Journal of Pressure Vessel Technology. doi: 10.1115/1.4034467 

Olala, S., & Mureithi, N. W. (2016b). Streamwise Fluidelastic Vibration of a Triangular Tube 

Array in Two-Phase Flow. Part I: Unsteady Fluid Forces and Time Delay Estimation 

(paper submitted). Journal of Fluids and Structures. 

Olala, S., & Mureithi, N. W. (2016c). Streamwise Fluidelastic Vibration of a Triangular Tube 

Array in Two-Phase Flow. Part II: Fluidelastic Instability Analysis (paper submitted). 

Journal of Fluids and Structures. 

Paidoussis, M. P. (1982). A review of Flow-Induced Vibrations in Reactors and Reactor 

Components. Nuclear Engineering and Design, 74(1), 31-60. doi: 10.1016/0029-

5493(83)90138-3 

Païdoussis, M. P., de Langre, E., & Price, S. J. (2011). Fluid-Structure Interactions : Cross-

Flow-Induced Instabilities. New York: Cambridge University Press. 

Paidoussis, M. P., Mavriplis, D., & Price, S. J. (1984). A potential Flow Theory for the Dynamics 

of Cylinder Arrays in Cross-Flow. Journal of Fluid Mechanics, 146 227-252. doi: 

10.1017/S002211208400183X 

Paidoussis, M. P., & Price, S. J. (1988). Mechanisms Underlying Flow-Induced Instabilities of 

Cylinder Arrays in Cross-Flow. Journal of Fluid Mechanics, 187 45-59. doi: 

10.1017/S0022112088000333  



137 

 

Paidoussis, M. P., Price, S. J., & Mureithi, N. W. (1996). On the Virtual Nonexistence of 

Multiple Instability Regions for Some Heat-Exchanger Arrays in CrossFlow. ASME 

Journal of Fluids Engineering 118(1), 103-109. doi: 10.1115/1.2817486 

Pettigrew, M. J., Carlucci, L. N., Taylor, C. E., & Fisher, N. J. (1991). Flow-Induced Vibration 

and Related Technologies in Nuclear Components. Nuclear Engineering and Design, 

131(1), 81-100. doi: 10.1016/0029-5493(91)90319-D 

Pettigrew, M. J., Rogers, R. J., & Axisa, F. (1986). Damping of Multispan Heat Exchanger Tubes 

- Part 2: In Liquids. Paper presented at ASME 1986 Pressure Vessel and Piping 

Conference, Chicago, IL, U.S.A (Vol. 104, pp. 89-98). 

Pettigrew, M. J., & Taylor, C. E. (1991). Fluidelastic Instability of Heat-Exchanger Tube Bundles 

- Review and Design Recommendations. ASME Journal  of Pressure Vessel Technology, 

113(2), 242-256. doi: 10.1115/1.2928752 

Pettigrew, M. J., & Taylor, C. E. (1994). Two-Phase Flow-Induced Vibration: An Overview 

(Survey Paper). ASME Journal of Pressure Vessel Technology, 116(3), 233-253. doi: 

10.1115/1.2929583 

Pettigrew, M. J., & Taylor, C. E. (1997). Damping of Heat Exchanger Tubes in Two-Phase Flow. 

Paper presented at Fourth International Symposium on FSI, AE & FIV+N, ASME 

International Congress, Dallas, Texas, U.S.A (Vol. 53.2, pp. 407-418). 

Pettigrew, M. J., & Taylor, C. E. (2003). Vibration Analysis of Shell-and-Tube Heat Exchangers: 

An Overview - Part 1: Flow, Damping, Fluidelastic Instability. Journal of Fluids and 

Structures, 18(5), 469-483. doi: 10.1016/j.jfluidstructs.2003.08.007 

Pettigrew, M. J., & Taylor, C. E. (2009). Vibration of a Normal Triangular Tube Bundle 

Subjected to Two-Phase Freon Cross Flow. ASME Journal of Pressure Vessel 

Technology, 131(5), Artn 051302. doi: 10.1115/1.3147985 

Pettigrew, M. J., Taylor, C. E., Jong, J. H., & Currie, I. G. (1995). Vibration of a Tube Bundle in 

Two-Phase Freon Cross-Flow. ASME Journal of Pressure Vessel Technology, 117(4), 

321-329. doi: 10.1115/1.2842130 

Pettigrew, M. J., Taylor, C. E., & Kim, B. S. (1989). Vibration of Tube Bundles in Two-Phase 

Cross-Flow: Part 1—Hydrodynamic Mass and Damping. ASME Journal  of Pressure 

Vessel Technology, 111(4), 446-477. doi: 10.1115/1.3265705 



138 

 

Pettigrew, M. J., Taylor, C. E., & Kim, B. S. (2001). The Effects of Bundle Geometry on Heat 

Exchanger Tube Vibration in Two-Phase Cross Flow. ASME Journal of Pressure Vessel 

Technology, 123(4), 414-420. doi: 10.1115/1.1388236 

Pettigrew, M. J., Tromp, J. H., & Mastorakos, J. (1985). Vibration of Tube Bundles Subjected to 

Two-Phase Cross-Flow. ASME Journal of Pressure Vessel Technology, 107(4), 335-343. 

doi: 10.1115/1.3264461 

Pettigrew, M. J., Tromp, J. H., Taylor, C. E., & Kim, B. S. (1989). Vibration of Tube Bundles in 

Two-Phase Cross-Flow: Part 2 - Fluidelastic Instability. ASME Journal of Pressure Vessel 

Technology, 111(4), 478-487. doi: 10.1115/1.3265706 

Pettigrew, M. J., Zhang, C., Mureithi, N. W., & Pamfil, D. (2005). Detailed Flow and Force 

Measurements in a Rotated Triangular Tube Bundle Subjected to Two-Phase Cross-Flow. 

Journal of Fluids and Structures, 20(4), 567-575. doi: 10.1016/j.jfluidstructs.2005.02.007 

Price, S. J. (1995). A Review of Theoretical Models for Fluidelastic Instability of Cylinder 

Arrays in Cross-Flow. Journal of Fluids and Structures, 9(5), 463-518. doi: 

10.1006/jfls.1995.1028 

Price, S. J., & Paidoussis, M. P. (1982). A Theoretical Investigation of the Parameters Affecting 

the Fluidelastic Instability of a Double Row of Cylinders Subject to Cross-Flow. Paper 

presented at 3rd International Conference on Vibrations in Nuclear Plant, Keswick, U.K. 

(Vol. 1, pp. 107-119). 

Price, S. J., & Paidoussis, M. P. (1983). Fluidelastic Instability of an Infinite Double Row of 

Circular Cylinders Subject to a Uniform Cross-Flow. ASME Journal of Vibration, 

Acoustics, Stress and Reliability in Design, 105(1), 59-66. doi: 10.1115/1.3269067 

Price, S. J., & Paidoussis, M. P. (1984). An Improved Mathematical Model for the Stability of 

Cylinder Rows Subject to Cross-Flow. Journal of Sound and Vibration, 97(4), 615-640. 

doi: 10.1016/0022-460X(84)90512-1 

Price, S. J., & Paidoussis, M. P. (1985). Fluidelastic Instability of a Full Array of Flexible 

Cylinders Subject to Cross-Flow. In E. H. Dowell & M. K. Au-Yang (Eds.), Fluid-

Structure Interaction and Aerodynamic Damping (pp. 171-192). New York: ASME. 

Price, S. J., & Paidoussis, M. P. (1986a). A Constrained-Mode Analysis of the Fluidelastic 

Instability of a Double Row of Flexible Circular Cylinders Subject to Cross-Flow: A 



139 

 

Theoretical Investigation of System Parameters. Journal of Sound and Vibration, 105(1), 

121-142. doi: 10.1016/0022-460X(86)90225-7 

Price, S. J., & Paidoussis, M. P. (1986b). A Single-Flexible-Cylinder Analysis for the Fluidelastic 

Instability of an Array of Flexible Cylinders in Cross-Flow. ASME Journal of Fluids 

Engineering 108(2), 193-199. doi: 10.1115/1.3242562 

Price, S. J., Paidoussis, M. P., & Giannias, N. (1990). A Generalized Constrained-Mode Analysis 

for Cylinder Arrays in Cross-Flow. Journal of Fluids and Structures, 4(2), 171-202. doi: 

10.1016/0889-9746(90)90072-D 

Rao, S. S. (2004). Mechanical Vibrations (4th ed.). Upper Saddle River, New Jersey: Pearson 

Education, Inc. 

Roberts, B. W. (1962). Low Frequency, Self-Excited Vibration in a Row of Circular Cylinders 

Mounted in an Airstream. (Ph.D Thesis, University of Cambridge, Cambridge, UK).  

Roberts, B. W. (1966). Low Frequency, Aeroelastic Vibrations in a Cascade of Circular 

Cylinders. Mechanical Engineering Science Monograph,  (No.4). Institution of 

Mechanical Engineers, London. 

Rogers, R. J., Taylor, C., & Pettigrew, M. J. (1984). Fluid Effects on Multi-Span Heat Exchanger 

Tube Vibration. Paper presented at ASME 1984 Pressure Vessels and Piping Conference, 

San Antonio, Texas, U.S.A. (Vol. H00316, pp. 17-26). 

S.C.E. (2013). San Onofre Nuclear Generating Station Unit 2 Return To Service Report. 

Southern California Edison. Retrieved from 

http://www.nrc.gov/docs/ML1228/ML12285A263.pdf 

Sawadogo, T. (2016). Modelling of Fluidelastic Instability in Tube Arrays Subjected to Two-

Phase Freon Flow using Air-Water Quasi-Static Force Coefficients. Paper presented at 

11th International Conference on Flow-Induced Vibration, Hague, Netherlands.  

Sawadogo, T., & Mureithi, N. (2014a). Fluidelastic Instability in a Rotated Triangular Tube 

Array Subjected to Two-Phase Cross-Flow. Part II: Experimental Tests and Comparison 

with Theoretical Results. Journal of Fluids and Structures, 49 16–28. doi: 

10.1016/j.jfluidstructs.2014.04.013 

Sawadogo, T., & Mureithi, N. (2014b). Fluidelastic Instability Study in a Rotated Triangular 

Tube Array Subjected to Two-Phase Cross-Flow. Part I: Fluid Force Measurements and 



140 

 

Time Delay Extraction. Journal of Fluids and Structures, 49 1–15. doi: 

10.1016/j.jfluidstructs.2014.02.004 

Schroder, K., & Gelbe, H. (1999a). New Design Recommendations for Fluidelastic Instability in 

Heat Exchanger Tube Bundles. Journal of Fluids and Structures, 13(3), 361-379. doi: 

10.1006/jfls.1999.0208 

Schroder, K., & Gelbe, H. (1999b). Two- and three-dimensional CFD-simulation of flow-induced 

vibration excitation in tube bundles. Chemical Engineering and Processing, 38(4-6), 621-

629. doi: Doi 10.1016/S0255-2701(99)00063-X 

Seitanis, S. A., Anagnostpoulos, P., & Bearman, P. W. (2005). An Experimental Study of the In-

Line Oscillations of a Closely Spaced Row Of Cylinders in Cross-Flow. Journal of Fluids 

and Structures, 21(2), 211-226. doi: 10.1016/j.jfluidstructs.2005.07.004 

Shahriary, S., Mureithi, N. W., & Pettigrew, M. J. (2007). Quasi-Static Forces and Stability 

Analysis in a Triangular Tube Bundle Subjected to Two-Phase Cross-Flow. Paper 

presented at ASME 2007 Pressure Vessels and Piping Conference (Vol. 4, pp. 245-252). 

doi: 10.1115/PVP2007-26017 

Simpson, A., & Flower, J. W. (1977). An Improved Mathematical Model for The Aerodynamic 

Forces on Tandem Cylinders with Aeroelastic Applications. Journal of Sound and 

Vibration, 51(2), 183-217. doi: 10.1016/S0022-460X(77)80032-1 

Tanaka, H., & Takahara, S. (1980). Unsteady Fluid Dynamic Force on Tube Bundle and Its 

Dynamic Effect on Vibration. In M. K. Au-Yang (Ed.) Flow-Induced Vibration of Power 

Plant Components (Vol. 41, pp. 77-92). New York: ASME. 

Tanaka, H., & Takahara, S. (1981). Fluid Elastic Vibration of Tube Array in Cross Flow. Journal 

of Sound and Vibration, 77(1), 19-37. doi: 10.1016/S0022-460X(81)80005-3 

Tanaka, H., Takahara, S., & Ohta, K. (1982). Flow-Induced Vibration of Tube Arrays with 

Various Pitch-to-Diameter Ratios. ASME Journal of Pressure Vessel Technology, 104(3), 

168-174. doi: 10.1115/1.3264199 

Taylor, C. E., Currie, I. G., Pettigrew, M. J., & Kim, B. S. (1989). Vibration of Tube Bundles in 

Two-Phase Cross-Flow: Part 3—Turbulence-Induced Excitation. ASME Journal of 

Pressure Vessel Technology, 111(4), 488-500. doi: 10.1115/1.3265707 

Thome, J. R. (2010). Engineering Data Book III. Retrieved from 

http://www.wlv.com/products2/databook/db3/DataBookIII.pdf 



141 

 

Ulbrich, R., & Mewes, D. (1994). Vertical, Upward Gas-Liquid 2-Phase Flow across a Tube 

Bundle. International Journal of Multiphase Flow, 20(2), 249-272. doi: 10.1016/0301-

9322(94)90081-7 

Violette, R., Pettigrew, M. J., & Mureithi, N. W. (2006). Fluidelastic Instability of an Array of 

Tubes Preferentially Flexible in the Flow Direction Subjected to Two-Phase Cross Flow. 

ASME Journal of Pressure Vessel Technology, 128(1), 148-159. doi: 10.1115/1.2138064 

Weaver, D. S. (1993). Vortex Shedding and Acoustic Resonance in Heat Exchanger Tube Arrays. 

In M. K. Au-Yang (Ed.) Technology of the 90's (pp. 776-810). New York: ASME  

Weaver, D. S. (2008). Some Thoughts on the Elusive Mechanism of Fluidelastic Instability in 

Heat Exchanger Tube Arrays. Paper presented at The 9th International Conference on 

Flow-Induced Vibrations FIV-2008, Prague, Czech Republic (pp. 21-28). 

Weaver, D. S., & Elkashlan, M. (1981a). The Effect of Damping and Mass Ratio on the Stability 

of a Tube Bank. Journal of Sound and Vibration, 76(2), 283-294. doi: 10.1016/0022-

460X(81)90355-2 

Weaver, D. S., & Elkashlan, M. (1981b). On the Number of Tube Rows Required to Study 

Cross-Fow Induced Vibrations in Tube Banks. Journal of Sound and Vibration, 75(2), 

265-273. doi: 10.1016/0022-460X(81)90344-8 

Weaver, D. S., & Fitzpatrick, J. A. (1988). A Review of Cross-Flow Induced Vibrations in Heat 

Exchanger Tube Arrays. Journal of Fluids and Structures, 2(1), 73-93. doi: 

10.1016/S0889-9746(88)90137-5 

Weaver, D. S., & Fitzpatrick, J. A. (1988). A review of cross-flow induced vibrations in heat 

exchanger tube arrays. Journal of Fluids and Structures, 2 73-93. 

Weaver, D. S., Fitzpatrick, J. A., & Elkashlan, M. (1987). Strouhal numbers for heat exchanger 

tube arrays in cross flow. Journal of pressure vessel technology, 109(2), 219-223. 

Weaver, D. S., & Koroyannakis, D. (1982). The Cross-Flow Response of a Tube Array in 

Water—A Comparison With the Same Array in Air. ASME Journal of Pressure Vessel 

Technology, 104(3), 139-146. doi: 10.1115/1.3264195 

Weaver, D. S., & Koroyannakis, D. (1983). Flow-Induced Vibrations of Heat Exchanger U-

Tubes: A Simulation to Study the Effects of Asymmetric Stiffness. ASME Journal of 

Vibration, Acoustics, Stress and Reliability in Design 105(1), 67-75. doi: 

10.1115/1.3269069 



142 

 

Weaver, D. S., & Schneider, W. (1983). The Effect of Flat Bar Supports on the Crossflow 

Induced Response of Heat Exchanger U-Tubes. Journal of Engineering for Power, 

105(4), 775-781. doi: 10.1115/1.3227481 

Weaver, D. S., Ziada, S., Ay-Yang, M. K., Chen, S. S., Paidoussis, M. P., & Pettigrew, M. J. 

(2000). Flow-Induced Vibrations in Power and Process Plant Components—Progress and 

Prospects. ASME Journal of Pressure Vessel Technology, 122(3), 339-348. doi: 

10.1115/1.556190 

Yetisir, M., & Weaver, D. S. (1993a). An Unsteady Theory For Fluidelastic Instability in an 

Array of Flexible Tubes in Cross-Flow. Part I: Theory. Journal of Fluids and Structures, 

7(7), 751-766. doi: 10.1006/jfls.1993.1044 

Yetisir, M., & Weaver, D. S. (1993b). An Unsteady Theory for Fluidelastic Instability in an 

Array of Flexible Tubes in Cross-Flow. Part II: Results and Comparison With 

Experiments. Journal of Fluids and Structures, 7(7), 767-782. doi: 

10.1006/jfls.1993.1045 

Ziada, S. (2006). Vorticity Shedding and Acoustic Resonance in Tube Bundles. Journal of the 

Brazilian Society of Mechanical Sciences and Engineering, 28(2), 186-189. doi: 

10.1590/S1678-58782006000200008  

Ziada, S., & Oengoren, A. (1992). Vorticity Shedding and Acoustic Resonance in an In-Line 

Tube Bundle - Part I: Vorticity Shedding. Journal of Fluids and Structures, 6(3), 271-

292. doi: 10.1016/0889-9746(92)90010-Z 

Ziada, S., & Oengoren, A. (1993). Vortex Shedding in an In-line Tube Bundle with Large Tube 

Spacings. Journal of Fluids and Structures, 7(6), 661-687. doi: 10.1006/jfls.1993.1039 

 

 




