
Titre:
Title:

Étude des propriétés rhéologiques et du transport du remblai 
cimenté en pâte en conditions nordiques

Auteur:
Author:

Kayumba Kalonji 

Date: 2016

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Kalonji, K. (2016). Étude des propriétés rhéologiques et du transport du remblai 
cimenté en pâte en conditions nordiques [Mémoire de maîtrise, École 
Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2148/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2148/

Directeurs de
recherche:

Advisors:
Mamert Mbonimpa, Tikou Belem, & Mostafa Benzaazoua 

Programme:
Program:

Génie minéral

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2148/
https://publications.polymtl.ca/2148/


 

 

UNIVERSITÉ DE MONTRÉAL 

 

 

 

ÉTUDE DES PROPRIÉTÉS RHÉOLOGIQUES ET DU TRANSPORT DU REMBLAI 

CIMENTÉ EN PÂTE EN CONDITIONS NORDIQUES 

 

 

 

 

 

KAYUMBA KALONJI 

DÉPARTEMENT DES GÉNIES CIVIL, GÉOLOGIQUES ET DES MINES 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

 

 

 

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION 

DU DIPLÔME DE  MAÎTRISE ÈS SCIENCES APPLIQUÉES 

(GÉNIE MINÉRAL) 

AVRIL 2016 

 

 

 

 

 

© Kayumba Kalonji, 2016.  



 

 

 

 

 

UNIVERSITÉ DE MONTRÉAL 

 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

UNIVERSITÉ DU QUÉBEC EN ABITIBI-TÉMISCAMINGUE 

 

 

 

 

Ce mémoire intitulé : 

 

ÉTUDE DES PROPRIÉTÉS RHÉOLOGIQUES ET DU TRANSPORT DU REMBLAI 

CIMENTÉ EN PÂTE EN CONDITIONS NORDIQUES 

 

 

 

présenté par : KALONJI Kayumba 

en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées 

a été dûment accepté par le jury d’examen constitué de : 

 

M. BUSSIÈRE Bruno, Ph. D., président 

M. MBONIMPA Mamert, Ph. D., membre et directeur de recherche 

M. BELEM Tikou, Ph. D., membre et codirecteur de recherche 

M. BENZAAZOUA Mostafa, Ph. D., membre et codirecteur de recherche 

M. OUELLET Serge, Ph. D., membre 

  



iii 

 

DÉDICACE 

Je dédie ce mémoire à toute ma famille, et en particulier à mon défunt et regretté père, Kayumba 

Tshitundu Ngoy Melchias. 



iv 

 

REMERCIEMENTS 

Je tiens à remercier sincèrement mon Directeur de recherche, le professeur Mamert Mbonimpa, 

pour sa disponibilité, ses conseils judicieux, sa rigueur et son encadrement qui ont rendu possible 

la réalisation de ce projet de maîtrise. La direction de ce travail a été co-assurée par les 

professeurs Belem Tikou et Mostafa Benzaazoua à qui j’exprime ma profonde gratitude pour 

leurs conseils, recommandations et suivis durant mon parcours.  

Je remercie le Fonds de recherche du Québec, Nature et Technologies (FRQNT), les Mines 

Agnico Eagle Ltd, l'Institut de Recherche en Mines et Environnement (IRME UQAT-

Polytechnique Montréal), la Fondation canadienne pour l’innovation (FCI)  et tous ses partenaires 

industriels de l'IRME et le CRSNG (subvention à la découverte) pour leur soutien financier à ce 

projet.  

Je tiens également à remercier tous les professeurs et le personnel de l’IRME.  

J’exprime ma reconnaissance aux professeurs Kongolo Mukendi, Augustin Ependa et Guyh 

Dituba Ngoma pour leurs encouragements et bons conseils. 

Mes remerciements s’adressent également à l’équipe de l’URSTM, en particulier à Tony 

Grondin, Patrick Bernèche, Yvan Poirier, Joël Beauregard et Pierre-Alain Jacques pour leur 

soutien technique durant mes travaux de laboratoire. 

Je tiens aussi à remercier Eric Arpin et Benjamin Aubin qui m’ont grandement aidé pour le 

branchement électrique de l’instrumentation lors de la réalisation des essais d’écoulement (flow 

loop test). 

Je remercie mes collègues étudiants et particulièrement Drissa Ouattara, Fabrice Beya Kazambua, 

Gretta Nyameogo, Alex Kalonji Kabambi, Richard Bassole, Ibrahima Hane, El Hadji Babacar 

Kandji, Amal Sahi et Yaya Coulibaly pour leur support durant le projet.  

Je remercie enfin toutes les autres personnes que je n'ai pas citées, mais qui ont contribué, de près ou 

de loin, à la réussite de ce projet de maîtrise. 

Enfin, je remercie aussi mon épouse Ndaya Wamona Judith et ma fille Ingrid Bilonda Kalonji, 

ma famille et tous les amis.  



v 

 

RÉSUMÉ 

Le projet minier Meliadine (propriété des Mines Agnico Eagle, Ltée) au Nunavut étudie la 

possibilité de recourir au remblai cimenté en pâte (RCP) pour remblayer les chantiers souterrains 

vides. Compte tenu de températures très basses en hiver, il faut que le RCP puisse être transporté 

et distribué aux chantiers souterrains sans être gelé durant le transport en pipelines à un faible 

coût de pompage. Du fait que les chantiers miniers sont ouverts dans le pergélisol, le RCP doit 

aussi atteindre la résistance mécanique visée dans des conditions de cure à basse température. 

L’évolution de cette  résistance mécanique devrait dépendre de l’évolution de la température de 

cure du RCP, incluant la température de déposition du RCP dans le chantier souterrain. La 

salinité naturelle de l’eau du pergélisol ainsi que celle apportée par l’utilisation de sels de 

déglaçage du minerai représentent un nouvel facteur d’influence non considéré dans les études 

existantes sur le RCP. Il s’avère pertinent de pouvoir prédire non seulement le comportement 

rhéologique du RCP en fonction des conditions thermiques au cours de son transport en pipeline, 

mais aussi l’évolution de la température du RCP le long du pipeline.  

Ce projet de recherche avait pour objectif principal de développer des outils d’aide à la 

conception du système de distribution de RCP dans les mines souterraines situées dans les zones 

de pergélisol. De façon plus spécifique, les objectifs du projet de recherche consistaient à : 1) 

étudier l’effet de la température et de la salinité sur les propriétés rhéologiques et thermiques des 

mélanges de RCP; 2) réaliser des mini-essais d’écoulement en boucle (mini flow loop tests) afin 

de déterminer des pertes de charge et la distribution de la température du fluide le long des 

pipelines; 3) calibrer un modèle numérique avec les données de tests d’écoulement en boucle et 

simuler l’écoulement du RCP dans un réseau de distribution à une échelle réelle en tenant compte 

des échanges thermiques internes et externes, et du comportement rhéologique du RCP. 

Les résidus de la Mine Goldex (propriété des Mines Agnico Eagle, Ltée) située en Abitibi 

(Québec) et du projet de Mine Meliadine ont été utilisés dans l’élaboration de différents mélanges 

étudiés. Ces résidus ont été d’abord homogénéisés avant de réaliser des caractérisations de base 

(teneur en eau initiale, granulométrie, densité relative, minéralogie). Le résidu en pâte (RP) sans 

liant et le RCP sont les deux principaux types de mélanges qui ont été élaborés avec l’eau de 

robinet à des pourcentages solides 𝐶𝑤 compris entre 71% et 80%. Les ciments GU et HE ont été 

utilisés pour la préparation des mélanges RCP à des dosages 𝐵𝑤 de 5%. Les mélanges avec l’eau 
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saline (pour des concentrations en sel de 5, 10 et 20 g/L) de résidu en pâte (RPS) et de remblai 

cimenté en pâte (RCPS) ont été aussi préparés à des pourcentages solides 𝐶𝑤 de 75% et 76,3%.  

Dans un premier temps, les essais d’affaissement au cône standard d’Abrams et au petit cône ont 

été réalisés à différents pourcentages solides et différentes températures. Les résultats ont permis 

d’étudier l’effet de la température sur la fluidité et de ressortir des pourcentages solides donnant 

l’affaissement ciblé de 7 pouces au cône standard d’Abrams. L’effet de la température sur 

l’affaissement ou la fluidité n’a pas été perçu sur les mélanges de RP (sans liant). Par contre, une 

perte d’affaissement ou de fluidité des mélanges de RCP a été observée avec l’augmentation de la 

température. Dans un deuxième temps, l’effet de la température sur les propriétés rhéologiques 

des mélanges de résidu en pâte sans sel (RP) et avec sel (RPS) et de remblai cimenté en pâte sans 

et avec sel (RCP et RCPS) a été étudié entre 2 et 45°C à l’aide du rhéomètre AR 2000 (TA 

Instruments) équipé d’un croisillon. Il est ressorti de ces investigations que les propriétés 

rhéologiques (seuil de cisaillement, indice de consistance, viscosité plastique et viscosité à 

l’infini) de RP et RPS ont tendance à diminuer avec l’augmentation de la température. 

Cependant, les mélanges de RCP et RCPS ont exhibés un comportement contraire à celui de RP 

et RPS. En effet, les propriétés rhéologiques de RCP et RCPS ont tendance à augmenter avec 

l’augmentation de la température. Tous les mélanges étudiés ont exhibés un comportement 

plastique rhéofluidifiant, proche du comportement de Bingham.  

Par la suite, l’effet de la température sur les propriétés thermiques (conductivité thermique, 

capacité thermique volumique, diffusivité et résistivité thermiques) des mélange frais de RP (𝐶𝑤 

= 75 et 76,3%) et de RCP frais (𝐶𝑤 = 75 et 76,3%, 𝐵𝑤 = 5% GU et HE) a été étudié entre 3 et 

40°C à l’aide de la sonde SH-1 de l’analyseur thermique KD 2-Pro (Decagon). Il a été noté que la 

température n’avait presque pas d’effet sur les propriétés thermiques de ces différents mélanges. 

De plus, les propriétés thermiques des mélanges de RP sont similaires à celles des mélanges 

RCP.  

Des essais d’écoulement en boucle de l’eau et des mélanges de RP Goldex (𝐶𝑤 = 74%) et 

Meliadine (𝐶𝑤 = 71%) et RCP (𝐶𝑤 = 71%, 𝐵𝑤 = 5%HE) ont été réalisés dans un circuit (longueur 

de 27,9 m et diamètre interne de 31,8 mm) instrumenté avec des sondes de température, un 

débitmètre, et un transducteur différentiel relié aux deux capteurs de pression. Une pompe 

volumétrique à vis excentrée a été utilisée pour pomper les matériaux dans le circuit en boucle 
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durant 60 minutes. Il est ressorti de ces essais que la dissipation visqueuse et le frottement interne 

ont entraîné une augmentation de la température des mélanges avec le temps d’écoulement. De 

surcroît, les pertes de charge de RP diminuent avec l’augmentation de la température et le temps 

d’écoulement. Par contre le RCP a exhibé un comportement opposé à celui des mélanges de RP. 

Une augmentation des pertes de charge de RCP avec l’augmentation de la température et le temps 

d‘écoulement a été observée. Les résultats recueillis lors cette campagne, ont permis de calibrer 

un modèle numérique d’écoulement du remblai en pâte et d’échange de chaleur avec le module 

«non isothermal pipe flow» de Comsol Multiphysics® 5.2. Le modèle numérique calibré a permis 

de réaliser une mise en échelle des résultats du mini-essai d’écoulement en boucle aux prototypes 

réels ayant des diamètres de pipeline plus représentatifs que le petit diamètre du mini-loop utilisé.  

Enfin les simulations numériques du RCPS en écoulement dans un système de distribution à 

l’échelle réelle à l’aide du modèle numérique calibré ont été réalisées pour des températures 

souterraines externes de -5°C (température du pergélisol) et 2°C (température d’une mine 

chauffée), une température de l’air extérieure de -50°C et une vitesse de l’air de 1m/s (3,6 km/h) 

en tenant compte de la thermo-dépendance des propriétés rhéologiques du RCPS. L’effet de la 

vitesse d’écoulement et du diamètre interne sur la température de déposition, les pertes de charge 

et les pressions de pompage a été examiné. Il est ressorti de cette étude que l’augmentation de la 

vitesse d’écoulement du RCPS ou la réduction du diamètre interne du pipeline entraîne une 

importante dissipation visqueuse, et par conséquent conduit à l’augmentation de la température 

de déposition du RCPS, des pertes de charge et de la pression de pompage. En ce qui concerne 

l’effet de la température externe souterraine, il s’est avéré que les températures de déposition du 

RCPS pour une température externe de -5°C sont inférieures à celles observées à la température 

externe de 2°C.  

Cette étude a permis de montrer la thermodépendance des propriétés rhéologiques de RCP, de 

réaliser une mise en échelle des résultats du mini-essai d’écoulement en boucle au prototype réel 

et de développer un outil de conception du système de distribution du RCP pouvant tenir compte 

de la thermodépendance des propriétés rhéologiques. Les résultats de la présente étude peuvent 

être utiles pour l’industrie minière et les firmes de génie conseil en rapport avec le design optimal 

de systèmes de distribution du remblai minier, particulièrement en conditions nordiques. 



viii 

 

ABSTRACT 

The Meliadine mining project (property of Agnico Eagle Mines, Ltd.) in Nunavut is studying the 

possibility of using cemented paste backfill (CPB) for backfilling the voids in the underground 

workings. Given very low outside temperatures in winter, it is necessary that the CPB be 

transported and distributed to the underground workings without being frozen during 

transportation in pipelines at a low pumping cost. Because the mine workings are open in 

permafrost, the CPB should also achieve the desired mechanical strength during the time of 

curing under low temperature conditions. The evolution of this strength should depend on the 

evolution of the curing temperature of CPB, including the deposition temperature of the CPB in 

the underground site. The natural salinity of permafrost as well as that provided by the use of 

salts to deglaze the ore is a new influence factor should also be considered. It is relevant to 

predict both the rheological behaviour of the CPB based on thermal conditions and the evolution 

of the temperature of the CPB along the pipeline during its transportation in pipeline (for 

determining the deposition temperature). 

The main objective of this research project was to develop tools to support the design of the CPB 

distribution system in underground mines located in permafrost zones. More specifically, the 

objectives of the research were: 1) to study the effect of temperature and salinity on the 

rheological and thermal properties of CPB; 2) to perform mini flow loop tests to determine the 

pressure drops and the distribution of the paste temperature along the pipeline; 3) to calibrate a 

numerical model with the mini flow loop test data and simulate the flow of CPB in a full-scale 

distribution network taking into account the internal and external heat exchanges and the thermo-

rheological behaviour of the CPB.  

Mine tailings from the Goldex Mine (property of Agnico Eagle Mines, Ltd) located in Abitibi 

(Quebec) and the Meliadine mine project were used in the preparation of different mixtures of 

CPB studied. These tailings were first homogenized before performing basic characterization 

(initial water content, particle size, relative density, mineralogy). The paste tailings (PT) without 

binder and CPB are the two main types of mixtures that were prepared with tap water to solid 

contents 𝐶𝑤 between 71% and 80%.  GU and HE cements at a dosage 𝐵𝑤 of 5% were used to 

prepare the mixtures for CPB. Mixtures with saline water at salt concentrations of 5, 10 and 20 
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g/L were also prepared at 75 % and 76.3% of solid contents 𝐶𝑤., i.e paste tailings with salt (PTS) 

and cemented paste backfills with salt (CPBS)  

Initially, slump tests with the standard Abrams cone and the small cone has been carried out for 

various solid percentages and different temperatures. The results were used to study the effect of 

temperature on fluidity and highlight the solid percentages giving the targeted slumps of 7-inch 

with standard Abrams cone. No effect of temperature on the slump was observed on mixtures of 

PT (without binder). In the opposite, a slump decrease was observed with increasing temperature 

for CPB. Secondly, the effect of temperature on the rheological properties of mixtures of PT, 

PTS, CPB and CPBS was studied for temperatures between 2 and 45°C using the rheometer AR 

2000 (TA Instruments) equipped with a vane geometry. It emerged from these investigations that 

the rheological properties (yield stress, consistency index, plastic viscosity and infinity viscosity) 

of PT and PTS tended to decrease with increasing temperature. However, mixtures of CPB and 

CPBS exhibited a contrary behaviour to that of PT and PTS. Indeed, the rheological properties of 

CPB and CPBS increased with increasing temperature. All the studied mixtures have exhibited 

plastic shear-thinning behaviour, close to the behaviour of Bingham.  

Subsequently, the effect of temperature on the thermal properties (conductivity, volumetric heat 

capacity, diffusivity and resistivity) of fresh mixture of PT (𝐶𝑤 = 75 and 76.3%) and CPB fresh 

(𝐶𝑤 = 75% and 76.3%, 𝐵𝑤 = 5% of GU and HE) was studied between 3 and 40°C using the SH-1 

sensor thermal analyzer KD-2 Pro (for Decagon). It was noted that the temperature has a very 

negligible an effect on the thermal properties of these different mixtures. In addition, the thermal 

properties of mixtures of PT were similar to those of CPB’s mixtures.  

Mini-loop tests of water, PT of Goldex tailings (𝐶𝑤 = 74%) and Meliadine tailings (𝐶𝑤 = 71%), 

and CPB (𝐶𝑤 = 71%, 𝐵𝑤 = 5% HE) were performed in a loop circuit (length of 27.9 mm and 

internal diameter of 31.8 mm) instrumented with temperature sensors, a flowmeter, and a 

differential transducer attached to two pressure sensors. A positive displacement pump (with 

eccentric screw) was used to pump the material into the loop circuit during 60 minutes. It 

emerged from these tests that the viscous dissipation and internal friction resulted in an increase 

of the temperature of the mixtures with the flow time. Furthermore, the pressure drop of PT 

decreased with the increase of the temperature and the flow time. However, the CPB exhibited 

the opposite behaviour to that of mixtures of PT. An increased CPB pressure drops with the 
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increase of the temperature and the flow time was observed. The results obtained during this 

campaign helped to calibrate a numerical flow model of paste backfill and heat exchange with the 

module "non-isothermal pipe flow" of Comsol 5.2 Multiphysics
®
. The calibrated numerical 

model helped scaling up the results of the flow mini-loop test to real prototypes with more 

representative pipeline diameters than the small diameter of the mini-loop system used.  

Finally numerical simulations of CPBS flow in a full-scale distribution system were conduct 

using the calibrated numerical model for external underground temperatures of -5°C (permafrost 

temperature) and 2°C (temperature of a heated mine), a temperature of the outside air of -50°C 

and an air velocity of 1 m/s (3.6 km/h) taking into account the temperature dependence of 

rheological properties of the CPBS.  The effect of flow rate and internal pipeline diameter on the 

CPBS deposition temperature, the pressure drops and the pumping pressure were examined. It 

emerged from this study that the increase of CPBS flow velocity or reducing the internal 

diameter of the pipeline resulted in a significant viscous dissipation, and therefore lead to 

increased deposition temperature of the CPBS, pressure drops and the pumping pressure. 

Relating to the effect of the external underground temperature, it was found that the temperature 

deposition of CPBS were lower for an external temperature of -5°C than of 2°C.  

This study allowed showing the temperature dependence of the rheological properties of the CPB 

and CPBS, achieving full-scaling results of the flow mini-loop test to the real prototype and 

developing a design tool of CPB and CPBS distribution system that can accommodate the 

temperature dependence of the rheological properties. The results of this study may be useful for 

the mining industry and consulting engineering firms in relation to the optimal design of the 

mining backfill distribution systems, particularly in Nordic conditions. 
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1 

CHAPITRE 1 INTRODUCTION 

1.1 Contexte de l’étude 

Au cours de ces dernières années, le secteur minier a connu un regain d’activités lié aux cours 

relativement élevés des métaux précieux et de base, ce qui a conduit à une exploitation des 

gisements de faible teneur dans le monde entier (Christmann et Martel-Jantin, 2010; Jébrak, 

2015). Ces activités produisent et produiront en contrepartie d’énormes quantités de rejets 

miniers (solides, liquides et gaz) qui requièrent une attention particulière dans la mise en pratique 

des normes de gestion environnementale en vigueur. Les rejets solides peuvent prendre la forme 

de roches stériles, des résidus d’usine de concentration, et des boues de traitement des eaux 

minières. Une partie de rejets miniers solides sont retournés sous terre sous forme de remblais 

dans la plupart des mines souterraines canadiennes pour servir principalement de support 

secondaire et permet ainsi l’extraction des piliers secondaires de minerais (Mitchell et al., 1982; 

Mitchell, 1989; Landriault et Tenbergen, 1995; Belem et Benzaazoua, 2008a; Sivakugan et al., 

2015). Cela permet aussi de réduire les volumes de rejets en surface, et par conséquent de réduire 

l’impact environnemental des rejets problématiques (drainage minier acide DMA)(Aubertin et 

al., 2002; Sivakugan et al., 2015). On rencontre principalement trois grands types de remblai 

(Amaratunga et Yaschyshyn, 1997) : rocheux, hydraulique, et en pâte. 

Le remblai rocheux : il est constitué de roches stériles (matériau non classé) auxquelles un agent 

liant est ajouté (généralement entre 5 et 6% en masse) (Emad et al., 2014). Ces roches stériles 

sont renvoyées dans les chantiers sous terre par des cheminées, des convoyeurs ou des camions. 

Ce type de remblai réduit les quantités de stérile en surface et améliore le support de terrain. 

Malgré son application simple et sa préparation minime, le remblai rocheux présente plusieurs 

d’inconvénients : lourde et coûteuse logistique de transport, mise en place entrainant non 

seulement une ségrégation des particules produisant des plans de faiblesse, mais aussi un 

changement de la granulométrie (réduction de diamètre de particules) (e.g. Harvey, 2004; Belem, 

2014; notes de cours). 

Le remblai hydraulique : c’est un mélange d’eau et de résidus classifiés obtenus par 

déschlammage (élimination des particules fines de diamètre inférieur à 20 µm par 

hydrocyclonage) pour assurer le drainage rapide de l’eau, et parfois d’un liant ou d’ajouts 
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minéraux (e.g. Emad et al., 2014; Sivakugan et al., 2015). Le pourcentage solide final du remblai 

hydraulique est généralement inférieur à 70% en poids(e.g. Hassani et Archibald, 1998; Belem, 

2014, notes de cours ; Emad et al., 2014). Le principal avantage du remblai hydraulique est 

notamment son transport et sa mise en place qui requiert peu de supervision technique. Les 

agents liants ajoutés à l’usine permettent un meilleur contrôle de la qualité de ce remblai 

(Amaratunga et Yaschyshyn, 1997). Enfin, le réseau de distribution est simple, peu coûteux et ne 

nécessite généralement pas des pompes pour la distribution (distribution par gravité dans la 

plupart des cas) (Amaratunga et Yaschyshyn, 1997). Quant aux inconvénients, on peut noter : les 

importantes quantités d’eau ajoutées qui doivent être pompées vers la surface, la ségrégation du 

remblai par entraînement des particules due au surplus d’eau, le lessivage du liant lors de 

l’écoulement de l’eau, les coûts élevés des barricades pour retenir ce matériau et le ralentissement 

du rythme de remblayage lié à la construction des barricades (Belem, 2014; notes de cours).  

Le remblai cimenté en pâte « RCP » : c’est un mélange de résidus miniers (rejets de 

concentrateur), d’eau, de liant hydraulique et/ou d’adjuvants (e.g. Hassani et Archibald, 1998; 

Belem, 2014; notes de cours; Emad et al., 2014). C’est une des méthodes de gestion des rejets de 

concentrateurs miniers qui vise, non seulement à  jouer le rôle de support secondaire dans les 

chantiers souterraines (e.g. Belem et Benzaazoua, 2008a), mais aussi à réduire les quantités de 

résidus problématiques à stocker en surface dans les parcs à résidus (cette technique de 

remblayage permet de retourner sous terre environ 50% des résidus miniers). Ce dernier avantage 

est particulièrement important lorsque les résidus sont potentiellement générateurs de drainage 

minier acide ou contaminé (e.g. Aubertin et al., 2002). 

Vu les avantages qu’offre le  remblai cimenté en pâte (RCP), il est largement utilisé dans 

l’industrie minière à travers le monde. Actuellement, le remblayage minier en pâte est utilisé dans 

plusieurs mines en Abitibi (ex. Mines Goldex et LaRonde, propriétés des Mines Agnico Eagles 

Ltée, Mine Westwood, propriété de la Corporation IAMGOLD, Mine CasaBerardi, propriété de 

Hecla Mining Company). Malgré son utilisation courante dans les mines depuis plus d’une 

décennie, le RCP demeure un matériau mal connu et très complexe à cause de sa nature évolutive 

depuis sa préparation, son transport jusqu’à son durcissement après sa mise en place sous terre 

(e.g. Belem et al., 2002). Cela justifie amplement la poursuite des travaux de recherche sur cette 

technique (optimisation de recettes de mélanges des RCPs) à travers le monde, notamment sur 

son comportement mécanique, son comportement géochimique, sa rhéologie et son transport.  
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L’utilisation du RCP dans les mines souterraines dans le pergélisol continu où la température 

peut varier entre -2 et -5°C (Coulombe, 2012; Boulanger-Martel, 2015) reste néanmoins peu 

documentée bien que cette technique soit de plus en plus considérée comme viable compte tenu 

des avantages du RCP. Han (2011) a mené une étude comparative sur le remblai cimenté en pâte 

gelé et les résidus en pâte (sans liant) gelé, et a fait remarquer que le remblai cimenté en pâte gelé 

présentait des meilleures propriétés mécaniques que celles des résidus en pâte gelé. L’apport du 

liant sur la performance des propriétés mécaniques du remblai cimenté en pâte gelé à des 

températures de cure de -6°C reste quand bien même remarquable (Han, 2011). De son côté, 

Cluff (2012) a développé le remblai mixte gelé (ou en glace et cimenté). Ce type de remblai fait 

d’un mélange optimal de roches stériles, de résidus et d’eau permettant de minimiser le temps 

nécessaire pour avoir un remblai gelé ayant la résistance souhaitée. Des systèmes de 

refroidissement sont alors nécessaires pour accélérer le processus de gel de la masse de remblai. 

1.2 Problématique de l’étude 

Le projet minier Meliadine (propriété des Mines Agnico Eagle, Ltée) au Nunavut est un des 

projets qui étudie la possibilité de recourir au RCP. Les principaux défis résident en général dans 

la formulation d’une recette de RCP pouvant être transporté et distribué aux chantiers souterrains 

sans être gelé durant le transport en pipelines à un faible coût de transport, et atteindre la 

résistance mécanique visée dans des conditions de cure à basse température. L’évolution de la 

résistance mécanique du RCP devrait dépendre de l’évolution de la température de cure de la 

masse de remblai. Cette température est contrôlée par les propriétés thermiques du remblai et du 

pergélisol, la température de déposition (ou de mise en place) du remblai, les dimensions du 

chantier, la température des parois du pergélisol et de l’air ambiant. La salinité naturelle de l’eau 

sous le pergélisol (Hivon et Sego, 1993) ainsi que celle apportée par l’application de sels de 

déglaçage du minerai sur le site représentent un nouveau facteur d’influence jusqu’ici non 

considéré dans les études existantes sur le RCP en conditions nordiques. Cette salinité cause la 

diminution de la température de gel de l’eau et peut avoir une influence sur la rhéologie du 

remblai minier en pâte (e.g. Bing et Ma, 2011). 

L’influence des basses températures et de la salinité sur le comportement rhéologique des RCPs 

et le transport en pipelines a été peu étudiée. La chaleur générée par le cisaillement et le 

frottement dans les pipelines peut être insuffisante pour éviter le gel du remblai (malgré la salinité 
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de l’eau de mélange). Cela peut entraîner une modification des propriétés rhéologiques du 

remblai en pâte avec la formation de la glace (changement de phase) au cours du transport 

(augmentation du pourcentage solide, et par conséquent, augmentation du seuil de cisaillement et 

de la viscosité), pouvant conduire au blocage (Kitanovski et al., 2005; Wang et al., 2007). Dans 

ce cas, une isolation thermique, voire un chauffage des pipelines par isolants chauffants, sera 

requis, ce qui peut être coûteux en conditions nordiques. Pour le design du système de 

distribution du RCP, il serait donc pertinent de pouvoir prédire non seulement le comportement 

rhéologique en fonction des conditions thermiques du RCP durant le transport, mais aussi 

l’évolution de la température du remblai le long du pipeline. 

1.3 Description du projet de recherche et structure du mémoire 

L’objectif général de ce projet est de développer des outils d’aide à la conception du système de 

distribution de RCP dans les mines souterraines situées dans les zones de pergélisol. Pour arriver 

à cet objectif général, trois objectifs spécifiques doivent d’abord être atteints : 

 Étudier l’influence de la température et de la salinité sur les propriétés rhéologiques et 

thermiques des RCPs; 

 Réaliser des tests d’écoulement en boucle (flow loop tests) afin de déterminer des pertes de 

charge et la distribution de la température du fluide le long des pipelines; 

 À l’aide des modèles numériques calibrés avec les données de tests d’écoulement en 

boucle, modéliser l’écoulement du RCP à une échelle réelle en tenant compte des échanges 

thermiques internes et externes, et du comportement rhéologique du RCP. 

Le contenu de ce mémoire peut être résumé comme suit. Hormis l’introduction (Chapitre 1), le 

Chapitre 2 présente la revue de littérature en rapport avec le sujet. Il présente d’abord la 

technologie et les caractéristiques géotechniques et thermiques du remblai minier en pâte. 

Ensuite, il aborde les concepts généraux sur la rhéologie et le transport des fluides. Une emphase 

est mise sur l’effet de la température et de la salinité sur les propriétés rhéologiques des 

matériaux cimentaires frais et la conception des systèmes de distribution du remblai en pâte. 

Enfin, il présente la théorie sur le transfert de chaleur d’un fluide en écoulement dans une 

conduite et la conception de systèmes de transport du remblai en pâte.  
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Le Chapitre 3 présente la méthodologie et le programme expérimental. Ici, on présente les 

matériaux, appareils et outils utilisés dans le cadre de cette recherche. Le Chapitre 4 se consacre à 

la présentation des résultats issus du programme expérimental. Ces résultats concernent d’abord 

les tests d’affaissement, rhéologiques et thermiques réalisés sur les mélanges de remblai en pâte. 

Ensuite les essais de mini écoulement en boucle (mini flow loop tests). Enfin ce chapitre présente 

les résultats de calibrage du modèle numérique d’écoulement et de simulations numériques de 

l’écoulement du remblai cimenté en pâte dans un réseau réel de distribution dans une mine 

souterraine.  

Le Chapitre 5 est une discussion qui présente l’effet de la température sur les propriétés 

rhéologiques du remblai cimenté en pâte, la mise en échelle des résultats des essais de mini 

écoulement en boucle, et une analyse des paramètres qui influencent la conception du système de 

transport du remblai cimenté en pâte dans les régions froides. Enfin, le Chapitre 6 présente les 

principales conclusions et les recommandations.  

1.4 Originalité et retombées du projet 

Les propriétés rhéologiques sont des paramètres de base essentiels lors de la conception des 

systèmes de distribution du remblai cimenté en pâte. Jusqu’à ce jour, la littérature sur la rhéologie 

des matériaux cimentaires mentionne que leur comportement rhéologique est thermo-dépendant, 

et est contrôlé par la chimie de l’eau (ions en solution, par exemple). Par contre, lors de la 

conception des systèmes de transport des matériaux cimentaires, leur thermodépendance 

rhéologique n’est pas considérée dans la plupart des cas, bien que cela s’avère incontournable 

pour des températures extrêmes (très faibles). De même, la rhéologie du RCP pouvant être 

tributaire de la chimie de l’eau de mélange, en particulier de la salinité, ce paramètre devrait être 

intégré lors de la conception des systèmes de  transport du RCP. L’originalité de cette étude est 

qu’elle intègre tous ces aspects jusqu’ici peu pris en compte.  

A l’issue de ce projet, des outils de conception des systèmes de transport du RCP intégrant la 

thermodépendance de ses propriétés rhéologiques seront développés et mis à la disposition de 

l’industrie minière. Ces outils permettront de prédire non seulement les paramètres 

hydrodynamiques (pertes de charge, vitesse d’écoulement), mais aussi l’évolution de la 

température du RCP au cours de son transport en pipeline et la température de déposition (ou 

mise en place) du remblai dans les chantiers souterrains sous le pergélisol. Cette dernière 
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température reste un facteur important qui affecte les échanges thermiques entre le remblai et le 

pergélisol. D’une part, ces échanges vont définir l’étendue de la zone du pergélisol qui amorce un 

dégel (augmentation de la température) (Ghoreishi-Madiseh et al., 2011), ce qui peut affecter la 

stabilité mécanique des ouvrages. D’autre part, ces échanges vont contrôler le processus de gel 

(diminution de la température) du remblai. Par ailleurs, l’analyse de l’échange thermique interne 

et externe à l’aide des essais de pompage en boucle du remblai en pâte et des simulations 

numériques constitue, pour l’industrie minière nordique, un outil de contrôle des pertes de 

charges et de l’énergie de chauffage des pipelines. 
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CHAPITRE 2 REVUE DE LA LITTÉRATURE 

2.1 Technologie, définition et préparation du remblai minier en pâte 

La technologie du remblai en pâte a été utilisée pour la première fois en 1974 à Bad Grund Mine 

en Allemagne (e.g., Paterson, 2012). Le remblai minier en pâte est un mélange des résidus 

miniers, d’agents liants (ciment, slag, cendres volantes, etc.), et d’eau (de robinet, de lac, ou 

recyclée du processus industriel) (Hassani et Archibald, 1998; Amaratunga et Yaschyshyn, 1997; 

Belem et Benzaazoua, 2008b). Il a généralement un pourcentage solide massique 𝐶𝑤 compris 

entre 70 et 85%  et un dosage en liant 𝐵w de 3 à 7% en masse des résidus secs (Belem et 

Benzaazoua, 2008a). La densité ou la masse volumique du RCP dépend à la fois de la 

granulométrie et de la densité relative des solides (e.g. Fall et al., 2005; Saebimoghaddam, 2005). 

Un large éventail de distributions granulométriques peut être utilisé dans l’élaboration du RCP. 

Néanmoins, le RCP devra contenir un minimum de 15% massique de particules ultrafines (de 

diamètre inférieur à 20 µm) pour faciliter son transport par pipelines. Le rôle de ces particules 

fines est de conserver une bonne quantité d’eau afin d’obtenir un mélange homogène (Landriault 

et Tenbergen, 1995; Saebimoghaddam, 2005) . Plus la finesse de la granulométrie est importante, 

plus la surface spécifique des agrégats de particules est grande, et une bonne quantité d’eau reste 

fixée autour des particules fines. L’ajout d’agents liants tels que le ciment, la scorie (slag), la 

fumée de silice et la cendre volante, améliore les propriétés mécaniques et hydrauliques, ainsi que 

la durabilité et la stabilité géochimique du remblai (Benzaazoua et al., 2004; Saebimoghaddam, 

2005; Nehdi et Tariq, 2007).  

Le RCP est préparé à partir de résidus miniers épaissis et filtrés, ayant en général un pourcentage 

solide compris entre 78 et 85% (Belem et Benzaazoua, 2008a). Ensuite, le liant, l’eau et certains 

additifs minéraux (le cas échéant) sont ajoutés afin d’obtenir une consistance désirée, soit un 

affaissement optimal au cône standard d’Abrams compris entre 150 et 250 mm (6 et 10 pouces) 

afin d’assurer sa transportabilité ou sa pompabilité, et sa résistance requise à 28 jours (Belem et 

Benzaazoua, 2003; Belem et Benzaazoua, 2007; Mkadmi, 2012). L’eau ajoutée confère une 

certaine fluidité au remblai en pâte, et permet l’hydratation de l’agent liant. Le mélange est 

homogénéisé à l’aide d’un malaxeur avant d’être transporté et mis en place dans les chantiers 

souterrains à l’aide d’une pompe à pistons ou par gravité, ou par une combinaison des deux 
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systèmes (Thomas et al., 1979). La mise en place du remblai cimenté en pâte se fait généralement 

en deux étapes (Thompson et al., 2012). La première consiste à déverser le remblai cimenté en 

pâte à dosage élevé en ciment (5 à 7%) pour former le bouchon d’environ sept mètres. Ce 

bouchon ayant une bonne résistance mécanique sert de fondation pour les séquences ultérieures 

de remblayage. Généralement, la cure du bouchon dure 1 à 3 jours suivant la résistance requise 

pour la suite des opérations (Belem et al., 2013). La seconde étape consiste à déverser un remblai 

en pâte cimenté à un faible dosage en liant (2 à 5%) au-dessus du bouchon à une vitesse de 

remplissage de 2 à 10 m de hauteur par jour (Belem et al., 2013; Belem, 2014; notes de cours). 

Plusieurs mines optent pour un remblayage en continu sans bouchon (Belem et al., 2013). Il est 

important de signaler que la barricade est préalablement construite avant ces deux étapes.  

2.2 Caractéristiques géotechniques et thermiques du remblai cimenté  en pâte  

Le remblai cimenté en pâte est un matériau complexe qui évolue dans le temps. Ses 

caractéristiques physico-mécaniques sont des paramètres  importantes, qui permettent de mieux 

comprendre le comportement du RCP depuis leur préparation jusqu’à leur mise en place dans le 

chantier (Belem et al., 2002; Mkadmi, 2012). Il s’agit notamment des propriétés hydro-

géotechniques, mécaniques et thermiques du remblai cimenté en pâte. 

2.2.1 Propriétés géotechniques du remblai cimenté en pâte  

La quantification des propriétés hydro-géotechniques permet de mieux caractériser le remblai 

cimenté en pâte. Ces propriétés décrivent la structure et la texture du remblai. Du fait de son 

caractère (constitution et nature) évolutif au cours du temps, le remblai minier en pâte cimenté est 

initialement une pâte, puis devient comme un sol dur à moyen terme et ensuite comme roche 

tendre à long terme. Comparativement au sol, le remblai cimenté en pâte est essentiellement 

formé de trois phases : une phase solide (résidu + liant non hydraté + hydrates formés), une phase 

liquide (eau de mélange + eau interstitielle) et une phase gazeuse (air + vapeur d’eau) (Harvey, 

2004; El-Aatar, 2011). Les propriétés ci-dessous sont utilisées pour décrire les milieux poreux en 

général et le remblai en particulier. 

Masses volumiques : la masse volumique totale ou humide 𝜌, la masse volumique des grains 

solides 𝜌s et la masse volumique sèche 𝜌d d’un remblai sont respectivement exprimées par les 

expressions suivantes : 
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𝜌 =
𝑀𝑇

𝑉𝑇
                             𝜌𝑠 =

𝑀𝑆

𝑉𝑆
                             𝜌𝑑 =

𝑀𝑆

𝑉𝑇
 (2-1) 

avec  

𝑀𝑆 = 𝑀𝑡𝑠 + 𝑀𝑏 (2-2) 

où, 

𝑀𝑇 : Masse totale du remblai 𝑉𝑇 : Volume total du remblai 

𝑀𝑠: Masse totale des grains solides 𝑉𝑠 : Volume total des grains solides 

𝑀𝑡𝑠: Masse des résidus ou tailings secs 𝑀𝑏 : Masse du liant (ou binder) 

Densité relative des grains solides 𝐷𝑅 : elle est une propriété physique indispensable en 

géotechnique. Elle est le rapport entre la masse volumique des grains solides 𝜌s et la masse 

volumique de l’eau 𝜌w. 

 𝐷𝑅 =
 𝜌𝑠

𝜌𝑤
 

(2-3) 

C’est un paramètre important dans l’élaboration du remblai, et joue un rôle important sur les 

différentes propriétés mécaniques et rhéologiques du remblai. Cette propriété varie en fonction 

des phases minérales composant les grains solides. Pour les résidus miniers, elle varie entre 2,6 et 

4,5 (Bussière, 2007). 

Teneur en eau massique 𝑤 : elle est une propriété hydrique qui quantifie la masse d’eau contenue 

dans le remblai. Elle est le ratio de la masse d’eau 𝑀𝑤 dans les pores et de la masse sèche 𝑀𝑑 ou 

𝑀𝑠: 

𝑤 =
𝑀𝑤

𝑀𝑑
=

𝑀𝑇 − 𝑀𝑑

𝑀𝑑
 

(2-4) 

Indice des vides 𝑒 et porosité 𝑛 : l’indice des vides est le rapport entre le volume des vides 𝑉𝑣 et 

le volume des grains solides 𝑉𝑠. 
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𝑒 =
𝑉𝑉

𝑉𝑆
=

𝜌𝑠

𝜌𝑑
− 1 

(2-5) 

La porosité totale du remblai est le rapport entre le volume des vides 𝑉𝑣 du remblai et le volume 

total 𝑉𝑇. Son expression est : 

𝑛 =
𝑉𝑉

𝑉𝑇
 

(2-6) 

L’indice des vides 𝑒 et la porosité totale 𝑛 du remblai sont reliés par l’expression suivante :   

𝑒 =
𝑛

1 − 𝑛
 

(2-7) 

Comme dans tout matériau solide, la diminution de la porosité totale du remblai entraine 

généralement une amélioration de ses propriétés mécaniques (UCS, module d’élasticité) (Fall et 

al., 2005; Ouellet et al., 2007a; Ouellet et al., 2007b; Ouellet et al., 2008; Ercikdi et al., 2009).  

Degré de saturation 𝑆𝑟: il est le rapport entre le volume d’eau contenu dans les vides du matériau 

(volume occupé par l’eau) et le volume des vides du matériau. C’est un paramètre très important 

dans le contrôle de la conductivité hydraulique et de la diffusion de l’oxygène dans le remblai. Il 

s’exprime en pourcentage et peut être exprimé à l’aide d’autres paramètres géotechniques (indice 

des vides 𝑒, teneur en eau 𝑤 et densité relative 𝐷𝑅) : 

𝑆𝑟(%) =
𝑉𝑤

𝑉𝑉
× 100 =

𝑤 (%) 𝐷𝑅

𝑒
=

𝜃

𝑛
× 100 

(2-8) 

Dans la plupart des cas, le RCP présente généralement des degrés de saturation 𝑆𝑟 élevés, malgré 

la diminution de 𝑆𝑟 avec le temps de cure (Ghirian and Fall, 2013). Cela constitue un des 

principaux avantages de ce dernier. 

Teneur en eau volumique 𝜃 : Elle est définie comme étant le rapport entre le volume d’eau libre 

𝑉𝑤 contenu dans les pores d’un échantillon de matériau et le volume total 𝑉𝑇 de celui-ci : 

𝜃 =
𝑉𝑤

𝑉𝑇
= 𝑛 𝑆𝑟 

(2-9) 
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Pourcentage massique des solides 𝐶𝑤 : ce paramètre est défini comme étant le rapport : 

𝐶𝑤 =
𝑀𝑆

𝑀𝑇
=

1

1 + 𝑤
 

(2-10) 

Le pourcentage des solides 𝐶w est un paramètre très important pour le contrôle et la prédiction de 

l’énergie de pompage du remblai. L’énergie de pompage augmente avec l’accroissement du 

pourcentage des solides du remblai (Cooke, 2001; Boger, 2009), et par conséquent le coût de 

transport du remblai en pâte.  

Pourcentage volumique des solides (fraction solide volumique) 𝐶𝑉 : ce paramètre est défini 

comme suit : 

𝐶𝑉 =
𝑉𝑆

𝑉𝑇
=

1

1 + 𝑒
 

(2-11) 

Les paramètres 𝐶𝑉 et 𝐶𝑤 sont liés par la relation ci-après :  

𝐶𝑉 = 𝐶𝑤

𝜌

𝜌𝑠
 

(2-12) 

Pourcentage massique en liant 𝐵𝑤 (%) : ce paramètre est donné par l’expression suivante : 

𝐵𝑤 =
𝑀𝑏

𝑀𝑡𝑠
 

(2-13) 

Granulométrie des résidus : la granulométrie des résidus joue un rôle majeur sur les propriétés 

hydrauliques, mécaniques et rhéologiques du remblai en pâte cimenté (Fall et al., 2005; Kesimal 

et al., 2004; Ghirian et Fall, 2013). Suivant la proportion en particules ultrafines de diamètre 

inférieur à 20µm contenue dans les résidus, Golder Paste Technology (Landriault et al., 1997) 

classifie ainsi le remblai en trois catégories : remblai fin (60% ⩽ % P20µm < 90%), remblai moyen 

(35% ⩽ %P20µm < 60%), et remblai grossier (15% ⩽ % P20µm < 35%) (Landriault, 2001).  

La caractérisation granulométriques des matériaux granulaire est basée sur l’analyse de la courbe 

granulométrique. Celle-ci permet de classifier le matériau, et est caractérisée par le coefficient 

d’uniformité 𝐶𝑈  et le coefficient de courbure 𝐶𝐶 : 
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𝐶𝑈 =
𝐷60

𝐷10
 (2-14) 

𝐶𝐶 =
𝐷30

2

𝐷60 𝐷10
 (2-15) 

Où 𝐷x est le diamètre des particules à x % de passants. 

Si le coefficient d’uniformité 𝐶𝑈 est compris entre 5 et 20, le résidu est semi-étalé. Par contre si 

ce coefficient est compris entre 20 et 200, le résidu est dit étalé. Pour avoir une distribution 

granulométrique bien classée des résidus, le coefficient de courbure 𝐶c doit être compris entre 1 

et 3. Le diamètre 𝐷10 de neuf échantillons de résidus miniers provenant des mines canadiennes 

(hormis celles du Québec) des roches dures varie entre 0,001 et 0,004 mm, tandis que le 𝐷60 varie 

entre 0,01 et 0,05 mm, avec un 𝐶𝑈 variant entre 8 et 18 (Bussière, 2007). Les pourcentages de 

particules de diamètre inférieur à 2 µm et 80 µm de ces résidus sont compris respectivement entre 

5 et 14%, et 70 et 97%. Par ailleurs, les résidus provenant des roches dures de 13 mines du 

Québec ont présenté un 𝐷10 et un 𝐷60 compris respectivement entre 0,0009 et 0,006 mm, et 0,01 

et 0,08 mm, avec un 𝐶𝑈 variant entre 10 et 30. Les pourcentages particules de diamètre inférieur à 

2 µm et 80 µm de ces résidus sont compris respectivement entre 4 et 20%, et 60 et 100%.  

Kesimal et al. (2005) mettent en évidence l’effet de la proportion en particules de diamètre 

inférieur à 20 µm sur l’affaissement du remblai en pâte. Pour un pourcentage solide fixe, le 

remblai relativement plus fin présente un faible affaissement et une forte capacité de rétention 

d’eau. Parallèlement, la proportion en particules de diamètre inférieur à 20 µm limite le 

pourcentage solide du remblai. En quelque sorte, la distribution granulométrique contrôle le 

pourcentage solide 𝐶w d’un remblai, et par conséquent sa rhéologie ou son écoulement (Verkerk 

et Marcus, 1988). Westerhom et al. (2008) montrent que les propriétés rhéologiques (seuil de 

cisaillement et viscosité plastique) des matériaux cimentaires augmentent avec la proportion en 

particules fines, entrainant ainsi une augmentation de la demande en eau. Par ailleurs, une 

proportion modérée en particules fines a des effets positifs sur les propriétés d’écoulement 

(consistance, pompabilité) des matériaux cimentaires (Westerholm et al., 2008) et du RCP (Jung 

and Biswas, 2002). De la même façon, la proportion de 15 à 20% des fines de diamètre inférieur 

à 20 µm contenue dans le remblai en pâte reste la proportion optimale, car au-delà de cette 
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fourchette, on observe une augmentation considérable de la résistance à l’écoulement du remblai 

dans la tuyauterie (Landriault et Tenbergen, 1995; Bouzaiene, 1995).  

Surface spécifique 𝑆𝑠 : liée à la granulométrie, la surface spécifique est une propriété 

microstructurale permettant de mieux comprendre les comportements rhéologiques et 

hydromécaniques du remblai en pâte cimenté. Plus le résidu contient des particules fines, plus sa 

surface spécifique est importante. Elle est définie comme étant le rapport entre la surface totale 

des grains du matériau par unité de masse ou de volume de l’échantillon (Holtz et Kovacs, 1981).  

2.2.2 Propriétés thermiques du remblai en pâte frais et techniques de mesure  

Les propriétés thermiques sont des paramètres essentiels qui permettent de décrire ou de 

modéliser le comportement thermique des matériaux soumis à des transferts thermiques, mais 

aussi la capacité à stocker ou à transformer de l’énergie thermique (Farouki, 1981; Le Frious, 

2010; Gauthier, 2013). Les propriétés thermiques de base des matériaux sont notamment la 

conductivité, la capacité, la diffusivité, et l’effusivité thermiques. Elles dépendent de la nature du 

matériau (homogénéité, anisotropie) et de la température (Gauthier, 2013).  

La conductivité thermique 𝜆 permet de quantifier le pouvoir du matériau à conduire la chaleur. 

Plus elle est grande, plus le matériau sera un conducteur de la chaleur. La première loi de Fourier 

(voir l’équation (2-16)) définit la densité du flux de chaleur 𝑞’ (=𝑞/𝑆 (W/m
2
); 𝑆 (m

2
) est la 

section) comme étant le produit de la conductivité thermique 𝜆 et du gradient de température. En 

une dimension, cette équation s’écrit comme suit (Clauser et Huenges, 1995) :  

𝑞′ = 𝜆 
𝜕𝑇

𝜕𝑥
 

(2-16) 

où, 𝑇 est la température et 𝑥 est l’épaisseur du matériau. 

La conductivité thermique 𝜆 (W·m-1·K-1
) est le flux de chaleur q traversant un mètre d’épaisseur 

de matériau soumis à une unité de gradient de température appliquée dans la direction de ce flux 

de chaleur entre la face entrante et la face sortante (Farouki, 1981; Le Frious, 2010; Gauthier, 

2013). .  

La conductivité thermique du remblai en pâte frais, comme tout géomatériau granulaire, peut être 

affectée par plusieurs facteurs. Il s’agit notamment des caractéristiques du résidu (distribution 
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granulométrique, minéralogie, densité), de la porosité, du degré de saturation, de la proportion 

des solides, du type de liant et du dosage (Côté et Konrad, 2009). En considérant le remblai en 

pâte comme une suspension saturée en eau, sa conductivité thermique est affectée par les 

conductivités thermiques de ses constituants, et peut être prédite à l’aide de la relation de 

Maxwell qui tient compte des conductivités thermiques de différentes phases et de la proportion 

solide 𝐶v (Wang et al., 2007; Chhabra et Richardson, 2008):   

𝜆𝑠𝑢𝑠 = 𝜆𝐿

1 + 0,5 (
𝜆𝑠

𝜆𝐿
) − 𝐶𝑉 (1 − (

𝜆𝑠

𝜆𝐿
))

1 + 0,5 (
𝜆𝑠

𝜆𝐿
) + 0,5𝐶𝑉 (1 − (

𝜆𝑠

𝜆𝐿
))

 (2-17) 

où,  

𝜆L est la conductivité thermique de la phase liquide;  

𝜆s est la conductivité thermique de la phase solide (résidu + liant).  

Cette dernière peut être aussi prédite à l’aide du modèle de la moyenne géométrique qui tient 

compte des conductivités et proportions des minéraux composant la phase solide  (Bouguerra et 

al., 1997; Côté et Konrad, 2005):  

𝜆𝑠 = ∏ 𝜆𝑚𝑖
𝜒𝑖

𝑛

𝑖=1

 
(2-18) 

avec,  

𝜒i est la proportion volumétrique du minéral i (∑ 𝜒𝑖 = 1𝑛
𝑖=1 ); 

𝜆mi est la conductivité thermique du minéral i. 

Côté et Konrad (2009) ont proposé un modèle de prédiction de la conductivité thermique des 

matériaux granulaires (solide-liquide-air) basé sur la porosité et les conductivités thermiques des 

phases constituantes. Ce modèle est donné par la relation suivante : 

𝜆𝑠𝑢𝑠 =
(𝜆2𝑝𝜆𝑠 − 𝜆𝐿)(1 − 𝑛) + 𝜆𝐿

1 + (𝜆2𝑝 − 1)(1 − 𝑛)
 

(2-19) 
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Le paramètre 𝜆2p est un facteur de pondération empirique lié à la structure thermique du matériau 

granulaire, laquelle est principalement influencée par les contacts entre les grains et la 

distribution des pores, la distribution de l’eau et l’air dans les pores et la continuité des phases. 

Un modèle simplifié de ce paramètre tenant compte du rapport entre la conductivité de la phase 

liquide ou du fluide de suspension 𝜆L et celle de la phase solide 𝜆s, est donné par la relation 

suivante :  

𝜆2𝑝 = 0,29 (15 𝜆𝐿 𝜆𝑠⁄ )𝛽 (2-20) 

Pour 𝜆L/ 𝜆s >1/15, 𝛽 est égal à 0,46. Pour 𝜆L/ 𝜆s <1/15, 𝛽 est égal à 0,81, 0,54, et 0,34, 

respectivement pour les matériaux à grains arrondis ou sub-arrondis, angulaires ou sub-angulaires 

et cimentés. L’équation (2-19) s’avère adaptée pour l’estimation ou la prédiction de la 

conductivité thermique du résidu en pâte (sans liant) (Beya et al., 2015). 

La conductivité thermique du remblai en pâte frais diminue avec l’augmentation de la finesse des 

particules de résidu (Célestin et Fall, 2009). Cette décroissance peut être expliquée par le fait que 

la présence de particules fines affecte d’une part la structure et d’autre part entraine la diminution 

de la densité du mélange, et par conséquent, une augmentation de la porosité et de l’indice des 

vides. En outre, lorsque les minéraux constitutifs du résidu ont des faibles conductivités 

thermiques, le résidu présente généralement une faible conductivité thermique, et par conséquent 

le remblai en pâte aussi (Célestin et Fall, 2009; Lee et al., 2014). La conductivité thermique des 

suspensions augmente avec l’augmentation du pourcentage solide (Chhabra et Richardson, 2008; 

Chen et al., 2009; Côté et Konrad, 2009). En considérant le ratio eau/ciment, la conductivité 

thermique du remblai en pâte frais a tendance à diminuer avec l’augmentation de ce ratio 

(Célestin et Fall, 2009). Lors d’une étude menée par Lee et Shang (2014) sur les propriétés 

thermiques du remblai en pâte contenant la fumée de silice à des dosages de 20, 40 et 60% (par 

rapport à la masse des résidus), ces auteurs notent que la conductivité thermique initiale du 

remblai diminuait avec l’augmentation de la teneur en fumée de silice. Ce phénomène pourrait 

s’expliquer par la faible conductivité thermique de la fumée de silice comparativement à celle des 

résidus de roche naturelle (Lee et Shang, 2014). De surcroît, Célestin et Fall (2009) notent une 

diminution de la conductivité thermique du remblai en pâte due au dosage élevée de la slag 

comparativement au mélange de remblai en pâte avec le ciment Type I seul. Toutefois, ces 

auteurs ont noté que l’augmentation du dosage en ciment Type I de 2 à 6% influençait faiblement 



16 

 

la conductivité thermique du  remblai en pâte. Lee et al. (2014) notent que la conductivité 

thermique initiale du remblai en pâte est indépendante de la chimie du fluide de pores.  En 

particulier, ces auteurs ont noté que l’ajout des sels tels que le 𝑁𝑎𝐶𝑙 et le 𝐶𝑎𝐶𝑙2 à 1,0 M dans 

l’eau n’avait aucune influence sur la conductivité thermique initiale du remblai en pâte préparé 

avec la fumée de silice. Cependant, les mélanges avec sels ont exhibé des conductivités 

thermiques élevées avec le temps de cure par rapport aux mélanges sans sel.  

La capacité thermique volumique 𝐶𝑡 (en J/m
3·K) est l’énergie thermique (Joules) nécessaire pour 

élever la température d’un degré (Celsius ou Kelvin) pour une unité de volume de matériau 

(Waples et Waples, 2004). Ce paramètre traduit l’aptitude du matériau de volume donné à 

absorber la chaleur et à s’échauffer de Δ𝑇. De même, la capacité thermique massique 𝐶𝑝 (J/kg·K) 

est l’énergie thermique nécessaire pour augmenter la température d’un degré (Celsius ou Kelvin) 

pour une unité de masse de matériau. La capacité thermique volumique 𝐶𝑡 est le produit de la 

capacité thermique massique 𝐶𝑝 (J/kg·K) et de la masse volumique du matériau 𝜌 (kg/m
3
) 

(Waples et Waples, 2004) : 

𝐶𝑡 = 𝐶𝑝 𝜌 (2-21) 

Pour une suspension, la capacité thermique massique à pression constante et à volume constant 

peut être prédite à l’aide de l’expression ci-après (Ku et al., 2000; Chhabra et Richardson, 2008; 

Chavan et Pise, 2015):  

𝐶𝑝𝑠𝑢𝑠 =  𝐶𝑉 𝐶𝑝𝑠 + (1 − 𝐶𝑉)𝐶𝑝𝐿 (2-22) 

où,  

𝐶𝑝𝑠𝑢𝑠 : capacité thermique massique de  la suspension; 

𝐶𝑝𝐿 : capacité thermique massique de la phase liquide;  

𝐶𝑉 : fraction volumique des solides; 

𝐶𝑝𝑠 : capacité thermique massique de la phase solide.  

La capacité thermique de la phase solide peut être aussi estimée à l’aide de la relation suivante 

(Goto et Matsubayashi, 2009) : 
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𝐶𝑝𝑠 =  ∑ 𝑣𝑖  𝐶𝑝𝑠𝑖

𝑛

𝑖=1

 
(2-23) 

où,  

𝑣𝑖 et 𝐶𝑝𝑠𝑖 représentent respectivement la proportion volumique et la capacité thermique massique 

du minéral 𝑖. 

La diffusivité thermique  est le ratio de la conductivité thermique et de la capacité thermique 

volumique du matériau,  et s’exprime en m
2
/s (Farouki, 1981) : 

𝛿 =  
𝜆

𝐶𝑡
 

(2-24) 

Elle caractérise le comportement thermique dynamique d’un matériau, car elle traduit l’aptitude 

du matériau à transmettre un signal thermique d’un point à l’autre en son sein (Farouki, 1981; 

Gauthier, 2013). 

La résistivité thermique 𝛺 (°C∙m/W) est l’inverse de la conductivité thermique. Elle est le rapport 

entre l’écart de température dans un matériau d’une épaisseur donnée et le flux de chaleur  

engendré par cet écart. Elle est donnée par la relation suivante (Gauthier, 2013) :  

𝛺 =
∆𝑇

𝑄
  

(2-25) 

Où, 𝛥𝑇 (°C ou °K) est l’écart de température entre deux isothermes du matériau et 𝑄 (W/m) est le 

flux de chaleur.  

Différentes techniques sont utilisées pour mesurer les propriétés thermiques des matériaux. Ces 

méthodes sont classifiées suivant le régime thermique mis en œuvre. Ainsi donc, on distingue les 

techniques en régime stationnaire, et transitoires ou dynamiques (Degiovanni, 1994; Paul et al., 

2010).  

Les techniques en régime stationnaire sont basées sur l’établissement d’un gradient de 

température sur une épaisseur bien connue de l’échantillon pour contrôler le flux de chaleur d’un 

côté à l’autre (Al-Ajlan, 2006). Ces techniques peuvent mesurer les propriétés thermiques des 
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matériaux dont la conductivité thermique est comprise entre 0 et 2 W/m·K dans l’intervalle de 

température de -180 et 1000°C suivant la spécificité de la technique (Yesilata et Turgut, 2007).  

Les techniques transitoires de mesure des propriétés thermiques de matériau mesurent la réponse 

d’un signal envoyé dans l’échantillon, pour y produire de la chaleur (Al-Ajlan, 2006). Une 

impulsion de chaleur ou de flux de chaleur sous la forme d'une fonction rationnelle est produite 

par un courant électrique de la source pour générer un champ dynamique de température à 

l'intérieur de l’échantillon (Al-Ajlan, 2006; Yesilata et Turgut, 2007). Le changement de 

température avec le temps (réaction thermique) est mesuré par un capteur qui est, soit unifié avec 

la source de chaleur, ou soit placé à une distance fixe de la source.  La réponse est alors analysée 

conformément à un modèle ou ensemble de solutions développées (Yesilata et Turgut, 2007). Ces 

techniques transitoires peuvent être divisées en deux catégories dépendamment de l’appareil 

utilisé pour les mesures : techniques optique et de contact. Cette dernière est de plus en plus 

utilisée à cause de sa simplicité. Elle permet de mesurer les propriétés thermiques des matériaux 

ayant des conductivités thermiques comprises entre 0,001 et 200 W/m·K à des températures 

comprises entre -70 et 1600°C dépendamment de l’appareil ou de la technique utilisé(e). Quant à 

la technique transitoire optique, elle permet de mesurer les propriétés thermiques des matériaux 

de conductivité thermique comprise entre 0,1 et 1500 W/m·K à des températures allant de -100 à 

3000°C suivant la spécificité de la technique (Yesilata et Turgut, 2007).  

Le choix de la méthode dépend des besoins spécifiques. Mais les critères de choix restent basés 

sur la nature des propriétés thermiques à caractériser, l’état physique du matériau (solide, liquide 

ou gaz), les conditions de réalisation des essais (température, pression, …), le type de conducteur 

(matériau isolant ou conducteur thermique) et la précision de la méthode (Gauthier, 2013).  

2.3 Concepts généraux sur la rhéologie 

La rhéologie est une branche de la chimie physique qui étudie la déformation et l’écoulement de 

la matière sous l’effet des contraintes appliquées, considérant le taux d’application de ces 

contraintes. Cette science permet d’établir des relations entre les contraintes appliquées, les 

déformations induites et le temps (Chouinard, 1999; Saebimoghaddam, 2005; Mezger, 2006). 

Ainsi ces relations établies permettent de déterminer le type d’écoulement ou le comportement 

rhéologique de la matière.  
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La rhéologie s’applique autant aux corps solides qu’aux corps liquides. La loi de comportement 

rhéologique classique des corps solides est la loi de Hooke définie pour un corps parfaitement 

élastique (la déformation est proportionnelle à la contrainte appliquée ; et la déformation 

engendrée est réversible). La loi équivalente pour les corps parfaitement fluides est connue sous 

le modèle de Newton. À l’intermédiaire de ces deux états de comportement rhéologique des 

corps, se trouve des corps particuliers ou intermédiaires (Chouinard, 1999). 

2.3.1 Types de fluides 

En termes d’écoulement de fluide, on distingue deux grandes familles de fluides : le fluide 

newtonien et le fluide non-newtonien.  

2.3.1.1 Fluide newtonien 

Il s’agit d’un corps fluide exclusivement visqueux dont l’écoulement se produit aussitôt qu’une 

contrainte est appliquée. Le fluide newtonien présente une relation linéaire entre la contrainte de 

cisaillement 𝜏 (Pa) et le taux de cisaillement ou de déformation  𝛾̇ (s
-1

). Le comportement de ce 

fluide est déterminé uniquement par la viscosité dynamique 𝜂 (Pas), comme le montre l’équation 

suivante :  

𝜂 =
𝜏

𝛾̇
 (2-26) 

La contrainte de cisaillement 𝜏 représente en quelque sorte la force de frottement due à la force 

appliquée au fluide. Le taux de déformation ou de cisaillement 𝛾̇ est défini comme le gradient de 

la vitesse de déformation à travers les couches de fluide. À température et pression constantes, la 

viscosité d’un fluide newtonien n’est pas affectée par le taux de cisaillement : elle reste constante 

(Schramm, 2000; Mezger, 2006). La relation entre la contrainte de cisaillement et le taux de 

cisaillement devient alors linéaire (voir Figure 2.1a). 

2.3.1.2 Fluide non-newtonien 

Les relations entre la contrainte de cisaillement et le taux de cisaillement, appelées courbes 

d’écoulement ou rhéogrammes, présentent les caractéristiques suivantes décrites à la Figure 2.1a 

pour les fluides non-newtoniens (Barnes et al., 1989; Coussot et Ancey, 1999) : 
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 Le rhéogramme n’est pas linéaire, mais débute à l’origine (𝜏 = 0 pour 𝛾̇ = 0). Dans ce cas, le 

fluide est soit rhéoépaississant ou dilatant (la viscosité croît avec le taux de cisaillement), 

soit rhéofluidifiant ou pseudoplastique (la viscosité diminue avec le taux de cisaillement) 

sans seuil de cisaillement. 

 Le rhéogramme est linéaire, mais avec un seuil de cisaillement ou de plasticité (𝜏>0 

pour 𝛾̇=0) qu’il faudra vaincre avant que l’écoulement puisse s’amorcer. On parle dans ce 

cas d’un fluide de Bingham. 

 Le rhéogramme est non-linéaire, mais avec un seuil de cisaillement ou de plasticité qu’il 

faudra vaincre avant que l’écoulement puisse s’amorcer. On parle, soit d’un fluide à seuil 

rhéoépaississant ou fluide pseudoplastique à seuil, soit d’un fluide à seuil rhéofluidifiant.  

 
 

a) b) 

Figure 2.1 : a) rhéogrammes types de fluides non-newtoniens (Chhabra et Richardson, 2008); b) 

méthodes de détermination du seuil d’écoulement (ou «yield stress») sur un rhéogramme type 

d’un fluide non-newtonien à seuil de cisaillement selon Boger (2009) 

 

Il faudra bien noter que les comportements rhéoépaississant, rhéofluidifiant et binghamien 

correspondent aux évolutions de la viscosité du fluide liées au régime d’écoulement (contrainte 

de cisaillement ou taux de cisaillement), tandis que la thixotropie et la rhéopexie sont des 

évolutions temporelles de la viscosité du fluide (Coussot et Ancey, 1999). 

La détermination du seuil d’écoulement d’un fluide à seuil n’est pas aussi aisée (Boger, 2009). 

Comme l’indique la Figure 2.1b, le seuil d’écoulement d’un fluide à seuil rhéofluidifiant peut être 

Yield dilatant 
fluid 
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obtenu soit par extrapolation de la partie linéaire de la courbe d’écoulement (seuil de cisaillement 

de Bingham) (Boger, 2009), soit en considérant le seuil d’écoulement comme la contrainte à 

partir de laquelle 𝛾̇ devient légèrement supérieur à 0 (fin du régime solide) (Coussot, 2014) 

donnant ainsi la valeur minimale du seuil de cisaillement, soit en le considérant comme la 

contrainte de cisaillement à partir de laquelle la droite d’écoulement devient linéaire par la 

méthode tangentielle (Mezger, 2006). Cette dernière méthode donne généralement la valeur 

maximale du seuil de cisaillement (Boger, 2009).  

2.3.2 Lois ou modèles de comportement rhéologique 

Plusieurs modèles mathématiques ont été développés pour décrire le comportement rhéologique 

des fluides. Ces modèles mathématiques sont représentés généralement sous-forme des courbes 

d’écoulement afin de mieux appréhender le comportement rhéologique. Ainsi les données 

acquises au cours d’une caractérisation rhéologique expérimentale et présentées sous-forme d’un 

rhéogramme peuvent être facilement rapprochées d’un modèle donné par comparaison (ou 

ajustement). Cela permet d’identifier et de classer dans un premier temps le corps étudié avant de 

pouvoir analyser ses propriétés rhéologiques.  

Le seul modèle classique des fluides newtoniens est donné par l’expression (2-26). Pour les 

fluides non-newtoniens, plus de vingt modèles d’écoulement ont été développés. Dans ce qui suit, 

nous présentons les modèles les plus couramment utilisés.  

a) Fluides rhéoépaississants et rhéofluidifiants sans seuil de cisaillement 

Modèle d’Ostwald-De Waele ou loi de puissance 

𝜏 = 𝐾 𝛾̇𝑛 (2-27) 

Avec, 

𝐾 (Pa.s
n
) : coefficient de consistance ou coefficient d’écoulement du matériau; 

𝑛 (-) : indice de puissance ou d’écoulement.  

L’indice de puissance 𝑛 est un paramètre déterminant dans la caractérisation rhéologique du 

matériau, car il permet de différencier un matériau rhéoépaississant d’un matériau rhéofluidifiant 
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(mesure du degré de comportement non-newtonien). Il peut être calculé à l’aide de l’expression 

ci-dessous (Bailey et Weir, 1998) :  

𝑛 =
log(𝜏2 𝜏1⁄ )

log(𝛾̇2 𝛾̇1⁄ )
 

(2-28) 

Pour : 

‒ 𝑛 < 1: le comportement est rhéofluidifiant ou pseudoplastique 

‒ 𝑛 > 1: le comportement est rhéoépaississant ou dilatant 

‒ 𝑛 = 1: le comportement est newtonien (équation (2-26)) 

Le désavantage de ce modèle est qu’il ne s’ajuste pas bien aux courbes d’écoulement pour les 

taux de cisaillement faibles et élevés. Cela ne permet pas de déterminer les valeurs de la viscosité 

initiale et  de la viscosité à l’infini (Mezger, 2006).  

Ainsi, la viscosité apparente du matériau étant définie comme le rapport entre la contrainte et le 

taux de cisaillement, peut être exprimée par la relation suivante :  

𝜂 = 𝐾𝛾̇𝑛−1 (2-29) 

b) Fluides à seuil de cisaillement 

Modèle de Bingham 

𝜏 = 𝜏𝐵 + 𝜂𝐵𝛾̇ (2-30) 

où,  

𝜏𝐵 (Pa): seuil de cisaillement de Bingham; 

𝜂𝐵 (Pa.s): viscosité plastique de Bingham. 

 

Modèle de Herschel-Bulkley 

𝜏 = 𝜏𝐻𝐵 + 𝐾𝐻𝐵 𝛾̇𝑛𝐻𝐵 (2-31) 

où,  
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𝜏𝐻𝐵 (Pa): seuil de cisaillement de Herschel-Bulkley 

𝐾𝐻𝐵 (Pa.s
n
): indice de consistance ou de viscosité de Herschel-Bulkley 

𝑛𝐻𝐵 (-): indice d’écoulement de Herschel-Bulkley 

Ce modèle est un modèle généraliste des fluides pseudoplastiques à seuil: 𝑛𝐻𝐵 < 1 pour un fluide 

rhéofluidifiant, 𝑛𝐻𝐵 > 1 pour un fluide rhéoépaississant, et 𝑛𝐻𝐵 = 1 pour un fluide de Bingham 

(équation (2-30)).  

On rencontre aussi dans la littérature des modèles rhéologiques de courbe de viscosité. On peut 

citer les modèles de Cross, Carreau et Sisko. 

Modèle de Cross 

𝜂(𝛾̇) −  𝜂∞

 𝜂0− 𝜂∞
=

1

1 + (𝐾𝛾̇)𝑚
 

(2-32) 

où, 

𝐾 (Pa.s
m

): indice de consistance de Cross; 

𝜂∞ (Pa.s) : viscosité à l’infini;  

𝜂o (Pa.s) : viscosité initiale ou à taux de cisaillement nul; 

𝑚 (-) : exposant adimensionnel de Cross. 

Ce modèle décrit la variation de la viscosité en 3 phases d’une suspension en fonction du taux de 

cisaillement. Ces 3 phases correspondent aux états dans lesquels se trouvent les solides en 

suspensions. La phase 1 correspond à une agglomération des particules à de faibles taux de 

cisaillement avec une viscosité élevée est presque constante, suivie d’une déstructuration des 

chaînes à des taux de cisaillement moyens qui correspond à la phase 2 durant laquelle la viscosité 

diminue drastiquement avec de faibles variations du taux de cisaillement. Enfin, la phase 3 

correspond à une défloculation des particules solides à des taux de cisaillement élevés avec des 

valeurs de viscosité relativement faibles (viscosité à l’infini). 
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Modèle de Carreau 

𝜂(𝛾̇) −  𝜂∞

 𝜂0− 𝜂∞
=

1

[1 + (𝐾𝛾̇)2]𝑚 
 

(2-33) 

Modèle de Sisko 

𝜂(𝛾̇) =  𝜂∞ + 𝐾𝑠𝛾̇𝑛𝑠+1 (2-34) 

avec, 

𝐾s : indice de consistance de Sisko en Pa.s
n
; 

𝑛s : indice de viscosité de Sisko 

Le modèle de Carreau (voir éq. (2-33)) est presqu’identique à celui de Cross (voir éq. (2-32)). Par 

ailleurs, le modèle de Sisko (voir éq.(2-34) ) n’intègre pas la viscosité initiale ou au taux de 

cisaillement nul.  

2.3.3 Détermination expérimentale directe des propriétés d’écoulement  

La détermination des propriétés rhéologiques des fluides par des approches expérimentales est 

basée sur les résultats expérimentaux obtenus à l’aide des essais directs et/ou indirects de 

caractérisation rhéologique. Elle nécessite des appareils et techniques  spécifiques. On retrouve 

quatre groupes de techniques utilisées au laboratoire : 

 La pénétrométrie et la géométrie de chute ; 

 Les systèmes de cisaillement en mode rotatif ; 

 Les systèmes de vidange sous pression ; 

 Méthodes basées sur l’affaissement et l’écoulement sur les plans. 

Il existe de nombreux essais mis en œuvre en laboratoire, en usine ou sur chantier afin de 

qualifier et quantifier les propriétés rhéologiques d’un matériau. Ces essais peuvent être utilisés 

pour caractériser les propriétés d’écoulement, de plasticité, de consistance, et de viscoélasticité, 

etc.  
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Le choix des outils et techniques empiriques de mesure est fonction de la propriété rhéologique à 

caractériser : viscosité ou aptitude à l’écoulement, propriétés plastiques ou seuil d’écoulement, 

élasticité, viscoélasticité (Estellé et al., 2011). 

Dans le cadre de ce travail, nous présentons les techniques généralement  utilisées pour évaluer 

les propriétés rhéologiques et la fluidité des matériaux cimentés, en particulier le remblai minier 

en pâte. Il s’agit des systèmes de cisaillement en mode rotatif et des méthodes basées sur 

l’affaissement.  

2.3.3.1 Systèmes de cisaillement en mode rotatif 

Ces systèmes consistent à mettre en écoulement le matériau par cisaillement entre deux surfaces 

solides : une immobile et l’autre en rotation. Les appareils ayant ce principe sont les rhéomètres. 

On mesure alors le couple 𝑀 et la vitesse angulaire Ω1 du rotor, qui sont ainsi utilisés pour 

calculer respectivement la contrainte de cisaillement et le taux de déformation à l’aide des 

expressions suivantes (Barnes et al., 1989) : 

𝜏 = 𝐴𝑀 (2-35) 

𝛾̇ = 𝐵Ω1 (2-36) 

où 𝐴 et 𝐵 sont des constantes de l’appareil, dépendant de la géométrie de cisaillement. 

La viscosité dynamique apparente pour un fluide newtonien peut être exprimée par la relation 

suivante : 

𝜂 =
𝐴

𝐵

𝑀

Ω1
 (2-37) 

Suivant la géométrie de l’outil de cisaillement, quatre types de rhéomètre sont souvent utilisés au 

laboratoire dans la caractérisation des matériaux. 

a) Rhéomètre plan-plan ou disques (plaques) parallèles et rhéomètre cône-plan 

Le rhéomètre plan-plan dispose de deux disques coaxiaux de rayon 𝑅 en rotation relative (Figure 

2.2a). Le disque en rotation tournant à une vitesse angulaire Ω1 applique une contrainte de 

cisaillement 𝜏 sur l’échantillon placé entre les deux disques. Le couple de torsion 𝑀 exercé par la 
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résistance du fluide au mouvement peut être mesuré, soit sur la plaque mobile, ou soit sur la 

plaque immobile. Ainsi donc, pour pouvoir déterminer 𝜏 et 𝛾̇, il suffit d’obtenir un ensemble de 

mesures 𝑀 et Ω1 (Barnes et al., 1989). On peut noter que le cisaillement apparent n’est pas 

homogène dans la direction radiale (Coussot et Ancey, 1999; Coussot, 2014). Le taux de 

cisaillement apparent varie linéairement du centre vers l’extrémité du disque, ce qui, par 

conséquent, donne des difficultés de prédire avec exactitude le domaine de contrainte (Coussot, 

2014).  

 

  

                        a)                                  b) 

Figure 2.2 : a) géométries  plan-plan; b) géométrie cône-plan (Barnes et al., 1989) 

 

Le principe du rhéomètre à géométrie cône-plan est presqu’identique à celui des disques 

parallèles. La différence est qu’ici un disque est remplacé par un cône tronqué de même diamètre 

(Figure 2.2b). Le cône tronqué et le disque sont coaxiaux et forment un angle 𝜃0, généralement 

très faible. L’échantillon à tester est généralement placé sur le disque, puis le cône est 

progressivement ramené à la distance appropriée. Le disque (ou le cône selon le cas) est alors mis 

en rotation à une vitesse angulaire relative Ω1. Cette géométrie permet de se rapprocher du 

cisaillement idéal obtenu entre deux plaques parallèles en mouvement relatif de translation 

(Coussot et Ancey, 1999).  

b) Rhéomètre à cylindres coaxiaux ou de Couette 

Ce type de rhéomètre a une géométrie constituée de deux cylindres coaxiaux de rayons différents 

𝑅i (cylindre interne) et 𝑅𝘰 (cylindre externe) en rotation relative (Figure 2.3). L’échantillon est 
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placé du cylindre externe avant  de pouvoir introduire le cylindre interne. Le principe consiste à 

cisailler le matériau se trouvant dans l’entrefer (espacement entre les deux cylindres). 

 

Figure 2.3 : Géométrie de Couette (cylindres coaxiaux) (Cullen et al., 2002) 

c) Rhéomètre à croisillon (moulinet) ou «vane» 

Ce rhéomètre est presque similaire au rhéomètre de Couette. Par contre, ici le cylindre interne est 

remplacé par un croisillon comportant quatre pales de faible épaisseur et de hauteur h formant un 

cylindre de révolution de diamètre 𝑑 autour de son axe (Figure 2.4). Cette géométrie est inspirée 

du scissomètre, communément utilisé dans les essais in-situ en mécanique des sols pour 

déterminer la résistance au cisaillement des sols. Il est plus utilisé pour déterminer le seuil 

statique de cisaillement des fluides à seuil. Le principe consiste à cisailler le matériau à une faible 

et constante vitesse Ω de rotation dans un entrefer large et à enregistrer l’évolution du couple de 

résistance en fonction du temps (Liddell, 1996; Barnes et Nguyen, 2001; Estellé et al., 2011). La 

Figure 2.4b illustre l’allure de la courbe expérimentale obtenue lors de cet essai de cisaillement. 

Cette courbe comporte trois phases importantes. La première phase (contrainte linéaire) 

correspond à une phase élastique, la seconde phase (pic : couple maximal 𝑀max) correspond au 

seuil de cisaillement et la troisième phase (plateau) à la déstructuration du matériau sous 

cisaillement (Estellé et al., 2011). Ainsi la valeur maximale du couple 𝑀max peut être liée au seuil 

de cisaillement 𝜏0 par la relation suivante (Liddel et Boger, 1996; Barnes et Nguyen, 2001b; 

Saebimoghaddam, 2005; Estellé et al., 2011) : 

𝑀𝑚𝑎𝑥  =
𝜋𝑑3

2
(

ℎ

𝑑
+ 𝐶)  𝜏0 (2-38) 

On peut finalement tirer de  la relation (2-38) le seuil statique de cisaillement : 
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 𝜏0 =
2𝑀𝑚𝑎𝑥

𝜋𝑑3
(

ℎ

𝑑
+ 𝐶)

−1

 (2-39) 

Le terme 𝐶 correspond au cisaillement sur les parties supérieure et inférieure du croisillon, 

suivant qu’il est complètement enfoncé dans le matériau (𝐶=1/3) ou affleure la surface du 

matériau (𝐶=1/6) (Saebimoghaddam, 2005). 

 

 

a) b) 

Figure 2.4 : a) Géométrie à croisillon ou «vane» (Cullen et al., 2002) ; b) Allure de la réponse en 

cisaillement avec le croisillon (Estellé et al., 2011). 

2.3.3.2 Affaissement 

Ces essais consistent à évaluer les conditions d’écoulement et d’arrêt d’un matériau de volume 

donné sous l’effet de son propre poids. Ces essais simples peuvent permettre d’identifier 

certaines grandeurs rhéologiques, en particulier le seuil de cisaillement du matériau. Ils 

comprennent notamment les essais d’affaissement aux cônes et cylindres, et la technique 

d’écoulement sur un plan incliné. Il s’agit de tests classiques visant à déterminer l’ouvrabilité et 

la fluidité de suspensions en pâte (béton, remblai minier, etc.). 

a) Affaissement au cône standard 

L’essai d’affaissement trouve son origine dans l’ingénierie de construction. Il est souvent utilisé 

pour évaluer la maniabilité et l’ouvrabilité du béton. Dans le cadre de cette étude, les tests 

d’affaissement ont été réalisés au cône standard d’Abrams suivant la norme ASTM C143/C 

143M-05a et ainsi qu’au petit cône (Malusis et al., 2008). Ces deux moules se différencient par 

leurs dimensions. Le cône standard a une hauteur de 30 cm (12 pouces), un diamètre de base de 
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20,32 cm (8 pouces), et un diamètre supérieur de 10,16 cm (4 pouces). Par contre, le petit cône 

(Figure 2.5) a une hauteur de 15,24 cm (6 pouces), un diamètre de base de 10,16 cm (4 pouces), 

et un diamètre supérieur de 5,08 cm (2 pouces).  

 

Figure 2.5 : Essai d’affaissement au petit cône d’Abrams  

L’idée de relier l’affaissement ou «slump» au cône standard d’Abrams au seuil de cisaillement du 

matériau a été développée par Murata (1984). Cette démarche a été ensuite améliorée et 

approfondie avec le temps par différents chercheurs. Hu et al. (1996) a proposé une relation semi-

empirique entre le slump 𝑆 (mm) au cône et le seuil de cisaillement 𝜏o (Pa) du béton de masse 

volumique 𝜌 (kg/m
3
) : 

 𝜏0 = 𝜌 (
300 − 𝑆

270
) (2-40) 

Plus tard, Ferraris et De Larrard (1998) ont proposé cette fois un autre modèle de relation semi-

empirique entre le slump 𝑆 (mm) et le seuil de cisaillement 𝜏o (Pa) du béton. Cette relation est de 

la forme suivante : 

 𝜏0 = 𝜌 (
𝐻 − 𝑆

𝑎
) + 𝑏 (2-41) 

où 𝑎 et 𝑏 sont des constantes du matériau (𝑎 =347 et 𝑏 =212 pour le béton) (Ferraris et De 

Larrard, 1998) ; 𝐻 (mm) est la hauteur du cône. 

b) Affaissement au cylindre 



30 

 

Le moule cylindrique a été utilisé pour la première fois par Chandler en 1986 (Pashias et al., 

1996; Saebimoghaddam, 2005). Il s’agit d’un cylindre d’une hauteur supérieur ou égale au 

diamètre. Le principe de l’essai d’affaissement au cylindre est similaire au celui de l’essai au 

cône. Pashias et al. (1996) ont développé un modèle reliant le seuil de cisaillement au slump. Cet 

outil a plus d’avantage, car les valeurs expérimentaux sont fortement corrélées aux valeurs 

prédites avec les modèles analytiques développés (Clayton et al., 2003). 

Pashias et al. (1996) ont ainsi proposé une expression analytique reliant le seuil de cisaillement 𝜏o 

et le slump 𝑠 obtenus respectivement par la méthode rhéométrique au  croisillon/moulinet ou 

«vane» et par l’essai de slump modifié au cylindre : 

𝑠

𝐻
= 1 −

2𝜏0

𝜌𝑔𝐻
[1 − ln (

𝜏0

𝜌𝑔𝐻
)] (2-42) 

où 𝜌 (kg/m
3
) est la masse volumique humide de la suspension, 𝑔 (m/s

2) est l’accélération 

gravitationnelle, 𝛨 (m) est la hauteur du cylindre, et 𝘴 (m) est l’affaissement obtenu au cylindre. 

Iveson et Francks (2003) propose une relation analytique permettant de prédire le seuil de 

cisaillement 𝜏o d’une suspension de pâte en partant de l’affaissement 𝘴 obtenu par un essai de 

slump modifié au cylindre : 

 𝜏0 =
𝜌𝑔𝐻

2
(1 − √

𝑠

𝐻
) (2-43) 

2.4 Influence de la température et de la salinité sur la rhéologie des 

suspensions 

Il est d’un intérêt capital d’analyser l’influence de certains facteurs internes et externes sur les 

propriétés rhéologiques des suspensions industrielles, particulièrement sur le remblai minier en 

pâte dans les milieux nordiques. Dans ces milieux, la température et la salinité (voir la section 

1.2) sont des facteurs importants à considérer lors de la conception du système de transport du 

remblai en pâte. Au cours de l’écoulement du remblai en pâte en pipeline, sa température peut 

être affectée par l’échange de chaleur avec le milieu extérieur, par la chaleur due à la friction sur 

la paroi et par la chaleur liée à la dissipation visqueuse entre les couches (voir section 2.5). De 

plus, la salinité naturelle rencontrée dans les eaux du pergélisol et celle due aux sels de déglaçage 
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du minerai lors des opérations minière pourraient affecter la chimie du remblai en pâte, par 

conséquent sa rhéologie. Or, l’influence de ces deux facteurs sur le comportement rhéologique 

des suspensions est complexe. Dépendamment de la suspension, les propriétés rhéologiques des 

suspensions peuvent augmenter ou diminuer avec l’accroissement de la température (de Kretser 

et Scales, 2008) ou de la concentration en électrolyte (Klein et Pawlik, 1999).  

2.4.1 Influence de la température sur les propriétés rhéologiques des 

suspensions sans liant  

Au fil du temps, des relations basées sur la loi d’Arrhenius reliant les propriétés rhéologiques des 

suspensions à la température ont été développées. Ainsi, les expressions de l’effet de la 

température sur le seuil de cisaillement 𝜏o et la viscosité dynamique 𝜂 d’une suspension sont 

respectivement notées comme suit (Yang et al., 2001; de Kretser et Scales, 2008) :  

𝜏0 = 𝐶𝑇𝑒(𝐸 𝑅𝑔𝑇⁄ ) (2-44) 

𝜂 =  𝜂𝑟𝑒(𝐸 𝑅𝑇⁄ ) (2-45) 

où, 

𝐸 (J/mol) : énergie d’activation du mélange. Elle représente l’énergie cinétique minimale requise 

pour que les molécules des réactifs puissent déclencher la réaction chimique (Flamand et Allard, 

2003; Vollhardt et Schore, 2003);  

𝑅𝑔 (J/mol.K): constante universelle de gaz (𝑅𝑔 = 8,314 J/mol.K) ; 

𝑇 (K) : température absolue ; 

𝐶 (-) : constante de proportionnalité ; 

𝜂r (Pa.s) : viscosité à la température de référence. C’est la viscosité matériau mesurée à une 

température donnée.  

Une étude menée par Mikulasek et al. (1997) a montré que l’augmentation de la température 

entrainait une diminution du seuil de cisaillement et de la viscosité des suspensions de dioxyde de 

titane à différentes fractions volumiques. De cette étude, il ressort qu’à faible taux de cisaillement 

et faible contrainte de cisaillement, l’agitation thermique représentée par la force brownienne 

contrôle les propriétés rhéologiques des suspensions. Par contre, lorsque le taux et la contrainte 
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de cisaillement deviennent très élevés, les interactions hydrodynamiques des particules prennent 

le contrôle du comportement rhéologique des suspensions. Pour des taux et contraintes de 

cisaillement intermédiaires, les deux types de force contribuent au comportement rhéologique de 

la suspension  (Mikulásek et al., 1997; Coussot et Ancey, 1999).  

Par ailleurs, Yang et al. (2001) ont observé une diminution du seuil de cisaillement et de la 

viscosité avec l’accroissement de la température des suspensions de dioxyde de titane dans la 

plage de 20 à 50°C, suivie d’une augmentation exponentielle du seuil de cisaillement à des 

températures supérieures à 50°C (He et al., 2004; Krestser et Scales, 2008). Par contre, la 

viscosité a démontré un comportement complexe à des températures supérieures à 50°C : 

augmentation brusque de la viscosité suivie d’une diminution. 

Altin et al. (2006) n’ont pas, par contre, noté ce comportement complexe de la viscosité à des 

températures supérieures à 50°C lors d’une étude réalisée sur une suspension des particules 

d’hématite dans une solution liquide fortement ionisée. La décroissance de la viscosité de cette 

suspension avec l’accroissement de la température en fonction du taux de cisaillement a été mise 

en évidence. 

Senapati et al. (2009) ont étudié l’effet de la température dans la plage de 30 à 50°C sur des 

suspensions de particules fines de calcaire de 40, 43 et 46% de fraction volumique solide. Ces 

analyses ont aussi mis en évidence la diminution de la viscosité relative et du seuil de 

cisaillement de ces différentes suspensions avec l’augmentation de la température. Cela rencontre 

les résultats expérimentaux de He et al. (2006) sur des suspensions de particules de calcaire 

(𝐶𝑤=70%) dans la frange de température de 13°C et 55°C (voir la Figure 2.6).  

Chen et al. (2010) ont analysé l’effet de la température sur les contraintes de cisaillement 

développées à la paroi d’une conduite lors d’un essai en boucle de suspensions de charbon, et 

notent une augmentation de la vitesse de glissement des suspensions avec l’augmentation de la 

température. Cela se traduit par une diminution du seuil de cisaillement des suspensions avec 

l’augmentation de la température; la diminution de la température entraînant donc une 

augmentation de la consistance des suspensions. Aladag et al. (2012) ont trouvé aussi des 

résultats analogues à ceux de Chen et al. (2010).  
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Figure 2.6 : Effet de la température et du taux de cisaillement sur la viscosité apparente de la 

suspension de particules de calcaire (He et al., 2006) 

D’autre part, à de basses températures ( 0°C), le seuil de cisaillement et la viscosité de la 

suspension peuvent augmenter jusqu’au blocage de l’écoulement. Cette augmentation des valeurs 

de propriétés rhéologiques est généralement liée au changement des phases (formation des 

particules solides de glace) (Coussot et Piau, 1994). Cette formation des particules de glace à des 

températures inférieures ou égales à 0°C (Egolf et al., 2005; Darbouret et al., 2005; Bing et Ma, 

2011; Rensing et al., 2011) entraine une augmentation de la fraction solide, qui conduit à son tour 

à une augmentation du seuil de cisaillement et de la viscosité de la suspension (voir Figure 2.7) 

(Coussot et Piau, 1994).  

 

Figure 2.7 : Effet de la température sur les contraintes de cisaillement d’une suspension de silt de 

𝐶𝑉 = 31,8 % (Coussot et Piau, 1994) 
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2.4.2 Influence de la température sur les propriétés rhéologiques des 

matériaux cimentaires frais  

Le matériau cimentaire est tout matériau dont le ciment est utilisé comme liant. Il s’agit 

notamment du béton, du mortier, du remblai minier en pâte, ainsi que de la pâte de ciment. Ces 

matériaux sont généralement des fluides non-newtoniens dont les propriétés rhéologiques 

(viscosité, seuil de cisaillement, indice d’écoulement) jouent un rôle primordial sur leur 

comportement à l’écoulement. La connaissance de leurs propriétés rhéologiques donne une 

indication sur leur fluidité (Al-Martini et Nehdi, 2010). Le comportement rhéologique de ces 

matériaux dépend de plusieurs  facteurs internes (degré d’hydratation, pH, rapport eau-ciment 

E/C, pourcentage des grains solides, chimie de l’eau, du liant et des solides, dosage d’ajouts 

minéraux ou d’adjuvants) et externes (température, énergie de malaxage, pression) (Fernàndez-

altable et Casanova, 2006). Il est bien connu que le changement de température des matériaux 

cimentaires frais peut affecter le degré d’hydratation, lequel a une forte influence sur les 

propriétés rhéologiques (Petit et al., 2005; Nehdi et Rahman, 2004; Wu et al., 2013). 

La température jouant un rôle important sur la rhéologie de matériaux, son effet sur les propriétés 

rhéologiques des matériaux cimentaires est débattu dans la littérature. On ne se limitera qu’à 

présenter les résultats obtenus dans la littérature sur les propriétés rhéologiques des pâtes 

cimentaires sans les comparer, car une large variété de facteurs (la géométrie de l’outil de 

cisaillement d’essai, l’entrefer, la capacité de friction des surfaces de cisaillement, le modèle 

rhéologique utilisé dans la détermination des propriétés rhéologiques) joue un rôle significatif sur 

la rhéologie causant ainsi des difficultés inhérentes dans la comparaison de différents ensembles 

des résultats provenant de différents laboratoires (Fernàndez-altable et Casanova, 2006).  

2.4.2.1 Influence du temps de cure  et de la température sur le seuil de cisaillement et la 

viscosité plastique des pâtes fraîches de ciment 

En fonction du temps d’hydratation, Lei et Struble (1997) ont observé deux zones d’évolution du 

seuil de cisaillement en fonction du temps d’hydratation d’une pâte de ciment (E/C = 0,45) 

(Figure 2.8) : dans la zone 1, le seuil de cisaillement augmente lentement comparativement à la 

zone 2, où l’accroissement est exponentiel. Cette première zone correspond à la période de 
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dormance (d’environ deux heures à 25°C), tandis que la zone 2 correspond à la période 

d’accélération des réactions de la pâte de ciment (Lei et Struble, 1997).  

La température joue un rôle primordial sur la vitesse d’hydratation du ciment (à température 

élevée, la vitesse d’hydratation du ciment est élevée), et par conséquent sur l’évolution du seuil 

de cisaillement de la pâte de ciment. À une durée d’hydratation donnée de la pâte de ciment 

étudiée, le seuil de cisaillement de la pâte de ciment augmente avec l’augmentation de la 

température (voir Figure 2.8). L’augmentation de la température induit une réduction de la 

période dormante de la pâte de ciment (Lei et Struble, 1997). Toutefois, les formes des courbes 

de seuil de cisaillement ont la même tendance à toutes les températures d’hydratation, même si 

les pentes des courbes (vitesse de variation du seuil) peuvent être différentes. 

 

Figure 2.8 : Seuils de cisaillement de la pâte de ciment (E/C = 0,45) versus temps d’hydratation à 

différentes températures, (modifié de Lei et Struble, 1997) 

Petit et al. (2005) ont étudié l’effet de la température (entre 10°C et 27°C) sur le seuil de 

cisaillement de deux séries de mortiers de ciment superplastifiés respectivement au sulfonate de 

naphtalène (0,28% et 0,5% par rapport à la masse du ciment, avec E/C respectifs de 0,52 et 0,42) 

et au sulfonate de mélamine (0,8%, par rapport à la masse du ciment, avec E/C = 0,42). De cette 

étude, il ressort que la variation du seuil de cisaillement en fonction du temps est linéaire pour 

chaque température d’essai. La variation du seuil de cisaillement est proportionnelle à la 

température pour des dosages au sulfonate de naphtalène NS et au sulfonate de mélamine ML 

inférieurs à 1,2% (Petit et al., 2005; Al-Martini et Nehdi, 2005; Petit et al., 2006; Al-Martini et 

Zone 2 

Zone 1 
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Nedhi, 2007). Quant au seuil de cisaillement initial de ces matériaux,  il variait dans un intervalle 

limité (Petit et al., 2010). Les valeurs du seuil de cisaillement variaient avec le temps 

indépendamment de la température (Petit et al., 2005). Ainsi on a une réaction cinétique globale 

qui conduit à la même quantité d’hydrates formés, et par conséquent le même seuil de 

cisaillement final et la même quantité de chaleur dégagée. En d’autres termes, le mélange passe 

d’une phase initiale à une phase finale suivant une évolution thermodynamique unique qui ne 

dépend que de la cinétique d’hydratation. La température joue le rôle catalyseur dans la réaction 

d’hydratation conduisant à un très faible accroissement des propriétés rhéologiques (seuil de 

cisaillement et viscosité plastique) des mortiers dans leur période de dormance. 

Al-Martini et Nehdi (2005) ont abordé aussi la problématique et examiné l’effet d’ajouts 

d’adjuvants chimiques (à des dosages de 0,3 %, 0,7% et 1,2 % par rapport à la masse du ciment) 

et des températures élevées sur les propriétés rhéologiques des pâtes pures de ciment de rapport 

E/C de 0,35 et 0,5. Ainsi, il a été observé que le seuil de cisaillement et la viscosité plastique 

augmentent non linéairement avec l’augmentation de la température (voir la Figure 2.9) (Al-

Martini et Nehdi, 2005).  

 

Figure 2.9 : Effet de la température sur la rhéologie des pâtes de ciment (a) seuil de cisaillement, 

(b) viscosité plastique (Al-Martini et Nehdi, 2005) 
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Toutefois, l’accroissement du seuil de cisaillement entre 20 et 40°C est moins significatif 

qu’entre 40 et 45°C (voir la Figure 2.9) (Al-Martini et Nehdi, 2005; Nehdi et Al-Martini, 2007). 

Les mêmes constats ont été faits sur les pâtes de ciment à faible dosage en superplastifiant. Mais 

à certains dosages élevés de superplastifiants (point de saturation), l’effet de la température 

devient insignifiant sur le seuil de cisaillement et la viscosité plastique des pâtes de ciment (voir 

la Figure 2.10 et la Figure 2.11). 

 

Figure 2.10 : Seuil de cisaillement de la pâte de ciment à 20°C et 45°C et différents dosages en 

polycarboxylate (E/C = 0,35) (Al-Martini et Nedhi, 2007) 

 

Figure 2.11 : Viscosité plastique de la pâte de ciment à 20°C et 45°C et différents dosages en 

polycarboxylate (E/C = 0,35) (Al-Martini et Nedhi, 2007) 

En outre, pour des pâtes de ciment à base de superplastifiant aux sulfonates (de naphtalène et de 

mélamine), les valeurs du seuil de cisaillement et de la viscosité plastique augmentaient avec 

l’augmentation de la température à faibles dosages en superplastifiant (inférieurs à 0,7% et 1,2% 
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respectivement pour le sulfonate de naphtalène et le sulfonate de mélamine), puis diminuaient 

sensiblement aux dosages compris entre 0,7% et 2,5% et 1,2% et 2,5% (point de saturation) 

respectivement pour le sulfonate de naphtalène (Figure 2.12) et le sulfonate de mélamine (Figure 

2.13), avant de rester constantes à des dosages supérieurs à 2,5% avec une élimination de l’effet 

de la température (Al-Martini et Nedhi, 2007) et du temps de malaxage (Al-Martini et Nehdi, 

2009).  

 

a 

 

b 

Figure 2.12 : Seuil de cisaillement (a) et viscosité plastique (b) de la pâte de ciment (E/C = 0,35) 

à 20°C, 40°C et 45°C et différents dosages au sulfonate de naphtalène (Al-Martini et Nedhi, 

2007) 

 

a 

 

b 

Figure 2.13 : Seuil de cisaillement (a) et viscosité plastique (b) de la pâte de ciment (E/C = 0,35) 

à 20°C, 40°C et 45°C et différents dosages au sulfonate de mélamine (Al-Martini et Nedhi, 2007) 

Petit et al. (2006) ont analysé cette fois l’effet couplé de la température et du temps sur le seuil de 

cisaillement de deux mortiers (E/C de 0,42 et 0,53) contenant des superplastifiants au 
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polycarboxylate (PCP) aux dosages de 0,27% et 0,42% (par rapport à la masse du ciment) et au 

sulfonate polynaphtalène (PNS) à dosage de 0,28% (par rapport à la masse du ciment). Ils font 

remarquer que le comportement du seuil de cisaillement du mortier au PNS en fonction du temps 

est croissant et linéaire pour toutes les températures comprises entre 20 et 33°C (Petit et al., 

2010). Par contre, un comportement non linéaire du seuil de cisaillement a été observé sur le 

mortier au PCP pour des températures inférieures à 15°C. Ce comportement non-linéaire par 

rapport au temps est caractérisé par une faible augmentation du seuil de cisaillement au cours de 

la première heure d’hydratation, suivie d’un décroissement jusqu’à la valeur minimale marquant 

la fin de l’effet stérique (mode de dispersion des particules de superplastifiants). Puis, survient 

l’augmentation de la valeur du seuil de cisaillement linéairement jusqu’à la fin de la période 

dormante (Petit et al. 2010).  

Une étude menée par Fernàndez-Altable et al. (2006) a montré que l’effet de la température sur le 

seuil de cisaillement de la pâte de ciment est plus marqué à faibles dosages (inférieurs à 0,3%) en 

polycarboxylate qu’à dosages élevés (supérieurs à 0,7% par rapport à la masse du ciment), quelle 

que soit le mode de malaxage. Au cours de cette étude, il a été constaté que le seuil de 

cisaillement dynamique restait proportionnel à la température à des faibles dosages en 

polycarboxylate, par contre devenait inversement proportionnel à des dosages élevés en 

polycarboxylate. Il s’ensuit, dans ces dernières conditions, une diminution plus importante du 

seuil de cisaillement dynamique pour des températures élevées (35 - 45°C). Les auteurs ont 

attribué ce phénomène au mouvement brownien des particules qui s’accroît avec l’augmentation 

de la température, et qui affaiblit partiellement les interactions entre les grains agglomérés. Pour 

ce qui est de la viscosité apparente, elle reste inversement proportionnelle à la température, avec 

un effet de celle-ci (température) plus marquée pour des faibles dosages en polycarboxylate 

(<0,5%) et à de faibles températures (5 et 15°C).   

Une étude menée par Wu et al. (2013) sur l’effet couplé de la température et du temps 

d’hydratation sur les propriétés rhéologiques du remblai en pâte, a montré que le seuil de 

cisaillement et la viscosité du remblai en pâte augmentaient avec l’augmentation de la 

température et l’évolution du temps de cure. Ces auteurs ont attribué ce comportement au fait 

qu’à des températures élevées (20 et 35°C), le taux d’hydratation est accéléré, impliquant ainsi 

une importante génération des produits d’hydratation. Par contre, à basse température (3°C), la 

génération des produits d’hydratation est sensiblement réduite à cause du faible taux 



40 

 

d’hydratation. L’augmentation des propriétés rhéologiques du remblai en pâte avec 

l’augmentation de la température et l’évolution du temps de cure implique la réduction de sa 

fluidité. Ainsi, la température initiale du mélange de remblai en pâte a une forte influence sur 

l’évolution de ses propriétés rhéologiques.  

2.4.2.2 Modèles d’équations thermo-rhéologiques 

Certains chercheurs ont développé des équations permettant d’exprimer les propriétés 

rhéologiques en fonction des paramètres tels que la température, le temps et le dosage en 

superplastifiant. En considérant que le seuil de cisaillement et la viscosité plastique du modèle de 

Bingham (voir équation (2-30)) sont des fonctions de la température 𝑇 en °C, du temps de 

malaxage 𝑡 et du dosage en superplastifiant , Al-Martini et Nedhi (2010) ont développé des 

équations rhéologiques des pâtes de ciment superplastifiées cisaillées en mode d’écoulement 

permanent de la forme suivante :  

𝜏 = [
𝑎𝑡 𝑎𝑇

𝑎𝜅
] + [

𝑏𝑡 𝑏𝑇

𝑏𝜅
] 𝛾̇ 

(2-46) 

où 𝑎𝑡(t), 𝑎𝑇(T), a() sont des coefficients expérimentaux du seuil de cisaillement ; 𝑏𝑡(t), 𝑏𝑇(T),  

𝑏() sont des coefficients expérimentaux de la viscosité plastique de Bingham et 𝑡, 𝑇 et  

désignent respectivement le temps de cure, la température et le dosage en superplastifiant. 

En utilisant la méthode de séparation des variables et une optimisation des coefficients de 

l’équation (2-46) les résultats ont indiqué des bonnes prédictions du seuil de cisaillement avec 

des erreurs moyennes inférieures à 25% (Al-Martini et Nehdi, 2010). Ces auteurs ont noté que les 

valeurs prédites de la viscosité plastique à l’aide du modèle sont très proches de celles mesurées 

(avec des erreurs moyennes inférieures à 12%). 

En partant du modèle de seuil de cisaillement des suspensions (Flatt et Bowen, 2006) et de 

l’équation de Krieger-Dougherty, Kong et al. (2013) ont développé des relations de prédiction de 

l’évolution des propriétés rhéologiques (seuil de cisaillement et viscosité plastique de Bingham) 

des pâtes de ciment superplastifiées au polycarboxylate. Ces relations sont développées sur la 

base du degré d’hydratation α de la pâte de ciment à un temps donné 𝑡 et une température 𝑇. 

Ainsi le seuil de cisaillement à un temps donné 𝑡 et une température fixe 𝑇 peut s’écrire : 
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𝜏0(𝑡, 𝑇)

𝜏0(0, 𝑇)
=

[1 + 𝛼(𝑡, 𝑇) (
𝐶𝑣(∞, 𝑇)
𝐶𝑣(0, 𝑇)

− 1) ]
3

1 − 𝛼′
≅

1

1 − 𝛼′
 

 

(2-47) 

où 𝛼’ est un paramètre normalisé appelé degré d’hydratation relative. Il est défini comme le 

rapport entre le degré d’hydratation 𝛼(𝑡,𝑇) à un temps donné 𝑡 et le degré d’hydratation 𝛼(𝑡is,𝑇)  

au temps de prise initiale 𝑡is (situé entre la période de dormance et le durcissement); 𝜏o (0,𝑇) est le 

seuil de cisaillement initial (au temps 𝑡=0) à une température 𝑇; 𝐶𝑣 (0,𝑇) est le pourcentage 

volumiques initial des solides à la température 𝑇; 𝐶𝑣 (∞,𝑇) est le pourcentage volumique des 

solides à un temps 𝑡   à la température 𝑇. 

En ce qui concerne la viscosité plastique de Bingham 𝜂B, un modèle a été développé à partir de 

l’équation de Krieger-Dougherty. Cette équation établit une relation entre la viscosité relative et 

la concentration et le degré d’hydratation relative 𝛼’ de la pâte de ciment, et est donnée par (Kong 

et al., 2013) : 

𝑙𝑛
𝜂𝐵(𝑡, 𝑇)

𝜂𝐵(0, 𝑇)
= −

𝑖
𝐶𝑣𝑚𝑙𝑛(1 −  𝛼′) (2-48) 

où 𝜂B (𝑡, 𝑇) est la viscosité plastique de la pâte de ciment à un temps 𝑡 et une température 𝑇 

donnée; 𝜂B (0, 𝑇) est la viscosité plastique initiale de la pâte de ciment à température 𝑇 donnée; 

𝐶𝑣𝑚 est la proportion volumique maximale géométrique des solides quand les particules solides 

sont bien dispersées; 𝜂𝑖 est la viscosité intrinsèque de la suspension. Elle est donnée par la 

relation suivante (Kong et al., 2013): 

[𝜂𝑖] = lim
𝐶𝑣→0

𝜂𝐵

𝜂𝑐
− 1

𝐶𝑣
 (2-49) 

où 𝜂B et 𝜂𝑐 sont respectivement la viscosité plastique de la suspension et la viscosité de la phase 

liquide.  

Les prédictions des propriétés rhéologiques (seuil de cisaillement et viscosité plastique) des pâtes 

de ciment avec les équations (2-47) et (2-48) sont très bonnes pour les températures de 20°C et 

60°C par rapport aux prédictions de 40°C (Kong et al., 2013). Plus la température augmente, plus 



42 

 

le degré d’hydratation est important, plus la viscosité plastique croît (Petit et al., 2005; Petit et al., 

2006; Al-Martini and Nehdi, 2010; Petit et al., 2010; Wu et al., 2013). 

2.4.3 Influence de la salinité sur les propriétés rhéologiques des suspensions  

La chimie de l’eau joue un rôle important sur le comportement rhéologique des suspensions. 

Parmi les facteurs chimiques affectant leurs propriétés rhéologiques, les ions salins (salinité) ou 

les électrolytes peuvent avoir des effets sur les propriétés rhéologiques des suspensions (Klein et 

Pawlik, 1999b). Ces ions salins ou électrolytes dissouts peuvent notamment affecter les 

interactions entre les particules qui jouent un rôle important sur les propriétés rhéologiques des 

suspensions (Chang et al., 1994; Colic et Fisher, 1998; Johnson et al., 2000). En accord avec la 

théorie de DVLO (Dejarguin-Landau-Verwey-Overbeek) de la stabilité des suspensions, le degré 

de dispersion ou de floculation (agglomération) des particules est gouverné par la balance entre 

les forces d’interaction de répulsion (électrostatiques, d’hydratation, et stériques) et d’attraction 

(de Van Der Waals et hydrophobiques) entre particules. En général, les propriétés rhéologiques 

des suspensions sont proportionnelles aux forces d’attraction des particules lorsque celles–ci 

prédominent. Inversement, lorsque les forces répulsives prédominent, les propriétés rhéologiques 

ont des valeurs relativement faibles (Pawlik, 2005; Chen et al., 2007; Amiri et al., 2009). 

Chang et al. (1994) ont examiné l’effet de la concentration du chlorure d’ammonium 𝑁𝐻4𝐶𝑙 sur 

la viscosité et le seuil de cisaillement d’une suspension de particules d’alumine. Les analyses 

expérimentales ont mis en évidence la prédominance de l’effet d’attraction des particules dans la 

suspension avec l’augmentation de la concentration en électrolyte, induisant ainsi une 

augmentation du seuil de cisaillement. Par ailleurs, aucune différence remarquable n’a été notée 

entre la viscosité de la suspension sans sel et celle avec 1,0 M en concentration de sel (Chang 

et al., 1994).  

Roh et al. (1995) ont examiné l’influence de différents électrolytes (Mg (𝑂𝐻)2, 𝐶𝑎(𝑂𝐻)2, 𝐾𝑂𝐻, 

𝑁𝑎𝑂𝐻) dans une suspension de particules de charbon (𝐶𝑤= 64%), et ont fait remarquer la 

prédominance des forces répulsives entre les particules solides sur les forces attractives pour tous 

les électrolytes utilisés durant les tests expérimentaux. Cela entraîne une décroissance de la 

viscosité de la suspension avec l’augmentation du dosage en électrolytes (Figure 2.14). Toutefois, 

il faut remarquer que cette décroissance de la viscosité est drastique avant d’atteindre un plateau 



43 

 

autour d’une teneur en électrolyte de 0,1%. Cette décroissance de la viscosité de la suspension est 

plus prononcée pour 𝐾𝑂𝐻 et 𝑁𝑎𝑂𝐻 (Roh et al., 1995). 

 

Figure 2.14 : Influence du type et du dosage en électrolyte sur la viscosité de la suspension de 

particules de charbon (tirée de Roh et al. (1995)). 

Klein et Simon (2006) ont investigué l’effet d’ajout du 𝑁𝑎𝐶𝑙, 𝐶𝑎𝐶𝑙2, 𝑁𝑎𝑂𝐻, et 𝐹𝑒𝐶𝑙3 sur le temps 

de prise du remblai en pâte. Il est ressorti que le 𝑁𝑎𝐶𝑙, 𝐶𝑎𝐶𝑙2 et le 𝑁𝑎𝑂𝐻 à un dosage de 3% par 

(rapport à la masse du liant) agissaient comme des accélérateurs de prise, et entrainaient aussi une 

amélioration des propriétés mécaniques de remblai en pâte. Cette accélération de prise peut être 

probablement expliquée par la défloculation des particules par ces électrolytes (𝑁𝑎𝐶𝑙, 𝐶𝑎𝐶𝑙2, 

𝑁𝑎𝑂𝐻) permettant ainsi aux particules de ciment de s’hydrater rapidement (Klein et Simon, 

2006). Dans un premier temps, le remblai pourrait probablement présenter une bonne fluidité, qui 

se réduira rapidement dans le temps à cause de l’hydratation rapide. Par contre le 𝐹𝑒𝐶𝑙3 s’est 

comporté comme un retardateur de prise. 

Mahlaba et al. (2011a) ont examiné l’effet des caractéristiques de deux cendres volantes (𝐴 et 𝐵) 

sur le comportement rhéologique des pâtes de remblai de saumure préparées sous différentes 

conditions de salinité. Le seuil de cisaillement de la pâte de cendre volante 𝐴 (𝐶𝑤= 68%) a 

présenté plus de dépendance à la concentration en sels dissouts que celui de la pâte de cendre 

volante 𝐵. Ce comportement a été attribué à la différence des phases minérales et distributions 

granulométriques entre les deux cendres volantes (𝐴 plus fine que 𝐵) (Mahlaba et al., 2011a). On 
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peut noter une faible décroissance du seuil de cisaillement à des concentrations en sel inférieures 

à 40 g/L, suivie d’une augmentation significative de celle-ci à des concentrations en sel 

supérieures à 40 g/L pour la pâte avec la cendre volante A. Pour la cendre B, la concentration de 

sel n’avait aucun effet sur le seuil de cisaillement de la pâte. Plus tard, les mêmes auteurs ont 

examiné l’effet de deux types de saumure (I et II) ayant des quantités totales en matières 

dissoutes de 44,4 g/L (saumure I) et 108 g/L (saumure II) sur la pâte de saumure et de cendre 

volante A. Il est ressorti que la pâte de cendre volante A avec la saumure I a présenté un seuil de 

cisaillement inférieur à celui de la pâte de la cendre volante avec la saumure II pour un 

pourcentage solide donné. De plus, les dosages en salinité supérieurs à 60 g/L ont entraîné une 

augmentation importante du seuil de cisaillement de la pâte à 𝐶𝑤 = 68%. Ainsi, l’intervalle de 

dosage en salinité de 40 à 60 g/L dans la pâte de cendre A pouvait être considéré comme la 

frange optimale de maniabilité de la pâte de saumure (Mahlaba et al., 2011b). 

2.5 Concepts généraux sur le transport des fluides 

Le transport des fluides industriels, dont le remblai cimenté en pâte, constitue un problème 

fondamental d’hydraulique des fluides. Le socle du développement des techniques de transport 

des fluides industriels reste basé sur la maîtrise du comportement hydrodynamique de ceux-ci. En 

d’autres termes, on recherche à déterminer les paramètres hydrodynamiques tels que les pertes de 

charge, la vitesse d’écoulement et le régime d’écoulement pour un fluide ayant un comportement 

rhéologique donné. Dans ce qui les théories et principes de base de l’écoulement des fluides 

parfaits seront abordés avant de présenter les spécificités de l’hydrodynamique des fluides réels 

en général, et en particulier à celles des suspensions et du remblai cimenté en pâte.   

2.5.1 Théorie et principes physiques de l’écoulement des fluides 

Les principales théories expliquant le déplacement de fluides portent sur les rapports de masse, 

d’énergie mécanique et de la quantité de mouvement. Le rapport de masse se traduit par la loi de 

continuité qui stipule que, pour un fluide incompressible en mouvement permanent dans une 

conduite, les débits entrant et sortant à travers un volume quelconque rempli de fluide doivent 

être égaux. La loi de la conservation de l’énergie mécanique du système exprimée par unité de 

poids est donnée par l’équation de Bernoulli suivante pour un fluide parfait (Bird et al., 2002) :  
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𝑝1

𝛾𝑓
+

𝑈1
2

2𝑔
+ 𝑍1 =

𝑝2

𝛾𝑓
+

𝑈2
2

2𝑔
+ 𝑍2 (2-50) 

Par définition, un fluide parfait est un fluide dont les forces de viscosité sont négligeables 

(Zeytounian, 1974; Bird et al., 2002). Dans cette équation, 𝑝1 et 𝑝2 sont respectivement les 

pressions aux points 1 et 2, 𝑈1 et 𝑈2 sont les vitesses axiales respectivement aux points 1 et 2. 𝑍1 

et 𝑍2 sont respectivement les cotes mesurées respectivement aux points 1 et 2 par rapport au plan 

de référence. 𝛾𝑓 est le poids volumique du fluide en écoulement et 𝑔 (= 9,81 m/s²) est la 

constante gravitationnelle.  

En tenant compte des frottements entre le fluide et la paroi d’une part, et d’autre part de la 

viscosité du fluide due aux frottements des particules du fluide entre elles, l’équation de Bernoulli 

peut s’écrire sous la forme suivante (Bouzaiene, 1995; Cooke, 2007b) : 

𝑝1

𝛾𝑓
+

𝑈1
2

2𝑔
+ 𝑍1 =

𝑝2

𝛾𝑓
+

𝑈2
2

2𝑔
+ 𝑍2 + ℎ𝑡 (2-51) 

où ht (m) représente la perte de charge totale, qui est en quelque sorte l’énergie nécessaire à 

fournir au fluide pour le déplacer.  

2.5.2 Régimes et modèles d’écoulement des fluides 

L’écoulement d’un fluide incompressible dans une conduite peut se faire suivant différents 

régimes d’écoulement (laminaire, transitoire, ou turbulent). Ces régimes d’écoulement sont 

dépendants de la viscosité dynamique et de la vitesse d’écoulement du fluide, ainsi que du 

diamètre de la conduite. Pour définir le type de régime d’écoulement ou le passage d’un régime à 

un autre, on a fait recours au nombre adimensionnel de Reynolds 𝑅𝑒, qui est le rapport entre les 

forces d’inerties et les forces visqueuses. Il est donné par l’expression suivante (Bird et al., 

2002) :  

𝑅𝑒 =
𝐷. 𝑈. 𝜌

𝜂
 (2-52) 

où 𝐷 (m) est le diamètre de la canalisation, 𝜂 (Pa.s) est la viscosité dynamique du fluide, 𝑈 (m/s) 

est la vitesse d’écoulement, et 𝜌 la masse volumique du fluide en kg/m
3
. 
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Le régime d’écoulement d’un fluide newtonien est dit laminaire lorsque 𝑅𝑒 est inférieur à 2300 

(les forces de viscosité sont supérieures aux forces d’inertie). Lorsque ce dernier est compris 

entre 2300 et 3200, le régime d’écoulement est dit transitoire ou intermédiaire. Si le nombre de 

Reynolds 𝑅𝑒 est supérieur à 3200, le régime d’écoulement est turbulent (les forces d’inertie sont 

prédominantes sur les forces visqueuses) (Peixinho et al., 2008).  

Plusieurs travaux ont été effectués sur le transport des suspensions en pipeline dans le but 

d’étudier et de comprendre la distribution des particules sur la section du pipeline. Il ressort de 

ces différentes études que les modèles d’écoulement des suspensions sont étroitement associés 

aux régimes d’écoulement. En d’autres termes, les modèles d’écoulement des suspensions 

dépendent de la vitesse d’écoulement et des caractéristiques de la suspension (pourcentage solide 

ou concentration, poids volumique ou de la densité de la suspension, etc.) (Cooke et Lazarust, 

1993; Doron et Barnea, 1996; Cooke, 2001; Matoušek, 2002; Matoušek, 2005; Pullum et al., 

2006). Une augmentation ou une diminution de ces facteurs pourrait entraîner un changement du 

régime, et par conséquent un nouveau comportement. En fonction de la vitesse d’écoulement ou 

du régime d’écoulement, on distingue quatre modèles d’écoulement des suspensions (Figure 

2.15) basés sur la distribution transversale des particules solides au cours de l’écoulement 

horizontal. La Figure 2.15a décrit les différents modèles d’écoulement en fonction de la vitesse 

ou débit d’écoulement et de la pression, tandis que la Figure 2.15b les décrit en fonction du 

pourcentage solide et de la vitesse d’écoulement. Il s’agit notamment des modèles d’écoulement 

(Doron et Barnea, 1996; Cooke, 2001; Cooke, 2002; Pullum, 2007; Poloski et al., 2009) :  

 à lit granulaire stationnaire : l’écoulement est asymétrique ou stratifié avec une quasi-

totalité des particules reposant au fond et une partie supérieure plus fluide. Il concerne des 

mélanges formés des particules grossières à des concentrations solides relativement faibles 

et un régime d’écoulement laminaire à faible vitesse d’écoulement (Figure 2.15a); 

 à lit granulaire mobile : il correspond à un écoulement asymétrique partiellement stratifié  

dans lequel une partie des particules est en suspension ou présente des mouvements 

d’impulsion associées à la formation des dunes dans le pipeline. Cet écoulement correspond 

à un régime laminaire instable pour des suspensions à concentrations solides moyennes et 

une large distribution granulométrique de la phase solide. 
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 hétérogène : c’est un mode d’écoulement asymétrique lié au régime d’écoulement turbulent 

instable au cours duquel les forces de trainée tourbillonnaire ne sont pas assez suffisantes 

pour mettre toutes les particules en suspension; ce qui entraîne l’apparition d’un certain 

gradient de concentration des particules solides.   

 pseudo-homogène ou en suspension totale : ce mode d’écoulement peut être obtenu en 

régime laminaire ou en régime turbulent. La concentration élevée en particules solides, la 

vitesse d’écoulement élevée, la finesse des particules solides, un seuil de cisaillement 

suffisant et la densité relative sont les principales conditions de formation de ce mode 

d’écoulement (Poloski et al., 2009). En régime de turbulence stable, la vitesse 

d’écoulement est assez importante, et par conséquent les forces de trainée tourbillonnaire 

sont suffisantes pour maintenir toutes particules en suspension pour des mélanges à 

concentration relativement moyenne. En régime laminaire, le seuil de cisaillement de la 

suspension est suffisant pour maintenir les particules en suspension pour des mélanges 

denses à des vitesses d’écoulement relativement faibles (Poloski et al., 2009). Ce dernier 

correspond au « Dense phase flow » sur la Figure 2.15b, qui caractérise l’écoulement du 

remblai en pâte. Dans les conditions statiques, l’équation suivante permet de déterminer le 

seuil de cisaillement critique nécessaire pour devoir maintenir une particule en 

suspension (Cooke, 2002):  

𝜏𝑜𝑐 ≥ 𝑘 𝑔 𝑑 (𝜌𝑠 − 𝜌𝑚) (2-53) 

où, 𝜏𝑜𝑐 (Pa) est le seuil de cisaillement critique du mélange, 𝑘 est un facteur de forme de 

la particule (égale à 0,10 pour les particules minérales), 𝑔 (m/s²) est la constante 

gravitationnelle, 𝑑 est le diamètre de la particule, 𝜌𝑠 est la masse volumique de la 

particule, et 𝜌𝑚 la masse volumique du mélange.  

  



48 

 

 
 

a) b) 

Figure 2.15 : Différents modèles d’écoulement en fonction : a) de la vitesse et gradient de 

pression; b) de la concentration solide et de la vitesse d’écoulement (Cooke, 2001; Pullum, 2007) 

2.5.3 Détermination des pertes de charge de transport par des approches 

rhéologiques 

Les données rhéologiques sont d’une grande importance lors de la conception d’un système de 

transport des fluides. Les paramètres rhéologiques donnent assez d’information sur la consistance 

et les conditions d’écoulement du fluide à transporter. Une meilleure caractérisation rhéologique 

du fluide est donc nécessaire afin de rendre possible le calcul des pertes de charge le long de la 

canalisation et de l’énergie consommée.  

Les pertes de charge correspondent à la dissipation d’énergie due aux frottements internes du 

fluide contre la paroi de la conduite. Elles sont de deux types : pertes de charge régulières hr (ou 

linéaires) et singulières h𝑠. Les premières correspondent aux pertes le long de la conduite, par 

contre les secondes sont liées aux singularités du réseau de distribution (clapet, vanne, 

changement de pente ou de section, coude, etc.). Les pertes de charge singulières peuvent être 

négligées par rapport aux pertes de charge régulières dans des situations où il n’y a pas beaucoup 

de singularités hydrauliques sur le système de transport. Dans le cas contraire, il serait nécessaire 

d’en tenir compte lors de la conception ou de l’optimisation du réseau de transport hydraulique 

complexe. La détermination de la perte de charge totale h𝑡, qui est la somme de deux types de 

perte de charge, est importante pour devoir calculer la charge ou l’énergie mécanique suffisante à 

apporter au système de pompage pour pallier aux pertes par frottement.  
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ℎ𝑡 = ℎ𝑟 + ℎ𝑠 (2-54) 

La perte de charge linéaire h𝑟 (m) est calculée à l’aide de l’équation de Darcy-Weisbach (Farshad 

et al., 2001; Taylor et al., 2006):  

ℎ𝑟 = 𝑓
𝐿 𝑈2

2 𝑔 𝐷
 (2-55) 

où 𝐿 et 𝑈 sont respectivement la longueur de la canalisation et la vitesse d’écoulement du fluide. 

𝐷 et 𝑔 est respectivement le diamètre hydraulique et l’accélération gravitationnelle. Le paramètre 

𝑓 est le coefficient de frottement. Il dépend du nombre de Reynolds 𝑅𝑒, de la rugosité 𝜀 et du 

diamètre 𝐷 de la canalisation.  

Pour un fluide newtonien en écoulement laminaire, le coefficient de frottement f est obtenu à 

l’aide de la relation suivante (Farshad et al., 2001; Taylor et al., 2006):  

𝑓 =
64

𝑅𝑒
 (2-56) 

Par ailleurs, on peut définir 𝑓 qui est égal à 4 fois le facteur de friction de Fanning 𝑓𝑓. D’où on 

peut noter que :  

𝑓𝑓 =
16

𝑅𝑒
 (2-57) 

Pour des écoulements d’un fluide newtonien en régime turbulent, plusieurs approches 

analytiques et expérimentales ont été développées pour estimer le coefficient de frottement 𝑓 par 

différents auteurs tel que discuté par Fang et al. (2011). Le coefficient de frottement 𝑓 peut être 

calculé à l’aide des formules de Colebrooke-White (1939) et Churchill (1977) données 

respectivement par les équations (2-58) et (2-59) suivantes (Farshad et al., 2001; Fang et al., 

2011) :  

1

√𝑓
= −2 log [

2,51

𝑅𝑒√𝑓
+

𝜀

3,71𝐷
] (2-58) 
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𝑓 = 8 [(8 𝑅𝑒⁄ )12 + 𝐴−
3
2]

1
12⁄

 
(2-59) 

où,  

𝐴 = (37530 𝑅𝑒⁄ )16 − [2.457 ln((7 𝑅𝑒⁄ )0,9 + 0,27 𝜀 𝐷⁄ )]16 avec 0≤𝜀 𝐷⁄ ≤0,05 (2-60) 

En plus de ces solutions analytiques, on utilise aussi couramment le diagramme de Moody (1947) 

pour les fluides newtoniens (voir Figure 2.16, pour le nombre d’Hedström 𝐻𝑒 = 0) pour les deux 

régimes d’écoulement. Le nombre de Hedström 𝐻𝑒 caractérise l’effet couplé de l’inertie et la 

viscoplasticité du fluide et sert à caractériser le type d'écoulement (laminaire ou turbulent) de 

fluides non-newtoniens (voir les définitions dans le Tableau 2.1 et le Tableau 2.2). 

La perte de charge singulière h𝑠 est estimée à l’aide de l’expression suivante :  

ℎ𝑠 = 𝑘𝑣

 𝑈2

2 𝑔 
 (2-61) 

où 𝑘𝑣 est une constante qui dépend du type de singularité (𝑘𝑣 = 0,9 pour le coude de 90°, 𝑘𝑣 = 0,5 

pour un coude de 45°, 𝑘𝑣 = 4,5  pour une valve d’un fluide newtonien).  

Au vue de la complexité et de la diversité des fluides non-newtoniens, les méthodes de calcul de 

la perte de charge des fluides newtoniens ne sont pas applicables aux fluides non-newtoniens. 

Pour ce faire, des méthodes analytiques de calcul ou de prédiction de pertes de charge ont été 

développées pour différents chercheurs. Pour un fluide de Bingham, le coefficient de frottement 

de Darcy peut être calculé à l’aide de l’expression suivante (Assefa et Kaushal, 2015):  

𝑓 = (𝑓𝑙𝑎𝑚
𝑏 + 𝑓𝑡𝑢𝑟𝑏

𝑏 )
1 𝑏⁄

 (2-62) 

avec,  

𝑓𝑙𝑎𝑚 : coefficient de friction en régime laminaire (expression dans le Tableau 2.1);  

𝑓𝑡𝑢𝑟𝑏 : coefficient de friction en régime turbulent (expression dans le Tableau 2.2);  

𝑏 : paramètre donné par la relation suivante : 
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𝑏 = 1,7 +
40000

𝑅𝑒
 

(2-63) 

Le Tableau 2.1 et le Tableau 2.2 reprennent d’autres formules de calcul des paramètres de pertes 

de charge des fluides non-newtoniens en régimes laminaire et turbulent, respectivement. Ces 

formules sont basées sur les nombres He et Re. En outre, le diagramme de Moody pour le fluide 

de Bingham (Figure 2.16, pour 𝐻𝑒 > 0) peut être utilisé pour déterminer le coefficient de friction 

de Darcy d’un fluide de Bingham en écoulement dans un pipeline.  

 

Figure 2.16 : Diagramme de Moody pour les fluides newtoniens et non-newtoniens de Bingham 

(tiré de Verkerk et Marcus, 1988) 

Tableau 2.1 : Formules de calcul des paramètres d’écoulement des fluides non-newtoniens en 

régime laminaire  

Type de 

fluide 
Coefficient de friction 

Nombre de 

Hedström He 

Nombre de 

Reynolds Re 

Bingham 

(éq. 

(2-30))  

𝑓𝑙𝑎𝑚 =
64

𝑅𝑒
+

10,67 + 0,1414(𝐻𝑒 𝑅𝑒⁄ )1,143

[1 + 0,0149(𝐻𝑒 𝑅𝑒⁄ )1,16]𝑅𝑒
(

𝐻𝑒

𝑅𝑒
) 

(2-64) 

(Swamee et Aggarwal, 2011a) 

𝐻𝑒 =
𝜌𝐷2𝜏𝐵

𝜂𝐵
2  

(2-65) 

𝑅𝑒 =
𝜌𝐷𝑈

𝜂𝐵
 

(2-66) 

Herschel 

Bulkley 

(éq. 

(2-31)) 

𝑓𝑙𝑎𝑚

=
64

𝑅𝑒
+

64

𝑅𝑒
[

𝐻𝑒

[36 + (1,5 𝑛⁄ )2,46]0,5𝑅𝑒
]

0,958𝑛 (2−𝑛)⁄

 

(2-67) 

(Swamee et Aggarwal, 2011b) 

𝐻𝑒 =
𝐷2𝜌

𝐾
(

𝜏0

𝐾
)

(2−𝑛) 𝑛⁄

 

(2-68) 

𝑅𝑒

=
8 𝐷𝑛𝑈2−𝑛𝜌

𝐾
(

0,5𝑛

1 + 3𝑛
)

𝑛

 

(2-69) 
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Tableau 2.2 : Formules de calcul des paramètres d’écoulement des fluides non-newtoniens en 

régime turbulent 

Type de 

fluide 
Coefficient de friction 

Nombre de 

Hedström He 

Nombre de 

Reynolds Re 

Bingham 

(éq. 

(2-30)) 

𝑓𝑡𝑢𝑟𝑏 = 4. 10𝑎𝑜. 𝑅𝑒−0,193     

(2-70) 

𝑎𝑜 = −1,47[1 − 0,146 𝑒(−2,9 10−5𝐻𝑒)] 

(2-71) 

(COMSOL, 2012) 

Voir éq. (2-65) Voir éq.(2-66) 

Herschel 

Bulkley 

(éq. 

(2-31)) 

1

√𝑓𝑡𝑢𝑟𝑏

= 0,45 −
2,75

𝑛

+
1,97

𝑛
ln(1 − 𝜉𝑜)

+
1,97

𝑛
ln [𝑅𝑒 (

1 + 3𝑛

4𝑛
)

𝑛

𝑓𝑡𝑢𝑟𝑏
1−(𝑛 2⁄ )

] 

(2-72) 

avec 

𝜉𝑜 =
16(2𝐻𝑒)𝑛 (2−𝑛)⁄ (

𝑛
1 + 3𝑛

)
2𝑛 (2−𝑛)⁄

𝑅𝑒2 (2−𝑛)⁄ 𝑓𝑡𝑢𝑟𝑏

 

(2-73) 

(Garcia et Steffe, 1986) 

Voir éq. ((2-68) 

 

 

Voir éq. ((2-69) 

 

 

Pour un fluide non-newtonien, le coefficient 𝑘𝑣 utilisé dans l’équation générale (éq. (2-61)) pour 

déterminer les pertes de charges singulières dépend de la singularité et du nombre de Reynolds 

(Turian et al., 1998; Slatter, 2006) :  

𝑘𝑣 =
𝑘∗

𝑅𝑒
 

(2-74) 

Où, 𝑘* est un coefficient qui dépend de la singularité.  
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2.6 Transfert de chaleur dans un fluide en écoulement dans une  

conduite  

Dans plusieurs applications industrielles, le fluide peut être chauffé ou refroidi au cours de son 

transport dans la tuyauterie. Un éventail d’équipement peut être utilisé pour ce besoin. Dans la 

plupart des applications industrielles, on s’intéresse principalement au coefficient de transfert de 

chaleur au cours du processus pour évaluer l’échange de chaleur entre le fluide en écoulement 

dans la tuyauterie et l’environnement extérieur. Ainsi, pour des matériaux-fluides sensibles à la 

température tels que les matériaux cimentaires, il convient de connaître et de contrôler le profil de 

température, ainsi que les températures admissibles à ne pas excéder, car leur écoulement peut 

être mis en cause (Mahdaoui et al., 2014). C’est le cas, lorsque le remblai en pâte cimenté est 

transporté dans un réseau de pipelines exposé à des températures inférieures à zéro.  

À cause de leur forte consistance, les fluides non-newtoniens sont fréquemment transportés sous 

un régime d’écoulement laminaire. En outre, les contraintes de cisaillement sont généralement 

importantes; ce qui fait que la chaleur générée par la dissipation visqueuse et la friction est 

rarement négligée, et par conséquent joue un rôle important sur le transfert de chaleur en 

convection forcée (Dehkordi et Memari, 2010). Cela rend complexe les équations d’équilibre des 

quantités de mouvement, de bilan massique et de bilan énergétique pour des fluides à propriétés 

rhéologiques thermo-dépendantes (variant avec la température). Pour mieux idéaliser les 

conditions d’écoulement de ces matériaux et obtenir les solutions appropriées, on a recours 

généralement aux méthodes numériques.  

Dans ce qui suit, on va devoir présenter les équations classiques de base utilisées pour étudier les 

problèmes de transfert de chaleur d’un fluide en écoulement forcé dans une conduite cylindrique. 

2.6.1 Mode de transfert thermique 

Le transfert de chaleur peut se faire d’une région à l’autre soit par conduction, soit par convection 

(naturelle ou forcée), ou soit par rayonnement (Whitaker, 1983).  

La conduction est un mécanisme de transfert de chaleur qui se produit au sein d’une région à une 

autre d’un même corps au repos ou en mouvement, ou aussi entre deux corps en contact 

physique, en présence d’un gradient de température. Mathématiquement, ce mécanisme est 
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expliqué par la première loi de Fourrier qui stipule que le flux de chaleur q est proportionnel au 

gradient de température :  

𝑞 = −∇T (2-75) 

où, 

𝑞 (W/m
2
) : le flux de chaleur ; 

 (W/m.K): conductivité thermique du corps ; 

𝑇: température en degré Kelvin; 

𝛻: opérateur gradient. 

La convection est le transfert de chaleur d’un point à un autre dans un fluide par son déplacement 

macroscopique. Cette forme de transfert de chaleur dépend de la densité du fluide. On distingue 

ainsi deux types de convection : naturelle et forcée. Dans le premier cas (convection naturelle), le 

mouvement du fluide résulte de différences de densité relative causées par les différences de 

température. Par contre, pour le second type, le mouvement du fluide est provoqué par un moyen 

mécanique (par exemple, le pompage ou la ventilation, etc.). Ce mécanisme est régi par la loi de 

Newton (Rozenblit et al., 2000):  

𝑞 = ℎ ∆𝑇 (2-76) 

où, 

𝑞 (W/m
2
) : le flux de chaleur ; 

ℎ (W/m
2
 K): coefficient d’échange de chaleur convectif; 

𝛥𝑇 (°K) : différence de température caractéristique. 

Le coefficient de transfert de chaleur convectif ℎ est fonction de la nature du fluide, de sa 

température, de sa vitesse d’écoulement et de la géométrie de la surface de contact solide-fluide. 

La différence de température caractéristique peut être calculée à l’aide des relations 

suivantes (Gnielinski, 1993; Bird Byron et al., 2002; Lienhard et Lienhard, 2010) :   
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∆𝑇1 = (𝑇𝑤 − 𝑇𝑓) (2-77) 

∆𝑇𝑚 =
(𝑇𝑤1 − 𝑇𝑓1) + (𝑇𝑤2 − 𝑇𝑓2)

2
 

(2-78) 

∆𝑇𝑙𝑛 =
(𝑇𝑤1 − 𝑇𝑓1) − (𝑇𝑤2 − 𝑇𝑓2)

ln
(𝑇𝑤1 − 𝑇𝑓1)

(𝑇𝑤2 − 𝑇𝑓2)

 
(2-79) 

Les indices 1 et 2 correspondent respectivement à l’entrée et à la sortie.  

𝑇𝑤 : température à la surface de la paroi ;  

𝑇𝑓; température du fluide ; 

Ainsi donc, en fonction des différences de température caractéristiques, on définit trois 

coefficients de transfert de chaleur :  

 ℎ1, basé sur la différence de température 𝛥𝑇1; 

 ℎ𝑚, basé sur la moyenne arithmétique de la différence de température 𝛥𝑇m; 

 ℎ𝑙𝑛, basé sur la moyenne logarithmique de la différence de température 𝛥𝑇ln. 

Ce dernier est préférable, car il est faiblement dépendant du rapport longueur/diamètre par 

rapport aux autres coefficients de transfert de chaleur, bien qu’il ne soit souvent pas utilisé (Bird 

et al., 2002).  

Le rayonnement est un mode de transfert de chaleur qui se produit d’un corps à un autre, sans 

aucun contact entre eux, par le déplacement d’ondes dans l’espace. Ce mode de transfert ne fait 

pas partie de notre étude.  

2.6.2 Transfert de chaleur dans un fluide en écoulement dans une conduite 

En considérant un problème classique d’écoulement d’un fluide dans une conduite, on peut noter 

que cet écoulement est accompagné généralement du transfert de chaleur par conduction dans la 

direction radiale, par convection forcée et conduction dans la direction axiale. Ainsi donc, 

l’équation de l’énergie thermique de l’écoulement d’un fluide incompressible dans une conduite 

peut s’écrire comme suite (COMSOL, 2012) :  
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𝜌 𝐴 𝐶𝑝

𝜕𝑇

𝜕𝑡
+ 𝜌𝐴𝐶𝑝𝑈∇𝑇 = ∇(𝐴𝜆∇𝑇) +

1

2
𝑓

𝜌𝐴

𝐷
|𝑈|3 + 𝑄 + 𝑄𝑤  (2-80) 

où,  

𝐴 (m²) : section de la conduite;  

𝑈 (m/s) : vitesse du fluide en écoulement dans la conduite; 

𝐷 (m) : diamètre interne de la conduite; 

𝑇 (°C ou °K): température de fluide; 

𝜌 (kg/m
3
) : masse volumique du fluide; 

𝐶𝑝 (J/kg.K) : capacité thermique massique du fluide; 

𝜆 (W/m.K) : conductivité thermique du fluide ou de la paroi; 

𝑓 (-) : coefficient de frottement de Darcy;  

𝑄 (W/m) : flux de chaleur lié à une source interne ou externe. Il peut représenter soit la chaleur 

liée au chauffage de la tuyauterie, soit la chaleur liée aux réactions internes du fluide selon le cas; 

𝑄𝑤 (W/m) : flux de chaleur lié à l’échange de chaleur à la paroi avec le milieu externe. 

Le second terme dans le membre de droite représente le flux de chaleur lié à la dissipation 

visqueuse par cisaillement dans la tuyauterie. Ce terme contient le coefficient de frottement de 

Darcy 𝑓, lequel est fonction du nombre de Reynolds 𝑅𝑒 et de Hedström 𝐻𝑒. Il peut être calculé à 

l’aide des formules reprises dans le Tableau 2.1 (cas des fluides non-newtoniens). Dans les 

conditions stationnaires où la température ne varie pas avec le temps, le premier terme du premier 

membre de l’équation (2-80) est nul.  

Le flux de chaleur lié à l’échange de chaleur à la paroi 𝑄𝑤, est donné par la relation 

suivante (dérivée de l’équation (2-80)) :  

𝑄𝑤 = ℎ𝑙𝑜𝑐(𝑥) 𝜋 𝐷 (𝑇𝑤(𝑥) − 𝑇𝑓(𝑥)) (2-81) 

avec,  

𝑇𝑤 (𝑥) : température de la paroi à une distance 𝑥 donnée; 
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𝑇𝑓 (𝑥) : température du fluide à une distance 𝑥 donnée; 

ℎ𝑙𝑜𝑐 (𝑥) : coefficient de transfert de chaleur local à une distance 𝑥 donnée; 

𝐷 (m) : diamètre interne de la conduite; 

Le coefficient d’échange de chaleur ℎ𝑙𝑜𝑐 peut varier avec la distance 𝑥. Il peut être évalué à l’aide 

du nombre de Nusselt 𝑁𝑢 par la relation suivante (Bird et al., 2002; Wagner, 2010):  

ℎ𝑙𝑜𝑐 =
𝑁𝑢 

𝐷
 (2-82) 

Le nombre de Nusselt 𝑁𝑢 traduit le rapport entre le transfert thermique convectif et le transfert 

thermique conductif (Incropera et al., 2007). Son augmentation traduit une contribution 

importante de l’écoulement sur l’échange de chaleur avec la paroi. Pour la convection forcée 

interne d’un fluide newtonien dans une conduite, le nombre de Nusselt 𝑁𝑢 est constant et dépend 

de la section de la conduite et du type d’écoulement (laminaire ou turbulent). Pour un fluide en 

écoulement laminaire établi dans une section circulaire avec la température constante de la paroi, 

la valeur de 𝑁𝑢 est de 3,66 (Bird et al., 2002). Pour une conduite soumise à un flux de chaleur 

externe 𝑄, le nombre de Nusselt 𝑁𝑢 est égal à 4,36 (Bird et al., 2002). Généralement, on observe 

de grandes valeurs de 𝑁𝑢 (dépendamment du nombre de Reynold) à l’entrée de la conduite, puis 

une diminution asymptotique et une stabilisation de la valeur de 𝑁𝑢 dans la conduite avec 

l’établissement hydrodynamique de l’écoulement (Blackwell, 1984; Min et al., 1997a).  

Pour un fluide non-newtonien dont le comportement rhéologique suit la loi de puissance (voir 

l’équation (2-27)), le nombre de Nusselt 𝑁𝑢 peut être calculé à l’aide de l’expression 

suivante (Chhabra et Richardson, 2008) :  

𝑁𝑢 = 1,75 ∆1 3⁄ 𝐺𝑧1 3⁄  (2-83) 

où 𝐺𝑧 est le nombre de Graetz. Ce dernier nombre est défini par l’expression suivante (Chhabra 

et Richardson, 2008) :  

𝐺𝑧 =
𝑚̇𝐶𝑝

 𝐿
 (2-84) 
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où, 𝑚̇ (kg/s) est le débit massique, 𝐶𝑝 (J/kg·K) est la capacité thermique massique, 𝜆 (W/m·K) est 

la conductivité thermique et 𝐿 (m) est la longueur de la conduite.  

𝛥 : est un facteur tenant compte de l’indice d’écoulement. Il est donné par la relation suivante :  

∆=
3𝑛 + 1

4𝑛
 (2-85) 

où, 𝑛 est le coefficient d’écoulement du fluide non- newtonien de puissance. Si 𝑛 est égal à 1, 

l’équation (2-83) se réduit à un fluide newtonien  

𝑁𝑢 = 1,75 𝐺𝑧1 3⁄  (2-86) 

Certains chercheurs ont étendu cette approche aux fluides de Bingham, et ont proposé de calculer 

ce facteur 𝛥 utilisé dans l’éq. (2-83) à l’aide de l’expression suivante (Chhabra et Richardson, 

2008):  

∆=
3

(3 −
𝜏𝑜

𝜏𝑤
− (

𝜏𝑜

𝜏𝑤
)

2

− (
𝜏𝑜

𝜏𝑤
)

3

)
 

(2-87) 

où,  

𝜏o : est le seuil de cisaillement du fluide en écoulement 

𝜏𝑤 : est la contrainte de cisaillement à la paroi. Elle est donnée par l’expression suivante (Barnes 

et al., 1989) :  

𝜏𝑤 =
∆𝑝 𝐷

4𝐿
 (2-88) 

L’équation (2-88) est valide pour les fluides newtoniens et non-newtoniens. 

Blackwell (1984) a résolu numériquement le problème de transfert de chaleur dans un fluide de 

Bingham s’écoulant dans une conduite à température constante de la paroi sans tenir compte de la 

dissipation visqueuse. Il montre que 𝑁𝑢 dépend du rapport 𝜏𝑜/𝜏𝑤. En effet, 𝑁𝑢 diminue avec la 

décroissance du rapport 𝜏𝑜/𝜏𝑤 (Blackwell, 1984). Pour des rapports compris entre 0 et 1 (ces 

valeurs extrêmes correspondent respectivement à l’écoulement d’un fluide newtonien et à 
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l’écoulement en piston d’un fluide de Bingham), 𝑁𝑢 varie entre 3,66 et 5,8 dans la région 

d’écoulement établie (Blackwell, 1984). 

Certains auteurs définissent le nombre de Nusselt 𝑁𝑢 en fonction du paramètre adimensionnel 𝛹 

qui prend en compte les propriétés rhéologiques du fluide non-newtonien et les caractéristiques 

hydrodynamiques. Ce paramètre 𝛹 est défini par les expressions suivantes respectivement pour le 

fluide d’Herschel-Bulkley et le fluide de Bingham (Vradis et al., 1993; Min et al., 1997b; Min et 

al., 1997a; Cruz et al., 2012; Alves et al., 2015) :  

𝛹 = (
𝐾𝐻𝐵

𝜏𝐻𝐵
)

1 𝑛⁄ 𝑈

𝑅
 (2-89) 

𝛹 = (
𝜂𝐵

𝜏𝑜
)

𝑈

𝑅
 (2-90) 

où,  

𝑅 (m) : rayon de la conduite circulaire; 

𝑈 (m/s) : vitesse d’écoulement du fluide dans la conduite; 

𝜏HB (Pa): seuil de cisaillement de Herschel-Bulkley; 

𝐾 (Pa.sn): indice de consistance; 

𝜏o (Pa): seuil de cisaillement de Bingham; 

𝜂B (Pas) : viscosité de Bingham.  

La Figure 2.17 montre la variation du nombre de Nusselt 𝑁𝑢 avec le paramètre adimensionnel 𝛹 

dans les conditions de température constante de la paroi et d’un flux de chaleur constant imposé à 

la paroi de la conduite. On peut observer que pour un fluide de Bingham s’écoulant dans une 

conduite circulaire à la température constante de la paroi, le Nusselt 𝑁𝑢 varie entre 5,8 et 3,66 

dépendamment de la valeur de 𝛹. Vradis et al. (1993) ont trouvé aussi des résultats similaires en 

considérant le rapport 1/𝛹. Dans le cas d’un flux de chaleur constant imposé à la paroi de la 

conduite, 𝑁𝑢 varie entre 8 et 4,36 en fonction de la valeur de 𝛹 (voir courbes grises sur la Figure 

2.17). La diminution (augmentation) du seuil de cisaillement entraine une augmentation 

(diminution) de 𝛹, et par conséquent 𝑁𝑢 a tendance à diminuer (augmenter) (Min et al., 1997a) 

et à rester constant. Mais, Min et al. (1997a) note que le nombre de Nusselt 𝑁𝑢 d’un fluide de 
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Bingham n’est pas affecté significativement par le seuil de cisaillement lorsque la dissipation 

visqueuse n’est pas pris en compte. En outre, le nombre de Nusselt 𝑁𝑢 du fluide de Bingham 

s’écoulant dans une conduite circulaire est fonction du nombre de Reynolds 𝑅𝑒, du nombre de 

Prandtl 𝑃𝑟, et de la géométrie dans la région d’entrée de la conduite (Vradis et al., 1993; Bird et 

al., 2002). Le nombre de Prandtl 𝑃𝑟 est défini par (Bird et al., 2002; Lienhard et Lienhard, 

2010) :  

𝑃𝑟 =
𝐶𝑝𝜂


 (2-91) 

Ce nombre compare le potentiel du fluide à diffuser la quantité de mouvement à son potentiel de 

diffusion de la chaleur (Bird et al., 2002; Lienhard et Lienhard, 2010). Une valeur élevée de ce 

nombre indique que le profil de température est fortement influencé par le profil de vitesse. Une 

faible valeur du nombre de Prandtl traduit que le profil de vitesse a peu d’effet sur le profil de 

température (cas de matériau à grande conductivité thermique). 

 

Figure 2.17 : Variation du nombre de Nusselt 𝑁𝑢 avec le nombre adimensionnel 𝛹 pour les 

fluides  de Herschel Bulkley et Bingham (tirée d’Alves et al., 2015). 

Pour un écoulement convectif turbulent forcé interne d’un fluide newtonien, le nombre de 

Nusselt (pour 3000 < 𝑅𝑒 < 6.106 et 0,5 < 𝑃𝑟 < 2000) peut être calculé à l’aide de la relation de 

Gnielinski (Incropera et al., 2007) :  
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𝑁𝑢 =
(𝑓 8⁄ )(𝑅𝑒 − 1000)𝑃𝑟

1 + 12,7(𝑓 8⁄ )1 2⁄ (𝑃𝑟2 3⁄ − 1)
 (2-92) 

De même, si on considère une convection externe forcée liée à la circulation de l’air à une vitesse 

𝑈𝑎𝑖𝑟 et température 𝑇𝑎𝑖𝑟 données autour de la conduite circulaire, le nombre de Nusselt 𝑁𝑢𝑒𝑥𝑡 peut 

être calculé à l’aide de l’expression suivante (Incropera et al., 2007; Ferrouillat et al., 2011) :  

𝑁𝑢𝑒𝑥𝑡 = 0,3 +
0,62√𝑅𝑒𝑃𝑟1 3⁄

[1 + (0,4 𝑃𝑟⁄ )2 3⁄ ]1 4⁄
[1 + (𝑅𝑒 282 × 103⁄ )5 8⁄ ]

4 5⁄
 (2-93) 

Cette équation est recommandée pour 𝑅𝑒⨯𝑃𝑟>0,2.  

2.6.3 Effet de la dissipation visqueuse sur le transfert de chaleur 

La dissipation visqueuse d’un fluide en écoulement dans une conduite est généralement 

quantifiée par le nombre de Génération 𝐺𝑛 donné par la relation suivante : 

𝐺𝑛 =
𝜂𝑈2

 ∆𝑇
 (2-94) 

où  

𝛥𝑇 est la différence entre les températures d’entrée et de sotie du fluide dans la conduite. Ce 

nombre donne une indication sur l’importance de la dissipation visqueuse comparativement à la 

conduction. De grandes valeurs de 𝐺𝑛 sous-entendent que la chaleur liée à la dissipation 

visqueuse ne peut pas être négligée en comparaison avec la chaleur liée à la conduction. Il faut 

noter que le produit de la viscosité et du taux de cisaillement pour des fluides à forte consistance 

implique forcement des valeurs de 𝐺𝑛 supérieures à 1 (Winter, 1987; Chhabra and Richardson, 

1999). Par conséquent, la dissipation visqueuse peut localement influencer la température même 

si ce dernier est inférieur à 1. Par contre, la dissipation visqueuse peut être négligée pour des 

valeurs de 𝐺𝑛 inférieures à 0,1 (Winter, 1987).  

En considérant un système adiabatique (pas d’échange de chaleur avec l’extérieur), la variation 

de la température du fluide peut être liée à la perte de charge 𝛥𝑝/𝐿 par le principe de 

conservation de l’énergie à l’aide de la relation suivante (Winter, 1987; Wagner, 2010) :  
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∆𝑇 =
∆𝑝

𝜌 𝐶𝑝
 (2-95) 

Si 𝛥𝑇 est défini comme étant la différence de températures entre la paroi de la conduite 𝑇𝑤 et le 

fluide 𝑇𝑓, le nombre de génération est appelé le nombre de Brinkman 𝐵𝑟. Le nombre de 

Brinkman 𝐵𝑟 est le rapport entre la chaleur produite par dissipation visqueuse et celle dissipée 

par conduction dans le fluide en écoulement (Winter, 1987; Bird et al., 2002) :  

𝐵𝑟 =
𝜂𝑈2

 (𝑇𝑤 − 𝑇𝑓)
 (2-96) 

Une faible valeur du nombre de Brinkman 𝐵𝑟 traduit que la chaleur produite par dissipation 

visqueuse peut être transportée rapidement par conduction (Bird et al., 2002). Par définition, la 

valeur positive (ou négative) de 𝐵𝑟 représente respectivement le chauffage (ou le 

refroidissement) du système (Aydin, 2005). Des valeurs élevées du nombre de Brinkman 𝐵𝑟 

entrainent généralement une augmentation du nombre de Nusselt (Vradis et al., 1993; Min et al., 

1997a). Par ailleurs, pour des valeurs différentes de 𝐵𝑟, on note une décroissance du nombre de 

Nusselt 𝑁𝑢 dans la région d’entrée de la conduite, suivie d’une convergence de la valeur dans la 

région d’établissement thermique de l’écoulement dans la conduite (Min et al., 1997b). Vradis et 

al. (1993) notent que le nombre de Nusselt 𝑁𝑢 dans la région thermiquement développée est 

dépendant du seuil de cisaillement ou du paramètre adimensionnel 1/𝛹 (défini par l’éq. (2-89)),  

et indépendant du nombre de Brinkman  𝐵𝑟. Toutefois, la valeur de 𝑁𝑢 obtenue en tenant compte 

de la dissipation visqueuse reste largement supérieure à celle obtenue sans la dissipation 

visqueuse (Min et al., 1997a). Min et al. (1997a) notent que le nombre de Nusselt est 

significativement affecté par le seuil de cisaillement du fluide de Bingham lorsque la dissipation 

visqueuse est considérée. Lorsque la dissipation visqueuse est importante, le nombre de Nusselt 

𝑁𝑢 a tendance à augmenter. Ceci entraîne un accroissement de l’échange de chaleur à la paroi. 

On peut aussi noter que pour un 𝐵𝑟 supérieur à 1, le fluide est chauffé au lieu d’être refroidi à 

cause de la forte dissipation de l’énergie mécanique en énergie thermique (qui se traduit par 

l’augmentation de la chaleur du fluide) (Vradis et al., 1993). 

La variation de la température du fluide le long de la conduite peut être calculée à l’aide de 

l’expression suivante (Wang et Niu, 2008) :  
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𝑇𝑓(𝑥) = 𝑇𝑓𝑒 +
𝑄𝑊

 𝑚 ̇ 𝐶𝑝
𝑥 (2-97) 

où, 𝑄𝑤 (W/m) est le flux de chaleur à la paroi; 𝑇𝑓𝑒 est la température du fluide à l’entrée de la 

conduite.  

Les équations présentées ci-dessus seront utilisés aux sections 4.5 et 4.6 présentant les 

modélisations numériques. 

2.6.4 Effet de la thermo-dépendance des propriétés rhéologiques du fluide sur 

le transfert de chaleur 

Fréquemment, l’écoulement des fluides industriels dans les conduites impliquent des situations 

non-isothermes. Pour des fluides non-newtoniens à propriétés rhéologiques thermo-dépendantes, 

la distribution de la température doit être connue afin de permettre le contrôle de l’écoulement 

(Soares et al., 1999).  

Soares et al. (1999) notent que l’effet de la variation des propriétés rhéologiques d’un fluide 

d’Herschel-Bulkley sur le nombre de Nusselt 𝑁𝑢 est important dans la région d’entrée de la 

conduite que dans la région thermique totalement développée (région où les couches thermiques 

de part et d’autre de l’axe de la conduite se rejoignent) où la déviation de 𝑁𝑢 devient faible 

(Figure 2.18).  

 

Figure 2.18 : Effet de la variation des propriétés rhéologiques d’un fluide non-newtonien sur le 

nombre de Nusselt (flux de chaleur constant), 𝑋+
 est l’inverse du nombre de Graetz (éq. (2-84) 

tirée de Soares et al. (1999) 
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Sur la Figure 2.18, 𝑋+
 est l’inverse du nombre de Graetz. Ce phénomène peut être expliqué par le 

fait que le gradient de température (par conséquent le gradient radial de viscosité) devient moins 

intense dans la région totalement développée que dans la région thermique non développée ou 

d’entrée de la conduite (région où les couches thermiques se développent sans se joindre) (Soares 

et al., 1999).  

De plus, la conduction thermique axiale est plus importante dans la région thermique non 

développée ou d’entrée de la conduite pour un fluide viscoplastique, et par conséquent entraîne 

une augmentation du nombre de Nusselt 𝑁𝑢 (Soares et al., 2003). De surcroît, l’effet de la 

dissipation visqueuse décroit avec l’augmentation de la température dans la conduite pour un 

fluide dont la viscosité diminue avec l’augmentation de la température (Sahin, 1999; Koo et 

Kleinstreuer, 2004; Nouar, 2005). 

2.7 Conception de systèmes de transport du remblai en pâte 

Dans cette section nous allons présenter les principales configurations des systèmes de transport 

du remblai en pâte, ainsi que les méthodes de conception des systèmes de transport du remblai en 

pâte.  

2.7.1 Principales configurations du système de remblayage minier 

Le transport du remblai de la surface jusque dans les chantiers souterrains, peut être réalisé 

suivant trois configurations (Figure 2.19) : par gravité, par gravité et pompage, et par pompage et 

gravité (Thomas, 1979; Belem et Benzaazoua, 2008). L’adoption de la configuration de transport 

du remblai dépend de la configuration de la mine souterraine (Fehrsen et Cooke, 2006).  

 Transport du remblai par gravité 

Ce système de transport du remblai minier est basé sur la loi de la conservation de l’énergie 

(transformation de l’énergie potentielle ou de hauteur en énergie cinétique). Le remblai est chargé 

à la surface à travers un pipeline ou un trou de forage vertical, il s’écoule ensuite sur la partie 

horizontale du pipeline jusqu’au chantier à remblayer. Donc, l’énergie potentielle devrait être 

suffisante pour vaincre les pertes de charge dans la partie horizontale du pipeline. Ceci est une 

condition nécessaire pour utiliser ce système de transport. Dans le cas contraire, il faudrait se  

rediriger vers les autres options. Le système de transport par gravité ne requiert pas de pompe, ce 
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qui constitue son avantage en réduisant les coûts liés à l’énergie. Il faut noter que la pression 𝑝 

générée par gravité est donnée par la relation suivante :  

𝑝 = 𝜌𝑔𝐻 = 𝛾𝐻 (2-98) 

Où 𝐻 (m) est la hauteur de chute du remblai; 𝑔 (m/s²) est la constante gravitationnelle et 𝜌 

(kg/m³), la masse volumique du remblai en écoulement.  

 

Figure 2.19 : Configurations de systèmes de remblayage hydraulique (tirée de Belem et 

Benzaazoua, 2008). 

 
 

a) Mode d’opération en Free fall b) Mode d’opération en Full flow 

Figure 2.20 : Modes d’opération du remblai par gravité, adaptée de Cooke (2001) (Senapati et 

Mishra, 2012) 
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Lors du remblayage par gravité, deux modes d’opération sont rencontrés dans l’industrie 

minière : mode d’opération en «Free fall» et mode d’opération en «Full flow» (Cooke, 2001). 

Pour le premier (Figure 2.20a), le remblai tombe librement du puits ou de la manche verticale de 

la canalisation sous gravité jusqu'à atteindre l'interface air-remblai. La hauteur de l'interface est 

établie telle que la hauteur statique disponible puisse équilibrer les pertes de charge de la 

canalisation dans la section pressurisée. On observe généralement une migration vers la paroi de 

la conduite du remblai en pâte qui entraîne des taux élevés d’usure des pipelines. De plus, les 

impacts élevés de pression observés à l’interface de l’air-remblai provoquent des ruptures de 

pipelines (Cooke, 2001). Ces deux problèmes énumérés constituent les désavantages du mode 

d’opération en «Free fall». Pour le second (Figure 2.20b), l’écoulement du remblai dans la 

canalisation est continu et plein (sans aucun espace vide). Ce système a l’avantage de réduire 

l’usure des pipelines, car il permet de réduire les impacts de pression l’interface de l’air-remblai 

(située à la surface ou au bout de la conduite verticale) et la migration du remblai vers la paroi 

des pipelines (Cooke, 2001). 

 Transport par pompage et gravité 

Si la configuration de la mine ne permet pas l’utilisation du transport par gravité, on a recours à la 

combinaison d’un système de transport par pompage et gravité. Ici le remblai est premièrement 

pompé sur une bonne distance horizontale avant de s’écouler par gravité dans une canalisation 

verticale ou légèrement inclinée jusqu’au chantier souterrain. Cette configuration de transport 

s’avère avantageuse si le remblai est rhéofluidifié durant son pompage dans la partie horizontale 

par cisaillement (Fehrsen et Cooke, 2006; Cooke, 2007a).  

 Transport gravité et pompage 

Ici, le remblai s’écoule par gravité dans le pipeline ou le puits de forage vertical jusqu’à un 

niveau sous terre avant d’être distribué horizontalement dans les chantiers à l’aide d’une pompe. 

Le design du système de distribution du remblai peut être basé sur l’essai d’écoulement en boucle 

ou sur les propriétés rhéologiques. Ouellet (2015) a comparé les recettes de remblai en pâte ainsi 

que les résultats des tests d’écoulement de la pâte (test à petite échelle) ayant servi au design des 

réseaux de distribution et les données recueillies durant l’opération pour 3 mines différentes 

appartenant à Mines Agnico Eagle Ltd situées au Québec (mine Goldex), en Finlande (mine 

Kittila) et au Mexique (mine Pinos Altos). Des différences ont été observées entre la vitesse de 
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transport de la pâte et le pourcentage solide dans l'opération par rapport aux valeurs définies 

comme critères d'opération au moment du design, même si les pertes de charges étaient 

relativement proches. L’importance de la représentativité des échantillons utilisés dans les 

méthodes de design (essais rhéologiques, tests d’écoulement de la pâte et opération) a aussi été 

discutée. 

2.7.2 Design basé sur l’essai d’écoulement en boucle ou «flow loop test» 

La détermination du comportement de l’écoulement du remblai en pâte est une exigence 

principale lors de la conception du système de transport hydraulique du remblai en pâte. Cela 

consiste à déterminer les caractéristiques hydrodynamiques du fluide (pertes de charge et 

pressions, vitesse d’écoulement, régime d’écoulement, énergie consommée, effet du diamètre du 

tuyau, évolution de la température du fluide, etc.) lors de son transport en pipeline. Ces propriétés 

de transport sont fonction de la recette du remblai en pâte, qui en général, est fixée par les 

caractéristiques de portance ou mécaniques escomptées. Par conséquent, il est important d’être 

capable d’optimiser les conditions d’écoulement quand un ensemble particulier des variables est 

donné. Vu la difficulté engendrée par la variabilité des ingrédients du remblai en pâte sur sa 

transportabilité en pipeline, on a souvent recours aux essais d’écoulement en boucle (Flow Loop 

Test), qui fournissent des données de base pour la conception du système de transport 

hydraulique du remblai en pâte malgré la non représentativité des matériaux (Clark et al., 1995; 

Matousek, 2002, Hallbom, 2008; Ouattara, 2011). L’essai de pompage en boucle consiste à 

pomper le remblai ou la suspension à l’aide d’une pompe dans un système de tuyau instrumenté 

en circuit fermé, et de suivre l’évolution de la pression le long de la tuyauterie (gradient de 

pression) et/ou de la température (gradient de température) en fonction soit du débit de pompage, 

soit du diamètre de la tuyauterie, ou soit du pourcentage solide de la suspension 𝐶𝑤 (Clark et al., 

1995; Rozenblit et al., 2000; Kaplan, 2001; Farias et al., 2009).  

2.7.3 Design du système de transport par des approches rhéologiques 

 

La conception rationnelle d’un système de distribution du remblai en pâte est une étape très 

minutieuse qui nécessite une connaissance de nombreux paramètres. À cause de l’imprécision des 

résultats liée à la non-représentativité des matériaux, de la dégradation subie des matériaux lors 

de l’essai en boucle et du coût, l’étude préliminaire du système de transport du remblai minier 
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peut être basée sur leurs propriétés rhéologiques (Clark et al., 1995; Hallbom, 2008; Ouattara, 

2011). Vu les différences importantes des matériaux dans l’industrie minière, Cooke (2001) et 

Halbom (2008) ont proposé séparément des approches presqu’identiques de conception des 

systèmes de distribution du remblai en pâte basées sur les propriétés rhéologiques. Ces approches 

rhéologiques nécessitent au départ une acquisition des données rhéologiques du matériau pour 

pouvoir déterminer les paramètres de transport (vitesse d’écoulement, pertes de charge, énergie 

consommée, etc.) et évaluer le système de transport avec une précision relativement bonne. Ainsi 

donc, la prédiction du comportement de l’écoulement de la suspension à l’échelle industrielle 

peut être réalisée à l’aide des propriétés d’écoulement obtenues au laboratoire (Ouattara, 2011). 

Les équations (2-55) et (2-61) présentées à la section 2.5.3 peuvent être utilisées à cette fin.  

Approche de Cooke (2001) 

Cooke (2001) propose une procédure itérative dans la conception d’un système de remblayage 

hydraulique, schématisée par la Figure 2.21. Cette procédure présente les différentes étapes 

successives à analyser et valider chacune successivement au cours de la conception d’un système 

de distribution du remblai en pâte.  

La première étape de cette démarche consiste à définir les exigences du système, les contraintes 

liées à la production (taux de remblayage ou débit d’écoulement), les caractéristiques du site 

minier (topographie, distance de remblayage, température, pression, etc.) et les propriétés de base 

des résidus (dureté des particules, rhéologie, chimie). Ensuite, vient la modélisation physique de 

l’écoulement du remblai qui peut être basée, soit sur les données historiques expérimentales, soit 

sur des essais de caractérisation rhéologique (affaissement, rhéométrie) ou des essais 

d’écoulement en boucle pouvant prédire les pertes de charge et l’usure des pipelines. En partant 

des données recueillies aux étapes précédentes (la définition des exigences et la modélisation 

physique de l’écoulement), on peut ainsi établir un système de distribution du remblai en fonction 

de la configuration des galeries de la mine, avant de procéder au choix des dimensions de 

pipelines et trous de forage. Le choix des dimensions de pipelines se fait par itération en 

recherchant la maximisation de la robustesse ou de la fiabilité du système et de la pompe.  
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Figure 2.21 : Procédure de conception du système de remblayage hydraulique (Cooke, 2001) 

En partant d’une dimension initiale de pipeline, d’une vitesse limite minimale (conditions de 

stabilité d’écoulement) de 1 m/s (remblai en pâte) ou 2 m/s (remblai hydraulique), et d’une 

vitesse limite max de 4 m/s (considérations d’usure), on effectue une analyse du système pour 

vérifier le débit d’écoulement, le gradient de pression et le potentiel de cavitation. Au cas où 

certaines exigences ne sont pas rencontrées lors de l’analyse du système, on opère des 

changements nécessaires (choix d’une nouvelle dimension de pipeline ou trous de forage, 

établissement d’un nouveau système de distribution). Si les calculs sont satisfaisants, on passe à 

la conception détaillée ou approfondie du système de transport. Enfin, un système de contrôle de 

qualité est souvent mis en place pour assurer la viabilité du système et des opérations (Cooke, 

2001).  
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Dans la pratique minière, on procède souvent à l’essai d’affaissement pour le contrôle de la 

qualité. Mais, il faudra souligner que cet essai empirique (essai statique) ne donne d’indication 

que sur un seul paramètre (seuil de cisaillement) des trois paramètres caractérisant le fluide non-

newtonien (seuil de cisaillement, viscosité dynamique, et l’indice d’écoulement) (Cooke, 2001).  

Approche de Halbom (2008) 

L’approche de conception du système de transport hydraulique de Halbom (2008) est basée sur la 

détermination des paramètres hydrodynamiques de l’écoulement (gradient de pression, vitesse 

d’écoulement turbulent, etc.) en fonction des propriétés géotechniques de la suspension (masse 

volumique de la suspension, pourcentage solide) et rhéologiques obtenues préalablement au 

laboratoire avec un rhéomètre standard, ainsi que des diamètres du tuyau. En utilisant un tableur, 

une relation peut être établie entre le gradient de pression et les courbes d’écoulement pour 

différents diamètres de la tuyauterie et pourcentages solides 𝐶𝑤 (Hallbom, 2008; Ouattara, 2011). 

Ainsi donc, on peut déterminer le diamètre optimal de pipeline, le pourcentage solide optimal, et 

par conséquent, le type et la capacité de la pompe requise.  

2.8 Récapitulatif  

La revue de littérature réalisée indique, comme escompté, que la température a une influence 

importante sur les propriétés rhéologiques des matériaux cimentaires de rapport eau/ciment E/C 

compris entre 0,35 et 0,52. Le seuil de cisaillement et la viscosité plastique de ces derniers 

augmentent avec l’accroissement de la température et la fluidité de ces matériaux est réduite avec 

l’accroissement de la température (Petit et al., 2005; Petit et al., 2006; Nonino et al., 2006; Al-

Martini and Nehdi, 2010; Wu et al., 2013; John et Gettu, 2014). L’effet des sels sur les propriétés 

rhéologiques des matériaux cimentaires et des suspensions dépend des propriétés chimiques et 

minéralogiques du mélange. Les propriétés rhéologiques de ces mélanges peuvent diminuer ou 

augmenter dépendamment de l’effet des ions salins sur l’interaction entre les particules solides 

des mélanges. La transposition de ce domaine d’étude dans la technologie du remblai cimenté en 

pâte demeure un défi actuel de la recherche, vu sa complexité et sa particularité. La connaissance 

des propriétés thermiques et rhéologiques de ce dernier ainsi que leur thermo-dépendance est 

primordiale pour l’analyse du transfert de chaleur lors de l’écoulement du RCP dans le pipeline et 
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pour une meilleure prédiction de la température de déposition du RCP (qui est l’objectif principal 

de cette étude).  

De plus, la dissipation visqueuse est un élément important à considérer dans l’analyse du transfert 

de chaleur dans un fluide non-newtonien à forte consistance tel que le RCP. Une bonne analyse 

du transfert de chaleur passera par l’évaluation des nombres de Nusselt associé aux échanges 

internes 𝑁𝑢𝑖𝑛𝑡 et associé aux échanges externes 𝑁𝑢𝑒𝑥𝑡. Ces paramètres 𝑁𝑢𝑖𝑛𝑡 et 𝑁𝑢𝑒𝑥𝑡 peuvent être 

évalués respectivement à l’aide de la Figure 2.17 ou de l’équation (2-83) et de l’équation (2-93). 

Cela permettrait d’évaluer le coefficient de transfert de chaleur ainsi que le flux de chaleur à la 

paroi 𝑄𝑤 à l’aide de l’équation (2-81). Ainsi, la température du RCP à un point donnée de la 

conduite peut être déterminée en résolvant l’équation (2-80) ou d’une manière simpliste à l’aide 

de l’équation classique (2-97).  

L’autre aspect important du design du système de transport du RCP est l’évaluation des pertes de 

charges. Le RCP étant un fluide non-newtonien, ses propriétés rhéologiques serviront à 

déterminer les paramètres hydrodynamiques tels que le nombre de Reynolds 𝑅𝑒 et le nombre de 

Hedström 𝐻𝑒, ainsi que le coefficient de frottement 𝑓 à l’aide des relations reprises dans le 

Tableau 2.1 et le Tableau 2.2 à la section 2.5.3. Ceci permettra d’évaluer les pertes de charge 

𝛥𝑝/𝐿 en fonction des diamètres 𝐷 et des vitesses d’écoulement 𝑈 du RCP dans la conduite. De ce 

fait, la caractérisation rhéologique du RCP et les essais d’écoulement en boucle sont des outils 

importants dans les études préliminaires de conception des systèmes de transport du RCP.  

Mentionnons aussi que les essais d’affaissement au cône d’Abrams ou au cylindre restent très 

utilisés dans l’industrie minière pour le contrôle de qualité du RCP, bien qu’ils ne renseignent 

que sur une seule propriété rhéologique, le seuil de cisaillement (Cooke, 2001). L’influence de la 

température et de la salinité sur ce paramètre sera aussi évaluée. 



72 

CHAPITRE 3 MÉTHODOLOGIE GÉNÉRALE ET PROGRAMME 

EXPÉRIMENTAL 

3.1 Méthodologie générale de l’étude 

L’objectif principal de cette étude est de prédire la température de déposition du RCP dans les 

chantiers miniers souterrains, avec une prise en compte de la chaleur générée par dissipation 

visqueuse, de l’échange de chaleur avec le milieu externe et de la thermodépendance des 

propriétés rhéologiques du RCP. Pour atteindre cet objectif, la méthodologie générale adoptée 

dans le cadre de notre recherche est résumée sur la Figure 3.1 qui met en évidence les grandes 

étapes de notre démarche.  

La première étape est constituée de l’homogénéisation et de la caractérisation de base des 

matériaux (résidus miniers Goldex et Meliadine). Pour ce qui est de la caractérisation de base, 

elle a pour objectif de déterminer les caractéristiques physiques, chimiques et minéralogiques des 

matériaux telles que la distribution granulométrique, la teneur en eau initiale, le poids spécifique 

des grains solides, les phases minérales, etc.  

La seconde étape est celle de l’élaboration de différentes recettes de résidu en pâte (RP) sans liant 

et de remblai cimenté en pâte (RCP). Cette étape s’est déroulée en deux phases. La première 

phase vise à ressortir les pourcentages solides des recettes ayant des slumps au cône standard de 

17,8 cm (soit 7 pouces) à la température de 20°C avec l’eau de robinet. La seconde phase 

consiste à réaliser des mélanges de RP et RCP avec l’eau de robinet et l’eau saline à des 

pourcentages solides établis lors de la précédente phase, qui dans la suite font l’objet des 

caractérisations rhéologiques et thermiques. Les matériaux sont préalablement conditionnés dans 

la chambre froide et dans l’étuve, respectivement pour des températures inférieures et supérieures 

à 20°C avant d’être mélangés.  

Les caractérisations rhéologiques et thermiques constituent la troisième étape de notre recherche. 

La caractérisation rhéologique vise premièrement à étudier l’effet de la température et de la 

salinité sur les propriétés rhéologiques de différents mélanges de RP et RCP issus de la phase 2, 

afin d’analyser la thermo-dépendance de ces dernières. Il s’agit notamment d’analyser les 

propriétés rhéologiques des mélanges de RP et RCP à différentes températures à l’aide du 

rhéomètre AR 2000 (TA Instruments).   
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Figure 3.1 : Schéma descriptif de la méthodologie générale 

  

Flow Loop Test 
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Deuxièmement, l’effet de la salinité sur la rhéologie du RP et RCP est étudié sur un seul mélange 

de 17,8 cm d’affaissement au cône standard d’Abrams préparé avec l’eau de robinet et de l’eau 

saline. Quant à la caractérisation thermique, elle a pour objectif de mesurer les propriétés 

thermiques (conductivité et capacité thermiques) de RP et RCP frais à l’aide de l’analyseur 

thermique KD-2 Pro en utilisant des sondes thermiques. Ainsi, l’effet de la température et du 

liant sur ces propriétés thermiques sont étudiés. Les données obtenues ont permis de développer 

des équations semi-empiriques établissant la thermo-dépendance des propriétés rhéologiques du 

remblai cimenté en pâte frais pour un pourcentage solide donné. Ces équations sont utilisées plus 

loin pour les modélisations numériques. 

La quatrième étape a consisté en la réalisation des tests d’écoulement en boucle. Il s’agit ici de 

réaliser des essais de pompage de l’eau,  du résidu en pâte, et  du remblai cimenté en pâte dans un 

circuit fermé équipé d’un débitmètre, des sondes de température et des capteurs de pression le 

long du circuit. Ainsi donc, les pertes de charge et la distribution de la température (du fluide et 

de la paroi) le long des pipelines sont déterminées. 

La cinquième étape a été consacrée aux modélisations numériques du transport du remblai 

cimenté en pâte en pipeline à l’aide du logiciel COMSOL Multiphysics® 5.2. Les données 

obtenues lors des tests d’écoulement en boucle (étape 4) sont utilisées pour valider le modèle 

numérique permettant de simuler l’écoulement des fluides non-newtoniens, en particulier du RCP 

en tenant compte de la chaleur générée par le frottement interne et la dissipation visqueuse et de 

l’échange de chaleur avec le milieu externe (détails donnés au chap. 2). Une fois le modèle 

numérique validé, le comportement de l’écoulement en pipeline du remblai cimenté en pâte à 

grande échelle dans les conditions nordiques, ainsi que la température de déposition sont prédits, 

en tenant compte des relations semi-empiriques développées à l’étape 3. 

3.2 Préparation et caractérisation des matériaux  

Les matériaux de base ayant fait l’objet d’étude sont notamment les résidus de la mine Goldex et 

du projet Meliadine de la compagnie minière Agnico-Eagle Mines Ltd. Le résidu Meliadine a été 

obtenu par broyage des carottes de sondage de la minéralisation. Par ailleurs, le résidu minier 

Goldex provenant de l’usine de traitement, a été livré dans les barils de 200 litres. Une 

décantation a été faite pour pouvoir éliminer une bonne quantité d’eau. Ce matériau a été ensuite 
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homogénéisé manuellement à l’aide des pelles, avant d’être stocké dans des chaudières en 

plastique de 20 litres. L’homogénéisation du résidu sec de Meliadine a été réalisée à l’aide d’un 

baril à homogénéiser constitué des travers en bois. Ce baril a été spécialement fabriqué au 

laboratoire URSTM pour l’homogénéisation des matériaux secs. Cette opération a consisté à 

rouler le baril contenant environ 90 kg de résidus à homogénéiser sur une distance d’environ 250 

mètres. Un échantillonnage par quartage a été réalisé pour prélever des échantillons représentatifs 

de chaque résidu à caractériser. Les résidus Goldex et Meliadine ont fait l’objet de 

caractérisations physico-minéralogiques visant à déterminer les paramètres affectant le 

comportement rhéologique du remblai cimenté en pâte tels que la distribution granulométrique, la 

densité spécifique des grains solides et les phases minérales 

3.2.1 Caractérisations physiques 

Les caractérisations physiques sont constituées de la détermination de la distribution 

granulométrique, de la densité relative des grains solides 𝐷𝑅 et de la teneur en eau massique 

initiale 𝑤𝑜 % des résidus. Les valeurs de la teneur en eau initiale 𝑤𝑜 et de la densité relative 𝐷𝑅 

des grains solides sont des données indispensables pour le calcul des proportions d’ingrédients 

d’un mélange de RP ou de RCP. Leur connaissance permet de déterminer les besoins en masses 

de liant, d’eau et de résidu pour un volume donné d’une recette de remblai en pâte. Comme 

mentionné à la section 2.2.1, la distribution granulométrique a une bonne influence sur le 

comportement rhéologique des matériaux. D’où l’intérêt d’analyser la granulométrie des résidus 

en vue de mieux appréhender le comportement rhéologique du remblai en pâte. 

3.2.1.1 Distribution granulométrique 

L’analyse granulométrique du résidu a été réalisée avec le granulomètre au laser Mastersize 2000 

Malvern (Malvern Instruments, 2007) (voir la Figure 3.2). La granulométrie par diffusion laser 

est une technique indirecte de mesure couramment utilisée pour déterminer la distribution 

granulométrique des matériaux granulaires pulvérulents dont les tailles de particules sont 

comprises entre 0,05µm et 900µm. La distribution granulométrique est déduite de l’interaction 

entre un ensemble de particules et le faisceau laser incident par l’analyse de l’image de 

diffraction du faisceau. Les particules en suspension dans un fluide (eau en général) diffusent la 

lumière à un angle qui est inversement proportionnelle à leur taille. La mesure de l’image est faite 



76 

 

à l’aide de détecteurs photosensibles (Malvern Instruments, 2007). Deux modèles mathématiques 

sont souvent utilisés dans le calcul de l’image de diffusion de la lumière ou du faisceau laser. Il 

s’agit du modèle de Mie (1908) et celui de Fraunhofer (1817).  

 

Figure 3.2 : Granulomètre à diffraction laser Mastersize 2000 utilisé 

Le modèle de Mie (modèle complet) prend en compte l’ensemble des phénomènes liés à la 

diffusion de la lumière dans les particules (diffraction, réfraction, réflexion). Par contre, le 

modèle de Fraunhofer est un modèle simpliste qui considère les particules comme des disques 

plats et opaques (seule la diffraction est prise en compte dans ce cas). Le choix du modèle de 

calcul dépend de la distribution granulométrique et de la nature du matériau diffusant. Le modèle 

de Fraunhofer présente des limites de validité pour des particules de diamètre inférieur à 6µm. 

Dès lors que la taille des particules approche la longueur d’onde incidente, le modèle de Mie reste 

bien indiqué (Cyr, 1999; Michel et Courard, 2006; Ryżak et Bieganowski, 2011).  

L’échantillon sec du matériau (résidus Goldex et Meliadine, dans notre cas) préalablement 

homogénéisé est mis en suspension dans l’eau, et dispersé au moyen des sondes ultrasoniques 

afin d’éliminer les agglomérats de particules. La suspension est circulée entre les lentilles 

traversées par le faisceau laser à l’aide d’un système de mise en circulation de la suspension muni 

d’une mini-pompe.  

Ainsi donc, la Figure 3.3 ci-dessous, présente les courbes granulométriques volumiques des 

résidus Goldex et Meliadine :  
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Figure 3.3 : Courbes granulométriques des résidus Goldex et Meliadine 

En comparant les deux courbes sur la Figure 3.3, on peut observer que le résidu Meliadine est 

plus fin que le résidu Goldex. Comme l’indique le Tableau 3.1 (qui reprend les valeurs des 

paramètres caractéristiques de la distribution granulométrique de ces deux résidus), le 

pourcentage passants au tamis de 80µm est de 64% et 94%, respectivement pour les résidus 

Goldex et Meliadine. Le résidu Meliadine contient environ 53% de particules de diamètre 

inférieur à 20µm, tandis que le résidu Goldex n’en détient que 31%. Quant au coefficient 

d’uniformité 𝐶𝑈, il est de 16,6 pour le résidu Goldex et de 7,7 pour le résidu Meliadine. Par 

ailleurs, les valeurs de coefficients de courbure 𝐶𝑐 de ces deux résidus sont presqu’identiques (1,1 

pour le résidu Goldex et 1,2 pour le résidu Meliadine). Les deux résidus ont des granulométries 

semi-étalées. Le résidu Goldex se situe dans le fuseau granulométrique des résidus miniers du 

Québec (𝐶𝑈 compris entre 10 et 30, pourcentage des passants au tamis de 80µm compris entre 

60% et 100%), alors que le résidu Meliadine se situe dans le fuseau granulométrique des résidus 

miniers canadiens (𝐶𝑈 compris entre 8 et 18, pourcentage des passants au tamis de 80µm compris 

entre 70% et 97%) (Bussière, 2007).  

Suivant la classification ASTM Designation D-2487, les résidus Goldex et Meliadine est un silt 

(ML). Suivant la classification Golder Paste Technology (Landriault et al., 1997), le résidu 
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Goldex donnerait un remblai grossier, par contre le résidu Meliadine donnerait un remblai moyen 

(voir section 2.2.1). 

Tableau 3.1 : Paramètres caractéristiques de la distribution granulométrique des résidus Goldex et 

Meliadine 

Paramètres Unités 
Valeurs 

Goldex Meliadine 

𝐶𝑈 = 𝐷60/𝐷10 (-) 16,6 7,7 

𝐶𝐶 = 𝐷30²/(𝐷60 𝐷10) (-) 1,1 1,2 

𝑈 = 𝐷90-𝐷10/𝐷50 (-) 4,2 3,2 

𝐷10 µm 4,3 3,1 

𝐷20 µm 10 6,0 

𝐷30 µm 18,6 9,4 

𝐷40 µm 30,9 13,4 

𝐷50 µm 48 18,3 

𝐷60 µm 71,5 24,4 

𝐷70 µm 102,5 32,1 

𝐷80 µm 143,9 43,0 

𝐷90 µm 205,6 62,6 

𝑃2µm % 4,1 5,4 

𝑃20µm % 31 53 

𝑃80µm % 64 94 

 

3.2.1.2 Teneur en eau massique initiale des résidus 

Cet essai a été réalisé suivant la norme ASTM D 2216. L’échantillon du résidu humide de masse 

𝑀h d’environ 100 g, a été placé à l’étuve à 60°C jusqu’à son séchage total, vu la variabilité 

(changement de la minéralogie au cours de l’exploitation) et la sensibilité globale des résidus à la 

chaleur (perte en poids et transformation des phases minérales). Le suivi de la masse est effectué 

à l’aide des pesées après chaque 8h jusqu’à obtenir une masse sèche constante. La masse sèche 

𝑀𝑠 ou 𝑀𝑑 permet de calculer la teneur en eau suivant l’équation (2-4). Ainsi donc, le pourcentage 

solide peut aussi être déduit à l’aide de l’équation (2-10). Les résultats indiquent que les valeurs 

de la teneur de la teneur en eau massique initiale 𝑤𝑜 et du pourcentage solide massique initial 𝐶𝑤𝑜 

du résidu Goldex sont respectivement de 20,8 % et 82,8 %. Rappelons que le résidu Meliadine 

est sec (𝑤𝑜 = 0%). 
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3.2.1.3 Densité relative des grains solides des résidus 

La densité relative des grains solides 𝐷𝑅 a été déterminée à l’aide du pycnomètre à hélium 

AccuPyc 1330 de Micromeritics (voir la Figure 3.4).  

 

Figure 3.4 : Pycnomètre à hélium AccuPyc 1330 de Micromeritics 

Cet appareil détermine la masse volumique d’un matériau solide par la mesure du volume de gaz 

(hélium) déplacé. Le dispositif expérimental comprend une cellule d’analyse de forme 

cylindrique contenant un cylindre porte-échantillon 𝑉c et une cellule d’expansion de volume 𝑉𝑒𝑥𝑝 

à une pression atmosphérique 𝑃𝑎. Le principe de mesure consiste à soumettre un échantillon sec 

de masse connue 𝑚 sous une pression contrôlée 𝑃1  d’un volume de gaz connu 𝑉1 diffusant à 

travers les vides de l’échantillon. Connaissant le volume du cylindre porte-échantillon 𝑉c et le 

volume de gaz 𝑉1, le volume de l’échantillon peut être calculé par l’expression : 

𝑉𝑒 = 𝑉𝐶 −  𝑉1 (3-1) 

Le volume de gaz purgé dans l’échantillon est recueilli dans la cellule d’expansion à une pression 

𝑃𝑒𝑥𝑝 correspondant à un volume 𝑉𝑒𝑥𝑝. Par la loi de Mariotte sur les gaz parfaits, le volume 𝑉1 peut 

être déterminé à l’aide de l’expression suivante : 

(𝑃1 −  𝑃𝑎)𝑉1 = (𝑃𝑒𝑥𝑝 −  𝑃𝑎) 𝑉𝑒𝑥𝑝 (3-2) 

Ainsi, le volume de l’échantillon peut être déduit :  

𝑉𝑒 = 𝑉𝐶 −
 𝑉𝑒𝑥𝑝

(𝑃1 −  𝑃𝑎)

(𝑃𝑒𝑥𝑝 −  𝑃𝑎)

 
(3-3) 
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Le rapport de la masse de l’échantillon 𝑚 préalablement connue, et du volume de l’échantillon 𝑉𝑒 

donne la masse volumique ou densité spécifique des grains solides 𝜌𝑠 : 

𝜌𝑠 =
𝑚

𝑉𝑒
 (3-4) 

La densité relative des grains solides 𝐷𝑅 peut ainsi être déterminée en utilisant l’équation (2-3). 

Le pycnomètre a été préalablement calibré à l’aide de billes d’acier dont la masse volumique et le 

volume sont connus. Après calibrage, on procède la pesée de la masse du porte-échantillon à 

vide, ensuite à celle du porte-échantillon rempli de l’échantillon au deux tiers à l’aide d’une 

balance de précision (quatre chiffres après la virgule). L’échantillon est d’abord rempli dans le 

cylindre porte-échantillon, ensuite le cylindre contenant l’échantillon est placé dans le 

pycnomètre avant sa  mise en marche. 

À l’issue des essais effectués sur les échantillons de nos deux résidus miniers, les valeurs de 

densités relatives 𝐷𝑅 des grains solides de Goldex et Meliadine sont respectivement de 2,74 et 

2,93. Le résidu Goldex provient probablement d’une veine de quartz, du fait que son 𝐷𝑅 est 

compris entre 2,6 et 2,9 (Bussière, 2007). Pour sa part, le résidu Meliadine est probablement un 

résidu issu d’une roche à minéraux de densité relativement. Ces résultats seront confirmés plus 

loin par la caractérisation minéralogique. 

3.2.2 Caractérisation minéralogique 

L’identification des phases minérales contenues dans les résidus miniers est importante, car la 

rhéologie du remblai en pâte en dépend (Ndlovu et al., 2011). La caractérisation minéralogique 

des résidus Goldex et Meliadine est obtenue par la méthode de diffraction aux rayons X (𝐷𝑅𝑋) du 

diffractomètre Bruker A.X.S Advance D8 de l’UQAT. Cette méthode consiste à bombarder 

l’échantillon du résidu (pulvérisé) avec les rayons X et à enregistrer les rayons diffractés en 

fonction de l’angle de déviation du faisceau. Les rayons X diffractés forment le diffractogramme 

qui permet de déterminer les phases minérales de l’échantillon. Les phases minérales obtenues 

lors de cette caractérisation sont reprises dans le Tableau 3.2. L’albite (53,5 %), le quartz (23,6 

%), la chlorite (11,2 %) et la calcite (8,1 %) constituent les phases minérales majeures du résidu 

minier Goldex. L’actinolite (2,1 %) et le gypse (1 %) et la muscovite (0,4 %) constituent les 

phases mineures de ce résidu (Goldex). En revanche, le Quartz (40,3 %), l’Albite (19,5 %), la 
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Muscovite (14,6 %), l’Ankérite (8,8 %) et la Chlorite (8,1 %) constituent les phases minérales 

majeures du résidu minier Meliadine. La Magnétite (4,6 %), la Calcite (2,4 %), la Microline (1,3 

%) et la Pyrite (0,4%) en constituent les phases mineures. La présence de la Magnétite (densité 

relative de 5,2 (Waples and Waples, 2004)) dans le résidu Meliadine explique bien sa densité 

relative, qui est de 2,93.  

Tableau 3.2 : Phases minérales des résidus miniers Goldex et Meliadine 

Phase minérale Formule chimique 
Proportion massique (%) 

Goldex Meliadine 

Albite  𝑁𝑎𝐴𝑙𝑆𝑖3𝑂8 53,5 19,5 

Quartz 𝑆𝑖𝑂2 23,6 40,3 

Chlorite (𝑀𝑔, 𝐴𝑙) 6 (𝑆𝑖, 𝐴𝑙) 4 𝑂10 (𝑂𝐻) 8 11,2 8,1 

Calcite 𝐶𝑎𝐶𝑂3 8,1 2,4 

Actinolite 𝐶𝑎2 (𝑀𝑔, 𝐹𝑒2+) 5 𝑆𝑖8𝑂22 (𝑂𝐻) 2 2,1 0 

Gypse 𝐶𝑎𝑆𝑂4.2𝐻2𝑂 1 0 

Muscovite 𝐾 (𝐴𝑙3𝑆𝑖3𝑂10) (𝑂𝐻) 2 0,4 14,6 

Pyrite 𝐹𝑒𝑆2 0 0,4 

Ankérite 𝐶𝑎 (𝐹𝑒, 𝑀𝑔, 𝑀𝑛) (𝐶𝑂3)2 0 8,8 

Microline 𝐾𝐴𝑙𝑆𝑖3𝑂8 0 1,3 

Magnétite 𝐹𝑒3𝑂4 0 4,6 

Total  100 100 

3.3 Élaboration des recettes 

L’élaboration des recettes s’est faite en deux grandes phases. La première phase est une démarche 

aléatoire ou par tâtonnement fixant au départ un pourcentage solide. Elle a été réalisée en vue de 

déterminer une relation entre le pourcentage solide 𝐶𝑤 et l’affaissement (slump) 𝑆 pour une 

température donnée. Cette relation a permis de ressortir une gamme de recettes ayant des 

affaissements compris entre 15,2 cm (6 pouces) et 25,4 cm (10 pouces), afin de devoir passer à la 

seconde étape, qui est celle de préparer les recettes de 17,8 cm de slump pour la suite de la 

caractérisation thermo-rhéologique par cisaillement au rhéomètre AR 2000. 

Pour ce faire, les matériaux ont été conditionnés à différentes températures avant de pouvoir 

réaliser les essais d’affaissement. Pour des températures inférieures à 20°C, les matériaux ont été 

conditionnés dans une chambre froide avec un contrôle de la température; pour celles supérieures 
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à 20°C, le conditionnement des matériaux s’est fait dans l’étuve avec un contrôle permanent de la 

température durant 24h. 

Le malaxage de différentes recettes destinées aux essais d’affaissement, (environ une masse de 

20 kg) a été fait à l’aide d’un malaxeur (Figure 3.5) durant 7 minutes. Les recettes utilisées dans 

notre première étape ont été préparées à base des résidus Goldex et Meliadine dont les 

caractéristiques sont présentées dans la section 3.2.  

 

Figure 3.5 : Malaxeur Hobart utilisé dans la préparation de recettes du remblai en pâte 

(Laboratoire URSTM). 

Le Tableau A.1 de l’annexe A présente les recettes (pourcentage solide, teneur en liant, 

température du matériau et poids spécifique) élaborées avec le résidu Goldex pour les essais 

d’affaissement au cône d’Abrams. Les mélanges sont constitués de deux types de mélanges à 

différents pourcentages solides : le résidu en pâte et le remblai cimenté en pâte. Le liant utilisé est 

le ciment Portland type 1 ou GU («General Use») à des dosages de 3 et 5%. Ensuite les mêmes  

types de mélanges (résidu en pâte et le remblai cimenté en pâte) ont été réalisés avec le résidu 

Meliadine à 20°C (voir le Tableau A.2 de l’Annexe A). En revanche, deux types de ciment ont 

été utilisés pour le remblai cimenté en pâte à des dosages de 3 % et 5 % pour le résidu Meliadine. 

Il s’agit notamment du ciment GU et du ciment HE («High Early Strength»). Ces deux types de 

ciment ont les mêmes caractéristiques minéralogiques, mais différent par leur finesse ou leur 
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degré de mouture, et par conséquent par leur surface spécifique. Le ciment HE étant plus fin, il 

présente une surface spécifique de 613 m²/kg (Bentz, 2010), qui est  supérieure à celle du ciment 

GU (qui est de 360 m²/kg) (Chindaprasirt et al., 2005).  

Dans la seconde phase, les mélanges ont été élaborés pour la campagne de caractérisation 

thermo-rhéologique sur base des résultats de la première phase. Ainsi donc, les mélanges 

(environ 0,4 kg) ont été réalisés à 2, 10, 20, 40 et 45°C pour différents pourcentages solides (voir 

les Tableaux B.1 et B.2 de l’annexe B). Pour des raisons d’économie des matériaux, le malaxage 

a été fait avec le malaxeur manuel (voir Figure 3.6) durant 7 minutes. Deux types principaux de 

mélanges ont été élaborés pour les deux résidus (Goldex et Meliadine). Il s’agit de : 

 Le résidu en pâte (ou «paste tailings») : à l’eau de robinet RP (ou PT) et à l’eau saline RPS 

(ou PTS); 

 le remblai en pâte cimenté («cemented paste backfill») : à l’eau de robinet RCP (ou CPB) et 

à l’eau saline RCPS (ou CPBS). Deux types de ciment ont été utilisés dans ces mélanges, il 

s’agit du ciment GU et du ciment HE à des dosages 𝐵𝑤 de 3 et 5%.   

 

Figure 3.6 : Malaxeur manuel utilisé pour les mélanges d’essais rhéologiques. 
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L’eau saline a été préparée à différentes concentrations en sels (5, 10 et 20 g/L). Le Tableau 3.3 

suivant donne les concentrations de chaque sel contenu dans l’eau saline à différentes 

concentrations en sels :  

Tableau 3.3 : Composition en sels de l’eau saline aux concentrations de 5, 10 et 20 g/L. 

Sel Concentration (g/litre) 

NaCl 3,06 6,12 12,24 

CaCl2 0,47 0,93 1,86 

KCl 0,05 0,1 0,2 

MgSO4 0,35 0,70 1,40 

MgCl2 0,31 0,63 1,25 

Na2S2O5 0,67 1,34 2,69 

CuSO4 0,09 0,18 0,36 

Total 5,00 10,00 20,00 

 

On peut observer que le NaCl prédomine relativement dans la composition des sels contenus de 

l’eau saline, avec une proportion d’environ 61%.  Pour le projet Meliadine, la concentration de 

sel dans l’eau de gâchage utilisée pour le remblai cimenté en pâte est d’environ 5 g/L.  

3.4 Caractérisation rhéologique du remblai en pâte 

Cette section décrit la méthodologie utilisée pour la détermination directe et indirecte des 

paramètres rhéologiques. 

3.4.1 Description de l’essai au cône  

Les mesures indirectes de paramètres rhéologiques ont été réalisées à l’aide du test 

d’affaissement au cône. Ces tests évaluent les conditions d’écoulement et d’arrêt d’un volume de 

matériau sous l’effet de son propre poids. C’est un test simple qui permet d’identifier différentes 

grandeurs rhéologiques, en particulier, le seuil d’écoulement (voir section 2.3.3.2). Cet essai a été 

réalisé suivant la norme ASTM C 143/C 143M-05a.  

L’essai consiste à remplir le cône en trois couches de matériau. Chaque couche subit 25 coups 

avec une tige de piquage métallique de 16 mm et 10 mm de diamètre respectivement pour le cône 
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standard et le petit cône. La première couche devra remplir le moule jusqu’à 67 mm (ou 33mm) 

de hauteur et la seconde couche jusqu’à 155 mm de hauteur. Le moule est ensuite soulevé durant 

5±2 secondes, permettant ainsi au matériau de s’écouler sous l’effet de la gravité (ASTM C 

143/C 143M-05a, 2007). Ensuite, on mesure l’affaissement ou « slump height » (variation de la 

hauteur de l’échantillon par rapport au sommet du cône) (voir la Figure 3.7). Il faut noter que 

l’essai complet doit être exécuté sans interruption en moins de 2 minutes et 30 secondes.  

 

Figure 3.7 : Illustration de l’essai d’affaissement au cône d’Abrams (Clayton et al., 2003) 

3.4.2 Mesure directe des paramètres rhéologiques au rhéomètre AR 2000 

Les mesures directes des paramètres rhéologiques ont été réalisées à l’aide du rhéomètre AR 

2000 (TA Instruments) en mode d’écoulement permanent (mode oscillatoire n’a pas été utilisé).  

3.4.2.1 Description du rhéomètre AR 2000 

Le rhéomètre AR 2000 (Figure 3.8) est un rhéomètre rotatif équipé de diverses géométries (plan-

plan, cône-plan, cylindre concentrique et croisillon ou «vane») pouvant être sélectionnées suivant 

l’application ou les caractéristiques du matériau. Ce rhéomètre permet de réaliser l’essai de 

cisaillement soit en contrôlant la contrainte de cisaillement 𝜏, soit le taux de cisaillement 𝛾̇. Son 

fonctionnement est assuré à l’aide d’un logiciel de contrôle permettant de réaliser tous les 

réglages possibles avec précision. Ces réglages sont notamment le calibrage de l’inertie de 

l’instrument, du système de roulement du moteur («bearing friction»), de l’inertie et de la 

cartographie («mapping») de la géométrie, et la mise à zéro de l’entrefer («zero gap»). Le 

rhéomètre AR 2000 est aussi équipé d’un système de contrôle de la température composé d’une 

pompe, d’un système d’échange de chaleur, et d’un circuit fermé de recirculation du fluide (eau 
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en général). Lors du réglage, il suffit de fixer la température d’essai, le système de contrôle de la 

température se met en action automatiquement : la pompe renvoie l’eau (à 20°C) dans le circuit, 

passe à travers le système d’échange de chaleur ensuite par le système Peltier (en plaque ou en 

cylindre concentrique) avant de boucler le circuit. Le système d’échange de chaleur permet ainsi 

de chauffer ou de refroidir le fluide en circulation, et par conséquent le système Peltier, ainsi que 

la plaque ou la coupelle cylindrique et l’échantillon à cisailler. La gamme de température d’essai 

varie suivant les accessoires de refroidissement ou de chauffage, le type du système Peltier, le 

type et la température initiale du fluide en circulation. Dans notre cas, avec l’eau déionisée à 

20°C et une pompe, les gammes de température varient de -5 à 100°C et de 0 à 100°C 

respectivement pour le système Peltier en plaque et le système Peltier en cylindre concentrique 

(Figure 3.8). Pour ce qui est de la mesure du couple de torsion sur ce rhéomètre, elle se fait sur le 

rotor. Afin d‘éviter l’instabilité de la température de l’échantillon cisaillé, le choix a porté sur le 

système Peltier cylindrique muni d’une coupelle de la même forme de 30 mm de diamètre 

interne.  

Le choix de la géométrie est fonction des caractéristiques du matériau à cisailler, en particulier de 

sa viscosité. Pour des fluides de faible viscosité, la géométrie à diamètre important est bien 

indiquée; car elle permet un cisaillement effectif de l’échantillon. L’ouverture de l’entrefer est 

par contre dictée par le taux de cisaillement à atteindre suivant les conditions d’application 

industrielle : plus le taux de cisaillement à atteindre est élevé, moins sera l’ouverture de l’entrefer 

pour devoir éviter l’éjection de l’échantillon hors de la géométrie. Dans notre cas, l’entrefer ou le 

gap entre l’outil (croisillon) et le fond de la coupelle cylindrique est de 4000µm, alors que 

l’entrefer entre le croisillon la coupelle cylindrique est d’environ 1000µm. Le croisillon (Figure 

3.8) du rhéomètre AR 2000 (ayant un diamètre de 28 mm et une hauteur de 42 mm) semble plus 

adapté aux suspensions à fortes consistances (Boger, 2009).  

Une attention particulière doit être accordée sur la taille maximale des grains (𝐷max) du matériau 

à tester par rapport à l’entrefer. Généralement, cet entrefer doit être au moins dix fois la valeur de 

𝐷max (TA Instruments, 2007). 
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Figure 3.8 : (a) Rhéomètre AR 2000 (TA Instruments) et (b) croisillon utilisés  

3.4.2.2 Modes d’écoulement permanent possibles (disponibles) 

Le principe de mesure en mode écoulement permanent est basé sur la mise en écoulement du 

matériau en contrôlant soit le taux de cisaillement ou soit la contrainte de cisaillement. On 

retrouve quatre procédures distinctes dans ce mode de cisaillement : Peak Hold Step (PHS), 

Continuous Ramp Flow (CRF), Steady State Flow Step (SSFS), et Stepped Flow Step (SFS). 

 La procédure «Peak hold step» consiste à  appliquer une valeur faible et constante du taux 

de cisaillement et de voir l’évolution de la contrainte de cisaillement (la réponse du 

matériau) en fonction du temps jusqu’à atteindre une phase de plateau (valeur constante). 

Cette procédure a pour objet de déterminer le temps de stabilisation de l’écoulement ou le 

temps nécessaire pour atteindre un régime permanent et le seuil de cisaillement dynamique; 

 La procédure «Continuous Ramp Flow» consiste à appliquer une contrainte ou un taux de 

cisaillement continuellement au matériau avec une incrémentation régulière dans un 

intervalle de temps bien défini. C’est ce mode qui a été utilisé (voir section 3.4.2.3), car il 

est plus approprié à nos matériaux (remblai en pâte) et permet d’obtenir les résultats rapides 

et précis (Ouattara, 2011); 

4
2
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m
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Croisillon monté  
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 La procédure «Steady State Flow Step » consiste à appliquer une contrainte ou un taux de 

cisaillement constant au matériau avec une incrémentation automatique de la valeur au 

point d’équilibre correspondant au temps de stabilisation ou de réponse au bout duquel les 

mesures sont réalisées; 

 La procédure «Stepped Flow Step» consiste à appliquer des valeurs successives de 

contrainte ou de taux de cisaillement durant des paliers de temps bien déterminés. Au 

milieu de chaque palier, on enregistre les mesures du taux de cisaillement ou de la 

contrainte. 

Les procédures Continuous Ramp Flow (CRF), Steady State Flow Step (SSFS), et Stepped Flow 

Step (SFS) permettent de réaliser des mesures en boucle, qui consistent à appliquer une contrainte 

ou un taux de cisaillement ascendant (croissant) puis descendant (décroissant) dans le temps. La 

mesure en boucle est pertinente pour les fluides exhibant un effet d’hystérésis ou un 

comportement thixotropique (Coussot et Ancey, 1999; Fernàndez-altable et Casanova, 2006). 

Alors que le mode ascendant détermine les propriétés sous un régime transitoire intégrant des 

artéfacts liés à la mise en place de l’échantillon, le mode descendant est plus stable et donne des 

courbes plus lisses et qui peuvent être modélisées avec plus de précision (Ouattara, 2011). De 

plus, les propriétés rhéologiques obtenues en mode descendant sont appropriées pour le design de 

l’écoulement en pipelines du RPC qui est préalablement cisaillé dans le réservoir de mélange et 

par les pompes avant d’arriver dans le pipeline (Pullum, 2007). 

3.4.2.3 Protocole de mesure utilisée avec le rhéomètre AR 2000 

Pour la bonne réalisation des tests de cisaillement au rhéomètre AR 2000, les étapes ci-dessous 

ont été suivies : 

 réglage de l’appareil : le mise à zéro de l’entrefer ou gap, le calibrage de l’inertie de la tige 

de rotation à vide (sans la géométrie), le calibrage de la tige de rotation avec la géométrie 

montée, le calibrage du frottement lié à la rotation de la tige, et enfin le mapping ou la 

cartographie de la géométrie, et fixation de la température. Il faudra noter que, dans le cadre 

de notre étude, la plage de température d’essai varie entre 2°C et 45°C. 

 fixation des paramètres de la géométrie de mesure et de l’ouverture de l’entrefer; 
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 choix du mode de cisaillement ou d’écoulement (mode écoulement permanent) et des 

procédures suivant le mode d’écoulement. Il s’agit aussi de fixer les plages de contrainte ou 

de taux de cisaillement, le temps d’échantillonnage des points, le nombre de points à 

échantillonner. Au cours de cette étude, ces mesures ont été réalisées avec la procédure 

«Continuous Ramp Flow». Deux procédures de cisaillement ont été utilisées lors de la 

caractérisation rhéologique de nos échantillons de remblai en pâte. Il s’agit de la procédure 

de cisaillement en boucle («up and down flow») (Figure 3.9a) et de la procédure pré-

cisaillement suivi d’un cisaillement descendant («down flow») (Figure 3.9b). 

 
a) b) 

Figure 3.9 : Procédures de cisaillement utilisées lors des essais rhéologiques : a) boucle et b) avec 

pré-cisaillement. 

 mise en place de l’échantillon (préalablement conditionné à la température d’essai) sur la 

plaque ou dans la coupelle suivie d’un abaissement de la géométrie jusqu’à l’ouverture de 

l’entrefer indiqué. 

 lancement de l’essai.  

3.4.2.4 Méthode de traitement des données et ajustement des rhéogrammes 

Le traitement des données obtenues au cours de nos essais de cisaillement au rhéomètre AR 2000 

se fait à l’aide du logiciel d’analyse des données de TA Instrument «Rheological data analysis 

advantage». Ce logiciel présente plusieurs options de traitement, et permet donc de tracer les 

courbes d’écoulement (contrainte de cisaillement en fonction du taux de cisaillement) et de 

viscosité dynamique (viscosité en fonction du taux de cisaillement) des matériaux. Les courbes 
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brutes sont corrigées par un traitement comprenant quatre étapes successives. Ces étapes sont les 

suivantes :  

 la correction de la contrainte normale : elle consiste à corriger le surplus de contrainte dû à 

l’effet de bord entre le stator et le rotor surtout pour les plaques parallèles. Cette correction 

entraîne en général un abaissement de la courbe d’écoulement. 

 le traitement par les fonctions «Merge» et «Smooth» : la fonction «Merge» permet de 

fusionner plusieurs courbes d’écoulement obtenues pour différents modes de chargement sur 

les échantillons d’un même mélange. Cela permet d’obtenir une courbe moyenne unique qui 

servira dans la suite du traitement. La courbe ainsi obtenue après fusion peut toutefois 

comporter un grand nombre de points, et se présente en dents de scie. Pour devoir éliminer 

cette lacune, on procède à un lissage à l’aide de la fonction «Smooth».  

 la réduction du nombre de points : malgré le lissage avec la fonction «Smooth», la courbe 

présente en général des points qui nécessitent une réduction. La réduction du nombre de 

points peut se faire soit en prenant la moyenne, soit en choisissant un seul point par groupe 

de deux points successifs ou plus. Cela permet de réduire le nombre de points erronés de la 

courbe d’écoulement. 

 le lissage par application des modèles d’ajustement : c’est un dernier traitement qui consiste 

à lisser la courbe résultante si cela s’avère nécessaire. Au cours de ce traitement, on procède 

à un arrangement des points excentrés invalides ne permettant pas un ajustement adéquat de 

la courbe d’écoulement. Ce lissage aboutit à une courbe définitive sur laquelle les modèles 

de comportement de fluide (voir la section 2.3.2) peuvent être callés afin de déterminer les 

paramètres rhéologiques. L’option «best fitting model» est utilisée pour générer le modèle de 

comportement le plus proche des données expérimentales en calculant l’erreur standard. 

L’erreur standard est calculée par le logiciel selon la méthode de moindres carrées, et est 

donnée par la formule suivante :  

𝐸𝑟𝑟𝑒𝑢𝑟 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(‰) =
(∑

(𝑥𝑚 − 𝑥𝑐)2

(𝑁 − 2)
)

1
2⁄

𝑟𝑎𝑛𝑔𝑒
× 1000 

(3-5) 

où  
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𝑥𝑚 : valeur obtenue du point expérimentalement; 

𝑥𝑐 : valeur calculée du point par l’équation du modèle utilisé; 

𝑁 : nombre total des points mesurés; 

range : différence entre les valeurs maximale et minimale mesurées. 

Selon, le manuel de TA instrument, l’erreur standard est jugée acceptable lorsqu’elle est 

inférieure à 20‰.  

3.5 Caractérisation thermique du remblai en pâte frais 

La caractérisation thermique du remblai en pâte frais a porté sur les mesures des propriétés 

thermiques du remblai en pâte frais entre 2°C et 40°C. Ces mesures ont été réalisées à l’aide de 

différents capteurs de l’analyseur thermique KD2 Pro (Figure 3.10).  

 

Figure 3.10 : Analyseur thermique KD2 Pro et le capteur SH-1 

L’analyseur de propriétés thermiques KD2 Pro est un appareil portatif de la firme DECAGON 

Inc. Cet appareil est conforme à la norme ASTM D5334-08 pour la détermination de la 

conductivité thermique des sols et des roches par la méthode du fil chaud. Utilisable au 

laboratoire et sur terrain, le KD2 Pro a une capacité d’enregistrement automatiques et de stockage 

de 4095 lectures  ou données. Les mesures ont été réalisées avec le capteur SH-1 (Figure 3.10) 

dont les caractéristiques sont reprises dans le Tableau 3.4. SH-1 est un capteur à deux aiguilles 

espacées de 6 mm ayant chacune 1,3 mm de diamètre et 30 mm de long. Ce capteur permet de 
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mesurer toutes les propriétés thermiques (conductivité, capacité volumique, diffusivité, 

résistivité) simultanément (voir le Tableau 3.4) avec de meilleures précisions pour les matériaux 

granulaires.  L’analyseur thermique est accompagné d’un logiciel d’importation de données 

«KD2 Pro Utility»  qui permet de les présenter dans un format Excel.  

Afin d’examiner l’effet du dosage en liant et de la température, les premières mesures ont été 

réalisées sur deux mélanges frais de 𝐶𝑤 = 75% préparés avec le résidu Goldex : résidu en pâte et 

remblai en pâte cimenté (à 3% et 5% GU). Les secondes mesures des propriétés thermiques ont 

été réalisées à 2, 20, 30 et 40°C sur le résidu en pâte et le remblai cimenté en pâte (à 3 et 5% HE) 

élaborés avec le résidu Meliadine à un pourcentage solide de 76,3%. Notons que le malaxage de 

ces mélanges a été fait avec le grand malaxeur Hobart (Figure 3.5). 

Les différents mélanges ont été remplis dans les moules (Figure 3.11) immédiatement après 

malaxage avant de procéder aux mesures de la conductivité λ, de la résistivité Ω, de la capacité 

𝐶𝑡𝑝 (à pression constante), et de la diffusivité  thermiques du remblai en pâte frais. 

Tableau 3.4 : Caractéristiques des capteurs de l’analyseur thermique KD2 Pro (Decagon, 2011) 

Capteur SH-1 

Mesures Temps de lecture : 2 minutes 

Précision Conductivité 𝜆 : ± 10% pour 0,2< 𝜆 <2 W/mK 

Diffusivité  : ± 10%  pour 𝜆 > 0,1 W/mK 

Chaleur spécifique Ct : ±10% pour  𝜆 > à 0,1 W/m
3
K) 

 

Gamme Conductivité 𝜆 : 0,02 à 2 W/mK 

Résistivité Ω : 50
 
à 5000

 
°C cm/W 

Diffusivité  :   0,1 à 1 mm
2
/s  

Chaleur spécifique Ct : 0,5 à 4 MJ/m
3
K  

Câble 0,8 m 

Environ. -50
o 
C

 
à 150

o 
C 
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Figure 3.11 : Mesure des propriétés thermiques du remblai en pâte à l’aide du capteur SH-1 de 

l’analyseur thermique KD2 Pro 

3.6 Essais de mini écoulement en boucle (« Mini Flow Loop Tests») 

Dans le cadre de notre recherche, les tests d’écoulement en boucle ont été réalisés dans le but de 

comprendre l’effet de la variation de la température sur le comportement hydrodynamique 

(gradients de pression) du remblai en pâte en écoulement dans un circuit fermé de tuyaux en 

acier, d’examiner l’effet du frottement interne et de la dissipation visqueuse sur la variation de la 

température du fluide et d’analyser la distribution de températures le long du circuit. Ces essais 

ont porté sur trois types de matériaux : l’eau, la pâte de résidu et le remblai en pâte cimenté. Les 

propriétés de l’eau étant bien maitrisées, le premier essai de pompage a été effectué avec de l’eau 

pour s’assurer du fonctionnement du circuit. La recirculation de l’eau dans le circuit était aussi 

utilisée pour nettoyer le circuit avant et après le test de pompage. 

3.6.1 Circuit d’essai du mini écoulement en boucle et instrumentation 

La Figure 3.12 schématise le circuit de pompage utilisé lors de ces tests et les différents 

dispositifs de mesure de propriétés visées. Ce circuit comporte essentiellement une pompe 

volumétrique et une tuyauterie en circuit fermé (voir Figure 3.12).  

La pompe volumétrique utilisée est une pompe à vis excentrée «CG-500 3C6 Grout Pump» (Voir 

Figure 3.12) ayant une pression maximale de 18 bars (1800 kPa) et un débit maximal de 76 L/s, 

munie de deux tanks malaxeurs de capacité totale de 265 litres (voir Figure 3.12) et d’une trémie 

de 57 litres. C’est une pompe polyvalente à déplacement positif, équipée d’un rotor hélicoïdal à 
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filetage unique tournant dans un stator à double filetage interne, permettant ainsi l’écoulement 

continu du fluide à travers les espaces séparés formés entre le rotor et le stator. Le fluide se 

déplace suivant la trajectoire spiralée du filetage du rotor sans changement de volume (Glennon, 

2002; Lapointe-Vignola, 2002). Cette pompe permet de pomper des fluides visqueux contenant 

des particules solides tels que les pâtes de ciment.  

 

Figure 3.12 : Montage du circuit du mini essai d’écoulement en boucle 

Une tuyauterie circulaire de 27,9 mètres de long et de 31,8 mm de diamètre, a été installée 

horizontalement et nivelée à l’aide d’un laser rotatif à mise à niveau automatique. Cette 

tuyauterie est composée d’un tuyau rigide en acier (long de 25,2 m) et d’un boyau flexible de 2,7 

mètres de longueur. Ce boyau a permis de boucler le circuit en acheminant le matériau dans la 

trémie de la pompe. 

Comme le schématise la Figure 3.13, le circuit du mini-essai d’écoulement en boucle a été 

instrumenté avec les équipements suivants : un transmetteur de pression différentielle, deux 

sondes de température de type RTD, deux thermocouples de type K, et un débitmètre 

électromagnétique. 
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Figure 3.13 : Schéma du circuit du mini essai d’écoulement en boucle («mini flow loop test») 

Le transmetteur de pression différentielle (Figure 3.14) «Model 266DRH Differential Standard 

static pressure» est équipé de deux capteurs de pression (forte et basse pression) à diaphragme 

«Model S26 seals» de 10 à 600 kPa de capacité de mesure, de 190,5 mm de diamètre, et d’une 

précision de 0,08 kPa.  

 

Figure 3.14 : Transmetteur de pression différentielle «Model 266DRH Differential Standard 

static pressure» équipé de deux capteurs de pression (forte et basse pression) montés sur le 

circuit de pompage en boucle. 

Transmetteur de 

pression différentielle 

Débitmètre  

Sonde de température 

RTD 

Multimètre 

Thermocouples Pompe 

Malaxeur 
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Ce transmetteur de pression permet de calculer les pertes de charge entre les deux capteurs de 

pression distants avec une précision de 0,06% (de 3 mètres sur notre circuit de pompage) (voir 

Figure 3.14) 

La température du fluide (en écoulement) à l’entrée et la sortie du circuit a été mesurée à l’aide 

de deux sondes de température de type RTD («Resistance Temperature Device») modèle R24 

d’Intempco (Figure 3.15a), pouvant mesuser des températures allant de -50 à 200°C  avec une 

précision de 0,1°C (0,04%) à 0°C.  

  

a b 

Figure 3.15 : a. Capteurs de température RTD; b.  Multimètres de lecture montés sur le circuit de 

pompage en boucle. 

Construites suivant la norme DIN EN 60751, ces sondes ont un diamètre de 4,8 mm et une 

longueur d’immersion de 25,4 mm. Le principe de mesure de ce type de sondes est basé sur la 

corrélation entre la résistance électrique d’un conducteur et sa température à cause de la 

dépendance à cette dernière au mouvement des électrons libres et à la vibration de la structure 

atomique du conducteur (Childs et al., 2000; Davies et al., 2007). La résistance de l’élément RTD 

(en platine dans notre cas) varie de manière connue et prévisible en fonction de la température ; 

c’est cette variation de résistance qui sert à déterminer la température à l’aide des relations 

suivantes (Childs et al., 2000) :  

𝑅𝑇 = 𝑅0[1 + 𝐴𝑇 + 𝐵𝑇2], pour  0<𝛵<850°C, 
(3-6) 
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𝑅𝑇 = 𝑅0[1 + 𝐴𝑇 + 𝐵𝑇2 + 𝐶(𝑇 − 100)𝑇3], pour  -200<𝛵<0°C, 
(3-7) 

avec,  

𝑅𝑇 : résistance de l’élément RTD à une température 𝑇 donnée; 

𝑅0 : résistance de l’élément RTD à 0°C;  

𝐴 (= 3,908310
-3), 𝐵 (= -5,77510

-7), et 𝐶 (= - 4,18310
-12) sont des constantes de l’élément 

RTD. 

Dans notre cas, la lecture de la résistance a été faite avec deux multimètres (Figure 3.15b) 

connectés aux deux capteurs de température distants de 24,5 mètres installés l’un à l’entrée et 

l’autre à la sortie du circuit. À l’aide de la table de corrélation (Voir la Figure C. 1 à l’Annexe C) 

entre la résistance et la température du capteur R24, la température du fluide en écoulement dans 

le circuit a été ainsi déterminée. 

La température extérieure à la paroi du tuyau (à l’entrée et à la sortie du circuit du mini essai 

d’écoulement en boucle) a été mesurée à l’aide de deux thermocouples de type K connectés au 

thermomètre numérique 6802 II (Figure 3.16). 

 

Figure 3.16 : Thermocouples de type K fixés sur la paroi de la conduite en acier et 

connectés au thermomètre numérique 6802 II 

Le débit d’écoulement du fluide en écoulement dans le circuit a été mesuré avec un débitmètre 

électromagnétique de type « Process Master FEP315» (Figure 3.17) ayant une précision de 

±0,4%. Ce débitmètre a été préalablement calibré par le fournisseur (ABB Automation). Ce 

débitmètre fonctionne suivant la loi d’induction de Faraday (ABB Automation Products GmbH, 
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2014). Quand un fluide conducteur s’écoule dans une conduite perpendiculairement à travers un 

champ magnétique d’induction magnétique 𝐵, une différence de potentiel électrique 𝑉𝐸 est créée 

au sein du fluide. Et cette différence de potentiel 𝑉𝐸, captée à l’aide de deux électrodes, est 

proportionnelle à l’induction magnétique 𝐵, à la distance 𝑑 entre les deux électrodes, et la vitesse 

moyenne du fluide 𝑈 (Cha et al., 2002). Cela permet de déduire la vitesse, puis le débit 

volumique 𝑚̇𝑣 du fluide dans une conduite à l’aide de la relation suivante (Cha et al., 2002; ABB 

Automation Products GmbH, 2014) :  

𝑉𝐸 = 𝐵 𝑑 𝑈 =
4𝐵

𝜋𝑑
𝑚̇𝑣 (3-8) 

où, 

𝑉𝐸 (V): est la différence de potentiel électrique; 

𝐵 (V∙s/m
-2

) : est le champ magnétique d’induction magnétique; 

𝑑 (m) : est la distance entre les deux électrodes; 

𝑈 (m/s) : est la vitesse moyenne du fluide; 

𝑚̇𝑣 (m
3
/s) : est le débit volumique du fluide.  

 

 

Figure 3.17 : Débitmètre électromagnétique de type « Process Master FEP315» monté sur le 

circuit d’essai de pompage. 
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3.6.2 Protocole d’essai du mini écoulement en boucle du remblai minier en 

pâte (« Mini Flow Loop Test») 

Le protocole adopté pour les tests d’écoulement en boucle est constitué des étapes successives 

suivantes (comparer avec la procédure décrite à la section 2.7.2) : 

 montage et instrumentation du circuit de pompage : installation de la pompe, du débitmètre 

et des capteurs de pression et de température ;  

 obtention des échantillons représentatifs de matériaux solides et liquides à transporter ; 

 exécution du pompage avec l’eau et mesure de différents paramètres (pression, 

température,  et débit); 

 mélange progressif de différents ingrédients (eau, résidu, liant) à l‘aide du malaxeur-tank de 

la pompe.  

 estimation, à l’aide de l’essai d’affaissement (Figure 3.18), d’une fourchette du pourcentage 

solide 𝐶𝑤 du remblai pouvant être transportée ou pompée (affaissement au cône de 10 

pouces au cône standard d’Abrams, détermination du pourcentage solide par séchage d’un 

échantillon à l’étuve) en tenant compte de la capacité limite de la pompe et du malaxeur-

tank ; 

 échantillonnage pour des fins d’analyses rhéologiques; 

 exécution du pompage durant une heure de temps pour différents mélanges et mesure de 

différents paramètres (débit, pertes de charge linéaire, température du fluide et de la paroi). 

Un «flushing» du circuit de pompage est réalisé après chaque essai avant de passer à un 

autre mélange; 

 démontage du circuit de pompage; 

 caractérisation rhéologique de différents mélanges et prédiction des pertes de charge à 

l’aide des propriétés rhéologiques; 

 analyse des résultats pour obtenir les relations entre les différents paramètres. 
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Figure 3.18 : Essai d’affaissement au cône d’Abrams du remblai en pâte lors du mini essai 

d’écoulement en boucle. 

3.7 Simulations numériques du transport en pipeline avec le logiciel COMSOL 

Multiphysics® 5.2 

Le logiciel COMSOL Multiphysics® 5.2 est un environnement interactif efficace pour la 

modélisation et la résolution des problèmes scientifiques et d’ingénieurs basé sur les équations 

différentielles partielles. Ce logiciel de simulation numérique utilise la méthode des éléments 

finis pour résoudre les problèmes. Il présente l’avantage de simuler et coupler simultanément de 

nombreux phénomènes physiques en un seul modèle physique (simulation multi-physique) 

(COMSOL, 2012). Ce logiciel comprend plusieurs modules qui s’étendent sur plusieurs 

domaines d’applications (Acoustique, dynamique des fluides, transfert de chaleur, géophysique, 

etc.). COMSOL Multiphysics® 5.2 fournit un environnement de travail convivial incluant trois 

étapes : prétraitement, solution et post traitement. Le prétraitement consiste à spécifier le modèle 

physique et à fixer les paramètres. La création des mailles et  la résolution des équations 

constituent la seconde étape. La visualisation et l’analyse des résultats constituent la troisième 

étape de post traitement.  

Les étapes suivies lors de la simulation numérique de l’écoulement du remblai en pâte en pipeline 

avec le logiciel COMSOL Multiphysics® 5.2 sont les suivantes : 

1. Spécification ou choix du modèle physique, du type d’analyse (stationnaire, transitoire ou 

«time dependant»), et de la dimension (0D, 1D, 2D ou 3D) suivant le problème à résoudre. 

Dans notre cas, le choix a porté sur le modèle physique «non-isothermal pipe flow» en 
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mode stationnaire à trois dimensions (3D), car ce dernier modèle est un couplage deux 

modèles physiques «pipe flow» et «heat transfer in pipe». Les paramètres principaux de 

sortie sont la pression 𝑝, la vitesse 𝑈 et la température du fluide 𝑇𝑓.  

2. Création ou importation de la géométrie : le logiciel est muni d’outil de conception de la 

géométrie à une, deux et trois dimensions, et aussi de l’interface permettant d’importer une 

géométrie conçue avec un autre outil. 

3. Spécification des propriétés physiques des matériaux et fixation des conditions frontières. Il 

s’agit de spécifier les propriétés physiques, rhéologiques et thermiques du fluide (eau et 

remblai), la température initiale, la vitesse initiale, la pression à l’entrée ou la sortie, les 

caractéristiques du pipeline (diamètre, rugosité, matière, etc.), la source de chaleur, etc.; 

4. Création des mailles : suivant l’étude à mener, le logiciel permet à l’utilisateur de 

sélectionner le type ou la forme de mailles approprié à l’étude (maillage extra fin pour notre 

cas); 

5. Lancement de la solution; 

6. Exportation, traitement des résultats et reproduction du rapport. 

Il convient de signaler que le module utilisé pour la simulation numérique dans cette étude est 

notamment le module «Fluid Flow» de COMSOL Multiphysics® 5.2. Dans le but d’atteindre les 

objectifs assignés à cette étude, les simulations numériques du transport du remblai en pâte avec 

COMSOL Multiphysics® 5.2 se sont déroulées en deux grandes phases. La première phase a 

consisté à réaliser la validation numérique des procédures et du modèle à l’aide des résultats des 

essais d’écoulement en boucle. Il s’agit de vérifier si le modèle numérique donne des résultats 

proches de ceux observés à l’échelle d’essai de mini écoulement en boucle (pour chaque matériau 

testé). La seconde phase consiste à étendre le modèle numérique validé à l’étude de l’écoulement 

du remblai cimenté en pâte et du transfert de chaleur dans un circuit de distribution en pipeline à 

l’échelle réelle, en tenant compte de la thermodépendance des propriétés rhéologiques du remblai 

cimenté en pâte. Les équations principales résolues par le modèle numérique sont les équations 

(2-54) et (2-80) respectivement pour la pression et la température du fluide en écoulement à 

l’intérieur du tuyau. 
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CHAPITRE 4 RÉSULTATS 

Ce chapitre présente d’abord les résultats sur l’effet de la température sur l’affaissement au cône 

standard et au petit cône d’Abrams, et les propriétés rhéologiques et thermiques de résidus en 

pâte et de remblais cimentés en pâte préparés à l’eau de robinet (RCP) et à l’eau saline (RCPS). 

Les résultats des mini essais d’écoulement en boucle (mini flow loop tests) du RPC sont ensuite 

présentés. Finalement, ce chapitre montre les résultats de simulations numériques des essais 

d’écoulement en boucle et de l’écoulement en pipeline du remblai cimenté en pâte RCPS à 

grande échelle. 

4.1 Effet du pourcentage solide et de la température sur les essais 

d’affaissement au cône d’Abrams 

Les essais d’affaissement au cône d’Abrams constituent l’étude préliminaire de l’effet de la 

température et du pourcentage solide 𝐶𝑤 sur la consistance du résidu en pâte RP et du remblai 

cimenté RCP en pâte. Ces investigations ont été réalisées sur de mélanges faits principalement 

avec les résidus Goldex, mais aussi faits avec résidus Meliadine. Les différents mélanges étudiés 

sont présentés dans le Tableau A.1 et le Tableau A.2 à l’Annexe A respectivement pour les 

résidus Goldex et Meliadine. 

4.1.1 Résidu en pâte Goldex 

La Figure 4.1 et la  Figure 4.2 présentent respectivement les résultats d’essais d’affaissement au 

cône standard (CS) et au petit cône (PC) à 5, 14 et 20°C pour des pourcentages solides compris 

entre 75% et 82%. À toutes les températures d’essais, on peut noter que l’affaissement 𝑆 du 

résidu en pâte Goldex diminue avec l’augmentation du pourcentage solide 𝐶𝑤.À la température de 

5°C, les valeurs d’affaissement 𝑆 observées au CS (PC) sont de 24 (11), 21,4 (8,4), 16,4 (7), 12 

(6), 7 (3,7), et 6 (2,8) cm respectivement pour les pourcentages solides de 76,3%, 76,8%, 77,2%, 

77,6%, 79,2%, 80,5% et 80,9%. À la température de 14°C, les valeurs d’affaissement 𝑆 observées 

au CS (PC) sont de 26,8 (11,7), 25 (11,2), 18,4 (8,4), 13,3 (6), et 6,5 (2,8) cm respectivement 

pour les pourcentages solides de 75,5%, 76%, 77,9%, 79% et 80,8%. À la température de 20°C, 

les valeurs d’affaissement 𝑆 observées au CS (PC) sont de 25,5 (11,5), 18,5 (8,3), 15,6 (7,2), 12 
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(5,5), 10,5 (5), 8 (3,8), et 5,4 (2,8) cm respectivement pour les pourcentages solides de 76,7%, 

78,3%, 78,8%, 79,2%, 79,6%, 80,1% et 81,6% (voir Tableau D. 1 à l’Annexe D).  

 

Figure 4.1 : Variation de l’affaissement au cône standard CS en fonction du pourcentage solide 

𝐶𝑤 du résidu en pâte Goldex à 5, 14 et 20°C 

 

Figure 4.2 : Variation de l’affaissement au petit cône en fonction du pourcentage solide 𝐶𝑤 du 

résidu en pâte Goldex à 5, 14 et 20°C 

En outre, on observe une très faible tendance à l’augmentation de l’affaissement 𝑆 du résidu en 

pâte Goldex avec l’augmentation de la température à un pourcentage solide donné. Inversement, 

pour un affaissement donné, le pourcentage solide a tendance à augmenter très faiblement avec 

l’augmentation de la température. Ainsi donc, pour un affaissement au cône de 7 pouces (soit 

17,78 cm) au cône standard CS ou 3,18 pouces (soit 8,08 cm) au petit cône PC, les pourcentages 

solides à 5, 14 et 20°C sont respectivement de 77,8%, 77,9% et 78,3%. On notera aussi que 
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l’effet de la température sur l’affaissement 𝑆 est plus perceptible à de faibles pourcentages 

solides. Globalement, l’effet de la température sur l’affaissement aux CS et PC du RP Goldex est 

très mineur. Les essais d’affaissement au cône standard CS et au petit cône PC ont permis de 

ressortir les relations entre les affaissements aux CS et PC du résidu en pâte Goldex RP, qui du 

reste, sont ajustées à l’aide des droites de régression pour les différentes températures d’essais 

(voir Figure 4.3).  

 

Figure 4.3 : Relations entre l’affaissement au cône standard CS et l’affaissement PC du résidu en 

pâte Goldex à 5, 14 et 20°C. 

 

 

Figure 4.4: Relation généralisée entre l’affaissement au cône standard CS et l’affaissement PC du 

résidu en pâte Goldex. 



105 

 

Comme on peut bien le voir sur cette figure, les droites de régression établies à 5, 14 et 20°C sont 

très rapprochées. Ainsi on peut noter que la température n’affecte presque pas la relation entre les 

affaissements du RP Goldex au CS et au PC. Globalement, la Figure 4.4 reprend la relation 

pouvant être utilisée pour le passage d’un affaissement au PC vers un affaissement au CS (ou 

vice-versa) du RP Goldex entre 5°C et 20°C, pour des pourcentages solides compris entre 75% et 

82%.  

4.1.2 Résidu en pâte Meliadine 

Pour les résidus en pâte Meliadine, l’effet du pourcentage solide sur l’affaissement a été étudié à 

20°C seulement. La Figure 4.5 donne les résultats d’essais d’affaissement du résidu en pâte RP 

Meliadine au cône standard CS et au petit cône PC à une température de 20°C. Sur cette figure, 

l’affaissement 𝑆 aux cônes CS et PC est défini en fonction du pourcentage solide 𝐶𝑤. Les valeurs 

d’affaissement 𝑆 observées au CS sont de 26,2, 23,8, 20, 15, et 9,4 cm pour les pourcentages 

solides respectifs de 74%, 75%, 76%, 77%, et 78%. Par ailleurs, les valeurs d’affaissement 𝑆 

observées au PC sont de 13,2, 10,2, 8,5, 7, 5, 3,7 et 2,9 cm pour les pourcentages solides 

respectifs de 73,2%, 75,1%, 76,7%, 77,4%, 78%, 79% et 80,1% (voir Tableau D.2 à l’Annexe 

D). On peut noter que l’affaissement au cône CS de 17,78 cm (soit 7 pouces) correspond à un 

pourcentage solide 𝐶𝑤 de 76,3%.  

 

Figure 4.5 : Variation de l’affaissement au cône standard CS et au petit cône PC en fonction du 

pourcentage solide 𝐶𝑤 du résidu en pâte RP Meliadine à 20°C 
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En considérant les résultats d’essais d’affaissement aux cônes CS et PC, la relation entre les 

affaissements aux cônes CS et PC a été établie à 20°C (voir Figure 4.6). Ainsi donc, le 

pourcentage solide 𝐶𝑤 de 76,3% correspond à un affaissement au PC de 8,4 cm.   

 

Figure 4.6 : Relation entre l’affaissement au cône standard CS et l’affaissement PC du résidu en 

pâte RP Meliadine à 20°C. 

4.1.3 Remblai cimenté en pâte Goldex  

La Figure 4.7 et la  Figure 4.8 présentent respectivement les résultats d’essais d’affaissement au 

cône standard et au petit cône du remblai cimenté en pâte (RCP) Goldex à 5, 20, 30 et 38°C. Le 

ciment GU à un dosage de 5% a été utilisé dans la préparation des mélanges. À la température de 

5°C, les valeurs d’affaissement 𝑆 observées au CS (PC) sont de 26 (12), 20,5 (8), 11 (5), et 5 

(2,5) cm respectivement pour les pourcentages solides de 75,3%, 77,3%, 78,9%, et 81,7%. À la 

température de 20°C, les valeurs d’affaissement 𝑆 observées au CS (PC) sont de 24,4 (10), 19,3 

(7,3), 7,4 (3,8), et 4,8 (2,3) cm respectivement pour les pourcentages solides de 75,5%, 77,2%, 

79,8% et 81,4%. À la température de 30°C, les valeurs d’affaissement 𝑆 observées au CS (PC) 

sont de 21 (10), 12 (5,6), et 5,6 (2,7) cm respectivement pour les pourcentages solides de 75%, 

77% et 79%. À la température de 38°C, les valeurs d’affaissement 𝑆 observées au CS (PC) sont 

de 19,5 (9,5), 10 (5,2), et 5,2 (2,5) cm respectivement pour les pourcentages solides de 75%, 77% 

et 79% (voir Tableau E. 1 à l’Annexe E). 

Dans l’ensemble, l’affaissement 𝑆 aux cônes CS et PC du RCP Goldex diminue avec le 

pourcentage solide 𝐶𝑤, à une température donnée et avec la température à un pourcentage solide 
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donné 𝐶𝑤. Comme on peut si bien le remarquer à la Figure 4.7 et à la Figure 4.8, l’effet de la 

température sur l’affaissement aux cônes est plus marqué à 30 et 38°C qu’à 5 ou 20°C. De plus, 

le pourcentage solide 𝐶𝑤 du remblai en pâte correspondant à un affaissement 𝑆 donné a tendance 

à diminuer lorsque la température augmente. En effet, pour un affaissement au CS de 17,78 cm 

(soit 7 pouces), les pourcentages solides correspondant à 5, 20, 30 et 38°C sont respectivement de 

77,7%, 77,4%, 75,8% et 75,3%.  

 

Figure 4.7 : Variation de l’affaissement au cône standard CS en fonction du pourcentage solide 

𝐶𝑤 du remblai cimenté en pâte Goldex à 5, 20, 30 et 38°C. 

 

Figure 4.8 : Variation de l’affaissement au petit cône PC en fonction du pourcentage solide 𝐶𝑤 du 

remblai cimenté en pâte Goldex à 5, 20, 30 et 38°C. 
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Les résultats d’essais d’affaissement aux cônes CS et PC ont permis d’établir des relations entre 

les affaissements obtenus avec les deux cônes pour les différentes températures d’essais (Figure 

4.9) à l’aide d’une régression linéaire. Les droites de régression établies à différentes 

températures se rapprochent. Par conséquent, on peut conclure que la température n’affecte 

presque pas les relations entre les affaissements 𝑆 aux cônes CS et PC du RPC Goldex. Ainsi, une 

relation généralisée entre l’affaissement au CS et au PC du RPC Goldex peut être proposée (voir 

Figure 4.10)  pour des pourcentages solides compris entre 75% et 82% et des températures allant 

de 5 à 38°C. 

 

Figure 4.9 : Relations entre l’affaissement au cône standard CS et l’affaissement PC du remblai 

cimenté en pâte Goldex à 5, 20, 30 et 38°C. 

 

Figure 4.10 : Relation généralisée entre l’affaissement au cône standard CS et l’affaissement PC 

du remblai en pâte Goldex 
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4.1.4 Remblai cimenté en pâte Meliadine 

Pour le remblai cimenté en pâte Meliadine, l’effet du pourcentage solide, du type de liant (GU et 

HE) et du pourcentage de liant (3 et 5%)  sur l’affaissement a été étudié à 20°C. La Figure 4.11 et 

la Figure 4.12 présentent les résultats d’essais d’affaissement du remblai cimenté en pâte fait 

respectivement aux ciments GU et HE au petit cône à la température de 20°C. Les résultats 

obtenus sur les résidus en pâte (RP) sont aussi présentés sur ces figures.  On peut noter que pour 

un pourcentage solide 𝐶𝑤 donné l’ajout du ciment GU ou HE à des dosages de 3 et 5% diminue 

l’affaissement ou augmente la consistance par rapport aux RP. Au dosage de 3% en ciment GU, 

les valeurs d’affaissement 𝑆 observées au PC sont de 9,6 cm, 8,5 cm, 6 cm, 4 cm, 2,6 cm et 1,6 

cm pour les pourcentages solides respectifs de 74,6%, 75,3%, 76,4%, 77,9%, 79,3% et 80,6%. 

Pour le dosage de 5% en ciment GU, les valeurs d’affaissement 𝑆 observées au PC sont de 10,5 

cm, 8 cm, 6,6 cm, 4 cm, 2,6 cm et 2 cm pour les pourcentages solides respectifs de 73,9%, 

75,5%, 76,7%, 78,1%, 79,9% et 80,7% (voir le Tableau E.1 à l’Annexe E). Pour un pourcentage 

solide 𝐶𝑤 donné, les affaissements au PC obtenus aux dosages en ciment GU de 3% et 5% sont 

presqu’égaux.  

 

Figure 4.11 : Variation de l’affaissement au petit cône PC en fonction du pourcentage solide 𝐶𝑤 

des mélanges RP et RCP Meliadine (à 3 et 5% de dosage en ciment GU) 

Par ailleurs, les mélanges de RCP Meliadine au dosage de 3% en ciment HE ont présenté les 

valeurs d’affaissement 𝑆 au PC de 10 cm, 8 cm, 6,7 cm, 3,9 cm, 2,5 cm et 2,1 cm pour des 

pourcentages solides respectifs de 74,1%, 75,3%, 76,3%, 78%, 79,7% et 80,6%. Au dosage de 
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5% de ciment HE, les valeurs d’affaissement 𝑆 au PC de 9,8 cm , 8 cm , 6,7 cm , 4,2 cm, 2,5 cm, 

et  2 cm, pour des pourcentages solides respectifs de 74,2%, 75,4%, 76,4%, 77,8%, 79,6% et 

80,5% (voir Tableau E.3 à l’Annexe E). Le passage de 3% à 5% de liant ne semble pas affecter 

les valeurs de l’affaissement au cône. En utilisant le rapport d’affaissement CS-PC établi à la 

Figure 4.6 pour le résidu Meliadine, l’affaissement au cône standard de 17,8 cm (7 pouces), 

correspond à un affaissement au petit cône de 8,4 cm (3,3 pouces). L’affaissement au petit cône 

de 8,4 cm correspond au pourcentage solide 𝐶𝑤 de 75% de RCP Meliadine à un dosage en ciment 

GU ou HE de 3 ou 5% (voir Figure 4.11et Figure 4.12). Comme pour le mélange au ciment GU, 

les affaissements au PC obtenus aux dosages en ciment HE de 3% et 5% sont presqu’égaux pour 

un pourcentage solide donné 𝐶𝑤.  

 

Figure 4.12 : Variation de l’affaissement au petit cône PC en fonction du pourcentage solide 𝐶𝑤 

des mélanges de RP et RCP Meliadine (à 3 et 5% de dosage en ciment HE) 

4.2 Effet de la température et de la salinité sur les propriétés 

rhéologiques  

Cette section présente principalement les résultats des essais de cisaillement au rhéomètre AR 

2000 sur les mélanges de résidus en pâte RP et de remblais cimentés en pâte RCP Goldex et 

Meliadine. Les Tableaux B.1 et B.2 à l’Annexe B présentent respectivement les mélanges (RP et 

RCP) Goldex et Meliadine utilisés. L’objectif principal de ces essais rhéologiques était 

d’examiner l’effet de la température et de la salinité sur les propriétés rhéologiques de  ces 
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différents mélanges. Néanmoins, l’effet du pourcentage solide 𝐶𝑤 a été aussi analysé sur les 

mélanges de RP et RPC à la température de 20°C.  

4.2.1 Résidu en pâte Goldex 

La Figure 4.13 et la Figure 4.14 présentent respectivement les rhéogrammes et les courbes de 

viscosité dynamique en fonction du taux de cisaillement des mélanges de RP Goldex à différents 

pourcentages solides (74%, 76,3%, 77,5%, 79% et 80%) à une température autour de 20°C. On 

observe que pour un taux de cisaillement donné, la contrainte de cisaillement augmente avec 

l’augmentation du pourcentage solide. De plus, la viscosité des mélanges RP Goldex diminue 

avec l’augmentation du taux de cisaillement. Comme l’indique le Tableau F. 1 (synthèse des 

résultats) à l’Annexe F, ces différentes courbes s’ajustent mieux (faible erreur standard) avec le 

modèle d’écoulement de Herschel-Bulkley (équation (2-31)) et le modèle de viscosité de Sisko 

(équation (2-34)).  

 

Figure 4.13 : Rhéogrammes des mélanges de résidu en pâte RP Goldex à différents pourcentages 

solides 𝐶𝑤 à 20°C. 

On note sur la Figure 4.14, pour un pourcentage solide donné, une première zone dans laquelle la 

viscosité diminue rapidement à de faibles taux de cisaillement (< 20 s
-1

), et la seconde zone où la 

viscosité atteint une phase de plateau ou d’équilibre à de taux de cisaillement élevés. La première 

zone, dominée par le seuil de cisaillement (Slatter, 2006), est une phase dans laquelle le matériau 

se fluidifie avant d’atteindre la seconde zone dominée par la viscosité plastique (Slatter, 2006). 
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Par ailleurs, l’effet du pourcentage solide reste remarquable à des taux de cisaillement élevés. En 

effet, la viscosité atteinte à de taux de cisaillement élevés, qui correspond à la viscosité  à l’infini 

de Sisko 𝜂∞, augmente à l’augmentation du 𝐶𝑤. Elle est de 0,50 Pas à 74% et à 4,15 Pas de 80 % 

solide. 

 

Figure 4.14 : Courbes de viscosité dynamique des résidus en pâte Goldex à différents 

pourcentages solides à 20°C. 

La Figure 4.15 illustre l’effet du pourcentage solide sur le seuil de cisaillement 𝜏HB, l’indice de 

consistance 𝐾 et l’indice d’écoulement 𝑛 de Herschel-Bulkley du résidu en pâte RP Goldex. 𝜏𝐻𝐵 

et 𝐾 augmentent avec le pourcentage solide 𝐶𝑤. Les valeurs de seuil de cisaillement 𝜏𝐻𝐵 sont de 

32,1 Pa, 68 Pa, 137,6 Pa, 174,4 Pa et 214,4 Pa pour des pourcentages solides 𝐶𝑤 respectifs de 74, 

76,3, 77,5, 79 et 80%. Par ailleurs, les valeurs de l’indice de consistance 𝐾 sont de 0,74 Pa.s
n
, 

1,55 Pa.s
n
, 1,93 Pa.s

n
, 3,09 Pa.s

n
 et 4,24 Pa.s

n
 pour des pourcentages solides 𝐶𝑤 respectifs de 74, 

76,3, 77,5, 79 et 80%. Par contre l’indice d’écoulement n demeure presque constant et inférieur à 

1. Les valeurs d’indice d’écoulement 𝑛 sont de 0,93, 0,96, 0,99, 0,98 et 0,99 respectivement pour 

des pourcentages solides 𝐶𝑤 respectifs de 74, 76,3, 77,5, 79 et 80%. Ces valeurs de 𝑛 dénotent un 

comportement rhéofluidifiant du RP Goldex pour des pourcentages solides 𝐶𝑤 compris entre 74% 

et 80% et des taux de cisaillement inférieurs à 100 s
-1

. Les valeurs de l’indice d’écoulement pour 

les différents mélanges s’approchent néanmoins de la valeur de 1, ce qui peut bien expliquer le 

fait que le modèle de Bingham soit le second meilleur modèle d’ajustement des courbes 

d’écoulement des mélanges RP Goldex (voir le Tableau F. 1 en Annexe F). De même, on peut 
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noter aussi que les paramètres de Bingham (seuil de cisaillement 𝜏o et la viscosité plastique 𝜂B) 

augmentent l’augmentation de 𝐶𝑤 du RP Goldex. 

 

Figure 4.15 : Variation des propriétés rhéologiques du résidu en pâte (le seuil de cisaillement 𝜏𝐻𝐵, 

l’indice de consistance 𝐾 et l’indice d’écoulement 𝑛) en fonction du pourcentage solide 𝐶𝑤. 

4.2.2 Résidu en pâte RP Meliadine 

4.2.2.1 Effet du pourcentage solide 𝐶𝑤  

La Figure 4.16 et la Figure 4.17 présentent respectivement les rhéogrammes et les courbes de 

viscosité en fonction du taux de cisaillement des mélanges de RP Meliadine à des pourcentages 

solides 𝐶𝑤 de 71%, 73%, 75% et 76,3% à une température de 20°C. On peut observer sur la 

Figure 4.16 qu’à un taux de cisaillement donné, la contrainte de cisaillement augmente avec 

l’augmentation du pourcentage solide 𝐶𝑤. Lors du traitement des données expérimentales, il est 

apparu que le modèle d’écoulement de Herschel-Bulkley est plus approprié pour décrire les 

rhéogrammes des mélanges de RP Meliadine à des pourcentages solides compris entre 71% et 

76,3% (voir le Tableau F.2 en Annexe F).  

Pour les courbes de viscosité dynamique présentées sur la Figure 4.17, c’est le modèle de Sisko 

qui s’ajuste le mieux pour décrire le comportement des mélanges de RP Meliadine (voir le 

Tableau F.2 en Annexe F). De surcroît, l’indice de consistance 𝐾𝑆 et la viscosité à l’infini 𝜂∞ de 

Sisko des mélanges RP Meliadine sont dépendants du pourcentage solide 𝐶𝑤. En effet, ces 

paramètres de Sisko augmentent avec le pourcentage solide 𝐶𝑤. 𝐾𝑆 passe de 29,3 Pa.s
n
 à 165,3 
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Pa.s
n
. 𝜂∞ varie de 0,63 Pa.s à 3,2 Pa.s lorsque 𝐶𝑤 passe de 71% à 76,3% (voir le Tableau F.2 en 

Annexe F). 

 

Figure 4.16 : Rhéogrammes des mélanges du résidu en pâte RP Meliadine à différents 

pourcentages solides 𝐶𝑤 à 20°C. 

 

Figure 4.17 : Courbes de viscosité dynamique de résidus en pâte Meliadine à différents 

pourcentages solides 𝐶𝑤 à 20°C. 

Ainsi, la Figure 4.18 présente la variation des paramètres de Herschel-Bulkley du RP Meliadine 

en fonction de 𝐶𝑤. Sur cette dernière, on note que le seuil de cisaillement 𝜏𝐻𝐵 et l’indice de 

consistance 𝐾 des mélanges de RP Meliadine augmentent avec l’augmentation du pourcentage 

solide 𝐶𝑤. En effet, 𝜏𝐻𝐵 passe de 28,8 Pa à 165 Pa lorsque 𝐶𝑤 passe de 74% à 80%. Quant à 

l’indice de consistance 𝐾, il passe de 0,83 Pa.s
n
 à 3,31 Pa.s

n
 lorsque 𝐶𝑤 passe de 74% à 80%. Par 
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ailleurs, l’indice d’écoulement 𝑛 des mélanges RP Meliadine à différents pourcentages solides 𝐶𝑤 

est inférieur à 1, et presque constant avec l’augmentation de 𝐶𝑤. Pour cela, ces mélanges à des 

pourcentages solides 𝐶𝑤 compris entre 71% et 76,3% et des taux de cisaillement inférieurs à 100 

s
-1

 ont exhibé un comportement rhéofluidifiant. 

 

Figure 4.18 : Variation des propriétés rhéologiques du résidu en pâte Meliadine (le seuil de 

cisaillement 𝜏𝐻𝐵, l’indice de consistance 𝐾 et l’indice d’écoulement 𝑛) en fonction du 

pourcentage solide 𝐶𝑤 à 20°C. 

4.2.2.2 Effet de la température et de la salinité 

L’étude de l’effet de la température et de la salinité a été réalisée sur les résidus en pâte (RP) 

Meliadine sans sel et les résidus avec 5g/L de sel (RPS) à un pourcentage solide de 75%. Les 

résultats ont fait l’objet d’un article de conférence présenté à la Conférence Canadienne de 

Géotechnique GéoQuec 2015 (Kalonji et al., 2015). En résumé, il est apparu que le seuil de 

cisaillement 𝜏𝐻𝐵, l’indice de consistance 𝐾𝐻𝐵, la viscosité dynamique, la viscosité à l’infini de 

Sisko et l’indice de constance de Sisko 𝐾𝑆 ont présenté une tendance à diminuer avec 

l’augmentation de la température. Il a été constaté que les propriétés rhéologiques (seuil de 

cisaillement, la viscosité à l’infini et l’indice de consistance de Sisko) de mélanges de RP et RPS 

Meliadine à la concentration de 5 g/L en sel RPS sont légèrement inférieures à celles de mélanges 

de RP sans sel, à 10, 20 et 45°C. Le même constat a été fait pour l’indice de consistance 𝐾𝐻𝐵 à 

20°C et 45°C, sauf 10°C où la valeur 𝐾𝐻𝐵 de du RPS s’est avérée supérieure à celle du RP.  
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4.2.3 Remblai en pâte cimenté Goldex  

Cette section présente les résultats d’essais rhéologiques réalisés sur les mélanges de remblai en 

pâte cimenté Goldex. En premier lieu, l’effet du pourcentage solide sur les propriétés 

rhéologiques de RCP Goldex à un dosage en ciment HE de 5% a été examiné à une température 

de 20°C. En deuxième lieu, l’effet de la température et de la salinité a été étudié sur deux 

mélanges de RCP Goldex à un dosage en ciment de 5% (GU et HE) avec un pourcentage solide à 

𝐶𝑤 = 76,3%. En dernier lieu, l’effet du type de ciment et de la température a été examiné sur ces 

derniers mélanges.  

4.2.3.1 Effet du pourcentage solide 𝐶𝑤  

La Figure 4.19 et la Figure 4.20 présentent respectivement les courbes d’écoulement et de 

viscosité de mélanges de RCP Goldex à des pourcentages solides 𝐶𝑤 de 76,3%, 77,5%, 79% et 

80%. Notons que le ciment type HE a été utilisé pour ces mélanges à un dosage 𝐵𝑤 de 5%.  

 

Figure 4.19 : Rhéogrammes des mélanges de remblai cimenté en pâte Goldex à différents 

pourcentages solides 𝐶𝑤 à 20°C. 

On peut observer sur la Figure 4.19 que la contrainte de cisaillement augmente avec 

l’augmentation du pourcentage solide 𝐶𝑤 des mélanges RCP Goldex, pour un taux de cisaillement 

donné. Les courbes d’écoulement de ces mélanges peuvent être mieux décrites à l’aide du modèle 

d’écoulement de Herschel-Bulkley comme le montre le Tableau G.1 en Annexe G, du fait que les 

erreurs calculées avec ce modèle sont inférieures à celles calculées avec le modèle de Bingham.  
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Encore une fois, le modèle Sisko s’est avéré être le mieux approprié pour décrire les courbes de 

viscosité dynamique pour tous les mélanges RCP Goldex à différents pourcentages solides 𝐶𝑤. 

On peut observer sur cette dernière que l’effet du pourcentage solide reste visible pour des taux 

de cisaillement élevés. On peut aussi noter que l’indice de consistance 𝐾𝑆 et la viscosité à infini 

𝜂∞ de Sisko des mélanges RCP Goldex sont dépendants du pourcentage solide 𝐶𝑤. Ces derniers 

augmentent avec l’augmentation de 𝐶𝑤 (voir le Tableau G.1 en Annexe G). 𝐾𝑆 passe de 72,8 Pa.s
n
 

à 231,9 Pa.s
n
 et 𝜂∞ passe de 1,34 Pas à 4,74 Pas et lorsque 𝐶𝑤 passe de 76,3% à 80%. 

 

Figure 4.20 : Courbes de viscosité dynamique de RCP Goldex (𝐵𝑤 = 5% HE) à différents 

pourcentages solides 𝐶𝑤 à 20°C. 

De surcroît, la Figure 4.21 présente l’effet de 𝐶𝑤  sur les propriétés rhéologiques des mélanges de 

RCP Goldex. On note une augmentation du seuil de cisaillement 𝜏𝐻𝐵 et de l’indice de consistance 

𝐾 avec l’augmentation de 𝐶𝑤. 𝜏𝐻𝐵 passe de 72,4 Pa à 231,5 Pa et 𝐾 passe de 1,70 Pa.s
n
 à 4,85 

Pa.s
n
 lorsque passe de 76,3% à 80%. Pour sa part, les valeurs de l’indice d’écoulement 𝑛 sont de 

0,95, 0,97, 0,99 et 0,99 pour les pourcentages solides 𝐶𝑤 respectifs de 76,3%, 77,5%, 79% et 

80%. On observe une légère augmentation de l’indice d’écoulement 𝑛 avec l’augmentation de 𝐶𝑤, 

mais tous les mélanges de RCP Goldex à des 𝐶𝑤 compris entre 76,3% et 80% ont exhibé un 

comportement rhéofluidifiant, car les valeurs de leurs indices d’écoulement sont restées 

inférieures mais proches à 1 malgré l’augmentation de 𝐶𝑤. De même, en utilisant les paramètres 

de Bingham, le seuil de cisaillement 𝜏o ainsi que la viscosité plastique 𝜂B des mélanges de RCP 

Goldex augmentent avec l’augmentation du pourcentage solide 𝐶𝑤 (voir le Tableau G.1 en 
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Annexe G). 𝜏o passe de 73,9 Pa à 232,2 Pa et 𝜂B passe de 1,38 Pa.s à 4,73 Pa.s lorsque 𝐶𝑤 passe 

de 76,3% à 80%. 

 

Figure 4.21 : Variation des propriétés rhéologiques du remblai cimenté en pâte (le seuil de 

cisaillement 𝜏𝐻𝐵, l’indice de consistance 𝐾 et l’indice d’écoulement 𝑛) en fonction du 

pourcentage solide 𝐶𝑤. 

4.2.3.2 Effet de la température et de la salinité  

L’effet de la température et de la salinité a d’abord été étudié sur des mélanges de remblai en pâte 

cimenté RCPS avec 𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% de dosage en ciment GU et des concentrations en sel 

de 5 et 10 g/L pour des températures de 2, 10 et 20°C.  La Figure 4.22 et la Figure 4.23 

présentent respectivement les rhéogrammes et les courbes de viscosité dynamique obtenues. On 

peut ainsi observer sur la Figure 4.22 que la contrainte de cisaillement augmente avec la 

température pour un taux de cisaillement donné. De plus, les mélanges de RCPS à une 

concentration en sel de 5 g/L développent des contraintes de cisaillement relativement plus 

élevées par rapport aux mélanges RCPS à une concentration en sel de 10 g/L à une température 

donnée. Comparativement au modèle de Bingham, le modèle de Herschel-Bulkley est plus 

approprié pour décrire les courbes d’écoulement des mélanges de RCPS Goldex à un dosage en 

ciment GU de 5%GU à toutes les températures d’essai (voir Tableaux G.2 et G.3 en Annexe G). 
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Figure 4.22 : Rhéogrammes des mélanges du remblai cimenté en pâte RCPS Goldex à des 

concentrations en sel de 5 et 10 g/L (𝐵𝑤 = 5%GU) pour des températures de 2, 10 et 20°C. 

 

Figure 4.23 : Courbes de la viscosité dynamique mélanges RCPS Goldex (avec 𝐶𝑤 = 76,3%; 𝐵𝑤 = 

5% GU) de 5 et 10 g/L de concentration en sel à 2, 10 et 20°C. 

Quant à la viscosité dynamique, on peut observer sur la Figure 4.23 que la viscosité dynamique 

des mélanges RCPS Goldex (𝐵𝑤 = 5% GU) diminue avec le taux de cisaillement à toutes les 

températures d’essai. Le modèle de viscosité de Sisko a permis de mieux décrire le comportement 

de ces mélanges. De ce fait, on a pu noter une augmentation des valeurs de l’indice de 

consistance 𝐾𝑆 et de la viscosité à l’infini 𝜂∞ de Sisko de mélanges RCPS Goldex (𝐵𝑤 = 5% GU), 

lorsque la température augmente. Comme le montre bien la Figure 4.23, l’effet de la température 

reste bien marqué même à des taux de cisaillement élevés. Les valeurs de 𝜂∞ de RCPS Goldex 
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(𝐵𝑤 = 5% GU) avec une concentration en sel de 5g/L  sont de 0,65 Pas, 0,94 Pas et 1,24 Pas à des 

températures respectives de 2, 10 et 20°C. Les mélanges RCPS Goldex (𝐵𝑤 = 5% GU) avec une 

concentration en sel de 10 g/L présentent des valeurs de 𝜂∞ de 0,64 Pas, 0,84 Pas et 1,18 Pas pour 

des températures respectives de 2, 10 et 20°C.   

La Figure 4.24 montre la variation des propriétés rhéologiques des mélanges de RCPS Goldex 

(𝐵𝑤 = 5% GU) en fonction de la température. On note sur cette dernière que le seuil de 

cisaillement 𝜏𝐻𝐵 et l’indice de consistance 𝐾 augmentent avec l’augmentation de la température 

pour tous les mélanges de RCPS Goldex. En effet, pour une concentration en sel de 5g/L, les 

seuils de cisaillement sont de 33,8 Pa, 49,8 Pa, et 59,6 Pa, à des températures respectives de 2, 10 

et 20°C. En outre, les valeurs de l’indice de consistance 𝐾 à 2, 10 et 20°C sont respectivement de 

0,91 Pa.sn, 1,24 Pa.sn et 1,52 Pa.sn. De même, pour une concentration de10g/L, les valeurs de 

seuil de cisaillement de RCPS Goldex (𝐵𝑤 = 5% GU) à 2, 10 et 20°C  sont respectivement de 

31,1 Pa, 43,5 Pa et 50,7 Pa. De plus, ces mélanges ont présenté des valeurs d’indice de 

consistance de 0,75 Pa.sn, 1,06 Pa.sn et 1,58 Pa.sn à des températures respectives de 2, 10 et 

20°C.  

 

Figure 4.24 : Variation des propriétés rhéologiques avec la température (2 à 20°C) des mélanges 

RCPS Goldex (𝐶𝑤  = 76,3%; 𝐵𝑤 = 5%GU) de 5 et 10 g/L de concentration en sel. 

En examinant ces valeurs, on peut noter que les mélanges RCPS Goldex (𝐵𝑤 = 5% GU) à une 

concentration en sel de 5g/L présentent des valeurs de seuil de cisaillement 𝜏𝐻𝐵 relativement 
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supérieures à celles des mélanges de concentration en sel de 10g/L à toutes les températures 

d’essai. La même observation est faite sur les valeurs de l’indice de consistance 𝐾 à toutes les 

températures d’essais, excepté à 20°C. Néanmoins, le RCPS Goldex (𝐵𝑤 = 5% GU) à la 

concentration en sel de 5 g/L a présenté un indice d’écoulement 𝑛 élevé (𝑛 = 0,96) par rapport à 

celui du RCPS Goldex (𝐵𝑤 = 5%  à la concentration en sel de 10 g/L (𝑛 = 0,94).  

Lorsque les courbes d’écoulement sont ajustées avec le modèle de Bingham, les valeurs du seuil 

de cisaillement 𝜏o et de la viscosité plastique 𝜂B du RCPS Goldex (𝐵𝑤 = 5% GU) à une 

concentration en sel de 5 g/L sont relativement supérieures à celle du RCPS Goldex à une 

concentration en sel de 10 g/L (voir Tableaux H.2 et H.3 en Annexe H). Les valeurs du seuil de 

cisaillement 𝜏o des mélanges de RCPS Goldex (𝐵𝑤 = 5% GU) à la concentration en sel de 5 g/L 

sont de 34,9 Pa, 51,1 Pa et 60,8 Pa pour des températures respectives de 2, 10 et 20°C. Les 

valeurs de la viscosité plastique 𝜂B des mélanges de RCPS Goldex (𝐵𝑤 = 5% GU) à la 

concentration en sel de 5 g/L sont 0,67 Pa.s, 0,96 Pa.s et 1,28 Pa.s. Pour la concentration en sel 

10 g/L, les mélanges de RCPS Goldex (𝐵𝑤 = 5% GU) ont présenté des valeurs de 𝜏o de 31,6 Pa, 

44,4 Pa et 52,4 Pa, et de viscosité plastique 𝜂B de 0,63 Pa.s, 0,86 Pa.s, et 1,22 Pa.s pour des 

températures respectives de 2, 10 et 20°C.  

Toutefois, il faudra noter que tous les mélanges de RCPS Goldex (𝐵𝑤 = 5% GU) ont démontré un 

comportement rhéofluidifiant à toutes les températures d’essai car les valeurs d’indice 

d’écoulement 𝑛 de ces mélanges sont inférieures à 1 (voir Tableaux H.2 et H.3 en Annexe H). 

Une tendance à l’augmentation de ce dernier s’observe avec l’augmentation de la température sur 

le RCPS Goldex (𝐵𝑤 = 5% GU) à une concentration en sel de 5 g/L. Par contre, l’indice 

d’écoulement 𝑛 a tendance à diminuer avec l’augmentation de la température pour les mélanges 

de RCPS Goldex (𝐵𝑤 = 5% GU) à la concentration en sel de 10 g/L. 

Par la suite, l’effet de la température et de la salinité a été étudié sur les mélanges de RCPS 

Goldex à un pourcentage solide de 76,3% et un dosage en ciment HE de 5% pour des 

concentrations en sel de 5 et 10 g/L. Les Figure 4.25 et Figure 4.26 présentent respectivement les 

rhéogrammes et les courbes de viscosité des mélanges RCP Goldex (𝐵𝑤 = 5% HE) à 2, 10 et 

20°C. La Figure 4.25 montre aussi la courbe d’écoulement du remblai en pâte sans liant (RPC) à 

20°C pour des fins de comparaison. Globalement, on observe sur la Figure 4.25 que la contrainte 

de cisaillement diminue avec la diminution de la température pour un taux de cisaillement donné. 
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Figure 4.25 : Rhéogrammes des mélanges du remblai cimenté en pâte RCPS Goldex à des 

concentrations en sel de 5 et 10 g/L (𝐶𝑤 = 76,3%; 𝐵𝑤 = 5%HE) à des températures de 2, 10 et 

20°C 

De plus, l’ajout de sel à des concentrations de 5 et 10 g/L dans le RPC Goldex (𝐵𝑤 = 5% HE) 

entraîne une tendance à la diminution de la contrainte de cisaillement pour un taux de 

cisaillement fixe. Les courbes d’écoulement de ces mélanges se sont mieux ajustées avec le 

modèle de Herschel-Bulkley, comparativement au modèle de Bingham qui a donné des erreurs 

relatives légèrement supérieures au premier modèle.  

Pour sa part, la viscosité dynamique des mélanges RCPS diminue avec l’accroissement du taux 

de cisaillement.  Cependant, l’effet de la température sur la viscosité reste assez perceptible à des 

taux de cisaillement élevés (Figure 4.26). Le modèle de viscosité de Sisko, s’est bien ajusté aux  

courbes de viscosité car les erreurs relatives sont très faibles (voir les Tableaux G.4 et G.5 en 

Annexe G). On peut aussi noter que l’indice de consistance 𝐾𝑆 et la viscosité à l’infini 𝜂∞ de 

Sisko des RCPS Goldex à un dosage en ciment HE de 5% augmentent avec l’augmentation de la 

température (voir les Tableaux G.4 et G.5 en Annexe G).  

Pour ce faire, la Figure 4.27 présente la variation des propriétés rhéologiques de RCPS et RCP 

Goldex (𝐵𝑤 =5% HE) avec la température. D’emblée, on peut noter que tous les mélanges de 

RCPS Goldex (𝐵𝑤 = 5% HE) sont rhéofluidifiants vu que les valeurs d’indice d’écoulement 𝑛 de 

ces mélanges sont inférieurs à 1 à toutes les températures d’essai. On ne note pas de variation 

importante de l’indice d’écoulement 𝑛 avec la variation de la température.  
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Figure 4.26 : Courbes de viscosité dynamique des mélanges RCPS Goldex (𝐶𝑤  = 76,3%; 𝐵𝑤  = 

5% HE) de 5 et 10 g/L de concentration en sel à 2, 10 et 20°C. 

 

Figure 4.27 : Variation des propriétés rhéologiques avec la température (2 à 20°C) des mélanges 

RCPS Goldex (𝐶𝑤  = 76,3%; 𝐵𝑤 = 5%HE) de 5 et 10 g/L de concentration en sel. 

De plus, on peut observer que le seuil de cisaillement 𝜏𝐻𝐵 et l’indice de consistance 𝐾 augmentent 

avec l’augmentation de la température. En effet, pour la concentration en sel de 5 g/L, les valeurs 

de seuil de cisaillement 𝜏𝐻𝐵 du RCPS Goldex (𝐵𝑤 = 5% HE) à 2, 10 et 20°C sont respectivement 

de 40,6 Pa, 51,9 Pa et 60,4 Pa. Quant aux valeurs de l’indice de consistance 𝐾 aux mêmes 

températures, elles sont respectivement de 1,03 Pa.sn, 1,56 Pa.sn, et 1,66 Pa.sn.  De même, pour 

les mélanges RCPS à une concentration en sel de 10 g/L, les valeurs de seuil de cisaillement 𝜏𝐻𝐵 
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à 2, 10 et 20°C sont respectivement de 36,32 Pa, 50,9 Pa et 56,3 Pa. En outre, les valeurs de 

l’indice de consistance 𝐾 aux mêmes températures d’essai sont respectivement de 1,16 Pa.sn, 

1,46 Pa.sn, et 1,59 Pa.sn.  

En comparant les valeurs des propriétés rhéologiques du RCP Goldex (𝐵𝑤=5% HE) et des 

mélanges RCPS Goldex (𝐵𝑤 = 5% HE) à 20°C, on constate que l’ajout des sels à des 

concentrations de 5 et 10g/L a tendance à améliorer les propriétés rhéologiques. Pour rappel, le 

RCP Goldex avec 𝐶𝑊 = 76,3% présente les valeurs de 72,4 Pa, 1,70 Pa.s
n
 et 0,95 respectivement 

pour le seuil de cisaillement et l’indice de consistance Herschel-Bulkley (voir Tableau G.1 en 

Annexe G). Ces valeurs sont plus élevées que celles obtenues pour les RCPS à 20°C (voir 

paragraphe précédent). 

En appliquant le modèle de Bingham, on constate également que le seuil de cisaillement 𝜏o et la 

viscosité plastique 𝜂B des mélanges de RCPS augmentent avec l’augmentation de la température 

(voir les Tableaux G.4 et G.5 en Annexe G). En comparant, les deux types de mélanges RCPS 

Goldex (𝐵𝑤 = 5% HE) à 5 et 10 g/L, on constate que les mélanges RCPS Goldex à 5g/L 

présentent des valeurs de seuil de cisaillement (𝜏𝐻𝐵 et 𝜏o) supérieures à celles du RCPS Goldex à 

10 g/L à toutes les températures d’essai. De même pour l’indice de consistance 𝐾 et la viscosité 

plastique 𝜂B, excepté à la température de 2°C.  

4.2.3.3 Effet du type de ciment et de la température  

L’effet du type de ciment peut être illustré en comparant les résultats obtenus avec les ciments 

GU et HE. La Figure 4.28 et la Figure 4.29 illustrent les variations des paramètres de Herschel et 

Bulkley en fonction de la température pour les mélanges de RCPS Goldex (𝐶𝑤 = 76,3%) à un 

dosage en ciment GU et HE de 5% respectivement pour des concentrations en sel de 5 et 10 g/L. 

On note sur ces figures que les valeurs de seuil de cisaillement 𝜏𝐻𝐵, de l’indice de consistance 𝐾 

et de l’indice d’écoulement 𝑛 des mélanges RCPS à un dosage en ciment de 5% HE sont 

supérieures à celles des mélanges RCPS à un dosage en ciment de 5% GU à 2, 10 et 20°C.  Cette 

différence de comportement peut être expliquée par la finesse du ciment HE, et par conséquent 

par sa surface spécifique plus grande comparativement à celle du ciment GU. Pour une 

consistance ou une fluidité équivalente, le matériau à surface spécifique élevée exige une quantité 

importante d’eau qu’un matériau à surface spécifique relativement faible, à cause de la forte 

capacité de rétention de l’eau par les particules à surface spécifique élevée (Fall et al., 2005).  



125 

 

 

Figure 4.28 : Effet du type de ciment sur les propriétés rhéologiques des mélanges RCPS Goldex 

(𝐶𝑤 = 76,3%)  à une concentration en sel de 5 g/L à des températures 2, 10 et 20°C. 

 

Figure 4.29 : Effet du type de ciment sur les propriétés rhéologiques des mélanges RCPS Goldex 

(𝐶𝑤 = 76,3%)  à une concentration en sel de 10 g/L à des températures 2, 10 et 20°C. 

4.2.4 Remblai cimenté en pâte Meliadine 

Cette section présente les résultats d’essais rhéologiques des mélanges de RCP et RCPS 

Meliadine du Tableau B.2 en Annexe B. En premier lieu, l’effet du pourcentage solide et du type 

de ciment a été étudiée sur les mélanges de RCP Meliadine à une température de 20°C. En 

second lieu, il a été question d’examiner l’effet de la température et du type de ciment sur les 
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propriétés rhéologiques des mélanges de RCPS Meliadine à des concentrations en sel de 5, 10 et 

20 g/L et des pourcentages solides 𝐶𝑤 = 75% et 76,3%.  

4.2.4.1 Effet du pourcentage solide et du type de ciment  

La Figure 4.30 présente les rhéogrammes des mélanges de RCP Meliadine à différents 

pourcentages solides 𝐶𝑤 (71%, 73%, 75% et 76,3%) pour des dosages en ciment HE et GU de 5% 

à la température de 20°C. On note que la contrainte de cisaillement augmente avec 

l’augmentation du pourcentage solide 𝐶𝑤 pour un taux de cisaillement donné. De même, on 

constate que les mélanges de RPC au ciment GU présentent des contraintes de cisaillement 

légèrement inférieures à celles des mélanges de RCP au ciment HE tel qu’observé pour le remblai 

utilisant les résidus Goldex. Ce phénomène s’accentue pour des faibles pourcentages solides. Le 

meilleur ajustement de ces courbes d’écoulement a été obtenu avec le modèle de Herschel-

Bulkley (voir Tableaux H.1 et H.2 en Annexe H).  

 

Figure 4.30 : Rhéogrammes des mélanges de RCP Meliadine (𝐵𝑤 = 5%HE et 𝐵𝑤 = 5%GU) à 

différents pourcentages solides 𝐶𝑤 (71%, 73%, 75% et 76,3%). 

De ce fait, la Figure 4.31 présente la variation des propriétés rhéologiques avec le pourcentage 

solide 𝐶𝑤 pour les deux types de mélanges RPC Meliadine (𝐵𝑤 = 5% HE et 𝐵𝑤 = 5% GU). On 

note que le seuil de cisaillement 𝜏𝐻𝐵 et l’indice de consistance 𝐾 de ces deux mélanges 

augmentent avec l’augmentation du pourcentage solide 𝐶𝑤. Pour le RCP Meliadine à 𝐵𝑤 = 5% 

HE, 𝜏𝐻𝐵 passe de 35,5 Pa à 211,7 Pa et 𝐾 passe de 0,86 Pa.s
n
 à 5,07 Pa.s

n
 lorsque 𝐶𝑤 passe de 
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71% à 76,3%. Pour le RCP Meliadine à 𝐵𝑤 = 5%GU, 𝜏𝐻𝐵 passe de 105 Pa à 208 Pa et 𝐾 passe de 

1,39 Pa.s
n
 à 4,95 Pa.s

n
 lorsque 𝐶𝑤 passe de 73% à 76,3%. Par contre, on ne note pas de variation 

importante de leurs indices d’écoulement qui, du reste sont inférieurs à 1. Ce qui dénote un 

comportement rhéofluidifiant des mélanges de RCP Meliadine pour des pourcentages solides 

compris entre 71% et 76,3%, des dosages en ciment HE ou GU de 5% et des taux de cisaillement 

inférieurs  à 100 s
-1

.  

 

Figure 4.31 : Effet de type de ciment  et du pourcentage solide 𝐶𝑤 sur les propriétés rhéologiques 

de RCP Meliadine (𝐵𝑤 = 5%) à la température de 20°C. 

L’effet du type de ciment n’est presque pas perceptible sur le seuil de cisaillement 𝜏𝐻𝐵 et l’indice 

de consistance 𝐾 de ces deux types de mélanges à base des résidus Meliadine, contrairement à 

Goldex. Cette différence de comportent entre les RCP Goldex et Meliadine peut être liée aux 

différences au niveau des caractéristiques physiques (granulométrie plus fine pour Meliadine), 

chimiques et minéralogique. Les résidus Meliadine contiennent par exemple 14,6 % de muscovite 

contre 0,4% pour Goldex. La muscovite est un minéral argileux (phyllosilicate) qui peut affecter 

la consistance et la rhéologie des mélanges. En effet, les mélanges Meliadine étaient plus pâteux 

que les mélanges Goldex pour le même pourcentage solide. Dans le RCP Meliadine, l’apport de 

la finesse du liant HE n’affecte pas les propriétés rhéologiques du RCP contrairement au RCP 

Goldex. 
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4.2.4.2 Effet de la température, de la salinité et du type de ciment à 𝐶𝑤 = 75% 

Cette sous-section présente les résultats d’essais rhéologiques réalisés sur des mélanges de RCPS 

à un pourcentage solide de 75% (qui correspond à un slump de 8,4 cm (3,3 pouces) au PC (soit 7 

pouces au CS) pour le RCP; voir Figure 4.11 et Figure 4.12 et un dosage en ciment GU et HE de 

5%. Il est important de signaler que ces résultats constituent une série complémentaire des 

résultats de l’article présenté à la Conférence Canadienne de Géotechnique GéoQuébec 2015 

(Kalonji et al. 2015). La différence est que ces présents essais ont été réalisés avec la procédure 

pré-cisaillement suivi d’un cisaillement descendant (« pre-shearing and down flow») décrite à la 

Figure 3.9b. Cette série complémentaire d’essais a été réalisée à des concentrations en sel de 10 

et 20 g/L afin d’examiner l’effet de l’augmentation de la concentration en sel sur les propriétés 

rhéologiques du RCPS. 

Les Figure 4.32 et Figure 4.33 présentent  les rhéogrammes à 2, 10, et 20°C des mélanges de 

RCPS Meliadine à des concentrations en sel respectifs de 10 et 20 g/L. Le modèle d’écoulement 

de Herschel-Bulkley a été plus approprié pour décrire le comportement rhéologique des mélanges 

de RCPS Meliadine (𝐶𝑤 = 75%, 𝐵𝑤 = 5% HE et GU), étant donné que ce modèle a pratiquement 

donné des valeurs d’erreurs plus faible que celui de Bingham. Ces valeurs sont reprises dans le 

Tableaux I.1 à I.4 en Annexe I.  

 

Figure 4.32 : Rhéogrammes des mélanges de RCPS (𝐶𝑤 = 75%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 10 g/L) à 2, 10 et 20°C. 



129 

 

Comme on peut le remarquer sur les Figure 4.32 et Figure 4.33, la contrainte cisaillement des 

mélanges de RCPS Meliadine a tendance à augmenter avec la température, pour un taux de 

cisaillement donné. De plus, on peut aussi noter que le mélange de RCPS au ciment GU 

développe des contraintes de cisaillement légèrement inférieures à celles du RCPS au ciment HE 

à toutes les températures d’essai pour des taux de cisaillement identiques. Tous ces mélanges de 

RCPS Meliadine ont démontré un comportement rhéofluidifiant à cause de leurs indices 

d’écoulement inférieurs à 1.  

 

Figure 4.33 : Rhéogrammes des mélanges de RCPS (𝐶𝑤 = 75%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 20 g/L) à 2, 10 et 20°C. 

La Figure 4.34 présente la variation avec la température des propriétés rhéologiques des 

mélanges de RCPS Meliadine (𝐶𝑤 = 75%) à un dosage de ciment HE de 5% et des concentrations 

de sel de 10 et 20 g/L. On peut noter que les seuils de cisaillement, l’indice de consistance et 

l’indice d’écoulement de ces mélanges de RCPS Meliadine ont tendance à augmenter avec 

l’augmentation de la température. En effet, les valeurs de seuil de cisaillement 𝜏𝐻𝐵 du RCPS 

Meliadine à une concentration en sel de 10 g/L sont de 100,3 Pa, 137,8 Pa et 166,6 Pa pour des 

températures respectives de 2, 10, et 20°C et les valeurs de l’indice de consistance 𝐾 de ce 

dernier mélange, elles sont de 2,43 Pa.sn, 2,94 Pa.sn et 3,03 Pa.sn. Les valeurs de seuil de 

cisaillement 𝜏𝐻𝐵 du RCPS Meliadine à une concentration en sel de 20 g/L sont de 102,1 Pa, 135,8 

Pa et 140,6 Pa pour des températures respectives de 2, 10, et 20°C. Quant aux valeurs de l’indice 

de consistance 𝐾 de ce dernier mélange, elles sont de 2,55 Pa.sn, 2,72 Pa.sn et 3,01 Pa.sn. En 

observant les valeurs des propriétés rhéologiques de ces deux types de mélanges de RCPS, on 
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note que le RCPS Meliadine à un dosage de ciment HE de 5% et une concentration en sel de 10 

g/L présente des valeurs de seuil de cisaillement 𝜏𝐻𝐵 et d’indice de consistance 𝐾 supérieures à 

celles du RCPS Meliadine à un dosage de ciment HE de 5% et une concentration en sel de 20 g/L 

à 10 et 20°C. Par contre, à 2°C, le RCPS Meliadine à un dosage de ciment HE de 5% et une 

concentration en sel de 20 g/L présente une valeur de seuil de cisaillement 𝜏𝐻𝐵 légèrement 

supérieure à celle du RCPS Meliadine à un dosage de ciment HE de 5% et une concentration en 

sel de 10 g/L.   

 

Figure 4.34 : Variation des propriétés rhéologiques de RCPS Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% 

HE, concentration en sel de 10 et 20 g/L) avec la température. 

En considérant les mélanges RCP et RCPS Meliadine à 20°C à un dosage en ciment HE de 5%, il 

s’avère que l’ajout de sel à une concentration de 20 g/L améliore les propriétés rhéologiques des 

mélanges (diminution du seuil de cisaillement et de l’indice de consistance). Par contre un 

comportement contrasté est observé pour un ajout de sel à une concentration de 10 g/L dans les 

mélanges de remblai en pâte Meliadine à 20°C. Cette dernière concentration en sel entraîne une 

légère augmentation du seuil de cisaillement 𝜏𝐻𝐵 et une diminution de l’indice de consistance 𝐾 

du RCPS Meliadine à un dosage en ciment HE de 5% par rapport au RPC (𝐶𝑤 = 75% et 𝐵𝑤 = 5% 

HE). De même en considérant les modèles de Bingham et de Sisko dont les valeurs de différents 

paramètres sont reprises dans le Tableau H.2 en Annexe H (RCP Meliadine à une concentration 

en sel de 0 g/L, 𝐶𝑤 = 75% et 𝐵𝑤 = 5% HE), le Tableau I.1 en Annexe I (RCPS Meliadine à une 

concentration en sel de 10 g/L) et le Tableau I.2 en Annexe I (RCPS Meliadine à une 

concentration en sel de 20 g/L), on note que les valeurs de la viscosité plastique 𝜂B et de la 
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viscosité à l’infini 𝜂∞ des mélanges de RCPS Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% HE) sont 

inférieures à celle du RCP Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% HE).  

Alors que le seuil de cisaillement de Bingham 𝜏o et l’indice de consistance de Sisko 𝐾𝑆 du 

mélange de RCPS Meliadine (𝐵𝑤 = 5% HE) à une concentration en sel de 10 g/L sont légèrement 

supérieurs à ceux du RPC à la température de 20°C. Les valeurs de 𝜏o du RCPS (𝐵𝑤 = 5% HE) à 

une concentration en sel de 10 g/L sont de 102,2 Pa, 139,5 Pa et 167,7 Pa pour des températures 

respectives de 2, 10 et 20°C. Les valeurs de 𝐾𝑆 du RCPS (𝐵𝑤 = 5% HE) à une concentration en 

sel de 10 g/L sont de 100,9 Pa.s
n
, 138,7 Pa.s

n
 et 167,4 Pa.s

n
 pour des températures respectives de 

2, 10 et 20°C.Comparativement aux valeurs de 𝜏o et 𝐾𝑆 du RPC (𝐵𝑤=5% HE) à la température de 

20°C, qui sont respectivement de 153 Pa et 151,6 Pa.s
n
, Pour sa part le RCPS Meliadine (𝐵𝑤 = 

5% HE) à une concentration en sel de 20 g/L présente des valeurs de seuil de cisaillement de 

Bingham 𝜏o et l’indice de consistance de Sisko 𝐾𝑆 inférieures à celle de RPC. Les valeurs de 𝜏o 

du RCPS (𝐵𝑤 = 5% HE) à une concentration en sel de 20 g/L sont de 103,1 Pa, 136,8 Pa et 141 

Pa pour des températures respectives de 2, 10 et 20°C. Les valeurs de 𝐾𝑆 du RCPS (𝐵𝑤 = 5% HE) 

à une concentration en sel de 10 g/L sont de 102,5 Pa.s
n
, 136 Pa.s

n
 et 140,9 Pa.s

n
 pour des 

températures respectives de 2, 10 et 20°C. 

Bien que le mélange RCPS Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% HE) à une concentration en sel de 

10 g/L présente un seuil de cisaillement élevé, il présente des valeurs de viscosité plastique 𝜂B et 

de la viscosité à l’infini 𝜂∞ inférieures à celles du RCP et RCPS Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% 

HE) à une concentration en sel de 20 g/L.  

L’effet de la température et de la salinité sur les mélanges de RCPS Meliadine à 𝐶𝑤 = 75 % et un 

dosage en ciment GU de 5% est illustré par la Figure 4.35. On note une augmentation du seuil de 

cisaillement 𝜏𝐻𝐵 et de l’indice de consistance 𝐾 à des concentrations de 10 et 20 g/L avec 

l’augmentation de la température. Par ailleurs, le mélange de  RCPS Meliadine (𝐵𝑤 = 5% GU) à 

une concentration de 20 g/L présente une valeur de l’indice de consistance plus élevée à 10°C. En 

considérant les valeurs de la viscosité plastique 𝜂B et de la viscosité à l’infini 𝜂∞ des mélanges de 

RCPS Meliadine à un dosage en ciment de 5%GU et des concentrations en sel de 10 et 20 g/L, de 

faibles écarts entre ces valeurs sont observées pour une température donnée (voir Tableaux I.3 et 

I.4 en Annexe I). 
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Figure 4.35 : Variation des propriétés rhéologiques de RCPS Meliadine (𝐶𝑤 = 75% et 𝐵𝑤 = 5% 

GU, concentration en sel de 10 et 20 g/L) avec  la température. 

 

Figure 4.36 : Variation des propriétés rhéologiques du RCPS (𝐶𝑤 = 75%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 10 g/L) avec la température 

La Figure 4.36 et la Figure 4.37 présentent l’effet du type de ciment et de la température sur les 

propriétés rhéologiques des RCPS Meliadine à des concentrations en sel respectifs de 10 et 20 

g/L. On peut noter que les RCPS Meliadine au ciment HE présentent des valeurs de seuil de 

cisaillement (𝜏𝐻𝐵, 𝜏o)  et de l’indice de la consistance de Sisko 𝐾𝑆 supérieurs à celles des RCPS 

Meliadine au ciment GU à toutes les températures d’essai. Cela est probablement lié à la surface 
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spécifique du ciment HE, qui est plus élevée que celle du ciment GU. Par ailleurs, on note de 

faibles écarts entre les  valeurs de l’indice de consistance 𝐾, de la viscosité plastique 𝜂B et de la 

viscosité à l’infini 𝜂∞ des RCPS Meliadine aux ciments GU et HE pour une concentration en sel 

fixe et une température donnée.  

 

Figure 4.37 : Variation des propriétés rhéologiques du RCPS (𝐶𝑤 = 75%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 20 g/L) avec la température. 

4.2.4.3 Effet de la température, de la salinité et du type de ciment à 𝐶𝑤 = 76,3% 

Cette sous-section présente les résultats d’essais rhéologiques réalisés sur des mélanges de RCPS 

à un pourcentage solide de 76,3% (qui correspond à un slump de 17,8 cm (7 pouces) pour le RP; 

voir Figure 4.5) et un dosage en ciment GU et HE de 5%. Les Figure 4.38 et Figure 4.39 

présentent les rhéogrammes des mélanges de RCPS Meliadine à des concentrations en sel 

respectives de 5 et 10 g/L pour des températures de 2, 10 et 20°C. On peut noter que la contrainte 

de cisaillement a tendance à diminuer avec la diminution de la température des mélanges de 

RCPS Meliadine,  pour un taux de cisaillement donné. Se basant sur les valeurs d’erreurs reprises 

dans les Tableaux J.1, J.2, J.3 et J.4 en Annexe J, le modèle de Herschel-Bulkley s’est avéré plus 

approprié pour décrire le comportement rhéologique de ces mélanges comparativement au 

modèle de Bingham. On note également que les mélanges de RCPS à dosage en ciment HE de 

5% développent des contraintes de cisaillement légèrement supérieures à celles des mélanges de 

RCPS à dosage en ciment GU de 5%. Cette observation avait aussi été faite pour les RCPS 

Goldex (voir Figure 4.22). 
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Figure 4.38 : Rhéogrammes des mélanges de RCPS (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 5 g/L) à 2, 10 et 20°C. 

 

Figure 4.39 : Rhéogrammes des mélanges de RCPS (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 5 et 10 g/L) à 2, 10 et 20°C. 

Les Figure 4.40 et Figure 4.41 présentent la variation avec la température des propriétés 

rhéologiques des mélanges de RCPS respectivement à dosages en ciment HE et GU de 5%. On 

peut noter que le seuil de cisaillement 𝜏𝐻𝐵 et l’indice de consistance 𝐾 de ces différents mélanges 

de RCPS Meliadine augmentent avec l’augmentation de la température. En effet, les valeurs du 

seuil de cisaillement 𝜏𝐻𝐵 du RCPS Meliadine (𝐶𝑤 = 76,3% et 𝐵𝑤= 5% HE) à une concentration en 
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sel de 5 g/L sont de 124,8 Pa, 160,2 Pa et 228,3 Pa pour des températures respectives de 2, 10 et 

20°C. Ces mélanges présentent des valeurs d’indice de consistance 𝐾 de 3,49 Pa.sn, 3,81 Pa.sn, et 

4,05 Pa.sn pour des températures respectives de 2, 10 et 20°C.  

 

Figure 4.40 : Variation des propriétés rhéologiques de RCPS Meliadine (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% 

HE, concentration en sel de 5 et 10 g/L) avec  la température. 

 

Figure 4.41 : Variation des propriétés rhéologiques de RCPS Meliadine (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% 

GU, concentration en sel de 5 et 10 g/L) avec la température. 

Pour le RCPS Meliadine (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% HE) à une concentration en sel de 10 g/L,  les 

valeurs du seuil de cisaillement 𝜏𝐻𝐵 sont de 121,7 Pa, 149,9 Pa et 220,3 Pa et les valeurs d’indice 

de consistance sont de 3,44 Pa.sn, 3,59 Pa.sn, et 3,86 Pa.sn pour des températures respectives de 
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2, 10 et 20°C. L’indice d’écoulement 𝑛 de ces mélanges ne varie presque pas avec la température. 

De plus, on notera que tous ces mélanges ont exhibé un comportement rhéofluidifiant à toutes les 

températures d’essai, car leurs valeurs d’indice d’écoulement 𝑛 sont restées inférieures à 1. 

En comparant ces mélanges (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% HE) contenant 5 et 10 g/L de sel, on 

constate que les valeurs des propriétés rhéologiques du RCPS Meliadine à une concentration en 

sel de 5 g/L sont élevées que celle du RCPS Meliadine à une concentration en sel de 10 g/L. 

Cependant, en comparant les valeurs des propriétés rhéologiques du RPC (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% 

HE et une concentration en sel de 0 g/L) et celles de RCPS  Meliadine (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE 

et une concentration en sel de 5 et 10 g/L) à 20°C, on note que les RCPS présentent des seuils de 

cisaillement 𝜏𝐻𝐵 légèrement supérieures à celle du RPC. Par contre, le RPC (𝐶𝑤 = 76,3%, 𝐵𝑤 = 

5% HE) présente une valeur de consistance supérieure aux valeurs d’indices de consistance 𝐾 de 

RCPS Meliadine (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE et une concentration en sel de 5 et 10 g/L) à la 

température de 20°C. De la même façon que les mélanges de RCPS au ciment HE, les mélanges 

de RCPS au ciment GU présentent des comportements similaires (Figure 4.41). Néanmoins, il 

faut noter que le RCPS au ciment GU (𝐶𝑤= 76,3%, 𝐵𝑤 = 5% GU)  à une concentration en sel de 5 

g/L présente une valeur d’indice de consistance 𝐾 légèrement supérieure à celle de RPC (𝐶𝑤 = 

76,3%, 𝐵𝑤 = 5% GU) à 20°C. Mais en comparant leurs indices d’écoulement, on peut remarquer 

que le RCPS au ciment GU (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% GU)  à une concentration en sel de 5 g/L a un 

indice d’écoulement relativement faible que celui du RPC (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% GU).  En 

utilisant le modèle de Bingham, on observe que la viscosité plastique 𝜂B du mélange RPC au 

ciment GU (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% GU) est supérieure à celle du RCPS au ciment GU (𝐶𝑤 = 

76,3%, 𝐵𝑤 = 5% GU) à 20°C.  

L’effet du type de ciment a été examiné sur les mélanges de RCPS à un pourcentage solide de 

76,3% (Figure 4.42 et Figure 4.43). La Figure 4.42 et la Figure 4.43 présentent l’effet du type de 

ciment à différentes températures sur les propriétés rhéologiques des mélanges de RCPS à des 

concentrations en sel respectifs de 5 g/L et 10 g/L. Globalement, on peut noter que les mélanges 

de RCPS (𝐶𝑤 = 76,3% et 𝐵𝑤 =5%) au ciment HE présentent des seuils de cisaillement 𝜏𝐻𝐵 et 𝜏o, 

supérieures à celles des mélanges RCPS (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% GU) à 2, 10 et 20°C. Par contre 

les RCPS (𝐶𝑤 = 76,3% et 𝐵𝑤 =5%) au ciment HE présentent des valeurs d’indice de consistance 
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𝐾, d’indice d’écoulement 𝑛, de viscosité plastique 𝜂B et de viscosité à l’infini 𝜂∞ similaires à 

celles du RCPS (𝐶𝑤 = 76,3% et 𝐵𝑤 = 5% GU) à 2, 10 et 20°C.  

 

Figure 4.42 : Variation des propriétés rhéologiques du RCPS (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 5 g/L) avec la température. 

 

Figure 4.43 : Variation des propriétés rhéologiques du RCPS (𝐶𝑤 = 76,3%, 𝐵𝑤 = 5% HE et GU, 

concentration en sel de 10 g/L) avec la température. 

4.3 Caractérisations thermiques  

Cette section présente les résultats de la caractérisation thermique de résidu en pâte et de remblai 

cimenté en pâte Goldex et Meliadine. L’objectif de ces essais est d’examiner l’effet de la 

température sur les propriétés thermiques des mélanges. Les mélanges de RP et RCP Goldex ont 
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été préparés à un pourcentage solide 𝐶𝑤 de 75%. Les dosages en ciment GU de 3% et 5% ont été 

utilisés pour leur préparation. Quant aux mélanges de RP et RCP Meliadine, ils ont été préparés à 

un pourcentage solide 𝐶𝑤 de 76,3%. Un dosage en ciment HE de 5% a été utilisé pour la 

préparation du RCP Meliadine. Beya et al. (2015) ont montré qu’une concentration en sel de 

l’eau de préparation du remblai en pâte jusqu’à 10 g/L n’affectait pas les propriétés thermiques 

des mélanges de RCPS Meliadine. Raison pour laquelle, l’effet de la salinité sur les propriétés 

thermiques des mélanges de RPS et RCPS n’a pas été étudié. 

4.3.1 Résidu en pâte et remblai cimenté en pâte Goldex 

Le Tableau 4.1 reprend les mesures des propriétés thermiques (conductivité λ, résistivité Ω, 

capacité volumique 𝐶𝑡 et diffusivité  thermiques) effectuées à 5 et 22,5°C sur les mélanges de 

RP et RCP Goldex.  

Tableau 4.1 : Valeurs des propriétés thermiques de RP et RCP Goldex (𝐶𝑤 = 75%) à 5 et 22,5°C 

𝐵𝑤 (%) 
λ (W/(m·K)) Ω (°C·cm/W) 𝐶𝑡 (MJ/(m³·K))  (mm²/s) 

5°C 22,5°C 5°C 22,5°C 5°C 22,5°C 5°C 22,5°C 

0 1,69 1,56 59,4 64,3 2,91 2,93 0,58 0,53 

3 1,46 1,44 68,7 69,4 2,84 3,05 0,52 0,47 

5 1,45 1,44 68,9 69,4 2,81 3,02 0,52 0,48 

La Figure 4.44 présente les différentes valeurs de la conductivité thermique et de la capacité 

thermique de RP et RCP Goldex à 5 et 22,5°C. Compte tenu de la précision des mesures qui est 

qui est de 10% pour tous les paramètres du tableau ci-dessus, l’on peut admettre que les valeurs 

de la conductivité thermique et de la diffusivité thermique du RP et RCP frais à 5°C et à 22,5°C 

sont presque identiques. Cela est aussi valable pour la capacité et la résistivité thermiques. De 

plus, on peut noter que l’ajout du ciment GU dans les dosages de 3 à 5% dans les mélanges 

Goldex entraine une diminution de la conductivité et de la diffusivité thermiques par rapport au 

RP (sans liant).  

Quant à la capacité et à la résistivité thermiques, le RCP Goldex présente des valeurs de ces 

dernières inférieures à celle du RP Goldex à 5°C. À 22°C, on observe que le RCP Goldex 

présente des valeurs de la capacité et de la résistivité thermiques légèrement supérieures à celles 

du RP Goldex. Certes, l’ajout du ciment GU dans les mélanges affecte les propriétés thermiques, 

mais l’effet du dosage en ciment dans la fourchette de dosage (de 3 - 5%) n’a pas été perçu. En 
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effet, les mélanges de RCP Goldex à 3 et 5% de dosage en ciment GU présentent des valeurs de 

propriétés thermiques très proches. 

 

Figure 4.44 : Variation de la conductivité et de la capacité thermiques de RP et RCP Goldex avec 

la température. 

4.3.2 Résidu en pâte et du remblai cimenté en pâte Meliadine 

Le Tableau 4.2 présente les valeurs de propriétés thermiques mesurées à 2, 22, 30 et 40°C sur les 

mélanges de 𝐶𝑤 = 76,3% de RP et RCP Meliadine. Rappelons que les mélanges de RCP 

Meliadine ont été effectués à un dosage en ciment HE de 5%.  

Tableau 4.2 : Valeurs des propriétés thermiques des mélanges RP et RCP Meliadine (𝐶𝑤=76,3%; 

𝐵𝑤 = 5% HE) à 2, 22, 30 et 40°C 

 

RP RCP_5%HE 

 

2°C 22°C 30°C 40°C 2°C 22°C 30°C 40°C 

λ (W/m.K) 1,69 1,68 1,74 1,7 1,7 1,68 1,74 1,56 

Ω (°C.cm/W) 59,2 59,6 57,6 59 59,2 59,4 57,6 64,1 

𝐶𝑡 (MJ/m³.K) 3,28 2,58 2,81 3,21 3,3 2,59 2,81 3,08 

 (mm²/s) 0,52 0,65 0,62 0,53 0,52 0,65 0,62 0,51 

Comme on peut bien l’observer sur la Figure 4.45, qui présente les valeurs de la conductivité et 

de la capacité thermique volumique de RP et RCP Meliadine, la conductivité thermique du RP 

ainsi que celle du RCP ne varie presque pas avec la variation de la température. Néanmoins, il 

faut noter que la RCP présente une conductivité thermique légèrement inférieure à celle du RP à 
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40°C. Mais si l’on doit tenir compte de la précision de l’appareil de mesure, les valeurs de 

conductivité thermique du RCP est presqu’égale à celle du RP. 

 

Figure 4.45 : Variation de la conductivité et de la capacité thermiques de RP et RCP Meliadine 

avec la température 

Par contre, les valeurs de la capacité thermique de ces deux mélanges (RP et RCP Meliadine) 

fluctuent avec la variation de la température. Comparativement aux valeurs de capacités 

thermiques de RP et le RCP obtenues à 22°C, celles obtenues à 2, 30 et 40°C sont élevées. Cela 

peut être expliqué par la variation de la capacité thermique massique ou volumique de l’eau. 

Cette dernière a tendance à diminuer dans la plage de 20 à 30°C, avant de pouvoir remonter à des 

températures supérieures à 30°C (Ahammed et al., 2015). Dans l’ensemble, on peut noter que 

l’effet d’ajout du ciment HE à un dosage de 5% dans les mélanges sur les propriétés thermiques 

du RCP Meliadine n’a pas été observé à toutes les températures de mesure.  

4.4 Essais de mini écoulement en boucle (mini flow loop Tests)  

Cette section présente les résultats des essais de mini écoulement en boucle de l’eau, des résidus 

en pâte Goldex (𝐶𝑤 = 74%) et Meliadine (𝐶𝑤 = 71%) et du remblai cimenté en pâte Meliadine 

(𝐶𝑤 =71% et 𝐵𝑤 = 5%HE). L’objectif principal de ces essais était d’étudier la variation de la 

température de ces matériaux en écoulement dans le circuit de l’essai de mini écoulement, et 

d’évaluer les pertes de charge. Les différents matériaux ont été pompés dans le circuit durant 60 

minutes. Les différentes valeurs ont été prises à 5, 10, 15, 20, 30, 45 et 60 minutes.  
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4.4.1 Eau 

La Figure 4.46 montre l’évolution des différentes températures mesurée (à l’extérieur 𝑇𝑎𝑖𝑟, fluide 

𝑇𝑓𝑒 et paroi du tube 𝑇𝑝𝑒 à l’entrée du circuit, fluide 𝑇𝑓𝑠 et paroi de la conduite 𝑇𝑝𝑠 à la sortie du 

circuit et des pertes de charges 𝛥𝑝) lors de l’essai de pompage en boucle (durant 60 min) de l’eau 

dans le circuit. Les valeurs de 𝑇𝑓𝑒 sont de 9,7°C, 9,7°C, 9,9°C, 9,9°C, 10,4°C, 10,7°C et 10,2°C 

pour les cycles respectifs à 5, 10, 15, 20, 30, 45 et 60 minutes. Les valeurs de 𝑇𝑓𝑠 sont de 9,67°C, 

9,4°C, 9,7°C, 9,9°C, 10,1°C, 10,7°C et 10,2°C pour les cycles respectifs à 5, 10, 15, 20, 30, 45 et 

60 minutes. Les valeurs de 𝑇𝑝𝑒 sont de 5,8°C, 7°C, 6,9°C, 5,9°C, 5,4°C, 8,1°C, 7,5°C et 8,5°C 

pour les cycles respectifs à 0, 5, 10, 15, 20, 30, 45 et 60 minutes. Les valeurs de 𝑇𝑝𝑠 sont de 

5,4°C, 7,6°C, 7,6°C, 6,8°C, 6,1°C, 8°C, 8,2°C et 8,4°C pour les cycles respectifs à 0, 5, 10, 15, 

20, 30, 45 et 60 minutes. Les valeurs de la température à l’extérieur 𝑇𝑎𝑖𝑟 sont de 3, 2, 2, 2, 3, 3 et 

2°C pour les cycles respectifs à 0, 5, 10, 15, 20, 30, 45 et 60 minutes.  

On peut noter que la température de l’eau en écoulement dans le circuit reste influencée par la 

température à l’extérieur 𝑇𝑎𝑖𝑟 avec le temps de recirculation. Par ailleurs, pour un cycle de 

circulation de l’eau dans le circuit du mini-loop test, aucune variation notable de la température 

de l’eau 𝛥𝑇𝑓 (= 𝑇𝑓𝑠 - 𝑇𝑓𝑒) n’a été observée entre l’entrée et la sortie pour chaque cycle 

d’écoulement (voir la Figure 4.46 et les données reprises dans le Tableau K.1 de l’Annexe K). De 

plus, on note que le nombre Brinkman 𝐵𝑟 calculé selon l’équation (2-96) est négatif, bien que 

très faible (𝐵𝑟 varie entre -0,001 et -0,002). Cela dénote que la chaleur liée au frottement interne 

(entre l’eau et la paroi) et à la dissipation visqueuse (dans les couches d’eau) est très faible, et un 

refroidissement de l’eau en écoulement dans le circuit vu que la température de la paroi 𝑇𝑝𝑒 ou 

𝑇𝑝𝑠 demeure inférieure à celle de l’eau 𝑇𝑓𝑒 ou 𝑇𝑓𝑠 en circulation dans le circuit. Ce phénomène 

peut être expliqué par la faible viscosité de l’eau (1,30710
-3

 Pa.s à 10°C) (Korson et al., 1969), 

mais aussi par la distance (24,5 m) entre nos deux points de mesure.  

La Figure 4.47 compare l’évolution de la vitesse d’écoulement 𝑈 de l’eau et des pertes de charge 

durant l’essai. On remarque que la vitesse de l’eau fluctue entre 1,33 et 1,37 m/s dans les dix 

premières minutes de l’essai d’écoulement avant de stabiliser autour de 1,39 m/s. En réponse à 

cela, les pertes de charge 𝛥𝑝/L augmentent avec l’accroissement de la vitesse dans le temps et un 

régime stable avec 𝛥𝑝/L  0,60 kPa/m.  
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Figure 4.46 : Variation de la température (eau, paroi, air) et de la perte de charge avec le temps 

d’écoulement. 

 

Figure 4.47 : Variation de la vitesse d’écoulement 𝑈 et de la perte de charge 𝛥𝑝/L avec le temps 

d’écoulement. 

4.4.2 Résidus en pâte Goldex et Meliadine  

4.4.2.1 Résidu en pâte Goldex 

Le RP Goldex utilisé est un mélange à 𝐶𝑤 = 74% (voir rhéogramme à la Figure 4.13), ayant un 

seuil de cisaillement de Bingham de 33,8 Pa et une viscosité plastique de 0,509 Pas (voir Tableau 

F.1 en Annexe F). Les Figure 4.48, Figure 4.49 et Figure 4.50 reprennent les données obtenues 

lors de l’essai d’écoulement en boucle de la pâte de résidu Goldex. Lors de cet essai qui a duré 60 

minutes, la température de l’air a varié de 4°C à -1°C. On peut remarquer sur la Figure 4.48 que 

les températures du RP Goldex 𝑇𝑓𝑒 (entrée du circuit) ou 𝑇𝑓𝑠 (sortie du circuit) augmentent avec 
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le temps d’écoulement dans le circuit d’essai en boucle, malgré de faibles valeurs de la 

température externe ou de l’air 𝑇𝑎𝑖𝑟 (moyenne de 2°C). La température du RP Goldex passe de 

17,6°C à 29,5°C durant 60 minutes de pompage du RP dans le circuit. Cette augmentation de la 

température est due la chaleur liée à la friction et à la dissipation visqueuse, vu que la viscosité du 

RP Goldex est importante comparativement à celle de l’eau (résultats présentés ci-dessus). De 

même, les températures à la paroi 𝑇𝑝𝑒 (entrée du circuit) ou 𝑇𝑝𝑠 (sortie du circuit) augmentent, 

mais demeurent inférieures à celles du RP Goldex 𝑇𝑓𝑒 (entrée du circuit) ou 𝑇𝑓𝑠 (sortie du circuit). 

Ainsi, on peut observer que le nombre de Brinkman 𝐵𝑟 demeure négatif durant tout l’essai 

(Figure 4.49 et le Tableau K.2 en Annexe K). Cela dénote un refroidissement du système par l’air 

frais. La différence de température entre le RP Goldex en écoulement et le milieu extérieur induit 

donc une diffusion de la chaleur du RP Goldex en écoulement dans le circuit vers la paroi du 

pipeline. Pour un cycle à un temps donné, la différence de la température 𝛥𝑇𝑓 du RP Goldex entre 

l’entrée et la sortie n’est pas très perceptible (Figure 4.48 et le Tableau K.2 en Annexe K). 

L’augmentation de la température 𝑇𝑓 du RP Goldex s’accompagne d’une diminution des pertes 

de charge linéaires 𝛥𝑝 en fonction du temps d’écoulement. On peut noter que 𝛥𝑝/L passe de 27,4 

à 25,1 kPa/m.  

 

Figure 4.48 : Variation de la température (pâte de résidu Goldex, paroi, air) et de la perte de 

charge 𝛥𝑝/𝐿 avec le temps d’écoulement 
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Figure 4.49 : Valeurs des nombres de Brinkman 𝐵𝑟 de l’écoulement du RP Goldex (𝐶𝑤 = 74%) 

dans le circuit du mini essai d’écoulement en boucle. 

Comme on peut le constater sur la Figure 4.50, la vitesse d’écoulement de la pâte de résidu 

fluctue entre 1,37 et 1,41 m/s dans les 15 premières minutes avant de se stabiliser autour de 1,41 

m/s. Malgré la stabilité de la vitesse d’écoulement de la pâte de résidu dans le temps, on note une 

diminution de la perte de charge linéaire. Ainsi, cette diminution de la perte de charge linéaire 

peut être attribuée au cisaillement et à l’augmentation de la température du RP Goldex. Ces 

facteurs entraînent généralement une diminution des propriétés rhéologiques des mélanges  sans 

liant hydraulique. En effet, la consistance de résidus en pâte sans liant diminue (voir section 

4.1.1) et le seuil d’écoulement et la viscosité diminuent (voir section 4.2.2.2) lorsque la 

température augmente. 

 

Figure 4.50 : Variation de la vitesse d’écoulement 𝑈 et de la perte de charge linéaire 𝛥𝑝/𝐿 du RP 

Goldex (𝐶𝑤= 74%) avec le temps d’écoulement dans le circuit du mini-loop test. 
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4.4.2.2 Résidu en pâte Meliadine 

Le mélange RP Meliadine utilisé est un mélange à 𝐶𝑤 = 71% (voir rhéogramme à la Figure 4.16), 

ayant un seuil de cisaillement de Bingham de 30,2 Pa et une viscosité plastique de 0,633 Pas 

(voir Tableau F.2 en Annexe F). Les Figure 4.51, Figure 4.52 et Figure 4.53 présentent les 

résultats de l’essai d’écoulement en boucle du résidu en pâte RP Meliadine. On peut noter que la 

température 𝑇𝑓 du RP Meliadine augmente avec le temps de cisaillement. À l’entrée, 𝑇𝑓𝑒 du RP 

Meliadine passe de 22,5 à 39,8°C durant 60 minutes de recirculation dans le circuit du loop test. 

La température du RP Meliadine à la sortie 𝑇𝑓𝑠 varie de 22,8 à 40,3°C. De même, la température 

pariétale 𝑇𝑝 du pipeline augmente avec celle du RP Meliadine en écoulement dans le pipeline, 

malgré les faibles températures du milieu environnant 𝑇𝑎𝑖𝑟 (comprises entre 6°C et 12°C). À 

l’entrée, 𝑇𝑝𝑒 varie de 15,8°C à 35,4°C durant les 60 minutes d’essai. À la sortie, 𝑇𝑝𝑠 varie de 

14,8°C à 33,1°C. Les températures pariétales 𝑇𝑝𝑒 (entrée du circuit) ou 𝑇𝑝𝑠 (sortie du circuit) 

restent inférieures à celles du RP Meliadine à l’entrée 𝑇𝑓𝑒 et à la sortie du circuit 𝑇𝑓𝑠 durant tout 

l’essai d’écoulement du RP Meliadine. Ainsi, on peut observer sur la Figure 4.52 que le nombre 

de Brinkman 𝐵𝑟 demeure négatif durant tout l’essai (voir la Figure 4.52 et le Tableau K.3 en 

Annexe K). Cela dénote un refroidissement du système par la circulation de l’air frais. La 

diffusion de la chaleur générée par dissipation visqueuse et frottement interne se fait du RP 

Meliadine en circulation vers la paroi.  

 

Figure 4.51 : Variation de la température (résidu en pâte RP Meliadine, paroi, air) et de la perte 

de charge 𝛥𝑝/L avec le temps d’écoulement. 
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Par ailleurs, la perte de charge linéaire 𝛥𝑝/L décroît (de 30,7 kPa/m à 27,3 kPa/m) au fil avec du 

temps de recirculation et suite à l’augmentation de la température du résidu en pâte RP 

Meliadine, bien que la vitesse d’écoulement 𝑈 soit restée presque constante au bout de 10 

minutes (Figure 4.53).  Cela s’explique par les même raisons données pour le RP Goldex. 

  

Figure 4.52 : Valeurs des nombres de Brinkman 𝐵𝑟 de l’écoulement du RP Meliadine (𝐶𝑤 = 

71%) dans le circuit du mini essai d’écoulement en boucle 

 

Figure 4.53 : Variation de la vitesse d’écoulement 𝑈 et de la perte de charge linéaire 𝛥𝑝/L du RP 

Meliadine (𝐶𝑤 = 71%) avec le temps d’écoulement dans le circuit du mini loop test. 

4.4.3 Remblai cimenté en pâte Meliadine  

Le mélange RCP Meliadine utilisé est un mélange à 𝐶𝑤 = 71% et 𝐵𝑤 = 5% HE (voir rhéogramme 

à la Figure 4.30), ayant un seuil de cisaillement de Bingham de 36,4 Pa et une viscosité plastique 

de 0,744 Pas (voir Tableau H.2 en Annexe H). Les Figure 4.54, 4.55 et 4.56 présentent les 
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données obtenues au cours de l’essai d’écoulement en boucle du remblai cimenté en pâte 

Meliadine. En examinant la Figure 4.54, on peut noter que la température du RCP Meliadine 𝑇𝑓 

augmente simultanément avec celle de la paroi 𝑇𝑝 durant l’essai d’écoulement en boucle, bien 

que la température ambiante 𝑇𝑎𝑖𝑟 (qui diminue de 15°C et 12°C) demeure inférieure à celle de la 

paroi. En effet, la température du RCP Meliadine 𝑇𝑓 passe de 26,7°C à 38°C (à l’entrée) au bout 

de 60 minutes de recirculation du RCP Meliadine dans le circuit du mini essai d’écoulement en 

boucle. À la sortie, le RCP Meliadine varie de 22,9°C à 39,3°C. Les températures pariétales 𝑇𝑝𝑒 

(entrée du circuit) ou 𝑇𝑝𝑠 (sortie du circuit) sont restées inférieures à celles du RCP Meliadine à 

l’entrée 𝑇𝑓𝑒 et à la sortie du circuit 𝑇𝑓𝑠 durant tout l’essai d’écoulement du RCP Meliadine. À 

l’entrée, 𝑇𝑝𝑒 varie de 20,6 à 32,8°C. À la sortie, 𝑇𝑝𝑠 varie de 20,1 à 30,6°C (voir Tableau K.4 en 

Annexe K). On peut observer sur la Figure 4.55 que le nombre de Brinkman 𝐵𝑟 est resté négatif 

durant tout l’essai, ce qui indique que le système est refroidi par l’air ambiant. Le RCP Meliadine 

en écoulement diffuse la chaleur générée par frottement interne et dissipation visqueuse à travers 

la paroi, et échange ainsi la chaleur avec le milieu extérieur.  

 

Figure 4.54 : Variation de la température (remblai cimenté en pâte Meliadine, paroi, air) et de la 

perte de charge 𝛥𝑝/𝐿 avec le temps d’écoulement dans le circuit du loop test. 

Quant à la vitesse d’écoulement 𝑈, elle est restée presque constante au cours de l’essai autour de 

1,3 m/s. On peut noter aussi que la perte de charge linéaire 𝛥𝑝/L est restée presque constante 

(autour de 29 kPa/m) dans les 20 premières minutes, avant d’augmenter et d’atteindre 35 kPa/m à 

60
e
 minute. On peut remarquer une tendance à l’augmentation de la perte de charge linéaire 𝛥𝑝/L 

avec le temps de cisaillement et l’augmentation de la température du RCP Meliadine. Cette 
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augmentation de la perte de charge 𝛥𝑝/L est probablement due à l’augmentation des propriétés 

rhéologiques avec l’accroissement de la température. Ces dernières ont tendance à augmenter 

avec l’augmentation de la température pour des mélanges avec liant hydraulique (voir les sections 

4.1.3, 4.2.4.2 et 4.2.4.3). 

 

Figure 4.55 : Valeurs des nombres de Brinkman 𝐵𝑟 de l’écoulement du RCP Meliadine (𝐶𝑤 = 

71% et 𝐵𝑤 = 5%HE) dans le circuit du mini-essai d’écoulement en boucle. 

 

Figure 4.56 : Variation de la vitesse d’écoulement et de la perte de charge du RCP Meliadine (𝐶𝑤 

= 71% et 𝐵𝑤 = 5%HE) avec le temps d’écoulement dans le circuit du mini-essai d’écoulement en 

boucle. 
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4.5 Calibrage du modèle numérique des essais de  mini écoulement 

en boucle 

Les données expérimentales des essais de mini écoulement en boucle ont été utilisées pour 

calibrer le modèle numérique pouvant coupler tous les phénomènes physiques observés lors de la 

phase expérimentale avec le logiciel Comsol Multiphysics 5.2 tel que décrit dans l’équation 

(2-80). Le modèle calibré pourra être utilisé dans la suite pour simuler le transport du remblai 

cimenté en pâte dans un réseau de distribution réel en tenant compte l’échange de chaleur avec le 

milieu externe et de la dissipation interne, afin de prédire la température de déposition. Le 

calibrage été fait avec le module «Non-isothermal pipe flow». Le Tableau 4.3 reprend les 

paramètres d’entrée des différentes simulations numériques d’essais de mini écoulement en 

boucle. Les paramètres rhéologiques sont respectivement pris des résultats obtenus à la section 

4.2. Il a été techniquement impossible d’acquérir les propriétés rhéologiques des matériaux à 

différentes températures durant les essais de mini écoulement en boucle. Pour cela, on a 

considéré les propriétés rhéologiques des matériaux constantes pour la validation du modèle 

numérique des mini-essais d’écoulement en boucle. La vitesse de l’air n’étant pas connu, la 

Figure 4.57 nous a permis d’estimer le nombre de Nusselt externe 𝑁𝑢𝑒𝑥𝑡 calculé à l’aide de 

l’équation (2-93) pour différentes vitesses et températures de l’air. Quant au Nusselt interne, il a 

été déterminé à l’aide de la Figure 2.17. Pour cela, les valeurs de 𝜓 ont été déterminées à l’aide 

de l’équation (2-90) pour les différents matériaux.  

La distance entre les deux points de mesure de la température ne permettant pas de ressortir 

nettement la variation pour un cycle donné, on a considéré la distance totale parcourue par le 

fluide durant le temps de l’essai. Pour cela, on a considéré les vitesses internes moyennes 

d’écoulement du fluide dans le circuit. Ces vitesses sont de 1,38, 1,42, 1,37, et 1,31 m/s 

respectivement pour l’eau, le RP Goldex, le RP Meliadine et le RCP Meliadine. L’intervalle de 

temps entre les températures initiale et finale du fluide est de 55 minutes. Ainsi les distances 

totales parcourues sont de 4554, 4686, 4521 et 4323 m respectivement pour l’eau, le RP Goldex, 

le RP Meliadine et le RCP Meliadine. Ainsi donc, les longueurs de conduite rectiligne utilisées 

dans le calibrage des essais de mini écoulement en boucle sont celles énumérées précédemment 

pour les différents mélanges. En ce qui concerne les pertes de charge, les données au cycle de 5 

minutes ont été utilisées pour le calibrage car l’effet de l’augmentation de la température sur les 
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propriétés rhéologiques n’a pas été déterminé pour être pris en compte dans la prédiction des 

pertes de charge. Comme mentionné ci-haut, il était techniquement impossible de déterminer les 

propriétés rhéologiques des matériaux aux différentes températures durant les essais de mini 

écoulement en boucle. 

Tableau 4.3 : Paramètres d’entrée dans la simulation numérique de l’écoulement de différents 

mélanges dans le circuit du mini Flow loop test 

 Eau Résidu en 

pâte Goldex 

Résidu en pâte 

Meliadine 

Remblai en pâte 

Meliadine 

Type et modèle 

rhéologique de fluide  

Newtonien  Non-

newtonien 

(Bingham)  

Non-

newtonien 

(Bingham) 

Non-newtonien 

(Bingham) 

𝜌 (kg/m
3
) 1000 1885 1877 1880 

𝐶𝑤 (%) - 74 71 71 

Seuil de cisaillement 

𝜏𝑜 (Pa) 
- 33,8 30,2  36,4 

Viscosité plastique 𝜂 
(Pa.s) 

0,001 0,509 0,633  0,744 

Conductivité 

thermique 𝜆 (W/mK) 
0,60 1,56 1,68 1,68 

Capacité thermique 𝐶𝑝 
(J/kgK) 

4182 1535 1377 1380 

Température d’entrée 

(°C) 
9,7 17,6 22,5 26,7 

Vitesse d’écoulement 

(m/s) 
1,38 1,42 1,37 1,31 

Diamètre de la 

conduite (m) 
0,03175 0,03175 0,03175 0,03175 

Conductivité 

thermique de la 

conduite (W/mK) 

45 45 45 45 

Épaisseur de la paroi 

(conduite) (m) 
0,003 0,003 0,003 0,003 

Température externe 

(°C) 
2 2 12 14 

Vitesse de l’air (m/s) 0,01 0,3  0,3  0,9  

Nusselt externe 𝑁𝑢𝑒𝑥𝑡 * 14  13,4  23  

Nusselt interne 𝑁𝑢𝑖𝑛𝑡 * 4,65  4,65  4,65  

(*) : calcul automatique pour les fluides newtoniens. 
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Figure 4.57: Variation du nombre de Nusselt externe 𝑁𝑢𝑒𝑥𝑡 avec la vitesse de l’air pour des 

températures de 250°K (-23.15°C) et 300°K (26,9°C). 

4.5.1 Essai d’écoulement en boucle de l’eau 

La Figure 4.58 présente le résultat de la simulation de la température de l’eau 𝑇𝑓-𝑠𝑖𝑚 en 

écoulement en boucle dans le circuit du mini-loop durant 55 minutes. On remarque que la 

température de l’eau diminue très faiblement. Elle passe 9,7°C à 8,9°C sur une longueur de 4554 

m. Cette faible variation négative de la température de l’eau est liée probablement à l’échange de 

chaleur avec le milieu externe (qui est à une température de 2°C). Les valeurs simulées de la 

température de l’eau sont proches de celles obtenues expérimentalement entre 0 et 1250 m. Au-

delà de 1250 m, on observe que les valeurs expérimentales de la température de l’eau 𝑇𝑓-𝑒𝑥𝑝 

s’écartent un peu plus des valeurs simulées. Cela peut être dû probablement, soit à une 

augmentation de la température externe, soit à la chaleur apportée par la pompe.  

Le nombre de Reynolds varie entre 33051 et 32350 pour une vitesse d’écoulement moyenne 

durant l’essai de 1,38 m/s (voir Figure L.1a en Annexe L). Le coefficient de frottement de Darcy 

𝑓 est d’environ 0,023 (voir Figure L.1a en Annexe L). Une pression de pompage 𝑝 d’environ 

3271 kPa est nécessaire. La valeur expérimentale de la perte charge à la vitesse de 1,38 m/s est de 

0,60 kPa. Par contre, la valeur simulée de la perte de charge est de 0,70 kPa/m. En considérant 

l’erreur de mesure (0,08 kPa/m) des capteurs de pression, ces valeurs se rapprochent.  
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Figure 4.58 : Simulation de la variation de la température de l’eau en écoulement dans le circuit 

d’écoulement en boucle. 

 

Figure 4.59 : Simulation de la variation de la pression de l’eau en écoulement dans le circuit de 

l’essai d’écoulement en boucle au cycle de 5 minutes. 

En regardant la Figure 4.47 qui présente les résultats de l’essai d’écoulement de l’eau, la vitesse 

d’écoulement de l’eau était encore à une valeur de 1,33 m/s après 5 minutes d’écoulement. Une 

simulation réalisée en considérant cette vitesse donne les pressions présentées à la Figure 4.59 

pour le cycle d’écoulement (à 5 minutes). Une pression de 119 kPa est nécessaire pour faire 

circuler l’eau dans notre circuit à une vitesse constante de 1,33 m/s, avec un 𝑅𝑒 de 31549 et un 

coefficient de frottement 𝑓 de 0,02. Dans ce cas, la perte de charge linéaire simulée 𝛥𝑝/𝐿𝑠𝑖𝑚 est 
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de 0,64 kPa/m. Cette valeurs s’approche de la valeur de la perte de charge linéaire expérimentale 

𝛥𝑝/𝐿𝑒𝑥𝑝 de l’eau (0,55 kPa/m) (voir la Figure 4.47).  

4.5.2 Essais d’écoulement des résidus en pâte Goldex et Meliadine  

4.5.2.1 Résidu en pâte Goldex 

La Figure 4.60 illustre la variation de la température du RP Goldex (𝐶𝑤 = 74%) en écoulement à 

une vitesse moyenne de 1,42 m/s dans le circuit d’écoulement en boucle durant 55 minutes. De 

l’entrée à la sortie du circuit, on peut observer que la température 𝑇𝑓-𝑠𝑖𝑚 du RP Goldex passe de 

17,6°C à 29,4°C pour les valeurs de 𝑁𝑢𝑒𝑥𝑡 de 14 et 𝑁𝑢𝑖𝑛𝑡 de 4,65 (modèle de Alves et al., 2015). 

Les valeurs simulées de la température du RP Goldex  avec ses paramètres rapprochent des 

valeurs expérimentales des températures du RP Goldex   

 

Figure 4.60 : Simulations de la température du résidu en pâte RP Goldex en écoulement dans le 

circuit d’écoulement en boucle et de la température pariétale extérieure. 

Une pression de pompage 𝑝 d’environ 134217 kPa est nécessaire. La perte de charge simulée 

𝛥𝑝/𝐿𝑠𝑖𝑚 engendrée par l’écoulement du RP Goldex dans la conduite est de 28,6 kPa/m pour une 

vitesse moyenne d’écoulement de 1,42 m/s, un coefficient de frottement de Darcy 𝑓 de 0,48, un 

𝑅𝑒 de 167 et un 𝐻𝑒 de 248 (voir Figure L.1b en Annexe L).  

En regardant la Figure 4.50 qui présente les résultats de l’essai d’écoulement, la vitesse 

d’écoulement du RP Goldex était encore à une valeur de 1,36 m/s après 5 minutes d’écoulement. 
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Une simulation réalisée en considérant cette vitesse donne les pressions présentées à la Figure 

4.61 pour le cycle d’écoulement (à 5 minutes). Dans ce cas, une pression d’environ 873 kPa est 

nécessaire pour faire circuler le RP Goldex de pourcentage solide 𝐶𝑤 de 74% à une vitesse de 

1,36 m/s, avec un 𝑅𝑒 de 160, un 𝐻𝑒 de 248, et un coefficient de friction 𝑓 de 0,5 (voir Figure 

L.2b en Annexe L). De plus, la perte de charge linéaire simulée 𝛥𝑝/𝐿𝑠𝑖𝑚 du mélange de RP 

Goldex est 27,7 kPa/m. Cette valeur est légèrement supérieure à la valeur expérimentale (𝛥𝑝/𝐿𝑒𝑥𝑝 

= 27 kPa/m) (voir Figure 4.50). 

 

Figure 4.61 : Pression simulée du RP Goldex en écoulement dans le circuit d’écoulement en 

boucle au cycle de 5 minutes.  

4.5.2.2 Résidu en pâte Meliadine 

La Figure 4.62 présente les simulations numériques des variations de la température du RP 

Meliadine 𝑇𝑓-𝑠𝑖𝑚 dans le circuit du mini-essai d’écoulement en boucle durant l’essai. On peut bien 

observer que la température du RP Meliadine 𝑇𝑓-𝑠𝑖𝑚 augmente durant son écoulement dans le 

circuit à une vitesse de 1,37 m/s. Ainsi donc, la température du RP Meliadine 𝑇𝑓-𝑠𝑖𝑚 passe de 

22,5°C de 39,9°C pour les valeurs de 𝑁𝑢𝑒𝑥𝑡 de 13,4 et 𝑁𝑢𝑖𝑛𝑡 de 4,65 (modèle de Alves et al, 

2015). Le nombre de Nussselt externe 𝑁𝑢𝑒𝑥𝑡 de 13,4 correspond à la vitesse de l’air d’environ 0,3 

m/s. 
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Figure 4.62 : Simulations de la température du RP Meliadine en écoulement dans le circuit 

d’écoulement en boucle et de la température à la paroi externe. 

Une pression de pompage 𝑝 d’environ 147,44 MPa est nécessaire. La perte de charge linéaire 

simulée 𝛥𝑝/𝐿𝑠𝑖𝑚 obtenue pour l’écoulement du RP Meliadine dans la conduite à une vitesse 

d’écoulement de 1,37 m/s est de 32,6 kPa/m pour un coefficient de frottement de Darcy 𝑓 de 

0,58, un 𝑅𝑒 de 129 et un 𝐻𝑒 de 143 (voir Figure L.1c en Annexe L).  

En considérant la Figure 4.53 qui présente les résultats de l’essai d’écoulement, la vitesse 

d’écoulement du RP Meliadine était encore à une valeur de 1,29 m/s après 5 minutes 

d’écoulement. Une simulation réalisée en considérant cette vitesse donne les pressions présentées 

à la Figure 4.63 pour le cycle d’écoulement (à 5 minutes). Dans ce cas, il faut une pression 𝑝 

d’environ 966 kPa (Figure 4.63) pour faire circuler le RP Meliadine dans le circuit du loop test à 

une vitesse de 1,29 m/s, avec un 𝑅𝑒 de 122, un 𝐻𝑒 de 143 et un coefficient de friction 𝑓 de 0,63 

(voir la Figure L.2c en Annexe L). Ainsi, la perte de charge linéaire simulée du RP Meliadine 

𝛥𝑝/𝐿𝑠𝑖𝑚 est de 31,0 kPa/m. Cette dernière est presque identique à la valeur de la perte de charge 

obtenue expérimentalement (𝛥𝑝/𝐿𝑒𝑥𝑝 = 30,7 kPa/m) (voir Figure 4.53). 
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Figure 4.63 : Pression simulée du RP Meliadine en écoulement dans le circuit d’écoulement en 

boucle au cycle de 5 minutes. 

4.5.3 Essai d’écoulement du remblai cimenté en pâte Meliadine  

La Figure 4.64 présente des simulations numériques de la température du RCP Meliadine 𝑇𝑓-𝑠𝑖𝑚 

en écoulement dans le circuit du mini-essai d’écoulement en boucle durant tout l’essai. On 

observe une augmentation de la température du RCP Meliadine 𝑇𝑓-𝑠𝑖𝑚 durant son écoulement 

dans le circuit à la vitesse moyenne d’écoulement de 1,31 m/s. Cette vitesse a d’ailleurs été 

maintenue pendant 20 minutes. La température 𝑇𝑓-𝑠𝑖𝑚 passe de 26,7°C de 35,2°C pour les valeurs 

de 𝑁𝑢𝑒𝑥𝑡 de 23 et 𝑁𝑢𝑖𝑛𝑡 de 4,65 (modèle de Alves et al, 2015). Le nombre de Nussselt externe 

𝑁𝑢𝑒𝑥𝑡 de 23 correspond à la vitesse de l’air d’environ 0,9 m/s. Les valeurs simulées de 𝑇𝑓-𝑠𝑖𝑚 

s’accordent bien avec les valeurs expérimentales de 𝑇𝑓-exp. Néanmoins, il faut noter que les 

valeurs simulées de au-delà 3000 m de longueur sont inférieures aux valeurs expérimentales. 

Cela est probablement lié à la chaleur engendrée par l’accroissement (une augmentation) des 

propriétés rhéologiques avec l’hydratation du ciment, qui n’est pas pris en compte dans la 

simulation numérique de l’écoulement du RCP Meliadine (propriétés rhéologiques constantes). 
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Figure 4.64 : Simulation de la température du résidu en pâte RCP Meliadine en écoulement dans 

le circuit d’écoulement en boucle 

La vitesse moyenne de 1,31 m/s est identique à la vitesse atteinte après 5 min d’écoulement. Dans 

ce cas, une seule simulation a été réalisée pour évaluer l’évolution de la température et les pertes 

de charges à 5 min. Une pression de pompage 𝑝 d’environ 1135 kPa est nécessaire pour pomper 

notre mélange de RCP Meliadine dans le circuit de l’essai de mini écoulement en boucle à une 

vitesse de 1,31 m/s (Figure 4.65), avec un 𝑅𝑒 de 105, un 𝐻𝑒 de 125, et un coefficient de friction 𝑓 

de 0,73 (voir Figure L.2d en Annexe L). Par conséquent, la perte de charge linéaire simulée 

𝛥𝑝/𝐿𝑠𝑖𝑚 du RPC Meliadine est d’environ 37,0 kPa/m. On peut noter que cette dernière est plus 

élevée que celle obtenue expérimentalement (𝛥𝑝/𝐿𝑒𝑥𝑝 = 29,2 kPa/m) lors de l’essai en boucle du 

RCP Meliadine. L’écart entre les deux valeurs de pertes de charge peut probablement être lié à la 

formation de la couche de lubrification dans le tuyau par ajout du ciment lors de l’essai 

d’écoulement en boucle (Cooke et al., 1992), ce qui peut notamment entraîner un écart entre le 

comportement rhéologique enregistré au laboratoire et celui enregistré dans le pipeline. 
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Figure 4.65 : Évolution de la température et de la pression simulées du RCP Meliadine en 

écoulement dans le circuit d’écoulement en boucle au cycle de 5 minutes. 

4.6 Modélisations numériques de l’écoulement du remblai cimenté 

en pâte dans un réseau de distribution  

4.6.1 Programme des modélisations 

Le modèle «Non-isothermal pipe flow» étant validé à la section 4.5 à l’aide de données des essais 

d’écoulement, il peut ainsi nous permettre de simuler le transport du remblai en pâte cimenté 

RCPS fabriqué avec les résidus Meliadine à une concentration solide 𝐶𝑤 =76,3%. L’objectif de 

cette section est d’étudier l’effet du diamètre, de la vitesse d’écoulement du RCPS et de la 

température externe sur la température de déposition, les pertes de charge et les pressions de ligne 

lors du transport du RCPS. Les modélisations numériques ont été réalisées en tenant compte de la 

variation des propriétés rhéologiques avec la température, de la chaleur générée par le frottement 

interne et de l’échange de chaleur avec le milieu externe.   

La Figure 4.66 présente la configuration du réseau de transport réel du chantier du secteur 400  

sur le site Meliadine (configuration construite à partie de données fournies par les Mines Agnico 

Eagle Ltd). Long d’environ 1600 m, le réseau comprend une section extérieure d’environ 294 m 

de longueur. Dans ce travail, on assume que cette section est exposée à l’air circulant à une 
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vitesse de 1 m/s et une température extrême de -50°C. Le reste du réseau et une section 

souterraine d’une longueur de 1036 m. Il est admis que cette section est aussi exposée à l’air 

circulant à une vitesse de 1 m/s et des températures -5°C (température du pergélisol) et de 2 

(applicable en cas de chauffage de la mine). Le réseau de distribution du RCP comprend des 

sections horizontales, verticales et inclinées. Par conséquent, l’écoulement gravitaire dans les 

sections verticales ou inclinées a été considéré dans les simulations numériques du transport du  

dans ce réseau de distribution.  

 

Figure 4.66 : Géométrie du réseau de distribution du RCPS Meliadine et répartition des 

températures externes. 

Des vitesses d’écoulement du remblai de 0,82, 1,04, 1,2 et 1,5 m/s et des diamètres internes du 

pipeline de 0,1016 m (4 pouces), 01270 m (5 pouces), 0,1463 m (5 ¾ pouces) et 0,1778 m (7 

pouces) ont été considérés. La vitesse de 0,82 m/s s’est avérée être la valeur minimale permettant 

une bonne convergence du modèle numérique, sauf pour le diamètre interne de 0,1016 m. La 

vitesse de 1,04 m/s et le diamètre de 0,1463 m correspondent aux valeurs utilisées pour l’étude de 

faisabilité du projet de remblayage sur le site Meliadine. Une température initiale du RCPS de 

10°C (température correspondant à la température ambiante de la salle d’opération) a été 

considérée pour toutes les modélisations. Le modèle rhéologique du fluide utilisé lors des 

simulations numériques est le modèle de Bingham. Pour ce faire, les équations semi-empiriques 

du seuil de cisaillement et de la viscosité plastique du mélange de RCPS Meliadine utilisées dans 

les simulations numériques sont reprises sur la Figure 4.67. 

-50°C 

2 et -5°C 
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Figure 4.67 : Relations du seuil de cisaillement 𝜏o et de la viscosité plastique 𝜂B en fonction de la 

température 𝑇 du RCPS Meliadine (𝐶𝑤 = 76,3%)  

Pour les modélisations numériques, il faut entrer les nombre de Nusselt externe 𝑁𝑢𝑒𝑥𝑡 et interne 

𝑁𝑢𝑖𝑛𝑡. L’équation (2-93) a permis de calculer 𝑁𝑢𝑒𝑥𝑡 pour tous les diamètres internes de pipeline à 

des températures allant de -73°C à 27°C et des vitesses de l’air allant jusqu’à 5 m/s (voir Figure 

M.1 en Annexe M). Cela a permis de définir 𝑁𝑢𝑒𝑥𝑡 à la vitesse de l’air de 1 m/s en fonction de la 

température pour les diamètres précités (voir la Figure 4.68).  

 

Figure 4.68 : Variation du nombre de Nusselt externe 𝑁𝑢𝑒𝑥𝑡 avec la température pour différents 

diamètres et une vitesse de l’air de 1 m/s.  

Les valeurs du Nusselt interne 𝑁𝑢𝑖𝑛𝑡 reprises dans le Tableau 4.4, ont été déterminées à l’aide de 

la Figure 2.17. Pour cela, les valeurs du paramètre 𝜓 (éq.(2-89)) ont été d’abord déterminées en 

fonction de la variation des propriétés rhéologiques dans la plage de température de 0 et 20°C, 

pour différents diamètres et vitesses d’écoulement (voir Figure M.2 en Annexe M). Signalons 
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que les valeurs de 𝑁𝑢𝑖𝑛𝑡 considérées sont celles obtenues avec le paramètre 𝜓 à 10°C 

(température d’entrée du matériau), pour la simple raison que le 𝑁𝑢𝑖𝑛𝑡 varie très peu entre 0°C à 

20°C (voir Figure M.2 en Annexe M). 

Tableau 4.4 : Valeurs de 𝑁𝑢𝑖𝑛𝑡 à différents diamètres pour le RCPS Meliadine (𝐶𝑤 = 76,3%) à 

une température de 10°C. 

 

Valeur de Nusselt interne 𝑁𝑢𝑖𝑛𝑡 

Vitesse (m/s) 𝐷 = 0,1016 m 𝐷 = 0,127 m 𝐷 = 0,1463 m 𝐷 = 0,1778 m 

0,82 4,8 4,9 5 5,1 

1,04 4,7 4,8 4,9 5 

1,2 4,6 4,7 4,8 4,9 

1,5 4,5 4,6 4,7 4,8 

 

Les résultats des modélisations sont présentés ci-dessous pour chaque vitesse d’écoulement du 

remblai Meliadine dans le réseau de distribution présenté à la Figure 4.66. 

4.6.2 Vitesse d’écoulement de 0,82 m/s  

La Figure 4.69 montre la variation de la température du RCPS en écoulement à une vitesse de 

0,82 m/s dans le réseau de distribution pour les diamètres internes de 0,1270 m, 0,1463 m et 

0,1778 m, des températures externes souterraines de -5°C et 2°C et une température extérieure de 

-50°C. On observe que la température du RCPS a tendance à diminuer dans la section à la surface 

pour tous les diamètres internes, avant d’augmenter dans les sections souterraines jusqu’à la 

déposition (au bout du pipeline). Pour le diamètre interne de 0,1270 m, la température de RCPS 

diminue de 10°C jusqu’à 8,7°C dans la section à la surface, puis augmente jusqu’à 11,5°C et 

12,7°C dans les sections souterraines pour des températures souterraines externes respectives de -

5°C et 2°C. Pour le diamètre interne de 0,1463 m, la température RCPS décroît de 10°C à 9°C 

dans la section à la surface, avant d’augmenter jusqu’à 11,3°C et 12,3°C dans les sections 

souterraines pour des températures souterraines externes respectives de -5°C et 2°C. Pour le 

diamètre interne de 0,1778 m, la température du RCPS baisse de 10°C à 9,3°C dans la section à 

la surface, avant d’augmenter jusqu’à 11,1°C et 11,8°C dans les sections souterraines pour des 

températures souterraines externes respectives de -5°C et 2°C.  
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Pour une température souterraine externe de -5°C (2°C), les gains de température sont de 1,9°C 

(2,7°C), 1,3°C (2,3°C) et 1,1°C (1,8°C) respectivement pour le diamètre interne de pipeline de 

0,1270 m, 0,1463 m et 0,1778 m.  

 

Figure 4.69 : Évolution de la température du RCPS en écoulement à une vitesse de 0,82 m/s dans 

le réseau de distribution de 0,1270 m, 01463 m et 0,1778 m de diamètres internes pour des 

températures externes souterraines de -5°C et 2°C. 

On peut aussi noter que la température du RCPS dans la section à la surface a tendance à plus 

diminuer avec la diminution du diamètre interne du pipeline. Cette diminution de la température 

du RCPS dans la section à la surface est probablement liée à la très faible température externe à 

la surface (-50°C), causant ainsi un important échange de chaleur à la paroi par conduction 

radiale avec le milieu externe. Comme le montre la Figure 4.70, le flux de chaleur à la paroi 𝑄𝑤 

augmente avec l’augmentation du diamètre interne du pipeline. Cela peut être expliqué par la 

surface d’échange, qui est plus importante lorsque le diamètre est plus grand. Dans cette figure, le 

signe négatif indique le sens de diffusion de la chaleur du remblai vers l’extérieur. De plus on 

note, une diminution du flux de chaleur dans la section à la surface avec la distance parcourue. 

Les flux de chaleur à la paroi 𝑄𝑤 varient de -270,2 à -263,9 W/m, de -285,2 à -280 W/m, et de -

308,1 à -304,1 W/m, respectivement pour les diamètres internes de 0,1270 m, 01463 m et 0,1778 

m (Figure 4.70). On peut observer que la variation du flux de chaleur à la paroi 𝑄𝑤 dans la 

section à la surface pour le pipeline de diamètre interne de 0,1270 m est élevée que celle des 

pipelines de 0,1463 m et 0,1778 m. Cela peut être expliqué par la faible résistance thermique liée 

à la faible épaisseur de la couche de matériau dans le pipeline de faible diamètre interne. En effet, 

la chaleur générée par le frottement interne et la dissipation visqueuse diffuse rapidement de l’axe 



163 

 

du pipeline vers la paroi lorsque la distance entre l’axe du pipeline et la paroi est relativement 

faible.  

 

Figure 4.70 : Variation du flux de chaleur à la paroi sur le réseau de distribution du RCPS (𝐶𝑤 = 

76,3%)  en écoulement à une vitesse de 0,82 m /s. 

La Figure 4.71 compare les flux de chaleur à la paroi dans les sections souterraines aux 

températures souterraines de -5°C et 2 degrés pour les différents diamètres de pipelines. Il ressort 

comme escompté que les flux de chaleur à la paroi 𝑄𝑤 à la température externe de -5°C sont plus 

élevés (en valeurs absolues) que ceux obtenus à la température externe de 2°C.  

 

Figure 4.71 : Variations des flux de chaleur à la paroi dans les sections souterraines du réseau de 

distribution du RCPS (𝐶𝑤 = 76,3%)  pour des diamètres internes de 0,1270 m, 0,1463 m et 

0,1778 m de diamètres internes et des températures extérieures de -5°C et 2°C. 
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Ceci pourrait bien expliquer les faibles valeurs de températures du RCPS dans les sections 

souterraines à -5°C, en comparaison avec celles à la température extérieure de 2°C (Figure 4.69). 

On remarque que le flux de chaleur à la paroi 𝑄𝑤 est élevé lorsque l’écart entre la température du 

RCPS et celle du milieu externe est important (voir Figure 4.71). 

La Figure 4.69 indique toutefois une augmentation de la température du RCPS en écoulement 

dans les sections souterraines quelle que soit la température externe (-5°C et 2°C). Cette 

température du RCPS augmente lorsque le diamètre interne des pipelines augmente. Ceci est 

probablement lié d’une part à une importante dissipation visqueuse et des frottements élevés dans 

les pipelines à faibles diamètres internes, générant par conséquent des pertes de charge 

relativement plus élevées, et d’autre part à la prédominance du transfert de chaleur par convection 

sur le transfert de chaleur par conduction dans la partie souterraine, ce qui entraine ainsi des 

faibles flux de transfert de chaleur à la paroi pour tous les diamètres comparativement à la section 

à la surface. En effet, l’écoulement du RCPS dans le pipeline de 0,1270 m de diamètre interne 

entraîne des valeurs de coefficients de frottement 𝑓 de 2,35 et 2,29 dans la section à la surface 

(pour les deux températures -5°C et 2°C) avant d’augmenter jusqu’à des valeurs de 2,43 et 2,49 

dans les sections souterraines pour des températures externes souterraines respectives de -5°C et 

2°C (Figure 4.72). Pour le pipeline de diamètre interne de 0,1463 m, le coefficient de frottement 

𝑓 varie de 2,21 à 2,16 dans la partie à la surface (pour les deux températures -5°C et 2°C), puis 

augmente jusqu’à 2,27 et 2,32 pour des températures externes souterraines respectives de -5°C et 

2°C. De même pour le diamètre interne de 0,1778 m, on note une diminution de 2,03 à 2,0 dans 

la section à la surface, ensuite une augmentation jusqu’à 2,08 et 2,11 dans les sections 

souterraines pour des températures externes respectives de -5°C et 2°C. Globalement, on observe 

une diminution du coefficient de frottement dans la section à la surface suivie d’une 

augmentation dans les sections souterraines. La décroissance du coefficient de frottement 𝑓 dans 

la section à la surface du réseau de distribution est liée l’augmentation du nombre de Reynolds 

Re et à la diminution de nombre de Hedström He (Figure N.1en Annexe N). Par suite, 

l’augmentation de 𝑓 dans les sections souterraines est liée à la diminution de Re et à 

l’augmentation de He (Figure N.1 en Annexe N). Par définition, ces deux nombres 

adimensionnels (Re et He) sont dépendants des propriétés rhéologiques (seuil de cisaillement et 

viscosité plastique) de RCPS, lesquelles varient à leur tour avec la température le long du réseau 

de distribution du RCPS (Figures N.2 et N.3 en Annexe N).  
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Figure 4.72 : Variations des coefficients de frottement interne du RCPS (𝐶𝑤 = 76,3%) en 

écoulement à une vitesse de 0,82 m/s dans le réseau de distribution de 0,1270 m, 01463 m et 

0,1778 m de diamètres internes pour des températures externes souterraines de -5°C et 2°C. 

La Figure 4.73 montre la distribution des pertes de charge linéaires 𝛥𝑝/𝐿 le long du réseau 

d’écoulement du RCPS Meliadine (𝐶𝑤 = 76,3%) à une vitesse de 0,82 m/s pour les différents 

diamètres de pipelines. Les valeurs de pertes de charge 𝛥𝑝/𝐿 dans les sections horizontales sont 

d’environ 13 kPa/m, 11 kPa/m et 8 kPa/m  pour des diamètres internes respectifs de 0,1270 m, 

0,1463 m et 0,1778 m (Figure 4.73). Par ailleurs, les variations de pression par unité de longueur 

dans les sections verticales sont d’environ -6 kPa/m, -8 kPa/m et -11 kPa/m pour des diamètres 

internes respectifs de 0,1270 m, 0,1463 m et 0,1778 m (Figure 4.73). Le signe négatif des pertes 

de charge 𝛥𝑝/𝐿 dans les sections verticales est lié aux pressions élevées au bas qu’en haut de la 

colonne verticale. Cela explique les pics observés sur les droites de pression de ligne sur les 

Figure 4.74 et Figure 4.75. En observant les pertes de charge 𝛥𝑝/𝐿 sur la Figure 4.73 ou la Figure 

4.74, on peut noter que la différence entre les pertes de charge 𝛥𝑝/𝐿 dans les sections 

horizontales et les variations de pression par unité de longueur dans les sections verticales, est 

presqu’équivalente à la pression hydrostatique d’environ 19 kPa qui s’applique sur une colonne 

de 1 mètre de RCPS. Cette pression hydrostatique n’est rien d’autre que le poids volumique du 

RCPS contenu dans une colonne d’un mètre (2011 (kg/m
3
) ⨯ 9,81 (m/s

2
) ⨯1 (m) = 19,7 kPa). 

L’écart entre les deux valeurs de pressions hydrostatiques est lié à la faible inclinaison des 

sections verticales.  
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Figure 4.73 : Pertes de charge du RCPS (𝐶𝑤 = 76,3%)  en écoulement à une vitesse de 0,82 m/s 

dans le réseau de distribution de 0,1270 m, 01463 m et 0,1778 m de diamètres internes pour des 

températures externes souterraines de -5°C et 2°C. 

 

Figure 4.74 : Pressions et pertes de charge du RCPS (𝐶𝑤  = 76,3%)  en écoulement à une vitesse 

de 0,82 m/s dans le réseau de distribution de 0,1270 m, 01463 m et 0,1778 m de diamètres 

internes à la température externe souterraine de 2°C. 

De plus, on peut l’observer sur la Figure 4.73, que les pertes de charge 𝛥𝑝/𝐿 obtenues à la 

température externe de -5°C dans les sections souterraines sont presque égales à celles obtenues à 

la température externe de 2°C (Figure 4.74). Pareillement pour les pressions, on observe que les 
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valeurs de ces dernières à la température extérieure souterraine de -5°C sont très légèrement 

inférieures à celles obtenues à la température extérieure souterraine de 2°C (Figure 4.75). Par 

suite, on note que les pressions totales 𝑝 de ligne du RCPS s’écoulant à une vitesse de 0,82 m/s 

sont de 13151 kPa, 9355 kPa, et 5351 kPa pour des diamètres internes respectifs de 0,1270 m, 

0,1463 m et 0,1778 m à une température externe souterraine de 2°C. À la température extérieure 

souterraine de -5°C, les pressions totales 𝑝 du RCPS s’écoulant à une vitesse de 0,82 m/s sont de 

12935 kPa, 9213 kPa, et 5267 kPa pour des diamètres internes respectifs de 0,1270 m, 0,1463 m 

et 0,1778 m. Ces valeurs correspondent à la pression requise pour le pompage. 

 

Figure 4.75 : Pressions du RCPS (𝐶𝑤 = 76,3%)  en écoulement à une vitesse de 0,82 m dans le 

réseau de distribution de 0,1270 m, 01463 m et 0,1778 m de diamètres internes  et à des 

températures externes souterraines de -5°C et 2°C. 

4.6.3 Vitesse d’écoulement de 1,04 m/s  

La Figure 4.76 présente la variation de la température du RCPS (𝐶𝑤 = 76,3%) en écoulement à la 

vitesse de 1,04 m/s dans le réseau de distribution pour des diamètres internes de 0,1016 m, 

0,1270 m, 0,1463 m et 0,1778 m et des températures externes souterraines de -5°C et 2°C. On 

observe une diminution de la température du RCPS dans la section à la surface, suivie d’une 

augmentation dans les sections souterraines pour tous les diamètres internes de pipeline. 

Toutefois, on note une diminution de la température du RCPS avec la diminution du diamètre 

interne du pipeline dans la section à la surface, bien qu’on note des valeurs élevées de flux 

chaleur à la paroi pour des larges diamètres (Figure 4.77a). 
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Pour une température souterraine externe de -5°C (2°C), les gains de température sont de 4,7°C 

(6,1°C), 3,4°C (4,4°C), 2,8°C (3,6°C) et 2,2°C (2,7°C) respectivement pour le diamètre interne de 

pipeline de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m.  

 

Figure 4.76 : Évolution de la température du RCPS (𝐶𝑤 = 76,3%) en écoulement à une vitesse de 

1,04 m/s dans le réseau de distribution de 0,1016 m, 0,1270 m, 01463 m et 0,1778 m pour des 

températures externes souterraines de -5°C et 2°C. 

Les valeurs de flux de chaleur à la paroi 𝑄𝑤 dans la section à la surface varient de -251,2 à -247 

W/m, de -269,2 à 266,2 W/m, de -284,1 à -281,7 W/m, et de -306,8 à -305,1 W/m pour des 

diamètres internes respectifs de 0,1016 m, 0,1270 m, 01463 m et 0,1778 m (Figure 4.77a). Ce 

phénomène est probablement lié à la diminution de la résistance thermique avec la réduction du 

diamètre interne du pipeline, qui se traduit par une augmentation du coefficient de transfert de 

chaleur ℎ (voir équation (2-82)) pour des conduites à diamètre interne relativement faible. En 

d’autres termes, la chaleur générée par frottement interne et dissipation visqueuse diffuse 

rapidement par conduction radiale vers la paroi pour de faibles diamètres. Dans les sections 

souterraines, le flux de chaleur à la paroi 𝑄𝑤 à la température extérieure de -5°C est relativement 

plus élevée que celui obtenu à la température extérieure de 2°C pour un diamètre interne donné 

de pipeline (Figure 4.77b). De plus, on note que le flux de chaleur à la paroi 𝑄𝑤 dans les sections 

souterraines est relativement faible pour les diamètres internes faibles à une température externe 

donnée. On observe aussi dans le cas d’une température externe souterraine de 2°C, que 𝑄𝑤 est 

plus élevé lorsque le diamètre est grand jusqu’à une longueur du réseau d’environ 1150 m et 
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1400 m selon le diamètre, et que par après cette tendance s’inverse sur la partie restante du réseau 

(entre 450 m et 200 m).Ce phénomène n’est pas observable dans le cas de la vitesse d’écoulement 

de 0,82 m/s. Cela est probablement lié à une faible augmentation de la température du RCPS à la 

vitesse d’écoulement de 0,82 m/s.  

 

a) 

 

b) 

Figure 4.77 : Flux de chaleur à la paroi sur la section à la surface (a) et les sections souterraines 

(b) du réseau de distribution du RCPS (𝐶𝑤 = 76,3%)  à la vitesse d’écoulement de 1,04 m/s. 

Comparativement à la section à la surface, le transfert de chaleur par conduction est réduit dans 

les sections souterraines, vu que la différence de température entre le milieu extérieur et le RCPS 

en écoulement est relativement faible pour ce dernier cas. Une prédominance du transfert de 

chaleur par convection que par conduction radiale de la chaleur générée par la dissipation 

visqueuse pourrait expliquer l’augmentation de la température du RCPS dans les sections 

souterraines (Figure 4.76). De plus, on remarque une augmentation du flux de chaleur 𝑄𝑤 avec la 

longueur dans les sections souterraines; cette augmentation est probablement liée à 

l’accroissement de la différence de température entre le milieu extérieur et le RCPS en 

écoulement dans le pipeline.  En effet, pour le diamètre interne de 0,1016 m, la température du 

RCPS passe de 10°C à 9,1°C dans la section à la surface, puis augmente jusqu’à 14,7°C et 16,1°C 

dans les sections souterraines pour des températures souterraines externes respectives de -5°C et 

2°C. Pour le diamètre interne de 0,1270 m, la température du RCPS diminue de 10°C à 9,4 °C 

dans la section à la surface, puis augmente jusqu’à 13,4°C et 14,4°C dans les sections 

souterraines pour des températures souterraines externes respectives de -5°C et 2°C. Pour le 
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diamètre interne de 0,1463 m, la température RCPS décroît de 10°C à 9,5°C dans la section à la 

surface, avant d’augmenter jusqu’à 12,8°C et 13,6°C dans les sections souterraines pour des 

températures souterraines externes respectives de -5°C et 2°C. Pour le diamètre interne de 0,1778 

m, la température du RCPS passe de 10°C à 9,7°C dans la section à la surface, avant d’augmenter 

jusqu’à 12,2°C et 12,7°C dans les sections souterraines pour des températures souterraines 

externes respectives de -5°C et 2°C.  

La Figure 4.78 présente les pressions 𝑝 et les pertes de charge 𝛥𝑝/𝐿 dans le réseau de distribution 

du RCPS pour différents diamètres internes de pipeline (0,1016 m, 0,1270 m, 0,1463 m et 0,1778 

m) et à la température souterraine externe de -5°C (les résultats pour la température souterraine 

externe de 2°C sont présentés à la Figure O.1 en Annexe O).  

On note des pressions totales 𝑝 de 25784 kPa, 15999 kPa, 11492 kPa, 11981 kPa et 6793 kPa 

pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m, 0,1463 m isolé et 

0,1778 m à la température externe de -5°C. À la température souterraine externe de 2°C, on note 

des valeurs de pressions totales 𝑝 sont de 26130 kPa, 16181 kPa, 11613 kPa, et 6864 kPa pour 

des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m (voir la Figure 

O.1 en Annexe O). Les pressions totales observées à la température externe souterraine de 2°C 

sont très légèrement supérieures à celles obtenues à la température externe de -5°C.Toutefois, les 

pertes de charge 𝛥𝑝/𝐿 obtenues dans les deux cas de température souterraine sont presqu’égales. 

Les valeurs de perte de charge 𝛥𝑝/𝐿 dans les sections horizontales sont d’environ 22 kPa/m, 15 

kPa/m, 12 kPa/m et 9 kPa/m pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 

0,1463 m et 0,1778 m (Figure 4.78 et Figure O.1 en Annexe O). Par ailleurs, on note les 

variations linéaires de pression dans les sections verticales d’environ 3 kPa/m, -4 kPa/m, -7 

kPa/m et -10 kPa/m pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 

0,1778 m. On note une différence d’environ 19 kPa/m entre les pertes de charge dans les sections 

horizontales et les variations linéaires de pression dans les sections verticales. L’écoulement du 

RCPS dans les sections verticales se faisant par gravité, on note un gain de pression, qui se 

traduit par des pressions élevées au fond de la colonne verticale ou inclinée. Cela explique les 

pics de pression observés sur les Figure 4.78b, c et d. 
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a 

 

b 

 

c 

 

d 

Figure 4.78 : Pressions et pertes de charge du RCPS (𝐶𝑤 = 76,3%)  en écoulement à la vitesse de 

1,04 m/s dans le réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 

0,1463 m (c) et 0,1778 m (d) pour une température souterraine externe de -5°C. 

On remarque que ces pics sont plus accentués pour des diamètres relativement larges. 

Néanmoins, le diamètre de 0,1016 m ne présente presque pas de pression élevée au fond des 

sections verticales. Cela peut être probablement due au fait que le gain de pression 

(hydrostatique) est consommé par les pertes de charge dans les sections verticales ou inclinées 

(ces pertes de charge augmentent lorsque le diamètre diminue). En outre, on observe une 

augmentation des pertes de charge avec la réduction du diamètre interne du pipeline. Cela peut 

être expliqué par l’augmentation du coefficient de frottement 𝑓 avec la réduction du diamètre 

interne de pipeline (Figure O.2 en Annexe O). Les valeurs de coefficient de frottement 𝑓 varient 

de 1,84 à 2,03 (2,09), 1,63 à 1,76 (1,80), 1,52 à 1,62 (1,65), et 1,39 à 1,46 (1,48) pour des 

diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m à la température 

externe souterraine de -5°C (2°C). Il faudrait noter que le coefficient de frottement a tendance à 

diminuer dans la section à la surface, avant de pouvoir augmenter dans les sections souterraines. 

Cette diminution du coefficient de frottement 𝑓 dans la section à la surface est liée à 
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l’augmentation du Re et à la diminution de He (Figure O.3 en Annexe O). Son augmentation dans 

les sections souterraines est liée à la diminution de Re et à l’augmentation de He (Figure O.3 en 

Annexe O). Les nombres Re et He étant dépendants des propriétés rhéologiques (seul de 

cisaillement 𝜏o et viscosité plastique 𝜂B) du RCPS, ils varient lorsque ces dernières (propriétés 

rhéologiques) varient avec la variation de la température du RCPS le long du pipeline (Figures 

O.4 et O.5 en Annexe O). La diminution de la température dans la section à la surface entraîne 

une diminution du seuil de cisaillement 𝜏o (Figure O.4) et de la viscosité plastique 𝜂B (Figure O.5 

en Annexe O) du RCPS. Par ailleurs, il y a une augmentation du seuil de cisaillement 𝜏o (Figure 

O.4 en Annexe O) et de la viscosité plastique 𝜂B (Figure O.5 en Annexe O) avec l’augmentation 

de la température dans les sections souterraines, entrainant ainsi une diminution de Re et une 

augmentation de He. 

4.6.4 Vitesse d’écoulement de 1,2 m/s  

La Figure 4.79 présente la variation de la température du RCPS (𝐶𝑤 = 76,3%)  en écoulement à 

une vitesse de 1,2 m/s dans le réseau de distribution de diamètres internes de 0,1016 m, 01270 m, 

1463 m, et 0,1778 m pour des températures externes souterraines de -5°C et 2°C. On observe une 

très faible diminution de la température du RCPS dans la section à la surface, suivie d’une 

augmentation dans les sections souterraines. En effet, la température du RCPS diminue très 

faiblement de 10°C (température initiale fixée) à 9,6°C, 9,7°C, 9,8°C et 9,9°C dans la section à la 

surface pour des diamètres internes respectifs de 0,1016 m, 01270 m, 1463 m, et 0,1778 m. 

Ensuite la température du RCPS augmente dans les sections souterraines à la température externe 

de -5°C (2°C) jusqu’à 16,5°C (17,8 °C), 14,6°C (15,5°C), 13,8°C (14,4°C) et 12,8°C (13,3°C) 

pour des diamètres internes respectifs de 0,1016 m, 01270 m, 1463 m, et 0,1778 m. Bien que la 

diminution de la température du RCPS dans la section à la surface soit faible, on peut voir qu’elle 

diminue plus avec la réduction du diamètre interne, alors que le flux de chaleur à la paroi 𝑄𝑤 

augmente avec le diamètre du pipeline (Figure 4.80a). En effet, les valeurs de flux de chaleur à la 

paroi sont de -250 W/m, -268 W/m, -283 W/m et -306 W/m pour les diamètres internes respectifs 

de 0,1016 m, 01270 m, 1463 m, et 0,1778 m. La diminution de la couche de résistance thermique 

pour des faibles diamètres internes de pipeline pourrait bien expliquer la diminution de la 

température du RCPS dans la section à la surface. Ceci favorise une conduction radiale de la 

chaleur générée par frottement interne et dissipation visqueuse. 
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Pour une température souterraine externe de -5°C (2°C), les gains de température sont de 6,5°C 

(7,8°C), 4,6°C (5,5°C), 3,8°C (4,4°C) et 2,8°C (3,3°C) respectivement pour le diamètre interne de 

pipeline de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m.  

 

Figure 4.79 : Évolution de la température du RCPS (𝐶𝑤 = 76,3%) en écoulement à une vitesse de 

1,2 m dans le réseau de distribution de 0,1270 m, 01463 m et 0,1778 m de diamètres internes 

pour des températures externes souterraines de -5°C et 2°C. 

 

a) 

 

b) 

Figure 4.80 : Flux de chaleur à la paroi sur la section à la surface (a) et les sections souterraines 

(b) du réseau de distribution du RCPS (𝐶𝑤 = 76,3%) à la vitesse d’écoulement de 1,2 m/s. 

Par contre dans les sections souterraines, on observe des flux de chaleur à la paroi relativement 

faibles par rapport aux flux de chaleur à la paroi dans la section à la surface (Figure 4.80). La 

différence de température entre le RCPS en écoulement dans le pipeline et le milieu externe 

souterrain entraîne la diminution du flux de chaleur à la paroi (Figure 4.80b). Néanmoins, il faut 
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noter que les flux de chaleur 𝑄𝑤 à la température externe de -5°C sont relativement élevés par 

rapport à ceux obtenus à la température externe de 2°C (Figure 4.80b). Ceci explique les faibles 

températures du RCPS obtenues à la température externe de -5°C. Les valeurs de flux de chaleur 

à la paroi 𝑄𝑤 dans les sections souterraines à température externe de 2°C varient de -28 W/m à -

58 W/m, de -31 W/m à -54 W/m, de -33 W/m à -53 W/m, et de -37 W/m à -53 W/m pour des 

diamètres internes respectifs de 0,1016 m, 01270 m, 1463 m, et 0,1778 m. À la température 

externe de -5°C, les valeurs de flux de chaleur à la paroi 𝑄𝑤 dans les sections souterraines varient 

de -55 W/m à -82 W/m, -62 W/m à -82 W/m, -64 W/m à -82 W/m, et de -71 W/m à -85 W/m 

pour des diamètres internes respectifs de 0,1016 m, 01270 m, 1463 m, et 0,1778 m (Figure 

4.80b). On observe une variation importante du flux de chaleur à la paroi 𝑄𝑤 pour les diamètres 

internes relativement faibles. Cette variation est probablement liée l’augmentation du gradient de 

température dans les sections souterraines entre le RCPS en écoulement et le milieu externe. Les 

dissipations visqueuses et les frottements internes étant plus importants dans le réseau de 

distribution à diamètres internes relativement faibles, on peut noter que l’écoulement du RCPS 

dans le pipeline à diamètres internes relativement faibles génère plus de chaleur, qui se traduit par 

une importante augmentation de la température du RCPS. On observe aussi dans le cas d’une 

température externe souterraine de 2°C, que 𝑄𝑤 est plus élevé lorsque le diamètre est grand 

jusqu’à des longueurs du réseau entre  950 m et 1150 m selon le diamètre, et que par après cette 

tendance s’inverse sur la partie restante du réseau (entre 650 m et 450 m). Ce phénomène est 

accentué par rapport au cas de la vitesse d’écoulement de 1.04 m/s.  

Les Figure 4.81a, b, c, d présentent les pressions totales 𝑝 et les pertes de charge 𝛥𝑝/𝐿 dans le 

réseau de distribution du RCPS pour les diamètres internes de pipeline respectifs de 0,1016 m, 

0,1270 m, 0,1463 m et 0,1778 m et à la température souterraine externe de -5°C (les résultats 

pour la température souterraine externe de 2°C sont présentés à la Figure P.1 à l’Annexe P). On 

note des pressions totales 𝑝 de 29313 kPa, 18184 kPa, 13114 kPa et 7877 kPa pour des diamètres 

internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m à la température externe de -

5°C. Pour  la température souterraine externe de 2°C, les valeurs de pressions totales 𝑝 sont de 

29632 kPa, 18355 kPa, 13224 kPa et 7941 kPa pour des diamètres internes respectifs de 0,1016 

m, 0,1270 m, 0,1463 m et 0,1778 m (voir la Figure P.1 à l’Annexe P).  
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a) 

 

b) 

 

c) 

 

d) 

Figure 4.81 : Pressions et pertes de charge du RCPS (𝐶𝑤 = 76,3%) en écoulement à la vitesse de 

1,2 m/s dans le réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 

m (c) et 0,1778 m (d) pour une température souterraine externe de -5°C. 

Les pressions totales 𝑝 observées à la température externe souterraine de 2°C sont très légèrement 

supérieures à celles obtenues à la température externe de -5°C. Néanmoins, les pertes de charge 

𝛥𝑝/𝐿 obtenues dans les deux cas de température souterraine sont presqu’égales. Les valeurs de 

perte de charge 𝛥𝑝/𝐿 dans les sections horizontales sont d’environ 24 kPa/m, 17 kPa/m, 13 

kPa/m et 10 kPa/m pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 

0,1778 m (Figure 4.81 et Figure P.1 à l’Annexe P). En outre, on note les variations linéaires de 

pression dans les sections verticales d’environ 5 kPa/m, -2 kPa/m, -6 kPa/m et -9 kPa/m pour des 

diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m. On note une 

différence d’environ 19 kPa/m entre les pertes de charge 𝛥𝑝/𝐿 dans les sections horizontales et 

les variations linéaires de pression dans les sections verticales.  
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L’écoulement du RCPS par gravité dans les sections verticales, entraîne un gain de pression, qui 

se traduit par des pressions 𝑝 élevées au fond de la colonne verticale ou inclinée. Cela explique 

les pics de pression 𝑝 observés sur les Figure 4.81b, c et d. On remarque que ces pics sont plus 

accentués pour des diamètres relativement larges pour les raison déjà données dans les sections 

précédentes. En outre, on observe une augmentation des pertes de charge 𝛥𝑝/𝐿 avec la réduction 

du diamètre interne du pipeline. Cela s’explique par l’augmentation du coefficient de frottement 

𝑓 avec la réduction du diamètre interne de pipeline (Figure P.2 à l’Annexe P). Les valeurs de 

coefficients de frottement 𝑓 varient de 1,52 à 1,71 (1,75), 1,34 à 1,46 (1,48), 1,24 à 1,33 (1,35), et 

1,12 à 1,19 (1,20) pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 

0,1778 m à la température externe souterraine de -5°C (2°C). Il faudrait noter que le coefficient 

de frottement 𝑓 est presque constant dans la section à la surface pour tous les diamètres de 

pipeline, avant de pouvoir augmenter très légèrement dans les sections souterraines. Vu que la 

température du RCPS ne varie presque pas dans la section à la surface, le seuil de cisaillement et 

la viscosité plastique sont presque constants (Figures P.4 et P.5 en Annexe P). Par conséquent, Re 

et He sont constants dans la section à la surface (Figure P.3 en Annexe P). Cela explique la 

constance des valeurs du coefficient de frottement 𝑓 dans cette section du réseau de distribution 

du RCPS. L’augmentation de 𝑓 dans les sections souterraines est liée à la diminution de Re et à 

l’augmentation de He (Figure P.3 à l’Annexe P). Re et He sont fonction des propriétés 

rhéologiques (seul de cisaillement 𝜏o et viscosité plastique 𝜂B) du RCPS, qui augmentent avec 

l’augmentation de la température du RCPS dans les sections souterraines du réseau de 

distribution (Figures P.4 et P.5 en Annexe P).  

4.6.5 Vitesse d’écoulement de 1,5 m/s  

La Figure 4.82 présente la variation de la température du RCPS en écoulement à une vitesse de 

1,5 m/s dans le réseau de distribution de diamètres internes de 0,1016 m, 01270 m, 1463 m, et 

0,1778 m pour des températures externes souterraines de -5°C et 2°C. On observe une légère 

augmentation de la température du RCPS dans la section à la surface, suivie d’une importante 

augmentation de la température dans les sections souterraines. En effet, pour la température 

d’entrée du RCPS de 10°C, la température du RCPS augmente jusqu’à 10,5°C, 10,3°C, 10,3°C et 

10,2°C dans la section à la surface pour des diamètres internes respectifs de 0,1016 m, 01270 m, 

1463 m, et 0,1778 m. Ensuite la température du RCPS augmente significativement dans les 
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sections souterraines à la température externe de -5°C (2°C) jusqu’à 19,5°C (20,5°C), 16,6°C 

(17,3°C), 15,3°C (15,8°C) et 13,9°C (14,3°C) pour des diamètres internes respectifs de 0,1016 m, 

01270 m, 1463 m, et 0,1778 m.  

Pour une température souterraine externe de -5°C (2°C), les gains de température sont de 9,5°C 

(10,5°C), 6,6°C (7,3°C), 5,3°C (5,8°C) et 3,9°C (4,3°C) respectivement pour le diamètre interne 

de pipeline de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m.  

 

Figure 4.82 : Variation de la température du RCPS (𝐶𝑤 = 76,3%) en écoulement à une vitesse de 

1,5 m/s dans le réseau de distribution. 

Contrairement aux cas précédents (vitesses d’écoulement de 0,82 m/s, 1,04 m/s, et 1,2 m/s), on 

remarque que l’augmentation de la température du RCPS dans la section à la surface est 

relativement élevée pour les faibles diamètres. Ceci est probablement lié d’une part, à la forte 

prédominance du transfert de chaleur par convection axiale (sur la conduction radiale) pour des 

vitesses d’écoulement relativement élevées, et d’autre part à une importante dissipation visqueuse 

dans les pipelines à diamètres relativement faibles pour des vitesses élevées. Ainsi, les valeurs de 

flux de chaleur à la paroi 𝑄𝑤 sont de -250 W/m, -268 W/m, -282 W/m et -304 W/m pour les 

diamètres internes respectifs de 0,1016 m, 01270 m, 1463 m, et 0,1778 m (Figure 4.83). Par 

contre dans les sections souterraines, on observe des flux de chaleur à la paroi relativement 

faibles par rapport aux flux de chaleur à la paroi 𝑄𝑤 dans la section à la surface (Figure 4.83).   
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a) 

 

b) 

Figure 4.83 : Flux de chaleur à la paroi sur la section à la surface (a) et les sections souterraines 

(b) du réseau de distribution du RCPS (𝐶𝑤 = 76,3%)  à la vitesse d’écoulement de 1,5 m/s. 

La différence de température entre le RCPS en écoulement dans le pipeline et le milieu externe 

souterrain entraîne la diminution du flux de chaleur 𝑄𝑤 à la paroi (Figure 4.83 a et b) 

comparativement à la section en surface. Néanmoins, les flux de chaleur à la paroi 𝑄𝑤 pour la 

température externe de -5°C sont relativement élevés à ceux obtenus à la température externe de 

2°C (Figure 4.83b). Ceci explique les faibles températures du RCPS obtenues à la température 

externe de -5°C. Les valeurs de flux de chaleur à la paroi 𝑄𝑤 dans les sections souterraines à 

température externe de 2°C varient de -31 W/m à -68 W/m, -33 W/m à -62 W/m, -35 W/m à -59 

W/m, et -38 W/m à -57 W/m pour des diamètres internes respectifs de 0,1016 m, 01270 m, 1463 

m, et 0,1778 m. À la température externe de -5°C, les valeurs de flux de chaleur à la paroi 𝑄𝑤 

dans les sections souterraines varient de -58 W/m à -93 W/m, -64 W/m à-90 W/m, -66 W/m à -88 

W/m, et -72 W/m à -90 W/m pour des diamètres internes respectifs de 0,1016 m, 01270 m, 1463 

m, et 0,1778 m (Figure 4.83b). On observe une variation importante du flux de chaleur à la paroi 

𝑄𝑤 pour les diamètres internes relativement faibles. Cette variation est probablement liée 

l’augmentation du gradient de température entre le RCPS en écoulement et le milieu externe. 

Ceci améliore le transfert de chaleur à la paroi avec le milieu externe. Les dissipations visqueuses 

et les frottements internes étant plus importants dans le réseau de distribution à diamètres internes 

relativement faibles, on peut noter que l’écoulement du RCPS dans le pipeline à diamètres 

internes relativement faibles génère plus de chaleur, qui se traduit par une importante 

augmentation de la température du RCPS le long du réseau de distribution et un échange 
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important de chaleur à la paroi. On observe aussi dans le cas d’une température externe 

souterraine de 2°C, que 𝑄𝑤 est plus élevé lorsque le diamètre est grand jusqu’à une longueur du 

réseau d’environ 750 m pour tous les diamètres, et que par après cette tendance s’inverse sur la 

partie restante du réseau (850 m).Ce phénomène est accentué par rapport au cas de la vitesse 

d’écoulement de 1,2 m/s. 

Les Figure 4.84 a, b, c, d présentent les pressions totales 𝑝 et les pertes de charge 𝛥𝑝/𝐿 dans le 

réseau de distribution du RCPS pour les diamètres internes de pipeline respectifs de 0,1016 m, 

0,1270 m, 0,1463 m et 0,1778 m et à la température souterraine externe de -5°C. 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 4.84 : Pressions et pertes de charge du RCPS (𝐶𝑤 = 76,3%) en écoulement à la vitesse de 

1,5 m/s dans le réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 

m (c) et 0,1778 m pour une température souterraine externe de -5°C. 

On note des pressions totales 𝑝 de 35860 kPa, 22226 kPa, 16110 kPa et 9875 kPa pour des 

diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m à la température 
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externe de -5°C. Pour  la température souterraine externe de 2°C, les valeurs de pressions totales 

𝑝 sont de 36140 kPa, 22374 kPa, 16204 kPa et 9929 kPa pour des diamètres internes respectifs de 

0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m (voir la Figure Q.1 à l’Annexe Q). 

Les pressions totales 𝑝 observées à la température externe souterraine de -5°C sont très 

légèrement inférieures à celles obtenues à la température externe de 2°C. Toutefois, les pertes de 

charge 𝛥𝑝/𝐿 obtenues dans les deux cas de température souterraine (-5°C et 2°C) sont 

presqu’égales. Les valeurs de perte de charge 𝛥𝑝/𝐿 dans les sections horizontales sont d’environ 

25 à 29 kPa/m, 17,5 à 20 kPa/m, 15 kPa/m et 11 kPa/m pour des diamètres internes respectifs de 

0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m (Figure 4.84 et Figure Q.1 en Annexe Q). En outre, 

les variations linéaires de pression dans les sections verticales sont d’environ 6 à 10 kPa/m, -1,5 à 

1 kPa/m, -4 kPa/m et -8 kPa/m pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 

0,1463 m et 0,1778 m. La différence entre les pertes de charge 𝛥𝑝/𝐿 dans les sections 

horizontales et les variations linéaires de pression dans les sections verticales est d’environ 19 

kPa/m. En outre, on observe que les variations de pertes de charge 𝛥𝑝/𝐿 sont importantes pour 

les diamètres de 0,1016 m et 0,1270 m. Cela est dû à l’augmentation de la température du RCPS 

le long du réseau de distribution, qui, par conséquent entraîne une augmentation des propriétés 

rhéologiques (seuil de cisaillement et viscosité plastique) du RCPS. L’écoulement du RCPS par 

gravité dans les sections verticales, entraîne un gain de pression, qui se traduit par des pressions 𝑝 

élevées au fond de la colonne verticale ou inclinée. Cela explique les pics de pression 𝑝 observés 

sur la Figure 4.84 et la Figure Q.1 en Annexe Q. On note sur ces dernières que les pics sont plus 

accentués pour des diamètres relativement larges. Néanmoins, les diamètres de 0,1016 m et 

0,1270 m ne présentent presque pas de pression élevée au fond des sections verticales comme 

déjà discuté. On observe une augmentation des pertes de charge 𝛥𝑝/𝐿 avec la réduction du 

diamètre interne du pipeline. Cela s’explique par l’augmentation du coefficient de frottement 𝑓 

avec la réduction du diamètre interne de pipeline (Figure Q.2 à l’Annexe Q). Les valeurs de 

coefficients de frottement 𝑓 varient de 1,13 à 1,31 (1,32), 0,98 à 1,10 (1,11), 0,90 à 1,00 (1,00), et 

0,81 à 0,87 (0,87) pour des diamètres internes respectifs de 0,1016 m, 0,1270 m, 0,1463 m et 

0,1778 m à la température externe souterraine de -5°C (2°C). Il faudrait noter que le coefficient 

de frottement 𝑓 augmente très faiblement dans  la section à la surface pour tous les diamètres de 

pipeline, avant de pouvoir augmenter légèrement dans les sections souterraines. Vu que la 

température du RCPS augmente faiblement dans la section à la surface, le seuil de cisaillement et 
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la viscosité plastique du RCPS augmentent proportionnellement à l’augmentation de la 

température  (Figures Q.4 et Q.5 en Annexe Q) dans la section à surface du réseau de distribution 

de RCPS. Par conséquent, Re diminue faiblement et He augmente faiblement dans cette section 

du réseau de distribution du RCPS (Figure Q.3 à l’Annexe Q). Cela explique la faible 

augmentation du coefficient de frottement 𝑓 dans cette section du réseau de distribution du 

RCPS. L’augmentation de 𝑓 dans les sections souterraines est liée à la diminution de Re et à 

l’augmentation de He (Figure Q.3 à l’Annexe Q). L’augmentation de la température du RCPS 

dans les sections souterraines entraîne une augmentation  importante du seuil de cisaillement 

(Figure Q.4 à l’Annexe Q) et de la viscosité plastique (Figure Q.5 en Annexe Q) du RCPS. Cela 

implique une diminution de Re et une augmentation de He. Et par conséquent, on observe une 

augmentation des valeurs du coefficient de frottement 𝑓 dans les sections souterraines du réseau 

de distribution pour tous les diamètres internes de pipeline. 
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CHAPITRE 5 DISCUSSION 

Ce chapitre analyse globalement les résultats présentés au chapitre 4. Quatre points spécifiques 

sont analysés. Il s’agit notamment de :  

 l’effet de la température, du type de ciment et de la salinité sur les propriétés rhéologiques 

du RCP; 

 la mise en échelle des résultats du mini-essai d’écoulement en boucle au prototype réel; 

 l’effet de la température externe, de la vitesse d’écoulement et du diamètre interne du 

pipeline sur la température du RCPS; 

 l’effet du diamètre interne et de la vitesse d’écoulement sur les pertes de charge dans le 

réseau de distribution du RCPS; 

 Effet du diamètre interne et de la vitesse d’écoulement sur la pression de pompage  

 Effet de l’isolation du pipeline. 

5.1 Effet de la température, du type de ciment et de la salinité sur 

les propriétés rhéologiques du RCP  

L’effet de la température sur les propriétés rhéologiques des mélanges de remblai cimenté en pâte 

(RCP) Goldex et Meliadine a été examiné entre 2 et 20°C. Il a été établi au cours de cette étude 

que les propriétés rhéologiques des mélanges de RCP (GU ou HE) augmentent avec 

l’augmentation de la température. Cela est probablement lié à la formation des produits 

d’hydratation (Lei et Struble, 1997) et à la forte adsorption de l’eau par le ciment lorsque les 

températures sont relativement élevées (John et Gettu, 2014)., En effet, l’augmentation de la 

température entraîne généralement une augmentation de la demande en eau pour maintenir la 

même consistance et fluidité (en d’autres termes les mêmes propriétés rhéologiques). Ce 

comportement pourrait aussi bien expliquer la tendance à la diminution de l’affaissement aux 

cônes des mélanges de RCP. De plus, les résultats obtenus sont soutenus par ceux de Wu et al. 

(2013), qui a examiné l’effet de la température sur la fluidité et le seuil de cisaillement du RCP. 

Toutefois, il faudra noter que les essais de cisaillement réalisés au rhéomètre AR 2000 à des 

hautes températures (40°C et 45°C) sur les mélanges RCP n’ont pas été concrétisés. À ces 
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températures, les mélanges étudiés étaient difficilement déformables lors du cisaillement dans le 

rhéomètre de manière que cela causait un blocage et d’un glissement de l’échantillon. Il est 

important de signaler que les mélanges de résidus en pâte (RP) Meliadine ont démontré un 

comportement contraire à celui des mélanges RCP. Une tendance à la diminution des propriétés 

rhéologiques de RP avec l’augmentation de la température a été observée. Par contre, on observe 

une tendance à l’augmentation des propriétés rhéologiques de RCP avec l’augmentation de la 

température.  

Les mélanges de RCP réalisés ont été élaborés soit avec le ciment GU, soit avec le ciment HE à 

un dosage de 5% dans le but d’examiner l’effet du type de ciment sur les propriétés rhéologiques 

des mélanges de RCP. Il ressort des résultats obtenus que les mélanges de RCP au ciment HE ont 

présentés des valeurs de propriétés rhéologiques supérieures à celles des mélanges de RCP au 

ciment GU à 2, 10 et 20°C. Les deux de ciment ayant une composition minéralogique identique, 

leur différence réside sur leur degré de mouture. Le ciment HE étant plus fin que le ciment GU, il 

présente une surface spécifique plus élevée que celle du ciment GU. Cela entraîne probablement 

une capacité de rétention d’eau relativement élevée pour le ciment HE. Et par conséquent, les 

mélanges de RCP au ciment HE présentent une forte demande en eau que mélanges de RCP au 

ciment GU pour atteindre la même consistance et fluidité (en d’autres termes les mêmes 

propriétés rhéologiques).   

L’effet de la salinité sur les propriétés rhéologiques du RCP Goldex et Meliadine a été étudié à 

différentes températures. L’ajout du sel à des concentrations de 5 g/L à 20 g/l dans les mélanges 

de remblai cimenté en pâte a entraîné de manière générale une diminution des propriétés 

rhéologiques (seuil de cisaillement, indice de consistance, viscosité plastique et viscosité à 

l’infini). Cette diminution des propriétés rhéologiques est probablement liée à l’effet des ions 

salins sur les forces entre les particules. Ces résultats s’accordent avec ceux de Klein et Simon 

(2006), Mahlaba et al. (2011a, b) et Haiqiang et al. (2016). Toutefois, l’effet de la salinité sur les 

propriétés rhéologiques du RCP est complexe. On a observé que les mélanges de RCPS 

Meliadine ont présenté des seuils de cisaillement ou des indices de consistance légèrement 

supérieurs à ceux de RCP à certaines températures. Cela est probablement lié soit à la 

minéralogie du résidu, soit aux propriétés chimiques, minéralogiques  et physiques du mélange. Il 

faut noter que  le résidu Meliadine contient une proportion importante de la muscovite (14,6%), 

qui est un minéral argileux (phyllosilicate). Ce minéral ayant une capacité d’échange cationique 
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importante (Sparks, 2003) peut absorber les ions salins dans sa structure, et ainsi affecter la 

rhéologie du mélange. Une bonne compréhension de l’effet des ions salins nécessite des analyses 

supplémentaires et plus approfondies avec le zétamètre pour analyser les forces entre particules. 

Cela permettrait aussi de voir l’effet des types de sels ou d’ions salins sur les propriétés 

rhéologiques.  

5.2 Mise en échelle des résultats des essais de mini écoulement en 

boucle au prototype réel 

Le dispositif utilisé pour réaliser les essais d’écoulement en boucle utilise un diamètre 𝐷𝑙𝑜𝑜𝑝 de 

0,03175 m. Néanmoins, les diamètres de distribution du RCP sont en général plus grands (entre 

0,1 et 0,2 m).  Comme les pertes de charges sont influencés par le diamètre, il s’avère nécessaire 

d’établir une relation entre la perte de charge 𝛥𝑝/𝐿𝑙𝑜𝑜𝑝 obtenue au diamètre 𝐷𝑙𝑜𝑜𝑝 de 0,03175 m et 

celle 𝛥𝑝/𝐿𝑖 pouvant être obtenue à un diamètre 𝐷𝑖 (m) du système de distribution visé. Ainsi, les 

simulations numériques des essais en boucle des mélanges RP Goldex, RP Meliadine et RCP 

Meliadine à différents diamètres 𝐷𝑖 (0,05 m, 0,1 m, 0,15 m et 0,2 m) ont permis de calculer les 

différentes pertes de charge 𝛥𝑝/𝐿𝑖 correspondantes. Pour ce faire, le Tableau 5.1 reprend les 

différentes valeurs de 𝛥𝑝/𝐿𝑖 simulées.  

La Figure 5.1a présente la variation du ratio de pertes de charge linéaires (𝛥𝑝/𝐿𝑖)/(𝛥𝑝/𝐿𝑙𝑜𝑜𝑝) en 

fonction du ratio de diamètres 𝐷𝑖/𝐷𝑙𝑜𝑜𝑝 pour les mélanges RP Goldex, RP Meliadine et RCP 

Meliadine. Cela a permis de mettre en évidence que le type de mélange n’affecte pas les ratios, et 

par conséquent la relation entre la relation entre 𝐷𝑖/𝐷𝑙𝑜𝑜𝑝 et 𝛥𝑝/𝐿𝑖/𝛥𝑝/𝐿𝑙𝑜𝑜𝑝 (Figure 5.1a).  

Tableau 5.1 : Pertes de charge linéaires  𝛥𝑝/𝐿𝑖 simulées à différents diamètres pour les mélanges 

RP Goldex, RP Meliadine et RCP Meliadine. 

  

𝛥𝑝/𝐿𝑖 (kPa/m) 

 

𝐷 (m) RP Goldex RP Meliadine RCP Meliadine 

Mini-loop 0,03175 27,6 31,0 37,0 

Autres 

diamètres 

0,05 12,4 13,7 16,3 

0,1 4,0 4,2 5,0 

0,15 2,2 2,2 2,7 

0,2 1,4 1,4 1,7 
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Ainsi donc, la Figure 5.1b reprend la relation pouvant être utilisée pour déterminer la perte de 

charge linéaire 𝛥𝑝𝑖 pour un diamètre 𝐷𝑖 en partant de la perte de charge linéaire 𝛥𝑝/𝐿𝑙𝑜𝑜𝑝 issue de 

l’essai d’écoulement en boucle pour un diamètre 𝐷𝑙𝑜𝑜𝑝 de 0,03175 m. 

 

a) 

 

b) 

Figure 5.1 : a) Relations entre le ratio de diamètres 𝐷𝑖/𝐷𝑙𝑜𝑜𝑝 et le ratio de pertes de charge 

linéaires 𝛥𝑝/𝐿𝑖/𝛥𝑝/𝐿𝑙𝑜𝑜𝑝; b) Équation de l’effet d’échelle établie pour le circuit du mini-essai 

d’écoulement en boucle 

5.3 Effet de la température externe, de la vitesse d’écoulement et du 

diamètre interne du pipeline sur la température du RCPS  

La Figure 5.2 présente l’évolution de la température du RCPS dans le réseau de distribution de 

diamètre interne de 0,1463 m. La température du RCPS dans la section à la surface (-50°C) du 

réseau de  distribution pour des vitesses d’écoulement relativement faibles (0,82, 1,04, 1,20 et 

1,50 m/s). Par contre, à la vitesse d’écoulement de 1,50 m/s, aucune diminution de la température 

du RCPS n’a été observée sur la section à la surface. Ensuite, la température du RCPS augmente 

dans la section souterraine (-5°C et 2°C) de distribution du RCPS pour toutes les vitesses 

d’écoulement. En effet, la température externe joue un rôle important sur l’échange de chaleur et 

par conséquent sur la température du RCPS en écoulement dans le pipeline. Lorsque la différence 

des températures entre le milieu externe et le RCPS est importante, le flux de chaleur à la paroi 

augmente, et par conséquent entraîne un échange important de chaleur à la paroi du RCPS avec le 

milieu externe. Cela explique la diminution de la température dans la section à surface. Cela 

dénote une prédominance de l’effet de refroidissement sur l’effet de réchauffement lié à la 
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dissipation visqueuse. Toutefois, on note l’effet de la vitesse d’écoulement sur l’échange de 

chaleur. On observe que lorsque la vitesse d’écoulement est relativement élevée, la température 

du RCPS décroit très faiblement dans la section à la surface. Cela montre l’effet de la vitesse 

d’écoulement sur le transfert de chaleur. En effet, l’augmentation de la vitesse d’écoulement  

entraine une augmentation de la dissipation visqueuse et du frottement interne, et par conséquent, 

une augmentation relativement importante de l’échauffement ou de la température du fluide 

(Winter, 1987; Wagner, 2010). D’autre part, le transfert de chaleur par convection est plus 

prédominant par rapport au transfert de chaleur par conduction lorsque la vitesse d’écoulement 

est relativement élevée. Toutefois, il faut garder en mémoire que cette augmentation de la 

température du RCPS entraîne une augmentation de l’échange de chaleur le long du réseau de 

distribution.  

 

Figure 5.2 : Effet de la température externe et de la vitesse d’écoulement sur l’évolution de la 

température du RCPS dans le réseau de distribution 

La Figure 5.3 illustre l’effet du diamètre interne, de la vitesse d’écoulement du RCPS, et de la 

température externe souterraine sur la température de déposition du RCPS dans le chantier. Pour 

une vitesse d’écoulement donnée, la température de déposition décroît avec l’augmentation du 

diamètre interne du pipeline. D’une part, l’augmentation du diamètre interne induit une 

diminution de la dissipation visqueuse et du frottement interne, et par conséquent une diminution 
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des pertes de charge (voir Figure 5.4). Cela implique donc un faible auto-échauffement du RCPS 

en écoulement.  

Pour un diamètre interne donné, la température de déposition augmente avec l’augmentation de la 

vitesse d’écoulement et l’augmentation de la température externe. Cela est lié à l’augmentation 

de la dissipation visqueuse et du frottement interne avec l’augmentation de la vitesse 

d’écoulement du RCPS, ainsi qu’au faible écart de température entre le RCPS en écoulement et le 

milieu externe. Par exemple, la température de déposition pour un diamètre de 0,1463 m passe de 

11,3°C à 15,3°C pour des vitesses d’écoulement respectifs de 0,82 m/s et 1,5 m/s lorsque la 

température de l’air sous terre est de -5°C. 

 

Figure 5.3 : Effet de la vitesse d’écoulement, du diamètre interne et de la température externe 

souterraine sur la température de déposition du RCPS. 

5.4 Effet du diamètre interne et de la vitesse d’écoulement sur les 

pertes de charge dans le réseau de distribution du RCPS 

L’effet du diamètre interne de la conduite et de la vitesse d’écoulement sur les pertes de charge 

dans le réseau de distribution du RCPS a été étudié.  Il ressort de cette étude que les pertes de 

charge diminuent avec l’augmentation du diamètre interne. Pour diamètre donné, les pertes de 

charge augmentent avec l’augmentation de la vitesse d’écoulement (Figure 5.4). Les Figure 5.4a 

et b présentent respectivement les variations de perte de charge dans les sections horizontales et 



188 

 

verticales  avec le diamètre interne du pipeline et la vitesse d’écoulement du RCPS dans le réseau 

de distribution. Pour le diamètre de 0,1016 m, les pertes de charge dans les sections horizontales 

sont d’environ 22, 24 et 29 kPa/m pour des vitesses respectives de 1,04 m/s, 1,2 m/s et 1,5 m/s. 

Pour le diamètre de 0,1270 m, les pertes de charge dans les sections horizontales sont d’environ 

13, 15, 17 et 20 kPa/m pour des vitesses respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s et 1,5 m/s. 

Pour le diamètre de 0,1463 m, les pertes de charge dans les sections horizontales sont d’environ 

11, 12, 13 et 15 kPa/m pour des vitesses respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s et 1,5 m/s. 

Pour le diamètre de 0,1778 m, les pertes de charge dans les sections horizontales sont d’environ 

8, 9, 10 et 11 kPa/m pour des vitesses respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s et 1,5 m/s.  

Dans les sections verticales ou fortement inclinées, les variations linéaires de pression pour le 

diamètre de 0,1016m sont d’environ 3, 5 et 10 kPa/m pour des vitesses respectives de 1,04 m/s, 

1,2 m/s et 1,5 m/s. Pour le diamètre de 0,1270 m, les variations linéaires de pression dans les 

sections verticales ou fortement inclinées sont d’environ -6, -4, -2, et 1 kPa/m pour des vitesses 

respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s et 1,5 m/s. Pour le diamètre de 0,1463 m, les les 

variations linéaires de pression dans les sections verticales ou fortement inclinées sont d’environ -

8, -7, -6 et -4 kPa/m pour des vitesses respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s et 1,5 m/s. Pour 

le diamètre de 0,1778 m, les pertes de charge dans les sections verticales ou fortement inclinées 

sont d’environ -11, -9, -9, et -8 kPa/m pour des vitesses respectives de 0,82 m/s, 1,04 m/s, 1,2 m/s 

et 1,5 m/s.  

 

a 

 

b 

Figure 5.4 : Effet de la vitesse d’écoulement et du diamètre interne du pipeline sur les pertes de 

charge dans les sections horizontales (a) et verticales (b) 
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5.5 Effet du diamètre interne et de la vitesse d’écoulement sur la 

pression de pompage 

Le Tableau 5.2 ou la Figure 5.5 reprend les différentes valeurs de pression de pompage pour 

différentes vitesses d’écoulement 𝑈 du RCPS dans les pipelines de 0,1016 m, 0,1270 m, 0,1463 

m et 0,1778 m de diamètre. Pour une vitesse d’écoulement et un diamètre interne de pipeline 

donnés, les pertes de charge obtenues à la température externe souterraine de 2°C sont très 

légèrement supérieures à celles obtenues à la température externe souterraine de -5°C.   

Tableau 5.2 : Pressions de pompage pour différents diamètres internes et vitesses d’écoulement 

 

Pressions de pompage 𝑝 (kPa) 

 

𝑈 = 0,82  m/s 𝑈 = 1,04  m/s 𝑈 = 1,20  m/s 𝑈 = 1,50  m/s 

Diamètre 

(m) 
2°C -5°C 2°C -5°C 2°C -5°C 2°C -5°C 

0,1016     26130 25784 29633 29312 36141 35859 

0,127 13151 12935 16186 15999 18355 18184 22374 22226 

0,1463 9355 9213 11614 11492 13224 13114 16204 16110 

0,1778 5351 5267 6864 6793 7941 7877 9929 9875 

 

 

Figure 5.5 : Effet du diamètre interne de la conduite et de la vitesse d’écoulement sur les 

pressions de pompage 
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Les pressions de pompage augmentent avec la réduction du diamètre interne du pipeline pour une 

vitesse donnée. À la vitesse d’écoulement de 1,04 m/s, les valeurs de pression de pompage sont 

de 25784 kPa, 15999 kPa, 11492 kPa, et 6793 kPa pour des diamètres internes respectifs de de 

0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m à la température externe souterraine de -5°C. Pour un 

diamètre donné, la pression de pompage augmente avec l’augmentation de la vitesse 

d’écoulement du RCPS. Par exemple, pour le diamètre interne de 0,1463 m à la température 

externe souterraine de -5°C, les valeurs de pression de pompage sont de 9213 kPa, 11492 kPa, 

13114 kPa, et 16110 kPa pour des vitesses d’écoulement du RCPS respectives de 0,82 m/s, 1,04 

m/s, 1,20 m/s et 1,50 m/s. Ceci se justifie par l’augmentation des pertes de charge d’une part, 

avec la réduction du diamètre interne de la conduite, et d’autre part avec l’augmentation  de la 

vitesse d’écoulement. 

Les pressions situées au-dessus de la ligne horizontale continue sont irréalistes. Celles situées 

entre les lignes horizontales continue et discontinue sont très élevées, et celles en dessous de la 

ligne horizontale discontinue sont plus réalistes et s’approchent des valeurs de pression 

rencontrées dans les réseaux de distribution du remblai cimenté en pâte.  

Comme indiqué par Ouellet (2015), la représentativité des échantillons utilisés dans les méthodes 

de design (essais rhéologiques, tests d’écoulement de la pâte et opération) peut influencer les 

résultats. Dans le cadre de cette étude, les résidus Meliadine étaient "artificiels" car non produit 

par l'usine de concentration du minerai, mais plutôt par broyage sec de carottes de roches. Les 

résultats présentés dans ce mémoire devront donc être considérés avec une certaine prudence. 

5.6 Effet de l’isolation du pipeline  

L’effet d’une isolation thermique de la section à la surface du réseau de distribution du RCPS de 

diamètre interne de 0,1463 m à une vitesse de 1,04 m/s a été étudié pour des fins de comparaison 

avec le cas où le pipeline est exposé à -50°C. Seul le cas d’une température souterraine externe de 

-5°C a été considéré. L’isolation thermique a été simulée en appliquant un matériau isolant 

(polyuréthane) d’une conductivité thermique de 0,025 W/m.K (Tseng et al., 1997) et d’une 

épaisseur de 3 cm. La Figure 5.6 compare la variation de la température le long du pipeline en cas 

d’isolation (-5°C sous terre) et sans isolation (température externe de l’air de -50°C en surface et 

température externe sous terre de -5°C et 2°C).  
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Ces résultats indiquent que cette isolation thermique s’accompagne d’un gain de température du 

RCPS tout le long du pipeline. En effet, la température du RCPS augmente d’abord de 10°C à 

11°C dans la section à la surface, ensuite augmente dans les sections souterraines (avec 

température extérieure de -5°C) jusqu’à 14,2°C. La température de déposition du remblai sans 

isolation thermique était de 12,8°C (pour une température souterraine externe de -5°C). L’option 

d’isolation reste envisageable, parce que notre étude n’a pas pu ressortir le gradient de 

température transversal du RCPS en écoulement dans le réseau de distribution. Rappelons que 

toutes les températures montrées sont celles dans l’axe du pipeline. 

Quant aux pertes de charges dans les parties horizontales, elles sont  de 12 kPa/m  sans isolation 

et 12,4 kPa/m de avec isolation. Les pressions requises pour le pompage seraient respectivement 

de 11492 kPa  et 11981 kPa sans et avec isolation. L’isolation augmente légèrement les pertes de 

charges et la pression de pompage. Cela est lié à la température du RCPS qui est relativement 

élevée pour le cas d’isolation comparativement au cas sans isolation de la section en surface, et 

par conséquent, entraîne une augmentation relativement élevée des propriétés rhéologiques du 

RCPS dans le premier cas que dans le second.  

 

Figure 5.6 : Effet de l’isolation de la section à la surface sur la température du RCPS 

(𝐶𝑤=76,3%) en écoulement dans le réseau de distribution de 0,1463 m de diamètre interne à une 

vitesse de 1,04 m/s. 
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CHAPITRE 6 CONCLUSIONS ET RECOMMANDATIONS 

6.1 Conclusions 

Ce projet de recherche visait principalement à développer des outils d’aide à la conception du 

système de distribution de remblai cimenté en pâte (RCP) dans les mines souterraines situées 

dans les zones froides, pouvant prédire les températures de déposition du RCP, les pression de 

pompage et les pertes de charge en tenant de la thermodépendance des propriétés rhéologiques du 

RCP. La température de déposition du RCP est importante pour la prédiction du comportement 

thermique du RCP mis en place dans les chantiers ouverts dans le pergélisol. Pour atteindre 

l’objectif visé, ce projet de recherche a été mené en trois phases suivant les objectifs spécifiques 

assignés, qui sont notamment : étudier l’effet de la température et de la salinité sur les propriétés 

rhéologiques et thermiques de RCP, réaliser les essais d’écoulement en boucle afin de déterminer 

des pertes de charge et la distribution de la température du fluide en écoulement le long des 

pipelines, calibrer le modèle numérique à l’aide des données d’essais d’écoulement en boucle, et 

enfin  réaliser les simulations numériques de l’écoulement du RCP dans un réseau de distribution 

à l’échelle réelle à l’aide du modèle numérique calibré. 

L’élaboration des mélanges à étudier a constitué la phase préliminaire de cette étude. Pour cela, 

les résidus de la Mine Goldex et du projet minier Meliadine ont été utilisés dans la préparation de 

différents mélanges. Ces mélanges sont le résidu en pâte RP et de remblai cimenté en pâte RCP 

préparés avec l’eau de robinet, ainsi que le résidu en pâte RPS et de remblai cimenté en pâte 

RCPS préparés avec l’eau saline (à des concentrations en sel de 5, 10 et 20 g/L). Les ciments GU 

et HE ont été utilisés dans la préparation des mélanges de RCP et RCPS à des dosages de 5%.  

La première phase a consisté à étudier l’effet de la température et de la salinité sur les propriétés 

rhéologiques et thermiques des mélanges de résidus en pâte dans liant (RP) et de RCP. Les 

résidus de la Mine Goldex et du projet de la Mine Meliadine ont été utilisés pour l’élaboration de 

ces mélanges étudiés. Les mélanges de RCP ont été réalisés avec le ciment HE et GU à un dosage 

de 5%. Dans un premier temps, les essais d’affaissement aux cônes d’Abrams et au petit cône ont 

été réalisés à différents pourcentages solides. Les résultats d’affaissement aux cônes ont permis 

d’étudier l’effet de la température sur la fluidité et de ressortir des pourcentages solides donnant 

l’affaissement au cône standard d’Abrams visé de 7 pouces. L’effet de la température sur 
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l’affaissement ou la fluidité n’a pas été perçu sur les mélanges de RP. Par contre, une perte 

d’affaissement ou de fluidité des mélanges de RCP a été observée avec l’augmentation de la 

température. Les pourcentages solides de 75 % et 76,3 % correspondent à l’affaissement au cône 

standard de 7 pouces respectivement pour les mélanges de RCP et RP Meliadine. Les 

pourcentages solides de 77,3 % et 78,3 % correspondent à l’affaissement au cône standard de 7 

pouces respectivement pour les mélanges de RCP et RP Goldex. Des relations empiriques ont été 

proposées pour convertir les affaissements obtenus au petit cône aux valeurs équivalentes du cône 

standard d’Abrams. 

Dans un 2
e
 temps, l’effet du pourcentage solide sur les propriétés rhéologiques a été étudié sur les 

mélanges de RP et RCP à 20°C, à l’aide d’essais de cisaillement au rhéomètre AR 2000 (TA 

Instruments) équipé du croisillon («vane»). Puis, l’effet de la température et de la salinité a été 

étudié sur les mélanges de 75% et 76,3% de RCPS réalisés sur les mélanges de RP, RPS, RCP et 

RCPS. Il est ressorti de cette étude que les mélanges de RP ont démontré un comportement 

thermo-rhéologique opposé à celui des mélanges RCP. En effet, les propriétés rhéologiques (seuil 

de cisaillement, indice de consistance, viscosité plastique et viscosité à l’infini) de RP et RPS ont 

tendance à diminuer avec l’augmentation de la température. Par contre, les propriétés 

rhéologiques de RCP et RCPS ont tendance à augmenter avec l’augmentation de la température. 

En outre, l’ajout de sels à des dosages de 5 à 20 g/L dans les mélanges RCP diminue les 

propriétés rhéologiques des RCPS dans la plage de température de 2 et 20°C. Néanmoins, un 

comportement complexe a été observé sur  certains mélanges de RCPS Meliadine à 20°C qui ont 

exhibé des propriétés rhéologiques légèrement supérieures à celles de RCP. Enfin, l’effet de la 

température sur les propriétés thermiques (conductivité thermique, capacité thermique 

volumique, diffusivité et résistivité thermiques) de RP et RCP frais a été étudié sur les mélanges 

de RP et RCP Goldex et Meliadine. Ces mélanges de RP et RCP ont exhibés des valeurs de 

propriétés thermiques équivalentes pour chaque type de résidu à toutes les températures d’essai. 

La seconde phase a consisté à réaliser des essais d’écoulement en boucle dans un circuit 

instrumenté dans le but d’acquérir les données (températures du fluide et de la paroi, pertes de 

charge, le débit d’écoulement), qui ont servi au calibrage d’un modèle numérique destiné simuler 

l’écoulement du remblai un vrai système de distribution. Les essais d’écoulement en boucle ont 

été réalisés avec l’eau, le RP Goldex (𝐶𝑤 = 74%), le RP et le RCP Meliadine (𝐶𝑤 = 71% et 𝐵𝑤 = 

5% HE). Une pompe à vis a été utilisée pour pomper les différents matériaux dans le circuit en 
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boucle long de 27,9 m et de diamètre interne de 31,8 mm durant 60 minutes. Ces essais ont mis 

en évidence l’effet de la consistance des matériaux sur la dissipation visqueuse et le frottement 

interne, et par conséquent sur l’auto-échauffement des matériaux testés. Aucune variation de la 

température de l’eau n’a été perçue avec le temps d’écoulement. Par contre, des augmentations 

considérables des températures des mélanges de RP et RCP et de la paroi de la conduite ont été 

observées avec le temps d’écoulement. Cette augmentation de la température avec le temps 

d’écoulement a entraîné une diminution des pertes de charge pour les mélanges de RP et une 

augmentation des pertes de charge pour le mélange RCP. Les données recueillies aux cours des 

essais d’écoulement en boucle ont servi à calibrer le modèle numérique d’écoulement «non 

isothermal pipe flow» de Comsol Multiphysics 5.2. Les propriétés rhéologiques et thermiques 

obtenues à la première phase ont été aussi utilisées à cette fin. Les valeurs expérimentales de 

température et de pertes de charge se sont bien accordées avec les valeurs simulées avec le 

modèle numérique calibré. Cela a permis de réaliser une mise en échelle des résultats du mini-

essai d’écoulement en boucle aux prototypes réels dont les diamètres de pipeline sont plus grands 

que le petit diamètre de 31,8 mm de la tuyauterie utilisée pour le mini-loop test.  

La dernière phase a été consacrée aux modélisations numériques du transport du RCP dans un 

système de distribution à l’aide du modèle numérique calibré à la phase précédente en tenant 

compte de la thermodépendance des propriétés rhéologiques du RCPS. L’effet de la vitesse 

d’écoulement, du diamètre interne, de la température externe et d’isolation de la section à la 

surface sur la température de déposition, les pertes de charge et les pressions de pompage a été 

examiné. D’une part, il est ressorti de cette étude que l’augmentation de la vitesse d’écoulement 

du RCP entraîne une augmentation de la température de déposition du RCP, des pertes de charge 

et de la pression de pompage. De plus, elle favorise la prédominance du transfert de chaleur par 

convection sur le transfert de chaleur par conduction. D’autre part, l’augmentation du diamètre 

interne du pipeline réduit la température de déposition, les pertes de charge ainsi que les 

pressions de pompage. En ce qui concerne l’effet de la température externe souterraine, il s’est 

avéré que les températures de déposition du RCPS pour une température externe de -5°C 

(pergélisol) sont inférieures à celles observées à la température externe de 2°C (chauffage). 

Toutefois, il a été remarqué un très faible impact (négligeable) des températures externes 

souterraines considérées sur les pertes de charge et les pressions de pompage. Par ailleurs, 

lorsque la température externe à la surface est très faible (-50°C pour la section à la surface), on 
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enregistre des diminutions de température du RCP pour des vitesses d’écoulement relativement 

faibles.  

Les essais d’écoulement en boucle ont permis d’évaluer l’effet de la dissipation visqueuse et du 

frottement interne sur la variation de la température du remblai en pâte en écoulement dans le 

pipeline. La dissipation visqueuse et le frottement interne restent des paramètres très important à 

tenir compte lors de la conception d’un système de transport et d’une étude transfert de chaleur 

du remblai en pâte en écoulement dans une conduite. Le modèle numérique calibré «non 

isothermal pipe flow» (du logiciel Comsol Multiphysics 5.2) avec les données expérimentales des 

mini-essais de l’écoulement en boucle du remblai en pâte a été établi. La mise en échelle des 

résultats du mini-essai d’écoulement en boucle au prototype réel a été réalisée. Ce modèle 

numérique établi a servi à réaliser une étude de l’effet de la vitesse d’écoulement, du diamètre du 

pipeline et de la température externe souterraine et de l’isolation de la section en surface sur 

l’évolution de la température du remblai en pâte, les pertes de charge dans un réseau réel de 

transport, ainsi que sur les pressions de pompage en tenant compte de la thermodépendance des 

propriétés rhéologiques. La vitesse d’écoulement, du diamètre du pipeline et de la température 

externe jouent un rôle important sur le transfert de chaleur dans le pipeline, les pertes charge et 

les pressions de pompage. Les trois paramètres (la vitesse d’écoulement, du diamètre du pipeline 

et de la température externe) sont des éléments importants à tenir en compte lors de la conception 

d’un système de transport du RCP dans les mines souterraines dans les régions froides. Il a été 

noté que l’isolation de la section à la surface apporte un gain d’énergie thermique en diminuant le 

transfert de chaleur à la paroi, et permet ainsi une déposition du RCP à des températures élevées 

comparativement aux cas sans isolation. 

6.2 Recommandations 

Plusieurs aspects relatifs à la conception du système de distribution de RCP dans les mines 

souterraines situées dans les zones froides, n’ont pas été vidés dans le cadre de cette étude et 

méritent de faire objets de travaux futurs. 

Une vitesse de l’air (du vent) de 1 m/s ou 3,6 km/h a été considérée dans toutes les modélisations 

réalisées. Comme la variation de la vitesse de l’air peut entraîner une variation importante de 

l’échange de chaleur à la paroi, il serait nécessaire d’étudier l’effet des vitesses de l’air 
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supérieures à 1 m/s sur le transfert de chaleur et l’évolution de la température du RCP en 

écoulement dans le système de transport.  

Le préchauffage de l’eau peut être aussi envisagé pour atteindre la température initiale désirée du 

mélange de RCPS au cas où cette dernière demeure basse. 

Les températures prédites par les modélisations numériques ont été déterminées dans l’axe de la 

conduite. Il est suggéré d’examiner la distribution transversale ou radiale de la température dans 

les conduites pour entre autre vérifier s’il n’y pas possibilité de gel du RCP proche de la paroi des 

pipelines. Le module numérique utilisé ne le permettait pas.   

Compte tenu de l’incertitude de mesure sur les propriétés thermiques et rhéologiques utilisées, 

une étude de sensibilité est recommandée pour évaluer dans quelle mesure les résultats sont 

influencés par une certaine variation des paramètres d’entrée.  

Un des désavantages du module «non isothermal pipe flow» de Comsol Multiphysics® 5.2 utilisé 

est que les pertes de charge sont estimées à partir d’équations analytiques. Il serait intéressant 

dans le futur d’utiliser plutôt de module CFD (computational fluid dynamics) couplé au module 

d’échange de chaleur. Le module CFD permet de résoudre les différentes formes des équations de 

transport de Navier-Stokes et de déterminer les distributions de vitesses et de pression le long et à 

travers les conduites. 

Finalement, comme les systèmes de distribution du RCP sont instrumentés, il serait pertinent de 

réaliser une validation des modélisations numériques en utilisant les données collectées sur un 

système de distribution réel. Un des défis à relever sera de déterminer les propriétés rhéologiques 

sur site.  
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ANNEXE A - RECETTES D’ESSAIS D’AFFAISSEMENT 

Tableau A. 1 : Recettes de RP et RCP Goldex 

Mélange Température (°C) 𝐶𝑤 𝐶𝑣 𝐵𝑤 (%) 𝜌 (g/cm³) 

RP 01 

5 

80,9% 61,0% 0 2,056 

RP 02 80,5% 60,0% 0 2,045 

RP 03 79,2% 58,0% 0 2,009 

RP 04 77,6% 56,0% 0 1,971 

RP 05 77,2% 55,0% 0 1,96 

RP 06 76,8% 55,0% 0 1,951 

RP 07 76,3% 54,0% 0 1,938 

RP 08 

14 

80,8% 61,0% 0 2,053 

RP 09 78,9% 58,0% 0 2,004 

RP 10 77,9% 56,0% 0 1,978 

RP 11 76,0% 54,0% 0 1,932 

RP 12 75,5% 53,0% 0 1,92 

RP 13 

20 

81,6% 62,0% 0 2,073 

RP 14 80,1% 59,0% 0 2,033 

RP 15 79,6% 59,0% 0 2,02 

RP 16 79,2% 58,0% 0 2,011 

RP 17 78,8% 58,0% 0 1,999 

RP 18 78,3% 57,0% 0 1,988 

RP 19 76,7% 55,0% 0 1,947 

RCP 01 

5 

81,7% 62,0% 5 2,085 

RCP 02 78,9% 58,0% 5 2,011 

RCP 03 77,3% 55,0% 5 1,929 

RCP 04 75,33% 53,0% 5 1,922 

RCP 05 

20 

81,6% 61,0% 5 2,075 

RCP 06 79,8% 59,0% 5 2,033 

RCP 07 77,2% 55,0% 5 1,967 

RCP 08 75,5% 53,0% 5 1,927 

RCP 09 

30 

79,0% 58,0% 5 2,012 

RCP 10 77,0% 55,0% 5 1,962 

RCP 11 75,0% 52,0% 5 1,914 

RCP 12 

38 

79,0% 58,0% 5 2,012 

RCP 13 77,0% 55,0% 5 1,962 

RCP 14 75,0% 52,0% 5 1,914 
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Tableau A. 2 : Recettes de RP et RCP Meliadine 

Mélange 𝐵𝑤 𝐶𝑤 (%) 𝐶𝑣 (%) 𝜌 (g/cm³) 

RP 01 

0% 

80,1 58 2,115 

RP 02 78,9 56 2,082 

RP 03 78,0 55 2,056 

RP 04 77,5 54 2,04 

RP 05 76,7 53 2,019 

RP 06 75,1 51 1,977 

RP 07 73,2 48 1,928 

RCP 01 

3% (GU) 

80,6 59 2,132 

RCP 02 79,3 57 2,095 

RCP 03 77,9 55 2,054 

RCP 04 76,5 53 2,015 

RCP 05 75,3 51 1,984 

RCP 06 74,6 50 1,959 

RCP 07 

5% (GU) 

80,0 58 2,136 

RCP 08 79,0 56 2,114 

RCP 09 77,5 54 2,063 

RCP 10 76,0 52 2,022 

RCP 11 75,0 51 1,991 

RCP 12 74,0 49 1,95 

RCP 13 

3% (HE) 

80,6 59 2,132 

RCP 14 79,7 57 2,106 

RCP 15 77,98 55 2,057 

RCP 16 76,3 52 2,01 

RCP 17 75,3 51 1,985 

RCP 18 74,1 49 1,955 

RCP 19 

5% (HE) 

80,5 59 2,132 

RCP 20 79,6 57 2,104 

RCP 21 77,8 54 2,054 

RCP 22 76,4 52 2,016 

RCP 23 75,4 51 1,989 

RCP 24 74,2 50 1,959 
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ANNEXE B - RECETTES D’ESSAIS RHÉOLOGIQUES 

Tableau B. 1 : Mélanges de RP, RCP et RCPS Goldex 

𝐶𝑤 (%) 𝐵𝑤 (%) 𝐶𝑣 (%) 𝜌 (g/cm³) [sel] (g/L) 𝛵 (°C) 

74 0 51 1,885 0 20 

76,3 

0 54 1,938 0 20 

5 (GU) 54 1,945 5 et 10 2, 10 et 20 

5 (HE) 54 1,945 5 et 10 2, 10 et 20 

77,5 
0 56 1,967 0 20 

5 (HE) 56 1,974 0 20 

79 
0 58 2,005 0 20 

5 (HE) 58 2,012 0 20 

80 
0 59 2,031 0 20 

5 (HE) 59 2,039 0 20 

 

Tableau B. 2 : Mélanges de RP, RPS, RCP et RCPS Meliadine 

𝐶𝑤 (%) 𝐵𝑤 (%) 𝐶𝑣 (%) 𝜌 (g/cm³) [sel] (g/L) 𝛵 (°C) 

71 
0 46 1,877 0 20 

5 (HE) 46 1,88 0 20 

73 

0 48 1,925 0 20 

5 (GU) 48 1,928 0 20 

5 (HE) 48 1,928 0 20 

75 

0 51 1,975 0 20 

5 (GU) 51 1,978 10 et 20 2, 10 et 20 

5 (HE) 51 1,978 10 et 20 2, 10 et 20 

75* 

0 
51 1,975 0 2, 10, 20 et 45 

51 1,975 5 10, 20 et 45 

5 (HE) 
51 1,978 0 2, 10, 20 et 45 

51 1,978 5 2, 10, et 20 

76,3 

0 52 2,007 0 20 

5 (GU) 52 2,011 5 et 10 2, 10 et 20 

5 (HE) 52 2,011 5 et 10 2, 10 et 20 

(*) Mélanges concernant l’article GéoQuébec à l’Annexe G 
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ANNEXE C – TABLE DE LA SONDE DE TEMPÉRATURE TYPE RTD R24 

 

Figure C. 1 : Table de conversion résistance-température de la sonde de température RTD R24. 
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ANNEXE D – RÉSULTATS D’ESSAIS D’AFFAISSEMENT DES 

MÉLANGES DE RÉSIDU EN PÂTE  

Tableau D. 1 : Valeurs d’affaissement du RP Goldex à différents pourcentages solides pour des 

températures de 5, 14 et 20°C. 

Mélange 𝛵 (°C) 𝐶𝑤  𝐵𝑤 (%) S_CS (cm) S_PC (cm) 

RP 01 

5 

80,9% 0 6 2,8 

RP 02 80,5% 0 7 3,7 

RP 03 79,2% 0 12 6 

RP 04 77,6% 0 16,4 7 

RP 05 77,2% 0 21,4 8,5 

RP 06 76,8% 0 22 9,8 

RP 07 76,3% 0 24 11 

RP 08 

14 

80,8% 0 6,5 2,8 

RP 09 79,0% 0 13,3 6 

RP 10 77,9% 0 18,4 8,4 

RP 11 76,0% 0 25 11,2 

RP 12 75,5% 0 26,8 11,7 

RP 13 

20 

81,6% 0 5,4 2,8 

RP 14 80,1% 0 8 3,8 

RP 15 79,6% 0 10,5 5 

RP 16 79,2% 0 12 5,5 

RP 17 78,8% 0 15,6 7,2 

RP 18 78,3% 0 18,5 8,3 

RP 19 76,7% 0 25,5 11,5 
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Tableau D. 2 : Valeurs d’affaissement du RP Meliadine à différents pourcentages solides (20°C) 

Mélange 𝐶𝑤  𝐵𝑤 (%) S_CS (cm) S_PC (cm) 

RP 01 80,1% 0   2,9 

RP 02 79,0% 0   3,7 

RP 03 78,0% 0   5 

RP 04 77,4% 0   7 

RP 05 76,7% 0   8,5 

RP 06 75,1% 0   10,2 

RP 07 73,2% 0   13,2 

RP 08 78,0% 0 9,4   

RP 09 77% 0 15   

RP 10 76,0% 0 20   

RP 11 75,0% 0 23,8   

RP 12 74,0% 0 26,2   
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ANNEXE E – RÉSULTATS D’ESSAIS D’AFFAISSEMENT DES 

MÉLANGES DE REMBLAI CIMENTÉ EN PÂTE  

Tableau E. 1 : Valeurs d’affaissement du RPC Goldex à différents pourcentages solides pour des 

températures de 5, 20, 30 et 38°C. 

Mélange 𝛵 (°C) 𝐶𝑤  𝐵𝑤 S_CS (cm) S_PC (cm) 

RCP 01 

5 

81,7% 5 5 2,5 

RCP 02 78,9% 5 11 5 

RCP 03 77,3% 5 20,5 8 

RCP 04 75,3% 5 26 12 

RCP 05 

20 

81,4% 5 4,8 2,3 

RCP 06 79,8% 5 7,4 3,8 

RCP 07 77,2% 5 19,3 7,3 

RCP 08 75,5% 5 24,4 10 

RCP 09 

30 

79,0% 5 5,6 2,7 

RCP 10 77,0% 5 12 5,6 

RCP 11 75,0% 5 21 10 

RCP 12 

38 

79,0% 5 5,2 2,5 

RCP 13 77,0% 5 10 5,2 

RCP 14 75,0% 5 19,5 9,5 

Tableau E. 2: Valeurs d’affaissement du RPC Meliadine à différents pourcentages solides pour 3 

et 5% de dosage en ciment GU (20°C) 

Mélange 𝐶𝑤  𝐵𝑤 (%) S_CS (cm) S_PC (cm) 

RCP 01 80,6% 3   1,6 

RCP 02 79,3% 3   2,6 

RCP 03 77,9% 3   4 

RCP 04 76,4% 3   6 

RCP 05 75,3% 3   8,5 

RCP 06 74,6% 3   9,6 

RCP 07 80,7% 5   2 

RCP 08 79,9% 5   2,6 

RCP 09 78,1% 5   4 

RCP 10 76,7% 5   6,6 

RCP 11 75,5% 5   8 

RCP 12 73,9% 5   10,5 
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Tableau E. 3 : Valeurs d’affaissement du RPC Meliadine à différents pourcentages solides pour 3 

et 5% de dosage en ciment HE (20°C) 

Mélange 𝐶𝑤  𝐵𝑤 (%) S_CS (cm) S_PC (cm) 

RCP 01 80,6% 3   2,1 

RCP 02 79,7% 3   2,5 

RCP 03 78,0% 3   3,9 

RCP 04 76,3% 3   6,7 

RCP 05 75,3% 3   8 

RCP 06 74,1% 3   10 

RCP 07 80,5% 5   2 

RCP 08 79,6% 5   2,5 

RCP 09 77,8% 5   4,2 

RCP 10 76,4% 5   6,7 

RCP 11 75,4% 5   8 

RCP 12 74,2% 5   9,8 
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ANNEXE F – RÉSULTATS D’ESSAIS RHÉOLOGIQUES DES MÉLANGES 

DE RÉSIDU EN PÂTE 

Tableau F. 1 : Propriétés rhéologiques du RP Goldex à 𝐶𝑤 = 74 %, 76,3 %, 77,5 %, 79 % et 80 % 

   

𝐶𝑤 (%) 

   

74 76,3 77,5 79 80 

Herschel-Bulkley 

𝜏hb (Pa) 32,1 68 137,6 174,4 214,4 

𝐾 (Pas
n
) 0,74 1,55 1,93 3,09 4,24 

𝑛 0,93 0,96 0,99 0,98 0,99 

Erreur 1,816 4,121 2,398 1,279 2,701 

Bingham 

𝜏o (Pa) 33,8 69,3 137,9 175,9 214,7 

𝜂B (Pa.s) 0,51 1,27 1,88 2,77 4,19 

Erreur 6,916 5,815 2,457 2,597 2,713 

Sisko 

𝜂∞ (Pa.s) 0,50 1,26 1,86 2,74 4,15 

𝐾S 32,7 68,6 137,6 175 213,9 

𝑛S 0,0138 0,006 0,003 0,0041 0,0036 

Erreur 1,081 1,713 0,6039 0,4984 0,8249 

 

Tableau F. 2 : Propriétés rhéologiques du RP Meliadine à 𝐶𝑤 = 71%, 73%, 75%, et 76,3% 

   

𝐶𝑤 (%) 

   

71 73 75 76,3 

Herschel-Bulkley 

𝜏hb (Pa) 28,6 79,9 133 165 

𝐾 (Pas
n
) 0,83 1,16 2,38 3,31 

𝑛 0,946 0,9995 0,9773 0,9948 

Erreur 1,14 1,49 1,39 2,94 

Bingham 

𝜏o (Pa) 30,3 800 134,1 165,4 

𝜂B (Pa.s) 0,63 1,15 2,14 3,23 

Erreur 5,43 1,487 2,508 3,01 

Sisko 

𝜂∞ (Pa.s) 0,63 1,15 2,11 3,24 

𝐾S 29,3 79,5 133,3 165,3 

𝑛S 0,01268 0,00361 0,005114 1,2E-07 

Erreur 1,081 0,5839 0,4098 0,822 
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ANNEXE G – RÉSULTATS D’ESSAIS RHÉOLOGIQUES DES MÉLANGES 

DU RCP ET RCPS GOLDEX  

Tableau G. 1 : Propriétés rhéologiques des mélanges de RCP Goldex à 5% de dosage en ciment 

HE pour 𝐶𝑊=76,3%, 77,5%, 79%, et 80% 

   

𝐶𝑤 (%) 

   

76,3 77,5 79 80 

Herschel-Bulkley 

𝜏hb (Pa) 72,4 141,9 191,4 231,5 

𝐾 (Pas
n
) 1,7 2,4 3,2 4,9 

𝑛 0,95 0,98 0,99 0,99 

Erreur 1,238 2,325 1,976 3,361 

Bingham 

𝜏o (Pa) 73,9 143 192,4 232,2 

𝜂B (Pa.s) 1,38 2,18 3,03 4,73 

Erreur 4,663 3,026 2,332 3,407 

Sisko 

𝜂∞ (Pa.s) 1,34 2,14 3,01 4,74 

𝐾S 72,82 142,2 191,7 231,9 

𝑛S 0,0112 0,0054 0,002947 7,7E-08 

Erreur 0,5007 0,5545 0,5284 1,59 

Tableau G. 2 : Propriétés rhéologiques des mélanges de RCPS Goldex (𝐶𝑊=76,3%, 𝐵𝑤=5%GU, 

concentration en sel de 5g/L) 

   
Température (°C) 

   

2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 33,8 49,8 59,6 

𝐾 (Pas
n
) 0,91 1,24 1,52 

𝑛 0,93 0,94 0,96 

Erreur 4,071 4,081 2,68 

Bingham 

𝜏o (Pa) 34,9 51,1 60,8 

𝜂B (Pa.s) 0,67 0,96 1,28 

Erreur 8,05 6,887 4,757 

Sisko 

𝜂∞ (Pa.s) 0,65 0,94 1,24 

𝐾S 34,3 50,3 59,8 

𝑛S 1,20E-02 9,35E-03 0,0136 

Erreur 1,443 1,752 0,9269 
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Tableau G. 3 : Propriétés rhéologiques des mélanges de RCPS Goldex (𝐶𝑊=76,3%, 𝐵𝑤=5%GU, 

concentration en sel de 10g/L) 

   

Température (°C) 

   

2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 31 43,5 50,7 

𝐾 (Pas
n
) 0,75 1,06 1,58 

𝑛 0,96 0,96 0,94 

Erreur 3,921 1,438 1,633 

Bingham 

𝜏o (Pa) 31,6 44,4 52,4 

𝜂B (Pa.s) 0,63 0,87 1,22 

Erreur 5,492 4,661 6,314 

Sisko 

𝜂∞ (Pa.s) 0,63 0,84 1,18 

𝐾S 31,3 43,8 51,2 

𝑛S 4,93E-03 0,01043 0,01681 

Erreur 1,603 0,6105 0,8268 

Tableau G. 4 : Propriétés rhéologiques des mélanges de RCPS Goldex (𝐶𝑊=76,3%, 𝐵𝑤=5%HE, 

concentration en sel de 5g/L) 

   
Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 40,6 51,2 60,4 

𝐾 (Pas
n
) 1,03 1,56 1,66 

𝑛 0,96 0,94 0,95 

Erreur 0,9199 0,9002 1,746 

Bingham 

𝜏o (Pa) 41,3 53,6 62 

𝜂B (Pa.s) 0,85 1,21 1,33 

Erreur 3,844 6,065 5,213 

Sisko 

𝜂∞ (Pa.s) 0,86 1,17 1,3 

𝐾S 40,8 52,5 60,9 

𝑛S 9,02E-03 1,53E-02 0,01272 

Erreur 0,4804 0,6317 0,7175 
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Tableau G. 5 : Propriétés rhéologiques des mélanges de RCPS Goldex (𝐶𝑊=76,3%, 𝐵𝑤=5%HE, 

concentration en sel de 10g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 36,3 50,9 56,3 

𝐾 (Pas
n
) 1,16 1,46 1,59 

𝑛 0,9881 0,9533 0,9614 

Erreur 1,477 4,163 0,9434 

Bingham 

𝜏o (Pa) 36,6 52,2 57,6 

𝜂B (Pa.s) 1,1 1,18 1,33 

Erreur 1,994 6,6 4,195 

Sisko 

𝜂∞ (Pa.s) 1,09 1,17 1,31 

𝐾S 36,3 51,6 56,7 

𝑛S 6,82E-03 7,89E-03 0,01118 

Erreur 0,4665 1,449 0,5756 
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ANNEXE H – RÉSULTATS D’ESSAIS RHÉOLOGIQUES DES 

MÉLANGES DE RCP MELIADINE À 𝐶𝑊 = 71%, 73%, 75%, ET 76,3%  

Tableau H. 1 : Propriétés rhéologiques des mélanges de RCP Meliadine (𝐵𝑤 = 5%GU) 

   

𝐶𝑤 (%) 

   

73 75 76,3 

Herschel-Bulkley 

𝜏hb (Pa) 105 151 208 

𝐾 (Pas
n
) 1,34 3,49 4,95 

𝑛 0,99 0,97 0,96 

Erreur 1,429 2,062 3,661 

Bingham 

𝜏o (Pa) 105,3 152,5 211,6 

𝜂B (Pa.s) 1,35 3,14 4,18 

Erreur 1,559 2,98 5,33 

Sisko 

𝜂∞ (Pa.s) 1,33 3,12 4,14 

𝐾S 104,5 151,3 210 

𝑛S 0,004843 0,006787 0,005045 

Erreur 0,4743 0,5864 1,166 

 

Tableau H. 2 : Propriétés rhéologiques des mélanges de RCP Meliadine (𝐵𝑤 = 5%HE) 

   

𝐶𝑤 (%) 

   

71 73 75 76,3 

Herschel-Bulkley 

𝜏hb (Pa) 35,5 106,1 150,2 211,7 

𝐾 (Pas
n
) 0,86 2,28 3,81 5,07 

𝑛 0,97 0,94 0,96 0,96 

Erreur 1,066 2,735 2,745 1,056 

Bingham 

𝜏o (Pa) 36,4 108,6 153 215,6 

𝜂B (Pa.s) 0,74 1,73 3,23 4,26 

Erreur 2,8222 6,357 4,757 3,965 

Sisko 

𝜂∞ (Pa.s) 0,74 1,70 3,18 4,17 

𝐾S 35,8 107,3 151,6 213 

𝑛S 0,007138 0,008556 0,007217 0,009173 

Erreur 0,5499 1,128 0,8581 0,6076 
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ANNEXE I – RÉSULTATS D’ESSAIS RHÉOLOGIQUES DES MÉLANGES 

DU RCPS MELIADINE  (𝐶𝑊 = 75%)  

Tableau I. 1 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%HE et 

concentration en sel de 10 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 100,3 137,8 166,6 

𝐾 (Pas
n
) 2,43 2,4 3,03 

𝑛 0,96 0,97 0,98 

Erreur 0,8122 2,013 4,006 

Bingham 

𝜏o (Pa) 102,2 139,5 167,7 

𝜂B (Pa.s) 2,03 2,57 2,81 

Erreur 4,048 3,538 4,315 

Sisko 

𝜂∞ (Pa.s) 1,99 2,55 2,82 

𝐾S 100,9 138,7 167,4 

𝑛S 9,88E-03 4,48E-03 1,95E-04 

Erreur 0,5233 0,646 1,066 

Tableau I. 2 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%HE et 

concentration en sel de 20 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 102,1 135,8 140,6 

𝐾 (Pas
n
) 2,55 2,72 3,01 

𝑛 0,98 0,98 0,99 

Erreur 1,629 1,02 1,212 

Bingham 

𝜏o (Pa) 103,1 136,8 141 

𝜂B (Pa.s) 2,36 2,51 2,92 

Erreur 2,396 1,995 1,391 

Sisko 

𝜂∞ (Pa.s) 2,35 2,48 2,92 

𝐾S 102,5 136 140,9 

𝑛S 3,76E-03 4,49E-03 3,15E-04 

Erreur 0,6469 0,3447 0,355 
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Tableau I. 3 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5% GU et 

concentration en sel de 10 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 91,9 115,9 138,9 

𝐾 (Pas
n
) 2,63 2,69 3,00 

𝑛 0,98 0,98 0,99 

Erreur 1,392 2,882 2,778 

Bingham 

𝜏o (Pa) 93,0 117,1 139 

𝜂B (Pa.s) 2,39 2,46 2,98 

Erreur 2,605 3,514 2,782 

Sisko 

𝜂∞ (Pa.s) 2,36 2,41 2,93 

𝐾S 92,2 115,8 138,3 

𝑛S 7,58E-03 8,61E-03 5,92E-03 

Erreur 0,4809 1,123 1,239 

 

Tableau I. 4 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%GU et 

concentration en sel de 20 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel Bulkley 

𝜏hb (Pa) 80,4 112,4 133,4 

𝐾 (Pas
n
) 2,6 2,9 2,7 

𝑛 0,98 0,98 0,99 

Erreur 4,215 2,886 1,04 

Bingham 

𝜏o (Pa) 81,4 113,8 133,7 

𝜂B (Pa.s) 2,36 2,63 2,60 

Erreur 4,798 3,822 1,153 

Sisko 

𝜂∞ (Pa.s) 2,36 2,62 2,59 

𝐾S 81 113,1 133,4 

𝑛S 1,30E-03 2,97E-03 2,10E-03 

Erreur 1,345 0,9525 0,3506 
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ANNEXE J – RÉSULTATS D’ESSAIS RHÉOLOGIQUES DES MÉLANGES 

DU RCPS MELIADINE  (𝐶𝑊 = 76,3%) 

Tableau J. 1 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 =5%HE et 

concentration en sel de 5 g/L) 

   

Température (°C) 

   

2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 124,8 160,2 228,3 

𝐾 (Pas
n
) 3,49 3,81 4,05 

𝑛 0,99 0,99 0,98 

Erreur 1,024 3,461 1,772 

Bingham 

𝜏o (Pa) 125,2 161,2 229,8 

𝜂B (Pa.s) 3,42 3,62 3,75 

Erreur 1,127 3,649 2,341 

Sisko 

𝜂∞ (Pa.s) 3,41 3,53 3,72 

𝐾S 124,9 159,6 228,7 

𝑛S 2,14E-03 1,02E-02 3,79E-03 

Erreur 0,3992 1,377 0,5388 

Tableau J. 2 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%HE et 

concentration en sel de 10 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 121,7 149,9 220,3 

𝐾 (Pas
n
) 3,44 3,59 3,86 

𝑛 0,99 0,99 0,98 

Erreur 3,105 1,774 0,9844 

Bingham 

𝜏o (Pa) 122,3 151 221,7 

𝜂B (Pa.s) 3,33 3,39 3,6 

Erreur 3,193 2,207 2,998 

Sisko 

𝜂∞ (Pa.s) 3,33 3,36 3,52 

𝐾S 122,2 150,2 220 

𝑛S 5,55E-08 4,05E-03 7,05E-03 

Erreur 1,777 0,5806 0,9521 
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Tableau J. 3 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%GU et 

concentration en sel de 5 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 121,5 147,6 212,1 

𝐾 (Pas
n
) 3,72 3,78 5,76 

𝑛 0,96 0,98 0,9 

Erreur 0,9845 1,622 0,03191 

Bingham 

𝜏o (Pa) 124,2 149,1 221,7 

𝜂B (Pa.s) 3,16 3,49 3,63 

Erreur 4,059 2,476 9,368 

Sisko 

𝜂∞ (Pa.s) 3,1 3,47 3,41 

𝐾S 122,4 148,2 214,1 

𝑛S 1,07E-02 3,70E-03 0,0235 

Erreur 0,6922 0,6625 1,033 

 

Tableau J. 4 : Propriétés rhéologiques des mélanges de RCPS Meliadine (𝐵𝑤 = 5%GU et 

concentration en sel de 10 g/L) 

   

Température (°C) 

   
2 10 20 

Herschel-Bulkley 

𝜏hb (Pa) 115,4 143,6 200,3 

𝐾 (Pas
n
) 3,33 3,629 3,615 

𝑛 0,99 0,99 0,99 

Erreur 3,189 1,022 2,026 

Bingham 

𝜏o (Pa) 116,1 144,5 200,7 

𝜂B (Pa.s) 3,21 3,49 3,54 

Erreur 3,307 1,56 2,074 

Sisko 

𝜂∞ (Pa.s) 3,21 3,43 3,54 

𝐾S 115,9 143,8 200,6 

𝑛S 5,40E-08 3,13E-03 2,57E-06 

Erreur 1,892 0,4837 0,9367 

 

  



235 

 

ANNEXE K – DONNÉES DES ESSAIS DE MINI ÉCOULEMENT EN 

BOUCLE 

Tableau K. 1 : Résultats du mini-essai d’écoulement en boucle de l’eau 

Temps 

(min) 
𝑇𝑎𝑖𝑟 
(°C 

𝑇𝑓𝑒 
(°C) 

𝑇𝑓𝑠 
(°C) 

𝛥𝑇𝑓 
(°C) 

𝑇𝑝𝑒 
(°C) 

𝑇𝑝𝑠 
(°C) 

Débit 

(L/s) 
𝑈 

(m/s) 
𝛥𝑝 

(kPa/m) 
Br 

0 
    

5,8 5,4 
    

5 3 9,7 9, 7 0,00 7 7,6 1,05 1,33 0,55 -0,002 

10 2 9,7 9,4 -0,3 6,9 7,6 1,08 1,36 0,57 -0,002 

15 2 9,9 9, 7 -0,2 5,9 6,8 1,1 1,39 0,59 -0,001 

20 2 9,9 9,9 0,00 5,4 6,1 1,1 1,39 0,59 -0,001 

30 3 10,4 10,2 -0,2 8,1 8 1,11 1,40 0,60 -0,002 

45 3 10,7 10,7 0,00 7,5 8,2 1,11 1,40 0,60 -0,002 

60 2 10,2 10,2 0,00 8,5 8,4 1,11 1,40 0,60 -0,002 

 

Tableau K. 2 : Résultats du mini-essai d’écoulement en boucle du RP Goldex 

Temps 

(min) 
𝑇𝑎𝑖𝑟 
(°C) 

𝑇𝑓𝑒 
(°C) 

𝑇𝑓𝑠 
(°C) 

𝛥𝑇𝑓 
(°C) 

𝑇𝑝𝑒 
(°C) 

𝑇𝑝𝑠 
(°C) 

Débit 

(L/s) 
𝑈 

(m/s) 
𝛥𝑝 

(kPa/m) 
Br 

0 -   - -  -  9,7 8,4 -   - -  -  

5 3 17,6 17,9 0,3 13,7 13,9 1,08 1,36 27,37 -0,15 

10 4 19,7 20,2 0,5 15,2 15,6 1,12 1,42 27,27 -0,14 

15 4 21,5 22,3 0,8 16,9 17,1 1,1 1,39 26,75 -0,12 

20 4 23,3 23,8 0,5 18 18,3 1,14 1,44 26,54 -0,12 

30 2 25,1 25,6 0,5 19,7 19,5 1,14 1,44 26,09 -0,11 

45 0 27,9 28,2 0,3 20,1 20,2 1,13 1,43 25,65 -0,08 

60 -1 29,5 29,5 0,00 21,7 22,1 1,14 1,44 25,15 -0,09 
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Tableau K. 3 : Résultats du mini-essai d’écoulement en boucle du RP Meliadine 

Temps 

(min) 
𝑇𝑎𝑖𝑟 
(°C) 

𝑇𝑓𝑒 
(°C) 

𝑇𝑓𝑠 
(°C) 

𝛥𝑇𝑓 
(°C) 

𝑇𝑝𝑒 
(°C) 

𝑇𝑝𝑠 
(°C) 

Débit 

(L/s) 
𝑈 

(m/s) 
𝛥𝑝 

(kPa/m) 
Br 

0         15,8 14,8         

5 12 22,5 22,8 0,3 19,7 18,5 1,02 1,29 30,74 -0,14 

10 12 25,4 26,2 0,8 22 21,3 1,01 1,28 30,23 -0,12 

15 11 28 29 1 24,5 23,1 1,12 1,42 29,43 -0,13 

20 10 30,0 31,0 1 26,2 24,7 1,10 1,39 29,23 -0,11 

30 10 33,4 34,1 0,7 29,8 27,2 1,12 1,42 28,37 -0,11 

45 8 37,2 38,0 0,8 32,8 30,6 1,12 1,42 28,06 -0,10 

60 6 39,8 40,3 0,5 35,4 33,1 1,12 1,42 27,79 -0,10 

 

Tableau K. 4 : Résultats du mini-essai d’écoulement en boucle du RCP Meliadine 

Temps 

(min) 
𝑇𝑎𝑖𝑟 
(°C) 

𝑇𝑓𝑒 
(°C) 

𝑇𝑓𝑠 
(°C) 

𝛥𝑇𝑓 
(°C) 

𝑇𝑝𝑒 
(°C) 

𝑇𝑝𝑠 
(°C) 

Débit 

(L/s) 
𝑈 

(m/s) 
𝛥𝑝 

(kPa/m) 
Br 

0 
    

20,6 20,1 
    

5 15 26,7 26,9 0,2 23,6 22,5 1,05 1,33 29,18 -0,18 

10 15 28,5 29,2 0,7 25,7 24,3 1,04 1,31 28,98 -0,15 

15 15 30,0 30,5 0,5 26,4 25,3 1,03 1,30 29,08 -0,14 

20 14 31,6 32,1 0,5 27,7 26,1 1,03 1,30 29,27 -0,13 

30 13 33,4 33,9 0,5 29 27,4 1,04 1,31 29,75 -0,12 

45 12 36 36,5 0,5 30,9 29,3 1,04 1,31 31,19 -0,11 

60 12 38,2 39,1 1,3 32,8 30,6 1,03 1,30 35,34 -0,09 
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ANNEXE L – DONNÉES DES SIMULATIONS DES ESSAIS DE MINI 

ÉCOULEMENT EN BOUCLE 

 

a) 

 

b) 

 

c) 

 

d) 

Figure L. 1 : Valeurs de 𝑅𝑒, 𝐻𝑒 et 𝑓 d’essais d’écoulement en boucle pour l’eau (a), le RP Goldex 

(b), le RP Meliadine (c) et le RPC Meliadine (d). 
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a) 

 
b) 

 
c) 

 
d) 

Figure L. 2 : Valeurs de 𝑅𝑒, 𝐻𝑒 et 𝑓 d’essais d’écoulement en boucle pour l’eau (a), le RP Goldex 

(b), le RP Meliadine (c) et le RPC Meliadine (d) pour un cycle 
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ANNEXE M – DONNÉES DE CALCUL DU NOMBRE DE NUSSELT POUR 

LA SIMULATION DE RCPS MELIADINE (𝐶𝑊 = 76,3%) 

 

 
a) 

 
b) 

 

c) 

 

d) 

Figure M. 1 : Variation du 𝑁𝑢𝑒𝑥𝑡  avec la vitesse et la température de l’air pour les différents 

diamètres de pipeline de 2,5 cm d’épaisseur : a. 𝐷=0,1016 m ; b. 𝐷=0,1270 m ; c. 𝐷=0,1463 ; d. 

𝐷=0,1778 m 
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a) 

 

b) 

 

c) 

 

d) 

Figure M. 2 : Variation du paramètre 𝜓  avec la température du RCPS Meliadine (𝐶𝑤 =76,3%) 

pour les différents diamètres de pipeline : a. 𝐷=0,1016 m ; b. 𝐷=0,1270 m ; c. 𝐷=0,1463 ; d. 

𝐷=0,1778 m 
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ANNEXE N – RÉSULTATS DES SIMULATIONS DE L’ÉCOULEMENT DU 

RCPS MELIADINE (𝐶𝑊 = 76,3%) À LA VITESSE DE 0,82 M/S 

 

a) 

 

b) 

 

c) 

Figure N. 1 : Variations de He et Re du RCPS en écoulement à la vitesse de 0,82 m/s dans le 

réseau de distribution de diamètres internes de 0,1270 m (a), 0,1463 m (b) et 0,1778 m (c) à des 

températures extérieures souterraines de -5°C et 2°C. 
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Figure N. 2 : Variations 𝜏o du RCPS en écoulement à la vitesse de 0,82 m/s dans le réseau de 

distribution de diamètres internes de 0,1270 m , 0,1463 m  et 0,1778 m à des températures 

extérieures souterraines de -5°C et 2°C. 

 

 

Figure N. 3 : Variations 𝜂B du RCPS en écoulement à la vitesse de 0,82 m/s dans le réseau de 

distribution de diamètres internes de 0,1270 m , 0,1463 m  et 0,1778 m à des températures 

extérieures souterraines de -5°C et 2°C. 
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ANNEXE O – RÉSULTATS DES SIMULATIONS DE L’ÉCOULEMENT DU 

RCPS MELIADINE (𝐶𝑊  = 76,3%) À LA VITESSE DE 1,04 M/S 

 

a) 

 

b) 

 
c) 

 
d) 

Figure O. 1 : Pressions et pertes de charge du RCPS en écoulement à la vitesse de 1,04 m/s dans 

le réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 m (c) et 

0,1778 m (d) pour une température souterraine externe de 2°C. 
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Figure O. 2 : Variation des coefficients de frottement dans le réseau de distribution du RCPS 

pour des diamètres internes de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m et des températures 

externes souterraines de -5°C et 2°C. 
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a) 

 
b) 

 

c) 

 

d) 

Figure O. 3 : Variations de He et Re du RCPS en écoulement à la vitesse de 1,04 m/s dans le 

réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 m (c) et 

0,1778 m (d) à des températures extérieures souterraines de -5°C et 2°C. 
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Figure O. 4 : Variations 𝜏o du RCPS en écoulement à la vitesse de 1,04 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C. 

 

Figure O. 5 : Variations 𝜂B du RCPS en écoulement à la vitesse de 1,04 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C. 
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ANNEXE P – RÉSULTATS DES SIMULATIONS DE L’ÉCOULEMENT DU 

RCPS MELIADINE (𝐶𝑊 = 76,3%) À LA VITESSE DE 1,2 M/S 

 

 

a) 

 

b) 

 
c) 

 
d) 

Figure P. 1 : Pressions et pertes de charge du RCPS en écoulement à la vitesse de 1,2 m/s dans le 

réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 m (c) et 

0,1778 m (d) pour une température souterraine externe de 2°C. 
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Figure P. 2 : Variation des coefficients de frottement dans le réseau de distribution du RCPS pour 

des diamètres internes de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m et des températures 

externes souterraines de -5°C et 2°C. 
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a) 

 

b) 

 

c) 

 

d) 

Figure P. 3 : Variations de He et Re du RCPS en écoulement à la vitesse de 1,2 m/s dans le 

réseau de distribution de diamètres internes de 0,1016 m (a) 0,1270 m (b), 0,1463 m (c) et 0,1778 

m (d) à des températures extérieures souterraines de -5°C et 2°C. 
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Figure P. 4 : Variations 𝜏o du RCPS en écoulement à la vitesse de 1,2 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C. 

 

Figure P. 5 : Variations 𝜂B du RCPS en écoulement à la vitesse de 1,2 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C.



251 

 

ANNEXE Q – RÉSULTATS DES SIMULATIONS DE L’ÉCOULEMENT DU 

RCPS MELIADINE (𝐶𝑊  = 76,3%) À LA VITESSE DE 1,5 M/S 

 

 

a) 

 

b) 

 

c) 

 

d) 

Figure Q. 1 : Pressions et pertes de charge du RCPS en écoulement à la vitesse de 1,5 m/s dans le 

réseau de distribution de diamètres internes de 0,1016 m (a), 0,1270 m (b), 0,1463 m (c) et 

0,1778 m (d) pour une température souterraine externe de 2°C. 
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Figure Q. 2 : Variation des coefficients de frottement dans le réseau de distribution du RCPS 

pour des diamètres internes de 0,1016 m, 0,1270 m, 0,1463 m et 0,1778 m et des températures 

externes souterraines de -5°C et 2°C. 
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a) 

 
b) 

 

c) 

 

d) 

Figure Q. 3 : Variations de He et Re du RCPS en écoulement à la vitesse de 1,5 m/s dans le 

réseau de distribution de diamètres internes de 0,1016 m (a) 0,1270 m (b), 0,1463 m (c) et 0,1778 

m (d) à des températures extérieures souterraines de -5°C et 2°C. 
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Figure Q. 4 : Variations 𝜏o du RCPS en écoulement à la vitesse de 1,5 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C. 

 

 

Figure Q. 5 : Variations 𝜂B du RCPS en écoulement à la vitesse de 1,5 m/s dans le réseau de 

distribution de diamètres internes de 0,1016 m, 0,1270 m , 0,1463 m  et 0,1778 m à des 

températures extérieures souterraines de -5°C et 2°C. 




