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Coupled Non-Conforming Finite Element and Finite 
Difference Approximation Based on Laminate Extrapolation 
to Simulate Liquid Composite Molding Processes. Part II: 

Non-Isothermal Filling and Curing 

Edu Ruiz* and F. T r o c h u 

Centre de Recherches Appliquees Sur les Polymeres (CRASP), Departement de Genie Mecanique, 
Ecole Polytechnique de l'Universite de Montreal, H3C 3A7, Canada 

ABSTRACT 

A numerical methodology is presented for the 
accurate simulation of non-isothermal mold filling in 
Liquid Composite Molding. Starting with a mid-surface 
mesh and based on the structure of the fabric 
reinforcement, the extrapolation algorithm described in 
/17/ is used to generate 3D finite elements or parallel 
layers of 2D elements. To solve the coupled 
flow/energy/chemical species equations, two 
methodologies are used. The finite element formulation 
presented in /17/ is first coupled with a 3D finite 
element formulation for heat and curing analyses. In the 
second approach, a hybrid finite element and finite 
difference model is proposed. As the heat conduction 
and convection is evaluated in the plane of the elements 
by the finite element formulation, the through-thickness 
heat flow is computed by a one-dimensional finite 
difference approximation. The combination of the three-
dimensional mesh extrapolated in parallel layers with 
the thermal formulations allows investigating diverse 
degrees of coupling between the fluid and heat flows. 
With the same initial 2D mesh and material data, the 
user can easily define the level of complexity to be used 
in the numerical model. The results of the thermal 
formulations are validated with analytical tests. The 
performance of the model as well as the gain in cpu 

time are summarized. Finally a test case is presented to 
illustrate the advantages of the coupled model in terms 
of accuracy 

K e y W o r d s : Liquid Composite Molding (LCM), 
composites processing modeling, non-conforming finite 
element, non-isothermal simulation, mesh extrapolation. 

INTRODUCTION 

Liquid Composite Molding (LCM) refers to a group 
of related and widely used manufacturing processes for 
composite materials. These processes consist in general 
of injecting a thermosetting resin in a closed mold 
where a dry-fibrous reinforcement has been placed. 
During the process, a catalyzed resin is injected under 
pressure into the pre-heated mold cavity. In case of 
thermosets, the resin reacts and solidifies during the 
curing phase. Once the resin has cured, the mold is 
opened and the composite part is demolded. The flow 
front locations in time, the pressure distribution and the 
temperature field are the main parameters that govern 
the molding process and the final properties of the part. 
These parameters can be predicted by numerical 
simulations during the filling and curing stages, to assist 
in designing the mold and improve the manufacturing 

* e-mail: edu.ruiz@polymtl.ca 
Postal address: C.P. 6079, succ. Centre-Ville 
Montreal (Quebec) Canada, H3C 3A7 
Tel.: Edu Ruiz: (514) 340-4711 ext. 4585; Fax: (514) 340-5867 
Fax Number: (514) 340-5867 
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process. During last decade, several computational 
studies have demonstrated that modeling and process 
simulation can help in tool design by providing 
preliminary information of fluid and heat flow 
evolutions. However, due to the complexity of the 
physical phenomena involved in LCM and their 
intrinsic coupling, a series of non-linear differential 
equations must be solved iteratively. For large scale 
models, a significant computational effort is required to 
run a complete simulation of the manufacturing process. 
This renders the optimization of the full process a 
complex numerical challenge. 

The control of heat transfer and chemical reaction in 
LCM is complex because a hard number of factors 
interact. As schematically indicated in Figure 1, four 
categories of phenomena occur during composite 
processing: rheological, thermal, chemical and 
viscoelastic. The resin flowing across the mold cavity 
absorbs heat by conduction from the mold walls and 
from the heated preform; temperature is also transported 
by convective forces. The rheological phenomena 
depend on the temperature and degree of conversion of 
the resin via the resin viscosity. In turn, the velocity 
field characterizing the fluid flow transports the 
chemical species and influences the thermal field. It also 
determines how the mold is going to be filled up by the 
resin and the quantity of heat that will be generated by 
viscous dissipation. On one hand, the chemical 
reactivity of the resin increases with temperature, on the 
other hand the exothermy of the polymerization reaction 
is usually sufficient to increase the temperature notably. 
Resin thermal and mechanical properties such as 
specific heat, thermal conductivity or elastic modulus 
depend on temperature and resin degree of conversion. 
The strain-stress relationship depends on temperature 
through the thermal expansion/contraction of the resin; 
it is also related to the degree of cure via the chemical 
shrinkage produced during the cross-linking 
polymerization. Finally, viscoelastic behaviour of the 
polymer depends on temperature, degree of cure and 
time (stress relaxation is observed during cure). The 
multiple interactions between these phenomena make 
the numerical modeling of the full process a complex, 
and sometimes unfeasible, task. 

Researchers have resolved this complexity by 

building mathematical models of flow, heat transfer, 
chemical reaction and strain-stress relationship. Finite 
element software has been developed to implement 
some of these mathematical models for complex three-
dimensional parts /1-10/. The energy equation was 
solved both by finite element and finite difference. 
Guyonvarch et al. Ill presented a heat transfer analysis 
integrated with a non-isothermal 3D filling model. They 
used a Taylor-Galerkin method in a finite element 
model that guarantees a reasonable stability and 
accuracy of the temperature calculation even when 
convection becomes dominant. However, the scheme is 
not unconditionally stable, which creates numerical 
difficulties. 

Lebrun et al. 121 conducted an experimental 
investigation of heat transfer during the filling stage by 
measuring temperatures through the thickness of the 
part at four different locations in the flow direction. The 
authors presented a finite difference program used to 
calculate the temperature distribution through the 
thickness of the steel wall. Finally, the authors presented 
a model for the Nusselt number, which takes into 
account the effects of thermal dispersion, variable resin 
viscosity, fiber volume content and mold temperature. 
In order to incorporate these considerations in non-
isothermal filling simulations, Audet /18/ implemented 
a Taylor-Galerkin method to solve the energy equation. 
Even if Taylor series approximation leads to both 
explicit and implicit numerical scheme, for stability 
considerations the implicit one was used. To minimize 
the numerical oscillations that tend to perturb the 
temperature distribution in transport problems coupled 
with diffusion, a second order Taylor series was 
considered. Although numerical stability is guaranteed, 
when convective terms become dominant in the heat 
flow, temperature oscillations appear at the boundaries. 
In extension of the model of Audet, Bohr /3/ used a 
standard Galerkin formulation with an artificial 
diffusion term. In this approach, the thermal instabilities 
of the numerical scheme were solved by coupling the 
Galerkin formulation with the piecewise discontinuous 
finite element approximation of Lesaint-Raviart for 
transport problems. The resulting coupled formulation 
with a time Gear interpolation for the transient solution 
is unconditionally stable and does not require smaller 
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Fig. 1: Coupling of physical phenomena in Liquid Composite Molding (LCM). 

time step iterations. 
Tucker IM presented a comprehensive analysis of the 

issues in the modeling of heat transfer and chemical 
reaction in resin transfer molding and structural reaction 
injection molding. A rigorous derivation of the 
governing equations by the local volume averaging 
method has cleared up ambiguities about how some 
terms should be handled, and has clearly shown the 
need of adding dispersion terms in the energy balance 
and cure equations. The author has also introduced a 
useful set of dimensionless parameters for the flow, heat 
transfer and cure models, and provides analytical 
solutions in some specific cases. 

Gauvin and Trochu 151 analyzed non-isothermal 
fluid flows through multilayer preforms. Experimental 
results showed the influence of the mold temperature on 
the distribution of the resin temperature through the 
thickness of a composite. Since resin viscosity is highly 
sensitive to temperature, they suggested that a reliable 
simulation should take this dependence into account. 
Although the three-dimensional solution of the filling 
stage is robust and accurate, it still requires a large 
amount of computational time. Since the thickness of 

the cavity is usually small compared to the characteristic 
length of the part, it defines the size of the mesh used in 
numerical simulations. A minimum number of finite 
elements through the thickness of the part is necessary 
in order to obtain an acceptable solution. Moreover, the 
aspect ratio of these elements can not be too small to 
avoid numerical inconsistencies. These limitations result 
in a very dense mesh, which makes the three-
dimensional finite element implementation of the solver 
highly computer intensive. The large number of degrees 
of freedom needed to model complex three-dimensional 
composite parts results in time consuming calculations 
that makes process optimization extremely difficult, if 
not impossible. 

Extensive efforts have been made by researchers to 
decrease the computer time required to solve the 
coupled flow and thermal formulations. In a thin mold 
cavity, the flow may be simplified to a two-dimensional 
problem, but the three-dimensional heat transfer 
problem must be considered as such because of the 
important heat convection in the planar direction and 
heat conduction through the thickness of the part. When 
LCM parts are considered as thin shells, the 
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permeability, diffusion and dispersion tensors are 

homogeneous through the thickness. In addition, 

thermal and chemical species diffusion due to 

mechanical dispersion is assumed to be of purely 

kinematic origin, and thus proportional to the velocity 

norm. Since the velocity can be neglected in the 

thickness direction, the chemical species dispersion may 

be evaluated in the planar direction only, so that two-

dimensional flow analysis can be carried out with three-

dimensional heat transfer calculations. 

T o solve this simplified problem, different 

approximations have been suggested. Bruschke and 

Advani /8/ proposed a mixed model based on in-plane 

f low solution (by 2D finite elements and element 

control volume) while the heat conduction/convection is 

solved by finite differences (FD) in 3D. The through-

thickness heat convection is neglected and only in-plane 

heat transport is introduced into the FD thermal 

formulation. The convection term is added to the FD 

model using a thickness averaged velocity. In a similar 

way, Ngo and Tamma 191 have used a 2D FE 

formulation for the in-plane f low and a 3D FE 

formulation for the heat conduction/convection. The 

fluid f low calculation was based on the nodal control 

volume approach with conforming finite element 

approximation. To improve the numerical stability of 

the thermal formulation, the Streamline Upwind Petrov-

Galerkin (SUPG) weighting functions were employed. 

The algorithm presented accounts for the three-

dimensional mesh generation used to solve the heat 

transport problem and sub-time stepping of the filling 

time step to ensure the stability of the thermal solution. 

These methods are faster than full three-dimensional 

analysis but only consider a thickness-averaged 

permeability and resin viscosity. In fact, an averaged 

f low front is calculated in the midplane of the mold 

cavity. Moreover, finite difference formulations are not 

unconditionally stable when implemented to solve heat 

conduction and convection problems. For accurate 

solutions, the FD grid or the time step must be refined 

as a function of Fourier 's and Nussel t ' s numbers. In 

practice, when the heat f low is dominated by 

convection, which is usually the case in Resin Transfer 

Molding (RTM), the number of time steps required to 

properly solve the FD model for each iteration of the 

f low solution turns out to make the calculations very 

computer intensive. 

Based on physical considerations and on the 

combined implementation of several numerical 

algorithms, a new methodology is proposed to solve the 

non-isothermal filling and curing phases in LCM. It 

consists of combining different FE and FD formulations 

depending on the degree of coupling needed between 

the thermal and f low phenomena to simulate accurately 

the manufacturing process. Starting with a midplane 

mesh, different options are possible. In the simplest 

case, no significant coupling is assumed to exist 

between the fluid f low and the heat transfer in the 

through-thickness direction. A numerical in-plane 

solution of the two-dimensional fluid flow and heat 

transfer is sufficient if it is coupled with a one-

dimensional heat transfer analysis. When a full coupling 

has to be considered, a pure three-dimensional f low and 

thermal analysis can be carried out. Between these two 

solutions, various levels of coupling can be 

implemented on the same 2D mesh. The proposed 

algorithm permits the user to specify the level of 

complexity of the analysis without any additional 

meshing effort . A series of tests are carried out to 

validate by comparison with analytical results the 

different models proposed. Finally, a typical part will be 

analyzed to demonstrate the capabilities of the 

numerical algorithms implemented in this investigation. 

GOVERNING EQUATIONS 

Momentum equation 

In the past /17/, a system of non-linear partial 

differential equations has been formulated in order to 

evaluate the f low of Newtonian fluids through a porous 

medium. The model accounts for isothermal f lows in 

undcformable media and considers pressure of flow rate 

boundary conditions. In this part of the work, non-

isothermal viscous f lows in porous media will be 

modelled in presence of heat sources. The equation of 

mass conservation for the fluid phase can be written as: 

div(pr.v) = 0 (1) 
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where pr is the density of the injected resin and ν is 
the superficial fluid velocity. Darcy's law for 
Newtonian fluid flow through porous media was used as 
momentum equation and is expressed as follows: 

v=--\K].Vp (2) 

in which [ ATJ is the permeability tensor, taking the form 
of a 3x3 matrix, μ is the resin viscosity and Vp the 
pressure gradient. Polymer viscosity depends on 
temperature and on chemical changes during 
polymerization. The rheological characterization of 
reactive materials is complex because of the large 
number of variables that come into play. Polymer 
rheology is influenced by the chemical formulation and 
filler concentration (in general calcium carbonate). The 
viscosity of a reactive resin system is a function of 
pressure, temperature, shear rate and time. The time 
dependence is due to the growing size of the polymer 
molecules as polymerization progresses. Therefore, 
viscosity can be defined as: 

μ = /(Ρ,Τ,γ,α,φ) (3) 

where Τ, γ , a and φ denote respectively temperature, 
shear rate, resin degree of cure and filler concentration. 
In LCM, the reactive system is injected at low viscosity. 
Viscosity increases with conversion and reaches an 
infinite value when the material solidifies either by 
chemical cross-linking or as result of physical changes 
such as phase separation or crystallization. During 
processing, mold filling must be completed before resin 
viscosity reaches a too high value. The upward limit of 
resin viscosity is attained at the gel point. As 
demonstrated by Han and Lern / l l / , non-Newtonian 
effects appear to be small for polymer built up from 
breached monomers, except near the gel point. Most 
viscosity models for reactive resins neglect the non-
Newtonian effects because temperature and network 
formation tend to dominate the rheological changes. 

Although it is usually valid to consider flow and 
cure independently, high speed processing may imply 
that some conversion occurs during resin impregnation. 
Conversion-based viscosity models have been 

extensively applied to polymers. The most widely used 
rheological model that accounts for the effect of 
polymer conversion on viscosity is the Castro-Macosko 
model /12/: 

μ(Τ,α) = μ(Τ) 

M(T) = Cr exp 

a gel 
C, +C2 a 

a a 

KT J 

•a 
(4) 

(5) 

where a and a ^ are the instantaneous and gelation 
chemical conversions respectively, Ct, C2, and Cr are 
empirical constants, and Tg is the polymer glass 
transition temperature. 

Energy and chemical species 

In order to model the influence of heat transfer on 
the temperature of the resin, mold and fibrous 
reinforcement, it is necessary to carry out an energy 
balance between each of the constituents. In general, 
two approaches may be followed to find the temperature 
field /13-15/. In the first one, the resin and the fibers are 
considered as separate constituents (two phase model) 
used their temperatures may differ at any point of the 
mold. In the second approach, the resin and fibers are 
assumed to be at the same temperature (the so-called 
lumped system). In general, the equilibrium model, i.e. 
the second approach, is considered reasonably accurate 
for RTM /13, 15/, in which fluid flow is relatively slow. 
Considering the lumped system, the energy and 
chemical species balance equations for the resin-fiber 
mix leads to a transient temperature Τ solution of the 
following equation: 

(6) 
ρ έ ρ ^ + φ ρ Γ CprV(ν Τ ) + V(v"· ρ) = 

{V([A"] + [ A 0 ] ) V T } + φρΓΗΤο,Η 

where the density ρ , heat capacity Cp and 

conductivity k of the composite are the effective 

properties defined as: 

a for non-impregnated fibers 

Cp = Cpawa + CpfWj , 

Ρ ~ (PaPf )/(Pawa + P f " f ) 
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*= (kakf)/(kawa + k f w f ) > 

^α=(Φ/Ρί)/(Φ/Ρί+(^-Φ/Ρα)) (7a) 

w„ 

b for impregnated fibers 

Cp = Cprwr + CpfWf , 

P = (PrPf)/(Prwr+Pfwf) 

k =(krkf)/{krwr +kfWf) , 

)/(φ/ρ,+(\-φ/ρ,)) 

Wj = 1 - wr 

(7b) 

In the above equations φ is the porosity and wr, wy 

and wa denote the weight fractions o f resin fibers and 

air, respectively. Note that the conductivity tensor 

o f the composite is averaged in each direction. The 

subscript r stands for the resin, / for the fibers and a for 

the air. The coefficient represents the thermal 

dispersion tensor arising from hydrodynamic dispersion. 

It can be evaluated as a function o f Peclet number or 

characterized experimentally as a function o f the fluid 

velocity 12, 18/. 

The following initial and boundary conditions are 

required to solve the energy equation (6) : 

Τ = Τ}."1 at the injection gates 

Τ = Tj or q = (\-4>)pfCpf{k-v)(Tf-T) 

at the flow front 

q = hejjA • (Twan - T) at mold walls 

where T™1 and Tj denote the resin temperature at the 

injection gate and the temperature o f the dry fibrous 

reinforcement, respectively, Tm,t is the mold 

temperature at the surface (i.e. at the interface between 

mold and the fluid flow), heSS denotes the effective heat 

transfer coefficient between the mold wall and the fluid, 

and q represents the heat flow through the surface area 

A. 

The source term on the right side o f equation (6 ) 

accounts for the internal heat generated by the 

exothermic chemical reaction in thermoset resin 

systems. The value H T o l H denotes the instantaneous 

heat generated by the cross-linking polymerization 

reaction and HT(X is the total or ultimate heat o f reaction 

during cure. This source term is usually assumed to be 

proportional to the reaction rate da/dt. 

Conservation o f chemical species can be expressed 

through the continuity equation: 

dot _ 
φ + ν Vor = φ Η 

dt Ψ 
(9) 

T o compute the energy equation (6), the dependence 

o f the reaction rate must be modeled as a function o f 

temperature and degree o f polymerization a . The 

empirical autocatalytic model o f Kamal-Sourour /16/ 

that describes free-radical polymerization reaction is 

used in this study and can be formulated as follows: 

da 

~dt 
AJ · exp 

RT 
+ A2 • exp 

Γ \ 

RT 
•a •(I - a t 

(10) 

where coefficients A / and A2 are Arrhenius constants, £/ 

and E2 are activation energies, R is the ideal gas 

constant and, and mi are the catalytic constants. 

FINITE ELEMENTS FORMULATION 

Following the procedure described in /17/ for the 

flow model, the energy balance equation (6 ) can be 

integrated over a control volume as: 

jt\~pCpTdCl + 
Ω 

iprCpr • (ή · V ) V J dr + J(/J · V)VP dY 
Γ Γ 

- Jv(« · ([*] + [ΚD ])VT) dr = \φρΓΗΤο1Η dQ 

(12) 
Ω 

where Ω is the integration domain (in this case the 

volume of the element). The numerical solution o f the 

integral energy equation is based on the standard 

Galerkin implemented by Bohr /3/. A Lesaint-Raviart 

formulation that avoids artificial oscillations is used to 

solve the transport problem. This method is based on the 
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separation of the coupled convection/diffusion problem 
into a convective and a diffusive solution. The heat 
diffusion is initially solved by a standard Galerkin 
formulation; then temperature is transported using the 
Lesaint-Raviart approximation with discontinuous finite 
elements. In the presence of thermal convection, the 
transport equation can be written in the following form: 

— + v - V r = / , on Ω dt 
Τ = T(t) , on Γ , 

(13) 

where Τ is the temperature transported at velocity ν on 
the domain Ω , and T(t) is an imposed temperature at 
the domain boundary (usually the resin injection 
temperature). Note that the same nomenclature already 
defined in Part I of this work applies to the domain Ω 
and boundaries Γ ? and V d . Function / represents a 
source term that can be a function of time and position. 
Using a variational formulation, the weak form of 
equation (13) is expressed as: 

jw\— + v-VT dQ=jwfdQ + 
Ω dt Ω 

i t |Γ+ - Γ (η • ν) dTj 
(14) 

for a test function w belonging to the space F(Q), 
where T+ and T~ are the temperature values on the 
two sides of the boundary T d . The finite element 
solution of equation (14) is an iterative process that 
consists of building a sequence of elements in the fluid 
flow domain. Beginning with the elements adjacent to 
the injection gate, the temperature is transferred using 
an upwind scheme based on to the mesh connectivity. 
The heat convection is finally solved using a Gear 
implicit scheme for the time derivative: 

C [\.5Tn-2T"~] +0.5T"'2 _ 
w + V-V/ 

Ω l Δ ' 

\wfdQ+ (n v)drd 
Ω Γ,, 

dd = 
(15) 

where indices η, η-1 and n-2 account for the actual and 
previous time steps. To evaluate the temperature field, a 

classical predictor-corrector method is used. The 
temperature is predicted by the diffusion equation and 
corrected by the convection solution. The iterative 
procedure consists of advancing half a time step in 
conduction and the other half in convection. The 
approximation of the energy equation by a sequence of 
conductive and convective solutions requires the 
continuity of the scalar field (i.e. the temperature field) 
at the nodes of the Galerkin formulation. For this 
reason, conforming shape functions are used in the 2D 
and 3D finite element approximations of the 
conduction/diffusion equation (6). 

In a similar way to the energy equation, the balance 
of chemical species is solved separately for convection 
?nd for the polymerization reaction. The convective 
term of equation (9) can then be written as follows: 

J w f — + v-Va J ί / Ω = | | α + - α " | {h-V)dTd (16) 
Ω ^ 8 1 J Γ j 

a = a 0 , on r q 

where a 0 is the initial degree of cure at the boundary 

Γ^ (generally the injection gate). The diffusion of 

chemical species is governed by a partial differential 
equation that requires proper time integration. Bohr /3/ 
proposed to use fourth and fifth orders Runge-Kutta 
methods to solve the differential equation (10) of resin 
polymerization. In this paper, the fourth order Runge-
Kutta method is used to evaluate the polymerization 
reaction. The degree of cure obtained is then transported 
with the Lesaint-Raviart integral formulation (16). 

SOLUTION OF SHELL-LIKE GEOMETRIES 

Finite element analysis is widely recognized as an 
accurate approximation method to solve coupled flow 
and thermal problems. One of the main advantages of 
this technique lies in its ability to minimize the 
temperature oscillations induced by convection terms. 
Even if complex solutions of non-isothermal flows are 
unconditionally stable, one main disadvantage is the 
computational cost. In three-dimensional modeling, the 
large number of elements required for proper spatial 
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discretization leads to time consuming simulations. In 

many cases, a compromise has to be sought between 

accuracy and computer time. Since in LCM applications 

the thickness is usually much smaller than the other 

dimensions of the part, a very large number elements is 

required to model through-thickness variations of 

permeability or of viscosity in the case of non-

isothermal injections. As a result the resin flows with a 

different velocity in each layer of the composite. If these 

velocity changes are important, a three-dimensional 

analysis becomes unavoidable. 

Note that a non-uniform viscosity appears through 

the thickness of a composite shell when the mold walls 

are heated at a higher temperature than the fibers and 

the resin injected (see Figure 2). The temperature 

dependence of viscosity will induce velocity variations 

and a through-thickness resin flow. When a gap-wise 

averaged velocity is acceptable, the f low equation (2) 

can be reduced to the following two-dimensional form: 

~dP~ 

Y Ξξγ 

_vr_ sri Syy 

3ξ 

dp 

dy 

(17) 

S4Y 

- ' ί ' 

κξγ 
• dz 

Syr Syy Κ i μ{ξ,γ,τ,Τ,α) 
"Τ 

κγξ KRR_ 

where ξ and γ are the local coordinates of the planar 

geometry, τ denotes the gapwise coordinate and hT is 

the thickness of the gap. The velocity components \ξ 

and ν^ are the gapwise averaged values in the planar 

directions, and [A ] is the in-plane permeability tensor. 

The mold walls in LCM have a strong influence on 

the energy balance. This implies that the heat transfer 

must be analyzed not only in the cavity but also in the 

mold. When three-dimensional FE formulations are 

used, the disperse matrix requires a large cpu time to be 

solved. If pure 3D finite differences (FD) solutions are 

implemented, undesirable temperature oscillations 

appear in convection dominated flows. In this work, a 

hybrid scheme is proposed to evaluate the three-

dimensional energy equation, so as to obtain a stable 

and efficient numerical methodology to calculate non-

isothermal flows and curing phases in shell composite 

parts. Based on the concept of separation of the 

conduction and convection phenomena, the approach 

consists of solving the 3D heat conduction by coupling 

the two-dimensional in-plane solution of the convective 

heat transfer with a one-dimensional through-thickness 

heat conduction analysis. First, the in-plane thermal 

conduction is calculated by the standard Galerkin 

formulation. Then, with the gapwise averaged velocity 

the planar convection is computed by the Lesaint-

Raviart transport approximation. Once temperature is 

corrected, the through-thickness conduction and curing 

are evaluated by a finite difference approximation. 

Using successive half time stepping, the three 

formulations are solved for a single flow time step. Note 

that in this procedure, the connectivity of the finite 

Heat flow from 
top/bottom mold walls 3D Resin flow 

Y 

— > 

Temperature profile 

) Ο Ο Fibers 2 
_ φ ο ο ^ 

ο λ ο ο " ο 
Ο Ο 

7777/777777 

Fig. 2: Cross-section of the mold cavity showing the three-dimensional heat and fluid flows. The trough-thickness 

temperature profile results in variable resin viscosity and transverse fluid flow. 
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element mesh exists only in the two-dimensional space 

while finite difference nodes are coupled only in the 

thickness direction. The matrices of the FD formulation 

are tridiagonal (or quasi tridiagonal), so the numerical 

solution is highly efficient in terms of computer time. 

The stability of this numerical scheme is guaranteed 

because each of the formulat ions is unconditionally 

stable. In addition, any temperature oscillation induced 

by the FD approximation is diffused during the same 

time step by the FE solution. 

FINITE DIFFERENCE FORMULATION 

The solution of the through-thickness energy 

balance involves a subdivision of the in-plane control 

volumes (defined by the finite element edges) into a 

certain number of layers. The Galerkin finite element 

approximation of the heat conduction problem is 

calculated with conforming shape functions. This 

implies that the temperature scalar field is evaluated at 

the element nodes. In the hybrid FE/FD scheme, the 

connection between two-dimensional FE and one-

dimensional FD formulat ions must then be done 

through the element nodes. As depicted in Figure 3, the 

finite difference nodes are extrapolated f rom the mesh 

nodes by the extrapolation algorithm described in /17/. 

Every FD node is associated to a control volume bound 

by the centroids and the mid-edges of the connected 

elements. The energy balance equation (6) becomes 

Fourier 's heat conduction equation in one dimension. 

The volume averaged I D Fourier ' s equation is written 

as: 
Λ Φ 

V ρ Cp = A ic 
F dt 

d2T 
T dr2 

+ V φ prHTolH 

(18) 

where T ( t , r ) is the transient absolute temperature at 

position r through the total part thickness 

part thickness ( 0 < r < part_thickness ), A and V 

denote respectively the interface area between control 

volumes and volume of the control volume depicted in 

Figure 4. The discretization of the partial differential 

equation (18) is done with an implicit finite difference 

scheme. Crank-Nicolson formulation is used because it 

gives the smallest accumulated truncation error and an 

unconditionally stable linear system. In adimensional 

form, the energy balance for node j at position i and 

time step /+1 results in the fol lowing expression: 

-ri,t+1 τί,ι ζ?„ί,<+1/2 Τ J -ΤJ = Foj ( r j + u -2T)'' + T l r u ) + 

+ Ω' !,(+!/2 j 
(19) 

Here Fo represents Fourier 's number defined by: 
/ - \ i , /+1/2 

FoU+V2 
p-Cp 

At 

(Ah.y 
(20) 

where Δ/ is the time step increment and Δ/»; the 

distance between two adjacent nodes. For a better 

adimensional modeling, a constant grid spacing is 

^ I 
ς Ν,"· FD control volume 

_ FD node 

FD nodes 
(ps_nodes) 

Fig. 3: Because conforming finite elements are used in the heat transfer formulation, the coupling between 2D in-

plane and 1D gapwise solutions is done via the control volume of the FD nodes defined by the centroids and 

mid-edges of connected elements. 
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Positive direction 
of heat flow 

Finite differences node 
connected to mesh node j 
at thickness position I 

Interface between control 
volumes (of area A) 

Fig. 4: Control volume of the one-dimensional finite difference approximation. 

assumed for the through-thickness finite difference 

nodes. The term Cl'j in equation (19) is the heat 

generated by the resin exothermy in the control volume; 

it is expressed by: 

n i , / + l/2 _ 
" J 

da φ ρ , 

dt ρ Cp 

/,/ + !/ 2 

At Η T o l (21) 

The calculation of Fo1/1'2 and Ω'/+υ2 requires 

the knowledge of the spatial and temporal averaged 

properties in the control volume. If thermal properties 

do not strongly vary between two time steps, equation 

(19) reduces to: 

T'j''+{ ( l + 2 F o ) ' ) - T i j + U + ] F o ' J + ] ' 1 - T ) - ^ x F o l r U ( 2 2 ) 

= T)>' ( l - 2 Fo)1) + T ^ F o f + T ^ ' F o ^ - ' + Q'f 

For a group of finite difference nodes connected 

through the thickness, the solution is expanded into the 

following matrix notation: 

1 0 0 0 • 0 
1 

' T ] ' 

Fo] 1 + 2 Fo2 - F o 3 0 • T2 

0 

0 - F o N f - 2 1 + 2 FoNr~x 

0 

-FON< 

• • 

jNf-\ 

0 • • 0 0 0 1 
J 

jNf 

rpwall _top,t+1 

T2'1 ( l - 2 Fo2'1) + T X ' F o X ' + T U F o U + Ω 2 · ' 

T " f - U ^ _ 2 F o N f - U y T N f , , F o N f , l +TNf-UFoNf-2,, +QNf^t 

τ-wall bot,t+1 

f+l 

(23) 
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where j denotes the in-plane mesh node where finite 
differences are extrapolated, and Nf is the total number 
of finite difference nodes. To avoid confusion between 
FE and FD entities, the finite difference nodes are 
renamed pseudo nodes because they do not necessary 
represent the part geometry. In fact, the ID Fourier's 
equation is adimensionally represented as a percent of 
the part thickness at the mesh node position. The vector κ represents the unknown temperatures of the 

pseudo nodes at time step M-l. The boundary conditions 
•pwall_top,t+\ an(J jwall_bot,t+\ ar£. impose(J at ^ 

step t+1, i.e. imposed as the reference temperature of the 
top and bottom mold walls respectively. 

Experimental studies of LCM processing have 
shown that significant temperature fluctuations appear 
at the mold walls during the filling and curing phases 
121. This implies that the assumption of a constant mold 
wall temperature is not always verified. To account for 
appropriate thermal boundary representation, different 

types of boundary conditions are considered. As shown 
in Figure 5, the mold wall can include a heating/cooling 
duct pipe at a distance d from the mold surface. The 
following general thermal boundary condition may then 
be applied: 

dT 

dr 

for r = 0, h: 

l e f f + A eff 
j wall _ j· 

ref ( / ) ] = 0 

(24) 

where Twa" is the temperature of the mold wall, and Tn.f 
is a reference temperature of the fluid in the duct pipe. 
The coefficients kcfi and hcfj represent respectively the 
effective mold thermal conductivity and the convective 
heat transfer coefficient between the fluid and the pipe. 
The approximation of a constant mold wall temperature 
can be derived from equation (24) by setting: 

-wall 
ref (25) 

Circulating (— 
fluid 

CO (0 (D c 

•e 
ro 
a . 

Circulating ι—\ 
fluid —/ 

heating fluid 

Ta"(t) mold wall 

ft' 

Ahs 

Fig. 5: One-dimensional finite difference grid through the part thickness. The mold walls are heated or cooled by duct 
pipes maintained at a known reference temperature Trc[. 
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where 7™" represents the temperature of the top or 

bottom mold surfaces, and T ^ is the mold platen 

reference temperature which varies in time. In this case, 
both temperatures are identical. A second boundary 
condition can be derived from the quasi-steady-state 
analysis of the mold heating/cooling system of Figure 5. 
This configuration results in the following equation: 

η wall _ γi 
h^\[TWaU-Kef}-- 0 eff 

for i = 2, Nf-I (26) 

Regrouping terms, the expression of 7*™" for a given 
time step H-l will be: 

TWa"',+X =(C ·(% / k e f f ) + T j / d ) / ( d + h e f f / k e f f ) 

for i = 2,Nf-l (27) 

This approach represents fairly well the interactions 
between the mold walls and the surface of the part, 
although it is limited to the quasi-steady-state solution. 
This means that the temperature variations of the mold 
platens in time must be slow enough to allow a steady 
heat flow through the mold walls. In a more general 
case, it is necessary to solve a non-steady-state 
temperature evolution between the mold wall and the 
heating/cooling pipes. This problem can be solved by 
adding a finite difference grid into the mold walls and 
using an experimental value of the convection 
coefficient heg·. 

The accuracy of the solution of equation (23) 
depends on the choice of Fourier's number Fo (or Δ/). 
Even if the Crank-Nicolson scheme is unconditionally 
stable, a choice of Fo close to unity tends to minimize 
the accumulated truncation error. In this work, an 
adaptative time step algorithm was implemented to 
provide a Fourier's number close to one. This algorithm 
calculates the time step Δ/ required to obtain a value of 
Fo close to unity. Because the thermal properties of the 
composite depend on both the temperature and the resin 
degree of cure, Fourier's number is expected to vary 
through the thickness of the part. From all the values of 
Fo calculated for a stack of finite difference volumes, 
the adaptative time step algorithm selects the one that 

results in the minimum value of Δ/ required for 
convergence. 

During composite processing, the exothermic 
chemical reaction of resin polymerization causes a 
quick temperature increase in the core of the part. The 
temperature rate dT/dt between two time steps may 
become high enough to generate numerical oscillations 
and alter the calculated temperature profile through the 
thickness. Therefore, it is necessary to decrease the time 
step in order to keep the desired accuracy of the 
numerical solution. In the particular case of LCM, this 
can be achieved by setting Δ/ as a function of 
temperature and the cure rate da/dt with the following 
empirical condition: 

da _ Δα ^ 
— Τ « Τ <1 
dt At 

(28) 

NUMERICAL IMPLEMENTATION OF THE 
HYBRID FE/FD MODEL 

In /17/, a methodology was presented to solve the 
inconvenience of multi-material definition of the 
laminated preform. Isothermal three-dimensional flows 
were calculated by constructing automatically with an 
extrapolation algorithm, non-conforming finite elements 
from the two-dimensional mesh. Beginning with a thin 
shell mesh, a solid mesh is generated by extruding the 
2D finite element mesh. The extrusion is defined by the 
preform stacking sequence that allows the use of 
different material properties for each laminate ply. This 
methodology can also be applied to generate parallel 
layers of two-dimensional elements not coupled with 
the through-thickness direction. As depicted in Figure 6, 
different levels of inter-layer coupling are possible 
when the mesh extrapolation is combined with the one-
dimensional finite difference grid. As already 
mentioned, the simulation of LCM processes involves in 
complex coupling between pressure, temperature and 
degree of cure. Two or three-dimensional solutions are 
required depending on to the level of coupling between 
the different physical phenomena that came into play in 
LCM process. It is common practice in computer 
simulation to begin with simple models so as to 
understand the global flow evolution and verify the 
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2D mesh + 
FD nodes on thickness 2D parallel mesh 

I I i 

Initial 2D mesh 

Ü A 
X 

2D parallel meshes + 
FD nodes on thickness 

3D extrapolated mesh 

Fig. 6: Different levels of inter-layer coupling with the mesh extrapolation algorithm and the ID finite difference grid. 

geometrical model. Then, model refinement is carried 
out and more elaborated mathematical formulations are 
progressively implemented. Finally, complex mathe-
matical and geometrical models are resolved to predict 
accurately the filling and curing stages. In this iterative 
)rocess, the remeshing of 3D geometries is a complex 
task especially when thermal boundary conditions have 
to be specified on a three-dimensional mesh. 

In this investigation, an integrated methodology is 
proposed to analyze the level of complexity of the 
numerical and geometrical models. As shown in the 
schematic representation of Figure 7, various levels of 
coupling may be obtained by combining the finite 
element mesh with the finite difference grid. The 
numerical formulations presented in this paper stand for 
the following solutions: 

• Flow analysis (Darcy and filling): 
2D and 3D finite elements 

• Heat conduction (energy balance): 
2D and 3D finite elements 
2D finite elements + ID finite differences 

• Transport equation (balance of chemical species): 
2D and 3D finite elements 

• Resin cure: 
2D and 3D finite elements 
2D finite elements + ID finite differences 

The possible combinations between these 
approximations are listed in Table 1. Different levels of 
integration of the flow, thermal and curing formulations 
are possible. In the simplest coupling, the flow is 
evaluated on the 2D mesh and the energy balance is 
studied with the 2D finite element space and ID finite 
difference approximation. In a higher level of coupling, 
flow and transport are calculated on 2D parallel meshes, 
but pressure is not considered uniform in the through-
thickness direction. Heat conduction and resin cure is 
solved on the parallel FE meshes and coupled across the 
thickness via the FD grid. The most complex 
formulation is the pure three-dimensional FE solution 
based on prism6 extrapolated elements or tetrahedrons. 

An algorithm was developed to perform compatible 
calculations on a series of parallel meshes. The pressure, 
temperature, degree of cure and viscosity are averaged 
and transferred between the FE and FD control 
volumes. The aim of this integrated methodology is to 
help in process design. Beginning with the same 2D 
mesh, global flows can be rapidly computed. More 
complex solutions may be performed without much user 
effort. It is well known that in numerical process 
optimization, the successive evaluations of complex 
geometrical models results in extremely high cpu times. 
The multiple coupling method has the ability to initially 
evaluate the global problem in a simple solution and 
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Flow mesh Heat conduction/curing Mesh Transport mesh 

f ^ S ^ ^ S c ^ 

Fig. 7: Schematic representation showing increasingly complex integration of flow, conduction and transport 

solutions. Different levels degrees of coupling are obtained by combining FE meshes and FD grids. 

Table 1 
Different levels of integration of flow/thermal/curing formulations depending on the level of mesh coupling. 

Model Simple • Complex 

Darcy 
Pressure 

NE FE C FE NE FE C FE C FE C FE 

Fluid 
Transport 

N E FE NE FE N E FE C FE C FE C FE 

Heat 
Conduct ion 

NE FE 
+ F D T 

NE FE 
+ FDT 

C FE 
N E FE 
+ FDT 

N C FE 
+ FDT 

C FE 

Viscosity 
Averaged 
Thickness 

Averaged 
Thickness 

Averaged 
Thickness 

Averaged 
Element 

Averaged 
Element 

Averaged 
Element 

Kinetic 
reaction 

F D T FDT C FE FDT F D T C FE 

NE FE : No mesh Extrapolation Finite Element solution 
N C FE : Non Coupled extrapolated mesh - Finite Element solution 

C FE : Coupled extrapolated mesh - Finite Element solution 
FDT : Through-Thickness Finite Differences solution 
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progressively increase the model complexity according 

to the optimization convergence. The method is 

promising and may turn full process optimization 

feasible. Figure 8 shows the f low chart used to solve the 

coupled equations of the non-isothermal filling/curing 

simulation. 

ANALYTICAL VALIDATIONS 

Case I: 3D heat conduction - steady-state 

To validate the numerical solution of the heat 

equation, an analytical comparison is carried out in the 

tnree dimensional space. In this test case, a cubic 

geometry was selected to evaluate the steady-state heat 

conduction. As shown in Figure 9, the upper surface of 

the cube is maintained at a constant non null 

temperature while the bottom surface and two sides are 

assumed to have a zero constant temperature. Con-

sidering that thermal properties are all unity, the 

analytical solution of the stationary temperature profile 

is: 

. (2η + \)πχ . (2m + \)ny . , | ( 2 « + 1)2 ( 2 m + 1)2 

sin — s i n - ^ - ^ s i n l u r z . — L - + - —— 
W 

π n=0 m=0 . L rr (2n+lf (2m + l ) 2 

(2« +1X2/W + l ) s i n h π Η A- + ^ — 
V L2 W2 

(29) 

one time step 

a, Η 

Heat conduction (Galertcin) 

Γ Τ 
r 

Transport (Lesaint-Raviart) 

Transport (Lesaint-Raviart) 

J 
Curing FE (Runge-Kutta) 

Adapt time step for FD 

Δ/ 

Heat conduction (Galerkin) 

Through-Thickness conduction j 
(Crank-Nicolson) 

c τ 
1 

Curing FD nodes 

a, Η 

Transport (Lesaint-Raviart) 

next time step 

Fig. 8: Flow chart of the numerical algorithm for the non-isothermal analysis. 
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L= 1 
W= 1 
H= 2 

= 1 
pCp 

Fig. 9: Domain used for the validation test I. 

where L, W and Η are the cube dimensions. Two 
formulations were tested in the steady state: full 3D 
finite elements and hybrid 2D FE/1D FD. The 
geometrical support used for each formulation is 
depicted in Figure 10. To ensure a good aspect ratio of 
the prism6 finite elements, the number of nodes in the 
transverse direction Η is double that of the in-plane 
nodes. Note that non-connected layers of the hybrid 
FE/FD model are extrapolated at the midplane of the 
connected layers. Figure 11 shows the temperature 
distribution along the z-axis for x= y= 1. The theoretical 

temperature profiles are compared with the numerical 
simulations for both formulations. The 3D mesh 
consists of 5x5 nodes in the xy plane and 10 
extrapolated layers. The hybrid mesh has only 5 FE 
layers, while the number of FD nodes in the z-direction 
was varied between 7 and 21. A good approximation of 
the analytical values was found for the pure FE solution. 
The hybrid formulation increases in accuracy with the 
number of finite difference nodes. A maximum relative 
error has been defined as the maximum error at a node 
point between the analytical and numerical solutions. 
The maximum relative error for different mesh sizes is 
shown in Figure 12. Due to the 3D behavior of heat 
conduction, the three spatial dimensions must be 
increased proportionally to compare the error between 
meshes. For the pure FE solution, the error decreases 
logarithmically when the number of mesh nodes is 
duplicated. The results of the hybrid FE/FD formulation 
are in good agreement with analytical values even for a 
coarse mesh. For the same mesh, an important gain in 
accuracy is observed when the FD nodes are duplicated. 

Case II: 3D heat diffusion - un-steady-state 

A two-dimensional heat diffusion analysis has been 
used to test the proposed thermal formulations. As 

3D FE mesh 2D FE meshes 
Extrapolated prism6 elements Parallel layers of triangles 

Fig. 10: Two meshes used for test case I: extrapolated parallel layers coincide with the midplanes of each connected 
layer. 
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Fig. 12: Maximum error of both formulations obtained for different mesh and grid sizes in test case I. 
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depicted in Figure 13, a rectangular domain is 
considered to be at initial temperature 7'0=0. A constant 
temperature is imposed at two sides of the rectangle 
T(t)=l. Also, the meshes generated to test the FE and 
hybrid FE/FD formulations are depicted in the same 
figure. The analytical solution can be found by the 
method of separation-of-variables /19/. The dimension-
less temperature distribution may be expressed as the 
product of the solutions in each direction: 

T-Trr 

Tn- L oo X,Y 

Τ-Τ 1 oo 
Τ —Τ V-Ό JX 

Τ-Τ 

V Ά) ~ j 
(30) 

where Τ0 is the initial temperature, and T x the 

boundary condition outside the domain. A square is 

considered in this test with L— Η— 1 and a constant 

boundary condition on two sides. The one-dimensional 

solution is applicable here to the X and Y axes, and may 

be written with a Fourier sine expansion as follows: 

Τ-Τ 1 100 
Τ —Τ ν-Ό J χ οχ Υ 

2η + \ 
Ψ, - : π 

4 Ä sin 
γΣ· 

ιη(ψί χ) 
π ί=0 Ψι 

e x p ( - ^ , 2 · α · / | ( 3 1 ) 

where a is the thermal diffusivity of the material (in this 
case a = l ) . Finally, the theoretical solution is finally the 
combination of equations (30) and (31). The numerical 
simulation was performed using different mesh sizes 
and number of extrapolated layers. The number of 
elements in the gapwise direction was kept at one, while 
the ratio of the in-plane number of elements along the X 

and Υ directions of the 3D mesh was maintained 
constant. Figure 14 depicts the temperature evolution at 
a control point X - Y= 1. Theoretical values are 
compared to the results of the pure FE and hybrid 
FE/FD solutions for two mesh sizes. The pure FE 
formulation shows a good agreement with analytical 
values even for a coarse mesh (5x5 nodes). The hybrid 
formulation for 5 extrapolated layers gives also a good 
approximation. When only one extrapolated layer is 
used, the solution seems to diverge from exact values. 

The L„-norm of the error between the temperature 
calculated at a given position ε and the theoretical 
solution is defined as: 

Σ 
\t=I 

Tr
ca'(t)-T£

exaa < 
1 In 

(32) 

where T^xac'(t) and (t) are the exact and 
calculated temperatures at position ε and time /, and I 
denote the number of time steps. A mesh refinement 
study has been performed to evaluate the influence of 
the mesh on the rate of convergence. Figure 15 shows 
the L r n o r m of the error for each mesh size. An error of 
less than 2% was found for the pure FE formulation 
when using a mesh of 5x5 nodes. The error decreased to 
around 1% for a 30x30 mesh. In the hybrid formulation, 
the error with one mesh layer of 5 nodes and finite 
differences in the transverse direction was 4.5%. 
Increasing the number of extrapolated layers, the 
number of transverse FD nodes was duplicated resulting 
in higher convergence rates. The accuracy of the hybrid 
solution for a mesh of 10 nodes along the X-axis, 10 
extrapolated layers and 20 FD nodes was 0.15%. These 

T(t)=1 

Control point 
X=Y=1. 

2D FE mesh 
Parallel layers of triangles Extrapolated prism6 elements 

Fig. 13: Rectangular domain used for validation test II and display of the 3D and parallel layers meshes. 
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— Analytical 
ο 3D FE mesh size: 5x5 
• 3D FE mesh size: 10x10 
» FE+FD size x5 5 Layer 
° FE+FD size x5 1 Layer 

control point X=Y= 1 

0.6 
time [sec] 

Fig. 14: Comparison with analytical values of adimensional temperature at point X=Y= 1 for pure FE and hybrid 

FE/FD solutions (test case II.). 

Mesh size In Χ,Ζ-axis or Z-layers 

Fig. 15: Convergence for 3 D mesh refinement and parallel layers increment. The rate of convergence increases more 

with the number of layers (FE/FD solution) than with the number of nodes (FE solution). Note that the 

number of finite difference nodes is twice the number of layers. 
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results show that both formulations converge to the 

theoretical values even for coarse meshes. The hybrid 

formulation gave increased convergence rates than the 

three-dimensional FE solution. 

Case III: heat diffusion with source term -
curing analysis 

One of the most important analyses in L C M 

concerns the prediction of the chemical conversion 

during the exothermic polymerization. To test the 

quality of the numerical formulations, a curing test was 

carried out in a rectangular cavity similar to test case II. 

The cavity has dimensions 0.1 m length, 0 .05 m 

thickness and 0.005 m width. A mix of 50 % resin and 

fibers is considered to be initially at 300°K. In the top 

and bottom surfaces, a mold temperature of 400°K was 

fixed. On one side of the cavity, a temperature o f 3 5 0 ° K 

was set to induce an in-plane heat flow. The kinetic 

modeling of the resin and the thermal properties of the 

fibers and resin are presented in Table 2. In a typical 

L C M curing of thick composite parts, in-plane heat f low 

plays an important role in the evolution of resin 

Table 2 

Kinetic model and thermal properties used in test case III. 

da ( 
Kinetic Model — = Λ,-exp 

at V. 
^ • A j a - j - 0 - α ) ' 

Property Units Resin Fibers 

Density Kg/m3 1000 2500 

Specific Heat J/Kg °K 1500 800 

Heat conductivity W/m °K 0.25 0.25 

Heat of reaction KJ 250 -

A, I/see 1.0 -

E, °K 1400 -

m - 1.2 -

Ρ - 0.8 -

polymerization. This heat flow induces a non-uniform 

conversion rate in the part that results in residual 

stresses and geometrical distortions. In the cavity tested, 

a control point located at the centre is used to compare 

the differences in the exothermic temperature and 

degree of cure between numerical formulations. Figure 

16 shows the pure FE and hybrid FE/FD solutions of 

temperature and degree of cure at the control point. In 

absence of an analytical solution, a refined two-

dimensional finite elements solution is used as 

reference. For the same number of mesh and FD nodes, 

the hybrid formulation seems to better approximate the 

two-dimensional solution. This is mainly because the 

control volumes are defined coincident with the 

elements and the curing formulation uses an averaged 

element temperature to evaluate the resin kinetics. The 

FD formulation considers the control volumes 

associated to each node, and uses the nodal tem-

peratures for kinetic calculations. T o compare these 

results, an error estimator of the computed curing time 

(Rc) may be defined as follows: 
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Fig. 16: Evolution of temperature and cure profiles at the cavity centre is depicted for pure finite elements and hybrid 
FE/FD solutions. The 2D FE solution is used as reference. 

where tc is the calculated time to fully cure the cavity, 

trcef is a reference time considered to be the curing time 
ref 

calculated by the two-dimensional solution. Δ/ is a 

reference time variation (At re f =60 sec.). The 
resulting error on the curing time for different mesh 
sizes is given in Figure 17. For the same number of 
layers and FD nodes, the hybrid FE/FD formulation 
shows a smaller error than the pure FE formulation. The 
error decreases logarithmically for both formulations 
when the number of through-thickness layers increases. 
To estimate the performance of the solutions, the 
computer time is combined with the error on curing 
time in the following form: 

RP=(l-Rc)(l-Rcpu) (34) 

where 

^cpu = lcpu I*cpu 

Here tr
c
e^u and tcpu denote respectively a reference 

cpu time and the cpu time to calculate a given solution. 
Figure 18 shows the performance index Rr for different 

solutions of both models. For coarse meshes, the gain in 
cpu time is compensated by the important error of the 
solution, resulting in a worse performance. When the 
number of through-thickness layers or finite difference 
nodes is increased, the performance shows a peak for 
around 15 layers. In all cases the hybrid formulation 
gives an improved performance with respect to the pure 
FE solution. This is due to the quality of the FD 
calculations and the fast solution of the tri-diagonal 
linear systems of the hybrid formulation. After the peak, 
the mesh or grid refinement results in a decrease of 
performance. The decay of the FE solution is more 
pronounced than for the hybrid formulation due to time 
consuming inversion of sparse FE matrices. In 
conclusion, the hybrid formulation presents strong 
advantages in terms of performance compared to pure 
FE techniques. 

Case IV: heat convection test 

In order to analyze the effects of the heat convection 
during filling, a linear injection in a heated cavity is 
considered. As depicted in Figure 19, the 0.5 m length 
rectangular cavity has a constant thickness of 5 mm. 
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Fig. 17: Comparison of error in the estimation of curing time for different mesh sizes. The hybrid formulation gives a 

better approximation than pure finite elements for the same number of trough-thickness layers. 
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curing analyses. 
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H= 5 

P,nJ= 1e5 Pas 
Tr = 300 °K 

Fig. 19: Rectangular cavity used for the 2D convection test with different top and bottom mold wall temperatures. 

Temperature is fixed at the top and bottom surfaces of 
the mold at 350 °K and 330 °K respectively. A fiber 
reinforcement with an isotropic permeability of le-10 
m2 is considered to fill the cavity with a fiber bed of 
volume content 50%. The thermal properties of the 
fibers and resin are the same as in the previous cases 
(see Table 2). The initial temperature of the fibers is 310 
°K while the resin is injected into the cavity at 300 °K 
with a constant pressure of le5 Pa. To evaluate the pure 
heat transport, the resin viscosity is considered to be 
constant with temperature at a value of 1 Pa.s. As a 
result of the linear flow in the rectangular cavity and the 

transverse heat conduction, a non-uniform heat 
convection will appear across the cavity thickness. In 
order to solve this heat transport problem, different 
models were generated combining FE and FD 
formulations supported by 2D and 3D finite elements. 
As shown in Table 3, six models are presented to 
account for various FE/FD combinations. Models #1 
and #2 are the standard solutions used in the previous 
LCM simulation code for 2D and 3D analyses 
respectively. Model #3 is the new proposed 3D pure FE 
solution based on prism6 elements, while models #4 to 
#6 are the new simplified solutions combining FE with 
FD formulations. 

Table 3 
Combination of different formulations and elements used for test case IV. 

Model #1 #2 # 3 #4 # 5 # 6 

Formulation FE FE FE FE+FD FE+FD FE+FD 

Finite Element triangles tetrahedrons prism6 triangles triangles triangles+prism6 

Heat solution 2D 3D 3D 2D+1D 2D+1D 2D+1D 

Transport 2D 3D 3D 2D 2D 3D 

Nbr. of layers 20 10 10 1 5 10 

Nbr. of FD nodes - - - 10 10 12 

Status in the code in use in use new new new new 

Top wall 
temperature 350 °K 

Bottom wall 
temperature 330 °K 

mm 
Fibers Initial 
temperature 310 °K 
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Figure 20 shows the temperature evolution on a 

fixed position along the longitudinal axis (x= 30 mm) 

for the six models tested. At the beginning, the 

temperature evolves due to through-thickness con-

duction. At around 20 seconds, the f low front arrives to 

the fixed position inducing a temperature increment due 

to the heat transport. While during the conduction 

period the models are reasonably close to each other, in 

the heat convection regime a maximum variation of 

2 °K appears between the 2D solution of model #1 and 

the FE/FD models #5 and #6. The simplest solution of 

one layer of 2D finite elements and through-thickness 

finite differences (model #4) shows a small overheating 

at the flow front arrival, and then converges to the 

stabilized value of models #5 and #6. Figure 21 depicts 

the temperature distribution in the cavity midplane at 

the end of filling for the six models tested. Nearly the 

injection side, where the heat f low is convection 

dominated, variations were found between models. 

Combined FE/FD formulations on a coarse mesh show a 

delay in the temperature evolution with respect to the 

2D solution of model #1 obtained on a refined mesh. 

The 3D pure finite element solutions of models #2 and 

# 3 are more accurate than the 2 D heat transport of 

models #4 to #6. For the same number of layers, the 

new prism6 element gives a better solution than the 

tetrahedrons model. Note that in the stabilized regime, a 

temperature oscillation appears in the tetrahedron 

solution because the velocity vector is outside the plane 

of the elements. This effect disappears in the prism6 

solution because the velocity is aligned with the element 

plane. 

Table 4 gives the computer times required to run 

each model on an IBM IntelliStation Z-Pro PC with a 

Pentium IV (2.8 GHz) processor. While the standard 

tetrahedrons solution took more than 4300 seconds to 

run, the new prism6 model required only 1700 seconds 

for an improved solution. The 2 D FE/1D FD models #4 

and #5 show an important advantage in terms of cpu 

times (simulations in 24 and 280 seconds respectively). 

This analysis shows that even if the quality of the 2D 

FE/1D FD is not as precise as the pure 3 D finite element 

solution, the gains in computer time make the simplified 

model reliable for a first approximation of the f low 

solution. Depending on the complexity of the flow, the 

model quality can be progressively increased to 

approach the solution. The simplified model can 

initially be used to evaluate the global problem in order 

to optimize the filling and/or curing stages. As the 

numerical optimization algorithm progresses, model 

complexity can be increased to improve the accuracy of 

the local opt imum. 
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Fig. 20: Temperature evolution at the control point for the six solutions tested. 
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Fig. 21: Temperature distribution ai me end of filling along the cavity midplane for the six solutions tested. 

#1) 2 D FE refined mesh (triangles) 

3D FE 10 layers (tetrahedrons) 

—*3) 3D FE 10 layers (prism6) 

» #4) FE-FD non-extrapolated 1 layer 

» #5) FE-FD non-coupled 5 layers 

ο #6) FE-FD coupled transport 10 layers 

Table 4 
Computer times required to calculate for each solution of test case IV (times are in seconds). 

Model #1 #2 #3 #4 #5 #6 
Finite Element triangles tetrahedrons prism6 triangles triangles triangles+prisrn6 

Flow cpu time 167.6 1135.1 1474.4 14.9 51 1184 

Heat cpu time 668.1 3211.4 223.5 5.8 211.2 221.2 

In/output time 2.9 1.1 3.4 1.2 9.2 6.8 

Tolat cpu time 853.8 4378.2 1712 24.1 283.6 1439.3 

CASE STUDY - AUTOMOTIVE FRONT HOOD 

To illustrate the advantages of the proposed models 
and of the extrusion methodology, non-isothermal 
filling and curing simulations of an automotive front 
hood have been conducted. As depicted in Figure 22, 
the mid-plane geometry of the front hood is discretized 
with a 2D finite element mesh containing 3000 
triangular elements and 1600 nodes. The dimensions of 
the part are approximately 1.56 m length by 1.15 m 
width with 5 mm thickness. During the non-isothermal 
filling, the resin is injected at a constant pressure of 3e5 

Pa at 330 °K. The mold cavity contains an isotropic 
fiber mat with a permeability of le-9 m2 (Vj= 50%). The 
fibers are considered to be preheated at 350 °K while a 
fixed temperature 370 °K is set on the top and bottom 
mold walls. To account for the resin polymerization 
during the filling flow, the resin viscosity was modeled 
as dependent of the temperature and the degree of 
conversion (see Table 5). The thermo-kinetic para-
meters used in the simulation are listed in Table 2. As 
presented in Table 6, five models were selected to run 
the non-isothermal filling followed by a curing phase. 
Pure FE solutions are calculated with a tetrahedron 
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Resin injection temperature» 330 °K 
Initial fibers temperature» 350 °K 

Mold wall temperature» 370 "K 

Fig. 22: Midplane geometry and finite element discretization of the automotive hood used for the case study. 

Table 5 
Rheological model used in the non-isothermal simulation of the automotive front hood. 

(Ε λ 
Rheological Model μ(Τ, or) = Αμ · exp - f + Bu a 

V ' J 

Coefficient Units Value 

Λ Pa.s 0.0001 

E * °K 2500 

Κ - 2.8 

Table 6 
Description of the five models used to compute the non-isothermal filling and curing of the automotive front hood. 

Model #1 #2 #3 #4 #5 

Formulation FE FE FE+FD FE+FD FE+FD 

Finite Element tetrahedrons prism6 triangles triangles triangles+prism6 

Heat solution 3D 3D 2D+1D 2D+1D 2D+1D 

Transport 3D 3D 2D 2D 3D 

Nbr. of layers 5 5 1 1 3 

Nbr. of FD nodes - - 3 5 7 
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mesh (model #1) and a prism6 mesh (model #2). Three 
combined FE/FD formulations are proposed. The first 
two (models #3 and #4) are the simplest solution 
consisting of one layer of 2D finite elements (triangles) 
to evaluate the in-plane fluid flow and heat transport, 
coupled with ID through-thickness finite differences to 
account for the transverse conduction. Model #5 
combines the 2D FE and ID FD heat conduction 
(triangles) with 3D heat and flow transport in prism6 
elements. 

#1 
3D FE (tetrahedrons) 

#4 
2D FE+1D FD (triangles) 

Fig. 23: Flow front position in time for the non-i: 
four solution tested are depicted. 

Figure 23 shows the flow front locations in time for 
the non-isothermal filling simulation of models #1, #2, 
#4 and #5. A good agreement was found between the 
models. A maximum predicted filling time of 590 
seconds was obtained for the hybrid 3D FE/FD 
formulation of model #5 versus 540 seconds of the pure 
3D FE solution with prism6 elements (model #2). 
Figure 24 depicts the degree of resin conversion 
calculated at the midplane of the cavity at the end of 
filling. As expected, the resin at the flow front has the 

#2 
3D FE (prismö) 

•Ρ ^^^^ 

#5 
2D/3D FE+1D FD 

mold filling of an automotive front hood. The solutions of 
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#1 #2 
3D FE (tetrahedrons) 3D FE (prism6) 

Fig. 24: Degree of conversion at the end of filling in the automotive front hood. The two dimensional solutions seems 
to better account for cure transport at flow front. 

#4 
2D FE+1D FD (triangles) 

#5 
2D/3D FE+1D FD 
(triangles+prism6) 

longest residence time and has received the highest 
amount of heat. As a result of this progressive heating, 
the maximum degree of polymerization at the end of 
filling will be found in the latest filled regions and at the 
periphery of the part. While a degree of cure of about 
5e-3 was calculated for the pure 3D formulations 
(models #1 and #2), a value close to 2e-2 was obtained 
for the hybrid FE/FD formulations (models #4 and #5). 

Note that the transport of the degree of cure in the pure 
3D solutions shows a diffusion near the flow front. The 
maximum degree of cure is not exactly at the flow front 
location as expected. This numerical diffusion is not 
observed in the hybrid formulations. Table 7 
summarizes the results obtained with the five models 
tested for the filling and curing simulations. The 
theoretical degree of cure was obtained by solving the 
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Table 7 
Comparison of results obtained with the five models tested for the non-isothermal filling and curing of the automotive 

front hood. 

Model theoretical #1 #2 #3 #4 #5 

Finite Element - tetrahedrons prism6 triangles triangles triangles+prism6 

Filling time [sec] 450 540.15 502.96 569 589 

Cure at end of filling 0.001356 0.00045 0.00047 0.00114 0.00195 0.00167 

Mass loss [%] - 14.6 -0.62 0.12 0.13 -0.63 

Total curing time [sec] 1898 2091 1940 1806.3 1903 1845.53 

Exothermic temperature [K] 377.35 380 380 375 377 378 

kinetic equation at the mold wall temperature (assumed 
to be the temperature of the resin particles on the flow 
front near the mold wall). The comparison indicates that 
2D heat transport models provide the best predictions of 
the ultimate degree of polymerization at the end of 
filling. 

Once the mold is filled-up, the simulation continues 
with a curing analysis until the part is fully cured. 
Figure 25 shows the degree of resin conversion at 1500 
seconds after the beginning of the injection. A curing 
front from the perimeters of the part towards the centre 
is induced by thermal effects during filling. Numerical 
diffusion in the 3D FE formulation still appears as a 
consequence of the diffused cure transport during 
filling. Table 7 resumes the curing times and exothermic 
temperatures for the five models tested. The theoretical 
values were calculated in a ID solution for the cavity 
thickness at the averaged boundary condition between 
injection resin temperature and initial fibers temperature 
(considering that injection gate is the latest region to 
cure). The comparison demonstrates that the ID FD 
model in the through-thickness direction is well 
appropriate to solve this complex thermal problem. 
Figure 26 compares the computer times required to run 
each model. While the tetrahedron solution took more 
than 44 hours, the model with the new prism6 element 
required only lhour 40 minutes, and the hybrid 2D 
FE/1D FD models around 5 minutes. This study 
demonstrates the many advantages of the proposed 
hybrid formulation. The methodology presented here to 
increase the level of coupling between the physical 
phenomena that govern the solution is remarkably 
interesting because of the important savings in time that 
it brings. 

SUMMARY 

In this study, a new hybrid finite element/finite 
difference approximation has been developed to 
describe the chemorheological behaviors of non-
isothermal resin flows and the curing phase in LCM. 
The fluid flow was computed through the FE/CV 
method described in /17/, two numerical methods were 
implemented to solve the energy balance and curing 
equations. A pure finite element formulation has been 
initially used to calculate the heat exchanges and resin 
cure in three-dimensional parts. The method consists of 
a mixed Galerkin/Lessaint-Raviart schema for heat 
conduction/diffusion and transport respectively evalu-
ated in a new prismatic prism6 element. The second 
approach presented is the hybrid FE/FD scheme. In this 
case, a finite element formulation used to evaluate the 
in-plane heat exchange in the part is coupled with a one-
dimensional finite difference approximation to calculate 
the through-thickness heat flow. The latter numerical 
method is stable and showed much improvement in 
performance in terms of precision and computational 
efforts, mainly for large parts. 

Comparisons with analytical 2D and 3D heat flows 
have demonstrated the accuracy of the numerical 
solutions. Based on the mesh extrusion concept, 
connected prismatic elements (prism6) or non-
connected parallel layers of triangles are generated 
automatically by an extrapolation algorithm from a mid-
surface mesh. The combination of the extrusion 
methodology with the two thermal formulations results 
in different levels of user defined through-thickness 
coupling. This allows the selection of increasing levels 
of complexity to compute the coupled equations. 
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#4 
2 D FE+1D FD (triangles) 

Caused by numerical diffusion 
of the 3D FE formulation # 5 

2D/3D FE+1D FD 
(trianeles+orismö) 

#1 
3 D FE (tetrahedrons) 

I 
#2 

3 D FE (prism6) 

Curing front 
evolution 

Fig. 25: Evolution of the degree of conversion after filling for a curing time of 1500 sec. A curing front from the part 
perimeter to the center is induced by the non-isothermal filling. 
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Fig. 26: Comparison of computer times required for each model tested. While previous 3D solutions with 
tetrahedrons required more than 44 hours, the new prism6 runs in 1 hour 40 min and the hybrid FE/FD 
solutions in 5 minutes. 

Analysis of a case test was conducted to illustrate the 
capabilities of the extrusion methodology and of the 
hybrid FE/FD formulation. A quick evaluation of the 
virtual process can first be carried out by a simple 
FE/FD coupling. To obtain more accurate results, the 
level of coupling can then be progressively increased 
with the same input mesh and process data. This 
methodology is promising especially for numerical 
optimization when a large number of evaluations are 
required. The optimization algorithm can begin with a 
simulation model looking for a global optimum and then 
increase the quality of the model as convergence 
progresses towards a refined optimum. Future research 
efforts will aim to implement this possibility. 
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