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RÉSUMÉ 

Les interfaces cerveau-machines (ICM) sont de plus en plus importantes dans la recherche 

biomédicale et ses applications, tels que les tests et analyses médicaux en laboratoire, la 

cérébrologie et le traitement des dysfonctions neuromusculaires. Les ICM en général et les 

dispositifs d'enregistrement neuronaux, en particulier, dépendent fortement des méthodes de 

traitement de signaux utilisées pour fournir aux utilisateurs des renseignements sur l’état de 

diverses fonctions du cerveau. Les dispositifs d'enregistrement  neuronaux courants intègrent de 

nombreux canaux parallèles produisant ainsi une énorme quantité de données. Celles-ci sont 

difficiles à transmettre, peuvent manquer une information précieuse des signaux enregistrés et 

limitent la capacité de traitement sur puce. Une amélioration de fonctions de traitement du signal 

est nécessaire pour s’assurer que les dispositifs d'enregistrements neuronaux peuvent faire face à 

l'augmentation rapide des exigences de taille de données et de précision requise de traitement.  

Cette thèse regroupe deux approches principales de traitement du signal - la compression et la 

réduction de données - pour les dispositifs d'enregistrement neuronaux. Tout d'abord, 

l’échantillonnage comprimé (AC) pour la compression du signal neuronal a été utilisé. Ceci 

implique l’usage d’une matrice de mesure déterministe basée sur un partitionnement selon le 

minimum de la distance Euclidienne ou celle de la distance de Manhattan (MDC). Nous avons 

comprimé les signaux neuronaux clairsemmés (Sparse) et non-clairsemmés et les avons 

reconstruit avec une marge d'erreur minimale en utilisant la matrice MDC construite plutôt.  

La réduction de données provenant de signaux neuronaux requiert la détection et le classement de 

potentiels d’actions (PA, ou spikes) lesquelles étaient réalisées en se servant de la méthode 

d’appariement de formes (templates) avec l'inférence bayésienne (Bayesian inference based 

template matching - BBTM). Par comparaison avec les méthodes fondées sur l'amplitude, sur le 

niveau d’énergie ou sur l’appariement de formes, la BBTM a une haute précision de détection, en 

particulier pour les signaux à faible rapport signal-bruit et peut séparer les potentiels d’actions 

reçus à partir des différents neurones et qui chevauchent. Ainsi, la BBTM peut automatiquement 

produire les appariements de formes nécessaires avec une complexité de calculs relativement 

faible.  

Enfin, nous avons complété la mise en œuvre d’un système numérique adaptatif de signaux 

neuronaux en temps réel, regroupant un détecteur de PA et un compresseur de données basé sur 
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la technique d’échantiollannage compressé. Nous avons validé les conceptions d’un seul canal et 

des multicanaux. Comparé aux systèmes actuels d’enregistrement de signaux neuronaux, le 

système proposé peut efficacement comprimer un grand nombre d’échantillons acquis et 

reconstruire les signaux originaux avec une petite erreur; en outre, il présente une faible 

consommation de puissance et possède une petite surface de silicium. Le prototype du système 

est prometteur pour l'application dans une large gamme d'interfaces d'enregistrement neuronales. 
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ABSTRACT 

Brain-Machine Interfaces (BMIs) are increasingly important in biomedical research and health 

care applications, such as medical laboratory tests and analyses, cerebrology, and complementary 

treatment of neuromuscular disorders. BMIs, and neural recording devices in particular, rely 

heavily on signal processing methods to provide users with information. Current neural recording 

devices integrate many parallel channels, which produce a huge amount of data that is difficult to 

transmit, cannot guarantee the quality of the recorded signals and may limit on-chip signal 

processing capabilities. An improved signal processing system is needed to ensure that neural 

recording devices can cope with rapidly increasing data size and accuracy requirements. 

This thesis focused on two signal processing approaches – signal compression and reduction – for 

neural recording devices. First, compressed sensing (CS) was employed for neural signal 

compression, using a minimum Euclidean or Manhattan distance cluster-based (MDC) 

deterministic sensing matrix. Sparse and non-sparse neural signals were substantially compressed 

and later reconstructed with minimal error using the built MDC matrix. Neural signal reduction 

required spike detection and sorting, which was conducted using a Bayesian inference-based 

template matching (BBTM) method. Compared with amplitude-based, energy-based, and some 

other template matching methods, BBTM has high detection accuracy, especially for low signal-

to-noise ratio signals, and can separate overlapping spikes acquired from different neurons. In 

addition, BBTM can automatically generate the needed templates with relatively low system 

complexity. Finally, a digital online adaptive neural signal processing system, including spike 

detector and CS-based compressor, was designed. Both single and multi-channel solutions were 

implemented and evaluated. Compared with the signal processing systems in current use, the 

proposed signal processing system can efficiently compress a large number of sampled data and 

recover original signals with a small reconstruction error; also it has low power consumption and 

a small silicon area. The completed prototype shows considerable promise for application in a 

wide range of neural recording interfaces. 
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CHAPTER 1 INTRODUCTION 

1.1 Research Motivation 

Brain-machine interfaces (BMIs) have been the subject of a large amount of neuroscientific 

research since the 1970s [1]. According to the ways of the recording or manipulation, BMIs can 

be divided into Electroencephalography (EEG), Magnetoencephalography (MEG), 

Electrocorticography (ECoG), neural recording, Functional magnetic resonance imaging (fMRI), 

Near infrared spectroscopy (NIRS), etc. Implantable neural recording devices are an important 

category of the BMIs, which allow researchers to directly acquire signals from single and 

multiple neuron(s). 

Due to the growing sophistication and data collection capacity of neuroscientific research and 

applications, BMIs need to integrate many functions and process increasingly large amounts of 

data, which causes that the signal processing becomes an indispensable part. For example, the 

analysis of EEG signals and fMRI requires feature extraction and classification methods [1] [2];  

independent component analysis is used for analysis of MEG signals [3]; Kernel-based learning 

methods are used to analyse ECoG signals [4]. Designing a real-time adaptive BMI has become a 

hot topic [5] [6] [7].  

Implantable neural recording devices are an important category of BMIs: they allow researchers 

to directly acquire signals from single and multiple neuron(s). However, an implantable real-time 

adaptive neural recording device faces many challenges. First of all, it must integrate an ever-

increasing number of channels to improve recording performance. The multichannel neural 

recording system must provide information about neurons at multiple sites and also about the 

relationship between these neuronal sites. More channels means a huge amount of data must be 

collected, which presents difficulties in storing, processing and transmitting data to a base station. 

Also, an implantable device has some challenging design limitations: its surface area should be 

tiny; it should maintain low temperature in order to protect tissue from heat injury; and it should 

have low power consumption to permit a long lifetime. 

Achieving the fast and accurate neural signal processing needed by an implantable real-time 

adaptive neural recording device is a similarly challenging goal. Current neural signal processing 

methods can be divided into two principal strategies: signal reduction and compression. Spike 
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detection and sorting are popular signal reduction methods, but despite considerable research, 

several difficulties remain to be overcome. The first major problem is detection accuracy. The 

spike detection block should correctly detect all of the spikes while removing the noise, and the 

detection system should have low complexity to ease its implementation. Furthermore, the spike 

processing system should separate the overlapping spikes that originate from different neurons. 

Signal compression can keep the original signal to the maximum possible extent while reducing 

the burden of the transmission, and therefore it has aroused much interest among designers of 

neural recording devices [8] [9] [10]. A new signal compression technique called compressed 

sensing (CS) for use in processing recorded signals has been discussed [11] [12]; however, the 

neural signal is usually not sparse in the time domain, so the application of the CS technique for 

neural signals needs further research. Moreover, compressing neural signals requires 

development of a dedicated sensing matrix with a high compression rate and a low 

reconstruction error. 

Finally, signal processing algorithms should be applied carefully for the circuit design. To date, 

designers have focused on the design of the front-end circuit and transmitter, but the need to 

design and develop a high-efficiency, low-cost signal processing system is becoming more and 

more pressing. The two principal difficulties hindering the development of such a system are the 

lack of a suitably high-performance and low-complexity signal processing technique, and the 

non-existence of a circuit design with sufficiently low power consumption.   

1.2 Objectives 

The main objective of this research was to study new approaches, both in theory and 

implementation, for spike detection (sorting) and signal compression in a neural recording device. 

The specific objectives were as follows: 

 to develop a sensing matrix for the compression of neural signals using the CS technique;  

 to understand the process of reconstruction of the original neural signals and determine the 

influence of parameters such as the sampling rate and  length of the signal; 

 to evaluate the high-efficiency spike detection method, including high-accuracy detection 

and classification of the spikes; 
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 to design a digital neural signal processing system that includes spike detection and signal 

compression, and to test and verify the proposed system. 

1.3 Contributions 

The contributions of this thesis and our research are summarized as follows: 

 New methods about the compression of sparse and non-sparse neural signals with CS 

technique. A minimum Euclidean or Manhattan distance cluster-based deterministic 

compressed (MDC) sensing matrix was proposed to compress the neural signal. The MDC 

can compress sparse and non-sparse signals using the similarity, which is appropriate for the 

compression of neural signals in the time domain. We also give the mathematic proof of the 

MDC matrix for compression. Furthermore, the results of our research into other 

compression methods based on CS technique are outlined. 

 New knowledge about the reconstruction of original neural signals with different 

reconstruction methods. We found that the unit MDC matrix that is composed of zero and 

one can be used for the compression of neural signals, which has low complexity suitable for 

the design of the compression system in neural recording devices. The factors that influence 

the MDC matrix, such as the length of signals, sampling rate, are identified and discussed. 

The above contributions are detailed in the following published articles: 

N. Li and M. Sawan, "Neural signal compression using a minimum Euclidean or Manhattan 

distance cluster-based deterministic compressed sensing matrix," Biomedical Signal Processing 

and Control, vol. 19, pp. 44-55, 2015. 

H. Semmaoui, N. Li, S. Khayat-Hosseini, J. Martinez-Trujillo, and M. Sawan, "An adaptive 

recovery method in compressed sensing of extracellular neural recording," Journal of Neurology 

and Neuroscience, vol. 6(19),  pp.1-11,  2015. 

 A spike detection and sorting method with a high detection and classification accuracy was 

proposed; it is based on Bayesian inference-based template matching. Using this system, 

spikes can be detected with high accuracy, especially for a low signal-to-noise ratio (SNR). 

Also, the overlapping spikes can be separated and classified. Furthermore, the system can 
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automatically generate the templates. Finally, the proposed system has a simple structure 

which can be used for circuit implementation. 

 An amplitude-based thresholding method of spike detection, called modified Maximum and 

Minimum Spread (mMMS) Estimation Method, was tested. Compared with the original 

MMS method, mMMS has low power consumption and good detection accuracy for high 

SNR. 

The above contributions are reported in the following articles: 

N. Li, H. Semmaoui, and M. Sawan, "Modified Maximum and Minimum Spread estimation 

method for detection of neural spikes," Proceedings, 2013 IEEE International Conference on 

Electronics, Circuits, and Systems, pp. 530-533. 

N. Li, L. Fang and M. Sawan, "An efficient real-time neural spike detection method based on 

Bayesian inference with automatic template generation" (under review). 

 The design of a neural signal processing system, including spike detection and signal 

compression, is presented. The design is divided into single-channel and multichannel 

systems. Based on the single-channel system, the signal processing for a 256-channel 

multichannel system is discussed. The implemented digital circuit is tested and verified by 

simulation software and the field-programmable gate array (FPGA) testing board. The 

proposed system has good processing performance and relatively low power consumption 

and a small silicon area, which can be used in the neural recording interfaces. 

The details of this contribution can be found in the following articles: 

N. Li, M. Osborn, G. Wang and M. Sawan, "A Digital multichannel neural signal processing 

system using compressed sensing technique" Accepted for publication by Elsevier Digital Signal 

Processing. 

N. Li and M. Sawan, "High compression rate and efficient spikes detection system using 

compressed sensing technique for neural signal processing," Proceedings, 7th International 

IEEE/EMBS Conference on Neural Engineering, 2015, pp. 597-600. 

N. Li, M. Osborn, L. Fang and M. Sawan, "Using Template Matching and Compressed Sensing 

Techniques to Enhance Performance of Spike Detection and Data Compression Systems" 

Accepted by 2016 IEEE International Symposium on Circuits and Systems. 

 



5 

1.4 Thesis Organization 

This thesis is written in a paper-based format. 

Chapter 2 contains a review of BMIs, neural recording systems and neural signal processing. 

First, it describes BMIs and their uses, and introduces several signal acquisition techniques of 

BMIs. Neural recording systems are specifically highlighted, and several systems and processing 

techniques are compared. All the significant related work in neural recording and signal 

processing techniques is reviewed. This chapter is one part of a review paper being prepared for 

submission to a high-ranking circuits and systems journal. 

A neural signal compression system based on the CS technique is discussed in chapter 3, where a 

sensing matrix, called a minimum Euclidean or MDC sensing matrix, is introduced. This chapter 

explores several key points relating to this sensing matrix and proves that the proposed sensing 

matrix can be used for neural signal compression. This chapter is published in Biomedical Signal 

Processing and Control (vol. 19, pp. 44-55, 2015). 

In Chapter 4, we propose an automatic template generation system using a Bayesian inference-

based template matching method for spike detection and classification. This system accurately 

detects spikes and classifies spikes. The chapter describes the system and its detection and 

classification accuracy.    

A digital online adaptive neural signal processing system, including spike detection and 

compression, is implemented in chapter 5. The single-channel processing system includes a spike 

detection block using the RMS method and a compression block using the MDC matrix. Based 

on the single-channel design, we investigate the signal processing of a multichannel system and 

present our results. Finally, the system is verified with an FPGA testing board. This chapter will 

be published in Elsevier Digital Signal Processing. 

Chapter 6 contains the general discussion for the thesis, and our conclusions, along with 

recommendations for future work, are presented in chapter 7. 
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CHAPTER 2 STATE OF THE ART OF NEURAL RECORDING 

INTERFACES AND NEURAL SIGNAL PROCESSING TECHNIQUES 

In this chapter, we begin with a discussion on BMIs, then review neural recording devices. 

Finally, we review neural signal processing methods, including spike detection and the CS 

technique for signal compression. 

2.1 Brain-Machine Interfaces  

Biomedical signals are important information in research on the human physiological processes. 

Human bodies are made up of many systems, and each system is comprised of several 

subsystems that carry on numerous physiological processes. These processes are complex 

phenomena, and their nature and activities can be reflected by various biomedical signals. These 

signals can be biochemical (in the form of hormones and neurotransmitters), bioelectrical (in the 

form of action potentials), or physical (in the form of pressure or temperature) [13].  

A BMI is a system which enables the acquisition of information about cerebral activity and also 

permits the brain to control computers or other devices. The human body can interact with the 

control signals that are generated by such a system. BMIs can improve the quality of life and 

reduce the cost of daily care for people with restricted mobility and physical disabilities, through 

linking to external devices such as computers and assistive appliances which respond to patients’ 

requirements. 

The function of a typical BMI contains five consecutive stages: signal capture, preprocessing of 

the signal, signal processing, transmission or stimulation, and results analysis or evaluation. The 

signal capture stage collects biomedical signals. The preprocessing stage prepares signals to be 

more recognizable in order to deal with them most effectively in the following step. The signal 

processing stage satisfies the BMI user’s specific requirements with respect to the calculation of 

the acquired signals, such as feature extraction or spike classification. The transmission or 

stimulation stage either transmits the acquired signals or stimulates organs or tissues. The final 

step is the analysis of the acquired signals or the evaluation of the stimulation performance. 

Two main categories of the neural signals in the brain can be monitored. One is 

electrophysiological activity, and the other is hemodynamic activity [14]. Currently, most BMI 
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devices use electrophysiological activity to acquire information from the brain.  This can be done 

through two approaches: noninvasive methods and invasive methods. The noninvasive method 

does not involve surgery being performed on a patient to acquire the signals, so it has minimum 

risk, considerable convenience for research, and makes recruiting participants much easier [15]. 

The invasive approach requires implantation of the device into a living body, so most invasive 

BMIs have been tested only in experimental animals [16]. Five approaches to communicating 

with the human brain – some invasive, some non-invasive –are introduced below.  

Magnetoencephalography (MEG) is a noninvasive method that records the brain’s magnetic 

activity by means of magnetic induction. MEG has the advantage that magnetic fields are rarely 

distorted by the skull and scalp, unlike electric fields [17]. A disadvantage of this method is the 

size and the high price of the acquisition [14]. In addition, the accuracy and flexibility of the 

MEG still needs to be improved [18] [19]. 

Electroencephalography (EEG) is a noninvasive method which measures the voltage fluctuations 

in brain activity caused by the flow of electric current due to the synaptic excitations of the 

dendrites of the neurons. EEG data collection occurs through electrodes placed on the scalp. 

Because of its simplicity, it is the most widespread neuronal recording method and has many 

applications; for example, it can be used to monitor epilepsy [20] [21]. 

Electrocorticography (ECoG) is an invasive method in which electrodes are placed directly on 

the surface of the brain to record the electrical activity in the region of the cerebral cortex. 

Compared with EEG, ECoG has good recording resolution, because it bypasses the signal-

distorting skull and intermediate tissue; thus it is suitable for the study of activity such as blinks 

and eye movement [22] [23]. 

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive method; it uses the 

electromagnetic fields to detect changes in cerebral blood flow and oxygenation levels during 

neural activity. fMRI is often used for blood-oxygen-level dependent contrast imaging [24], but 

is also used in research and treatment monitoring applications for conditions such as epilepsy and 

language processing deficiencies [25] [26] [27] [28].  

Compared with the four signal recording methods described above, a neural recording system 

has great promise for advancing the understanding of brain function by allowing scientists to 

directly observe and analyze neural activity during normal animal behavior [29]. A neural 
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recording techniques can be divided into single-electrode and multi-electrode recording methods. 

Single-electrode neural recording was popular until the 1960s [30] [31]. A recording from a 

single electrode can reveal the characteristics of one or a few cell(s), but it cannot give 

information about how neurons networks work together to process information, which requires 

the use of arrays of microelectrodes to study temporal and spatial relationships between groups 

of neurons [32]. Therefore, single-electrode recording was eventually replaced by multi-

electrode recording. 

The first multi-electrode system was proposed by Marg and Adams in 1967 [33]. Since then, 

multi-electrode or multichannel systems have become mainstream in the neural recording field. 

Multichannel neural recording reveals the importance of observing the activity and interaction of 

many neurons simultaneously [32]. Figure 2.1 shows a typical system used to monitor and record 

neural signals [34]. This system includes the recording electrodes (or probes), the inner and 

external signal processing circuits and systems, and the wireless transceiver. 

 

Figure 2.1 A multichannel neural recording system (Polystim) [34] 

2.2 Neural Recording Devices 

A typical implantable multichannel neural recording BMI contains three key parts: the front end, 

the signal processor and the signal transmission circuits. Figure 2.2 shows a typical neural 

recording BMI [35]. In this system, it can be seen clearly that this BMI contains a mixed-signal 

data acquisition part (front-end part), a spike detector (signal processing part) and the serial bus 

interface (signal transmission part). Signals are amplified and sampled in the mixed-signal data 

acquisition part. Then the system detects the neural spikes in the digital part. Finally, the 
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digitized data points are transmitted through the serial bus interface. 

 

Figure 2.2 A typical neural recording BMI [35] 

Generally speaking, the front-end circuit contains two parts: a signal preprocessor and an analog-

to-digital converter (ADC). The signal preprocessor includes a signal amplifier and a filter. For 

example, Figure 2.3 shows a high-pass amplifier that provides a fixed gain of 50 dB and cut-off 

for all EEG signals with frequencies lower than 0.1 Hz, and power consumption of 99 μW [36]. 

Figure 2.4 shows a continuous-time OTA-capacitor (OTA-C) filter featuring 9th-order equiripple 

transfer functions with a constant group delay; the power consumption of this filter is only 360 

nW [37]. Recent research, [38] introduced an 800 nW 43 nV/pHz neural recording amplifier 

using 0.18 μm CMOS technology with an area of 0.05 mm2. Many recent articles concern the 

design of low-power high-performance amplifiers and filters [39] [40] [41].  

 

Figure 2.3 The chopped logarithmic programmable gain amplifier [36] 

An ADC is needed for digitalized calculation and transmission. Figure 2.5 shows a nonlinear 

signal-specific ADC. Its sampling rate is 25 kS/s and its power consumption is only 87.2 μW 
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[42]. Other recent research outputs, [43] [44] contain details of the design of a high-performance 

ADC. 

 

Figure 2.4 OTA-C continuous-time delay-filters, (a) the IFLF filter, (b) the cascaded filter [37] 

 

Figure 2.5 (a) Chip photograph of the proposed nonlinear ADC, (b) power consumption of the 

chip versus sampling rate (bottom) and spike rate at 200 kS/s (top) [42] 

The second necessary component of an implantable neural recording BMI is the transceiver, and 

example of which is shown in Figure 2.6 [45]. This transmitter has a 1 GHz frequency band and 

a 20 Mb/s transmission rate. The power consumption of this transmitter is only 4.8 μW with a 
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0.9 V power supply. More information about the design of transceivers can be found from 

references [46] [47] [48].  

 

Figure 2.6 Block diagram of the proposed combined transceivers [45] 

Thirdly, in a neural recording BMI, the signal processor is a very important part. It enables spike 

detection [29], feature extraction [49], and data compression [10] [50]. Spikes in brain activity 

can be used to study epilepsy [21] [51] ; in a typical epilepsy system, spikes detection is the first 

step in feature extraction [52]. In addition, spike detection can be used to study the activity of the 

neurons of the prefrontal cortex [53] [54] [55] [56]. Currently, most existing neural recording or 

stimulation systems integrate a spike detection function [57].  

Although the literature on this topic is large, we focused on a comparison of the most recently 

published neural recording systems, which are not merely front-end but include detection, 

compression and transceiver circuits, or all of these. We describe five typical state-of-the-art 

neural recording systems in Table 2.1, and compare other systems outlined in articles published 

from 2007 to 2015 in  Table 2.2. One system introduced in reference [58] is based on the analog-

spike detector, and reference [59] introduces a system that uses only digital methods for signal 

processing. Two neural recording systems in references [54] and [60] use analog and digital 

methods to reduce or compress signals. The system described in [47] does not include signal 

processing. 
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Table 2.1 Performance comparison of five typical state-of-the art neural recording systems 

Reference [47] [54] [58] [59] [60] 

Electrodes 10 1 100 128 64 

Amplifier 
Folded  
cascode 

OTA 

Low-noise 
programmable 

gain OTA 

Two-stage 
OTAs OTAs 

Two-stage 
operational 
amplifier  

Gain 
(dB) 40 

Adjustable 
between 47.5 

and 65.5 
60 60 60 

Low and high 
cut-off 

frequency  
(Hz) 

300, 
 8.13k 167, 6.9k 300, 5k 

0.1-200 
(low-

frequency 
roll-off), 2k-
20k (high-
frequency 
roll-off) 

<10–100, 
9.1k 

ADC None 8-bit SAR 
ADC  

10-bit SAR 
ADC 

Adjustable 
6-bit or 9-bit 
SAR ADC 

8-bit ADC 

Sampling rate 
(ksample/s) None 90 15 40 7.8 

Signal  
reduction   None 

Analog 
detector and 

feature 
extraction 

Analog 
programmable 

threshold 

Nonlinear 
energy 

operator and 
feature 

extraction 

Analog 
spike 

detector 

Signal 
compression None None None None Digital data 

compressor 

Transmission TDM-FM 
433M Hz None 

FSK 
transmitter 
433M Hz 

Ultra 
wideband 
transmitter 

FSK 
transmitter 
4M/8M Hz 

Size (mm) 22 × 11 × 
5 0.4 ×0.4 4.7 × 5.9 8.8 × 7.2 14 × 15.5 

Power 
consumption of 

the system  
(mW) 

5 3.1×10-3 13.5 6  14.4 

Process 
Technology 

(μm) 
0.5 0.18 0.5 0.35 0.5 
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Through comparing these neural recording systems, some conclusions can be drawn. First, signal 

processing systems are important. In the past, most implemented neural recording systems 

focused on the pre-processing, including the amplifier, filter and analog-to-digital data 

conversion. Some systems do not include any signal reduction and compression components or 

may integrate a simple spike detection system. Recently, lots of systems have begun to integrate 

more complicated signal processing systems, such as spike-sorting systems and CS-based signal 

compression systems; as noted previously, signal processing systems for neural recording 

devices have become a hot research topic.  

Table 2.1 and  Table 2.2 also show that designers are using more electrodes or channels for 

neural recording systems. Currently, to the best of our knowledge, the maximum number of 

electrodes used in a neural recording system without wireless telemetry and signals compression 

is 11,011 [61], which shows that huge numbers of electrodes can be used for a neural recording 

system, but with the limitations of power and size, the recorded data cannot be transmitted 

through wirelessly. Therefore, advances in neural signal processing are necessary. 

Both analog and digital methods are used for signal processing. The digital method offers higher 

accuracy than the analog one. For example, for spike detection, the digital method can optimally 

implement the corresponding detection methods from the mathematical formulas to calculate 

thresholds, which means that the digital method is “smarter”, more flexible and has higher 

estimation accuracy [62].  

Finally, as previously noted, a neural recording device must have low power consumption and 

small silicon area. The transmitter of a wireless multichannel implantable neural recording 

device consumes more energy than a wired device. There are two reasons for this problem. 

Firstly, huge amounts of data means that the system must use a high carrier frequency for 

transmission. Secondly, free carrier frequencies, known as ISM bands, are used to transmit the 

data, which increases the complexity of the transmission system. Conflicts between transmission 

and circuit performance can only be resolved by designing a low power and small area signal 

processing system. 
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 Table 2.2 Comparison among different neural recording systems  

Reference [63] [64] [65] [66] [67] 

Year 2015 2015 2015 2014 2014 
Electrode 12 4 4 32 8 

Amplifier OTA Two-stage 
amplifier 

Two-stage 
amplifier 

Intan 
Technologies 

RHA2132 
amplifier chip 

Operational 
amplifier 

Gain  
(dB) 

40, 
configurable 

Configurable 
230 − 6 k 72 200 

55.7 / 
50.3(AP), 

50.3 / 
45.1(LFP) 

Low and high 
cut-off  

frequency  
(Hz) 

Configurable None 30k (H) 0.17, 4.5k 0.12 – 3k, 
20 – 2k 

ADC SAR ADC 
(12 bits) 

SAR ADC 
(10 bits) 

SAR ADC 
(8 bits) AD7980 None 

Sampling 
rate(ksample/s) 103 20 100 31.25 None 

Signal  
reduction None None Energy-

based 

MAD, 
template 
matching 

Analog 
spike 

detector 

Signal  
compression CS CS None None None 

Transmission None None FM/FSK None None 

Power 
consumption  

(μW) 

4.6g lithium 
battery,70 

hours 

16 per 
electrode 8000 None 4.8 per  

channel 

Size 
(mm) 4.5×1.5 0.11 mm2 per 

electrode 1.5×0.75 29.5 × 43.3 1.5 × 1.5 

Process 
technology      

 (μm) 
0.18 0.18 0.5 None 0.18 
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Table 2.2 Comparison among different neural recording systems (cont’d) 

Reference [68] [41] [69] [70] [71] [72] 
Year 2014 2013 2013 2013 2012 

Electrode 4 100 64 1 10 × 10 

Amplifier 
Fully-

differential 
amplifiers 

OTA OTA OTA 

Capacitive-
feedback, 

folded cascode 
OTA 

Gain 
(dB) 43 – 80 34 – 40 54 – 60 39.6 46 

Low and high 
cut-off frequency 

 (Hz) 
0.1, 2000 432, 5.1k None 0.8, 5.2k 0.1, 7.8k 

ADC SAR ADC 
(8 bits) 

SAR ADC 
(9 bits) 

SAR ADC 
(8 bits) 

Sigma-
delta ADC 
(13 bits) 

SAR ADCs 
(12 bits) 

Sampling rate 
(ksample/s) 10 – 100 24.5 – 245 20 2000 20 

Signal  
reduction None 

Analog 
spike 

detection 

Feature 
extraction None None 

Signal  
compression None None None None None 

Transmission 

MICS/ISM-
compliant 
transmitter 
digital FSK 

Burst-mode 
wideband 

FSK 

All-digital 
pulsed ultra 
wideband 

Standard 
series 

peripheral 
interface 

FSK with 
3.2/3.8GHz 

wireless 
transmitter 

Power  
consumption 

(μW) 
1100 1160 16 per 

electrode 2760 90.6 

Size 
(mm) 8.6 × 9.7 4.5×1.5 4 × 3 11.25 mm2 

5.2 × 4.9 
(preamplifier) 

 2 × 2 
(controller) 

Process  
technology 

(μm) 
0.13 0.18 0.13 0.6 0.5 
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Table 2.2 Comparison among different neural recording systems (cont’d) 

Reference [73] [74] [75] [76] [77] 
Year 2012 2012 2011 2011 2011 

Electrode 32 14 1 1 16 

Amplifier 

Two-stage, 
band-pass, 
low-noise 
amplifier 

Low-noise, 
low-power 
amplifiers 

OTA Instrumentation 
amplifier 

Commercial 
acquisition 

system 

Gain 
(dB) 66.5 500 V/V 100 300,500, 

900,1300 76 

Low and high 
cut-off 

frequency 
(Hz) 

Adjustable, 
9.6k (H) 250, 10k 300, 5.2K None 300 (L) 

ADC 

ADS7953 
from Texas 
Instrument 
(12 bits) 

SAR ADCs  
(11 bits) 

SAR ADC 
 (9 bits)  

SAR ADC  
(11 bits) 

SAR ADC  
(8 bits) 

Sampling rate 
(ksample/s) 

Maximum 
62.5 26.1 11.52 64 or 1024 None 

Signal  
reduction 

Nonlinear 
energy 

operator  
None None Feature 

extraction 
Setting 

threshold  

Signal  
compression None None None Adaptive 

sampling None 

Transmission None 

RF 
transmitter 

with 902-928 
MHz carrier 
frequency 

905 MHz 
FSK 

transmitter  
None 

Manchester 
coded 

frequency 
shit keying 

400M 
carrier 

frequency 

Power 
consumption 

(μW) 
None 1230 

1.5v 
silver-
oxide 

batteries, 
runs 5 
hours 

30 for ASP 17200 

Size 
(mm) None 2.36 × 1.88 × 

0.25 6 × 5 4.6 × 4.5 None 

Process  
technology 

(μm) 
None 0.35 0.6 and 

0.35 0.5 0.5 
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Table 2.2 Comparison among different neural recording systems (cont’d) 

Reference [78] [79] [80] [57] [81] 
Year 2010 2010 2010 2009 2009 

Electrode 64 1 18 10 × 10 16 × 16 

Amplifier 

Low-noise, 
band-pass 

pre-
amplifier 

Two-stage low 
noise OTA 

Three-stage 
instrumentati
on amplifier  

User-
selectable 
amplifier 

OTA 

Gain 
(dB) 65 – 83 50 – 80 72 60 48 – 68 

Low and high 
cut-off  

frequency 
(Hz) 

10, 10k 0.1 – 1k, 8k, 
adjustable < 1, 200 250, 5k 0.01 – 70, 

500 - 5K  

ADC SAR ADC 
(8 bits) 

Commercial 
component 
TI MSP430 

SAR ADC  
(12 bits) with 
power-gating 

SAR ADC  
(10 bits) 

Sample-and-
hold circuit 

(8 bits) 

Sampling rate 
(ksample/s) 20 20 

0.6, 
maximum is 

100 
15.7 < 10k 

Signal  
reduction 

Adaptive 
threshold 

Adaptive 
absolute 
threshold 

Spectral 
energy 

distribution 
extraction 

Adaptive 
threshold None 

Signal 
compression None None None None 

Delta 
compression 

lower the 
resolution 

Transmission 

Narrowband 
400-MHz 

binary 
Manchester-
coded FSK 

Power carrier 
frequency is 
13.56MHz.  
data carrier 
frequency is 
433/915MHz 

None 

FSK 
modulation 
with carrier 
frequency 

902-928 Hz 

None 

Power 
consumption 

(μW) 
16600 < 4850 

9 uJ/ per 
feature-
vector 

8000 5040 

Size 
(mm) 3.1 × 2.7 4.9 × 3.3 2.5 x 2.5 5.4 × 4.7 3.5 × 4.5 

Process 
technology 

(μm) 
0.35 0.5 0.18 0.6 0.35 
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Table 2.2 Comparison among different neural recording systems (cont’d) 

Reference [82] [83] [84] [85] [86] 
Year 2009 2008 2008 2007 2007 

Electrode 16 32 16 64 16 × 16 

Amplifier OTA Low noise OTA 
Two-stage 

voltage 
amplifier 

Low noise 
multiplexed 

amplifier 
array 

OTA 

Gain 
(dB) 

45.7, 49.3, 
53.7 or 

60.5 
48 39.6 64 48 – 68 

Low and high 
cut-off  
(Hz) 

1, 12K 1, 7k 0.2 – 94,  
140 – 8.2k 

6 – 1k,  
3 – 15k 

0.01 – 70, 
500 – 5k 

ADC SAR ADC 
(10 bits) 

Normal ADC  
(5 bits, 10 bits) 

Gm-C 
incremental 

∆Σ ADC  
(8-12 bits) 

AD7277  
(10 bits) 

Off-chip 
ADC 

Sampling rate 
(ksample/s) 256 22 < 16 40 10 

Signal  
reduction None Analog spikes 

detection 
Analog 
filtering 

Digital 
filters based 

detection 

Wavelet 
decompos-

ition 
Signal 

compression None None None None None 

Transmission None Bluetooth 

Wireless 
power 

harvesting and 
telemetry 
system 

USB 2.0 None 

Power 
consumption 

(μW) 
60.3 109.58 1800 33 000 

5.04 
(with-out 
wavelet 

processor) 

Size 
(mm) 2.5 × 3.3 3 × 3 3 × 3 

2.8 × 3.2 
(amplifier 

array) 
40 × 60 
(FPGA) 

4.5 × 3.5 
(only 

interface) 

Process 
technology 

(μm) 
0.35 0.6 0.5 0.35 0.35 
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2.3 Neural Signal Processing 

Signal processing techniques are used for analysis or perception of physiological measurements. 

The purpose of acquiring physiological signals is to gain insight into the system that produces 

these signals. As noted above, these signals may be acquired in electrical form. A typical 

schematic block diagram of physiological measurement is shown in Figure 2.7. Most of the in 

situ signal processing follows the process in this diagram. First of all, the designer needs to know 

the physiological process and design the corresponding signal collector. This collector can be the 

electrodes, the sensor or the chemical indicator. After collection of the signals, these signals need 

to be translated into electrical signals. Then, an analog preprocessing can amplify the signal or 

remove noise. After the analog preprocessing, a digitized conversion prepares for the following 

calculation, transmission or analysis. If a designer uses analog signal processing in the system, 

then an analog processor will be added before the converter; if the digital signal processing is 

applied for the system, then a digital processor is integrated after the converter. Finally, the 

digitized signals are analyzed in a computer.  

 

Figure 2.7 Diagram of physiological measurement 

For a multichannel neural recording device, handling the quantity of the recorded data is one of 

the most difficult problems that must be solved. Designers need to considerably reduce large 

amounts of data, without degrading the data quality, for easy transfer through wireless 

transmission. To solve this problem, two strategies can be applied: signal reduction and 

compression. Signal reduction methods retain most of the information of the signal but remove 

useless signals; for example, spike detection is a signal reduction method. Signal (or Data) 

compression methods use one of many possible approaches to acquire a subset of signals, then 

based on this subset, apply an algorithm to recover the original signals. In the following two 
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sections, two processing strategies, spike detection (and sorting) and signal compression, are 

reviewed. 

2.3.1 Spike Detection and Sorting 

Neural signals, produced by the neurons in the brain, can be recorded as bioelectrical signals. 

Bioelectrical signals are one kind of important biomedical signals that reveal the behavior of 

relevant organs. The basic component of all bioelectrical signals is action potential (AP)  [87]. 

AP is caused by the flow of sodium (Na+), potassium (K+), chloride (Cl-) and other ions moving 

across every cell membrane [13]. The AP provides information on the nature of physiological 

activity at the cell level. When a single neuron is stimulated by a neural or external electrical 

current, it produces APs. Recording an AP requires the isolation of a single neuron, then 

microelectrodes with tiny tips are used to stimulate the neuron or record the response [87]. 

Extracellularly recorded neural signals have some important characteristics. Firstly, 

extracellularly recorded APs are called spikes [88]. Neurons communicate with each other using 

spikes. Each spike has an amplitude of about 70 mV (relative to the extracellular fluid) and a 

duration of around 1 – 2 ms [89] [90]. When an extracellular microelectrode is held tens of 

microns away from the neurons, a value of 50 – 500 μV can be detected. A typical neuron 

generates 10 – 100 spikes per second [29] [58]. (Figure 2.8 shows APs collected from multiple 

neurons of an adult male rhesus macaque monkey). In addition, once a neuron generates an AP, 

there is a period during which a cell cannot respond to any new stimulation, known as the 

absolute refractory period (about 1 ms). This is followed by a relative refractory period (several 

microseconds), and in this period, another AP may be triggered by a stronger stimulation [13]. 

Spike detection is an important step in many processes and analyses involved in investigating the 

activity of the nervous system. First, the spike detection process detects APs (spikes) that are 

immersed in background noise during extracellular recordings of neural signal. This process 

enables interpretation of neuronal activity and decoding of the included information. Furthermore, 

spike detection is a very useful reduction process for transmission in a wireless multichannel 

implantable neural recording system. 

Spike detection processing involves two important concepts. The first one is concept of online 

and offline detection. Online detection means that the neural spikes are detected at the same time 
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as the signals are recorded. Offline detection means that detection occurs after recording [88]. 

This method usually has a long delay, and it is obviously not suitable for a multichannel 

implantable neural recording system. The second important concept is adaptive detection and the 

detection of manual setting. The detection of manual setting means that the threshold or template 

is not calculated from the previously recorded data but is directly set by the designer. In the early 

days of spike sorting, spike detection was done purely in analog hardware. It was typically 

performed using a simple voltage trigger, with a voltage threshold set manually by the user [88]. 

If the voltage of the signal crossed that threshold, a pulse would be generated to indicate the 

presence of a spike [91]. This method is appealing because of its simplicity, and, as a result, is 

still used today by many research groups, especially with analog designs [88]. The largest 

disadvantage of the manual setting method is its requirement for thresholds or templates in 

advance. In contrast, adaptive detection means that the threshold or template that is used for the 

detection is determined from the previously recorded data. Comparing with the manual setting 

method, this method not only runs automatically to detect the spikes but allows estimation of the 

threshold, which is definitely much more advanced [92]. Currently, neural recording systems 

usually integrate an online adaptive spike detection component [93] [94] [95]. Furthermore, if the 

threshold can be acquired in a short time, this method can be called real-time detection [90]. 

Automatic calculations of the threshold usually involve a training period, and they still can be 

considered to be real-time processing.  

 

Figure 2.8 Recorded signals from an adult male rhesus macaque monkey 

Spike detection techniques can be divided into amplitude-based, energy-based and template 

matching methods. These methods are described in the following sections. 
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2.3.1.1 Amplitude-based Spike Detection 

Detecting neural spikes from background noise is commonly done by comparing signals’ 

amplitudes with thresholds. This method was initially used to analyze offline neural signals [91]. 

now, amplitude-threshold-based detection is a commonly used online adaptive detection method. 

The idea of this method is that a spike is a sudden pulse and its amplitude is obviously larger than 

the ambient signals. The noise of the signal is usually regarded as the Gaussian white noise, and 

the threshold is the standard deviation multiplied by a coefficient [96]. Based on this idea, several 

real-time, adaptive spike detection methods are emerging, such as RMS methods [97], median 

absolute deviation (MAD) [98], EC-PC [99], cap fitting [100], and maximum and minimum 

spread (MMS) estimation [96] methods. The RMS estimator is traditionally used to estimate the 

standard deviation of the background noise, which is shown in Figure 2.9(a) [97]. The threshold 

is calculated using (2.1). 

                                         𝑇𝑇 = 𝑃𝑃 × �1
𝑁𝑁

� (𝑥𝑥𝑛𝑛 − 𝑥̅𝑥)𝑁𝑁
1

2
                                                      𝑛𝑛 = 1. . . . . . 𝑁𝑁                       (2.1) 

where  x  is the mean value.  

The second method is called MAD estimator, which is shown in Figure 2.9(b) [98]. The threshold 

is calculated in (2.2). 

                                          𝑇𝑇 = 𝑃𝑃 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(|𝑥𝑥𝑛𝑛−𝑥̅𝑥|)
0.6745

                                          𝑛𝑛 = 1. . . . . . 𝑁𝑁                                 (2.2) 

All the samples in a given time frame are subtracted by their mean value. Then the absolute 

values of the subtracted samples are sorted. The MAD is defined as the median value of  |𝑥𝑥𝑛𝑛 − 𝑥̅𝑥|. 

The standard deviation of background noises is equivalent to the MAD divided by 0.6745.  

The next estimator, shown in Figure 2.9(c), is the cap fitting estimator [77]. The threshold T is set 

as  𝑃𝑃   ×   𝜎𝜎, where 𝜎𝜎 is the standard deviation. If T exceeds X0.9987, the distribution of data below T 

is considered to be Gaussian noise. Otherwise, the samples that exceed T are regarded as neural 

spikes and are removed from the signal.  

The final estimator, shown in Figure 2.9(d), is the MMS sorting estimator. This estimator has 

been proven to have better performance than the other three estimators [96]. This method firstly 

finds the maximum and minimum value of the data during a given time frame (called a window). 

Then the difference between maximum and minimum value is calculated and stored in a buffer. 
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When the buffer is full, all of the data are sorted, and a subset of the sorted data is averaged. 

Finally, the averaged value is multiplied by an amplification coefficient. 

The threshold estimator can be designed as an analog or a digital circuit. An analog self-time 

static spike detector is shown in Figure 2.10 [101], and a digital spike detector, called an mMMS 

sorting estimator, is shown in Figure 2.11 [102]. 

 

Figure 2.9 Comparison of four digital estimators, (a) RMS estimator, (b) MAD estimator, (c) Cap 

fitting estimator, (d) MMS estimator [96] 

 

Figure 2.10 An analog self-timing static detector [101] 
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Figure 2.11 Digital mMMS estimator [102]   

2.3.1.2 Energy-based Spike Detection 

The energy-threshold-based spike detection method is based on the idea that when a spike 

happens, the energy of the signal has a sudden change, so the system can calculate the threshold 

of the change in its energy. An important form of the energy-threshold-based spike detection 

method is called teager energy operator (TEO) or nonlinear energy operator (NEO) [103]. When 

the signal is processed in a time-domain or frequency-domain window based on the TEO, this 

method is called the smooth TEO (STEO), which has better estimation accuracy than the TEO  

[103]. Equations for the TEO and STEO are established by (2.3) and (2.4). 

𝜓𝜓[𝑥𝑥(𝑛𝑛)] = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 + 1)𝑥𝑥(𝑛𝑛 − 1)                                      (2.3) 

                                                          𝜓𝜓𝑠𝑠[𝑥𝑥(𝑛𝑛)] = 𝜓𝜓[𝑥𝑥(𝑛𝑛)] ⊗ 𝑤𝑤(𝑛𝑛)                                          (2.4) 

where ⊗  represents the convolution operator and ( )w n represents the window. 

The threshold, given in reference [103], is shown in (2.5). 

                                                             𝑇𝑇 = 𝐶𝐶 1
𝑁𝑁

∑ 𝜓𝜓𝑠𝑠
𝑁𝑁
𝑛𝑛=1 [𝑥𝑥(𝑛𝑛)]                                                 (2.5) 

where N is the number of samples and C is the scaling factor.  

The authors in [90] describe another method to calculate the threshold, which is shown in (2.6) – 

(2.8). In this article, they chose the Hamming window ( )Hw n , having the following value 

( ) [0.08,0.54,1,0.54,0.08].Hw n =  
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                                                                  𝑇𝑇𝜓𝜓𝑠𝑠 = 𝜇𝜇𝜓𝜓𝑠𝑠 + 𝑝𝑝𝜎𝜎𝜓𝜓𝑠𝑠                                                      (2.6) 

                                                      𝜇𝜇𝜓𝜓𝑠𝑠 = 2.24(𝑟𝑟𝑥𝑥𝑥𝑥(0) − 𝑟𝑟𝑥𝑥𝑥𝑥(2))                                                (2.7) 

      2 2 2 2 24.8 (0) 0.7 (1) 4.4 r (2) 0.6 r (3) 9.3r (0) r (2) 1.2 r (1)4.8r (3)
s xx xx xx xx xx xx xx xxr r≈ + + + − −ψs          (2.8) 

where ( )xxr m is the autocorrelation of ( )x n at lag m. 

Some system or circuit designs are based on the TEO or STEO method. For example, the authors 

in reference [90] propose a spike detection system based on the STEO method, which is shown in 

Figure 2.12. In reference [104], the authors give the implementation of the STEO method without 

threshold estimation. The power consumption of the relevant spike detection module in this 

article is reported as around 1 μW. Also, some designers use the TEO method to design digital 

(Figure 2.13) [105] or analog spike detector devices (Figure 2.14) [106]. 

 

Figure 2.12 Block diagram of STEO-based spike detection with adaptive threshold [90] 

 

Figure 2.13 Diagram of neural spikes sorting system using TEO spikes detection method [105] 
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Figure 2.14 Building blocks synthesizing the TEO-based  preprocessor, (a) subthreshold OTA 

with source degeneration and bump linearization devices, (b) top-level diagram of the TEO 

preprocessor, (c) the differentiator circuit, (d) four-quadrant analog multiplier [106] 

2.3.1.3 Spikes Detection with Template Matching  

Template matching finds segments of the signals that are similar to the given spike templates. 

The template matching method is usually complicated, as it contains a convolution and Fourier 

transformations. This method needs a priori knowledge of spike templates and requires the user 

to specify a threshold for similarity. In earlier times, some researchers used Euclidean distance 

[107] and cross-correlation [108] to detect spikes with known templates. A typical template 

matching technique is matching filter [109] [110]. The discriminant of the matching filter is 

shown in (2.9): 

                𝐷𝐷1 = 𝑥𝑥𝑛𝑛
𝑇𝑇𝑇𝑇     ≥     λ                                                           (2.9) 

where 𝑥𝑥𝑛𝑛
𝑇𝑇 is one segment of the signal, 𝑇𝑇 is the template and λ is the threshold. Reference [111] 

uses likelihood ratio detection (LRT) to make the template matching-based detection. The 

discriminant is shown in (2.10) and (2.11) 

𝐷𝐷2 = 𝑥𝑥𝑛𝑛
𝑇𝑇𝛴𝛴−1𝑇𝑇 

H1
>
<
H0

     𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝐻𝐻0)(𝑐𝑐10−𝑐𝑐00)
𝑃𝑃(𝐻𝐻1)(𝑐𝑐01−𝑐𝑐11)

≡ 𝜆𝜆          (2.10) 
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                                                               H0:                                𝑥𝑥𝑚𝑚 = 𝑛𝑛    
H1:                            𝑥𝑥𝑚𝑚 = 𝑇𝑇 + 𝑛𝑛                           (2.11) 

where n is the white Gaussian noise, T is the template, cij is the cost of deciding hypothesis. In 

reference [112], the authors introduce a normalized correlator to make the detection, which is 

shown in (2.12) — (2.14). 

𝐷𝐷3  = 𝑥̅𝑥𝑛𝑛
𝑇𝑇𝑇𝑇�     >    𝜆𝜆           (2.12) 

                                               𝑥̅𝑥𝑛𝑛  =       𝑥𝑥𝑛𝑛 ‖𝑥𝑥𝑛𝑛‖⁄                                           (2.13) 

 𝑇𝑇�      =       𝑇𝑇 ‖𝑇𝑇‖⁄                                                                 (2.14) 

where 𝜆𝜆 can be chosen as 0.5. 

For all of these template matching methods, choosing the threshold is important. Reference [112] 

reports that the threshold can be chosen as 𝜎𝜎2 × 𝑃𝑃, where 𝜎𝜎 is the standard deviation and 𝑃𝑃 is a 

coefficient. Several recent articles discuss using Bayesian inference to determine the threshold 

[113] [114].  

As the templates are rarely known in advance, the template matching spike detection system must 

automatically generate templates. In reference [115], the authors present a semiautomatic 

template matching spike detection system, in which the designer must manually determine the 

final number of spike templates. Reference [112] introduces another spike detection method with 

automatic template matching; the final clustering step is implemented by a method called the 

Osort algorithm [116]. Figure 2.15(a) and Figure 2.15(b) show this spike detection method and 

the Osort algorithm. In reference [117], the authors put forward an template matching algorithm 

that is composed of four main components. 

In conclusion, spike detection is a crucial component of a BMI; it not only provides the 

prerequisites for analysis of recorded signals, but reduces the quantity of recorded data. In 

reference [88], the authors compare all three methods of spike detection, maintaining that the 

detection accuracy of adaptive amplitude-based and energy-based spike detection methods are 

almost identical, but noting that the amplitude-based method has a simple structure. In reference 

[90] [104], the authors assert that the energy-based spike detection method is better than the 

absolute amplitude spike detection method. Our own research and some other work [116] [118] 
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have shown that template matching methods have better detection accuracy than amplitude-based 

or energy-based methods. 

 

Figure 2.15 An automatic template matching spike detection method, (a) the proposed template 

matching spike detection method [112], (b) the Osort algorithm [116] 

2.3.1.4 Spike Sorting 

To study the activity of neurons, the researcher usually needs to understand single-unit activity to 

learn how a type of neuron responds to a specific stimulus. Some neural signal processing 

algorithms operate on signals from individual neurons [119] [120]. But because of the size of the 

recording electrodes, the recorded spikes are usually from several neurons; therefore, a spike-

sorting method is needed. Figure 2.16 shows a diagram of the spike-sorting process [88]. This 

process has three main steps: feature extraction, dimensionality reduction and clustering. 
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Figure 2.16 The spike sorting used to obtain single-unit activity [88] 

Feature extraction is used to analyze the information within spikes, and it also acts as a signal 

reduction method in a neural recording device. There are many methods of feature extraction, 

such as the extraction of the maximum amplitude or width of the spike [91], principal 

components analysis (PCA) methods [121], first and second derivative extrema  [122], and the 

discrete wavelet transform method  [123].  

Dimensionality reduction reduces the complexity of the clustering, leaving only the necessary 

features and increasing the accuracy of clustering. Several methods of dimensionality reduction 

exist, such as the Lilliefors test  [124], and Hartigan’s dip test [49]. 

The final step of the spike-sorting process is spike clustering. The clustering method puts spikes 

with similar features together. However, it is very difficult to judge similarity in online adaptive 

spike processing, so the unsupervised spike clustering method is very complicated. Various spike 

clustering methods exist, such as the K-means method [91] and valley seeking [125]. 

Finally, numerous different implementations of spike-sorting systems exist. Figure 2.17 shows a 

spike-sorting BMI; the authors used TEO-based spike detector and derivative-based feature 

extraction methods [59]. Figure 2.13 shows a 64-channel spike-sorting device; its power 

consumption is 2.03 μW/channel and its area is 0.06 mm2/channel [105]. In [126], the authors 

present the hardware architecture of a spike-sorting device which uses PCA for feature extraction 

and the K-means method for spike clustering. 
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Figure 2.17 Block diagram of an integrated neural recording system with spike sorting [59] 

2.3.2 Signal Compression with CS Technique 

In the last section, we reviewed spike detection and sorting methods. Signal compression 

methods can recover original signals, so can keep more information about the recorded signals, 

and are obviously better in some situations which require original signals. For these reasons, 

signal compression has attracted considerable attention in the BMI design field [127] [128] [129].  

Compressed sensing (CS) is a new signal compression technique which shows great potential for 

compressing neural signals. In recent years, CS has been a very hot topic in the areas of applied 

mathematics, computer science and electrical engineering [130] [131]. The CS concept was 

hintingly discussed more than one hundred years ago, but it has only recently gained scientific 

interest due to some theoretical breakthroughs [130]. In the 1900s, Carathéodory proposed a 

theory that includes the concept of reducing the amount of the sampled data [132]. More recently, 

Candès and Donoho have shown that a signal with a sparse representation can be recovered with 

fidelity [133].  

When a signal is a sparse signal, there is no need to use the traditional Nyquist rate to sample the 

data; the CS technique can be used instead. CS includes sparse signals, sensing matrices and 

reconstruction methods. Figure 2.18 shows the CS technique [134]. The process of CS can be 

described as follows: signals are processed to find its sparse presentation (approximation or 

 



31 

coordinate conversion); then they are compressed by a random or deterministic sensing matrix 

[130] [135]; finally, the compressed signals are recovered through a reconstruction algorithm 

[136] [137]. CS is known to be effective for neural signal compression; previous authors have 

used CS to build BMIs. In [138], the authors show how to apply CS to design an analog or digital 

circuit, and use a digital circuit to fulfill the CS, which is shown in Figure 2.19. In [8] [11] [134], 

the authors put forward analog or digital circuits that apply the CS technique. Finally, some 

recent articles show how to use CS to compress non-sparse signals [139]. CS is discussed further 

in the following sections. 

 

Figure 2.18 Diagram of CS sampling framework [134] 

 

Figure 2.19  Block diagram of (a) the analog single-channel CS, (b) the digital single-channel CS 

[138] 
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2.3.2.1 Introduction to Compressed Sensing Theory 

In this section, we will introduce the three most important concepts in CS: sparse signals, sensing 

matrix and signal recovery algorithms. 

1. Sparsity and compressible signal 

Mathematically, a signal x being k-sparse denotes that it has at most k non-zeros, which is 

expressed in (2.15)  [140]. 

{ }0
: supp( )k x x x kΣ = = ≤                                                      (2.15) 

where { }supp( ) = : 0ix i x ≠ denotes the support of x and supp( )x  denotes the cardinality of 

supp( )x . The CS technique does not deal directly with signals that are not obviously sparse, but 

admits a sparse representation in some basis 𝛷𝛷 . Therefore, referring to x as being k-sparse 

denotes that ‖𝑐𝑐‖0 ≤ 𝑘𝑘, when 𝑥𝑥 = 𝛷𝛷𝛷𝛷, and c  is the coefficient. 

An important point in practice is that not all real-world signals are truly sparse; therefore, being 

compressible means that they can be approximately sparse or relatively sparse in various contexts. 

A way to measure a signal and their “compressible signal” 𝑥𝑥′( ' kx ∈Σ ) is expressed as (2.16) 

[130]. 

                                 
'

( ) min '
k

k p px
x x x

∈Σ
= −σ , if kx∈Σ , then ( )k pxσ = 0.                                 (2.16) 

Another way to think about the compressible signals is to consider the rate of the decay of their 

coefficients. Specially, if 𝑥𝑥 = 𝛷𝛷𝛷𝛷  and we sort coefficients ci such that |𝑐𝑐1| ≥ |𝑐𝑐2| ≥⋅⋅⋅≥ |𝑐𝑐𝑛𝑛|, 

then we can say that the coefficients obey a power law decay if there exists constant 1C , q > 0, 

such that |𝑐𝑐𝑖𝑖| ≤ 𝐶𝐶1𝑖𝑖−𝑞𝑞 . The larger q is, the faster the magnitudes decay, and the more 

compressible the signal [130]. 

2. Sensing matrix 

A signal cannot be recovered from the compressed data if an incorrect sensing matrix is used. To 

guarantee the reconstruction of original signals, a sensing matrix must obey the Restricted 

Isometry Property (RIP). The definition of RIP is shown as below. 

Matrix A satisfies the restricted isometry property of order k if there exists a (0,1)k ∈δ  such that 
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2 2 2

2 2 2
(1 ) (1 )k kx Ax xδ δ− ≤ ≤ +                                             (2.17) 

holds for all kx∈∑  [136]. RIP, as a norm, is widely used in constructing the sensing matrix. 

Currently, it is proven that a random matrix satisfies the RIP with a high probability if the entries 

are chosen according to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution 

[130]. Besides the random matrix, a deterministic matrix can be used for the construction of the 

sensing matrix [141]. 

3. Signal recovery via ℓ1 minimization 

The best recovery method should be ℓ0 minimization, because it can give the most sparse signal, 

but the algorithm is NP hard; therefore, ℓ1 minimization is used as a replacement, which is shown 

in (2.18) [130]. 

                                                 𝑥𝑥′ = argmin
𝑧𝑧

‖𝑧𝑧‖1                     subject  to               𝑧𝑧 ∈ 𝐵𝐵(𝑦𝑦)                          (2.18) 

where 𝐵𝐵(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝐴𝐴 = 𝑦𝑦}. 

For a noise-free signal recovery, we can use the following theorem to guarantee that the solution 

𝑥𝑥′ in (2.18) can very closely approximate the original vector x. 

Suppose that A satisfies the RIP of order 2k with 𝛿𝛿2𝑘𝑘 < √2 − 1 and we obtain measurements of 

the form y = Ax. Then when 𝐵𝐵(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝐴𝐴 = 𝑦𝑦}, the solution 'x to (2.18) obeys (2.19) [130].   

                                                                  ‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 𝐶𝐶0
𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
                                             (2.19) 

The specific recovery algorithms include the ℓ1 minimization algorithm [142] and the Greedy 

algorithm [143] [144].  

2.3.2.2 Neural Signal Processing Using Compressed Sensing Technique 

In this section, we review some applications of neural signal processing based on the CS 

technique. Figure 2.19 illustrates the structure of analog and digital CS-based compression 

systems; currently, nearly all CS systems are designed as one of these two structures.   

Currently, it is still in dispute whether neural signals are sparse or not. For some biomedical 

signals, some authors regard neural spikes as sparse in the wavelet domain [145] [146]; others 
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suggest that EEG signals can be compressed in the Gabor domain [9], and that ECG signals are 

sparse in the wavelet domain [147]. The author in [139] asserts that EEG signals are not sparse in 

the time or transformed domain. Therefore, it is appropriate to find a method to compress both 

sparse and non-sparse neural signals in the time domain. 

As shown in Figure 2.19, the CS technique can be applied using analog and digital methods. 

Some applications are based on analog circuit implementation, such as the random demodulator 

[148] [149], random filtering [150], the modulated wideband converter [151], random 

convolution [152], and the compressive multiplexer [153]. Some of these analog applications are 

introduced below.   

The block diagram of the random demodulator (RD) is shown in Figure 2.20 [149]. This structure 

includes a random number generator Pc, a mixer, an accumulator, and a sampler. Based on this 

block, the random demodulation pre-integrator (RMPI) (in some articles, it is called the 

modulated wideband converter) is proposed [148] [151]. This structure is composed of parallel 

channels of RD, as shown in Figure 2.21 [148]. RMPI can reduce the sampling rate of the system, 

but it needs more multiplexers or mixers.  

 

Figure 2.20 Block diagram of the random modulator [149] 

To further reduce the power consumption of the RMPI, another structure, called spread spectrum 

random modulator pre-integrator (SRMPI), is proposed, shown in Figure 2.22 [148]. Compared 

with the RMPI, this structure uses another random block to randomly modulate the input signal. 

Compared using the traditional Nyquist sampling method, RMPI reaches 3% power reduction, 

and SRMPI reaches up to 43% energy saving [148]. 

The digital implementation of the RD is called the CS encoder, shown in Figure 2.23 [134]. This 

structure uses several multiplexers and adders to make linear transformations, and it also contains 
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a sensing matrix generator. The compression of the EEG signals reduces the power consumption 

of the whole system, reported as 1.9 μW at 0.6 V [134]. 

There are already some implementations of analog and digital circuits based on the CS theory, 

but which circuit implementation is superior – analog or digital – is still a matter of dispute [134] 

[148].   

 

Figure 2.21 Block diagram of random demodulator pre-integrator (RMPI) [148] 

An important consideration in all CS applications is how to generate the sensing matrix. As noted 

above, researchers agree that the sensing matrix can be constructed from a random matrix. In the 

following text, we review sensing matrix generation methods or circuits. 

 

Figure 2.22 Block diagram of SRMPI [148] 

The simplest method to generate the sensing matrix is using a look-up table or memory, but this 

method cannot be used for large measurements circuits [134]. 

In addition to this simple method, another method called pseudorandom number (PN, also called 

pseudo-random bit sequence (PRBS)) binary sequence can be used to generate the random matrix 

 



36 

[138]. This method is much more compact than the look-up table implementation, but the PN 

generator and associated clocks are the largest contribution to power consumption [154].  

 

Figure 2.23 Block diagram of CS encoder [134] 

To improve the PN generator, a double-PN generator is used. The structure is shown in Figure 

2.24 [134]. This block uses two PRBSs to create the columns of the sensing matrix. This 

structure can reduce the whole power consumption by 10%. The entries of the PN generator obey 

the Bernoulli distribution, which are ±1 with the same probabilities. 

 

Figure 2.24 Block diagram of the measurement matrix generation block [134] 
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Moreover, there is a sensing matrix generating method called sparse binary matrices generator [8] 

[155]. This method is attractive; because it consists of 0/1 instead of ±1, when the number of the 

+1s in each column is a small fixed number, many of the calculations can be avoided. 

Finally, several system designs using CS techniques are proposed for processing some 

biomedical signals. In [156], the authors proposed a data-dictionary-based signal processing 

system using CS, based on the similarity of shapes of the spikes. The proposed system is shown 

in Figure 2.25; in [11] and [64], the authors discussed the corresponding circuit design based on 

this system, which is shown in Figure 2.26. The area can be as little as 0.11 mm2/channel and the 

power consumption 16 μW/channel (CMOS 0.18 μm, 20 kHz). The multichannel design and 

neural spike reconstruction are discussed in [157] and [158] respectively.  

 

Figure 2.25 Proposed data dictionary based CS system [156] 

 

Figure 2.26 Proposed CS digital circuit [64] 
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In reference [159], the authors put forward a digital CS-based wireless sensor system. The 

authors in [138] proposed a 16-channel cortical recording system, with area and power 

consumption of  0.008 mm2/channel and 0.95 μW/channel (CMOS 0.18 μm, 4 kS/s) respectively. 

In summary, the CS technique has a simple structure which facilitates compression and 

implementation. Some designers already use this technique for the design of neural recording 

circuits; however, there are still some problems waiting to be solved. First, the sparsity of neural 

signals is not high in the time domain; therefore, a method to increase the sparsity of neural signals 

or to compress non-sparse or low-sparsity signals is required. Second, the design of the circuit based 

on the CS technique needs improvement, in areas including lowering the power consumption, 

shrinking the silicon area, and multichannel signal processing. 

2.4 General Discussion of the Literature Review 

In this section, we continue to discuss neural signal processing. Through reviewing the state-of-

the-art compressed sensing techniques and automatic template matching-based spike detection 

and classification systems, we compare several similar works and explain the contribution of our 

research.   

2.4.1 Neural Signal Processing Strategies 

From the above literature review, it can be found that there are mainly two strategies for the 

neural signal processing inside a neural recording interface: signal reduction and compression. 

Firstly, signal reduction strategy involves spike detection [83] [106] and sorting [92] [123], and it 

is usually used for biomedical researches based on neural spikes. The advantage of this method is 

that it can largely remove the useless information of neural signals and retain their most 

important information. The disadvantage of this method is that this strategy causes distortion or 

loss of the data information. For example, for the neural spike detection, the data are obtained 

only as an impulse signal or in a time series which are no longer the signal itself [148]. Besides, 

if the thresholds of the detection are not properly set, then the spikes cannot be detected. The 

feature extraction usually requires a period of time to train, so the precision of this method 

usually cannot be guaranteed, and the hardware design of feature extractor is also complicated 

[160]. Second, for the signal compression strategy, the compressed sensing technique is a new 

signal compression technique. The advantage of the CS technique is that it can maximumly retain 
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the details of the recorded signals and has a simple structure, and disadvantage of this method is 

the limits of its usage, which is only used for sparse signals [130]. 

2.4.2 Discussion of Sensing Matrices  

In 2.3.2, we briefly review the theory of the compressed sensing technique. From this section, it 

can be found that the traditional compressed sensing technique is mainly focused on the sparse 

signals, but in reality, not all of the signals are sparse, and using the approximation or changing 

the basis also cannot acquire sparse signals. Therefore, if signals are not sparse, the CS technique 

cannot be applied to compress them. 

For the CS technique, the sensing matrix is an important research content, which has great  

influence on the signal compression and reconstruction [130]. The sensing matrix can be divided 

into random and deterministic matrices. In Table 2.3, we give a comparison between random and 

deterministic sensing matrices. The random matrices, such as the sub-Gaussian sensing matrix 

[134] [148] or the random discrete Fourier transmission matrix [161], are largely used by most of 

the designers. However, the random sensing matrix has disadvantages, for example, it usually 

needs a large amount of space to store the random matrices, and the superior randomness is 

usually needed for guaranteeing the compression performance. Besides, a random number 

generator usually has large power consumption and a large silicon area, which is not a good 

option for an implantable device [134].  

Moreover, a deterministic sensing matrix is another option for the design of sensing matrix. 

There are several deterministic sensing matrices, such as the Discrete Chirp sensing matrix, the 

Reed Muller sensing matrix, the Bose-Chaudhuri-Hocquenghem sensing matrix, and low-density 

parity-check (LDPC) matrix. The advantage of the deterministic matrix is that it can generate the 

items of the sensing matrix on the fly without storing the data, and it is also easy to reconstruct 

original signals. However, current deterministic sensing matrices are very complicated in the 

hardware implementation, and they cannot be used for a non-sparse or low-sparse signal; 

although a low-density parity-check (LDPC) matrix contains only 0’s and 1’s, the compression of 

a non-sparse or low-sparse signal requires a very high-girth sensing matrix that is very difficult to 

generate [135] [162]. Therefore, a deterministic sensing matrix with simple structure and high 

compression performance needs to be researched. 
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Table 2.3 Comparison between random and deterministic sensing matrices 

Type Advantages Disadvantages 

Random sensing 

matrix 
More mature in application 

Needing a large space; 

needing a high-randomness 

random number generator 

Deterministic sensing 

matrix 

On the fly without storing data; 

reconstruction performance can be 

guaranteed 

Complicated, not easy for 

implementation in hardware 

design 

To explain the contribution and necessity of our research, In Table 2.4, we compared the 

performance of signal compression based on the CS technique using several state-of-the-art 

random or deterministic sensing matrices, such as the digital wavelet transform-based sensing 

matrix [8], Chirp sensing codes matrix [163], Bose-Chaudhuri-Hocquenghem sensing matrix 

[164], Ternary matrix [164], Elliptic curve matrix [141], Fourier-based transform sensing matrix 

[165]. From the comparison, several conclusions can be found. First, all the compared sensing 

matrices are used to compress sparse signals. In Table 2.4, it can found that the research 

objectives are all high-sparsity signals, and low-sparsity or non-sparse signals cannot be 

compressed through these sensing matrices. Second, the reconstruction error has a tight 

relationship with the degree of the sparsity of signals. Under a large compression rate, if the 

reconstruction error needs to be kept small, it requires the signals to have a large degree of 

sparsity. Besides, if the degree of sparsity is determined, using a small compression rate can 

reconstruct the original signal with a small reconstruction error. Third, the compared 

deterministic sensing matrices have a better compression performance than the random sensing 

matrices in Table 2.4. For signals with a similar degree of sparsity and having similar 

reconstruction error, using the deterministic sensing matrices can compress signals with a larger 

compression rate. Finally, from the comparison, two challenges for the construction of sensing 

matrices can be found: 

1. Applying the CS to compress low-sparsity or non-sparse signals. 
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2. Compressing a compressible signal with a large compression rate while this signal can be 

reconstructed with high fidelity (very small reconstruction error). 

Table 2.4 The signal compression performance of some compressed sensing matrices 

Sensing matrix Types Degree of Sparsity 
Compression 

 Rate (%) 

Reconstruction 

Error 

Chirp sensing 
codes matrix Deterministic 0.95 0.90 98 98 ≈ 0 > 1 

Bose-
Chaudhuri-

Hocquenghem 
matrix 

Deterministic 0.98 0.94 88 88 ≈ 0 > 1 

Ternary matrix Deterministic 0.996 0.99 98 98 ≈ 0 > 1 

Elliptic curve 
matrix Deterministic 0.99 0.97 93 93 ≈ 0 > 1 

Digital wavelet 
transform-based 
sensing matrix 

Random 0.97 0.97 50 80 0.1 0.6 

Fourier-based 
transform 

sensing matrix 
Random 0.98 0.98 88 96 ≈ 0 ≈ 1 

Our proposed 
sensing matrix Deterministic 0 0.98 96 96 < 0.2 < 0.1 

In chapter 3, we proposed a sensing matrix which tries to resolve these two issues. From the 

comparison in Table 2.4, our system can compress the sparse and non-sparse signals with a 

relatively large compression rate and a small reconstruction error. In this chapter, we proposed a 

sensing matrix which can compress the sparse and non-sparse signals with a large compression 

and a small reconstruction error. We use the similarity that is in a signal to make the compression, 

which can largely compress a specific neural signal may contain many identical (or similar) 

points, Additionally, we use the advantages of the deterministic sensing matrix to construct a 

sensing matrix that is based on the clustering of the neural signal itself, also the process of the 

construction is simple, which is appropriate for hardware implementation.  
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2.4.3 Discussion of Neural Signal Processing Systems  

In section 2.3.2, we discussed several signal processing systems which are based on the CS 

techniques. In this section, we continue to discuss and compare these systems, and illustrate the 

challenges of signal processing for implantable neural recording devices. 

From the comparison of different neural recording systems in Tables 2.1 and 2.2, it can be found 

that a neural signal processing system mainly has two main functions: detecting neural spikes and 

compressing neural spikes or original signals. In Table 2.5, we further compare several neural 

signal processing systems inside implantable neural recording devices. From the comparison, 

several conclusions can be acquired. First, current neural signal processing systems usually 

implement one signal processing strategy, which does not provide both functions of spike 

detection and signal compression. For some processing systems, they may include spike detection 

and compression, but the compression block is only to effectively transmit the detected neural 

spikes, and it does not include any processing for lossless compression of original neural signals. 

Second, for the CS-based neural signal processing systems in Table 2.5, it is mainly used to 

compress sparse signals, and none of signal processing systems are designed to compress non-

sparse signals, but efficiently compressing the non-sparse signals can enlarge the scope of 

application for neural signal processing systems; therefore, it is necessary to design a CS-based 

signal processing system for low-sparsity or non-sparse signals. Third, some signal processing 

systems only include single channel processing, and with the increasing of recorded channels and 

high requirement of the users, efficient multichannel neural signals processing is important and 

significant, so multichannel signal processing still needs to be researched. Finally, power 

consumption and area are two very important parameters for an implantable neural signal 

processing system, and it is necessary to research some methods to reduce both parameters while 

maintain the best processing performance of the processor. 

In chapter 5, we implement a neural signal processing system, which includes spike detection and 

CS-based neural signal compression. In this system, the signal compression block is based on our 

proposed MDC matrix, so the sparse and non-sparse signals can both be compressed through the 

implemented processing system. Moreover, our proposed system can effectively deal with the 

signals recorded by single-channel and multichannel recording devices, and also, from the 
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comparison in Table 2.5 our proposed processing system has relatively small area and low power 

consumption while maintains good processing performance. 

Table 2.5 Comparison of several signal processing systems for neural recording devices 

Reference [166] [167] [168] [134] [64] [138] Our 
system 

Technology 
(μm CMOS) 0.5 0.5 0.065  0.18 0.18 0.13 

Signal 
reduction 

Spike 
detection 

Spike 
detection 

Spike 
detection 
feature 

extraction 

- - - Spike 
detection 

Signal 
compression 

Discrete 
wavelet 

transform-
based  

- - CS-
based 

CS-
based 

CS-
based 

CS-
based 

Signal for 
compression - - - Sparse 

signals 
Sparse 
signals 

Sparse 
signals 

Sparse 
and non-

sparse 
signals 

Number of 
channels 

(electrode) 
32 32 16 1 32 16 256 

Area per 
channel 

(electrode) 
(mm2) 

0.18 0.12 0.07 0.103 0.11 0.008 0.03 

Power 
consumption 
per channel 
(electrode) 

(μW) 

95 75 4.68 1.9 0.83 0.95 12.5 

2.4.4 Discussion of Spike Detection Methods 

In section 2.3.1, we review the categories of the spike detection and sorting methods. In this 

section, we continue to discuss the methods of spike detection and classification, and the research 

issues of automatic template matching-based spike detection system. 

The main purpose of the spike detection and classification is correctly detecting neural spikes 

from the recorded neural signals and separating the spike series from the composite spikes. From 
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the above literature review, it can be found that spike detection can be divided into amplitude-

based, energy-based and template matching methods. In Table 2.6, we compare the performance 

of these three methods. The idea of the first two methods is that when a spike occurs, the signal 

usually has a sudden change in amplitude or energy [97] [103] . Comparing with the template 

matching method, both methods cannot make the spike classification and they have poor 

detection accuracy for signals with a low signal-to-noise ratio. The template matching method 

applies another idea for spike detection, that is, the designer can use a detected spike (spike 

template) to compare with recorded neural signals, and then locate neural spikes [112]. This 

method has a high accuracy, but this method usually has high complexity, which is not easy for 

implementation. Comparing all of three methods, using template matching method is better in the 

detection accuracy, but the disadvantage of this method is its complexity and the requirement of 

the spike templates, therefore, it is necessary to research a low-complexity template matching-

based spike detection method without foreknowing templates. 

Table 2.6 Comparison among amplitude-based, energy-based and template matching-based spike 

detection 

Type Advantages Disadvantages 

Amplitude-based 

detection method More mature in application; 

easily implemented 

Cannot make the spike 

classification; 

poor accuracy for low-SNR 

signals 
Energy-based 

detection method 

Template matching 

High detection accuracy for low 

SNR signals; 

can make the spike classification 

Complicated, not easy for 

hardware implementation 

In section 2.3.1.3, we review several template matching-based spike detection systems. Based on 

the review, it can be found that for the template matching-based spike detection methods, the 

complexity and detection accuracy are two important factors. First, designing a system with low 

complexity can reduce the difficulties of hardware design, especially for the implantable neural 

recording devices. Second, the designed system should have high detection accuracy which is the 
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basis of many biomedical researches. In Table 2.7, we compare the complexity and detection 

accuracy of several automatic template matching-based spike detection systems. From the 

comparison, it can be found that the complexity of system can be further reduced, and detection 

accuracy also can be improved. 

Table 2.7 Comparison of several template matching-based spike detection systems 

Reference Detection 
method Types Complexity Accuracy 

[112] 
Fast 

normalized 
correlator 

Automatic 

(N+1)*multiplication + 
(N+1)*addition + 

1*division + 1* squared 
roota 

TPR : 0.84(SNR =3) 
FPR : 0.01(SNR =3) 

[115] M-sorter Non-
automatic 

> ( N*multiplication + 
(N+1)*addition) 

TPR : ≈ 0.85(SNR > 6) 
FPR : ≈ 0.2 (SNR > 6) 

[169] 

Wavelet-
based 

template 
matching 

Non-
automatic 

> ( N*multiplication + 
(N+1)*addition) 

TPR : 0.6(SNR = 3) 
FPR : 0.04(SNR = 3) 
TPR : 0.9(SNR = 5) 
FPR : 0.04(SNR = 5) 

[170] Deconfusio
n method Automatic 

P* (Number of 
neuron)2 * length of the 

filtera 

TPR : 0.86(SNR =3) 
FPR : 0.04(SNR =3) 

Our 
system 

Bayesian 
inference-

based 
Automatic N*multiplication + 

(N+1)*addition 

TPR : 0.90(SNR=3) 
FPR : 0.04(SNR=3) 
TPR : 0.90(SNR=6) 
FPR : 0.03(SNR=6) 

Moreover, for the template matching-based spike detection method, it can be divided into non-

automatic and automatic template matching. Non-automatic template matching means that the 

templates need to be given in advance and template matching means that the templates can be 

generated by the device itself. Currently, designing an automatic template matching system is 

necessary [112]. For an automatic template matching system, when the templates are not known, 

it needs to generate the templates first and the spike sorting needs to be involved. To generate the 

spike templates, three are three main steps: spike alignment, feature extraction and spike 

classification. For the spike alignment, there are two mean methods: aligning each spike to the 

point of its maximum amplitude or the point of maximum slope [88]. Besides, there are several 

feature extraction techniques, such as principal components analysis [171], discrete wavelet 

transform [172], matched subspace detector [173], etc. In [174] , a method, called discrete 

derivatives (DD) method, is described as less complicated in terms of calculation while 
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maintaining fairly high accuracy, and it is suitable for use in the general circuit design. Spike 

clustering is the final step to sort out detected spikes from different neurons. The K-means 

method is a sophisticated method for the spike clustering, but it needs to manually set k in order 

to determine the number of required clusters [128] [175]. The Osort algorithm, introduced in 

section 2.3.2.1, can automatically determine k, which can be used for the automatic template 

matching system [116]. 

From above literature review, it can be found that to design template matching-based spike 

detection system, it has two main challenges. First, it needs to design a low-complexity and high-

detection accuracy system, and second, the templates need to be automatically generated. In 

chapter 4, we propose an automatic template matching-based spike detection and classification 

system. From the comparison in Table 2.7, the system has a simple structure and fast calculation, 

which is appropriate for the hardware design. Besides, our proposed system can automatically 

generate templates and perform spikes detection and classification. 
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CHAPTER 3 ARTICLE 1 : NEURAL SIGNAL COMPRESSION USING 

A MINIMUM EUCLIDEAN OR MANHATTAN DISTANCE CLUSTER-

BASED DETERMINISTIC COMPRESSED SENSING MATRIX 

According to the discussion in chapter 2, signal compression is an important signal processing 

method for implantable neural recording interfaces. Among different signal compression methods, 

compressed sensing technique is a new technique for signal compression, which can be employed 

to compress neural signals. For the traditional compressed sensing theory, it is mainly focus on the 

sparse signals. However, neural signals are usually not sparse in the time domain but contain lots of 

similar non-zero points; therefore, it is necessary to research a method to compress low-sparsity 

and non-sparsity signals. Besides, it needs to research a method to compress signals with a large 

compression rate and a mall reconstruction error. 

In this chapter, we put forward a new method to compress not only a sparse signal but also a non-

sparse signal that has identical points. Firstly, several concepts about the identical items of the 

signal are introduced; then, the method to construct the Minimum Euclidean or Manhattan Distance 

Cluster-based (MDC) deterministic compressed sensing matrix is given. Moreover, the Restricted 

Isometry Property of the MDC matrix is proved. Thirdly, three groups of real neural signals are 

used for the validation. Six different random or deterministic sensing matrices under diverse 

reconstruction algorithms are used for the simulation. From the simulation results, it can be proved 

that the MDC matrix can largely compress neural signals and also have a small reconstruction error. 

For a six-thousand-point signal, the compression rate can be up to 98%, whereas the reconstruction 

error is less than 0.1. In addition, from the simulation results, the MDC matrix is optimal for a 

signal with a long length. Finally, the MDC matrix can be constructed by zero and one; also, it has 

a simple construction structure, which is very practicable for the design of an implantable neural 

recording device. 
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Neural Signal Compression Using a Minimum Euclidean or Manhattan 

Distance Cluster-Based Deterministic Compressed Sensing Matrix 

Nan Li a*, Mohamad Sawana  

a Polystim Neurotechnologies Lab.  

Electrical Engineering Dept., Polytechnique Montreal 

2900 Edouard-Monpetit, H3T 1J4, Montréal (QC), CANADA 

ABSTRACT — Multichannel wireless neural signal recording systems are a prominent topic in 

biomedical research, but because of several limitations, such as power consumption, the device 

size, and enormous quantities of data, it is necessary to compress the recorded data. Compressed 

sensing theory can be employed to compress neural signals. However, a neural signal is usually 

not sparse in the time domain and contains a large number of similar non-zero points. In this 

article, we propose a new method for compressing not only a sparse signal but also a non-sparse 

signal that has identical points. First, several concepts about the identical items of the signal are 

introduced; thus, a method for constructing the Minimum Euclidean or Manhattan Distance 

Cluster-based (MDC) deterministic compressed sensing matrix is given. Moreover, the Restricted 

Isometry Property of the MDC matrix is supported. Third, three groups of real neural signals are 

used for validation. Six different random or deterministic sensing matrices under diverse 

reconstruction algorithms are used for the simulation. From the simulation results, it can be 

demonstrated that the MDC matrix can largely compress neural signals and also have a small 

reconstruction error. For a six-thousand-point signal, the compression rate can be up to 98%, 

whereas the reconstruction error is less than 0.1. In addition, from the simulation results, the 

MDC matrix is optimal for a signal that has an extended length. Finally, the MDC matrix can be 

constructed by zeros and ones; additionally, it has a simple construction structure that is highly 

practicable for the design of an implantable neural recording device. 

Keywords — multichannel neural recording device, low power design, neural signal processing 

and compression, deterministic compressed sensing matrix, restricted isometry property. 
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3.1 Introduction 

Over the past several years, neural recording and stimulation systems have contributed substantial 

benefit to patients who suffer from Parkinson’s disease, major depressive disorder, and epilepsy 

[176], [177]. However, research and applications demand an increasing number of requirements, 

which implies more requirements for the neural recording system. These requirements include 

having high-density integration of the recording electrodes [58] [59] (now, to our knowledge, a 

neural recording system can integrate more than a thousand electrodes [61]), low temperature (an 

increase in the temperature of the cortex must be smaller than one centigrade, which means that 

the maximum power density should be 0.8 mW/mm2 for the exposed tissue area [178]), long 

device lifetime, and small device size. Among all of these requirements, the power consumption 

is one of the most challenging issues. In a patient who requires an implantable medical device, 

there must be limit to the frequency of replacing the batteries to both reduce the cost of the 

surgeries and improve the quality of life. For example, if there is a portable battery that has an 

energy density in the range of 1 W-hr/cc, a battery volume on the order of 10 μW average power 

per cubic centimeter is required for a 10-year device life span [134]. Moreover, many of the 

implantable devices integrate a wireless transmission part, which aggravates the situation of 

having stringent energy constraints, because large amounts of recorded data required a very high 

carrier frequency, which substantially increases the power consumption of the device [57] [72] 

[179]. A common ultra-wideband (UWB) radio exhibits energy-efficiencies in the nJ/bit range, 

whereas the power consumption of the other components is 103 times less than that of the UWB 

radio [134]. Therefore, a signal reduction strategy for an implantable device should be employed 

to minimize the power consumption of the system. 

Most of existing methods for implementing integrated data reduction under these constraints 

involves detecting neural spikes [83] [106] or extracting the data features of the signal [92] [123]. 

However, both of these methods cause distortion or loss of the data information. For example, in 

a neural spike-detection recorder, the data are obtained only in a time series or as an impulse 

signal but not as the signal itself [148]. If the thresholds of the detection are not properly set, then 

the spikes cannot be detected. At the same time, the feature extraction requires a period of time to 

train. Based on this method, the precision usually cannot be guaranteed, and the hardware design 

is also complicated [160]. Therefore, we must find a new method that does not lose the details of 

the signal to accomplish the goal of recording the signal.  
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Compressed sensing (CS) technology gives us a new choice for signal compression. In recent 

years, this approach has attracted considerable attention in the areas of computer science, applied 

mathematics and electrical engineering [131] [140]. CS technology can be divided into three 

main parts: sparse signal, signal reconstruction and sensing matrix. 

3.1.1 Sparse Signal 

CS theory is based on the sparsity of the signal. If a signal Y, which can be found in a basis such 

as V = [v1 ,   v2 , v3, ⋯, vn] has a sparse representation, then the signal is called a sparse signal. 

Specifically, suppose Y can be described as in (3.1). 

                                         𝑌𝑌 =   𝑉𝑉𝑉𝑉       or       𝑌𝑌 =    ∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖
𝑛𝑛
𝑖𝑖=1

          
(3.1) 

where xi is the coefficient vector for Y under the basis V. If Y is sparse, then the coefficient xi 

must be almost zero or negligible, and as a result, they can be omitted without any loss.  

If a signal is sparse under some basis, then it can be regarded as a compressible signal. Usually, a 

signal is not sparse, but if the basis can be changed, then the sparse representation under the new 

basis can be obtained. For example, a sine wave is not sparse in the time domain, but it is sparse 

in the Fourier domain. 

3.1.2 Signal Reconstruction 

There are many reconstruction methods; an example is the ℓ1 (or ℓ2) norm-based reconstruction 

method, which searches for the minimum ℓ1 (or ℓ2) value to construct the signal [136] [180]. This 

type of algorithm includes the basis pursuit algorithm (BP), matching pursuit algorithm (MP), 

orthogonal matching pursuit algorithm (OMP) [181] [182], and threshold-based method (such as 

the iterative hard or soft thresholding algorithm [182] [183]). Probability-based reconstruction 

methods constitute another type; for example, the sparse Bayesian method uses the maximum 

likelihood to reconstruct the signal [184] [185]. As of now, it has been proven that for a k-sparse 

signal, if the order of the measurement is 2k, the original signal can be recovered exactly [186]. 

3.1.3 Sensing Matrix 

Not all of the signals are sparse, and the “sparse” basis is usually difficult to find. Although the 

“sparse” basis of a signal can be found, how to implement it into a device is still difficult [9]. To 
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compress the non-sparse signal, we introduce a new concept for the compressed sensing, which is 

that not only the zero points in a signal can be compressed but also the identical non-zero points 

in the signal can be compressed. Therefore, in this article, we construct a deterministic sensing 

matrix that is based on this idea to compress the neural signals.  

The sensing matrix can be divided into two types: random and deterministic matrices. Currently, 

most of the designers use a type of random matrix as a sensing matrix in the system, such as the 

sub-Gaussian sensing matrix [134] [148] or the random discrete Fourier transmission matrix 

[161]. However, the random matrix has disadvantages. First, storing the random matrix requires a 

large amount of space, and the effectively proven random sensing matrices require items with 

superior randomness, which causes there to be stringent requirements for the design of a random 

number generator. Moreover, a random number generator aggravates the complexity of the 

hardware design, especially for an implantable device, because the generator usually has large 

power consumption and a large silicon area. Therefore, the current random sensing matrices are 

not the best choice for an implantable hardware design. 

In addition, a deterministic sensing matrix is discussed as an optional type of sensing matrix. The 

advantage of the deterministic matrix is that it can generate the items of the sensing matrix on the 

fly without storing the data, and it is also easy to reconstruct the original signal. However, current 

deterministic sensing matrices, such as the Discrete Chirp sensing matrix [163], the Reed Muller 

sensing matrix [187], and the BCH sensing matrix [164], are also complicated with respect to the 

hardware implementation, and they cannot be used for a non-sparse or low-sparse signal; 

although a low-density parity-check (LDPC) matrix contains only 0’s and 1’s, the compression of 

a non-sparse or low-sparse signal requires a very high-girth sensing matrix that is very difficult to 

generate [135] [162]. Therefore, a novel deterministic sensing matrix must be constructed. 

Moreover, there are two important contributions in this article. First, we use the similarity that is 

in a signal to construct the compression. In fact, a specific neural signal may contain many 

identical (or similar) points, and traditional compressed sensing concerns only the zero items in a 

signal; it does not concern two identical (or similar) non-zero points in the signal. Therefore, we 

research these identical or highly similar non-zero points, i.e., the similarity of the points in a 

signal, from the perspective of compressed sensing theory. Additionally, we use the advantages 

of the deterministic sensing matrix to construct a sensing matrix that is based on the clustering of 
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the neural signal itself. In brief, the primary contribution of this article is that we design a 

deterministic compressed sensing matrix to compress non-sparse or low-sparse signals that have 

identical non-zero points, and the compressed signals can be largely recovered. 

To illustrate our work, we give definitions and proof for the MDC sensing matrix in section 3.2. 

We introduce the dataset of the simulation in section 3.3. The simulation results and a discussion 

based on the MDC sensing matrix are given in section 3.4. Finally, in section 3.5, we provide a 

conclusion. 

3.2 Minimum Euclidean or Manhattan Distance Cluster-Based Deterministic 

Sensing Matrix 

First, we provide the definitions of several basic concepts and the method of MDC matrix 

construction. (Some important variables or symbols are illustrated in Table 3.1).  

The most important concept in compressed sensing theory is the Restricted Isometry Property 

(RIP), which is shown as follows. 

Restricted Isometry Property An M  ×  N  sensing matrix  Φ  is said to satisfy the Restricted 

Isometry Property of order k if it satisfies (3.2): 

   (1 −  𝜀𝜀𝑘𝑘)‖ 𝑋𝑋 ‖2
2  ≤  ‖ ΦX ‖2 

2 ≤  (1 + 𝜀𝜀𝑘𝑘)‖ 𝑋𝑋 ‖2
2                                  (3.2) 

for all of the k-sparse vectors X. The restricted isometry constant εk of matrix Φ lies between 0 

and 1. The restricted isometry constant εk, k ∈  (1, n) of sensing matrix Φ is defined as (3.3): 

  εk(Φ) = max
|𝑇𝑇|≤𝑘𝑘

�Φ𝑇𝑇
* ΦT − 𝐼𝐼 T



� = max
|𝑇𝑇|=⌊𝑘𝑘⌋

�Φ𝑇𝑇
* ΦT − I T



�                 (3.3) 

where the maximum is over all subsets [ ]T n⊆ with T k≤ or T k=    , and Φ𝑇𝑇 means all M k×

sub-matrices of Φ. 

After the presentation of the RIP, we give some basic concepts to construct the MDC matrix. 

Definition 1: (Equal Index Permutation) Given a vector  X (x1, x2, ⋯, xn) , there exists a 

permutation A1 (a1, a2,⋯, at) of the index vector (1, 2,⋯, n), and there is a vector that is based on 

this index permutation  XA1(xa1, xa2,⋯ , xai  ,⋯ , xat
) , xai ∈ X . If every two items from  XA1 are 

identical under some measures, in other words, xai = xaj, xai , xaj ∈ XA1, A1 is called an equal index 
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permutation. If this measure is based on Euclidean (or Manhattan) distance, then A1 is called an 

equal index permutation under the Euclidean (or Manhattan) distance. 

Table 3.1 Symbols and variables 

Variable 

or notation 
Meaning 

Variable 

or notation 
Meaning 

C One cluster C D(K) 
Degree of the sparsity; 

D(K) = 1 - ( k N⁄ ) 

→ Approximate to K or k Sparsity of the signal 

Y 
Measurement;  

 Y = ΦX 
ΦM × N 

M rows N columns sensing 

matrix 

     Φ = [𝜙𝜙1   ;    𝜙𝜙2   ;   ⋯     ;    𝜙𝜙𝑚𝑚] 

L(X) Length of a vector X I(C) Size of a cluster C 

CR 
Compression rate; 

CR  =  1- ( N M⁄ ) 
Set(C) or S 

Cluster set;  

Set(C) contains n clusters 

MD 

Maximum distance; 

The maximum value between 

two points. There are two 

different maximum distances 

in this article: inner MD and 

0-MD. The inner MD is 

mainly the distance between 

two points of a vector. The 0-

MD indicates the distance 

between one point with the 

zero-value point in a vector. 

RER 

Reconstruction error; 

If  ∇(Φx)  is the reconstruction 

of a measurement, so the 

reconstruction error is the 

Euclidean distance between the 

reconstructed signal and the 

original signal 

 RER   =   ‖∇(Φx) − x‖2 ‖x‖2⁄  
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Table 3.1 Symbols and variables (cont’d) 

Variable 

or notation 
Meaning 

Variable 

or notation 
Meaning 

CEER 

Compression error of the 

expected measurement; 

CEER

= ‖E(‖Φx‖2
2) − ‖x‖2

2‖2 ‖x‖⁄
 

δ(S) 

Standard deviation of the size of 

all of the clusters in a cluster set, 

in other words, 

δ(I(C(xA1)), I(C(xA2)),⋯, I(C(xAn))) 

Imax(Set(C)) 
Maximum size of a cluster 

in a cluster set 
CER 

Compression error; 

CER = ‖‖Φx‖2
2 − ‖x‖2

2‖2 ‖x‖2
2⁄  

R(S) R(S) = Imax(S)  (N M⁄⁄ ) R(K,M,N) R(K,   M, N) =  (k - M) N⁄  

A vector that has identical items can be clustered into several clusters according to the minimum 

Euclidean or Manhattan distance; thus, some other concepts are given. 

Definition 2: Given a vector X (x1, x2,  ⋯, xn), there exists an index set that contains M equal 

index permutations under the Euclidean (or Manhattan) distance, i.e.,  AM (A1, A2, ⋯, Am) , 

where  Ai = (ai1, ai2,  ⋯, aij  ,  ⋯,ait) ,   aij ∈  (1, 2, ⋯, n) . X can be clustered into M clusters 

according to the index AM, in other words,  XAM(xA1, xA2, ⋯, xAm). If  a1i ∈  (1, 2, ⋯, n) 

1.  ∀xi ∈ X , xi  ∈  xAi  and xi  ∉  xAj  , Ai , Aj ∈ AM ; Ai ≠ Aj 

2.  ∀xi , xj ∈ X, xi  ∈  xAi  , xj  ∈  xAj and xi  ≠  xj , Ai , Aj ∈ AM ; Ai ≠ Aj 

Thus, AM  is called an exclusive equal index permutation set, and vector 𝑋𝑋 is called an M-cluster 

exclusive vector under permutation set AM.  

Definition 3: (p-dissimilar vector) Assume that a vector  X (x1, x2, ⋯, xn)  is an M-cluster 

exclusive vector under the permutation set AM (A1, A2,⋯, Am), where Ai = (ai1, ai2, ⋯, aij  , ⋯,ait),  aij ∈

 (1, 2,⋯, n). According to definition 2, X can be clustered into M clusters based on the index AM, 

in other word,  XAM(xA1, xA2, ⋯, xAm). Let p = M; then vector X is called a p-dissimilar vector. The 

size of each cluster CxAi
 is I(CxAi

) =  t, XAi ∈ XAM. So CxAi
 is called a t-large cluster. If t = 1, then CxAi
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is called a unit-large cluster. If Ai,  ∀Ai ∈ AM, is an equal index permutation under the Euclidean 

(or Manhattan) distance, then X  is called a minimum Euclidean (or Manhattan) distance p-

dissimilar vector. 

From the definition above, t ≠ 0, because a cluster contains at least one point. 

Lemma 1: Assume that there is a p-dissimilar vector   X  under permutation 

set  XAM(xA1, xA2, ⋯, xAm) and that its length is L(X) = n; thus it can be clustered into M clusters, 

i.e., Set(C) = {C(xA1),  C( xA2), ⋯, C(xAm)}. Thus, Set(C) satisfies (3.4) and (3.5). 

I(C(xA1)) + I(C(xA2)) + I(C(xA3)) + ⋯ + I(C(xAm)) = n                     (3.4) 

And 

C(xAi) ∩ C(xAj) = 0                                             (3.5) 

Definition 4: (Equivalent Index Subset Vector) Assume that there are two 

vectors, X (x1, x2,⋯, xn) and  Y �y1, y2, ⋯, yn�, that have the same length L(X) = L(Y) = n. X is an 

M-cluster exclusive vector under permutation set AM (A1, A2, ⋯, Am) , 

where  Ai = (ai1, ai2, ⋯, aij  , ⋯,ait) ,  aij ∈  (1, 2,⋯, n) . For a determined subset  Ai ,  Ai ∈ AM , if 

{ yai
= r  |     ai ∈ Ai     }  and { yai

=   0  |     ai ∉ Ai     } , then Y is called an equivalent index subset vector of 

the vector X. 

When  r = 1, Y is called the unit equivalent index subset vector. When  r = 1/� ‖ Y ‖0, it is called 

the normalized equivalent index subset vector.  ‖ Y ‖0 is the total number of non-zero elements in 

vector Y. For a p-dissimilar M-cluster exclusive vector X, there are M equivalent index subset 

vectors. 

Lemma 2: Assume that X is an p-dissimilar vector under permutation set AM (A1, A2, ⋯, Am) and 

that its length is L(X) = n; then, it can be clustered into M clusters under an exclusive equal index 

permutation set, and the equivalent index subset vector of every cluster is YM{Y1,  Y2, ⋯, Ym}, 

which implies that it satisfies (3.6). 

                                                Yi*  Yj
 ' = 0   , Yi, Yj ∈ YM                                                        (3.6) 

Proof: If  Yi*  Yj
 ' ≠  0  , then C(xAi) ∩ C(xAj)  ≠  0, but the opposite holds under the assumption in 

lemma 1, so Yi*  Yj
 ' = 0. 
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With the definitions above, we can construct the sensing matrix for a minimum Euclidean (or 

Manhattan) distance p-dissimilar vector. 

Definition 5: (Minimum Euclidean or Manhattan distance cluster-based deterministic sensing 

matrix (MDC matrix)) 

If a vector  𝑋𝑋  is a minimum Euclidean (or Manhattan) distance p-dissimilar vector, then we can 

construct a deterministic sensing matrix through the following three steps. 

(St1)  Divide  X  into M dissimilar clusters {C(xA1),  C( xA2), ⋯, C(xAm)} based on the exclusive 

equal index permutation set  XAM(xA1, xA2,⋯, xAm). 

(St2)   The  equivalent  subset  index  vector  of  these  clusters  {C(xA1),  C( xA2), ⋯, C(xAm)}   is 

{𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}, m ∈ 


.  

(St3)    Composing the matrix with {𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}, m ∈


, which is Φ = [𝜙𝜙1   ;   𝜙𝜙2  ;  ⋯     ;   𝜙𝜙m]. 

Thus,  Φ is called a minimum Euclidean or Manhattan distance cluster-based deterministic 

sensing matrix (MDC) matrix. If   all of the 𝜙𝜙i  , i ∈  [1, m]  in the  Φ  are the normalized 

equivalent index subset vectors, so Φ  is called a normalized MDC (NMDC) matrix . If  all the 𝜙𝜙i , 

i ∈  [1, m] in the Φ are the unit equivalent index subset vectors, so Φ is called a unit MDC 

(UMDC) matrix. An example of the construction is shown as follows. 

Given a vector  X (x1, x2,  ⋯, x6)  and that X  can be clustered into three clusters based on the 

minimum Euclidean (or Manhattan) distance (these clusters are  {{x1, x2, x5},{x3, x6},{x4}}) ; 

therefore, the NMDC matrix for the vector X is Φ , which is shown in (3.7). 

Φ  =  �
1 √3⁄ 1 √3⁄ 0

0 0 1 √2⁄
0 0 0

     
0 1 √3⁄ 0
0 0 1 √2⁄
1 0 0

�                        (3.7) 

To research the property of the MDC matrix, we give a similar definition based on the Restricted 

Isometry Property. 

Definition 6: (Cluster Restricted Isometry Property (CRIP)) An M  ×  N sensing matrix  Φ  is said 

to satisfy the Cluster Restricted Isometry Property of order k if it satisfies (3.8): 

(1 −  𝜀𝜀𝑘𝑘)‖ X ‖2
2  ≤  ‖ 𝛷𝛷X ‖2 

2 ≤  (1 + 𝜀𝜀𝑘𝑘)‖ X ‖2
2                         (3.8) 

for all of the k-sparse p-dissimilar vectors X that construct Φ through definition 5. 
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There are two important points that must be explained. First, every vector  X  has its own MDC 

matrix, and the MDC matrix is a collection of all of the matrices that are built through the 

algorithm in definition 5. In the following sections, we show that the MDC matrix obeys the RIP 

for its related vector under some prerequisites. Moreover, the vector X is random, but if the 

clustering method and the measure are determined, then the MDC matrix of a certain vector X is 

determined; thus, the MDC can be regarded as a deterministic matrix.  

Lemma 3:  The NMDC matrix is a unit tight (or Parseval) frame. 

Proof:  Given a random vector  X    ∈   ℂN, and that the NMDC matrix Φ satisfies (3.9). 

           (Φ ∗ ΦΤ) = ∑ 𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗  = 𝐼𝐼𝑀𝑀
𝑀𝑀
𝑖𝑖 ,𝑗𝑗 = 1                       (3.9) 

Vector X   satisfies (3.10). 

� |〈X, ϕi〉|2 = X ∗ Φ ∗ ΦΤ  N
i  = 1 ∗ X Τ = ‖X‖2

2                         (3.10) 

Therefore, the NMDC matrix is a unit tight frame. 

Lemma 4: The NMDC matrix satisfies the Cluster Restricted Isometry Property definitely.  

Proof: From reference [130], for signal X, if the restricted isometry constant of Φ is ε2k  and 

ε2k < √2 - 1, the solution to the ℓ1 problem is a unique k-sparse solution. 

Given a k-sparse p-dissimilar signal, the index set of the non-zero items is T. A new signal X ′is 

constructed by the non-zero items X2𝑇𝑇
 ′ ~{X𝑇𝑇,   X𝑇𝑇}. The NMDC matrix of X ′ is Φ′. From Lemma 3, 

the NMDC matrix is an unit tight frame, in other words, ‖Φ′X′‖2 =  ‖X ′‖2, which means that 

∃  λ > 0,  |ε2k|  < λ; therefore, X2T
 ′  can be recovered through the compression. Moreover, a subset 

T of the set 2T can be found to construct Φ, in other words, ‖Φ𝑇𝑇X𝑇𝑇‖2 = ‖X𝑇𝑇‖2 , which means 

that ‖Φx‖2
2   = ‖x‖2

2 ; thus, from measurement Y, it can exactly reconstruct  X. 

The NMDC matrix can compress any signal that contains identical items without considering the 

signal to be a sparse signal or not, because the NMDC matrix is a unit tight frame for its 

corresponding compressed signal; in other words, the restricted isometry constant   εk  of the 

NMDC matrix is 0. In the simulation, we can find that the UMDC (the items of the UMDC 

matrix are 0’s and 1’s) can reconstruct the original signal correctly, which indicates that UMDC 

also satisfies the Cluster Restricted Isometry Property. 
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Although the MDC matrix obeys CRIP, we still want to know whether the MDC matrix satisfies 

RIP, and we also hope to use the UMDC matrix that contains only zeros and ones. As a result, we 

prove that the UMDC matrix obeys RIP when (k − M) N⁄ → 0 and Imax(Set(C)) ≤ N M⁄ . 

Theorem 1 [188]: Let ΦM  N be a sensing matrix, and let a vector X (x1, x2,⋯, xn) be a random 

vector. Given the following inequality (3.11): 

Pr(|‖𝛷𝛷𝑥𝑥‖2
2 − ‖𝑥𝑥‖2

2| ≥ 𝜀𝜀‖𝑥𝑥‖2
2) ≤ 2e−Mc0(ε)                 (3.11) 

where ε  ∈  (0, 1), and c0(ε)  >  0 is a constant that depends only on ε. If (3.11) is satisfied, 

then ΦM  N satisfies the concentration inequality. 

From reference [188], it can be learned that if we assume a sensing matrix ΦM  N and a k-sparse 

signal and if Φ  satisfies two conditions:  E(‖Φx‖2
2) = ‖x‖2

2  and  ‖Φx‖2
2  converges to  ‖x‖2

2 , 

then  Φ obeys the RIP with a probability of at least 1 − 2exp(−𝑐𝑐0(𝜀𝜀/2)M)(12/𝜀𝜀)k, ε ∈ (0,1). In 

Lemmas 5 and 6, we prove both conditions. 

Lemma 5: We are given a k-sparse n-length p-dissimilar random vector  X(x1, x2,⋯, xn) and that 

every item of X is uniformly distributed in the vector  X, and it can be clustered into M t-clusters. 

Every two items in the vector have the same probability of being identical. The number of non-

zero items in all of the clusters are  {l1, l2,⋯, lm} , and their sum is ∑ li  =M
i = 1

 k .  Φ{𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}  is an M × N  UMDC matrix, and Y   =    ΦX . The ℓ1 norm of each 

column |𝜙𝜙i|1 =  𝑛𝑛𝑖𝑖,  i ∈ (1, 2, ⋯, n). If (k − M) N⁄ → 0, then E(‖Φx‖2
2) = ‖x‖2

2. 

Proof: With the notation presented above, we are given a random vector X(x1, x2,⋯, xn) and 

assume that its measurement can change to be (3.12): 

E(‖𝑌𝑌‖2
2) = E(∑ |Φ𝑋𝑋|2𝑛𝑛

𝑖𝑖=1 ) =  E �∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝜙𝜙𝑡𝑡𝑖𝑖𝜙𝜙𝑡𝑡𝑗𝑗𝑖𝑖,𝑗𝑗 �    
       

(3.12) 

where t  is all of the possible permutations of {1, 2, ⋯, N }. The index couple  �ti , tj� ranges 

uniformly over all of the possible values (1, N ) because of the assumption, i.e., the vector X is 

random and every item is uniformly distributed in X. Assume one item in the ith cluster is xli. So 

(3.12) can change to be (3.13): 
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E(‖𝑌𝑌‖2
2) = ∑ |𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖|2𝑛𝑛

𝑖𝑖=1 + E(∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝜙𝜙𝑡𝑡𝑖𝑖𝜙𝜙𝑡𝑡𝑗𝑗𝑖𝑖,𝑗𝑗
𝑖𝑖≠𝑗𝑗

)

                                                       = ∑ |𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖|2𝑛𝑛
𝑖𝑖=1 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖

2𝑙𝑙𝑖𝑖
2 − 𝑛𝑛𝑖𝑖𝑙𝑙𝑖𝑖)𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑙𝑙𝑖𝑖,𝑙𝑙𝑗𝑗=1

                              = ∑ |𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖|2𝑛𝑛
𝑖𝑖=1 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖

2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖
2𝑀𝑀

𝑖𝑖=1

                   (3.13) 

If the sensing matrix is an UMDC matrix, in other words, ni = 1, i  ∈  (1, n), thus, (3.13) can 

change to be (3.14): 

E(‖𝑌𝑌‖2
2) = E(‖𝛷𝛷𝛷𝛷‖2

2) =  ‖𝑥𝑥‖2 
2 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖

2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖
2𝑀𝑀

𝑖𝑖=1                  (3.14) 

If we want to obtain E(‖Φx‖2
2) = ‖x‖2

2, the second item (1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖
2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑖𝑖=1 ) in (3.14) 

should be 0. Applying the Cauchy-Schwarz inequality, we can obtain (3.15): 

   ∑ (𝑛𝑛𝑖𝑖
2𝑙𝑙𝑖𝑖 − 1)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑖𝑖=1 ≤ ∑ (𝑛𝑛𝑖𝑖

2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑀𝑀
𝑖𝑖=1 ∑ 𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑖𝑖=1

                                     = (∑ 𝑛𝑛𝑖𝑖
2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀

𝑖𝑖=1 )‖𝑥𝑥‖2
2                     (3.15) 

(3.15) can change to be (3.16). 

1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖
2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑖𝑖=1 ≤ 1 𝑁𝑁⁄ (∑ 𝑛𝑛𝑖𝑖

2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀
𝑖𝑖=1 )‖𝑥𝑥‖2

2 = ((𝑘𝑘 − 𝑀𝑀) 𝑁𝑁)⁄ ‖𝑥𝑥‖2
2     (3.16) 

Because  k  ≥ M , if  (k − M) N⁄ → 0 , then (1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑖𝑖
2𝑙𝑙𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑖𝑖=1 ) → 0 , which means 

E(‖Φx‖2
2) = ‖x‖2

2. 

In the next step, we prove that ‖Φx‖2
2 converges to its expectation E(‖Φx‖2

2). 

Theorem 2 [188] [189]: (Self-Avoiding McDiarmid inequality) Let   X1,  X2, ⋯, Xm  be the 

probability space, and define X as the probability space of all distinct m-tuples, which is the 

subset of the product set χ = X1 × X2 ⋯ × Xm given by (3.17). 

𝑋𝑋 = {(𝑡𝑡1, ⋯ , 𝑡𝑡𝑚𝑚) ∈ ∏ 𝑋𝑋𝑖𝑖
𝑚𝑚
𝑖𝑖=1  s. th.   ∀𝑖𝑖 ≠ 𝑗𝑗:   𝑡𝑡𝑖𝑖 ≠ 𝑡𝑡𝑗𝑗}                       (3.17) 

Let h(t1, ⋯, tm) be a function from the set X to ℝ such that for any coordinate i, given t1, t2 ⋯, ti-1, 

| sup
𝑢𝑢∈ 𝑋𝑋𝑖𝑖;𝑢𝑢≠𝑡𝑡𝑛𝑛,𝑛𝑛=1→i

E[ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑖𝑖−1, 𝑢𝑢, 𝑇𝑇𝑖𝑖+1, ⋯ , 𝑇𝑇𝑚𝑚)]   

− inf
𝑙𝑙 ∈𝑋𝑋𝑖𝑖;𝑙𝑙≠𝑡𝑡𝑛𝑛,𝑛𝑛=1→i

E[ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑖𝑖−1, 𝑙𝑙, 𝑇𝑇𝑖𝑖+1, ⋯ , 𝑇𝑇𝑚𝑚)]| ≤ 𝑐𝑐𝑖𝑖        (3.18) 

where the expectations are determined by the random variables  Ti+1, ⋯, Tm . (For more 

information, see in reference [189]). If (3.18) is satisfied, then for any positive 𝛾𝛾, (3.19) can be 

obtained. 
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Pr[|ℎ(𝑇𝑇1 ⋯ , 𝑇𝑇𝑚𝑚) − E[(𝑇𝑇1 ⋯ , 𝑇𝑇𝑚𝑚)]| ≥ 𝛾𝛾] ≤ 2exp(−2𝛾𝛾2 ∑𝑐𝑐𝑖𝑖
2⁄ )         (3.19) 

We use this theorem to prove the concentration inequality. 

Lemma 6: Assume that a random vector X ( x1  ,   x2,   ⋯,   xk)  is a p-dissimilar vector and that xi ≠ 0, 

Every item of X is uniformly distributed in X, and its MDC sensing matrix is ΦM  N. Assume that 

 f(X) = ∑ xi𝜙𝜙pi
k
i = 1 . The cluster set of this vector is  Set(C) = {C1, C2, ⋯, Cm} and 

 Imax(Set(C)) ≤ N M⁄ . Therefore, ΦM  N satisfies (3.20).  

              Pr[|‖𝑓𝑓‖2 − ‖𝑥𝑥‖2| ≥ 𝛽𝛽‖𝑥𝑥‖2]    ≤ 2e−(𝑀𝑀𝑀𝑀(𝛽𝛽2) )         (3.20) 

Proof: Assume that  Ωk is the set of all k-tuple permutations (t1, t2,⋯, tk), which follows the 

definition that all entries of k-tuples of  Ωk are distinct. The set Ωk is finite, has a counting 

measure and also can be renormalized to have a total mass of 1. Ωk is the probability space of the 

random vector  X ( x1  ,   x2,   ⋯,   xk)  with k non-zero entries. Let set Tk   ~ (t1, t2, ⋯,  tk) denote a 

permutation of {1, 2, ⋯, N }. Because X is random and every item distributes uniformly in X, 

(t1, t2, ⋯,  tk) can be regarded as being uniformly distributed in Ωk . 

Let f:   tk  →  CM be defined by  f(t1, t2, ⋯, tk)= ∑ xi𝜙𝜙pi
k
i = 1 , and let h:   tM   →  ℝ by  h(t1, t2, ⋯, tk) =

 ‖ f(t1, t2, ⋯, tk)‖2
2, in other words (3.21). 

ℎ�𝑡𝑡1,𝑡𝑡2 ⋯ 𝑡𝑡𝑘𝑘�  =  � |𝑥𝑥𝑖𝑖|2𝑘𝑘
𝑖𝑖=1 + ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝚥𝚥� (𝜙𝜙𝑡𝑡𝑖𝑖)

𝑇𝑇𝜙𝜙𝑡𝑡𝚥𝚥
����𝑘𝑘

 𝑖𝑖,𝑗𝑗=1
 𝑖𝑖≠𝑗𝑗

                   (3.21) 

Then, (3.22) can be obtained: 

ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑙𝑙 , ⋯ 𝑡𝑡𝑘𝑘) − ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑝𝑝, ⋯ 𝑡𝑡𝑘𝑘) = {∑ [𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑡𝑡𝑙𝑙 − 𝜙𝜙𝑡𝑡𝑝𝑝)𝑇𝑇𝜙𝜙𝑡𝑡𝚥𝚥
����]𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝑖𝑖≠𝑙𝑙 +      ∑ [𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� 𝜙𝜙𝑡𝑡𝑗𝑗

𝑇𝑇(𝜙𝜙𝑡𝑡𝑙𝑙 − 𝜙𝜙𝑡𝑡𝑝𝑝)���������������]𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝑖𝑖≠𝑙𝑙 }

                                                                                                                                               = {∑ �𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑔𝑔(𝑡𝑡𝑙𝑙,𝑡𝑡𝑗𝑗) − 𝜙𝜙𝑔𝑔(𝑡𝑡𝑝𝑝,𝑡𝑡𝑗𝑗))� +     ∑ �𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑔𝑔(𝑡𝑡𝑗𝑗,𝑡𝑡𝑙𝑙) − 𝜙𝜙𝑔𝑔(𝑡𝑡𝑗𝑗,𝑡𝑡𝑝𝑝))�
(3.22) 

Where 𝜙𝜙g(i , j)(x) = 𝜙𝜙i
𝛵𝛵𝜙𝜙j. 

Assume that t1, ⋯ , t𝑙𝑙 , ⋯ , tN and tp are all different and |ϕi(x)|i=1, 2⋯, N
2  ≤ M -2η, η ≥ 0. 

From the definition of the MDC matrix, it can be obtained that max �𝜙𝜙g(i , j)(x)� =

Imax(Set(C)) and min �𝜙𝜙g(i , j)(x)� = 0; therefore, (3.23) can be obtained. 

 



61 

|ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑙𝑙 , ⋯ 𝑡𝑡𝑘𝑘) − ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑝𝑝, ⋯ 𝑡𝑡𝑘𝑘)| ≤ 2|𝑥𝑥𝑙𝑙|∑|𝑥𝑥𝑗𝑗||𝜙𝜙𝑔𝑔(𝑙𝑙,𝑗𝑗)(𝑥𝑥) − 𝜙𝜙𝑔𝑔(𝑝𝑝,𝑗𝑗)(𝑥𝑥)|
                                                                                                                                                      ≤ 2|𝑥𝑥𝑙𝑙|∑|𝑥𝑥𝑗𝑗|  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶)) 𝑀𝑀−𝜂𝜂

                                                                                                                                                        ≤ 2𝑁𝑁𝑀𝑀−(𝜂𝜂+1)|𝑥𝑥𝑙𝑙| � |𝑥𝑥𝑗𝑗|
𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗≠𝑙𝑙

  (3.23) 

Assume that xt𝑙𝑙 is the largest item and has the most identical points in X ; at the same time, xtp has 

no identical items in X, which implies the sufficient condition of the Self-Avoiding McDiarmid 

inequality. Therefore, we can use this inequality to obtain (3.24), 

Pr[|ℎ − E(ℎ)| ≥ 𝛽𝛽‖𝑥𝑥‖2
2] ≤ 2exp(− 𝛽𝛽2‖𝑥𝑥‖2

4𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2 ∑ |𝑥𝑥𝑙𝑙|2[ ∑ |𝑥𝑥𝑗𝑗|𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗≠𝑙𝑙 ]2𝑘𝑘
𝑖𝑖=1

)        (3.24) 

Because 

� |𝑥𝑥𝑙𝑙|2𝑘𝑘
𝑙𝑙=1 �∑ �𝑥𝑥𝑗𝑗�𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗≠𝑙𝑙 �2

         ≤        ∑ |𝑥𝑥𝑙𝑙|2𝑘𝑘
𝑙𝑙=1 �∑ �𝑥𝑥𝑗𝑗�𝑘𝑘

𝑗𝑗=1 �2
     ≤     ‖𝑥𝑥‖2

2 × 𝑘𝑘 ×   ‖𝑥𝑥‖2
2 =     𝑘𝑘‖𝑥𝑥‖2

4    (3.25) 

Can be combined with (3.25), (3.24) can change to be (3.26). 

Pr[|‖𝑓𝑓‖2
2 − 𝐸𝐸(‖𝑓𝑓‖2

2)| ≥ 𝛽𝛽‖𝑥𝑥‖2
2] ≤ 2exp(− 𝛽𝛽2𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2𝑘𝑘
)        (3.26) 

Now, the statement that  ‖Φx‖2
2 converges to E(‖Φx‖2

2) is proved. 

From Lemma 5, we can obtain (3.27): 

                      Pr[|‖𝑓𝑓‖2
2 − ‖𝑥𝑥‖2

2| ≥ β‖𝑥𝑥‖2
2] = Pr[|ℎ − E(ℎ)| ≥ 𝛽𝛽‖𝑥𝑥‖2

2] 

≤ 2exp(− 𝛽𝛽2𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2𝑘𝑘
)   ≤ 2exp(− 𝛽𝛽2𝑀𝑀2𝜂𝜂+1

2𝑁𝑁2𝑘𝑘
)            (3.27) 

When 𝜂𝜂  =  0, Φ is the UMDC matrix. 

Given the determined values for N and k, let ε(x) =  x 2𝑁𝑁2k⁄ , then (3.27) can change to be (3.28). 

                                          Pr[|‖𝑓𝑓‖2
2 − ‖𝑥𝑥‖2

2| ≥ 𝛽𝛽‖𝑥𝑥‖2
2]    ≤ 2e−(𝑀𝑀𝜀𝜀(𝛽𝛽2) )                      (3.28) 

Now, we prove that the UMDC matrix obeys the concentration inequality. 

As mentioned above, when a matrix obeys Lemmas 5 and 6, it will satisfy the RIP, in other 

words, (3.29): 

(1 −    𝜀𝜀)‖𝑥𝑥‖2
2 ≤ ‖𝛷𝛷𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑥𝑥‖2

2 ≤ (1 + 𝜀𝜀)‖𝑥𝑥‖2
2                 (3.29) 

with a probability of at least 1 − 2exp(−𝑐𝑐0(𝜀𝜀/2)M)(12/𝜀𝜀)k,  ε ∈ (0,1) . 
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After proving the RIP of the UMDC matrix, a small point that we need to mention here is that the 

MDC matrix is based on the signal having identical points, but not all of the signals are sparse, 

and not all of the signals have the identical points; thus, the signal approximation is needed. In 

the following sections, it can be observed that for a neural signal, its approximation vector 

contains large numbers of identical points that can be compressed, which makes the neural 

signals largely compressed. 

3.3 Actual Data and Methods 

All of the algorithms, methods and data analysis procedures were implemented in MATLAB 

(Mathworks, Natick, MA). 

The first dataset is obtained from an adult male rhesus macaque monkey in the Cognitive 

Neurophysiology Laboratory of McGill University. The data are from a recording system that 

contains 32 extracellular channels with a Utath 10 × 10 microelectrode array implemented in the 

prefrontal cortex. The data comprise three different recordings over three trials. The duration of 

each trial is 300s. First, data were filtered with a third-order bandpass Butterworth analog filter 

that utilized cutoff frequencies of 300 Hz and 7 kHz. Then, the filtered data were amplified with a 

gain of 80 db amplification, sampled at 30 kHz and digitized (10 bits per sample). 

The second set of data was recorded from the visual cortex of a rat at the Center for Studies in 

Behavioral Neurobiology of Concordia University. The researchers used a stainless-steel-tipped 

microelectrode that had a shank diameter of 75 μm to record the data. The data were filtered with 

a fourth-order bandpass Butterworth analog filter, and the cutoff frequencies were between 150 

Hz and 10 kHz. After the filtration, the data were amplified with a gain of 100 db, sampled at 32 

kHz and digitized (10 bits). The duration of the recording was 60 s. 

The third dataset comes from the NeuroEngineering Lab, University of Leicester [190]. The 

dataset comprises the simulated extracellular signals that were recorded from a human medial 

temporal lobe using intracranial electrodes. The duration of the signal is ten seconds long. The 

data were sampled at 32 kHz, filtered between 300 and 3000 Hz and digitized (12 bits).  

First, to imitate similar recording conditions, all of the datasets were refiltered with a fourth-order 

non-causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz and were 

resampled at 24 kHz.  
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Then, we randomly selected ten (or five) groups of test data from three datasets and ensured that 

the data of every set were used. To construct the MDC matrix, two different clustering methods 

were used for the test: one is the core data clustering that we designed, and the other one is the 

agglomerative hierarchical clustering. The algorithm of the core data clustering is described in 

Table 3.2. Because of the comparison with the sparse signal, we also used an approximation 

method that was based on the Manhattan distance to construct the sparse signal. The MDC 

matrices in all of the simulations (except for the special explanation) are all UMDC matrices. The 

core data clustering uses the Manhattan distance, and the agglomerative hierarchical clustering 

uses the Euclidean distance. 

Finally, all of the algorithms used in this article are BSBL (Block sparse Bayesian Learning 

algorithm), BP (Basis Pursuit algorithm) and OMP (Orthogonal Matching Pursuit algorithm), MP 

(Matching Pursuit algorithm), IRLS (Iterative Reweighted Least Square algorithm), StOMP 

(Stagewise Orthogonal Matching Pursuit algorithm) and Lasso (Least Absolute Shrinkage and 

Selection Operator). BSBL is BSBL_BO (groupStatLoc, learnlambda is 0, prune_gamma is -1, 

max_iters is 20, see [191]). BP, OMP, MP, IRLS and StOMP are from [192] using the default 

values. Lasso is from [193] using the default values. 

3.4 Results and Discussion 

In this section, several properties of the UMDC matrix are researched. First, the compression rate 

of a neural signal is considered. A comparison between sparsity and similarity in a neural signal 

with the Euclidean or Manhattan distance is given. Then, the property of the UMDC matrix is 

researched, which includes the RIP, the influence of the length of the signal, the difference 

between the NMDC and UMDC sensing matrices and the influence of the sampling rate. 

Moreover, the signal reconstruction under different sensing matrices, reconstruction algorithms, 

and other conditions is researched. Finally, a comparison between our work and the work from 

other literature is given; also, a period of the neural signal and its reconstructed signals is 

illustrated. 

3.4.1 Compression Rate of the Neural Signal 

The traditional compressed sensing theory is based on the sparsity of a signal, which is an 

approach that has limitations. Not all of the signals are sparse; thus, the change of the basis of a 
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signal and the approximation are two common methods for signal compression when one wants 

to use the compressed sensing technique. However, the change of the basis is complicated, which 

is not a good choice for the low-power device design; at the same time, the approximation still 

cannot compress large amounts of data, and neural signals in the time domain are an example.  

The neural signal in the time domain is not sparse, and using an approximation still cannot 

compress the majority of the points. To illustrate this problem, we use 10-group test data (each 

group contains ten thousand points) to perform the simulation, and the results are indicated by 

Figure 3.1. It can be observed in this figure that the neural signal is not a sparse signal, because 

when MD equals 0, the sparsity of the signal is nearly equal to the length of the signal, which 

means that the neural signals are not sparse. If the approximation method is not used, then it is 

very hard to obtain a zero point. However, even though the approximation method can be used, 

less than twenty percent of the points can approximate to zero, when setting the 0-MD 

(Manhattan distance) to 2. As mentioned above, if a compressed signal can be recovered exactly, 

then the sparsity of the signal must be at least half of the signal. If half of the number of point 

must be compressed, then according to the simulation, the 0-MD must be set to 8. This number is 

enormous for the simulated neural signal because of the error regarding the original signal. 

Therefore, using the sparsity of the neural signal to make the compression is not an optimal 

method. 

However, the degree of similarity in a neural signal is very high. According to Figure 3.1, using 

either the core data clustering or the agglomerative hierarchical clustering can largely compress 

the signal. When the inner MD (Manhattan distance) to the core data is 0.1, all of the data can be 

clustered into one thousand clusters; at the same time, setting the inconsistency (Euclidean 

distance) to be 1 for the agglomerative hierarchical clustering, eighty percent of the points can be 

clustered into two thousand clusters. Moreover, because the UMDC matrix obeys the CRIP or the 

RIP under two prerequisites, using the UMDC matrix to compress the neural signals is a very 

good choice. 
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Figure 3.1 Comparison between sparsity and similarity. In the simulation, for the core data 

clustering method, the inner MD is the maximum Manhattan distance between each point to the 

core data. For the hierarchical clustering, the inner MD is the inconsistency of each cluster (point) 

under the Euclidean distance. For a signal, 0-MD is the Manhattan distance between a point and 

the zero. 

3.4.2 RIP of the UMDC Matrix 

In the last sub-section, the conclusion is obtained that a neural signal can be regarded as a 

minimum Euclidean (or Manhattan) distance p-dissimilar vector, which can be clustered into a 

small number of clusters; as a result, it can be compressed largely by the UMDC matrix. 

Although the CR is massive, it also needs the reconstruction error of the signal to be acceptable, 

which means that the UMDC matrix must obey the RIP. According to the proof in section 3.2, if 

the UMDC matrix obeys the RIP, there are two prerequisites:  (k − M) N⁄ → 0  and 

Imax(Set(C)) ≤  N M⁄ . Therefore, in this sub-section, both of the prerequisites are proved. 

First, the relationship among K, N, and M, i.e., R(K, M, N), is researched. In section 3.2, if 

(k − M) N⁄ → 0, then  E(‖Φx‖2
2) = ‖x‖2

2 . We used five groups of neural signals from three 

datasets to build the simulation. The length of the signal in every group used for the simulation is 

one thousand points. We randomly selected the neural signal and repeated this process one 

hundred times to calculate the expectation of the measurement under different values of 

R(K, M, N). The simulation results are illustrated in Figure 3.2. In this figure, it can be seen 

clearly that when R(K, M, N) gradually decreases, the CEER also decreases without consideration 
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of the sparsity of the signal. When R(K, M, N) = 0, CEER is decreased to be zero. Additionally, 

when k is small (for example, 0.2N), the UMDC matrix can compress most of the data with a 

small CEER, which means that if the signal is sparser, a larger CR can be applied to compress the 

signal. Therefore, the result that (k − M) N⁄ → 0 implies that E(‖Φx‖2
2) = ‖x‖2

2 can be obtained. 

Table 3.2 Core data clustering algorithm 

A    vector   X(x1, x2,⋯ xn)  ∈   n
 .    Set    parameter   σ ≥ 0 ;   

{C1, C2, ⋯, Cn},  Ct    is   a   cluster ,     t  ∈ (1, n); ′  ⇒  ′   means     "add    into" 

L(X) = n; k = 1, i = 1 

 while   k  ≤  n    do 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ if �xk ∉ Cd ,   d ∈  (1 , i)�    do                                                              

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

if (i = 1)                                                                                               
xk ⇒ C1                                                                                              

 

⎩
⎪
⎨

⎪
⎧   for   j =1, 2, ⋯, n    and     j ≠ k                                                                  

        if � f(�xk – xj �2
 ≤ σ  (or   |xk – xj |1 ≤ σ))  and   xj ∉   C1  �             

       then  xj ⇒ C1                                                                                      
 end                                                                                                          

 

 i = 1                                                                                                        
else                                                                                                       

       xk ⇒ Ci+1                                                                                                  

⎩
⎪
⎨

⎪
⎧

 for   j =1, 2, ⋯, n    and     j ≠ k                                                                 
if ( f(‖xk – xj ‖2 ≤ σ  (or   |xk – xj |1 ≤ σ))                                

and    xj ∉   Cd ,   d ∈  (1 , i ))                                          
then  xj ⇒ Ci+1                                                                             

 end                                                                                                          
 i = i  + 1                                                                                                  

 

else                                                                                                         
k = k  + 1                                                                                                

 

  end 

{C1, C2, ⋯, Ci} is one cluster set 
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Figure 3.2 Relationship between CEER and R(K, M, N).  The length of the data is 1000; they are 

randomly picked from five groups of data, and the process is repeated 100 times. CEER is the 

compression error of expected measurement.  

 

Figure 3.3 Relationship between the CER and δ(S) , R(S). Here, N = 1800 and M = 180. δ(S) is 

the Standard deviation of the size of all of the clusters in a cluster set, and R(K, M, N) = (k - M) / 

N 

Moreover, there are more ways in which the clustering influences the CER. Two effects are 

researched: one is the extent of the evenness, and the other is the maximum size of the cluster in a 

cluster set. In the simulation, we select a period of the signal that has a length of 1800 (N = 1800) 

and compress it to 180 points (M = 180). First, the standard deviation   δ(S) evaluates the 

evenness of the cluster. In Figure 3.3(a), it can be noted that when the δ(S) decreases, the CER 
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also reduces, which means that the cluster is clustered more evenly, and ‖Φx‖2
2 approximates 

deeply to ‖x‖2
2. In addition, it can be learned from Figure 3.3(b) that if the value of R(S) becomes 

smaller, the CER becomes lower, which proves that when Imax(Set(C)) ≤  N M⁄ , ‖Φx‖2
2 → ‖x‖2

2. 

Therefore, if the rows of the UMDC matrix are more even, and the number of the non-zero items 

in the row containing the most non-zero items in the MDC matrix is smaller than N M⁄ , then the 

UMDC matrix obeys the RIP. 

3.4.3 Research on the Signal Reconstruction 

In this sub-section, the reconstruction of the compressed signal is researched. We research the 

neural signal compression under different (random or deterministic) sensing matrices and when 

reconstructed by different reconstruction algorithms; then, we research the core data clustering 

and agglomerative hierarchical clustering. Finally, we research the influence of the length of the 

signal and compare the UMDC matrix with the NMDC matrix. 

First, the UMDC matrix has the smallest RER compared with the random sub-Gaussian sensing 

matrix, the random DFT matrix and the LDPC (girth = 10) sensing matrix. To better compare the 

different sensing matrices, two groups of signals are constructed: one group is composed of the 

non-sparse signals, and the other group comprises the sparse signals for which D(K) = 0.5. In this 

simulation, we used ten groups of random signals from three datasets, and the length of every test 

signal is 2560. Every signal is randomly selected. Figures 3.4 - 3.6  show all of the comparisons 

in which there were five sensing matrices: UMDC, random Bernoulli, random discrete Fourier 

transform, random Gaussian and LDPC sensing matrixes. In addition, three different 

reconstruction algorithms are used: BSBL, BP and OMP. For the non-sparse signals, Figures 

3.4(a), 3.5(a) and 3.6(a) show that the UMDC matrix has the smallest RER, although the 

difference is small. Additionally, with the BP algorithm, the RER of the UMDC matrix 

approximates zero when the CR is ninety percent, which is enormously better than the other 

sensing matrices with the BP algorithm. In addition, with the OMP algorithm, the RER of the 

UMDC matrix is obviously superb compared with the other sensing matrices. For the sparse 

signals, Figures 3.4(b), 3.5(b) and 3.6(b) show that the advantage of using the UMDC matrix is 

not obvious with the BSBL algorithm, which is nearly same with the random Bernoulli sensing 

matrix. However, the BP algorithm can excellently reconstruct the compressed signal. 

Additionally, when the CR is less than eighty percent, it has the smallest RER when using the 
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OMP reconstruction algorithm. Therefore, the UMDC matrix can be reconstructed by the BP 

algorithm exactly with a trivial RER when the CR is less than ninety percent, regardless of 

whether the signal is sparse or not; also, the UMDC sensing matrix has the best reconstruction 

performance with the BSBL or the OMP reconstruction algorithm when the simulated neural 

signal is non-sparse or low-sparse. In summary, using the UMDC matrix and the BP 

reconstruction algorithm to compress and reconstruct the neural signal is one of the optimal 

choices. 

 

 

Figure 3.4 Signal reconstruction comparison with the BSBL algorithm: (a) D(K) = 0, (b) D(K) = 

0.5 

Moreover, two clustering methods are researched. Seven reconstruction algorithms are used for 

the comparison, namely, BSBL, BP, OMP, MP, IRLS, StOMP and Lasso. The test data are from 

ten groups of random signals. In Figure 3.7, with the same CR, the RER of the UMDC matrix 
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based on agglomerative hierarchical clustering is larger than the UMDC matrix based on the core 

data clustering, but the difference of the RER is small, which means that the UMDC matrices 

based on both clustering methods have a similar RER. Additionally, the complexity of the two 

methods is compared. We compare the algorithms with respect to their running times and 

memory space. The running times of the two algorithms are 1.3 ms and 23.4 ms, respectively. 

The occupation of memory space for the two algorithms is 468 kB and 1.5 MB, respectively. 

Therefore, it can be observed that agglomerative hierarchical clustering is more complicated than 

the core data clustering method. In addition, it can be observed that the BP and Lasso algorithms 

can excellently reconstruct the compressed signals, which shows that both methods can be chosen 

to reconstruct the compressed signals. 

 

 

Figure 3.5 Signal reconstruction comparison with the BP algorithm: (a) D(K) = 0, (b) D(K) = 0.5 
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Figure 3.6 Signal reconstruction comparison with the OMP algorithm: (a) D(K) = 0, (b) D(K) = 

0.5 

Third, the UMDC matrix is excellent for a long-length neural signal. Five groups of random 

neural signals from three datasets with different lengths are researched. The N in Figure 3.8 is 50; 

thus, the lengths are 50, 500, 1000, 2500 and 5000 points. Figure 3.8 shows that under massive 

compression, e.g., CR = 90%, when the signal length is 50, the RER is large; however, when the 

data length exceeds 500, the RER is negligible (specifically, less than 0.1). In addition, under the 

same RER, the longer the signal is, the higher the compression rate, which means that the UMDC 

matrix is very suitable for long-length signal compression. For example, in Figure 3.8, under the 

same RER of 0.1, a 1000-point signal can be compressed to be 20 points, and a 5000-point signal 

can be compressed to be 50 points. Therefore, the UMDC matrix can largely compress a long-

length neural signal. 
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Fourth, the NMDC matrix and UMDC matrix are compared. Ten groups of random neural signals 

are used for the simulation. Although all of the simulations are based on the UMDC matrix, it is 

still better to research the difference between the UMDC and NMDC matrices. Figure 3.9 shows 

clearly that with the BP reconstruction algorithm, the difference in the RERs of the two MDC 

matrices is not recognizable, which means that through the BP algorithm, using the UMDC 

matrix or the NMDC matrix has the same results. This finding occurs because the UMDC matrix 

contains only 0’s and 1’s, which is very useful for the hardware design. Therefore, the unit MDC 

matrix is the first choice for an electrical device design. 

 

 

Figure 3.7 Reconstruction comparison between core data clustering and agglomerative 

hierarchical clustering with different reconstruction algorithms: (a) block bayesian learning 

algorithm, (b) basis pursuit algorithm, (c) iterative reweighted least square algorithm, (d) 

matching pursuit algorithm, (e) iterative threshold-selective projection algorithm, (f) orthogonal 

matching pursuit algorithm, (g) least absolute shrinkage and selection operator algorithm 
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Figure 3.8 Comparison among the data with different length, N = 50 

 

Figure 3.9 Comparison between normalized MDC and unit MDC matrices 

Finally, the sampling rate does not influence the reconstruction error. A comparison of the 

sampling rate, compression rate and reconstruction error is shown in Figure 3.10. From the three 

parts of this figure, when the compression rate is determined, the reconstruction error does not 

change substantially when there is a change in the sampling rate. In Figures 3.10(a)-(c), when the 

sampling rate changes from 100 Hz to 25 kHz and the compression rate is determined, the 

reconstruction error does not change when the compression rate is small. Additionally, when the 

compression error increases, the RER fluctuates slightly, and the largest difference in the RER is 

approximately 0.02, 0.1 and 1, respectively. This finding indicates that under the same 

compression rate, the reconstruction error is not influenced by the sampling rate, and also that the 

MDC matrix can compress neural signals at a sampling rate of 100 Hz – 25 kHz. 
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Figure 3.10 Comparison of the reconstruction results among sampling rate, compression rate and 

reconstruction error under three reconstruction algorithms: (a) BSBL algorithm, (b) BP algorithm, 

(c) OMP algorithm 
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3.4.4 Other Comparisons 

In this sub-section, we provide a comparison between the MDC matrix and the other matrices. 

Then, the results between a 600-point real neural signal and its reconstructions will be shown in 

Figure 3.11. 

Firstly, a comparison between the MDC matrix and the sensing matrices designed by other 

researchers is provided in Table 3.3. The comparison shows that the compared sensing matrices 

can compress only a highly sparse signal and that the compression rate depends strongly on the 

number of zero points (usually D(K) is larger than ninety percent), which cannot compress a non-

sparse or low-sparse signal at a large compression rate. Nevertheless, the MDC matrix can 

compress a non-sparse or low-sparse neural signal with a very high compression rate; also, it has 

a very small reconstruction error and can reconstruct the original signal completely. Therefore, 

the MDC matrix has an advantage in the compression of non-sparse signals that contain identical 

points. 

Finally, a comparison between a 600-point neural signal and its reconstructions using the BP 

algorithm is given in Figure 3.11. Part (a) of this figure is a 600 non-sparse neural signal. Figures 

3.11(b)-(e) shows its reconstructions when CR is 90%, 96%, 98%, and 99%, and the RERs are 

0.03, 0.1, 0.2 and 0.4, respectively. From Figure 3.11, it can be noted that when the CR is less 

than 96%, the reconstructed signal keeps a large number of details that appear in the original 

signal. Additionally, even if the CR is approximately 99%, the spike of the original signal is still 

retained very well. Therefore, the MDC matrix can be regarded as one of the optimal choices for 

neural signal compression. 

3.5 Conclusions 

In this article, first, several concepts regarding the construction of the MDC sensing matrix in a 

signal are presented. In addition, the construction method of the MDC matrix is given. To prove 

the RIP of the UMDC matrix, two prerequisites must be satisfied: the first prerequisite is 

that  (k − M) N⁄ → 0 , and the second prerequisite is that the clustering must be more even 

and Imax(Set(C)) ≤  N M⁄ . When both prerequisites are met, we prove that given a p-dissimilar 

vector, the expectation of the measurement equals its ℓ2 norm. Then the concentration inequality 
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and the Self-Avoiding McDiarmid inequality are applied to prove the convergence of the 

expectation of its measurement. 

Table 3.3 Comparison between the MDC matrix and the other matrices 

Ref. Sensing 
matrix 

Data length 
(points) CR (%) D(K) Rec.aOr 

RER 

[8] DWTa 512 90 N/A 0.2 

[163] Chirp sensing 
codes 1681 98 0.90 Na 

[164] BCH 512 88 0.94 N 

[164] Ternary 2744 98 0.99 N 

[141] Elliptic curve 512 93 0.97 N 

[185] ACa 6561 98 0.99 N 

[165] FBa 6400 96 0.99 N 

This work MDC 5000 98 0 < 0.1 
a DWT is the digital wavelet transform-based sensing matrix. FB is the Fourier-based transform 

sensing matrix. AC is the addictive character sequences sensing matrix. Rec. is the reconstruction. 

N means that it cannot perfectly recover the original signal 

Moreover, five different random or deterministic sensing matrices under different reconstruction 

algorithms are given to prove the performance of the compression of the neural signals. To 

construct the MDC matrix, we use two clustering methods to construct the MDC matrix: the core 

data clustering and the agglomerative hierarchical clustering methods. Throughout the simulation, 

the MDC matrix can largely compress a neural signal, and with the BP or Lasso algorithm, the 

results of the reconstruction are satisfactory. Additionally, the agglomerative hierarchical 

clustering method is more complicated than the core data clustering method; thus, the core data 

clustering method is more suitable for hardware design. Second, for an MDC matrix, the longer 

the signal is, the larger the compression rate that can be employed under the same reconstruction 

error. In addition, it is proven that the UMDC matrix has reconstruction errors that are very 

similar to those of the NMDC matrix when using the BP reconstruction algorithm; thus, the 
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UMDC matrix is suitable for the hardware design of a neural recording system. Finally, the 

sampling rate has a slight influence on the reconstruction error. 

In the end, the MDC matrix is compared with some sensing matrices from the other researchers’ 

work. From the comparison, it can be observed that the MDC matrix has an advantage in cases 

that involve non-sparse or low-sparse neural signal compression. From the simulation results, we 

found that the RIP is too strict for the MDC matrix and that it still has some “loose” limitations 

for the MDC matrix; as a result, in future work, we will perform more research on these 

limitations. Moreover, the neural signal compression device based on the MDC matrix will be 

considered for implementation. 

 

Figure 3.11 Comparison of the reconstruction results of a 600-point non-sparse neural signal 

using the UMDC matrix under different CRs, and the reconstruction algorithm is the basis pursuit 

algorithm: (a) original signal, (b)-(e) are reconstruction results with different CR and (b) CR = 

90%, (c) CR = 96%, (d) CR = 98%, (e) CR = 99% 
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CHAPTER 4 ARTICLE 2 : AN EFFICIENT REAL-TIME NEURAL 

SPIKE DETECTION METHOD BASED ON BAYESIAN INFERENCE 

WITH AUTOMATIC TEMPLATES GENERATION 

For neural signal processing inside a neural recording interface, signal reduction is another 

important signal processing method. Spike detection and sorting is a common method to reduce the 

quantity of recorded data. For the spike detection, there are mainly three categories of methods: 

amplitude-based, energy-based and template matching-based spike detection. Among these three 

methods: template matching-based method has a better detection accuracy for low SNR signals and 

also can make the spike classification., but this method is usually complicated, which is not easy 

for hardware application, and also its detection accuracy still can be improved. Therefore, it is 

necessary to research a high-efficiency automatic template matching-based spike detection system. 

In this chapter, we put forward a novel Bayesian inference-based template matching (BBTM) spike 

detection and clustering method to detect and cluster spikes from noisy neural signals. Bayesian 

inference is applied to calculate the threshold to detect spikes, and the correlation and distance are 

used for spike classification. Additionally, when the templates are unknown, the BBTM method 

can automatically generate the templates for spike detection. Signals with different firing rates, 

signal-to-noise ratios and spike template generation methods are researched. Compared with some 

other popular spike detection methods, the BBTM method has the best detection accuracy. The 

false and true positive rates (FPR and TPR) based on the generated templates can reach 0.05 and 

0.92 respectively for spike detection, and the average FPR and TPR (AFPR and ATPR) can reach 

0.05 and 0.6 respectively for spike classification. Compared with found similar works, our 

proposed method displays significant advantages. Based on the analysis and discussion, BBTM 

method not only has a simple structure and low complexity, but also has high detection and 

classification accuracy. 
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ABSTRACT — This paper puts forward a novel Bayesian inference-based template matching 

(BBTM) spike detection and clustering method to detect and cluster spikes from noisy neural 

signals. Bayesian inference is applied to calculate the threshold to detect spikes, and the 

correlation and distance are used for spike classification. Additionally, when the templates are 

unknown, the BBTM method can automatically generate the templates for spike detection. 

Signals with different firing rates, signal-to-noise ratios and spike template generation methods 

are researched. Compared with some other popular spike detection methods, the BBTM method 

has the best detection accuracy. The false and true positive rates (FPR and TPR) based on the 

generated templates can reach 0.05 and 0.92 respectively for spike detection, and the average 

FPR and TPR (AFPR and ATPR) can reach 0.05 and 0.6 respectively for spike classification. 

Compared with found similar works, our proposed method displays significant advantages. Based 

on the analysis and discussion, BBTM method not only has a simple structure and low 

complexity, but also has high detection and classification accuracy. 

Keywords — Neural spike detection and classification, spike sorting, template matching, 

Bayesian inference, online adaptive neural signal processing 

4.1 Introduction 

Neural spikes are the electrical signals that neurons generate for communication with each other, 

which is important in the study of neuromuscular functions in the nervous systems, where the 

brain performs the most complex neural interactions [194] [195]. In many neuroscientific and 

clinical research and applications, spike detection is usually the first step in many processes and 
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analyses [196] [197]. Through a multichannel recording device, neural signals can be recorded 

from the given region, which helps researchers to investigate the activity of the given function in 

the nervous system [47] [198] [199]. To implement neural spike detection, some challenges need 

to be overcome. Primarily, the neural spikes should be extracted from the background noise. The 

background noise is composed of internal and external noise sources. The internal noise comes 

from the electrical noise that is produced in a living body and the external noise is produced by 

the recording devices [200]. The noise can contaminate the recorded neural signals, which causes 

difficulties in detecting the real spikes; therefore, correctly detecting neural spikes from the 

background noise is necessary. Furthermore, recording from a single unit using one electrode, or 

from multiple units through arrays of extracellular electrodes, the acquired neural signals are 

composite spikes, known as overlapping spikes, which are generated by neurons located near an 

electrode, but the spikes from one neuron are usually needed for research, so the separation and 

classification of the recorded spikes presents another challenge [201]. 

In order to improve the performance of neural signal processing, spike sorting is applied on 

recorded neural signals, which consists of spike detection and classification. Spike classification 

is used to identify the neurons delivering the detected spikes. It involves alignment, feature 

extraction, dimensionality reduction and spike clustering [88]. Among these steps, feature 

extraction and clustering are the two most important tasks. There are established feature 

extraction techniques, such as principal components analysis [171], discrete wavelet transform 

[172], matched subspace detector [173], etc. In [174] , the authors present the discrete derivatives 

(DD) method which is described as less complicated in terms of calculation while maintaining 

fairly high accuracy, and it is considered for use in the general circuit design. Spike clustering is 

the final step to sort out detected spikes from different neurons. The K-means method is a 

sophisticated method for the spike clustering, but it needs to manually set k in order to determine 

the number of required clusters [128] [175]. Some other unsupervised clustering algorithms are 

also discussed, such as superparamagnetic clustering [202], mean shift clustering [203], 

hierarchical adaptive means clustering [204].  

Furthermore, spike detection is the first and an important step in spike sorting, and its goal is to 

separate spikes from background noise. Successful spike detection is important for accurate spike 

classification. According to previous research done on neural spike detection, it can be mainly 

divided amongst three techniques: amplitude-based detection, energy-based detection and 
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template matching. The amplitude-based detection method is largely used and includes root mean 

square (RMS) method [205], median absolute deviation (MAD) method [92], and max-min 

spread (MMS) sorting method [102]. The aim of the amplitude-based detection technique is 

mainly to calculate the standard deviation of the signals [206]. The energy-based detection 

method uses the change of the energy of the signal to detect spikes. Standard smooth teager 

energy operator (S_STEO) [103], modified smooth teager energy operator (STEO) [90], and 

stationary wavelet transform (SWT) [207] are some methods corresponding to this category. 

Amplitude-based and energy-based methods have adequate detection accuracy, but when the 

signal-to-noise ratio (SNR) decreases, both methods produce poor detection results [208]. Also, 

both methods cannot separate overlapping spikes [209]. Therefore, some other methods are 

needed to meet the stringent requirements of spike detection. 

Template matching is a method that not only has good detection accuracy for low SNR signals, 

but also can separate the overlapping spikes. The template matching method applies the 

necessary spike templates to make the detections. A typical template matching method is based 

on a matching filter, such as the likelihood ratio test (LRT) detection, or the generalized 

likelihood ratio tests detection (GLRTs) [111], and it is very important to find a proper threshold 

to make the detection. Recently, several articles discuss how to use the Bayesian inference 

method to implement spike detection or classification [113] [114] [210]. Also, considering 

detection accuracy and the limits of implantable neural recording devices, an unsupervised online 

adaptive detection method is needed. When using template matching to detect spikes, the 

designed system should be able to generate the templates by itself, so several designers have tried 

to design an automatic template-generation system [112] [115] [211], but these systems need to 

be less complex and have higher detection accuracy before they see any practical use. 

The contribution of this article is that we put forward a new Bayesian inference-based automatic 

template matching system intended to implement spike detection. We first discuss the design of a 

new threshold-based method using the Bayesian inference-based template matching (BBTM) 

method to make the detection. The BBTM method has a simple structure, which has fast 

calculation and is appropriate for the hardware design. Also, compared with different kinds of 

spike detection methods, the BBTM method has good detection accuracy. Principally, our 

designed system is an unsupervised adaptive online system; the system can automatically 

generate templates by itself and perform spike detection and classification. 
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Finally, the mathematical formulations and illustrations of the BBTM method are described in 

section 4.2. We introduce the dataset of the simulation in section 4.3. The simulation results and 

the corresponding discussions are given in section 4.4. In section 4.5, a conclusion is drawn. 

4.2 Methods 

4.2.1 Models for Spike Generation 

In order to imitate the ways of real spike generation and detection, we construct and discuss the 

probabilistic models for spike series generation and multi-unit signal recording.  

First, we construct the spike series generation model. As mentioned above, acquired signals are 

not usually recorded from one single neuron, that is, recorded signals are mixed signals that come 

from different neurons. Therefore, the spike-series generation is based on a multi-unit recording. 

Supposing M neurons generate M signal waveforms, we define xt as a sampling point from one or 

some neuron(s) at sampling time t, that is xt = 1, 2,….., m, where m is one neuron from M 

neurons. If m equals 0, then it means that the current point is noise and not from any neurons. 

Also, a neuron does not generate another spike within a period of time after generating a spike, 

which is known as the refractory period, so the probability of the generation of a spike in the 

refractory period is 0 for each neuron. We define the refractory period as L sampling points, and 

the set of neurons inside the refractory period Cref  can be written as 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 =  {𝑚𝑚|  ∃𝑡𝑡′ ∈ ℕ,   1 ≤

𝑡𝑡′ ≤ 𝐿𝐿,   𝑥𝑥𝑡𝑡−𝑡𝑡′ = 𝑚𝑚}. If some neurons are not in the refractory period, and the probability of spike 

generation of these neurons, Pfire, is identical, then the set of neurons that generate spikes Cfire can 

be written as 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  {𝑚𝑚|  ∃𝑡𝑡′ ∈ ℕ,   1 ≤ 𝑡𝑡′ ≤ 𝐿𝐿,   𝑥𝑥𝑡𝑡−𝑡𝑡′ ≠ 𝑚𝑚}. Finally, if at the sampling time t, 

there is no spike and the probability of the non-spike is 1- MfirePfire , where Mfire is the number of 

neurons inside Cfire . In summary, the model of the spike generation can be expressed as (4.1). 

                                   1
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(4.1) 

Second, we construct the relationship between the recorded signal and the templates. Assume that 

the recorded signal at the sampling time t is ft and the template of each neuron is Tm. If the 

templates of all neurons have the same length, that is, L1, then the template from each neuron can 
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be written as 𝑇𝑇𝑚𝑚 =   (𝑇𝑇𝑚𝑚[0],   ⋯   , 𝑇𝑇𝑚𝑚[𝐿𝐿1]). Also, the background noise can be regarded as white 

Gaussian noise Nt with a standard deviation 𝜎𝜎. Finally, we can use all the templates to construct a 

spike series which only contains single and composite spikes (St). Based on the assumptions, we 

can construct the relation among the recorded signal, spikes and the noise, that is (4.2), 

tt tf S N= +                                  (4.2) 

Considering the noise is Gaussian white noise, the recording models can be written in (4.3) [113]. 

                                                                         
2

2
( )1( | ) exp( )

22
−

= −
σpσ

t t
t t

S
x

f
P f                               (4.3) 

where xt  is the spike template(s) that a spike point belong to at the sampling time t, and St is the 

correspondent spike-template points. Specifically speaking, at the sampling time t, a recorded 

point may contain only noise point or noise and spike points. If the recorded point ft contains 

spike point St (St can be from one unique template or can be composite spike point from several 

templates), the noise point can be acquired when the spike point is removed.  

4.2.2 Bayesian Inference Analysis 

After constructing the recording model, we need to further simplify this model and make it more 

practical for use. Considering a period of recorded data point f’, we want to know whether or not 

it is the point from a spike, and also we want to find which template the point comes from, that is, 

we want to find the maximal conditional probability ( ' | ')P x f , which can be written as (4.4),  

'
' argmax ( | ')opt

x
x P x' f=           (4.4) 

Using the Bayesian inference, we can obtain (4.5): 

'

( | ) ( )' argmax
( ' | ) ( )opt

x i

P f' x' P x'x
P f i P i

=
∑

                     (4.5) 

where 𝑃𝑃(𝑓𝑓′|𝑥𝑥′) is the data likelihood when knowing the data templates. According to [114], 

without considering all unnecessary computation; e.g. the denominator in (4.5), (4.5) can be 

simplified to a new function (4.6), 

_
( ) ( | ) ( )F f P f x P x=                                                       (4.6) 
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where P(x) is the prior probability of a spike based on a template (Pfire in (4.1)). Combining (4.3) 

with (4.6), we can obtain (4.7), 

2_

2
1 ( )( ) exp( ) ( )

22
f SF f P x−

= −
σpσ

            (4.7) 

Because 1 2π  is an unchanged parameter, it can be omitted; also, we can take the logarithm, so 

(4.7) can be further simplified to (4.8), 

_ 1 ( )*( )( ) ln( ( )) ln( ) ln( ( ))
2

f S f SF f F f P x− −
= =− σ − +

σ
             (4.8) 

According to [114], (4.8) can be further simplified to (4.9), 

1( ) ( * * ) ln( ( ))
2

F f f S S S P x= − +             (4.9) 

4.2.3 Spike Detection Based on Template Matching 

The discriminant for detection is built up. Suppose a spike, Sm, occurs during ( ' 1, ' )t t t L∈ + + and it 

contains a complete template Tm from neuron m (m = 1, 2…., n). So Sm can be written as (4.10), 

,

,
m

m
m

T no overlap signals
S

T overlap signals

= 
+ l

         (4.10) 

If there are no overlap spikes, Sm is the only template Tm; if this spike is an overlapping spike 

from the templates, λ represents the signals from the other whole or parts of the templates. So 

(4.9) can change to (4.11), 

1 1( ) ( ( ) ( ) ( )) ln( ( ))
2
1 1 1( ) ln( ( ))
2 2

1 1 1 1( ) ( ) ln( ( ))
2 2

= + l − + l + l +
σ

= + l − − l − l l +
σ

l
= − + l − l l − +

σσσ 

T T
m m m m

T T T T T
m m m m m

T
T T T T m

m m m m

F f f T T T P x

f T f T T T P x

T
f T T T f P x

       (4.11) 

where 𝜎𝜎 is the standard deviation of the signal, P(xm) is the prior probability of a spike (point) 

from template Tm 

In (4.11), (𝐹𝐹(𝑓𝑓) − �𝑓𝑓𝑇𝑇𝜆𝜆 + 𝑇𝑇𝑚𝑚
𝑇𝑇𝜆𝜆 + 1

2
𝜆𝜆𝑇𝑇𝜆𝜆� 1

𝜎𝜎
) is a bounded value; therefore, to simplify (4.11), we 

suppose that there exits an α, which satisfy (4.12), 
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1 1( ) ( ) ( ) ( )
2 2 2
α α

− × ≤ − λ + λ + λλ  ≤ ×
σσσ 

T T T T T
m m m m mT T F f f T T T              (4.12) 

Combining (4.11) with (4.12), (4.13) can be written, 

1( ) ( ) ln( ( )) ( )
2 2 2

T T T T
m m m m m m m mT T f T T T P x T Tα α

− × ≤ − + σ ≤ ×         (4.13) 

From (4.13), we extract (4.14) 

(1 )( ) ln( ( )) (1 )( ) ln( ( ))T T T
m m m m m m mT T P x f T T T P x−α −σ ≤ ≤ +α −σ         (4.14) 

where 𝛼𝛼 is the threshold control parameter (TCP). Assume ' ( ) T
mF f f T= , we find the discriminant 

to make the detection. Also, in the later section, we research and find the TCP value for the best 

detection performance. 

Moreover, we need to research the cases that include no spikes and only noise. When a period of 

the signal only contains noise, ( ) 0T
mE f T = ; therefore, if the signal contains a spike, then '( ) 0F f ≠ , 

that is, 0 1≤ α < . Now, we find a discriminant to detect the spike. When we do not know which 

template a spike comes from, we need to use this discriminant with each template to make the 

detection. 

4.2.4 Bayesian Inference-based Template Matching (BBTM) Method 

From (4.14), we acquire a threshold-based template matching system to detect the spikes. This 

method contains two categories: 1) detection with known templates, and 2) detection with 

unknown ones. The whole process of the two categories is shown in Figure 4.1. When the 

templates are known, two thresholds are calculated to detect a spike. The inner product of the 

template is calculated, then the threshold control parameter α is used to adjust the upper and 

lower bounds to form two thresholds. The inner product of the signal and the template are also 

calculated, and this product is compared with the thresholds. If the product is located between 

two thresholds, one spike is detected out. 

When the templates are not known, the generation of templates needs to be added. Template 

generation can be divided into four steps: spike detection, alignment, feature extraction and spike 

clustering. Spike detection can mainly be achieved by the amplitude-based and energy-based 

detection methods, which are discussed in a later section. All spikes are aligned by the maximum 
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slope, and the DD method is selected to perform the feature extraction. The last step is using the 

K-means method to cluster the spikes and form the templates. When using the K-means method, 

the number of templates needs to be given. The K value can be given directly, but the BBTM 

method also includes an Osort algorithm to generate the number of templates k. The Osort 

algorithm is given in [112] [116].When a spike T is detected, the Euclidean distances between T 

and the core points of all the clusters D is calculated. If this distance is larger than the threshold 

η1, then a new cluster is created, or else, this spike is clustered into the correspondent cluster, then 

we recalculate the distance of all the clusters Dc. If Dc is smaller than the threshold η2, then two 

clusters are merged. To simplify the calculation, we assume η1 = η2 , and they are based on the 

variances of the detected spikes [116]. After generating the templates, the spike detection is the 

same in the case of detection with known templates.  

 

Figure 4.1 Block diagram of proposed methods (a) BBTM method (b) Osort algorithm 
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Beyond detecting the spikes out, it needs to know the detected spikes belong to which template, 

that is, the spike classification is needed. We use two factors, correlation and distance, to perform 

the spike clustering. Two thresholds, ρ1 and ρ2, are first used to cluster the spikes. Based on the 

experimental data, ρ1 is chosen as 0.8 and ρ2 is chosen as 0.5. After the first step, we use another 

parameter 𝛿𝛿𝑖𝑖 to cluster the spikes, 𝛿𝛿𝑖𝑖 is shown in (4.15). 

* *(1 ') * * , (1, )i i i i ia c b d a c b d i Md = + − = + ∈          (4.15) 

where ci is the correlation coefficient between the detected spikes and the templates, di’ is the 

normalized minimum distance between the detected spikes and the templates, a and b are weight 

parameters, and we use two experimental coefficients, that is, a = b =1. If ci and di between a 

detected spike and one template are bigger than ρ1 and ρ2, then we consider that this spike comes 

from that template. If ci or di do not exceed the correspondent thresholds, then we classify this 

spike within the template that corresponds to the largest 𝛿𝛿𝑖𝑖. 

4.3 Test Dataset 

Algorithms, methods and data analysis procedures for the proposed design were developed 

within MATLAB environment. The corresponding software and programs are running on a 3.4 

GHz Intel I7 processor with 16 Gb of main memory.  

To better evaluate the detection performance, we used synthetic neural signals that come from 

real recorded neural signals. With the synthetic data, we can build signals with different FR, 

SNRs, etc. 

The neural signal dataset is acquired from the prefrontal cortex of an adult male rhesus macaque 

monkey (Cognitive Neurophysiology Laboratory, McGill University). The recording circuit 

contains 32 extracellular channels with a Utath 10×10 microelectrode array. The available dataset 

includes three different recordings over three trials. The duration of each trial is 300s. The data, 

firstly, were filtered with a third-order bandpass Butterworth analog filter with cutoff frequencies 

of 0.3 and 7 kHz. Then, the filtered data were amplified with a gain of 80 db amplifier, sampled 

at 30 kHz and digitized (10 bits per sample). 

To imitate similar detection conditions, all the datasets were refiltered with a fourth-order non-

causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz, resampled at 24 
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kHz and requantized with 10 bits per sample. Then, we extract the neural spikes. The spikes are 

selected from thirty-two groups of real neural signals that are described above. We first detected 

spikes, then we performed the feature extraction and clustering; at last, we selected three different 

groups (templates) of spikes to build composite signals. The length of a neural spike series is 2 

ms (48 samples per spike). 

After the construction of the spike series, we inserted them into the white Gaussian background 

noise. Signals from one neuron are first built, which is achieved by inserting one unique spike 

template into the background noise with a Poisson firing model using a refractory period of 2 ms, 

and the firing rate is set between 10 and 100 spikes per second. The prior probability P(x) 

depends on the firing rate and can be regarded as a constant [114]. In this article, we assume that 

all the neurons have the same firing rates. At the sampling rate of 24 kHz, P(x) are set as two 

constant values, 0.02 and 0.2, for the firing rates 10 and 100. To imitate composite signals from 

three neurons, three groups of the constructed neural signals built with three different templates 

are synthesized to be the final three-neuron composite neural signals. Also, we build four groups 

of signals with an SNR (see (4.16) ) from 3 to 6 [90] [96]. This definition of SNR is a good 

choice for the estimation of spike detection, because it prevents errors from the relative frequency 

of spikes of different amplitudes [96].  

Maximum magnitude of thespike waveformSNR =
Standard deviation of background noises

                       (4.16) 

To evaluate the detection performance, we use a receiver operation characteristic (ROC) curve. 

The true positive rate (TPR) is the ratio between the number of the spikes that are correctly 

detected out (True positive, TP) and the number of spikes that are not detected (False negative, 

FN), and false positive rate (FPR) is the ratio between the number of times that noise is detected 

as spikes (False positive, FP) and the number of times that noise is correctly detected as noise 

(True negative, TN). Both ratios are defined in (4.17) and (4.18). 

( )TPR TP TP FN= +                                                    (4.17) 

( )FPR FP FP TN= +                                                    (4.18) 

Also, to evaluate the classification accuracy of each neuron, we use the average true positive rate 

(ATPR) and the average false positive rate (AFPR). ATPR and AFPR for three neurons are 
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defined in (4.19) and (4.20). 

                1 2 3( ) 3ATPR TPR TPR TPR= + +                                              (4.19) 

      1 2 3( ) 3AFPR FPR FPR FPR= + +                                              (4.20) 

4.4 Results and Discussion 

In this section, we analyze the accuracy of the neural spike detection using known and unknown 

templates. The analysis is based on different firing rates. We select several related methods: RMS, 

MAD, MMS, S_STEO and STEO to make comparisons. For the case of unknown templates, we 

compare BBTM with other spike detection methods based on the signals with an SNR from 3 to 

6. Additionally, we discuss the classification accuracy of the detected spikes and the influence of 

the TCP. Finally, we give results about the spike detection and classification of real neural 

signals. 

4.4.1 Spike Detection with Known Templates 

We compare the detection accuracy between BBTM and other detection methods using the 

signals with an SNR from 3 to 6. The firing rate of the signal is 10 in Figure 4.2. In Figure 4.2(a), 

it can be seen that when the FPR equals 0.05, the BBTM method has the highest TPR around 

0.95, which is nearly two times larger than the amplitude-based methods. The second largest TPR 

is the amplitude-based method, and for the three amplitude-based methods, the detection 

accuracy is almost the same, which is around 0.45. The third largest TPR is among the energy-

based detection methods (S_STEO and STEO), which are around 0.2. Moreover, in Figures 

4.2(b)-(d), when the FPR equals 0.05, for the signals with SNR 4-6, the TPRs gradually increase, 

which are very close to 1 when using the BBTM method. For the three amplitude-based spike 

detection methods, the TPRs increase from 0.65 to 0.85 when the SNR increases from 4 to 6. For 

the energy-based method, we acquire similar results, and the TPRs increase with the rise of the 

SNR. Therefore, we can make two conclusions that for a signal with the firing rate of 10, the 

BBTM has the best detection accuracy under a small FPR, and also with the increase of the SNR, 

the detection accuracy of all the detection methods increases, but for the BBTM method, the 

difference in the detection accuracy is small. Finally, in our simulation for a three neuron 

composite signals, comparing with the dot product of the template vector (𝑇𝑇𝑚𝑚
𝑇𝑇𝑇𝑇𝑚𝑚), the second 

 



90 

item (𝜎𝜎𝜎𝜎𝜎𝜎(𝑃𝑃(𝑥𝑥)) ) of discriminant is usually very small. 

 

Figure 4.2 Comparison between BBTM and MAD, MMS, RMS, S_STEO and STEO methods 

with firing rate equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 

Moreover, all the methods are compared using the signal with a firing rate of 100. First, in Figure 

4.3, it can be seen that when FPR equals 0.05, for all the simulated methods, the detection 

accuracy is worse than the signal with firing rate 10. For the BBTM method, when the FPR and 

the SNR equals 0.05 and 3, the TPR is around 0.9, and the difference between the firing rate 100 

and 10 is small, which can be regarded as negligible. When the SNR increases, the TPR also 

increases. Furthermore, when the FPR equals 0.05 and SNR of signals equals 3-6, the TPRs of 

the other five methods are low for both firing rate 10 and 100, which is obviously smaller than 

that of BBTM method. Therefore, we can conclude that, when the firing rate becomes higher, the 

BBTM has the best detection accuracy under a small FPR, though the detection accuracy of all 

methods decreases, but the BBTM method still maintains high detection accuracy, which means 

the BBTM method is robust. 
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4.4.2 Spike Detection with Unknown Templates 

When the spike templates are not known, they need to be first generated. In this section, we 

mainly discuss how to use two kinds of spike detection methods, MMS and S_STEO methods, to 

perform the spike detection when the spike templates are not known, and we also use the signals 

with an SNR from 3 to 6, and firing rates of 10 and 100. For both MMS and S_STEO methods, 

there is a coefficient P to adjust the threshold to make the detection, which causes changing 

detection accuracy [96].  

 

Figure 4.3 Comparison between BBTM and MAD, MMS, RMS S_STEO and STEO methods 

with firing rate equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 

The spike detection performance using the MMS detection method is researched. When the firing 

rate equals 10, it can be found that choosing P as 4 and 5 has the biggest TPR for all the signals 

with an SNR from 3 to 6, which can be seen in Figure 4.4. Comparing with Figure 4.2, the TPR 

is slightly smaller than that of the known templates. When the FPR is 0.05, the TPR exceeds 0.9 

for the signal with an SNR from 3 to 6 in Figure 4.4. Therefore, when using the MMS method for 

detection, choosing 4 or 5 is the best option. Also, it can be gathered that for a signal with a large 
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SNR, the TPR is also large. When the firing rate and the FPR equal 100 and 0.05 respectively, in 

Figure 4.5, if P equals 4, then the TPR is the largest, which is around 0.5. For the signals with 

SNR 4 and 5, P’s equaling 3 and 4 have the biggest TPR, which is around 0.6. For the signal with 

SNR 6, a P equaling 4 has the largest TPR, which is around 0.7. Comparing with Figure 4.3, it 

can be found that when FPR equals 0.05, the BBTM method has better detection performance. 

Third, considering both cases, choosing P as 4 or 5 is the best choice for detection when using the 

MMS method. 

 

Figure 4.4  BBTM spike detection using MMS to generate spike templates with firing rate 

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 

For a better comparison, we use the energy-based method, STEO, to generate the spike template. 

In Figure 4.6 and Figure 4.7, it can be found that when firing rate and FPR equal 10 and 0.05 

respectively, the TPR is less than 0.2 for the signal with an SNR from 3 to 6, but when firing rate 

reaches 100, the TPR reaches around 0.9; especially, when P equals 4 and 5, the TPR can reach 

the highest detection accuracy, so 4 or 5 can be chosen to generate the spike templates. 

Considering the detection accuracy of MMS and STEO methods, it can be found that using 
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STEO has better detection accuracy when the firing rate is large. When the firing rate is 10, the 

detection accuracy largely decreases, and the difference in detection accuracy for the MMS 

method between firing rates 10 and 100 is smaller than that of the STEO method, so using the 

MMS method for detection is more robust. 

 

Figure 4.5 BBTM spike detection using MMS to generate spike templates when firing rate equals 

100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 

Moreover, using the BBTM method with the unknown templates yields better detection accuracy 

compared with the amplitude-based and energy-based methods. When comparing Figures 4.6 and  

4.7 with Figures 4.4 and 4.5, it can be found that using the MMS detection in the BBTM method 

has better detection accuracy than the one which only uses the MMS detection method. When the 

firing rate is 10 and P equals 5, the detection accuracy is larger than that of the RMS, MMS and 

MAD methods, especially for an SNR equaling 3 and 4. Also, when firing rate is 100, the 

detection accuracy is 3 or 4 times larger than that of the other amplitude-based methods, which 

shows the BBTM method has better detection accuracy. 
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4.4.3 Spike Clustering and Threshold Control Parameter 

The BBTM method involves spike clustering. The clustering method is described in section 4.3. 

Figure 4.8 shows the clustering accuracy based on the MMS and STEO methods, respectively. 

Also, in this figure, it can be found that the templates from the MMS method have better 

clustering accuracy than that of the STEO method. For the signal with SNR 3 and 4, when AFPR 

is 0.05 and P equals 4, the ATPR is more than 0.5, and for the signal with SNR 5 or 6, this rate is 

around 0.65. When increasing the AFPR to 0.1, the ATPR is close to or equals 1 for the signal 

with an SNR from 3 to 6. 

 

Figure 4.6 BBTM spike detection using STEO to generate spike templates with firing rate 

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 
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Figure 4.7 BBTM spike detection using STEO to generate spike templates with firing rate 

equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 

 

Figure 4.8 BBTM spike clustering with MMS-based and STEO-based spike generation methods, 

(a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 
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Moreover, the threshold control parameter is researched. From (4.14), TCP is a major parameter 

for detecting the spikes. In Figure 4.9, two parameters are used to research this parameter: 

FPR/TPR and TPR. It is ideal to find the lowest FPR/TPR with the highest TPR. Figures 4.9(a) 

and 4.9(b) are the results using known templates, and α can be chosen as 0.4 for the signals with 

the firing rates 10 and 100. Figures 4.9(c) - 4.9(f) show the results with unknown templates and 

using MMS methods to generate the templates. Figures 4.9(c), 4.9(e) and Figures 4.9(d), 4.9(f) 

are the signals with firing rates of 10 and 100, and the coefficient P equals to 4 and 5. From 

Figures 4.9(c) - 4.9(f), a P equaling 5 is more robust than the results of P equaling 4, because for 

all the signals with SNR 3-6, we can set a deterministic parameter, which is convenient for the 

circuit design. Comparing Figures 4.9(e) and 4.9(f), if we want to set TPR close to 1, then α can 

be chosen as 0.7, and for both firing rates and signals with an SNR from 3 to 6, the FPR/TPR are 

around 0.1 and 0.2. 

4.4.4 Other Important Results and Discussions 

The comparison between the original templates and generated templates is given. Figure 4.10 

shows original and generated templates with SNRs 3-6 for three neurons. It can be found that the 

generated templates have shapes similar to the original templates. 

The results of the spike detection and clustering for the signal with SNR 3 are given in Figure 

4.11 and Figure 4.12. These two figures show the spike detection and classification results. It can 

be seen that for the signal with an SNR equaling 3, all the spikes are almost detected out, and that 

the BBTM method has good classification accuracy.  

Finally, we compare our method with some other automatic template matching spike detection 

and clustering methods. Complexity and detection accuracy are compared among all these 

methods. Considering the complexity, it can be found that our proposed method has less 

calculation from Table 4.1, and the real computation time of the BBTM method is 1.2 ms. Also, 

comparing the TPRs and FPRs of the methods, when the SNR equals 3 and FPR equals around 

0.03 respectively, BBTM method has a relatively higher TPR; therefore, BBTM method has 

comparatively low complexity and high detection accuracy. 
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Figure 4.9 Research of the threshold control parameters, (a) firing rate is 10 with known 

templates, (b) firing rate is 100 with known templates, (c) firing rate is 10 with MMS template 

generation method when P equals 4, (d) firing rate is 100 with MMS template generation method 

when P equals 4, (e) firing rate is 10 with MMS template generation method when P equals 5, (f) 

firing rate is 100 with MMS template generation method when P equals 5 
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Figure 4.10 The results of the generation of the spike templates, (a)-(c) comparison between 

original and generated templates with signals SNR equaling 3, (d)-(f) comparison between 

original and generated templates with signals SNR equaling 6. The red color line is the generated 

spike templates and the green line is the original spike templates. 
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Figure 4.11 The detection results for the signal with SNR equaling 3, (a) original signals, (b) the 

spikes in the signal, (c) the detected spikes 

 

Figure 4.12 The comparison between the classified spikes and the original signals for the signal 

with the SNR equaling 3 for three neurons 
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Table 4.1 Comparison between the proposed BBTM method and other similar works 

Ref. Detection 
method Complexity Accuracy 

[112] 
Fast 

normalized 
correlator 

(N+1)*multiplication + 
(N+1)*addition + 1*division + 1* 

squared roota 

TPR : 0.84 (SNR =3) 
FPR : 0.01 (SNR =3) 

[115] M-sorter Not given TPR: ≈ 0.85 (SNR > 6) 
FPR : ≈ 0.2 (SNR > 6) 

[211] EC-PC spike 
detection Not given 

TPR: 0.2 (SNR = 3) 
FPR : 0.1 (SNR = 3) 
TPR: 0.95 (SNR = 6) 
FPR : 0.1 (SNR = 6) 

[170] Deconfusion 
method 

P* (Number of neuron)2 * length 
of the filtera 

TPR : 0.86 (SNR =3) 
FPR : 0.04 (SNR =3) 

This 
work BBTM N*multiplication +  

(N-1)*additiona 

TPR : 0.90 (SNR =3) 
FPR : 0.04 (SNR =3) 
TPR : 0.90 (SNR =6) 
FPR : 0.03 (SNR =6) 

a N is the number of the points, P is the coefficient 

4.5 Conclusions 

In this article, we described a Bayesian-based template matching spike detection system. This 

system not only can detect the spikes with known templates, but can also automatically generate 

spike templates to detect and cluster the spikes when the templates are unknown. We compared 

the proposed BBTM method with RMS, MAD, MMS, STEO, and S_STEO spike detection 

methods. It can be seen that the BBTM method has the best detection accuracy, and it can also 

automatically generate the spike templates using amplitude-based and energy-based methods. 

Based on the comparison, we chose the MMS method to generate the templates. Using the 

BBTM method, the TPR can reach up to 0.95 with an FPR of 0.05, which is a good detection 

accuracy. Additionally, the BBTM method provides spike classification. We used correlation and 

Euclidean distance to estimate the difference between the templates and the neural signals, and 

the thresholds are 0.8 and 0.5 respectively. Based on this method, the clustering accuracy can be 

around 1 when FPR equals 0.1 for three-neuron composite signals. The BBTM method has a 

short computational time, which is only around 1.2 ms for the spike detection and clustering of 
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each spike. Therefore, the BBTM method not only has a simple structure and low complexity, but 

also has accurate spike detection and classification. 
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CHAPTER 5 ARTICLE 3 : A DIGITAL MULTICHANNEL NEURAL 

SIGNAL PROCESSING SYSTEM USING COMPRESSED SENSING  

Chapters 3 and 4 discuss the signal compression and reduction systems respectively, and it is 

necessary to further research the implementation of a neural signal processing system involving 

signal compression and reduction for an implantable neural recording interface.   

In this chapter, we put forth a single and a multichannel system which includes signal 

compression and spike detection. The single-channel signal processing system is composed of 

spike detection and data compression blocks. The signal compression block applies the Minimum 

Euclidean or Manhattan Distance Cluster-based deterministic compressed sensing matrix that is 

proposed in chapter 3. The spike detection block uses amplitude-based spike detection, and 

threshold is calculated by root-mean-square method. For the construction of the MDC matrix, the 

distance σ is an important parameter, which can take a value of 4 or 5. In addition, based on the 

single-channel signal processing system, the sharing strategy is used to construct a multichannel 

system, and we analyze the influence of the number of the channels; scan rate on the 

reconstruction error, compression rate and power consumption; the influence of the signal-to-

noise ratio; and reconstruction performance on neural signals. Based on the results, a 256-channel 

digital signal processing system, implemented in a 130-nm CMOS process, is proposed. This 

system has power consumption per channel of 12.5 μW and silicon area per channel of 0.03 mm2, 

and provides data reduction of around 90% while enabling accurate reconstruction of the original 

signals. 
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ABSTRACT — This paper concerns a wireless multichannel neural recording system using a 

compressed sensing technique to compress the recorded data. We put forth a single and a 

multichannel system applying a Minimum Euclidean or Manhattan Distance Cluster-based (MDC) 

deterministic compressed sensing matrix. The single-channel signal processing system is 

composed of spike detection and data compression blocks. For the construction of the MDC 

matrix, the distance σ is an important parameter, which can take a value of 4 or 5. In addition, the 

sharing strategy is used to construct a multichannel system, and we analyze the influence of the 

number of the channels; scan rate on the reconstruction error, compression rate and power 

consumption; the influence of the signal-to-noise ratio; and reconstruction performance on neural 

signals. Based on the results, a 256-channel digital signal processing system, implemented in a 

130-nm CMOS process, is proposed. This system has power consumption per channel of 12.5 

μW and silicon area per channel of 0.03 mm2, and provides data reduction of around 90% while 

enabling accurate reconstruction of the original signals. 

Keywords — Multichannel neural recording, neural signal processing, data compression, 

compressed sensing, DSP, VLSI. 

5.1 Introduction 

Wireless monitoring of neural activity through implantable devices is an important technology 

that enables advanced diagnosis and treatment of brain disorders such as Parkinson’s disease, 

major depressive disorder and epilepsy [212] [213] [214]. Figure 5.1 shows a typical wireless 

neural recording system. However, designing such a wireless neural recording device faces 
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numerous challenges. These include integrating high-density recording electrodes [215] [216], 

avoiding the heating of tissues due to energy transfer to power the implants (the maximum power 

density should be 0.8 mW/mm2 for the exposed tissue area [178]), maximizing the device 

lifetime [57] [217], and minimizing the device size [218]. The conflict between huge data size 

and limited energy available for implantable recording devices is one of the principal challenges; 

specifically, integrating the necessary wireless transmission component in an implantable device 

exacerbates the problem of stringent energy constraints [134]. Therefore, data reduction or 

compression strategies should be employed to minimize the power consumption of the dedicated 

implantable devices. 

Several neural signal reduction or compression techniques are already in use. Signal reduction is 

widely used to implement data reduction under certain constraints; methods include neural spike 

detection [90] [93] [95] and data feature extraction [88] [122]. Both methods involve locating 

important information and eliminating the remaining parts of the signals. However, signal 

reduction methods distort or lose some necessary information. For instance, a spike-detection-

based neural recording device usually obtains data as the time series or the impulse, which cannot 

provide the details (shape or amplitude) of the original signal or spikes [148]; feature extraction 

methods are usually computationally complex, which conflicts with the design of a low-power 

device [105]. Therefore, it is necessary to find a new method that does not cause significant loss 

of features when recording neural signals. 

Data compression methods avoid these drawbacks by preserving maximum information during 

the compression phase, which allows recovery of the original signal. Recently introduced 

compressed sensing (CS) technique shows great potential in compressing neural signals [131]. 

CS has low-encoder complexity and universality for different kinds of signals. It has attracted 

considerable attention in the areas of computer science, applied mathematics and electrical 

engineering [130]. CS preserves the temporal and morphological information of the signal, which 

is much better than spike detection or feature extraction methods [138].   

5.1.1 Introduction of the CS Technique 

In this section, we briefly introduce basic concepts in CS theory. First, the sparsity of the signal is 

an important concept. A sparse signal can be compressed through a sensing matrix. Suppose a 

vector (or signal) 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑁𝑁 and some items of x are zero or close to zero, so this 
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vector can be called a sparse vector (or signal). If x is not sparse in the current basis, but it is 

sparse under some bases, then it still can be regarded as a sparse signal. For example, suppose a 

basis 𝛹𝛹𝑁𝑁×𝑇𝑇, in which 𝑥𝑥 = 𝛹𝛹𝑧𝑧 can be sparsely represented, so x is sparse under basis 𝛹𝛹. 

 

Figure 5.1 Simplified diagram of a typical wireless neural monitoring system 

If 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑁𝑁 is sparse, then it can be compressed through a sensing matrix 𝛷𝛷𝑁𝑁×𝑀𝑀 to 

𝑦𝑦 ∈   ℝ𝑀𝑀. When the sparsity of the signal is large, x can be largely compressed, that is, 𝑀𝑀 ≪ 𝑁𝑁, 

which can be described as in (5.1). 

                                                                    𝑦𝑦 =   𝛷𝛷𝑁𝑁×𝑀𝑀𝑥𝑥
            

(5.1) 

If x is sparse under basis 𝛹𝛹, then (5.1) can change to be (5.2). 

                                                                      𝑦𝑦 = 𝛷𝛷𝛷𝛷𝑧𝑧                                                               (5.2) 

Second, the original signal can be reconstructed by ℓ1 minimization. Given the original sparse 

signals and the measurement y, the best way to reconstruct the signal is through ℓ0 minimization 

[130]. But finding a solution that approximates ℓ0  minimization is NP (non-deterministic 

polynomial-time) hard; therefore, ℓ1 minimization is widely used in signal reconstruction for CS 

application [130]. The form of ℓ1  minimization is shown in (5.3). Based on the signal 

reconstruction via ℓ1 minimization, many signal reconstruction algorithms exist. ℓ1 minimization 

reconstruction algorithms, which directly use framework shown in (5.3), are powerful methods 

for computing sparse representations [136]; basis pursuit algorithms (BP) belong to this category 

[219]. Greedy algorithms are another category, which includes match pursuit algorithm (MP), 
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orthogonal matching pursuit algorithm (OMP) [181], and iterative hard or soft thresholding 

algorithm [182] [183]. Greedy algorithms are computationally efficient, but they are usually 

sensitive to noise especially when the original signals are not exactly sparse. By comparison, ℓ1 

minimization reconstruction algorithms are more robust to noise but at the price of a higher 

computational cost [220]. In addition, other kinds of algorithms can be used to reconstruct the 

original signals; for example, a Bayesian-based reconstruction method, called Block Sparse 

Bayesian Learning (BSBL) algorithm, uses the maximum likelihood to reconstruct the signal, and 

can reconstruct non-sparse signals [184].  

𝑥𝑥′ = argmin
𝑧𝑧

‖𝑧𝑧‖1                    subject  to               𝑧𝑧 ∈ 𝐵𝐵(𝑦𝑦)                     (5.3) 

where B(y) = {z : Az = y}. 

Third, the design of the sensing matrix is another important topic. The sensing matrix strongly 

influences the amount of reconstruction error and also transmission of compressed signals [221]. 

In CS theory, the sensing matrix 𝛷𝛷 can be a random matrix, such as a sub-Gaussian matrix [222], 

a random discrete Fourier transmission matrix [161], or a deterministic matrix, such as the 

Discrete Chirp matrix [163], the Reed Muller matrix [187], low-density parity-check (LDPC) 

matrix [155]. To correctly reconstruct x, the sensing matrix 𝛷𝛷𝑁𝑁×𝑀𝑀  should obey the Restricted 

Isometry Property, which is described as follows. 

Restricted Isometry Property An 𝑀𝑀  ×   𝑁𝑁 sensing matrix 𝛷𝛷 is said to satisfy Restricted Isometry 

Property (RIP) of k order, if it satisfies (5.4), 

                                      (1 −  𝜀𝜀𝑘𝑘)‖ 𝑋𝑋 ‖2
2  ≤  ‖ 𝛷𝛷𝑋𝑋 ‖2 

2 ≤  (1 + 𝜀𝜀𝑘𝑘)‖ 𝑋𝑋 ‖2
2                            (5.4) 

for all the k-sparse vectors X. The restricted isometry constant 𝜀𝜀𝑘𝑘 of matrix Φ lies between 0 and 

1. The process of CS compression is shown Figure 5.2. In this diagram, a sparse signal is firstly 

compressed by a sensing matrix. Then the signal is recovered through the ℓ1  norm-based 

reconstruction. After the reconstruction, if x is sparse under the basis 𝛹𝛹, it still needs to recover 

the signal in the current basis. 

Finally, the research in the field of compressed sensing is not just in the theoretical concept but 

also in the design of underlying circuitry. There are several articles about the application of the 

CS technique [8] [185] [223]. Also, some designers used the CS technique to design the neural 

recording circuit [11] [134] [138]. Figure 5.3 shows the principles of use of the CS technique in 

 



107 

neural recording circuit design. Figures 5.3(a) and 5.3(b) depict analog and digital single-channel 

designs that apply the CS technique. The designs have two common parts: a sensing matrix 

generator and a multiplication block. In Figure 5.3, the sensing matrix generator could be a 

random or deterministic matrix (vector) generator, but most current designs use a random sensing 

matrix to design the circuit. The multiplication block does the matrix multiplication of the 

sensing matrix and the signal vector. 

 

Figure 5.2  Framework of the compressed sensing technique 

5.1.2 Contribution of This Article 

In a recent article, we introduced a sensing matrix construction method called a minimum 

Euclidean or Manhattan distance cluster-based deterministic (MDC) sensing matrix [224]. We 

proved that the MDC matrix obeys the RIP under two prerequisites; also, we concluded that the 

MDC matrix can compress a signal with a relatively large compression rate (CR) and small 

reconstruction error rate (RER). We also previously proved that the MDC matrix can be used to 

compress signals whether the signal is sparse or not [224]. 

In this article, our contribution is using the MDC matrix to implement single and multi-channel 

digital systems. It can be seen from Figure 5.3 that the process of sensing matrix generation does 

not include any information from the signals that need to be compressed, but the MDC matrix 

can use the information of the signal. According to [224], we design a digital signal processing 

system which applies the MDC matrix; the principle of the circuit is shown in in Figure 5.3(c). 

The difference between our design and the ones in Figures 5.3(a) and 5.3(b) is that our design 
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uses the information of the signal itself to generate the sensing matrix. In later sections, we give 

details of construction of a digital circuit using the MDC matrix and discuss how to use the MDC 

matrix to design a multichannel signal processing system.   

5.1.3 Structure of the Article 

In the remaining parts of this paper, we briefly reiterate some concepts of the MDC sensing 

matrix for the construction of the sensing matrix in section 5.2. We introduce the simulation 

dataset in section 5.3. The circuit design and implementation are introduced in section 5.4. The 

simulation results and the discussion based on the design of the signal processing system are 

given in section 5.5. Finally, in section 5.6, we present our conclusions. 

5.2 The Construction of the MDC Matrix 

In this section, we briefly review concepts relating to the MDC matrix. The definitions of a p-

dissimilar vector and the construction method of an MDC matrix, which are also discussed in 

[224], are given as follows. 

Definition 1: (Equal Index Permutation) Suppose for a vector X �x1, x2,⋯, xn�, there exists a 

permutation A1 (a1, a2,⋯, at) of the index vector (1, 2,⋯, n), and a vector based on this index 

permutation XA1(xa1, xa2,⋯, xat). If every two items from XA1 are identical under some measures, 

specifically, xai = xaj, xai , xaj ∈ XA1, A1 is called an equal index permutation. If this measure is a 

Euclidean (or Manhattan) measure, A1 is called an equal index permutation under a Euclidean (or 

Manhattan) measure.  

Definition 2: Suppose for a vector X �x1, x2,⋯, xn�, there exists an index set containing M equal 

index permutations under a Euclidean (or Manhattan) measure, i.e.  AM (A1,A2,⋯,Am) , 

where Ai = (ai1, ai2,⋯,ait), a1t ∈  (1, 2,⋯, n). X can be clustered into M clusters according to the 

index AM, that is,  XAM(xA1, xA2,⋯, xAm). If  

1. If ∀𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, 𝑥𝑥𝑖𝑖   ∈   𝑥𝑥𝐴𝐴𝑖𝑖  and 𝑥𝑥𝑖𝑖   ∉   𝑥𝑥𝐴𝐴𝑗𝑗, 𝐴𝐴𝑖𝑖, 𝐴𝐴𝑗𝑗 ∈ 𝐴𝐴𝑀𝑀, then 𝐴𝐴𝑖𝑖  ≠  𝐴𝐴𝑗𝑗. 

2. If  ∀𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋, 𝑥𝑥𝑖𝑖   ∈   𝑥𝑥𝐴𝐴𝑖𝑖, 𝑥𝑥𝑗𝑗   ∈   𝑥𝑥𝐴𝐴𝑗𝑗 and 𝑥𝑥𝑖𝑖    ≠    𝑥𝑥𝑗𝑗, 𝐴𝐴𝑖𝑖, 𝐴𝐴𝑗𝑗 ∈ 𝐴𝐴𝑀𝑀, then 𝐴𝐴𝑖𝑖  ≠  𝐴𝐴𝑗𝑗. 
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So AM  is called an exclusive equal index permutation set, and vector 𝑋𝑋 is called an M-cluster 

exclusive vector under permutation set AM. This definition ensures that each point is clustered 

into a unique cluster, and also two identical points need to be clustered into the same cluster.  

Definition 3: (p-dissimilar vector) Suppose a vector X �x1, x2,⋯, xn� is an M-cluster exclusive 

vector under permutation set  AM (A1,A2,⋯,Am) , where  Ai = (ai1, ai2,⋯,ait) ,  a1t ∈  (1, 2,⋯, n) . 

According to definition 2, X can be clustered into M clusters based on the index AM , that is, 

 XAM(xA1, xA2,⋯, xAm). Letting p = M, vector 𝑋𝑋 can be called a p-dissimilar vector. The size of 

each cluster CxAi
 is I(CxA1

)  =  t, 𝑋𝑋𝐴𝐴1 ∈ 𝑋𝑋𝐴𝐴𝑀𝑀 . So CxAi
 is called a t-large cluster. If 𝑡𝑡 = 1, CxAi

 is 

called a unit-large cluster. If Ai,  ∀Ai ∈ AM, is an equal index permutation under a Euclidean (or 

Manhattan) measure, X is called a Euclidean (or Manhattan) measure p-dissimilar vector. 

Definition 4: (Equivalent Index Subset Vector) Suppose two vectors  X �x1, x2,⋯, xn�  and 

 Y �y1, y2,⋯, yn� have the same length L(X) = L(Y) = n. X is an M-cluster exclusive vector under 

permutation set AM (A1,A2,⋯,Am), where Ai = (ai1, ai2,⋯,ait), a1t ∈  (1, 2,⋯, n). For a determined 

subset Ai, Ai ∈ AM, if { yai
= r  |     ai ∈ Ai     }  and { yai

=   0  |     ai ∉ Ai     } , Y is called an equivalent index 

subset vector of the vector X.  

When  r = 1, Y is called the unit equivalent index subset vector; when  r = r/ℓ2(r), it is called the 

normalized equivalent index subset vector. For a p-dissimilar vector X, there are M equivalent 

index subset vectors. 

Definition 5: (Minimum Euclidean or Manhattan distance cluster-based deterministic sensing 

matrix (MDC matrix)) 

If a vector  𝑋𝑋 is a Euclidean (or Manhattan) measure p-dissimilar vector, we can construct a 

deterministic sensing matrix through the three following steps. 

(Step1).Divide X into M dissimilar clusters {C(xA1),  C( xA2), ⋯, C(xAm)} based on the exclusive 

equal index permutation set  XAM(xA1, xA2,⋯, xAm). 

(Step2).The equivalent subset index vector of these clusters  {C(xA1),  C( xA2), ⋯, C(xAm)}   is 

{𝜙𝜙1,  𝜙𝜙2, ⋯ 𝜙𝜙m}, m ∈ ℕ.  

(Step3).Compose the matrix with {𝜙𝜙1,  𝜙𝜙2, ⋯ 𝜙𝜙m}, m ∈ ℕ, which is Φ = [𝜙𝜙1  ;    𝜙𝜙2  ;   ⋯     ;    𝜙𝜙m].  

 



110 

Thus,  Φ is called a minimum Euclidean or Manhattan distance cluster-based deterministic 

sensing (MDC) matrix. If all of the 𝜙𝜙i  , i ∈  [1, m] in Φ are the normalized equivalent index 

subset vectors, Φ is called a normalized MDC (NMDC) matrix . If  all 𝜙𝜙i , i ∈  [1, m] in Φ are 

the unit equivalent index subset vectors, Φ is called a unit MDC (UMDC) matrix.  

 

Figure 5.3 Diagram of the circuit design using the CS technique: (a) analog design, (b) digital 

design, (c) proposed digital circuit design using the MDC matrix 

Given a vector X (x1, x1, x2,  x3 , x1 , x2 ), (1,2,5) and (3, 6) are two equal index permutations. 

According to definition 2, this vector can be clustered into three clusters {𝑥𝑥1, 𝑥𝑥1, 𝑥𝑥1},  {𝑥𝑥2, 𝑥𝑥2}, {𝑥𝑥3} 

and its correspondent AM  is {(1,2,5),  (3,6), (4)} . X is called a 3-dissimilar vector. The 

normalized equivalent index subset vectors of the clusters  {𝑥𝑥1, 𝑥𝑥1, 𝑥𝑥1},   {𝑥𝑥2, 𝑥𝑥2}, {𝑥𝑥3}  are 

{(1/√3, 1/√3, 0, 0, 1/√3, 0),  (0, 0,1/√2, 0, 0,1/√2), (0, 0, 0, 1, 0, 0)}, and the NMDC matrix, Φ, 

for the vector X is shown in (5.5). 

                                   𝛷𝛷 =   �
1 √3⁄ 1 √3⁄ 0

0 0 1 √2⁄
0 0 0

     
0 1 √3⁄ 0
0 0 1 √2⁄
1 0 0

�                                 (5.5) 
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5.3 Materials and Methods 

All the algorithms, methods and data analysis procedures were implemented in MATLAB 

(Mathworks, Natick, MA). The circuit was described in Modelsim (Mentor Graphics, Wilsonville, 

OR) and the post-layout of the circuit was designed in Cadence Encounter (Cadence Design 

Systems, San Jose, CA). The power consumption and silicon area of the circuit were estimated by 

Synopsys (Synopsys, Mountain View, CA). We used three datasets to make the simulation. 

The first dataset was acquired from the prefrontal cortex of an adult male rhesus macaque 

monkey (Cognitive Neurophysiology Laboratory, McGill University). The recording circuit 

contained 32 extracellular channels with a Utath 10 × 10 microelectrode array. The data were 

comprised of three different recordings over three trials. The duration of each trial was 300 s. The 

data were filtered initially with a third-order bandpass Butterworth analog filter with cutoff 

frequencies of 0.3 and 7 kHz. Then, the filtered data were amplified with an 80 db gain amplifier, 

sampled at 30 kHz and digitized at 10 bits per sample. 

The second dataset was obtained from the visual cortex of a rat (Center for Studies in Behavioral 

Neurobiology, Concordia University). The researchers used a stainless-steel-tipped 

microelectrode with a shank diameter of 75 μm to record the data. The duration of the recording 

was 60 s. The data were filtered with a fourth-order bandpass Butterworth analog filter and the 

cutoff frequencies were between 150 Hz and 10 kHz. After filtering, the data were amplified with 

a gain of 100 db, sampled at 32 kHz and digitized at 10 bits per sample.  

The third dataset came from a human medial temporal lobe (NeuroEngineering Lab, University 

of Leicester [190]). The dataset was acquired by using intracranial electrodes. The duration of the 

signal was ten seconds long. The data were sampled at 32 kHz, filtered between 300 Hz and 3 

kHz and digitized at 12 bits per sample.  

To imitate similar recording conditions, the datasets were refiltered with a fourth-order non-

causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz and resampled at 25 

kHz. Then, we randomly selected five groups of test data from the three datasets and ensured that 

data from every set were used. The circuit was designed with VHDL in Modelsim. Then we 

employed two different methods to acquire the results: the first involved designing the post-

synthesis circuit (Synopsys) and post-layout circuit (Cadence Encounter), the other involved a 

Xilinx Virtex-6 FPGA ML605 evaluation board. The area of our designed digital circuit was 
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estimated by Synopsys Design Vision. The power consumption was estimated by Synopsys 

Design Vision and Prime Time. The library for simulation was IBM CMOS130 nm at room 

temperature 25 ̊C and the voltage was 1.2 V. 

We used two methods to measure power consumption accurately. We first used Design Vision to 

estimate the power consumption, then generated 16 groups of the test benches to imitate different 

input data under different scan rates. All the input data were used to generate value change dump 

(VCD) files which contain the signal activities in one second. Then the VCD files and the circuit 

description were input to Prime Time to generate the power consumption. Finally, we compared 

and synthesized the power consumption estimates generated by two methods to produce a reliable 

estimate of power consumption under different scan rates, and analyzed the relationship between 

the scan rate and the power consumption. 

The reconstruction algorithms used in this article were BP and Least Absolute Shrinkage and 

Selection Operator (Lasso) algorithms. BP , using default values, is from [192]. Lasso, using 

default values, is from [193]. 

The definitions of RER and CR are given in (5.6) and (5.7),  

RER   =   ‖𝛻𝛻(𝛷𝛷𝛷𝛷) − 𝑥𝑥‖2 ‖𝑥𝑥‖2⁄                                         (5.6) 

CR   =   1 −  (𝑁𝑁 𝑀𝑀⁄ )                                                  (5.7) 

where 𝛷𝛷𝑀𝑀 × 𝑁𝑁 is the sensing matrix with M rows and N columns, ∇(𝛷𝛷𝑥𝑥) is the reconstruction of 

the original signal and x is the signal. 

To study the influence of the signal-to-noise ratio (SNR), we built signals with different SNRs. 

We first extracted the neural spikes. The spikes were selected from 32 groups of real neural 

signals from our first dataset. We detected spikes, then performed feature extraction and 

clustering. At last, we selected five different groups (templates) of spikes to build composite 

signals. The length of a neural spike series is 2 ms (48 samples per spike). After the construction 

of the spike series, we inserted them into Gaussian background noise. Signals were achieved by 

inserting one unique or composite spike template(s) into the background noise with a Poisson 

firing model using a refractory period of 2 ms, and the firing rate was set at 100 spikes per second. 

Finally, we built four groups of signals with an SNR (see (5.8)) from 3 to 6; every group 

contained 32 signals to imitate signals from 32 different channels. This definition of SNR is a 

 



113 

good choice for the estimation of spike detection, because it prevents errors from the relative 

frequency of spikes of different amplitudes [90] [96]. 

                                            Maximum magnitude of thespike waveformSNR =
Standard deviation of background noises

                                            (5.8) 

5.4 Circuit Design and Implementation 

In this section, we describe the design of a CS-based digital signal processing circuit. A top-level 

view of the design is initially introduced, then the design of a spike detection block is reported, 

followed by the design of the data compression block using the MDC matrix, and the design of a 

multichannel system is detailed. 

5.4.1 Single-channel Digital Data Compression System 

The diagram of a neural recording circuit is shown in Figure 5.4. The system can be divided into 

three parts: front-end (mainly amplifier and filter), signal processing module and transmitter 

block. Our design is focused on the signal processing module, which is composed of the spike 

detection and data compression blocks. 

5.4.2 Spike Detection Block 

The spike detection block, shown in Figure 5.5, is used in deterministic single-channel processing. 

Both detection and compression blocks work in the single-channel processing, but for the 

multichannel processing, only the data compression block works.  

For the spike detection block, we chose the root mean square (RMS) method to calculate the 

standard deviation (SD). We compared the RMS method with the median absolute deviation 

(MAD) method [98], maximum and minimum spread (MMS) sorting method [96], and smooth 

Teager energy operator (STEO) method [90] in terms of power consumption, estimation accuracy 

and complexity. We found that RMS has the lowest power consumption, the lowest complexity 

and an acceptable detection performance. Additionally, the system includes the data compression 

block, and spikes can also be detected through the reconstructed signal. Therefore, we chose the 

RMS estimator as the detection block. The spike detection block contains three major parts: 

1) The standard deviation calculation. The calculation is based on (5.9). 
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               1
1 ( )N

nSD x x
N

= −∑                                                         (5.9) 

where nx  is the data point and x  is the expected value of the data. The circuit design 

contains an adder, a multiplier, a square root calculator and a shifter. 

2) After calculating SD, the threshold is acquired. The calculation of the threshold is based on 

(5.10). 

                                                                    T P SD= ×                                                                (5.10) 

where P is the threshold coefficient, which can be 2 ~ 6. Based on the experimental 

comparison, we chose 3 for the design (the user can choose P for their specific usage). 

3) When the threshold is computed, the detection is carried out by the spike detector. In our 

system, we use a two-bit detection code to express the results shown in Table 5.1. With the 

detection code, the spike can be found through a spike-analysis algorithm in a computer. 

 

 

Figure 5.4 Diagram of the design of digital single-channel circuit 

5.4.3 Data Compression Block 

The data compression block can be divided into two major parts: the MDC matrix generator and 

the matrix multiplication block shown in Figure 5.6. 

The MDC matrix generator is an important part of the proposed system. In [224], we described 

an algorithm, called the core data clustering algorithm, used to construct the MDC matrix. The 
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core data clustering algorithm is shown in Figure 5.6(a) and the data compression block is based 

on this algorithm. This algorithm has two important parameters: the core data (in Figure 5.6(a), 

the core data is the first data added into a new cluster) and the distance σ. Figure 5.6(b) and 5.6(c) 

show the behavior diagram and the implemented structure of this algorithm. The mathematical 

expression of σ is in Figure 5.6(a), which is ‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖ ≤ 𝜎𝜎, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛). 𝜎𝜎 determines 

the number of the clusters and the sensing matrix for a specific signal. The whole block is 

composed of the comparator, the cluster indicator and the decoder. When new data are input, the 

enabled comparators make the comparison between the input x and the core data. If x is the first 

piece of data, then it is regarded as core data and put into the first cluster; if the input x is inside 

the range of the core data under the indicated distance, then it is clustered into the corresponding 

clusters. Supposing a unit of core data ci of the cluster Ci and distance l, if 𝑥𝑥 ∈ (𝑐𝑐𝑖𝑖 − l, 𝑐𝑐𝑖𝑖 + l), x is 

clustered into the cluster Ci and the output of the cluster indicator is 1, or else, the output is 0. If x 

can be clustered into several clusters, for example, (Ci , Ci+1 , Ci+2 , ……, Cj ), then x is clustered 

into the first cluster Ci . If x cannot be clustered into the existing clusters, then a new cluster is 

created with x as the core data. 

 

Figure 5.5 Diagram of the spike detection block 

 

Table 5.1 Detection code of the spike detector 

Code 00 01 10 11 

Meaning normal points >  positive 
threshold 

<  negative 
threshold no detection 
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Figure 5.6 Design of the data compression block: (a) core data clustering algorithm [224], (b) 

behavior diagram of the core data clustering algorithm, (c) diagram of the digital circuit of the 

core data clustering algorithm 

After the construction of the MDC matrix, a multiplication block is needed to compress the data. 

This block, shown in Figure 5.6(c), implements the multiplication between a signal vector and 

the MDC matrix. After compression by an N  M sensing matrix, an N-length vector becomes an 
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M-length vector, which completes the compression. We proved in [224] that the UMDC matrix 

can be efficiently used to compress signals. Because the UMDC matrix consists of zeros and ones, 

it can greatly reduce the complexity of the system (i.e. the power consumption and the area of the 

designed circuit). The multiplication block is mostly composed of adders to fulfill the matrix 

multiplication.  

5.4.4 Multichannel Signal Processing 

Based on the discussion of the single-channel processing method, in this sub-section, we 

introduce our method of construction of a multichannel system. The multichannel system has two 

modes: the first is for signal processing inside a single block (scan mode I), and the second is for 

processing between different blocks (scan mode II). In Figure 5.7, we give an example of a 256-

channel system. These 256 channels are divided into 16 main blocks and each block comprises 

16 channels. Scan mode I mainly records signals from a small volume of neurons, that is, one 

block. In this mode, a block is first chosen from block A to P. Then, a scan rate is selected to read 

the input data in this selected block. The second mode is scan mode II. This mode is used to 

record signals from different blocks, and it is mainly for the recording of signals from a relatively 

larger area or longer distance. In this mode, it needs to select one channel from each 16 blocks 

(16 channels from block A to P), for example, choosing A11, B21, …, P23. Then the user chooses 

one scan rate to simultaneously record signals from these channels. Finally, the channels inside a 

block and the number of the blocks must be chosen. The number of channels inside a block 

should be two to the nth power and each block has the same number of channels. The number of 

blocks should be two to the mth power. The number of the channels can be calculated by (5.11). 

                            Total  channels   =     2𝑛𝑛   ×     2𝑚𝑚,   𝑛𝑛  ,    𝑚𝑚 = 1  ,   2 ⋯ ⋯ 𝑇𝑇 ,    𝑇𝑇 ∈ ℕ                        (5.11) 

where n is the inside-block channel control parameter and m is the block control parameter;  2𝑛𝑛 is 

the number of the channels in one block and   2𝑚𝑚 is the number of the blocks.  

Because we use the sharing strategy to construct a 256-channel system, it is important that both 

modes use the scan. The scan refers to the quantity of data used at the input of the system during 

a period of time. Scan has two aspects: scan direction and scan rate. The scan direction is 

periodically from left to right, and also from top to bottom (e.g. in Figure 5.7, A11 → A14 → 

A24 → A21 → A31→ A34 → A44 → A41 → A11 for scan mode I and A → D → H → E → I 
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→ L → P → M → A for scan mode II). This scan direction is used for both scan modes. Scan 

rate is related to the sampling rate of one channel and can be chosen by (5.12). 

SR =   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    ×    2𝑟𝑟 ,    𝑟𝑟 ≤ 𝑛𝑛   𝑜𝑜𝑜𝑜  𝑚𝑚                                (5.12) 

where r is the scan rate control parameter, n is the inside-block channel control parameter and m 

is the block control parameter. In scan mode I, r should be small or equal to n. In scan mode II, r 

needs to be smaller than m. Under both scan modes, the designer can choose different r to adjust 

the scan rate. Following from the scan modes, the channel-to-scan (ChS) parameter, shown in 

(5.13)  needs to be introduced. 

                                                      ChS =     2
𝑡𝑡  ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

SR
,    𝑡𝑡 =  𝑛𝑛, 𝑚𝑚                                  (5.13) 

where SR is the scan rate, n is the inside-block channel control parameter and m is the block 

control parameter. In (5.13), n and m are for scan mode I and II respectively. These parameters 

can be used in the following sections to estimate the sampling rate and the number of channels or 

blocks. 

 

 

Figure 5.7  Diagram of the multichannel system 
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5.5 Results and Discussion 

In this section, main parameters related to both single-channel and multichannel designs are 

highlighted. Then, the results of multichannel simulation and the specific post-layout circuit are 

discussed. Finally, the achieved design is compared to similar work in the literature. 

5.5.1 Single-channel Data Compression System 

In the core data clustering algorithm, the distance between the current data point and the core data 

point is an important parameter. This parameter determines the compression rate and 

reconstruction error. In Figure 5.8, the relationship between the distance and the compression rate, 

and the relationship between the distance and the reconstruction error are presented. Figure 5.8 (a) 

shows the relation between the reconstruction error and the distance under two introduced 

reconstruction algorithms above: BP and Lasso algorithms. In [224], we showed that the BP and 

Lasso algorithms are the two best algorithms to use when constructing the original signal 

compressed by the MDC matrix, and now we compare both algorithms with varying distances. 

Figure 5.8 (a) demonstrates that with increasing distance, the reconstruction errors under the two 

reconstruction algorithms show a nearly linear increase.  

Lasso and BP algorithms have similar reconstruction performance at different distances. The 

reconstruction error under the BP algorithm is slightly smaller than that under the Lasso 

algorithm when distance is greater than 10, but the difference is not obvious when distance is less 

than 10. Effectively, both methods can be used to reconstruct original signals. In addition, Figure 

5.8(a) shows that when distance equals 4 or 5, the RER is around 0.2, so if a minimal 

reconstruction error is necessary, then the distance should be smaller than 5.  

The relationship between the compression rate and the distance requires explanation. Figure 5.8 

(b) shows two cases: the compressed data alone and the compressed data with the sensing matrix. 

If we only consider the compressed data, the compression rate of the signal can be up to 99%, but 

when using CS, the unit usually needs the sensing matrix to reconstruct the original signals, that 

is, the same MDC is needed to recover the signal, so the sensing matrix has to be transmitted. In 

our implementation, we need to transmit the sensing matrix out. If we take into account the 

transmission of the sensing matrix, the compression rate can be up to around 60%. Considering 

data with a resolution of 10 bits and a distance exceeding 6, in Figure 5.8 (b), the compression 
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rates are close to 90% and 60% when considering only compressed data and compressed data 

with the sensing matrix, respectively. After evaluating the compression rate and reconstruction 

error, we can conclude that the distance should be chosen as 4 or 5. Under either value, the 

compression rate can exceed 50% and the reconstruction error is only around 0.2 using 10-bit 

data points. In our design, we chose 4 as the distance for construction of the MDC matrix.  

 

 

Figure 5.8 Relation between the distance and reconstruction error, compression rate: (a) relation 

between the distance and the reconstruction error using BP and Lasso algorithms, (b) relation 

between the distance and the compression rate 

5.5.2 Multichannel Signal Compression System 

It is important to note that the compression block can be shared by several channels, so some 

parameters for the design of the multichannel system need to be discussed. As explained above, 

 



121 

the multichannel system is mainly controlled by SR and ChS. We are mainly concerned with the 

relation between these two parameters and CR, RER and power consumption. In fact, the 

reconstruction error does not fluctuate much with the compression rate under different ChS. 

Moreover, when ChS increases, the reconstruction rate also increases. In Figure 5.9, when ChS 

equals 1, which means that the scan rate is equal to the maximum frequency 

(2𝑛𝑛    ×   sampling  rate or 2𝑚𝑚    ×   sampling  rate) and all the data can be recorded and input into the 

signal processing system, the RER remains at the minimum value (less than 0.1). When ChS 

equals 2 and the scan rate is half of the maximum scan rate, the RER reaches around 35%. When 

the scan rate reaches one-fourth and one-eighth of the maximum scan rate, the RERs are around 

70% and 90% respectively. When increasing the scan rate to 1/16 and 1/32 of the maximum SR, 

the RERs exceed 1, which is not appropriate for use. Therefore, a ChS equals to 1,2,4 or 8 can be 

considered for designing the multichannel system. We used BP and Lasso algorithms to recover 

the original signals. We found that the algorithms give similar reconstruction performance: in 

Figure 5.9(a)-(b), the RERs are very similar under the same CRs. Therefore, reconstruction error 

increases with the increase of ChS, and BP and Lasso algorithms can both be applied to recover 

the multichannel signals. 

Moreover, the influence of the SNR is researched. The relationship between the ChS, SNR and 

RER is shown in Figure 5.10. Figure 5.9 shows the RERs are steady when the compression rates 

are between 0.05 and 0.9; therefore, we studied the SNR under CR of 0.5 and 0.9. Figure 5.10(a) 

demonstrates that when the ChS increases, the RER also increases. Under the same ChS, when 

SNR equals 3, the reconstructed error are larger than that of SNR equaling 4 to 6, but the RER 

differs little when SNR equals 4 to 6. The same results appear in Figure 5.10(b), in which CR 

equals 0.9. Comparing Figure 5.10(a) and 5.10(b), it shows that the results are almost the same. 

The simulation results prove that SNR has influence on the reconstruction error, and using high 

SNR has better reconstruction performance for each value of ChS, but when the SNR increases to 

4 or higher, the reconstruction error does not decrease. In addition, SNR has no obvious influence 

on the CR. 

Power consumption is a major concern in the design of the multichannel system. Figure 5.11 

shows the relationship between the scan rate and power consumption. It can be found that the 

power consumption and the scan rate have an approximately linear relationship. In our design, 

suppose the sampling frequency is 25 kHz for each channel, and that we want to design a 256-
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channel system, if we want to acquire the best reconstruction performance, that is, the minimum 

RER, we need to use a scan rate of 400 kHz for both modes. The power consumption is around 

800 μW in this case, which may be too large for an implantable neural recording system, but it 

turns out that using the maximum scan rate is not necessary. When we reduce the scan rate to 200 

kHz, 100 kHz and 50 kHz, the power consumption correspondingly reduces to be around 400 μW, 

200 μW and 100 μW. Meanwhile, as discussed above, the RER also increases when the scan rate 

is reduced. Therefore, the designer needs to make a compromise between the power consumption 

and the reconstruction performance. 

 

 

Figure 5.9 Relationship between the compression rate and the reconstruction error for the 

multichannel using: (a) BP algorithm, (b) Lasso algorithm 
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Figure 5.10 Relation among channel-to-scan, SNR and reconstruction error rate for the 

multichannel processing using: (a) compression rate = 0.5, (b) compression rate = 0.9 

Figure 5.11 Relation between the scan rate and the power consumption 



124 

Finally, we discuss how to choose the number of the blocks and corresponding channels per 

block. The configuration is based on the demands of the research. Suppose the distances between 

two electrodes d1 and between two blocks d2 (d1 ≠ d2) are determined; if users want to record the 

signals from adjacent channels, they should choose more channels per block; if users want more 

information from the channels within a relatively large distance, they should choose more blocks. 

Moreover, the design of the channels also depends on the size of the device. In our design, we 

think both aspects are important, so we designed a 24   ×   24 array to process the signals. 

5.5.3 The Reconstruction under Multichannel Operation 

The reconstruction of the original signals under different ChS and an example of a 16-channel (or 

16 blocks) reconstruction is described. First of all, the reconstruction of the signals under 

different ChS is discussed. Figures 5.12(a)-(1), (b)-(1), (c)-(1), (d)-(1) show the original signals 

and Figures 5.12(a)-(2), (b)-(2), (c)-(2), (d)-(2) are their corresponding reconstructions. The 

comparison shows that when the ChS equals 1, the reconstructed signal has the best resolution, 

and it is nearly identical to the original signal. With increasing ChS, the resolution of the 

reconstructed signal is reduced. When ChS equals 4, the RER is around 0.7, but the reconstructed 

signal still has good resolution and keeps some details. When ChS equals 8, the reconstructed 

signal begins to lose details but keeps the morphology of the original signal. Therefore, when the 

design needs more details from a signal, choosing a small ChS (1,2,4) is a good option; when the 

details of the signal are not important and the shape of the signal is sufficient, using a larger ChS 

(8) is better.  
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Figure 5.12 The comparison between original signals and their reconstructed signals under 

different ChS: (a) ChS = 1, (b) ChS = 2, (c) ChS = 4, (d) ChS = 8 
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The ChS can be increased in two ways: reducing the scan rate control parameter, which means 

acquiring fewer samples, or keeping the maximum scan rate control parameter and reducing the 

sampling rate. A lower sampling rate reduces the power consumption of the analog-to-digital 

converter of the system, which is appropriate for a system that does not need to record many 

details of signals. If we want to design a frequency-changeable system, it is better to use a higher 

sampling frequency. 
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Figure 5.13 An example of the original signals and their reconstructed signals from 16 channels: 

(a) channels 1-4, (b) channels 5-8, (c) channels 9-12,  (d) channels 13-16 

A comparison of the original signals and their reconstructed signals for 16 blocks is given (Figure 

5.13). In our design, we chose a ChS equaling 4 and a sampling rate of every channel of 25 kHz 

to process the 256-channel system; all the reconstructed signals and their original signals are 

illustrated. Figures 5.9 and 5.13 show that the reconstructed signals are very similar to the 

original signals from these 16 channels, even where the compression rate is around 90%. 



128 

5.5.4 Other Important Results 

Figure 5.14(a) shows the output format of the system. There are two output ports: one is for the 

output of the sensing matrix and detection, and the other is for the compressed data. The first port 

outputs the indicator for the start of the sensing matrix (SSM, one-bit), the indicator for the start 

of the detection (ID, 1-bit), the matrix results (MR, 5-bit) and the detection results (DR, 2-bit). 

There are two formats for this output. The first format output (FO) is 9 bits (including the start bit 

and stop bit), when there are no detection results (ID = 0). When detection begins (ID = 1), the 

output is 11 bits, which is transmitted as the second format (SO). The second port outputs an 

indication of the start of the compressed signal (SCS) and the compressed data (CD). The format 

of the output from this port is called compressed data output format (CO). After every 1000 

sampled points, compressed signals are sent out. Each compressed data unit has 23 bits. When 

the first port outputs the data, the second port stops sending data out, and vice versa. The timing 

diagrams of the three formats are shown in  Figures 5.14(b) and (c). 

Figure 5.14 The output of the digital circuit: (a) format of the outputs, (b) timing diagram of the 

FO and SO, (c) timing diagram of the CO 

The post-layout diagram and the real tested results are given in Figure 5.15. It can be seen that 

the core area of the custom chip is around 0.49 mm2. Figure 5.16(a) shows the FPGA-based 

simulation. We randomly generated one period of the data, imitating the multichannel recording, 

to test the system. Figure 5.16(b) shows the first format output (FO) from the test board, Figure 

5.16(c) shows the second format output (SO) from the test board, and Figure 5.16(d) shows the 

output format of the compressed signals (CO) from the FPGA board. The power consumption of 
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the system (256-channel, ChS equals 4) is around 200 μW (12.5 μW/channel) and the area is 

around 0.49 mm2 (0.03 mm2/channel), as estimated by Synopsys and Cadence using IBM 

CMOS130. 

Figure 5.15 Post-layout of the proposed 256-channel digital neural signal processing system 

Finally, we compare our results with those from related publications in Table 5.2. Our work is 

based on a digital circuit design and the MDC matrix-based CS technique. Table 5.2 shows our 

work has relatively low power consumption and a small area. 

Table 5.2 Comparison of proposed MDC-based digital neural signal processing system with 

similar existing systems 

Reference [225] [226] [227] [166] [167] [168] This 
Work 

Technology 
(μm CMOS) 0.35 0.5 0.18 0.5 0.5 0.065 0.13 

Supply 
voltage (V) 1.5 3.3 1.8 − 3 0.27 1.2 
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Reference [225] [226] [227] [166] [167] [168] This 
Work 

Compression 
method 

Spike 
Waveform 

Spike 
detection 

Spike 
detection 

Spike 
detection 

Spike 
detection 

Spike 
sorting 

Digital 
CS 

Number of 
channels 16 100 16 32 32 16 256 

Area per 
channel 

(mm2/channel) 
- < 0.16 >0.0475 0.18 0.12 0.07 0.03* 

Power 
consumption 
per channel 

(μW/channel) 

269 27 >96 95 75 4.68 12.5 

Sampling rate 
per 

channel(kS/s) 
1250 15 30 25 20 - 25 

* This includes the core area only. 

 

Figure 5.16 The FPGA-based simulation: (a) the picture of the FPGA-based test system, (b) FO 

from the FPGA board, (c) SO from the FPGA board, (d) CO from the FPGA board 
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5.6 Conclusions 

In this article, we put forward a multichannel digital neural signal processing system using an 

MDC matrix. We introduced the construction of the MDC matrix and we discussed the 

construction of a single-channel signal processing system. The single-channel system includes 

two building blocks: the spike detection block and the data compression block. We chose the 

RMS method to detect the spikes and applied the MDC matrix to compress neural signals. When 

using the MDC matrix to compress the signal, the distance between the current data point and the 

core data point is an important parameter. We evaluated the relationship between the distance and 

the reconstruction error with two reconstruction algorithms. We also explained the relationship 

between the compression rate and the distance, and we found that choosing 4 or 5 for the distance 

σ is appropriate. Additionally, it can be proved that the original signal can be recovered by both 

BP and Lasso algorithms. The construction of the multichannel system was detailed, where a 

scan was applied to process signals, and both the scan direction and the scan rate were analyzed. 

The scan rate has a tight relationship with the power consumption and reconstruction 

performance. The lower the ChS is set, the better the reconstruction performance, while also 

demanding greater power consumption. Based on the discussion, we put forward a 256-channel 

(24   ×   24) signal processing system with a ChS equaling 4. The power consumption of this 

system is about 12.5 μW/channel and the area is around 0.03 mm2/channel, and compression rate 

is around 90% while the reconstructed signals keep most of the details of the original signals. 

Finally, an example of 16-channel original signals and their corresponding reconstructed signals 

were provided. The post-layout diagram and FGPA-based real signal tests were given, and a 

comparison with other similar works was given to highlight the importance of our proposed 

system. From the simulation results and comparison, we found that our system has not only large 

compression rate and good reconstruction accuracy but also relatively low power consumption 

and a small area.  
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CHAPTER 6 GENERAL DISCUSSION 

We describe, in this thesis, systematic and detailed methodologies into the design of neural signal 

processing for neural recording devices. In the early days, neural recording device designers 

focused on acquiring and transmitting neural signals, but the needed high and increasing data 

requirements of modern neural recording devices mean that only designing the signal acquisition 

or transmission components is insufficient, and integrating a high-performance neural signal 

processing system becomes more and more important.  

A neural signal processing device should have high processing performance; for example, the 

spike detection block should have a low false positive rate and high true positive rate; the signal 

compression system needs to be designed with a high compression rate and low reconstruction 

error. Also, because the proposed neural processing techniques are designed for implantable 

neural recording devices, they should have low complexity architecture, which eases the circuit 

design. In this thesis, several new techniques for neural signals processing were developed and 

tested; these techniques have relatively simple structures that are easily implemented and present 

high accuracy for their specific usage.  

For signal processing of neural recording interfaces, there are principally two strategies: signal 

reduction and compression, and both techniques were investigated in this thesis. In chapter 3, we 

focused on the signal compression strategy, and proposed a new method to construct the sensing 

matrix based on the compressed sensing (CS) technique, which can be used to effectively 

compress neural signals. In chapter 4, we mainly discussed the signal reduction strategy. In this 

chapter, we designed an automatic template matching system to make the spike detection, which 

can be used to remove the noise of neural signals. In addition, in chapter 5, based on both 

strategies, we designed a digital signal processing system, which includes the amplitude-based 

spike detection block and CS-based signal compression block. The signal compression block 

contains a subblock generating the MDC matrix which is discussed in chapter 3.  

In chapter 2, we review several state-of the-art works, and we also compare our works with these 

state-of-the-art works in chapter 2-5. In Table 6.1, we continue to discuss the comparison between 

our work and the reviewed state-of-the-arts works, and summarize the contribution of our research. 
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Table 6.1 Discussion of contribution of our work comparing with the state-of-the-arts works 

 Summary of comparison of state-

of-the-arts works 

Summary of the contribution of our 

research 

First 

work 

Table 2.4 Tables 2.4 and 3.3 

1. Only for sparse signals 

2. Have high complexity  

3. The processing performance can 

be further improved  

 

1. Our proposed sensing matrix can 

compress low-sparsity and non-sparse 

signals 

2. The proposed sensing matrix has low 

complexity 

3. The proposed sensing matrix can 

compress sparse and non-sparse with a 

relatively large compression rate and a 

small reconstruction error 

Second 

work 

Table 2.7 Tables 2.7 and 4.1 

1. Several systems are not 

automatic template matching 

systems 

2. Have high complexity 

3. Detection accuracy can be 

improved 

1. Our system has low complexity and 

relatively good detection performance 

2. Our system is an automatic template 

matching-based system, the templates 

need not be foreknown. 
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Table 6.1 Discussion of contribution of our work comparing with the state-of-the-arts works 

(cont’d) 

 Summary of comparison of state-

of-the-arts works 

Summary of the contribution of our 

research 

Third 

work 

Table 2.5 Tables 2.5 and 5.2 

1. Cannot make the spike detection 

and signal compression in the 

same processor 

2. CS-based compressor only 

compress sparse signals 

3. Power consumption and area 

still can be reduced 

1. Our processing system can compress 

low-sparsity and non-sparse signals 

2. The implemented system include spike 

detector and CS-based signal 

compressor 

3. Our system has a relatively low power 

consumption, small area and good 

processing performance 

More specifically, concerning our first work in chapter 3, from Tables 2.4 and 3.3, it can be found 

that for compared sensing matrices, they only compress sparse signals, but lots of signals are not 

sparse even applying approximation or changing the bases. In our research, we found that some 

non-sparse signals which contain identical points can be also compressed, and we proposed a 

method to construct the MDC sensing matrix using the concept of similarity. Besides, our 

proposed sensing matrix can compress the sparse and non-sparse signals with a large compression 

rate and a small reconstruction error, which is better than compared systems; for example, the 

MDC matrix can compress non-sparse and sparse neural signals (degree of sparsity equaling 0 and 

50%) with a compression rate equaling 98%, and reconstruction errors are both lower than 0.2 

when using basis pursuit reconstruction algorithm. Finally, our sensing matrix is a deterministic 

sensing matrix and also composed of zeros and ones, comparing with the similar random or 

deterministic sensing matrices, such as digital wavelet transform-based sensing matrix, chirp 

sensing codes matrix, Bose-Chaudhuri-Hocquenghem matrix, etc., our proposed sensing matrix 

has low complexity, which is suitable for hardware implementation. 

Second, regarding our second work in chapter 4, from Tables 2.7 and 4.1, it can be found that our 
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proposed Bayesian inference-based automatic template matching spike detection and 

classification system has a simple structure and also the least calculation in the comparison tables, 

which is suitable for the hardware design. Besides, this system is an automatic template generation 

system, and the templates need not to be given in advance, which is better than several compared 

template matching-based spike detection systems. Finally, comparing with several amplitude-

based, energy-based and template matching-based system, our system has relatively high 

detection accuracy. 

Third, we compare several state-of-the-arts neural signal processing systems and also compare our 

third work with them in Tables 2.5 and 5.2. Firstly, our proposed system is based on our proposed 

MDC matrix; therefore, it can be used to compress sparse and non-sparse neural signals, which 

are better than the other compared systems. Besides, our system includes spike detector and CS-

based signal compressor. Comparing with the other systems, our system is the only system 

providing both functions of spike detection and signal compression. Finally, our system supports 

single-channel and multichannel processing, and also comparing with the compared systems, it 

has relatively low power consumption and a small area. 

For each work, first, we studied the CS technique, a new signal processing method for 

compression of neural signals. Whether or not neural signals are sparse is still in dispute. In our 

research, we found that neural signals are not sparse in the time domain, so directly applying CS 

technique is not appropriate. Fortunately, we found that neural signals have a lot of similar points. 

Compared with traditional CS technique based on the sparsity, the proposed method can be 

innovatively applied for signal compression. We investigated the use of the restricted isometry 

property of the MDC matrix for compression. The simulation results show that with the MDC 

matrix, the compression rate of the signal can reach 90%, and the reconstruction error is lower 

than 10% using the Basis Pursuit reconstruction algorithm. Also, the MDC matrix can be 

composed of zeros and ones, which has low complexity. A comparison between the proposed 

method and the other CS-based compression ones revealed that the proposed system can compress 

signals with a large compression rate and small reconstruction error, and can be used for the 

compression of non-sparse signals. Therefore, the MDC matrix is a good candidate for 

implementation in a neural recording system. 

On the other hand, signal reduction methods remove useless information (noise) from signals and 
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only keep the spikes that neurons generate. These spikes are usually composite signals generated 

by different neurons, whereas the spikes from single-unit neuron are usually needed for various 

research purposes. Traditional amplitude-based and energy-based spike detection methods do not 

have enough detection accuracy for use on low-SNR signals. Furthermore, neither methods can be 

directly used for spike classification. The template matching method has good detection accuracy 

for low-SNR signals, and can be directly used for spike classification, but this method is 

complicated and needs foreknown templates. We proposed a system using a Bayesian Inference 

template matching method to perform the spike detection and sorting. Compared with the 

amplitude-based or energy-based spike detection methods, the BBTM method has high detection 

accuracy for the low SNR signal and can perform spike classification. Compared with some other 

template matching methods, BBTM has a simple structure, high detection and classification 

accuracy, and the templates need not be foreknown.  

Taking into consideration detailed study on signal reduction and compression techniques, the 

power consumption limits, the small area, and other important parameters, a neural recording 

module including spike detection and signal compression was proposed. Based on this module, 

single-channel and multichannel signal processing architectures were investigated and validated. 

The simulation results showed that the proposed module has a relatively small area and low power 

consumption, compared with several existing neural signal processing ones. In addition, the 

proposed module was tested and verified through an FPGA testing board (Virtex-6 FPGA 

ML605). The proposed digital signal processing module not only performs both spike detection 

and compression, but has relatively low power consumption and a small area. 

In summary, this thesis involves the key points related to neural signal processing activities. The 

research covered several neural signal processing techniques, and a digital neural processing 

system was proposed. We proposed two innovative methods for the neural signal processing 

based on the CS and template matching techniques, and we provided methods for the construction 

of new and efficient neural processing devices. Also, the corresponding circuit implementation is 

fulfilled. Through our research, the proposed methods cannot only be applied in the design of the 

neural recording device, but also the signal processing for other biomedical signals, such as MEG,  

ECoG, or the image , video or speech  processing .  
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

We described in this thesis several methods intended for neural signal reduction and compression 

using template matching and CS techniques, which culminated in a new and highly efficient 

digital neural signal processing system. 

First of all, the minimum Euclidean or MDC sensing matrix for neural signal compression was 

generated, and its restricted isometry property was proved. Proving the restricted isometry 

property of the MDC matrix required the satisfaction of two prerequisites: that (k − M) N⁄ → 0 (k 

is the sparsity of the signal, M and N are the numbers of rows and columns of the sensing matrix), 

and that the clustering must be more even and Imax(Set(C)) ≤  N M⁄ . Also, several reconstruction 

algorithms for the reconstruction of original signals were evaluated. The simulation results 

confirmed that BP and Lasso algorithms are useful reconstruction algorithms. The influence of 

the sampling rate and length of data on the compression and reconstruction was also examined, 

and it was found that a UMDC matrix composed of zeros and ones is appropriate for the circuit 

implementation.  

For signal reduction, we proposed a Bayesian inference-based template matching method which 

can automatically generate templates. The BBTM method has better detection accuracy than the 

amplitude-based or energy-based spike detection methods when the templates are known. When 

the templates are unknown, we used the maximum minimum spread sorting method to generate 

the templates; the true positive rate can reach up to 0.95 with a false positive rate of 0.05. The 

BBTM method also enables spike classification. We used correlation and Euclidean distance to 

estimate the difference between the templates and processed neural signals, and the thresholds of 

both estimations can be set as 0.8 and 0.5 respectively. The clustering accuracy is around 1 when 

false positive rate equals 0.1 for three-neuron composite signals. The BBTM method has low 

computation complexity, requiring only around 1.2 ms for spike detection and clustering of each 

spike.  

Finally, we proposed a digital neural signal processing system including spike detection and 

compression building blocks. For the single-channel design, the root mean square method and 

MDC matrix were chosen for spike detection and signal compression. We evaluated the 
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relationship between the distance and the reconstruction error using two reconstruction 

algorithms, and also the relationship between the distance and compression rate. Choosing 4 or 5 

for the distance σ proved to be appropriate. In contrast, the construction of the multichannel 

system is detailed, in that a scan is applied to process signals and both the scan direction and rate 

must be analyzed. The scan rate has a tight relationship with the power consumption and 

reconstruction performance. The lower the channel-to-scan parameter is set, the better the 

reconstruction performance, but the higher the power consumption. As found by one of the most 

advanced simulation tools, Synopsys, the power consumption and area of the proposed 256-

channel system are 12.5 μW/channel and 0.03 mm2/channel respectively. 

Our research demonstrated that the MDC matrix and BBTM methods have good compression 

and detection performance, and the proposed overall neural signal processing module has small 

area and low power consumption comparing with existing modules while maintaining good 

compression performance. 

7.2 Recommendation for Future Work 

We described, in this thesis, a method that uses the similarity of spikes to compress signals. 

Sparsity can be regarded as a special form of similarity, as all data are zeros. Based on this idea, 

more sensing matrices can be designed and evaluated for their signal compression performance. 

We recommend to conduct further investigations on the properties of the sensing matrix and 

develop more mathematical theories on the construction of the sensing matrix and the 

reconstruction of the original signals based on similarity.  

The BBTM method used in this thesis is an automatic template generation method. We used the 

K-mean clustering method for final clustering, and adapted an Osort algorithm to determine K. 

The accuracy of the determination of K for this algorithm can be further improved, and is an 

obvious avenue for more research. 

The systems based on the BBTM method and the MDC matrix both need to be optimized. In 

particular, the power consumption of the digital circuit based on the BBTM method should be 

reduced. Similarly, the performance of the circuit based on the MDC matrix can be enhanced. In 

future work, we recommend to concentrate on designing a circuit with even lower power 

consumption using both the BBTM method and the MDC matrix. 
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Finally, the front-end circuit and wireless transmitter should be added into the proposed neural 

signal processing module, and a system-on-chip neural recording device should be fabricated, 

and a test in vivo must be performed. In future work, the transmitter needs to be implemented, 

and the design of the custom neural recording device will be researched.  
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APPENDIX A – COMPLEMENTARY BACKGROUND ON COMPRESSED 

SENSING THEORY 

A.1. Vector Space 

In the case of a discrete, finite domain, signals can be viewed as vectors in an n-dimensional 

Euclidean space, and the ℓp norms are frequently used for the measure. ℓp  norms can be defined as 

(A.1), 
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A set 1 2{ , , }nv v v  is called a basis for n
  if the vectors in the set span n

  and are linearly 

independent. Each vector in the space has a unique representation as a linear combination of 

these basis vectors. Regarding an nx∈ , there exist coefficients { }1 2, , , na a a a=   to form 

(A.2), 

                                     𝑥𝑥 = ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖
𝑛𝑛
𝑖𝑖=1                                                            (A.2) 

Note that {𝑣𝑣1,   𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} comprises an n  n matrix V, so (A.2) can be written as (A.3),  

                                                               𝑥𝑥 = 𝑉𝑉𝑉𝑉                                                                        (A.3) 

For a basis {𝑣𝑣1,  𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} and every entry of this vector, if (A.4) is satisfied, 
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                                                             (A.4) 

then {𝑣𝑣1,   𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} is called an orthonormal basis. 

If a set vectors {𝑣𝑣1
′ ,  𝑣𝑣2

′ ⋯ , 𝑣𝑣𝑛𝑛
′ } in m

 , where m n< , comprise a matrix 'V , such that for all vector 
mx∈ , 

                                                 𝐶𝐶‖𝑥𝑥‖2
2     ≤     ‖𝑉𝑉′  𝑇𝑇𝑥𝑥‖2

2 ≤   𝐷𝐷‖𝑥𝑥‖2
2                                                 (A.5) 

where , (0, )C D∈ ∞ , then {𝑣𝑣1
′ ,   𝑣𝑣2

′ ⋯ , 𝑣𝑣𝑛𝑛
′ } calls a frame. If C and D can be chosen as C D= , then 

the frame is called A-tight. If C = D = 1, then V’ is a parseval frame.               
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A.2. Sensing Matrix 

(Johnson-Lindenstruss Lemma) Let 𝜀𝜀   (0,1)∈ be given. For every set P  of ( )N P  points in N
 , if 

n is a positive integer such that 𝑛𝑛   >    𝑛𝑛0 =   O(ln(N(𝑃𝑃)) 𝜀𝜀2⁄ ), there exists a Lipschitz mapping f : 
N n→   such that (A.6),  

(1 − 𝜀𝜀)‖𝑢𝑢 − 𝑣𝑣‖𝑙𝑙𝑝𝑝
2 ≤ ‖𝑓𝑓(𝑢𝑢) − 𝑓𝑓(𝑣𝑣)‖𝑙𝑙𝑝𝑝

2 ≤ (1 + 𝜀𝜀)‖𝑢𝑢 − 𝑣𝑣‖𝑙𝑙𝑝𝑝
2                          (A.6) 

For all ,u v P∈ . 

Let 𝛷𝛷 be a random matrix of size nN drawn according to any distribution that satisfies the 

concentration inequality. Then, for any set T with N(T) = k < n and any  0 < ε < 1, we have 

(A.7), 

                                (1 − 𝜀𝜀)‖𝑥𝑥‖𝑙𝑙𝑝𝑝 ≤ ‖𝛷𝛷𝛷𝛷‖𝑙𝑙𝑝𝑝 ≤ (1 + 𝜀𝜀)‖𝑥𝑥‖𝑙𝑙𝑝𝑝 ,  for all 𝑥𝑥   ∈   𝑋𝑋𝑇𝑇                      (A.7) 

with probability 

≥ 1 − 2(12/𝜀𝜀)𝑘𝑘exp(−𝑐𝑐0(𝜀𝜀/2)𝑛𝑛)                                             (A.8) 

The concentration equality is defined as (A.9), 

                                  Pr(|‖𝛷𝛷𝛷𝛷‖𝑙𝑙𝑝𝑝
2 −     ‖𝑥𝑥‖𝑙𝑙𝑝𝑝

2 | ≥ 𝜀𝜀‖𝑥𝑥‖𝑙𝑙𝑝𝑝
2 ) ≤ 2exp(−𝑛𝑛𝑐𝑐0(𝜀𝜀))                             (A.9) 

A matrix 𝛷𝛷 satisfies the null space property (NSP) of order k if there exists a constant 0C >  such 

that, 

                                                              ‖𝑦𝑦𝛬𝛬‖2 ≤    𝐶𝐶 ‖𝑦𝑦𝛬𝛬𝑐𝑐‖1

√𝑘𝑘
                                                        (A.10) 

Holds for all 𝑦𝑦 ∈   Null(𝛷𝛷)  and for all Λ  such that kΛ ≤ , Null(𝛷𝛷) = {𝑧𝑧: 𝛷𝛷𝛷𝛷 = 0} . 

{1, 2, , }nΛ ⊂   is a subset of indices and {1, 2, , }\c nΛ ⊂ Λ . If a vector y is exactly k-sparse, 

then there exists a Λ such that ‖𝑦𝑦𝛬𝛬𝑐𝑐‖1 = 0 and implies that  𝑦𝑦𝛬𝛬 = 0. 

Defining F1 : m n→  . (A.10) can be changed to be (A.11), 

C‖𝐹𝐹1(𝛷𝛷𝛷𝛷)1 − 𝑥𝑥‖2 ≤   𝐶𝐶 𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
                                             (A.11) 

For all x, where 𝜎𝜎𝑘𝑘(𝑥𝑥)1 is defined in (2.16). This guarantees exact recovery of all possible k-

sparse signals.  
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A.3. Signal Recovery In Noise 

For the signal recovery, 1  minimization is applied, which is expressed as (A.12) 

𝑥𝑥′ = arg min
𝑧𝑧

‖𝑧𝑧‖1  ,      subject  to   𝑧𝑧 ∈ 𝑓𝑓(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝐴𝐴 = 𝑦𝑦},                    (A.12) 

The bounded and Gaussian noisy signal recoveries are listed as follows. 

Suppose that 𝛷𝛷  satisfies the RIP of order 2k with 𝜀𝜀2𝑘𝑘 <    √2 − 1 , and let y Ax B= + where 

2B ≤ γ , the solution x’ to (A.12) obeys (A.13), 

‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 𝐶𝐶0
𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
+ 𝐶𝐶1𝛾𝛾                                      (A.13) 

where 𝐶𝐶0 = 2 1−(1−√2)𝜀𝜀2𝑘𝑘
1−(1+√2)𝜀𝜀2𝑘𝑘

 and 𝐶𝐶1 = 4 �1+𝜀𝜀2𝑘𝑘)
1−(1+√2)𝜀𝜀2𝑘𝑘

. 

Suppose that 𝛷𝛷 satisfies the RIP of order 2k with 𝜀𝜀2𝑘𝑘 <    √2 − 1. Moreover, suppose 𝑥𝑥 ∈    ∑𝑘𝑘 and 

that the measurement can be expressed as y Ax B= +  where B obeys the Gaussian distribution, 

that is, 2~ (0, )B N σ . When f(y) = {𝑧𝑧: ‖𝐴𝐴𝐴𝐴 − 𝑦𝑦‖2 ≤ 2√𝑚𝑚𝜎𝜎},  the solution x’ to (A.12) obeys 

(A.14), 

‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 8 �1+𝜀𝜀2𝑘𝑘)
1−(1+√2)𝜀𝜀2𝑘𝑘

√𝑚𝑚𝜎𝜎                                   (A.14) 

With probability at least 1 − exp(−𝑐𝑐0𝑚𝑚). 
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APPENDIX B – IMPLEMENTATION OF THE FRONT-END CIRCUIT 

The built front-end circuit including signal filtering, amplifier and ADC is shown in B.1. 

 

Figure B.1 The front-end circuit for the proposed signal processing system 

 

The result of signal amplification for a signal of 100 mV with the gain of 10 is shown in B.2. 

 

 

Figure B.2 The output of AD620 (1 Vpp, blue) for the input signal (100 mV, yellow) 
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The results of active filter AD704 for a 100 mV input signal with the gain of 10. Figures B.3 - 

B.8 show the results with an oscilloscope using the frequencies of 200 Hz, 300 Hz, 1 kHz, 5 kHz, 

10 kHz and 12 kHz. 

 

Figure B.3 Bandpass filter output is 300 mV (blue) for a 100 mV input (yellow) to the AD620 

with the gain of 10. The input of the filter is 1Vpp. Frequency = 200 Hz 

 

 

Figure B.4 Bandpass filter output is 600 mV (blue) for a 100 mV input (yellow) to the AD620 

with the gain of 10. The input of the filter is 1 Vpp. Frequency = 300 Hz 
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Figure B.5 Bandpass filter output is 1 V (blue) for a 100 mV input (yellow) to the AD620 with 

the gain of 10. The input of the filter is 1 Vpp. Frequency = 1 kHz 

 

 

Figure B.6 Bandpass filter output is 1.25 V (blue) for a 100 mV input (yellow) to the AD620 with 

the gain of 10. The input of the filter is 1 Vpp. Frequency = 5 kHz 
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Figure B.7 Bandpass filter output is 1 V (blue) for a 100 mV input (yellow) to the AD620 with 

the gain of 10. The input of the filter is 1 Vpp. Frequency = 10 kHz 

 

 

Figure B.8 Bandpass filter output is 500 mV (blue) for a 100 mV input (yellow) to the AD620 

with the gain of 10. The input of the filter is 1 Vpp. Frequency = 12 kHz 

The results after the ADC through SPI protocol are shown in B.9. The reference voltage is 0 to 2 

V. The output is 0 and 1 V. Also, Table B.1 shows several sampling points in the binary and 

decimal formats.  
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                                          (a)                                                                 (b) 

  
                                         (c)                                                                  (d) 

Figure B.9. The output of the ADC through SPI protocol. (a) DC Input = 0 V, 16 bits = 1111 

1110 0000 0000 = -512. (b) DC Input = 2 V, 16 bits = 0000 0001 1111 1111 = 511. (c) DC Input 

= 1 V, 16 bits = 0000 0000 0010 1100 = 44 (d) DC Input = 1.4 V, 16 bits = 0000 0001 1111 0000 

= 496 

Table B.1 Some sampling voltage points in the binary and decimal formats 

Samples Binary Format Decimal Format Voltage 
1 1111 1110 1101 0001 -303 0.49032 
2 1111 1111 0111 1111 -129 0.898531 
3 0000 0000 0010 0000 32 1.276243 
4 0000 0000 1000 1001 137 1.522578 
5 0000 0000 1001 1110 158 1.571844 
6 0000 0000 0101 1000 88 1.407622 
7 1111 1111 1100 1011 -53 1.07683 
8 1111 1111 0001 1101 -227 0.668619 
9 1111 1110 0111 1101 -387 0.293252 
10 1111 1110 0001 0111 -489 0.053956 
11 1111 1110 0000 0101 -507 0.011727 
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APPENDIX C – IMPLEMENTATION OF THE DIGITAL SIGNAL 

PROCESSING SYSTEM 

The structure diagrams of the signal processor are shown in Figures C.1 – C.10.  

 

Figure C.1. The structure diagram of the serial_CDS_200M block 

 

Figure C.2. The structure diagram of the compression_detection_system block 

 

Figure C.3. The structure diagram of the spike_detection block 
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Figure C.4. The structure diagram of the multiplier1 block 

 

Figure C.5. The structure diagram of the standard deviation calculation block  

 

Figure C.6. The structure diagram of the square root calculation block 
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Figure C.7. The structure diagram of the data compression block 

 

Figure C.8. The structure diagram of the add_com_unit_two block 
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Figure C.9. The structure diagram of the Multi_C block 

 

Figure C.10. The structure diagram of the adder_2in1 block 
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Table C.1 Explanation of some important blocks 
Block name Figure Explanation 

Serial_CDS_200M C.1 Top module of the digital signal processing 
system 

Clock_divider C.1 Frequency divider 
SertoPar C.1 Serial to parallel interface 
PartoSer C.1 Parallel to serial interface 

Compression_detection_system C.1, C.2 Main module of the signal processing 
system 

Register_N  C.2, C.5,    
C.7-C.10 Register 

Spike_detection C.2, C.3 Spike detection block 
Compression_system_32 C.2, C.7 Data compression block 

Counter,counter2,counter4, 
counter5, counter_input, 

input_control_sig 
register_N_sig_detection 

 C.2, C.3, 
C.5, C.7 Control signal 

Multiplex_for_Y C.3 Input of coefficient P for detection 
Detection C.3 Ouput of detection results 

Change_negative C.3 Calculation of the negative value 
Cal_threshold C.3 Calculation of the threshold 

Multi C.4 Multiplier 
Cal_std C.5 Calculation of the standard deviation 

Shift_register_a C.5, C.7 Shift register 
Sqroot C.6 Square root calculation 

Whole_compression_32 C.7 Sensing matrix generation and signal 
compression 

Serial_out C.7 Output of the sensing matrix 
Comparator C.8 Comparator 

Mult_C C.9 Multiplier for the data using two’s 
complement code 

Adder_2in1 C.10 Adder 

 

Some implementations of the signal processing system in VHDL language are listed as follows. 

 

The clock is 200M 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.numeric_std.all; 
 
------  Top module of the signal processing system, serial input and serial output ------ 
entity serial_CDS_200M is 
generic (DATA_WIDTH : integer :=10; NUM : integer:=31; DATA_WIDTH_m : integer:=5; 
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DATA_WIDTH_n : integer:=5 );     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work first part 
en_sam: in std_logic; -- sanpling time indication 
X : in std_logic; 
data_out_1: out std_logic; 
data_out_2: out std_logic); -- detection begin     
end serial_CDS_200M; 
 
architecture circuits of serial_CDS_200M is 
component compression_detection_system is 
generic (DATA_WIDTH : integer ; NUM : integer; DATA_WIDTH_m : integer; 
DATA_WIDTH_n : integer );     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in  std_logic; -- 0 is non-work, 1 is work first part 
en1: in  std_logic; -- compression part 
en_low: in std_logic; --0 is low_style, 1 is normal 
num1: in std_logic_vector(1 downto 0);   -- num for detection counter 
num2: in std_logic_vector(1 downto 0);   -- num for compression counter 
num3: in std_logic_vector(1 downto 0);   -- num for compression counter divided the core 
number data high power 
flag_num: in std_logic_vector(2 downto 0); -- num for the detection   
flag_Y: std_logic; 
X : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
Y:  in  std_logic_vector(4 downto 0);    -- coefficient in the detection 
B : in  std_logic_vector(9 downto 0);      -- core data clustering number 
input_flag: out std_logic;                -- compression data begin 
out_flag : out std_logic_vector(4 downto 0); -- matrix flag 
P_out : out  std_logic_vector (2*DATA_WIDTH-1 downto 0); -- data 
num_out: out std_logic_vector(1 downto 0); -- detection signal 
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out: out std_logic ); -- detection begin     
end component; 
 
component SerToPar is 
port( 
clk : in std_logic; 
rst  : in std_logic; 
en: in std_logic; 
serial: in std_logic; 
clk_out : out std_logic; 
parallel: out std_logic_vector(9 downto 0)); 
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end component; 
 
component clock_divider is 
generic ( n : integer); 
port( 
clk :   in std_logic; 
rst_n :  in std_logic; 
clk_out: out std_logic); 
end component; 
 
component register_out is 
generic (DATA_WIDTH : integer ; NUM : integer);   
port( 
clk : in std_logic; 
rst : in std_logic; 
en: in std_logic; 
input_flag: in std_logic; 
flag_out: in std_logic; 
out_flag: in std_logic_vector(4 downto 0); 
num_out: in std_logic_vector(1 downto 0);  
reg_out: out std_logic_vector(8 downto 0)); 
end component; 
 
component ParToSer is 
generic (DATA_WIDTH : integer);   
port( 
clk : in std_logic; 
rst : in std_logic; 
en: in std_logic; 
data_in: in std_logic_vector(DATA_WIDTH-1 downto 0);   
data_out: out std_logic); 
end component; 
 
component ParToSer1 is 
generic (DATA_WIDTH : integer);   
port( 
clk : in std_logic; 
rst : in std_logic; 
en: in std_logic; 
data_in: in std_logic_vector(DATA_WIDTH-1 downto 0);   
data_out: out std_logic); 
end component; 
 
signal num1, num2, num3, num_out: std_logic_vector(1 downto 0); 
signal flag_num: std_logic_vector(2 downto 0); 
signal out_flag: std_logic_vector(4 downto 0); 
signal clk1,en_low, flag_Y, input_flag, flag_out, cout1, cout2, cout3, cout4, cout5, cout6, cout7, 
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rout, rout1, en_rst: std_logic; 
signal max_flag: std_logic_vector(NUM-1 downto 0); 
signal T11, T22, B, X1: std_logic_vector(DATA_WIDTH - 1 downto 0); 
signal Y: std_logic_vector(DATA_WIDTH_n-1 downto 0); -- coefficient in the detection 
signal P_out:  std_logic_vector(2*DATA_WIDTH-1 downto 0); 
signal r_out:  std_logic_vector(8 downto 0);constant clk_period2 : time := 1 us; 
signal AA1, enn2, enn3: std_logic;   
   
begin 
en_low <= '0';    
num1 <= "11"; 
num2 <= "10";    
num3 <= "10"; 
flag_num <= "010"; 
flag_Y <= '0'; 
Y <= "00000"; 
B <= "0000000100";    
 
-----200MHz quartz 
clkk: clock_divider 
generic map(n => 1)  
port map (clk => clk, rst_n => rst, clk_out => clk1); 
 
-----50MHz quartz 
clkk1: clock_divider 
generic map(n => 249)  
port map (clk => clk1, rst_n => rst, clk_out => cout1);   
      
clkk2: clock_divider 
generic map(n => 24)  
port map (clk => clk1, rst_n => rst, clk_out => cout2);  
      
clkk3: clock_divider 
generic map(n => 1) 
port map(clk => cout1, rst_n => rst, clk_out => cout4);           
 
clkk4: clock_divider 
generic map(n => 49)  
port map (clk => clk1, rst_n => rst, clk_out => cout5);  
 
clkk5: clock_divider 
generic map(n => 249)  
port map (clk => clk1, rst_n => rst, clk_out => cout6);  
        
clkk6: clock_divider 
generic map(n => 4)  
port map (clk => clk1, rst_n => rst, clk_out => cout7);    
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CDS: compression_detection_system 
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM,  DATA_WIDTH_m => 
DATA_WIDTH_m, DATA_WIDTH_n => DATA_WIDTH_n) 
port map(clk => cout1, rst => rst, en => en, en1 => en, en_low => en_low, num1 => num1, 
num2 => num2, num3 => num3, flag_num => flag_num, flag_Y => flag_Y, X =>X1,  
Y => Y, B => B, input_flag => input_flag, out_flag => out_flag, P_out => P_out, num_out => 
num_out, TT1 => T11, TT2 => T22, flag_out => flag_out); 
 
reg: register_out 
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM) 
port map (clk => cout1, rst => rst, en => en, input_flag => input_flag,flag_out => flag_out, 
out_flag => out_flag, num_out => num_out, reg_out => r_out); 
      --- cout4 
            
STP: SerToPar  
port map (clk => cout2, rst => rst, en => en_sam, serial => X, clk_out => cout3, parallel => 
X1);  
  
en_rst <= not cout6 and input_flag; 
  
PTS: ParToSer 
generic map(DATA_WIDTH => 9) 
port map (clk => cout5, rst => rst, en => cout4, data_in => r_out, data_out => rout);  
        
PTS1: ParToSer1 
generic map(DATA_WIDTH => 20) 
port map (clk => cout7, rst => rst, en => en_rst, data_in => P_out, data_out => rout1);         
 
data_out_1 <= rout; 
data_out_2 <= rout1;  
A <= AA1; 
cclk <= enn3;  
ss_en <= enn2; 
 
end circuits; 
 
-------------------  compression_detection_system  ----------------- 
entity compression_detection_system is 
generic (DATA_WIDTH : integer ; NUM : integer; DATA_WIDTH_m : integer; 
DATA_WIDTH_n : integer );     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work first part 
en1: in std_logic; -- detection part 
en_low: in std_logic; --0 is low_style, 1 is normal 
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num1: in std_logic_vector(1 downto 0); -- num for detection counter 
num2: in std_logic_vector(1 downto 0); -- num for compression counter 
num3: in std_logic_vector(1 downto 0); -- num for compression counter divided the core 
number data high power 
flag_num: in std_logic_vector(2 downto 0); -- num for the detection   
flag_Y: std_logic; 
X : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
Y:  in  std_logic_vector(DATA_WIDTH_n-1 downto 0); -- coefficient in the detection 
B : in  std_logic_vector(DATA_WIDTH-1 downto 0); -- core data clustering number 
input_flag: out std_logic; -- compression data begin 
out_flag : out std_logic_vector(4 downto 0); -- matrix flag 
P_out : out  std_logic_vector (2*DATA_WIDTH-1 downto 0); -- data 
num_out: out std_logic_vector(1 downto 0); -- detection signal 
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out: out std_logic ); -- detection begin 
end compression_detection_system; 
 
architecture circuits of compression_detection_system is 
component compression_system_32 is 
generic (DATA_WIDTH : integer ; NUM : integer);     -- DATA WIDTH 
port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work first part 
en1: in std_logic; -- compression part 
en2: in std_logic; -- controlinput 
en_low: in std_logic; --0 is low_style, 1 is normal 
num_in: in std_logic_vector(1 downto 0); 
num_in1: in std_logic_vector(1 downto 0); 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
B : in std_logic_vector(DATA_WIDTH-1 downto 0); 
std_num: in std_logic_vector(4 downto 0); 
std_flag: in std_logic; 
input_flag: out std_logic; 
out_flag : out std_logic_vector(NUM-1 downto 0); 
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0)); 
end component; 
 
component spike_detection is 
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer );     
-- DATA WIDTH 
port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_low: in std_logic; --0 is low_style, 1 is normal 
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num: in std_logic_vector(1 downto 0); 
flag_num: in std_logic_vector(2 downto 0); 
flag_Y: in std_logic; 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0); 
flag_std_out: out std_logic; 
P_std_out : out std_logic_vector (4 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out: out std_logic); 
end component; 
 
component register_2N_cov is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(2*DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector (DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component counter_input IS 
generic ( DATA_WIDTH : integer); 
PORT( 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
en_inp: in std_logic; 
num: in std_logic_vector (1 downto 0); 
A_out: out std_logic_vector(DATA_WIDTH -1 downto 0); 
CP:OUT std_logic); 
END component; 
 
component input_control_sig is 
port( 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en1: in std_logic; 
en_low: in std_logic; 
en_com: in std_logic; 
en_int: in std_logic; 
out_flag: out std_logic); 
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end component; 
 
component Decoder is 
port( 
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work first part 
din : in std_logic_vector(30 downto 0); 
dout : out std_logic_vector(4 downto 0); 
en_out: out std_logic); 
end component; 
  
component clock_divider IS 
generic ( n : integer); 
PORT( 
clk :IN std_logic; 
rst_n :IN std_logic; 
clk_out:OUT std_logic); 
end component; 
 
component register_N is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
signal num_cur: std_logic_vector(1 downto 0); 
signal fla1, fla2, fla21,fla3, std1, std3, fla4, enout, c_out: std_logic; 
signal max_flag: std_logic_vector(NUM-1 downto 0); 
signal T1, X1, T11, T22, com1,com2: std_logic_vector(DATA_WIDTH - 1 downto 0); 
signal T2: std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal std2, max: std_logic_vector(4 downto 0); 
 
begin 
reg: register_N 
generic map(DATA_WIDTH_m => DATA_WIDTH)  
port map (A=>X, clk => clk, rst_n => rst, en => en, Out_A => com1);  
       
reg1: register_N 
generic map(DATA_WIDTH_m => DATA_WIDTH)  
port map (A=>X, clk => c_out, rst_n => rst, en => en, Out_A => com2);        
 
count: counter_input 
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generic map(DATA_WIDTH => DATA_WIDTH)  
port map (A => com1, clk =>clk, rst_n => rst, en => fla4, en_inp => std3, num => num2, A_out 
=> X1, CP => std3);  
 
count_con: input_control_sig 
port map (clk =>clk, rst_n => rst, en => en, en1 => en, en_low => en_low, en_com => std1, 
en_int => fla4, out_flag => fla4);  
   
detection: spike_detection 
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m, 
DATA_WIDTH_n => DATA_WIDTH_n )  -----  X => com1 
port map (clk => c_out, rst => rst, en => en1, en_low => en_low, num => num1, flag_num => 
flag_num, flag_Y => flag_Y, X => com2, Y => Y, flag_std_out => std1, P_std_out => std2, 
num_out => num_cur, TT1 => T11, TT2 =>T22,flag_out => fla1);        
        
compression: compression_system_32 
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM)  --- enlager the signal enable 
NUM => NUM 
port map (clk =>clk, rst => rst, en => en, en1 => en, en2 => std3, en_low => en_low, num_in 
=> num2, num_in1 => num3, X => X1, B => B, std_num => std2, std_flag => en, input_flag 
=> fla2, out_flag => max_flag, P_out => T2); --std_flag => std1 
   
Dec: Decoder  port map (clk =>clk, rst => rst, en => fla21, din => max_flag, dout => max, 
en_out => enout);      
   
div: clock_divider 
generic map(n => 1)  
port map (clk =>clk, rst_n => rst, clk_out => c_out);  
   
fla21 <= not fla2;   
   
input_flag <= fla2; -- compression data begin 
out_flag <= max;  -- matrix flag 
P_out <= T2; -- data 
num_out <= num_cur; -- detection signal 
flag_out <= fla1; -- detection begin 
TT1 <= T11; 
TT2 <= T22; 
 
end circuits; 
 

----------------- spike detection block ---------------------- 
entity spike_detection is 
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer );      
Port (  
clk: in std_logic; 
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rst: in std_logic; 
en: in  std_logic; -- 0 is non-work, 1 is work 
en_low: in std_logic; --0 is low_style, 1 is normal 
num: in std_logic_vector(1 downto 0); 
flag_num: in std_logic_vector(2 downto 0); 
flag_Y: in std_logic; 
X : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
Y:  in  std_logic_vector(DATA_WIDTH_n-1 downto 0); 
flag_std_out: out std_logic; 
P_std_out : out  std_logic_vector (4 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out: out std_logic); 
end spike_detection; 
 
architecture circuits of spike_detection is 
 
component calc_threshold is 
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer ); 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in  std_logic; -- 0 is non-work, 1 is work 
en_low: in std_logic; --0 is low_style, 1 is normal 
num: in std_logic_vector (1 downto 0); 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
Y:  in std_logic_vector(DATA_WIDTH_n-1 downto 0); 
flag_std_out: out std_logic; 
P_std_out : out std_logic_vector (4 downto 0); 
flag_out: out std_logic; 
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
 
component counter4 IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: in std_logic_vector (2 downto 0); 
CP:OUT std_logic); 
END component; 
 
component register_N_sig_detection is 
port( 
sig: in std_logic; 
clk: in std_logic; 
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rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
end component; 
 
component change_negative is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
A : in std_logic_vector (DATA_WIDTH-1 downto 0); 
flag_out : out std_logic; 
Add_out : out  std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
 
component detection is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in  std_logic; -- 0 is non-work, 1 is work 
en_d: in std_logic; 
X : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH -1 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
flag_out: out std_logic); 
end component; 
 
component multiplex_for_Y  is 
generic ( DATA_WIDTH_n : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_n -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_n -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_low: in std_logic; 
flag_Y: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_n -1 downto 0)); 
end component; 
 
signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0); 
signal fla, fla1, fla2, fla3, fla4, fla5, std1: std_logic; 
signal sig1: std_logic_vector(DATA_WIDTH-1 downto 0); 
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signal sig2, Y1: std_logic_vector(DATA_WIDTH_n-1 downto 0); 
signal out_num : std_logic_vector(1 downto 0); 
signal std2: std_logic_vector(4 downto 0); 
 
begin 
sig1 <= (others => '1'); 
sig2(1 downto 0) <= "11"; 
sig2(DATA_WIDTH_n-1 downto 2) <= (others => '0');  
 
count: counter4 
port map (clk =>clk, rst_n => rst, en => en, num => flag_num, CP => fla); 
 
multi: multiplex_for_Y 
generic map(DATA_WIDTH_n => DATA_WIDTH_n) 
port map(Y, sig2, clk, rst, en, en_low, flag_Y, fla5, Y1); 
   
thr1: calc_threshold 
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m, 
DATA_WIDTH_n => DATA_WIDTH_n)   
port map (clk =>clk, rst => fla, en => fla2, en_low => en_low, num => num, X => X , Y => Y1, 
flag_std_out => std1, P_std_out => std2,flag_out => fla1, P_out => T1); 
 
thre1: register_N_sig_detection 
port map (sig => fla1, clk =>clk, rst_n => rst, en => en,out_flag => fla2); 
  
cha1: change_negative 
generic map(DATA_WIDTH => DATA_WIDTH)   
port map (clk =>clk, rst => fla, en => fla1, A => T1 , flag_out => fla3, Add_out => T2);      
        
det1: detection 
generic map(DATA_WIDTH => DATA_WIDTH)   
port map (clk =>clk, rst => fla, en => en, en_d => fla3,  X => X, A => T1 , B => T2, num_out 
=> out_num, flag_out => fla4);  
   
num_out <= out_num; 
flag_out <= fla4; 
flag_std_out <= std1; 
P_std_out <= std2; 
TT1 <= T1; 
TT2 <= T2; 
end circuits; 
entity spike_detection is 
generic(DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer );      
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
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en_low: in std_logic; --0 is low_style, 1 is normal 
num: in std_logic_vector(1 downto 0); 
flag_num: in std_logic_vector(2 downto 0); 
flag_Y: in std_logic; 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0); 
flag_std_out: out std_logic; 
P_std_out : out std_logic_vector (4 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
 TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out: out std_logic); 
end spike_detection; 
 
architecture circuits of spike_detection is 
component calc_threshold is 
generic(DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer );     
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_low: in std_logic; --0 is low_style, 1 is normal 
num: in std_logic_vector (1 downto 0); 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0); 
flag_std_out: out std_logic; 
P_std_out : out std_logic_vector (4 downto 0); 
flag_out: out std_logic; 
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
 
component counter4 IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: in std_logic_vector (2 downto 0); 
CP:OUT std_logic); 
END component; 
 
component register_N_sig_detection is 
port( 
sig: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
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end component; 
 
component change_negative is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
A : in std_logic_vector (DATA_WIDTH-1 downto 0); 
flag_out : out std_logic; 
Add_out : out std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
 
component detection is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_d: in std_logic; 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH -1 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
flag_out: out std_logic); 
end component; 
 
component multiplex_for_Y  is 
generic ( DATA_WIDTH_n : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_n -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_n -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_low: in std_logic; 
flag_Y: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_n -1 downto 0)); 
end component; 
 
signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0); 
signal fla, fla1, fla2, fla3, fla4, fla5, std1: std_logic; 
signal sig1: std_logic_vector(DATA_WIDTH-1 downto 0); 
signal sig2, Y1: std_logic_vector(DATA_WIDTH_n-1 downto 0); 
signal out_num : std_logic_vector(1 downto 0); 
signal std2: std_logic_vector(4 downto 0); 
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begin 
sig1 <= (others => '1'); 
sig2(1 downto 0) <= "11"; 
sig2(DATA_WIDTH_n-1 downto 2) <= (others => '0');  
 
count: counter4 
port map (clk =>clk, rst_n => rst, en => en, num => flag_num, CP => fla); 
 
multi: multiplex_for_Y 
  generic map(DATA_WIDTH_n => DATA_WIDTH_n) 
  port map(Y, sig2, clk, rst, en, en_low, flag_Y, fla5, Y1); 
   
thr1: calc_threshold 
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m, 
DATA_WIDTH_n => DATA_WIDTH_n)   
port map (clk =>clk, rst => fla, en => fla2, en_low => en_low, num => num, X => X , Y => Y1, 
flag_std_out => std1, P_std_out => std2,flag_out => fla1, P_out => T1); 
 
thre1: register_N_sig_detection 
port map (sig => fla1, clk =>clk, rst_n => rst, en => en,out_flag => fla2); 
  
cha1: change_negative 
generic map(DATA_WIDTH => DATA_WIDTH)   
port map (clk =>clk, rst => fla, en => fla1, A => T1 , flag_out => fla3, Add_out => T2);      
        
det1: detection 
generic map(DATA_WIDTH => DATA_WIDTH)   
port map (clk =>clk, rst => fla, en => en, en_d => fla3,  X => X, A => T1 , B => T2, num_out 
=> out_num, flag_out => fla4);  
   
num_out <= out_num; 
flag_out <= fla4; 
flag_std_out <= std1; 
P_std_out <= std2; 
TT1 <= T1; 
TT2 <= T2; 
 
end circuits; 
 

----------------  data compression block  ---------------- 
entity compression_system_32 is 
generic (DATA_WIDTH : integer ; NUM : integer);      
Port (  
clk: in std_logic; 
rst: in std_logic; 
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en: in  std_logic; -- 0 is non-work, 1 is work first part 
en1: in  std_logic; -- compression part 
en2: in std_logic; -- controlinput 
en_low: in std_logic; --0 is low_style, 1 is normal 
num_in : in std_logic_vector(1 downto 0); 
num_in1: in std_logic_vector(1 downto 0); 
X : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
B : in  std_logic_vector(DATA_WIDTH-1 downto 0); 
std_num: in std_logic_vector(4 downto 0); 
std_flag: in std_logic; 
input_flag: out std_logic; 
out_flag : out std_logic_vector(NUM-1 downto 0); 
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0)); 
end compression_system_32; 
 
architecture circuits of compression_system_32 is 
component calc_Y is 
generic (DATA_WIDTH : integer );     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
std_num: in std_logic_vector (4 downto 0); 
num1: in std_logic_vector (1 downto 0); 
out_flag : out std_logic; 
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
   
component multiplex_XY is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en1: in std_logic; 
en_low: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component whole_compression_32 is 
generic (DATA_WIDTH: integer; NUM : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
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en: in std_logic; -- 0 is non-work, 1 is work 
en_f: in std_logic; 
X : in std_logic_vector(DATA_WIDTH - 1 downto 0); 
Y : in std_logic_vector(DATA_WIDTH - 1 downto 0); 
num_in: in std_logic_vector(1 downto 0); 
flag_out: out std_logic; 
flag_out_en: out std_logic_vector (NUM - 1 downto 0); 
flag_out_com: out std_logic_vector (NUM -1 downto 0); 
P_out0 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out3 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out4 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out5 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out6 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out7 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out8 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out9 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out10 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out11 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out12 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out13 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out14 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out15 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out16 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out17 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out18 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out19 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);      
P_out20 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out21 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out22 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out23 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out24 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out25 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out26 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out27 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out28 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out29 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out30 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0)); 
end component; 
 
component signal_N is 
port( 
A: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
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out_flag: out std_logic); 
end component; 
 
component counter3 IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: out integer; 
CP:OUT std_logic); 
END component; 
 
component serial_out is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en1: in std_logic; 
en2: in std_logic; 
out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component register_N is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component multiplex_sig is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_sig: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
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component register_WC is 
port( 
A: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
end component; 
 
component register_three is 
port( 
A: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
end component; 
 
component register_N_sig_four is 
port( 
sig: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
end component;  
 
component signal_N_com is 
generic (DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component register_sig_or is 
port( 
A: in std_logic; 
B: in std_logic; 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic); 
end component; 
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component register_control_input is 
generic ( DATA_WIDTH : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic); 
end component; 
 
signal sig1, sig2, sig3: std_logic_vector(1 downto 0); 
signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0); 
signal fla, fla_or, flaa , flaa1, flaa11, fla1, fla11, fla4,fla5, fla6, fla7, fla8, clk1: std_logic; 
signal fla2, fla21, fla3, sig_out1, sig_out2: std_logic_vector (NUM-1 downto 0); 
type  M_array is array (0 to NUM - 1) of std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
signal reg_array_add : M_array;   -- addition results 
signal Pout : M_array;  
signal num_out : integer;  
 
begin 
std1: calc_Y 
generic map(DATA_WIDTH => DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => std_flag, std_num => std_num, num1 => num_in1, 
out_flag => fla, P_out => T1);        
 
sig_or: register_sig_or 
port map(fla, en_low, clk, rst, en1, fla_or);  
 
sig: signal_N 
port map(fla_or, clk, rst, en1, flaa);   
         
mul1: multiplex_XY 
generic map(DATA_WIDTH_m => DATA_WIDTH)  
port map (A => T1, B => B, clk =>clk, rst_n => fla7, en => en1, en1 => en1, en_low => 
en_low, out_flag => fla1, Out_A=> T2); --en1 => flaa, 
 
rci: register_control_input 
generic map(DATA_WIDTH => DATA_WIDTH)  
port map (A => X, clk =>clk, rst_n => rst, en => en1, Out_A => fla11); 
 
com1: whole_compression_32 
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM)  
port map (clk =>clk, rst => fla7, en => en1, en_f => fla11, X => X, Y => T2, num_in => 
num_in, flag_out => flaa1, flag_out_en => fla2, flag_out_com => fla3, --en1 
P_out0 => reg_array_add(0)(2*DATA_WIDTH - 1 downto 0), 
P_out1 => reg_array_add(1)(2*DATA_WIDTH - 1 downto 0), 
P_out2 => reg_array_add(2)(2*DATA_WIDTH - 1 downto 0), 
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P_out3 => reg_array_add(3)(2*DATA_WIDTH - 1 downto 0), 
P_out4 => reg_array_add(4)(2*DATA_WIDTH - 1 downto 0), 
P_out5 => reg_array_add(5)(2*DATA_WIDTH - 1 downto 0), 
P_out6 => reg_array_add(6)(2*DATA_WIDTH - 1 downto 0), 
P_out7 => reg_array_add(7)(2*DATA_WIDTH - 1 downto 0), 
P_out8 => reg_array_add(8)(2*DATA_WIDTH - 1 downto 0), 
P_out9 => reg_array_add(9)(2*DATA_WIDTH - 1 downto 0), 
P_out10 => reg_array_add(10)(2*DATA_WIDTH - 1 downto 0), 
P_out11 => reg_array_add(11)(2*DATA_WIDTH - 1 downto 0), 
P_out12 => reg_array_add(12)(2*DATA_WIDTH - 1 downto 0), 
P_out13 => reg_array_add(13)(2*DATA_WIDTH - 1 downto 0), 
P_out14 => reg_array_add(14)(2*DATA_WIDTH - 1 downto 0), 
P_out15 => reg_array_add(15)(2*DATA_WIDTH - 1 downto 0), 
P_out16 => reg_array_add(16)(2*DATA_WIDTH - 1 downto 0), 
P_out17 => reg_array_add(17)(2*DATA_WIDTH - 1 downto 0), 
P_out18 => reg_array_add(18)(2*DATA_WIDTH - 1 downto 0), 
P_out19 => reg_array_add(19)(2*DATA_WIDTH - 1 downto 0), 
P_out20 => reg_array_add(20)(2*DATA_WIDTH - 1 downto 0), 
P_out21 => reg_array_add(21)(2*DATA_WIDTH - 1 downto 0), 
P_out22 => reg_array_add(22)(2*DATA_WIDTH - 1 downto 0), 
P_out23 => reg_array_add(23)(2*DATA_WIDTH - 1 downto 0), 
P_out24 => reg_array_add(24)(2*DATA_WIDTH - 1 downto 0), 
P_out25 => reg_array_add(25)(2*DATA_WIDTH - 1 downto 0), 
P_out26 => reg_array_add(26)(2*DATA_WIDTH - 1 downto 0), 
P_out27 => reg_array_add(27)(2*DATA_WIDTH - 1 downto 0), 
P_out28 => reg_array_add(28)(2*DATA_WIDTH - 1 downto 0), 
P_out29 => reg_array_add(29)(2*DATA_WIDTH - 1 downto 0), 
P_out30 => reg_array_add(30)(2*DATA_WIDTH - 1 downto 0)); 
 
out_reg_199: register_N 
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)  
port map(A => reg_array_add(30)(2*DATA_WIDTH - 1 downto 0), clk => clk, rst_n => fla4, 
en => flaa1, out_A  => Pout(30)(2*DATA_WIDTH - 1 downto 0));  
 
parti: for i in 0 to NUM - 2 generate 
out_reg_i: serial_out 
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)  
port map(A => reg_array_add(i)(2*DATA_WIDTH - 1 downto 0), B => 
Pout(i+1)(2*DATA_WIDTH - 1 downto 0), clk => clk, rst_n => fla4, en => en1,  
en1=>flaa1, en2 => flaa11, out_A => Pout(i)(2*DATA_WIDTH - 1 downto 0));   
end generate;  
 
sig11: signal_N 
port map(flaa1, clk, fla4, en1, flaa11); 
 
sig12: register_three 
port map(flaa11, clk, fla4, en1, fla6);  
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mulsig: multiplex_sig  
generic map(DATA_WIDTH_m => NUM)  
port map(fla21, sig_out1, clk, fla4, flaa11, fla5, fla5, sig_out1);  
 
sig_WC: register_WC 
port map(fla5, clk, rst, fla6, fla4); 
 
sign13: register_N_sig_four 
port map(flaa1, clk, rst, en1, fla7);  
 
reg14: signal_N_com 
generic map(DATA_WIDTH_m => NUM)  
port map(fla2, clk, fla4, flaa1, fla21); 
  
P_out <= Pout(0)(2*DATA_WIDTH - 1 downto 0);   
   
input_flag <= flaa11; 
out_flag <= fla3; 
 
end circuits; 
 

------------------  threshold calculation for spike detection  ------------- 
entity calc_std is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
en_low: in std_logic; 
num: in std_logic_vector (1 downto 0); 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
flag: out std_logic; 
P_out : out std_logic_vector (4 downto 0)); 
end calc_std; 
architecture circuits of calc_std is 
   
component register_N is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
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component sqroot is  
port ( clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
P : in std_logic_vector(9 downto 0); 
U : out std_logic_vector(4 downto 0));  
end component; 
 
component Mult is 
generic (DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);     -- DATA WIDTH    
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
X : in std_logic_vector (DATA_WIDTH_m-1 downto 0); 
Y : in std_logic_vector (DATA_WIDTH_n-1 downto 0); 
P_out : out std_logic_vector (DATA_WIDTH_m + DATA_WIDTH_n -1 downto 0)); 
end component; 
 
component adder_2in1 is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
A : in std_logic_vector (DATA_WIDTH-1 downto 0); 
B : in std_logic_vector (DATA_WIDTH-1 downto 0); 
Add_out : out  std_logic_vector (DATA_WIDTH-1 downto 0)); 
end component; 
 
component counter IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: in std_logic_vector (1 downto 0); 
CP:OUT std_logic); 
END component; 
 
component counter2 IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: in std_logic_vector (1 downto 0); 
CP:OUT std_logic); 
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END component; 
 
component shift_register_a is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk : in std_logic; 
rst : in std_logic; 
en : in std_logic; 
din : in std_logic_vector (DATA_WIDTH-1 downto 0); 
num: in std_logic_vector (1 downto 0); 
end component; 
 
component Mult_C is 
generic (DATA_WIDTH_m : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
X : in std_logic_vector (DATA_WIDTH_m-1 downto 0); 
Y : in std_logic_vector (DATA_WIDTH_m-1 downto 0); 
P_out : out std_logic_vector (DATA_WIDTH_m + DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component register_5 is 
port( 
A: in std_logic_vector(4 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
fla: out std_logic; 
Out_A: out std_logic_vector(4 downto 0)); 
end component; 
 
component register_10_cov is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(9 downto 0)); 
end component;  
 
component register_20_cov is 
generic ( DATA_WIDTH : integer); 
port( 
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A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(2*DATA_WIDTH-1 downto 0)); 
end component; 
 
component multiplex_ab is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_low: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
signal X1: std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal T1: std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal T11: std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal T12: std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal T2: std_logic_vector( 2* DATA_WIDTH - 1 downto 0); 
signal T3: std_logic_vector(2* DATA_WIDTH-1 downto 0); 
signal T4,T5,T51,T6, T61: std_logic_vector(2* DATA_WIDTH-1 downto 0); 
signal T14, T16: std_logic_vector(DATA_WIDTH-1 downto 0); 
signal T13, T15, T17: std_logic_vector(2* DATA_WIDTH-1 downto 0); 
 
signal T7: std_logic_vector(9 downto 0); 
signal T8: std_logic_vector(4 downto 0); 
signal T9: std_logic_vector(4 downto 0); 
signal sig4: std_logic_vector(DATA_WIDTH-1 downto 0); 
signal fla, fla1, fla2, fla3, fla4, fla41,fla5, fla6, fla7: std_logic; 
 
begin 
sig4 <= (others => '1'); 
 
mul: Mult_C  
generic map(DATA_WIDTH_m => DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => en,X => X, Y => X, P_out => T1); 
            
add: adder_2in1 
generic map(DATA_WIDTH => 2 * DATA_WIDTH)  
port map (clk, rst, en, T1, T2, T2); 
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reg1: register_N 
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)  
port map(T2, clk, rst, en,  T3);    
 
count: counter port map(clk, rst, en, num, fla); 
  
count2: counter2 port map(clk, rst, en, num, fla7); 
 
shif: shift_register_a 
generic map(DATA_WIDTH => 2*DATA_WIDTH)  
port map(clk,rst,  fla,T3, num, T4); 
 
reg2: register_N 
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)  
port map(T4, clk, rst, en,  T5); 
       
reg21: register_N 
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)  
port map(T5, clk, rst, en,  T51); 
 
count1: counter port map(clk, rst, en, num, fla1);  --en_low 
   
con_reg: register_20_cov 
generic map(DATA_WIDTH => DATA_WIDTH) --en_low 
port map(X, clk, rst, en,  X1); 
       
add1: adder_2in1 
generic map(DATA_WIDTH => 2*DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => en, A=> X1, B => T11, Add_out => T11);  
 
reg11: register_N 
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)   
port map(T11, clk, rst, en,  T12); 
 
shif1: shift_register_a 
generic map(DATA_WIDTH => 2*DATA_WIDTH)  
port map(clk,rst, fla1 ,T12, num,  T13);          
 
reg12: register_10_cov 
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)  
port map(T13, clk, rst, en,  fla4, T14); --en_low 
       
mul1: Mult_C  
generic map(DATA_WIDTH_m => DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => en,X => T14, Y => T14, P_out => T15);  
        
reg13: register_10_cov 
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generic map(DATA_WIDTH_m => 2*DATA_WIDTH)  
port map(T15, clk, rst, en,  fla41, T16);  --en_low 
        
mul2: Mult_C  
generic map(DATA_WIDTH_m => DATA_WIDTH)  
 port map (clk =>clk, rst => rst, en => en, X => T16, Y => sig4, P_out => T17);      
 
add2: adder_2in1 
generic map(DATA_WIDTH => 2*DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => en, A => T51, B => T17, Add_out => T6);  
 
multi1:  multiplex_ab 
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)  
port map (A => T51, B => T6, clk =>clk, rst_n => rst, en => en, en_low => en, out_flag => 
fla3, Out_A=> T61); --en_Low 
  
reg14: register_10_cov 
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)  
port map(T61, clk, rst, fla3, fla5, T7); 
       
sqr: sqroot port map(clk, rst, en, T7, T8); 
 
reg5: register_5 port map(T8,clk, rst, fla5, fla6, T9); 
 
P_out <= T9; 
flag <= fla7; 
 
end circuits; 
 
--------------- detection ------------------ 
entity detection is 
generic (DATA_WIDTH : integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_d: in std_logic; 
X : in std_logic_vector(DATA_WIDTH-1 downto 0); 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH -1 downto 0); 
num_out: out std_logic_vector(1 downto 0); 
flag_out: out std_logic); 
end detection; 
 
architecture behavior of detection is 
signal flag1: std_logic; 
signal flag2: std_logic_vector(1 downto 0); 

 



195 

signal a1: std_logic_vector(DATA_WIDTH - 1 downto 0); 
 
begin 
a1(DATA_WIDTH - 1)<= '1'; 
a1(DATA_WIDTH - 2 downto 0)<= (others =>'0'); 
 
process(clk, rst, en) 
begin 
if(rst = '1') then 
flag1 <='0'; 
flag2 <= "00"; 
else if (clk'event and clk='1') then 
      if (en = '1') then 
           if(en_d = '1') then 
             flag1 <= '1'; 
             if( X(DATA_WIDTH - 1) = '0') then  
               if((X > A) or(X = A)) then 
               flag2 <= "01"; 
               else 
               flag2 <= "00"; 
               end if; 
            else if(X = a1) then  
                flag2 <= "00"; 
                else if((X < B) or (X = B)) then 
                    flag2 <= "10"; 
                    else 
                    flag2 <= "00"; 
                    end if ; 
                end if; 
            end if; 
         Else 
         flag2 <= "00"; 
         end if;          
       else 
          flag2 <= "11"; 
          flag1 <= '0'; 
       end if; 
   end if;  
end if; 
end process; 
   
num_out <= flag2;   
flag_out <= flag1; 
     
end behavior;   
 
------------  sensing matrix generator and data compression  -------- 
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entity whole_compression_32 is 
generic (DATA_WIDTH: integer; NUM: integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_f: in std_logic; 
X : in std_logic_vector(DATA_WIDTH - 1 downto 0); 
Y : in  std_logic_vector(DATA_WIDTH - 1 downto 0); 
num_in: in std_logic_vector(1 downto 0); 
flag_out: out std_logic; 
flag_out_en: out std_logic_vector (NUM - 1 downto 0); 
flag_out_com: out std_logic_vector (NUM -1 downto 0); 
P_out0 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out3 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out4 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out5 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out6 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out7 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out8 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out9 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out10 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out11 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out12 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out13 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out14 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out15 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out16 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out17 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out18 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out19 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);      
P_out20 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out21 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out22 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out23 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out24 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out25 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out26 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out27 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out28 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out29 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out30 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0)); 
end whole_compression_32; 
 
architecture circuits of whole_compression_32 is 

 



197 

component add_com_unit_two is 
generic (DATA_WIDTH: integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
en_f: in std_logic; 
X : in std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
Y : in std_logic_vector(DATA_WIDTH - 1 downto 0); 
flag_out1: out std_logic; 
flag_out2: out std_logic; 
flag_out3: out std_logic; 
flag_out4: out std_logic; 
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0)); 
end component; 
 
component register_20_cov_com is 
generic ( DATA_WIDTH : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(2*DATA_WIDTH-1 downto 0)); 
end component; 
 
component not_reg is 
Port ( clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; 
b : in std_logic; 
bo : out std_logic); 
end component; 
 

component register_N_Neg is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_f: in std_logic; 
en_x: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
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end component; 
component register_N is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component register_Neg_follow is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component register_N_sig is 
generic ( DATA_WIDTH_m : integer); 
port( 
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0); 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
out_flag: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0)); 
end component; 
 
component counter5 IS 
PORT( 
CLK :IN std_logic; 
rst_n :IN std_logic; 
en: in std_logic; 
num: in std_logic_vector (1 downto 0); 
CP:OUT std_logic); 
END component; 
 
component judge is 
generic ( NUM: integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
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en: in std_logic; -- 0 is non-work, 1 is work 
X : in std_logic_vector(NUM - 1 downto 0); 
Out_X: out std_logic_vector(NUM-1 downto 0)); 
end component; 
 
signal X1 : std_logic_vector(2*DATA_WIDTH - 1 downto 0); 
signal fla: std_logic; 
signal sig_a : std_logic_vector(NUM - 1 downto 0);  -- enbale signal 
signal sig_b : std_logic_vector(NUM - 1 downto 0);  -- comparable signal 
signal sig, sig1, sig2 : std_logic_vector(NUM - 1 downto 0);   
signal sig_d : std_logic_vector(NUM - 1 downto 0);  -- addition signal 
signal sig_d1 : std_logic_vector(NUM - 1 downto 0);  -- addition signal 
signal sig_e : std_logic_vector(NUM - 1 downto 0);  -- enable signal 
type M_array is array (0 to NUM - 1) of std_logic_vector (2*DATA_WIDTH - 1 downto 0); 
signal reg_array_add : M_array;   -- addition results 
signal reg_array_a : M_array;     -- first register data 
signal reg_array_b : M_array;     -- second register data 
signal reg_array_c : M_array;     -- thirst lever data 
 
begin 
reg: register_20_cov_com 
generic map(DATA_WIDTH => DATA_WIDTH)  
port map (A => X, clk =>clk, rst_n => rst, en => en, Out_A => X1);    
   
parti: for i in 1 to NUM generate 
part1 : add_com_unit_two 
generic map(DATA_WIDTH => DATA_WIDTH)  
port map (clk =>clk, rst => rst, en => en_f, en_f => sig(i-1), X => X1, Y => Y, flag_out1 => 
sig_a(i-1), flag_out2 => sig_b(i-1), flag_out3 => sig_e(i-1) , flag_out4 =>sig_d(i-1), P_out1 => 
reg_array_a(i-1)(2*DATA_WIDTH - 1 downto 0), P_out2 => reg_array_add(i-
1)(2*DATA_WIDTH - 1 downto 0));  
 
end generate; 
ju: judge  
generic map(NUM => NUM)  
port map (clk =>clk, rst => rst, en => en_f, X => sig_b, Out_X => sig);    
   
count: counter5 port map(clk, rst, en_f, num_in, fla); 
 
P_out0 <= reg_array_add(0)(2*DATA_WIDTH - 1 downto 0); 
P_out1 <= reg_array_add(1)(2*DATA_WIDTH - 1 downto 0); 
P_out2 <= reg_array_add(2)(2*DATA_WIDTH - 1 downto 0); 
P_out3 <= reg_array_add(3)(2*DATA_WIDTH - 1 downto 0); 
P_out4 <= reg_array_add(4)(2*DATA_WIDTH - 1 downto 0); 
P_out5 <= reg_array_add(5)(2*DATA_WIDTH - 1 downto 0); 
P_out6 <= reg_array_add(6)(2*DATA_WIDTH - 1 downto 0); 
P_out7 <= reg_array_add(7)(2*DATA_WIDTH - 1 downto 0); 
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P_out8 <= reg_array_add(8)(2*DATA_WIDTH - 1 downto 0); 
P_out9 <= reg_array_add(9)(2*DATA_WIDTH - 1 downto 0); 
P_out10 <= reg_array_add(10)(2*DATA_WIDTH - 1 downto 0); 
P_out11 <= reg_array_add(11)(2*DATA_WIDTH - 1 downto 0); 
P_out12 <= reg_array_add(12)(2*DATA_WIDTH - 1 downto 0); 
P_out13 <= reg_array_add(13)(2*DATA_WIDTH - 1 downto 0); 
P_out14 <= reg_array_add(14)(2*DATA_WIDTH - 1 downto 0); 
P_out15 <= reg_array_add(15)(2*DATA_WIDTH - 1 downto 0); 
P_out16 <= reg_array_add(16)(2*DATA_WIDTH - 1 downto 0); 
P_out17 <= reg_array_add(17)(2*DATA_WIDTH - 1 downto 0); 
P_out18 <= reg_array_add(18)(2*DATA_WIDTH - 1 downto 0); 
P_out19 <= reg_array_add(19)(2*DATA_WIDTH - 1 downto 0); 
P_out20 <= reg_array_add(20)(2*DATA_WIDTH - 1 downto 0); 
P_out21 <= reg_array_add(21)(2*DATA_WIDTH - 1 downto 0); 
P_out22 <= reg_array_add(22)(2*DATA_WIDTH - 1 downto 0); 
P_out23 <= reg_array_add(23)(2*DATA_WIDTH - 1 downto 0); 
P_out24 <= reg_array_add(24)(2*DATA_WIDTH - 1 downto 0); 
P_out25 <= reg_array_add(25)(2*DATA_WIDTH - 1 downto 0); 
P_out26 <= reg_array_add(26)(2*DATA_WIDTH - 1 downto 0); 
P_out27 <= reg_array_add(27)(2*DATA_WIDTH - 1 downto 0); 
P_out28 <= reg_array_add(28)(2*DATA_WIDTH - 1 downto 0); 
P_out29 <= reg_array_add(29)(2*DATA_WIDTH - 1 downto 0); 
P_out30 <= reg_array_add(30)(2*DATA_WIDTH - 1 downto 0); 
 
flag_out_en <= sig_e; 
flag_out_com <= sig;   
flag_out <= fla; 
       
end circuits; 
 
-----------  Comparator for compression block ---------- 
entity comparator is 
generic ( DATA_WIDTH : integer); 
port( 
clk: in std_logic; 
rst_n: in std_logic; 
en: in std_logic; 
en_flag: in std_logic; 
A: in std_logic_vector(DATA_WIDTH -1 downto 0); 
B: in std_logic_vector(DATA_WIDTH -1 downto 0); 
C: in std_logic_vector(DATA_WIDTH -1 downto 0); 
out_flag: out std_logic; 
out_flag_b: out std_logic; 
Out_A: out std_logic_vector(DATA_WIDTH -1 downto 0); 
Out_B: out std_logic_vector(DATA_WIDTH -1 downto 0)); 
end comparator; 
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architecture behavior of comparator is 
signal Aout, Bout, zero, nul: std_logic_vector(DATA_WIDTH -1 downto 0); 
signal flag, flag1: std_logic; 
 
begin 
zero <= (others => '0');  
nul (DATA_WIDTH -1)<= '1'; 
nul (DATA_WIDTH - 2 downto 0)<= (others =>'0'); 
  
process(clk, rst_n, en) 
  begin 
     if(rst_n = '1') then 
        Aout <= nul; --(others => '0'); 
        Bout <= nul; --(others => '0'); 
        flag <='0'; 
        flag1<= '0'; 
     else if (clk'event and clk='1') then 
         if (en = '1') then 
           if(A = nul) then 
             flag <= '0'; 
             Aout <= nul; 
             flag1 <= '0'; 
             Bout <= A; 
           else if(B = zero and C= zero ) then --and en_flag = '0' ) then 
               flag <= '1'; 
               Aout <= A; 
               flag1 <= '0'; 
               Bout <= nul; 
              else if( (B(DATA_WIDTH -1)='1' and C(DATA_WIDTH -1)='0') ) then  
                   if( ((A(DATA_WIDTH -1)='0') and ((A < C) or ( A = C))) or ((A(DATA_WIDTH -
1)='1') and ((A > B) or ( A = B))) ) then 
                     flag <= '1'; 
                      flag1 <= '0'; 
                      Aout <= A; 
                      Bout <= nul; 
                    else 
                      flag <= '0'; 
                      flag1 <= '1'; 
                      Aout <= (others => '0'); 
                      Bout <= A; 
                    end if; 
                 
             else if ( (( A > B) or ( A = B)) and ((A < C) or ( A = C))) then 
                 flag <= '1'; 
                 flag1 <= '0'; 
                 Aout <= A; 
                 Bout <= nul; 
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                 else 
                 flag <= '0'; 
                 flag1 <= '1'; 
                 Aout <= (others => '0'); 
                 Bout <= A; 
                 end if; 
            end if; 
         end if; 
      end if; 
       else 
           flag <= '0'; 
           flag1 <= flag1; 
           Aout <=(others => '0') ; 
           Bout <= nul;        
       end if; 
    end if;  
end if; 
end process; 
   
Out_A <= Aout; 
Out_B <= Bout; 
Out_flag <= flag;  
Out_flag_b <= flag1; 
 
end behavior; 
 
-----------  judger for compression block  ----------- 
entity judge is 
generic ( NUM: integer);     -- DATA WIDTH 
Port (  
clk: in std_logic; 
rst: in std_logic; 
en: in std_logic; -- 0 is non-work, 1 is work 
X : in std_logic_vector(NUM - 1 downto 0); 
Out_X: out std_logic_vector(NUM-1 downto 0)); 
end judge; 
 
architecture behavior of judge is 
signal X1: std_logic_vector(NUM-1 downto 0); 
signal nu: integer; 
 
begin 
process(clk, rst, en) 
  begin 
     if(rst = '1') then        
        X1 <=(others => '0'); 
        nu <= 0;    
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     else if (clk'event and clk='1') then 
          if(en = '1')then 
            if(nu = 1) then  
              for i in 0 to NUM -2 loop 
                 if(X(i) = '1') then 
                   X1(i) <= '1'; 
                   X1(i-1 downto 0) <=(others => '0');  
                   X1(NUM-2 downto i+1) <=(others => '0'); 
                   exit; 
                end if; 
               end loop;  
               nu <= nu+1; 
            else  
              X1 <= (others => '0');   
              nu <= nu +1;                
               if(nu = 3) then 
                 nu <=0; 
               end if; 
          end if; 
         else 
             nu <= 0; 
             X1 <= (others => '0');              
         end if; 
       end if; 
end if; 
end process; 
 
Out_X <= X1;  
 
end behavior; 
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