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RÉSUMÉ 

Lorsqu’un patient a une tumeur au cerveau, la première étape consiste souvent à évaluer le 

grade de celle-ci grâce à des méthodes d’imagerie conventionnelles, soit l’imagerie par résonance 

magnétique ou le CT-scan. Un des traitements standards qui suit le diagnostic est la résection de la 

tumeur par chirurgie à crâne ouvert, suivi de chimiothérapie et/ou radiothérapie. Toutefois, il est 

parfois nécessaire, avant de se rendre à un tel extrême, de procéder à une biopsie du cerveau. Les 

principales indications pour une biopsie sont les lésions profondes, les tumeurs traitées seulement 

par radiothérapie et chimiothérapie, la présence d’une infection ou bien une santé trop fragile du 

patient. Cette procédure minimalement invasive a pour objectif de récolter un échantillon tumoral 

afin d’obtenir davantage d’informations pathologiques et d’émettre un diagnostic plus précis que 

ce qui est possible d’obtenir avec les techniques d’imagerie conventionnelles. Comme toute 

procédure chirurgicale, les biopsies aux cerveaux ont leurs limitations et leurs risques. Un des plus 

grands risques liés à la biopsie est l’hémorragie causée par la rupture d’un vaisseau sanguin lors de 

la prise d’échantillon. 

Dans le cadre de cette maîtrise, un système d’imagerie optique a été intégré sur une aiguille 

de biopsie commerciale. Ce système exploite la tomographie par optique diffuse qui est utilisée 

avec une nouvelle configuration. Cette configuration a été préalablement testée avec une sonde 

tomographique qui comporte 12 paires de fibres, une d’illumination et une de détection, sur 360°. 

Au bout de ces fibres se trouvent des prismes permettant l’illumination à 90° par rapport à la 

longueur de la sonde. Il a été démontré dans un article publié dans Optics Letters que ce design 

optique était apte à détecter une ou deux inclusions absorbantes de 1mm de diamètre dans un 

fantôme biologique composé d’Intralipide 1% comme milieu diffus et de tiges de carbone comme 

absorbeurs. Suite à cela, un protocole de fabrication a été élaboré afin de pouvoir intégrer ce design 

optique à une aiguille de biopsie commerciale. La fabrication a ensuite été faite à l’École 

Polytechnique, en collaboration avec Optech. Le prototype intégré comporte 18 fibres, 9 comme 

sources et 9 comme détecteurs, sur un arc de cercle de 200°, évitant ainsi de bloquer la fenêtre de 

biopsie. À la place de prismes, il utilise un seul micromiroir unique pour l’illumination et la 

détection perpendiculaires à l’aiguille. Le prototype a subi des tests de propagation de la lumière 

afin de valider l’homogénéité de l’illumination et la détection en plus de mettre en évidence 

certaines failles du design. Finalement, les tests de détection d’inclusions absorbantes ont été 
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réitérés avec le prototype intégré. Il a été démontré que ce dernier, malgré que les fibres ne couvrent 

pas une circonférence de 360°, est apte à repérer les mêmes configurations d’inclusions que la 

sonde tomographique. Malgré les nombreuses étapes encore nécessaires avant l’intégration du 

prototype intégré en salle d’opération, l’étendue des résultats de ce mémoire montre un avenir 

prometteur pour cette technologie. 
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ABSTRACT 

When a patient has a brain tumor, the first step is assessing its grade through conventional 

imaging methods such as MRI or CT scan. Standard treatments after diagnosis is tumor resection 

using open cranium surgery, followed by chemotherapy and/or radiotherapy. However, before 

going to such extremes, it is sometimes necessary to perform a brain needle biopsy (BNB). The 

main indications for BNB are deep-seated lesions, tumors treatable only with radiotherapy and 

chemotherapy, infections and/or patients with poor health. The goal of this minimally invasive 

procedure is to collect one or more tumor samples in order to obtain further pathological 

information and a more accurate diagnosis than what is available with conventional imaging 

techniques. As any surgical procedure, BNB has its risks and limitations. One of the main risks is 

hemorrhage due to the rupture of a blood vessel during sampling. 

In the scope of this Master’s project, an optical imaging system has been integrated on a 

commercial biopsy needle. This system utilizes diffuse optical tomography, using a new 

configuration. This configuration has initially been tested with a tomographic probe which 

comprises 12 pairs of fibers, an illumination and a detection fiber for each pair, evenly spaced 

around 360 °. Prisms for side illumination and detection are placed at the end of each pairs. An 

article published in Optics Letters has shown that the optical design was able to detect one or two 

absorbing inclusions of 1mm diameter in a biological phantom. This phantom was made of 1% 

intralipid as a diffuse medium and carbon rods as absorbers. Afterwards, a manufacturing protocol 

was developed in order to integrate this optical design on a commercial biopsy needle. The 

prototype was then manufactured at École Polytechnique in collaboration with Optech. The 

integrated prototype has 18 fibers, 9 as sources and 9 as detectors, on an arc of 200°. This 

configuration avoids occluding the sampling window of the biopsy needle. Instead of prisms, it has 

one single micro-mirror for side illumination. The prototype has undergone light propagation tests 

to validate the homogeneity of the illumination and detection and to highlight potential design 

limitations. Finally, the tests with the biological phantom and absorbing inclusions were replicated 

with the integrated prototype. It has been shown that the latter, despite the fact that the fibers do 

not cover 360°, is able to identify the same configurations of inclusions as the tomographic probe. 

Although many steps are still needed before the prototype is used in the operating room, the results 

shown in this thesis shows a promising future for this technology.  
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INTRODUCTION 

En neuro-oncologie, le traitement standard pour les tumeurs au cerveau est une procédure 

chirurgicale menant à l’exérèse aussi complète que possible de la masse tumorale, combinée à de 

la chimiothérapie souvent jumelée à de la radiothérapie. Toutefois, il arrive parfois que les risques 

inhérents à la chirurgie à crâne ouvert soient considérés trop grands, par exemple lorsque le patient 

a une santé trop fragile ou que la tumeur est dans une région inopérable. La pratique clinique 

courante consiste alors à effectuer un prélèvement de tissu local dans le cerveau à l’aide d’une 

aiguille de biopsie. Les échantillons récoltés sont par la suite évalués par un pathologiste afin de 

fournir un diagnostic plus précis comparé à ce qu’il est possible d’obtenir avec les technologies 

d’imagerie conventionnelles, soit l’imagerie par résonance magnétique (IRM) ou la 

tomodensitométrie à rayons X (communément appelé CT-scan) [1], [2]. Pour récolter un 

échantillon de biopsie, l’aiguille est insérée dans le cerveau en suivant une trajectoire déterminée 

grâce aux images préopératoires IRM ou de tomodensitométrie. Une importante limitation des 

biopsies du cerveau est le ciblage inadéquat de la tumeur, résultant en un échantillon non 

représentatif de la pathologie sous-jacente. Afin de limiter ce problème, il est fréquent que de 

multiples échantillons soient prélevés lors d’une même procédure. Malgré cela, les erreurs de 

diagnostic peuvent survenir entre 10% et 30% des cas [3].  D’autre part, un des risques liés aux 

biopsies du cerveau est de provoquer une hémorragie cérébrale suite à la rupture d’un ou plusieurs 

vaisseaux sanguins lors de la prise de l’échantillon. Les études cliniques montrent qu’une 

hémorragie survient dans environ 4.7% des cas, mais ce taux est aussi élevé que 30.7% dans 

certaines études [3], [4]. Le taux de morbidité lié à cette complication, allant des maux de tête aux 

déficits neurologiques, varie selon les études entre 0,7% à 16.1% [5]–[7]. Toutefois, des études 

démontrent que jusqu’à 3.9% des biopsies sont mortelles [3]. 

Premièrement, la tomographie optique diffuse (TOD) est une technologie d’imagerie 

fonctionnelle qui est présentement développée principalement pour l’imagerie du cancer du sein et 

l’imagerie cérébrale fonctionnelle [8]. Elle exploite la propriété de diffusion de la lumière 

permettant d’imager jusqu’à des profondeurs de plusieurs centimètres (~4 cm) dans les tissus 

biologiques, dépendamment de leur absorption. Son but est d’obtenir de l’information spatialement 

et spectralement résolue en lien avec les propriétés optiques des tissus dans le but d’en tirer des 
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informations quantitatives sur les chromophores le composant, soit les principales molécules 

absorbant la lumière dans le visible et le proche-infrarouge. 

Le projet présenté dans ce mémoire se concentre sur l’intégration d’un système d’imagerie 

optique fibré sur une aiguille de biopsie afin de minimiser les risques d’hémorragie. Le système 

d’imagerie, basé sur le principe de tomographie optique diffuse, sera conçu de manière à s’intégrer 

le mieux possible dans la procédure chirurgicale déjà en place dans les centres médicaux. Cette 

maîtrise présente une étude de faisabilité détaillée en ce qui a trait à la détection de vaisseaux 

sanguins à l’aide d’un tel système ainsi que le développement des méthodes de fabrication menant 

à l’intégration du système fibré sur une aiguille de biopsie commerciale. 

Objectifs et hypothèses scientifiques 

L’objectif principal de cette maîtrise est donc d’intégrer le système d’imagerie 

hyperspectral sur l’aiguille de biopsie du cerveau. L’hypothèse principale sur laquelle se base cet 

objectif est que l’utilisation de la tomographie optique diffuse permettra de réduire les risques 

d’hémorragie associés aux biopsies du cerveau. Plus précisément, ce projet se concentre sur la 

réduction d’hémorragies lors de la prise d’échantillons c.-à-d. lorsque le tissu est coupé, et non lors 

de l’insertion de l’aiguille dans le cerveau. Afin d’y arriver, deux objectifs spécifiques ont été 

identifiés pour cette maîtrise. En premier lieu, un nouveau design de TOD devra être validé afin de 

s’assurer qu’il pourra être utilisé pour la détection de vaisseaux sanguins juste avant la prise de la 

biopsie (Objectif 1). La tomographie diffuse conventionnelle exploite une géométrie circulaire qui 

image la région à l’intérieur du cercle composé des sources et détecteurs de lumière. Pour 

l’application de la TOD dans le cadre d’une biopsie, il sera nécessaire d’imager vers l’extérieur 

puisque les fibres optiques devront être positionnées sur l’aiguille de biopsie, ce qui n’avait jamais 

été fait auparavant. Toutefois, en se basant sur la théorie de l’optique diffuse, il a été supposé que 

cette nouvelle géométrie devrait fonctionner tout aussi bien (Hypothèse 1). Ceci sera testé à l’aide 

d’une sonde tomographique, un premier prototype qui n’est pas intégré sur une aiguille de biopsie 

commerciale. Le second objectif de cette maîtrise est de développer et mettre en pratique une 

méthode de fabrication d’un système pour lequel les fibres sont intégrées sur une aiguille 

commerciale (Objectif 2) en supposant que les performances soient comparables au prototype 

initial du premier objectif (Hypothèse 2). Des contraintes sévères doivent être prises en compte 

pour l’utilisation éventuelle d’un tel système chez l’humain. Outre la biocompatibilité et la 
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possibilité de stérilisation du prototype, ce dernier ne devrait pas augmenter le diamètre externe de 

l’aiguille à plus de 3mm. L’aiguille actuelle ayant un diamètre de 2,11 mm laissant ainsi 0,89 mm 

pour l’épaisseur supplémentaire du système. 

Organisation générale du mémoire 

Le présent mémoire rapporte les travaux effectués pour une maîtrise ès sciences appliquées 

(M.Sc.A.) en génie biomédical dans le Laboratoire de radiologie optique à l’École Polytechnique 

de Montréal. Les travaux ont été effectués sous la supervision du Professeur Frédéric Leblond du 

département de génie physique de Polytechnique Montréal et du Centre de recherche du centre 

hospitalier de l’Université de Montréal (CRCHUM). 

Le premier chapitre présente une revue de littérature couvrant les notions théoriques 

nécessaires à la compréhension de ce mémoire. Une introduction à l’anatomie et la physiologie du 

cerveau et du cancer y est présentée, en plus des notions de base en lien avec l’interaction de la 

lumière visible et proche infrarouge avec les tissus biologiques. La tomographie optique diffuse est 

aussi introduite, incluant un résumé des différentes méthodes d’imagerie et de reconstruction ainsi 

que de ses applications principales. La procédure et les limites des biopsies au cerveau sont 

également décrites. Finalement, un bref aperçu est donné des technologies existantes pour 

l’application neurochirurgicale envisagée. 

La méthodologie du projet est exposée au Chapitre 2 et est subdivisée en trois grandes sous-

sections. Premièrement, le montage expérimental et la sonde tomographique sont présentés. La 

deuxième section de la méthodologie présente en détail la méthode de fabrication élaborée dans le 

cadre de l’objectif 2 de cette maîtrise. La troisième et dernière section de ce chapitre présente les 

protocoles expérimentaux des tests effectués au cours de cette maîtrise afin de tester les hypothèses 

scientifiques 1 et 2. 

Le Chapitre 3 est une reproduction d’un article scientifique dont je suis la première auteure 

et qui fut publié en janvier 2015 dans le journal Optics Letters [9]. Il présente les résultats 

principaux obtenus avec la sonde tomographique en vue de satisfaire au premier objectif spécifique 

de cette maîtrise. Le Chapitre 4 présente le prototype intégré et les résultats de divers tests effectués 

avec celui-ci, ce qui répond cette fois au second objectif de la maîtrise. 
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La discussion du Chapitre 5 revoit les objectifs spécifiques en fonction des résultats obtenus 

et de ce qui a été accompli au cours de cette maîtrise. En plus de cette discussion critique, des 

suggestions d’amélioration sont présentées pour toutes les étapes critiques de ce projet, en plus des 

perspectives futures pour celui-ci. 

Finalement, en annexe, on retrouve certains détails de la méthode de fabrication qui ont été 

considérés trop lourds pour le texte principal.
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CHAPITRE 1 REVUE DE LITTÉRATURE 

1.1 Le cancer du cerveau 

On estime qu’environ 1,5% des nouveaux cas de cancer au Canada seront des cancers de 

l’encéphale [10]. Malgré le fait que cela ne représente qu’une minorité des cas, le cancer au cerveau 

peut toutefois avoir un grand impact sur la vie des personnes atteintes. Parmi les symptômes 

associés à cette maladie, on retrouve dans la plupart des cas des maux de tête sévères ainsi que des 

épisodes épileptiques. Il existe d’autres symptômes, tels que l’aphasie et  l’hémiparésie, qui sont 

souvent des indicateurs de l’emplacement de la tumeur [11]. Outre ces symptômes, une des 

conséquences les plus graves pour les cas les plus sévères (par exemple, le glioblastome 

multiforme) est la survie limitée des patients qui est en moyenne de 11,8 mois après le diagnostic 

[12]. Afin d’établir un diagnostic, l’imagerie conventionnelle est utilisée, soit l’imagerie par 

résonance magnétique (IRM) ou la tomodensitométrie (communément appelée CT-scan). 

Normalement, pour les cancers du cerveau, le traitement choisi est l’exérèse de la masse tumorale 

par chirurgie à crâne ouvert. Toutefois, lorsque la santé du patient est fragile ou pour une tumeur 

inopérable, les risques de la chirurgie à crâne ouvert sont très grands. Dans ces cas, il est préférable 

de faire une biopsie au cerveau afin de préciser davantage le diagnostic avec une étude pathologique 

et ainsi aider à décider du traitement le plus approprié, basé sur une analyse des risques et bénéfices 

[2]. Selon l’Organisation mondiale de la santé (WHO de l’anglais World Health Organisation), on 

peut classer dans quatre catégories les gliomes qui sont les types de tumeurs les plus fréquentes. 

Les gliomes de bas grade (I et II) ont tendance à être moins malins et sont associés à de meilleures 

chances de survie que les grades III et IV [13]. Une classification précise de la tumeur aura donc 

un impact important sur le pronostic du patient puisqu’elle détermine le type de traitement qu’il 

recevra.  

1.1.1 Anatomie du cerveau 

Le cerveau est la structure biologique la plus complexe de l’être humain et est le siège des 

fonctions motrices et cognitives. Il accomplit ses fonctions grâce à des centaines de milliards de 

neurones, l’unité fonctionnelle principale du cerveau. La composition du cerveau peut se diviser 

en deux grandes catégories, soit la matière grise (aussi appelée cortex) et la matière blanche. Le 

cortex cérébral est le sommet hiérarchique du système nerveux et est composé du corps cellulaire 
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des neurones, en plus des dendrites et des axones amyélinisés. La matière blanche, quant à elle, est 

composée essentiellement des axones myélinisés regroupés en faisceaux. C’est dans ces axones 

que se propage l’influx nerveux afin de se rendre au prochain neurone. C’est par les nombreuses 

connexions entre ces neurones que l’on peut effectuer les tâches simples et plus complexes de la 

vie courante. Par exemple, l’utilisation de cortex visuel pour reconnaitre un objet peut nécessiter 

jusqu’à un millier de neurones. Il est également important de mentionner les gliocytes, qui sont dix 

fois plus nombreux que les neurones dans le système nerveux et représentent environ 50% de la 

masse de l’encéphale. Il existe plusieurs types de gliocytes dont le rôle principal est de soutenir et 

former l’environnement des neurones. En plus de cela, ces cellules gliales isolent les neurones 

électriquement, guident et favorisent leur croissance tout en assurant leur intégrité [14]. La majorité 

des cancers au cerveau émergent des cellules gliales. 

Afin de pouvoir bien fonctionner, le cerveau a besoin d’un grand apport en nutriments (par 

exemple les lipides, les vitamines, etc.) et en oxygène, qui sont transportés par le sang. En 

conséquence, le cerveau est grandement vascularisé, tel qu‘illustré schématiquement à la Figure 

1-1. Dans les vaisseaux sanguins, les molécules sont transportés dans les globules rouges, plus 

précisément par la protéine qu’elle contient, appelée hémoglobine. Ses principales fonctions sont 

le transport de l’oxygène vers les cellules du corps humain et le transport du gaz carbonique des 

divers organes vers les poumons [15]. Il existe plusieurs configurations de l’hémoglobine puisque 

cette dernière a la capacité à pouvoir se lier à diverses molécules gazeuses. Lorsque l’oxygène est 

lié à celle-ci, elle prend la configuration de l’oxyhémoglobine (HbO2) alors que lorsque cette 

molécule se dissocie, elle reprend sa configuration initiale, la désoxyhémoglobine (Hb). Le sang 

oxygéné voyage dans les artères alors que les veines transportent le sang majoritairement 

désoxygéné. Les artères carotides communes droite et gauche alimentent le cerveau en se 

subdivisant en plusieurs artères plus petites, qui à leur tour se subdivisent en plusieurs artérioles 

qui, finalement, deviennent des capillaires. Les capillaires sanguins sont les vaisseaux les plus 

petits du corps humain (entre 5 et 10 μm de diamètre) où se font les échanges entre l’hémoglobine 

et les organes. Afin de pouvoir accomplir cette tâche efficacement, ces petits vaisseaux se 

regroupent en ce qui est appelé les nids capillaires, soit un réseau qui contient habituellement entre 

10 et 100 capillaires. 
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1.1.2 Vascularisation des tumeurs 

Le cancer se développe suite à de multiples mutations génétiques se produisant dans une ou 

plusieurs cellules du corps humain. Les mécanismes de régularisation de notre corps, tel que décrit 

par Hanahan et Weinberg [16], sont défectueux chez les cellules cancéreuses, ce qui provoque une 

division cellulaire incontrôlée et une plus grande résistance à la mort cellulaire. Cela peut mener à 

la formation d’une masse cellulaire anormale appelée tumeur. La vascularisation joue un rôle 

essentiel dans la croissance des tumeurs solides (à distinguer des tumeurs liquides retrouvées par 

exemple chez les patients atteints de leucémie) puisque les cellules cancéreuses ont besoin d’une 

quantité soutenue de nutriments et d’oxygène [14], [17]. Dans le microenvironnement de la tumeur, 

il y a une grande variété de molécules proangiogéniques qui agissent de concert afin de favoriser 

le développement de nouveaux vaisseaux sanguins de manière beaucoup moins bien organisée que 

le processus normal de néo-vascularisation. Il en résulte la formation de nombreux nouveaux 

capillaires structurellement et fonctionnellement anormaux, créant ainsi des tumeurs hautement et 

chaotiquement vascularisées [18]. Outre la grande vascularisation, certaines tumeurs sont aussi 

 

Figure 1-1 : Vascularisation de la base du cerveau, nommé polygone de Willis chez l’Homme. 

Reproduction d’une lithographie tirée de la 20e édition du livre Anatomy of the Human Body, 

par Henry Gray et publié en 1918. 
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caractérisées par le développement d’une région de nécrose, c’est-à-dire étant composée de cellules 

mortes. Entre autres, il est typique que les glioblastomes (gliomes de grade IV) développent un 

cœur nécrotique entouré d’une capsule hautement vascularisée. Il a d’ailleurs été démontré que la 

présence de nécrose pour ce type de tumeurs est associée avec une moyenne de survie 

considérablement plus courte [13]. 

1.2 Interactions lumière – tissus 

Lorsque la lumière pénètre un tissu biologique, elle interagit avec les molécules qui le 

composent. Il existe plusieurs types d’interactions et il est souvent possible d’en tirer parti en 

utilisant des techniques spécialisées afin de générer un effet thérapeutique et/ou d’obtenir de 

l’information physiologique et moléculaire. Par exemple, la lumière peut être utilisée de manière 

destructive, tels que pour la photothérapie et la chirurgie laser, ou bien elle peut être utilisée à 

intensité moindre afin de caractériser les tissus sans les endommager [19]. Les deux types 

d’interactions les plus importantes dans le cadre de ce mémoire sont la diffusion élastique, qui est 

la propriété nécessaire à l’obtention d’une image en tomographie optique diffuse, et l’absorption, 

qui est principalement à la base du contraste optique étudié. 

1.2.1 Diffusion élastique 

La diffusion élastique est l’interaction la plus probable lorsque les tissus biologiques sont 

exposés à de la lumière visible ou proche infrarouge. Elle se caractérise par un changement de 

direction d’un photon se propageant dans un milieu, sans perte d’énergie. Les changements de 

direction d’un photon sont causés par les changements d’indice de réfraction lorsque le photon 

passe d’un milieu à un autre. Dans les tissus biologiques, ces interfaces se retrouvent généralement 

entre les milieux intra- et extracellulaires ainsi qu’entre le cytoplasme et les organelles [19]. 

Lorsqu’il n’y a qu’un seul diffuseur, l’interaction lumière-tissus est définie par une section 

efficace de diffusion σs (mm2). Pour un ensemble de diffuseurs considérés identiques et distribués 

uniformément, il est possible de multiplier la section efficace à la quantité de diffuseurs par unité 

de volume ρ (mm3) pour obtenir le coefficient de diffusion μs : 

 𝜇𝑠 = 𝜌𝜎𝑠. (1.1) 
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Ce coefficient représente le nombre d’événements de diffusion par unité de longueur, 

habituellement exprimé en mm-1 [19]–[21].  

Dans les tissus biologiques, il y des milliers de diffuseurs dont la taille et la géométrie 

varient. Ainsi, pour modéliser la diffusion, il est nécessaire de faire appel à des modèles 

mathématiques permettant de traiter ce phénomène en termes de seulement quelques paramètres 

effectifs. Il existe principalement deux mécanismes de diffusion, soit la diffusion de Rayleigh et la 

diffusion de Mie. Le modèle de Rayleigh consiste en une approximation de la diffusion de Mie et 

n’est valide que lorsque la taille des diffuseurs est beaucoup plus petite que la longueur d’onde de 

la lumière incidente. Ce cas spécial donne lieu à une diffusion qui est principalement isotropique. 

À l’inverse, on utilise le modèle de Mie lorsque les particules sont de tailles égales ou comparables 

à la longueur d’onde. La diffusion est alors généralement anisotropique, c’est-à-dire que l’onde 

incidente n’est pas redirigée de manière homogène autour du diffuseur. Dépendamment de la taille 

des diffuseurs par rapport à la longueur d’onde, les photons peuvent être dirigés davantage vers 

l’avant ou vers l’arrière. Le coefficient d’anisotropie g (sans unités) permet de définir cette 

dépendance directionnelle. Plus le coefficient g tend vers -1, plus la diffusion tend à être dirigée 

vers l’arrière. À l’inverse, lorsque g=1, la diffusion disparait et les photons incidents continuent 

leur chemin selon leur angle d’incidence [19], [21]. En règle générale, le coefficient d’anisotropie 

dans les tissus est d’environ 0,9, ce qui implique que la diffusion est majoritairement vers l’avant. 

Lorsque la diffusion est anisotropique, les propriétés diffusantes du milieu peuvent être décrites 

par un facteur de diffusion réduit qui est défini par : 

 𝜇𝑠
′ = (1 − 𝑔)𝜇𝑠 (1.2) 

où μs est le coefficient de diffusion et g est défini comme étant la moyenne du cosinus de la 

distribution angulaire de l’intensité diffusée [20], [21]. La réciproque du coefficient de diffusion 

réduit décrit le libre parcours moyen d’un photon dans le milieu. Ceci peut également être défini 

comme la distance moyenne parcourue par un photon avant que sa propagation devienne aléatoire, 

qui est habituellement de l’ordre de 1 mm dans les tissus biologiques.  

1.2.2 Absorption 

Le deuxième type d’interaction lumière-tissu étudiée dans le cadre de ce mémoire est 

l’absorption. Ce phénomène est caractérisé par un transfert d’énergie du photon à un matériau, ce 
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qui peut être interprété comme une « perte » d’énergie dans le milieu. Or, cette perte est en réalité 

la transformation de l’énergie lumineuse en un autre type d’énergie, typiquement de l’énergie 

thermique qui est diffusée dans les tissus. En optique diffuse, l’absorption est généralement la 

source de contraste la plus exploitée dans les images reconstruites [22], [23]. Tout comme pour la 

diffusion, l’absorption est définie par une section efficace σa (mm2). La multiplication entre la 

concentration d’absorbeur ρ et cette section efficace est proportionnelle au coefficient d’absorption 

μa. Ce dernier, à l’instar du coefficient de diffusion, représente le nombre d’événements 

d’absorption par unité de longueur (mm-1) [19]–[21]. 

Lorsqu’il y a un seul type d’absorbeur, aussi appelé chromophore, dans un milieu, il est 

possible de déterminer le coefficient d’absorption en utilisant la loi de Beer- Lambert : 

 
𝐼(𝑥)

𝐼0
= 𝑒−𝜇𝑎𝑥 (1.3) 

où I(x) est l’intensité détectée, I0 est l’intensité de la lumière incidente et x (mm) la distance entre 

la source et le détecteur de lumière. Une méthode expérimentale possible pour déterminer μa 

consiste à illuminer avec une lumière de longueur d’onde et d’intensité I0 connues une cuvette 

d’épaisseur x contenant le milieu dont on veut déterminer l’absorption. En mesurant I à la sortie de 

la cuvette, il est possible d’isoler μa dans l’équation (1.3) afin d’en déterminer la valeur [19], [21]. 

Concrètement, les tissus biologiques sont constitués de plusieurs chromophores et leur 

concentration varie en fonction du temps (ex. : circulation sanguine) et de l’espace (ex. : tissus 

hétérogènes). Pour pouvoir prendre cela en considération dans le calcul du coefficient μa, il est 

possible d’utiliser l’expression suivante : 

 𝜇𝑎(𝑟, 𝑡, 𝜆) = ln(10) ∑ 𝑐𝑖(𝑟, 𝑡)𝛼𝑖(𝜆)

𝑖

 (1.4) 

où c est la concentration (mol/L) du chromophore i, 𝑟 est la position dans le milieu (mm), t le temps 

(s), α le coefficient d’extinction (L/mol/mm) du milieu étudié et λ la longueur d’onde (nm) de la 

lumière incidente [19]. 
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1.2.2.1 Fenêtre thérapeutique 

Dans les tissus biologiques, il y a quatre principaux chromophores, soit l’eau, les lipides, la 

mélanine et l’hémoglobine. Chacun d’entre eux a un spectre d’absorption caractéristique et 

absorbent plus ou moins en fonction de la longueur d’onde. De ces quatre composantes, l’eau et 

l’hémoglobine sont celles qui nous intéressent davantage. D’une part, puisque ce sont les vaisseaux 

sanguins qui contiennent l’hémoglobine, il s’agit du contraste optique que l’on tient à observer. 

D’autre part, l’eau étant une composante majeure du cerveau, il faut pouvoir minimiser son impact 

le plus possible lors de la prise de mesures. 

En biophotonique, il existe ce qu’on appelle la fenêtre thérapeutique qui est associée aux 

longueurs d’onde situées dans le rouge et le proche infrarouge et pour lesquelles l’absorption dans 

les tissus biologiques est quelques ordres de grandeur plus faibles que la diffusion élastique. Ainsi, 

 

Figure 1-2 : Coefficients d’absorption de l’eau (water), de l’oxyhémoglobine (HbO2), de la 

désoxyhémoglobine (Hb) et du gras (fat) à différentes longueurs d’onde. La ligne verte 

représente le coefficient de diffusion dans les tissus biologiques, où on peut voir qu’il est 

beaucoup plus élevé que l’absorption pour les longueurs d’onde appartenant à la fenêtre 

biologique [79]. 
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entre environ 600nm et 1000nm (valeurs variant selon les sources [8], [19]–[21], [24]–[26]), la 

lumière se propage relativement facilement et loin dans les tissus (voir Figure 1-2), soit jusqu’à 

quelques centimètres dépendant de la concentration molaire des chromophores présents. 

À l’intérieur de la fenêtre thérapeutique, le chromophore qui sera le plus étudié dans le 

cadre de cette maîtrise, soit l’hémoglobine, présente des variations notables et des pics distinctifs 

variant en fonction de sa conformation (HbO2 ou Hb). Ces variations sont intéressantes puisqu’elles 

peuvent permettre de distinguer les artères, ayant du sang oxygéné, des veines dont le sang n’est 

pratiquement plus oxygéné. En effet, la forme très spécifique du spectre d’absorption de 

l’hémoglobine permet de l’identifier sous ses différentes formes à l’aide d’un système de détection 

hyperspectral permettant de détecter la lumière réémise à différentes longueurs d’onde menant à la 

formation d’un spectre [19], [27], [28]. 

1.3 Tomographie optique diffuse 

La tomographie optique diffuse (TOD) est une modalité d’imagerie fonctionnelle qui 

exploite la diffusion de la lumière proche infrarouge dans les tissus biologiques. Contrairement à 

plusieurs technologies d’imageries basées sur l’utilisation de la lumière, la TOD permet d’imager 

sur plusieurs centimètres puisqu’elle ne dépend pas des photons balistiques (photons n’ayant subi 

aucun événement de diffusion), mais bien des photons diffus [8], [20], [26], [29]. Son but est 

d’obtenir de l’information quantitative et spatialement résolue en ce qui a trait aux variations des 

propriétés optiques dans le tissu imagé. En effet, il est possible d’affirmer que l’atténuation du 

signal lumineux est directement reliée à la présence d’absorbeurs et donc d’hémoglobine, dans la 

mesure où une sélection appropriée des longueurs d’onde est effectuée pour distinguer cette 

protéine. Les principales applications de la TOD sont la détection de cancer du sein [30]–[34] et 

l’imagerie fonctionnelle du cerveau [35]–[38]. Dans le premier cas, une résolution spatiale est 

recherchée afin d’identifier la présence d’une tumeur hautement vascularisée. Dans le second cas, 

on désire avoir à la fois une résolution spatiale et temporelle afin de détecter le lieu où il y a une 

augmentation en écoulement sanguin et pouvoir, si possible, faire le lien entre ce dernier et 

l’activité neuronale. 
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Afin de pouvoir faire de la tomographie optique diffuse, il faut généralement illuminer 

l’élément à imager avec une série de sources lumineuses et détecter la lumière qui en sort avec une 

série de détecteurs afin de maximiser le nombre de mesures indépendantes. Pour la plupart des 

géométries d’imagerie, chaque position d’illumination est associée à une acquisition de signaux à 

l’aide de plusieurs détecteurs ayant des positions différentes. Traditionnellement, la TOD utilise 

une disposition circulaire de ses sources et détecteurs disposés en périphérie du tissu à imager tel 

que démontré à la Figure 1-3 [8], [19], [26]. Cette technique est très similaire à celle utilisée pour 

faire un CT-scan. Un balayage circulaire du tissu est effectué menant à un ensemble de données 

tomographiques à partir duquel un problème inverse peut être résolu menant à la reconstruction 

d’images représentant les propriétés optiques du tissu [29]. Pour reconstruire une image, il est 

nécessaire d’avoir plusieurs mesures d’atténuation. En effet, une seule mesure pourrait 

correspondre à des milliers de configurations d’absorbeurs. Or, plus le nombre de mesures 

augmente, plus ce nombre de configurations possibles diminue et c’est pourquoi généralement plus 

un système permet l’acquisition d’un grand nombre de paires source-détecteur, plus l’image sera 

fidèle à la réalité. 

Avant de pouvoir envisager de reconstruire une image, il faut tout d’abord s’assurer de 

comprendre le problème direct, c’est-à-dire la manière dont la lumière se propage dans le milieu 

 

Figure 1-3 : Disposition des sources et détecteurs selon la géométrie standard en TOD. Les 

sources sont allumées séquentiellement et, pour chacune d’entre elles, tous les détecteurs sont 

utilisés. 
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pour chaque paire source-détecteur. Ce modèle permet de prédire en se basant sur un modèle de 

transport de la lumière, la mesure obtenue dans un système pour différentes distributions spatio-

temporelles des paramètres d’absorption et diffusion dans le tissu. Lorsque ce modèle est bien 

établi, il est possible de l’utiliser afin de créer un algorithme de reconstruction qui pourra donner 

la carte des propriétés optiques du milieu suite à la résolution du problème inverse. 

1.3.1 Problème direct 

Le problème direct permet de prédire les parcours des photons dans le milieu interrogé par 

la lumière entre une source et un détecteur en attribuant un poids (une probabilité) à chaque voxel 

du milieu. Un voxel est l’équivalent d’un pixel, mais en 3D. Brièvement, il faut établir, pour chaque 

photon qui atteint un détecteur, la probabilité que ce dernier ait traversé chacun des voxels du 

milieu suite à son émission à partir de la source. Afin de bien expliquer ce concept, prenons 

l’exemple du CT-scan. Dans ce cas, le problème direct s’avère être assez simple puisque les rayons 

X parcourent une ligne droite (très peu d’événements de diffusion) entre la source et le détecteur 

lui faisant face [23]. Ainsi, le poids de tous les voxels du milieu est essentiellement 0, mis à part 

ceux qui forment la ligne droite qui ont un poids de 1. En optique diffuse, le problème s’avère être 

plus complexe puisque la lumière ne se propage pas en ligne droite à la sortie de la source, 

 

Figure 1-4 : Représentation de la distribution de forme « banane » des poids donnés aux voxels 

entre une source et un détecteur dans un milieu diffus semi-infini [29]. 
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puisqu’une multitude d’événements de diffusion ont lieu dans le tissu. Cela implique donc que le 

poids de pratiquement tous les voxels dans le milieu d’intérêt sera non-nul et différent pour chaque 

voxel [29]. 

Pour des tissus hautement diffusant et très peu absorbant, l’équation de la diffusion est 

généralement utilisée pour modéliser le transport de la lumière. Dans ce modèle, qui est une 

simplification de l’équation du transfert radiatif (RTE de l’anglais Radiative Transfer Equation), 

la propagation de la lumière est considérée comme isotropique et n’est donc pas valide près de la 

source [20], [39]. Pour des distances entre la source et le détecteur plus petites que le libre parcours 

moyen réduit, la résolution de la RTE est essentielle afin de considérer l’anisotropie. 

Il existe plusieurs méthodes numériques [40]–[43], analytiques [44], et empiriques [35], 

[45] afin de réussir à déterminer le parcours lumineux dans un milieu diffusant et ainsi résoudre ou 

approximer la solution de l’équation de diffusion ou de la RTE. Il a été démontré que la distribution 

du poids des voxels dans un milieu diffus entre une source et un détecteur peut être définie 

qualitativement par une forme dite « banane » (voir Figure 1-4) [29], [45]–[48]. Une des méthodes 

numériques les plus courantes pour simuler la propagation des photons dans des tissus ou fantômes 

biologiques et pour résoudre la RTE est l’utilisation de simulations Monte Carlo (MC), une 

méthode robuste, mais requérant souvent de longs temps de calcul [49]–[51]. Ces simulations 

permettent de tenir en compte précisément les caractéristiques du milieu, des sources et des 

détecteurs afin de pouvoir simuler adéquatement la propagation des photons dans le milieu. Ce 

type d’algorithme sophistiqué et grandement utilisé en biophotonique permet de déterminer, le plus 

précisément possible, quels sont les types d’interactions plausibles à tout moment pour un photon 

se propageant dans un milieu. L’utilisateur de l’algorithme doit préalablement déterminer les 

propriétés optiques du milieu, ainsi que ses différentes interfaces ou composantes (si le milieu est 

hétérogène), la taille et la géométrie des sources, les sorties du milieu (détecteur ou limite externe), 

les indices de réfraction et, finalement, le nombre de photons dans la simulation. Plus il y aura de 

photons, plus la simulation sera associée à un faible bruit numérique, mais plus le temps de calcul 

sera élevé (jusqu’à plusieurs heures). L’algorithme déplace chaque photon d’une certaine distance 

x après laquelle un des événements suivants peut arriver : la diffusion, l’absorption, la propagation 

sans être perturbé, la réflexion interne ou la transmission en dehors du milieu. Le photon continue 

de se propager ainsi et un certain nombre d’événements sont enregistrés jusqu’à ce que ce dernier 

soit absorbé ou sorte du milieu, ce qui représente la fin du parcours pour ce photon [51].  
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Une des plus grandes difficultés des techniques MC est de pouvoir simuler les milieux 

hétérogènes, comportant plusieurs régions ayant des propriétés différentes. Pour ce faire, il existe 

trois principaux modèles, soit le modèle multicouche, le modèle « voxelisé » et le modèle par 

maillage. L’utilisation des multicouches s’avère davantage utile lorsque la géométrie à modéliser 

est de type stratifié, ayant des couches supposées uniformes, comme l’épiderme par exemple [50], 

[52]. L’utilisation de sous-régions permet de simuler des structures irrégulières plus complexes en 

utilisant une matrice tridimensionnelle [53]–[55]. Toutefois, cette approche est limitée lorsqu’il y 

a des frontières courbes entre deux structures. Des approches utilisant des maillages complexes ont 

donc été développées afin de répondre à cette problématique. Les premières approches utilisaient 

des maillages triangulaires [56], [57], alors que les techniques plus récentes utilisent maintenant 

des maillages tétraédriques [58]–[60].  

1.3.2 Problème inverse 

Une fois le problème direct défini par l’une des méthodes disponibles, il faut pouvoir 

résoudre le problème inverse, soit trouver les propriétés optiques inconnues du milieu à l’aide des 

acquisitions tomographiques et du problème direct. Essentiellement, le problème matriciel suivant 

est posé : 

 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 = ∑ 𝑝𝑜𝑖𝑑𝑠𝑖𝑗 × 𝑖𝑛𝑐𝑜𝑛𝑛𝑢𝑠𝑗

𝑗

 (1.5) 

où i énumère les acquisitions et j les voxels, le poids est défini grâce au problème direct et les 

inconnus sont les propriétés optiques du milieu [29]. Les problèmes de TOD sont généralement 

non-linaires, mal posés et sous-déterminés de qui entraîne des difficultés à trouver une solution 

unique et fiable [61].  

Il existe plusieurs méthodes d’inversion de problèmes matriciels qui peuvent être 

regroupées en trois grandes catégories : l’inversion directe, la minimisation d’erreurs et la 

rétroprojection. Premièrement, l’inversion directe de matrice requiert un très grand temps de calcul 

en plus de fournir des solutions non uniques. Des méthodes de régularisation sont essentielles afin 

de stabiliser l’inversion contre des problèmes de mauvais conditionnement, c’est-à-dire des 

problèmes liés à la difficulté des calculs numériques associés au problème. Cette technique n’est 

donc pas très utile pour des matrices de grandes tailles et n’est pas beaucoup utilisée en 
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tomographie optique diffuse [26], [29], [41], [62]. La minimisation d’erreurs, quant à elle, consiste 

à tenter de trouver les inconnus appropriés de manière itérative afin de faire correspondre le modèle 

direct et les acquisitions. Il existe beaucoup de types de minimisation d’erreurs et ces techniques 

sont beaucoup utilisées. Elles consistent généralement toutes à partir d’une première estimation, 

calculer l’erreur, donner une deuxième estimation avec une erreur moindre et continuer jusqu’à ce 

la réponse ayant l’erreur minimale soit trouvée. Il existe, entre autres, la technique de 

reconstruction algébrique, la méthode du gradient conjugué, la projection sur des ensembles 

convexes et la méthode des moindres carrés [26], [29], [41]. Finalement, la technique de 

rétroprojection est une technique qui se base sur la méthode de reconstruction du CT-scan [29], 

[63]. Elle consiste essentiellement à reprojeter l’intensité détectée par un détecteur sur le trajet 

théorique entre ce dernier et la source. Ce trajet en CT-scan est la ligne droite mentionnée 

précédemment, alors qu’en optique diffuse ce trajet est la forme « banane ». En répétant cette 

procédure pour toutes les paires source-détecteur, il est possible d’obtenir une reproduction floue 

de la vraie image. Par conséquent, elle donne généralement une image de faible résolution avec 

plusieurs artéfacts de reconstruction. 

1.4 Problématique étudiée : biopsies du cerveau 

Lorsqu’une tumeur cérébrale est détectée à l’aide de techniques d’imagerie 

conventionnelles, soit l’IRM ou le CT-scan, il est possible qu’une biopsie du cerveau soit 

nécessaire. Cette procédure minimalement invasive a pour objectif de récolter un échantillon afin 

d’obtenir de l’information pathologique à son sujet et de pouvoir préciser le diagnostic initialement 

basé sur l’imagerie préopératoire [2]. La biopsie au cerveau est principalement effectuée lorsque 

la chirurgie à crâne ouvert est jugée trop risquée soit si la lésion est jugée inopérable ou si la santé 

du patient est considérée trop fragile [1]. 

Il existe deux principaux types de biopsies au cerveau, c.-à-d. avec et sans cadre 

stéréotaxique. Dans les deux cas, le neurochirurgien établit une stratégie d’insertion de l’aiguille à 

l’aide d’images préopératoires lui permettant de planifier la trajectoire et la position de 

l’échantillonnage afin de minimiser les risques de la procédure. Dans le premier cas, un cadre 

stéréotaxique est fixé au crâne du patient et permet d’aligner précisément l’aiguille par rapport aux 

images préopératoires et à la trajectoire visée. Pour une procédure sans cadre, la neuronavigation, 

soit de l’IRM intraopératoire colocalisée en 3D avec l’aiguille de biopsie, est utilisée afin de 
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positionner l’aiguille selon la trajectoire visée. L’aiguille de biopsie commerciale (habituellement 

d’environ 2 mm de diamètre) est constituée de deux canules (une externe et une interne) ayant 

chacune, à leur extrémité distale, une ouverture rectangulaire appelée fenêtre. L’aiguille est insérée 

dans le cerveau (avec les deux fenêtres non alignées afin qu’il n’y ait pas d’ouverture lors de 

l’insertion) par un trou effectué dans le crâne avec une perceuse chirurgicale. En suivant la 

trajectoire planifiée, l’aiguille est insérée jusqu’à l’endroit où le chirurgien veut prendre 

l’échantillon. À cet endroit, il aligne les deux fenêtres de manière à créer une ouverture à travers 

laquelle le tissu peut être aspiré. Une fois le tissu cérébral aspiré dans l’aiguille, le chirurgien tourne 

rapidement la canule interne par rapport à la canule externe afin de fermer la fenêtre et ainsi couper 

l’échantillon (voir Figure 1-5). L’aiguille est ensuite retirée et l’échantillon envoyé en pathologie. 

Ceci ne marque toutefois pas la fin de la procédure. En effet, il n’est pas rare que le chirurgien 

doute du potentiel diagnostic de l’échantillon, c’est-à-dire qu’il se peut que l’échantillon ne soit 

pas représentatif de la tumeur. Ainsi, le chirurgien peut décider de faire plusieurs biopsies sérielles 

et/ou recourir à un examen extemporané. Ce dernier est un examen pathologique fait rapidement 

pendant la procédure chirurgicale afin d’informer si l’échantillon est tumoral ou non. Il n’est 

toutefois jamais aussi précis qu’un examen pathologique standard et complet et ne devrait pas servir 

au diagnostic final [1], [2], [64]. 

 

Figure 1-5 : Photo de l’aiguille de biopsie Medtronic et schéma représentant le fonctionnement 

lors de la prise d’échantillon. 
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1.4.1 Risques et limitations 

Un des principaux risques associés aux biopsies du cerveau est celui de créer une 

hémorragie cérébrale. Cela se produit lorsqu’un ou plusieurs vaisseaux sanguins sont endommagés 

lors de la prise de l’échantillon. Les études cliniques montrent que les hémorragies surviennent 

dans environ 4.7% des cas, mais ce taux peut aller jusqu’à 30.7% [3], [4]. Le taux de morbidité lié 

à cette complication, allant des maux de tête aux déficits neurologiques, varie selon les études entre 

0,7% à 16.1% [5]–[7]. Toutefois, une statistique plus inquiétante encore est le fait que jusqu’à 3.9% 

des biopsies sont mortelles [3]. 

Une seconde grande limitation des biopsies au cerveau est le risque de récolter un 

échantillon non représentatif de la tumeur. Le plus grand danger étant de prélever du tissu sain et 

important au niveau moteur et cognitif en plus de mener à un diagnostic erroné pouvant influencer 

le plan de traitement et le pronostic du patient. Parmi les causes de ce problème, il y a la grande 

hétérogénéité de certains types de tumeurs, les erreurs liées au repérage en 3D de l’aiguille ainsi 

qu’au mouvement du cerveau entre l’IRM et l’opération [2], [64]. Il existe des méthodes pour 

limiter ce problème, soit les biopsies sérielles et l’examen extemporané. Malgré cela, il a été 

répertorié que les erreurs de diagnostic se produisent pour environ 10% à 30% des biopsies [3]. 

1.4.2 Technologies existantes 

Selon la revue de littérature effectuée, il n’existe à ce jour aucune sonde d’imagerie intégrée 

directement à l’aiguille de biopsie. Il existe toutefois des sondes non intégrées qui tentent de 

répondre aux mêmes problématiques. Stepp et al. ont développé une sonde basée sur l’utilisation 

de la fluorescence pour détecter d’une part les vaisseaux sanguins grâce au vert d’indocyanine (ICG 

de l’anglais indocyanine green) et d’autre part les cellules cancéreuses grâce à la protoporphyrine 

IX (PpIX) [65]. L’ICG est un marqueur très connu pour l’identification des vaisseaux sanguins 

puisqu’il a une grande affinité avec les protéines du plasma sanguin. La PpIX, quant à elle, est un 

fluorophore intrinsèque qui s’accumule préférentiellement dans les cellules tumorales 

(principalement efficace pour les glioblastomes) suite à l’administration d’acide aminolévulinique 

(ALA) [66]–[68]. En utilisant les même fluorophores, Göbel et al. ont développé une sonde par 

contact utilisant les mêmes techniques d’imagerie pour pouvoir détecter les vaisseaux sanguins et 

les cellules tumorales [69]. L’avantage de leur méthode est que leur sonde s’insère dans la canule 
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externe de l’aiguille de biopsie. Dans les deux cas, l’administration de composants extrinsèques 

(ICG et ALA) est nécessaire afin de créer la fluorescence à la base de leur technique d’imagerie. 

De plus, leur technique requiert une perturbation relativement grande de la procédure chirurgicale 

(insertion d’une sonde à la place de la canule interne), entraînant une prolongation du temps 

nécessaire pour la biopsie. Pour la détection des vaisseaux sanguins, il est également possible 

d’utiliser la tomographie par cohérence optique (OCT de l’anglais Optical Coherence 

Tomography), qui est une méthode d’imagerie structurelle [70]. L’OCT peut également être utilisé 

pour détecter le flux sanguin par une technique appelée l’imagerie Doppler [71]. 

Finalement, la plupart des autres technologies d’imagerie optique existantes ou en cours de 

développement pour les cancers au cerveau sont fabriquées dans le but d’aider le chirurgien lors 

de la résection de la tumeur, que ce soit avec des sondes point par point [72], [73] ou bien des 

systèmes d’imagerie à champ large [74], [75]. Elles seront donc utiles pour les étapes subséquentes 

à la biopsie du cerveau s’il est jugé approprié de procéder à l’exérèse aussi complète que possible 

de la masse tumorale.  
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CHAPITRE 2 MÉTHODOLOGIE 

Cette maîtrise comportait deux objectifs spécifiques, soient de valider le design optique 

envisagé en démontrant la possibilité de localiser les vaisseaux sanguins situés en périphérie du 

système d’imagerie et de concevoir une méthode d’intégration du système optique sur l’aiguille de 

biopsie. Afin de répondre au premier objectif, un prototype initial a été réalisé par mon directeur 

de recherche en collaboration avec FiberTech Optica sous forme d’une sonde tomographique. Cette 

dernière a été utilisée afin de vérifier la capacité du design à imager les vaisseaux sanguins. Le 

deuxième objectif impliquait de développer et fabriquer le design optique final intégrable à une 

aiguille de biopsie du cerveau. Le présent chapitre explique les étapes nécessaires à l’atteinte de 

ces deux objectifs, soit le développement du système expérimental, la méthode d’acquisition et de 

traitement des données, la fabrication du prototype intégré et, finalement, les diverses expériences 

effectuées afin de tester les hypothèses scientifiques présentées dans l’introduction. 

2.1 Sonde tomographique et système expérimental 

Comme mentionné précédemment, le premier prototype fût assemblé chez FiberTech 

Optica selon nos spécifications. Il s’agit d’une sonde ayant un diamètre externe de 1,7 mm, ce qui 

 

Figure 2-1 : Sonde tomographique de 1,7 mm de diamètre (assemblée par FiberTech Optica). 

Elle est composée de 24 fibres (cœur : 100 μm, 0,22 ±0,02 d’ouverture numérique (O.N.)) 

agencées en paires, de telle sorte qu’il y a 12 fibres d’illumination et 12 de détection à 12 

positions radiales autour de la sonde. À l’extrémité de chacune des paires, il y a un microprisme 

qui permet d’illuminer et détecter à un angle d’approximativement 90° par rapport à l’aiguille. 
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est en principe suffisamment petit pour pouvoir être inséré dans la canule externe de l’aiguille de 

biopsie. Tel que présenté à la Figure 2-1, la sonde est composée de 2 fibres à chacune de ses 12 

positions radiales sur sa périphérie. Chaque paire de fibres comporte à son extrémité un prisme 

permettant l’illumination ou la détection dans le plan perpendiculaire à l’aiguille, imageant ainsi le 

tissu échantillonné. Chacune des 24 fibres a son propre connecteur SMA désigné permettant de la 

connecter à l’appareil approprié, soit une source ou un détecteur de lumière. 

Le montage expérimental à la Figure 2-2 présente tous les instruments nécessaires à 

l’acquisition de données avec le prototype d’imagerie. Tout d’abord, la source utilisée est une 

lumière blanche halogène tungstène (HL-2000-HP-232, Ocean Optics) permettant d’illuminer à 

plusieurs longueurs d’onde (230-2400 nm, <20 W). Cette lumière est connectée au premier 

multiplexeur 1x16 (MPM-2000, Ocean Optics) qui, à son tour, est relié aux 12 fibres d’illumination 

 

Figure 2-2 : Montage expérimental final dont tous les appareils sont contrôlés par un programme 

LabView sur l’ordinateur portable. L’illumination se fait par la lumière blanche via une des 

fibres sélectionnées par un premier multiplexeur. La lumière se propage dans le fantôme liquide 

qui imite les propriétés optiques du cerveau. Elle est ensuite récoltée par une des fibres de 

détection sélectionnée par un second multiplexeur qui, lui, est connecté au spectromètre. 

 



23 

 

(de ce fait, quatre des seize ports ne sont pas utilisés). La lumière est ensuite propagée via la sonde 

dans un fantôme liquide, imitant les propriétés optiques du cerveau, pour ensuite être récoltée par 

un des 12 détecteurs. Chacun de ces 12 détecteurs est connecté à un des ports du second 

multiplexeur 1x16. Ce dernier est par la suite lié à un spectromètre (QE65pro, Ocean Optics) 

permettant ainsi d’acquérir séquentiellement le spectre complet (entre 200 et 1100 nm) récolté à 

chacune des 12 positions axiales. La combinaison de ce spectromètre avec la lumière blanche 

donne accès à de l’information hyperspectrale qui ne serait pas accessible par exemple en utilisant 

un laser monochromatique. Cette information peut, par exemple, être utilisée pour reconnaître les 

spectres caractéristiques de l’hémoglobine dans ses différentes conformations. 

Un ordinateur portable est utilisé pour contrôler tous les appareils du montage expérimental. 

La lumière blanche est contrôlée à l’aide de l’application Termite 3.1 qui permet d’envoyer des 

commandes au port RS232 de la source HL-2000. L’utilisation de tous les autres appareils se fait 

via le programme LabView développé pour ce projet. L’interface (Figure 2-3) permet tout d’abord 

de s’assurer de la bonne connexion et communication avec les deux multiplexeurs (indicateurs 

verts sur la figure). Il est également possible d’effectuer un des deux types d’acquisitions, soit avec 

 

Figure 2-3 : Interface LabView permettant de contrôler tous les appareils du montage 

expérimental. Il est possible de choisir un seul temps d’acquisition pour toutes les paires source-

détecteur (Temps simple) ou bien de choisir un temps d’acquisition variant en fonction de la 

distance entre la source et le détecteur utilisés (Temps multiple). 
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un temps d’intégration fixe ou variable. Dans les deux cas, les temps d’intégration doivent être 

entrés manuellement par l’utilisateur. Le temps d’intégration fixe utilise le même temps 

d’acquisition pour toutes les paires source-détecteur. Pour l’autre mode d’acquisition, soit le 

variable, l’utilisateur a préalablement déterminé manuellement les temps en fonction des distances 

source-détecteur possibles à l’aide des programmes commerciaux du spectromètre et du 

multiplexeur. Au moment de l’acquisition tomographique, le programme est conçu pour prendre 

en compte la distance entre la source et le détecteur et choisir le temps d’intégration adéquat. Cela 

a pour but d’avoir une intensité assez élevée qui soit semblable d’un détecteur à l’autre pour une 

même source (soit un temps d’intégration plus élevé pour des fibres plus éloignées).  

La sonde d’imagerie tomographique, quant à elle, est fixée à l’aide d’une pièce métallique 

fabriquée sur mesure permettant de la tenir à la verticale dans le système. Cette pièce est conçue 

pour tenir dans un support rotatif de haute précision (PRM05, Thorlabs). Ce dernier est fixé à un 

châssis de translation 3-axes (PT3, Thorlabs) permettant un déplacement de 25 mm dans chacune 

des directions. Grâce à ce montage, la sonde peut être déplacée avec une bonne précision (environ 

10 microns) et il est possible de connaître sa position dans le fantôme biologique utilisé. 

En ce qui a trait au fantôme liquide, ce dernier a pour but d’imiter les propriétés optiques 

du cerveau. Il est composé d’une émulsion de gras (Intralipide 20%) diluée à 1:20 v/v dans de l’eau 

double déionisée. Le but de cette dilution est d’obtenir un coefficient de diffusion réduit 𝜇𝑠
′  

d’environ 1.35 mm-1, ce qui correspond à celui de la matière grise à 600nm [76], [77]. Pour la 

 

Figure 2-4 : Comparaison du contraste apparent à 600nm entre le fantôme biologique et le 

cerveau. (a) Tige de carbone de 1mm dans le fantôme liquide utilisé pendant les expériences et 

(b) image in vivo du cerveau humain montrant les vaisseaux sanguins contrastant avec le cortex. 
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preuve de concept initiale, le coefficient d’absorption du cerveau (excluant le réseau de vaisseaux 

sanguins) a été considéré négligeable par rapport à celui de l’hémoglobine aux longueurs d’onde 

considérées. En réalité, puisque le cerveau est très vascularisé, il y aura toujours de l’absorption 

dans le milieu avoisinant les vaisseaux sanguins imagés. Afin d’imiter les vaisseaux sanguins dans 

ce milieu liquide, des tiges de carbones de différentes tailles sont utilisées. Ces dernières étant 

noires, elles sont d’excellents absorbeurs de lumière. À titre comparatif, la Figure 2-4 montre le 

contraste apparent de la tige de carbone par rapport au milieu de l’Intralipide et celui des vaisseaux 

sanguins dans un cerveau humain à 600 nm. Les images en champs larges ont été prises avec un 

système d’imagerie hyperspectral [75]. Le contraste de chaque image a été évalué en comparant la 

moyenne en intensité de l’arrière-plan (tissus cérébral loin des vaisseaux sanguins visibles ou 

Intralipide) et la moyenne en intensité des régions absorbantes (vaisseaux sanguins ou tige de 

carbone). Il a été démontré que le contraste apparent associé aux tiges de carbones correspond à 

moins que le double de celui des vaisseaux sanguins. Cela nous indique que le fantôme biologique 

imite relativement bien le contraste apparent que l’on retrouve dans le cerveau en restant dans le 

même ordre de grandeur. 

2.2 Fabrication du prototype intégré 

Suite à la validation du design optique grâce à la sonde tomographique, plusieurs 

discussions avec des neurochirurgiens et des spécialistes en fabrication ont eu lieu afin de trouver 

 

Figure 2-5 : Positionnement du système d’imagerie sur l’aiguille de biopsie. Les fibres seront 

placées sur une circonférence de 200° et regarderont le tissu à l’arrière de la fenêtre de biopsie. 
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le design intégré optimal. Comme présenté à la Figure 2-5, le système d’imagerie intégré à 

l’aiguille de biopsie doit être positionné derrière la fenêtre afin de permettre la récolte de 

l’échantillon. Cela implique que les fibres optiques doivent être distribuées sur une circonférence 

de 200 degrés et non 360 degrés tel qu’envisagé initialement. Plusieurs raisons ont influencé ce 

choix. Premièrement, afin d’avoir un système d’imagerie à 360°, il aurait fallu positionner le 

système d’imagerie au-dessus de la fenêtre de biopsie. Ceci implique donc que le chirurgien aurait 

été obligé d’insérer l’aiguille plus profondément dans le cerveau avant de la  retirer de quelques 

millimètres pour prendre l’échantillon là où les données auraient été acquises. En plus de nécessiter 

une manipulation supplémentaire, cette approche impliquait l’augmentation des risques 

d’hémorragie associés à l’insertion de l’aiguille plus profondément que nécessaire dans le cerveau. 

Le design choisi nécessite cependant une rotation de 180° de l’aiguille une fois insérée dans le 

cerveau afin de prendre l’échantillon au même endroit que l’image acquise. Une simple 

manipulation supplémentaire pour le chirurgien est donc nécessaire lors de la procédure. De plus, 

il faudrait ajouter une pièce au montage stéréotaxique de l’aiguille afin de guider la rotation exacte 

de 180°.  

La méthode de fabrication a été planifiée afin de pouvoir intégrer le maximum de fibres sur 

le pourtour de la canule externe le long d’un arc de cercle couvrant 200°. Afin de pouvoir atteindre 

cet objectif, il a été décidé que les fibres seraient initialement montées sur un tube métallique mince 

ajusté parfaitement au diamètre de l’aiguille de biopsie. Celui-ci a également une fente afin de ne 

pas obstruer la fenêtre de biopsie. Au bout de ce tube se trouve un miroir à angle de 45 degrés qui 

a été poli sur le rebord une demi-sphère creuse. Tel que représenté à la Figure 2-6, ces deux 

 

Figure 2-6 : Schéma représentant une coupe longitudinale de l’aiguille avec le système 

d’imagerie intégré. Les fibres sont montées sur un petit tube métallique qui épouse parfaitement 

la forme de l’aiguille. Le miroir est usiné afin d’avoir un diamètre interne identique au diamètre 

externe de l’aiguille de biopsie alors que son épaisseur est similaire au diamètre des fibres. 
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composants sont collés et installés sur l’aiguille de biopsie. Ils ont été conçus pour épouser 

parfaitement le diamètre de l’aiguille, éliminant ainsi la nécessité d’aligner les fibres 

perpendiculairement au miroir, supposant que ces fibres aient été adéquatement polies. 

2.2.1 Assemblage et polissage des fibres 

La première étape pour la fabrication du prototype était de trouver une méthode pour 

installer les fibres multimodes (0.22 O.N., Low-OH, ∅105 μm de cœur, 400-2400 nm, FG105LCA, 

Thorlabs) le long du tube de métal (tube d’acier inoxydable 304SS, .088" ± .001" diam. externe, 

.085" ± .001" diam. interne, Vita Needle). Pour ce faire le montage montré à la Figure 2-7a a été 

développé. Ce montage comporte un mat vertical (1" de diamètre, 16" de haut) sur lequel deux 

pièces métalliques permettant de tenir le tube métallique ont été montées. Des fentes semi-

circulaires de 500 μm de large ont été creusées dans ces pièces métalliques afin de pouvoir y passer 

les fibres (voir Figure 2-7a). 

 

 

Figure 2-7 : a) Positionnement des fibres autour du tube de métal à l’aide d’un montage vertical. 

L’agrandissement en rouge montre une des deux pièces permettant de tenir le tube métallique 

avec la fente semi-circulaire à travers laquelle les fibres peuvent passer. b) Application d’une 

tension autour des fibres afin de les rapprocher du tube métallique et d’elles-mêmes, précédant 

l’apposition de l’adhésif. 
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Le tube métallique a préalablement été coupé afin d’avoir la même forme que l’aiguille de 

biopsie. Plus précisément, un trou rectangulaire a été coupé à l’aide d’une scie à métaux pour 

épouser la forme de la fenêtre de biopsie tel que représenté à la Figure 2-5. Ensuite, 18 fibres (le 

nombre maximal pouvant être positionnés le long d’un arc de cercle de 200°) ont été coupées à une 

longueur d’environ 3 mètres puis disposées autour du tube, comme démontré dans 

l’agrandissement de la Figure 2-7a. Une fois les fibres en place, elles ont été fixées au tube à l’aide 

de colle optique (NOA81, Thorlabs), sur toute sa longueur de 15,5 cm (Figure 2-7b). Les fibres ont 

ensuite été grossièrement coupées à environ 2 cm, mesuré à partir du bord du tube où l’acquisition 

de données spectroscopiques sera effectuée. Le tube recouvert des fibres a ensuite été retiré du 

montage vertical. 

Afin de pouvoir polir les fibres, ces dernières ont d’abord été dégainées et clivées une à 

une. Le dégainage a été effectué à l’aide d’acétone qui a permis de ramollir la gaine d’acrylate 

recouvrant les fibres qui a alors pu être retirée à l’aide d’une pince à dénudage de fibres (AFS900, 

Thorlabs). La clive a été faite à l’aide d’une lame en rubis (S90R, Thorlabs) tel qu’illustré à la 

Figure 2-8a. L’étape suivante, le polissage, fut une étape très délicate puisqu’il fallait s’assurer que 

les fibres soient toutes polies pareillement, soit également selon un plan perpendiculaire au tube. 

Le polissage a été effectué manuellement puisque les outils standards de polissage sont conçus 

pour les connecteurs (SMA ou FC) et non les sondes. Le guide de polissage fourni par Thorlabs a 

tout de même été suivi en ce qui a trait à la méthode de polissage (utiliser le papier en frottant en 

« 8 »), à la taille des grains du papier et aux autres outils à utiliser. Un premier grain de 30 μm a 

 

Figure 2-8 : a) Coupe le plus près possible du tube de métal à l’aide d’une lame en rubis et b) 

polissage manuel des fibres. 
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été utilisé pour ramener les fibres le plus près possible du bord du tube de métal (Figure 2-8b). Par 

la suite, divers grains de plus en plus fins ont été utilisés pour polir les fibres, jusqu’au grain de 

finition délivré par Thorlabs. Finalement, le tube de métal a été collé à l’aiguille de biopsie grâce 

à une colle époxy qui solidifie à température ambiante. Pour ce faire, une goutte d’époxy a été 

déposée à l’extrémité du tube qui a par la suite été inséré sur l’aiguille de biopsie. Le tube a été 

sorti et réinséré avec de la colle jusqu’à ce que la colle couvre la totalité de la surface entre l’aiguille 

et le tube, soit lorsque la colle commençait à sortir déborder près de la fenêtre de biopsie. Il a aussi 

fallu s’assurer que la colle ne recouvre pas l’extrémité polie des fibres, ce qui n’a pas été le cas 

pour ce prototype. Un délai de 24h minimum doit être respecté afin de s’assurer que l’époxy soit 

bien solidifié. 

 Par la suite, les fibres le long de l’aiguille ont été recouvertes d’une gaine thermorétractable 

et biocompatible de polytétrafluoroéthylène (diamètre interne avant réduction de 3,56mm, 

diamètre interne après réduction de 2,03mm, épaisseur de 0,20 ± 0,05mm, OPN 39902 PTFE;HS, 

Zeus inc.). Plus communément appelé téflon, le matériau de cette gaine n’adhère pas très bien à 

d’autres matériaux lorsque des adhésifs courants sont utilisés. Il a donc fallu effectuer un 

prétraitement de la surface intérieure de la gaine thermorétractable permettant de faciliter son 

adhésion à l’aiguille. Ainsi, avant d’être installée sur les fibres, la gaine a été placée pendant 

environ 5 minutes dans un four à plasma d’argon afin d’affaiblir les liens moléculaires du téflon 

(voir détails à l’Annexe A). Par la suite, l’intérieur de la gaine a trempé pendant 25 minutes dans 

un promoteur d’adhérence spécialement conçu pour ce type de matériau (Loctite 7701). 

 

Figure 2-9 : a) Extrémité de la sonde où il a fallu couper la gaine pour b) dégager la fenêtre où 

l’échantillon est aspiré et c) libérer l’extrémité des fibres afin d’assurer la bonne propagation 

de la lumière. 
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Finalement, la gaine a été positionnée sur l’aiguille et rétrécie à l’aide d’un pistolet à air chaud (JS-

HG12AII, Addison Électronique) spécialement conçu pour les gaines thermorétractables. Suite à 

cette étape, il a fallu libérer l’extrémité de la sonde en coupant la gaine de PTFE qui avait 

complètement recouvert la fenêtre d’échantillonnage et le bout des fibres. Pour ce faire, un 

microscope optique (grossissement 4X) a été utilisé afin de guider la coupe de la gaine à l’aide 

d’un scalpel (Figure 2-9). L’extrémité des fibres a ainsi été libérée, ce qui permet la bonne 

propagation de la lumière. 

La prochaine étape consiste à sceller le prototype de manière à ce qu’aucun liquide ne puisse 

entrer entre la gaine et les fibres. La surface de la gaine ayant préalablement été préparée au plasma 

et avec le promoteur mentionné ci-haut, de l’adhésif spécialisé (Loctite 4011) a été utilisé et inséré 

entre la gaine et les fibres à l’aide d’une seringue. Après une attente de plusieurs heures pour faire 

sécher cette colle, le prototype a été trempé pendant une vingtaine de minutes dans de l’isopropanol 

pour vérifier qu’il était bien scellé et qu’il n’y avait pas d’infiltration de liquide entre la gaine et les 

fibres. 

Les fibres sortant de l’aiguille de biopsie par son extrémité proximale, qui ont maintenant 

une longueur approximative de 2,5 mètres, ont été recouvertes de tubes de copolyester 

thermoplastique (Hytrel) possédant un diamètre interne de 500μm et un diamètre externe de 900μm 

(FT900SM, Thorlabs). Cette étape est nécessaire afin de protéger les fibres jusqu’à ce qu’une 

protection permanente ait pu être ajoutée (voir section 2.2.3). Le résultat final de cette première 

étape de fabrication de prototype est présenté à la Figure 2-10, où on peut voir les tubes d’Hytrel 

en jaune à gauche et la gaine protectrice transparente recouvrant les fibres sur l’aiguille. Tout au 

long du procédé de fabrication, les fibres étaient identifiées afin de ne pas les confondre et de 

connaître l’ordre dans lequel elles sont placées à l’extrémité de l’aiguille. 

 

Figure 2-10 : Fibres et tube de métal collés sur l’aiguille de biopsie et recouverts d’une gaine 

thermorétractable comme protection. 
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2.2.2 Fabrication du miroir et installation sur l’aiguille 

Le miroir à 45° permet d’émettre et de récolter la lumière à 90° par rapport à l’axe vertical 

de l’aiguille de biopsie. Sa fabrication était un défi en soi, principalement à cause de sa petite taille 

et de la difficulté à l’aligner précisément et le fixer au bout de l’aiguille sans l’abimer. Pour faciliter 

l’installation et l’usinage, le miroir a été conçu sous une forme semblable à un capuchon pouvant 

se placer sans difficulté au bout de la sonde. Le miroir (aluminium 6061 T-6) a été usiné chez 

Optech (centre collégial de transfert technologique avec lequel LRO collabore) à l’aide d’un tour 

numérique et conçu pour épouser et imiter l’extrémité de l’aiguille. L’objectif consistait donc à 

concevoir un miroir de forme sphéroïde telle que présentée à la Figure 2-11a. Cette forme, similaire 

à l’extrémité de l’aiguille commerciale, permet d’avoir une surface uniforme et lisse qui n’abimera 

pas les tissus lors d’une biopsie au cerveau. Le polissage de la surface réfléchissant a également 

été réalisé chez Optech à l’aide d’un diamond turning. Cette dernière étape d’usinage a diminué 

d’environ 500 microns la hauteur initialement désirée pour la pièce miroir à cause du polissage qui 

a nécessité quelques microns supplémentaires de métal sur la surface réfléchissante. L’angle final 

du miroir est de 43° (Figure 2-11b), au lieu du 45° visé.  

La dernière étape fut de coller le miroir à l’extrémité de l’aiguille. Pour ce faire, la quantité 

de colle cyanoacrylate à utiliser a dû être mesurée précisément afin qu’elle ne déborde pas lorsque 

le miroir est placé sur l’aiguille. Cette quantité a initialement été déterminée en faisant des tests 

 

Figure 2-11 : a) Schéma et b) pièce usinée pour avoir le bon diamètre interne et externe pour 

être ajusté à l’aiguille, ayant un miroir poli à 43 degrés à l’extrémité. 
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avec une autre aiguille de biopsie et une pièce miroir en surplus (n’ayant toutefois pas subi l’étape 

de polissage sur le diamond turning) et mesurée à l’aide d’un doseur de fluide (Ultimus, Nordson 

EFD). Un montage vertical a été fabriqué afin de pouvoir tenir en place le miroir et l’aiguille 

jusqu’à ce que l’adhésion entre les deux surfaces soit complète (Figure 2-12). Ainsi, le miroir a été 

placé dans son support transparent (voir l’agrandissement de la Figure 2-12), la quantité de colle 

préalablement déterminée a été déposée dans sa cavité et l’aiguille y a été insérée et maintenue en 

place. La Figure 2-13a montre le système d’imagerie intégré avec le miroir. Il est possible de 

remarquer qu’il y a une espace entre la fin des fibres et le miroir. Ceci est dû, comme expliqué 

précédemment, aux quelques microns de moins sur la hauteur de la pièce à cause de la dernière 

étape d’usinage. Afin de bien lier le miroir et les fibres optiques, d’éviter les irrégularités et de 

faciliter le nettoyage lors des tests, l’espace a été rempli de colle optique, tel que démontré à la 

Figure 2-13b. 

 

Figure 2-12 : Montage pour coller le miroir à l’extrémité de l’aiguille. Une petite quantité de 

colle est mise dans la cavité du miroir, ensuite l’aiguille y est insérée et laissée en place le temps 

que le tout solidifie. 
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2.2.3 Connecteurs, protection et finition du prototype 

Les étapes finales pour compléter le prototype consistent à protéger les fibres et à faire 

l’assemblage des connecteurs. Premièrement, les 18 fibres sortant de la gaine de PTFE sur l’aiguille 

ont été regroupées et insérées dans un tube métallique protecteur de 5mm de diamètre interne 

(SMO-5 SS monocoil, Armor Associates Inc.) recouvert d’une gaine transparente, tel que montré 

à la Figure 2-14a. Ce tube métallique a une longueur d’environ 1,5 mètre. Afin de bien protéger la 

transition entre l’aiguille et le tube, une pièce protectrice a été conçue grâce à une imprimante 3D 

(Figure 2-14b). Cette dernière a le diamètre de l’aiguille à une extrémité et s’agrandit pour recouvrir 

l’aiguille et le tube métallique à l’autre extrémité. À l’aide d’un montage vertical, la pièce 

protectrice a été mise en place et remplie d’époxy pour être solidifiée. Pour procurer une finition 

uniforme à cette partie du prototype, une gaine thermorétractable noire a été disposée de manière 

à recouvrir adéquatement la pièce. Les fibres à la sortie du tube commun ont également été 

protégées chacune par un tube métallique recouvert d’une gaine transparente (Figure 2-14c). Ces 

tubes individuels (SMO-1.5 SS monocoil, Armor Associates Inc.) ont un diamètre interne de 

1,5mm et sont d’une longueur moyenne d’environ 80cm, dépendamment de la longueur de la fibre 

qu’ils protègent. Encore une fois, la transition entre le tube commun et les tubes individuels a dû 

être protégée grâce à une pièce imprimée en 3D, visible à la Figure 2-14d. Afin de s’assurer que 

les fibres ne s’entremêlent pas et afin de minimiser les risques de petits rayons de courbure à 

l’intérieur de la pièce, les fibres ont minutieusement été placées selon un motif circulaire tel que 

 

Figure 2-13 : Extrémité de l’aiguille (a) avant et (b) après avoir appliqué la colle optique entre 

les fibres et le miroir. 
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montré à la Figure 2-14e. Suite à cela, la pièce a été collée avec de l’époxy et recouverte d’une 

gaine thermorétractable. La dernière étape pour compléter le prototype fût d’ajouter des 

connecteurs SMA (10125A, Thorlabs) à chacune des 18 fibres (Figure 2-14f). Le protocole suivi 

pour installer les connecteurs est le protocole standard donné par Thorlabs en utilisant l’époxy pour 

connecteurs F112. Le polissage, quant à lui, a été fait à l’aide d’une machine à polissage 

 

Figure 2-14 : Différentes étapes de protection de l’aiguille et des fibres. (a) À la sortie de 

l’aiguille, les fibres sont regroupées dans un tube métallique recouvert d’une gaine 

thermorétractable. (b) La transition entre l’aiguille et les fibres est solidifiée par une pièce en 

plastique remplie d’époxy et recouverte d’une gaine. (c) Fibres à la sortie du tube commun 

recouvertes des tubes d’Hytrel jaunes avant d’être protégées par des tubes métalliques 

individuels recouverts de gaine thermorétractable. (d) La transition entre le tube commun et les 

tubes individuels est également protégée par une pièce en plastique remplie d’époxy, dans 

laquelle (e) les fibres individuelles ont été minutieusement positionnées. (f) Finalement, 

chacune des fibres se termine par un connecteur SMA. 
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(ULTRAPOL, ULTRA TEC Manufacturing Inc.) et une série de papiers ayant un grain de plus en 

plus fin (voir détails à l’Annexe A). Le résultat final est donc une sonde comportant 18 fibres 

alignées avec un miroir à 43°, le tout intégré à une aiguille de biopsie du cerveau pouvant être 

utilisée pour des expériences in vitro, ex vivo et, même, in vivo. 

2.3 Expériences 

Plusieurs expériences ont été effectuées au cours de cette maîtrise dans le but de répondre 

aux objectifs mentionnés dans l’introduction de ce mémoire ainsi que de tester les hypothèses 

scientifiques associées. Les premières d’entre elles avaient pour but de valider le design optique 

envisagé à l’aide de la sonde tomographique. Ensuite, un protocole expérimental a été élaboré afin 

d’évaluer la sensibilité de cette sonde en termes de limites de détection en fonction de la taille et la 

distance des inclusions absorbantes. Finalement, des expériences ont été planifiées et réalisées afin 

d’évaluer la fonctionnalité du prototype intégré et de comparer ses performances avec celles de la 

sonde tomographique. 

2.3.1 Méthode tomographique permettant la reconstruction d’absorbeurs de 

lumière 

La série de tests présentée ici a pour objectif de voir si avec le design optique envisagé, soit 

une tomographie circulaire regardant vers l’extérieur du cercle (voir Figure 2-15), il sera possible 

de détecter les vaisseaux sanguins. Pour pouvoir tester cette hypothèse, plusieurs techniques ont 

été envisagées, mais celle retenue consistait à utiliser des absorbeurs quasi parfaits, des tiges de 

carbone, afin de faire une preuve de concept. La méthodologie pour ces expériences est décrite 

dans l’article présenté au prochain chapitre et ne sera donc pas approfondie dans cette section-ci. 

Essentiellement,  un montage expérimental similaire à celui décrit à la section 2.1 a été utilisé. Des 

acquisitions dites homogènes ont été prises dans un fantôme d’Intralipide 1% alors que les 

acquisitions hétérogènes utilisent des tiges de carbone dans ce même fantôme. Différentes 

configurations hétérogènes ont été testées et comparées, soit une tige de carbone de 1 mm de 

diamètre collé à la sonde, deux tiges de 1 mm séparées d’un angle de 90° et collées à la sonde ainsi 

que deux tiges séparées du même angle, mais une collée et une à 1 mm de la sonde (voir Figure 

3-4 pour plus de détails). Une acquisition complète implique que toutes les sources illuminent 

séquentiellement l’échantillon et tous les détecteurs sont utilisés pour chaque illumination. Les 
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résultats sont présentés sous forme de sinogramme optique représentant la différence normalisée 

entre l’acquisition homogène et hétérogène (voir Figure 3-3 et Figure 3-4). Toutes les données sont 

calibrées à partir des données homogènes en déterminant et appliquant un gain pour chaque paire 

source-détecteur, permettant d’homogénéiser les données. Le gain est calculé de telle sorte que 

toutes les paires source-détecteur de même distance aient environ la même intensité. Ceci limite 

les variations causées par la géométrie intrinsèque de la sonde, mais laisse intactes les variations 

causées par des facteurs externes tels que des tiges de carbone. Dans l’article, une méthode de 

reconstruction des vaisseaux sanguins développée par un collègue (Dr. Julien Pichette, postdoc, 

LRO) est également présentée pour la géométrie de la sonde tomographique. 

Ces expériences et le protocole peuvent être également utilisés avec le prototype intégré, à 

quelques différences près. La nouvelle sonde comporte 18 fibres au total, ainsi, 9 sont utilisées 

comme source et 9 comme détecteurs (voir Figure 2-15). Contrairement à la sonde tomographique, 

les sources et détecteurs du prototype intégré ne se trouvent jamais à la même position angulaire 

sur la sonde. Les expériences ont donc été refaites avec le prototype intégré afin de comparer ses 

résultats à ceux obtenus avec la sonde tomographique. Il est à noter qu’il est impossible de faire 

une reconstruction sur 360° avec le prototype intégré puisque les fibres ne couvrent que 200°, la 

méthode de reconstruction présentée au Chapitre 3 n’est donc pas directement utilisable avec celui-

 

Figure 2-15 : Comparaison entre une coupe transversale de la sonde tomographique et le 

prototype d’imagerie intégré sur l’aiguille de biopsie. Les sources utilisées lors d’une 

acquisition tomographique sont illustrées en vert alors que les détecteurs sont en bleus 
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ci. Pour pouvoir y arriver, toutes les simulations Monte Carlo devront être refaites. Pour avoir des 

données sur 360° avec le prototype intégré, il faudra également évaluer la possibilité de faire une 

rotation de 180° avec l’aiguille en plus de trouver une méthode pour corréler ces deux séries de 

données en une seule et unique. 

2.3.2 Évaluation de la sensibilité de détection de la sonde tomographique 

L’évaluation de la sensibilité de la sonde tomographique a pour objectif d’établir les limites 

en termes de distances et de tailles à partir desquelles il est possible de détecter les absorbeurs de 

lumière. Pour ce faire, le montage expérimental décrit dans la section 2.1 a été développé. Ce 

dernier permet de déplacer précisément la sonde par rapport aux tiges de carbone. Un fantôme 

biologique liquide plus réaliste a été utilisé en ajoutant un colorant dans l’Intralipide afin d’imager 

dans un milieu ayant un coefficient d’absorption non négligeable. Les résultats des tests de 

sensibilité ont fait l’objet d’un article qui relate aussi la relation entre les simulations Monte Carlo 

et les données expérimentales. Cet article a été soumis à la revue Biomedical Optics Express en 

date du 6 juillet 2015 et sera publié prochainement [78]. L’auteure de ce mémoire a développé le 

protocole et le montage expérimental ainsi que supervisé les manipulations en laboratoire, alors 

que le Dr. Julien Pichette a fait les simulations et l’analyse des résultats. La contribution notoire de 

Fabien Picot (étudiant à la maîtrise au LRO) est aussi à mentionner puisqu’il a effectué, sous ma 

supervision, les manipulations en laboratoire. L’analyse de sensibilité présente les limites de 

détection en comparant des simulations Monte Carlo et des résultats expérimentaux dans des 

fantômes biologiques. Ces expériences ont permis de démontrer qu’il est possible de détecter, avec 

la sonde tomographique, des absorbeurs ayant un diamètre de 300μm et plus jusqu’à une distance 

d’environ 2mm du centre de l’aiguille de biopsie. 

2.3.3 Tests goniophotométriques afin de caractériser le système optique intégré 

Le goniophotomètre est un instrument utilisé pour mesurer l’intensité de la lumière émise 

par une source à différents angles dans l’espace. Cela permet donc de vérifier l’homogénéité de 

l’illumination ou de la détection. Chaque fibre est imagée une à la suite de l’autre afin de bien 

caractériser chacune d’entre elles. Non seulement ceci permet de caractériser les fibres utilisées 

comme source, mais les résultats se transposent pour la détection grâce au principe de la 

réversibilité des rayons en optique géométrique. En effet, si un rayon lumineux suit un trajet 
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particulier dans une direction, il suivra le même trajet dans la direction opposée, dans un même 

système. Ces tests permettront ainsi de valider que toutes les fibres fonctionnent de manière 

appropriée. Idéalement, chaque source devrait avoir une illumination circulaire, avec une intensité 

plus grande en son centre. Cette analyse permettra de déterminer si certains canaux ont été 

négativement affectés par la méthode de fabrication ou le design. Cette étude fournira des 

indications quant au design des futurs prototypes. 

Les tests ont été effectués chez Optech en utilisant un goniophotomètre commercial (SIG-

400, Radiant Vision Systems). Le système comprend une caméra CCD qui est positionnée sur un 

stage rotatif permettant de prendre des acquisitions en angle par rapport à la verticale (voir Figure 

2-16). La sonde est placée sur un support horizontal personnalisé qui est relié à un stage de rotation 

dans le plan horizontal, en plus d’un stage de translation permettant d’aligner la source au début 

des acquisitions. Avant de commencer les acquisitions, la première fibre est connectée à une 

lumière blanche et alignée au centre de l’axe de rotation (axe vertical sous la caméra sur la Figure 

2-16b). Pour ce faire, le point lumineux (la sortie de la fibre) doit illuminer vers le haut. Il est aussi 

possible d’utiliser l’échelle de translation pour l’alignement horizontal. Ainsi, la source lumineuse 

 

Figure 2-16 : (a) Goniophotomètre (SIG-400, Radiant Vision Systems) avec la sonde installée 

horizontalement. (b) Rotation faite par la sonde et déplacement angulaire de la caméra pour 

l’imagerie. 
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se retrouve en tout temps au centre de la caméra, indépendamment de l’angle où elle se trouve. La 

caméra doit également être ajustée au focus. 

Une acquisition complète consiste des mesures pour une amplitude de rotation de 90° (±45°) 

pour la caméra, à chaque angle de rotation de la sonde qui se déplace sur 180° (voir Figure 2-16b). 

Dans tous les cas, l’incrément utilisé est de 2° et le temps d’acquisition choisi est de 200ms pour 

chaque image afin d’avoir un temps d’acquisition total inférieur à 3h. Cette expérience doit être 

répétée pour les 18 fibres, donnant ainsi la distribution spatiale de l’illumination pour chacune 

d’entre elles. Les résultats de cette expérience sont présentés sous forme de cartographie 

représentant l’intensité lumineuse détectée en fonction de l’angle de la caméra et de la source. 
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CHAPITRE 3 ARTICLE 1 : SUB-DIFFUSE INTERSTITIAL OPTICAL 

TOMOGRAPHY TO IMPROVE THE SAFETY OF BRAIN NEEDLE 

BIOPSIES : A PROOF-OF-CONCEPT STUDY 

3.1 Présentation de l’article 

Le présent article scientifique se concentre sur la reconstruction d’absorbeurs de lumière 

situés en périphérie de la sonde et répond au premier objectif de ce mémoire. Il a permis de valider 

la géométrie envisagée pour l’intégration d’un système d’imagerie sur l’aiguille de biopsie 

commerciale avant d’amorcer sa fabrication. Il présente et valide donc une géométrie d’imagerie 

en optique diffuse qui n’a jamais été utilisée auparavant, c’est-à-dire une géométrie circulaire qui 

regarde vers l’extérieur au lieu de l’intérieur. 

Cet article a été publié le 15 janvier 2015 dans la revue Optics Letters [9]. La contribution 

de l’auteure est estimée à environ 75%. C'est-à-dire qu’en plus de la rédaction de l’article et de la 

gestion des commentaires des réviseurs, elle a fabriqué le montage expérimental, établi le protocole 

et fait les expériences menant à une preuve de concept en ce qui a trait à la détection d’absorbeurs 

dans un milieu diffus. L’auteure n’a toutefois pas fait les simulations Monte Carlo ni les 

reconstructions tomographiques. 

3.2 Sub-diffuse interstitial optical tomography to improve the safety 

of brain needle biopsies : a proof-of-concept study 

Andréanne Goyette,1,* Julien Pichette,1 Marie-Andrée Tremblay,1 Audrey Laurence,1 Michael 
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The extraction of tissue samples during brain needle biopsy can cause life-threatening hemorrhage 

due to significant blood vessels injury during the procedure. Vessel rupture can have significant 

consequences for patient health, ranging from transient neurological deficits to death. Here, we 

present a sub-diffuse optical tomography technique that can be integrated into neurosurgical 

workflow to detect the presence of blood vessels. A proof-of-concept performed on a realistic brain 

tissue phantom is presented and demonstrates that interstitial optical tomography (iOT) can detect 

several 1 mm-diameter high-contrast absorbing objects located < 2 mm from the needle.   

OCIS Codes: (060.2350) Fiber optics imaging, (170.0110) Imaging systems, (170.3010) Image 

reconstruction techniques, (170.1610) Clinical applications.  

 

When a neurological lesion is detected through standard-of-care imaging technology (e.g. 

magnetic resonance imaging or computed tomography), a brain needle biopsy (BNB) can be 

performed in order to obtain further diagnostic information. The main indications for BNB are 

instances where open cranial surgical resection is deemed too risky, e.g., for deep-seated lesions, 

certain tumors that are treated with only radiotherapy and chemotherapy (lymphoma), infections, 

and/or patients with poor health. Relative to open cranium surgery, BNB is minimally invasive and 

involves the insertion of a needle (~2 mm in diameter) into the brain through a small burr hole. The 

procedure allows surgeons to collect one or more samples located within pathological areas. 

A commercial biopsy needle is composed of 2 hollow tubes, both with rectangular openings 

(henceforth called window) of dimensions ~1.5 x 8 mm close to their distal end.  The outer tube is 

a cannula that is inserted into the brain while the inner tube can be slid in and out of the cannula. 

When the needle (with cannula and inner tube windows not aligned) is inserted into the brain and 

has reached a location where tissue needs to be collected, the inner tube is rotated so that the two 
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windows become aligned, exposing brain tissue to the interior of the inner tube. A small volume 

of air is aspirated from the needle causing a volume (~20 mm3) of tissue to be sucked into the 

window opening.  The surgeon then rotates the inner tube (cannula not moving) to excise and trap 

a piece of tissue within the enclosure. The biopsy needle is then removed from the patient, and the 

specimen preserved for neuropathology analysis.  

Serious health risks are associated with standard BNB procedures, mostly related with 

hemorrhage due to blood vessels being ruptured in the process of excision of the tissue specimen. 

Clinical studies suggest that vessel damage occurs on average in 4.7% of BNB cases, and in up to 

21.3%, leading to a range of neurological deficits directly impacting quality-of-life including 

impaired cognition, memory, strength and vision. More dramatic, however, is the statistic that as 

many as 3.9% of the cases are lethal [1,2]. During BNB, several needle passes are often required 

to collect a sufficient number of specimens to reduce the risk of misdiagnosis, further increasing 

the hemorrhage risk. Thus, a need exists for technology that provides in-procedure guidance during 

BNB that alerts surgeons to the presence of significant blood vessels in the vicinity of the needle 

prior to biopsy specimen extraction. 

We have developed a novel interstitial optical tomography (iOT) technique that can be 

integrated into neurosurgical workflow and mitigates the hemorrhage risk during BNB procedures. 

The method relies on the detection of high-absorbing brain areas associated with a large 

concentration of haemoglobin. We hypothesize that these signatures can be used as surrogates of 

blood vessels because white and gray matter are relatively low light absorbers when compared to 

haemoglobin. The iOT technique shares similarities with diffuse optical tomography [3] but with 

two main differences: (i) the interrogated tissue is exterior to the illumination-detection geometry 

 

Figure 3-1 : Optical probe with an enlarged view of the tip showing the positioning of the 

illumination and detection fibres. 
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(because of the interstitial nature of the method), and (ii) light propagation modeling requires a 

treatment valid in the sub-diffusive transport regime (because some source-detector pairs are 

separated by sub-millimeter distances). Implementation of the approach is challenging: a sufficient 

number of optical fibres must be placed into a small biopsy needle to allow 360° tissue interrogation 

and reliable tomographic image reconstruction in the sub-diffusive regime is required.  

In this letter, we present proof-of-concept that iOT can be implemented based on the design 

of an optical probe which can be inserted into (and removed from) the cannula whenever optical 

measurements are needed in order to assess tissue for the presence of significant blood vessels. 

Although not discussed in detail here, this particular implementation of iOT requires the fabrication 

of a modified cannula with a transparent section to allow wide-angle 360° optical data acquisition. 

In this work, preliminary light transport modeling and experimental tissue-simulating phantom 

reconstruction results are presented to validate and highlight the potential of the new optical needle 

design for the detection of high-absorbing inclusions embedded in a turbid medium. A novel image 

reconstruction technique developed for interstitial and sub-diffuse imaging based on Monte Carlo 

light transport simulation is also introduced. 

The optical probe (assembled by FiberTech Optica) is shown in Figure 3-1. It has an outer 

diameter of 1.7 mm and comprises 24 optical fibres (100μm core diameter, 120μm outer diameter, 

NA = 0.22) grouped in pairs. Individual micro-prisms are glued to the tip of each fibre pair for 

side-detection or side-illumination (at 90° angle). Each fibre is connected to a cable ending with an 

 

Figure 3-2 : Experimental setup with the optical probe immersed in the brain tissue-simulating 

phantom 

 



44 

 

SMA connector; in total a bundle of 24 connectors exit the optical needle as schematically depicted 

in Figure 3-2. Tissue illumination is achieved with a broadband light source (HL-2000, Ocean 

Optics) connected to a 1x16 multiplexer (MPM-2000, Ocean Optics) sequentially delivering light 

to the 12 outermost fibres shown in Figure 3-1. Another 1x16 multiplexer transfers optical signals 

to a high sensitivity portable spectrometer (QE65pro, Ocean Optics) for sequential detection 

through the innermost fibres for each illumination point. Light signals are not acquired for the 

detection fibre sharing the same micro-prism as the illumination fibre. The resulting dataset, 

therefore, consists of 132 spectra (12 illumination points x 11 detection points) between 400 and 

850 nm with ~1 nm spectral resolution. All hardware components are controlled with a custom 

LabView (National Instruments) program.  

The experimental setup used to evaluate the iOT technique is shown in Figure 3-2. Tissue-

simulating phantoms were constructed to mimic brain optical properties: (i) a highly scattering,  

weakly absorbing liquid representing brain matter, and (ii) highly absorbing, weakly scattering 

tubular structures simulating blood vessels. The bulk medium was created with a fat emulsion 

(Intralipid 20%) diluted in water (1:20 v/v) to obtain a reduced scattering coefficient of 𝜇𝑠
′ ≅ 1.35 

mm-1 that is consistent with brain matter at 600 nm [4,5]. Figure 3-3 shows a typical data subset in 

 

Figure 3-3 : Homogeneous optical sinogram acquired at 600nm in a homogeneous diffusive 

phantom for each source-detector pair. Each projection (x-axis) is associated with one light 

source and multiple detectors (y-axis). The sinogram is normalized to the maximum value. No 

measurements were acquired for the detection fibre sharing the same micro-prism as the source 

fibre: this is represented by an X in those pixels for which projection number is equal to detector 

number. 
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the form of a single-wavelength 600 nm optical sinogram acquired in the homogeneous bulk 

medium. The detection time ranges from 18ms to 5s and was adjusted to insure a noise level < 1% 

for all source-detector pairs. Heterogeneities were modeled with 1 mm diameter carbon rods placed 

at different positions relative to the probe. Three configurations were considered: (i) a single carbon 

rod in direct contact with the optical probe (Figure 3-4b), (ii) two carbon rods in contact with the 

probe with a 90° rotation with respect to one another (Figure 3-4d), and (iii) same configuration as 

(ii) but with the second rod located 1 mm (edge-to-edge) away from the probe (Figure 3-4f). Figure 

 

Figure 3-4 : (a) Normalized difference between the homogeneous and heterogeneous optical 

sinograms for each source-detector pair, obtained for the reconstruction (b) of a single carbon 

rod positioned as indicated by the circle labeled 1. (c) Normalized difference between the 

homogeneous and heterogeneous optical sinograms for each source-detector pair, obtained for 

the reconstruction (d) of two carbon rods positioned as indicated by circles 1 and 2. Rods 1 and 

2 both make contact with the probe. (e) Normalized difference between the homogeneous and 

heterogeneous optical sinograms for each source-detector pair, obtained for the reconstruction 

(f) of two carbon rods positioned as indicated by circles 1 and 2. Rod 1 is in contact with the 

probe while rod 2 is located 1 mm (edge-to-edge) from the probe.   
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3-4 shows the locations of the rods as well as the normalized difference between the 

homogeneneous (Figure 3-3) and the heterogenous optical sinograms. The maximum observed 

difference is higher than 5% in all cases, demonsrating that the probe is able to detect at least one 

of the absorbing inclusions. 

 We considered the perturbation limit of light transport modeling under the assumptions 

that (i) the scattering indices (anisotropy factor g, scattering coefficient 𝜇𝑠) are constant throughout 

the imaging domain, and (ii) local variations in absorption are small relative to the homogenous 

absorption background (∆𝜇𝑎 ≪ 𝜇𝑎). Differences between measurements in heterogeneous and 

homogeneous media were then modeled [6]: 

 𝐼𝑠,𝑑 = ∫ 𝐽(𝑟, 𝑟𝑠, 𝑟𝑑)∆𝜇𝑎(𝑟)𝑑𝑟 + 𝐼𝑠,𝑑
0  (3.1) 

where 𝑟 is a position in the medium, s is the light source index ranging from 1 to 12, d is the 

detector index ranging from 1 to 11, 𝑟𝑠 is the location of source s, and 𝑟𝑑 is the location of detector 

d. The physical quantity 𝐽(𝑟, 𝑟𝑠, 𝑟𝑑) is the light sensitivity function, which locally quantifies (within 

the interrogated medium) the relative number of photons having propagated through location 𝑟 

between source s and detector d. The sensitivity function for a homogeneous medium was 

computed using Monte Carlo light transport simulations for each source-detector pair (Figure 3-5) 

via the reciprocity approach, which equates the sensitivity function to the point-by-point 

multiplication between (i) the light source distribution obtained for a collimated source at 𝑟𝑠, and 

(ii) the same physical quantity computed for the detector position 𝑟𝑑 [7]. Because of the cylindrical 

 

Figure 3-5 : Sensitivity functions for two source-detector pairs where cyan lines are amplitude 

levels displayed on a logarithmic scale. 
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symmetry of the problem, only one light source distribution needed to be computed. The simulation 

was performed using MMC, a mesh-based Monte Carlo technique [8,9]. The optical needle 

geometry was modeled with a tetrahedral mesh having the appropriate pre-defined source and 

detector sizes as well as numerical apertures. The mesh for the simulation was cylindrical (radius 

40 mm, height 80 mm) and consisted of 196,729 nodes forming 1,212,849 tetrahedral elements 

leading to a spatial resolution of 0.0036 mm². The extended light source was modeled by 126 

punctual sub-sources covering a circular area on the needle of 0.079 mm² consistent with the 

diameter of the optical fibres in the imaging system.  In total, 100 million photon packets 

illuminated a medium with optical properties consistent with the liquid phantom: 𝜇𝑎 = 0.0001 mm-

1, 𝜇𝑠= 5.5 mm-1, g = 0.75 and an index of refraction n = 1.37. Simulations were conducted on an 

Intel(R) Core(TM) i7-4820 K CPU @ 3.7 GHz desktop with 32 GB of RAM and required ~4 h for 

completion. 

Image reconstruction was accomplished with a method akin to back-projection in computed 

tomography. Although Monte Carlo simulations were performed in 3D, reconstructions were 

achieved in 2D by projecting the sensitivity functions on a high-density 2D triangular mesh 

composed of 24,463 nodes and 48,473 triangles extending 5 mm from the surface of the probe. 

Based on Eq. (3.1), data from one source-detector pair implies an average (homogeneous) change 

in optical properties of  

 𝛿𝜇𝑎
𝑠,𝑑 =

𝐼𝑠,𝑑 − 𝐼𝑠,𝑑
0

∫ 𝐽(𝑟, 𝑟𝑠, 𝑟𝑑)𝑑𝑟
 (3.2) 

which is insufficient to estimate specific information on the number of absorbing inclusions, their 

location, size and contrast. As more sources and detectors are added, the average changes in optical 

properties from Eq. (3.2) can be back-projected at the specific locations 𝑟 within the medium using 

a weighted sum (over all sources and detectors) of all 𝛿𝜇𝑎
𝑠,𝑑

’s. The weighting factors correspond to 

the product of the sensitivity function and the measured intensity, both associated with a 

homogenous medium and lead to the reconstruction of an absorption image from 

 𝑅(𝑟) =  
∑ ∑ 𝐼𝑠,𝑑

0𝑁
𝑑=1,𝑑≠𝑠

𝑁
𝑠=1 𝐽(𝑟, 𝑟𝑠, 𝑟𝑑)𝛿𝜇𝑎

𝑠,𝑑

∑ ∑ 𝐼𝑠,𝑑
0𝑁

𝑑=1,𝑑≠𝑠
𝑁
𝑠=1 𝐽(𝑟, 𝑟𝑠, 𝑟𝑑)

 (3.3) 
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Figure 3-4b demonstrates that a single carbon rod can be detected and that the position of 

maximum reconstructed intensity approximately corresponds to the geometrical center of the 

inclusion. Figure 3-4d indicates that the method is able to detect reliably the contrast associated 

with two rods located at the same distance from the optical probe. Finally, Figure 3-4f indicates 

that the presence of a second absorber does not affect the detection of the carbon rod that is closer 

to the optical needle. The reconstructed image also shows that an absorber which is located farther 

away can be detected, albeit with degraded contrast, which is a limitation of diffuse optical 

tomography techniques [10]. 

A clinical need to improve the safety of BNB procedures involves the detection of blood 

vessels within ~1.5 mm from the outer surface of the cannula, since this distance is representative 

of the volume of tissue that can be aspirated within the inner tube given its dimensions. The clinical 

need does not require accurate detection of the exact location and geometry of the vessels, but 

rather an assessment of whether large vessels (i.e., optical absorbers) are in the vicinity of the 

needle. In practice, images would be acquired by the surgeon at different locations along the needle 

insertion track during the BNB procedure. These images would be compared in order to determine 

the safest area to collect a biopsy specimen based on the reconstructed optical coefficients at the 

periphery of the needle. Here, we have presented a proof-of-concept study that suggests a sub-

diffuse interstitial optical tomography (iOT) technique can achieve the clinical goal. Further studies 

are needed to develop an all-fibre system directly integrated onto the cannula, and a sub-diffuse 

multi-spectral tomography algorithm using the spectral signature of haemoglobin to improve the 

depth resolution and specificity to blood vessels, and, finally, to incorporate high-power light 

emitting diodes to improve the signal-to-noise ratio and the speed of acquisition of the system. 

Moreover, to go beyond the proof-of-concept presented here, a detailed multi-parametric study will 

be conducted to assess the sensitivity limits of the approach in terms of the size, number and optical 

contrast of blood vessels as well as for a range of bulk optical properties consistent with normal 

and cancerous brain tissue.       
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CHAPITRE 4 PROTOTYPE D’IMAGERIE INTÉGRÉ 

Ce chapitre relate les résultats supplémentaires obtenus suite à l’article présenté au chapitre 

précédent. En réponse au second objectif présenté dans l’introduction, un prototype d’imagerie a 

été intégré à une aiguille de biopsie pour le cancer du cerveau. La première partie présente l’allure 

et les dimensions finales du prototype intégré. Ensuite, des tests de propagation de la lumière ont 

été effectués et sont présentés dans la seconde section. Finalement, une expérience tomographique 

de localisation d’absorbeurs de lumière a été effectuée, tel qu’il avait été fait avec l’ancien 

prototype. 

4.1 Prototype intégré : aspect général 

La Section 2.2 détaille les étapes de fabrication ayant permis d’obtenir le prototype intégré 

qui est présenté à la Figure 4-1. Il est important de mentionner que bien que le prototype d’imagerie 

soit le résultat final, le processus de fabrication consiste également en un résultat en soi puisqu’il 

est l’aboutissement de multiples tests et itérations. En ce qui a trait à l’aiguille, elle reste 

manipulable et utilisable par le chirurgien. La canule interne peut être insérée et retirée de la canule 

 

Figure 4-1 : Prototype final avec les 18 fibres intégrées sur l’aiguille, sortant par un tube de 

1,62 mètre, se séparant ensuite en 18 petits tubes protecteurs individuels d’environ 85cm de 

longueur et se terminant chacun par un connecteur SMA. 
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externe permettant d’extraire un échantillon de biopsie tout en procédant à l’acquisition de données 

spectroscopiques. Le diamètre de l’aiguille de biopsie a été augmenté à environ 2,9 mm, 

comparativement à 2,11 mm auparavant. Toutefois, près de la fenêtre d’échantillonnage ce 

diamètre est un peu plus élevé, soit d’environ 3,6 mm. Cette augmentation observable sur la Figure 

4-2 fut causée par la colle sous les fibres et entre celles-ci ainsi que par la gaine protectrice qui a 

formé une bulle inattendue à cet endroit. La longueur de l’aiguille pouvant être insérée dans le 

cerveau est de 16,2 cm. Le diamètre de la pièce protectrice pour la transition entre l’aiguille et le 

tube commun est de 11,5 mm. Le tube commun pour sa part mesure 1,62 m alors que les tubes 

individuels mesurent entre 76 cm et 105 cm, pour une moyenne de 85 cm, permettant ainsi environ 

2,2 m entre le chirurgien et le système dans la salle d’opération. 

4.2 Caractérisation de l’illumination 

Des tests de propagation de la lumière ont été effectués à l’aide d’un goniophotomètre 

commercial, tel que défini dans la Section 2.3.3. Les résultats sont illustrés aux Figure 4-3 et Figure 

4-4. Chaque cartographie représente la propagation de la lumière dans l’air autour de chaque fibre. 

Ainsi, il est possible de voir si l’illumination ou la détection se fera relativement uniformément. 

Au centre de chacun des graphiques, le détecteur de photons est aligné verticalement avec la source. 

 

Figure 4-2 : Agrandissement de l’aiguille avec les fibres intégrées et son extrémité où le 

diamètre est plus grand. 
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Il se déplace ensuite angulairement jusqu’à 45° en captant l’intensité à chaque angle. Le processus 

est ainsi réitéré sur 360° afin d’obtenir une cartographie de l’illumination de chacune des fibres 

dans l’air. Cette cartographie peut ensuite être analysée pour valider ou non l’uniformité de 

l’illumination. 

 

Figure 4-3 : Propagation de la lumière dans l’air pour les fibres 1 à 9 vues de haut. Au centre du 

graphique, à zéro degré, le capteur est directement au-dessus de la source. Plus on s’éloigne du 

centre sur le graphique, plus la caméra est placée à angle par rapport à la source, jusqu’à 45° 

d’angulation. Les données sont acquises pour 360°. 
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Cette expérience a été effectuée pour toutes les sources ainsi que pour les détecteurs. En 

effet, observer l’uniformité de la propagation de la lumière à la sortie d’un détecteur est également 

indicateur de l’uniformité de son volume d’échantillonnage. Il est possible de remarquer sur la 

Figure 4-3 que les fibres 2 à 9 présentent une illumination relativement uniforme, bien qu’aucune 

ne soit circulaire. Il en est de même pour les fibres 10 à 18 sur la Figure 4-4. Toutefois, il est évident 

que l’illumination de la fibre 1 est directionnelle, vu l’étirement visible sur la cartographie. 

 

Figure 4-4 : Propagation de la lumière dans l’air pour les fibres 10 à 18. De même que pour les 

fibres 1 à 9, au centre de chaque cartographie, la caméra est placée au-dessus de la source. Plus 

on s’éloigne du centre, plus cette caméra est placée à angle par rapport à la verticale. 
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4.3 Expérience tomographique 

Une expérience tomographique a été effectuée avec le prototype d’imagerie intégré afin de 

vérifier s’il est possible d’obtenir des sinogrammes optiques similaires à ceux obtenus dans l’article 

du Chapitre 3. Les simulations MC permettant les reconstructions tomographiques n’ont toutefois 

pas encore été refaites pour la nouvelle géométrie, mais le contraste optique observé sur les 

sinogrammes démontre indirectement que la reconstruction tomographique est possible à l’aide du 

prototype intégré.  

Le protocole d’acquisitions de données est le même que celui décrit dans l’article du 

chapitre précédent. Une acquisition homogène réfère à une acquisition prise directement dans 

l’Intralipide 1%, se rapprochant ainsi du coefficient de diffusion réduit du cerveau à 600 nm de 

𝜇𝑠
′ ≅ 1.35 mm-1. Les acquisitions hétérogènes ont été effectuées avec des tiges de carbones de 1 

mm de diamètre selon trois configurations distinctes, exactement comme dans l’article : (i) une tige 

de carbone en contact avec la sonde (Figure 4-5b), (ii) deux tiges de carbones en contact avec la 

sonde avec un angle d’environ 90° entre elles (Figure 4-5c) et (iii) la même configuration que (ii), 

mais avec la deuxième tige à une distance de 1 mm la séparant de la sonde (Figure 4-5d). Les temps 

d’acquisition varient entre 70 ms et 3 s dans le but d’obtenir un signal aussi élevé pour les grandes 

distances que pour les petites distances entre les sources et les détecteurs. La Figure 4-5a présente 

un sinogramme optique normalisé pour une acquisition tomographique dans un milieu diffus 

homogène avec le nouveau prototype d’imagerie. En abscisse, chaque projection est composée de 

l’illumination avec une des 9 sources (fibres paires 2 à 18 tel qu’illustré à la Figure 2-15) et détectée 

par tous les détecteurs en ordonnées (fibres impaires 1 à 17 tel qu’illustré à la Figure 2-15). En 

post-traitement, les données homogènes ont été calibrées en déterminant un gain à appliquer à 

chaque paire source-détecteur afin d’uniformiser l’intensité pour les mêmes distances. Les 

acquisitions hétérogènes ont été faites dans le même milieu diffus que l’acquisition homogène, 

mais avec une ou deux tiges de carbone de 1 mm de diamètre placées vis-à-vis différentes sources. 

Le gain calculé avec les données homogènes a été appliqué aux données homogènes. Par la suite, 

la différence entre les données homogènes et hétérogènes a été calculée et normalisée afin d’obtenir 

les sinogrammes de la Figure 4-5b, c et d. 
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Les résultats se retrouvant à la Figure 4-5 doivent être comparés à ceux obtenus à l’aide de 

la sonde tomographique à la Figure 3-4. Il y a des différences qualitatives entre les deux figures 

puisque le nouveau prototype ne comporte que 9 sources et détecteurs comparativement à 12, ce 

qui donne l’impression d’avoir des sinogrammes moins bien définis. Il faut toutefois noter que ces 

18 fibres totales sont distribuées sur une section de 200° comparativement aux 12 paires de fibres 

 

Figure 4-5 : (a) Sinogramme optique normalisé acquis dans un milieu diffus homogène autour 

de 600 nm (bande spectrale de détection sélectionnée sur le spectromètre) pour chacune des 

paires source-détecteur. Chaque projection (axe des x) est associée à une source (fibres paires 

2 à 18) et plusieurs détecteurs (fibres impaires 1 à 17). (b) Sinogramme optique de la différence 

normalisée entre une acquisition homogène et une hétérogène pour une tige de carbone de 1mm 

placée devant la source 4. (c) Différence normalisée pour une tige de carbone de 1mm à 0mm 

de la source 2 et une tige de 1mm également collée à la source 6. (d) Même configuration qu’en 

(c), mais la tige devant la source 2 est à 1mm de distance par rapport à la sonde. 
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qui sont sur une section de 360°. À titre de référence, pour un même nombre de sources et 

détecteurs, l’ancien prototype couvrirait une section de 270°. Une autre différence notable est 

l’asymétrie par rapport à la diagonale des nouveaux sinogrammes. Contrairement à la sonde 

tomographique, les sources et détecteurs du prototype intégré ne sont jamais à une même position 

angulaire, causant des séries de données qui sont asymétriques par rapport à la diagonale. 
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CHAPITRE 5 DISCUSSION GÉNÉRALE 

L’objectif principal de cette maîtrise était de concevoir et de fabriquer un système 

d’imagerie intégré à une aiguille de biopsie pour le cancer du cerveau. Le but clinique éventuel est 

de minimiser les risques associés à cette opération chirurgicale en localisant les vaisseaux sanguins 

et d’augmenter son rendement en identifiant les cellules tumorales. Ce mémoire se concentre 

davantage sur la faisabilité de la détection de vaisseaux sanguins avec l’optique diffuse et de 

l’intégration du système d’imagerie sur l’aiguille de biopsie. Les deux objectifs spécifiques 

présentés dans l’introduction ont été définis afin d’atteindre cet objectif principal.  

En premier lieu, le design optique envisagé a été validé (Objectif 1) puisqu’il ne suivait pas 

la géométrie standard de l’optique diffuse. En effet, il est coutume en TOD d’utiliser une géométrie 

circulaire interrogeant la région intérieure au cercle formé par les sources et détecteurs (voir section 

1.3). Cependant, cela n’était pas possible dans ce cas-ci vu l’intégration sur l’aiguille de biopsie et 

la nécessité d’interroger vers l’extérieur de la géométrie de détection. Ainsi, afin de répondre au 

premier objectif, un prototype initial sous forme de sonde tomographique a été réalisé. Cette 

dernière a été utilisée pour effectuer les premières expériences et vérifier la capacité du design à 

imager des absorbeurs imitant des vaisseaux sanguins dans un milieu diffus. 

Suite à cela, un prototype d’imagerie intégré à une aiguille de biopsie commerciale a été 

conçu et fabriqué (Objectif 2). Malgré l’apparente simplicité du design, plusieurs défis 

technologiques ont été rencontrés au cours de la fabrication entre autres à cause de la taille limitée 

que devait avoir l’aiguille finale afin de pouvoir être éventuellement intégrée au travail des 

neurochirurgiens. Pour valider le bon fonctionnement du prototype construit selon la méthodologie 

décrite à la section 2.2, plusieurs tests et expériences ont été effectués.  

Ce chapitre présente un bref aperçu des principaux résultats, suite à quoi ces derniers seront 

discutés et analysés en fonction des résultats escomptés, des objectifs et des améliorations possibles 

du système et du prototype. Finalement, les perspectives futures de ce projet dans le Laboratoire 

de Radiologie Optique seront discutées. 
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5.1 Synthèse des principaux résultats 

5.1.1 Preuve de concept pour la détection de vaisseaux sanguins 

L’article apparaissant au Chapitre 3 présente une preuve de concept pour la détection et la 

reconstruction du contraste optique associé à des absorbeurs imitant des vaisseaux sanguins. Pour 

y arriver, la sonde tomographique a été utilisée. L’imagerie a été effectuée dans un fantôme 

biologique composé d’un milieu diffus (Intralipide 1%) comprenant des absorbeurs de lumière 

(tiges de carbones), permettant d’imiter les propriétés optiques du cerveau. Les expériences 

effectuées dans le cadre de cet article ont permis de démontrer que le design optique est apte à 

détecter au moins une inclusion absorbante, répondant ainsi au premier objectif de ce mémoire. 

Premièrement, pour toutes les acquisitions de cette expérience la différence observée entre 

les acquisitions homogènes et hétérogènes était toujours d’au moins de 5%. Ceci indique qu’il était 

possible de détecter au moins une des inclusions dans tous les cas présentés dans l’article. Ce seuil 

de 5% avait préalablement été déterminé par un collègue comme étant le bruit maximal du système 

bien que des études subséquentes ont démontré que des niveaux de bruit de l’ordre de 1% peuvent 

être atteints simplement en utilisant des temps d’intégration plus élevés. Deuxièmement, cet article 

démontre à la Figure 3-4 qu’il est également possible de détecter et localiser de manière fiable un 

ou deux absorbeurs de lumières. Lorsqu’il y a deux tiges de carbone situées à une même distance, 

l’intensité relative de chacune est similaire. Lorsqu’une des deux est éloignée de la sonde, cette 

dernière est tout autant détectée que l’autre, en ayant toutefois une intensité moindre. Il est à noter 

que la méthode de reconstruction de cet article est limitée de sorte qu’elle n’est pas sensible en 

profondeur. Elle ne fera donc pas la différence entre une tige de carbone de grande taille situé à 

quelques millimètres de la sonde et une tige de carbone de petite taille située tout près de la source. 

Plus de détails sur les limites de détection, en termes de tailles et distances des absorbeurs de 

lumières, se trouvent dans l’article soumis pour publication dans Biomedical Optics Express [78]. 

Les sinogrammes optiques associés à deux inclusions (Figure 3-4c et e) sont beaucoup plus 

difficiles à interpréter que lorsqu’il n’y a qu’une seule inclusion. La méthode de reconstruction, 

bien qu’elle ne soit pas optimale, est tout de même essentielle pour bien distinguer les deux 

inclusions. De plus, les temps d’acquisition avec ce prototype varient entre 18 ms et 5 s 

dépendamment de la distance entre une source et un détecteur. Pour une acquisition tomographique 
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complète, le temps d’attente peut donc aller jusqu’à 10 minutes dans certains cas, ce qui est 

inacceptable pour une application en salle d’opération. Ainsi, plusieurs améliorations possibles, 

discutées à la section 5.2.1, seraient nécessaires pour accélérer le processus. 

5.1.2 Performances du prototype intégré 

Le Chapitre 4 décrit le prototype intégré et les divers tests qui ont été effectués pour valider 

son bon fonctionnement, répondant ainsi au second objectif spécifique de ce mémoire. Tout 

d’abord, les dimensions finales du prototype ont été prises afin d’évaluer si son intégration en salle 

d’opération est réaliste. Le diamètre final de l’aiguille était de loin la mesure la plus importante. 

Sur presque toute sa longueur, la canule externe de l’aiguille fait environ 2,9 mm ce qui est sous la 

barre des 3 mm visés. Toutefois, certaines manipulations plus difficiles ont augmenté le diamètre 

externe à 3,6 mm à son extrémité. Ainsi, il a été possible d’intégrer un système d’imagerie sur une 

aiguille de biopsie du cerveau, mais les limites imposées de tailles n’ont pas été respectées. En 

modifiant le protocole de fabrication, il serait cependant possible de maintenir le diamètre sous les 

3 mm, comme il a été fait pour la majeure partie de l’aiguille. 

Les tests sur le goniophotomètre ont permis de vérifier l’uniformité de l’illumination ou la 

détection pour chacune des fibres. En règle général, l’illumination est sensiblement homogène, 

bien que non circulaire, pour toutes les fibres, mis à part pour la 1. Le fait que toutes les sources 

présentent une cartographique plutôt ellipsoïde est probablement dû à la présence de colle optique 

entre les fibres et le miroir. L’imagerie avec le goniophotomètre s’est fait à la sortie de la colle 

optique, impliquant que la lumière a déjà commencé sa propagation dans l’espace, sans être guidée 

par une fibre. D’autre part, le problème d’homogénéité de la fibre 1 peut être causé par un polissage 

non uniforme à l’extrémité du tube métallique ou bien par la bordure de la gaine de téflon qui aurait 

mal été dégagée. Il est également possible qu’une non-uniformité de la colle optique près de la 

fenêtre d’échantillonnage, donc près de la fibre 1, ait créé un effet de bord qui explique la dispersion 

de la lumière sortante. Ces différences en homogénéités sont toutefois compensées dans le 

traitement des données par l’application d’un gain en fonction de l’intensité relative des sources et 

des détecteurs. Ce gain, calculé à partir de données homogènes, permet de limiter les différences 

entre toutes les paires ayant une même distance entre leur source et leur détecteur. 

Finalement, des acquisitions tomographiques ont été effectuées avec le nouveau prototype 

afin de tester sa capacité à localiser un absorbeur de lumière et de comparer ses performances avec 
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la sonde tomographique. Des acquisitions suivant des configurations similaires à celles de l’article 

ont été réalisées. Dans le premier cas, une tige de carbone de 1mm a été placée devant la source 4 

(fibre 8). Il est possible de voir sur la Figure 4-5b que la tige de carbone peut être effectivement 

localisée au bon endroit. La Figure 4-5c présente une acquisition avec deux tiges de carbone de 1 

mm collées à deux différentes sources, la 2 et la 6. Alors que la Figure 4-5d montre la même 

configuration, mais avec la tige devant la source 2 éloignée de 1mm. Il est possible de remarquer 

que cet éloignement cause une diminution en intensité devant la source 2, indiquant bel et bien un 

éloignement de l’inclusion absorbante. En comparant les sinogrammes de la sonde tomographique 

avec ceux du prototype intégré, on remarque que les deux inclusions sont plus facilement 

discernables pour cette dernière. Toutefois, ce problème est réglé dès lors qu’une reconstruction 

est faite. Malheureusement, la reconstruction complète telle que montrée dans le Chapitre 3 n’a pas 

été faite puisqu’il aurait été nécessaire de refaire toutes les simulations Monte Carlo pour la 

nouvelle géométrie du prototype intégré. Cela sera cependant fait dans les étapes suivantes de ce 

projet. 

5.2 Limitations et améliorations possibles du système 

Ce mémoire a permis de démontrer qu’il est possible d’intégrer des fibres optiques sur 

l’extérieur d’une aiguille de biopsie et d’utiliser l’optique diffuse selon une nouvelle configuration 

pour détecter les vaisseaux sanguins. Toutefois, cette maîtrise ayant eu pour objectif la preuve de 

concept, plusieurs processus peuvent encore être améliorés afin d’être optimisés et éventuellement 

rendre l’outil prêt pour la salle opératoire. Certains d’entre eux sont discutés dans cette section. 

5.2.1 Montage expérimental, acquisitions tomographiques et méthodes de 

reconstruction 

Le montage expérimental, bien que fonctionnel, n’est pas optimal en termes de pertes 

lumineuses, de bruit et de temps d’acquisition. D’une part, l’utilisation de deux multiplexeurs pour 

sélectionner les sources et les détecteurs entraine des délais et des pertes importantes. En effet, le 

multiplexeur utilisé (MPM-2000, Ocean Optics) peut avoir des pertes allant jusqu’à 40%, selon les 

spécifications de la compagnie. Ainsi, ces pertes s’accumulent doublement dans le montage actuel. 

De plus, le fait que les multiplexeurs utilisent un moteur pour changer de port, c’est-à-dire pour 

sélectionner séquentiellement la source et le détecteur à utiliser, entraîne des délais d’attente 
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additionnels. Afin de limiter ces problèmes, il serait avantageux d’utiliser un spectromètre ayant 

plusieurs ports permettant l’acquisition simultanée de tous les spectres des détecteurs, rendant 

obsolète l’utilisation du second multiplexeur. D’autre part, puisque les temps d’acquisition sont 

assez élevés (pouvant aller jusqu’à 10 minutes pour un ensemble de données complet), les 

expériences peuvent prendre plusieurs heures. De ce fait, on induit un bruit dans nos signaux qui 

est créé par la dérive optique de la sortie lumineuse de la source utilisée. Ainsi, trouver une méthode 

pour minimiser le temps d’acquisition pour les expériences (tout en gardant un bon ratio signal sur 

bruit) aiderait également à réduire ce type de bruit. Finalement, il serait intéressant d’analyser la 

pertinence des acquisitions faites pour les sources et détecteurs les plus éloignés. En inspectant les 

données homogènes, il est évident qu’il y a plus d’informations dans les détecteurs les plus près de 

la source et il serait possible d’éliminer les détecteurs les plus éloignés dans le but d’accélérer les 

acquisitions tomographiques. 

La méthode de reconstruction présentée au Chapitre 3 n’a pas été développée dans le cadre 

de cette maîtrise, mais a tout de même été utilisée pour démontrer certains résultats. Bien que cette 

dernière soit très utile pour visualiser la position angulaire de l’inclusion par rapport à la sonde, 

elle ne donne aucune information quant à la taille ni à la position radiale de l’inclusion. Ainsi, il 

serait intéressant d’améliorer l’algorithme afin de développer une méthode résolue en profondeur, 

permettant ainsi de donner la distance entre les vaisseaux sanguins et la sonde. Une autre 

amélioration qui serait pertinente serait de pouvoir donner une indication de la concentration 

d’hémoglobine. Une méthode de reconstruction est en cours de développement au LRO afin 

d’apporter ces améliorations en utilisant l’information multispectrale des données acquises. 

5.2.2 Fabrication du prototype intégré 

La fabrication du prototype intégré fut un processus long, requérant beaucoup de minutie 

et comportant plusieurs étapes délicates. Il n’est donc pas surprenant que ce processus puisse être 

amélioré afin de minimiser les difficultés et perfectionner le résultat final. Lors de la première 

partie de la fabrication, soit l’assemblage et le polissage des fibres sur le tube de carbone (Section 

2.2.1), les fibres étaient assez difficiles à placer sur le tube. En effet, malgré le montage vertical et 

le design serré qui empêchait la création d’espaces entre les fibres, ces dernières avaient une 

tendance à bouger et se mélanger. De plus, cette technique fonctionnerait beaucoup mieux pour un 

cercle complet plutôt que sur une section de cercle. Les fibres aux extrémités (1 et 18 sur la Figure 
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2-15) avaient tendance à se positionner au mauvais endroit, soit n’étant plus sur le tube métallique, 

soit en se superposant aux fibres adjacentes (2 et 17 sur la Figure 2-15). Ainsi, cette partie de la 

fabrication a tout de même bien fonctionné pour un premier prototype, mais ne serait pas 

envisageable pour un système commercial. En effet, cette étape doit être effectuée selon un 

processus très long et méticuleux pouvant apporter des variations importantes sur la géométrie de 

la sonde. D’autre part, suite à l’assemblage des fibres sur le tube métallique, il a fallu les polir. Ceci 

s’est fait manuellement, sans l’aide d’un disque à polissage. Cette étape étant cruciale à l’uniformité 

de la lumière sortante de chaque source, il serait donc important de développer un processus plus 

fiable. Il serait possible de fabriquer un disque à polissage adapté à cette sonde pour un polissage 

manuel plus uniforme ou bien de concevoir un support pour polir le prototype à l’aide d’une 

machine similaire à celle utilisée pour les connecteurs. Lors de la deuxième grande étape de 

fabrication, les fibres et l’aiguille ont été recouvertes d’une gaine thermorétractable et 

biocompatible de polytétrafluoroéthylène. Cette gaine étant très peu propice à l’adhésion, deux 

traitements de surface ont dû être effectués avant de pouvoir l’utiliser sur le prototype. Ces 

traitements ont aidé à activer la surface et ont permis de pouvoir coller cette gaine sur le prototype. 

Idéalement, un autre matériau biocompatible ne nécessitant pas ces étapes superflues devrait être 

trouvé pour protéger les fibres. Il serait par exemple approprié de fabriquer à la place une canule 

métallique avec des petits trous à l’intérieur de tout son long pouvant accueillir les fibres et 

s’emboitant parfaitement sur la canule externe de l’aiguille, permettant aussi de mieux contrôler le 

diamètre final du prototype. D’autre part, le miroir a initialement posé problème quant à la méthode 

de fabrication. Ce processus de fabrication a toutefois déjà été optimisé en usinant une pièce sur 

mesure pour pouvoir immobiliser la pièce en aluminium lors de la confection du miroir sur le tour 

numérique. Toutes les autres étapes de fabrication relevaient de méthodes relativement standards 

et n’ont pas posé de grands défis technologiques. Toutefois, au final, les tubes flexibles en métal 

utilisés pour protéger les fibres sont un peu lourds et risqueraient peut-être d’obstruer les 

mouvements du chirurgien. Pour remédier à la situation, des tubes plus minces ou en plastique 

seront à envisager pour un prochain prototype. En bref, la méthodologie de fabrication du prototype 

intégré fut une bonne première itération fonctionnelle, mais requiert encore plusieurs modifications 

avant de pouvoir transférer cette technologie à l’industrie. Il serait d’ailleurs intéressant 

d’implémenter de meilleures étapes de vérification entre chaque étape de fabrication afin d’éviter 

de poursuivre si le prototype des déjà compromis. Par exemple, si la propagation de la lumière ne 
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se fait pas adéquatement après l’étape de polissage, cette dernière pourrait être réitérée ou bien le 

prototype recommencé. 

Lorsque le processus de fabrication aura été amélioré et optimisé, il sera alors possible de 

produire ce prototype d’imagerie à moindre coût. Présentement, les frais les plus élevés de la 

fabrication sont liés à l’achat de l’aiguille de biopsie (~1000 $) alors que le coût total pour le reste 

des composantes est d’environ 1500$. Le processus de fabrication optimisé sera beaucoup moins 

coûteux puisque le temps accordé à ce dernier pourrait passer d’environ deux semaines à moins 

d’une journée par prototype. Ainsi, il est réaliste de penser que ce système pourrait être 

commercialisable. 

5.2.3 Intégration en salle opératoire 

Le prototype intégré final présenté dans ce mémoire comporte également quelques lacunes, 

bien qu’il fonctionne bien et soit facilement manipulable. Comme présenté dans les résultats, son 

extrémité distale, près de la fenêtre d’échantillonnage, est plus large que l’épaisseur visée de 3mm.  

De plus, les traitements de surface effectués sur la gaine thermorétractable pourraient avoir affecté 

la biocompatibilité de celle-ci. Ainsi, pour ces deux raisons, il est possible que le prototype actuel 

augmente les risques lors de la chirurgie. Il faudrait donc, tel que mentionné ci-haut, revoir ces 

deux procédés en plus d’ajouter des étapes permettant de valider la biocompatibilité de l’outil. De 

plus, les fibres du prototype intégré font en moyenne 2,47m de longueur (incluant les tubes séparés 

et commun). Idéalement, pour être certain de ne pas envahir le champ opératoire stérile, il serait 

préférable de les allonger jusqu’à environ 3m. De ces 3m, environ 2,5m devraient être le tube 

commun pour minimiser l’encombrement du système. Le tube commun n’était pas très flexible, il 

peut rendre la manipulation de l’aiguille un peu moins fluide. Il serait préférable de le modifier 

pour une taille moindre et plus flexible pour les prochains prototypes. Finalement, l’aiguille de 

biopsie commerciale actuelle n’est pas conçue pour être réutilisable et la biocompatibilité du 

prototype n’a pas été testée, ce qui devra être considéré lors des prochaines itérations du prototype. 

Si toutes ces modifications sont apportées, et que le prototype peut être amené en salle 

d’opération, certains ajustements devront être apportés à la procédure chirurgicale et aux 

instruments utilisés. Premièrement, un programme permettant de contrôler automatiquement le 

système d’acquisition devra être conçu afin d’éliminer la nécessité d’utiliser LabView et de devoir 

choisir les temps d’acquisitions manuellement. D’autre part, tel que mentionné précédemment, le 
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montage pour l’utilisation de l’aiguille de biopsie devra être modifié. Si le cadre stéréotaxique est 

utilisé, la manche qui tient l’aiguille devra être agrandie pour accommoder le nouveau diamètre. Si 

c’est une procédure sans cadre, il faut s’assurer d’ajouter boules réfléchissantes pour le 

positionnement et localisation de l’aiguille dans l’espace. De plus, il serait idéal d’ajouter une pièce 

qui permettrait de contrôler exactement la rotation nécessaire de 180°. Soit un stage de rotation 

gradué ou bien une pièce rotative avec un butoir pour permettre seulement les demi-rotations. 

D’autre part, les aiguilles de biopsies traditionnelles sont jetables alors que ce prototype aurait 

besoin d’être stérilisable. Toutefois, ceci n’est pas un requis pour l’aiguille entière. Seulement la 

canule externe a besoin d’être réutilisable alors que la canule interne pourrait être jetable. 

5.3 Perspectives futures 

Les deux objectifs spécifiques de ce mémoire ont été atteints, mais plusieurs étapes sont 

encore nécessaires entre la fin de cette maîtrise et l’introduction de ce système dans la salle 

d’opération. Les prochaines étapes importantes avec le prototype intégré seraient d’évaluer sa 

sensibilité aux inclusions absorbantes tel qu’il a été fait avec la sonde tomographique en plus de 

développer les algorithmes Monte Carlo pour la reconstruction. De plus, un nouvel algorithme de 

reconstruction basé sur les données spectrales est en cours de développement afin d’être sensible 

en profondeur. Afin d’évaluer adéquatement le bon fonctionnement du prototype intégré, des 

nouveaux tests seront effectués avec le prototype intégré. Ces tests se feront in vivo avec des 

modèles porcins afin de valider le prototype dans des conditions opératoires. De plus, la bonne 

détection des vaisseaux sanguins sera validée grâce à un appareil d’angiographie 3D. Finalement, 

les tests effectués avec le prototype intégré pourront également guider la fabrication d’un nouveau 

prototype. 

Outre les améliorations possibles mentionnées dans la section précédente, il serait pertinent 

d’intégrer également une méthode de détection des cellules cancéreuses. Cela permettrait d’aider 

à répondre à la deuxième problématique liée aux biopsies du cerveau, c’est-à-dire les risques de 

mauvais diagnostic. Le prototype intégré actuel serait d’ailleurs déjà apte à détecter de la 

fluorescence, moyennant l’ajout des composantes nécessaires. Plusieurs études ont montré qu’il 

est possible d’utiliser la fluorescence de la PpIX pour la détection de gliomes de haut grade [65], 

[67], [75]. Ainsi, le système actuel pourrait être modifié pour pouvoir imager la fluorescence. Une 

autre option serait de créer un prototype permettant de faire de la spectroscopie Raman, en plus de 
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la TOD.  La spectroscopie Raman est une méthode d’imagerie qui a fait ses preuves en termes de 

détection de cellules cancéreuses [72], mais qui est plus complexe à intégrer à l’aiguille de biopsie 

puisqu’elle se base sur un signal extrêmement faible et complexe à imager. Finalement, il existe 

une autre source potentielle associée aux risques d’hémorragie liés aux biopsies du cerveau qui n’a 

pas été mentionnée dans ce mémoire. Il y a plusieurs spéculations sur le fait que l’insertion de 

l’aiguille dans le cerveau peut également causer la rupture de vaisseaux sanguins. À l’instar de la 

détection de cellules cancéreuses, cette autre source potentielle d’hémorragie est un problème 

clinique indépendant de celui traité dans ce texte mais qui serait intéressant d’adresser dans le cadre 

de projets futurs et, si possible, d’intégrer à ce système d’imagerie.
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CONCLUSION 

Le projet présenté dans ce mémoire avait pour objectif principal d’intégrer un système 

d’imagerie sur une aiguille de biopsie pour le cancer du cerveau afin de réduire les risques liés à 

cette procédure. Afin d’y parvenir, deux objectifs spécifiques ont été identifiés et atteints. 

Premièrement, une nouvelle géométrie de tomographie optique diffuse a été testée dans le but de 

détecter des inclusions absorbantes. Cette géométrie circulaire utilise l’optique diffuse pour 

interroger le tissu extérieur au cercle formé par les optodes, contrairement à la géométrie standard 

qui interroge le tissu intérieur. Ce design a été testé à l’aide d’une sonde tomographique et d’un 

fantôme biologique imitant les propriétés optiques du cerveau. Des tiges de carbone ont été utilisées 

comme inclusions absorbantes afin de simuler les vaisseaux sanguins. La sonde tomographique a 

prouvé être capable de détecter deux inclusions, même si une d’entre elles est située plus loin que 

l’autre. L’étude de sensibilité a également montré que cette sonde peut détecter les inclusions >300 

μm à ~2 mm du centre de la sonde [78]. Pour répondre au deuxième objectif, une méthode de 

fabrication pour le prototype d’imagerie a été développée. Celle-ci a été élaborée afin de pouvoir 

intégrer le plus grand nombre de fibres possible sur l’espace disponible derrière la fenêtre. Il a 

finalement été possible d’intégrer 18 fibres sur ces 200°. Sur ces 18 fibres, 9 sont utilisées comme 

sources (fibres paires) et 9 comme détecteurs (fibres impaires). La sonde finale fait en moyenne 

2,9 mm de diamètre sur sa longueur, mis à part à son extrémité où elle fait 3,6 mm. 

Les tests avec le prototype intégré ont permis non seulement de valider son bon 

fonctionnement tel qu’il avait été fait avec la sonde tomographique, mais également d’évaluer les 

failles dans le processus de fabrication. Les prochaines étapes pour ce système impliquent des tests  

in vivo avec des modèles porcins qui serviront à valider le bon fonctionnement de la méthode de 

reconstruction et du prototype en salle opératoire. D’ailleurs, un nouvel algorithme de 

reconstruction sensible en profondeur est en cours de développement. Finalement, une nouvelle 

sonde intégrée plus solide et uniforme sera créée en améliorant le processus de fabrication 

développé lors de cette maîtrise. 
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ANNEXE A – DÉTAILS SUPPLÉMENTAIRES SUR LA FABRICATION 

Le tableau suivant décrit le programme exécuté avec le four à plasma d’argon pour le 

traitement de surface de la gaine thermorétractable de PTFE. Ce protocole peut varier grandement 

d’un four à l’autre et il est suggéré de faire des essais avant de procéder selon ces instructions. 

Tableau 1 : Étapes pour le traitement de surface de la gaine thermorétractable dans le four à plasma 

d’argon. 

Étape Tâche effectuée Temps nécessaire 

1 Faire le vide (environ 1 torr) 1 min 30 sec 

2 Ajuster la quantité de gaz d’argon dans le four 1 min 

3 Plasma 10 min 

4 Évacuer le gaz de la chambre 15 sec 

5 Ventilation et refroidissement 2 min 

6 Repos de l’échantillon 30 sec 

De même, le tableau ci-dessous présente les étapes détaillées du processus de polissage 

pour les connecteurs SMA du prototype intégré. Tout comme pour le traitement de surface, ce 

protocole peut varier grandement en fonction du type de polisseuse utilisée et il est suggéré de 

tester ce protocole avant de l’appliquer pour la fabrication d’un prototype. 

Tableau 2 : Étapes à suivre pour le polissage des connecteurs SMA avec la polisseuse ULTRAPOL 

de ULTRA TEC Manufacturing Inc. 

Étape Papier 
Poids 

appliqué 

Vitesse 

de 

rotation 

Épaisseur * Temps 

1 30 μm Max (100) 50 
Juste pour qu’il 

frôle la feuille 

Jusqu’à ce qu’on ne 

voit plus d’époxy 

2 12 μm Max 250 3 X 10 μm 
Jusqu’à ce que ça soit 

grugé par la feuille 

3 5 μm Max 250 10 μm 1 min 30 

4 1 μm Max 250 10 μm 1 min 30 

5 0.3 μm Moy (70) 250 10 μm 2 min 30 

6 ultrafilm Min (45) 250 10 μm 

2 min 30 

Rincer le connecteur 

avec de l’eau  

2 min 30 

* Ici, on désigne l’épaisseur comme étant le nombre de microns qu’on permet à la feuille de gruger 

lors du polissage. Lorsque le connecteur touche la feuille, on descend alors le bras de cette distance 

supplémentaire. 


