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RESUME

Les problemes de tounées de véhicules avec cueillettes et livraisons consistent a trouver des
tournées réalisables minimisant le nombre de véhicules utilisés et la distante totale parcourue,
et permettant de compléter toutes les requétes. Une requéte est définie par un point de
cueillette et un point de livraison, et une quantité de marchandise a transporter du point
de cueillette au point de livraison. Ce faisant, une tournée est dite réalisable si la charge du
véhicule ne dépasse pas sa capacité et si, pour chaque requéte, on visite le point de cueillette
avant le point de livraison avec le méme véhicule. Dans la derniere décennie, la communauté
de recherche opérationnelle s’est attaquée a des problemes de plus en plus complexes qui
tiennent compte de contraintes opérationnelles difficiles a traiter. Cette theése s’insere dans

cette tendance.

Cette these propose des modeles et des algorithmes pour résoudre deux variantes du pro-
bleme de tournées de véhicules avec cueillettes et livraisons : le probléeme de tournées de
véhicules avec cueillettes, livraisons, fenétres de temps et contrainte de chargement dernier
entré premier sorti (last-in-first-out — LIFO) (pickup and delivery problem with time windows
and LIFO loading — PDPTWL) et le probleme de tournées de véhicules avec fenétres de
temps et plusieurs piles (pickup and delivery problem with time windows and multiple stacks
— PDPTWMS). Dans le PDPTWL, la contrainte de chargement dernier entré premier sorti
stipule qu’aucune manutention non nécessaire n’est faite lors de la livraison d’un item : un
item peut seulement étre livré s’il est situé sur le dessus de la pile. Dans le PDPTWMS,
chaque véhicule contient plusieurs piles qui sont gérées selon une politique de chargement

dernier entré premier sorti.

Afin de résoudre le PDPTWL, trois algorithmes de génération de colonnes avec plans cou-
pants et un algorithme heuristique sont proposés. Le premier algorithme de génération de
colonnes incorpore la contrainte de chargement dans le probleme maitre, alors que le second
I'incorpore dans le sous-probleme. Pour ce faire, un algorithme d’étiquetage et un critere de
dominance spécialisés sont proposés. Le troisieme algorithme de génération de colonnes est
une combinaison des deux premiers algorithmes. Des inégalités valides connues sont adap-
tées pour le PDPTWL. Des instances ayant jusqu’a 75 requétes sont résolues par ces trois

algorithmes exacts en une heure de temps de calcul.

L’algorithme heuristique, quant a lui, permet de traiter plus rapidement des instances de plus
grande taille. D’abord, un ensemble de solutions initiales est construit avec un algorithme

glouton. Puis, pour chaque solution, un algorithme de recherche locale est utilisé afin de
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diminuer en priorité le nombre de véhicules et ensuite la distance totale parcourue. Puis, deux
stratégies sont utilisées pour créer des solutions enfants. La premiere choisit aléatoirement des
tournées de I’ensemble de solutions alors que la deuxieme utilise un opérateur de croisement.
Pour les deux stratégies, un algorithme de recherche locale est ensuite utilisé. Finalement,
les enfants sont ajoutés a ’ensemble de solutions et les meilleurs survivants sont conservés.
L’ensemble de solutions est géré afin de garder uniquement les solutions variées de meilleure
qualité par rapport au cofit total. Des instances ayant jusqu’a 300 requétes sont résolues par

cette heuristique en deux heures de temps de calcul.

Afin de résoudre le PDPTWMS, deux algorithmes de génération de colonnes avec plans cou-
pants sont proposés. Le premier algorithme de génération de colonnes incorpore la contrainte
de chargement avec plusieurs piles dans le sous-probleme. Pour ce faire, un algorithme d’éti-
quetage et un critere de dominance spécialisés sont proposés. Le deuxieme algorithme incor-
pore partiellement la contrainte de chargement avec plusieurs piles dans le sous-probleme et
ajoute, au besoin, des contraintes au probleme maitre lorsque la solution trouvée ne respecte
pas la contrainte de chargement avec plusieurs piles. Des instances avec une, deux et trois
piles et ayant jusqu’a 75 requétes sont résolues par ces deux algorithmes exacts en deux

heures de temps de calcul.
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ABSTRACT

In the pickup and delivery problem, vehicles based at a depot are used to satisfy a set of
requests which consists of transporting goods (or items) from a specific pickup location to a
specific delivery location. We consider an unlimited fleet of identical vehicles with multiple
homogeneous compartments of limited capacity. A vehicle route is feasible if the load in each
compartment of the vehicle does not exceed its capacity and each completed request is first
picked up at its pickup location and then delivered at its corresponding delivery location.
The pickup and delivery problem consists of determining a set of least-cost feasible routes in
which the number of vehicles is first minimized. In the last decade, the operations research
community has tackled more complex problems that consider real-life constraints. This thesis

follows this trend.

This thesis proposes models and algorithms for two variants of the pickup and delivery
problem: the pickup and delivery problem with time windows and last-in-first-out (LIFO)
loading constraints (PDPTWL) and the pickup and delivery problem with time windows and
multiple stacks (PDPTWMS). In the first problem, the LIFO loading rule ensures that no
handling is required prior to unloading an item from a vehicle: an item can only be delivered
if it is the last one in the stack. In the second problem, each vehicle contains multiple stacks

that are operated in a LIFO fashion.

To solve the PDPTWL, three exact branch-price-and-cut algorithms and one metaheuristic
algorithm are developed. The first branch-price-and-cut algorithm incorporates the LIFO
constraints in the master problem. The second branch-price-and-cut algorithm handles the
LIFO constraints directly in the shortest path pricing problem and applies a dynamic pro-
gramming algorithm relying on an ad hoc dominance criterion. The third branch-price-and-
cut algorithm is a hybrid between the first two. Known valid inequalities are adapted to the
PDPTWL. Instances with up to 75 requests are solved within one hour of computational

time.

The metaheuristic is capable of handling larger instances much faster. First, a set of initial
solutions is generated with a greedy randomized adaptive search procedure. For each of these
solutions, local search is applied in order to first decrease the total number of vehicles and
then the total traveled distance. Two different strategies are used to create offspring. The
first selects vehicle routes from the solution pool. The second selects two parents to create
an offspring with a crossover operator. For both strategies, local search is then performed on

the child solution. Finally, the offspring is added to the population and the best survivors
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are kept. The population is managed so as to maintain good quality solutions with respect
to total cost and population diversity. Instances with up to 300 requests are solved within

two hours of computational time.

To solve the PDPTWMS, two exact branch-price-and-cut algorithms are proposed. The first
branch-price-and-cut algorithm handles the multiple stacks policy in the shortest path pricing
problem and applies a dynamic programming algorithm relying on an ad hoc dominance
criterion. The second branch-price-and-cut algorithm incorporates the multiple stacks policy
partly in the shortest path pricing problem and adds additional inequalities to the master
problem when infeasible LIFO multiple stacks are encountered. Instances with one, two and

three stacks involving up to 75 requests are solved within two hours of computational time.
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CHAPITRE 1 INTRODUCTION

Les problemes de tournées de véhicules se posent dans le secteur du transport par camion.
Selon un rapport publié par Statistique Canada (2012), I'industrie du transport et de 'en-
treposage représentait 4,2% du PIB global du Canada en 2012 se situant a 64,7 millards
de dollars. En 2011, le transport par camion constituait la premiére composante du PIB du
transport représentant 28,4% ou 17,0 milliards de dollars. Considérant I'importance du sec-
teur du camionnage pour le PIB global du Canada, il semble intéressant de pouvoir diminuer

ses colts afférents.

Dans cette theése, nous nous pencherons sur deux variantes du probleme de tournées de
véhicules : le probléme de tournées de véhicules avec cueillettes et livraisons, fenétres de temps
et contrainte de chargement dernier entré premier sorti (last-in-first-out — LIFO) (pickup
and delivery problem with time windows and LIFO loading — PDPTWL) et le probleme de
tournées de véhicules avec cueillettes et livraisons, fenétres de temps et plusieurs piles (pickup
and delivery problem with time windows and multiple stacks — PDPTMS). Le PDPTWL et
le PDPTWMS sont des variantes du probleme de tournées de véhicules avec cueillettes et
livraisons pour le transport de marchandises (voir Battara et al., 2014). Nous modéliserons

et proposerons des algorithmes spécifiques pour chaque probleme.

Décrivons d’abord le probleme de tournées de véhicules avec cueillettes et livraisons et fenétres
de temps (pickup and delivery problem with time windows — PDPTW). Considérant une flotte
de véhicules identiques ayant une capacité limitée, le PDPTW consiste a trouver des routes
réalisables minimisant les cofits et permettant de compléter toutes les requétes. Une requéte
est définie par un point de cueillette et un point de livraison et une quantité de marchandise
a transporter du point de cueillette au point de livraison. Ce faisant, le méme véhicule doit
nécessairement visiter le point de cueillette avant le point de livraison associé a une requéte.
Chaque point de cueillette ou de livraison spécifie une plage horaire de visite pendant laquelle
on peut recueillir ou livrer la marchandise. Il s’agit d'une fenétre de temps. Une route est
dite réalisable si la charge du véhicule en tout temps ne dépasse pas sa capacité, si pour une
requéte on visite le point de cueillette avant le point de livraison avec le méme véhicule et si
chaque point est visité a l'intérieur de la fenétre de temps spécifiée. Puisqu’il y a souvent des
cotits élevés d’utilisation des véhicules, les cofits sont associés au nombre de véhicules utilisés
et a la distance totale parcourue. En général, il est donc intéressant de minimiser le nombre

de véhicules, puis de minimiser la distance.

Le PDPTWL est une variante du PDPTW. Dans cette variante, chaque véhicule contient
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Figure 1.1 — Tournées de véhicules pour lesquelles (a) la politique LIFO est respectée et (b)
la politique LIFO n’est pas respectée parce que le colis chargé au noeud 1T ne peut pas étre
livré au noeud 1~ sans préalablement décharger le colis chargé au noeud 27.

un seul compartiment qui est chargé par 'arriere. Ce compartiment est alors géré comme
une pile et la politique LIFO doit étre respectée. Cette politique stipule que lorsquun point
de cueillette est visité, la quantité chargée est mise sur le dessus de la pile. On pourra alors
visiter un point de livraison si et seulement si la marchandise a livrer se trouve sur le dessus
de la pile. Ce probleme survient lors du transport de marchandises dangereuses, fragiles ou
lourdes. Dénotons par 0, i1 et ¢~ le dépot ainsi que le point de cueillette et de livraison de la
requéte i. La Figure 1.1 représente une tournée pour laquelle la contrainte LIFO est respectée

et une tournée pour laquelle la contrainte LIFO n’est pas respectée.

Le PDPTWMS est une variante du PDPTWL. Chaque véhicule contient plusieurs compar-
timents homogenes de capacité limitée. Chaque compartiment est chargé par 'arriere du
véhicule et est géré comme une pile. Dans ce cadre, la politique LIFO doit étre respectée
pour chaque compartiement. Cette derniere stipule que lorsqu’un point de cueillette est vi-
sité, la quantité chargée est mise sur le dessus d’une pile. On pourra alors visiter un point
de livraison si et seulement si la marchandise a livrer se trouve sur le dessus d'une des piles.
Ce probleme survient lors du transport de voitures entre des concessionnaires automobiles
a l'aide de véhicules a plusieurs niveaux ou lors du transport d’animaux vers des abattoirs
a 'aide de véhicules avec plusieurs compartiments. La Figure 1.2 présente une tournée pour

laquelle la contrainte LIFO est respectée pour un véhicule contenant deux compartiments.

A notre connaissance, il n’existe aucune méthode permettant de résoudre le PDPTWL.
Quelques méthodes exactes basées sur la méthode d’énumération implicite (voir Cordeau
et al. (2010) et Carrabs et al. (2007a)) ont été adaptées pour un probléme similaire avec un
seul véhicule : le probleme de voyageur de commerce avec cueillettes, livraisons et contrainte
de chargement LIFO (traveling salesman problem with pickup and delivery and LIFO loading
— TSPPDL). De plus, plusieurs méthodes heuristiques basées sur la recherche a grand voisi-
nage ont trouvé des résultats pour le TSPPDL (voir Carrabs et al. (2007b)) et le probleme de
tournées de véhicules avec cueillettes, livraisons et contrainte de chargement LIFO (pickup
and delivery problem with LIFO loading — PDPL) (voir Gao et al. (2011) et Cheang et al.
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Figure 1.2 — Tournée respectant les contraintes de capacité et la politique LIFO pour chaque
compartiment. Le véhicule a deux compartiments ayant chacun une capacité de 2. Toutes les
requétes ont une demande unitaire.

(2012)). Plus récemment, Benavent et al. (2015) ont proposé une méthode exacte et une

méthode heuristique pour résoudre une variante du PDPL.

A notre connaissance, il n’existe aucune méthode permettant de résoudre le PDPTWMS.
Quelques méthodes exactes et heuristiques ont été développées pour des variantes du
PDPTWMS. En effet, quelques auteurs ont proposé des méthodes de résolution pour le
probléme de voyageur de commerce double avec plusieurs piles (double traveling salesman
problem with multiple stacks — DTSPMS) dans lequel les noeuds de cueillette et les noeuds
de livraison sont dans deux régions géographiques différentes ; les cueillettes doivent donc étre
complétées avant les livraisons. Petersen et Madsen (2009) ont résolu ce probléme avec des
heuristiques et Alba Martinez et al. (2013); Lusby et al. (2010); Petersen et al. (2010) avec
des algorithmes exacts. Plus récemment, Iori et Riera-Ledesma (2015) ont suggéré des algo-
rithmes exacts pour le probléme avec plusieurs véhicules (double vehicle routing problem with
multiple stacks — DVRPMS). Cété et al. (2012a,b) ont également développé un algorithme
d’énumération implicite avec plans coupants et un algorithme heuristique afin de résoudre
un cas particulier avec un véhicule et sans fenétre de temps du PDPTWMS, le probleme de
voyageur de commerce avec plusieurs piles (pickup and delivery traveling salesman problem
with multiple stacks — PDTSPMS).

Compte tenu de 'absence d’algorithmes pour résoudre le PDPTWL et le PDPTWMS, nous
formulerons et résolverons dans cette thése le PDPTWL et le PDPTWMS. Pour ce faire,
nous développerons une méthode exacte basée sur la génération de colonnes avec I'ajout de
plans coupants ainsi qu'une méthode heuristique basée sur une combinaison d’algorithmes
génétiques et d’algorithmes de recherche locale pour le PDPTWL. Nous adapterons ensuite

la méthode exacte basée sur la génération de colonnes avec ’ajout de plans coupants pour le
PDPTWL au PDPTWMS.

Le présent document est structuré comme suit. Le chapitre 2 permet de faire une breve revue



de la littérature sur des variantes des probléemes étudiés. Le chapitre 3 introduit le corps de
I'ouvrage qui est constitué des chapitres 4, 5 et 6. Le chapitre 4 contient un article publié
dans Transportation Science ou trois méthodes de génération de colonnes avec plans coupants
sont proposées pour le PDPTWL. Le chapitre 5 est publié dans Computers € Operations
Research et introduit une métaheuristique pour résoudre le PDPTWL. Le chapitre 6 est un
article soumis a Furopean Journal of Operational Research qui développe un algorithme de
génération de colonnes avec plans coupants pour le PDPTWMS. Finalement, une discussion

générale est présentée au chapitre 7 et des conclusions sont apportées au chapitre 8.



CHAPITRE 2 REVUE DE LITTERATURE

Les problemes de tournées de véhicules ont été largement étudiés dans la littérature. Ils font
d’ailleurs I'objet de plusieurs livres dont ceux de Toth et Vigo (2002; 2014). Cette revue
de littérature présente les meilleures algorithmes exacts et heuristiques pour résoudre des
variantes du probleme de tournées de véhicules, soit la variante avec cueillettes et livraisons, la
variante avec cueillettes, livraisons et contrainte de chargement et la variante avec cueillettes,

livraisons et plusieurs piles.

La revue de littérature est structurée comme suit. Dans la section 2.1, nous décrivons les
meilleurs algorithmes pour le probleme de tournées de véhicules avec et sans fenétres de
temps. Dans la section 2.2, nous présentons les meilleurs algorithmes pour le probleme de
tournées de véhicules avec cueillettes, livraisons et fenétres de temps. Dans la section 2.3,
nous détaillerons les algorithmes existants pour le probleme de tournées de véhicules avec
cueillettes, livraisons et contrainte de chargement LIFO. Dans la section 2.4, nous explique-
rons les algorithmes connus a ce jour pour le probleme voyageur de commerce avec cueillettes,

livraisons et plusieurs piles. Finalement, un tableau sommaire est présenté a la section 2.5.

2.1 Probléme de tournées de véhicules

Le probleme de tournées de véhicules a été largement étudié. Plusieurs articles syntheses
portent sur le sujet, notamment, Laporte (2007, 2009); Irnich et al. (2014). Braysy and
Gendreau (2005a,b); Vidal et al. (2013a); Desaulniers et al. (2014) ont également présenté
des articles syntheses portant sur les divers algorithmes pour résoudre le probleme de tournées

de véhicules avec fenétres de temps.

Parmi 'ensemble des algorithmes exacts connus pour résoudre le probleme de tournées de
véhicules, Baldacci et al. (2010, 2011b) proposent un algorithme qui combine la génération de
colonnes, une procédure d’énumération de tournées et un algorithme d’énumération implicte.
De plus, ils exploitent une relaxation du probléeme de plus court chemin élémentaire, appelé
ng-path, qui permet certains cycles. Ils arrivent a résoudre des instances contenant jusqu’a

233 noeuds et présentent les meilleurs résultats connus jusqu’a présent.

Parmi les algorithmes heuristiques proposés pour résoudre le probléeme de tournées de véhi-
cules, I'algorithme heuristique de Vidal et al. (2013b) est 'un des plus performants. Il s’agit
d’un algorithme génétique ou la gestion de I’ensemble des solutions permet de conserver des

solutions diversifiées de bonne qualité. Des instances contenant jusqu’a 1000 noeuds sont



résolues. A ce jour, leurs résultats sont les meilleurs connus pour résoudre de nombreuses

variantes du probleme de tournées de véhicules, en particulier, le VRPTW.

2.2 Probléeme de tournées de véhicules avec cueillettes, livraisons et fenétres de

temps

Le probleme de tournées de véhicules avec cueillettes et livraisons a été largement étudié.
Berbeglia et al. (2007) ont suggéré une norme de classification pour les diverses variantes
de ce probleme. Parragh et al. (2008a,b) ont synthétisé la littérature scientifique sur les
variantes existantes du probleme. Finalement, Battara et al. (2014) et Doerner et Salazar-
Gonzélez (2014) ont rédigé, respectivement, une synthese portant sur les divers algorithmes
pour le probleme de cueillettes et livraisons pour le transport de marchandises et pour le
transport de personnes. Dans cette section, nous présentons les meilleurs algorithmes exacts
et heuristiques pour le PDPTW.

Algorithmes exacts

Ropke et al. (2007) proposent deux formulations mathématiques pour le PDPTW et le pro-
bléme de transport a la demande (dial-a-ride problem). La seconde formulation contient moins
de variables et formule certaines contraintes par des inégalités de capacité arrondie (roun-
ded capacity inequalities) et des inégalités de chemin irréalisable (infeasible path inequalities).
Afin de résoudre les deux problémes, ils adaptent un algorithme d’énumération implicite avec
plans coupants (branch-and-cut). Ils arrivent a résoudre a 'optimalité des instances ayant
jusqu’a 96 requétes. Leurs résultats démontrent que la deuxieme formulation mathématique

permet de résoudre plus rapidement les instances proposées.

Ropke et Cordeau (2009) développent un algorithme de génération de colonnes avec plans
coupants (branch-and-cut-and-price) pour le PDPTW. Leur fonction objectif minimise le
nombre de véhicules utilisés ainsi que les cotits de transport. Les auteurs décrivent un algo-
rithme d’étiquetage (labeling algorithm) ainsi qu'un critére de dominance pour résoudre le
sous-probleme. La majorité des instances allant jusqu’a 100 requétes et quelques instances

avec H00 requétes sont résolues.

Baldacci et al. (2011a) combinent un algorithme de génération de colonnes pour calculer une
borne inférieure, une procédure d’énumération de tournées et un algorithme d’énumération
implicite pour résoudre de maniere exacte le PDPTW. Ils considerent deux fonctions objectifs
différentes : (1) minimiser les cofits de transport et (2) minimiser le nombre de véhicules et les

cotlits de transport. Ils arrivent a résoudre la majorité des instances allant jusqu’a 100 requétes



et quelques instances allant jusqu’a 500 requétes. De plus, ils résolvent plus rapidement les
instances solutionnées par Ropke et Cordeau (2009) et arrivent a résoudre 15 instances plus

difficiles non résolues par ces derniers.

Algorithmes heuristiques

Li et Lim (2003) mettent au point le premier algorithme heuristique permettant de résoudre
efficacement des instances de grande taille du PDPTW. Leur algorithme repose sur la re-
cherche tabou avec recuit simulé (tabu-embedded simulated annealing). Afin de définir le voi-
sinage, ils suggerent trois opérateurs de recherche locale. Les auteurs élaborent 56 instances

avec 50 requétes découlant des instances de Solomon pour le VRPTW.

Bent et Van Hentenryck (2006) congoivent une heuristique en deux phases. La premiére phase
se sert d’un algorithme de recuit simulé pour diminuer le nombre de véhicules utilisés alors
que la deuxiéme phase diminue le cotit total de transport avec un algorithme de recherche
a grand voisinage. Leur algorithme permet de trouver la meilleure solution connue pour
plusieurs instances allant jusqu’a 300 requétes. Pour les instances de 50 requétes, il est tres

compétitif avec celui de Li et Lim (2003).

Ropke et Pisinger (2006) proposent un algorithme adaptif de recherche & grand voisinage
(adaptive large neighborhood search). Leur heuristique utilise plusieurs opérateurs d’inser-
tion et de retrait de requétes. La procédure autoadaptive de ’heuristique permet de choisir
I'opérateur d’insertion ou de retrait utilisé a l'itération courante. La probabilité de choisir
chaque opérateur dépend d’un poids qui varie d’une itération a ’autre selon la performance
passée de chaque opérateur. Afin de réduire le nombre de véhicules et les cotits de transport,
I’heuristique est implanté en deux phases ou la premiere phase consiste a diminuer le nombre
de véhicules et la deuxieme phase la distance totale parcourue. L’heuristique a été testée sur

plusieurs instances allant jusqu’a 500 requétes.

2.3 Probléeme de tournées de véhicules avec cueillettes, livraisons et contrainte

de dernier entré premier sorti

Le probleme de tournées de véhicules avec cueillettes, livraisons et contrainte de dernier
entré premier sorti est un probleme récent de la littérature. Peu d’algorithmes exacts et
heuristiques existent. Toutefois, Tori et Martello (2010) ont synthétisé la littérature sur les
diverses contraintes de chargement (2 dimensions, 3 dimensions, plusieurs piles, contraintes de
chargement et autres variantes). Dans cette section, nous décrivons les algorithmes existants

pour résoudre la variante avec un véhicule et la variante avec plusieurs véhicules.



2.3.1 Un seul véhicule

Le TSPPDL consiste a trouver une tournée de cotit minimum pour un seul véhicule débutant
au dépot d’origine, visitant une et une seule fois chaque noeud et se terminant au dépdt
d’arrivée. La tournée doit respecter les relations de préséance qui requierent que pour chaque
requéte, le noeud de cueillette soit visité avant le noeud de livraison. La tournée doit égale-
ment respecter la politique LIFO. Dans cette section, nous voyons les algorithmes exacts et

heuristiques développés pour le TSPPDL.

Algorithmes exacts

Carrabs et al. (2007a) présentent un algorithme additif d’énumération implicite (additive
branch-and-bound) ou le calcul de la borne inférieure se fait de maniére additive avec des
relaxations différentes. Ils arrivent a résoudre a 'optimalité des instances allant jusqu’a 21

requeétes.

Cordeau et al. (2010) adaptent un algorithme d’énumération implicite avec plans coupants. Ils
formulent de nouvelles inégalités valides pour le TSPPDL dont les inégalités de prédécesseurs
et de successeurs incompatibles (incompatible predecessor and successor inequalities). Des
instances contenant jusqu’a 17 requétes sont résolues a 'optimalité en 10 minutes et la plus

grande instance résolue contient 25 requétes.

Algorithmes heuristiques

Cassani (2004) met au point un algorithme de recherche locale pour résoudre le TSPPDL. Il
élabore quatre opérateurs de recherche locale. Des instances allant jusqu’a 23 requétes sont
résolues. Cet algorithme, est ensuite amélioré par Carrabs et al. (2007b). Ils introduisent trois
opérateurs de recherche locale supplémentaires. Ils arrivent a résoudre des instances allant

jusqu’a 375 requétes en moins de 40 minutes.

Li et al. (2011) congoivent un algorithme de recherche locale pour résoudre le TSPPDL
qui repose sur une nouvelle structure informatique permettant de représenter un chemin
respectant la politique LIFO. Cette structure possede plusieurs avantages : les contraintes de
chargement et de préséance sont toujours respectées. Ils ont adapté les opérateurs proposés
par Cassani (2004) et Carrabs et al. (2007b) & cette nouvelle structure. Ils réussissent a

résoudre des instances allant jusqu’a 500 requétes en moins d’une heure.



2.3.2 Plusieurs véhicules

Le TSPPDL peut étre généralisé au cas avec plusieurs véhicules. A ce jour, il existe un seul

algorithme exact et trois algorithmes heuristiques pour résoudre ce probléme.

Algorithme exact

Benavent et al. (2015) développent un algorithme d’énumération implicite avec plans cou-
pants pour résoudre le PDPL avec contrainte de temps maximal sur les tournées. Toutes les
instances proposées allant jusqu’a 40 requétes et quelques instances avec 50 et 60 requétes

sont résolues en moins d’une heure.

Algorithmes heuristiques

Ambrosini et al. (2004) introduisent le premier algorithme heuristique pour le PDPL. 11 s’agit
d’un algorithme de recherche avec une adaptation gloutonne (GRASP : greedy randomized
adaptive search procedure) qui procede en deux phases : la premiere phase construit une tour-
née réalisable et la deuxiéme phase améliore la solution trouvée a l'aide de deux opérateurs

de recherche locale. Ils solutionnent des instances allant jusqu’a 100 requétes en 5 minutes.

Gao et al. (2011) reprennent la structure informatique proposée par Li et al. (2011) afin de
I'intégrer dans une heuristique de recherche a voisinage variable pour le PDPL avec contrainte
de distance maximale. Cinq opérateurs inter-tournées de recherche locale sont implantés.
Ils résolvent des instances impliquant jusqu’a 375 requétes en moins de 15 minutes. Cet
algorithme est amélioré par Cheang et al. (2012). Ces derniers ajoutent deux opérateurs
inter-tournées. De plus, 'algorithme est structuré en deux étapes. Dans la premiere étape,
on tente de réduire le nombre de véhicules a 'aide d’un algorithme de recuit simulé et a
I'aide d’un algorithme avec éjections (ejection pool). La deuxiéme étape consiste a réduire la
distance totale a 1’aide d’un algorithme de recherche a voisinage variable et un algorithme
de recherche tabou. Parmi les différentes variantes proposées, la combinaison de 1’algorithme
avec éjections pour la premiere étape et de la recherche a grand voisinage pour la deuxieme
étape donne les meilleurs résultats sur leurs instances. Ils résolvent des instances comportant
jusqu’a 375 requétes. Leurs résultats s’averent meilleurs que ceux trouvés par Gao et al.

(2011), bien que leurs temps de calculs soient plus élevés.

Benavent et al. (2015) élaborent un algorithme de recherche avec tabous avec démarrage
multiple (multi-start) pour résoudre le PDPL avec contrainte de temps maximal sur les
tournées. Ils arrivent a résoudre des instances allant jusqu’a 211 requétes en moins de 30

minutes.
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2.4 Probleme de tournées de véhicules avec cueillettes, livraisons et plusieurs

piles

Le probleme de tournées de véhicules avec cueillettes, livraisons et plusieurs piles est une
généralisation du PDPL. Il s’agit d’'un probleme récent de la littérature. Dans cette section,
nous présentons les algorithmes exacts et heuristiques pour le PDTSPMS, le DTSPMS et le
DVRPMS.

2.4.1 Un seul véhicule

Le PDTSPMS consiste a trouver une tournée pour un seul véhicule a colit minimum débutant
au dépot d’origine, visitant une et une seule fois chaque noeud et se terminant au dépot
d’arrivée. La tournée doit respecter les relations de préséance qui requierent que, pour chaque
requéte, le noeud de cueillette soit visité avant le noeud de livraison. La tournée doit également

respecter la politique LIFO pour chacune des piles du véhicule.

Algorithmes exacts

Lusby et al. (2010) congoivent un algorithme constructif pour le DTSPMS qui consiste a
coupler les k-meilleures tournées pour le probleme de voyageur de commerce contenant uni-
quement les noeuds de cueillette et pour le probleme de voyageur de commerce contenant
uniquement les noeuds de livraison. Des instances comportant jusqu'a 18 requétes et ayant

jusqu’a trois piles sont résolues a l'optimalité en moins de trois heures.

Petersen et al. (2010) formulent le DTSPMS de trois fagons : la premicre utilise des variables
de précédence, la seconde se base sur un modele de flot et la troisieme utilise des inégalités de
chemin irréalisable. Les auteurs adaptent un algorithme d’énumération implicite avec plans
coupants approprié pour chacune des formulations. Des instances allant jusqu’a 21 requétes et
comportant jusqu’a 18 piles sont résolues a I'optimalité en moins d’une heure. Leurs résultats

démontrent que la troisieme formulation est la plus performante.

Coté et al. (2012a) proposent une formulation mathématique pour le PDTSPMS ou la poli-
tique LIFO pour chacune des piles est implantée avec des inégalités de chemin irréalisable.
Pour résoudre le probleme, ils suggerent un algorithme d’énumération implicite avec plans
coupants. Leur algorithme consiste ensuite a résoudre leur formulation mathématique sans
les inégalités de chemin irréalisable. Puis, lorsqu’une solution est trouvée, ils vérifient si elle
respecte la politique LIFO pour chacune des piles en résolvant un probleme de sac a dos. Des

instances allant jusqu’a 25 requétes et quatre piles sont résolues en moins d’une heure.
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Alba Martinez et al. (2013) développent un algorithme d’énumération implicite avec plans
coupants pour résoudre le DTSPMS. Des instances allant jusqu’a 28 requétes et quatre piles
sont résolues en moins de trois heures. De plus, ils arrivent a résoudre certaines instances

non résolues par Lusby et al. (2010).

Algorithmes heuristiques

Petersen et Madsen (2009) sont les premiers a formuler mathématiquement le DTSPMS. De
plus, ils élaborent trois heuristiques pour résoudre ce probléme : un algorithme avec recherche
tabou, un algorithme avec recuit simulé et un algorithme de recherche a grand voisinage. Ils
arrivent a résoudre des instances comportant jusqu'a 66 requétes et avec exactement trois
piles en moins de trois minutes. Leurs résultats démontrent que ’algorithme de recherche a

grand voisinage est le plus performant.

Coté et al. (2012b) implantant un algorithme de recherche & grand voisinage pour résoudre
le PDTSPMS. Pour ce faire, ils définissent plusieurs opérateurs de recherche locale. Ils réus-
sissent ainsi a résoudre des instances allant jusqu’a 375 requétes et avec quatre piles en moins

de 10 minutes.

2.4.2 Plusieurs véhicules

Le TSPPDMS peut étre généralisé au cas avec plusieurs véhicules. A notre connaissance, il
n’existe pas d’algorithme pour résoudre ce probleme. Toutefois, lori et Riera-Ledesma (2015)
ont étudié la généralisation du DTSPMS avec plusieurs véhicules, le DVRPMS. Ils proposent
différentes formulations pour le DVRPMS et congoivent trois algorithmes exacts : un algo-
rithme d’énumération implicite avec plans coupants, un algorithme de génération de colonnes
et un algorithme de génération de colonnes avec plans coupants. Ils arrivent a résoudre des
instances allant jusqu’a 25 requétes et trois piles en une heure. Pour leurs instances avec peu
de véhicules, leur algorithme d’énumération implicite avec plans coupants est le plus perfor-
mant, mais pour les instances avec plus de véhicules, les deux autres algorithmes donnent de

meilleurs résultats.

2.5 Sommaire

Suite a cette revue de littérature, nous présentons deux tableaux récapitulatifs.

Le tableau 2.1 présente les algorithmes exacts récemment proposés pour résoudre chacun

des problemes. Les différents algorithmes sont nommés : BéB — algorithme d’énumération
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implicite (branch-and-bound); B&C — algorithme d’énumération implicite avec plans cou-
pants (branch-and-cut) ; B&P — algorithme de génération de colonnes (branch-and-price) ; et
BE&PEC — algorithme de génération de colonnes avec plans coupants (branch-and-price-and-
cut). Nous pouvons remarquer que les algorithmes avec plans coupants sont d’actualité pour
I’ensemble des problemes. De plus, les algorithmes de génération de colonnes semblent bien
fonctionner pour le PDPTW.

Les algorithmes heuristiques récents sont présentés dans le tableau 2.2. Les différents algo-
rithmes sont nommés : Génétique — algorithme génétique; Tabou — algorithme de recherche
avec tabous; Recuit simulé — algorithme avec recuit simulé; LNS — algorithme de recherche
a grand voisinage (large neighborhood search); et GRASP — algorithme de recherche avec
une adaptation gloutonne (greedy randomized adaptive search procedure). On remarque que
la recherche a grand voisinage est utilisé dans les algorithmes de 1’état de ’art pour résoudre

plusieurs variantes des problemes de tournées de véhicules.



Tableau 2.1 — Algorithmes exacts

B&B  B&C  B&P  B&PEC

Algorithme

VRP PDPTW TSPPDL

Probleme

PDPL DTSPMS PDTSPMS

DVRPMS

Carrabs et al. (2007a)
Ropke et al. (2007)

Ropke et Cordeau (2009)
Baldacci et al. (2010)
Cordeau et al. (2010)
Lusby et al. (2010)
Petersen et al. (2010)
Baldacci et al. (2011b)
Baldacci et al. (2011a)
Coté et al. (2012a)

Alba Martinez et al. (2013)
Benavent et al. (2015)

Tori et Riera-Ledesma (2015)

Tableau 2.2 — Algorithmes heuristiques

Génétique

Algorithme
Tabou  Recuit simulé LNS GRASP

VRP PDPTW TSPPDL

Probleme

PDPL DTSPMS

PDTSPMS

Li et Lim (2003)
Ambrosini et al. (2004)
Cassani (2004)

Bent et Van Hentenryck (2006)
Ropke et Pisinger (2006)
Carrabs et al. (2007b)
Petersen et Madsen (2009)
Gao et al. (2011)

Li et al. (2011)

Cheang et al. (2012)

Coté et al. (2012b)

Vidal et al. (2013b)
Benavent et al. (2015)

13
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CHAPITRE 3 ORGANISATION DE LA THESE

Cette these a pour objectif de formuler mathématiquement et résoudre deux variantes du pro-
bléeme de tournées de véhicules avec cueillettes, livraisons et fenétres de temps, le PDPTWL
et le PDPTWMS. Dans le chapitre 2, nous avons identifié les meilleurs algorithmes exacts et
heuristiques qui existent pour résoudre plusieurs variantes du problemes de tournées de véhi-
cules, soit le PDPTW, le TSPPDL, le PDPL, le DTSPMS, le PDTSPMS et le DVRPMS. Au
meilleur de nos connaissances, il n’existe pas d’algorithme exact ou heuristique pour résoudre

le PDPTWL et le PDPTWMS.

En premier lieu, nous formulerons le PDPTWL. Nous développerons ensuite trois algorithmes
de génération de colonnes avec plan coupants pour résoudre ce probleme. Le premier algo-
rithme consiste a incorporer la contrainte LIFO dans le probléeme maitre alors que le second
I'incorpore dans le sous-probléme. Le troisieme algorithme, quant a lui, est une combinaison
des deux premiers algorithmes. Chaque algorithme comporte des avantages et des inconvé-
nients : le premier permet de résoudre le sous-probleme le plus facile, mais fournit les bornes
inférieures les plus faibles; le second fournit les meilleures bornes inférieures, mais le sous-
probleme est le plus difficile & résoudre ; et le troisieme permet un équilibre entre la difficulté
du sous-probleme et la qualité de la borne inférieure. Nous présentons et comparons les résul-
tats obtenus avec chaque algorithme dans le chapitre 4. Nous comparons également le cofit
total de la solution optimale obtenue avec et sans la contrainte LIFO. Des instances compor-
tant jusqu’a 75 requétes sont résolues avec ces algorithmes. Ces trois algorithmes font partie
d’un article publié dans Transportation Science. Suite a la publication de I’article, nous avons
amélioré notre algorithme d’étiquetage. Neuf instances supplémentaires sont résolues suite a

cette amélioration et, en moyenne, les temps de calcul sont réduits.

En deuxieme lieu, nous développerons une méthode heuristique pour résoudre des instances
de plus grande taille pour le PDPTWL. Cette derniere s’inspire des meilleurs algorithmes
heuristiques pour résoudre des variantes du probleme de tournées de véhicules, i.e., ceux
de Vidal et al. (2013b) et de Ropke et Pisinger (2006). Pour ce faire, nous proposons un
algorithme génétique hybride. Cet algorithme permet de générer rapidement des tournées
initiales avec un GRASP. Puis, les solutions passent au travers d’une phase de recherche
locale et les solutions résultantes sont ajoutées a 1’ensemble des solutions. Par la suite, nous
proposons deux facons de créer des enfants a partir de ces solutions. Pour ce qui est de
I’ensemble des solutions, nous nous basons sur le critere de diversification proposé par Vidal

et al. (2012) afin de conserver de bonnes solutions diversifiées. Le chapitre 5 présente les
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résultats obtenus avec cette heuristique. Des instances comportant jusqu’a 300 requétes sont
résolues avec cet algorithme. De plus, pour les plus petites instances, celles avec moins de 75

requétes, 1’écart par rapport aux solutions optimales connues est en moyenne de 0,17%.

En troisieme lieu, nous formulerons un modeéle mathématique pour le PDPTWMS et dé-
velopperons deux algorithmes de génération de colonnes pour résoudre ce probleme. Ces
algorithmes sont une extension des algorithmes développés au chapitre 4 pour le PDPTWL.
Nous avons adapté la notation de pile pour permettre la représentation de plusieurs piles
dans un véhicule. Le premier algorithme consiste a incorporer la contrainte de chargement a
plusieurs piles dans le sous-probleme alors que le second I'incorpore dans le probleme maitre.
Le premier algorithme permet ainsi d’obtenir de meilleures bornes inférieures, alors que la
résolution du sous-probléme est plus facile dans le deuxieme algorithme. Dans le chapitre 6,
nous présentons et comparons les résultats obtenus avec chaque algorithme. Nous comparons
également les résultats obtenus lorsque le nombre de piles varie. Des instances comportant

jusqu’a 75 requétes sont résolues.

Finalement, une discussion générale est apportée dans le chapitre 7 et une conclusion est

présentée au chapitre 8.
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CHAPITRE 4 ARTICLE 1 : BRANCH-PRICE-AND-CUT ALGORITHMS
FOR THE PICKUP AND DELIVERY PROBLEM WITH TIME WINDOWS
AND LIFO LOADING

Recopié avec permission, M. Cherkesly, G. Desaulniers et G. Laporte, (2014), Branch-Price-
and-Cut Algorithms for the Pickup and Delivery Problem with Time Windows and LIFO
Loading. Transportation Science, publié dans Articles in Advance, 30 juin 2014. Copyright
(2015), the Institute for Operations Research and the Management Sciences, 5521 Research
Park Drive, Suite 200, Catonsville, Maryland 21228 USA.

4.1 Introduction

In pickup and delivery problems (PDP), a set of vehicles based at a depot must carry out
pickup and delivery requests for goods (here called items) or passengers between geographi-
cally scattered locations, subject to side constraints. This paper focuses on the first case.
One-to-one PDPs, which are the topic of this paper, arise whenever each item must be trans-
ported between a specified origin and a specified destination (see, e.g., Berbeglia et al., 2007;
Parragh et al., 2008a,b). Two common side constraints are time windows (Desaulniers et al.,
2002; Kallehauge et al., 2005; Ropke et al., 2007) and delivery priorities (Carrabs et al., 2007a;
Cordeau et al., 2010). A time window is an interval of time during which the service at a
customer must start. If a vehicle arrives before the beginning of time window, it must then
wait until its opening time in order to start the service. If a vehicle arrives after the closing
of the time window, then the service cannot take place. Loading priorities impose rules on

the order in which items can be loaded in and unloaded from the vehicles.

This paper focuses on the pickup and delivery problem with time windows and LIFO (last-
in-first-out) constraints (PDPTWL). The LIFO policy means that when a pickup point is
visited, the collected item is put on top of a stack and can be delivered only when it is in
this position. To illustrate, let 0, i* and i~ denote respectively the depot, as well as the
pickup and the delivery points associated with request i. Figure 4.1a depicts a path that
respects the LIFO policy, whereas Figure 4.1b depicts a path that does not. We consider an
unlimited fleet of identical capacitated vehicles and a set of requests. A request is defined by
the transportation of an item having an associated load, from a pickup point to a delivery
point, and has a specified time window. A vehicle route is feasible if (i) the load onboard
a vehicle never exceeds its capacity, (ii) the time windows are respected, (iii) every pickup

point is visited before its corresponding delivery point and (iv) the LIFO policy is respected.
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Two types of cost are considered : a fixed cost for each vehicle used in the solution and
a distance-related variable cost. The PDPTWL consists of determining a set of least cost

feasible routes.

The PDPTWL arises in the transportation of heavy or dangerous material where handling
should be avoided, or when transporting livestock. To our knowledge, the PDPTWL has not
been previously studied, apart from a distance-constrained pickup and delivery problem with
LIFO constraints which was solved heuristically (Cheang et al., 2012). However, algorithms
have been proposed for related problems, namely the pickup and delivery problem with time
windows (PDPTW) and the traveling salesman problem with pickup, delivery and LIFO
constraints (TSPPDL).

Ropke et al. (2007) have developed a branch-and-cut algorithm for the PDPTW. Several
families of valid inequalities were proposed and tested, two of which seem to perform better
to reduce the integrality gap : the fork inequalities and the reachability inequalities. Ropke
and Cordeau (2009) have proposed a branch-price-and-cut algorithm for the same problem
in which the objective first minimizes the number of vehicles and then the total traveled
distance. It makes use of several families of valid inequalities : infeasible path inequalities,
rounded capacity inequalities, 2-path inequalities, precedence inequalities and strenghtened
precedence inequalities. The 2-path inequalities seem to exhibit the best performance. Finally,
Baldacci et al. (2011a) have designed two exact algorithms relying on column generation and
variable fixing based on reduced cost for the same problem. Their algorithms yield the best

known results for it.

Two exact algorithms were proposed for the TSPPDL. Carrabs et al. (2007a) first developed
an additive branch-and-bound algorithm where the additive process computes lower bounds.
Cordeau et al. (2010) later proposed a branch-and-cut algorithm. These authors introduced
valid inequalities for this problem : incompatible predecessor and successor inequalities, ham-
burger inequalities, and incompatible path inequalities. They concluded that for the tested

instances, hamburger inequalities and incompatible path inequalities produce better lower

@  O=O—0—0—0—0
o O=O=—-@——©

Figure 4.1 — Vehicle routes in which (a) the LIFO policy is respected, (b) the LIFO policy
is not respected, because the item picked up at 17 cannot be delivered to 1~ without first
removing from the vehicle the item picked up at 2F.
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bounds than the incompatible predecessor and successor inequalities.

Battarra et al. (2010) present models and exact algorithms based on branch-and-cut for
a version of the TSPPDL in which the LIFO rule can be violated, but rehandling costs
are imposed according to three different handling policies. Erdogan et al. (2012) have later

developed powerful tabu search metaheuristics for the same problem.

The main objective of this paper is to develop, for the first time, exact algorithms for
the PDPTWL. More specifically, we propose three related branch-price-and-cut algorithms.
These are branch-and-cut algorithms in which the linear relaxations are solved by means
of column generation, a decomposition algorithm that alternates between the solution of a
master problem and that of a subproblem called the pricing problem. Column generation
has been widely applied to various constrained vehicle routing and crew scheduling problems
(Desaulniers et al., 2005) and provides some of the best known results for the PDPTW
(Ropke and Cordeau, 2009; Baldacci et al., 2011a). The first algorithm developed in this pa-
per adds the LIFO constraints to the master problem, whereas the second incorporates them
into the pricing problem. Finally, the third algorithm combines the best features of the first
two algorithms. Computational results on instances derived from known PDPTW instances
are reported and show that the second and third algorithms perform the best, with a slight

advantage for the hybrid algorithm for certain instance classes.

The remainder of this paper is structured as follows. Section 4.2 proposes a three-index
formulation for the PDPTWL. Section 4.3 presents a branch-price-and-cut algorithm in which
the LIFO constraints are added inside the master problem. Different pricing problems that
can be adapted for all the algorithms are discussed. Section 4.4 describes the algorithm
incorporating the LIFO constraints into the pricing problem and Section 4.5 presents the
hybrid algorithm. Computational results are reported in Section 4.6. This is followed by

conclusions in Section 4.7.

4.2 Mathematical Formulation

We now introduce the notation used in our models. A three-index formulation is then intro-

duced, including two ways of formulating the LIFO constraints.

4.2.1 Notation

Let n denote the number of requests. The PDPTWL can be defined on a directed graph
G = (N,A), where N = {0,1,...,2n,2n + 1} is the set of nodes and A is the set of arcs.

Nodes 0 and 2n+1, called the origin and destination nodes, represent two copies of the depot
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appearing at the two ends of a path. The subsets P = {1,...,n} and D = {n+1,...,2n}
represent the sets of pickup and delivery nodes, respectively. Each request ¢ is associated
with a pickup node i € P and a delivery node n +i € D (denoted i* and i~ in Section 4.1).
The set of arcs A can be described by four types of arcs (7, ) : (i) from the origin depot to
the pickup nodes, i.e. i = 0 and j € P, (ii) from the delivery nodes to the destination depot,
ie. i € D and j = 2n + 1, (iii) from a pickup node to its corresponding delivery node or to
another pickup node, i.e. : € P and j € PU{n+i}, and (iv) from a delivery node to another
node except its corresponding pickup node, i.e. i € D and j € DU P\{i—n}. Note that there
are no arcs (i,n+ j),i € P,j € P\{i}, because their use would violate the LIFO policy.

For each node 7 € N, g; represents the load picked up or delivered at this node, with ¢; = 0 if
i€{0,2n+1}, ¢ >0ifi € Pand ¢; = —q;—, if i € D. Let s; be the service duration at node
i, with s;, >0ifi € PUD and s; =0if i € {0,2n + 1}. A time window [w;, w;] is associated
with each node i« € PU D, where w,; and w; represent respectively the earliest and the lastest
time at which service at node ¢ must begin. Unconstraining time windows are also imposed
on the origin and destination nodes 0 and 2n 4 1. An unrestricted set K of identical vehicles
with capacity () is available. A nonnegative travel cost ¢;; and a nonnegative travel time ¢;;
are associated with each arc (i,7) € A. The cost of each arc leaving the origin node, i.e. an
arc (0, j) such that j € P, also includes a vehicle fixed cost. This cost is assumed to be large,
leading to first minimizing the number of vehicles, and then the total traveled distance. The

triangle inequality is assumed to be respected for travel costs and travel times.

4.2.2 A Three-Index Formulation

The PDPTWL can be formulated as a three-index model similar to that proposed by Ropke
and Cordeau (2009). For each arc (i,7) € A and each vehicle k € K, let xfj be a binary
variable equal to 1 if and only if vehicle k uses arc (i,7). For each node i € N and each
vehicle k € K, let TF represent the time at which vehicle k begins service at node i, and let
Q" be the load of vehicle k upon leaving node i. To enforce the LIFO policy, it is necessary
to define, for each request i € P, the set ®; of subsets S C N such that 0,2n+1,i,n+1i ¢ S
and there exists a request j such that j ¢ S,n+j € Sorje Sn+j¢S. The PDPTWL

can then be formulated as follows :

minimize S ¢ xfj (4.1)

keK (i,j)€A

subject to > xfj =1, Vie P, (4.2)

keK jEN



oalhi—=> akh, =0, Vie PkeK, (4.3)
JEN JEN
> wp; =
x5, =1, VkeK, (4.4)
JEN
Yoak = > ali=0, Vie PUD k€K, (45)
JEN JEN
1EN
POREETE D DR 'S D DI e N}
(4,5)€Aljes (l.y)eA|l,jes (4,n+i)eAljes
Vie P,Se€d, keK, (4.7)
Qf > (QF +q5)afy, V(i j) e A ke K, (4.8)
max{0, ¢} < QF <min{Q,Q + ¢}, Vic N,ke K, (4.9)
TF > (T} + si + tyy)al;, V(i,j) € Ak € K, (4.10)
w;, <TF <w;, Vie Nke€K, (4.11)
TF 4 tipyi + 5 <TF,, Vi€P, (4.12)
z € {0,1}, V(i,j) € A ke K. (4.13)

The objective function (4.1) minimizes the total cost. Constraints (4.2) and (4.3) ensure that
each pickup node is visited exactly once and that for every request the pickup and delivery
nodes are visited by the same vehicle. Constraints (4.4)—(4.6) define a path structure for every
vehicle : constraints (4.4) and (4.6) ensure that each route starts and ends at the depot, while
constraints (4.5) are flow conservation constraints for each node i € PU D. The LIFO policy
is imposed through constraints (4.7) which were initially proposed by Cordeau et al. (2010)
for the TSPPDL. Constraints (4.8) and (4.9) compute the load variables according to the arcs
used in the solution and ensure that the vehicle capacity is respected. Similarly, constraints
(4.10) and (4.11) compute the time variables according to the active arcs and ensure that
the time windows are respected. Constraints (4.12) impose that for each request ¢ the pickup
node is visited before its corresponding delivery node. The model is non-linear because of
constraints (4.8) and (4.10) but can easily be linearized (Ropke et al., 2007).

It is interesting to note that constraints (4.7) can be reformulated with LIFO-infeasible path
inequalities. These inequalities are the infeasible path inequalities proposed for the PDPTW
(Cordeau, 2006; Ropke et al., 2007; Ropke and Cordeau, 2009) but are applied to LIFO-
infeasible paths. Let R be the set of infeasible paths with respect to the LIFO constraints
that do not begin at the origin node nor end at the destination node, and let N(R) be the



21

set of nodes in path R € R. The LIFO-infeasible path cuts are then expressed as

-1
> (PZ xi’i:iu+1) < |IN(R)| -2, VRE R, (4.14)
keK \ p=1

where R = (i1, ..., i,) is a LIFO-infeasible path. Let R’ C R be a subset of LIFO-incompatible
paths such that (i) the first node is a pickup node and the last node is a delivery node i.e.
iy € P, i, € D, (ii) for each request j € PN {is,....55_1}, n+j € {ia,...,1,_1}, and (iii) the
LIFO policy is respected on the path R = (i2,...,7p—1). Figure 4.2 depicts a path R € R’

where 4; = 2% and i, = 1".

Proposition 4.2.1. For a given LIFO-infeasible solution, there always exists a LIFO-
infeasible path R such that R € R'.

Proof. By definition, the LIFO policy implies that when a pickup node is visited, the collected
items are put on top of a stack. These items can be delivered only when they are in this
position. A path R is LIFO-infeasible if there exists a request ¢ € P such that node n + i is
visited on the path when the item corresponding to another request j € P such that j # ¢
is on top of the stack. Now consider the path R going from j to n + ¢. This path is LIFO-
infeasible and has the following property : R = {iy = j,...,i, = n+i}, i,n+j ¢ R and all the
requests visited between j and n + ¢ are completed. As a result, for a given LIFO-infeasible

solution, there always exists a LIFO-infeasible path R € R/. n

Consequently, the LIFO policy can be modeled by considering inequalities (4.14) only for the
paths in R’. The following proposition states how these inequalities can be strenghtened. It
relies on the set A(R) = {(¢,j) € Ali,j € N(R),i # i,,j # 41} which contains all the arcs
connecting the nodes of path R, except those ending in ¢; or beginning in i,. Note that all

the arcs (i,,%,41), p=1,...,p — 1 used in R belong to A(R).

Proposition 4.2.2. The inequalities

> Y #;<|N(R)|-2 VRER, (4.15)
keK (1,j)eA(R)

are valid for the feasible solution set of model (4.1)—(4.13).

Oani@anl Sl 2ol ul nl Sl Sl 2l

Figure 4.2 — The shaded nodes form a path R = {i; = 2¥,i, =3",...,i,_1 =37,i, =17}
such that R € R'.
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Proof. By contradiction, suppose that the LIFO policy is satisfied for a feasible solution, but
that at least one constraint (4.15) is violated, namely, for the path R = {i,...,i,} € R

Because exactly one vehicle enters and exits each node in N(R) in a feasible solution,
it follows that e x >0 jyeam 215 < IN(R) =1 = |N(R)| =3, Siex S jyeayen(d T, < 1,

and > ek Z(j,ip)eAUGN(R)U{il}x?,ip < 1 where R = R\{iy,i,}. If one of the constraints
is violated, then > icx > j)eam) xfj = |N(R)| — 3 and 2k K 2o(i1,j)€AljEN(R) xfm
D keK 2o (G, eAlIEN (R)Ufin} x]’jzp = 1. As a result, this solution contains a path starting at

i1, visiting every node in R, and ending at i,. But this is impossible because path R € R’
would then be LIFO-infeasible. Therefore, for this solution, there exists a path containing a
path R # R starting at 41, ending at i,, and visiting every node in R. Because R € R/, this
path is LIFO-infeasible, contradicting the assumption that the LIFO policy is satisfied in the

feasible solution. ]

Ropke and Cordeau (2009) have shown that for the PDPTW, the three-index formulation
yields a weaker linear relaxation lower bound than a set partitioning formulation. Further-
more, a branch-price-and-cut algorithm based on the set partitioning formulation can solve
more instances than a branch-and-cut algorithm based on the three-index formulation. As a
result, we have decided to investigate different set partitioning formulations for the PDPTWL

and to develop ad hoc branch-price-and-cut algorithms.

In this paper, one of the branch-price-and-cut algorithms uses LIFO constraints imposed for
every vehicle similarly to constraints (4.7), while one of the other algorithms enforces the
LIFO policy with an equivalent form of constraints (4.15). Using constraints (4.15) instead

of constraints (4.7) yields an exact, but weaker formulation.

4.3 A Branch-Price-and-Cut Algorithm with LIFO-infeasible Paths

Our first branch-price-and-cut algorithm enforces the LIFO policy in the master problem.
This is implemented by solving the pricing problem as for the PDPTW and adding LIFO
inequalities in the master problem. In this case, the pricing problem can generate LIFO-
infeasible paths. These paths will be discarded from the final solution by adding cuts. In this
section, we first present a set partitioning formulation for the PDPTWL. Path relaxations
and labeling algorithms for the corresponding pricing problem are then discussed. We finally

describe valid inequalities for the PDPTWL, as well as branching strategies.
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4.3.1 Set Partitioning Formulation

Let €2 denote the set of all feasible paths satisfying constraints (4.3)—(4.6) and (4.8)—(4.13).
Let ¢, be the cost of path r € €2, let a;. be a constant indicating the number of times node
@ € P is visited in this path, and let bj; be a constant equal to the number of times arc
(1,7) € Ais used in this path. Defining y, as a binary variable equal to 1 if and only if path
r € () is used in the solution, the PDPTWL can be formulated as follows :

minimize Z CrYy (4.16)
reQ)
subject to > any, =1, Vi € P, (4.17)
reQ)
SO by <INR) -2 VR e R, (4.18)

reQ (1,7)€A(R)
v € {0,1}, Vr e Q. (4.19)

The objective function (4.16) minimizes the total cost. Constraints (4.17) ensure that every
request is completed exactly once, while constraints (4.18), which are equivalent to (4.15),
ensure that the LIFO policy is enforced. In practice, the model defined by (4.16)-(4.19)
contains a very large number of variables. Consequently, we use column generation to solve
its linear relaxation which is called the master problem in this context. The restricted master
problem contains a subset of the variables (columns) and is solved by linear programming to
yield a primal and a dual solution. The pricing problem is then solved to identify columns with
a negative reduced cost with respect to the dual solution of the restricted master problem.
Whenever such columns are identified, they are added to the restricted master problem before
starting a new iteration. Otherwise, the process stops with an optimal solution to the master

problem.

Associating the dual variables a; and Sg with constraints (4.17) and (4.18), respectively, the
pricing problem for the PDPTWL is defined as

minimize > Gy (4.20)
(1,5)€A
subject to constraints (4.3)—(4.6), (4.8)—(4.13), (4.21)

where index k is dropped because all the vehicles are identical, and therefore the pricing
problem is the same for every vehicle. For each path R € R’, let 75» be a parameter taking
the value 1 if arc (7, j) € A(R) and 0 otherwise. The reduced cost ¢;; of arc (i, j) € A is then
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defined as
Cij — Q; — "R ) VZ€P7
Eij _ J ZRGR ’YZJBR (422>
Cij — ERG'R’ ’)/gﬁR, VZ € N\P

The pricing problem thus corresponds to an elementary shortest path problem with pickup
and delivery, time window and capacity constraints. It can be solved by dynamic program-
ming as will be discussed in Section 4.3.2. In the proposed branch-price-and-cut algorithm,
the master problem is not solved with constraints (4.18) because adding these to the master
problem slows down the computational process. In fact, we solve the linear programming
relaxation of formulation (4.16)—(4.17) and (4.19), which may produce LIFO-infeasible so-
lutions. To enforce the LIFO policy, we first add incompatible predecessor and successor
inequalities. Even though these inequalities are, in general, not sufficient to restore LIFO-
feasibility, they are added first because they are easy to separate. When no more of these
inequalities can be found i.e. when the solution respects all these inequalities but remains
LIFO-infeasible, we add violated constraints (4.18) which are separated through an exact
enumeration procedure. For every path in a given optimal solution of the master problem,
several of these constraints can be violated. A sequential search is then carried out on each

path, and the first identified violated inequality is added to the master problem.

Incompatible Successor and Predecessor Cuts.

The incompatible predecessor and successor cuts were introduced by Cordeau et al. (2010)
in the context of the TSPPDL. Let ¢+ < j denote the fact that node ¢ precedes node j in a
path. For each pair of nodes i, j € P, if arc (4,j) € A is used in a feasible solution, the LIFO
policy is respected if and only if 0 < 4,7 < n+j < n+ 14 < 2n + 1. This implies that the
successor of node n + j will either be node n + i, or another pickup node different from ¢
and j. In this case, the set of successors of node n + j given that arc (i,j) € A is used is

On+i(1,7) = {n+1i} U (P\{i,j}), and the incompatible successor inequalities are written as

3 (bgj + > Zﬂ,l) yr <1, Vi,j € P|(i,j) € A. (4.23)

reQ) l¢0’n+]‘(i,j)

These inequalities imply that if an arc (7,7) € A with 4,7 € P is used in a feasible solution,
then no arc (n + j,1) € A such that | ¢ 0,,1;(¢,7) can be used.

In a symmetric way, for each i,7 € P such that arc (n +i,n+ j) € A is used in a feasible
solution, the path must satisfy 0 < 7 < i < n+1¢,n+ 7 < 2n + 1. The predecessor of

node ¢ will either be node j or a delivery node different from n + ¢ and n 4 j. The set of
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compatible predecessors at node i given that arc (n +i,n 4 j) € A is used can be expressed
asmi(n+i,n+j)={j}U(D\{n+in+j}). lfarc (n+i,n+j) € A with i,j € P is used
in a feasible solution, then no arcs (I,i) € A such that [ ¢ m;(n+4,n + j) can be used. The

incompatible predecessor inequalities are given by

3 (bgﬂ,nﬂ + > z) y- <1, Vi, j € P|(i,j) € A. (4.24)

reQ l¢m; (n+i,n+j)

Because there exists only a quadratic number of inequalities (4.23) and (4.24), their sepa-
ration can easily be achieved by enumeration. For a given optimal solution of the master
problem, the flow on each arc (i, j) € A is computed as 3, cq bj;y-. Then, all the inequalities
(4.23) and (4.24) violated by this solution are added to the master problem, thus introducing
dual variables in the objective function (4.20) of the pricing problem (for more details, see
Desaulniers et al., 2011).

4.3.2 Path Relaxations and Labeling Algorithms

The pricing problem is an elementary shortest path problem with pickup and delivery, time
window and capacity constraints, which is known to be NP-hard (Sol, 1994). A labeling
algorithm can be used for its solution (see Irnich and Desaulniers, 2005). A label is a vector
representing a partial path starting at the origin node and ending at a given node 7. It stores
information about the partial path such as its cumulated reduced cost, and the start of service
time in the last node. Each element stored is called a component. Starting from an initial label
Ey at the origin node, a labeling algorithm propagates labels toward the destination node
with extension functions. To avoid enumerating all feasible paths, some labels are eliminated

through dominance tests.

To speed up the algorithm, the pricing problem can be relaxed by allowing cycles in paths,
that is, a request can be completed more than once. These relaxations usually yield wea-
ker lower bounds. Because paths with cycles cannot be part of a feasible integer solution,
branching ensures that the final solution contains only elementary paths. Many relaxations
of the elementary shortest path problem with pickup and delivery, time windows, and capa-
city exist. We will present two such relaxations. The first allows many cycles to occur. The
second is the ng-path relaxation introduced by Baldacci et al. (2010, 2011b) which allows
only some cycles to occur. Sections 4.3.2, 4.3.2, and 4.3.2 focus on the elementary version of
the pricing problem, on the complete relaxation of the elementarity constraints, and on the

ng-path relaxation, respectively. We describe a labeling algorithm for each of these problems.
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Elementary Shortest Path Problem with Pickup and Delivery, Time Windows,
and Capacity.

The first version of the constrained shortest path problem respects the elementarity constraints.
The ideas presented in this section were proposed by Ropke and Cordeau (2009) for the
PDPTW. Each label stores the following components :

— 1 : the node of the label,

— t : start of service time at node 7,

— 1 : load of vehicle after visiting node 7,

— ¢ : cumulated reduced cost,

— O : the set of onboard requests,

— U : the set of unreachable requests.
A request ¢ is said to be onboard if it is still in the vehicle, i.e. its corresponding pickup
node has been visited but not its corresponding delivery node. A request ¢ € P is said to
be unreachable if ¢ has already been visited on the partial path, or if traveling directly from
n to i violates the time window at node ¢ € P. For a given label E, let R(FE) represent its

correponding partial path. Then

UE)={iePlic RIE)}U{ic P|t(E)+ sym) + tyr) > W} (4.25)

Given a label E, its extension along arc (n(E),j) € A is allowed only if it satisfies one of the

following three conditions :

0<j<n and j ¢ U(E), (4.26)
n<j<2n and j—ne€ O(F), (4.27)
j=2n+1 and O(E)=0. (4.28)

Condition (4.26) ensures that if j is a pickup node, then it must not have been previously
visited and it must be reachable with respect to the time windows. Condition (4.27) stipulates
that if j is a delivery node, then it must be associated with an onboard request. Finally,
condition (4.28) ensures that if j is the destination node, then all the visited requests on
the path must be completed. These conditions ensure that each request will be completed at
most once on any given path. When these conditions are respected, a new label E’ is created

and the components are set as follows :

n(E) = j (4.29)
t(E) = maX{wjvt(E) + Sy(E) + tn(E)J}v (4.30)



UE') = «E)+g, 431
C(E/) = ¢(E)+ Cy(E).j» (4.32)
O(F)U{y if j € P,
oy - {OBUEY i e
OE)\{j —n} ifjeD,
UE)YU{jlu{ie Plt(E) + N+t > W; if j € P,
sy~ [UEIUUYULE PUE) + sy -t > 0} it i
U(E)U{i e PIt(E") + sy + tye,: > Wi} if j e D.
Label E’ is kept if it respects the time windows and capacity constraints, that is, if
t(E,) < Wy(gr, 4.35
(E) < Q. (4.36)
A label E; dominates a label Fy if
n(Er) = n(Ey), (4.37)
t(Er) < t(Ea), (4.38)
C(El) S C(E2)7 (439)
O(Ey) C O(Es), (4.40)
U(Ey) CU(Ey). (4.41)

All dominated labels are removed except when two labels dominate each other, in which case
one of them is kept. This dominance condition was proposed by Ropke and Cordeau (2009)
in the context of the PDPTW. These authors showed that it constitutes a valid dominance
criterion when the triangle inequality is respected by the reduced costs of the arcs at the
delivery nodes. However, the definition of ¢;; in formula (4.22) does not necessarily ensure
that ¢;; + ¢ji > ¢, if j is a delivery node. In this situation, the authors propose a procedure
to transform an arbitrary cost matrix into a cost matrix satisfying the delivery triangle

inequality. Here we apply the same procedure.

Shortest Path Problem with Pickup and Delivery, Time Windows, and Capacity.

The second version of the constrained shortest path problem allows paths to contain cycles

under the following two conditions :
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1. a pickup cannot be performed again before the corresponding delivery has been com-

pleted ;

2. the precedence constraints for every request must be respected.

In this version of the algorithm, the label components are 7, ¢, ¢, ¢ and O, and component
U is unnecessary. The extension of label E along arc (n(F£), j) proceeds as follows : if £ and
j satisfy condition (4.27), (4.28) or

0<j<n and j¢ O(F), (4.42)

then a label E’ is created using the extension functions (4.29)—(4.33). Condition (4.42) re-
places condition (4.26), and allows cycles to occur while forbidding to pickup the same request
twice without delivering it in the meantime. The resulting label E’ is kept if it satisfies condi-
tions (4.35) and (4.36). If the delivery triangle inequality holds, then the dominance criterion
is as follows : a label F; dominates a label Fy if conditions (4.37)—(4.40) are respected.

Shortest ng-Path Problem with Pickup and Delivery, Time Windows, and Capa-
city.

Baldacci et al. (2010, 2011b) have introduced another path relaxation, called ng-path, which
allows some cycles. Let N; represent a set of neighbor requests for each request i € P. If
i € D, we define N; = N;_,,. Then a cycle (0, ..., j,...,n+7, ..., 4, ..., j) can occur if there exists
a request j € P such that i € PU D and j ¢ N;. The neighborhood of each request i can
contain a maximum of A neighbors; i.e. | V;| < \. For our problem, we define the neighborhood
of each request i € P as follows. We first compute the distance, dist(4, j), from request ¢ to

request j :
diSt(i,j) = min{tij + Si, ti’nJrj + Si, thri,j + Sn4i, f}nJrZ"nJrj + SnJri}. (443)

Then, for each request ¢ € P, the A nearest requests such that the time windows and capacity
constraints could be respected if both requests were completed by the same vehicle are added
to the set ;. Request ¢ € P is also added to its own neighborhood, i.e. 7 € N;.

The idea behind this relaxation is that when request j € P does not belong to the neigh-
borhood of request i € P, then returning to j after visiting ¢ creates a detour. Therefore, a

path containing such a cycle should not be part of a master problem solution.

In a labeling algorithm, the ng-paths are handled as follows. For a given label E, let R(E) =
(0,11, 142, ...,1, = n(E)) represent the partial path corresponding to this label. Then, let ng(E)
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be the set of requests such that a cycle is not allowed on the extension of the label, i.e.,

p
du=1,...,psuch that n+i =14, and i € () Niy} : (4.44)

V=L

ng(E) = {Z epP

The dominance condition and the extension functions are identical to those of the elementary
shortest path problem with pickup and delivery, time window, and capacity constraints,
except that the set of unreachable requests U is defined differently. Let U,, be the set of

unreachable requests according to the ng-path relaxation. Then for a label E

Ung(E) = ng(E) U {i € PIt(E) + sy + boys > W} (4.45)

With this version, the components of a label are 1, ¢, ¢, ¢, O and U,,. The extension of a label
E along arc (n(E),7) € A is allowed if one of the three following conditions is respected :
(4.27), (4.28) or

0<j<n and j¢U,(E) and j ¢ O(E). (4.46)

If the previous conditions are satisfied, the components of the new label £’ are set according
to equations (4.29)—(4.33), and

Ung(E') = ng(E")U{i € PIt(E') + syr) + tyery > Wi} (4.47)

Label E’ is kept if conditions (4.35) and (4.36) are satisfied.

If the delivery triangle inequality holds, then the dominance criterion is : a label F; dominates
a label Ej if it respects conditions (4.37)—(4.40) and

Ung(E1) C© Ung(E3). (4.48)

It is now clear that U, ,(E) C U(FE) for a given label E, which leads to the following result.
If A < |P|, the ng-path relaxation allows for more dominance but if A = |P|, the ng-path will

solve the shortest path problem with elementarity constraints.

4.3.3 Valid Inequalities

We now present valid inequalities commonly used to solve the PDPTW and applicable to

the PDPTWL. These are 2-path cut inequalities, rounded capacity inequalities, and subset-
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row inequalities. We also present a family of cuts based on the branching on the number of
vehicles. These inequalities are added within the master problem. For the sake of conciseness,
we omit the discussion about the impact on the reduced cost of adding such inequalities (see
Desaulniers et al., 2011, for details). These inequalities will be used in each of our three

proposed branch-price-and-cut algorithms.

To impose integrality on the number of vehicles, we use a family of inequalities inspired from
the branching on the number of vehicles (Desrochers et al., 1992). If the number of vehicles is
fractional, two branches are created : Y cq yr < [Xreq ¥r), and Ycq Yr > [ X cq Ur |, Where
(U1, .-, 7jo) is the computed fractional-valued solution of the master problem. Because we
first minimize the number of vehicles, the number of vehicles used in the solution of the master
problem is a lower bound on the number of vehicles used in the optimal integer solution. In
this case, the inequality

>y >

ref)

> g]r] (4.49)

ref)

is added to the master problem and replaces the branching on the number of vehicles.

Kohl et al. (1999) have introduced 2-path cuts to solve the VRPTW. These were later shown
to be valid for the PDPTW (Ropke and Cordeau, 2009). Let S C PU D be a subset of nodes

that cannot be served by a single vehicle. Then the inequality

Z Z bijyr = 2 (4.50)
reQ (i,j)€Ali€S,j¢S
is valid. Identifying a subset of nodes that cannot be served by a single vehicle means de-
termining whether the corresponding traveling salesman problem with pickup and delivery,
and time windows is feasible, which is an NP-complete problem. In practice, the separation
of this class of inequalities can often be achieved by means of a greedy heuristic (Ropke and
Cordeau, 2009).

The rounded capacity inequalities are often used for the VRP, the VRPTW, and the PDPTW
(Naddef and Rinaldi, 2002; Cordeau, 2006; Ropke et al., 2007). Let S C P U D be a subset
of nodes and let £(S) be a lower bound on the number of vehicles needed to visit all nodes

in S. The inequality

Yo > by = E(S) (4.51)

reQ (i,j)€Ali€S,j¢S
is valid whenever £(S) = max {1, [¢(7(5))/Q],[—q(c(5))/Q]}, where n(S) = {i € P|i ¢
Sn+ieStand o(S)={n+ie DJi € S,;n+i¢ S} respectively denote the set of prede-

cessors and the set of successors of S. The lower bound on the load of the vehicles entering
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S is set as q(7(S)) = YCien(s) ¢> and the lower bound on the load of the vehicles leaving
Sis q(o(S)) = Xhtico(s) ¢- These inequalities are separated by means of an enumerative

procedure.

The subset-row inequalities were introduced by Jepsen et al. (2008) for the VRPTW and are
a special case of the clique inequalities. These inequalities are the rank-1 Chvatal-Gomory

inequalities defined as

1 S
> {ZJ@;: {"J vSC P2<y<|S, (4.52)
re0 LX ics X
where S is a subset of pickup nodes. As in Jepsen et al. (2008) and Desaulniers et al. (2008),
we focus on the cuts defined for subsets of three customers because these are easy to separate.

These cuts can be rewritten as

Z yr <1, ¥S C P such that |S| = 3, (4.53)

reQg

where g C () is the subset of paths completing at least two requests in S. These inequalities

can again be separated by enumeration.

Note that handling the dual variables of the subset-row cuts (4.53) in the pricing problem
can be highly time-consuming. Consequently, we limit their usage by generating them only

in the first two levels of the branching tree and adding at most 50 cuts at once.

4.3.4 Branching

In a branch-price-and-cut algorithm, branching is used to obtain integer feasible solutions and
must be compatible with the column generation process, especially with the algorithm used
to solve the pricing problem. With the dominance criterion (4.37)—-(4.41), the removal of arcs
must preserve the triangle inequality (Ropke and Cordeau, 2008). Consequently, we propose
to branch on the outflow of node subsets as for the VRP (Naddef and Rinaldi, 2002). This
branching strategy adds constraints to the master problem, yielding additional dual variables
incorporated in the objective function of the pricing problem (Desaulniers et al., 2011). In
this branching strategy, a subset of nodes S is selected such that >,.cq 3> j)eajics,jes bi;Ur
is as far as possible from the nearest integer. Two branches are then created by adding the

following constraints to the master problem associated with each branch :

Z Z b:] Yr S

reQ (i) € AlieS,j¢S

DS b;fjgr‘

r€Q (i,)€ A€ S,j¢S
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and

Z Z b:] Yr 2

r€Q (i) € Ali€S,j¢S

D> b;gﬂ |

reQ (i,§)€A[ES,jES

The exploration of the enumeration tree is achieved through a best-first strategy.

4.4 Branch-Price-and-Cut Algorithm with LIFO Paths

This second branch-price-and-cut algorithm deals with the LIFO policy in the pricing pro-
blem. This suggests a stronger formulation yielding better lower bounds. We present a labeling
algorithm for the elementary shortest path problem with pickup and delivery, time windows,

capacity and LIFO constraints.

4.4.1 Set Partitioning Formulation

Let QF denote the set of all feasible paths satisfying pickup and delivery, time window,
capacity and LIFO constraints. Using the notation of Section 4.3, the PDPTWL is formulated

as

minimize > ¢y (4.54)
reQl
subject to > apy, =1, Vi € P, (4.55)
reQl
y, € {0,1}, vr € QF. (4.56)

Again, we resort to column generation to solve the linear relaxation of model (4.54)—(4.56).
Because the pricing problem is solved with LIFO constraints, inequalities equivalent to (4.17),
(4.23), and (4.24) are not used in this algorithm.

Constraints (4.55) are associated with dual variables a;,7 € P. The pricing problem is

minimize > Gy (4.57)
(i,5)€A
subject to constraints (4.3)-(4.13), (4.58)

where index k is dropped again in (4.3)-(4.13). The reduced cost ¢;; for each arc (i,j) € A

can be defined as
Ci; — Oy, Vi € P7
Cija VZ c N\P
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All the valid inequalities and the branching strategies presented in Sections 4.3.3 and 4.3.4
are used in the branch-price-and-cut algorithm with LIFO paths.

4.4.2 Labeling Algorithm

In this section, we adapt the three labeling algorithms presented in Section 4.3 to account
for the LIFO policy. This means that the labels have to store information about the order in

which past requests have been visited.

To solve the elementary version of the shortest path problem with pickup and delivery, time
window, capacity and LIFO constraints, new components H;, ¢ € P, are introduced. For
each onboard request i € P, H; indicates its position in the stack : H; > 0 if request ¢ is
onboard, and H; = 0 otherwise. For each ¢, j € P, if the position of the onboard request j
is larger than the position of the onboard request 7, then the pickup node associated with
request ¢ was visited before the pickup node associated with request j, i.e. if 0 < H; < H;,
then 0 < ¢ < j. For each label, the components 7, ¢, ¢, ¢, U and H;, Vi € P are stored.

Because the LIFO policy is imposed, the extension of a label E along an arc (n(E),j) € A

must satisfy one of the following four conditions :

0<j<n and j¢ U(E),
0<n(E)<n and n<j<2n and j=n(E)+n,
n<n(E)<2n and n<j<2n and H;_,(E) >H

j=2n+1 and H;(E

( i(E), Vi e P\{j —n},
)=0, Vie P.

Condition (4.60) ensures that if j is a pickup node, then it must not have been previously
visited and it must be reachable with respect to the time windows. Condition (4.61) states
that if 7 is a delivery node and n(E) is a pickup node, then j must be the delivery node
associated with request 77(E). Note that this condition is always respected in graph G because
the arcs (i,7) going from pickup nodes to delivery nodes are only created if i € P and
j = n + i. Condition (4.62) stipulates that if j and n(E) are delivery nodes, then j must be
the delivery node associated with the last visited onboard request. Condition (4.63) ensures
that all requests serviced along the path are completed when reaching the destination node.
Together these conditions enforce the pairing constraints for the pickup and delivery nodes
of each request. They also ensure that all paths are elementary, and that the LIFO policy is

respected.

The new label E’ corresponding to the extension of a label E is set through equations
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(4.29)(4.32), (4.34), and

1 +max{H,(E)} ifj=1,
Hi(E') = {0 ifjeD j—n=1, VIEP (4.64)
Hi(E) otherwise,

Equations (4.64) update the positions of the requests. If j is a pickup node, then the highest
position is given to node j; otherwise its request position is set to 0. In both cases, the
positions of all the other requests ¢ € P,i # j remain the same. If conditions (4.35) and
(4.36) are respected, then E’ is kept unchanged.

If the delivery triangle inequality holds, we apply the following dominance condition : a label
E; dominates a label FEj if the conditions (4.37)—(4.39), (4.41), and

Vi, j such that 0 < H;(E1) < H,;(Ey) then 0 < H;(E2) < H;(E2) (4.65)

hold. Note that this relaxation can be satisfied even if O(E;) C O(Es).

Let R(E) represent the path corresponding to label E and (ry,ry) the path obtained by

concatenating paths r; and rs.

Proposition 4.4.1. Conditions (4.37)—(4.39), (4.41), and (4.65) constitute a valid domi-

nance criterion whenever ¢;; satisfies the delivery triangle inequality.

Proof. The proof follows from those of Propositions 1 and 3 of Ropke and Cordeau (2009).
Let r be a LIFO-feasible path extending R(FEs) to node 2n + 1. If no such path exists,
then clearly one can remove label F,. Let 7’ be the path obtained from r by removing
the deliveries corresponding to each request i € P such that H;(E;) = 0 and H;(FE>) > 0.
Because (R(E,), r) is feasible with respect to time windows, capacity constraints, elementarity
constraints, and pickup and delivery constraints, then so is (R(E1), ). The LIFO constraints
are not violated because the order in which the deliveries are performed on (R(E}),7’) is the
same as the order on (R(E>), ). Because (R(E>),r) is feasible, then so is (R(E1),r’). Because
the extension function (4.32) is non-decreasing for the reduced cost component ¢, and the
delivery triangle inequality is assumed, the cost of 7' does not exceed that of r. Because
c(Ey) < ¢(FEy), the cost of (R(Ey),r") is at most equal to that of (R(Es),r). As a result, the
best extension of label F; to 2n + 1 cannot be worse than the best extension of Fy to 2n + 1.
Hence, label Fy dominates label Ej. O

At this point, it should be noted that the arguments of this proof cannot be adapted to
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the ng-path relaxation because deleting a delivery node from r can yield a cycle that is
not allowed in (R(E}),r’), implying that labels could be incorrectly dominated. However,
this case only arises in non-elementary paths, which means that no integer solution can be
discarded. Thus, the lower bound obtained at a branching node and the proposed algorithms

remain valid.

4.5 A Hybrid Branch-Price-and-Cut Algorithm

The two algorithms just described have advantages and drawbacks. The first one solves
shortest paths problems without the LIFO constraints, leading to a less restrictive dominance
criterion than for the second algorithm (i.e. more labels can be dominated). The pricing
problem is then easier and faster to solve. On the other hand, the second algorithm solves
shortest path problems under the LIFO policy, yielding a stronger relaxation than for the
first algorithm. In fact, the potential number of variables that can be generated is never larger
(QF C Q) and all these variables respect the LIFO policy.

In the third algorithm that we will now present, the idea is to combine the respective ad-
vantages of the first two algorithms. This will be achieved by solving shortest path problems
under hybrid-LIFO constraints, i.e., they must respect the LIFO policy for at most s requests
at the same time. An ejection stack process will therefore be needed : when a pickup node is
visited, it is put on top of the stack; if the height of the stack exceeds k, the request at the
bottom of the stack is then ejected. The extension of the partial path then needs to respect
the LIFO policy for the onboard requests in the stack, but all remaining requests can be
visited without respecting the LIFO policy. Figure 4.3 depicts the cases that may arise when
r = 2. The shaded nodes represent the requests that are in the ejection stack and for which
the extension of the path must respect the LIFO policy. Figure 4.3a depicts an initial path
containing two nodes in the stack. Figure 4.3b shows what happens when the stack reaches its
maximal size. Figures 4.3c, 4.3d and 4.3e depict the possible extensions of the LIFO-feasible
path for each node in the stack. As shown in Figure 4.3e, the solution of the linear relaxation
can contain LIFO-infeasible paths. If this is the case, incompatible predecessor and successor

inequalities, and inequalities (4.18) are added.

4.5.1 Labeling Algorithm

We now describe the labeling algorithm we have implemented to solve the shortest paths
with hybrid-LIFO constraints. The valid inequalities and the branching decisions used are

those of Sections 4.3.3 and 4.3.4. We have adapted the elementary version of the labeling
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Figure 4.3 — (a) The LIFO stack with x = 2 contains nodes 3" and 4*. (b) The LIFO stack
contains nodes 4* and 1% : node 3% has been ejected. (c) The LIFO stack contains node
4% : request 1 is not onboard. (d) The LIFO stack is empty once requests 1 and 4 have been
completed. (e) Requests 2 and 3 can then be completed without respecting the LIFO policy.

algorithm described in Section 4.3 to shortest path problems with pickup and delivery, time
window, capacity and hybrid-LIFO constraints. It will be necessary to consider the order in

which at most x requests have already been visited on the partial path.

In the elementary version of the problem, every label stores the following components : 7, t,
¢, O, U, and HFS, Vi € P. HES represents the position of a request in the ejection stack : for
each request i € P that is not onboard, HF® = 0. Otherwise, if request i is onboard, HFS can
take multiple values. If HF¥ = 0, request i is not in the ejection stack i.e. the extension of the
label may not respect the LIFO policy for this request, and if HZ° > 0, the extension of the
label must respect the LIFO policy for request i as long as ¢ stays in the stack. Consequently,
if 0 < HES < ’HJES for 7,7 € P, then the extension of the label must complete request j

before request 7, unless i is ejected from the stack before performing the delivery at j.

The extension of a label E along an arc (n(E),j) € A is feasible if one of the four following

conditions is respected :

0<j<n and j¢ U(E), (4.66)

0<n(E)<n and n<j<2n and j=n(E)+n, (4.67)
n<n(F)<2n and n<j<2n and H]E_SH(E) > HES(E),

Vie P, j—ne OE), (4.68)

j=2n+1 and O(F)=0. (4.69)

Condition (4.68) specifies that if j and n(F) are delivery nodes, and there exists a request
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in the ejection stack, then j is the delivery node associated with the request on top of the

stack. Otherwise, j is the delivery node of any onboard request.

For a label E, its extension along arc (n(E),j) € A generates a new label E' where the
information is set with equations (4.29)—(4.34) and

min{x, 1 + max,{HZ5(E)}} if j =1,
0 itjeD,j—n—l,
HPS(E') = SHES(E)—1 ifjePjALHES >0 VieP. (4.70)
max; {1 (E)} = &,
HES(E) otherwise,

Equation (4.70) updates the position of the requests in the ejection stack. If j is a pickup
node and the size of the ejection stack is less than s, then all positions remain the same.
Otherwise, if j is a pickup node but the size of the LIFO stack is equal to , then the request
i such that HE9(E) = 1 is removed from the ejection stack and the positions of the other
requests are changed accordingly. In both cases, the highest position is given to node j. If j is
a delivery node, then its request position becomes 0 and the other positions are unchanged.
If the new label created E’ satisfies the time windows and capacity constraints (4.35) and

(4.36), then it remains unchanged.

If the delivery triangle inequality holds, then the dominance criterion is the following : a label
E, dominates a label Fy if (4.37)—(4.41) are satisfied and

Vi, j such that 0 < H[°(Ey) < H%(Ey) then 0 < H[°(Ey) < H¥(E). (4.71)

For each request i € P such that HF9(E) > 0, condition (4.40) is implied by condition (4.71),
meaning that it can be substituted by

O(E)\{i € P|H[°(Ey) > 0} C O(Ex)\{i € P|H{°(Ey) > 0}. (4.72)
The reader can easily adapt this procedure to the cyclic and the ng-path relaxations.

4.6 Computational Results

The three branch-price-and-cut algorithms just described were tested on a set of PDPTWL
instances derived from the instances proposed by Ropke and Cordeau (2009) for the PDPTW.
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In this section, we report the computational results obtained for these PDPTWL instances.
We also compare the results obtained for each instance of the PDPTW and of the PDPTWL.
All tests were performed on a Linux computer equipped with an Intel(R) Core(TM) i7-3770
processor (3.4 GHz). The algorithms were implemented using the GENCOL library using
CPLEX 12.4.0.0 to solve all restricted master problems.

4.6.1 Instances

To test our algorithms, we have used a modified version of the instances proposed by Ropke
and Cordeau (2009) for the PDPTW. The coordinates of the depot, and of the pickup and
delivery nodes are the same as in their instances. For each request ¢ € P, we have used
the original time windows for the pickup nodes, but have delayed the time windows for the
delivery nodes as follows w,,,; = w,,; + A and w,4; = Wy4; + A, where A is a user-defined
parameter called the delay. The load ¢; of request ¢ € P was not modified, but the vehicle
capacity () was increased by a factor of 1.5 for the AA and BB groups, and by a factor of 1.25
for the CC and DD groups. We have made these modifications in order to increase the number
of requests that may be handled simultaneously by a vehicle. Without such modifications,
removing only the arcs (7, ) such that ¢ € P, j € D and j # n + i is often sufficient to find
LIFO-feasible solutions.

Table 4.1 summarizes the characteristics of the test instances. For each group, we report
the vehicle capacity @, the width of the time windows W, and the delay A applied to the
time windows of the delivery nodes. For each group, we have tested 10 instances in which
the number of requests ranges from 30 to 75. In all instances, the primary objective is the
minimization of the number of vehicles. To this end, we have imposed a fixed cost of 10,000
on each arc (0, j) € A such that j € P.

Table 4.1 — Characteristics of the PDPTWL instances

Group | Q | W | A
AA 22 | 60 | 45
BB |30 ]| 60 |45
CC 18 | 120 | 15
DD 25| 120 | 15
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4.6.2 Impact of Algorithm on Results

Table 4.2 presents the number of instances solved for each algorithm and each relaxation
of the pricing problem. A time limit of 3600 seconds was imposed for the solution of each
instance. The algorithms are named as follows : BPC' Non-LIFO (branch-price-and-cut with
LIFO-infeasible paths), BPC LIFO (branch-price-and-cut with LIFO paths), and BPC Hy-
brid (hybrid branch-price-and-cut with x = 2). The relaxation of the shortest path problems
are named as follows : ESPP (elementary shortest path problem), SPP (shortest path pro-
blem without elementarity constraints), and ng, (ng-route relaxation, where A represents the
maximal number of neighbors for each request). We can see that, for all three algorithms, the
ng-route relaxation with A = 10 solves the most instances. In our experiments, we have obser-
ved that all instances solved with the other relaxations are also solved with ng,o. Therefore,
we will henceforth solve all shortest path problems with ng;o. Note that all our conclusions
should be similar for each relaxation of the shortest path problem because there does not
seem to exist any correlation between the performance of the algorithm and the relaxation

of the pricing problem.

Table 4.3 presents the results for all three algorithms. The first column indicates the name of
the instances corresponding to its group and to its number of requests. In the last column, z*
is the optimal solution value obtained for each instance. For each algorithm, we present the
following information : Sec., the CPU time in seconds; z, the lower bound at the root node
(before adding any cuts); LC, the number of constraints (4.18), (4.23), and (4.24) added to
the master problem to obtain a LIFO-feasible solution; OC, the number of other constraints
added to the master problem, i.e. constraints (4.50), (4.51), (4.53); and B, the number of
nodes in the search tree including the root node. Whenever an instance is not solved within
the prescribed time limit, but a lower bound has been identified, then the lower bound value
is reported. Note that for instances BB55, BB70, BB75, CC45, CC60 to CC75, and DD45 to
DD75 no feasible solutions were found within the time limit, and no non-trivial lower bounds
could be identified for DD55, DD60, and DD75.

Table 4.2 — Number of instances solved

BPC Non-LIFO | BPC LIFO | BPC Hybrid
ESPP 15 20 20
SPP 19 24 24
ngs 18 23 23
ngio 19 25 25
ngis 18 22 22
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Table 4.3 indicates that the branch-price-and-cut algorithm with LIFO-infeasible paths does
not solve as many instances as the other two algorithms and is generally slower. Because
this algorithm needs more branching nodes, the CPU time can be larger. In fact, for the
AA group, this time is relatively large and the algorithm cannot solve instances with more
than 55 requests. For the other groups, the number of branching nodes is not as large, thus

allowing the algorithm to perform well.

For these instances, no LIFO cuts are added in the BPC Hybrid. In fact, these instances
are constructed in such a way that a vehicle can contain items corresponding to relatively
few requests simultaneously. In the solution of a typical instance, the maximum number of
onboard requests at any given time ranges between 2 and 3. This maximum is rarely reached
leading to 1.3 onboard requests on average when performing a delivery. Setting x > 3 yields
the same results as kK = 2. There does not seem to be any significant difference between the
performance of BPC Hybrid and that of BPC LIFO in terms of lower bound value (it differs
only for instance BB40) and of CPU time. Additional results will be presented in Section
4.6.4 to determine whether the two algorithms perform differently on harder instances. Note
that, for the BPC non-LIFO, most LC cuts added in the master problem are incompatible
predecessor and successor constraints. Indeed, these inequalities are often sufficient to enforce
the LIFO policy for the tested instances. Most of the other cuts (OC) are 2-path cuts and

subset-row inequalities.

4.6.3 Impact of LIFO Policy on Results

In Table 4.4 we examine the impact of imposing the LIFO policy by comparing the optimal
solution costs and computational times for the PDPTW and the PDPTWL. For each problem,
we provide : Sec., the CPU time in seconds required to obtain an optimal solution; B, the
number of nodes in the search tree; It., the overall number of column generation iterations;
Col., the number of columns generated ; and z*, the optimal solution cost. We also report the
increase in the number of vehicles used (Veh.) and in the travel costs (T'C') induced by the
LIFO policy. For the PDPTWL, we report the results obtained with the branch-price-and-cut
with LIFO paths. For the PDPTW, we report the results obtained with a branch-price-and-
cut similar to that proposed by Ropke and Cordeau (2009). We do not report any result for
the CC and DD groups because no instance except CC30 was solved for the PDPTW. Note
that instances AA75, and BB55 to BB75 could not be solved for the PDPTW.



Table 4.3 — Comparative computational results for the three algorithms with ng

BPC Non-LIFO BPC LIFO BPC Hybrid

Inst. Sec. z LC OC B Sec. z OC B Sec. z LC OC B 2"
AA30 1.6 31,1294 0 0 1 2.5 31,1294 0 1 2.5 31,1294 0 0 1]31,129.4
AA35 109.5 31,268.3 4 53 17 16.7 31,2852 16 1 16.7 31,285.2 0 16 1 |31,294.1
AA40 139.0 41,3382 15 20 24 7.1 41,349.2 0 1 7.1 41,349.2 0 0 1|41,349.2
AA45 207.0 41,504.1 4 48 13 21.6 41,521.4 0 1 21.6 41,521.4 0 0 1/|41,5214
AA50 305.6 41,619.6 6 46 11 42.3 41,643.6 0 1 41.0 41,643.6 0 0 11]41,643.6
AA55 46,778.6 60.6 46,803.8 0 2 59.0 46,803.8 0 0 2151,743.2
AAGO 46,972.0 800.4 46,999.2 69 4 789.2 46,999.2 0 69 4|51,949.7
AAGH 47,147.4 665.8 47,1720 60 2 657.5 47,172.0 0 60 2520774
AAT0 47.877.3 1,149.4 47,.896.1 27 2| 1,094.5 47,896.1 0 27 2]52,219.2
AAT5 51,587.3 1,994.2 51,607.2 29 2| 1,893.4 51,607.2 0 29 252330.1
BB30 5.0 31,074.5 1 2 1 5.6 31,076.3 2 1 5.4 31,076.3 0 2 1|31,077.5
BB35 13.7 31,311.0 2 0 1 13.9 31,3124 0 1 13.2 31,3124 0 0 1]31,3124
BB40 122.4 35,143.6 3 48 2 142.5 35,695.5 30 2 130.0  35,559.9 0 50 2|41,404.0
BB45 | 1,627.8 37,516.7 9 65 8 838.8 37,645.1 56 4 667.7 37,645.1 0 65 4 |41,537.5
BB50 565.6 41,791.1 0 0 1 720.8 41,791.1 0 1 687.3 41,791.1 0 0 1/|41,791.1
BB55 45,637.2 46,391.4 46,391.4

BB60 887.8 62,296.8 10 44 3 766.8 62,305.5 0 1 468.4 62,305.5 0 0 11]62,305.5
BB65 576.2 62,564.6 0 0 11,5459 62,564.6 0 11,0153 62,564.6 0 0 1]62,564.6
CC30 18.4 23,318.9 0 34 2 17.6 23,3189 40 2 17.6  23,318.9 0 40 2| 31,088.6
CC35 37.4 24,777.2 0 24 2 39.6 24,7772 24 2 39.4 24,777.2 0 24 2312374
CC40 45.5  26,024.6 0 0 2 62.5 26,024.6 0 2 62.2 26,024.6 0 0 21 31,340.2
CC45 29,562.7 29,562.7 29,562.7

CC50 889.4 35,156.6 0 52 12| 1,481.0 35,156.6 52 8| 1,475.2 35,156.6 0 52 8)|41,673.6
CCh5 | 2,817.7 36,778.1 2 b4 3427333 36,779.4 52 32| 2,741.1 36,779.4 0 52 32 |41,793.5
DD30 19,051.5 3,351.8 19,153.3 58 2 3,307.2 19,153.3 0 58 2]21,103.2
DD35 695.1 21,774.6 7 52 6 794.4 21,8540 52 2 767.8 21,854.0 0 52 2|31,127.8
DD40 | 1,820.3 22,932.5 8 41 2| 3,468.6 23,024.6 20 2] 3,092.7 23,024.6 0 20 2|31,245.3
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Table 4.4 — Comparative computational results for the PDPTW and the PDPTWL

PDPTWL PDPTW Increase
Instance! Sec. B It. Col. z* Sec. B It Col. z* | Veh. TC (%)
AA30 25 1 108 3,100 31,1294 25 1 79 4,663 30,969.4 0 16.5
AA35 16.7 1 180 8,594 31,294.1 205 1 159 7,507 31,089.0 0 18.8
AA40 71 1 95 4,850 41,349.2 53.5 3 192 7,494 41,241.7 0 8.7
AA45 21.6 1 124 8,143 41,5214 167.0 3 198 9460 41,412.2 0 7.7
AA5B0 423 1 130 11,460 41,643.6 | 1,968.0 13 368 30,221 41,531.6 0 7.3
AAbBS 60.6 2 172 12,608 51,743.2 7754 11 364 18,744 41,667.1 1 4.6
AA60 800.4 4 349 25,324 51,949.7 | 1,682.9 7 800 96,591 41,822.7 1 7.0
AAGS 665.8 2 424 30,487 52,077.4 | 1,029.2 3 540 80,053 42,011.6 1 3.3
AATO 1,149.4 2 400 36,740 52,219.2 | 2,434.2 2 447 88,691 51,992.8 0 11.4
BB30 5.6 1 78 2808 31,077.5 5.0 1 67 3,115 31,017.5 0 5.9
BB35 139 1 99 4924 31,3124 289 1 136 5,629 31,211.3 0 8.3
BB40 1425 2 193 8,358 41,404.0 1317 1 112 9,796 31,503.2 1 -6.6
BB45 838.8 4 277 12,760 41,537.5 539.5 2 198 11,235 41,386.4 0 10.9
BB50 720.8 1 110 8428 41,791.1 | 1,9084 1 154 11,480 41,564.9 0 14.5
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Table 4.5 — Characteristics of the additional PDPTWL instances

Group | Q | W | A
AA* | 26| 60 | 60
BB* | 35| 60 | 60

We first observe that imposing the LIFO policy either requires an additional vehicle or
increases the total travel cost by at least 5.9%. In fact, the travel cost increase can reach
almost 20%, which is substantial. Note that even when an extra vehicle is used, the travel

cost increases, except for instance BB40.

Second, we observe that, beside the fact that some CC and DD instances were solved for the
PDPTWTL but not for the PDPTW,| it takes longer to solve the PDPTW for the AA instances.
This can be explained by the larger number of nodes generated in the search tree, yielding a
larger number of column generation iterations. The computational times are, however, relati-
vely similar for the BB instances, except for the instance BB50 where the PDPTW problem
requires much more time than the PDPTWL. From these results, we conclude that the pri-
cing problems for the PDPTW and the PDPTWL are equivalently difficult to solve. Indeed,
even if the dominance rule in the labeling algorithm is more restrictive for the PDPTWL,
fewer paths are feasible, reducing the overall number of labels generated. Moreover, the input
graph for the PDPTWL contains fewer arcs than that for the PDPTW (it does not contain
the arcs (7,7) such that i € P, j € D and j #n+1 ).

4.6.4 Results on Additional Instances

Because the results presented in Table 4.3 do not exhibit significant differences between the
two best proposed algorithms, we have decided to run additional experiments for groups AA
and BB. To this end, we have created the harder-to-solve instances described in Table 4.5.
We present in Table 4.6 the results obtained on these new instances with a time limit of 7200
seconds. These instances allow more requests to be simultaneously present in a vehicle. In the
solution of a typical instance, the maximum number of onboard requests at any given time
is 3, and the average number of onboard requests when performing a delivery is 1.6 leading
to an increase of approximately 20% over the previous average. We observe that, for both
BPC Non-LIFO and BPC Hybrid, more LIFO cuts are generated in the solution process.
We can see that the BPC Hybrid performs slightly better than the other two algorithms.
This algorithm can solve instance BB*60 while the two others could not. For most instances,
except AA*35, the BPC Hybrid is the fastest and produces good quality lower bounds. Note



Table 4.6 — Additional comparative computational results for the three algorithms with ng

BPC Non-LIFO BPC LIFO BPC Hybrid
Inst. Sec. z LC OC B Sec. z OC B Sec. z LC OC B 2"
AA*30 8.8 31,048.8 1 20 3 6.7 31,0614 20 1 7.3 31,051.4 0 20 1] 31,051.6
AA*35 | 3,891.9 31,210.3 414 50 12| 1,145.7 31,231.7 69 55| 2,497.2 31,231.3 4 70 68| 31,244.8
AA*40 615.9 36,3545 66 50 18 61.4 36,364.4 25 2 60.5 36,364.4 0 25 21413314
AA*45 36,558.4 2,666.4 36,590.3 85 26 | 1,092.5 36,589.2 9 85 20| 41,5154
AA*50 38,339.6 38.,376.4 38,375.0
AA*55 41,793.8 41,843.5 41,843.4
AA*60 | 5,923.8 45237.3 21 60 36| 1,779.0 45,280.4 0 2|1512.6 45,279.3 0 0 2| 51,808.2
BB*30 16.1 32,843.8 9 4 2 18.1 36,144.2 11 2 15.7 36,144.2 0 11 2 |41,111.0
BB*35 170.1 36,3772 24 56 6 109.8 37,122.8 49 2 89.4 37,122.8 0 42 2141,332.9
BB*40 | 6,036.6 37,788.0 49 56 24 |2597.0 39,337.7 54 14| 1,844.4 39,337.7 0 52 12|41,477.1
BB*45 39,5627.1 3,455.7 41,646.1 23 1] 2,468.1 41,646.1 0 23 1| 41,699.5
BB*50 45,011.2 46,505.4 46,505.4
BB*55 48.,267.2 49,891.9
BB*60 63,148.6 6,217.0 65,172.6 3 51 2|72,184.3
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that for five instances, the lower bound obtained with BPC Hybrid is slightly worse than
that obtained with BPC LIFO. These results indicate that the BPC Hybrid should perform

better on harder instances.

4.7 Conclusions

We have introduced the PDPTWL and described three column generation algorithms for
its solution. We have implemented an adaptation of the labeling algorithm for shortest path
problems with LIFO constraints. Instances involving up to 75 requests were solved to opti-
mality. We have shown that on harder instances, the BPC Hybrid outperforms the other two
algorithms because it is faster and produces better lower bounds. Our results should serve

as benchmarks for future research.

4.8 Nouveaux résultats

Suite a la publication de ce chapitre dans Transportation Science, nous avons améliorer
lalgorithme d’étiquetage afin d’accélérer le temps de résolution. Pour ce faire, a chaque
extension d’une étiquette, on vérifie qu’il est possible d’aller visiter chaque noeud de livraison
associé a chaque colis a bord. Si ce n’est pas possible, I’étiquette est éliminée. Cela permet

de diminuer les temps de calcul.

Les tableaux 4.7 et 4.8 présentent les nouveaux résultats et devraient, respectivement, rem-
placer les tableaux 4.3 et 4.6. Dans les tableaux 4.7-4.8, la premiere colonne indique le nom
de l'instance correspondant & son groupe et au nombre de requétes. La derniere colonne,
2*, présente la valeur optimale. Pour chaque algorithme, on présente 'information suivante :
Sec., le temps de résolution en secondes; z, la borne inférieure au noeud racine (avant I'ajout
de coupes) ; LC, le nombre de contraintes (4.18), (4.23) et (4.24) ajoutées au probleme-maitre
pour obtenir une solution qui respecte la politique LIFO ; OC, le nombre de contraintes (4.50),
(4.51) et (4.53) ajoutées au probléme-maitre; et B, le nombre de noeuds dans I'arbre de re-
cherche incluant le noeud racine. Pour les instances des groupes AA a DD, le temps limite
de calcul est de une heure, alors que, pour les instances additionnelles des groupes AA* et
BB*, le temps limite de calcul est de deux heures. Lorsqu’une instance n’est pas résolue dans
le temps limite de calcul, aucune borne inférieure n’est rapportée. De plus, aucune solution

réalisable n’a été trouvée pour toutes les instances non résolues dans le temps limite.

Nous pouvons maintenant constater que toutes les instances des groupes AA et BB sont
résolues a optimalité avec les algorithmes BPC LIFO et BPC Hybrid. De plus, 'algorithme
BPC' Non-LIFO semble étre le plus performant pour les instances du groupe CC. Pour les
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instances plus difficiles, i.e., les instances des groupes AA* et BB*, elles sont maintenant
presque toutes résolues lorsqu’il y a 65 requétes et moins, sauf pour I'instance BB*55. Pour
ces instances, il ne semble pas y avoir de différence significative entre les algorithmes BPC
LIFO et BPC Hybrid, mais 1’algorithme BPC' Non-LIFO demeure le moins performant.

Pour l'algorithme BPC Non-LIFO, sept instances supplémentaires sont résolues (AAG5,
BB70, CC60, DD45, DD50, AA*65 et BB*60). De plus, pour toutes les instances qui étaient
résolues auparavant, les temps sont diminués avec cet algorithme. Le temps diminue en
moyenne de 839,8 secondes et 'impact le plus important est pour I'instance BB*40 avec une
diminution de 5795,0 secondes. Pour ’algorithme BPC' LIFO, onze instances supplémentaires
sont résolues (BB55, BB70, BB75, DD45, DD50, AA*50, AA*55, AA*65, BB*50, BB*60 et
BB*65) et une instance n’est plus résolue dans le temps limite (CC55). De plus, pour toutes
les instances sauf AA60 et CC30, le temps diminue en moyenne de 866,0 secondes et 'im-
pact le plus important est pour I'instance BB*45, avec une diminution de 3389,0 secondes.
Toutefois, pour les instances AA60 et CC30, les temps de résolution augmentent de 99,1 et
de 9,9 secondes. Pour l'algorithme BPC Hybrid, neuf instances supplémentaires sont résolues
(BB55, BB70, BB75, DD45, DD50, AA*50, AA*55, AA*65 et BB*50) et une instance n’est
plus résolue dans le temps limite (CC5H5). De plus, pour toutes les instances sauf AA60 et
CC30, le temps diminue en moyenne de 904,1 secondes et I'impact le plus important est pour
I'instance BB*60 avec une diminution de 6061,4 secondes. Toutefois, pour les instances AA60

et CC30, les temps de résolution augmentent respectivement de 69,0 et 10,1.

Au total, neuf instances supplémentaires sont résolues (BB50, CC60, DD45, DD50, AA*50,
AA*55, AA*65m BB*50 et BB*65) et, en moyenne, les temps sont diminués.



Tableau 4.7 — Nouveaux résultats pour les trois algorithmes avec ngg

BPC Non-LIFO BPC LIFO BPC Hybrid

Inst. Sec. z LC O0OC B Sec. z 0OC B Sec. z LC OC B z*
AA30 1,1 311294 0 0 1 1 311294 0 1,0 1,1 31129,4 0 0 11311294
AA35 68,2 31268,3 2 4 21 8,2 31285,2 4 3 8,6 31285,2 0 4 3] 31294,1
AA40 92,6 41338,2 15 0 33 2,3 41349,2 0 1 2,3  41349,2 0 0 1| 41 349,2
AA45 | 1358 415041 4 5 21 42 415214 0 1 45 415214 0 0 1 |415214
AA50 157,9 41619,6 6 4 17 10,9 41643,6 0 1 8,3 41643.,6 0 0 1| 41643,6
AA55 | 2952,8 46778,6 190 33 218 13,6 46803,8 0 2 16,4 46803,8 0 0 2| 517432
AA60 899,5 469992 36 41 858,2  46999,2 0 38 39 | 51949,7
AAG65 | 1699,8 471474 7T 34 63 169,3 471720 16 5 238,9 47172,0 0 23 7|52077,4
AAT0 151,9 47896,1 7 4 153,4 47896,1 0 7 4 52219,2
AAT5 240,2 51607,2 9 6 229.4 51607,2 0 9 6| 52330,1
BB30 3,6 31074,5 1 2 3 3,0 31076,3 2 2 2,9 31076,3 0 2 2131077,5
BB35 4,5 31311,0 2 0 2 3,1 31312,4 0 1 3,0 313124 0 0 11| 313124
BB40 37,8 35143,6 3 8 6 37,1 35695,5 10 5 37,3 35559,9 0 10 5 | 41 404,0
BB45 202,1 37516,7 9 5 16 123,0 37645,1 7 9 143,9 37645,1 0 15 14 | 41 537,5
BB50 18,3 41791,1 0 0 1 20,5 41791,1 0 1 21,9 41791,1 0 0 1 ]41791,1
BB55 548,5 46391,4 5 18 518,2 46391,4 0 10 17 | 51 911,7
BB60 107,6  62296,8 10 4 9 15,2 62305,5 0 1 15,0 62305.,5 0 0 1] 623055
BB65 22,4 62564,6 0 0 1 24,0 62564,6 0 1 22,5  62564,6 0 0 1] 62564,6
BB70 584,2 65978,7 14 6 24| 429,3 66002,4 3 12| 461,8 66002,4 0 7 13 | 72 535,2
BB75 1660,3 68197,0 9 47 | 806,7 68197,0 0 13 25| 72 656,7
CC30 27,9 23318,9 0 0 7 27,5 23318,9 0 7 27,7 23318,9 0 0 7| 31088,6
CC35 33,1 24777,2 0 0 4 32,7 24777,2 0 4 32,8 24777,2 0 0 4312374
CC40 30,4 26024,6 0 0 2 32,5  26024,6 0 2 32,3 26024,6 0 0 2| 31340,2
CC45

CC50 345,6 35156,6 0 2 12 | 1013,5 35156,6 2 26 | 1026,1 35156,6 0 2 26 | 41 673,6
CC55 | 1416,1  36778,1 2 4 40 41 793,5
CC60 | 3500,1 38262,6 8 1 52 41 9473
DD30 790,2 19153,3 13 9 825,3 19153,3 0 13 9| 21103,2
DD35 243,2  21774,6 8 2 13 154,4 21854,0 5 6 160,2 21854,0 0 5 6| 311278
DD40 | 233,9 229325 6 1 7 176,1 23024,6 1 4 189,5 23024,6 0 1 4312453
DD45 562,6 24537,8 6 2 10 | 482,3 24560,7 2 9 | 434,2 24560,7 0 1 5| 31 350,4
DD50 | 903,0 25512,7 16 1 17 | 827,3 25547,8 1 10 914,1 25547,8 0 1 10 | 31 450,2
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Tableau 4.8 — Nouveaux résultats des instances additionnelles pour les trois algorithmes avec ngg

BPC Non-LIFO BPC LIFO BPC Hybrid

Inst. Sec. z LC 0OC B Sec. z OC B Sec. z LC OC B z*
AA*30 4,2 31048,8 3 0 3 3,4 310514 0 2 3,5 310514 0 0 21|31051,6
AA*35 | 1334,2 312104 275 20 113 | 391,7 31231,7 20 62| 242,8 31231,3 0 17 37| 312448
AA*40 | 360,4 36354,5 25 43 54 16,5 36364.4 25 3 18,7 36364.,4 0 25 3413314
AA*45 355,9 36590,3 29 23| 373,9 36589,2 2 20 24 |415154
AA*50 2148,6 38376,4 47 84 | 1284,0 38375,0 3 22 41416375
AA*55 356,5 41843,5 28 11 | 2366,5 418434 5 41 70 | 41 880,2
AA*60 | 526,4 452373 31 25 36 52,4 45280,4 0 2 52,6 45279,3 0 0 21518082
AA*65 | 1780,9 47020,8 23 24 36| 256,5 47048,8 20 8| 2427 47048,8 0 20 8519619
BB*30 5,1 328439 9 4 5 3,6 361442 11 3 3,7 361442 0 11 3411110
BB*35 58,9 36377,3 25 7 18 29.3 371228 2 6 26,2 37122,8 0 2 61413329
BB*40 | 241,6 37783,0 55 1 48 | 108,7 393377 2 16| 131,2 393377 0 2 22414771
BB*45 66,7 41646,1 3 3 50,9 41646,1 0 3 3 |41699,5
BB*50 1245 46505,4 38 69 | 1701,3 465054 56 25 89 | 51 719,1
BB*55

BB*60 | 420,7 631486 53 10 25 74,0 652654 16 4| 155,6 651726 3 12 7721843
BB*65 1719,5 66055,7 52 72 72 394,5

48
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CHAPITRE 5 ARTICLE 2 : A POPULATION-BASED METAHEURISTIC
FOR THE PICKUP AND DELIVERY PROBLEM WITH TIME WINDOWS
AND LIFO LOADING

Recopié avec permission, M. Cherkesly, G. Desaulniers et G. Laporte, (2015), A Population-
Based Metaheuristic for the Pickup and Delivery Problem with Time Windows and LIFO
Loading. Computers € Operations Research, publié en ligne le 11 avril 2015, http://dx.
doi.org/10.1016/j.cor.2015.04.002.

5.1 Introduction

This paper proposes a population-based metaheuristic for the pickup and delivery problem
with time windows and last-in-first-out (LIFO) loading (PDPTWL). In the pickup and de-
livery problem (PDP), a set of vehicles is used to complete several requests. A request cor-
responds to transporting goods (or items) from a pickup node to a delivery node. The LIFO
policy means that when a pickup node is visited, its corresponding item is loaded on top of a
linear stack, and an item can only be delivered if it is on top of the stack. Figure 5.1 depicts
two vehicle routes where 0" and 0~ represent the depot at the beginning and the end of the
route, 17 and 1~ represent the pickup and the delivery nodes for item 1, and 2" and 2~
represent the pickup and delivery nodes for item 2. The first route repects the LIFO policy,
but not the second one. In route 2, item 1 is delivered when item 2 is on top of the stack,
meaning that the LIFO policy is not respected. Each item has a specified load, and each
pickup or delivery node has a given service time and a time window during which service
must start. We consider an unlimited fleet of identical capacitated vehicles. A vehicle route
is feasible if it respects (i) the vehicle capacity, (ii) the time windows, and (iii) the LIFO
policy. Note that there is a single depot, and each vehicle route starts and ends at the depot.
Travel costs are proportional to the total traveled distance. The PDPTWL consists of first
minimizing the number of vehicles used, and then the total distance traveled, subject to the

feasibility constraints.

To the best of our knowledge, the PDPTWL has only been studied by Cherkesly et al.
(2014) who have developed three exact branch-price-and-cut algorithms which can solve
instances with up to 75 requests within one hour of computation time. In addition, a number
of heuristics have been proposed for variants of the problem, namely the vehicle routing
problem with time windows (VRPTW) (see Braysy and Gendreau (2005a,b); Vidal et al.
(2013a) for a survey, and Vidal et al. (2013b) for a state-of-the-art heuristic), the pickup and
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(Route)
(Route?) (O D@ BB

Figure 5.1 — The LIFO policy is respected in route 1, but not in route 2 because item 1
cannot be delivered without first removing item 2 from the vehicle.

delivery problem with time windows (PDPTW) (see Berbeglia et al. (2007); Parragh et al.
(2008a,b) for a survey, and Li and Lim (2003), Bent and Van Hentenryck (2006), and Ropke
and Pisinger (2006) for recent heuristics), the traveling salesman problem with pickup and
delivery and LIFO loading (see Cassani (2004), Carrabs et al. (2007b), and Li et al. (2011) for
recent heuristics), the pickup and delivery problem with LIFO loading (see Ambrosini et al.
(2004); Gao et al. (2011); Li et al. (2011), and Cheang et al. (2012) for recent heuristics),
and the traveling salesman problem with pickups, deliveries and handling costs (see Battarra
et al. (2010) for a branch-and-cut algorithm and Erdogan et al. (2012) for a heuristic).

Among the algorithms put forward for the PDPTWL variants, two main heuristic search
principles emerge and will constitute the basis of this study. The first is the population-based
heuristic of Vidal et al. (2013b) which can solve many variants of the VRPTW, namely the
periodic VRPTW, the multi-depot VRPTW, and the site-dependent VRPTW. One impor-
tant feature of this algorithm is the population management strategy which allows to diversify
the solution pool. The second is the adaptive large neighborhood search (ALNS) of Ropke
and Pisinger (2006) for the PDPTW. The ALNS performs a local search by first removing
requests and then reinserting them. The algorithm chooses at each iteration one of three

removal operators and one of two reinsertion operators, according to their past performance.

The main objective of this paper is to propose a population-based metaheuristic capable of
solving large-sized instances of the PDPTWL. In this algorithm, a set of initial solutions is ob-
tained through the application of a greedy randomized adaptive search procedure (GRASP).
Two population-based methods are then used to generate offspring. The first method com-
bines routes from the solution pool, whereas the second applies an adapted order crossover
operator. In the second method, a diversification strategy inspired by that of Vidal et al.
(2012) is used to update the solution pool. Local search based on the ALNS principle is then
performed on each solution in order to first minimize the number of vehicles, and then the
total traveled distance. Computational results are reported for instances with 30 to 300 re-
quests, and show that the second method used to generate offspring produces better quality

solutions.
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The remainder of this paper is structured as follows. Section 5.2 presents the mathematical
notation used. Section 5.3 describes the construction of initial solutions, the population-based
metaheuristic, and the local search operators. Computational results are reported in Section

5.4, and conclusions follow in Section 5.5.

5.2 Problem description

Let I = {1,...,n} denote a set of n items, also called requests, and let P = {1%,...,n"} and
D = {17,...,n" } represent the sets of pickup and delivery nodes. With each request i € I
are associated a pickup node i* € P and a delivery node i~ € D. The depot is represented
by two nodes 0" and 0~ which are respectively called the origin and the destination depot.
The PDPTWL can be defined on a directed graph G' = (N, A), where N = PUDU{0%,0"}
is the set of nodes and A is the set of arcs. An arc (i,j) € A must respect the predecence
constraints, and the LIFO policy, i.e., for each request i € I, the arc (i7,i") is not generated,
and for each pair of requests i,j € I where i # j, the arc (i, ;) is not created. Note that
because the algorithm allows intermediate solutions containing infeasible routes with respect
to time windows or capacity constraints, we allow arcs that violate the time windows or the

capacity constraints.

For each request 7 € I, ¢; represents the load of the items to be picked up at node it € P
and delivered at node i~ € D. We denote by ¢;+ > 0 the load picked up at node i* € P, and
by ¢i- = —q;+ the load delivered at node i~ € D, with ¢; = 0if 7 € {07,07}. A time window
la;, b;] is associated with each node i € N, where a; and b; represent the earliest and the
latest times at which the service can begin at node i, and waiting before the beginning of the
time window is allowed. The time windows of the origin and the destination nodes 07 and
0~ are unconstraining. An unrestricted set of K identical vehicles of capacity () is available.
With each arc (i, ) € A are associated a nonnegative travel distance d;;, and a nonnegative
travel time ¢;; which includes the service time at node ¢ if any. We assume that the triangle

inequality holds for travel distances and travel times.

Let R be the set of routes in a solution, and let R € R be a route that can be denoted
as R = (ip = 07, 41,42,...,5m = 07), where i, is the p node visited in R. For each visited
node i, € R, 1 < p < m, we compute the total load of the vehicle after visiting it as (i,) =
I(ip—1) + i, with [(ig) = 0. We define t(i,) = max {t(i,—1) +ti,_,,, @i, } as the time at which
service starts at node i,, 1 < p < m with t(io) = 0. Note that because we accept infeasible
intermediate solutions, it is possible that #(i,) > b;,, i.e., the service at node i, could start af-
ter the end of its time window. Thus, we define 7(i,) = min {max {7(ip—1) +ti, 1, i, ), bip}

the service start time with time-warp at node i,, 1 < p < m, with 7(ip) = 0, and w(i,) =
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max {0, 7(i,—1) + ¢
dows, with 7(ig) = 0. This concept was introduced by Nagata et al. (2010) and extended by

ip1,d, — Di p} the time-warp needed at this node to respect the time win-
Vidal et al. (2013b) to be applied to all operators used in local search algorithms for routing
problems, and is used when a vehicle arrives after the time window of a customer in order to
reach the end of the time window. Each route R is associated with a set Ir = {i € I|i € R}
of completed requests, where ¢ € R indicates that request ¢ is served in route R. We denote
by d(R) = X" d;, ;,., the total distance of route R, by ¢(R) = X"y max{0,(i,) — Q} the
excess capacity of route R, and by w(R) = 37", w(i,) the time window violation of route R.
If a route is feasible with respect to capacity, then ¢(R) = 0; otherwise ¢(R) > 0. Similarly if
a route is feasible with respect to time windows, then w(R) = 0; otherwise w(R) > 0. Each

route R has a cost

¢(R) = d(R) + aq(R) + pw(R), (5.1)
where o and 3 are positive user-defined parameters.

Let Sy denote the set of feasible solutions, S; the set of infeasible solutions, and § = Sy U S;
the solution pool. For each solution S € S, we denote by Rg the set of all routes in S.
Each solution S has a cost ¢(S) = k|Rg| + Y grers ¢(R), where & is a positive user-defined

parameter, and |Rg| is the number of vehicles used.

The PDPTWL consists of determining a set of feasible routes covering exactly once each
request with respect to capacity constraints, time windows, and the LIFO policy such that

the number of vehicles is first minimized, and then the total traveled distance is minimized.

5.3 Description of the metaheuristic

We now describe the population-based metaheuristic we have designed for the PDPTWL.
It proceeds in three phases. The first phase consists of creating an initial solution pool
by means of a GRASP, a concept introduced by Feo and Resende (1989, 1995). The cost
evaluation for each request is based on a savings criterion. Each solution goes through a local
search phase to first minimize the number of vehicles, and then the total traveled distance.
The GRASP generates feasible solutions only, but infeasibility is allowed in the local search
phase. The second phase consists of creating additional solutions by selecting routes from
different solutions and creating an offspring. Local search is applied to the offspring. Finally,
the third phase consists of selecting two parents, and creating offspring by means of an
adapted crossover operator. Each offspring is educated through local search. Note that the

first phase of the algorithm is essential because it generates the initial solution pool, but the
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second and third phases are not. Thus, several variants of the algorithm are possible. For

example one could start with the first phase and continue directly to the third one.

In the local search phase, a move, i.e., defined by one of the operators described in Section
5.3.4, can produce an infeasible solution with respect to capacity constraints or time windows.
If such a move is accepted and increases the excess capacity or the time window violation,
the values of o or f in formula (5.1) are increased as follows : e = oa(1 + ), and
Brew = Bota(1l + Boia), where ayq and [,q are the old values of a and 5, and e and Brew
are the new values. When starting a new iteration in one of the three phases, a and 3 are
reset to their original values. The adapted order crossover can select feasible and infeasible

solutions to create offspring.

Here follows a description of the three phases of the algorithm and of the local search opera-

tors.

5.3.1 Phase I : Building the set of initial solutions

The set of initial solutions is created with a GRASP, which consists of a greedy randomized
construction phase followed by a local search phase (see Resende and Ribeiro (2010)). In
our GRASP, the construction phase creates initial feasible solutions by sequentially adding
feasible routes to a solution. For each route, requests are added sequentially according to a
saving criterion. Let (ig = 07,41, ..., 4, = 07) be the current route. The best insertion position

of each unvisited node i, in the route is the one yielding

p* - argmin {d’ipﬂ'u + diu,’ip+1 — dip,ip-H } (52)
pe{0,...,m—1}

If formula (5.2) returns several arguments, the one with the lowest value of p is kept. The best
insertion position of each unvisited request consists in finding a pair (p*, p~) that determines
the insertion position of both its pickup and delivery nodes as long as it respects the time
windows, the capacity constraint, and the LIFO policy. This can be computed in O (n?)
operations. In order to accelerate the computation time, we apply an insertion strategy that
can be executed in O (n?) operations. First, for each unvisited request u, the feasible positions
for the pickup node are computed and sorted in non-decreasing order of position according to
formula (5.2). The best insertion position for node u* is determined as long as it respects the
capacity constraint and the time windows, and the best feasible insertion for ™ is determined
as long as it respects the capacity constraint, the time windows, and the LIFO policy. If no
such position exists, the process is reiterated with the second best position of u™, and so on

until a feasible position is found for = or no more feasible position exists for u™. This can
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also be achieved by first finding the best position for v, and then finding the best position for
ut. A similar idea was used by Cordeau and Laporte (2003) in the context of the dial-a-ride
problem. After the insertion cost has been computed for each unvisited request u, we create
a restricted candidate list containing at most the n requests with the best savings criterion.
A request is then chosen at random from the restricted candidate list and is inserted in the
current route. When no more requests can be added to a route and some requests remain
unvisited, a new route is created. Each solution goes through a local search phase and the

ensuing solution is added to the solution pool S.

5.3.2 Phase II : Creating new solutions from existing routes

In the second phase of the algorithm, offspring are created by selecting existing routes from the
solution pool. This algorithm is similar to that of Rochat and Taillard (1995) who developed
a diversification and intensification strategy for the vehicle routing problem (VRP). This
procedure is implemented as follows. For each solution S € &, and each route R € S we

compute

(R) = c(S) + yu(R)e(S) — Y|, (5-3)

where v(R) is the number of times route R has been chosen to generate an offspring, and
~v and v are positive user-defined parameters. Offspring are then created by selecting routes
sequentially according to a certain probability. More specifically, if R* is the ordered set of
routes R in decreasing order of ¢(R), the route with position w in the set R* is chosen with

probability

B 2w
pznsert - |R*|(|R*| + 1)
When a route is added to the current solution, R* is updated by eliminating all routes R € R*

(5.4)

having requests in common with the added route or having the same cost. Routes are added
until the solution visits all the requests or there are no more routes in R*. If some requests
remain unvisited, an attempt is made to reinsert them into existing routes with the request
insertion operators to be described in Section 5.3.4. If this is impossible, additional routes
are created with a GRASP. Each solution goes through a local search phase and the resulting

solution is added to the solution pool S.
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5.3.3 Phase III : An adapted order crossover operator

The third phase of the algorithm consists of creating an offspring from two parent solutions
with an adaptation to the LIFO policy of the crossover operator proposed by Prins (2004). In
order to diversify the choice of parent solutions, we apply a procedure based on that proposed
by Vidal et al. (2012). All solutions created in Phases I and II are added to the solution pool.
Before the first iteration of Phase III, minimal and maximal population sizes, denoted S,,;,
and S,,q., are defined. The diversification strategy is then launched when the solution pool
reaches its maximal size, and the solutions with the highest biased fitness value are eliminated
from the pool until it reaches its minimal size. For a solution S € §, the biased fitness value

is defined as

BF(S) = fit(S) + (1 — ¢)de(S), (5.5)

where 0 < ¢ <1 is a positive user-defined parameter, and fit(S) and dc(S) are, respectively,
the rank of a solution S with respect to its cost ¢(.5) and its similarity with the other solutions.
The similarity of two solutions is measured by the numbers of arcs they have in common. The
idea is to keep in the population solutions that have low costs and are sufficiently different

from each other.

A giant route is created as in Prins (2004) by first removing the depot from the solution and
then merging all routes into a single route while keeping the node sequence of each route
intact (Figure 5.2). The giant route representation of an initial feasible solution respects the
capacity constraints and the LIFO policy, but may not respect the time windows. Note that

this giant route will contain 2n nodes.

To create the giant route representation of an offspring, two parent solutions are first ran-
domly selected from the diversified solution pool, and two break-points x and y with z < y <
2n are then randomly selected to create it. Figure 5.3 shows the giant route representations
of two offspring created with the adapted order crossover when the break-points are at x = 2
and y = 6, and illustrates how the giant route representation of the first offspring is created.
The following procedure explains the creation of the giant route representation of an offspring
in six steps :
— Step 1 (Path from parent 1) : Copy the path from positions x to y from parent 1 to
their corresponding positions in the offspring.
— Step 2 (Node deletions) : Delete the nodes for which the delivery node has been visited
but not the pickup node, i.e., node 17. All the following nodes are shifted to the left.

— Step 3 (Node completions from parent 1) : If there remain unfilled positions between



56

(c) Creating a single route

Figure 5.2 — Creation of a giant route

x and y in the offspring, fill them by taking nodes from parent 1, beginning at position
y + 1. If necessary, repeat Steps 2 and 3.

— Step 4 (Request completions) : Once all the positions between x and y are filled, add
the delivery nodes of uncompleted requests, i.e., node 27 in Figure 5.3.

— Step 5 (Completions from parent 2) : Sweep parent 2 circularly from y + 1 to fill the
last positions of the offspring with unvisited nodes. Repeat step 2.

— Step 6 (Completions and shifting) : If there are uncompleted requests, then visit the
corresponding delivery nodes, and shift the preceding nodes to the left. If there remain

unfilled positions from 1 to z, fill them with respect to parent 2.
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Position 1 2 3 4 5 6 7 8 9 10
Parent 1 1 5t 5 3F 3 1 28 4T 4 B2
Parent 2 3¢ N 5t 5T 47 37 2t 27
Step 1 : Path from parent 1 5+ 5= 3t 3= 1-

Step 2 : Node deletions 57 57 3t 3~

Step 3 : Node completions from parent 1 5+ 5= 3t 3~ 2%

Step 4 : Request completions 5F 5= 3t 3= 2f | 2°

Step 5 : Completions from parent 2 5t 57 3t 3~ NN

Step 6 : Completions and shifting 57| 5= 3t 3- [2F 2° 4=
Offspring 1 57 | 57 3t 3~ 2t 27 |17 17 4%t 4~
Offspring 2 4T | 5t 57 4~ 1T 17 |2t 27 3t 37

Figure 5.3 — Creation of the giant route representation of an offspring with the adapted order
Crossover

In order to create the giant route representation for the second offspring, we apply the same

procedure by swapping the roles of parents 1 and 2.

An offspring is then created by splitting its corresponding permutation of nodes, i.e., its giant
route representation. The first route is created by selecting the node in the first position of
the giant route representation. Nodes are added sequentially until the number of requests in
the current route reaches the minimum number of requests, computed as the average number
of requests per vehicle in the best feasible solution found so far. All uncompleted requests
are completed and the process is repeated to create additional routes until all the requests

are performed in the current solution.

5.3.4 Local search

Our local search has been implemented in two steps. The first step decreases the number of
vehicles, whereas the second one decreases the total traveled distance. Infeasible solutions
are not accepted in the first step, but they are in the second step. To decrease the number
of vehicles, the route with the lowest number of visited requests (or one of them if there are
several) is eliminated from the current solution, and an attempt is first made to reinsert the
unvisited requests into existing routes with the request insertion operators to be described
in Section 5.3.4. If no reinsertion is possible, local search is then applied to the current
solution, i.e., the solution obtained after removing a route. Evaluating the cost of a move is
achieved according to its impact on the total traveled distance. When no more improving
moves are found and no reinsertion is possible, a new route is created to accomodate the
unvisited requests. This step is repeated until no more feasible solution with fewer vehicles

can be found. To decrease the total traveled distance, local search is applied to the current
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solution. Evaluating the cost of a move is achieved according to the impact on the total
traveled distance, the excess capacity and the time window violation, as in formula (5.1).
When no more local search operators can find a better solution, an infeasible solution is
repaired according to a user-defined probability p,epqir. For each infeasible route, the repair
procedure consists of sequentially eliminating the requests for which the time windows or
the capacity constraint are first violated. An attempt is then made to reinsert the eliminated
requests with the request insertion operators to be described in Section 5.3.4. If no insertion
is possible, local search is applied to the current solution. When no more improving moves
are found and no reinsertion is possible, a new route is created to accomodate the unvisited

requests.

This section describes four inter-route operators, four intra-route operators and one perturba-
tion operator. We have adapted and extended the inter-route operators proposed by Cheang
et al. (2012), and the intra-route operators of Cassani (2004). Finally, the perturbation ope-
rator corresponds to a restricted version of the ALNS heuristic of Ropke and Pisinger (2006)
for the PDPTW. The operators have been implemented in a variable neighborhood descent
fashion, except for the perturbation operator which is used when the current solution cannot

be improved with the other operators.

Inter-route operators

The four inter-route operators consist of exchanging requests (request exchange and multiple
request exchange), and of relocating requests from one route to another (request relocate and

multiple request relocate).
Inter-route request exchange

The inter-route request exchange selects two requests ¢ and j served by different vehicles.
Three types of exchanges are possible for requests ¢ and j. The first exchange, denoted by
type 1, consists of exchanging the position of nodes i* and 5%, and the position of nodes i~
and j~. Another one, denoted by type 2, replaces ¢+ with (57, 77), j© with i*, and j~ with
i~. The third one, denoted by type 3, replaces i~ with (j,57), j© with i*, and 5= with i,
Figure 5.4 depicts these exchanges for requests ¢ = 3 and j = 6.

Inter-route request relocate

The inter-route request relocate operator consists of moving a request ¢ in another route.
Figure 5.5 depicts the relocation of request 3 in route 2. If node 3" is inserted before 5T, four
feasible insertions of 3~ are possible. The first possible insertion relocates node 3~ before

node 5%. The second possible insertion relocates node 3~ after node 5. The third possible
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insertion relocates node 3~ after node 7. The fourth possible insertion relocates node 3~
after node 8. Node 3™ could also be positioned elsewhere in the route. All moves compatible

with the LIFO policy are explored.
Inter-route multiple request exchange

For each request i € I, we denote by H (i) a path starting at node i € P, and ending at node
i~ € D. In Figure 5.6a, we denote by H(3) the path (37,4%,47,37). The inter-route multiple
request exchange selects two requests ¢ and j performed by two different vehicles and their
corresponding paths H (i) and H(j). It then exchanges H (i) with H(j). Figure 5.6 depicts an
example where the positions of paths #(3) and H(7) are exchanged. The exchange of paths

starting and ending at different requests is also allowed. We restrict ourselves to the following

o) @—O—O—
mower) @)@ @—O—O—O—@

(a) Initial solution

e ) @—O—O—®
mower) @)@ @O —O—O—@

(b) Type 1 : positions of nodes 37 and 6 are exchanged and positions of nodes 3~ and 6~
are exchanged

e ) @ —O—O—@
o2 @)@ @O —O—E

(c) Type 2 : nodes 6% and 6~ take the position of node 3*

o) @O0
o) (O —6—@—@—O—O—O—@

(d) Type 3 : nodes 67 and 6~ take the position of node 3~

Figure 5.4 — Inter-route request exchange operator : possible exchanges for requests ¢ = 3
and 7 =6
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(a) Initial solution
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(b) Solution after inter-route request relocate

Figure 5.5 — Inter-route request relocate operator : inserting request 3 in route 2

two cases : (1) a path (i*,...,k7) can be exchanged with H(j) if the vehicle is empty before
visiting node ™ and the successor of node k™ in the current solution is 0~ ; and (2) such a
path can also be exchanged with a path (jT,...,h”) if the vehicle is empty before visiting
node j* and the successor of node h~ in the current solution is 0~. Figure 5.7 provides an

example where the positions of path (7*,77,8",87) and of path H(3) are exchanged.
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(a) Initial solution
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(b) Solution after inter-route multiple request exchange
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Figure 5.6 — Inter-route multiple request exchange operator : we wish to exchange paths H(3)

and H(7)
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Figure 5.7 — Inter-route multiple request exchange operator : we wish to exchange paths
(3T,47,47,37) and (7+,71,87,87)
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b) Several relocations of path H(3) in route 2

Figure 5.8 — Inter-route multiple request relocate operator : examples of possible moves for
path #(3) in route 2

Inter-route multiple request relocate

The inter-route multiple request relocate selects a path H (i), and moves it in another route
of the current solution. Figure 5.8 illustrates several ways of relocating path #(3) in route
2 with respect to the position of request 5. The first example relocates H(3) before node
5T, the second relocates H(3) between nodes 5+ and 67, and the third relocates H(3) before
node 57. All moves compatible with the LIFO policy are explored.
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Intra-route operators

The four intra-route operators consist of exchanging positions of requests (request exchange
and multiple request exchange), and of relocating requests served by the same vehicle (request

relocate and multiple request relocate).
Intra-route request exchange

The intra-route request exchange operator selects two requests ¢ and j in a given route, and
exchanges the position of nodes ¢t and j*, and the position of nodes i~ and j~. Figure 5.9

provides an example where the positions of requests 1 and 3 are exchanged.

@@ @O0V

(a) Initial solution

@@ @ WLV

(b) Route after intra-route request exchange

Figure 5.9 — Intra-route request exchange operator : exchanging the positions of requests 1
and 3

Intra-route request relocate

The intra-route request relocate operator selects a request ¢ and tries to find a better position
for it in the same route. This can be time consuming because a request is composed of a
pickup node and a delivery node, and the complexity of this operation is O (n?). We have
therefore implemented a linear-time procedure that sequentially relocates the pickup node
and the delivery node. Three types of relocation moves are possible for request i. The first
move, denoted by type 1, relocates only the pickup node ¢*. The second one, denoted by
type 2, relocates only the delivery node i~. The third one, denoted by type 3, relocates both
the pickup and delivery nodes, but inserts the delivery node directly after visiting the pickup
node, i.e., arc (i*,77) is used in the new route. Figure 5.10 illustrates these moves for the

relocation of request 3.
Intra-route multiple request exchange

The intra-route multiple request exchange operator finds two non-embedded paths H (i) and
H(j) and exchanges their respective positions. Figure 5.11 provides an example where the

paths H(1) and H(3) are exchanged.
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(a) Initial solution

(b) Type 1 : the pickup node is relocated

O——0—@—— 0@ —L—0

(c) Type 2 : the delivery node is relocated

O—1—@— @~ —0—L—0

(c) Type 3 : both nodes are relocated

Figure 5.10 — Intra-route request relocate operator : possible relocations of request 3

-0 @ 0 0 0 v

(a) Initial route

@@ 0 0 OO0

(b) Route after intra-route multiple request exchange

Figure 5.11 — Intra-route multiple request exchange operator : exchange of paths #(1) and

H(3)

Intra-route multiple request relocate

The intra-route multiple request relocate operator finds a path H(i), in a route and tries to
find a better position for this path in the same route. Figure 5.12 provides an example where
the path H(3) is relocated between nodes 11 and 1°.

Perturbation operator

Implementing the above intra-route and inter-route operators often yields a local optimum.
It is therefore necessary to perturb the current solution to achieve a better solution. Our per-
turbation operator is based on that of Ropke and Pisinger (2006) except that it only considers
improving solutions. Our operator selects \ requests to be perturbed by first removing them

from the current solution, and then reinserting them. The choice of a request removal ope-



64

O—O—0——@ 00 0 O

(a) Initial route

O——@ @ 0 0 LU

(b) Route after intra-route multiple request relocate

Figure 5.12 — Intra-route multiple request relocate operator : possibility to relocate path H(3)

rator and of a request insertion operator is made through a roulette wheel procedure based
on the past performance of the operators. This perturbation operator is implemented in a
descent fashion, and the weights of the operators are reset when starting a new iteration.

The weights of the operators are computed as follows :

S

Tlnew — 7"-l,old<1 - 7”) +7r () ) (56)

!
where 7 ;¢ and 7 414 are respectively the new and the old weights of operator [, r is a reaction
factor, s; is the score of operator [, and ¢; is the number of times operator [ has been used
in the current major iteration of the metaheuristic. The metaheuristic corresponds to three
phases each with a user-defined number of major iterations; doing 25 iterations of phase I
and 25 iterations of phase II, implies that there are 50 major iterations. These parameters are
reset at each major iteration of the metaheuristic. As explained in Ropke and Pisinger (2006),
the reaction factor r determines the speed at which the weights are adjusted according to
their performance. If » = 0, no adjustment is done and the weights remain at their original
values. If r = 1, each weight will depend on its score obtained at the last iteration. The score
s; of an operator [ is increased by oy if the new solution is better than the old one, and by
o4 if the new solution is worse than the previous one. In the latter case, the new solution is

not accepted.

The following section describes the request removal operators, the request insertion operators

and the choice of operator.
Request remowval operators

We have implemented three request removal operators. The first is the Shaw (1997) removal

operator where the relatedness of two requests is computed as

R(i,j) = (i g+ + di- j=) + (|t) = GO+ [t67) = G + (lgi — g50)- (5.7)
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A request is first randomly selected and eliminated from the current solution. Its A\ — 1 closest
requests according to the relatedness measure are then eliminated from the current solution.
The second is a random removal : A requests are randomly removed from a solution. The
third is a worst removal heuristic. For a given request ¢ € I it computes the saving resulting
from the removal of 7 from its current route, and then selects the A requests with the largest

savings.
Request insertion operators

We have implemented two request insertion operators : one is based on a basic greedy insertion
and the other one on a regret heuristic. The basic greedy insertion operator computes the
insertion cost of each request in each route of the current solution as in Section 5.3.1 and
inserts the request with the lowest cost. The second operator uses a regret criterion : for
each unvisited request it identifies its best possible position and its second best position as
explained in Section 5.3.1. The regret value is computed as the difference in cost between the

second best and best positions, and the request with the largest regret value is inserted.

Table 5.1 — Characteristics of the PDPTWL instances

Group | Q | W | A
AA | 22| 60 |45
BB 30| 60 |45
CC 18 | 120 | 15
DD 25 1120 | 15

5.4 Computational results

The algorithm just described was implemented in C++ and was tested on two sets of ins-
tances. All tests were performed on a computer equipped with an Intel(R) Xeon(R) X5675
processor (3.07GHz). In this section, we report the computational results, and we study the
impact of the local search operators and of the number of iterations on the quality of the solu-
tion. The user-defined parameters (a, 5, Prepair, s K5 Y ¥y Smins Smazs €, A, T, 7, 01, 02) Were set
equal to (2,2,0.75,15,10%,0.2, 20, 30,50,0.1,0.15n,0.35,0.1, 15, 5). To determine these para-
meter values, they were first set to initial values that seemed reasonable. We then sequentially
modified each of the parameters individually to measure its impact on the quality of the so-
lutions, and we have kept the best setting found. During these tests, we have observed that
the quality of the solution was not highly sensitive to the different values of the parameters

in the considered range.
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5.4.1 Instances

The first set of instances consists of modifications of the 40 instances proposed by Ropke and
Cordeau (2009) for the PDPTW. The coordinates of the depot and of the pickup and delivery
nodes are the same as in their instances. For each request ¢ € I, the original time windows
for the pickup nodes are kept, but the time windows for the delivery nodes are delayed by
A, a user-defined parameter called the delay, as follows : a;- = a;,- + A and b;- = b;- + A.
The load ¢; of request ¢ € I was not modified, but the vehicle capacity () was increased by
a factor of 1.5 for the AA and BB groups, and by 1.25 for the CC and DD groups. Table
5.1 summarizes the characteristics of these instances. For each group, we report the vehicle
capacity @), the width of the time windows W, and the delay A applied to the time windows
of the delivery nodes. For each group, we have tested 10 instances in which the number of

requests ranges from 30 to 75.

The second data set contains the 236 original PDPTW instances of Li and Lim (2003). We
have solved instances containing between 50 and 300 requests : 56 instances of 50 requests,

60 instances of 100 requests, 60 instances of 200 requests, and 60 instances of 300 requests.

For each instance size, six groups were tested (LC1, LC2, LR1, LR2, LRC1, and LRC2).

5.4.2 Computational results for the first set

Table 5.2 presents the results for the first set of instances. The first column indicates the
name of the instance corresponding to its group and to its number of requests. The next
three columns report information on the best known solution (Best known). We report the
number of vehicles ( Veh.) and the distance (Dist.). The values in boldface are optimal. For all
the instances that were solved to optimality by Cherkesly et al. (2014), we also report the time
in seconds (Sec.) on a computer equipped with an Intel Core i7-3770 (3.4 GHz) taken by their
branch-price-and-cut with hybrid-LIFO shortest paths. According to the SPEC’s CPU2006
benchmark SPEC (2014), this computer is approximatively 1.25 times faster than ours. For
the instances that are not solved to optimality by Cherkesly et al. (2014), the best known
solution values were found by our heuristic when setting the different parameter values. We
then present the results found with our metaheuristic with two different configurations. The
first one denoted by 25-25-150 goes through 25 iterations of phase I, 25 iterations of phase II,
and 150 iterations of phase III. The second one called 50-50-100 goes through 50 iterations
of phase I, 50 iterations of phase II, and 100 iterations of phase I1I. We have executed 10 runs
for each configuration and we report the best found solution out of these. For each best found
solution, we present the following information : Sec. the total time in seconds to execute 10

runs, V(%) the percentage deviation of the number of vehicles on the best known number of
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vehicles, and D(%) the percentage deviation on the total distance. The deviation of the total

distance is only reported if the number of vehicles attains its minimum best known value.

For the configuration 25-25-150, the algorithm does not find the minimum best known number
of vehicles for only one instance out of 40 (CC65), whereas for the second configuration
50-50-100, the algorithm does not reach the minimum best known number of vehicles for
three instances out of 40 (BB50, BB65, CC65). For both configurations, 19 best known
solutions out of 40 are found, the average deviation of the total distance are 0.34%, and
0.17%, respectively, for configurations 25-25-150 and 50-50-100, and the number of optimal
solutions found are, respectively, 14 and 13. For these instances, performing more iterations
of phase III seems to help finding a solution using a lower number of vehicles. One can
realize that our algorithm is faster than the branch-price-and-cut proposed for this problem
Cherkesly et al. (2014), and that there is no significant difference in the computational time

between the two configurations.

5.4.3 Computational results for the second set

Table 5.3 presents the summary of the results obtained for the second set of instances. We
have tested our algorithm with the same number of iterations as in the previous section,
i.e., 25-25-150 and 50-50-100. For each of these configurations, we report # Best known
the number of instances for which our algorithm reaches the best known solution after 10
runs, V (%) the average deviation on the best known number of vehicles for the best found
solution after executing 10 runs with our algorithm, D (%) the average deviation on the
total traveled distance for the best found solution after 10 runs if it reaches the best known
number of vehicles, and Seconds the total time in seconds to execute 10 runs. Note that the
best known solution values were found by our heuristic when setting the different parameter
values. For instances with 50 requests, more best known solutions are obtained with the 50-
50-100 configuration. With this setting, 24 best known solutions are found with an average
deviation of 0.43% with respect to the best known number of vehicles and of 0.67% with
respect to the best known total distance. For the 100- and 300-request instances, the 25-25-
150 configuration produces better average results than the second configuration. In particular,
for instances with 300 requests, nine best known solutions are found with more iterations
of phase III, and six best known solutions are found with fewer iterations of phase III.
The average deviation with respect to the best known number of vehicles are, respectively,
2.63% and 2.93%, and with respect to the best known total distance are 1.66% and 2.84%,
respectively. For 200-request instances, the 25-25-150 configuration finds more best known

solutions than the second configuration, but the 50-50-100 configuration has a better average
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Table 5.2 — Comparative computational results for the first set of instances. The best known
values in boldface are optimal. The reported seconds corresponds to a computer equipped
with (1) an Intel Core i7-3770 processor (3.4 Ghz), and (2) an Intel(R) Xeon(R) X5675
processor (3.07 GHz).

Instance Best known 25-25-150 50-50-100
Sec.(t)  Veh. Dist. | Sec.® V(%) D(%) | Sec.’® V(%) D(%)
AA30 2.5 1129.4 47.2 0.00 0.00 48.6 0.00 0.00
AA35 16.7 1294.1 65.8 0.00 0.00 65.7 0.00 0.00
AA40 7.1 1349.2 85.3 0.00 0.00 81.8 0.00 0.00
AA45 21.6 1521.4 106.5 0.00 0.00 109.6 0.00 0.00
AA50 41.0 1643.6 132.9 0.00 0.00 126.6 0.00 0.00
AA55 59.0 1743.2 156.4 0.00 0.00 160.0 0.00 0.00
AA60 789.2 1949.7 205.7 0.00 0.19 205.2 0.00 0.23
AA65 657.5 2077.4 249.5 0.00 0.15 256.2 0.00 0.03

AATO 1094.5
AATS 1893.4

2219.2 294.8 0.00 0.31 290.8 0.00 0.23
2330.1 378.2 0.00 0.73 353.8 0.00 0.83

3

3

4

4

4

5

5

5

5

5
BB30 0.4 3 1077.5 46.4 0.00 0.00 46.3 0.00 0.00
BB35 13.2 3 13124 61.2 0.00 0.00 61.1 0.00 0.00
BB40 130.0 4 1404.0 80.1 0.00 0.00 82.0 0.00 0.00
BB45 667.7 4 1537.5 105.2 0.00 0.00 104.1 0.00 0.00
BB50 687.3 4 1791.1 135.2 0.00 3.90 135.9  25.00 -
BB55 5 1921.3 163.3 0.00 0.00 162.9 0.00 0.29
BB60 468.4 6 2305.5 201.8 0.00 0.96 | 2024 0.00 0.17
BB65 1015.3 6 2564.6 | 2479 0.00 1.36 | 236.1 16.67 -
BB70 T 2545.1 291.7  0.00 0.12 | 281.6 0.00 0.22
BB75 7 2683.8 | 3549 0.00 0.06 | 360.5 0.00 0.00
CC30 17.6 3 1088.6 50.7  0.00 0.00 50.4 0.00 0.00
CC35 39.4 3 12374 67.7  0.00 0.69 67.5 0.00 0.37
CC40 62.2 3 1340.2 92.1 0.00 0.00 90.1 0.00 0.00
CC45 3 1538.3 112.0 0.00 0.44 113.7  0.00 0.00
CCs0 1475.2 4 1673.6 148.5 0.00 0.56 148.1 0.00 0.29
CC55 2741.1 4 1793.5 187.5 0.00 0.59 182.8 0.00 0.50
CC60 4 19723 | 2472 0.00 0.15 | 228.5 0.00 0.35
CC65 4 2183.1 289.0 25.00 - | 286.9 25.00 -
CC70 5 21949 | 343.6 0.00 0.00 | 352.6 0.00 0.64
CC75 5  2338.1 426.4 0.00 0.62 | 438.9 0.00 0.00
DD30 3307.2 2 1103.2 53.8 0.00 0.00 52.7  0.00 0.00
DD35 767.8 3 1127.8 73.4 0.00 0.66 73.1 0.00 0.09
DD40 3092.7 3 1245.3 105.7  0.00 0.00 101.1 0.00 0.01
DD45 3 1350.3 135.9 0.00 0.23 134.6 0.00 0.01
DD50 3 1452.7 | 180.4 0.00 0.09 171.2 0.00 0.00
DD55 3 16559 | 218.2 0.00 0.77 | 2125 0.00 0.00
DD60 4 1762.2 | 269.8 0.00 0.00 | 259.2 0.00 0.92
DD65 4 2012.6 | 328.8 0.00 0.00 | 302.7  0.00 0.45
DD70 4 21259 | 365.7  0.00 0.78 | 363.5 0.00 0.00
DD75 4 22789 | 455.7  0.00 0.00 | 439.3 0.00 0.60

Average 189.0 0.34 | 186.0 0.17




69

Table 5.3 — Comparative computational results for the second set of instances

Configuration 25-25-150 50-50-100

n 50 100 200 300 50 100 200 300
# Best known 20 17 15 9 24 19 9 6
V(%) 0.16 0.89 1.50 2.63 | 043 1.15 1.13 2.93
D (%) 0.92 1.30 1.47 1.66 | 0.67 1.38 1.78 2.84
Seconds 229.1 1,574.2 11,790.5 31,296.3 | 230.3 1,529.3 11,562.9 30,674.9

deviation on the best known number of vehicles.

We present our results in three tables. Table 5.4 presents the best known results for instances
with 50, 100, 200 and 300 requests. The best known solution values are those found by our
heuristic when choosing the different parameter settings. For each best known solution, we
report the number of vehicles ( Veh.) and the total traveled distance (Dist.). Table 5.5 presents
the percentage deviations with respect to the best known solution values when solving each
instance 10 times, and setting the number of iterations to 25-25-150 for instances with 50,
100, 200 and 300 requests. Table 5.6 reports the percentage deviations with respect to the
best known solution values by setting the number of iterations to 50-50-100 for the same
instances. In both Tables 5.5 and 5.6, we report the total time in seconds (Sec.) to execute 10
runs, and for each best found solution, V (%), the percentage deviation on the best known
number of vehicles, and D (%), the percentage deviation on the best known total traveled

distance.

5.4.4 Impact of the local search operators

This section presents the results obtained when omitting one local search operator of the
algorithm at a time. We report results on the number of vehicles and the total traveled
distance. For the sake of conciseness, we only report these results obtained with 25 iterations
of phase I, 25 iterations of phase II and 150 iterations of phase III. The conclusions also hold
for the 50-50-100 configuration. Note that our algorithm was executed only once for each

instance.

Table 5.7 shows the impact on the number of instances for which the number of vehicles is
the best found. Each column corresponds to a set of instances : AA-DD corresponds to the
first set of instances, and 50, 100, 200 and 300 correspond to the second set of instances with

50, 100, 200, and 300 requests, respectively. The inter-route relocate operator seems to have



Table 5.4 — Best known solution values (cont’d)

LC1 LC2 LR1 LR2 LRC1 LRC2

n Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist.
1 15 1433.3 7 1923.0 30 22714 6 1705.0 18 2040.1 5 22144
2 14 1472.0 5 21452 21 1804.2 5 1749.5 16 1988.7 5 1923.6
3 10 1396.3 4 1261.9 14 1491.7 3 1448.7 12 1473.3 4 1535.1
4 9 1043.5 4 986.5 10 1151.5 3 13149 11 1322.8 3 11525
5 13 1668.0 5 1300.4 17 1568.7 4 1414.3 18 1996.7 5 1875.2
6 13 1518.9 4 17531 15 1608.6 4 1459.7 14 1702.2 4 1793.1
°0 7 12 1618.3 4 1054.7 12 1439.6 3 1387.0 13 1523.2 4 1636.3
8 11 1165.7 4  1031.6 11 1268.5 3 11704 11 1356.6 4 1282.0

9 10 892.4 13 1523.5 4 1294.4

10 11 1255.3 4 13934

11 13 1352.6 3 1158.1

12 11 1196.5

1 33 4943.5 15 6587.5 34 6932.3 9 6762.1 27 4891.7 11 5500.8
2 26 4425.2 10 4938.5 22 5450.6 8  6272.3 20 4354.1 8 4319.7
3 20 3769.3 8  3046.0 17 4593.8 5 5392.5 15 4045.0 6 4033.7
4 17 30714 7 2885.3 12 3562.7 4 4000.5 10 3206.6 4 3869.9
100 5 27 4600.0 10 4037.2 24 5918.9 7  6431.8 19  4313.1 7 4555.1
6 26 40429 9 4101.6 18 5056.1 6 5862.3 20 4010.8 7 4818.2
7 24 4140.1 8 3634.3 14 4337.9 4 5535.3 17 3833.1 6 3853.6
8 22 3381.6 8 3281.6 10 32224 3 3481.6 15 3643.7 5 47752
9 21 3619.6 7 3246.9 18 5630.1 6 5701.5 15 3557.8 5 3602.2
10 19 3286.9 7 2887.2 14 4162.5 5 5327.7 14 3158.1 4 3483.5
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Table 5.4 — Best known solution values (cont’d and end)

LC1 LC2 LR1 LR2 LRC1 LRC2
n Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist. | Veh. Dist.
1 63 12154.3 25 12288.6 60 15860.1 19 16033.1 49 119374 23 12736.5
2 51 11494.0 20 9511.2 41 12252.6 16 14368.2 43 10350.7 16 10286.0
3 40 9565.1 15 9408.4 32 10593.2 13499.9 32 9546.2 13 10234.7
4 32 8304.3 13 6876.1 20 79177 9205.5 21 6918.9 7 T768.9
900 5 54 12313.0 20 8933.2 47 143874 13 14359.5 41 10724.6 16 11100.3
6 50 10252.3 16 8161.0 36 12292.0 10 12715.7 39 10051.7 15 10468.0
7 47 11185.9 16 7564.1 27 9553.7 7 10985.9 35 9471.2 13 10827.0
8 45 9002.2 15 7174.6 17 7484.0 5 91253 32 8714.5 11 96254
9 41 8825.3 15 7115.3 37 12217.3 12 13967.4 32 91354 11 9218.0
10 38  8886.1 14 7289.6 26 9951.8 10 12931.8 29  8266.6 9 8736.0
1| 107 26612.2 43 22845.4 77 31454.0 31 34962.0 75 24969.4 35 25093.1
2 80 22574.9 31 19520.7 57  26543.0 22 28869.4 59 20314.5 26 23006.7
3 60 18116.6 23 15306.9 41 23025.9 15 24527.8 43 17078.2 17 19231.6
4 52 15562.2 19 12692.8 28 16373.7 8 18254.2 27 12972.9 10 16252.7
5 86 23864.6 32 17774.8 66 28658.4 22 30608.4 57  20522.2 25 22543.0
300 6 77T 211744 26 16015.0 51  24697.6 17 29783.3 60 21855.1 23 26086.7
7 76 21607.7 25 14749.0 35 19621.3 12 23103.7 49 19250.3 20 23632.0
8 68 19164.6 23 14068.4 23 14851.4 7 18050.1 45 17996.3 17 20896.3
9 63 17579.0 23 15103.3 56  26358.5 19 29407.4 43 18436.6 16 22002.1
10 59 16754.0 21 12979.6 40 22898.9 16 28221.7 38 16933.2 13 21670.3
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Table 5.5 — Computational times for 10 runs and percentage deviations with respect to the best known solution

values (25-25-150 iterations)

LC1 LC2 LR1 LR2 LRC1 LRC2

n Sec. V(%) D(%) Sec. V(%) D(%) See. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%)
1 143.5 0.00 0.00 138.7 0.00 0.15 106.4 0.00 0.00 159.2 0.00 0.21 111.6 0.00 0.22 160.9 0.00 0.30
2 196.7 0.00 0.00 222.8 0.00 8.01 156.2 0.00 0.00 240.8 0.00 1.08 161.4 0.00 0.00 220.3 0.00 0.01
3 222.5 0.00 2.56 335.6 0.00 1.08 181.5 0.00 0.00 302.3 0.00 0.00 178.8 0.00 0.83 281.9 0.00 0.00
4 270.0 0.00 0.99 543.7 0.00 0.37 210.2 0.00 0.48 473.2 0.00 0.00 217.8 0.00 0.16 329.1 0.00 0.30
5 168.6 0.00 11.01 186.3 0.00 0.00 121.0 0.00 0.00 229.8 0.00 0.00 147.7 0.00 0.00 202.6 0.00 0.07
6 152.8 0.00 0.00 209.8 0.00 0.00 149.2 0.00 0.24 284.1 0.00 1.94 140.6 0.00 0.22 209.2 0.00 0.21
50 7 154.2 0.00 4.67 248.0 0.00 0.00 186.6 0.00 0.78 336.9 0.00 0.35 177.2 0.00 2.29 262.5 0.00 1.02
8 168.9 0.00 0.55 325.6 0.00 0.05 189.9 0.00 0.88 557.3 0.00 0.00 199.7 9.09 - 304.2 0.00 4.89

9 183.7  0.00  0.00 154.7  0.00  0.00 2890.6  0.00  1.90

10 200.3  0.00  0.01 297.6  0.00  0.84

11 219.9  0.00  0.00 377.8  0.00  0.57

12 227.8 0.00 1.26

1 848.8 0.00 0.76 805.4 0.00 3.07 708.0 0.00 0.51 900.6 0.00 5.53 661.9 0.00 0.15 842.7 9.09 -
2 1167.6 0.00 2.94 1464.4 0.00 1.82 1035.3 0.00 2.21 1621.6 0.00 2.13 880.1 0.00 0.09 1879.0 0.00 0.00
3 | 1362.0 000  1.58 | 2096.3  0.00  5.41 1313.4  0.00  1.07 | 25784  0.00  6.57 | 1362.9  6.67 - | 22041 000  0.00
4| 18294 000  1.19 | 27652  0.00  0.13 | 2340.2  0.00  1.18 | 40855  0.00  1.38 | 24825  0.00  0.00 | 4030.0  0.00  1.96
00 |7 784.3  0.00  1.03 | 1039.6  0.00  0.00 725.6  0.00  1.45 1156.3  0.00  0.00 909.8  0.00  0.00 | 12275  0.00  0.00
6 958.3 0.00 2.68 1281.3 0.00 2.65 1420.0 5.56 - 1837.0 0.00 1.11 798.0 0.00 0.00 1192.8 0.00 0.00
7 997.6 0.00 0.99 1488.4 0.00 0.83 1604.5 0.00 0.00 2855.8 0.00 0.00 1026.7 0.00 0.00 1602.6 0.00 3.30
8 1041.7 0.00 0.00 1368.5 0.00 0.86 1802.4 0.00 0.00 5697.0 0.00 0.00 1078.1 6.67 - 1789.1 20.00 -
9 1367.5 0.00 1.37 1703.4 0.00 4.77 823.2 5.56 - 1248.2 0.00 1.08 1164.3 0.00 0.00 1799.9 0.00 0.96
10 1652.6 0.00 0.91 1714.7 0.00 1.53 1120.3 0.00 3.69 1526.7 0.00 0.20 1438.5 0.00 0.00 1942.8 0.00 1.25
1 6362.5 1.59 - 6917.0 4.00 - 4611.0 3.33 - 7194.8 0.00 1.94 4992.9 0.00 0.00 6843.8 0.00 0.00
2 7458.4 1.96 - 11652.5 0.00 1.99 7495.4 2.44 - 11360.2 6.25 - 6440.2 0.00 0.00 12712.8 0.00 0.00
3 9536.1 2.50 - 15464.3 0.00 6.03 11045.2 0.00 2.87 21704.8 11.11 - 9124.6 3.13 - 18705.2 7.69 -
4 16335.2 3.13 - 22552.8 0.00 1.30 17954.6 0.00 0.00 30268.1 0.00 0.00 12602.8 0.00 2.70 30071.5 0.00 6.76
200 5 5826.1 5.56 - 8057.9 0.00 0.27 4942.6 4.26 - 8671.4 7.69 - 5463.3 2.44 - 9308.8 0.00 0.73
6 6193.6 2.00 - 10270.0 0.00 0.00 8689.7 2.78 - 15235.7 0.00 8.87 5665.5 0.00 1.39 9502.1 0.00 1.14
7 6479.8 2.13 - 12438.5 0.00 1.91 12220.5 3.70 - 24346.1 0.00 3.04 6700.5 2.86 - 11927.8 0.00 0.00
8 6990.9 0.00 0.00 12002.8 0.00 0.60 19461.1 0.00 0.00 34717.9 0.00 0.00 8095.0 0.00 0.00 13817.5 0.00 0.00
9 9577.4 0.00 3.93 12158.6 0.00 0.11 5924.3 5.41 - 10791.3 0.00 1.07 7555.3 0.00 1.89 14451.7 0.00 2.75
10 10786.9 0.00 0.00 13736.3 0.00 0.91 7562.3 3.85 - 12647.2 0.00 1.26 8621.0 0.00 2.47 17186.4 0.00 0.00
1 14806.5 0.93 - 17205.7 2.33 - 13880.1 3.90 - 17836.4 9.68 - 13074.0 2.67 - 17141.8 2.86 -
2 18267.7 5.00 - 27145.4 6.45 - 23470.0 8.77 - 30935.7 9.09 - 21169.5 0.00 0.63 29712.4 0.00 0.74
3 27710.0 5.00 - 44368.1 4.35 - 37470.5 2.44 - 59519.4 0.00 0.00 33104.6 2.33 - 49810.8 0.00 1.89
4 40606.5 0.00 0.00 76076.5 0.00 5.33 42660.0 0.00 3.33 82179.2 0.00 0.57 50125.0 0.00 4.68 82496.9 10.00 -
5 14278.1 2.33 - 21278.5 0.00 3.40 13910.1 6.06 - 21593.3 4.55 - 15550.3 1.75 - 23798.2 4.00 -
300 6 15457.5 2.60 - 26413.3 0.00 0.00 22135.4 1.96 - 36682.9 0.00 0.00 15515.0 1.67 - 24677.1 4.35 -
7 16563.5 2.63 - 29033.2 0.00 0.00 34004.0 2.86 - 61555.1 0.00 0.46 17183.9 4.08 - 31408.8 0.00 0.00
8 19837.4 1.47 - 30885.4 0.00 2.27 44969.6 4.35 - 86790.1 0.00 1.98 19822.6 0.00 1.96 34196.9 0.00 0.00
9 25536.5 0.00 0.00 34813.0 0.00 6.22 15073.3 8.93 - 24345.4 10.53 - 21862.2 2.33 - 32035.4 0.00 0.00
10 32039.4 0.00 3.58 35031.8 0.00 1.04 19368.9 5.00 - 28606.1 0.00 3.47 23146.9 2.63 - 37604.3 7.69 -




Table 5.6 — Computational times for 10 runs and percentage deviations with respect to the best known solution

values (50-50-100 iterations)

LC1 LC2 LR1 LR2 LRC1 LRC2

n Sec. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%) Sec. V(%) D(%)
1 174.3 0.00 0.00 139.2 0.00 0.00 104.0 0.00 0.00 156.9 0.00 0.67 113.7 0.00 1.28 163.7 0.00 0.00
2 213.1 0.00 0.93 223.9 0.00 1.10 159.1 0.00 0.00 232.9 0.00 0.02 168.9 6.25 - 219.7 0.00 1.24
3 225.3 0.00 1.01 327.6 0.00 1.36 189.9 0.00 0.00 298.0 0.00 0.66 185.4 0.00 0.00 280.2 0.00 0.35
4 274.1 0.00 0.14 497.4 0.00 0.96 207.8 10.00 - 462.7 0.00 0.13 220.2 0.00 0.00 338.7 0.00 1.56
5 185.6 7.69 - 189.4 0.00 0.00 121.7 0.00 0.00 231.3 0.00 2.43 148.4 0.00 0.00 200.3 0.00 0.22
6 152.9 0.00 2.22 213.4 0.00 9.79 153.3 0.00 0.00 290.0 0.00 0.56 140.2 0.00 0.54 215.6 0.00 0.00
50 7 160.0 0.00 0.00 251.5 0.00 0.00 203.5 0.00 0.55 352.8 0.00 0.09 180.1 0.00 0.00 260.7 0.00 0.97
8 178.6 0.00 0.00 335.4 0.00 0.00 195.4 0.00 0.70 506.4 0.00 0.41 199.4 0.00 0.00 313.1 0.00 1.86

9 184.3  0.00  0.00 149.3  0.00  0.00 2864  0.00  0.91

10 202.5  0.00  2.46 208.0  0.00  0.00

11 217.5  0.00  0.00 3748  0.00  0.41

12 231.2 0.00 0.00

1 1121.3 0.00 0.63 763.5 0.00 0.00 693.8 0.00 0.66 859.8 11.11 - 698.4 0.00 0.31 862.1 9.09 -
2 1117.9 0.00 4.43 1468.1 0.00 4.15 890.0 0.00 0.00 1487.3 0.00 2.93 874.9 0.00 0.00 1712.4 0.00 1.13
3 12415 0.00  0.00 19947 0.00  4.39 12437  0.00  0.23 2272.3  0.00  0.00 1367.0  6.67 - 2289.2  0.00  2.29
4 1799.3  0.00  0.00 2581.1  0.00  0.00 2172.8  0.00  0.00 | 4098.8  0.00 221 2395.5  10.00 - 3603.9  0.00  4.66
100 5 829.9  0.00  0.00 951.4  0.00  2.96 7105 0.00  0.00 1078.5  0.00  0.49 913.4  0.00  0.40 12434 0.00  0.37
6 867.0 0.00 0.00 1286.3 0.00 4.23 1289.0 0.00 0.00 1904.5 0.00 0.00 761.6 0.00 0.49 1150.3 0.00 1.06
7 934.0 0.00 1.41 1343.3 0.00 0.72 1571.0 0.00 5.98 2624.4 0.00 4.67 954.5 0.00 1.81 1500.8 0.00 0.00
8 969.0 0.00 0.11 1485.9 0.00 0.00 1825.1 0.00 1.38 6108.5 0.00 2.65 946.6 0.00 0.00 1716.1 20.00 -
9 1300.6 0.00 0.00 1654.3 0.00 7.53 744.6 5.56 - 1342.1 0.00 0.19 1227.5 6.67 - 1657.8 0.00 0.50
10 1590.3 0.00 0.78 1828.4 0.00 1.26 1056.9 0.00 5.48 1428.8 0.00 0.00 1467.0 0.00 0.85 1888.2 0.00 0.00
1 6940.1 0.00 0.11 6194.3 4.00 - 4764.1 3.33 - 6647.6 0.00 1.43 4625.0 2.04 - 6559.2 4.35 -
2 7516.7 1.96 - 11210.6 0.00 6.59 6961.0 2.44 - 11226.6 6.25 - 6588.8 2.33 - 11642.4 0.00 1.76
3 9380.3 2.50 - 15364.2 0.00 0.00 10340.4 0.00 2.43 21357.5 0.00 0.00 9091.1 3.13 - 18582.6 7.69 -
4 15466.9 0.00 1.13 23998.8 0.00 3.63 16346.3 0.00 1.84 32087.1 0.00 0.29 12147.4 0.00 1.26 30699.6 0.00 11.66
200 5 6265.3 5.56 - 8195.4 0.00 0.86 4436.3 2.13 - 8902.3 0.00 0.00 4909.6 2.44 - 9449.3 0.00 1.65
6 6044.3 2.00 - 10112.7 0.00 8.43 7808.2 2.78 - 14902.8 0.00 0.00 5637.1 0.00 0.51 9570.8 0.00 0.00
7 6571.0 0.00 0.00 11961.9 0.00 1.98 11579.8 3.70 - 24182.8 0.00 0.00 6466.7 2.86 - 11608.0 0.00 0.20
8 6754.6 0.00 0.50 11340.7 0.00 0.00 18418.9 0.00 0.17 33687.3 0.00 3.83 7109.4 0.00 1.76 13526.4 0.00 2.47
9 10021.0 0.00 3.57 13216.4 0.00 0.72 5555.9 0.00 0.14 10220.3 0.00 0.02 7744.0 0.00 1.70 14037.3 0.00 3.09
10 11209.3 2.63 - 12525.3 0.00 3.99 7280.8 3.85 - 11508.1 0.00 0.00 8565.0 0.00 0.71 16712.5 0.00 2.66
1 16901.0 0.93 - 17322.9 2.33 - 13917.7 5.19 - 17638.2 9.68 - 13141.5 1.33 - 17645.1 0.00 0.00
2 18323.6 5.00 - 24839.0 6.45 - 21352.3 10.53 - 30952.4 9.09 - 20314.5 3.39 - 29268.1 0.00 2.02
3 27351.3 6.67 - 42559.3 4.35 - 37119.4 4.88 - 55816.9 0.00 5.44 31631.4 0.00 1.25 47772.8 0.00 1.56
4 37855.7 0.00 0.00 72657.4 0.00 9.16 42773.9 0.00 0.00 79270.3 0.00 2.96 49663.2 3.70 - 78732.0 10.00 -
300 5 15401.6 3.49 - 20135.0 0.00 9.74 14083.6 4.55 - 21388.0 4.55 - 16027.3 1.75 - 21898.2 4.00 -
6 15580.2 2.60 - 25646.8 0.00 11.56 20407.1 3.92 - 36152.9 5.88 - 14964.2 1.67 - 24107.2 4.35 -
7 17024.7 1.32 - 29393.6 0.00 5.48 34024.9 5.71 - 59058.3 0.00 0.00 17855.8 6.12 - 30291.4 5.00 -
8 20752.5 1.47 - 30002.5 0.00 1.93 46688.3 0.00 1.11 86181.7 0.00 0.00 19130.5 0.00 2.62 33754.6 0.00 0.74
9 26067.3 0.00 1.26 33567.6 4.35 - 14333.2 8.93 - 23823.7 10.53 - 20700.0 0.00 0.00 34022.2 0.00 4.54
10 29514.5 1.69 - 35871.2 0.00 5.24 18102.8 2.50 - 28332.3 0.00 0.96 22411.9 0.00 0.64 38978.6 7.69 -
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Table 5.7 — Number of instances for which the minimum best known number of vehicles is
reached

Instance set

AA-DD 50 100 200 300

All operators 39 55 54 38 25
Inter-route exchange 37 46 39 24 11
Inter-route relocate 36 46 37 12 3

.| Inter-route multiple exchange 37 47 42 21 10
2| Inter-route multiple relocate 36 48 41 27 12
% Intra-route exchange 37 49 40 29 9
= | Intra-route relocate 36 47 39 19 11
= Intra-route multiple exchange 37 49 39 22 8
Intra-route multiple relocate 36 48 40 24 11
Perturbation 36 46 39 36 40

the largest impact on the best known number of vehicles : only three instances with 300
requests have the minimum best known number of vehicles. For these larger instances, the
pertubation operator seems to have a negative effect on the best known solutions : eliminating
the perturbation operator allows us to find more solutions with the best known number of

vehicles.

Table 5.8 presents the impact in percentage on the total traveled distance for the instances
where the number of vehicles is the best found. All operators seem to have a positive effect on
the total traveled distance. In particular, the inter-route relocate and the inter-route multiple
exchange operators seem to be the most important. The average deviation increases up to
23.64% and to 8.95% for instances with 300 requests respectively for the inter-route relocate

operator and the inter-route multiple exchange operator.

5.4.5 Impact of the number of iterations

This section presents the impact of the number of iterations on the deviation with respect to
the best known solution. Again, for the sake of conciseness, we only present in Figure 5.13
results for the instances with 200 requests and with the number of iterations set to 25-25-150.
One can readily observe that in the first iterations, the average deviation is quite high (above
9% in this case), but quite rapidly, after 125 iterations, the objective values fall within 2% of
the best known values. Similar results are obtained when looking at the convergence of the
algorithm for the other instances and for the different settings for the number of iterations.

The algorithm always identifies good solutions within a very limited number of iterations.
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Table 5.8 — Average deviations with respect to the best known solution values

Instance set

AA-DD 50 100 200 300

All operators 0.34 092 1.30 147 1.66
Inter-route exchange 0.82 3.32 5.07 5.67 6.17
Inter-route relocate 3.16 8.12 1545 22.86 23.64

.| Inter-route multiple exchange 220 245 6.63 842 895
% Inter-route multiple relocate 0.93 248 5.09 533 6.28
7| Intra-route exchange 1.07 2.62 430 4.07 4.53
= | Intra-route relocate 1.03 247 513 5.68 4.86
= Intra-route multiple exchange 0.90 164 439 449 6.74
Intra-route multiple relocate 0.90 3.17 487 558 4.21
Perturbation 1.08 3.05 381 258 1.59

1\
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\
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Number of iterations

Percentage gap with respect to best known solution value

Figure 5.13 — Impact of the number of iterations on the deviation with respect to the best
solution value
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5.5 Conclusions

We have developed a metaheuristic for the pickup and delivery problem with time windows
and LIFO loading combining a genetic algorithm with a local search algorithm. Using a
single run of the proposed algorithm, all instances with up to 200 requests were solved within
one hour of computation time and all instances with 300 requests were solved within three
hours of computation time. Out of the 60 instances with 300 requests, 45 were solved within
one hour of computation time, while 54 were solved within two hours. For the instances
with known optimal values, the algorithm reaches the mininimum number of vehicles for all
instances with configuration 25-25-150. For the instances without known optimal values, we
provide for the first time good-quality solutions. For all the instances, our algorithm provides
solutions with an average deviation with respect to the best known solution values ranging
from 0.17% to 2.84%. The combination of local search and genetic algorithms seems to be

very powerful and produces high-quality solutions within modest computing times.
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CHAPITRE 6 ARTICLE 3 : BRANCH-PRICE-AND-CUT ALGORITHMS
FOR THE PICKUP AND DELIVERY PROBLEM WITH TIME WINDOWS
AND MULTIPLE STACKS

M. Cherkesly, G. Desaulniers, S. Irnich et G. Laporte, (2015), Branch-Price-and-Cut Al-
gorithms for the Pickup and Delivery Problem with Time Windows and Multiple Stacks.

Furopean Journal of Operational Research, soumis le 31 mars 2015.

6.1 Introduction

This paper proposes two branch-price-and-cut algorithms for the pickup and delivery problem
with time windows and multiple stacks (PDPTWMS) and analyzes their performance. In the
pickup and delivery problem, vehicles based at a depot are used to satisfy a set of requests
which consists of transporting goods (or items) from a specific pickup location, where the item
is loaded, to a specific delivery location, where the item is unloaded. We consider an unlimited
fleet of identical vehicles with multiple homogeneous compartments of limited capacity. Each
compartment is rear-loaded and is operated as a last-in-first-out (LIFO) stack, meaning that
when an item is picked up, it is positioned on top of a stack. An item can only be delivered
if it is on top of its stack and shifting items between stacks is not allowed. To illustrate, let
0 denote the depot, and let T and i~ be the pickup and the delivery nodes associated with
request 7. Figure 6.1 depicts a route and the load of a two-stack vehicle with respect to the
multi-stack policy. Each pickup and delivery location has a specified time window during
which the service must start. A vehicle route is feasible if (i) the service at each location
starts within the given time windows, (ii) the load in each compartment of the vehicle does
not exceed its capacity, (iii) each completed requested is first picked up at its pickup location
and then delivered at its corresponding delivery location, and (iv) the loading and unloading
of the items respect the LIFO policy for each stack. Two types of costs are considered :
a fixed cost for each vehicle used in the solution and a distance-related variable cost. The
PDPTWMS consists of determining a set of least-cost feasible routes in which the number

of vehicles is first minimized.

The PDPTWMS arises in the transportation of heavy or dangerous material for which unne-
cessary handling should be avoided. In particular, this problem is encountered in the trans-
portation of cars between car dealers with multi-level vehicles, where each level is operated
in a LIFO fashion. This problem also arises in the transportation of livestock from farms to

slaughterhouses with multi-compartment vehicles, where each compartment is operated in a
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Figure 6.1 — Route satisfying the capacity constraints and the multi-stack policy for a vehicle
containing two stacks, each of capacity 2. All three items have a unit demand.

LIFO fashion. To the best of our knowledge, this problem has not been previously studied,
but several of its variants have been investigated, namely the pickup and delivery problem
(see Berbeglia et al. (2007); Parragh et al. (2008a,b) for surveys), the pickup and delivery
problem with time windows (PDPTW) (see Ropke et al. (2007); Battara et al. (2014) for
exact algorithms), the traveling salesman problem with pickup and delivery and LIFO loa-
ding (TSPPDL) (see Carrabs et al. (2007a); Cordeau et al. (2010) for exact algorithms),
the pickup and delivery problem with time windows and LIFO loading (PDPTWL) (see
Cherkesly et al. (2014) for three exact branch-price-and-cut algorithms), the double traveling
salesman problem with multiple stacks (see Alba Martinez et al. (2013); Lusby et al. (2010);
Petersen et al. (2010) for exact algorithms and Petersen and Madsen (2009) for a heuris-
tic), the double vehicle routing problem with multiple stacks (see Iori and Riera-Ledesma
(2015) for exact algorithms), and the pickup and delivery traveling salesman problem with
multiple stacks (PDTSPMS) (see Coté et al. (2012a,b) for a branch-and-cut algorithm and

a heuristic).

Among the algorithms proposed for the variants of the PDPTWMS, two exact algorithms
stand out and constitute the basis of this research. Cété et al. (2012a) have developed a
branch-and-cut algorithm for the PDTSPMS, for which several families of valid inequalities
were proposed and tested, and instances with up to 21 requests were solved to optimality
within one hour of computation time. Cherkesly et al. (2014) have developed a branch-price-
and-cut for the PDPTWL and have introduced three relaxations of the pricing problem,
for which they developed shortest path labeling algorithms to enforce the LIFO policy. One
algorithm solves the pricing problem without the LIFO policy and imposes it through addi-
tional constraints in the master problem. Another algorithm solves the pricing problem with
a relaxed LIFO policy and additional constraints may be added to the master problem if
needed. The last one solves the pricing problem with a complete version of the LIFO policy.

Computational results revealed that for harder instances the hybrid algorithm performs best.
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The main objective of this paper is to develop, for the first time, different exact branch-price-
and-cut algorithms for the PDPTWMS. A branch-price-and-cut algorithm is a branch-and-
price algorithm in which the linear relaxation is strengthened through the generation of valid
inequalities. Column generation can be adapted to constrained vehicle routing problems and
have been shown to provide some of the best known results for the PDPTW (Ropke and
Cordeau (2009); Baldacci et al. (2011a)) and for the PDPTWL (Cherkesly et al. (2014)).

The first algorithm developed in this paper solves the pricing problem with the multi-stack
policy, whereas the second incorporates it partially in the pricing problem and generates
additional inequalities to the master problem in which infeasible multi-stack routes are used in
a linear relaxation solution. The results of extensive computational experiments on instances
derived from known PDTSPMS instances are reported. Instances with up to 75 requests and
with up to three stacks can be solved within two hours of computation time. The results

show that the first algorithm always performs better than the second.

The remainder of this paper is structured as follows. Section 6.2 proposes a set partitioning
formulation for the PDPTWMS and formally introduces the pricing problem. Section 6.3
presents our first branch-price-and-cut algorithm in which the pricing problem is solved
under the multi-stack policy. Section 6.4 presents our second branch-price-and-cut algorithm
in which the pricing problem is partly solved under the multi-stack policy and through
the introduction of additional constraints in the master problem. Computational results are

reported in Section 6.5 and are followed by conclusions in Section 6.6.

6.2 A Mathematical Formulation

We now introduce a set partitioning formulation for the PDPTWMS. Beforehand, we provide

the required notation.

6.2.1 Notation

Let n denote the number of requests. The PDPTWMS can be defined on a directed graph
G = (N, A), where N = {0,1,...,2n,2n + 1} is the set of nodes and A is the set of arcs.
Nodes 0 and 2n + 1 represent two copies of the depot appearing at the start and at the end
of a route, respectively. The subsets P = {1,...,n} and D = {n +1,...,2n} are the sets
of pickup and delivery nodes, respectively. With each request 7 is associated a pickup node
i € P, denoted by i*, and a delivery node n + i € D, denoted by i~. Note that i € P refers

to a pickup node and to its associated request.

With each node ¢ € N is associated a demand ¢; to be picked up or delivered, and for each
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request ¢ € P, ¢; > 0 and ¢,,.; = —¢;. For each request ¢ € P, we refer to the load picked up
at node ¢ and delivered at node n + ¢ as an item. Moreover, we assume that ¢y = ¢o,01 = 0.
A time window [w;, w;] is associated with each node i € N, where w; and w; represent the
earliest and the latest time at which service at node 7 can start, respectively. An unlimited set
of identical vehicles, each with S identical stacks of capacity @), is available. A non-negative
travel cost c¢;; and a non-negative travel time ¢;; including the service time at node ¢ are
associated with each arc (i,j) € A. The cost of each arc leaving the origin node, i.e., an
arc (0,1) € A, i € P, also includes a large vehicle fixed cost, leading to first minimizing the
number of vehicles, and then the total traveled distance. The triangle inequality is assumed

to be respected for travel costs and travel times.

6.2.2 Set Partitioning Formulation

Let © denote the set of all feasible routes with respect to the time window constraints, the
capacity constraints, and the multi-stack policy. Let ¢, denote the cost of route r € §, i.e.,
a fixed vehicle cost and its total traveled distance, and let a;. be the number of times node
t € P is visited in route r. Defining v, as a binary variable equal to 1 if and only if route r
is used in the solution, the PDPTWMS can be formulated as

minimize > ay, (6.1)
reQ
subject to Z ai Yy = 1, Vi € P, (6.2)
reQ)
v € {0, 1}, Vr e Q. (6.3)

The objective function (6.1) minimizes the total cost and constraints (6.2) ensure that each
request is completed exactly once. Because the model defined by (6.1)—(6.3) generally contains
a large number of variables, column generation is often used to solve its linear relaxation, also
called the master problem (see Desaulniers et al. (2005)). At each column generation iteration,
a restricted master problem (RMP) containing a subset of variables is solved through linear
programming, yielding primal and dual solutions. A pricing problem is then solved to identify
variables, with associated columns, of negative reduced cost. In the PDPTWMS context,
the pricing problem is an elementary shortest path problem with time window constraints,
capacity constraints, and multi-stack policy. When such variables are identified, they are
added to the RMP and a new iteration starts. Otherwise, the process stops with an optimal

solution to the master problem.
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6.2.3 Pricing Problem

The column generation pricing problem aims at finding feasible routes with a negative reduced

cost. In this section, we provide a formulation for this problem.

The reduced cost of arc (7, 5) € A can be defined as

_ Cij — QY Vi € P,
Cij = (64)
Cij, Vi € N\P,

where «, i € P, are the dual variables associated with constraints (6.2).

For each node 7« € N, let T; be a variable representing the time at which the service begins
at node i. For each arc (i,j) € A, let x;; be a binary variable equal to 1 if and only if arc
(7,7) € A is used in the current route. For each request ¢ € P and each stack s € S, let 27
be a binary variable equal to 1 if and only if item ¢ is loaded on stack s in the current route,
and let ()7 be a variable representing the total load of stack s after leaving node 4. In order
to define the multi-stack policy, we introduce the following notation. Let R = (i1,...,1,)
be a path, i.e., an ordered sequence of nodes that respects the capacity constraints, and the
time windows but not necessarily the multi-stack policy, such that i; # 0 and i, # 2n + 1
and let N(R) = {i1,...,1,} be its corresponding ordered set of nodes. Let (sf)ieN(R) be an
assignment (indexed by e) to the stacks in S of the items picked up or delivered in R, i.e.,
s¢ € S indicates the stack to which item i is assigned. Some of these assignments might yield
an infeasible path with respect to the multi-stack policy. Denote by I(R) the set of infeasible
item-to-stack assignments for path R. Let R be the set of all paths R that can have infeasible
assignments, i.e., such that I(R) # (). The pricing problem for the PDPTWMS can then be

modeled as

minimize > Gy (6.5)
(i.j)eA
subject to Z Tij — Z Tntij = O, Vi € P, (66)
JEN|(i,5)€A JEN|(n+i,j)€A
Z ij = ]., (67)
jeP
Z Tji — Z Tij = O, Vie PU D, (68)
JEN|(ji)EA JEN|(i,5)€A

Z Tignt1 = 1, (6.9)

€D
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wal+ S S 2 <2N(R) -2,

t€PNN(R) t€DNN(R)

VR = (i1,...,1,) € R,e € I(R) (6.10)
Yoo wy=)2, VieP, (6.11)

JEN|(ij)eA s€s

Q% = Qi + qjwijz;,

Vs € S, (i,7) € A such that j € P, (6.12)
Q5 > Qjrij + q;Tiz;_,

Vs € S, (i,7) € Asuch that j € D, (6.13)
max{0, ¢}z < Q; <min{Q,Q + ¢}z, Vie P,se€ S, (6.14)
Ty = (Ti + tig)wiy, V(i,5) € A, (6.15)
w, < T, <, YieN, (6.16)
Ti+tinyi < Thyi, Vi€eP, (6.17)
vy €{0,1}, V(i,j) € A, (6.18)
z; €{0,1}, Vie P,seS. (6.19)

6.18
6.19

The objective function (6.5) minimizes the sum of reduced costs. Constraints (6.6) ensure that
the pairing constraints are respected, i.e., the pickup and delivery nodes of a request are visi-
ted in the same route. Constraints (6.7)—(6.9) define a path structure for each route. More spe-
cifically, constraints (6.7) and (6.9) ensure that each route starts and ends at the depot, while
(6.8) are flow conservation constraints. The multi-stack policy is imposed through constraints
(6.10) which are stated through infeasible path inequalities. We note that Coté et al. (2012a)
have proposed an alternate way of formulating these constraints. Constraints (6.11) state that
each picked up item must be assigned to exactly one of the stacks. Constraints (6.12) and
(6.13) compute the load variables according to the arcs used in the solution and constraints
(6.14) ensure that the capacity of each stack is respected. Constraints (6.15) and (6.16) com-
pute the time variables and ensure that the time windows are respected. Constraints (6.17)
impose the precedence constraints, i.e., for each request 7 the pickup node must be visited
before the delivery node. The model is non-linear because of constraints (6.12)—(6.15), but
can be linearized (see Ropke et al. (2007); Coté et al. (2012a)).

Note that constraints (6.10) can be replaced by the smaller set of constraints

Z ‘rlu ZI—L+1 — (R)| - 27 VR = (ila ce0y Zp) € 7?’*7 (62())
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where R* C R is a subset of infeasible paths such that, for each path, there exists no feasible
assignment of the items to the stacks. Solving model (6.5)—(6.9), (6.11)—(6.19), (6.20) could
yield an infeasible solution given the values taken by the 2] variables at optimality, i.e., these
values would provide an infeasible item-to-stack assignment for at least one path in R \ R*,

but there exists an alternative feasible solution having the same cost with different 2 values.

6.3 A Branch-Price-and-Cut Algorithm with Multi-Stack Feasible Paths

Our first branch-price-and-cut algorithm fully enforces the multi-stack policy in the pricing
problem. In this section, we first present path relaxations and labeling algorithms for the
corresponding pricing problem. We then discuss valid inequalities for the PDPTWMS and

branching strategies.

6.3.1 Path Relaxations and Labeling Algorithms

The pricing problem is an elementary shortest path problem with pickups and deliveries, time
windows, capacity constraints, and multi-stack policy. It can be solved through a labeling
algorithm. A label stores information about a partial path starting at the origin node and
ending at some node 7. Each element stored in a label is called a component. Starting from
an initial label Ej, at the origin node 0, a labeling algorithm propagates labels toward the
destination node with resource extension functions. To avoid enumerating all feasible paths,

some labels are eliminated through a dominance criterion.

The pricing problem can be relaxed by allowing cycles in paths, that is, a request can be
completed more than once. These relaxations usually yield weaker master problem lower
bounds. Paths with cycles cannot be part of a feasible integer solution, hence branching

ensures that the final solution contains only elementary paths.

Sections 6.3.1 and 6.3.1 describe labeling algorithms for the elementary and non-elementary

versions of the pricing problem, respectively.

Elementary Shortest Path Problem with Pickups and Deliveries, Time Windows,
Capacity Constraints and Multi-Stack Policy

The first version of the constrained shortest path problem respects the elementarity constraints.
The ideas presented in this section are non-trivial extensions of those initially proposed by
Cherkesly et al. (2014) for the PDPTWL. For a given label E, the following components are

stored :
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— n(FE), the end node of the partial path ;
— t(F), the start of service time at node 7;

— o),

— U(FE), the set of unreachable requests;

— [;(E),Vi € P, the load in the stack under item ¢ € P (including its own load) ;

— Si;(F),Vi,j € P, a binary component representing the relative positions of items i

the cumulated reduced cost ;

and j in a given stack;
— C;j(E),Vi,j € P, a binary component representing the concurrent presence of items ¢
and j in different stacks.
A request ¢ € P is said to be unreachable if ¢ has already been visited on the partial path,
or if traveling directly from 7 to ¢ exceeds the upper limit of the time window at node i € P.
For a given label E, let R(E) = (0, 11,1, ...,1, = n(£)) be the partial path represented by
this label. Then

U(E) = {i € Pli € R(E)} U{i € P|t(E) + t,p.; > w;}. (6.21)

The relative position of two items ¢, 7 € P in a given stack indicates that the two items are

simultaneously in the same stack and item ¢ is on top of item 7, that is

1 if 7 = 7 and item ¢ is in the vehicle,
Sii(F) =<1 ifitem i is in the same stack as item j and on top of it (6.22)

0 otherwise.

Moreover, for any two items 7,7 € P, we need to know whether both are simultaneously

onboard and in different stacks, or not, that is

1 if items ¢ and j are simultaneously in the vehicle
Cij(E) = but not in the same stack, (6.23)
0 otherwise.
This new notation is as powerful as the notation proposed by Cherkesly et al. (2014) for the

single-stack case, but is better suited for the multi-stack variant because it eliminates the

symmetry between the S identical stacks.

Given a label E| its extension along an arc (n(F),j) € A is allowed if one of the following

three conditions holds :
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jeP and j¢U(E), (6.24)
j€D and Sj—nj-n(E)=1 and &;;_,(F)=0,Vie P\{j —n}, (6.25)

Condition (6.24) ensures that if j is a pickup node, then it must not have been previously
visited, and must be reachable with respect to its time window. Condition (6.25) ensures
that if j is a delivery node, then its corresponding item must be on top of one of the stacks,
i.e., the item is in the vehicle and there is no item on top. Condition (6.26) ensures that if
j is the destination node, then all the picked items on the path must have been delivered.
Together these three conditions ensure that each request is completed at most once for any

complete path from 0 to 2n + 1.

If the extension to a pickup node is allowed, i.e., condition (6.24) is fulfilled, then several new
labels may result. Indeed, one new label per stack in use can be created. Thus, for a given
label E, we define

H(E) = {i € P|Su(E) =1 and S;i(E) = 0,¥j € P\{i}} (6.27)

as the top items in the stacks. In particular, |H(E)| is the number of stacks currently in use.
If this number is less than the number of stacks, i.e., |H(E)| < S, then there exists at least
one empty stack. In such a case, in order to allow the addition of an item on top of an empty

stack, an additional auxiliary top item h = 0 is created. We define

Ho(E) = H(E)U {0} if [H(E)| < S, (6.28)
H(E) otherwise.
In summary, for the extension to a pickup node j € P, one new label E" for each h € Hy(E)
is created. If j is a delivery node, j € D, a single new label E* for h = j — n is created. If j
is a pickup node and all stacks are empty, i.e., H(E) = ), a single new label E" is created
for the auxiliary top item h = 0. Thus, given a label E, an arc (n(E),j), and a top item
h € Ho(FE) for j € P,or h =7 —n for j € D, the extension is computed as follows :

n(E") = . (6.20)
H(E") = max{t(E) + tye ;). (6.30)
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C(Eh) =c(F)+ Cy(E),j> (6.31)
UEYU{jYU{ie Pt(EM +t ;> w; )} if j € P,
sy = [T DU UL € PO o, > )it -
U(E) U {Z S P|t<Eh) + tn(Eh),i > wz} itje D,
W(E)+qn ifjePr j=m,
lm(Eh) =40 lfj < D, m = j —n, Vm € Pa (633)
I (E) otherwise,
1 iijP,j:m, Shl<E)Zl,
1 ifjeP, m=i=yj,
Spi(E") = / / Vi,m € P, (6.34)
0 itjeD, j—n=m,
Sni(E)  otherwise,
1 it je P, j=m, Cpy(F) =1,
1 ifjeP, i=j, Cm(E)=1,
Cri(E") = / 3 Cun(E) Viime P.  (6.35)
0 ifjeD, j—m=morj—n=n1,
Cmi(E) otherwise,

Equations (6.33) state that if j is a pickup node, then the load under it must be the total
load in the chosen stack, plus its own load ; if j is a delivery node, then the load under item
j —n is 0 because item 7 — n is no longer in the vehicle, and otherwise the load under each
item remains the same. Equations (6.34) update the positions of items that are in the same
stack. If j is a pickup node, then it must be on top of all nodes below h, on top of node
h, and must be in the vehicle. If j is a delivery node, then there are no more items below
j — n. The other positions are unchanged. Equations (6.35) update the information about
items that are simultaneously in the vehicle but are not in the same stack. If j is a pickup
node, then it must be separated from all nodes that are not in the same stack as node h, and
if j is a delivery node then there are no more items simultaneously onboard with 7 — n and

in different stacks. The other positions remain the same.

A new label E" is kept if it respects the time windows and the capacity constraints, that is,

if

tHE™) < wj, (6.36)
W(E") < Q. (6.37)
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Finally, a label E; dominates a label Ejy if

n(Er) = n(E2), (6.38)
t(Ey) < H(Ey), (6.39)
c(Ey) < ¢(Ey), (6.40)
U(E)) C U(E,), (6.41)
Sii(E1) < Sij(E2), Vi,j € P, (6.42)
Cij(E1) < Cij(E2), Vi,j € P. (6.43)

Conditions (6.38)—(6.42) constitute a valid dominance criterion for the single-stack case, i.e.,
the PDPTWL (see Cherkesly et al. (2014)), if the delivery triangle inequality holds. Note
that the definition of ¢;; in formula (6.4) does not necessarily ensure the delivery triangle
inequality ¢;; + ¢ji > ¢ for all delivery nodes j € D. In this situation, Ropke and Cordeau
(2009) propose a procedure to transform an arbitrary cost matrix into a cost matrix that
satisfies the delivery triangle inequality. We apply the same procedure before solving the

pricing problem.

However, the single-stack dominance criterion is not valid for the multi-stack variant. In fact,
without conditions (6.43), the dominance criterion would not be valid because items in the
same stack for label E5 could be in different stacks for label ;. In such a case, the possible
extensions of label F5 could be infeasible for label E; with respect to capacity constraints,
yielding wrongly dominated labels. Figure 6.2 depicts such a case where Q) =2, ¢; =1, g2 = 1,
and g3 = 2. Figure 6.2a and 6.2b illustrate the configuration of the vehicle for labels E; and
Es, respectively. One can see that item 3 cannot be loaded with the first configuration, but
can be with the second one. In that case, conditions (6.38)—(6.42) are respected. Conditions

(6.43) are then necessary to allow a proper dominance criterion.

Proposition 6.3.1. Conditions (6.38)—(6.43) constitute a valid dominance criterion whene-

ver ¢;; satisfies the delivery triangle inequality.

Proof. The proof is similar to that of Proposition 3 in Cherkesly et al. (2014). We show that
for every feasible completion of F, there exists a feasible completion of F; with no greater
reduced cost. Let 7 be a path extending R(E2) to node 2n+ 1 such that (R(E,),r) is feasible
with respect to time windows, elementarity constraints, pickup and delivery constraints,
capacity constraints and the multi-stack policy. If no such path exists, then clearly one

can remove label Fs. Let ' be the path obtained from r by removing the deliveries for each
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(a) Stack configuration for label F; : (b) Stack configuration for label Ej :
811<E1) = 822(E1> =1 and Sll(Eg) = SQQ(EQ) = 821<E2) =1 and
Cia(E1) = Cu(Er) =1 Ci2(E2) = Cun(E2) = 0

Figure 6.2 — Example where two labels cannot be compared, ¢ = ¢ =1, g3 =2 and @) = 2

request i € P with S;;(E;) = 0 and S;;(F>) = 1. Because (R(FEy), ) is feasible with respect to
elementarity constraints, and pickup and delivery constraints, then so is (R(E}),r’). Because
the triangle inequality is assumed for travel times and (R(E,),r) is feasible with respect to
the time windows, then so is (R(Ej),r’). The capacity constraints for each stack are not
violated because items in different stacks for F; are also in different stacks for s, and items
in the same stack for E; are also in the same stack for Es, thus the capacity constraints are
respected on (R(E)),r’). The multi-stack policy is not violated because the order in which
the deliveries are performed on (R(E}),r’) is the same as on (R(Es),r). Because (R(Es),r) is
feasible, then so is (R(E}), ). Because the delivery triangle inequality holds for the reduced
cost component ¢, the cost of 7’ does not exceed that of . Thus, ¢(E;) < ¢(E;) implies that
the cost of (R(FE1), ') is at most equal to that of (R(Es), ). Hence, label E; dominates label
Es. [

Shortest Path Problem with Pickups and Deliveries, Time Windows, Capacity
Constraints and Multi-Stack Policy

The second version of the constrained shortest path problem allows paths to contain cycles

under the following two conditions :

1. a pickup cannot be performed again before its corresponding delivery has been com-

pleted ;
2. the precedence constraints for every request must be respected.

In this version of the algorithm, a label E stores the components n(E), t(E),c(E),l;(E),i € P,
Sij(E), and C;;(FE), 1,7 € P. The extension of a label E along arc (n(E), j) is allowed if E
and j satisfy condition (6.25), (6.26), or

jeP and S;;(E)=0. (6.44)
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A label E™ is then created for each top item h € Ho(E) using the extension function (6.29)—
(6.31) and (6.33)-(6.35). Condition (6.44) relaxes condition (6.24) by allowing cycles to occur
while forbidding to pick up the same request twice without delivering it in the meantime. The
resulting label E" is kept if it satisfies the time windows (6.36) and the capacity constraints
(6.37) at node j. If the delivery triangle inequality holds, then the following dominance
criterion is valid : a label E; dominates a label E, if conditions (6.38)-(6.40), and (6.42)-
(6.43) are respected.

The reader can easily adapt the arguments of Proposition 6.3.1 for this version of the shortest

path problem.

6.3.2 Valid Inequalities

We now present valid inequalities commonly used to solve the PDPTW and applicable to the
PDPTWMS. These are 2-path cut inequalities, rounded capacity inequalities, and subset-
row inequalities. We also present a family of cuts based on the branching on the number of
vehicles. These inequalities are added within the master problem. For the sake of conciseness,
we omit the discussion about the impact on the reduced cost of adding such inequalities
(see Desaulniers et al. (2011)). These inequalities are used for both branch-price-and-cut

algorithms.

If the number of vehicles is fractional, two branches are created : Y ,.cqyr < |X,cq¥-] and
Sealr = [Yreq¥r|, where (§1,...,9q) is the computed fractional solution of the master
problem. Because we first minimize the number of vehicles, the number of vehicles used in
the solution of the master problem is a lower bound on the number of vehicles used in the

optimal integer solution. In this case, the inequality

Sy >

reQ) reQ)

> g] (6.45)

is added to the master problem and replaces the branching on the number of vehicles.

Kohl et al. (1999) have introduced 2-path cuts in the context of the vehicle routing problem
with time windows (VRPTW). These were later shown to be valid for the PDPTW (see
Ropke and Cordeau (2009)). Let Ng € P U D be a subset of nodes that cannot be served
by a single vehicle and let 6(Ng) = {(i,7) € Ali € Ng,j € N\Ng} represent the set of arcs
exiting set Ng. Then the inequality

o> by =2 (6.46)

refd (i,j)€5(Ns)
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is valid, where b}; is a constant equal to the number of times arc (i,j) € A is used in route
r. Identifying a subset of nodes that cannot be served by a single vehicle means determi-
ning whether the corresponding pickup and delivery traveling salesman problem with time
windows is feasible. Because this is an NP-complete problem (see Savelsbergh (1985)), the
separation of violated 2-path cuts is achieved by means of a greedy heuristic (see Ropke and
Cordeau (2009)).

The rounded capacity inequalities are often used for the vehicle routing problem (VRP), the
VRPTW, and the PDPTW (see, e.g., Naddef and Rinaldi (2002); Cordeau (2006); Ropke
et al. (2007)) and have been adapted to the PDTSPMS (see Coté et al. (2012a)). Let Ng C
PUD be a subset of nodes and let {(Ng) be a lower bound on the number of vehicles needed
to visit all nodes in Ng. Then, the inequality

Yo > by, 2 E(Ns) (6.47)

€€ (i,5)€5(Ns)

is valid for {(Ng) = max{l, [q(”égsw , [_Q(ggsw }, where SQ is the total capacity of the
vehicle, m1(Ng) = {i € P|li ¢ Ng,n +i € Ng} denotes the set of predecessors of Ngs and
0(Ng) ={n+i € D|i € Ng,n+1i ¢ Ng} denotes the set of successors of Ng. The lower bound
on the load of the vehicles entering N is q(7(Ns)) = > icr(ns) ¢ and the lower bound on the
load of the vehicles leaving N is q(0(Ns)) = X, 4icq(ng) - These inequalities are separated

by means of a heuristic enumerative procedure (see Ropke et al. (2007)).

The subset-row inequalities were introduced by Jepsen et al. (2008) for the VRPTW and are
a special case of the clique inequalities. These inequalities are the rank-1 Chvatal-Gomory

inequalities defined as

reQ i€ENg

1 N,
Z \‘ Z air‘yT = \‘|XS|J ) V]\TS - P)2 SX < |NS|a (648>

where Ng is a subset of pickup nodes. As in Jepsen et al. (2008) and Desaulniers et al.
(2008), we focus on the inequalities defined for subsets of three customers because these can

be efficiently separated. These subset-row inequalities can be rewritten as

> y. <1, V¥Ng C P such that |Ng| = 3, (6.49)

reQg
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where Qg C €2 is the subset of routes completing at least two requests in Ng. Because
handling the dual prices of the active subset-row inequalities in the subproblem can be highly
time-consuming, we limit their usage by generating them only in the first two levels of the

branching tree and adding at most 50 cuts at once.

6.3.3 Branching

In a branch-price-and-cut algorithm, branching is used to obtain integer feasible solutions
and should be compatible with the column generation process, especially with the algorithm
used to solve the pricing problem. With the dominance criterion (6.38)-(6.43), the remo-
val of arcs must preserve the delivery triangle inequality (see Ropke and Cordeau (2008)).
Consequently, we propose to branch on the outflow of node subsets (see Naddef and Rinaldi
(2002)). This branching strategy adds constraints to the master problem, yielding additional
dual prices to be incorporated into the objective function of the pricing problem (see Desaul-
niers et al. (2011)). In this branching strategy, a subset of nodes Ng is selected such that
f(Ns) = Xrea Xj)es(ng) bijUr is as far as possible from the nearest integer, where f(Ng) is
the total outflow for the set Ng of the computed fractional solution of the master problem.
Two branches are then created by adding the following constraints to the master problem

associated with each branch :

SX by < If(Ns)), (6.50)

r€Q (i,5)€6(Ng)

> > by = [f(Ns)T (6.51)

€8 (i,j)€5(Ns)

The exploration of the enumeration tree is achieved through a best-first strategy.

6.4 A Branch-Price-and-Cut Algorithm with Relaxed Multi-Stack Paths

This second branch-price-and-cut algorithm deals with the multi-stack policy partly in the set
partitioning formulation and partly in the pricing problem. This pricing problem is easier to
solve, but the extended set partitioning formulation is weaker yielding worse lower bounds. As
Cherkesly et al. (2014) did in their hybrid branch-price-and-cut algorithm for the PDPTWL,
we solve the shortest path problem under relaxed multi-stack constraints, i.e., the LIFO
policy must be respected for the last s items of each compartment. An ejection process is
therefore needed : when a pickup node is visited, its corresponding item is put on top of a

stack ; if the height of the stack exceeds k, the lowest item is ejected from the stack but is
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kept in the corresponding compartment. Thus, a compartment can contain stacked items, for
which the extension of the partial path needs to respect the LIFO policy, and ejected items,
for which the extension of the partial path does not need to respect the LIFO policy. There is
no given ordering for the delivery of the ejected items, but these can only be delivered if there
are no more stacked items in the compartment. Corresponding infeasible path inequalities are
added to the master problem when infeasible multi-stack routes are used in a linear relaxation
solution. Figure 6.3 presents an example, for x = 1, in which the path must respect the LIFO
policy for the items in grey. The vehicle contains two compartments and each compartment
has a corresponding stack with a maximal size of one item. Note that item 2 is ejected from
the second stack in Figure 6.3c and item 3 is ejected from the second stack in Figure 6.3d

because the maximal size is reached.

6.4.1 Labeling Algorithm

We now describe the modifications to the labeling algorithm presented in Section 6.3 that we
have implemented to handle this variant. The valid inequalities and the branching decisions
used are those of Sections 6.3.2 and 6.3.3.

In the elementary version of the problem, a label E stores the components n(FE), t(F), ¢(E),
U(E), l;(E), i € P, Cj(E), and SFP(E), i,j € P. SJF(E) is a relaxation of S;;(E) that

considers an ejection process. For a given label F, 8513 (E) is defined as

1 if ¢ = j and item i is in the vehicle,

1 if items ¢ and j are in the same stack and ¢ is on top of j,

1 if items ¢ and j are in the same compartment,

SgP(E) = i is in the stack, and j is ejected, (6.52)
0 if items ¢ and j are in the same compartment

and both are ejected,

0 otherwise.

That is, if two items ¢ € P and j € P, i # j, are in the same vehicle compartment, request
i is in the stack and node 7" was visited after node j*, then SJ7(E) = 1 and S{7(E) = 0.
If two items ¢ € P and j € P, i # j, are in the same vehicle compartment but none of them
are in the stack, i.e., if both have been ejected, then SJ7(E) = ST (E) = 0.

The extension of a label E along an arc (n(E), j) € A is allowed if it satisfies one of the three
conditions, (6.24)-(6.26), where S;;(E) is replaced with SJ7(E), Vi, j € P.
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(a) Label E“ : the first stack contains
item 1, thus the extension of the path

must respect the LIFO policy for item 1,
SHP(E*) =1

(c) Label E€ : the first stack contains
item 1, the second stack contains item 3,
and the second compartment contains
items 2 and 3, thus the extension of the
path does not need to respect the LIFO
policy for item 2 as the maximal size of
the LIFO stack has been reached for the
second stack, SEF(E°) = SEF (E°) =
SEF(E7) = SEF(E) = 1
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(b) Label E" : the first stack contains
item 1 and the second stack contains
item 2, thus the extension of the path

must respect the LIFO policy for items 1
and 2, SEP(EY) = SEP(E®) = 1

[ ]

1 112 112 1|2

O—@———@

(d) Label E? : the first stack contains
item 1, the second stack contains item 4,
and the second compartment contains
items 2, 3, and 4, thus the extension of
the path does not need to respect the
LIFO policy for items 2 and 3,
SHEN(ET) = 83" (BY) = S5 () =
SEP(EY) = SEP(EY) = SEP(E?Y) =1 but
Syl (BY) = 857 (E?) =0

Figure 6.3 — The extension of the path must respect the LIFO policy for the items in grey

(s =1)

Defining H(E) as in equation (6.27), H(E) contains all items that can be delivered, i.e.,

those that have not been ejected from a stack and are on top of a stack, and those that have

been ejected from a stack and are not under an item for which the multi-stack policy needs

to be respected. In order to have at most one extension per compartment, the top items are

defined as the items for which one of these two conditions is respected :

1. the item is in the stack and no item is on top of it;

2. the item is not in the stack, and is in a compartment that has no item in its stack. One

arbitrary item is kept to represent each non-empty compartment. In the following, we

choose the item with the smallest index.

We define C(F) as the set of top items for the relaxed multi-stack policy which can be

computed as
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C(E) = {i € H(E)|Cy(E) = 1,j < i,j € H(E)}. (6.53)

Note that if |[C(E)| < S, an additional auxiliary top item is added in order to allow loading
on top of empty stacks. Thus, we define

C(B), = C(E)u{0} if |C(E)| < S, (6.54)
C(FE) otherwise.

The extension of a label E along an arc (n(E),j) will create a new label E" Vh € C(E).
Note that in some cases only one label is created (as explained in Section 6.3.1). For each
label E* O(E") is defined as the open requests in the vehicle that have been ejected from
the stack, i.e., requests that are currently onboard but for which the extension of the label

does not need to respect the multi-stack policy. O(E") is computed as

O(E") = {2 € P|Cri(E) =0 and (ZSEP ) > K or
JjeEP
3j € P\{i} such that S/"(E) = 1,C;;(E) = 0, (6.55)

sy -5 -0) |

Equation (6.55) states that ¢ € P is an open request with respect to top item h € C(E)y if
¢ and h are in the same vehicle compartment, and if there are at least x items between the

positions of ¢ and h or if ¢ has already been ejected from the stack.

The components of label E" are set with equations (6.29)—(6.32), (6.35) and

WE)+q ijePr j=m
Yicorn ¢ ifj € P,
0 ifjeD, m=75—n,

Vm € O(E"),  (6.56)

I (E) otherwise,
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1 if j € P,j =m, Vi € P such that
Sp(E) =1,
1 itjePj=m, VieOE,
Spr(EM) =41 if j € Pi=m=j Vm,i € O(E"),  (6.57)
0 itjePp
0 ifjeD j—n=m, VieP,
SEP(E)  otherwise.

Equation (6.56) replaces equation (6.33); if two requests are in the same compartment but
none of them are in the stack, their total loads will be the same. Equation (6.57) updates
the positions of the items in the compartment. If j is a pickup node then it is on top of the
stack, i.e., on top of all other items in the compartment, either in the stack or ejected. If the
stack has reached its maximal size, then no order is imposed among all ejected items. If j is
a delivery node, then they are no more items linked to j — n. Furthermore, label E" is kept

if it respects the time window constraints (6.36) and the capacity constraints (6.37).

Finally, a label E; dominates a label Es if conditions (6.38)—(6.41), (6.43) and
SEP(Ey) < 8EF(By), Vi,j € P, (6.58)

hold.

Proposition 6.4.1. Conditions (6.38)—(6.41), (6.43) and (6.58) constitute a valid dominance

criterion whenever ¢;; satisfies the delivery triangle inequality.

Proof. The proof is similar to that of Proposition 6.3.1. We show that for every feasible
completion of Fy there exists a feasible completion of E; with no larger reduced cost. Let r
be a path extending R(E;) to node 2n + 1 such that (R(E,),r) is feasible with respect to
time windows, elementarity constraints, pickup and delivery constraints, capacity constraints
and relaxed multi-stack policy. If no such path exists, then clearly one can remove label Fj.
Let 7’ be the path obtained from r by removing the deliveries for each request i € P with
SEP(E)) = 0 and SEF(F,) = 1. Because (R(E,),r) is feasible with respect to elementarity
constraints, and pickup and delivery constraints, then so is (R(F1),r’). Because the triangle
inequality is assumed for travel times and (R(E,),r) is feasible with respect to the time
windows, then so is (R(E1),7"). The capacity constraints for each stack are not violated
because items in different stacks for F, are also in different stacks for E5, and items in the

same stack for F; are also in the same stack for Fs, thus the capacity constraints are respected
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on (R(Ey),r"). The order in which the deliveries are performed on (R(E}),r’) is the same as
the order on (R(E,),r), i.e., each item that is in a stack for E; is also in the stack for Es,
and each item that has been ejected for F; can be ejected or not for F5. No ejected item for
E5 can be in a stack for F;. Thus, the relaxed multi-stack policy is not violated. Because
(R(E2),r) is feasible, then so is (R(Ey),r’). Because the delivery triangle inequality holds for
the reduced cost component ¢, the cost of " does not exceed that of r. Thus, ¢(E;) < ¢(Es)
implies that the cost of (R(F;),r’) is at most equal to that of (R(E>),r). Hence, label F;
dominates label F5. O

The reader can easily adapt this procedure to the non-elementary version of the shortest

path problem.

6.4.2 Infeasible Path Cuts

When solving the shortest path problem with the labeling algorithm presented in the previous
section, we might find a path for which the multi-stack policy is not respected. Figures 6.4a
and 6.4b present a path and a configuration of the vehicle found with the relaxed multi-stack
policy when setting x = 0. This configuration does not respect the multi-stack policy, but the
items can be rearranged as in Figure 6.4c in order to respect it. Thus, this path is feasible.
Figures 6.5a and 6.5b illustrate a path and a configuration of the vehicle found with the
relaxed multi-stack policy when setting x = 0. In such a case, no rearrangement of the items

is possible, and this path is infeasible.

In order to find out whether a path is feasible with respect to the multi-stack policy even if
its current configuration is not, Coté et al. (2012a) proposed solving a bin packing problem.
Instead, our algorithm solves a shortest path problem with multi-stack policy. The labeling
algorithm presented in Section 6.3 is applied on the reduced graph containing only the arcs
used in the current path. If a solution is found, a rearrangement is possible. Otherwise, the
path is infeasible and its corresponding infeasible path inequality (6.20) is added to the RMP.

Thus, these inequalities can be reformulated as

p—1
Z ( bfwiuﬂ)yr <|N(R)| =2, VR = (ig,...,1,) € R". (6.59)
reQ) \ p=1

These constraints are separated through an exact enumerative procedure. For every path in
a given optimal solution of the master problem, several of these constraints can be violated.

The sequential search is then carried out on each active route r € 2 with y, > 0, and the first
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(a) Path

1 112] |12 2 2

3 3

(b) Possible configuration of the vehicle not respecting the multi-stack policy

1 112} |1]2 2 2

3 3

(c) Rearrangement of the items respecting the multi-stack policy

Figure 6.4 — Path for which a possible rearrangement of the items can be found such that
the multi-stack policy is respected, ¢ = ¢ =¢3 =1 and @ = 2

identified violated inequality is added to the master problem. Note that the dual variables of
(6.59) affect the reduced cost of the arcs along the corresponding path, but we leave out the

details for conciseness reasons.

6.5 Computational Results

The two branch-price-and-cut algorithms just described were tested on a set of PDPTWMS
instances derived from an instance of the TSPLIB. In this section, we report the computatio-
nal results obtained for these PDPTWMS instances. The instances are solved by considering
one, two, and three stacks. All tests were performed on a Linux computer equipped with an
Intel(R) Core(TM) i7-3770 processor (3.4 GHz). The algorithms were implemented using the
GENCOL library using CPLEX 12.4.0.0 to solve all restricted master problems.

6.5.1 Instances

To test our algorithms, we have generated 198 PDPTWMS instances from the a280 instance
of the TSPLIB by following the ideas of Carrabs et al. (2007a,b); Cordeau et al. (2010) for
the TSPPDL, and of Coté et al. (2012a) for the PDTSPMS. Two classes of instances were
tested. In the first class, C1, each item has a unit demand, and the total capacity of a vehicle
is 6. In the second class, C2, the demand of each item is a random number between 3 and

9, and the capacity of a vehicle is 24 for the one- and two-stack variants, and 27 for the
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(a) Path

1 1 1 1

2 2 2 2

(b) Possible configuration of the vehicle not respecting the multi-stack policy

Figure 6.5 — Path for which no possible rearrangement of the items can be found such that
the multi-stack policy is respected, g1 = g2 =1, g3 =2 and Q) =2

three-stack variant.

For each class, we have generated and tested a total of 99 instances in which the number
of requests ranges from 25 to 75, i.e., the number of nodes ranges from 51 to 151. For an
instance with 2n + 1 nodes, we have kept the first 2n + 1 nodes from the a280 instance of
the TSPLIB. For each request, a pickup and a delivery node have been randomly paired, and
the time windows have been randomly generated. Three time window horizons were tested :
(1) setting w,; < 500,Vi € P and w; < 1000,Vi € D, (2) setting w; < 1000,Vi € P and
w; < 1200,Vi € D, and (3) setting w,; < 1500,Vi € P and w; < 2000,Vi € D. The three time
horizons are denoted by 500-1000, 1000-1200, and 1500-2000 in the following. For each time

window horizon, three different time window lengths were tested, i.e., 15, 30, and 45.

In all instances, we first aim to minimize the number of vehicles. To this end, a fixed cost of
100,000 is imposed on each arc (0,7) € A with j € P.

6.5.2 Detailed Computational Results

Table 6.1 presents the number of instances solved optimally for each algorithm using the ele-
mentary shortest path problem. For each instance class and number of stacks, 99 instances
are tested. A time limit of 7200 seconds (two hours) was imposed for the solution of each ins-
tance. The algorithms are denoted as follows : BPC' MS (branch-price-and-cut algorithm with
multi-stack feasible paths) and BPC' Relazed (branch-price-and-cut algorithm with relaxed
multi-stack paths). For the latter, we also specify the value of k. We have tested different

values of x and report those with x = 0 and xk = 2.

For any number of stacks and instance class, BPC MS solves the largest number of instances.

In our experiments, we observed that all instances solved with BPC' Relaxed are also solved
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with BPC MS. Therefore, we will only present detailed computational results for the BPC
MS algorithm. We have also tested an adaptation of the ng-path relaxation proposed by
Baldacci et al. (2010, 2011b) for the VRP and adapted by Cherkesly et al. (2014) for the
PDPTWL and the non-elementary shortest path problem. Because the instances do not allow
many cycles, neither of these two relaxations of the pricing problem has a positive impact on
the quality of the lower bound or on the computational time. Thus, we do not present these

results.

For the one- and two-stack variants, one can realize that the instances in class C1 are harder
to solve than those in class C2. For the instances in class C1, this is probably due to the
symmetry between the items, i.e., each item has unit demand. For the three-stack variant, the
instances in class C2 prove to be more difficult. This is due to the increase of the maximum
number of items simultaneously present in a vehicle. In fact, for each instance in class C1
solved with three stacks, the maximum number of items simultaneously in the vehicle is three
(see Table 6.10). Thus, solving the problem with the multi-stack policy for these instances is
equivalent to solving the PDPTW.

Tables 6.2-6.4 present summarized results for the PDPTWMS with one, two, and three
stacks, respectively, with the BPC MS algorithm when solving the elementary version of the
suproblem in all three cases. Detailed computational results are presented in Appendix A. In
each table we present, for each instance class, summarized results on each set of 11 instances
with a specified time window length and horizon. For each of these 11 instances, the number
of nodes ranges from 25 to 75. In each table, the first column indicates the width of the
length of the time windows (15, 30 or 45), and the time window horizon, i.e., 500-1000, 1000-
1200, and 1500-2000. For example, w15-500-1000 refers to instances that have a time window
length of 15 and a time window horizon 500-1000. We present the following information :
NbSolved the number of instances solved to optimality within the prescribed time limit ; Sec.,
the average CPU time in seconds; Gap (%), the average integrity gap in percentage compu-

ted as (z* — z)/(z*), where z* is the optimal solution value and z is the lower bound at the

Table 6.1 — Number of instances solved for each algorithm

BPC MS | BPC Relaxed | BPC Relaxed
k=0 K =2
Class Cl| C2 |C1 C2 C1 C2
lstack | 77 | 96 | 63 85 69 93

2 stacks | 27 | 63 5 11 26 62

3 stacks | 89 | 52 | 89 21 89 52
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root node before adding any cuts; Veh, the average minimal number of vehicles ; and maxltem,

the average maximal number of items simultaneously in a vehicle. All these averages are
computed over the solved instances. Furthermore, for each class of instances, we report in
the row Weighted average the averages for the class weighted according to the number of

instances solved for each set of 11 instances with a specified time window length and horizon.

We first observe that for both classes of instances and independently of the number of stacks,
solving instances with larger time windows and with larger time window horizons is harder.
In fact, we can, solve 157, 135 and 112 instances with time window lengths of 15, 30 and 45,
respectively, and we can solve 145, 145, and 114 instances with the time window horizons of

500-1000, 1000-1200, and 1500-2000, respectively.

Second, for instances with one and two stacks, instances of class C1 are harder to solve. For
the one-stack variant, 77 instances in class C1 and 96 instances in class C2 are solved, and,
for the two-stack variant, 27 instances in class C1 and 63 instances in class C2 are solved.
This is probably due to the symmetry between the unit demand items. For instances solved
with three stacks, we obtain the opposite result which is probably due to the increase of the

number of items simultaneously in the vehicle for instances in class C2.

Third, solving instances in classes C1 and C2 with one stack yields better gaps than with
two and three stacks. For class C1, the gaps are on average 0.50%, 4.80%, and 3.07% for the
one-, two-, and three-stack variants, respectively. For class C2, the gaps are on average 0.46%,
3.59%, and 4.04% for the one-, two-, and three-stack variants, respectively. This is probably
due to a lower number of feasible paths with one stack, which also explains why solving
instances with one stack yields on average more vehicles in a solution. For class C1, the
average number of vehicles is 16.86, 8.74, and 12.53, while for class C2, the average number

of vehicles is 17.64, 10.35, and 9.44 for the one-, two-, and three-stack variants, respectively.

Fourth, for instances in class C1, solving them with three stacks yields better gaps than
with two stacks, i.e., 3.07% and 4.80% on average, respectively. We can also observe that
the average number of vehicles with three stacks is greater than with two stacks, i.e., 12.53
and 8.74 vehicles on average, respectively. This result holds for instances that are solved for
both two and three stacks. Interestingly, not all feasible solutions with respect to two stacks
are feasible with respect to three stacks because the stack capacities differ. In the proposed
instances, each vehicle has a capacity of six : with two stacks, each stack has a capacity
of three; and with three stacks, each stack has a capacity of two. Thus, from a managerial
perspective, it is interesting to see that having more stacks in a vehicle does not necessarily

reduce the total costs.



Table 6.2 — Summarized computational results for the variant with one stack

|

Instance

\ NbSolved \

Sec. | Gap (%) | Veh | maxItem |

Instances in class C1

w15-500-1000 11 59.9 0.00 | 24.18 3.64
w15-1000-1200 11 60.6 0.27 | 19.18 3.36
w15-1500-2000 7 98.6 0.39 | 12.71 4.14
w30-500-1000 10 | 1,783.1 0.53 | 20.00 3.80
w30-1000-1200 10 971.8 0.31 | 16.70 4.10
w30-1500-2000 8 654.3 0.00 | 12.63 4.25
w45-500-1000 7121304 1.92 | 15.00 4.57
w45-1000-1200 T 7722 0.98 | 13.14 4.00
w45-1500-2000 6 785.1 0.69 | 11.17 4.17
Weighted average 8.56 777.0 0.50 | 16.86 3.95
Instances in class C2
w15-500-1000 11 3.7 0.30 | 24.09 3.27
w15-1000-1200 11 3.8 0.25 | 19.18 3.45
w15-1500-2000 11 64.8 0.00 | 16.45 4.00
w30-500-1000 11 49.5 0.00 | 21.64 4.00
w30-1000-1200 11 21.5 0.57 | 18.00 3.64
w30-1500-2000 11 834.9 0.46 | 13.82 4.27
w45-500-1000 10 310.5 0.73 | 17.60 4.00
w45-1000-1200 11 267.3 1.24 | 15.27 3.73
w45-1500-2000 9| 478.3 0.67 | 11.56 3.89
Weighted average 10.67 219.9 0.46 | 17.64 3.80
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Table 6.3 — Summarized computational results for the variant with two stacks

|

Instance

\ NbSolved \

Sec. | Gap (%) | Veh | maxItem |

Instances in class C1

w15-500-1000 7 547.8 3.08 | 11.86 4.86
w15-1000-1200 51 2,036.2 1.87 | 9.80 4.20
w15-1500-2000 2 563.9 4.11 | 6.00 4.50
w30-500-1000 3 523.7 9.44 | 8.00 4.67
w30-1000-1200 3| 2,396.4 4.80 | 8.33 5.00
w30-1500-2000 1 162.1 0.01 | 5.00 6.00
w45-500-1000 2 | 2,956.5 7.49 | 7.50 4.50
w45-1000-1200 3| 3,480.1 10.95 | 6.33 5.33
w45-1500-2000 1 17.4 0.00 | 4.00 4.00
Weighted average 3.00 | 1,497.7 4.80 | 8.74 4.74
Instances in class C2
w15-500-1000 11 541.4 2.75 | 14.91 4.27
w15-1000-1200 9 939.1 4.82 | 12.11 3.67
w15-1500-2000 6 | 1,391.0 5.58 | 7.83 4.00
w30-500-1000 6 124.0 3.16 | 10.83 4.50
w30-1000-1200 9| 1,070.6 2.43 | 10.89 3.78
w30-1500-2000 6| 1,410.6 2.91 | 7.00 4.00
w45-500-1000 4 419.7 5.89 | 8.25 4.25
w45-1000-1200 6 | 1,037.0 2.80 | 8.50 4.00
w45-1500-2000 6 | 1,234.6 3.39 | T.17 4.50
Weighted average 7.00 903.2 3.59 | 10.35 4.08
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Table 6.4 — Summarized computational results for the variant with three stacks

|

Instance

\ NbSolved \

Sec. | Gap (%) | Veh | maxItem |

Instances in class C1

w15-500-1000 11 294.3 3.29 | 16.00 3.00
w15-1000-1200 11 492.1 3.28 | 12.45 3.00
w15-1500-2000 10 844.8 4.62 | 10.80 3.00
w30-500-1000 11 246.6 2.55 | 15.64 3.00
w30-1000-1200 9 559.9 2.48 | 10.56 3.00
w30-1500-2000 10 | 1,584.8 1.71 | 10.40 3.00
w45-500-1000 11 543.2 1.94 | 15.09 3.00
w45-1000-1200 9 267.6 5.55 | 10.78 3.00
w45-1500-2000 71 1,071.2 2.29 | 857 3.00
Weighted average 9.89 635.7 3.07 | 12.53 3.00
Instances in class C2
w15-500-1000 10 | 1,308.4 3.04 | 13.50 4.60
w15-1000-1200 8 726.5 4.94 | 11.25 4.25
w15-1500-2000 51 1,764.7 3.47 | 7.20 5.00
w30-500-1000 5 838.1 4.39 | 9.60 4.80
w30-1000-1200 7 825.2 3.67 | 9.43 4.00
w30-1500-2000 4 554.0 6.78 | 6.00 4.75
w45-500-1000 4 | 3,033.5 3.14 | 7.50 5.00
w45-1000-1200 5 287.3 3.68 | 7.40 4.20
w45-1500-2000 4 1 1,965.9 5.43 | 6.25 4.50
Weighted average 5.78 | 1,179.5 4.04 | 9.44 4.52
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Finally, for instances in class C2, solving them with two stacks yields better gaps than with
three stacks, i.e., 3.59% and 4.04% on average, but yields more vehicles, i.e., 10.35 and 9.44
vehicles on average, respectively. In the proposed instances, a vehicle with two stacks has
a total capacity of 24 and a vehicle with three stacks has a total capacity of 27. Thus, an
increase of 11.1% of the total vehicle capacity decreases, on average, the number of vehicles

by 8.8% and the maximum number of items by 9.7% which seems coherent.

6.5.3 Impact of the Number of Stacks

Table 6.5 presents computational results showing the impact of the number of stacks on
the total traveled distance, the number of vehicles used, and the maximum number of items
simultaneously in a vehicle. Detailed computational results are presented in Appendix B.
In the table, we compare the results obtained with one stack to the results obtained with
two and three stacks. We present the following information : A Dist (%), the average re-
lative difference in the total traveled distance, computed as (Disty — Disty)/(Dist;) and
(Dists — Disty)/(Disty), where Dist;, j = {1,2, 3}, is the distance with j stacks; A Veh (%)
, the average relative difference in the number of vehicles, computed as (Vehy—Vehy)/(Veh,)
and (Vehs — Vehy)/(Vehy), where Veh;,j = {1,2,3}, is the number of vehicles with j
stacks; and A mazltem (%), the average relative difference in the maximum number of
items simultaneously in a vehicle, computed as (mazltemy — maxltem,)/(maxitem;) and
(mazItems—maxltemy)/(maxItem,), where maxItem;, j = {1, 2,3}, is the maximum num-

ber of items simultaneously in a vehicle with j stacks.

For instances in class C1, the total capacity of the vehicle is 6 independently of the number
of stacks. First, increasing the number of stacks from one to two and from one to three
decreases the total traveled distance by an average of 28.6% and 22.8%, and decreases the
number of vehicles used by an average of 39.0% and 29.6%, respectively. Second, increasing
the number of stacks from one to two increases the maximum number of items simultaneously
in a vehicle by an average of 35.2%. Comparing one with three stacks, the maximum number
of requests simultaneously in a vehicle decreases by an average of 21.6%. This last result is
counterintuitive, but by examining the optimal solutions with three stacks, the maximum
number of items is three and is often reached, whereas with one stack, this maximum is

reached less often.

For the class C2, the total capacity of the vehicle is 24 for instances with one and two
stacks, and 27 for instances with three stacks. Even though the capacity is not the same

for the three-stack variant, we present the impact of the number of stacks on the results to



Table 6.5 — Summarized impact of the number of stacks on the results

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) ‘ A Veh (%) ‘ A mazltem (%) | A Dist (%) ‘ A Veh (%) ‘ A maxItem (%)
Instances in class C1
w15-500-1000 -32.0 —41.4 45.2 —28.3 -34.0 -15.0
w15-1000-1200 —25.9 -36.3 31.7 -23.3 —34.2 9.1
w15-1500-2000 -31.7 —45.5 29.2 —22.9 —26.4 —25.7
w30-500-1000 -30.1 -40.1 30.6 -22.6 -26.3 -20.0
w30-1000-1200 -25.1 -34.3 38.9 -20.1 -33.4 -23.9
w30-1500-2000 -30.0 -37.5 50.0 -19.2 —26.6 -27.5
w45-500-1000 —27.1 -37.4 12.5 -17.9 -18.9 -33.6
w45-1000-1200 —27.0 -34.7 33.3 —24.2 —29.8 -25.0
w45-1500-2000 -23.9 -50.0 33.3 -25.1 -32.2 —25.8
Weighted average —28.6 -39.0 35.2 -22.8 -29.6 -21.6
Instances in class C2
w15-500-1000 —26.2 -37.6 32.6 —29.6 —40.4 45.0
w15-1000-1200 —23.2 -32.1 11.1 —26.2 -36.9 31.3
w15-1500-2000 —22.0 -38.9 11.1 —28.0 —42.0 41.7
w30-500-1000 -29.7 —42.2 20.8 -36.6 -49.0 30.0
w30-1000-1200 ~18.5 -33.2 5.2 -22.2 -34.9 14.3
w30-1500-2000 ~-17.9 -36.0 5.6 —26.5 —40.2 31.3
w45-500-1000 —-19.6 -30.4 14.6 —21.7 -37.1 33.3
w45-1000-1200 —21.1 -33.2 16.7 —26.4 -37.2 25.0
w45-1500-2000 -14.9 -30.3 18.1 -26.5 -35.2 22.9
Weighted average -21.8 -35.0 15.8 —27.2 -39.1 314
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show the general trend. We first observe that increasing the number of stacks from one to
two and from one to three decreases the total traveled distance by an average of 21.8% and
27.2%, respectively. It also decreases the number of vehicles used by an average of 35.0%
and 39.1%, and increases the maximum number of requests simultaneously in a vehicle by

an average of 15.8% and 31.4%, respectively.

Thus, for both classes C1 and C2, increasing the number of stacks from one to two has a
positive impact on the total traveled distance and on the minimal number of vehicles needed.
Interestingly, the additional gain of three stacks is significantly smaller than increasing the

number of stacks from one to two.

6.6 Conclusions

In this paper, we have introduced the PDPTWMS and described two column generation
algorithms to solve it. An ad hoc labeling algorithm for shortest path problems with multiple
stacks is proposed and implemented. Moreover, we have adapted the hybrid branch-price-and-
cut algorithm of Cherkesly et al. (2014) for the PDPTWL to the PDPTWMS. In addition,
we have introduced a new notation to represent a stack in a vehicle which can be adapted to
variants of the PDPTW with loading constraints such as the PDPTW with handling costs.
Instances involving up to 75 requests and three stacks were solved to optimality within two
hours of computational time. On the PDPTWL instances, Cherkesly et al. (2014) had shown
that, for their instances, the BPC' Relazed seemed to outperform the BPC MS. On our new
instances, we obtain the opposite result, i.e., the BPC Relaxed is slightly outperformed by
the BPC' MS. Our results also show that increasing the number of stacks from one to two
has a positive impact on the total traveled distance and on the minimal number of vehicles

used, but increasing it from two to three does not yield a significant additional gain.

Appendix A. Detailed Computational Results

This appendix presents the detailed computational results on our test instances. Tables 6.6—
6.11 present the results obtained when solving each instance with the branch-price-and-cut
algorithm with multi-stack feasible paths, and solving the elementary shortest path problem.
In each table, the first column indicates the name of the instance corresponding to its number
of nodes, its instance class (C1 or C2), the length of the time windows (15, 30 or 45),
and the time window horizon. For example, instance a280-51-c1-w15-500-1000 involves 51
nodes, is in class C1, has a time window length of 15, and a time window horizon such that
w; < 500,Vi € P and w; < 1000,Vi € D. We present the following information : Sec.,
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the CPU time in seconds; z, the lower bound at the root node before adding any cuts; z*,
the optimal solution value; Veh., the minimal number of vehicles in the optimal solution;
maxltem, the maximal number of items simultaneously in a vehicle; OC| the total number
of constraints (6.46), (6.47), and (6.49) added to the master problem; and B, the number
of nodes in the search tree including the root node. For all the instances tested with our
algorithms, no feasible solution was found whenever the time limit was reached. Thus, we do

not report a lower bound value even if one was found.

Table 6.6 — Computational results for the variant with one stack for instances in class C1

(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-¢1-w15-500-1000 0.0 | 1,105,647.0 | 1,105,647.0 11 4 0] 1
a280-61-c1-w15-500-1000 0.1 | 1,808,284.8 | 1,808,284.8 18 3 0| 1
a280-71-c1-w15-500-1000 0.4 | 1,709,058.6 | 1,709,058.6 17 3 0| 1
a280-81-c1-w15-500-1000 2.1 | 2,212,102.1 | 2,212,102.1 22 3 0] 1
a280-91-c1-w15-500-1000 1.2 | 2,514,106.2 | 2,514,106.2 25 4 0] 1
a280-101-c1-w15-500-1000 1.6 | 2,514,863.5 | 2,514,863.5 25 3 0| 1
a280-111-c1-w15-500-1000 0.5 | 2,516,452.5 | 2,516,452.5 25 4 0| 1
a280-121-c1-w15-500-1000 48.4 | 2,917,967.1 | 2,917,967.1 29 4 0| 1
a280-131-c1-w15-500-1000 53.9 | 2,917,267.7 | 2,917,267.7 29 3 0| 1
a280-141-c1-w15-500-1000 19.2 | 3,419,880.8 | 3,419,880.8 34 4 0| 1
a280-151-c1-w15-500-1000 532.0 | 3,118,717.5 | 3,118,717.5 31 5 0| 1
a280-51-c1-w15-1000-1200 0.1 | 1,105,937.2 | 1,105,937.2 11 3 0| 1
a280-61-c1-w15-1000-1200 0.2 | 1,207,347.2 | 1,207,347.2 12 3 0| 1
a280-71-c1-w15-1000-1200 0.5 | 1,308,216.2 | 1,308,216.2 13 3 0| 1
a280-81-¢1-w15-1000-1200 12.0 | 1,509,621.7 | 1,509,621.7 15 3 0| 1
a280-91-¢1-w15-1000-1200 8.2 | 2,112,198.8 | 2,112,198.8 21 4 0] 1
a280-101-c1-w15-1000-1200 3.3 | 1,663,127.4 | 1,713,265.2 17 4 8| 3
a280-111-c1-w15-1000-1200 6.4 | 2,113,948.0 | 2,113,948.0 21 3 0| 1
a280-121-c1-w15-1000-1200 373.4 | 2,315,420.2 | 2,315,420.2 23 4 0] 1
a280-131-c1-w15-1000-1200 119.8 | 2,114,163.8 | 2,114,163.8 21 4 0] 1
a280-141-c1-w15-1000-1200 102.6 | 2,919,615.0 | 2,919,615.0 29 3 0| 1
a280-151-c1-w15-1000-1200 40.0 | 2,817,812.9 | 2,817,812.9 28 3 0| 1
a280-51-¢1-w15-1500-2000 0.1 | 1,105,889.5 | 1,105,889.5 11 3 0| 1
a280-61-c1-w15-1500-2000 1.7 | 1,106,952.5 | 1,106,952.5 11 4 0| 1
a280-71-¢c1-w15-1500-2000 17.9 | 1,006,670.1 | 1,006,670.1 10 5 0| 1
a280-81-¢1-w15-1500-2000 6.2 | 1,008,842.1 | 1,008,842.1 10 5 0| 1




Table 6.6 — Computational results for the variant with one stack for instances in class C1
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(cont’d)

Instance Sec. z z* | Veh. | maxItem | OC | B
a280-91-c1-w15-1500-2000 288.5 | 1,409,820.3 | 1,409,820.3 14 4 1
a280-101-c1-w15-1500-2000 68.6 | 1,510,936.0 | 1,510,936.0 15 4 1
a280-111-c1-w15-1500-2000 307.4 | 1,763,132.1 | 1,813,022.0 18 4 2
a280-121-c1-w15-1500-2000

a280-131-c1-w15-1500-2000

a280-141-c1-w15-1500-2000

a280-151-c1-w15-1500-2000

a280-51-c¢1-w30-500-1000 0.5 | 1,004,669.6 | 1,004,669.6 10 4 0] 1
a280-61-c1-w30-500-1000 1.6 | 1,407,454.9 | 1,407,454.9 14 3 0] 1
a280-71-c1-w30-500-1000 0.5 | 1,608,457.6 | 1,608,457.6 16 4 0] 1
a280-81-c1-w30-500-1000 96.2 | 1,660,592.6 | 1,710,398.8 17 3 0| 2
a280-91-c¢1-w30-500-1000 150.9 | 1,811,246.7 | 1,811,246.7 18 4 0| 1
a280-101-¢1-w30-500-1000 31.2 | 2,213,749.1 | 2,213,759.2 22 4 5| 2
a280-111-¢1-w30-500-1000 | 1,796.0 | 2,465,393.9 | 2,515,458.0 25 4 8| 5
a280-121-¢1-w30-500-1000 | 6,988.8 | 2,515,845.2 | 2,515,845.2 25 4 0| 1
a280-131-c1-w30-500-1000 | 2,283.1 | 2,415,711.4 | 2,415,711.4 | 24 41 o] 1
a280-141-¢1-w30-500-1000

a280-151-¢1-w30-500-1000 | 6,481.7 | 2,906,085.9 | 2,918,603.3 29 4 2| 3
a280-51-c¢1-w30-1000-1200 0.4 | 1,004,966.1 | 1,004,966.1 10 4 0] 1
a280-61-c1-w30-1000-1200 0.5 | 1,206,358.7 | 1,206,358.7 12 3 0] 1
a280-71-c¢1-w30-1000-1200 10.2 | 1,307,419.2 | 1,307,419.2 13 4 0| 1
a280-81-c1-w30-1000-1200 20.1 | 1,409,119.5 | 1,409,119.5 14 4 0 1
a280-91-c¢1-w30-1000-1200 8.8 | 1,509,756.4 | 1,509,756.4 15 5 0] 1
a280-101-c1-w30-1000-1200 22.1 | 1,562,241.1 | 1,612,187.1 16 4 0| 6
a280-111-¢1-w30-1000-1200 120.2 | 1,913,682.3 | 1,913,683.8 19 4 7T 2
a280-121-c1-w30-1000-1200 | 1,647.7 | 2,215,871.3 | 2,215,871.3 22 4 0] 1
a280-131-c1-w30-1000-1200

a280-141-c1-w30-1000-1200 | 2,486.5 | 2,215,548.2 | 2,215,548.2 22 4 0| 1
a280-151-¢1-w30-1000-1200 | 5,401.1 | 2,415,924.4 | 2,415,924.4 24 5 0| 1
a280-51-¢1-w30-1500-2000 0.1 804,751.1 804,751.1 4 0| 1
a280-61-c1-w30-1500-2000 6.5 805,473.4 805,473.4 4 0] 1
a280-71-c1-w30-1500-2000 27.8 | 1,307,372.4 | 1,307,372.4 13 3 0] 1
a280-81-c1-w30-1500-2000 16.6 | 1,208,314.2 | 1,208,314.2 12 4 0| 1
a280-91-c1-w30-1500-2000 431.8 | 1,309,938.8 | 1,309,938.8 13 5 0] 1
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Table 6.6 — Computational results for the variant with one stack for instances in class C1

(cont’d)

Instance Sec. z z* | Veh. | maxItem | OC | B
a280-101-c1-w30-1500-2000 412.2 | 1,411,245.3 | 1,411,245.3 14 4 1
a280-111-c1-w30-1500-2000 598.6 | 1,512,520.4 | 1,512,520.4 15 5 1
a280-121-c1-w30-1500-2000 | 3,740.8 | 1,813,294.2 | 1,813,294.2 18 5) 1
a280-131-c1-w30-1500-2000

a280-141-c1-w30-1500-2000

a280-151-c1-w30-1500-2000

a280-51-c1-w45-500-1000 1.7 | 1,105,693.2 | 1,105,693.2 11 4 1
a280-61-c1-w45-500-1000 9.9 | 1,256,820.3 | 1,306,849.4 13 4 2
a280-71-c1-w45-500-1000 269.2 | 1,073,686.5 | 1,107,077.6 11 51 14| 6
a280-81-c1-w45-500-1000 1,382.7 | 1,459,158.4 | 1,509,170.9 15 41 12| 3
a280-91-c1-w45-500-1000 803.1 | 1,609,893.8 | 1,609,893.8 16 5 1
a280-101-c1-w45-500-1000 | 6,504.3 | 1,946,106.6 | 2,012,805.5 20 5 2
a280-111-¢1-w45-500-1000 | 5,941.8 | 1,911,894.5 | 1,911,894.5 19 5 1
a280-121-c¢1-w45-500-1000

a280-131-c1-w45-500-1000

a280-141-c1-w45-500-1000

a280-151-c1-w45-500-1000

a280-51-c1-w45-1000-1200 1.1 804,649.0 804,649.0 4 0] 1
a280-61-c1-w45-1000-1200 1.6 905,443.6 905,443.6 4 0] 1
a280-71-c1-w45-1000-1200 3.1 | 1,207,359.0 | 1,207,359.0 12 4 0] 1
a280-81-c1-w45-1000-1200 | 3,041.7 | 1,358,979.4 | 1,409,060.4 14 4 0] 62
a280-91-c¢1-w45-1000-1200 123.1 | 1,459,618.5 | 1,509,809.5 15 41 16| 3
a280-101-c1-w45-1000-1200 | 1,751.2 | 1,711,792.9 | 1,711,812.7 17 4 13 | 12
a280-111-c1-w45-1000-1200 483.3 | 1,713,895.5 | 1,713,895.5 17 4 0] 1
a280-121-c1-w45-1000-1200

a280-131-c1-w45-1000-1200

a280-141-c1-w45-1000-1200

a280-151-c1-w45-1000-1200

a280-51-c¢1-w45-1500-2000 0.1 805,142.4 805,142.4 8 3 0| 1
a280-61-c1-w45-1500-2000 4.5 | 1,006,154.4 | 1,006,154.4 10 5 0| 1
a280-71-c1-w45-1500-2000 36.3 | 1,007,200.9 | 1,007,200.9 10 5 0] 1
a280-81-c1-w45-1500-2000 11.6 | 1,308,730.7 | 1,308,730.7 13 4 0] 1
a280-91-c1-w45-1500-2000 50.7 | 1,159,978.6 | 1,209,905.5 12 4 0| 2
a280-101-c1-w45-1500-2000 | 4,607.2 | 1,411,697.7 | 1,411,697.7 14 4 0| 1




Table 6.6 — Computational results for the variant with one stack for instances in class C1

(cont’d and end)

110

Instance

Sec.

[

Veh.

maxItem

0oC

a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000




Table 6.7 — Computational results for the variant with one stack for instances in class C2
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(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w15-500-1000 0.0 | 1,506,585.3 | 1,506,585.3 15 3 0] 1
a280-61-c¢2-w15-500-1000 0.2 | 1,457,204.4 | 1,507,163.0 15 3 0| 2
a280-71-c¢2-w15-500-1000 0.2 | 1,508,562.9 | 1,508,562.9 15 3 0] 1
a280-81-c¢2-w15-500-1000 0.4 | 1,809,825.0 | 1,809,825.0 18 4 0] 1
a280-91-c¢2-w15-500-1000 1.1 | 1,911,167.3 | 1,911,167.3 19 3 0] 1
a280-101-¢2-w15-500-1000 0.5 | 2,716,189.8 | 2,716,189.8 27 3 0] 1
a280-111-¢2-w15-500-1000 1.1 | 2,817,077.5 | 2,817,077.5 28 3 0] 1
a280-121-¢2-w15-500-1000 11.8 | 2,616,706.3 | 2,616,706.3 26 4 0] 1
a280-131-¢2-w15-500-1000 8.4 | 3,418,753.8 | 3,418,753.8 34 3 0] 1
a280-141-¢2-w15-500-1000 12.0 | 3,118,588.4 | 3,118,588.4 31 3 0] 1
a280-151-¢2-w15-500-1000 5.1 | 3,721,381.7 | 3,721,381.7 37 4 0] 1
a280-51-¢2-w15-1000-1200 0.0 | 1,206,090.1 | 1,206,090.1 12 3 0] 1
a280-61-c¢2-w15-1000-1200 0.0 | 1,608,096.6 | 1,608,096.6 16 3 0] 1
a280-71-c2-w15-1000-1200 0.1 | 1,407,622.1 | 1,407,622.1 | 14 31 o] 1
a280-81-c2-w15-1000-1200 04| 1,811,171.3 | 1,811,171.3 18 3 0 1
a280-91-¢2-w15-1000-1200 0.5 | 1,811,570.2 | 1,811,570.2 18 4 0| 1
2280-101-c2-w15-1000-1200 1.7 | 1,712,400.2 | 1,712,400.2 | 17 41 o] 1
a280-111-c2-w15-1000-1200 2.4 | 1,913,406.5 | 1,913,406.5 19 3 0] 1
a280-121-¢2-w15-1000-1200 6.6 | 1,762,821.5 | 1,812,664.0 18 4 0| 2
a280-131-¢2-w15-1000-1200 6.9 | 2,215,077.3 | 2,215,077.3 22 4 0] 1
a280-141-¢2-w15-1000-1200 8.4 | 3,017,913.1 | 3,017,913.1 30 3 0] 1
a280-151-c2-w15-1000-1200 15.3 | 2,718,035.8 | 2,718,035.8 27 4 0] 1
a280-51-¢2-w15-1500-2000 0.3 | 1,105,556.8 | 1,105,556.8 11 3 0] 1
a280-61-¢2-w15-1500-2000 0.1 | 1,006,239.9 | 1,006,239.9 10 4 0] 1
a280-71-c¢2-w15-1500-2000 1.2 | 1,208,386.1 | 1,208,386.1 12 4 0| 1
a280-81-¢2-w15-1500-2000 2.9 | 1,609,497.7 | 1,609,497.7 16 3 0] 1
a280-91-¢2-w15-1500-2000 3.3 | 1,309,653.6 | 1,309,653.6 13 4 0] 1
a280-101-c2-w15-1500-2000 7.3 | 1,511,317.0 | 1,511,317.0 15 4 0] 1
a280-111-c2-w15-1500-2000 58.2 | 1,913,589.1 | 1,913,589.1 19 5 0] 1
a280-121-c2-w15-1500-2000 57.2 | 1,613,194.9 | 1,613,194.9 16 4 0 1
a280-131-c2-w15-1500-2000 47.6 | 2,214,746.1 | 2,214,746.1 22 4 0 1
a280-141-c2-w15-1500-2000 75.7 | 2,415,844.1 | 2,415,844.1 24 5) 0 1
a280-151-c2-w15-1500-2000 459.1 | 2,317,319.0 | 2,317,319.0 23 4 0] 1
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Table 6.7 — Computational results for the variant with one stack for instances in class C2

(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w30-500-1000 0.0 | 1,306,410.9 | 1,306,410.9 13 3 0] 1
a280-61-c¢2-w30-500-1000 0.5 | 1,607,490.2 | 1,607,490.2 16 3 0] 1
a280-71-c¢2-w30-500-1000 0.6 | 1,809,178.3 | 1,809,178.3 18 4 0] 1
a280-81-¢2-w30-500-1000 6.3 | 1,910,466.8 | 1,910,466.8 19 4 0] 1
a280-91-¢2-w30-500-1000 3.7 1 2,212,887.0 | 2,212,923.8 22 4 8| 4
a280-101-¢2-w30-500-1000 3.4 |2414,303.6 | 2,414,303.6 24 5 0| 1
a280-111-¢2-w30-500-1000 28.0 | 2,314,435.2 | 2,314,435.2 23 4 0| 1
a280-121-¢2-w30-500-1000 91.9 | 2,415,380.8 | 2,415,380.8 24 4 0| 1
a280-131-¢2-w30-500-1000 86.2 | 2,616,226.7 | 2,616,226.7 26 4 0| 1
a280-141-¢2-w30-500-1000 134.4 | 2,716,713.0 | 2,716,713.0 27 4 0] 1
a280-151-¢2-w30-500-1000 189.8 | 2,616,748.4 | 2,616,774.5 26 51 19| 2
a280-51-¢2-w30-1000-1200 0.0 904,649.6 904,649.6 9 3 0] 1
a280-61-¢2-w30-1000-1200 0.7 | 1,005,432.3 | 1,005,437.1 10 3 0| 3
a280-71-¢2-w30-1000-1200 1.0 | 1,407,500.7 | 1,407,507.1 14 5 41 2
a280-81-¢2-w30-1000-1200 0.9 | 1,409,499.0 | 1,409,499.0 14 4 0| 1
a280-91-c2-w30-1000-1200 1.0 | 1,811,139.4 | 1,811,139.4 18 3 0 1
a280-101-c2-w30-1000-1200 4.9 | 2,013,638.1 | 2,013,638.1 20 3 0] 1
a280-111-c2-w30-1000-1200 51.1 | 1,863,134.4 | 1,913,243.5 19 4 14 | 28
a280-121-¢2-w30-1000-1200 54.9 | 2,190,325.7 | 2,215,280.7 22 4 0| 2
a280-131-¢2-w30-1000-1200 16.3 | 1,963,883.7 | 2,013,900.9 20 4 0| 2
a280-141-¢2-w30-1000-1200 35.3 | 2,616,709.1 | 2,616,709.1 26 4 0] 1
a280-151-¢2-w30-1000-1200 70.6 | 2,616,560.0 | 2,616,560.0 26 3 0] 1
a280-51-¢2-w30-1500-2000 0.2 904,923.5 904,923.5 3 0] 1
a280-61-¢2-w30-1500-2000 0.5 706,464.3 706,464.3 4 0| 1
a280-71-c¢2-w30-1500-2000 1.2 | 1,307,458.4 | 1,307,458.4 13 4 0| 1
a280-81-¢2-w30-1500-2000 2.1 | 1,208,839.3 | 1,208,839.3 12 4 0] 1
a280-91-¢2-w30-1500-2000 4.8 | 1,109,237.8 | 1,109,237.8 11 4 0] 1
a280-101-c2-w30-1500-2000 58.2 | 1,245,157.2 | 1,311,314.2 13 5 0| 2
a280-111-¢2-w30-1500-2000 15.1 | 1,411,640.6 | 1,411,640.6 14 4 0| 1
a280-121-c2-w30-1500-2000 118.0 | 1,512,718.8 | 1,512,718.8 15 ) 0 1
a280-131-c2-w30-1500-2000 326.5 | 1,713,721.4 | 1,713,721.4 17 5) 0 1
a280-141-¢2-w30-1500-2000 | 4,938.5 | 1,914,710.9 | 1,914,755.5 19 5 2| 2
a280-151-c2-w30-1500-2000 | 3,719.1 | 2,216,229.3 | 2,216,235.2 22 4 9 4
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Table 6.7 — Computational results for the variant with one stack for instances in class C2
(cont’d and end)

Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w45-500-1000 0.5 | 1,005,077.4 | 1,005,077.4 10 3 0] 1
a280-61-c2-w45-500-1000 20.2 | 1,005,400.6 | 1,005,434.9 10 41 20| 5
a280-71-c¢2-w45-500-1000 16.3 | 1,307,698.0 | 1,307,744.3 13 41 14| 6
a280-81-c2-w45-500-1000 3.6 | 1,509,460.8 | 1,509,460.8 15 4 1
a280-91-c2-w45-500-1000 8.3 | 1,409,459.2 | 1,409,459.2 14 4 1
a280-101-c¢2-w45-500-1000 163.9 | 1,807,855.2 | 1,912,082.1 19 4| 43| 4
a280-111-¢2-w45-500-1000 105.6 | 1,913,493.3 | 1,913,493.3 19 4 0| 1
a280-121-¢2-w45-500-1000

a280-131-c2-w45-500-1000 226.9 | 2,214,734.3 | 2,214,734.3 22 4 0 1
a280-141-¢2-w45-500-1000 780.2 | 2,667,246.8 | 2,716,908.3 27 4 0| 2
a280-151-¢2-w45-500-1000 | 1,779.5 | 2,716,695.1 | 2,716,695.1 27 5 0] 1
a280-51-¢2-w45-1000-1200 0.1 | 1,005,255.3 | 1,005,255.3 10 3 0] 1
a280-61-c2-w45-1000-1200 0.4 | 1,106,345.6 | 1,106,345.6 11 3 0| 1
a280-71-c¢2-w45-1000-1200 1.6 | 1,206,790.8 | 1,206,858.9 12 4 6| 2
a280-81-¢2-w45-1000-1200 3.6 | 1,157,910.0 | 1,207,777.5 12 3 0| 2
a280-91-c2-w45-1000-1200 2.9 | 1,410,414.7 | 1,410,414.7 14 4 0 1
a280-101-c2-w45-1000-1200 11.5 | 1,662,326.9 | 1,712,007.2 17 4| 13| 3
a280-111-c2-w45-1000-1200 16.7 | 1,612,507.0 | 1,612,507.0 16 4 0] 1
a280-121-¢2-w45-1000-1200 152.1 | 1,813,012.4 | 1,813,012.4 18 4 0| 1
a280-131-c2-w45-1000-1200 745.3 | 1,813,883.3 | 1,913,259.6 19 4| 25|17
a280-141-c2-w45-1000-1200 | 1,452.3 | 1,789,304.4 | 1,814,371.8 18 41 49 | 32
a280-151-¢2-w45-1000-1200 553.3 | 2,116,420.0 | 2,116,463.9 21 4| 12| 5
a280-51-¢2-w45-1500-2000 0.2 705,047.1 705,047.1 7 4 0| 1
a280-61-c2-w45-1500-2000 0.5 | 1,106,182.1 | 1,106,182.1 11 3 0| 1
a280-71-¢2-w45-1500-2000 12.9 | 1,039,596.5 | 1,106,349.9 11 4 9| 3
a280-81-¢2-w45-1500-2000 20.1 908,183.5 908,466.8 9 4 91 9
a280-91-¢2-w45-1500-2000 3.5 | 1,208,948.2 | 1,208,948.2 12 4 0| 1
a280-101-c2-w45-1500-2000 23.9 | 1,211,215.2 | 1,211,215.2 12 4 0| 1
a280-111-c2-w45-1500-2000 17.9 | 1,210,969.4 | 1,210,969.4 12 4 0| 1
a280-121-c2-w45-1500-2000 368.5 | 1,413,167.6 | 1,413,207.2 14 4 4 9
a280-131-c2-w45-1500-2000 | 3,857.3 | 1,613,115.5 | 1,613,128.6 16 41 10| 8
a280-141-c2-w45-1500-2000

a280-151-c2-w45-1500-2000
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Table 6.8 — Computational results for the variant with two stacks for instances in class C1

(cont’d)

Instance

Sec.

z

z*

Veh.

maxItem

0oC

a280-51-c1-w15-500-1000
a280-61-c1-w15-500-1000
a280-71-c1-w15-500-1000
a280-81-¢1-w15-500-1000
a280-91-¢1-w15-500-1000
a280-101-c1-w15-500-1000
a280-111-c1-w15-500-1000
a280-121-c1-w15-500-1000
a280-131-c1-w15-500-1000
a280-141-c1-w15-500-1000
a280-151-c1-w15-500-1000

1.8
51.5
74.3

867.4
1,677.1
693.5
469.2

704,140.1

955,662.7
1,014,253.7
1,207,975.7
1,309,472.0
1,359,661.3
1,535,073.1

704,140.1
1,005,105.4
1,106,783.1
1,207,975.7
1,309,504.1
1,409,613.4
1,611,220.5

10
11
12
13
14
16

Ot Ot = O = Ot Ot

13

17

W N 0 R N T

a280-51-c1-w15-1000-1200
a280-61-c1-w15-1000-1200
a280-71-c1-w15-1000-1200
a280-81-c1-w15-1000-1200
a280-91-c1-w15-1000-1200
a280-101-c1-w15-1000-1200
a280-111-c1-w15-1000-1200
a280-121-c1-w15-1000-1200
a280-131-c1-w15-1000-1200
a280-141-c1-w15-1000-1200
a280-151-c1-w15-1000-1200

3.6
27.1
682.9

4,935.1

4,532.5

671,088.0
805,276.5
881,291.8

1,209,115.3

1,285,981.9

704,241.7
805,276.5
906,162.9

1,209,115.3

1,310,818.1

12

13

17

a280-51-c1-w15-1500-2000
a280-61-c1-w15-1500-2000
a280-71-c1-w15-1500-2000
a280-81-c1-w15-1500-2000
a280-91-c1-w15-1500-2000
a280-101-c1-w15-1500-2000
a280-111-c1-w15-1500-2000
a280-121-c1-w15-1500-2000
a280-131-c1-w15-1500-2000
a280-141-c1-w15-1500-2000
a280-151-c1-w15-1500-2000

340.4
787.4

554,372.4
604,751.2

604,017.4
604,751.2
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Table 6.8 — Computational results for the variant with two stacks for instances in class C1

(cont’d)

Instance

Sec.

z

z*

Veh.

maxItem

0oC

a280-51-c1-w30-500-1000
a280-61-c1-w30-500-1000
a280-71-c1-w30-500-1000
a280-81-c1-w30-500-1000
a280-91-c1-w30-500-1000
a280-101-c1-w30-500-1000
a280-111-c1-w30-500-1000
a280-121-c1-w30-500-1000
a280-131-c1-w30-500-1000
a280-141-c1-w30-500-1000
a280-151-c1-w30-500-1000

711.5
494.6
365.0

953,767.5
714,272.0
917,222.5

603,547.1
804,773.3
1,005,906.0

10

21
25

- w w | ™

a280-51-c1-w30-1000-1200
a280-61-c1-w30-1000-1200
a280-71-c1-w30-1000-1200
a280-81-c1-w30-1000-1200
a280-91-c1-w30-1000-1200
a280-101-c1-w30-1000-1200
a280-111-c1-w30-1000-1200
a280-121-c1-w30-1000-1200
a280-131-c1-w30-1000-1200
a280-141-c1-w30-1000-1200
a280-151-c1-w30-1000-1200

232.1
165.6

6,791.4

653,619.3
704,727.8

1,028,448.3

703,716.1
704,727.8

1,109,220.7

11

10

34

a280-51-c1-w30-1500-2000
a280-61-c1-w30-1500-2000
a280-71-c1-w30-1500-2000
a280-81-c1-w30-1500-2000
a280-91-c1-w30-1500-2000
a280-101-c1-w30-1500-2000
a280-111-c1-w30-1500-2000
a280-121-c1-w30-1500-2000
a280-131-c1-w30-1500-2000
a280-141-c1-w30-1500-2000
a280-151-c1-w30-1500-2000

162.1

503,285.3

503,325.0

39

16
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Table 6.8 — Computational results for the variant with two stacks for instances in class C1
(cont’d and end)

Instance

Sec.

z

z*

Veh.

maxItem

0oC

a280-51-c1-w45-500-1000
a280-61-c1-w45-500-1000
a280-71-c1-w45-500-1000
a280-81-c1-w45-500-1000
a280-91-¢1-w45-500-1000
a280-101-c1-w45-500-1000
a280-111-c1-w45-500-1000
a280-121-c1-w45-500-1000
a280-131-c1-w45-500-1000
a280-141-c1-w45-500-1000
a280-151-c1-w45-500-1000

2,845.0
3,068.0

644,466.8
752,580.7

704,103.9
805,048.0

4
)

27

21

a280-51-c1-w45-1000-1200
a280-61-c1-w45-1000-1200
a280-71-c1-w45-1000-1200
a280-81-c1-w45-1000-1200
a280-91-c1-w45-1000-1200
a280-101-c1-w45-1000-1200
a280-111-c1-w45-1000-1200
a280-121-c1-w45-1000-1200
a280-131-c1-w45-1000-1200
a280-141-c1-w45-1000-1200
a280-151-c1-w45-1000-1200

1,198.3
3,559.5
5,682.5

472,853.8
516,846.8
705,751.0

503,405.3
603,928.4
805,415.2

29
55

17

a280-51-c1-w45-1500-2000
a280-61-c1-w45-1500-2000
a280-71-c1-w45-1500-2000
a280-81-c1-w45-1500-2000
a280-91-c1-w45-1500-2000
a280-101-c1-w45-1500-2000
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000

17.4

403,914.1

403,914.1
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Table 6.9 — Computational results for the variant with two stacks for instances in class C2

(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c2-w15-500-1000 6.1 804,375.0 804,506.1 8 4| 48 | 16
a280-61-c2-w15-500-1000 1.9 867,904.7 905,317.9 9 4
a280-71-c2-w15-500-1000 6.0 956,421.7 | 1,006,320.0 10 4
a280-81-c2-w15-500-1000 8.7 | 1,250,523.1 | 1,307,681.1 13 5| 15
a280-91-c¢2-w15-500-1000 110.3 | 1,258,642.3 | 1,308,469.4 13 51 26| 11
a280-101-c2-w15-500-1000 54.0 | 1,611,601.6 | 1,611,817.0 16 41 25| 13
a280-111-c2-w15-500-1000 69.9 | 1,787,934.1 | 1,812,796.4 18 41 12 4
a280-121-c2-w15-500-1000 | 2,738.1 | 1,626,114.1 | 1,712,384.1 17 4| 53| 39
a280-131-c2-w15-500-1000 | 2,177.2 | 1,797,801.6 | 1,813,249.3 18 5| 36| 37
a280-141-c2-w15-500-1000 551.6 | 1,964,742.4 | 2,014,119.1 20 4 35 10
a280-151-c2-w15-500-1000 231.2 | 2,142,837.7 | 2,215,602.5 22 4 20
a280-51-c2-w15-1000-1200 1.0 854,650.1 904,616.7 3
a280-61-c2-w15-1000-1200 1.4 822,315.4 905,305.4 3
a280-71-c2-w15-1000-1200 3.8 955,943.9 | 1,005,845.1 10 3| 11
a280-81-c2-w15-1000-1200 41.1 | 1,174,609.8 | 1,208,065.7 12 41 23| 11
a280-91-c2-w15-1000-1200 82.1 | 1,174,241.1 | 1,209,279.3 12 4 19 22
a280-101-c2-w15-1000-1200 563.8 | 1,222,364.3 | 1,310,248.8 13 4| 64| 39
a280-111-c2-w15-1000-1200 | 1,012.1 | 1,256,198.9 | 1,311,126.3 13 4 69 | 104
a280-121-¢2-w15-1000-1200 669.2 | 1,138,498.8 | 1,209,965.6 12 4| 54 9
a280-131-c2-w15-1000-1200
a280-141-c2-w15-1000-1200 | 6,077.2 | 1,888,867.7 | 1,913,702.4 19 4| 31| 64
a280-151-c2-w15-1000-1200
a280-51-c2-w15-1500-2000 8.1 554,299.1 603,995.5 6 4| 31 4
a280-61-c2-w15-1500-2000 8.3 605,268.3 605,570.0 6 4| 26 4
a280-71-c2-w15-1500-2000 153.5 726,483.4 805,775.4 8 4| 27 9
a280-81-c¢2-w15-1500-2000 324.0 824,160.5 906,454.0 9 4 0 2
a280-91-c¢2-w15-1500-2000 749.4 865,179.4 908,308.7 9 4| 61| 18
a280-101-c2-w15-1500-2000 | 7,102.7 895,442.9 909,507.8 9 4| 119 | 160
a280-111-c2-w15-1500-2000
a280-121-c2-w15-1500-2000
a280-131-c2-w15-1500-2000
a280-141-c2-w15-1500-2000
a280-151-c2-w15-1500-2000
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Table 6.9 — Computational results for the variant with two stacks for instances in class C2

(cont’d)

Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c2-w30-500-1000 2.1 679,392.0 704,319.5 7 4 0 2
a280-61-c2-w30-500-1000 33.2 855,367.6 905,162.2 9 5| 47 4
a280-71-c2-w30-500-1000 11.0 | 1,056,080.2 | 1,106,008.6 11 4 0 2
a280-81-c¢2-w30-500-1000 171.7 | 1,107,899.8 | 1,107,899.8 11 5 0 1
a280-91-c¢2-w30-500-1000 249.7 | 1,284,756.7 | 1,309,579.4 13 4| 38| 26
a280-101-c2-w30-500-1000 276.5 | 1,360,302.8 | 1,410,052.2 14 5| 16 5
a280-111-c2-w30-500-1000

a280-121-c2-w30-500-1000

a280-131-c2-w30-500-1000

a280-141-c2-w30-500-1000

a280-151-c2-w30-500-1000

a280-51-c2-w30-1000-1200 0.5 704,314.8 704,324.1 7 3 3 2
a280-61-c2-w30-1000-1200 4.7 655,125.4 704,687.0 7 3| 18 5
a280-71-c2-w30-1000-1200 12.5 906,049.3 906,094.7 9 4 9 2
a280-81-¢2-w30-1000-1200 22.7 | 1,004,991.1 | 1,008,098.4 10 41 10 4
a280-91-¢2-w30-1000-1200 129.7 | 1,168,697.1 | 1,208,357.5 12 4|1 19| 15
a280-101-c2-w30-1000-1200 | 103.0 | 1,210,282.4 | 1,210,282.4 | 12 41 o] 1
a280-111-c2-w30-1000-1200 | 4,133.4 | 1,276,467.0 | 1,311,048.2 13 3| 107 | 221
a280-121-¢2-w30-1000-1200

a280-131-¢2-w30-1000-1200 | 3,861.4 | 1,221,912.7 | 1,310,717.5 13 5| 64| 27
a280-141-¢2-w30-1000-1200 | 1,367.8 | 1,485,128.7 | 1,512,917.1 15 4 5 3
a280-151-c2-w30-1000-1200

a280-51-¢2-w30-1500-2000 14.5 503,907.4 503,914.7 5 4 2
a280-61-c2-w30-1500-2000 11.9 505,504.5 505,504.5 5 4 1
a280-71-¢2-w30-1500-2000 78.1 756,981.7 805,654.8 8 4| 52 4
a280-81-c¢2-w30-1500-2000 84.9 700,065.3 707,568.9 7 4| 30 4
a280-91-¢2-w30-1500-2000 | 1,943.6 723,751.3 807,307.3 8 4| 68| 50
a280-101-c2-w30-1500-2000

a280-111-¢2-w30-1500-2000 | 6,330.7 909,872.6 910,183.0 9 4| 75| 43
a280-121-c2-w30-1500-2000

a280-131-c2-w30-1500-2000

a280-141-c2-w30-1500-2000

a280-151-c2-w30-1500-2000
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Table 6.9 — Computational results for the variant with two stacks for instances in class C2
(cont’d and end)

Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c2-w45-500-1000 29.2 644,309.0 703,927.4 41 11 5
a280-61-c2-w45-500-1000 495.7 721,863.2 804,639.2 41 20 4
a280-71-c2-w45-500-1000 83.8 806,421.5 806,421.5 5 0 1
a280-81-c2-w45-500-1000 1,070.1 958,832.5 | 1,007,186.1 10 4| 62| 43
a280-91-c2-w45-500-1000
a280-101-c2-w45-500-1000
a280-111-c2-w45-500-1000
a280-121-c2-w45-500-1000
a280-131-c2-w45-500-1000
a280-141-c2-w45-500-1000
a280-151-c2-w45-500-1000
a280-51-c2-w45-1000-1200 0.9 703,894.7 703,894.7 7 4 0 1
a280-61-c2-w45-1000-1200 44.5 654,455.1 704,350.5 7 4| 52 7
a280-71-c2-w45-1000-1200 27.7 705,805.6 705,809.2 7 4 1 2
a280-81-c2-w45-1000-1200 114.7 796,563.7 806,929.8 8 41 20 3
a280-91-c2-w45-1000-1200 427.1 983,156.6 | 1,007,973.5 10 4| 54| 15
a280-101-c2-w45-1000-1200 | 5,607.2 | 1,137,055.0 | 1,209,618.5 12 4| 98 | &2
a280-111-c2-w45-1000-1200
a280-121-¢2-w45-1000-1200
a280-131-c2-w45-1000-1200
a280-141-¢2-w45-1000-1200
a280-151-c2-w45-1000-1200
a280-51-c2-w45-1500-2000 53.0 479,238.6 504,155.2 5 5| 61| 22
a280-61-c2-w45-1500-2000 89.2 704,556.5 704,677.8 7 4| 50| 20
a280-71-c2-w45-1500-2000 | 1,644.7 655,713.5 705,136.8 7 5| 62| 10
a280-81-¢2-w45-1500-2000 | 2,734.5 647,827.7 706,828.1 7 51 112 | 103
a280-91-c2-w45-1500-2000 293.3 809,319.0 809,325.4 8 4 3 2
a280-101-c2-w45-1500-2000
a280-111-c2-w45-1500-2000 | 2,592.8 909,438.6 909,514.5 9 4| 52| 10
a280-121-c2-w45-1500-2000
a280-131-c2-w45-1500-2000
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000
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Table 6.10 — Computational results for the variant with three stacks for instances in class C1

(cont’d)

Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c1-w15-500-1000 0.1 771,396.7 804,243.4 8 3 0
a280-61-c1-w15-500-1000 0.5 | 1,038,700.9 | 1,105,192.8 11 3 3
a280-71-c1-w15-500-1000 8.5 | 1,073,706.8 | 1,107,074.8 11 3| 17| 14
a280-81-c1-w15-500-1000 1.1 | 1,274,987.6 | 1,308,179.7 13 3 1 3
a280-91-c1-w15-500-1000 37.3 | 1,342,754.9 | 1,409,233.6 14 3| 28| 30
a280-101-c1-w15-500-1000 11.1 | 1,644,142.4 | 1,710,847.6 17 3| 20 8
a280-111-c1-w15-500-1000 172.8 | 1,695,055.5 | 1,711,766.3 17 3| 37| 78
a280-121-c1-w15-500-1000 18.3 | 1,946,387.9 | 2,012,695.1 20 3| 24 5
a280-131-c1-w15-500-1000 | 2,576.7 | 1,946,173.5 | 2,012,928.2 20 3| 166 | 366
a280-141-c1-w15-500-1000 257.9 | 2,247,860.3 | 2,314,592.9 23 3| 41| 55
a280-151-c1-w15-500-1000 152.8 | 2,181,145.6 | 2,214,373.5 22 31 26| 19
a280-51-c1-w15-1000-1200 4.2 637,638.0 704,178.9 3| 20| 28
a280-61-c1-w15-1000-1200 0.2 805,245.0 805,245.0 3 0
a280-71-c1-w15-1000-1200 0.6 892,260.1 906,384.6 3 0
a280-81-c1-w15-1000-1200 9.1 | 1,051,503.3 | 1,108,123.3 11 3| 23 7
a280-91-c1-w15-1000-1200 19.1 | 1,242,724.8 | 1,309,120.9 13 3 27 10
a280-101-c1-w15-1000-1200 103.2 | 1,148,591.6 | 1,209,326.8 12 3| 50| 35
a280-111-c1-w15-1000-1200 238.6 | 1,344,351.1 | 1,411,124.3 14 3 60 46
a280-121-c1-w15-1000-1200 46.0 | 1,478,511.8 | 1,511,805.5 15 3| 28 7
a280-131-c1-w15-1000-1200 | 1,719.5 | 1,396,817.3 | 1,412,334.7 14 3| 80| 158
a280-141-c1-w15-1000-1200 | 1,292.1 | 1,594,751.3 | 1,613,862.8 16 3| 74| 113
a280-151-c1-w15-1000-1200 | 1,980.0 | 1,801,830.6 | 1,814,289.0 18 3| 42| 202
a280-51-c1-w15-1500-2000 3.1 637,223.1 703,938.1 3| 10| 11
a280-61-c1-w15-1500-2000 21.8 738,422.2 805,122.9 3| 24| 36
a280-71-c1-w15-1500-2000 14.3 739,172.5 805,594.2 3| 48 9
a280-81-c1-w15-1500-2000 41.5 807,266.7 807,350.6 3| 54| 15
a280-91-c1-w15-1500-2000 107.4 | 1,107,525.7 | 1,107,577.8 11 3| 76| 26
a280-101-c1-w15-1500-2000 424.0 | 1,042,218.4 | 1,108,513.7 11 3| 91| 104
a280-111-c1-w15-1500-2000 384.8 | 1,176,880.3 | 1,210,071.7 12 3| 68| 55
a280-121-c1-w15-1500-2000 | 1,917.6 | 1,343,986.4 | 1,410,583.7 14 3 81 | 122
a280-131-c1-w15-1500-2000 | 1,025.5 | 1,377,192.8 | 1,410,572.2 14 3 61 41
a280-141-c1-w15-1500-2000 | 4,507.6 | 1,444,926.8 | 1,511,435.5 15 3| 101 | 231
a280-151-c1-w15-1500-2000
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Table 6.10 — Computational results for the variant with three stacks for instances in class C1

(cont’d)

Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c1-w30-500-1000 7.1 703,832.1 703,905.1 7 3| 17 7
a280-61-c1-w30-500-1000 8.3 871,468.7 904,887.6 9 3| 47| 10
a280-71-c1-w30-500-1000 0.7 | 1,013,737.7 | 1,106,203.5 11 3 0
a280-81-c1-w30-500-1000 1.1 | 1,274,842.3 | 1,308,059.0 13 3 0
a280-91-c1-w30-500-1000 69.4 | 1,342,490.8 | 1,409,180.7 14 3| 40| 24
a280-101-c1-w30-500-1000 14.8 | 1,577,926.0 | 1,611,012.6 16 3| 23 5
a280-111-c1-w30-500-1000 66.3 | 1,677,678.4 | 1,710,981.0 17 3| 41| 14
a280-121-c1-w30-500-1000 | 1,701.3 | 1,945,921.7 | 2,012,740.7 20 3| 172 | 236
a280-131-c1-w30-500-1000 27.2 | 2,012,655.2 | 2,012,673.4 20 3 6 3
a280-141-c1-w30-500-1000 245.0 | 2,280,698.1 | 2,313,981.9 23 3| 23| 16
a280-151-c1-w30-500-1000 571.0 | 2,214,890.5 | 2,214,964.9 22 3| 65| 38
a280-51-c1-w30-1000-1200 2.6 670,549.8 703,829.2 7 3 5
a280-61-c1-w30-1000-1200 1.6 705,245.5 705,282.5 7 3| 10
a280-71-c1-w30-1000-1200 53.5 872,543.4 905,768.0 3| 44| 27
a280-81-c1-w30-1000-1200 13.0 907,210.3 907,261.1 3| 10
a280-91-c1-w30-1000-1200 18.8 | 1,075,040.8 | 1,108,303.0 11 3| 26
a280-101-c1-w30-1000-1200 75.7 | 1,065,388.4 | 1,109,516.5 11 3| 54
a280-111-c1-w30-1000-1200 507.4 | 1,250,937.6 | 1,310,816.8 13 3| 53| 71
a280-121-¢1-w30-1000-1200 | 1,542.5 | 1,378,738.1 | 1,411,791.0 14 3| 69 | 106
a280-131-c1-w30-1000-1200

a280-141-c1-w30-1000-1200 | 2,823.6 | 1,412,967.4 | 1,413,207.4 14 3| 78| 132
a280-151-c1-w30-1000-1200

a280-51-c1-w30-1500-2000 0.3 504,074.5 504,074.5 5 3 0 1
a280-61-c1-w30-1500-2000 17.4 704,435.2 704,468.8 7 3| 50| 12
a280-71-c1-w30-1500-2000 169.2 772,317.7 805,558.0 8 3| 78| 51
a280-81-c1-w30-1500-2000 2.6 806,556.9 806,556.9 8 3 0 1
a280-91-c1-w30-1500-2000 87.6 | 1,041,509.9 | 1,108,169.4 11 3| 31| 15
a280-101-c1-w30-1500-2000 370.9 | 1,109,456.0 | 1,109,540.4 11 3| 92| 52
a280-111-c1-w30-1500-2000 | 1,543.6 | 1,109,733.2 | 1,109,871.9 11 3| 96 | 156
a280-121-c1-w30-1500-2000 | 5,866.3 | 1,277,203.7 | 1,310,533.8 13 3| 133 | 326
a280-131-c1-w30-1500-2000 866.1 | 1,377,474.0 | 1,410,762.4 14 3| 51| 24
a280-141-c1-w30-1500-2000

a280-151-c1-w30-1500-2000 | 6,923.6 | 1,579,566.0 | 1,612,873.2 16 3| 76| 205
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Table 6.10 — Computational results for the variant with three stacks for instances in class C1
(cont’d and end)

Instance Sec. z z* | Veh. | maxItem | OC B
a280-51-c1-w45-500-1000 3.9 670,998.4 704,064.9 7 3 7 5
a280-61-c1-w45-500-1000 0.5 905,467.5 905,467.5 9 3 0 1
a280-71-c1-w45-500-1000 7.4 972,894.5 | 1,006,087.9 10 3| 10 4
a280-81-c1-w45-500-1000 793.0 | 1,274,267.2 | 1,307,675.7 13 3| 211 201
a280-91-c1-w45-500-1000 175.0 | 1,408,377.3 | 1,408,428.5 14 3| 63| 29
a280-101-c1-w45-500-1000 257.2 | 1,576,915.6 | 1,610,308.2 16 3| 44| 54
a280-111-c1-w45-500-1000 439.2 | 1,677,230.6 | 1,710,508.8 17 3| 41| 32
a280-121-c1-w45-500-1000 360.3 | 1,744,599.4 | 1,811,360.8 18 3| 47| 18
a280-131-c1-w45-500-1000 55.6 | 1,912,004.9 | 1,912,031.6 19 3| 25 4
a280-141-c1-w45-500-1000 | 3,685.7 | 2,080,515.1 | 2,113,707.4 21 3| 150 | 195
a280-151-c1-w45-500-1000 197.0 | 2,181,064.3 | 2,214,374.5 22 3| 32
a280-51-c1-w45-1000-1200 1.0 537,064.6 603,479.8 6 3 0
a280-61-c1-w45-1000-1200 11.9 616,449.2 704,077.5 7 3| 42
a280-71-c1-w45-1000-1200 134.6 780,661.8 805,654.4 3| 81| 33
a280-81-c1-w45-1000-1200 332.8 906,496.2 906,578.9 3| 61| 44
a280-91-c1-w45-1000-1200 423.3 923,007.9 | 1,007,429.4 10 3| 79| 54
a280-101-c1-w45-1000-1200 566.1 | 1,142,730.9 | 1,209,398.5 12 3| 50| 60
a280-111-c1-w45-1000-1200

a280-121-c1-w45-1000-1200 275.3 | 1,243,203.9 | 1,309,712.6 13 3| 54 8
a280-131-c1-w45-1000-1200

a280-141-c1-w45-1000-1200 110.3 | 1,444,918.3 | 1,511,335.9 15 3 5 3
a280-151-c1-w45-1000-1200 552.9 | 1,713,169.7 | 1,713,257.0 17 3| 53| 14
a280-51-c1-w45-1500-2000 0.7 403,943.5 403,943.5 4 3 0 1
a280-61-c1-w45-1500-2000 30.6 670,852.7 704,214.6 7 3| 47| 12
a280-71-c1-w45-1500-2000 33.1 805,772.5 805,819.7 8 3| 43 8
a280-81-c1-w45-1500-2000 | 2,118.7 739,374.8 806,155.9 8 3| 179 | 439
a280-91-c1-w45-1500-2000 74.9 807,624.2 807,681.5 8 3| 57 7
a280-101-c1-w45-1500-2000 550.0 | 1,075,475.0 | 1,108,801.1 11 3| 54| 38
a280-111-c1-w45-1500-2000

a280-121-c1-w45-1500-2000

a280-131-c1-w45-1500-2000

a280-141-c1-w45-1500-2000 | 4,690.5 | 1,411,266.7 | 1,411,337.1 14 3 64 | 103
a280-151-c1-w45-1500-2000




123

Table 6.11 — Computational results for the variant with three stacks for instances in class C2

(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w15-500-1000 1.9 704,424.7 704,424.7 4 1
a280-61-c¢2-w15-500-1000 5.7 865,165.9 905,043.8 4 2
a280-71-c¢2-w15-500-1000 94.8 905,863.5 905,917.6 41 30|15
a280-81-c¢2-w15-500-1000 114.9 | 1,245,390.9 | 1,307,786.2 13 5] 38|20
a280-91-c¢2-w15-500-1000 1,148.8 | 1,258,444.9 | 1,308,336.8 13 5| 34|40
a280-101-¢2-w15-500-1000 387.4 | 1,399,688.1 | 1,510,667.3 15 51 34|27
a280-111-¢2-w15-500-1000 118.9 | 1,712,128.8 | 1,712,128.8 17 4 0
a280-121-¢2-w15-500-1000 | 4,713.0 | 1,523,939.3 | 1,611,521.1 16 51 28| 8
a280-131-¢2-w15-500-1000 | 4,687.2 | 1,680,142.8 | 1,712,233.6 17 51 47|10
a280-141-¢2-w15-500-1000 | 1,810.9 | 1,860,423.0 | 1,913,410.7 19 5|1 56| 7
a280-151-¢2-w15-500-1000
a280-51-¢2-w15-1000-1200 3.1 754,574.8 804,354.3 3 4
a280-61-c¢2-w15-1000-1200 3.9 771,728.7 804,876.3 4 2
a280-71-¢2-w15-1000-1200 8.5 906,789.5 906,910.3 4 3
a280-81-¢2-w15-1000-1200 33.4 | 1,132,702.8 | 1,207,431.8 12 4| 10| 4
a280-91-¢2-w15-1000-1200 47.0 | 1,115,772.0 | 1,208,755.2 12 51 10| 5
a280-101-c2-w15-1000-1200 994.2 | 1,134,718.4 | 1,209,308.8 12 5] 28|18
a280-111-¢2-w15-1000-1200 | 1,567.8 | 1,159,692.0 | 1,210,475.7 12 5| 82|53
a280-121-¢2-w15-1000-1200
a280-131-¢2-w15-1000-1200
a280-141-¢2-w15-1000-1200 | 3,154.4 | 1,708,632.4 | 1,713,062.9 17 41 12| 3
a280-151-c2-w15-1000-1200
a280-51-¢2-w15-1500-2000 9.2 503,814.4 503,814.4 5 5
a280-61-¢2-w15-1500-2000 8.9 585,037.5 604,889.9 6 5 2
a280-71-c¢2-w15-1500-2000 761.2 738,758.9 805,232.7 8 5| 43|12
a280-81-¢2-w15-1500-2000 | 6,018.1 873,171.3 906,400.1 9 5| 19
a280-91-¢2-w15-1500-2000 | 2,026.0 790,680.0 808,044.5 8 5| 58

a280-101-c2-w15-1500-2000
a280-111-c2-w15-1500-2000
a280-121-c2-w15-1500-2000
a280-131-c2-w15-1500-2000
a280-141-c2-w15-1500-2000
a280-151-c2-w15-1500-2000
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Table 6.11 — Computational results for the variant with three stacks for instances in class C2

(cont’d)
Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w30-500-1000 4.2 604,267.7 604,267.7 4 1
a280-61-c¢2-w30-500-1000 148.3 755,006.6 804,538.2 5 3
a280-71-c¢2-w30-500-1000 142.6 872,630.9 905,705.0 5| 34|15
a280-81-¢2-w30-500-1000
a280-91-¢2-w30-500-1000 299.1 | 1,129,789.1 | 1,208,022.4 12 29 | 10
a280-101-¢2-w30-500-1000 | 3,596.1 | 1,234,939.8 | 1,309,393.0 13 64 | 16
a280-111-¢2-w30-500-1000
a280-121-¢2-w30-500-1000
a280-131-¢2-w30-500-1000
a280-141-¢2-w30-500-1000
a280-151-¢2-w30-500-1000
a280-51-¢2-w30-1000-1200 0.7 704,314.8 704,324.1 3
a280-61-¢2-w30-1000-1200 2.7 618,378.3 704,338.5 4
a280-71-¢2-w30-1000-1200 262.3 791,007.5 806,080.0 5] 51|28
a280-81-¢2-w30-1000-1200 61.3 969,668.5 | 1,006,878.1 10 4| 14| 4
a280-91-¢2-w30-1000-1200 557.3 | 1,051,651.3 | 1,107,908.5 11 41 43|20
a280-101-¢2-w30-1000-1200 | 1,165.2 | 1,077,967.4 | 1,109,227.0 11 41 33| 7
a280-111-c2-w30-1000-1200 | 3,727.0 | 1,210,422.9 | 1,210,549.7 12 4 43 | 41
a280-121-¢2-w30-1000-1200
a280-131-¢2-w30-1000-1200
a280-141-¢2-w30-1000-1200
a280-151-¢2-w30-1000-1200
a280-51-¢2-w30-1500-2000 82.3 437,036.0 503,573.7 5 6| 14
a280-61-¢2-w30-1500-2000 105.5 504,662.3 504,708.6 5 4| 40
a280-71-c¢2-w30-1500-2000 600.0 672,606.3 705,468.4 7 41 64|13
a280-81-¢2-w30-1500-2000 | 1,428.1 641,417.2 706,655.6 7 5| 52|20

a280-91-c2-w30-1500-2000

a280-101-c2-w30-1500-2000
a280-111-c2-w30-1500-2000
a280-121-c2-w30-1500-2000
a280-131-c2-w30-1500-2000
a280-141-c2-w30-1500-2000
a280-151-c2-w30-1500-2000
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Table 6.11 — Computational results for the variant with three stacks for instances in class C2

(cont’d and end)

Instance Sec. z z* | Veh. | maxItem | OC | B
a280-51-c¢2-w45-500-1000 39.4 604,419.3 604,419.3 6 4 0| 1
a280-61-c2-w45-500-1000 2,702.7 677,875.0 704,438.8 7 5| 40| 4
a280-71-c¢2-w45-500-1000 3,554.5 752,402.1 805,445.0 8 6| 44 | 17
a280-81-c2-w45-500-1000 5,837.3 887,015.6 907,002.7 9 5| 62 81
a280-91-c2-w45-500-1000

a280-101-c¢2-w45-500-1000

a280-111-¢2-w45-500-1000

a280-121-¢2-w45-500-1000

a280-131-¢2-w45-500-1000

a280-141-¢2-w45-500-1000

a280-151-c¢2-w45-500-1000

a280-51-¢2-w45-1000-1200 5.4 703,866.0 703,880.1 7 41 10
a280-61-c2-w45-1000-1200 34.5 554,048.8 603,773.1 6 4 0
a280-71-c¢2-w45-1000-1200 86.3 671,978.4 705,150.7 7 5| 21
a280-81-¢2-w45-1000-1200 837.1 777,024.2 806,567.4 8 4| 48 |11
a280-91-¢2-w45-1000-1200 473.1 891,572.5 907,833.8 9 41 51| 6
a280-101-c2-w45-1000-1200

a280-111-c2-w45-1000-1200

a280-121-¢2-w45-1000-1200

a280-131-c2-w45-1000-1200

a280-141-c2-w45-1000-1200

a280-151-¢2-w45-1000-1200

a280-51-¢2-w45-1500-2000 20.3 470,300.9 503,496.4 0
a280-61-c2-w45-1500-2000 48.6 537,642.8 604,088.8 32
a280-71-c¢2-w45-1500-2000

a280-81-¢2-w45-1500-2000 | 3,483.0 606,788.8 607,006.4 5( 50|20
a280-91-¢2-w45-1500-2000 | 4,311.8 773,673.9 806,792.8 41 61| 8

a280-101-c2-w45-1500-2000
a280-111-c2-w45-1500-2000
a280-121-c2-w45-1500-2000
a280-131-c2-w45-1500-2000
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000
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Appendix B. Detailed Results on the Impact of the Number of Stacks

This appendix presents detailed computational results to assess the impact of the number of
stacks. Tables 6.12 and 6.13 present the impact of the number of stacks on the computational
results for instances in class C1 and C2, respectively. For each table, we compare the results
obtained with one stack to the results obtained with two and three stacks. We present the
following information : A Dist (%), the impact in percentage on the total traveled distance,
computed as (Disty — Disty)/(Disty) and (Dists— Disty)/(Disty), where Dist;, j = {1,2,3},
is the distance with j stacks, respectively ; A Veh (%), the impact in percentage on the number
of vehicles, computed as (Vehy —Vehy)/(Vehy) and (Vehs—Vehy)/(Vehy), where Veh;, j =
{1,2,3}, is the number of vehicles with j stacks, respectively ; and A maxItem (%), the impact
in percentage on the maximum number of items simultaneously in a vehicle, computed as
(maxItemy — maxltemy)/(maxltem;) and (maxltems — maxItem,)/(maxltem,), where
maxltem;,j = {1,2,3}, is the maximum number of items simultaneously in a vehicle with

J stacks.



Table 6.12 — Impact of the number of stacks on the results for instances in class C1 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c1-w15-500-1000 -26.7 -36.4 25.0 -24.9 -27.3 -25.0
a280-61-c1-w15-500-1000 -38.4 —44.4 66.7 -37.3 -38.9 0.0
a280-71-c1-w15-500-1000 -25.1 -35.3 33.3 -21.9 -35.3 0.0
a280-81-c1-w15-500-1000 -34.1 —45.5 100.0 -32.4 -40.9 0.0
a280-91-c1-w15-500-1000 -32.6 —48.0 0.0 —34.5 -44.0 —-25.0
a280-101-c1-w15-500-1000 -35.3 -44.0 66.7 -27.0 -32.0 0.0
a280-111-c1-w15-500-1000 -31.8 -36.0 25.0 —28.5 -32.0 —-25.0
a280-121-c1-w15-500-1000 -29.3 -31.0 —-25.0
a280-131-c1-w15-500-1000 -25.1 -31.0 0.0
a280-141-c1-w15-500-1000 —26.6 -32.4 -25.0
a280-151-c1-w15-500-1000 —23.2 -29.0 -40.0
a280-51-c1-w15-1000-1200 —28.6 -36.4 0.0 -29.6 -36.4 0.0
a280-61-c1-w15-1000-1200 —28.2 -33.3 66.7 —28.6 -33.3 0.0
a280-71-c1-w15-1000-1200 -25.0 -30.8 33.3 —22.3 -30.8 0.0
a280-81-c1-w15-1000-1200 -15.6 -26.7 0.0
a280-91-c1-w15-1000-1200 —25.3 -42.9 25.0 —25.2 -38.1 -25.0
a280-101-c1-w15-1000-1200 -29.7 -29.4 -25.0
a280-111-c1-w15-1000-1200 —22.4 -38.1 33.3 —20.2 -33.3 0.0
a280-121-c1-w15-1000-1200 -23.4 -34.8 -25.0
a280-131-c1-w15-1000-1200 -12.9 -33.3 -25.0
a280-141-c1-w15-1000-1200 -29.3 -44.8 0.0
a280-151-c1-w15-1000-1200 -19.8 -35.7 0.0
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Table 6.12 — Impact of the number of stacks on the results for instances in class C1 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c1-w15-1500-2000 -31.8 -45.5 33.3 -33.1 -36.4 0.0
a280-61-c1-w15-1500-2000 -31.7 —45.5 25.0 -26.3 -27.3 -25.0
a280-71-c1-w15-1500-2000 -16.1 -20.0 -40.0
a280-81-c1-w15-1500-2000 -16.9 -20.0 —-40.0
a280-91-c1-w15-1500-2000 —22.8 -21.4 -25.0
a280-101-c1-w15-1500-2000 —22.1 -26.7 —-25.0
a280-111-c1-w15-1500-2000 —22.7 -33.3 —-25.0
a280-121-c1-w15-1500-2000

a280-131-c1-w15-1500-2000

a280-141-c1-w15-1500-2000

a280-151-c1-w15-1500-2000

a280-51-c1-w30-500-1000 -24.0 —40.0 25.0 -16.4 -30.0 —-25.0
a280-61-c1-w30-500-1000 -36.0 -42.9 66.7 -34.4 —35.7 0.0
a280-71-c1-w30-500-1000 -30.2 -37.5 0.0 —26.7 -31.3 —-25.0
a280-81-c1-w30-500-1000 -22.5 -23.5 0.0
a280-91-c1-w30-500-1000 -18.4 —22.2 -25.0
a280-101-c1-w30-500-1000 -20.0 -27.3 -25.0
a280-111-c1-w30-500-1000 -29.0 -32.0 -25.0
a280-121-c1-w30-500-1000 -19.6 -20.0 -25.0
a280-131-c1-w30-500-1000 -19.3 -16.7 -25.0
a280-141-c1-w30-500-1000

a280-151-c1-w30-500-1000 -19.6 -24.1 -25.0
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Table 6.12 — Impact of the number of stacks on the results for instances in class C1 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c1-w30-1000-1200 —25.2 -30.0 25.0 -22.9 -30.0 -25.0
a280-61-c1-w30-1000-1200 -25.6 -41.7 66.7 -16.9 -41.7 0.0
a280-71-c1-w30-1000-1200 -22.3 -30.8 -25.0
a280-81-c1-w30-1000-1200 -20.4 -35.7 -25.0
a280-91-c1-w30-1000-1200 -14.9 -26.7 —40.0
a280-101-c1-w30-1000-1200 -24.3 -31.3 25.0 -21.9 -31.3 -25.0
a280-111-c1-w30-1000-1200 -21.0 -31.6 —-25.0
a280-121-c1-w30-1000-1200 —25.7 -36.4 —-25.0
a280-131-c1-w30-1000-1200

a280-141-c1-w30-1000-1200 -15.1 -36.4 -25.0
a280-151-c1-w30-1000-1200

a280-51-c1-w30-1500-2000 -30.0 -37.5 50.0 —14.2 -37.5 —-25.0
a280-61-c1-w30-1500-2000 -18.4 -12.5 —-25.0
a280-71-c1-w30-1500-2000 —24.6 -38.5 0.0
a280-81-c1-w30-1500-2000 -21.1 -33.3 -25.0
a280-91-c1-w30-1500-2000 -17.8 -15.4 —-40.0
a280-101-c1-w30-1500-2000 -15.2 -21.4 -25.0
a280-111-c1-w30-1500-2000 -21.2 -26.7 -40.0
a280-121-c1-w30-1500-2000 -20.8 -27.8 -40.0
a280-131-c1-w30-1500-2000

a280-141-c1-w30-1500-2000

a280-151-c1-w30-1500-2000
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Table 6.12 — Impact of the number of stacks on the results for instances in class C1 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c1-w45-500-1000 -27.9 -36.4 0.0 —28.6 -36.4 -25.0
a280-61-c1-w45-500-1000 -26.3 -38.5 25.0 —20.2 -30.8 -25.0
a280-71-c1-w45-500-1000 -14.0 -9.1 -40.0
a280-81-c1-w45-500-1000 -16.3 -13.3 -25.0
a280-91-c1-w45-500-1000 -14.8 -12.5 —40.0
a280-101-c1-w45-500-1000 -19.5 -20.0 —-40.0
a280-111-c1-w45-500-1000 -11.6 -10.5 —-40.0
a280-121-c1-w45-500-1000

a280-131-c1-w45-500-1000

a280-141-c1-w45-500-1000

a280-151-c1-w45-500-1000

a280-51-c1-w45-1000-1200 -26.8 -37.5 25.0 -25.2 -25.0 —-25.0
a280-61-c1-w45-1000-1200 -27.8 -33.3 50.0 -25.1 —22.2 —-25.0
a280-71-c1-w45-1000-1200 -26.4 -33.3 25.0 -23.2 -33.3 —-25.0
a280-81-c1-w45-1000-1200 —27.4 -35.7 -25.0
a280-91-c1-w45-1000-1200 -24.3 -33.3 -25.0
a280-101-c1-w45-1000-1200 -20.4 -29.4 -25.0
a280-111-c1-w45-1000-1200

a280-121-c1-w45-1000-1200

a280-131-c1-w45-1000-1200

a280-141-c1-w45-1000-1200

a280-151-c1-w45-1000-1200
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Table 6.12 — Impact of the number of stacks on the results for instances in class C1 (cont’d and end)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c1-w45-1500-2000 -23.9 -50.0 33.3 -23.3 -50.0 0.0
a280-61-c1-w45-1500-2000 -31.5 -30.0 -40.0
a280-71-c1-w45-1500-2000 -19.2 -20.0 -40.0
a280-81-c1-w45-1500-2000 -29.5 -38.5 -25.0
a280-91-c1-w45-1500-2000 —22.5 -33.3 —-25.0
a280-101-c1-w45-1500-2000 —24.8 -21.4 -25.0
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000
Average —28.6 -39.0 35.2 —22.8 -29.6 —21.6
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Table 6.13 — Impact of the number of stacks on the results for instances in class C2 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c2-w15-500-1000 -31.6 —46.7 33.3 -32.8 -53.3 33.3
a280-61-c2-w15-500-1000 -25.8 -40.0 33.3 -29.6 -40.0 33.3
a280-71-¢c2-w15-500-1000 —26.2 -33.3 33.3 -30.9 -40.0 33.3
a280-81-c2-w15-500-1000 -21.8 —27.8 25.0 —20.8 -27.8 25.0
a280-91-c2-w15-500-1000 —24.2 -31.6 66.7 -25.3 -31.6 66.7
a280-101-c2-w15-500-1000 -27.0 —40.7 33.3 -34.1 -44.4 66.7
a280-111-c2-w15-500-1000 -25.1 —35.7 33.3 -29.0 -39.3 33.3
a280-121-c2-w15-500-1000 -25.9 -34.6 0.0 -31.0 -38.5 25.0
a280-131-c2-w15-500-1000 -294 -47.1 66.7 -34.8 -50.0 66.7
a280-141-c2-w15-500-1000 -24.0 -35.5 33.3 -27.9 -38.7 66.7
a280-151-c2-w15-500-1000 -27.0 -40.5 0.0

a280-51-¢2-w15-1000-1200 —24.2 -25.0 0.0 —28.5 -33.3 0.0
a280-61-c2-w15-1000-1200 -34.5 -43.8 0.0 -39.8 -50.0 33.3
a280-71-c2-w15-1000-1200 -23.3 —28.6 0.0 -9.3 —35.7 33.3
a280-81-c2-w15-1000-1200 -27.8 -33.3 33.3 -33.5 -33.3 33.3
a280-91-¢2-w15-1000-1200 -19.8 -33.3 0.0 —24.3 -33.3 25.0
a280-101-c2-w15-1000-1200 -17.4 —23.5 0.0 -24.9 -29.4 25.0
a280-111-c2-w15-1000-1200 -17.0 -31.6 33.3 -21.9 -36.8 66.7
a280-121-c2-w15-1000-1200 -21.3 -33.3 0.0

a280-131-c2-w15-1000-1200

a280-141-c2-w15-1000-1200 -23.5 -36.7 33.3 -27.1 -43.3 33.3
a280-151-c2-w15-1000-1200
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Table 6.13 — Impact of the number of stacks on the results for instances in class C2 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c2-w15-1500-2000 -28.1 -45.5 33.3 -31.4 -04.5 66.7
a280-61-c2-w15-1500-2000 -10.7 -40.0 0.0 -21.6 -40.0 25.0
a280-71-c2-w15-1500-2000 -31.1 -33.3 0.0 -37.6 -33.3 25.0
a280-81-c2-w15-1500-2000 -32.0 -43.8 33.3 -32.6 -43.8 66.7
a280-91-c2-w15-1500-2000 -13.9 -30.8 0.0 -16.7 -38.5 25.0
a280-101-c2-w15-1500-2000 -16.0 —40.0 0.0

a280-111-c2-w15-1500-2000

a280-121-c2-w15-1500-2000

a280-131-c2-w15-1500-2000

a280-141-c2-w15-1500-2000

a280-151-c2-w15-1500-2000

a280-51-c2-w30-500-1000 -32.6 —46.2 33.3 -33.4 -03.8 33.3
a280-61-c2-w30-500-1000 -31.1 -43.8 66.7 -394 -50.0 66.7
a280-71-c2-w30-500-1000 -34.5 -38.9 0.0 -37.8 -50.0 25.0
a280-81-c2-w30-500-1000 —24.5 -42.1 25.0

a280-91-¢2-w30-500-1000 -25.9 -40.9 0.0 -37.9 -45.5 25.0
a280-101-c2-w30-500-1000 -29.7 -41.7 0.0 -34.3 -45.8 0.0
a280-111-c2-w30-500-1000

a280-121-c2-w30-500-1000

a280-131-c2-w30-500-1000

a280-141-c2-w30-500-1000

a280-151-c2-w30-500-1000
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Table 6.13 — Impact of the number of stacks on the results for instances in class C2 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c2-w30-1000-1200 -7.0 —22.2 0.0 -7.0 -22.2 0.0
a280-61-c2-w30-1000-1200 -13.8 -30.0 0.0 —20.2 -30.0 33.3
a280-71-c2-w30-1000-1200 —18.8 -35.7 —20.0 -19.0 —42.9 0.0
a280-81-c2-w30-1000-1200 -14.7 —28.6 0.0 -27.6 —28.6 0.0
a280-91-¢c2-w30-1000-1200 -25.0 -33.3 33.3 -29.0 -38.9 33.3
a280-101-c2-w30-1000-1200 -24.6 —40.0 33.3 -32.3 -45.0 33.3
a280-111-c2-w30-1000-1200 -16.6 -31.6 -25.0 -20.3 -36.8 0.0
a280-121-c2-w30-1000-1200

a280-131-c2-w30-1000-1200 -22.9 -35.0 25.0

a280-141-c2-w30-1000-1200 —22.7 -42.3 0.0

a280-151-c2-w30-1000-1200

a280-51-¢2-w30-1500-2000 -20.5 -44.4 33.3 —274 -44.4 100.0
a280-61-c2-w30-1500-2000 -14.8 —28.6 0.0 —27.2 —28.6 0.0
a280-71-c2-w30-1500-2000 —24.2 -38.5 0.0 —26.7 —46.2 0.0
a280-81-c2-w30-1500-2000 -14.4 -41.7 0.0 —24.7 -41.7 25.0
a280-91-¢2-w30-1500-2000 -20.9 -27.3 0.0

a280-101-c2-w30-1500-2000

a280-111-c2-w30-1500-2000 -12.5 -35.7 0.0

a280-121-c2-w30-1500-2000

a280-131-c2-w30-1500-2000

a280-141-c2-w30-1500-2000

a280-151-c2-w30-1500-2000
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Table 6.13 — Impact of the number of stacks on the results for instances in class C2 (cont’d)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c2-w45-500-1000 -22.6 -30.0 33.3 -13.0 -40.0 33.3
a280-61-c2-w45-500-1000 -14.6 -20.0 0.0 -18.3 -30.0 25.0
a280-71-c2-w45-500-1000 -17.1 —38.5 25.0 —29.7 -38.5 50.0
a280-81-c2-w45-500-1000 -24.0 -33.3 0.0 -26.0 -40.0 25.0
a280-91-c2-w45-500-1000

a280-101-c2-w45-500-1000

a280-111-c2-w45-500-1000

a280-121-c2-w45-500-1000

a280-131-c2-w45-500-1000

a280-141-c2-w45-500-1000

a280-151-c2-w45-500-1000

a280-51-c2-w45-1000-1200 -25.9 -30.0 33.3 —26.2 -30.0 33.3
a280-61-c2-w45-1000-1200 -31.4 -36.4 33.3 —40.5 —45.5 33.3
a280-71-c2-w45-1000-1200 -15.3 —41.7 0.0 -24.9 —41.7 25.0
a280-81-c2-w45-1000-1200 -10.9 -33.3 33.3 -15.6 -33.3 33.3
a280-91-c2-w45-1000-1200 -23.4 —28.6 0.0 —24.8 -35.7 0.0
a280-101-c2-w45-1000-1200 -19.9 -29.4 0.0

a280-111-c2-w45-1000-1200

a280-121-c2-w45-1000-1200

a280-131-c2-w45-1000-1200

a280-141-c2-w45-1000-1200

a280-151-c2-w45-1000-1200
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Table 6.13 — Impact of the number of stacks on the results for instances in class C2 (cont’d and end)

1 stack VS 2 stacks

1 stack VS 3 stacks

Instance A Dist (%) | A Veh (%) | A maxItem (%) | A Dist (%) | A Veh (%) | A maxItem (%)
a280-51-c2-w45-1500-2000 -17.7 —28.6 25.0 -30.7 —28.6 0.0
a280-61-c2-w45-1500-2000 -24.3 -36.4 33.3 -33.9 -45.5 66.7
a280-71-c2-w45-1500-2000 -19.1 -36.4 25.0

a280-81-c2-w45-1500-2000 -19.4 —22.2 25.0 -17.2 -33.3 25.0
a280-91-c2-w45-1500-2000 4.2 -33.3 0.0 -24.1 -33.3 0.0
a280-101-c2-w45-1500-2000

a280-111-c2-w45-1500-2000 -13.3 -25.0 0.0

a280-121-c2-w45-1500-2000

a280-131-c2-w45-1500-2000

a280-141-c2-w45-1500-2000

a280-151-c2-w45-1500-2000

Average -21.8 -35.0 15.8 —27.2 -39.1 314
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CHAPITRE 7 DISCUSSION GENERALE

Dans cette these, deux variantes du probléme de tournées de véhicules avec cueillettes, li-
vraisons, fenétres de temps et contrainte de manutention ont été étudiées, le PDPTWL et
le PDPTWMS. Bien que cette these se concentre sur les problemes de tournées de véhicules
avec cueillettes, livraisons, fenétres de temps et ou la séquence de livraison de la marchan-
dise doit respectée la politique LIFO, plusieurs idées présentées pourraient étre adaptées a

d’autres politiques de manutention.

7.1 Syntheése des travaux

L’objectif de cette these était de développer des algorithmes exacts et heuristiques afin de
résoudre pour la premiere fois le probleme de tournées de véhicules avec cueillettes, livraisons,

fenétres de temps et contrainte de manutention.

Dans le chapitre 4, nous avons présenté une formulation mathématique pour le PDPTWL.
Nous avons également développé trois algorithmes exacts de génération de colonnes ou la
politique LIFO est introduite a la fois dans le probleme maitre et dans le sous-probleme.
L’algorithme d’étiquetage et le critere de dominance permettant de s’assurer du respect de

la politique LIFO sont novateurs.

Dans le chapitre 5, nous avons présenté un algorithme génétique hybride pour le PDPTWL.
Au cours de la derniere décennie, les algorithmes heuristiques les plus performants pour ré-
soudre les problemes de tournées de véhicules sont des algorithmes génétiques et de recherche
a grand voisinage. Peu d’algorithmes mélangent ces deux approches. L’algorithme génétique
hybride est en lui-méme une innovation. De plus, grace a cet algorithme génétique, il est
maintenant possible de résoudre des instances allant jusqu’a 300 requétes en moins de trois

heures. Les résultats obtenus par ’heuristique sont de haute qualité.

Finalement, dans le chapitre 6, nous avons proposé une formulation pour le PDPTWMS.
Nous avons également développé deux algorithmes exacts de génération de colonnes. La
nouvelle représentation de pile proposée dans ce chapitre permet d’éliminer la symétrie entre
les compartiments et est donc appropriée pour le cas a plusieurs compartiments. De plus, la
méthode hybride présente plusieurs aspects intéressants. En effet, il est possible de générer
des chemins qui sont irréalisables avec une certaine configuration des items dans le véhicule,
mais pour lesquels il existe une autre configuration réalisable. Dans ce cas, il suffit de résoudre

un probleme de plus court chemin contenant un réseau réduit pour déterminer s’il existe une
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configuration réalisable ou pas. Par le passé, il était nécessaire de résoudre un probleme
de sac a dos pour affecter chaque item a une pile. Avec les algorithmes proposés, il n’est
plus nécessaire de résoudre un probléme additionnel car la structure est comprise dans la

résolution du probleme de plus court chemin.

Cette these démontre également que 'ajout de la politique LIFO peut faire augmenter le
nombre de véhicules requis pour compléter ’ensemble des requétes et peut faire augmenter les
cotits reliés a la distance parcourue. Toutefois, sur les instances testées, le nombre de véhicules
augmente de un pour seulement quatre des 14 instances et, pour les autres instances, les cotits
reliés a la distance augmentent d’au plus 20%. De plus, contrairement a ce qu’on pourrait
penser, augmenter le nombre de compartiments dans un véhicule n’a pas nécessairement un
impact positif sur le nombre de véhicules utilisés et sur la distance totale parcourue. Pour
les instances testées, augmenter le nombre de piles de un a deux fait diminuer le nombre
de véhicules utilisés ainsi que la distance totale parcourue, mais 'augmenter de deux a trois

n’est pas nécessairement plus avantageux.

7.2 Limitations de la solution proposée et améliorations futures

Les algorithmes exacts et heuristiques développés dans cette thése pour résoudre le PDPTWL

et le PDPTWMS sont innovateurs. Malgré tout, ils possedent certains défauts.

Tout d’abord, tous les algorithmes proposés se concentrent sur la politique de manutention
LIFO. Celle-ci doit étre respectée a tout prix. Dans la pratique, il est fort probable que les
camionneurs désirent respecter cette politique, mais que, de temps en temps, ils permettent la
réorganisation de la marchandise a l'intérieur du véhicule. Il serait donc intéressant de déve-
lopper des algorithmes permettant la réorganisation de la marchandise a un cotit. Nous avons
d’ailleurs débuté des travaux qui vont dans cette direction, mais qui ne sont pas contenus dans
cette these. La considération de diverses politiques de manutention ajoute de la complexité

au probleme. En effet, chaque politique de manutention doit étre gérée séparément.

De plus, dans tous les algorithmes de génération de colonnes proposés, nous avons mis 1’em-
phase sur le développement des algorithmes d’étiquetage et des criteres de dominance spé-
cialisés. Afin de rendre les algorithmes de génération de colonnes plus performants, nous
pensons qu’il serait intéressant de développer plus d’heuristiques pour générer les routes,
de développer des méthodes de branchement plus appropriées et de proposer des inégalités

valides permettant de réduire le saut d’intégrité.

Au sein d'un noeud de branchement, il faudrait d’abord permettre de générer des routes

avec des heuristiques plutot qu’avec 'algorithme d’étiquetage et le critere de dominance
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exact. Ces heuristiques pourraient se baser sur 'algorithme génétique développé au chapitre
5. Ce faisant, plusieurs instances pourraient probablement étre résolues plus rapidement et

certaines instances non résolues pourraient 1’étre.

Nous avons également remarqué que certaines instances ne peuvent pas étre résolues a cause
d’un arbre de branchement trop grand. Il serait donc intéressant de développer une méthode
de branchement plus appropriée. En ce moment, la méthode de branchement se fait sur le
flot sortant d’un ensemble de noeuds. On pourrait tenter de mieux choisir les sous-ensembles

de noeuds sur lesquels brancher et aussi définir de nouvelles regles de branchement.

De plus, nous n’avons pas développé de coupes spécialisées pour le PDPTWL et le PDPTWMS
afin de renforcer la borne inférieure. Nous avons implanté des coupes connues pour le PDPTW
et les avons adaptées au PDPTWL et au PDPTWMS. 1l est probable que le développement
de coupes plus spécialisées pour le PDPTWL et le PDPTWMS permettrait d’accélérer la

vitesse de résolution en réduisant la taille de ’arbre de branchement.

L’heuristique développée au chapitre 5 pourrait étre améliorée sur plusieurs aspects. Tout
d’abord, nous avons utilisé une structure informatique en liste pour représenter la contrainte
de manutention LIFO. Certains auteurs (voir Li et al. (2011); Gao et al. (2011); Cheang
et al. (2012)) ont démontré qu’une structure informatique plus appropriée pour la contrainte
de manutention LIFO pouvait réduire les temps de calcul. Nous avons remarqué que lors
de la résolution, ce sont les vérifications du respect des contraintes de capacité, de fenétres
de temps et de la politique LIFO qui prennent le plus de temps. Dans notre cas, il serait
donc intéressant de développer une structure qui pourrait a la fois conserver les données
sur la capacité du véhicule, sur les fenétres de temps et sur la politique LIFO. De plus,
les opérateurs de recherche locale pourraient étre améliorés. Par exemple, l'opérateur inter-
route multiple request exchange permet d’échanger des listes d’arcs, mais se restreint a deux
cas particuliers. Il serait intéressant de permettre tous les échanges possibles. Cela pourrait
probablement permettre d’obtenir de meilleures solutions. Il serait également intéressant de
perfectionner la gestion de la population. Nous nous sommes inspirés des idées proposées
par Vidal et al. (2012), mais ne sommes pas aussi raffinés que ces derniers. Finalement, la
gestion des solutions intermédiaires non réalisables pourrait étre plus sophistiquée. En effet,
ces solutions ne sont pas permises en tout temps. Puis, nous ne permettons pas de solutions
intermédaires non réalisables par rapport a la politique LIFO. Permettre plus souvent les
solutions irréalisables et permettre des solutions irréalisables par rapport a la politique LIFO
nous permettrait une exploration plus large du voisinage. De plus, la réparation des solutions

non réalisables est assez simple et pourrait étre perfectionnée.
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CHAPITRE 8 CONCLUSION

En conclusion, nous avons proposé une formulation mathématique pour le PDPTWL et le
PDPTWMS. Nous avons développé des algorithmes exacts pour résoudre ces deux problemes,
ainsi qu’un algorithme génétique hybride pour résoudre le PDPTWL. Plusieurs idées présen-
tées dans cette these peuvent étre adaptées a d’autres variantes des problemes de tournées
de véhicules. De plus, les algorithmes d’étiquetage et les criteres de dominance proposés pour
résoudre les sous-problemes en génération de colonnes présentent des idées novatrices pour
la représentation d'une pile. Ces algorithmes sont des premiers vers la résolution pratique de
problémes complexes de tournées de véhicules avec cueillettes et livraisons et contraintes de
manutention. Nous espérons qu’ils serviront de base a de travaux futurs qui meneront a des

algorithmes pratiques utilisés par de nombreuses compagnies de transport.

Quatre ans de travail, quatre ans de bonheur et quatre ans de moments plus difficiles ont
mené a cette these. La qualité des travaux réalisés démontre que tout étudiant motivé peut
réussir le passage d’une école de gestion, HEC Montréal, vers une école de génie, I'Ecole

Polytechnique de Montréal, bien que I'inverse soit aussi difficile.

En guise de mot de la fin, je vous laisse sur cette pensée de Winston Churchill.

“Now this is not the end.
It is not even the beginning of the end.
But it is, perhaps, the end of the beginning."
— Winston Churchill
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