
Titre:
Title:

Multiple-Input Multiple-Output Communications Systems Using 
Reconfigurable Antennas

Auteur:
Author:

Xingliang Li 

Date: 2015

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Li, X. (2015). Multiple-Input Multiple-Output Communications Systems Using 
Reconfigurable Antennas [Thèse de doctorat, École Polytechnique de Montréal]. 
PolyPublie. https://publications.polymtl.ca/1737/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/1737/

Directeurs de
recherche:

Advisors:
Jean-François Frigon 

Programme:
Program:

génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/1737/
https://publications.polymtl.ca/1737/


UNIVERSITÉ DE MONTRÉAL

MULTIPLE-INPUT MULTIPLE-OUTPUT COMMUNICATIONS SYSTEMS USING
RECONFIGURABLE ANTENNAS

XINGLIANG LI
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE ÉLECTRIQUE)
AVRIL 2015

c© Xingliang Li, 2015.



UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

MULTIPLE-INPUT MULTIPLE-OUTPUT COMMUNICATIONS SYSTEMS USING
RECONFIGURABLE ANTENNAS

présentée par : LI Xingliang
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. CARDINAL Christian, Ph. D., président
M. FRIGON Jean-François, Ph. D., membre et directeur de recherche
M. HACCOUN David, Ph. D., membre
M. FORTIER Paul, Ph. D., membre externe



iii

DEDICATION

Dedicated to my family.



iv

ACKNOWLEDGMENTS

It would not have been possible to complete this thesis without the help of all the kind people
around me. I would like to thank the most important person in my life, my beloved wife Ran
Cao, for her unconditional support, great patience and immense self-sacrifice. I will forever
owe her a debt of gratitude for always having confidence in me, even in the times when I
didn’t. I would like to thank my parents, who have given me everything and have supported
me all these years. And, I also owe a lot to Hanhan, my daughter, my life joy.

I would like to express my sincere gratitude to my supervisor, Prof. Jean-François
Frigon, for his generous support and insightful guidance. His encouragement was invaluable
to me during my doctoral study. This thesis would not have seen the light without his help.
I would also like to thank the members of my thesis committee, Prof. Christian Cardinal,
Prof. David Haccoun and Prof. Paul Fortier, for their valuable comments.

I would like to acknowledge all of my colleagues and friends in Poly-Grames, Diego
Perea-Vega, Mohamed Jihed Gafsi, Vida Vakilian, Eddy Dailleux, Liang Han, Xuhua Shen,
Ya Deng and Pengyan Zhang, for their suggestions, help and friendship.

Xingliang Li



v

RÉSUMÉ

Depuis les années 1990, l’utilisation des systèmes de communications sans-fil à entrées multiples-
sorties multiples (MIMO) a été introduit pour fournir des transmissions fiables à grande
vitesse. Cette thèse porte sur l’application et l’étude des systèmes MIMO avec des antennes
reconfigurables, qui sont ajustable électroniquement pour produire différents diagrammes de
rayonnement d’un seul élément d’antenne et ainsi offrir une diversité de diagrammes de rayon-
nement. En particulier, nous étudions le comportement de la capacité de canal des systèmes
MIMO à sélection de diagrammes de rayonnement (PS-MIMO), et nous proposons aussi des
algorithmes de sélection du diagramme de rayonnement atteignant la capacité maximale.

Tout d’abord, nous étudions l’application des antennes reconfigurables dans l’estimation
des statistiques spatiales à long terme de canaux spatiaux avec grappes de multi-trajets (clus-
ter). Nous proposons un estimateur de spectre de type Capon et une technique d’adaptation
de la covariance (COMET) pour estimer conjointement l’angle moyen et l’étalement angu-
laire de la grappe spatiale avec des antennes reconfigurables. En second lieu, sur la base des
statistiques à long terme du canal MIMO, nous proposons des algorithmes de sélection de di-
agramme de rayonnement MIMO (SPS-MIMO) pour atteindre la capacité maximale de canal
ergodique. L’analyse de la maximisation de la capacité ergodique du système SPS-MIMO
indique que le modèle statistique de sélection fournit des gains supplémentaires en améliorant
la puissance du signal reçu et en décorrélant les signaux reçus avec différents diagrammes de
rayonnement directionnels. Troisièmement, nous nous concentrons sur le modèle de sélection
instantanée des diagrammes de rayonnement MIMO (IPS-MIMO) basé sur des informations
instantanées d’état de canal (CSI) afin de maximiser la capacité instantanée pour chaque
réalisation de canal. Nous démontrons que l’ordre de diversité des systèmes MIMO peut
être multipliée par le nombre de diagrammes de rayonnement avec sélection de diagramme
instantanée. Afin d’évaluer la capacité moyenne de l’IPS-MIMO, nous proposons un nouvel
algorithme qui permet d’approximer étroitement la moyenne de la valeur maximale de la
capacité du canal MIMO avec des trajets arbitrairement corrélés. Nous proposons également
un algorithme pour sélectionner instantanément les diagrammes de rayonnement pour at-
teindre la capacité moyenne. En outre, sur la base d’une simple expression en forme fermée
de la capacité coefficient de corrélation, nous sommes en mesure de proposer un algorithme
de sélection de sous-ensemble de diagrammes qui offre un compromis entre performances et
la complexité de l’algorithme de sélection.

En conclusion, des gains de performance importants peuvent être obtenus grâce à la
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combinaison de l’utilisation d’antennes reconfigurables et de systèmes MIMO avec soit des
algorithmes de sélection de diagramme de rayonnement statistique ou instantanée. La capac-
ité des systèmes PS-MIMO à améliorer les performances du système, y compris la capacité et
de l’ordre de la diversité, est démontrée par l’analyse théorique et des simulations numériques.
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ABSTRACT

Since the 1990s, the use of multiple-input multiple-output (MIMO) systems has been intro-
duced to modern wireless communications to provide reliable transmission at high data rates.
This thesis focuses on the application of MIMO systems with reconfigurable antennas, which
are electronically tunable to produce a number of radiation patterns at a single antenna el-
ement and provide pattern diversity. In particular, we investigate the capacity performance
of the pattern selection MIMO (PS-MIMO) systems, and we also present maximum capacity
achieving algorithms for radiation pattern selection.

First, we investigate the application of reconfigurable antennas in estimating long term
spatial statistics of spatial clustered channels. We propose a Capon-like spectrum estimator
and a covariance matching technique (COMET) to jointly estimate the mean angle and the
angular spread of the spatial cluster with reconfigurable antennas. Second, based on the long
term statistics of the MIMO channel, we propose statistical pattern selection MIMO (SPS-
MIMO) algorithms to achieve maximum ergodic channel capacity. Analysis of the ergodic
capacity maximization of the SPS-MIMO indicates that the statistical pattern selection pro-
vides additional gains by enhancing received signal power and decorrelating received signals
with different directional radiation patterns. Third, we focus on the instantaneous pattern
selection MIMO (IPS-MIMO) based on instantaneous channel state information (CSI) in or-
der to maximize the instantaneous capacity for every channel realization. We prove that the
diversity order of MIMO systems can be multiplied by the number of radiation patterns with
instantaneous pattern selection. In order to evaluate the mean capacity of the IPS-MIMO,
we propose a novel algorithm which closely approximates the mean of the maximum of the
channel capacity of arbitrarily correlated MIMO channels. We also propose an algorithm
for instantaneously selecting radiation patterns to achieve the mean capacity. In addition,
based on a simple closed-form approximation to the capacity correlation coefficient, we are
able to propose a subset pattern selection algorithm which enables the trade-off between
performances and complexity.

In conclusion, important extra gains can be obtained as a result of combining the use of
reconfigurable antennas and MIMO systems with either statistical or instantaneous radiation
pattern selection. The capability of the PS-MIMO to improve system performances, including
capacity and diversity order, is demonstrated through theoretical analysis and numerical
simulations.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Since the 1990s, the use of multiple transmit and receive antennas has been introduced to
modern wireless communications. Computer simulations and theoretical analysis presented
in the pioneering works by Winters [1] and Telatar [2] have shown that, by deploying these
multiple-input multiple-output (MIMO) systems, the spectral efficiency in a point-to-point
communication scenario can be increased linearly with the number of antennas. Therefore,
MIMO is regarded as an essential technical breakthrough which serves as a promising solution
to the ever increasing demand for high data rates in future wireless communications.

In general, a multidimensional MIMO system can provide two types of performance
gains: the space diversity gain and the spatial multiplexing gain. A MIMO system with
Nt transmit and Nr receive antennas can create NtNr space diversity branches between the
transmit and receive antenna ports. When the propagation channel is in deep fading, these
branches can be exploited to improve system robustness. By transmitting and/or receiv-
ing replicated data symbols over different antennas, which is known as space diversity, the
possibility of a transmission failure is significantly reduced because some symbol replica may
undergo deep fades while others may not. The error probability of this space diversity system
decreases exponentially by the number of combined diversity branches, i.e. , the diversity or-
der. A classical example of an efficient space diversity is space-time coding, which has been
applied in wireless communication systems [3, 4]. Under circumstances where the channel
is not in a deep fade, MIMO systems can also be used to increase the data rate by means
of spatial multiplexing techniques. MIMO systems over spatially uncorrelated channels can
support min(Nt, Nr) independent spatial channels [5]. By dividing the transmission symbol
stream into multiple parallel substreams and transmitting each substream via a separate spa-
tial channel, the transmission data rate is increased by the number of spatial subchannels.
Indeed, it has been theoretically proven that the ergodic channel capacity of a spatial mul-
tiplexing MIMO system increases linearly with the number of independent parallel spatial
channels supported by the MIMO system, which is known as the degree of freedom [2]. The
vertical Bell Laboratories layered space-time architecture (V-BLAST) is a famous example
of spatial multiplexing [6]. Provided that the number of receive antennas is no less than the
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number of transmit antennas, V-BLAST transmits parallel symbol streams over the transmit
antennas, and the receive antennas are used for demultiplexing the different symbol streams
at the receiver. The data rate of V-BLAST is therefore multiplied by the number of transmit
antennas.

However, the space diversity gain and the spatial multiplexing gain of a MIMO system
can not be maximized simultaneously. For example, a typical spatial multiplexing system
provides no spatial diversity gain whereas a space-time code which achieves full space diver-
sity reduces the achievable spatial multiplexing gain. Though spatial multiplexing is more
attractive to obtain higher data rate than space diversity, the performance of a full spatial
multiplexing system suffers from fading, particularly, in the low signal-to-noise (SNR) regime.
Therefore, it is necessary in this case to reserve some of the available spatial resources for
diversity to guarantee reliable transmission, which is known as diversity-multiplexing trade-
off. In [7], the optimal diversity-multiplexing tradeoff curves for some certain transmission
schemes are derived, verifying that higher space diversity gain comes at the price of sacrificing
spatial multiplexing. Spatial correlation is another negative factor which prevents from fully
exploiting the theoretically promising advantages of MIMO systems, especially in the high
SNR regime. Propagation channels are usually spatially correlated to various degrees because
homogeneous scattering is an ideal and unrealistic assumption in most real-world channels.
Furthermore, the physical dimension of handheld devices is often limited and results in high
correlation between closely spaced antenna elements. Hence the number of available spatial
resources is restricted by spatial correlation which is introduced both over the air and at the
antenna side. In an extreme case, a “keyhole” correlated MIMO channel provides one degree
of freedom [8], causing severe capacity losses in the high SNR regime comparing to spatially
uncorrelated channels [9].

Having acknowledged that increasing the transmission reliability of MIMO systems by
adding space diversity sacrifices the spatial multiplexing gain, a growing community of re-
searchers have extended their scopes from only using the variation of fading channels to
directly manipulating the antenna itself to provide diversity, which had been the most ig-
nored part in MIMO technologies, until recently, for overcoming the challenges aforemen-
tioned. Space diversity mentioned above is an antenna diversity technique. Other antenna
diversity techniques include polarization diversity and pattern diversity. Unlike space diver-
sity which takes advantages of multipath fading in the space domain with separately spaced
multi-element arrays, polarization diversity systems transmit signals with orthogonal po-
larizations of antennas, and pattern diversity provides orthogonality by producing spatially
disjoint radiation patterns. For example, multi-mode antennas can generate pattern diversity
by transmitting signals via orthogonal modes [10]. The multi-mode antenna MIMO produces



3

diversity without being separated by a physical distance and the system performance is com-
parable with conventional MIMO systems, which proves that space diversity can be replaced
by pattern diversity. Therefore, it is possible to utilize pattern reconfigurable antennas in a
spatial multiplexing MIMO system to achieve full spatial multiplexing gain while obtaining
pattern diversity for reliable transmission.

This thesis is a contribution to the application of radiation pattern reconfigurable an-
tennas in MIMO wireless communication systems. Reconfigurable antennas are switchable
or tunable to produce a number of radiation patterns and provide pattern diversity. In the
low SNR regime, the pattern diversity can provide additional diversity to guarantee reliable
transmission. In the high SNR regime, the additional pattern diversity can be utilized to
replace space diversity so that full spatial multiplexing gain is maintained without adding
more antennas.

1.2 Objectives and Methodology

The general objective of this research is to analyze performances of MIMO systems with
pattern reconfigurable antennas deployed at the receive side in wireless communications over
flat or block fading channels. The methodology of this research is based on the analysis
of system performance of MIMO with pattern reconfigurable antennas, assuming perfect
channel state information (CSI) at the receiver side.

In the first part of this research, the system model of pattern selection MIMO (PS-
MIMO) and the channel modeling with reconfigurable antennas are provided as the prerequi-
sites for analyzing the system performance and designing selection algorithms for PS-MIMO.

The second part of this thesis investigates channel estimation techniques with recon-
figurable antennas. Either full or partial channel state information (CSI) is necessary for
analyzing system performances of PS-MIMO systems and designing pattern selection algo-
rithms.

After obtaining channel parameters by estimation with reconfigurable antennas, the
major part of this research then focuses on the design of selection algorithms and the analysis
of system performances of PS-MIMO. The radiation pattern of a reconfigurable antenna can
be electronically manipulated in real time. The PS-MIMO system selects a proper set of
radiation patterns for the reconfigurable antennas to achieve certain kinds of performance
gains. According to the selection method, there are two categories of PS-MIMO systems: the
statistical selection and the instantaneous selection. The statistical pattern selection MIMO
(SPS-MIMO) system configures the reconfigurable antennas based on a long-term channel
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statistics. And statistical pattern selection algorithms should be designed according to long-
term statistical performance criteria.

The instantaneous pattern selection MIMO (IPS-MIMO) system configures the recon-
figurable antennas based on instantaneous full channel state information (CSI). And instan-
taneous pattern selection algorithms should be designed according to instantaneous perfor-
mance criteria.

In summary, the specific objectives of this research include:

• A mathematical model of PS-MIMO systems and models of MIMO channels with re-
configurable antennas.

• Finding techniques to estimate channel parameters of MIMO channels modeled by the
spatial channel model with reconfigurable antennas.

• Developing pattern selection algorithms and providing performance analysis for SPS-
MIMO systems.

• Developing pattern selection algorithms and providing performance analysis for IPS-
MIMO systems.

1.3 Contributions

This thesis is a contribution to the application of radiation pattern reconfigurable antennas
in MIMO wireless communication systems. Our contributions in this thesis are listed as
follows:

• We propose to use a pattern reconfigurable antenna array for estimating statistical
parameters of spatial clustered channels. A novel channel model is proposed to remove
the non-existent phantom clusters in the widely used Kronecker channel model. A
MUSIC based direction of departure (DoD) estimation is proposed for mean angles of
the clustered channel with pattern reconfigurable arrays. For the estimation of both
the mean direction and the angular spread of the clustered channel, the covariance
matching technique (COMET) is applied.

• We propose to use the statistical pattern selection (SPS) in MIMO systems over spa-
tially correlated flat fading channels. An upperbound on the ergodic channel capacity of
this SPS-MIMO system is calculated. Based on the upperbound, an exhaustive search-
ing algorithm is proposed to find the radiation patterns of the reconfigurable antenna for
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maximizing the ergodic channel capacity. A fast radiation pattern searching algorithm
based on Newton’s method is also proposed. The searching algorithms are validated
with an actual pattern reconfigurable antenna, the composite right/left-handed leaky
wave antenna (CRLH-LWA), as a demonstration.

• We propose to use the instantaneous pattern selection (IPS) in MIMO systems over spa-
tially correlated flat fading channels. An accurate approximation to the ergodic channel
capacity of IPS-OSTBC with arbitrarily correlated radiation patterns is proposed. A
complexity reduced pattern selection algorithm for IPS-OSTBC and IPS-MIMO is pro-
posed.

1.4 Organization of the Thesis

This thesis is divided into seven chapters. Chapter 1 is the introduction to this research and
thesis, which provides an overview of the research background, objectives and contributions.
The following part of this thesis is organized as follows.

In Chapter 2, a literature review is given concerning research results on reconfigurable
antennas, pattern diversity MIMO systems and system performance analysis of instantaneous
antenna selection for MIMO systems.

In Chapter 3, the reconfigurable antenna is briefly introduced and the system model
of the PS-MIMO systems equipped with reconfigurable antennas is presented. General
PS-MIMO channel models are presented in terms of both deterministic and stochastic ap-
proaches. The spatial cluster channel models for PS-MIMO are discussed for future eval-
uation. A spatially correlated MIMO channel model, the sum-Kronecker mode is proposed
to generate channel matrices. This channel model is as easy to use as the Kronecker model
but it is able to avoid artificial clusters. So it is particularly useful in verifying estimation
algorithms for cluster parameters in multi-clustered MIMO channels.

In Chapter 4, a study of estimating the channel parameters of spatially clustered channels
with a reconfigurable antenna array are presented. A subspace based method is examined
for estimating the direction of arrivals (DoA) with reconfigurable antennas. A Capon-like
spectrum estimator is proposed to jointly estimate the mean angle and angular spread of a
clustered channel. The covariance matching technique for estimating the mean angle and
angular spread is also discussed.

In Chapter 5, algorithms for maximizing the ergodic channel capacity of PS-MIMO
systems with statistical pattern selection over spatially correlated Rayleigh fading channels
are proposed. The ergodic channel capacity of the proposed selection algorithm is evaluated
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by numerical simulations. Analysis of the ergodic channel capacity maximization problem
for statistical selection is also included.

In Chapter 6, we focus on the instantaneous channel capacity performance of PS-MIMO
systems with instantaneous pattern selection over spatially correlated Rayleigh fading chan-
nels. For every channel realization, the radiation patterns of the receiving antennas are
selected to maximize the instantaneous channel capacity. The ergodic channel capacity of
the instantaneous selection system is then studied based on an approximation of the capac-
ity distribution. Algorithms aiming to select radiation patterns which maximizes the ergodic
capacity of the instantaneous selection system are presented.

Finally, Chapter 7 concludes this thesis and discusses related future works.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, recent research results related to pattern diversity in MIMO systems are
reviewed. The first section will give a brief introduction to the current progress in reconfig-
urable antennas. In the second section, we will present a literature survey on the application
of radiation pattern reconfigurable antennas in MIMO communication systems. In the last
section, we go over research results on antenna selection diversity in MIMO systems, a prob-
lem which exhibits some similarities with pattern diversity.

2.1 Reconfigurable Antennas

Radiation characteristics of antennas are traditionally assumed fixed at certain operating fre-
quencies. Recently, microwave researchers have developed reconfigurable antennas to provide
more possibilities. A reconfigurable antenna can intentionally alter its operating frequen-
cies, impedance bandwidths, polarizations, and/or radiation patterns. Our research interests
mainly focus on the application of radiation pattern reconfigurability in MIMO systems.
Throughout this thesis, unless otherwise stated, we use the term “reconfigurable antenna” to
refer to “radiation pattern reconfigurable antenna” for convenience.

Changing radiation patterns while keeping the operating frequency and bandwidth could
greatly enhance system performances. Manipulating the radiation pattern of an antenna can
be used to avoid interfering sources or improve transmission efficiency. The antenna radiation
pattern is determined by the distribution of electric or magnetic currents on the radiating
structure. Changes to the current distribution can be achieved by altering the physical or
effective structure of the radiating structure or by changing the electrical characteristics of
the radiating structure. The most common radiation pattern reconfiguration techniques are
implemented by electric switches or variable reactive loading [11]. Depending on whether the
tunable component of the reconfigurable antenna provides discrete or continuous changes,
antenna reconfiguration techniques are classified into two categories: discrete tuning and
continuous tuning. The discrete tuning provides a small number of radiation patterns while
the continuous tuning can ideally excite infinite number of radiation patterns at the antenna
port.

The discrete tuning is usually implemented by using active elements such as diodes or
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field-effect transistors (FET) which switch between the “ON” state and “OFF” state. Piazza
proposed to adjust the effective electric length of a dipole antenna with a PIN diode to switch
between two distinct radiation patterns while keeping the operating frequency [12]. The
radio-frequency microelectromechanical system (RF-MEMS) is another widely used switching
component for radiation pattern reconfigurability. Petit designed a three-element parasitic-
antenna array with two RF-MEMS switches which alter the length of the loading stubs to
obtain reconfigurable radiation patterns [13]. In [14], Grau designed a pixel antenna which
uses a multifunctional MEMS-reconfigurable radiator capable of producing up to five distinct
radiation patterns.

The continuous tuning allows smooth changes in the antenna’s radiation pattern. For
instance, in 1978, Harrington proposed a parasitic dipole array in which the driven dipole
element are surrounded by parasitic dipoles loaded with tunable reactances [15]. Varying the
loading reactance of each parasitic element leads to changes to the apparent magnitude and
phase of the signal on each array element and results in a directive beam in a desired direction.
This electronically steerable parasitic radiator (ESPAR) antenna can provide continuous
steerable radiation pattern [16]. However, limited by the element spacing and size, the
ESPAR can not provide high-directive pattern and can not be easily used in MIMO systems.
Another example of continuously tuned reconfigurable antennas is the composite right/left-
handed leaky-wave antenna (CRLH-LWA). Caloz [17] proposed a CRLH-LWA design which
consists of a periodic structure composed of cascaded CRLH microstrip unit cells with tunable
varactors. The antenna can be continuously tuned to control the phase of the signal at each
cell so that a directional radiation pattern is continuously steerable from backfire to endfire.
Piazza in [18] proposed another CRLH-LWA structure of a compact size so that the antenna
is more applicable in MIMO systems.

2.2 Radiation Pattern Diversity in MIMO Systems

Radiation pattern diversity in MIMO systems can improve the wireless communication per-
formance in rich scattering environments. But system capacity and reliability suffers when
the transmission channel is in deep fading or highly correlated. Since the propagation channel
in the wireless medium is fixed by the given environment and out of control of the communi-
cation system, reconfiguring the radiation patterns of the antennas is an effective mechanism
to change the propagation characteristics of the channel between the antenna ports at the
transmitter and receiver side so that better performance can be achieved over the altered
wireless channel. This is the fundamental idea of radiation pattern diversity.

It was proposed in [19] as a new approach to provide dynamic radiation pattern diversity
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(DRPD).

Recently, polarization diversity, pattern diversity and multi-mode diversity have been
studied to combat fading and improve system performances. [20] and [21] proposed to utilize
different antenna radiation patterns in clustered MIMO channels to improve channel capacity
by increasing the channel gain and/or reducing spatial correlation. But these schemes are
unable to provide selection diversity. [22] proposed a real-time radiation pattern selection
scenario for orthogonal space-time coding (OSTBC) systems. The authors proved that if P
disjointed radiation patterns are used, the diversity order in terms of average error probability
is multiplied by P fold. But this result is only valid for spatially uncorrelated MIMO channels.

Antennas are the key elements in wireless communication systems. Over the years,
the operating characteristics of antennas such as their polarizations and radiation patterns
have been assumed to be fixed at their operating frequencies. Though a phased array can
produce a steerable radiation pattern, the operating characteristics of a single element in the
array do not change. As discussed in Section 2.1, electronic engineers have recently developed
reconfigurable antenna elements with one or some of their operating characteristics adjustable
by mechanical or electrical method.

The major challenge of a wireless communication link is the uncertainty of the propaga-
tion environment which varies from time to time and from location to location. The varying
nature of the wireless propagation environment is the key problem of wireless communica-
tions. MIMO systems can linearly increase the data rate by transmitting data streams over
multiple antennas, i.e, spatial multiplexing. MIMO systems can also improve the link relia-
bility by properly combining radio signals transmitted or received over different antennas, i.e,
space diversity. However, it is not possible for a MIMO system to achieve maximum mult-
plexing gain and full diversity at the same time with conventional static antennas. When the
wireless channel undergoes strong fading, we have to sacrifice the multiplexing gain to provide
more diversity. Furthermore, in indoor or urban wireless communication environments, the
degree of freedom and diversity gain deteriorates due to the spatial correlation of the channel.
And, because of the limited size of mobile terminals, closely spaced antennas make the MIMO
channels even more correlated and therefore deteriorate system performances. Recently, sev-
eral novel antennas providing DRPD have been designed, such as the CRLH-LWA with
fully steerable directional radiation patterns and switchable micro-electromechanical systems
(MEMS) antennas. For each antenna element, we can adjust its radiation pattern to fit the
current instantaneous or long-term radio propagation channel characteristics and provide
pattern diversity gain. As a consequence, we can replace space diversity by pattern diversity
such that more spatial subchannels can be used to reliably transmit parallel data streams
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and therefore increase the date rate. On the other hand, carefully adjusting the radiation
patterns of different antennas may reduce channel correlation and improve multiplexing gain
and diversity order. Therefore, it is proposed to deploy DRPD antennas in MIMO systems
(DRPD-MIMO) over correlated channels such as indoor and urban environments.

The reconfigurability of antennas enables the capability of altering the propagation char-
acteristics of the wireless channel between the transmitter and the receiver. Decades ago,
wireless engineers began to use beamforming techniques to achieve similar features with an-
tenna arrays consisting of monopoles or dipoles. However, a beamforming antenna array
is not reconfigurable because its multiple antenna elements cannot change their operating
characteristics.

The reconfigurability is most useful for devices with restricted space to install several
antenna elements. A typical application is a single-element portable device, such as cell
phones or laptops, which are limited both in size and battery power. A monopole or strip
antenna is usually used with a fixed radiation pattern to provide omnidirectional coverage.
In this case, if a reconfigurable antenna with its radiation pattern redirected to the direction
of radio signals was used, the wireless device will then be able to use its battery power more
efficiently.

In the uplink, it can either achieve higher data rate or improve the transmission relia-
bility in poor propagation environments (deep fades) at no extra transmitting power. Or,
the battery power assumption of the portable device can be significantly reduced without
sacrificing transmission performances. In the downlink, it can also mitigate deep fades and
interference from other users and therefore improve the signal-to-interference-plus-noise ratio
(SINR).

In a multiple antenna scenario, radiation pattern reconfigurability introduces another
degree of freedom which can be used to improve the diversity-multiplexing compromise. That
is, the system can maintain its maximum spatial multiplexing gain given by the number
of receive/transmit antennas, while increasing the diversity gain limited by the degree of
reconfiguration provided by each antenna element.

In [23], it is suggested that by using reconfigurable directional antennas the MIMO
channel capacity in indoor multipath environments can be improved by channel decorrelation
as well as a directional gain. But these works are just showcases of exploiting the great
potential of pattern diversity, and no quantitative performance analysis is given. In [20],
the benefit of pattern diversity in a two-element circular patched antenna (CPA) array is
analyzed. An upper bound of ergodic channel capacity is derived and the error performance
of a practical system using Alamouti scheme is given.
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It is shown in [24] that the capacity of MIMO systems can be increased over correlated
fading channels by decorrelating with reconfigurable radiation patterns. It is in [25] that for
the first time a theoretical analysis on the error performance gain offered by a reconfigurable
MIMO system using Orthogonal Space-Time Block Codes (OSTBC) is derived. It is proved
that with orthogonal radiation patterns the diversity order of the system is the product of
the number of the transmit antennas, the number of the receive antennas and the number of
available radiation pattern states. Furthermore, it was also observed that correlated radia-
tion patterns degrades system performances comparing to systems with orthogonal radiation
patterns. Channel estimation of the reconfigurable MIMO system is also discussed in [25].

However, recent researches of theoretical analysis on the performance gain of pattern
diversity in MIMO systems is quite limited and how to select radiation patterns to maximize
system performances is still an open problem.

2.3 Antenna Selection in MIMO Systems

In this section, we summarize existing literature on the application of antenna selection in
MIMO systems. The radiation pattern selection is more complicated than antenna selection
and these two selection schemes differ greatly for the antenna selection switches between the
geometry locations of antenna elements while the radiation pattern selection switches between
the radiation characteristics. However, it is still worthy of discussing the methodologies and
system configurations of antenna selection.

Antenna selection in MIMO systems is proposed to reduce system cost by using fewer
radio frequency (RF) chains than full MIMO systems. Antenna selection schemes for opti-
mizing the capacity performance are proposed in [26–28]. In [26], the MIMO channel capacity
of selecting a single receive antenna in MIMO systems under fading channels with correlation
at the receiver side is considered. A closed-form expression for the outage probability and
an upper bound for the ergodic capacity of such system is derived by analyzing the joint
cumulative distribution function and the joint probability density function of the squared
row norms of the channel matrix with moment methods. It is demonstrated that antenna
selection based on maximizing the squared row norms of the channel matrix achieves a full
diversity order that is similar to a full MIMO system without antenna selection. Antenna
subset selection algorithms maximizing capacity of uncorrelated channels are discussed in [27]
and [28].

[27] establishes the equivalence in diversity order between the full MIMO system and
the antenna selection system by analyzing the outage characteristics. It is also proved in [27]
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that the channel capacity is statistically lower bounded by the capacity of a set of parallel
independent SIMO channels each with selection diversity. The proposed subset selection
scheme achieves near optimal performance with low complexity. [28] derived an upper bound
on the capacity based on the analysis of the joint statistics of the ordered SNR’s, as the sum
of the logarithms of ordered chi-square distributed variables based on the analysis of the joint
statistics of the ordered SNR’s. In [28], it is suggested that maximizing the rank and the
singular values of the correlation matrix of the channel maximizes the capacity. The subset
selection scheme proposed in [28] chooses two rows for the possible deletion whose correlation
is the highest and delete the one with the lower power.

Low complexity antenna selection schemes aiming to capacity maximization in correlated
MIMO channels are discussed in [29] and [30]. The proposed selection scheme in [29] is given
based on the lower and upper bounds of the ergodic capacity with long-term channel statis-
tics. The proposed selection algorithm applies a suboptimal sequential-selection approach
instead of the exhaustive search. In [30] the low complexity selection scheme is proposed
based on the theory of convex optimization and selection schemes for minimum mean square
error (MMSE) and ordered successive interference cancellation (OSIC) V-BLAST receivers
of spatial multiplexing MIMO systems are given.

Antenna selection schemes for improving system reliability are proposed in [24, 31–33].
In [31], the upper and lower bounds of the diversity order achieved by transmit antenna se-
lection for spatial multiplexing systems in uncorrelated Rayleigh fading channels with linear
receivers are given. [24] proposes an antenna selection scheme by maximizing instantaneous
SNR. With this selection scheme the OSTBC-MIMO system achieves near optimal error rate
performance in correlated Rayleigh channels with less complexity. [32] proposes a subset se-
lection scheme to improve the array gain and adapting OSTBCs to any number of transmit
antennas and to maximize the conditional SNR and minimize the instantaneous probability
of error. [33] proposes transmit antenna selection and constellation selection for spatial multi-
plexing MIMO system for a given target data rate by maximizing the minimal post-processing
SNR and maximizing the lower bound for a given outage data rate. In [34], antenna selection
for spatial multiplexing multi-user MIMO systems in correlated spatial channels with linear
and OSIC receivers are investigated. The selection algorithms are designed to maximize the
sum rate or minimize the total power. Channel estimation issues for antenna selection are
also considered and a training sequence signals in the preamble is proposed. [31] proposed a
geometrical framework theoretically analyze the diversity order achieved by transmit antenna
selection for separately encoded spatial multiplexing systems with linear and decision- feed-
back receivers. When two antennas are selected from the transmitter, the exact achievable
diversity order is rigorously derived, which previously only appeared as conjectures based
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on numerical results in the literature. If more than two antennas are selected, lower and
upper bounds on the achievable diversity order are available. Furthermore, the same geo-
metrical approach is used to evaluate the diversity-multiplexing trade-off curves for spatial
multiplexing systems with transmit antenna selection.
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CHAPTER 3

SYSTEM MODEL AND CHANNEL MODELS

In MIMO communications systems, the radio channel is one of the dominating factors which
determine the characteristics of the entire system. Therefore, a proper channel model is a
crucial precondition and guarantee to the system design. It helps to understand the system
behavior and serves as a channel simulator so that system performances, including the channel
capacity and the transmission error rate, can be reliably tested and fairly evaluated.

Wireless channels consists of the free space propagation environment and the anten-
nas. Though the former has been addressed by a lot of published researches, the impact
of the antenna part, apart from the antenna gain, is often ignored and the potential of the
reconfigurability of antenna radiation characteristics usually neglected. Recent researches
have discovered that deploying reconfigurable antennas in MIMO communication systems
is a promising solution to the demand of high performance wireless communications over
correlated channels on handhold devices where the antenna spacing is limited.

In this chapter, we first introduce the concept of antenna reconfigurability and the
mathematical description of reconfigurable antennas and reconfigurable antenna arrays in
Section 3.1. In Section 3.2, we propose the system model for a pattern-selection MIMO
(PS-MIMO) wireless communication system and discuss its working mechanism. In the last
section, we expand conventional MIMO channel modeling techniques to PS-MIMO channel
modeling. In this section, a generic deterministic channel model with geometric parameters
and a generic stochastic channel model for PS-MIMO systems are discussed. By assuming
PS-MIMO over spatially clustered channels, we propose the Kronecker model and the sum-
Kronecker model for PS-MIMO channels, both of which can be described by cluster statistics.
The Kronecker model will be used for simulation and system performance analysis in future
chapters. The sum-Kronecker model, which avoids spatial aliasing, will be used for simulation
and analysis of channel estimation with PS-MIMO.

3.1 Reconfigurable Antennas for MIMO Systems

Each possible configuration with which a reconfigurable antenna can radiate distinct radiation
patterns is called a pattern state. We denote the reconfiguration parameter by p, which can
be either discrete or continuous, depending on whether it is switching-based or tuning-based.



15

Figure 3.1 A 4-element reconfigurable antenna array is placed along the y-axis. When a plane
wave with wavevector k(φ, θ) arrives at the array, the complex response of the n-th element
at pattern state np is gnp(φ, θ).

For the discrete case , without loss of generality, we assume that p ∈ {1, . . . , P} where P is the
number of distinct pattern states to which the antenna can be configured. For the continuous
case , the range of p is the direct product of the range of the reconfiguration parameter of
each tunable element. However, we can convert the continuous case to the discrete case by
making P samples from the reconfiguration parameter range so that the continuous case is
reduced to the discrete case with P pattern states for selection. For conciseness, we abuse the
use of the notation p and do not distinguish between the pattern state, the reconfiguration
parameter and the numbered index of the reconfiguration parameter. With these notations,
we denote the radiation pattern function of the reconfigurable antenna at the pattern state
p by gp(φ, θ), where φ and θ are the azimuthal and elevation angle, respectively.

Consider an antenna array equipped with N reconfigurable antennas. Without loss of
generality, we assume that radiation characteristics of the reconfigurable antennas in the
array are identical and each antenna has P pattern states. We define the pattern vector of
the array by

g(φ, θ;ψ) = [gp1(φ, θ) gp2(φ, θ) · · · gpN (φ, θ)]T (3.1)

where pn ∈ {1, 2, . . . , P} is the pattern state configured to the n-th antenna, gpn(φ, θ) is the
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3-dimensional complex radiation pattern. We use a N -digit and P -ary number

ψ = (p1p2 . . . pN)P (3.2)

to represent the radiation states configured at all the antennas in the array.

The array response of the reconfigurable array at the array state ψ to a plane radio wave
at the solid angle (φ, θ) is referred to as the array response vector, denoted by a(φ, θ;ψ).
The array response vector is given by the Hadamard product (element-wise product) of the
steering vector v(φ, θ) and the pattern vector g(φ, θ;ψ):

a(φ, θ;ψ) = v(φ, θ)� g(φ, θ;ψ). (3.3)

The steering vector, which is given by

v(φ, θ) =
[
e−jk

T r1 e−jk
T r2 · · · e−jkT rN

]T
, (3.4)

contains phases of signals excited by a plane radio wave from the direction (φ, θ) at the
antenna ports. It is determined by the array geometry and the direction of the plane radio
wave propagation. In Eq. (3.4), rn = [xn yn zn]T is the location vector of antenna n (n =
1, · · · , N) in Cartesian coordinates, and the wavevector k describes phase variation of the
radio wave propagating along the direction (φ, θ)

k(φ, θ) = 2π
λ

[sin θ cosφ sin θ sinφ cos θ]T , (3.5)

where λ is the wavelength of the propagating radio wave. The magnitude of the wavevector
k = |k(φ, θ)| = 2π/λ is also known as the wavenumber. The inner product of the wavevector
and the location vector of antenna n, kT rn, is the phase shift of the plane wave at the antenna
relative to the origin of the coordinate system.

Fig. 3.1 illustrates an example of a 4-element reconfigurable antenna array with a plane
wave impinging from the direction (φ, θ). The phase shift of the received signal at antenna n
(n = 1, 2, 3, 4) is proportional to the projection of the corresponding antenna’s location vector
rn upon the wave propagating direction i.e. k(φ, θ)T rn. The received amplitude at antenna
n is weighted by gpn(φ, θ) , which is the corresponding 3-dimensional radiation pattern of the
antenna.



17

Baseband

RF
Transceiver

Radiation Pattern
Control

RF
Transceiver

Radiation Pattern
Control

scatterers...
...

Figure 3.2 System model of PS-MIMO with reconfigurable antennas at the receiver side.

3.2 System Model of Pattern-Selection MIMO

Conventional MIMO systems are equipped with antennas which only provide fixed radiation
patterns. A conventional MIMO system consisting of Nt transmit and Nr receive antennas is
denoted by [Nt, Nr]. The input-output relation of the conventional MIMO system over block
fading channels is given by

r = Hs + n (3.6)

where r ∈ CNr×1 is the received symbol vector and s ∈ CNt×1 is the transmitted symbol
vector. H ∈ CNr×Nt is the MIMO channel transfer matrix, and n ∈ CNr×1 is the complex
additive white Gaussian noise (AWGN) at the receiver.

Unlike conventional MIMO systems, a MIMO system equipped with pattern reconfig-
urable antennas at either or both the transmit and receive sides is defined by a Pattern-
Selection MIMO (PS-MIMO) system. According to the deployed side(s) of the reconfigurable
antennas, we classify PS-MIMO systems into three categories:

• Transmit pattern selection MIMO (TPS-MIMO), in which reconfigurable antennas are
deployed at the transmit side only;

• Receive pattern selection MIMO (RPS-MIMO), in which reconfigurable antennas are
deployed at the receive side only;

• Joint transmit and receive pattern selection MIMO (TRPS-MIMO), in which reconfig-
urable antennas are deployed at both the transmit and receive sides.
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We use the following notation

[Nt|(Pt,1, Pt,2, · · · , Pt,Nt);Nr|(Pr,1, Pr,2, · · · , Pr,Nr)]. (3.7)

to represent a PS-MIMO system with Nt reconfigurable antennas at the transmitter and Nr

reconfigurable antennas at the receiver.

The notation Eq. (3.7) means that the nt-th (nt = 1, . . . , Nt) antenna in the transmit
array has the capability to create Pt,nt pattern states and the nr-th (nr = 1, . . . , Nr) antenna
in the receive array can create Pr,nr pattern states. If the transmitter or the receiver uses
identical reconfigurable antennas which has Pt or Pr pattern states, respectively, Eq. (3.7) is
reduced to a simpler form given by

[Nt|Pt;Nr|Pr]. (3.8)

With this notation, the [Nt|1;Nr|1] PS-MIMO system is equivalent to the [Nt;Nr] conven-
tional MIMO system.

For a RPS-MIMO system, without loss of generality, it is convenient to assume that the
reconfigurable antennas have identical radiation properties and each has P pattern states.
We denote this RPS-MIMO system by (Nt, Nr|P ). Each combination of the pattern states
of all reconfigurable receive antennas is called a channel state, denoted by ψ. For the sake of
simplicity, we do not distinguish between the actual configuration of a channel state and the
index of the channel state. In this case, we use a P -ary number with Nr digits to represent
ψ by

ψ = (p1p2 · · · pNr)P (3.9)

where pnr (nr ∈ {1, 2, . . . , Nr}) is the pattern state of the nr-th receive antenna, i.e. , the
index of the selected radiation pattern of receive antenna n. The universe set of the channel
states of a PS-MIMO system is given by

Ψ = {(p1p2 . . . pNr)P |p1, p2, . . . , pNr ∈ {1, 2, . . . , P}} , (3.10)

with its size |Ψ| = PNr .

With notations and assumptions introduced above, we can now present a general system
model of RPS-MIMO systems:

r(ψ) = H(ψ)s + n(ψ), (ψ ∈ Ψ) (3.11)
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where s is the transmit symbol vector, ψ is a channel state selected from Ψ, and H(ψ),
r(ψ) and n(ψ) are the channel transfer matrix, received vector and noise vector at the
receiver corresponding to the configured channel state, respectively. It is straightforward to
obtain similar models using a similar methodology for TPS-MIMO systems and TRPS-MIMO
systems.

In Fig. 3.2, we illustrate a block diagram of TPS-MIMO system. Symbols for trans-
mission are passed to the radio frequency circuits and transmitted to the free space by the
reconfigurable antennas. The pattern states of the reconfigurable antennas are controlled by
the baseband so that the radiation patterns are adapted to the instantaneous or long-term
distribution of scatterers in the physical channel. The selection algorithm can be designed to
maximize the instantaneous or ergodic channel capacity, to minimize the error rate or other
criteria depending on system objectives.

Based on the channel state information (CSI) used by the selection algorithm, PS-MIMO
systems can be classified into two categories:

• Instantaneous selection (IS): The selection algorithm switches the radiation patterns
according to the instantaneous channel state information so that it achieves optimal
performances at each channel snapshot.

• Statistical selection (SS): The selection algorithm determines the radiation patterns
according to the long-term (statistical) channel state information so that it achieves
better performance statistics (eg., average) over a large number of channel snapshots.

3.3 Modeling Pattern-Selection MIMO Channels

There are generally two major techniques to model multipath MIMO channels. One is the
deterministic approach, which is also known as “ray-tracing”. The deterministic approach
models delays and complex gains of the propagating paths by parameters which describe
the geometric positions of all antennas and scatterers in the propagation environment. By
combining these path gains, we are able to generate channel matrices for further evaluation
and simulations. The deterministic model is most useful for precisely evaluating system
performances for a particular antenna system in a specific environment setup, without the
need of performing measurement campaigns. The other is the stochastic approach, which
generates channel matrix entries using predetermined statistics (eg., statistical distribution,
mean and covariance) of sub-channel gains between antenna ports. The stochastic approach
is faster and simpler in simulating channel matrices comparing to the deterministic approach
but does not describe a specific environment. Some stochastic models are well structured and
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Figure 3.3 The top view of a MIMO channel in an indoor environment where multipath
propagation in the elevation angle is assumed negligible. The multipath reflected by the k-th
scatterer is shown in the figure, with φt,k, the azimuth DoD, and φr,k, the azimuth DoA,
indicated, respectively.

tractable to obtain analytical results of system performances, which also enables insightful
understanding of system designs.

Our thesis focuses on the analysis of pattern reconfigurable antennas in MIMO systems.
Thus we need a channel model which is both geometrical and stochastic so that it can describe
the spatial dispersion of the multipaths and is tractable to perform analytical analysis. In this
section, firstly the generic deterministic channel model is introduced to model the channel
directivity with directional channel response; secondly, the generic stochastic channel model
is introduced to model the statistics of the channel matrices with the mean and auto/cross-
correlation; thirdly, we introduce the clustered channel model to give a stochastic description
of the MIMO channel with geometrical parameters, and discuss the relationship between the
geometrical model and the stochastic model.

3.3.1 Deterministic Modeling

The most general deterministic model of MIMO channels is the generic channel model (GCM)
proposed in [35]. The GCM distinguishes between the radio channel and the propagation
channel. The latter is described by the double-directional channel response, excluding both
the transmit and receive antennas, and the former is described by a non-directional channel
response [35]. The GCM assumes K resolvable multipaths and describes how the multipaths,
which are modeled by directions of departure (DoD) and directions of arrival (DoA), are
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impacted by antenna configurations and the propagation channel separately. The effect of
the propagation channel (the multipaths part) is described by the double-directional channel
response, excluding the impact of both the transmit and receive antennas. The double-
directional channel response is the superposition of the contributions of all multipath gains,
which is given as following

h(τ, φr, θr, φt, θt) =
K∑
k=1

βkδ(τ − τk)δ(φt − φt,k)δ(φr − φr,k)δ(θt − θt,k)δ(θr − θr,k), (3.12)

where τ, φt/r, θt/r are the delay, azimuth DoD/DoA, and elevation DoD/DoA, respectively,
of the channel, βk, τk, φt/r,k and θt/r,k are the complex gain, delay, azimuth DoD/DoA and
elevation DoD/DoA, respectively, of the k-th multipath.

The impact of reconfigurable antenna arrays on impinging radio waves have been dis-
cussed in Section 3.1 and Section 3.2. Taking the antenna part into account, the channel
matrix of a (Nt|Pt, Nr|Pr) TRPS-MIMO system configured at the channel state (ψt, ψr) is
modeled by concatenating the double channel response and the antennas:

H(τ ;ψt, ψr) =
∫

2π

∫
2π

∫
2π

∫
2π
h(τ, φr, θr, φt, θr)ar(φr, θr;ψr)at(φt, θt;ψt)Tdφtdφrdθtdθr

=
K∑
k=1

βkδ(τ − τk)ar(θr,k, φr,k;ψr)at(θt,k, φt,k;ψt)T , (3.13)

where ψt and ψr represent the reconfiguration parameters of the transmit and receive antenna
array, at(θt, φt;ψt) and ar(θr, φr;ψr) are the array response vectors of the reconfigurable
transmit and receive array, with antenna geometry and radiation patterns included implicitly
in the array response vectors as Eq. (3.3).

Throughout this thesis, our analysis focuses on the application of reconfigurable antennas
in indoor propagation environments, where it is reasonable to assume that all radio waves
propagate within the azimuthal plane and the elevation propagation is negligible, that is we
will use the following assumption:

Assumption 3.1 (Azimuthal assumption). For indoor environments, all radio waves prop-
agates in the azimuthal plane.

The azimuthal assumption is verified by reported measurements that indoor multipath
energy dispersion is very small in the vertical dimension and most of the energy is localized
within the azimuthal plane. The reason is intuitive because the floor height is considerably
smaller than the azimuthal size in most buildings [36]. In this case, the radiation pattern of
a reconfigurable antenna at the pattern state p is written as gp(φ). Fig. 3.3 illustrates the
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generic spatial MIMO channel model in an indoor propagation environment. The multipath
component corresponding to the k-th scatterer departs from the transmitter at azimuth
angle φt,k and arrives at the receiver at azimuth angle φr,k. In addition, we will also make
the following assumption in the thesis regarding the independence of multipaths.

Assumption 3.2 (Uncorrelated scattering assumption). Radio waves that are coming at
different directions are uncorrelated. [37]

According to the azimuthal assumption and the uncorrelated scattering assumption,
the channel matrix of a TRPS-MIMO configured at the channel state (ψt, ψr) in Eq. (3.13)
reduces to

H(ψt;ψr) =
K∑
k=1

βkar(φr,k;ψr)aTt (φt,k;ψt), (where ψt ∈ Ψt and ψr ∈ Ψr) (3.14)

For a (Nt;Nr|Pr) RPS-MIMO system, the transmit array response is at(φt) since the
transmit antennas are non-reconfigurable. Therefore, the channel matrix of the RPS-MIMO
in which the receive antenna array is configured to ψr is written as

H(;ψr) =
K∑
k=1

βkar(φr,k;ψr)aTt (φt,k; ). (3.15)

Similarly, the channel matrix of a (Nt|Pt;Nr) TPS-MIMO system configured to ψt is

H(ψt; ) =
K∑
k=1

βkar(φr,k; )aTt (φt,k;ψt). (3.16)

Selecting from the Channel Generating Matrix

From Eq. (3.14) to Eq. (3.16), the channel matrix of the PS-MIMO system is generated with
the selected array response vector(s). We will now consider a virtual MIMO system, in which
each pattern state of the reconfigurable antenna assumes a distinct virtual antenna. That is
we consider a virtual MIMO system with virtual antennas consisting of all possible pattern
states of the reconfigurable antennas. The channel matrix of this virtual MIMO is denoted by
HG. Similar to Eq. (3.14), the virtual channel matrix HG of a TRPS-MIMO system modeled
by the GCM is

HG =
K∑
k=1

βkãr(φr,k)ãTt (φt,k). (3.17)



23

In this case, in order to obtain the real specific PS-MIMO channel matrix, we can generate
HG first and then select a submatrix of HG according to the configured channel state of
the PS-MIMO. HG is therefore referred to as the channel generating matrix of a PS-MIMO
channel snapshot.

For a TRPS-MIMO channel, H(ψt;ψr) ∈ CNr×Nt denotes the channel matrix of a channel
snapshot at the channel state (ψt;ψr). H(ψt;ψr) is generated by selecting aNr×Nt submatrix
from the generating channel matrix HG according to the enumerating digits in ψt and ψr as
defined in Eq. (3.9).

Selecting the array response of the PS-MIMO according to the array state is described
as follows

aq(φq;ψq) = Sq(ψq)ãq(φq), (q ∈ {t, r})

where ãq(φq) ∈ CPqNq is the array response vector of the virtual MIMO system and Sq(ψq)
is a Nq × PqNq selection matrix which selects Nq rows from ãq(φq) by the indexing digits in
ψq. We construct ãq(φq) by

ãq(φq) = vec




aq(φq; 1)T

aq(φq; 2)T
...

aq(φq;Pq)T



 , (q ∈ {t, r})

and construct Sq(φq) by

Sq(ψq) =



eTp1 0 · · · 0

0 eTp2 0 ...
... 0 . . . 0
0 · · · 0 eTpNq

 , (q ∈ {t, r}) (3.18)

where epnq is a standard Pq-dimensional orthogonal basis with 1 at the pnq -th dimension
(nq = 1, . . . , Nq). Therefore, the nq-th row of Sq(φq) extracts the Pq(nq − 1) + pnq -th row of
ãq(φq), which corresponds to pattern state pnq of the nq-th antenna.

The channel matrix for a given channel state is straightforward to obtain by selecting
the corresponding submatrix from the channel generating matrix HG. For a (Nt|Pt;Nr|Pr)
TRPS-MIMO system (double-sided) at the channel state (ψt;ψr), the channel matrix is
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selected by applying the selection matrix Eq. (3.18) to the channel generating matrix as

H(ψt;ψr) = Sr(ψr)HGSt(ψt)T . (3.19)

For illustration purpose, let’s look at a (Nt;Nr|Pr) RPS-MIMO system. The channel
generating matrix for this system using the GCM is

HG =
K∑
k=1

βkãr(φr,k)aTt (φt,k), (3.20)

which is a PrNr ×Nt matrix as follows

HG =



HG(1, 1) · · · HG(1, Nt)
... . . . ...
HG(Pr, 1) · · · HG(Pr, Nt)
HG(Pr + 1, 1) · · · HG(Pr + 1, Nt)
... . . . ...
HG(2Pr, 1) · · · HG(2Pr, Nt)
... ...
HG(PrNr − Pr + 1, 1) · · · HG(PrNr − Pr + 1, Nt)
... . . . ...
HG(PrNr, 1) · · · HG(PrNr, Nt)



. (3.21)

HG is constructed by sequentially stacking PrNr row vectors of dimension Nt, which corre-
spond to channel coefficients between the transmit antennas and the receive antennas with
all possible pattern states. HG(m,n), the (m,n)-th entry of HG, represents the complex
gain from the n-th transmit antenna to the dm

Pr
e-th reconfigurable receive antenna which is

configured to the pattern state (m− 1 mod Pr) + 1.

The channel matrix of the RPS-MIMO configured at the channel state (;ψr) is generated
by applying the selection matrix at the receiver side, i.e.,

H(;ψr) = Sr(ψr)HG. (3.22)

For each channel snapshot, the RPS-MIMO selects NtNr subchannel coefficients out of
NtNrPr channel coefficients candidates to form a channel matrix H(;ψr) at the channel
state (;ψr).
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3.3.2 Stochastic Modeling

As discussed earlier, it is desirable to model the channel matrix entries with multivariate
probability distribution for analytical performance assessment. Based on measurements and
for simplicity, many MIMO channel models assume that the MIMO channel matrix follows
a multivariate complex Gaussian distribution.

Stack columns of the channel matrix HG ∈ CNrP×Nt and we get a PNtNr-dimensional
complex vector

hG = vec (HG) . (3.23)

The correlation matrix of hG is defined by

RG = E
[
hGhHG

]
, (3.24)

which is also termed as correlation generating matrix of the channel generating matrix HG.

For Rayleigh fading channels, the probability distribution of the channel matrix is de-
termined by the correlation (covariance) matrix RG only, i.e.

hG ∼ CN (0,RG). (3.25)

The probability density function (PDF) of the zero-mean hG is

fhG(x) = 1
πPNtNr det(RG)e

−xHR−1
G x. (3.26)

where the correlation generating matrix RG can be any semi-positive definite matrix.

We generate the Rayleigh faded channel matrix H by

HG = unvec
(
R1/2
G w

)
(3.27)

where w is a complex zero-mean Gaussian independent identically distributed (i.i.d.) vector
with unit variance and has the same dimension as hG, R1/2

G is the matrix square root of RG,
and unvec (·) is an inverse operation of vec (·) and transforms a vector into a matrix.

For a statistically modeled TRPS-MIMO Rayleigh fading channel, the channel matrix
selected by the channel state (ψt;ψr) is given from Eq. (3.19) and Eq. (3.27) by

H(ψt;ψr) = unvec
(
St(ψt)⊗ Sr(ψr)T ·R1/2

G w
)
. (3.28)
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Figure 3.4 A cluster-based channel. Clusters are decomposed into a number of resolvable
multipath components and can be viewed differently at either link-end.

In this case, modeling the Rayleigh faded channel H from the stochastic perspective
is equivalent to modeling the statistics of the correlation generating matrix RG. Applying
some further assumptions to the structure of the total correlation matrix, RG, usually lead
to a simpler expression for HG. The first proposed stochastic MIMO channel model simply
assumes RG = INtNr ,i.e. , uncorrelated paths among antennas and reconfiguration states.
Another popular stochastic model is the Kronecker model, assuming separable correlation
between the transmitter and the receiver. Other models, such as the Weichselberger model
and the virtual channel representation, use more complicated correlation structures.

3.3.3 Clustered Channel Models

The GCM does not indicate how to compute multipath component parameters (the gain,
delay, DoA and DoD of the subpath). They can be numerically calculated by ray-tracing
techniques with electromagnetic (EM) methods such as the finite-difference time domain
(FDTD) method and the method of moments (MoM). EM methods require complete de-
scription of all scatterers and antenna elements in the propagation environments, including
their geometries and EM properties. The ray-tracing model presents physical aspects of a
real-world MIMO channel. Because of its deterministic nature and heavy computational
burden, the ray-tracing model is not suitable for system level evaluation. To overcome this
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disadvantage, clustered channel models have been proposed and will now be considered.

Unlike ray-tracing models, cluster models do not characterize the channel by modeling
the behavior of each multipath. Instead, multipath components are grouped into clusters
according to their stochastic spatial similarity. Within each cluster, the DoD’s and DoA’s of
intra-cluster multipath components are considered identically distributed and characterized
by the mean angle, the angular spread and the power strength of the cluster.

Clustered channel models describe MIMO channels from a perspective which is geo-
metrical as well as statistical. First, cluster models are statistical because the multipath
components are characterized by probability distributions. Second, cluster models are also
geometrical and reflect real channels since the parameters of the probability distributions are
extracted from measured data.

The first clustered channel model is the Saleh-Valenzuela model (SVM) which groups
multipath component in clusters by time arrivals. Clustering in the angular domain both at
the transmit and receive side is introduced by the extended SVM (E-SVM) [38] [39]. These
clustered channel models assume that multipath component parameters at different directions
are independent of each other and can be generated by certain probability distributions.
The random cluster model (RCM) use a joint multivariate probability density function to
characterize the channel statistics [40]. Among these models, the RCM is the most accurate
but complex one.

Bridging the Gap

It would be desirable to describe the statistics of subchannel gains between antenna ports with
the distribution of multipath parameters. In order to bridge this gap, the clustered MIMO
channel models is proposed with assumptions that the multipath parameters follow some
certain distributions. The clustered channel model was first proposed by Saleh and Valenzuela
who observed that multipaths can be grouped into clusters by similar time delay [41]. It was
extended by Spencer to the space domain at the receiver [38], and Czink verifies that spatial
clustering also applies at the transmitter side [39].

For a narrowband (Nt, Pt;Nr, Pr) PS-MIMO system in the indoor environment, we derive
the generating channel matrix HG ∈ CNrPr×NtPt based on Eq. (3.14). We can extend the
expression with radiation patterns of antenna elements taken into account and rewrite the
channel matrix as

HG = 1√
K

K∑
k=1

βkãr(φr,k)ãTt (φt,k). (3.29)
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Over Rayleigh narrowband fading channels, the channel generating matrix is statistically
described by

HG ∼ CN (0,RG).

In order to establish the relationship between the geometrical description and the stochastic
description, the multipath component parameters βk, φt,k and φr,k are assumed random
variables which follow some given probability distributions. In this case, the correlation
generating matrix RG is determined by the statistics of the multipath components as follows

RG = E
[
hGhHG

]
= E

 1
K

vec
(

K∑
k=1

βkãr(φr,k)ãt(φt,k)T
)

vec
(

K∑
k′=1

βk′ ãr(φr,k′)ãt(φt,k′)T
)H

= E
[

1
K

K∑
k=1

K∑
k′=1

βkβ
∗
k′ [ãt(φt,k)⊗ ãr(φr,k)][ãt(φt,k′)H ⊗ ãr(φr,k′)H ]

]
. (3.30)

Assuming the multipath component gains βl are independent, we rewrite RG as

RG = E
[

1
K

K∑
k=1
|βk|2[ãt(φt,k)⊗ ãr(φr,k)][ãt(φt,k)H ⊗ ãr(φr,k)H ]

]

= E
[

1
K

K∑
k=1
|βk|2[ãt(φt,k)ãt(φt,k)H ]⊗ [ãr(φr,k)ãr(φr,k)H ]

]
. (3.31)

The last equation of Eq. (3.31) is obtained by the mixed-product property of the Kronecker
product. We assume that the complex path gains have zero mean and unit variance. When
K, the number of the multipath components, are large enough, Eq. (3.31) becomes a double
integral which is written as

RG =
∫

2π

∫
2π
PAS(φt, φr) ·

[
ãt(φt)ãHt (φt)

]
⊗
[
ãr(φr)ãHr (φr)

]
dφtdφr (3.32)

where PAS(φt, φr) is known as the double-side power angular spectrum (PAS), which is the
joint PDF of the DoD and the DoA, satisfying

∫
2π

∫
2π
PAS(φt, φr) dφtdφr = lim

K→∞
E
[

1
K

K∑
k=1
|βk|2

]
= 1.

Thus, the relationship between the geometric description and the stochastic description is
established if and only if the double-side PAS is known.
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Clustered Channels

PAS, the DoA-DoD joint power dispersion, can be attributed to the geometric distribution of
the scatterers in the propagation environment. [38] and [39] found that the power of multipath
components is distributed in clusters, both in the delay domain and in the angular domain.
Based on the narrowband asumption and the azimuth assumption, the temporal multipaths
are unresolvable and the spatial dispersion along the elevation direction angle is neglected.
For a L-cluster multipath channel with K subpaths in each cluster, the double-directional
channel response of Eq. (3.12) is rewritten as the weighted sum of the double-directional
channel response of each individual cluster [42]

h(φt, φr) = c
L∑
l=1

√
wlhl(φt, φr) (3.33)

where c is a constant power factor, wl is the power weight of the l-th cluster which satisfy∑L
l=1wl = 1. The double-directional channel response of cluster l

hl(φt, φr) = 1√
K

K∑
k=1

β
(l)
k δ(φt − φ

(l)
t,k)δ(φr − φ

(l)
r,k), (3.34)

where β(l)
k , φ(l)

t,k and φ(l)
r,k are the normalized complex gain, the DoD and the DoA at the k-th

subpath of the l-th cluster, respectively.

Kronecker Model of PS-MIMO Channels

Recent indoor channel measurement [38] by Spencer measured the PAS’s at the transmit
and receive side separately so that the separable assumption was inherently assumed. The
measurement demonstrated that the marginal probability distribution of the DoD’s/DoA’s
within a cluster can be closely modeled by the Laplace distribution, which is given by

fL(φ; φ̄, σ) =


β√
2σe
−
√

2|φ−φ̄|/σ if φ ∈ [−π, π),
0 others.

(3.35)

where φ is the DoA/DoD of the random paths over azimuth plane, φc is the mean DoA/DoD
of the cluster, σc is the standard deviation of the PAS, i.e., the angle spread (AS) of the
cluster, and β = 1/

(
1− e−

√
2π/σc

)
normalizes the PAS so that

∫ π
−π fL(φ; φ̄, σ)dφ = 1.

For a spatial channel with L clusters, the multipath components of each cluster are
characterized by the same type of probability distribution. Regarding the multipath compo-
nent directions within the l-th cluster, [38] verified that the DoD’s φ(l)

t,k and DoA’s φ(l)
r,k are
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distributed around the mean DoD φ̄
(l)
t and the mean DoA φ̄(l)

r of the l-th cluster. In [38], the
PAS at the transmitter and receiver side are the weighted sums of Eq. (3.35), i.e.

PASq(φq) =
L∑
l=1

p(l)fL(φ; φ̄(l)
q , σ̄

(l)
q ), (q ∈ {t, r}) (3.36)

where the φ̄(l)
q , σ

(l)
q , and p(l) are the mean angle, angular spread and normalized power of the

l-th cluster, respectively.

Since the DoD’s are assumed independent of the DoA’s, the joint power azimuth spec-
trum PAS(φt, φr) is separable as

PAS(φt, φr) = PASt(φt)PASr(φr), (3.37)

where PASt(φt) and PASr(φr) are the marginal PAS observed at the transmitter and receiver
side, respectively. The separable assumption leads to a Kronecker product structure of the
channel correlation matrix. Substituting Eq. (3.37) into Eq. (3.32), we can now re-write the
correlation generating matrix Eq. (3.32) of the full virtual MIMO system in the form of a
Kronecker product as

RG =
[∫

2π

∫
2π

ãt(φt)ãHt (φt)PASt(φt)dφt
]
⊗
[∫

2π

∫
2π

ãr(φr)ãHr (φr)PASr(φr)dφr
]

= R̃t ⊗ R̃r, (3.38)

where

R̃t =
∫

2π

∫
2π

ãt(φt)ãHt (φt)PASt(φt)dφt

R̃r =
∫

2π

∫
2π

ãr(φr)ãHr (φr)PASr(φr)dφr (3.39)

are the normalized covariance matrices at the transmit and receive side, respectively.

We can now generate channel matrices for TRPS-MIMO systems using the Kronecker
model. First we obtain the correlation generating matrix RG of the Kronecker model by
Eq. (3.38) with given cluster parameters. Then we get the channel generating matrix by

HG = R̃1/2
r WGR̃

T/2
r = unvec

((
R̃t ⊗ R̃r

)1/2
wG

)
. (3.40)

In the next, we select the Kronecker modeled TPRS-MIMO channel matrix by Eq. (3.19).
And for RPS-MIMO channels used in future chapters, we modify the correlation generating
matrix and the channel generating matrix accordingly, and select the channel matrix by
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Eq. (3.22).

Sum-Kronecker Model of PS-MIMO Channels

The Kronecker model assumes that the multipath DoD’s and DoA’s are independent so that
the joint PAS of the Kronecker model is the product of the marginal PAS’s at the transmit
side and at the receive side. This assumption means that each multipath arriving at a
specific cluster at the transmitter side is independently reflected to any other cluster seen
by the receiver side. However, in real scattering environments, the DoD and DoA of each
multipath is associated with a specific scatterer, contradicting the independence assumption
presumed by the Kronecker model. This deficiency of the Kronecker model has been observed
in [43] and it was shown that the Kronecker model produces non-existent phantom clusters
which lies at the intersections of the DoD’s and DoA’s of real clusters by forcing the joint
PAS to be separable. Fig. 3.5 illustrates the joint Capon spectrum1 of a two-cluster channel
observed by a 4 × 4 MIMO system. The joint spectrum shown in Fig. 3.5(a) is estimated
by the Kronecker model, which introduces two phantom clusters. As discussed in [43], it
has been found that the Kronecker model tends to underestimate the true channel capacity
and overestimate the diversity order. The reason is that the Kronecker model introduces
non-existent clusters and multipaths. Though the Kronecker model has these deficiencies,
it is still favored by many researchers because of the tractability of the Kronecker product
structure. In our thesis, we also accept the Kronecker model in cases of analyzing the system
performances of channel capacity and detection error rates.

As aforementioned, the resulted modeling error is an alarm against assuming the Kro-
necker model in evaluating channel capacity and detection error rate for high resolution
MIMO systems, including high dimensional antenna arrays and reconfigurable MIMO with
highly directive radiation patterns. For a PS-MIMO system equipped with reconfigurable
antennas at both sides, the problem becomes even worse. If the Kronecker model is used in
simulations, when the reconfigurable transmit antennas and the reconfigurable receive anten-
nas are steered to a phantom cluster, it will definitely result in a transmission failure. For
this reason, we propose a novel channel model, the sum-Kronecker model, which complies

1The joint DoD-DoA Capon spectrum of a MIMO system over Rayleigh fading channels with respect to
the correlation matrix R is defined by

PCapon(φt, φr; R) = 1
(at(φt)⊗ ar(φr))H R−1 (at(φt)⊗ ar(φr))

,

where R is positive definite.
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(a) Joint DoD-DoA Capon spectrum generated by the Kronecker model. The
Kronecker model introduces two phantom clusters at (30◦, 60◦) and (120◦, 135◦),
which are the intersections of the real clusters.
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(b) Joint DoD-DoA Capon spectrum generated by the sum-Kronecker model.

Figure 3.5 A two-cluster channel with the first cluster at (30◦, 135◦) and the second cluster
at (120◦, 60◦). Both clusters have the same power. The angular spread of each cluster at
either the TX or the RX side is 10◦. These two subfigures illustrate the joint Capon spectrum
simulated by a 4× 4 MIMO system with half-wavelength spaced ULA at both sides.
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with the cluster positions of the joint PAS. Recall that the joint correlation matrix is

RG =
∫

2π

∫
2π
PAS(φt, φr) ·

[
ãt(φt)ãHt (φt)

]
⊗
[
ãr(φr)ãHr (φr)

]
dφtdφr.

Unlike the Kronecker model which applies the separable assumption to the multipath DoD’s
and DoA’s globally, we restrict the separable assumption for the intra-cluster DoD’s and
DoA’s to avoid phantom clusters. We assume that the joint DoD-DoA power angular spec-
trum PAS(φt, φr) of a L-cluster channel is the weighted superposition as follows

PAS(φt, φr) =
L∑
l=1

p(l)PAS(l)(φt, φr), (3.41)

where PAS(l)(φt, φr) is the normalized joint PAS of the l-th cluster. Similar to the Kronecker
model, we assume that the multipaths within each cluster are independent and also follow
the Laplace distribution:

PAS(l)(φt, φr) = fL(φt; φ̄(l)
t , σ

(l)
t )fL(φr; φ̄(l)

r , σ
(l)
r ), (3.42)

where φ̄(l)
t and σ(l)

t are the mean angle and angular spread of the l-th cluster at the transmit
side, and φ̄(l)

r and σ(l)
r are the mean angle and angular spread of the l-th cluster at the receive

side.

HG = unvec
( L∑

l=1
p(l)R(l)

t ⊗R(l)
r

)1/2

w

 , (3.43)

or

HG =
L∑
l=1

p(l)(R(l)
r )1/2Wl(R(l)

r )T/2. (3.44)

In the next, we select the TPRS-MIMO channel matrix from the channel generating matrix
of the sum-Kronecker model by Eq. (3.19). And for RPS-MIMO channels used in future
chapters, we modify the correlation generating matrix and the channel generating matrix
accordingly, and select the channel matrix with the Kronecker model by Eq. (3.22).

The sum-Kronecker model is the limit of the multipath model in rich scattering envi-
ronments with large number of scatterers. And it also well approximates the curve of the
multipath model when the number of the scatterers is as low as 20. It is also worth mentioning
that the proposed sum-Kronecker model is different from the Kronecker model constructed
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by Weichselberger [44]. Though both channel models expand the correlation matrix into a
sum of a series of Kronecker products, the Kronecker modes of Weichselberger’s model de-
compose the correlation matrix in the eigenspace while the sum-Kronecker model proposed
in this thesis decomposes the joint correlation in the angular domain.

3.4 Chapter Summary

In this chapter, we have presented the fundamentals of PS-MIMO communication systems
with pattern reconfigurable antennas. The reconfigurability of antenna radiation patterns
plays a significant role in optimizing capacity and reliability of the system.

A short introduction to reconfigurable antennas and reconfigurable antenna arrays have
been included in this chapter. The mathematical representations of the pattern reconfigurable
antenna and the reconfigurable antenna array defined in Eq. (3.1) and Eq. (3.3) will be used
throughout this thesis. The system model of PS-MIMO has been introduced. Concerning
channel modeling for PS-MIMO, two PS-MIMO channel models based on spatial clustering
have been described in this chapter. The Kronecker PS-MIMO channel model will be used in
Chapter 5, Chapter 6 to study the channel capacity and error rate performances of PS-MIMO
systems. The sum-Kronecker PS-MIMO channel model will be used in Chapter 4 to study
the estimation of the channel cluster parameters with reconfigurable antenna arrays.
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CHAPTER 4

ESTIMATING PARAMETERS OF CLUSTER CHANNELS FOR
RECONFIGURABLE ANTENNA ARRAYS

In Chapter 5 and Chapter 6, we will quantitatively analyze the capacity or reliability per-
formance of PS-MIMO systems based on the knowledge of the spatial channels and the
reconfigurability of the dynamic antenna elements. For the IPS-MIMO, full channel state
information, i.e., the channel matrices for every possible radiation pattern configuration, are
required. For the SPS-MIMO, the statistics of the MIMO channels for every possible pattern
configuration are required. Therefore, estimating channel parameters of PS-MIMO channels
is crucial. In this chapter, we focus on how to estimate the long-term statistics of the spatial
channel, i.e., the mean angles and angular spreads of the spatial clusters. The pattern state is
selected based on long-term statistics such as the covariance matrix. We propose to estimate
the receiver side PAS of the propagation paths instead of to estimate covariance matrices
R(ψ) for all possible channel state configurations ψ. In addition, we propose to investigate if
reconfigurable array systems can improve the estimation accuracy comparing to conventional
systems. When the number of radiation patterns is too large, estimating all possible instan-
taneous channel realizations is very time consuming and not applicable, because we have to
correlate received signals from all antenna ports with all possible radiation patterns. In order
to overcome this difficulty, we propose that we estimate the power angular spectrum (PAS)
of the propagation paths instead of estimating the covariance matrices R(ψ) (where ψ ∈ Ψ).
This proposal is based on the observation that the covariance matrix R is determined by
radiation patterns, antenna spacing, and PAS.

The problem of estimating all R(ψ) is converted to estimating PAS(φ). Since the PS-
MIMO system works in the context of clustered channels, PAS(φ) can thus be parameterized
as PAS(φ; η), where η = {φc, σc}, φc are the mean angles of the clusters and σc is the angular
spreads of the clusters. The parameter vector η can be estimated based on the covariance
matrix of a given radiation pattern configuration ψ. Though there exists many well developed
estimation theory for array processing, they are all based on omni-directional antennas. In
our research, we propose to extend estimation theory to DRPD-MIMO systems and analyze
its estimation accuracy. Here we give an illustrative analysis about the estimation accuracy
with DRPD-MIMO. The accuracy of estimating with a given estimation technique can be
evaluated by the Cramer-Rao lower bound (CRB). The CRB is given by the inverse of Fisher
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Information Matrix (FIM). Considering L pattern configurations we have covariance matrices
for each independent estimation with different pattern configurations, i.e, R(ψ(l)) (where
l = 1, · · · , L). For the covariance matching estimation technique with pattern configuration
psi l , the (m,n)-th element of the inverse of the corresponding CRB where N is the length
of the received signal sequence for each estimation. The covariance matrix of the total
estimation with L pattern configurations By selecting proper Ψ, it is possible achieving
higher estimation accuracy with DRPD-MIMO than that with conventional MIMO.

Generally, the angular resolution of a scanning beam is determined by the antenna
beam width. When multiple waves are incident within an angular range narrower than the
scanning antenna beamwidth, it is difficult to separate the incident waves. In the case that
the difference in the distances between the targets is larger than the range resolution, which
is governed by the transmission bandwidth, the mixed signals can be separated. In this
situation, it is important to perform DOA estimation by improving the angular resolution.
When multiple received signals can be derived from an array antenna, as in the case of
beamforming, there are DOA estimation methods based on the superresolution algorithm,
such as MUSIC (multiple signal classification), which can estimate the DOAs of multiple
waves closing less than the beamwidth. In scanning beams, the antenna gain of the incident
wave is uniquely determined according to the beam direction. Thus, a DOA estimation
algorithm can be considered in which the incident waves are derived with multiple beams
whose directions are different, and the corresponding antenna gains are used as the feature
parameters of the incident angle.

4.1 Data Model

Most conventional direction finding algorithms have been developed for point sources. How-
ever, in indoor wireless communication scenarios introduced in Chapter 3, the scatters in the
propagation environment are geometrically distributed in groups (clusters). For instance, an-
gular spreads up to 15◦ have been observed in an indoor measurement campaign [Laplacian
distribution]. Therefore, the source can no longer be modeled using the point assumption.

Multipath propagation in indoor environments leads to energy dispersion in the spa-
tial domain. Depending on the nature of the reflection and scattering in the propagation
environment, signal components arriving from different directions exhibit varying degrees
of correlation, ranging from totally uncorrelated (incoherent) to fully correlated (coherent)
cases [45]. A source can be viewed as coherently distributed (CD) if the signal components
arriving from different directions are replicas of the same signal. To the contrary, sources are
called incoherently distributed (ID) if all signals from different directions are uncorrelated.
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Indeed, if the channel coherency time is much smaller than the observation period, then the
ID model is relevant. In the opposite case, the CD model or a partially coherent model can
be used. In this chapter, we consider narrowband signals propagating over clustered chan-
nels and observed by a reconfigurable antenna array. Under stationary conditions, the signal
components reflected from different differ parts of the object differ by a deterministic phase
component that depends on the reflection coefficients of the surface elements, the difference
in travel times, and the frequency of the incident wave [45].

In some cases, the signal rays arriving from different directions can be assumed uncorre-
lated. For example, in the transmission of the radio-waves through tropospheric scatter links,
the signal rays reflected from different layers of the troposphere have uncorrelated phases.
A similar effect is observed when the signal rays are the reflections from different parts of a
rough surface. According to the Rayleigh roughness criterion, a surface is rough enough if
h sinφ > λ/8, where h is the height of the roughness in the surface, φ is the reflection angle
measured from the normal, and λ is the wavelength of the propagating radio wave [45, 46].
In this chapter, we only consider ID cases.

Consider the signal model of conventional non-reconfigurable systems

r = Hs + n, (4.1)

where r ∈ CN is the complex symbol vector of dimension Nr observed by the antenna array.
The model requires a narrowband signal. The propagation delays between antenna elements
in the array may be modeled as phase shifts provided the bandwidth of the signal is sufficiently
small.

In the following, the signal model for conventional antenna array systems in Eq. (4.1)
is extended for reconfigurable array systems by importing the time-varying array responses.
We assume that during the observation period the reconfigurable array is switched to P

distinguish array states ψ1, ψ2, · · · , ψP , and each array state lasts for N symbols long, where
N satisfies NP = N . For array state ψp, the observation symbol vector is

r(t) = H(ψ(t))s(t) + n(t), (4.2)

where H(ψ(t)) is the channel matrix which is a function of the time-switching array state
ψ(t).
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Stacking all the obvserved signal vectors in a single vector, i.e.,

r̄ = [rT1 rT2 · · · rTP ]T

s̄ = [sT1 sT2 · · · sTP ]T

n̄ = [nT1 nT2 · · ·nTP ]T ,

and

H = diag{H(ψ1),H(ψ2), · · · ,H(ψP )}. (4.3)

The signal model can be presented by


r(t1)
r(t2)
...

r(tP )

 =


H(ψ1)

H(ψ2)
. . .

H(ψP )




s(t1)
s(t2)
...

s(tP )

+


n(t1)
n(t2)
...

n(tP ).

 (4.4)

Or, in a compact expression by

r̄ = Hs̄ + n̄. (4.5)

Assume that sk are i.i.d. complex Gaussian vectors and are uncorrelated with each other:

E
[
sksHj

]
= Esδ(k − j)I, (4.6)

where Es is the symbol power.

4.2 Spectrum Methods for Reconfigurable Antenna Arrays

4.2.1 Conventional Capon Estimation of DoA

In 1969, Jack Capon introduced a high-resolution spatial spectrum estimation method [47]
which is in this chapter referred to as the conventional Capon estimator. The conventional
Capon estimator can be considered as a spatial filter which can distortionlessly pass the signal
from the array steering direction while maximally rejecting signals from other directions.
For narrowband plane waves, the optimal array weights can be estimated by solving the
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optimization problem

min
w

wHRrw s.t. wHa = 1 (4.7)

The solution to Eq. (4.7) is given by

wC(φ) = R−1
r a(φ)

a(φ)HR−1
r a(φ) . (4.8)

The conventional Capon pseudo-spectrum is defined as

PC(φ) = wH
C (φ)RrwC(φ) = 1

a(φ)HR−1
r a(φ) . (4.9)

It is clear that if the energy of the i-th point source impinges from a direction φ′, then PC(φ)
is expected to have a separate peak at φ = φ′. Hence, the DoA of the point source can
be estimated from the highest maxima of Eq. (4.9), which can be obtained by means of a
one-dimensional spectral search.

4.2.2 Generalized Capon Estimation of DoA and Angular Spread

To estimate the parameters of ID sources with reconfigurable antenna array, Eq. (4.7) can
be generalized as

min
w

wHRr(Ψ)w s.t. wHRs(Θ)w = 1 (4.10)

where

Rs(Θ) =
∫

2π
PASr(φr; Θ)ar(φr)aHr (φr)dφr (4.11)

is the normalized covariance matrix of the ID source with the parameter vector. The gener-
alized Capon spatial filter maintains distortionless spatial response to a hypothetical source
with the vector parameter while maximally rejecting the contribution of any other sources.

The solution is given in [48] by using the method of Lagrangian multipliers. The La-
grangian function of the optimization problem Eq. (4.10) is

L(w, λ) = wHRr(Ψ)w + λ(1−wHRs(η)w). (4.12)



40

Let ∂L
∂w∗ = 0 and we have

Rr(Ψ)w = λRs(η)w. (4.13)

Eq. (4.13) indicates that the Lagrangian multiplier λ is a generalized eigenvalue of the matrix
pencil {Rr(Ψ),Rs(η)}. It is obtained as λ = wHRrw by left-multiplying wH to Eq. (4.13)
and making use of the constraint wHRs(η)w = 1. Since both Rr(Ψ) and Rs(η) are Hermitian
matrices, λ is a real valued number. In this case, the optimization problem Eq. (4.10) is
equivalent to

min
w

wHRr(Ψ)w = λmin{Rr(Ψ),Rs(η)}, (4.14)

where λmin{Rr(Ψ),Rs(η)} is the minimum generalized eigenvalue of the matrix pencil.

The generalized Capon pseudo spectrum for the reconfigurable array is given by

PGC(η) = λmin{Rr(Ψ),Rs(η)} = 1
µmax{R−1

x (Ψ)Rs(η)} , (4.15)

where µmax{·} is the maximum eigenvalue of a matrix. For a Nc-cluster channel, the PAS
parameter vector η can be estimated by finding the locations of Nc main peaks over the
pseudo spectrum PGC(η) calculated according to Eq. (4.15).

The conventional Capon estimator is a non-parametric estimator whereas the generalized
Capon estimator is parametric. Therefore the generalized Capon estimation requires a priori
knowledge of the shape of the scatter distribution. To find the estimates of the parameters
of the PAS, a q-dimensional search is required where q is the number of the PAS parameters,
including cluster powers, mean angles and angular spreads. If the scatters within each cluster
follow the same shape of distribution, the cluster parameters can be found by performing
a 3-dimensional search, where q is the number of the parameters of the distribution. As a
special case, if the scatter distribution within each cluster has the same shape and the same
power, the mean angles and angular spreads can be found by performing a 2-dimensional
search.

4.2.3 Simulation

In this section, we use theoretical radiation patterns of a CRLH-LWA to illustrate the general-
ized Capon estimator for reconfigurable array. The azimuth radiation pattern of CRLH-LWA
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Figure 4.1 Radiation patterns of a reconfigurable CRLH-LWA with 5 pattern states at the
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Figure 4.2 The theoretical pseudo spectrum of the generalized Capon estimator for the mean
angle and angular spread of a 1-cluster channel. The mean angle φc = 80◦. The angular
spread σc = 12◦. SNR γ = 10 dB.
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is given by the array factor approach in [17]

g(φ) =
N∑
n=1

I0e
−α(n−1)d+j(n−1)k0d(sinφ−sinφ0) (4.16)

where N is the number of cells of the CRLH-LWA.

In our simulation, we use a 10-cell CRLH-LWA to generate 5 discrete radiation patterns
as shown in Fig. 4.1. The beam directions are 30◦, 60◦, 90◦, 120◦ and 150◦, respectively.
Assuming a single-cluster spatial channel with the mean angle φc = 80◦, the angular spread
σc = 12◦ and the SNR γ = 10 dB. We compute the theoretical pseudo spectrum of the
generalized Capon estimator by Eq. (4.15) for this channel as shown by Fig. 4.2. The pseudo
spectrum indicates that the generalized Capon estimator works properly.

4.3 Covariance Matching Estimation Techniques for Reconfigurable Antenna
Array

Parameter estimation of a cluster MIMO channel, i.e., estimating the mean angles of the clus-
ter and the angle spread are essential for maximizing the channel capacity for a MIMO system
with dynamic radiation pattern antennas. Many algorithms for sensor array processing have
been proposed in recent years for DoA estimation as well as joint DoA and angle spread
estimation of dispersed sources. These algorithms include maximum likelihood (ML) estima-
tion, subspace methods such as multiple signal classification (MUSIC) and multidimensional
MUSIC, rotational invariance methods such as ESPRIT, and covariance matching estimation
techniques (COMET) , i.e. subspace fitting, and its variation with extended invariance prin-
ciple. In our research, we use one or more antenna elements with dynamic radiation patterns
to estimate parameters of clustered wireless channel. The Cramer-Rau lower bound (CRB)
of the estimation with DRPD is derived. The results indicated that parameter estimation
of clustered channels utilizing dynamic radiation pattern diversity offers great performance
enhancement comparing to traditional ULA sensor processing techniques. COMET method
is used in estimating the cluster parameters with dynamic radiation pattern antennas based
on correlation coefficients of each radiation pattern steered.

Denote estimation vector η = {φc, σc, σ2
n}, where φc is the mean angle of the cluster, σc

is the angle spread of the cluster, and σ2
n is the noise variance. It is verified by experiments

that PAS fits most to Laplacian distribution, i.e.,

PAS(φc, σc, σn) = 1√
2σc

e−
√

2|φ−φc|/σc (4.17)
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Assume that an antenna element with N steerable patterns is deployed. And assume that
all possible radiation patterns are uncorrelated with each other. The covariance matrix R of
the signals received by all the pattern states is diagonal, i.e.,

R = diag{r1, · · · , rN}. (4.18)

Given radiation patterns gn(φ) where n = 1, · · · , N , we have

rn(η) =
∫

2π
|gn(η)|2PAS(φ;φc, σc)dφ+ σ2

n. (4.19)

Expand |gn(φ)|2 and PAS(φ;φc, σc) into Fourier series as

|gn(φ)|2 =
∑
k

Gn,ke
jkφ (4.20)

PAS(φ;φc, σc) =
∑
k

Pk(φc, σc)ejkη (4.21)

where Gk depends on the pattern selected, and

Pk(φc, σc) = e−jkφc

2π(1 + k2σ2
c/2) . (4.22)

Thus we have

rn(η) =
∑
k

(Gn ∗
∂P

∂ηi
)kejkφ (4.23)

where ∗ is the discrete convolution operator. The CRB matrix B is the inverse of the Fisher
information matrix, i.e.,

(B−1)ij = tr
(

R−1∂R
∂ηi

R−1∂R
∂ηj

)

= 1
N

N∑
n=1

r−2
n

∂r
∂ηi

∂r
∂ηj

(4.24)

where

∂rn
∂ηi

= 1
N

∑
k

(Gn ∗
∂P

∂ηi
)kejkφ (4.25)
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Figure 4.3 Cramer-Rao bound of the mean angle and angular spread of a cluster with a single
reconfigurable antenna which has the beamwidth of 60◦.

and

∂Pk
∂φc

= − jke−jkφc

2π(1 + k2σ2
c/2) ,

∂Pk
∂σc

= − σck
2e−jkφc

2π(1 + k2σ2
c/2) ,

∂Pk
∂φ2

n

= 0. (4.26)

In the following, we illustrate the numerical simulation of the CRB of the mean DoA and
the AS of a single-cluster spatial channel estimated with a single reconfigurable antenna using
the COMET. The mean angle of the cluster is φc = 45◦, the angular spread is σc = 15◦ and
the SNR is 10 dB. The radiation patterns are selected from a rotating directional antenna
with identical beamwidth of 60◦ and the beam directions uniformly separated from 0◦ to
180◦ by the number of radiation patterns. Fig. 4.3 illustrates the CRB curves of the mean
angle and the angular spread versus the number of radiation patterns. Notice that the
conventional COMET estimator using an antenna array requires at least 2 antenna elements
for estimating the mean angle and angular spread of a single cluster, while the proposed
COMET estimator with reconfigurable antenna only requires a single antenna with multiple
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radiation patterns. This suggests that a pattern reconfigurable antenna can be used to replace
an antenna array for the PAS estimation. Furthermore, the simulated results indicate that
the COMET estimator is less accurate in estimating the angular spread than estimating the
mean angle.

4.4 Chapter Summary

In this chapter, a Capon-like estimator and a COMET estimator for jointly estimating the
mean angle and angular spread of spatial channels using reconfigurable antennas are pro-
posed. The estimation performance of the proposed method is evaluated by numerical sim-
ulation. We conclude that a single reconfigurable antenna which provides multiple radiation
pattern states can be used to replace the conventional antenna array for estimating the
long-term statistics of the spatial channel.
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CHAPTER 5

PS-MIMO SYSTEMS WITH STATISTICAL SELECTION

In wireless communications, multiple-input multiple-output (MIMO) is a promising solution
to provide wireless links with high data rate and reliability. It is well-known that the channel
capacity of a MIMO system increases linearly in uncorrelated channels [49]. But this result
is not guaranteed in real propagation environment because of the existence of spatial cor-
relation [50]. The spatial correlation is affected by the propagation environment as well as
antenna characteristics, such as antenna spacing and radiation patterns. In previous years,
polarization and pattern diversity have been studied to combat spatial correlation and im-
prove MIMO channel capacity. The CRLH-LWA was proposed in [19] as a new approach to
provide dynamic radiation pattern diversity.

In this chapter we investigate the use of the CRLH-LWA in an PS-MIMO system where
the radiation patterns are selected based on the statistical properties of the environment.
Theoretical and simulation results are presented and illustrate the significant power gain and
decorrelation gain provided by SPS-MIMO as compared to conventional MIMO systems with
omni-directional antennas. We first present the radiation patterns models for the CRLH-
LWA. Next, we derive a tight upper bound of the ergodic capacity of the MIMO channel
which can be maximized by properly choosing the radiation patterns. The capacity gain
offered by dynamic radiation patterns is then compared to MIMO systems deploying omni-
directional antennas. Finally, we propose methods to find the proper radiation patterns that
maximize channel capacity of a (2, 2) MIMO system.1

5.1 Dynamic Radiation Pattern and CRLH-Leaky-Wave Antenna

The spatial clustered channel presented in Section 3.3.3 indicates that power transmitted
over the propagation environment is concentrated within clusters over the azimuth plane. In
this case, antennas with omni-directional radiation pattern are not as effective to send and
gather signal power as antennas with directional radiation patterns aiming to the clusters.
To adapt to different propagation environments, it is advisable to use dynamic radiation
patterns with adjustable direction and beamwidth.

1Part of the work presented in this chapter was published in: X. Li and J.-F. Frigon, “Capacity analysis
of MIMO systems with dynamic radiation pattern diversity.” in Proc. IEEE VTS Vehicular Technology
Conference (VTC’09 Spring), Barcelona, Spain, Apr. 2009, pp. 1–5.
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We propose to use a PS-MIMO system with a novel CRLH leaky-wave antenna designed
to provide dynamic radiation pattern diversity [17, 19]. The direction of the CRLH-LWA
can be swept from backfire to endfire on-the-fly by changing the varactor voltages. The
beamwidth is relative to the number of cells used. That is, the more cells used in the
structure, the narrower beam we have. Unlike smart antennas or phased antenna arrays, the
CRLH-LWA provides dynamic radiation pattern with only one antenna element. This feature
is extremely beneficial for handsets whose size is too limited to deploy multiple antennas.

The radiation pattern of the CRLH-LWA over the azimuth plane is given by the array
factor approach [17]

gLWA(φ) =
Nc∑
n=1

I0e
−α(n−1)p+j(n−1)k0p(sinφ−sinφ0) (5.1)

where Nc is the cell number, α is the leakage factor, p is the period of the structure, k0 is
the free space wavenumber, and φ0 is the radiation angle.

The expression of the CRLH-LWA dynamic radiation patterns is too complex for mathe-
matical analysis. Thus, we propose an artificial rectangular radiation pattern g(φ) as a proper
abstraction to capture the direction steerability and beamwidth characteristics of dynamic
radiation patterns:

g(φ) =


√
π/B, φ0 −B ≤ φ < φ0 +B

0, otherwise.
(5.2)

g(φ) is steered to direction φ0 with symmetric beamwidth 2B. Since the radiation pattern
of the omni-directional antenna go(φ) = 1, −π ≤ φ < π, g(φ) is chosen so that its square
integration is normalized to 2π. In the next section, we will theoretically analyze the effects
on the channel capacity of the dynamic radiation patterns steerable direction and beamwidth
for the multiple antennas based on this artificial pattern. The actual CRLH-LWA radiation
pattern models will be used in the simulations presented in Section 5.4.

5.2 Capacity of Clustered MIMO Channels with Dynamic Radiation Patterns

In this section, we first analyze the ergodic channel capacity of MIMO systems with dynamic
radiation patterns. Then we present a systematic approach to maximize the ergodic channel
capacity by properly selecting radiation patterns and mathematically derive the capacity
gain.
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5.2.1 Ergodic Capacity of Kronecker Model

For MIMO channels, the spatial correlation between signals received by different antennas
is an essential factor determining the channel capacity. Here we give an expression of the
spatial correlation for MIMO clustered channels with dynamic radiation patterns. Then, we
examine how the dynamic radiation pattern affects the correlation and the channel capacity.

If the channel information is unknown to the transmitter, the ergodic channel capacity
is given by [49]

C̄ = E[log2 det (I + ρHH∗)] , (5.3)

where ρ , γ/Nt is the signal-to-noise ratio (SNR) averaged over transmit antennas. [9] derived
a tight ergodic capacity upper bound of MIMO channels with Kronecker product structured
covariance, i.e., H ∼ CN (0,Rt ⊗Rr).

According to [9], the ergodic capacity of this correlated MIMO channel is tightly upper
bounded by

C ≤ log2

min{Nt,Nr}∑
k=0

k!ρk
∑

1≤i1<···<ik≤Nt
det

(
Ri1,··· ,ik
t,i1,··· ,ik

) ∑
1≤u1<···<uk≤Nr

det
(
Ru1,··· ,uk
r,u1,··· ,uk

)
, C̄ub (5.4)

where Ru1,··· ,uk
r,u1,··· ,uk is the k × k sub-matrix of Rr on the u1, · · · , uk-th rows and u1, · · · , uk-th

columns, and Ri1,··· ,ik
t,i1,··· ,ik is the k×k sub-matrix of Rt on the i1, · · · , ik-th rows and i1, · · · , ik-th

columns, respectively.

At high SNR, we have an asymptotic approximation to the capacity upper bound when
Nt = Nr = N ,

C̄ub ≈ log2N ! +N log2 ρ+ log2 det(Rt) + log2 det(Rr) (5.5)

We can see that at high SNR, the spatial correlation matrices at transmitter and receiver side
have separable influence on the channel capacity. We assume that around the transmitter,
the scatters are uniformly distributed, and the ULA is spaced by half wavelength with omni-
directional antennas. So the channel at the transmitter side is almost fully decorrelated, i.e.,
Rt ≈ I. This makes the correlation at the transmitter and receiver side separable. This
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simplifies Eq. (5.3) to

C̄ ≤ log2

 N∑
k=0

N !ρk
(N − k)!

∑
1≤i1<···<ik≤N

det
(
Ri1,··· ,ik
i1,··· ,ik

)
, C̄ub, (5.6)

and its asymptotic approximation at high SNR is

C̄ub(R) ≈ log2N ! +N log2 ρ+ log2 det(R). (5.7)

5.2.2 Ergodic Capacity Gain of SPS-MIMO

In this section, we evaluate the capacity performance of the SPS-MIMO system over the
conventional MIMO system equipped with omni-directional antennas.

We denote the channel covariance matrix of a MIMO system using omni-directional
antennas with the same channel cluster parameters and antenna configuration by Ro. Based
on the asymptotic ergodic MIMO channel capacity Eq. (5.7), we approximate the gain of the
ergodic channel capacity of the SPS-MIMO over the conventional MIMO by

∆C̄ = C̄(R)− C̄(Ro)

≈ C̄ub(R)− C̄ub(Ro)

= log2
det R
det Ro

. (5.8)

We assume that the antenna spacing of the conventional MIMO is the same as that of
the SPS-MIMO. According to the previous analysis, the ergodic capacity upper bound is a
function of the spatial correlation matrices. Since the spatial correlation matrices can be
adjusted by deploying dynamic radiation patterns, the channel capacity can be maximized
by properly choosing the radiation patterns.

We use the asymptotic approximation of the capacity upper bound Eq. (5.7) as the
objective function to maximize. In order to maximize Eq. (5.7), we need to find a set of
radiation patterns for the antennas, i.e.,

arg max
{gn}Nn=1

det(R), (5.9)

where gn (n = 1, · · · , N) is the dynamic radiation pattern of the n-th antenna.
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We will now focus our analysis on the single cluster case with Nt = Nr = N = 2. We
use the abstract dynamic radiation pattern given in Eq. (5.2) to study how the steerable
direction and beamwidth affect the channel capacity. We have

det(R) = r11r22 − r12r21. (5.10)

The auto-correlation coefficients are given by

rnn = βπ√
2Bσc

∫ φn+B

φn−B
e−
√

2|φ−φc|/σcdφ, n = 1, 2, (5.11)

and the cross-correlation coefficients by

r12 = r∗21 =


π
B

∫max(φ1,φ2)+B
min(φ1,φ2)−B e−j2πd sinφPAS(φ)dφ if |φ1 − φ2| ≤ 2B,

0 otherwise,
(5.12)

where φ1 and φ2 are the radiation pattern directions of the n-th antenna. The optimal φ̂1,2

maximizing det(R) given fixed beamwidth B can be found by using numerical optimization
methods.

We denote Ro = {ronm}2×2 as the channel covariance matrix using omni-directional
antennas with the same channel cluster parameters and antenna configuration as those of R.
Note that

det(R) = r11r22 · (1− r12r21/r11r22). (5.13)

We define
Gp ,

r11r22

ro11r
o
22

= r11r22 (5.14)

as the capacity power gain, and

Gd ,
1− r12r21/r11r22

1− ro12r
o
21/r

o
11r

o
22

= 1− r12r21/r11r22

1− ro12r
o
21

(5.15)

as the capacity decorrelation gain. Thus det(R) = GpGd ·det(Ro), where Gp and Gd indicate
the capacity gain comparing to that of the half-wavelength ULA because of power concentra-
tion and channel decorrelation, respectively. For radiation patterns with wide beamwidth,
Gp can be approximated by

Gp ≈
(
π

B

)2
. (5.16)



51

0 10 20 30 40 50 60 70 80 90
−10

−5

0

5

10

15

20

25

30

B [degree]

de
t(

R
) 

[d
B

]

 

 

φ
1
=φ

2
=φ

c

φ
1,2

=φ
c
 ± B

Optimal φ
1,2

Figure 5.1 The determinant of a (2, 2) MIMO channel correlation matrix R, given different
radiation pattern directions when the beamwidth of the abstract radiation pattern varies
from 0 to 180 degrees. The solid line is the case when the directions are optimized. The
dotted line is the case when both directions aim to the mean angle of the cluster. The dashed
line is the case with full radiation pattern decorrelation. The cluster parameters are φc = 0◦
and σc = 15◦. Half-wavelength ULA is deployed.

For an extremely narrow beamwidth, Gp is maximized as

maxGp = lim
B→0

lim
φ1,2→φc

r11r22 =
(

βπ

σc/
√

2

)2

. (5.17)

We can see that the capacity power gain increases when the beamwidth of the antenna or
the angle spread of the cluster decreases. According to Fig. 5.1, if the beamwidth is relatively
wide, just aiming the two beams to the mean angle of the cluster can be a near optimal
solution that maximize the determinant and the capacity, because Gd remains near 1 for
wide beamwidth. If the beamwidth is narrow, steering the patterns to the same direction will
introduce high correlation between antennas and thus deteriorates the capacity performance.
Steering the two beams to directions slightly deviating from the mean angle will reduce the
correlation while still benefiting from high power gain. Fig. 5.2 is another example of the
power gain. The figures show that the power gain is maximized when the radiation pattern
beam is directed to the maximum of the PAS.
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Figure 5.2 Impact of the power gain of a SPS-SISO system in 4 different spatial clustered
channels.

5.3 Finding the Optimal Configuration

The ideas of how to develop a merit function to measure the performance gain introduced by
pattern diversity are well discussed in the previous two sections. In the previous section, we
have discussed how to select a proper radiation pattern state to fully and efficiently exploit
the capacity gain or error performance gain introduced by radiation pattern diversity when
the merit function is known.

A straightforward approach to solve problem Eq. (5.9) is to carry an exhaustive search
over all possible radiation pattern states. Obviously, the exhaustive search is too compu-
tationally expensive and is only useful for PS-MIMO systems with very few antennas and
radiation patterns. But it is still an acceptable approach to provide illustrative results in the
preliminary stage of our research.

Another approach is to develop alternative merit functions which are suitable to apply
mathematical optimization theory. For radiation patterns of reconfigurable antennas which
are continuously tunable, we propose to use Newton’s method to find the optimal radiation
pattern configuration. For example, for the CRLH-LWA patterns described in Eq. (5.1) and
the hypothetical patterns described in Eq. (5.2), the determinant merit function is continuous
and partially differentiable with respect to the directions of the reconfigurable antennas at
the receiver, which guarantees the convergence of Newton’s method. The partial derivatives
are given by

∂det R
∂φn

= ∂rnn
∂φn

− ∂rn−
∂φn

R−1
n−
∂rn−
∂φn

, (5.18)
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Figure 5.3 Search the radiation pattern state maximizing the capacity merit function with
Newton’s method.
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Figure 5.4 Search the radiation pattern state maximizing the capacity merit function with
grid search.
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where r is the n-th column vector of R, rn− is the sub-vector of r with the n-th element
removed and Rn− is the sub-matrix of R with the n-th row and column removed. Eq. (5.18)
can be used to find the maximum ascending direction. The simulation results of radiation
pattern selection with Newton’s method is illustrated in Fig. 5.3. The figure illustrates the
quick convergence of the method to a quasi-optimal solution. Newton’s method can converge
to the global maximum if the initial value is carefully selected.

Newton’s method requires to update the searching direction at each iteration step ac-
cording to Eq. (5.18). In order to remove the computational burden of the matrix inverse
in Eq. (5.18), we propose a grid search method to solve the optimization problem. For each
reconfigurable antenna at the receiver, we discretized the beam direction so that we only need
to search the maximum in a Nr-dimensional grid. The proposed grid search method starts
from a selected initial value, and at each step it searches for the maximum within the range
of the beam direction of a single antenna. Fig. 5.4 illustrates the path of the grid search
method.

5.4 Numerical Results

This section describes a set of simulations for evaluating the ergodic capacity of SPS-MIMO
systems using the Monte-Carlo method. In all the simulations, unless mentioned otherwise,
we assume a (2, 2) MIMO system with antennas with dynamic radiation patterns at the
transmitter side and omni-directional antennas at the receiver side, both separated by half
wavelength. We also assume the MIMO channel is uncorrelated at the receiver side. At the
transmitter side, unless mentioned otherwise, a single-clustered MIMO channel with a mean
arriving angle of the cluster at φc = 0◦ and an arriving angular spread σc = 15◦.

The first simulation results illustrate the ergodic capacity gain of the dynamic radiation
pattern compared to the omni-directional radiation pattern. The theoretical SPS-MIMO
system capacity gain in this case is given by

∆C̄ ≈ log2Gp + log2Gd (5.19)

According to Eq. (5.17) and Eq. (5.19), for σc = 15◦, the maximum theoretical capacity
gain is 8.2 bits/Hz/s. Such remarkable capacity improvement is validated by the results
presented in Fig. 5.5, in which at SNR=15 dB the narrow beam case (beamwidth is 20◦)
provides a 7.6 bits/Hz/s capacity gain. For the wide beam case (beamwidth is 90◦), the
capacity gain is 3.9 bits/Hz/s, which also fits our estimation of 4 bits/Hz/s gain given by
Eq. (5.16) and Eq. (5.19). Fig. 5.6 shows the ergodic capacity of the MIMO system with the
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Figure 5.5 Ergodic channel capacity of a (2, 2) MIMO system using abstract dynamic radi-
ation patterns. The circled lines give the maximum ergodic capacity with optimal radiation
patterns. The lines with ‘+’ markers give the ergodic capacity with radiation patterns which
fully decorrelate the channel. The dotted lines give the ergodic capacity with radiation
patterns aiming to the cluster mean angle to maximize the power gain.

actual CRLH-LWA radiation pattern from Eq. (5.1) deployed. At SNR=15 dB, the capacity
gain is about 7.2 and 3.6 bits/Hz/s, for Nc = 20 (narrow beam) and Nc = 10 (wide beam),
respectively. That is to say, the capacity can be at least doubled at low SNR by steering
the patterns to proper directions. It is also interesting to observe that, as predicted by
Eq. (5.7), a multiplexing gain of 2 can be obtained in the correlated channel at high SNR.
However, adjustable radiation patterns at both transmitting antennas decreases the SNR
value at which the maximum multiplexing gain can be reached (i.e., the linear section of the
capacity).

The second set of simulation results depicts the search of the optimal directions of the
MIMO system with CRLH-LWA. Fig. 5.7 shows that the optimal directions are just the mean
angle of the cluster if the beamwidth of the radiation patterns are wide enough. However,
Fig. 5.8 shows that if we use radiation patterns with narrow beam, the mean angle of the
cluster is no longer the optimal choice, because radiation pattern with high directivity will
cause high correlation and thus reduce channel capacity. The optimal solution is now to
slightly offset the two radiation patterns on each side of the mean cluster arrival angle (note
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directions aiming to the cluster mean angle to maximize the power gain.
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Figure 5.7 Searching radiation pattern directions that maximize the ergodic channel capacity
of a (2, 2) SPS-MIMO using two 8-cell CRLH-LWA’s. SNR=10 dB.

that there exists two optimal solutions due to the symmetry of the problem). This motivates
the utilization of φ1,2 = φc ±B as an heuristic solution.

The third simulation set shows how the CRLH-LWA antennas are used to maximize
channel capacity in channels with more clusters and more antennas. In Fig. 5.9, we assume
a 2-cluster MIMO channel, with mean angles φc,1 = 0◦, φc,2 = 60◦ and equal angle spread
σc = 15◦ for both clusters. For the (2, 2) MIMO system, we steer the direction of each
CRLH-LWA to a cluster mean angle to maximize the power gain. However, since the two
clusters are separated far enough, the decorrelation gain is not significant. For the (4, 4)
MIMO system, the four directional antennas are partitioned into two groups to deal with
the two clusters using the algorithm proposed in the previous section. The simulated ergodic
capacity shows that about 9 bits/Hz/s capacity gain can be achieved at SNR=15 dB using
20-cell CRLH-LWA’s for the (4, 4) case.
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Figure 5.8 Searching radiation pattern directions that maximize the ergodic channel capacity
of a (2, 2) SPS-MIMO using two 20-cell CRLH-LWA’s. SNR=10 dB.
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Figure 5.9 Ergodic channel capacity of a two-cluster MIMO channel using 20-cell CRLH-
LWA’s at the receiver and omni-directional antennas at the transmitter. The mean angles
are φc = [0◦, 60◦] and the angle spreads are σc = [15◦, 15◦].

5.5 Chapter Summary

In this chapter, we have studied the ergodic capacity performance of MIMO systems with
dynamic radiation patterns in a clustered channel. Both analytical and simulation results
show that the MIMO channel capacity benefits from high directivity of the radiation pattern
and obtains a power gain. Furthermore, the channel capacity also takes advantage from the
direction-steerable feature that matches the distribution of the propagation power to help
decorrelating the clustered channel. Simulation indicates that, by using CRLH-LWA’s, the
ergodic channel capacity of a (2, 2) MIMO system can be at least doubled at low SNR by
steering the radiation patterns to proper directions. Searching methods for the statistical
optimal directions are also proposed in this chapter. We also showed by theoretical analysis
and simulations that aiming all the radiation patterns to the cluster mean angle can be a
near optimal solution if the radiation pattern has a wide beam.
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CHAPTER 6

PS-MIMO SYSTEMS WITH INSTANTANEOUS SELECTION

MIMO systems are capable of increasing data transmission rates and/or improve the trans-
mission reliability over fading channels by exploiting the created spatial subchannels. These
spatial resources can be utilized under different circumstances. When the propagation chan-
nels are in deep fades, spatial subchannels can be used as diversity branches to transmit data
replicas. Through combining the diversity branches, the probability for the system to suffer
deep fades is significantly decreased. The spatial subchannels can be used to transmit multi-
ple symbol streams in parallel, which is known as spatial multiplexing. Under this scenarios,
the data rate is multiplied by the minimum of the number of transmitting and receiving
antennas, over spatially uncorrelated channels.

Although theoretically promising, the above benefits are not guaranteed in real appli-
cations due to a few deficiencies of the MIMO systems. First, real propagation channels are
usually correlated, which reduces the effective degree of freedom and the number of effective
diversity branches. Second, the number of antennas is often limited by device dimensions.
To overcome these limitations, researchers have recently proposed to deploy reconfigurable
antennas at the transmit or/and receive side(s) of MIMO systems. Reconfigurable antennas
are capable to be switched or tuned to produce a number of radiation patterns. This produces
additional diversity branches in the angular domain and is able to increase the diversity order
while full spatial multiplexing gain is maintained without adding more antennas.

In this chapter, the ergodic capacity of instantaneous PS-MIMO systems over spatially
correlated Rayleigh fading channels is investigated. For every channel realization, the radi-
ation patterns of the receiving antennas are selected to maximize the instantaneous channel
capacity. We assume the spatial correlation can be separated between the transmitter and
the receiver side. Perfect channel state information is assumed available at the receiver only.
Our research methodology and contributions in this chapter are as follows. First, we an-
alyze the diversity order of correlated IPS-MIMO. Next, an approximation to the ergodic
channel capacity of IPS-MIMO with OSTBC coding is derived. Based on the approximated
channel capacity, we present two selection algorithms and illustrate the possibility to achieve
performance-cost trade-off. Then we evaluate the system performance of the proposed algo-
rithms by numerical simulations.1

1Part of the work presented in this chapter was published in: X. Li and J.-F. Frigon, “Algorithms for
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6.1 Diversity Order

6.1.1 Diversity Order of Conventional MIMO

We assume that the CSI is perfectly known at the receiver but unavailable at the transmit-
ter. For MIMO systems with CSI at the receiver side only, it is reasonable to assume that
the transmitting power is equally allocated among transmit antennas [2]. In this case, the
instantaneous capacity of a MIMO channel is given by

C(H) = log2 det
(
INr + γ

Nt

HHH
)
, (6.1)

where H is the channel matrix, γ is the SNR per receive antenna [2]. The channel out-
age probability, the probability that the instantaneous channel capacity of a fading channel
cannot support the target transmission rate r, is defined by

Pout = Pr {C(H) < r} . (6.2)

Though the diversity order of a fading channel is usually defined by the average error
rate, it has been proved that the outage probability is the best achievable average error rate.
Therefore we adopt the definition of the diversity order by the asymptotic magnitude slope
of the outage probability versus SNR in the log-log scale, i.e.

d = − lim
γ→∞

logPout
log γ . (6.3)

In order to evaluate the diversity order of instantaneous PS-MIMO systems, we start
from the diversity order of the conventional (Nt, Nr) MIMO as the following.

Proposition 6.1. Over a Rayleigh fading MIMO channel with arbitrary correlation, the
cumulative distribution function (CDF) of the Frobenius norm square of the channel matrix
H can be approximated by

F‖H‖2
F

(x) , Pr{‖H‖2
F ≤ x} ≈ xrank(R)

(rank(R))!∏rank(R)
n=1 λn

(6.4)

as x→ 0+, where R = E
[
vec (H) vec (H)H

]
is the channel correlation matrix, and λ1, . . . , λrank(R)

are the non-zero eigenvalues of R.

pattern selection mimo systems over spatially correlated channels,” in Proc. IEEE International Conference
on Communications (ICC’12). 2012, pp. 3969–3973.
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Proof. See Appendix A in which the asymptotic approximation of F‖H‖2
F

(x) as x→ 0+ over
Nakagami-m fading channels is given in Eq. (A.10), which proves Proposition 6.1 as a special
case when the Nakagami-m fading figure m = 1.

Corollary 6.1. Denote the channel matrix of the (Nt, Nr) MIMO system (without selection)
by H, the diversity order of the MIMO system over Rayleigh fading channels is equal to the
rank of the channel correlation matrix

dMIMO = rank(R), (6.5)

where R = E
[
vec (H) vec (H)H

]
. If R has full rank, the diversity order equals to

dMIMO = NtNr. (6.6)

Proof. Let λ1, . . . , λM be non-zero eigenvalues of HHH . Eq. (6.1) can then be expressed by

C(H) = log2

M∏
m=1

(1 + γ

Nt

λm). (6.7)

In order to evaluate the diversity order, we will bound the capacity outage probability using
upperbounds and lowerbounds on the mutual information. First, applying the inequality
between the geometric and arithmetic means to Eq. (6.7), we have the following mutual
information upperbound

C(H) ≤M log2

(
1 + γ

MNt

‖H‖2
F

)
. (6.8)

Therefore, the first lowerbound of the channel outage probability for rate r is given by

PMIMO
out ≥ Pr

(
M log2(1 + γ

MNt

‖H‖2
F ) < r

)

= F‖H‖2
F

(
NtM(2r/M − 1)

γ

)
(6.9)

because 2r/M − 1 > r
M

ln 2, we have the second lowerbound of the channel outage probability

PMIMO
out > F‖H‖2

F

(
rNt

γ
ln 2

)
. (6.10)

Second, using Taylor’s expansion of the logarithm function, we obtain a lowerbound of the
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mutual information, i.e.

C(H) =
M∑
m=1

log2(1 + γ

Nt

λm)

>
γ

Nt

M∑
m=1

λm

= γ

Nt

‖H‖2
F . (6.11)

Thus the outage probability for rate r is upper-bounded by

PMIMO
out ≤ F‖H‖2

F

(
rNt

γ

)
. (6.12)

Applying Eq. (6.9) and Eq. (6.12) to Eq. (6.3), the diversity order of (Nt, Nr) MIMO is
bounded by

lim
γ→∞

lnF‖H‖2
F

(ln 2 · rNt/γ)
ln(1/γ) ≤ dMIMO ≤ lim

γ→∞

lnF‖H‖2
F

(rNt/γ)
ln(1/γ) . (6.13)

Eq. (6.5) is proved by applying Proposition 6.1 to the exponential approximation of F‖H‖2
F

(x).

In the following, we illustrate the diversity order of conventional MIMO systems in
Rayleigh fading channels given in Corollary 6.1 and upper and lower bounds of the outage
probability presented in Eq. (6.20), Eq. (6.10) and Eq. (6.12) by numerical simulations. We
generate MIMO channel matrices by Weichselberger’s unitary-independent-unitary model
proposed in [51], i.e.,

H = Ur(
√

Ω�G)UT
r , (6.14)

where Ut is the spatial eigenbasis at the transmitter side, Ur is the spatial eigenbasis at
the receiver side,

√
Ω is the element-wise square root of Weichselberger’s coupling matrix

Ω, and G is an independent and identically distributed (i.i.d.) random matrix with zero
mean and unit variance elements. The elements of the coupling matrix, which are called the
coupling coefficients, are the eigenvalues of the channel correlation matrix R. The (m,n)-th
coupling coefficient [Ω]m,n specifies the mean amount of energy that is coupled from the m-th
eigenmode of the transmit side to the n-th eigenmode of the receive side, and the sum of all
coupling coefficients is identical to the total channel power trR. In our simulations, we assume
a MIMO system with 2 transmit antennas and 2 receive antennas. The Weichselberger’s
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systems over Rayleigh fading channels versus rate. γ = 0 dB.
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systems over Rayleigh fading channels versus SNR. r = 1 bit/s/Hz.
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coupling matrices selected for simulations are as follows,

Ω1 =
 4 0

0 0

 ,Ω2 =
 3 0

0 1

 ,Ω3 =
 2 1

0 1

 ,Ω4 =
 1 1

1 1

 .
Since the entries of the Weichselberger’s coupling matrix are the eigenvalues of the channel
correlation matrix R [51], the rank of the correlation generating matrix is equal to the number
of non-zero entries in the coupling matrix, i.e., the rank of the selected channel correlation
matrix varies from 1 to 4.

In Fig. 6.1 and Fig. 6.2, we show the simulated and the derived bounds of the capacity
outage probability versus rate and SNR, respectively. The simulations show that for both
cases the outage probability is tightly bounded by the lowerbound Eq. (6.10) and the upper-
bound Eq. (6.12) in the small rate region and in the high SNR regime, respectively. The slope
of each capacity CDF curve for small outage probability is, as indicated in Corollary 6.1, the
rank of the channel correlation matrix. The lowerbound Eq. (6.9) is not as tight at high rate
or low SNR but still provides the correct asymptotic slope for diversity order.

6.1.2 Diversity Order of IPS-MIMO

With the approach similar to the proof of Corollary 6.1, we derive the diversity order of the
IPS-MIMO system as follows.

Corollary 6.2. For the (Nt|Pt, Nr|Pr) IPS-MIMO system over Rayleigh fading channels, the
diversity order defined by Eq. (6.3) is equal to the rank of the correlation generating matrix
RG = E

[
vec (HG) vec (HG)H

]
, i.e.

dPS−MIMO = rank(RG), (6.15)

If RG has full rank, the diversity order of the IPS-MIMO system is equal to the product of
the numbers of antennas and the numbers of radiation patterns at the transmitter and the
receiver:

dPS−MIMO = NtNrPtPr. (6.16)

Proof. Assume a given generating channel HG. We select the channel state ψa which max-
imizes the instantaneous channel capacity of the IPS-MIMO system and select the channel
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state ψb which maximizes the channel power of the IPS-MIMO system. Thus we have

C(Hψb) ≤ C(Hψa) < C(HG) (6.17)

and

‖Hψa‖2
F ≤ ‖Hψb‖2

F < ‖HG‖2
F . (6.18)

We first start from Eq. (6.17) to find an upperbound of C(Hψa) and the lowerbound of
PPS-MIMO
out . Based on Eq. (6.8) and Eq. (6.17), we have

C(Hψa) < C(HG) < M̃ log2

(
1 + γ

M̃NtPt
‖HG‖2

F

)
, (6.19)

where M̃ = rank(RG). Similar to Eq. (6.9) and Eq. (6.10), the outage probability of the
IPS-MIMO system for the rate r is lowerbounded by

PPS−MIMO
out > F‖HG‖2

F

(
NtPtM̃(2r/M̃ − 1)

γ

)
(6.20)

> F‖HG‖2
F

(
rNtPt
γ

ln 2
)

(6.21)

In the following we find a lowerbound for the channel capacity of IPS-MIMO and the
corresponding upperbound of the outage probability. Based on Eq. (6.8) and Eq. (6.18), we
have

C(Hψa) > C(Hψb) >
γ

Nt

‖Hψb‖2
F ≥

γ

NtPtPr
‖HG‖2

F . (6.22)

The upperbound of the outage probability is straightforward as follows

PPS−MIMO
out < F‖HG‖2

F

(
rNtPt
γ

)
. (6.23)

The outage probability of the IPS-MIMO system of the target rate r is upperbounded and
lowerbounded by

F‖HG‖2
F

(
rNtPt ln 2

γ

)
< PPS−MIMO

out < F‖HG‖2
F

(
rNtPt
γ

)
. (6.24)

The upperbound and lowerbound of PPS−MIMO
out have the identical exponential order rank(RG),
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Figure 6.3 Simulated outage probability of a (1, 1|4) IPS-SISO system with orthogonal radi-
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which proves Eq. (6.15).

Corollary 6.2 suggests that IPS-MIMO systems are able to achieve higher diversity order
by pattern selection comparing to conventional MIMO systems of the same antenna dimen-
sion. Specifically, the full rank IPS-MIMO increases its diversity order by P -fold comparing
to the conventional MIMO system.

We use Monte-Carlo simulations to provide illustrations for Corollary 6.2. In Fig. 6.1 and
Fig. 6.2, we show the simulated and the derived bounds of the capacity outage probability
versus rate and SNR, respectively. The simulation shows that for both cases the capacity
outage probability is tightly bounded by the lowerbound Eq. (6.10) and the upperbound
Eq. (6.12) in the small rate region and in the high SNR regime, respectively. The slope of
each capacity CDF curve for small outage probability is, as indicated by Corollary 6.1, the
rank of the total arbitrary covariance matrix. The lowerbound Eq. (6.9) is not as tight at
high rate or low SNR but still provides the correct asymptotic slope for diversity order.
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6.2 Capacity of IPS-MIMO with OSTBC

The instantaneous channel capacity of a MIMO system using OSTBC when the channel
configuration is ψ is

COSTBC
ψ = log2

(
1 + γ‖Hψ‖2

F

)
(6.25)

where γ is the equivalent signal-to-noise ratio (SNR). The instantaneous channel capacity
of IPS-MIMO with OSTBC (IPS-OSTBC) is the maximum of OSTBC channel capacities
among all possible channel states

CPS-OSTBC = max
ψ∈Ψ

COSTBC
ψ , (6.26)

where Ψ is the complete set of all available pattern states.

In this section, we first introduce the exact ergodic channel capacity of OSTBC derived
by Hamdi [52]. Then we extend Hamdi’s method to the high oder and joint MGF cases to
obtain the (co)variances of COSTBC

ψ (ψ ∈ Ψ). Since the distribution of channel capacity can
be approximated by the Gaussian distribution, the channel capacity covariances are used
in the rest of this section for approximating the mean channel capacity of the IPS-OSTBC
with Clark’s algorithm which is a good approximation to calculate the mean value of the
maximum of correlated Gaussian variables.

6.2.1 Ergodic Capacity of Conventional OSTBC Systems

In this subsection, the exact ergodic capacity of conventional OSTBC systems are discussed
and presented. This exact result will be used in future sections of this chapter as a basis for
deriving the ergodic capacity of PS-OSTBC systems.

In [52], Hamdi notices that the ergodic capacity of a scalar channel is a conditional
integral of log2(1 + x). By representing the logarithm in an equivalent form in which x

appears only as an exponent

ln(1 + x) =
∫ ∞

0

1
z

(1− e−xz)e−zdz (for x > 0), (6.27)

Hamdi converts the ergodic capacity of an OSTBC system to a scalar integral of a function
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related to the MGF of the squared Frobenius norm of the channel [52]

E[COSTBC] =
∫
CN

∫ ∞
0

log2 e

z

(
1− e−γ̄zhHh

)
e−zfh(h)dzdh

= log2 e
∫ ∞

0

e−z

z

[∫
CN

(
1− e−γ̄zhHh

)
fh(h)dh

]
dz

= log2 e
∫ ∞

0

e−z

z

[
1−M‖H‖2

F
(−γ̄z)

]
dz, (6.28)

where h = vec (H) and γ̄ is the SNR at the receiver side. Eq. (6.28) is a general result for any
fading channel. In this chapter, only PS-OSTBC systems over Rayleigh fading channels are
considered. Since the closed-form MGF of the squared Frobenius norm of Rayleigh fading
channels is readily known, for a certain channel configuration ψn and the corresponding
channel matrix Hψn , the MGF of ‖Hψ‖2

F = hHψ hψ is

M‖Hψ‖2
F
(s) = E

[
es‖Hψ‖2

F
]

= 1
det(IN − sRψn) . (6.29)

From Eq. (6.28) and Eq. (6.29), the ergodic capacity of a PS-OSTBC system, with channel
configuration ψ, over Rayleigh fading channels can be evaluated by numerically computing
the scalar integral as the following

E
[
COSTBC
ψ

]
= log2 e

∫ ∞
0

e−z

z

[
1− 1

det(IN + γ̄zRψ)

]
dz. (6.30)

In the following, we present two approaches for evaluating the improper integral in
Eq. (6.30) to obtain the exact ergodic capacity of OSTBC systems. For the first approach,
the improper integral in Eq. (6.30) is converted to a definite integral over [0, 1] by the change
of variables. For the second approach, the improper integral in Eq. (6.30) is converted in
terms of special functions.

Let ζ , γ̄z and let

J(ζ) , 1
ζ

[
1− 1

det(IN + ζRψ)

]
.

Eq. (6.30) is rewritten as

E
[
COSTBC
ψ

]
= log2 e

∫ ∞
0

e−ζ/γ̄J(ζ)dζ. (6.31)
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Expand the rational fraction J(ζ) into partial fractions as

J(ζ) = 1
ζ

[
1− 1∏K

k=1(1 + λ̃kζ)Mk

]

=
K∑
k=1

Mk∑
mk=1

Ak,mk
(1 + λ̃kζ)mk

(6.32)

where λ̃1, . . . , λ̃K are the K distinct non-zero eigenvalues of Rψ, Mk is the order of the k-th
non-zero eigenvalue λ̃k and Ak,mk (k = 1, . . . , K and mk = 1, . . . ,Mk) are the coefficients of
the partial fractions. Ak,mk is derived by

Ak,mk=
1

λ̃
Mk−mk
k (Mk −mk)!

∂Mk−mk

∂ζMk−mk

[
(1+λ̃kζ)MkJ(ζ)

]∣∣∣∣∣
ζ=−λ̃−1

k

. (6.33)

Substituting Eq. (6.32) to Eq. (6.31) and applying [53, Eq (34)], the ergodic channel capacity
of the reconfigurable OSTBC system with the channel configuration ψ over Rayleigh fading
environments is expressed by

E
[
COSTBC
ψ

]
= γ̄ log2 e

K∑
k=1

Mk∑
mk=1

Ak,mk 2F0(1,mk;−γ̄λ̃(ψ)
k ) (6.34)

where 2F0(a, b; z) is a generalized hypergeometric function.2

As a special case, when the covariance matrix Rψ has no multi-fold non-negative eigen-
values, J(ζ) can be rewritten as

J(ζ) = 1
ζ

[
1− 1∏K

k=1(1 + λ̃kζ)

]

=
K∑
k=1

Āk

ζ + λ̃−1
k

, (6.35)

2The generalized hypergeometric function 2F0(a, b; z) is defined by

2F0(a, b; z) ,
∞∑
k=0

(a)k(b)kzk

k! ,

where (x)k ,
∏k
n=1(x+ n− 1). See [54].
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where Āk can be obtained by the Matlab function RESIDUE. Thus, Eq. (6.31) becomes

E
[
COSTBC
ψ

]
= log2 e

∫ ∞
0

e−ζ/γ̄
K∑
k=1

Āk

ζ + λ̃−1
k

dζ

= log2 e
K∑
k=1
−Āke1/γ̄λ̃kEi

(
− 1
λ̃kγ̄

)
, (6.36)

where Ei(x) , −
∫∞
−x e

−t/t dt is the exponential integral [54], which is closely related to
generalized hypergeometric functions. In this way, the integral in Eq. (6.31) is converted to
a weighted sum of exponential integrals.

6.2.2 Gaussian Approximation to the Channel Capacity

The exact distribution of the MIMO channel capacity have been found for spatial multiplexing
and diversity systems over Rayleigh fading channels. But for practical uses, these exact
results involve complicated computations and are too complex. For our needs, approximating
the capacity distribution by a real Gaussian distribution (Gaussian approximation) is more
favorable. Gaussian approximation is a moment matching technique which only requires that
the mean and variance be matched by the first two central moments of the channel capacity
distribution. Its accuracy has been numerically and theoretically verified for both spatial
multiplexing and diversity systems.

The Gaussian approximation of the MIMO channel capacity was first observed in [55] for
spatial multiplexing systems over i.i.d. channels, and it is later extended to correlated cases
for either spatial multiplexing or diversity MIMO systems. Later, Kamath et al. proved that
the capacity distribution of spatial multiplexing MIMO over i.i.d. Rayleigh fading channels
converges to a Gaussian distribution when the transmitting and receiving antenna numbers
increase to infinity at a constant rate [56]. Hachem et al. proved that for fully correlated chan-
nels the capacity distribution is also asymptotically Gaussian for large dimensional MIMO
systems [57]. This asymptotic convergence motivates the Gaussian approximation approach.
For MIMO systems with limited number of antennas, Shin et al. have derived exact expres-
sions of the first four orders of central moments of channel capacity, which are namely the
mean, variance, skewness and kurtosis [53]. The skewness and excess kurtosis can measure
the difference between the probability distribution function of the channel capacity and the
approximated Gaussian distribution in terms of symmetry and flatness, respectively, and
enable theoretical justification of Gaussian approximation. Calculated skewness and excess
kurtosis show that Gaussian approximation is very accurate for most cases, and is still accept-
able for highly correlated channels with as few as two antennas at both ends, operating at a
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SNR regime lower than 30 dB, which is the region of interest for most wireless communication
scenarios.

Gaussian approximation is also applicable to the capacity distribution of diversity MIMO
systems such as OSTBC or MRC. Qian et al. has proved that the capacity distribution of
OSTBC or MRC over i.i.d. Rayleigh fading channels is asymptotically Gaussian [58]. Perez
et al. have proposed a framework to use Gaussian distribution to approximate the STBC
capacity CDF of STBC systems with arbitrary correlation, as long as the mean and variance
of the effective SNR is known [59]. The accuracy of Gaussian approximation of OSTBC
capacity has been verified in aforementioned literatures either by numerical experiments or
theoretical analysis.

Apparently, though, Gaussian approximation results in errors, especially in the tails of
the capacity distribution. Therefore, in our analysis we only utilize the Gaussian approxima-
tion method to approximate the ergodic capacity in the cases in which the tail distribution
of the capacity is not a major concern.

6.2.3 Expected Value of the Maximum of Correlated Gaussians

In 1961, Clark derived the exact joint distribution and the first four moments of two arbitrar-
ily correlated real Gaussian randoms [60]. Assuming three correlated Gaussians, namely c1,
c2 and c3, with their mean values, variances and correlation coefficients known, Clark gave
the mean and variance of the maximum of the first two Gaussians [60]:

E[max{c1, c2}] =E[c1]Φ(α) + E[c2]Φ(−α) + aϕ(α),

Var[max{c1, c2}] =E
[
c2

1

]
Φ(α) + E

[
c2

2

]
Φ(−α)

+ aϕ(α) (E[c1] + E[c2])− (E[max{c1, c2}])2, (6.37)

where ϕ(x) = 1√
2π exp(−x2

2 ) and Φ(x) =
∫ x
−∞ ϕ(t)dt are the standard Gaussian density func-

tion and distribution function, respectively, and parameters a and α are given by

a =
√

Var[c1] + Var[c2]− ρ12Var[c1] Var[c2], (6.38)

α = E[c1]− E[c2]
a

, (6.39)

ρ12 = Cov[c1, c2]√
Var[c1] Var[c2]

. (6.40)

By assuming the maximum of any pair of Gaussians is still Gaussian, Clark then proposed
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an iterative process to evaluate the mean of the maximum of a finite set of Gaussian randoms
by making use of the recursion

max{c1, c2, , c3} = max{max{c1, c2}, c3}. (6.41)

For each iteration, the covariance of the newly generated max{c1, c2} and other Gaussian
randoms is updated by [60]

Cov[max{c1, c2}, c3] ≈ Cov[c1, c3]Φ(α) + Cov[c2, c3]Φ(−α). (6.42)

6.2.4 Capacity Covariance of Two Correlated OSTBC

In Section 6.2.1, the exact expression of ergodic OSTBC capacity was discussed. To find
the ergodic capacity of PS-OSTBC with Clark’s algorithm, the variance and covariance of
COSTBC
ψ (ψ ∈ Ψ) are required. However, the direct MGF method requires a double matrix

integral, which is tedious to handle.

In Hamdi’s method, Eq. (6.27) transforms the first moment of OSTBC capacity to a
single integral of a function related to the MGF. By extending this idea to the multivariate
case, the multivariate joint moments can be written as multidimensional scalar integrals with
the integrands being functions related to the (joint) MGF’s. Specifically for the bivariate
case, the joint non-central moment E

[
COSTBC
ψ1 COSTBC

ψ2

]
(ψ1, ψ2 ∈ Ψ) is a double scalar integral

which is given by

E
[
COSTBC
ψ1 COSTBC

ψ2

]
=(log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ̄

ζ1ζ2

×
[
1−M‖Hψ1‖

2
F
(−ζ1)−M‖Hψ2‖

2
F
(−ζ2) +M‖Hψ1‖

2
F,‖Hψ2‖

2
F
(−ζ1,−ζ2)

]
dζ1dζ2 (6.43)

The covariance of COSTBC
ψ1 and COSTBC

ψ2 is defined by

Cov
[
COSTBC
ψ1 , COSTBC

ψ2

]
= E

[
COSTBC
ψ1 COSTBC

ψ2

]
− E

[
COSTBC
ψ1

]
E
[
COSTBC
ψ2

]
. (6.44)

We substitute Eq. (6.43) and Eq. (6.30) into the definition of the OSTBC capacity covariance
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Eq. (6.44), and obtain

Cov
[
COSTBC
ψ1 , COSTBC

ψ2

]
=(log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ̄

ζ1ζ2

×
[
M‖Hψ1‖

2
F,‖Hψ2‖

2
F
(−ζ1,−ζ2)−M‖Hψ1‖

2
F
(−ζ1)M‖Hψ2‖

2
F
(−ζ2)

]
dζ1dζ2. (6.45)

To calculate Eq. (6.45), we need the expressions of the MGF’s M‖Hψ1‖
2
F
, M‖Hψ2‖

2
F

and
M‖Hψ1‖

2
F,‖Hψ2‖

2
F
for Rayleigh fading channels. M‖Hψ1‖

2
F
andM‖Hψ2‖

2
F
have already been given

in Eq. (6.29). In the following, we will deriveM‖Hψ1‖
2
F,‖Hψ2‖

2
F
.

First, without loss of generality, we assume two channel configuration states ψ1, ψ2 ∈ ψ.
The corresponding channel vectors of these two channel configuration states are selected from
the channel generating matrix by

h1 = vec (S(ψ1)HG) ,

h2 = vec (S(ψ2)HG) . (6.46)

The probability distribution of h2 conditioned to h1 is still multivariate complex Gaussian
of the same dimension as that of h1 and h2, which yields [61, Theorem 2.2.5]

h2|h1 ∼ CNNtNr

(
Ah1, R̃2·1

)
, (6.47)

where the conditional mean is h1 left-multiplied by

A = INt ⊗
(
R21R−11

)
, (6.48)

and the conditional variance matrix is

R̃2·1 = Rt ⊗Rr,2·1

= Rt ⊗ [Rr(ψ2, ψ2)−Rr(ψ2, ψ1)Rr(ψ1, ψ1)−Rr(ψ1, ψ2)]. (6.49)

The superscript (·)− in Eq. (6.48) and Eq. (6.49) is the generalized matrix inverse operator
of the matrix. 3

Next, by performing repeated integrals conditioned to h2|h1 and h1, successively, we
3A generalized inverse matrix of the matrix A is any matrix A− such that AA−A = A. See [62].
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obtain

M‖Hψ1‖
2
F,‖Hψ2‖

2
F
(−s1,−s2)

=
∫
CNtNr

e−s1hH1 h1

[∫
e−s2hH2 h2fh2|h1(h2)dh2

]
fh1(h1)dh1

= 1
πN det(IN + s2R̃2·1) det R̃11

×
∫
CN

exp
(
−s1hH1 h1 − s2hH1 AH(IN + s2R̃2·1)−1Ah1 − hH1 R̃−1

11 h1
)
dh1

= 1
det

[
(IN + s2R̃2·1)(IN + s1R̃11 + s2AH(IN + s2R̃2·1)−1AR̃11)

]
= 1

det
(
IN + s1R̃ψ1 + s2R̃ψ2 + s1s2[R̃ψ1R̃ψ2 − (IN + s1R̃ψ1)R̃ψ2ψ1(IN + s1R̃ψ1)−1R̃ψ1ψ2 ]

) .
(6.50)

The third equation of Eq. (6.50) is derived directly from Eq. (6.47) and Eq. (6.30). See
Appendix B for detailed derivation.
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Figure 6.6 Approximated ergodic capacity of correlated IPS-OSTBC. The cluster config-
uration is TGn Model A. Each receive antenna can provide 4 radiation patterns with
beamwidth=120◦, equally spaced from 0◦ to 180◦.

Finally, by substituting Eq. (6.50) and Eq. (6.29) into Eq. (6.43), we obtain the capacity
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Figure 6.7 Approximated ergodic capacity of correlated IPS-OSTBC. The cluster configura-
tion is TGn Model B. The deployed reconfigurable antennas are the same as Fig. 6.6.
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tion is TGn Model C. The deployed reconfigurable antennas are the same as Fig. 6.6.
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Figure 6.9 Approximated ergodic capacity of correlated IPS-OSTBC. The cluster configura-
tion is TGn Model D. The deployed reconfigurable antennas are the same as Fig. 6.6.

correlation as the following

E
[
COSTBC
ψ1 COSTBC

ψ2

]
= (log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ̄

ζ1ζ2

×

 1
det

(
IN + s1R̃ψ1 + s2R̃ψ2 + s1s2[R̃ψ1R̃ψ2 − (IN + s1R̃ψ1)R̃ψ2ψ1(IN + s1R̃ψ1)−1R̃ψ1ψ2 ]

)
+1− 1

det(IN + ζ1R̃ψ1)
− 1

det(IN + ζ2R̃ψ2)

]
dζ1dζ2. (6.51)

And, by substituting Eq. (6.50) and Eq. (6.29) into Eq. (6.45), we obtain the OSTBC capacity
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covariance as the following

Cov
[
COSTBC
ψ1 , COSTBC

ψ2

]
= (log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ̄

ζ1ζ2

×

 1
det

{
IN + s1R̃ψ1 + s2R̃ψ2 + s1s2[R̃ψ1R̃ψ2 − (IN + s1R̃ψ1)R̃ψ2ψ1(IN + s1R̃ψ1)−1R̃ψ1ψ2 ]

}
− 1

det(IN + ζ1R̃ψ1) det(IN + ζ2R̃ψ2)

]
dζ1dζ2. (6.52)

By letting Rψ1 = Rψ2 = Rψ1ψ2 = Rψ2ψ1 and substituting these equations into Eq. (6.52), the
OSTBC capacity variance for the IPS-OSTBC system configured at ψ is directly obtained
by

Var
[
COSTBC
ψ

]
=(log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ̄

ζ1ζ2

×
[

1
det[IN + (ζ1 + ζ2)R̃ψ]

− 1
det(IN + ζ1R̃ψ) det(IN + ζ2R̃ψ)

]
dζ1dζ2.

(6.53)

Simulation

In the following, we present by numerical simulations the approximated mean capacity of
a (2, 2|4) IPS-MIMO system and a (4, 4|4) IPS-MIMO system using OSTBC in 4 different
spatial channel settings, namely, TGn A, TGn B, TGn C and TGn D [36]. The approximated
mean capacity of IPS-MIMO with OSTBC is derived by Clark’s algorithm. The mean,
variance and correlation values of the capacity of all possible selections are calculated based on
Eq. (6.30), Eq. (6.52) and Eq. (6.53). Each simulation is run with 1000 channel realizations.
The simulated results in Fig. 6.6, Fig. 6.7, Fig. 6.8 and Fig. 6.9 indicate that the Clark’s
approximation is surprisingly accurate for various spatial channel configurations.

6.2.5 Approximating the Capacity Correlation Coefficients

For computing the mean capacity of a (Nt, Nr|P ) IPS-MIMO system, Clark’s algorithm re-
quires PNr−1 capacity correlation coefficients, which would be computationally burdensome
for systems with large P and Nr. In order to reduce the computational cost, we propose to
use a simple approximation of the correlation coefficients in Clark’s algorithm. The exact
capacity covariance or correlation coefficient of MIMO systems is difficult to compute. For
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Figure 6.10 Impact of various approximations to the capacity correlation coefficient curves
versus SNR.

MIMO systems using OSTBC, we can calculate the exact capacity covariance by Eq. (6.52).
But when the size of Ψ, the set of channel configuration states, is too large, computing all the
correlation pairs with numerical integrals is very time-consuming. Therefore, we propose to
approximate the capacity correlation coefficient by an expression with lower computational
costs.

Here, we examine three possible approximation methods to the channel capacity of
MIMO systems using spatial multiplexing, and obtain the corresponding approximated ca-
pacity correlation coefficients. The channel capacity of spatial-multiplexing MIMO is given
by

CMIMO(ψ) = log2 det(I + γ

Nr

HH
ψ Hψ).

And, the capacity correlation of spatial-multiplexing MIMO is

ρ(ψ1, ψ2) , Cov[CMIMO(ψ1), CMIMO(ψ2)]√
Var[CMIMO(ψ1)] Var[CMIMO(ψ1)]

. (6.54)
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The first approximation to CMIMO is a low SNR approximation

CMIMO ≈ log2(1 + γ

Nr

‖H‖2
F).

The second approximation to CMIMO is the approximation for the extreme low SNR

CMIMO ≈ (log2 e)
γ

Nr

‖H‖2
F.

Noticing that a linear transform does not change the correlation coefficient, the capacity
correlation coefficient of MIMO channels configured to ψ1 and ψ2 can be approximated by

ρ(ψ1, ψ2) ≈ Cov[‖Hψ1‖2
F, ‖Hψ2‖2

F]√
Var[‖Hψ1‖2

F] Var[‖Hψ2‖2
F]
. (6.55)

The third approximation to CMIMO is the high SNR approximation

CMIMO ≈ log2 det( γ
Nr

HHH).

Fig. 6.10 shows how the correlation coefficient verses SNR for instantaneous capacity of a
MIMO system system using spatial multiplexing with the low-SNR approximation and the
high-SNR approximation of MIMO capacity, respectively. Numerical evaluations in Fig. 6.10
show that the exact and the three approximated capacity correlation coefficients do not vary
significantly, which suggests that the approximated correlation coefficients may be used to
replace the exact one in Clark’s approximation method.

Furthermore, we notice that for highly correlated selections, the capacity correlation
coefficients do not vary significantly either. Therefore, we place highly correlated selections
in adjacent positions when ordering the selections in Clark’s algorithm also helps to reduce
the approximation error.

Next, we investigate IPS-MIMO systems using OSTBC. Similarly, in the low SNR
regime, the instantaneous capacity using OSTBC of MIMO configured to ψ can be approxi-
mated by

COSTBC
ψ ≈ (γ̄ log2 e)‖Hψ‖2

F , ĈOSTBC
ψ . (6.56)

Therefore, we approximate ρψ1ψ2 , the correlation coefficient of COSTBC
ψ1 and COSTBC

ψ2 , by ρ̂ψ1ψ2 ,
the correlation coefficient of ‖Hψ1‖2

F and ‖Hψ2‖2
F. We use the following lemma to find the

moments generated by the joint MGF Eq. (6.50).

Lemma 6.1. For any normal matrix X ∈ CN , if its spectral radius |ρ(X)| < 1, the inverse
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of det(IN + X) can be expanded as

det(IN + X)−1 =
∞∑
m=0

1
m!

[ ∞∑
k=1

(−1)k
k

trXk

]m
. (6.57)

Proof. Eq. (6.57) can be directly proved by applying the unitary diagonalization of X and
making use of Taylor series expansions of the logarithm function and of the exponential
function. Let λ1, . . . , λN be the eigenvalues of X.

det(IN + X)−1 =
N∏
n=1

(1 + λn)−1

= exp
[
−

N∑
n=1

ln(1 + λn)
]

= exp
[
N∑
n=1

∞∑
k=1

(−1)k
k

λkn

]

= exp
[ ∞∑
k=1

(−1)k
k

trXk

]

=
∞∑
m=0

1
m!

[ ∞∑
k=1

(−1)k
k

trXk

]m

Lemma 6.1 is proved.

Truncating Eq. (6.57) to second order terms, we have

det(IN + X)−1 = 1− trX + (trX)2 + trX2

2 + high order terms. (6.58)

Substituting Eq. (6.58) to Eq. (6.50), we expand the joint MGF in the neighboring region
around (s1, s2) = (0, 0) into a polynomial of s1 and s2 as

M‖Hψ1‖
2
F,‖Hψ2‖

2
F
(−s1,−s2) = 1− s1(trR̃11)− s2(trR̃11)

+ s2
1
(trR̃11)2 + trR̃2

11
2 + s2

2
(trR̃22)2 + trR̃2

22
2

+ s1s2(trR̃11trR̃22 + trR̃21R̃12)

+ high order terms.

We derive the first order and the second order moments about zero of ‖Hψ1‖2
F and ‖Hψ2‖2

F as
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follows:

M1(0, 0) = trR̃11,

M2(0, 0) = trR̃22,

M11(0, 0) = trR̃2
11 + (trR̃11)2,

M22(0, 0) = trR̃2
22 + (trR̃22)2,

M12(0, 0) = trR̃11trR̃22 + trR̃21R̃12

Therefore, the mean and variance values, i.e., the first order and second order central mo-
ments, of ‖Hψ1‖2

F and ‖Hψ2‖2
F are

E
[
‖Hψ1‖2

F

]
=M1(0, 0) = trR̃11 = trRttrRr,11,

E
[
‖Hψ2‖2

F

]
=M2(0, 0) = trR̃22 = trRttrRr,22,

Var
[
‖Hψ1‖2

F

]
=M11(0, 0)−M2

1(0, 0) = trR̃2
11 = trR2

t trR2
r,11,

Var
[
‖Hψ2‖2

F

]
=M22(0, 0)−M2

2(0, 0) = trR̃2
22 = trR2

t trR2
r,22, (6.59)

respectively. And, the covariance of ‖Hψ1‖2
F and ‖Hψ2‖2

F is

Cov
[
‖Hψ1‖2

F, ‖Hψ2‖2
F

]
=M12(0, 0)−M1(0, 0)M2(0, 0)

= trR̃12R̃21

= trR2
t trR12R21 (6.60)

Therefore in the low SNR regime, the mean and (co)variance of the capacity of the
OSTBC system are approximated by

E
[
COSTBC
ψ1

]
≈ E

[
ĈOSTBC
ψ1

]
= (γ̄ log2 e)trR̃11,

E
[
COSTBC
ψ2

]
≈ E

[
ĈOSTBC
ψ2

]
= (γ̄ log2 e)trR̃22,

Var
[
COSTBC
ψ1

]
≈ Var

[
ĈOSTBC
ψ1

]
= (γ̄ log2 e)2trR̃2

11,

Var
[
COSTBC
ψ2

]
≈ Var

[
ĈOSTBC
ψ2

]
= (γ̄ log2 e)2trR̃2

22,

Cov
[
COSTBC
ψ1 , COSTBC

ψ2

]
≈ Cov

[
ĈOSTBC
ψ1 , ĈOSTBC

ψ2

]
= (γ̄ log2 e)2trR̃12R̃21.
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In the next step, we approximate the capacity correlation coefficient ρ(ψ1, ψ2) by

ρ(ψ1, ψ2) ,
Cov

[
CMIMO
ψ1 ,CMIMO

ψ2

]
√

Var
[
CMIMO
ψ1

]
Var

[
CMIMO
ψ2

]
≈

Cov
[
ĈOSTBC
ψ1 ,ĈOSTBC

ψ2

]
√

Var
[
ĈOSTBC
ψ1

]
Var

[
ĈOSTBC
ψ2

]
= trR̃21R̃12√

trR̃2
11trR̃2

22

, ρ̂(ψ1, ψ2), (6.61)

which significantly reduces the computational cost comparing to calculating the double inte-
gral for ρ(ψ1, ψ2).

6.3 Capacity of IPS-MIMO with Spatial Multiplexing

In the previous section we proved that the maximum achievable diversity order of a pattern
selection MIMO system is the rank of the total correlation matrix of the full system. In this
section we propose two algorithms to select radiation patterns for the IPS-MIMO based on
the instantaneous channel realization to provide capacity and diversity gains.

6.3.1 Incremental Radiation Pattern Selection

Q := γINt ;
N := {1, 2, · · · , NrP};
p∗1 := arg maxl∈N ‖eTl H‖2

F ;
for n = 1 TO Nr − 1 do
N := N − {P dpn/P e − P + 1, · · · , P dpn/P e};
h := HHepn ;
Q := Q−Qh(1 + hHQh)−1hHQ;
p∗n+1 := arg maxl∈N eTl HQHHel;

end
Algorithm 6.1 Incremental radiation pattern selection

It is straightforward to perform an exhaustive search to find the radiation patterns ψ∗
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Figure 6.11 Approximated ergodic capacity of correlated IPS-MIMO

to maximize instantaneous channel capacity,

ψ∗ = arg max
ψ∈Π

C(Hψ). (6.62)

But this requires channel estimation for NrP receive branches and
(
NrP
Nr

)
determinant cal-

culations. In Fig. 6.11, we present a numerical simulation of IPS-MIMO channel capacity
and the theoretical approximation by Clark’s method. The spatial channel for the simulation
is a TGn A model with a single cluster and the radiation patterns are uniformly separated
from 0◦ to 180◦ with a varying pattern number fro 2 to 5. The simulation indicates that the
channel capacity of the IPS-MIMO tends to saturate when the number of radiation patterns
increases, which suggests that some radiation pattern branches may not contribute much to
the channel capacity.

Inspired by the incremental selection algorithm for antenna selection MIMO systems
in [63], we propose the incremental radiation pattern selection algorithm for IPS-MIMO to
reduce determinant calculations. We select the radiation pattern forNr receive antennas inNr

steps. At the n-th step, we select the radiation pattern p∗n that maximizes the instantaneous
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channel capacity for the selected (Nt, n) MIMO system,

p∗n = arg max
pn∈{remaining patterns}

C(H(p∗1,...,p∗n−1,pn)) (6.63)

and remove P − 1 rows corresponding to other patterns of this antenna from the full channel
matrix H. Notice that n is not the index of receive antenna but the order for this antenna to
perform pattern selection. Applying the matrix inversion lemma, the incremental selection
algorithm is further simplified in Alg. 6.1.

6.3.2 Subset Radiation Pattern Selection

4 patterns 2 patterns

- highly correlated pattern

- weak pattern

Figure 6.12 Example of the subset selection of radiation patterns. Radiation patterns corre-
sponding to weak or highly-correlated branches are removed.

In a poor scattering propagation environment, the signal power is transmitted within
limited directions and some of the radiation pattern branches are too weak to support a
diversity branch. Furthermore, strong radiation pattern branches may be highly dependent
and the differences between the branches are not significant enough to provide distinct di-
versity. Also, the incremental selection algorithm proposed in the previous section cannot
reduce the channel estimation costs. For instance, the number of radiation pattern branches
of a (Nt, Nr|P ) IPS-MIMO system is NP

r , which may require a very long training sequence
for large P to estimate the channel response and is prohibitive to implement. Noticing that
for spatially correlated channels the diversity order of IPS-MIMO asserted by Corollary 6.2
cannot be achieved in the moderate SNR range, we propose to reduce the number of radi-
ation pattern branches by temporarily inactivating branches which are too weak or highly
correlated based on the channel correlation matrix, as illustrated in Fig. 6.12.
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In this proposed subset radiation pattern selection algorithm, the activated radiation pat-
tern branches are selected based on the long-term statistics of the propagation environment.
We assume the PAS at the receive side is known to the receiver by covariance estimation
techniques and the receive correlation matrix of all diversity branches can be calculated.
We use the capacity correlation coefficient defined in quantify the cross-correlation between
different selections by the cross-correlation measure.

Definition For the receive correlation matrix of the full system Rr, the cross-correlation
measure between two given pattern index vectors ψ1 and ψ2 is defined by

%(ψ1, ψ2) = trR̃21R̃12√
trR̃2

11trR̃2
22

. (6.64)

Note that %(ψ1, ψ2) = 0 if and only if Rr(ψ1, ψ2) is a zero matrix which means no cross-
correlation exists. %(ψ1, ψ2) = 1 if ψ1 = ψ2 and Rr(ψ1, ψ1) has only one non-zero entry on
its diagonal, which exhibits the strongest correlation.

Π′ := ∅
for l = 1 TO L do

ψ∗ := arg maxψ∈Π det(Rr(ψ, ψ));
Π′ := Π′ + {ψ∗};
Π := Π− {ψ ∈ Π|ρ̂(ψ∗, ψ) > α};
if Π = ∅ then

break;
end

end
ψ := arg maxψ∈Π′ C(Hψ);

Algorithm 6.2 Subset radiation pattern selection

We propose a subset radiation pattern selection algorithm for IPS-MIMO systems based
on cross-correlation measure in Alg. 6.2. L is the maximal number of active radiation patterns
for selection at each antenna and α a threshold for eliminating highly correlated branches.
The last step in Alg. 6.2 can be replaced by Alg. 6.1 in favor of fast selection.

6.3.3 Numerical Results

We investigate the capacity performances of the IPS-MIMO system in the rich scattering
environment and the poor scattering environment by numerical simulations.

In Fig. 6.13, the capacity CDF is plotted for a (2, 2|4) IPS-MIMO system with capacity
maximizing selection and the incremental selection algorithm in a rich scattering environ-
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Figure 6.13 Channel capacity CDF of a (2, 2|4) IPS-MIMO system. The antennas are sur-
rounded by ideal scattering environments and separated by half wavelength.

ment. The radiation patterns at each receive antenna can be steered to 0◦, 60◦, 120◦ or 180◦

with pattern beamwidth 90◦. The capacity CDF shows that IPS-MIMO is able to provide
additional diversity gain and improve channel capacity. The results of the incremental selec-
tion algorithm almost approach the maximal capacity. Though the propagation environment
is rich scattering, the overlapping radiation patterns still cause correlation. This correlated
IPS-MIMO system cannot achieve the diversity order of NtNrP = 16 in the low SNR range.

In Fig. 6.14 and Fig. 6.15 we simulate the mean capacity and outage probability of
the (2, 2|4) IPS-MIMO system in a poor scattering single cluster environment. The cluster
PAS is assume to be Laplacian distributed with the mean angle at 90◦ and angular spread
25◦. The same radiation patterns as for the previous case are used. We show that in highly
correlated spatial channels we can inactivate some radiation patterns while similar capacity
performances can still be achieved. Fig. 6.15 shows that Alg. 6.2 with L = 1 provides
no diversity gain because no pattern selection is performed. By increasing the number of
activated radiation patterns, Alg. 6.2 with L = 2 provides similar performances as Alg. 6.1
in both mean capacity and diversity order, but the required estimation length is only a half
of that of Alg. 6.1. This simulation shows that Alg. 6.2 is flexible in achieving the trade-off
between system performance and complexity.
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channel. The antennas are separated by half wavelength.



90

6.4 Chapter Summary

In this chapter, we propose a framework to approximate the ergodic capacity of MIMO
systems with selection diversity over arbitrarily correlated fading channels. By deriving the
exact variance and covariance of the instantaneous channel capacity of the correlated OSTBC
systems, we model the joint distribution of OSTBC capacity for selection as joint multivariate
Gaussians. We use Clark’s algorithm to find the ergodic capacity of IPS-MIMO. We also
propose to use approximated covariance to reduce the computational costs. Numerical results
show that the proposed framework is accurate with errors no more than 2%.

We validate by simulation that the channel capacity distribution of an IPS-OSTBC
system over Rayleigh fading channels can be approximated by the skew-Normal distribution
with negative skewness. The auto/cross-correlation coefficients of the mean channel capacities
of each channel state are derived. By applying Clark’s algorithm, we are able to approximate
the mean capacity of the IPS-OSTBC. Therefore future works may extend this framework
with skew-normal distribution to give more accurate results.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

• System Model of PS-MIMO

The performance of a new technology referred to as PS-MIMO, which involves a state-
of-the-art combination of pattern selection and spatial multiplexing, has been intro-
duced to improve system performances in wireless communication. The potential ben-
efits of using the PS-MIMO technology lies in the increase of directional antenna gain
and additional diversity gain. The performance of the PS-MIMO technology is directly
dependent on the MIMO propagation environment and PS-MIMO technology performs
better than conventional MIMO in correlated channel scenarios. The reconfigurable
directional antennas are steered to major propagation directions and instantaneous
selection of the radiation patterns are used to provide selection diversity. Further,
propagation parameters can be extracted from the measurement data and an empirical
validation of a stochastic MIMO radio channel is possible. The target application of the
correlation based MIMO model is link level simulation. This model originally assumes
identical radiation pattern for each element of the reconfigurable antenna array. In
addition, recommendations on how to use the MIMO technology are presented so that
the MIMO technology achieves optimal performance.

• Estimating Channel Parameters with Reconfigurable Array

Two joint DoA and angular spread estimation algorithm for a multiple element array
with reconfigurable antennas is proposed. The generalized Capon estimation perfor-
mance of the proposed method is evaluated by numerical simulations. The second
proposed estimator takes advantage of the covariance matching estimation technique.
Numerical simulations have shown that the mean angle and angular spread of the
clustered channel can be accurately estimated compared to conventional estimation
techniques.

• SPS-MIMO Systems

The ergodic capacity of MIMO systems with dynamic radiation patterns in a clustered
channel is studied. Theoretical analysis and simulation results show that the ergodic
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capacity of SPS-MIMO benefits from high directivity of the radiation pattern and
obtains a power gain. Furthermore, the channel capacity also takes advantage from the
direction-steerable feature that matches the distribution of the propagation power to
help decorrelating the clustered channel. Simulation indicates that, by using CRLH-
LWA’s, the ergodic channel capacity of a 2×2 MIMO system can be at least doubled at
low SNR by steering the radiation patterns to proper directions. A searching method
for the optimal directions is also proposed in this paper. We also showed by theoretical
analysis and simulations that aiming all the radiation patterns to the cluster mean
angle can be a near optimal solution if the radiation pattern has a wide beam.

• IPS-MIMO Systems

From a reliability viewpoint, instantaneous selection provides an additional diversity
dimension, which is used by IPS-MIMO systems to compensate the loss of space di-
versity due to spatial correlation between highly directional radiation patterns. The
maximum achievable diversity order of the IPS-MIMO system measures the system’s
ability of combating fading. In this thesis, it is proved that the diversity order of the
IPS-MIMO system is multiplied by the number of available radiation patterns at each
antenna. More generally, the diversity order equals to the rank of the total correlation
matrix which describes correlation between any pair of space diversity branches. From a
rate viewpoint, IPS-MIMO increases the ergodic channel capacity due to the improved
SNR by selection combining. A framework is proposed to approximate the channel
capacity distribution of IPS-MIMO systems over arbitrarily correlated fading channels
by a known distribution which matches low order moments of the instantaneous IPS-
MIMO capacity. As a result, the approximated ergodic capacity of IPS-MIMO is found
by assuming Gaussian approximation to the capacity distribution. In this thesis, by
deriving the exact variance and covariance of the instantaneous channel capacity of
the correlated OSTBC systems, the joint distribution of OSTBC capacity for selec-
tion is modeled by joint multivariate Gaussians. The ergodic capacity of IPS-MIMO
is found by applying Clark’s iterative algorithm. Simulations show that that the pro-
posed framework is relatively accurate, with errors smaller than 2%. The PS-MIMO
channel capacity distribution is negatively skewed, therefore future works may extend
this framework with skew-normal distribution to give more accurate results.

• Capacity and Selection Algorithms for IPS-MIMO with Spatial Multiplexing: A capac-
ity maximizing selection algorithm is proposed. Comparing to the exhaustive seach,
the proposed selection algorithm reduces searching complexity by eliminating highly
correlated or weak branches. Numerical results show that the proposed algorithm has
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no distinct difference in ergodic channel capacity than the exhaustive search.

7.2 Future Works

In this thesis, we propose an iterative scheme to approximately evaluate the ergodic capacity
of IPS-MIMO systems with arbitrary correlated radiation patterns. In this thesis, we have
derived exact channel capacity covariance of correlated OSTBC systems for evaluating the
mean capacity of IPS-OSTBC, and we have used simulated capacity covariance of correlated
SM systems to verify the iterative scheme for IPS-SM. The future research may derive the
exact or asymptotic channel capacity covariance of correlated SM systems so that the pro-
posed iterative scheme can be directly extended to evaluate the mean capacity of SM systems
with arbitrary radiation patterns. Another future research direction is to replace Gaussian
approximation by other probability distribution such as the skew-Normal distribution which
utilizes the first three moments to improve approximation accuracy. The new approximated
distribution will require a novel recursion to update the statistics at each iteration step.
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APPENDIX A

DISTRIBUTION OF ‖H‖2
F OVER NAKAGAMI FADING CHANNELS

In this appendix, we will provide the exact distribution of ‖H‖2
F (the Frobenius norm square

of the channel matrix H) over arbitrarily correlated Nakagami-m fading channels. This result
will be used to prove Proposition 6.1 and calculate Eq. (6.20), Eq. (6.21) and Eq. (6.23).

For a MIMO system equipped with Nt transmit and Nr receive antennas, the channel
matrix H =

[
hnr,nt , Anr,nte

jφnr,nt
]Nr,Nt
nr,nt=1

contains NtNr subchannel coefficients. We assume
that the phase φnr,nt is independent and uniformly distributed within [−π, π] and the am-
plitude Anr,nt , which may exhibit arbitrary correlation, follows the Nakagami-m distribution
with the fading figure m (assuming all subchannels have an identical fading figure). The
probability density function (PDF) of Anr,nt is [64]

fAnr,nt (x) = 2
Γ(m)

(
m

Ωnr,nt

)m
x2m−1e−mx

2/Ωnr,nt , x ≥ 0, (nt/r = 1, . . . , Nt/r) (A.1)

where Ωnr,nt = E[|Anr,nt |2] is the average power of the subchannel coefficient between the
transmit antenna nt and the receive antenna nr, m is the fading figure of the subchannel
and Γ(·) is the Gamma function. Note that the Nakagami-m fading channel includes the
Rayleigh fading channel as a special case when m = 1.

The MGF of ‖H‖2
F over Nakagami-m fading channels is given according to [65, Eq. (15)]

M‖H‖2
F

(s) = E
[
es‖H‖

2
F

]
= det(INtNr − sR)−m

= det(IN − sΛ)−m, (A.2)

where R = E
[
vec (H) vec (H)H

]
is the channel correlation matrix, N = rank(R) is the rank

of the channel correlation matrix, and Λ is a diagonal matrix with all N positive eigenvalues
of R on the main diagonal of Λ. Using an approach developed in [66, Theorem 8.3.4], we
expand Eq. (A.2) in the form of the weighted sum of MGF’s of the Gamma distribution as
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follows

M‖H‖2
F

(s) = det(IN − sΛ)−m

= det(t−1Λ)−m
∞∑
k=0

1
k!(1− ts)mN+k

∑
κ

(m)κCκ(IN − tΛ−1), (A.3)

where 0 < t < ∞ is an auxiliary which determines the convergence speed of the series.
The inner summation is over all partitions κ of k into no more than m parts1, (m)κ is
the generalized hypergeometric coefficient2 of m corresponding to κ, and Cκ(·) is the zonal
polynomial3 corresponding to κ.

Since (1−ts)−(mN+k) is the MGF of the Gamma distribution with the parametersmN+k
and t, we rewrite the MGF Eq. (A.3) in the form of the weighted sum of the MGF’s of the
Gamma distribution by

M‖H‖2
F

(s) =
∞∑
k=0

ck(1− ts)−(mN+k), (A.4)

where the weight ck is

ck = 1
k! det(t−1Λ)m

∑
κ

(m)κCκ(IN − tΛ−1). (A.5)

Therefore, the cumulative distribution function (CDF) of ‖H‖2
F over Nakagami-m fading

channels is the weighted sum of the Gamma distribution CDF’s:

F‖H‖2
F

(x) =
∞∑
k=0

ckFΓ(x;mN + k, t), (A.6)

where FΓ(x;mN + k, t) is the CDF of the Gamma distribution with the parameters mN + k

1Let k be a positive integer. The partition κ of k into no more than m parts is written as κ =
(k1, k2, . . . , km) where k1 ≥ · · · ≥ km ≥ 0 are non-negative integers satisfying

∑m
i=1 ki = k. See [66, Sec-

tion 7.2.1].
2Let κ = (k1, k2, . . . , km) and let α be a complex number. The generalized hypergeometric coefficient,

denoted by (α)κ, is defined by

(α)κ =
m∏
i=1

(
α− i− 1

2

)
ki

,

where (x)k =
∏k
i=1(x + i − 1) is the Pochhammer symbol and (x)0 = 1. See [66, Section 7.2.3, (41) and

Theorem 7.2.7]. Note that (α)(0) ≡ 1.
3Let A be a m×m Hermitian matrix with eigenvalues λ1, . . . , λm and let κ = (k1, k2, . . . , km). The zonal

polynomial of A corresponding to κ, denoted by Cκ(A), is a symmetric, homogeneous polynomial of degree
k in the eigenvalues. See [66, Section 7.2.1] for the definition and calculation of Cκ(A).

As κ varies over all partitions of k into no more than m parts, the sum of the corresponding zonal
polynomials is

∑
κ Cκ(A) = (λ1 + . . .+ λm)k = (trA)k. If k = 0, C(0)(A) ≡ 1.
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and t, which is known as

FΓ(x;mN + k, t) =
∫ x

0

τmN+k−1e−τ/t

tmN+k(mN + k − 1)!dτ. (A.7)

Substituting the Gamma CDF Eq. (A.7) into Eq. (A.6), we present the exact CDF of ‖H‖2
F

over Nakagami-m fading channels by

F‖H‖2
F

(x) =
∞∑
k=0

ck

∫ x

0

τmN+k−1e−τ/t

tmN+k(mN + k − 1)!dτ. (A.8)

After having obtained the exact distribution of ‖H‖2
F in Eq. (A.8), we study the limiting

behavior of F‖H‖2
F
(x) as x → 0+. First, we use the first order approximation to Eq. (A.8)

near x = 0 and get

F‖H‖2
F

(x) ≈
∞∑
k=0

ck ·
xmN+k

tmN+k(mN + k)! , (when x→ 0+). (A.9)

Then, we neglect the summands indexed by k > 0 in Eq. (A.9), for they are infinitesimals of
orders higher than mN , and we get

F‖H‖2
F

(x) ≈ c0 ·
xmN

tmN(mN)!

≈ xmN

(mN)! det Λm
, (when x→ 0+) (A.10)

where c0 = det(t−1Λ)−m for (m)κ ≡ 1 and Cκ(IN − tΛ−1) ≡ 1 when k = 0. Note that the
auxiliary t disappears in Eq. (A.10) and Eq. (A.10) is only related to the channel correlation
matrix and the fading figure. We can conclude from Eq. (A.10) that the exponential order
of F‖H‖2

F
(x) over Nakagami-m fading channels as x → 0+ is the product of the Nakagami

fading figure and the rank of the channel correlation matrix, i.e.,

lim
x→0+

lnF‖H‖2
F
(x)

ln x = m rank(R). (A.11)

For Proposition 6.1, since the Rayleigh fading is a special case of the Nakagami-m fading
when m = 1, Proposition 6.1 is proven according to Eq. (A.10). And, the exponential order
of F‖H‖2

F
(x) as x → 0+ over Rayleigh fading channels is the rank of the channel correlation

matrix according to Eq. (A.11).
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APPENDIX B

COVARIANCE OF THE CAPACITY OF TWO CORRELATED MIMO
OSTBC SYSTEMS OVER RAYLEIGH FADING CHANNELS

In this appendix, we will give the detailed derivation of Eq. (6.50), the MGF and the
(co)variance second order statistics of in details the exact covariance of the instantaneous
capacity of two correlated MIMO OSTBC systems over Rayleigh fading channels. We give
the detailed derivation of c1 , COSTBC

ψ1 and c2 , COSTBC
ψ2 . We will make use of Eq. (6.47) and

the following equality derived from the PDF of the multi-variate Gaussian distribution:

∫
CN
e−xHKxdx = πN

det K
, (B.1)

where K is a positive definite square matrix.

The cross-correlation of the capacity can be evaluated as

E[c1c2]

=
∫
CN

log2(1 + γhH1 h1)fh1(h1)
∫
CN

log2(1 + γhH2 h2)fh2|h1(h2|h1)dh2dh1

=(log2 e)2
∫
CN

ln(1 + γhH1 h1)fh1(h1)
[∫ ∞

0

e−z2

z2

(
1−M(−γz2; Ah1, R̃2·1)

)
dz2

]
dh1

=(log2 e)2
∫ ∞

0

∫ ∞
0

∫
CN

e−(z1+z2)

z1z2

(
1− e−γz1hH1 h1

)
·

1− e−hH1 AH(γz−1
2 IN+R̃2·1)−1Ah1

det(IN + γz2R̃2·1)


× fh1(h1)dh1dζ1dζ2

=(log2 e)2
∫ ∞

0

∫ ∞
0

e−(z1+z2)

z1z2

[
1− 1

det(IN + γz1R̃1)
− 1

det(IN + γz2R̃2·1)

×
∫
CN

(1− e−γz1hH1 h1) · e−γz2hH1 AH(IN+γz2R̃2·1)−1Ah1fh1(h1)dh1

]
dz1dz2

=(log2 e)2
∫ ∞

0

∫ ∞
0

dζ1dζ2
e−(ζ1+ζ2)/γ

ζ1ζ2

[
1− 1

det(IN + ζ1R̃1)
− 1

det(IN + ζ2R̃2·1)

×
∫
CN

(
e−hH1 AH(ζ−1

2 IN+R̃2·1)−1Ah1 − e−hH1 [AH(ζ−1
2 IN+R̃2·1)−1A+ζ1IN ]h1

)
fh1(h1)dh1

]
=(log2 e)2

∫ ∞
0

∫ ∞
0

dζ1dζ2
e−(ζ1+ζ2)/γ

ζ1ζ2

[
1− 1

det(IN + ζ1R̃1)
− 1

det(IN + ζ2R̃2·1)
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×
(

1
det(IN + R̃1AH(ζ−1

2 IN + R̃2·1)−1A)
− 1

det(IN + R̃1[AH(ζ−1
2 IN + R̃2·1)−1A + ζ1IN ])

)]

=(log2 e)2
∫ ∞

0

∫ ∞
0

dζ1dζ2
e−(ζ1+ζ2)/γ

ζ1ζ2

[
1− 1

det(IN + ζ1R̃1)
− 1

det(IN + ζ2R̃2·1)

×
(

1
det(IN + AR̃1AH(ζ−1

2 IN + R̃2·1)−1)
− 1

det(IN + ζ1R̃1 + ζ2R̃1AH(IN + ζ2R̃2·1)−1A)

)]

=(log2 e)2
∫ ∞

0

∫ ∞
0

e−(ζ1+ζ2)/γ

ζ1ζ2

[
1− 1

det(IN + ζ1R̃1)
− 1

det(IN + ζ2R̃2)

+ 1
det(IN + ζ1R̃1) det(IN + ζ2R̃2·1 + ζ2A(IN + ζ1R̃1)−1R̃1AH)

]
dζ1dζ2 (B.2)

where

det(IN + ζ2R̃2·1 + ζ2A(IN + ζ1R̃1)−1R̃1AH)

= det(IN + ζ2R̃2 − ζ2A
(

R̃1

IN + ζ1R̃1
− R̃1

)
AH)

= det(IN + ζ2R̃2 − ζ1ζ2A

 R̃2
1

IN + ζ1R̃1

AH)

= det(IN + ζ2R̃2 − ζ1ζ2R̃21(IN + ζ1R̃1)−1R̃12)

= det(IN + ζ2R̃2) det
(
IN − ζ1ζ2R̃21(IN + ζ1R̃1)−1R̃12(IN + ζ2R̃2)−1

)
.

Therefore,

E[c1c2]

= (log2 e)2
∫ ∞

0

∫ ∞
0

e−(ζ1+ζ2)/γ

ζ1ζ2

[
1− 1

det(IN + ζ1R̃1)
− 1

det(IN + ζ2R̃2)

+ 1
det(IN + ζ1R̃1) det(IN + ζ2R̃2) det[IN − ζ1ζ2R̃21(IN + ζ1R̃1)−1R̃12(IN + ζ2R̃2)−1]

]
dζ1dζ2.

(B.3)
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Using the similar method, E[c2
n] (n = 1, 2) is derived by

E
[
c2
n

]
= (log2 e)2

∫ ∞
0

∫ ∞
0

e−(ζ1+ζ2)/γ

ζ1ζ2

×
[
1− 1

det(IN + ζ1R̃n)
− 1

det(IN + ζ2R̃n)
+ 1

det(IN + (ζ1 + ζ2)R̃n)

]
dζ1ζ2.

(B.4)

Therefore, the variance of the capacity cn (n = 1, 2) is

Var[cn] = E
[
c2
n

]
− E[cn]2

= (log2 e)2
∫ ∞

0

∫ ∞
0

e−(ζ1+ζ2)/γ

ζ1ζ2

×

 1
det[IN + (ζ1 + ζ2)R̃n]

− 1
det[IN + (ζ1 + ζ2)R̃n + ζ1ζ2R̃

2
n]

 dζ1ζ2. (B.5)

The covariance of the capacity of two correlated channels is

Cov[c1, c2]

= E[c1c2]− E[c1]E[c2]

= (log2 e)2
∫ ∞

0

∫ ∞
0

e−(ζ1+ζ2)/γ

ζ1ζ2

×
{

1
det(IN + ζ1R̃1) det(IN + ζ2R̃2) det[IN − ζ1ζ2R̃21(IN + ζ1R̃1)−1R̃12(IN + ζ2R̃2)−1]

− 1
det(IN + ζ1R̃1) det(IN + ζ2R̃2)

}
dζ1ζ2. (B.6)
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APPENDIX C

V-BLAST SYSTEMS WITH RECONFIGURABLE ANTENNAS

We consider a V-BLAST system with reconfigurable antennas deployed at the receiver side.
The channel is assumed flat fading. With the complete channel state information at the
transmitter. For the covariance matrices we assume without loss of generality Rnn = N0I

and Rss = EsI. The signal to noise ratio (SNR) is defined by γ = Es/N0. for V-BLAST
IPS-MIMO systems with the zero-forcing (ZF) receiver, the SNR at the k-th substream with
channel state p is

γ
(p)
k = 1/

[
(HH

(p)H(p))−1
]
kk
, (C.1)

where [·]kk extracts the k-th element on the main diagonal of the square matrix.

Assume the MIMO channel is uncorrelated at the transmitter, i.e., Rt = INt . This
assumption is valid when antennas at the transmitter side are separated far enough. We
assume that each reconfigurable antenna deployed provides P radiation patterns, and these
radiation patterns are orthogonal with each other:

∫
2π
g(p)
r,m(φr)g(q)∗

r,n (φr)dφr = 0, where m,n = 1, · · · , Nr.m 6= n.p, q = 1, · · · , P. (C.2)

In this case, channel matrices received by different radiation pattern configurations at the
receiver side are uncorrelated and independent, i.e.,

R(ψ, ψ′) = 1Nt ⊗ 0Nr , (where ψ 6= ψ′ and ψ, ψ′ ∈ Ψ.) (C.3)

Therefore, the substream SNR of each radiation pattern configuration are independent.
[67] suggests that the MGF of the substream SNR of ZF receivers can be approximated by

M
(p)
γ,k(s) ≈

1
|I + sγO(p)|

· trO(p)Nt − 1
trO(p)(I + sγO(p))−1Nt − 1 (C.4)

At high SNR reign, the MGF can be approximated as

M
(p)
γ,k(s) = trO(p)Nt − 1

|O(p)| ·

 NR

Nt − 1

 · (sγ)−D (C.5)
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where D = Nr − Nt + 1 is the space diversity order of the p-th branch of the conventional
ZF transmission scheme.

We select the maximum substream SNR:

γk = Pmax
p=1

γ
(p)
k (C.6)

As H(p) are independent, the substream SNR γ
(p)
k are also independent. Therefore we derive

the approximated MGF of γk as

Mγ,k(s) = s−(DP−P+1) · (βkγ)−DP · (DP − P )!(D − 1)! ·
 NR

Nt − 1

P
P∏
p=1

trO(p)Nt − 1
|O(p)|

(C.7)

Thus the asymptotic symbol error rate (SER) at high SNR of substream k is

P k(γ) ≈ b · c−(DP−P−1) · (βkγ)−DP · (2DP − 2P + 1)!!
2DP−P+1 ·

(
(D − 1)!( NR

Nt−1)
)P P∏

p=1

trO(p)Nt − 1
|O(p)|

(C.8)

Eq. (C.8) indicates that the diversity order of a ZF decoding V-BLAST system is multiplied
by the number of orthogonal radiation patterns if reconfigurable antennas are deployed.
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