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RÉSUMÉ 

La nanotechnologie est la haute technologie la plus prometteuse de ce siècle. L’investissement 

mondial dans cette technologie a augmenté rapidement dans les deux dernières décennies. En 

outre, cet investissement va probablement contribuer de façon non négligeable à la croissance 

économique future. La recherche dans cette nouvelle technologie basée sur la science nécessite 

un financement public important pour faciliter la production de connaissances, réduire les 

incertitudes et les risques connexes, et assurer le succès du développement de la nanotechnologie.	
  

Compte tenu de son potentiel dans une large variété de domaines, les gouvernements et les 

décideurs politiques ont cherché à allouer efficacement des fonds, afin de maximiser les 

avantages économiques. Il est donc essentiel d’améliorer et d’approfondir notre compréhension 

concernant la façon dont les financements publics pourront influencer la performance de la 

recherche.	
  

Le but principal de cette thèse consiste à analyser l’impact du financement public sur le 

développement de la nanotechnologie, avec un accent tout particulier sur les résultats de la 

recherche scientifique et technologique. Les objectifs de la recherche portent sur deux volets : 

Tout d’abord, nous cherchons à examiner l’influence du financement. Le deuxième volet consiste 

à explorer l’impact de la collaboration et des réseaux innovants sur le développement de la 

nanotechnologie.	
  

Ensuite, notre but est de comparer l’impact du financement et des réseaux de collaboration de 

nanotechnologie entre le Canada et les États-Unis. Cette recherche porte sur les extrants 

importants de la recherche académique : les publications et les brevets. Elle permet de 

caractériser les réseaux de collaboration en utilisant les liens de co-publication et de co-invention 

entre les scientifiques et les inventeurs.	
  

Cette thèse contribue de manière significative aux questions de recherche suivantes : Comment 

l’augmentation du financement public pour les scientifiques œuvrant en nanotechnologie peut 

améliorer les publications et les brevets liés aux nanotechnologies en terme de nombre (a) et en 

terme de qualité (b)?	
  Est-ce que les chercheurs qui détiennent une position plus influente au sein 

des réseaux de co-publication/co-invention sont plus productifs et plus cités?	
   Est-ce que 

l’influence du financement public sur les recherches en nanotechnologie est différente au Canada 

par rapport aux États-Unis?	
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Pour répondre à ces questions, des informations sur les articles de nanotechnologie, les brevets et 

le financement ont été extraites à partir de diverses bases de données au Canada et aux États-

Unis. De plus, cette information a été utilisée pour construire les réseaux scientifiques et 

technologiques, et pour analyser l’influence du financement par des analyses économétriques.	
  

En ce qui concerne la première question de recherche, nos résultats montrent que le financement 

public fait augmenter généralement le nombre et la qualité des publications et brevets. Toutefois, 

cet impact positif est plus important aux États-Unis. Le financement est également moins 

susceptible d’influencer les brevets de nanotechnologie au Canada. En ce qui concerne l’analyse 

du financement de l’industrie au Québec, les fonds privés sont moins susceptibles de faire 

augmenter la qualité des publications. 

Quant à notre deuxième question de recherche, les études montrent que les résultats scientifiques 

et technologiques sont en corrélation avec la position des chercheurs dans les réseaux de 

collaboration. Les résultats de la recherche en nanotechnologie, particulièrement au Canada, 

montrent que le rendement est plus élevé au niveau des publications, des brevets et des réseaux 

de collaboration. 

Enfin, bien que l’impact entre le Canada et les États-Unis soit légèrement différent, cette 

recherche suggère que le financement et les réseaux de collaboration jouent un rôle important 

dans la stimulation de la quantité ainsi que de la qualité de la recherche académique. 
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ABSTRACT 

Nanotechnology is considered to be the most promising high technology of this century. 

Worldwide investment in this technology has rapidly increased in the past two decades, and it 

will likely drive future economic growth. Research in this new science-based technology requires 

significant public funding to facilitate knowledge production, reduce related uncertainties and 

risks, and ensure the success of nanotechnology development. 

Given its potential in a wide range of domains, governments and policymakers have sought to 

efficiently allocate funding to maximize economic benefits. It is therefore essential to further our 

understanding of how public funding influences research performance. 

The main purpose of this thesis is to analyze the impact of public funding on nanotechnology 

development, with a special focus on scientific and technological research outputs. The research 

objectives are twofold: we first seek to examine this funding influence, and second to explore the 

impact of collaboration and related scientific and innovative networks on nanotechnology 

development. 

Afterwards, our goal is to compare the impact of funding and of nanotechnology collaborative 

networks between Canada and the US on scientific and technological research outputs. This 

research deals with the prominent outputs of academic research, publications and patents, and 

characterizes collaborative networks using the co-publication and co-invention links between 

scientists and inventors. 

This thesis contributes significantly to the following research questions: how increased public 

funding to nanotechnology scientists enhances nanotechnology-related publications and patents 

in terms of (a) number and (b) quality? Are researchers who hold a more influential network 

position in co-publication/co-invention networks more productive and more cited? Is the 

influence of public funding on nanotechnology research different in Canada compared with the 

US? 

To answer these questions, information about nanotechnology articles, patents and funding was 

extracted from various databases in Canada and in the US and was used to build the scientific and 

innovation networks, and to analyze the influence of funding by econometric analyses.  
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Regarding the first research question, our results show that public funding generally increases the 

number and quality of these outputs. However, this positive impact is more significant in the US 

and funding is less likely to influence nanotechnology patents in Canada. Regarding the analysis 

of industry funding in Quebec, private funds are less likely to increase the quality of publications.  

Concerning our second research question, results show that scientific and technological outputs 

are correlated with the position of researchers in collaborative networks. Nanotechnology 

research outputs particularly in Canada show greater returns on publications and patents on 

network collaborations. 

Finally, although the impacts are somewhat different between Canada and the US, this research 

suggests that both funding and collaborative networks play an important role in boosting the 

quantity and quality of academic research. 
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INTRODUCTION 

Nanotechnology is a rapidly progressing field that has experienced dramatic growth in the past 

two decades. According to National Nanotechnology Initiative, “nanotechnology is science, 

engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers” 

(NNI, 2014). This new technology could influence and improve efficiency in all aspects of 

manufacturing, energy, healthcare, pharmaceuticals, and agriculture. Given its applicability in 

various science and technology sectors, it holds considerable potential and may well be the most 

promising technology of the century that is expected to stimulate economic development. This 

has initiated national efforts to better understand how nanotechnology can induce fundamental 

technological changes and spark a new technological revolution (Canton, 2006; Roco and 

Bainbridge, 2005). 

Although some debate exists on the degree to which nanotechnology impacts the economy and 

society, some believe it holds overwhelmingly positive benefits while others are more 

pessimistic, it is generally believed to reap significant economic benefits (Wood et al., 2003).  

Future advances in nanotechnology and possible positive and negative impacts of this new 

technology encourage governments to fund research to understand the positive and negative 

impacts that they might expect to emerge. The potential market for nanotechnology products has 

motivated governments to foresee important future benefits of nanotechnology and to 

substantially increase funding in various nanoscience and nanotechnology sectors. Roco (2001; 

2002; 2005) observes this trend, stating that global investment in nanotechnology has 

experienced rapid growth in the past decades particularly since 1997 and has provided 

fundamental insights into this emerging technology. Hullmann (2006) also highlights that 

nanotechnology’s economic benefits have continued to attract attention from government and 

industries worldwide. Many companies have shown their confidence in rapid growth of 

nanotechnology by investing substantial resources to the development of nanotechnology.  

Similarly, an analysis of nanotechnology public funding (NSF funding) over two decades (1991-

2010) by Chen et al. (2013), reveals that new application areas are emerging and the government 

and industry have substantially expanded investment to drive nanotechnology development.  
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Public funding can unleash the potential of nanotechnology and foster revolutionary change in 

almost all disciplines and areas of relevance in the short and long term. Given that the 

government mainly supports basic research, there is a growing need to analyze government 

research funding and its effectiveness in generating new scientific publications and patents 

(Wang and Shapira, 2011). These two outcomes are the most appropriate indicators to measure 

scientific performance of researchers and innovative activities, with the aim of boosting the 

efficiency and effectiveness of R&D in advancing knowledge.  

To analyze the impact of government funding, two questions are investigated in the literature: the 

first is concerned with quantity of output and the second addresses research impact. The research 

impact is treated carefully by measuring the quality of these outcomes. 

Nanotechnology is indeed an interdisciplinary field, hence partnerships and collaborative 

activities are rapidly increasing in the field. Researchers participate in collaborations to access a 

large pool of expertise and accelerate discoveries (Roco, 2001). Collaborative networks drive 

knowledge generation particularly in more complex fields given that these fields are more likely 

to be involved in scientific collaborations (Katz and Martin, 1997; Singh, 2007).   

Collaborative activities affect research productivity and some scholars have found that scientific 

outputs are closely dependent on the frequency of collaboration between researchers (Carayol 

and Matt, 2004; Glänzel and Schubert, 2005; Landry et al., 1996). Given that funding is generally 

allocated to a group of researchers rather than individual scientists, the correlation between 

productivity and collaboration is of great importance.  

Collaborative environments also draw researchers as they enable access to more facilities, 

equipment, special skills, unique materials, and the efficient use of experiences (Lee and 

Bozeman, 2005).  

This thesis investigates the impact of public funding on nanotechnology development by 

narrowing the research in the academic realm through two specific academic outputs: scientific 

output and technological development. We determine whether public funding increases the 

effectiveness and efficiency of the scientific community in terms of publications and patenting 

activities.  
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Based on the fundamental role of knowledge and innovation in fostering economic development, 

we examine the role that governments play in the knowledge generation process through this 

thesis. 

In addition, we are interested in the study of academic collaboration, which influences research 

activities. To investigate the efficiency of collaborative behaviour among scientists, we examine 

the impact of scientific and innovative networks on research output in the field of 

nanotechnology.  

Few studies explore the impact of research financing on commercial interests within universities. 

We therefore focus our study on academic patents and on the influence of co-invention and co-

publication collaborations in development of this high technology. 

Due to the availability of industry funding data in our database from the Quebec government, we 

further investigate the effect of private funding on academic nanotechnology research as it is 

currently considered in only a few studies. To answer our research questions, we conduct 

econometric analyses of academic publication and patenting activity in the nanotechnology field 

in Canada and the US. We then compare the effects in these two countries with a special focus on 

nanotechnology development in Quebec.   

The rest of the thesis is structured as follows: we review the literature in Chapter 1 concerning 

funding, collaborations and subsequent outcomes; Chapter 2 describes the research objectives, 

hypotheses and the methodology employed in this study; Chapters 3 and 5 compare the impact of 

public funding and collaboration between Canada and the US, while Chapters 5 and 6 concentrate 

on this impact in Quebec; and finally Chapter 7 discusses the findings and results obtained. We 

conclude with limitations of this study and suggest future work. 
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CHAPTER 1 ARTICLE 1: IMPACT OF FUNDING AND 

COLLABORATIONS ON SCIENTIFIC AND TECHNOLOGICAL 

PERFORMANCE IN UNIVERSITIES 

A Review of the Literature 
Leila Tahmooresnejad, Catherine Beaudry 

1.1 Abstract 

This paper reviews the literature concerning research performance in the academic realm, in 

particular the impact of funding and collaboration on scientific publications and academic 

patents. Mostly, funding is granted to research teams; hence there is a need to jointly study the 

collaboration and funding, and their joint impact on research outputs. We review the empirical 

studies on co-authorship, co-invention and their effects on research performance. Reviewing 

literature reveals that prior studies mostly consider publications as research outputs and that 

academic patents have recently attracted more attention. Research on the impact of funding 

mainly focuses on public funding, while little systematic research has been conducted on private 

funding of academic research. Despite various studies on the influence of government funding on 

academic research performance, positive effects are not always found and some contradictory 

results co-exist in the literature. In addition, the literature on the impact of collaboration on 

academic research output reveals that little structured research has been conducted on 

technological outputs and co-invention collaboration in universities. In conclusion, we identify 

gaps and suggest future empirical studies.  

Keywords: Funding, Collaboration, Scientific papers, Academic patents 

1.2 Introduction  

Governments devote considerable amounts of funds towards basic and applied research and 

development (R&D). Given that academia accounts for a large proportion of research, it is 

important to study funding trends in universities and analyze the effectiveness of these 

government expenditures. It is thus essential for decision makers to understand how government 

investment can be effectively allocated to maximize academic outputs (Hagedoorn et al., 2004). 
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There has been a growing concern over recent years about the increasing research costs of 

university research. Governments fund are approximately 60% of university research in OECD 

countries (OECD, 2010). The impact of federal expenditures on university outcomes has become 

a challenging issue. 

Over the last three decades, governments have sought ways to change funding methods to 

stimulate productive research processes in universities (Gwynne, 2010; Liefner, 2003;). Geuna 

and Martin (2003), for example, observed that governments in many countries across Europe and 

Asia-Pacific implemented performance-based funding, which evaluates the research and prompts 

universities to be more efficient and accountable with their research funding. 

Given the central importance of publication in the scientific community, this can be an 

appropriate indicator to measure a researcher's scientific productivity and performance. 

According to Fox (1983), publication is the most fundamental research output of universities; it 

allows scientists to gain professional advancement, recognition and promotion. In recent years, 

academic technological output has come into the focus of governments, as universities have 

shown that their research is commercially valuable to industries (Czarnitzki et al., 2007). Since 

the early 1980s, the Bayh-Dole Act in the US has indeed facilitated the patenting of innovations 

derived from government-funded research and has dramatically increased the number of 

university patents (Jaffe, 1989; Henderson et al., 1998).  

Because funding is generally allocated to research teams instead of sole scientists particularly in 

the field of nanotechnology and medical science, another important related issue is the role of 

research communities on university performance. Modern science is more interdisciplinary, 

complex and costly, which encourages researchers to participate in collaborative research 

communities and access a large pool of valuable ideas and resources (Adams et al., 2005; Lee 

and Bozeman, 2005; Pike, 2010). Righby and Edler (2005) note that public funding plays an 

important role in the growth of collaborative research by encouraging researchers to interact.   

Collaborative research is supposed to help create new scientific knowledge and enhance research 

performance (Stokols et al., 2005). To maintain competitive advantage, it also becomes crucial 

for researchers to actively participate in innovation networks to exchange and rapidly access 

various kinds of knowledge (Gao et al., 2011). This contribution to knowledge networks helps to 
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create and diffuse new ideas as these collaborations can bridge academic boundaries to stimulate 

inventions (Breschi et al., 2005).  

This survey of the literature sheds light on the elements critical to enhancing academic research 

output. Although the existing literature mainly studies the impact of funding and collaboration on 

research performance, a positive effect of the two former on the patter is not confirmed in all 

studies. Some gaps are still observed in prior empirical investigations. In this paper, we identify 

findings and highlight the gaps where further research is required. The remainder of this paper is 

organized as follows. In Section 2, we review the importance of research funding and its impact 

on research output. Our focus for research output is scientific publications and technological 

innovations, which is synthesized from prior studies. In Section 3, we discuss the critical role of 

collaboration and their effects on academic research. We conclude, highlight research gaps, and 

propose further empirical studies in Section 4.   

1.3 Research Funding 

The role of universities dose not solely consist in producing new knowledge and training, it also 

aims to develop social and economic growth. Universities significantly contribute to economic 

development and their role goes beyond the production of new knowledge. Given the billions of 

dollars spent on funding every year to support new emerging technologies to speed economic 

development, university research is at the center of attention of federal agencies. These 

institutions play such a critical role in national innovation systems that research policies must 

have a thorough understanding of research funding and of its impact.  

Blume-Kohout et al. (2009) study the causal effect of federal funding on non-federal funding and 

suggest that raising government funding is an indicator of quality, which incites non-federal 

funders to provide additional resources. Hence, even if public funding does not have a direct 

positive impact on research outputs, it may indirectly affect university research.  

Adams and Griliches (1998) suggest dividing public and private funding when focusing on the 

research performance of universities. Some scholars (Diamond, 1999; Muscio et al., 2013; Payne, 

2001; Perkmann and Walsh, 2009) provide evidence that researchers experience a corresponding 

increase in their private funding when they receive more funding from government sources. 

However, David et al. (2000) found contradictory results regarding whether public and private 
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funding complement or substitute each other. Leyden et al. (1989) showed that the relationship is 

insignificant, while Toivanen and Niininen (1998) found substitutability and Lichetenbreg (1988) 

observed a mixed effect with different methods. Hence results are not entirely conclusive. 

The links between government grants and academic research are complex. Despite the fact that 

economists have recently paid much attention to research productivity, the effect of research 

expenditures on research output is not trivial. Understanding these links, however, is essential to 

science policy. The existing literature allows us to illustrate the impact of funding on research, as 

depicted in Figure 1.1. Each relationship will be examined in turn.	
   

 

Figure 1.1: Impact of research funding on academic outputs 

1.3.1 The impact of funding on scientific output 

Arora and Gambardella (2005) studied the relationship between National Science Foundation 

(NSF) funding and the quality-adjusted number of publications and observed only a modest 

effect1. Jacob and Lefgren (2011) estimated the effect of National Institutes of Health (NIH) 

grants and showed that receiving a grant worth $1.7 million increases the number of publications 

                                                

1 The impact factor of the top 50 economic journals was used to adjust for quality in their research. 
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by one additional paper over the next five years, which implies a fairly limited impact. In 

contrast, empirical findings of Payne and Siow (2003) proved a strong positive correlation 

between research funding and the number of articles published. Although a comparison of 

successful and non-successful applicants in NIH career development awards by Carter et al. 

(1987) showed that these NIH awards have no effect on the research productivity.  

Rigby’s (2011) study on the relationship between funding and its impact on publications 

concluded that researchers publish articles based on a variety of research priorities. Grants, 

therefore, can indirectly generate multiple research outputs, such as working reports, theses, etc. 

Figure 1.2 shows the taxonomy of topics that influence scientific outcomes.  

 

Figure 1.2: Impact of research funding on scientific outputs 

Some studies found a link between researchers and grant attribution, which may cause a bias in 

analyzing the impact of funding on research performance. Arora et al. (1998) and Arora and 

Gambardella (2005) investigated the role of research institute quality and highlighted that there is 

a correlation between productivity of scientists and university quality with receiving grants. They 

also found that past research performance measured by the number of publications plays an 

important role in grant funding and consequently affects publication productivity. In a similar 

study, Adams and Griliches (1998) raised the point at the institutional level that differences 

across universities are important in order to evaluate the correlation between scientific outputs 

and funding, and that the results may be positive for only top universities.  
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Differences also exist between research fields: some are costly and require more funding or larger 

teams to conduct research (Rigby, 2011). For example, results from a study on biotechnology 

publications by Arora et al. (1998) imply that publication productivity may vary depending on 

the funding distribution within a research group. Any analysis on the role of grants in research 

productivity must therefore take into account the specific needs of diverse fields. Additionally, in 

the nanotechnology field, empirical studies by Shapira and Wang (2010) and Zucker et al. (2007) 

found a positive effect on knowledge productivity.  

Various studies have questioned whether government funding influences the quality of 

publications. The results of Jacob and Lefgren (2011) on the effect of National Institutes of 

Health (NIH) grants seem to demonstrate that receiving NIH grants has at most a small positive 

effect on citations. Similarly, Payne and Siow (2003) observed an imprecise impact on the 

number of citations per articles following a $1 million increase in federal funding. Lewison and 

Dawson (1998) investigated the effects of multiple funding organizations on biomedical subfield 

publications. Using the number of citation as a performance measure, their results show that an 

increase in the number of funding organizations from which a researcher receives money can 

increase publication quality, particularly when the number of funding bodies changes from zero 

to one.  In addition, these papers are more likely to be published in journals that have a higher 

citation impact. McAllister and Narin (1983) in an institutional level and Peritz (1990) found the 

same positive correlation between citation and funding respectively in biomedical and economic 

papers. In the nanotechnology field, Shapira and Wang (2010) attempted to measure the quality 

of publications across countries and found a mixed impact of government funding on citations.  

Interestingly, and contrary to wide spread belief, Gingras (1996) discovered a strong correlation 

between quantity and quality of papers. According to his study, researchers with a large number 

of papers are more likely to publish in high impact journals and are likely to be the most 

productive researchers. 

Increased university-industry collaboration has created a new form of knowledge production 

which fosters the direct commercialization of university research (Bloedon and Stokes, 1994; 

Starbuck, 2001).  Empirical evidence on the impact of industry contracts on the scientific 

production are mixed: while it is scarce, there are concerns as to whether these interactions will 

decrease long-term research or change the culture of open science (Martin, 2003; Van Looy, 
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2004). According to Blumenthal et al. (1997), industry collaboration hinders the publication of 

research results due to concerns regarding intellectual property rights. Further, a survey-based 

study by Campbell et al. (2002) showed that industry funded researchers commonly receive 

requests to withhold the publication of results, which has a negative impact on their publication 

productivity.  

On the contrary, Gulbrandsen and Smeby (2005) demonstrated that industry-funded researchers 

are more productive and generally tend to produce more applied research. Their results show that 

low levels of industry support increase the number of peer-reviewed articles while higher levels 

of industry funding are associated with decreasing numbers of academic publications. In a 

comparative study of productivity among faculty members, Blumenthal et al. (1996) found that 

the productivity of industry-funded researchers is the same if not higher than that of those who 

received no industry support. In another recent study that investigated the nanotechnology 

publications, Beaudry and Allaoui (2012) suggested neither a positive nor a negative impact of 

private funding on scientific productivity. Similarly, Kyvik (1991) only found a weak 

relationship between external funding and scientific papers.  

Gulbrandsen and Smeby (2005) explained that the publishing profile of an industry-funded 

academic researcher may be different from that of a government-funded researcher. An industry-

funded researcher likely publishes more reports or files more academic patents instead of journal 

articles. Additionally, Geuna and Nesta (2006) also suggested a possible substitution effect 

between paper publication and patent application for university scientists with industrial support: 

academic researchers must sometimes withhold research results for months due to intellectual 

property rights and thus experience a delay in publishing.  

Empirical evidence is still mixed regarding the comparative efficiency of government funding 

and of industry support. Diamond (2006) counted the number of citations a paper received over a 

7 year period and observed that privately funded research is more successful in that regard and 

that consequently, industry grants is positively correlated with higher quality research. 

Conversely, Boumahdi et al. (2003) weighted publications using the impact factor of their 

journals, which signals the quality of research, and found that the correlation between private 

funding and publication performance corrected for this impact is negative. They suggested that 
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organizations that grant private funding may seek research that is closer to applications, while the 

research appearing in the higher impact journals is more likely to be fundamental. 

In contrast, Behrens and Gray (2001) compared industry-sponsored projects with government-

supported university projects and found no difference in the research quality of the resulting 

publications. Table 1.1 summarizes the prior studies regarding the impact of funding on scientific 

performance.  
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Table 1.1: Summary results of the studies on the impact of funding on scientific output 

Author Year Data 
Funding Impact on scientific 

output 
Results 

   Public Private Productivity Quality  

McAllister 

and Narin 

1983 Biomedical publications for 120 U.S. 

medical school 

✓  ✓ ✓ An increase of publication size and 

average citation per paper 

Peritz 1990 The economic papers of 1978-1979 ✓   ✓ A tentatively positive effect 

Blumenthal et 

al. 

1996 Data from faculty members in life sciences 

at the 50 U.S. universities, 1994-1995 

✓  ✓  A possible decrease in academic 

activity  

Lewison and 

Dawson 

1998 Research papers in 

Biomedical subfield -UK papers, 1988-

1994 

✓   ✓ A higher citation impact 

Payne 2001 Data of private and public universities in 

the United States, 1972-1997 

✓  ✓  Greater growth for universities 

which historically received low 

levels of funding  

Boumahdi et 

al. 

2003 Research activity of 76 laboratories in 

Louis Pasteur 

University (ULP), 1993-2000 

 ✓ ✓ ✓ A positive impact on publishing, a 

negative impact on research quality 
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Table 1.1: Summary results of the studies on the impact of funding on scientific output (continued) 

Author Year Data 
Funding Impact on scientific 

output 
Results 

   Public Private Productivity Quality  

Payne and 

Siow 

2003 Receiving federal research funding on 74 

research universities, 1972-1998 

✓  ✓ ✓ An increase in the number of 

articles, but the increase in citation 

is small and imprecise 

Arora & 

Gambardella 

2005 Applications to the NSF in economics, 

1985-1990 

✓  ✓  A modest effect on papers 

Gulbrandsen 

and Smeby 

2005 A questionnaire study of university 

Norwegian professors, 2001  

 ✓ ✓  A significant relationship between 

industry funding and publications 

Diamond 2006 Chemistry articles by North American 

scientists, published in1985 

✓ ✓  ✓ Private funding is more successful 

than government funding 

Zucker et al. 2007 Data of the 179 U.S. in economic areas, 

1981-2004 

✓  ✓  A large and robust impact on 

publication 

Goldfarb 2008 Aerospace engineering publications, 1981-

1988 

 

 ✓ ✓  A decrease in publications 
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Table 1.1: Summary results of the studies on the impact of funding on scientific output (continued) 

Author Year Data 
Funding Impact on scientific 

output 
Results 

   Public Private Productivity Quality  

Auranena and 

Nieminen 

2010 Publications of eight countries, 2000s to 

the mid-2000s. 

✓  ✓  Best performers contribute to better 

performance  

Shapira and 

Wang 

2010 Nanotechnology published worldwide 

articles, 2008-2009 

✓  ✓ ✓ Positive impact on quantity, mixed 

impacts on citations 

Jacob and 

Lefgren 

2011 Receiving an NIH grant on publications, 

1980-2000 

✓  ✓ ✓ A relatively small effect on the 

number of papers and citations 

Beaudry and 

Allaoui 

2012 Quebec publications and patents ✓ ✓ ✓  A positive impact of public funding, 

but no impact of private contracts 

Chen et al. 2013 Web of Science (WoS) publications in 

nanoscale science and engineering (NSE), 

1991-2012 

✓   ✓ An increase of scientific 

publications, a significant increase 

of citations 
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1.3.2 The impact of funding on technological output 

Most previous research has focused on the impact of funding on scientific outputs, however a few 

investigations have measured the correlation between funding and commercial developments in 

universities. In recent decades, changes in the academic regulatory environment (i.e., Bayh-Dole 

Act of 1980 in the US) in the United States and some European countries, have given rise to 

technological innovations in universities. The growth of publicly funded academic patents and 

licenses after 1980s is therefore asserted to be a direct consequence of the Bayh-Dole Act 

although the tendency started prior to 1980s. This commercialization of university research has 

motivated academic researchers to seek economic returns from research, often in the form of 

patents (Mowery et al., 2001; Shane, 2004).  

Henderson et al. (1998) suggested that an increase in the quantity of patents has been 

accompanied by a decrease in the quality of these commercial efforts. According to the literature, 

the recent trend towards increased university-industry collaboration implies a shift towards 

industrial funding and, more importantly, towards applied research in universities. Academic 

researchers with industrial funds are therefore more likely to contribute to patents rather than 

publications (Pavitt, 1998). Patents have been used as an indicator of innovation in literature 

starting with a study of Schmookler (1966). Figure 1.3 shows this influence on technological 

output.	
   

 

Figure 1.3: Impact of research funding on technological outputs 
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The econometric analysis of Foltz et al. (2000) on academic agricultural biotechnology patents 

suggests a positive relationship between patent production and government funding. In a later 

study, based on a panel of 561 observations of 127 U.S. universities, Foltz et al. (2001) separated 

the impact of federal and state funding and discovered a difference in their impact: only state 

funding is statistically positive and significant. Neither of these two econometric studies (Foltz et 

al., 2000; 2001) found a significant impact of industry funding on patent production.   

Considering the sizable investment in academic applied research, it is not surprising that studies 

have sought to reveal convincing evidence of its effect. An extensive study by Payne and Siow 

(2001), for example, showed that $1 million in federal research funding yields 0.2 more patents.  

Huang et al. (2005; 2006) analyzed the nanotechnology patents of NSF-funded researchers of 20 

countries using citation map analysis to conduct a more direct study of technological innovations. 

Their findings denoted that these researchers and their corresponding patents have a higher 

impact than non-NSF funded recipients. A similar study of citation networks by Chen et al. 

(2013) showed that NSF funding has played an important role over the past two decades in 

developing nanotechnology patents in numerous subfields. According to their findings, NSF-

funded researchers received a higher number of citations for their papers and patents. 

Furthermore, Azagra-Caro et al. (2003) found a positive impact of public and of private funding 

on university patents, distinguishing between university-owned and firm-owned patents. Their 

results illustrate that public funds are only weakly correlated with university-owned patents, 

implying that industrial partners are extremely effective in producing innovative outcomes. Table 

1.2 summarizes the prior studies that measure the impact of funding on technological 

performance. 
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Table 1.2: Summary results of the studies on the impact of funding on technological output 

Author Year Data 
Funding Impact on technological 

output 
Results 

   Public Private Productivity Quality  

Foltz et al. 2000 Agricultural patents from 

USPTO, 1991-1998 

✓ ✓ ✓  A positive and significant impact of 

public funding, industry funding is not 

significant 

Foltz et al. 2001 Data from 127 universities, 

1991-1998 

✓  ✓  State funding is positive and significant, 

but not federal funding, 

Azagra-Caro et al. 2003 Data from research laboratories 

of University Louis Pasteur 

(ULP), 1993-2000 

✓  ✓  A weak impact of public funding on 

university-owned patents 

Coupé 2003 WEBCASPAR-data of the 

National Science Foundation 

(NSF), based on a Survey  

✓  ✓  Funding on academic research leads to 

more academic patents  

Payne and Siow 2003 Federal research funding on 74 

research universities, 1972 - 

1998 

✓  ✓  An Increase of  $1million in federal 

funding results 0.2 more patents  

Huang et al. 2005 Patents from 1991-2002 

 

✓   ✓ NSF-funded researchers and their patents 

have higher impact factors 
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Table 1.2: Summary results of the studies on the impact of funding on technological output (continued) 

Author Year Data 
Funding Impact on technological 

output 
Results 

   Public Private Productivity Quality  

Huang et al. 2006 Funding from NSF for nanoscale 

science and engineering (NSE) 

patents, 2001-2004 

✓   ✓ A significantly higher impact patents 

based on patent citation measures 

Zucker et al. 2007 Observations for each of the 179 

U.S. in economic areas, 1981-

2004 

 

✓  ✓  An increase of patenting 

Chen et al. 2013 United States Patent and Trade 

Office (USPTO) patents, 1991–

2012 

✓  ✓ ✓ An increased number of patents and 

citations 
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1.4 Research Collaborations 

Collaborative networks stimulate knowledge diffusion and knowledge generation. Ideas and 

coded knowledge require scientists to collaborate effectively so that knowledge can flow easily 

across boundaries, universities and firms. However, the increasing complexity of knowledge over 

the past century has hindered scientists' ability to acquire all the necessary knowledge in various 

fields and leads them to participate in scientific collaboration (Chauvet et al., 2011; Katz and 

Martin, 1997; Lowrie and McKnight, 2004; Singh, 2007).   

Recent studies have revealed that research networks play an important role in knowledge 

diffusion and economic growth as social networks recently have been much studied to uncover 

the impact of collaborative networks on research outcomes.  This is especially true for academic 

researchers, who can more easily benefit from knowledge sharing across regional boundaries than 

individual researchers. Generally, scientific and technological outputs involve a number of 

authors since they usually represent outcomes from various projects and research is mainly 

conducted in teams. According to a study of Adams et al. (2005), the number of listed authors on 

scientific articles increased by 50% during the period between 1981 and 1999. Similarly, Frenken 

et al. (2005) raised the point that co-authored papers have increased in recent decades and can be 

an appropriate measure to examine the quality of research collaboration. These collaborations can 

enhance research productivity as well as contribute to the citation impact of collaborative 

research (Barabasi et al., 2002; Singh, 2004). 

These studies have taken an important step towards investigation of the impact that co-

publication and co-patent collaborative networks have on research outputs as shown in Figure 

1.4. To understand the impact of collaboration, most studies have concentrated on the 

collaborative nature of knowledge production, geography, team size, etc. Lee and Bozeman 

(2005), however, challenge the underlying assumption that collaborative activities increase 

research productivity and quality. They highlighted the fact that all collaborations are not 

efficient and may have a negative impact on research productivity or that some collaborative 

research may have disappointing results. However, the effect of collaboration on research 

productivity may be influenced by numerous factors such as the age of scientists, success in 

receiving grants and contracts, the rank of university or the status of a researcher as faculty 

member, etc. 
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Figure 1.4: Two indicators to measure research collaboration in academia 

1.4.1 The role of co-authorship collaborations in scientific performance 

Apart from the inherent advantages of research collaboration as a means to channel knowledge, 

scientific collaboration may also increase the effectiveness of research and raise the quality of 

scientific outputs. It is assumed that co-publication is evidence of collaboration in academic 

research and that the resulting papers are the outcomes of a collaborative community. Co-

publication is the most tangible form of scientific collaboration, which can be tracked to analyze 

the scientific networks and scientific output measured by the number of papers is closely 

associated with research collaboration (Glänzel and Schubert, 2005). Nevertheless, Melin and 

Persson (1996) raise two concerns in terms of using co-authorship as an indicator for research 

collaboration: first, co-authored publications can be the result of shared materials, equipment and 

not specifically of collaborative research; second, research collaborations do not always yield co-

authored publications. Carayol and Matt (2004) analyzed the publication performance of 

researchers at the laboratory level and suggested that the combination of numerous researchers in 

labs is associated with higher publication productivity. Prior studies have generally focused on 

the number of authors as a measure of collaboration in co-authored publications. Figure 1.5 

presents the factors that are important to study in assessing the impact of co-publication 

collaboration on academic research.  

Pike (2010) suggested publication productivity and citation counts as means to examine scientific 

impact of a researcher, because the effectiveness of other metrics (e.g., size of citing community; 

measuring the extent of network integration) has not been clearly proven. 
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        Figure 1.5: Impact of co-publication in academic research 

According to a survey of academic researchers by Landry et al. (1996), collaboration increases 

the productivity of university researchers who collaborate with both other academic researchers 

and researchers from industries or institutions. 

Singh (2007) further compared collaboration across national and organizational boundaries and 

found that scientists involved in external collaborations contribute to significantly more 

publications in the future. Hollis (2001) and Lee and Bozeman (2005) demonstrate that the 

simple number of peer-reviewed journal papers is significantly correlated with the number of 

collaborators, but when they implement a fractional count—where the number of papers is 

divided by the number of authors—the results are not confirmed. Hollis (2001) shows that the 

relationship between collaboration and publication quality also appears to be negative after 

adjusting for the number of authors per publication. 

The findings of Frenken et al. (2005) show that the citation rate of papers is positively correlated 

with the number of authors. Wuchty et al. (2007) also highlighted that the process of knowledge 

creation has changed and that teams frequently produce more highly cited papers than individual 

researchers. 

Similarly, Glänzel and Schubert (2005) shed light on giving and receiving citations and 

demonstrated that co-publication papers have more references than other papers and also receive 

more citations on average. Cross-national collaborations have been studied by a number of 
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scholars (Katz, 1994; Glaenzel and De Lange, 1997) and geographical, historical and linguistic 

proximity, country size, and mobility of researchers, etc., are the subjects of numerous studies. 

More specifically, Narin et al. (1991) observed that international collaborations are more 

effective given that internationally co-authored papers are cited twice as much as papers with 

authors from a single country. In contrast, He et al. (2007) addressed the difference between 

within-university collaboration, domestic collaboration and international collaboration on 

scientific outputs but could not find that internationally co-authored papers are of higher quality 

than within-university collaborative publications. They however observed that both collaboration 

undertaken within universities and across countries are strongly correlated with the quality of 

scientific papers whereas only collaboration within universities yields more publications in the 

future.  

Nevertheless, according to He et al. (2009), the positive relationship between collaboration and 

research outcomes are more presumed than being investigated due to a belief that benefits of 

collaborated research is greater than the costs that are associated with this collaboration. Hence, 

the optimistic view that the benefits of collaborative research is more assumed than empirically 

verified. To test this assumption, Pike (2010) suggested to study collaborative research 

performance through networks, which provide important insight into scientist interaction in a 

research community. In particular, co-authorship can be used as a proxy for collaborative 

behaviour to assess how scientific collaboration enhances scientific research. The findings of 

Pike show that collaborations enhance scientists’ scientific impact, measured by the h-index. 

Katz and Marin (1997) also asserted that social networks built through collaboration provide 

valuable knowledge for future research outputs.  Social network analysis can be used to further 

understand the performance of researchers in collaborative communities (Sonnenwald, 2007). 

Related debates focused on how the network affects output of a researcher and whether a position 

of researcher within network or a more integrated network position incur better performance 

(Burt, 2004; Chung et al., 2007; Chung and Hossain, 2009).  Newman (2004) constructed 

networks of scientists in biology, physics and mathematics to examine the collaborative patterns 

and the effect of these patterns on scientists’ performance over time. He found differences among 

the fields, as biological scientists are more likely to publish co-authored papers than scientists in 

mathematics or physics. More recently, Abbasi et al. (2011; 2012) explored collaborative 
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networks by using social network analysis measures in co-authorship networks. For instance, 

Abbasi et al. (2011) suggested that normalized eigenvector centrality has a negative impact on g-

index as a citation-based performance, but normalized degree centrality, efficiency and average 

ties strength are positively correlated with this index. Their results also reveal that an author in 

the information systems discipline who has only one strong relationship with another may 

perform better than researchers who have many weak relationships. 

However, collaboration does not always have a positive citation impact: Herbertz and Muller-Hill 

(1995) were unable to prove a substantial improvement through collaboration in the field of 

molecular biology. Another empirical study by Rigby and Elder (2005) analyzed the difference in 

research quality undertaken with and without collaboration, and observed that lower levels of 

collaboration can be associated with both higher and lower scientific outcomes. Hollis (2001) 

further highlighted that the capabilities of individual scientists determine the publishing quality of 

collaborative research.  

1.4.2 The role of research collaborations in technological performance 

Research collaboration in an innovation network can be measured by co-invention, in which 

multiple inventors apply for a patent together. A patent is a common indicator of research-driven 

invention given the fact that the information is freely available and can also be registered for a 

long time in patent offices (Frietsch and Grupp, 2006; Lo Storto, 2006).  

Universities are generally dedicated to openly disseminating their results. Although major 

changes to U.S. federal law have dramatically increased the number of university patents,  the 

Bayh-Dole Act of 1980 and the granting of IP rights to academic inventions derived from 

government funded research in 1984 (Jaffe et al., 1993), these changes have not increased the 

citation impact of academic patents (Henderson et al., 1998). 

Figure 1.6 shows the issues in terms of studying the impact of co-inventions on academic 

research. 
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 Figure 1.6: Impact of co-invention in academia 

Very few papers have explored the role of collaboration in the technological performance of 

researchers. Despite the fact that university entrepreneurship is rapidly expanding (Rothaermel et 

al., 2007; Fernández-Pérez et al., 2014), the particular influence of collaborations on academic 

patents has rarely been studied. An empirical study of invention collaborations in China by 

Zhang et al. (2014) shows that the co-invention network only increases the productivity of 

inventors in provinces that are already productive and those that filed more patent applications. 

Chen and Guan (2009) also investigated patent collaboration networks in 16 innovative countries 

during the period of 1975-2006 and discovered that research productivity is not positively related 

to the size of network as the positive effect is inversed after a specific range of network size. 

Contrarily to the growing argument that collaboration always enhances productivity, Fleming et 

al. (2007) observed no association of network collaboration on subsequent innovative 

productivity using U.S. patents granted between 1975-2002. In contrast, Schilling and Phelps 

(2007) support the consensus that the structure of innovative networks positively affects the 

knowledge creation and patent performance. Lecocq and Van Looy (2009) also generally found 

that Switzerland's research collaborations in biotechnology lead inventors to higher technological 

performance. 

Using the network structure of Italian inventors, Balconi et al. (2004) suggested that not only are 

academic inventors better connected than non-academic inventors, they also occupy more central 

positions and play an important role in connecting inventors. Ma and Lee (2008) shed some light 
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on innovative collaborations across the eight most inventive OECD countries between 1980 and 

2005. Their results demonstrated that the collaborative efforts of inventive activities have 

experienced a consistent upward trend over this 25-year period. They revealed that the average 

size of inventive teams is approaching 2.5 inventors per patent, which suggests strong support for 

collaborations.  

The study of a German innovation network by Canter and Graf (2006) also illustrates that the 

differential positions of new and existing inventors influence the technological performance of a 

network, and thus that a local network must contain a critical mass (including both types of 

innovators) to yield results. More recently, Beaudry and Kananian (2013) have investigated the 

collaboration network of Quebec academics in nanotechnology and biotechnology and found that 

the network position of researchers in their co-publication network is beneficial to their 

commercial activities and positively influences the number of patents of these inventors. 

Few studies, however, directly focus on the impact of innovative networks on university patents. 

Previous studies have mostly analyzed the benefits of university-industry collaborations on 

commercial activities (see Barnes et al., 2002; D’Este and Patel, 2007; Hane, 1999; Lee, 2000; 

Perkmann and Walsh, 2007; Robb, 1991) or have extensively studied the influence of academic 

patenting efforts on open science publications (Balconi et al., 2004; Meyer, 2006; Van Looy et 

al., 2004).  

Patent citations have been used to measure the impact of academic patents (Jaffe 1989). The 

number of citations that a patent receives is considered an appropriate proxy for the quality of a 

patent and shows the knowledge flow from the researcher who cited to the inventor of the citing 

patent. One main criticism of this measure is that patent office examiners also add some citations 

to the patent application, therefore skewing this proxy (Breschi et al., 2005). Beaudry and 

Schiffauerova (2011) used the number of claims as a proxy for quality to study the impact of co-

inventorship network and found a positive influence of more central inventors on patent quality. 

Table 1.3 summarizes the impact of collaboration and networks on research performance in prior 

studies.   
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Table 1.3: Summary results of the studies on the impact of collaboration and networks on scientific and technological output 

Author Year Data 
Type of collaboration Impact on scientific 

output 

Impact on 

technological output 
Results 

   co-author co- 

inventor 

Productivity Quality Productivity Quality  

Narin et al. 1991 Papers published in EC 

countries, 1977-1986 

✓   ✓   Collaborative papers 

were cited twice more 

 

Herbertz 

and 

Müller-Hill 

1995 Data from 13 research 

institutes in the field of 

molecular biology, 1980-1984 

✓   ✓   No difference in the 

average citation per paper 

with and without 

collaboration 

Landry et 

al. 

1996 A survey of academic 

researchers  

✓  ✓    Collaboration increases 

the productivity of 

researchers  

Hollis 2001 Journal publications of 339 

academic economists in 1981 

✓  ✓    Lower total output per 

author 

Frenken et 

al. 

2005 Knowledge production in 

European biotechnology, 

1988–2002 

✓   ✓   Differences in citation 

impact can be related to 

the geographical scale of 

collaboration  
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Table 1.3: Summary results of the studies on the impact of collaboration and networks on scientific and technological output 

(continued) 

Author Year Data 
Type of collaboration Impact on scientific 

output 

Impact on 

technological output 
Results 

   co-author co- 

inventor 
Productivity Quality Productivity Quality  

Lee and 

Bozeman 

2005 Curricula vitae and survey 

responses of 443 academic 

scientists in the US 

✓  ✓    Publishing productivity is 

associated with the 

number of collaborators 

Rigby and 

Elder 

2005 22 scientific networks in 

Austria 

 

 

✓   ✓   Lower levels of 

collaborations are also 

associated with higher 

outputs 

Fleming 

 et al. 

2007 Inventors and their patent co-

authors from U.S. patents, 

1975-2002 

 ✓   ✓  No evidence of positive 

impact of cohesive 

clusters on innovative 

productivity 

Schilling 

and Phelps 

2007 A panel of US firms for 11 

high technology 

manufacturing, 1990-2000 

 ✓    ✓ Greater innovative output 

of firms embedded in 

alliance networks 
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Table 1.3: Summary results of the studies on the impact of collaboration and networks on scientific and technological output 

(continued) 

Author Year Data 
Type of collaboration Impact on scientific 

output 
Impact on 

technological output Results 

   co-author co- 

inventor 
Productivity Quality Productivity Quality  

Wuchty et 

al. 

2007 Papers over 5 decades for 

sciences and engineering, 

social sciences, humanities 

✓   ✓   More frequently cited 

research in teams than 

individuals 

He et al. 2009 65 biomedical scientists from 

a New Zealand university 

✓   ✓   At article level, 

collaboration are 

positively related to an 

article’s quality  

Chena and 

Guan 

2010 Patent collaboration networks 

of 16 main innovative 

countries, 1975-2006 

 ✓   ✓  Results cannot support 

the positive effects 

Pike 2010 Published articles in the three 

behavioral journals, 1988-

2007 

 

✓   ✓   A higher h-index is 

observed 
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Table 1.3: Summary results of the studies on the impact of collaboration and networks on scientific and technological output 

(continued) 

Author Year Data 
Type of collaboration Impact on scientific 

output 
Impact on technological 

output 
Results 

   co-

author 
co- 

inventor 
Productivity Quality Productivity Quality  

Abbasi et 

al. 

2011 Data on the 

information schools of 

five universities 

✓   ✓   A positive significant 

influence of SNA 

measures on g-index 

Beaudry 

and 

Kananian  

2013 Quebec academics in 

nanotechnology and 

biotechnology, 1996 to 

2005 

✓    ✓ ✓ A positive influence of 

co-publication network   

 

Zhang et 

al. 

2014 Patent co-invention 

data from State 

Intellectual Property 

Office of China, 2011 

 ✓   ✓  Significant impact on 

patent productivity only 

in provinces with larger 

number of patents  
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1.5 Research Gaps and Conclusion 

In this survey, we reviewed the literature on the effectiveness of funding and collaboration in 

universities. As funding is generally granted to research teams, funding and collaboration go 

hand in hand, but very little links are found in the literature regarding their joint impact on 

scientific and technological productivity and quality. It is critical to measure the impact of 

research funding on productivity and, more importantly, on research quality as specific financial 

investment does not necessarily yield higher quality. Two academic research outputs were 

identified: publications as scientific output and patents as technological output. The studies 

examined in this survey reveal that although government investment often enhances research 

productivity and quality, this positive effect has not been observed in all related studies.  

Moreover, most of the studies considered only scientific publications as indicators of productive 

research, and often did not account for commercial activities of academic researchers. University 

research has increasingly turned to patenting and licensing activities in recent years even 

independently of the Bayh-Dole Act in the U.S. and similar rules in other countries. Depending 

on the purpose of some research projects, funded research however may lead to industrial 

outcomes instead of publications (Mowery et al. 2001). It is thus suggested to analyze the rise in 

academic inventions and marketing efforts. This is particularly important in new fields. The few 

studies conducted in this area generally suggest that commercial activities in universities increase 

research productivity and quality (Chen et al., 2013; Coupé, 2003; Payne and Siow, 2003; Huang 

et al., 2005; Huang et al., 2006; Zucker et al., 2007). 

Similarly, we rarely found comprehensive studies on industry funding and its effects on academic 

research outputs. The findings we reviewed in this literature on the impact of private funding do 

not demonstrate that industry-funded research positively affects publications (Beaudry and 

Allaoui, 2012; Goldfarb, 2008). Despite the fact that the literature has focused on university-

industry relations over the last few decades, industry funding appears to be less often studied than 

public funding in terms of these innovative outputs presumably because of the lack of reliable 

data on the subject. Nonetheless, empirical evidence on the direct effects of industry funding on 

academic outcomes is limited, and more investigations are required to measure its effectiveness 

and impact. 
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From an industry view, the benefits of collaborating with academia are found to be positive (see 

Lebeau et al. for a review), whereas the effects on academic research are not that clear. The 

limited findings we reviewed in this literature on the impact of private funding do not 

demonstrate that industry-funded research positively affects nor hinders publications. There is a 

need to examine various funding sources to precisely understand how research investments affect 

knowledge production: these analyses can prove beneficial to various funders and policy makers. 

Furthermore, collaboration seems to have become a critical factor in research productivity. The 

impact of collaborations in the academic realm has frequently been measured by the number of 

co-authors, and generally researchers find a reinforcing effect of collaboration on research output. 

Other factors such as network determinants in social network analyses can provide more 

comprehensive measures to accurately evaluate the efficiency of these collaborations, but these 

measures are few and far between in the literature. As regards to network structures, a few studies 

(see Abbasi et al., 2011; Beaudry and Kananian, 2013) have shown that network measures can 

provide an accurate picture and valuable results to analyze the collaboration patterns. 

In addition, most collaboration analyses consider the implications from a co-publication 

relationship while the growing attempt to commercialize interests can be represented in co-

invention collaborations. We highlight two related needs: first, the need for a comprehensive 

study on how co-invention linkages affect the publication outcomes of researchers; and second, 

the need for integrated studies that assess the innovative productivity and quality of their 

publications. More research is required to comprehensively analyze whether scientific 

collaborations enhance the innovative outputs or only publication performance benefits from 

such collaborations. Figure 1.7 shows a conceptual framework of the gaps in empirical studies 

that merit attention to measure the impact of funding and collaboration on academic research. 

The dashed links show the lack of study on the impact of private funding on technological and 

scientific outputs. Also the influence of co-publication on technological outputs, and of co-

invention on scientific outputs are the issues that are needed to be empirically verified. It is 

particularly important to analyze industry funding, as there exist certain concerns on the negative 

effect of industry collaborations on open science in academia. 

Given the complex, costly and interdisciplinary nature of new and high technologies and of its 

funding limitations, further studies on this issue can advance our understanding of the key factors 
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that enhance academic knowledge production and improve the effectiveness of funding, which 

will in turn enhance the productivity and quality of academic research. 

 

Figure 1.7: The gaps that require more attention in order to measure the impact of funding and 

collaborations on academic research 
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CHAPTER 2 RESEARCH APPROACH AND MAJOR HYPOTHESES 

 

2.1 Research Objectives 

This research focuses on two aspects of nanotechnology development: The impact of public 

funding, measured by the impact on productivity and efficiency of academic outputs; and 

collaborative networks of nanotechnology scientists in academia. 

As we have seen in Chapter 1, prior studies do not clearly define the impact of government 

funding on academic output: some studies have found a positive effect, but other scholars have 

observed only a modest effect or no relationship. Regarding the influence of collaborative 

networks, some scholars highlight that the relationship between collaboration and research 

outcomes is more assumed than empirically proven.  

Additionally, the existing literature focuses more on publications as the main academic output 

whereas entrepreneurial activity has recently increased within academia. Patents are important in 

promoting innovations and encouraging economic growth and development particularly in new 

high technologies, but the question of how public funding and collaboration can boost these 

outputs in universities remains unclear.  

While there is a lack of study in emerging technologies, further, the ambiguous and unclear 

influence of government funding and collaboration on patents makes it difficult to develop 

policies that foster commercial activities in universities. Once we have validated (or refuted) the 

hypotheses presented later in the chapter, we should be able to suggest improvements science and 

technology policy in order to efficiently allocate grants to researchers for enhancing research 

output and quality. 

Our first research objective is to identify the role that public funding plays in enhancing academic 

outputs. We examine publications, as universities highly value these outputs; and patents, as 

universities have recently increased commercial activities, specifically in high technologies. Our 

second research objective is to examine the influence that scientific and technological 

collaborations have on these academic outputs. 
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2.2 Hypotheses 

We group our hypotheses into three categories: first, the impact of funding on research outputs; 

second, the impact of collaborations on research outputs; and third, the comparison between 

Canada and the US regarding this impact. The first set of hypotheses meets the first research 

objective in light of the impact of government financing on nanotechnology-related scientific and 

technological outputs. University research projects are mostly financed by the government and it 

is thus essential for decision makers to measure the effectiveness of such investments 

(Hagedoorn et al., 2004). Dramatic increases in research expenditures, particularly in high 

technologies, have caused growing concern over the effectiveness of research funding.  

The links between government grants and academic research are complex. Despite the fact that 

economists have recently paid much attention to research productivity, the effect of research 

expenditures on research output is not trivial. Arora and Gambardella (2005) studied the 

relationship between National Science Foundation (NSF) funding and the quality-adjusted 

number of publications and observed only a modest effect2. Jacob and Lefgren (2011) estimated 

the effect of National Institutes of Health (NIH) grants and showed that receiving a grant worth 

$1.7 million increases the number of publications by one additional paper over the next five 

years, which implies a fairly limited impact. Their results on the effect of National Institutes of 

Health (NIH) grants on publication quality seem to demonstrate that receiving NIH grants has at 

most a small positive effect on citations. We thus purpose the following hypothesis: 

 

Hypothesis 1.1: Increased public funding to nanotechnology scientists is associated with (a) 

more nanotechnology-related publications and (b) higher quality nanotechnology-related 

publications. 

Most previous research has focused on the impact of funding on scientific outputs, however a few 

investigations have measured the correlation between funding and commercial developments in 

universities. Considering the sizable investment in academic applied research, it is not surprising 

that studies have sought to reveal convincing evidence of its effect. The econometric analysis of 

                                                

2 The impact factor of the top 50 economic journals was used to adjust for quality in their research. 
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Foltz et al. (2000) on academic agricultural biotechnology patents suggests a positive relationship 

between patent production and government funding. An extensive study by Payne and Siow 

(2001), for example, showed that $1 million in federal research funding yields 0.2 more patents. 

Huang et al. (2005; 2006) analyzed the nanotechnology patents of NSF-funded researchers of 20 

countries using citation map analysis to conduct a more direct study of technological innovations. 

Their findings denoted that these researchers and their corresponding patents have a higher 

impact than non-NSF funded recipients. In light of the evidence presented in the literature, we 

propose the following hypothesis: 

	
  
Hypothesis 1.2: Increased public funding to academic inventors is associated with (a) more 

nanotechnology-related patents and (b) higher quality nanotechnology-related patents than 

other academic inventors. 

Given our comprehensive data on industry funding in Quebec, we examine the influence of 

private funding on research outputs. However, prior studies have observed mixed effects on 

academic research when scientists receive industry funding (Adams and Griliches, 1998; David et 

al., 2000). Diamond (2006) counted the number of citations a paper received over a 7 year period 

and observed that privately funded research is more successful in that regard and that 

consequently, industry grants is positively correlated with higher quality research. Conversely, 

Boumahdi et al. (2003) weighted publications using the impact factor of their journals, which 

signals the quality of research, and found that the correlation between private funding and 

publication performance corrected for this impact is negative. In contrast, Behrens and Gray 

(2001) compared industry-sponsored projects with government-supported university projects and 

found no difference in the research quality of the resulting publications. 

Thus, we suppose: 

 

Hypothesis 1.3: Nanotechnology scientists who receive more private funding is associated with 

higher quality nanotechnology-related publications compared with scientists who receive less or 

no private funding. 

Our second set of hypotheses addresses the impact of collaboration on academic outputs. 

Scientists generally work in research communities and publish their results and innovations in 
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groups. Moreover, knowledge has become increasingly complex in the past century, which 

hinders scientists’ ability to be knowledgeable in various fields and leads them to participate in 

scientific collaborations (Katz and Martin, 1997; Singh, 2007). Generally, scientific and 

technological outputs are associated with a number of authors and are the results of various 

research teams.  

The question we address in this research is how evolving scientific and technological networks 

both affect the emergence of new publications and patents and boost the quality of these outputs. 

We therefore put forward the following hypotheses regarding the behaviour of academic 

inventors in co-invention and co-publications. Co-publication is the most tangible form of 

scientific collaboration, which can be tracked to analyze the scientific networks and scientific 

output measured by the number of papers is closely associated with research collaboration 

(Glänzel and Schubert 2005). According to a survey of academic researchers by Landry et al. 

(1996), collaboration increases the productivity of university researchers who collaborate with 

both other academic researchers and researchers from industries or institutions. Singh (2007) 

further compared collaboration across national and organizational boundaries and found that 

scientists involved in external collaborations contribute to significantly more publications in the 

future. 

Similarly, Glänzel and Schubert (2005) shed light on giving and receiving citations and 

demonstrated that co-publication papers have more references than other papers and also receive 

more citations on average. Our hypotheses therefore go as follows: 

 

Hypothesis 2.1: A better network position of nanotechnology scientists within past co-

publication networks has a positive effect on (a) the number of publications and (b) on the 

quality of publications. 

We also aim to investigate whether co-publication networks affects the academic patents: 

Hypothesis 2.2: The technological performance of academic inventors is (a) higher and (b) 

yields better quality in researchers who hold a more influential network position in past co-

publication networks. 
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Very few papers have explored the role of collaboration in the technological performance of 

researchers. Despite the fact that university entrepreneurship is rapidly expanding (Rothaermel et 

al. 2007), the particular influence of collaborations on academic patents has rarely been studied. 

An empirical study of invention collaborations in China by Zhang et al. (2014) shows that the co-

invention network only increases the productivity of inventors in provinces that are already 

productive and those that filed more patent applications. Fleming et al. (2007) observed no 

association of network collaboration on subsequent innovative productivity using U.S. patents 

granted between 1975-2002. In contrast, Schilling and Phelps (2007) support the consensus that 

the structure of innovative networks positively affects the knowledge creation and patent 

performance. We therefore propose two hypotheses: 

 

Hypothesis 2.3: A better network position of nanotechnology scientists within past co-invention 

networks has a positive effect on (a) the number of publications.  

Hypothesis 2.4: The technological performance of academic inventors is (a) higher and (b) 

yields better quality in researchers who hold a more influential network position in past co-

invention networks. 

We examine our research objectives for Canada and the US and finally, we compare the 

influence of financing on research performance in Canada and the US by defining a dummy 

variable for country. In Canada the proportion of government-funded R&D is high compared to 

industrial R&D (Niosi 2000). We therefore propose in our Hypothesis to test whether this 

government funding leads to scientific production of higher quality and quantity in Canada in 

comparison to the impact of public funding in the US. We suggest the following hypotheses: 

Hypothesis 3.1: Increased public funding to nanotechnology scientists in Canada is associated 

with (a) more nanotechnology-related publications and (b) higher quality nanotechnology-

related publications in Canada compared to increased public funding to nanotechnology 

scientists in the US. 

Hypothesis 3.2: Increased public funding to nanotechnology academic inventors in the US is 

associated with (a) more patents and (b) higher quality patents compared to Canadian academic 
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inventors. 

These hypotheses will be tested in Chapters 3, 4, 5 and 6. 

2.3 Data Description 

Publications have been extensively used to measure the scientific productivity of researchers’ 

performance. This is the most fundamental research outcome in universities that allows scientists 

to receive professional advancement, recognition and promotion (Fox, 1983). Correspondingly, 

in recent decades, governments have focused on technologically relevant outputs in academia 

(Czarnitzki et al., 2007; Jafe, 1989). Universities have played an important role in producing 

commercial research, which has proven crucial to various industries. Since the early 1980s, the 

Bayh-Dole Act has facilitated patenting of innovations derived from government-funded research 

and has dramatically increased the number of university patents (Jaffe, 1989; Jaffe et al., 1993).  

In this thesis, such research outputs from various sources are employed to conduct this analysis.  

2.3.1 Funding 

The Canadian federal granting agencies database provides information on government research 

financing from the Natural Sciences and Engineering Research Council of Canada (NSERC) and 

the Canadian Institutes of Health Research (CIHR). Granting data on US researchers is gathered 

from Nanobank, which also includes National Science Foundation (NSF) and National Institute 

of Health (NIH) grants. 

In Quebec, we have access to a unique and comprehensive granting database: the Système 

d’Information sur la Recherche Universitaire (SIRU) which contains information on government 

and industry funding awarded to researchers in the Quebec academic system and is managed by 

the Ministry of Education, Leisure and Sports (MELS). For the purpose of our analysis, we use 

data between the years 1985-2005. The reason for choosing this time period stems from the fact 

that we wanted to have enough citation years after 2005 (as an end date for the sample) because 

we examined three periods for citations, 3 years, 5 years and 7 years after publication and grant 

year for patents. 1985 is the start date in SIRU database but since the data is more reliable in the 

post-1996 period and there has been a considerable change in the quality of Scopus after 1996, 
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and this timeframe seems too early for nanotechnology, we analyze the date between the years 

1996-2005.  

2.3.2 Publications 

We extract publication and authorship data from Elsevier’s Scopus, which provides more 

accurate and comprehensive metadata such as abstracts and citations from more than 18000 

scientific journals. To gather such data in Canada, we extract articles in which at least one author 

is affiliated with a Canadian institution; this same methodology is applied to the U.S. data.  

In order to complement and clean the large volume of US data, a combination of Scopus and 

Google Scholar was used to access the publications that contain nanotechnology-related 

keywords. We use the software “Publish and Perish” to filter the results in Google Scholar and 

match this data with data from Scopus, the latter enabled us to search the full text of publications. 

2.3.3 Patents 

Patenting data were extracted from the United States Patent and Trademark Office (USPTO) for 

both Canada and the US. 

Due to the extensive commercial partnership between the US and Canada, Canadian inventors 

commonly register their patents with this entity to protect their innovations in a larger market 

(Beaudry and Schiffauerova, 2011). Hence, the USPTO is an acceptable substitute for the 

Canadian Intellectual Property Office (CIPO) as it contains much data on the affiliation of 

inventors.   

2.3.4 Creating dataset 

To extract the nanotechnology publications and patents, specific nanotechnology-related 

keywords are derived and combined from various keyword search strategies (Alencar et al., 2007; 

Fitzgibbons and McNiven, 2006; Mogoutov and Kahane, 2007; Noyons et al., 2003; Porter et al., 

2008; Zucker and Darby, 2005; Zitt and Bassecoulard, 2006). Subsequently, keywords are 

investigated by consulting with nanotechnology experts. We then remove redundant keywords to 

obtain an appropriate representation of nanotechnology research outputs. Figure 2.1 shows the 

different data sources employed in our econometric analyses to compare nanotechnology research 

in Quebec, Canada and the US. We believe that the final set of keywords (see in Appendix E) is 
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quite comprehensive and is able to effectively identify articles and patents directly related to 

nanotechnology. 

In order to complement and clean the large dataset, we extracted data using a combination of 

Scopus and Google Scholar since the latter enabled us to search the full text of publications for 

nanotechnology-related keywords. We used the ‘‘Publish or Perish’’ software to filter the results 

in Google Scholar and then matched each identified article with the data from Scopus. This 

methodology allowed us to combine an in-depth full-text search of Google Scholar with well-

structured data from Scopus. 

We then merged our data from different sources defining a unique ID for each individual 

scientist. A considerable amount of work was required to perform the disambiguation of 

scientists’ names in merging different publishing, patenting and funding databases. Matching was 

not trivial; our approach involved matching data using scientists’ names. This process is likely to 

result in possible errors in uniquely identifying scientists having similar names (synonymy) or 

assigning different IDs to the same scientist whose name is written differently in various 

databases (homonymy). To circumvent these common problems, we utilize a variety of other 

information about scientists to define a unique ID for each academic researcher and thus to 

minimize the incidence of wrong matches. The main information was provided by the affiliation 

of scientists in both Scopus and SIRU in addition to the address of academic inventors in the 

USPTO database. 

A large amount of manual work and careful examination was however necessary to clean the 

data. This check of individuals’ name helps avoid ambiguity and bias in our data. We then 

created a panel dataset in which we compiled yearly information for each individual 

scientist/inventor over a 20-year period (1985-2005).  

We finally restrict our resulting sample data to 1996-2005, after having calculated the lagged 

variables on 3 years and 5 years averages. The reason for concentrating on this subset is twofold; 

first according to the growth of nanotechnology research outputs, scientists had only recently 

started being involved in this emerging area before 1996 and the data is rather scarce prior to that 

period, hence this timeframe seems too early for nanotechnology. Second, there has been a 

considerable change for the better in the quality of Scopus after 1996. 
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Figure 2.1: Various databases used for the analysis 

2.4  Methodology 

In this research, we use bibliometric methods and social network analysis to create the indicators 

that enter econometric models. Despite some limitations, bibliometrics are useful to quantify 

some characteristics of data analysis.  
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2.4.1 Publications 

It is increasingly important to measure the scientific output of researchers and provide accurate 

research assessments for government and universities to efficiently allocate funding to 

researchers. High performance researchers are generally determined by their scientific production 

and the number of citations their papers receive (Alonso et al. 2010; Kosmulski, 2011). 

Bibliometric indicators are commonly used to evaluate research performance and provide a quick 

impression of the quality of research. Citation analyses generate relatively short-term quantifiable 

measures based on an assumption of a linear relationship between scientific quality and citation 

counts.  

Publication and citation counting are appropriate techniques as they are indicators of productivity 

and can be used to evaluate scientific activity (Narin, 1976). Bibliometrics yield an acceptable 

assessment of scientific activities and continue to evolve in response to policies (Hicks et al., 

2004).  

There has been an increased interest in the importance of research quality as against mere 

quantity; therefore, citations by other scientists are generally accepted as an indicator of a paper’s 

impact in the scientific community. 

Additionally, these citations measure the connectivity between authors, scientific fields and 

research departments (Durieux and Gevenois, 2010). 

According to Bornmann and Leydesdorff (2013), research quality is a complex attribute in which 

there is no specific formula to quantify the quality of a paper. However, citation-based indicators 

are widely acknowledged as quality metrics and are used to understand trends in context and 

assess the influence of research (Leydesdorff, 2009).  

In relation to our analysis, we defined a variable that counts the number of papers that are 

published every year by an individual scientist. We used three spans of citation counts, that the 

articles of a scientist received within three, five and seven years after the publication year to 

measure paper quality. We found more consistent results using five-year citations for our time 

period (1996-2005). Additionally, the average number of past articles of researchers over three 

years as an instrument variable is included in our models to explain the fact that funding is 

generally given to academic researchers with a high publication rate (Van Raan, 2004). 
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2.4.2 Patents 

Patents are reliable proxy indicators of innovative effort and are therefore an important element 

of the analysis of innovations. Patent data are readily available via patent offices and can be used 

to study knowledge flows in innovation systems (Acs et al., 2002). According to Mansfield 

(1986), patent protection is at the heart of national policies on technological change since it has 

prominent effects on the innovation rate. However, patent counts and patent citations are also 

commonly accessible and viable measures that can capture the innovative performance of 

inventors. Further, given the use of these measures, many studies suggest them as reasonable 

measures of innovative activity (Cantwell and Hodson, 1991; Griliches, 1998; Patel and Pavitt, 

1995).  

Although Arundel and Kabla (1998) and Mansfield (1986) raise some critical concerns on the 

general use of patents as a measure of innovative performance (for example, not all patentable 

inventions were patented), they suggest using this indicator in many high technology fields. 

Daim et al. (2006) point out that patents are vastly different in their importance, which patent 

counts cannot capture. Subsequently, patent citations present a measure of patent quality based on 

a presumption that the impact of a patent is correlated with the number of times it is cited in other 

patents as their relevant prior art (Hagedoorn and Cloodt, 2003). 

Trajtenberg (1990) highlights the importance of using citations as indicators of the invention's 

value to overcome the limitations of a simple patent count. Patent citations also create the 

opportunity to trace relationships between inventors and inventions and can be used to study the 

importance of a patent (Hall et al., 2001). According to Trajtenberg (1990), these citations are 

correlated with the value of inventions and are potentially useful for technology spillovers. The 

key idea behind the patent citation analysis is that a highly cited patent is more likely to contain 

important technological advances, and is thus an indicator of technological quality (Karki 1997). 

Lanjouw and Schankerman (1999) indicate that patent claims are a measure of patent quality 

since they influence the decision to renew a patent. 

Claims in the patent specification denote the property rights protected by a patent and define 

novel features of the invention in the patent application (Lanjouw and Schankerman, 2004). 

Further, patent claim is an important quality-related index that indicates the broadest greater 
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potential profitability of an invention. The number of claims illustrates that a broader area of 

technological space is contained in an invention and points to the fact that a patent is 

technologically significant (Tong and Frame, 1994). According to Lanjouw and Schankerman 

(1999), forward citations and the number of claims are the most informative indicators of quality 

that are positively related to patent quality. 

To establish our analysis, we take into account the number and quality of patents. We specify one 

dependent variable, the number of patents, to account for the production of patents and two other 

variables, the number of citations received over five years and the number of claims, to proxy for 

patent quality in our models. Similarly to the citation counts for publications, three different 

windows of time were considered in order to count the number of citations: 3-year, 5-year and 7-

year. In the final model, we used the 5-year window for which we found more consistently 

significant results rather compared to the two other time windows. We also used the Number of 

patents of an academic-inventor over past three years as an independent variable in our models to 

examine that how past experience in patenting activity is associated with new patents. We also 

add the square of this variable to investigate the non-linear effect. 

This aspect of methodology is implanted in Chapter 5 and 6 where we use these two indicators to 

measure the impact of funding on patent quality. 

2.4.3 Network Analysis 

Social network analysis enables the study of social systems behavior on different levels including 

individual actors, groups and subgroups (Wasserman and Faust, 1994). These networks consist of 

a finite set of nodes and edges that connect pairs of nodes (Freeman, 1979). According to Streeter 

and Gillespie (1993), network analysis is an appropriate methodology for complex interactions 

between actors within direct and indirect relationships. In a scientific or technological network, 

scientists and inventors share their knowledge within the co-authorship or co-invention 

relationships to accelerate the knowledge diffusion. In turn, these relationships greatly foster 

technological development. 

Some scholars (see Newman, 2001; Balconi et al., 2004) applied social network techniques to 

study scientists and inventors in these networks as individual actors. In this study, we construct 

the collaborative networks between scientists and academic inventors to study a variety of 
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network properties. Two scientists/academic inventors are considered connected if they have co-

authored/ co-invented one or more papers/patents together. However, according to Newman 

(2001), these networks are in some ways truly social networks as most pairs of scientists who 

have published/patented together are acquainted with other one. 

In order to investigate a scientist’s position in scientific networks, we characterize the networks 

of co-authors and co-inventors using the software Pajek. We construct time evolving sub-

networks corresponding to three-year and five-year windows using the co-authorship and co-

invention links in order to track and measure the evolution of collaboration over time. We then 

only include the network characteristics of three-year intervals and analyze the impact of these 

indicators on the publication quality of researchers as these three-year intervals generate the most 

significant results. 

Thus, to study the collaborative networks from bibliographic data, we concentrate on three 

characteristics related to the network position of researchers:  

2.4.3.1 Degree centrality 

Degree centrality of a researcher corresponds to the number of other researchers connected 

directly to that researcher; it can indicate local centrality in a network and a researcher’s 

popularity. The normalized measure of researcher degree centrality Rk is given in Eq. (2-1) where 

n is the number of researchers in the network and d(Ri,Rk) is a function that equals 1 if researcher 

Ri is connected to Rk, and 0 otherwise (Freeman, 1979; Chung and Hossain, 2009). 

CD (Rk ) =
d(Ri,Rk )

i=1

n

!
n"1

                 (2-1) 

betweenness centrality, which is generally employed to evaluate the importance of a researcher as 

an intermediary connector within a network (Benedictis and Tajoli 2008; Izquierdo and 

Hanneman 2006); and cliquishness or clustering coefficient, which refers to the likelihood that 

two researchers have tendency to cluster together (Barabasi 2002; Singh 2007). 

2.4.3.2 Betweenness centrality 

This measure proposed by Freeman (1979) is an indication of the number of times a researcher 

connects two other researchers in a network. The number of shortest paths (geodesics) between 
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two researchers is considered in calculating this measure. Eq. (2-2) shows the betweenness of Rk 

where gij denotes the total number of shortest paths from i to j and gij(R) denotes the number of 

geodesics from i to j that pass through Rk (White and Stephan, 1994). 

CB(Rk ) =
gij (Rk )
gijj

n

!
i

n

! where i " j " k             (2-2) 

2.4.3.3 Cliquishness  

The clustering coefficient or cliquishness is commonly used to measure the tendency of 

researchers to cluster together. This indicator, introduced by Watts and Strogatz (1998), and is 

always a number between 0 and 1. Given three researchers (i, k, j) in the context of social 

network analysis, if i and k have a relationship and there exists a relationship between j and k, the 

clustering coefficient represents the likelihood that i and j are also connected. Eq. (2-3) shows the 

clustering coefficient for a particular researcher (Rk), where e is the number of links between 

neighbours of Rk and kk is the degree of Rk (Hanneman and Riddle, 2005; Zhou et al., 2005). 
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CC(Rk ) =
2ek

kk (kk !1)
                                                   (2-3) 

In this research, these network indicators are calculated in two co-publication and co-invention 

networks and we chose 3-year intervals with a two-year lag to determine the importance of a 

researcher as a node in the networks. We created three-year co-authorship/co-invention sub-

networks3 for all the three-year moving intervals using the social network analysis software 

Pajek, which is considered to be very suitable for the analysis of large networks (Batagelj and 

Mrvar 1998). We define two sets of variables to account for each of these network measures, 

degree centrality, betweenness centrality and cliquishness to explain the connections in co-

authorship networks; and the same metrics to account for co-invention ties in our models.  

2.4.4 Econometric models 

To measure the impact of funding on publications and patents, our econometric approach mainly 

analyzes the relationship between funding and the number of publications/patents, and between 

funding and the forward citations of these publications/patents. We also use the number of claims 

as another measure of patent quality. Since this study addresses the impact that funding granted 

for nanotechnology academic research has on scientific output, we calculate the average amount 

of public funding received over three years lagged by one-year to account for the time lapse 

between receiving government grants and generating scientific/technological output. We also add 

the square of this variable to investigate the non-linear effect of public funding. SIRU contains 

both government and industry funding that was awarded to all university scientists in Quebec for 

the period of 20 years (1985-2005)4 that enabled us to analyze the assess the influence of private 

funding on publication quality in Quebec. We then calculate the average amounts of private 

contracts over the past three years lagged by one year.  

It should be noted that our funding variable causes potential endogeneity due to simultaneity and 

omitted variable bias. Governments implement various mechanisms to allocate funding to 

universities based on research performance (Geuna et al. 2003; Liefner 2003). A notable concern 

                                                

3 We also constructed five-year sub-networks, but three-year sub-networks gave us more consistent results. 

4 The data are available for this period and not for subsequent years. 
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in our study is that researchers with a higher performance receive more funding from 

governments, in addition to which we may have some omitted variables that affect the 

opportunity to receive grants. To specifically address this concern and control for potential 

endogeneity, we use two techniques: Two Stage Least Squares (2SLS) and Two Stage Residual 

Inclusion (2SRI) (Biro 2009; Terza et al. 2008; Stephan et al. 2007) and express the first and 

second stage of our estimations to account for endogeneity in the average grant amount received 

by scientists/ awarded to scientists. We therefore estimate a variant of the model using a set of 

instruments for the estimation of funding, our endogenous variable. 

We include the career age of a scientist since the first publication or the first grant or the first 

patent in the field of nanotechnology for the nanotechnology experience of academic researchers. 

The quadratic form of this variable helps account for potential non-linearities. The other 

instrument variable that we included in our models was the average number of papers published 

by researchers in the past three years. 

We also add the type of chair for our study within Canada that these researchers occupied at some 

point in their career using an ordinal indicator that takes the value 0 for no chair, 1 if they occupy 

an industrial chair and also receive funding from NSERC or CIHR, and 2 for being a Canada 

Research Chair. We also added an ordered measure to our set of instruments for the type of 

funding (Award), which equals 1 if a researcher receives funding through an award and 0 

otherwise. The granting of academic research can further act as a signal of scientist productivity 

and these scientists may attract additional funding in subsequent years. The literature generally 

finds that scientists with prestigious awards and public funding contribute to more scientific and 

technological outputs (Sauer, 1988; Payne and Siow, 2003; Adams et al., 2005; Jacob and 

Lefgren, 2007; Blume-Kogut et al., 2009). 

The residuals of the first-stage equation are then added to the regressors of the second stage 

equation prior to its estimation. We considered our models estimated both with and without 

controlling for potential endogeneity and our analysis has considered various sets of variables in 

a hierarchical progression including non-linear effects. 

We employ time series analysis to develop dynamic econometrics. Our method consists of 

performing hierarchical regressions with the number of publications, the number of paper 

citations, the number of patents, the number of patent citations and the number of claims as 
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dependent variables. We also test the moderating effect between our variables by introducing 

interactive variables. This helps us to examine whether one variable has an intrinsic relation with 

other variables, and it also moderates the influence of them on the dependent variables. 

An important consideration in this study is the potential influence of the time delay between our 

explanatory variables and research output. The patenting of innovations or the publication of 

results is more likely to occur at the end of a funding period or within a few years of setting up a 

scientific or technological network. Given this time delay, we assume a one-year lag for funding 

and a two-year lag for the network determinants before publication/application of research 

output. The description of variables present in each paper is shown in Table 2.1
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Table 2.1: Description of variables  
Variable Description Type Paper 2 Paper 3 Paper 4 Paper 5 

Dependent variables      

Number of papers of a scientist i in a given year t D nbPaperit   NumPaperit 

Number of patents of an academic inventor i in a given 
year t 

D   NPit NumPatentit 

Number of citations received by the paper(s) of a 
scientist i over the following five years. 

D nbCitation5it nbArtCit5it   

Number of citations received by the patent(s) of an 
academic-inventor i over the following five years. 

D   NCiit  

An ordered categorical variable for the number of 
citations that takes the value 0 if NCiit is 0, the value 1 
if NCiit is between 1 and 5, and takes the value 2 if the 
number of citations over 5 years is more than 5.  

D   C(NCiit)  

Number of claims contained in the patent(s) of an 
academic-inventor i applied for in year t. 

D   NClit  

Independent variables      

Average yearly amount of government funding 
received by a scientist/ an academic-inventor i over the 
past three years (t-3 to t-1) 

En/In5 ln(GovGrant3it-1) ln(AvgGrant3it-1) ln(Fit-1) GrantAmountit-1 

Average yearly amount of private funding received by 
a scientist/ an academic-inventor i over the past three 
years (t-3 to t-1) 

Ex  ln(AvgContract3it-1)   

Number of applied patents of a scientist/ an academic-
inventor i over past three years (t-3 to t-1) 

Ex nbPast3Patit-1 nbPatent3it-1 NPPit-1  

Betweenness centrality of an academic-inventor i in the 
three-year co-invention sub-network lagged two years. 

   ln(104×PBCit-2) ln(104×BetCentPatent3it-2) 

Clustering coefficient of an academic-inventor i in the 
three-year co-invention sub-network lagged two years. 

Ex   ln(103×PCCit-2) ln(103×CliquishnessPatent3i

t-2) 

Degree centrality of an academic-inventor i in the 
three-year co-invention sub-network lagged two years. 
 
 

Ex    ln(104×DegCentPatent3it-2) 

                                                
5 This variable is considered as instrument variable in paper 5 
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Table 2.1: Description of variables (continued) 
Variable Description Type Paper 2 Paper 3 Paper 4 Paper 5 

Betweenness centrality of an academic-inventor i in the 
three-year co-publication sub-network lagged two 
years. 

Ex ln(104×BetweenCentit-2) ln(104×BtwCent3it-2) ln(104×ABCit-2) ln(104×BetCentPaper3it-2) 

Clustering coefficient of an academic-inventor i in the 
three-year co-publication sub-network lagged two 
years. 

Ex/En6 ln(103×Cliquishnessit-2) ln(103×Cliqness3it-2) ln(103×ACCit-2) ln(103×CliquishnessPaper3it

-2) 

Degree centrality of an academic-inventor i in the 
three-year co-publication sub-network lagged two 
years. 

Ex    ln(104×DegCentPaper3it-2) 

Dummy variables      

Dummy variables for different years (t = 1985, …, 
2005) 

Dummy Dt Dt Dt Dt 

Dummy variable for Canada, which takes the value 1 
for Canadian scientists/academic inventors and the 
value 0 for scientists/academic inventors that are 
affiliated to the US 

Dummy dCanada  dCA  

Dummy variable for Quebec, which takes the value 1 
for scientists/academic inventors in Quebec and the 
value 0 for scientists/academic inventors that are 
affiliated to the other provinces in Canada 

Dummy    dQC 

Instrumental variables      

Career age of a scientist since the first publication or 
the first grant or the first patent in the field of 
nanotechnology. 

In CareerAget Aget Aget NanoAgeit 

Ordinal indicator that takes the value 0 if a researcher 
has no chair, the value 1 
if he holds an industrial chair, the value 2 if being a 
chair of one of two Canadian federal granting councils, 
and the value 3 for a scientist who is a Canadian 
Research chair at some point in his career 

In  Chairt   

                                                
6 This variable is considered endogenous in paper 5. 
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Table 2.1: Description of variables (continued) 
Variable Description Type Paper 2 Paper 3 Paper 4 Paper 5 

The type of chair that these researchers occupied at 
some point in their career using an ordinal indicator 
that takes the value 0 for no chair, 1 if they occupy an 
industrial chair and also receive funding from NSERC 
or CIHR, and 2 for being a chair of the Canada 
Research Chair. 
 

In    CanadaChairit 

An ordered measure to our set of instruments for the 
type of funding, which equals 1 if a researcher receives 
funding through an award and 0 otherwise. 

In    Awardit 

Number of past articles published by an academic 
inventor i over three years. 

In nbAvgPaper3t-1 nbArticle3t-1 NAit NumPaper3it 

Notes: D: Dependent Variable, En: Endogenous Variable, Ex: Exogenous variable, In: Instrumental Variable
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There are various models for count data that have been used in economics. The Poisson model is 

the most frequently employed method in such modeling (Hausman et al. 1984; King 1989; 

Riphahn et al. 2003). Because of the restriction on the distribution in the Poisson model regarding 

over-dispersion, some researchers find that the Negative Binomial Model (NB) is more 

appropriate (Greene 2008; Hilbe 2011). Many scholars have employed one of these two methods 

to analyze count data (Wang et al. 1998; Fleming and Sorenson 2001; Maurseth and Verspagen 

2002; Mowery et al. 2002; Payne and Siow 2003; Tsionas 2010; Petruzzelli 2011). In case of 

having excessive zeros in our count data, we consider zero-inflated Poisson vs. Poisson and zero-

inflated negative binomial vs. negative binomial model and use Voung test as suggested by 

Vuong (1989). Zero-inflated models allow for complication of analyzing datasets with an 

excessive number of outcome zeros (Greene 1994; Long 1997; Vuong 1989). 

We implement the zero-inflated poisson model, zero-inflated negative binomial model, negative 

binomial model and ordered probit model to validate our hypotheses. 

 

2.4.5 Contributions 

The results of this research have provided the following original contributions: 

Main Papers  

1. Tahmooresnejad, L., Beaudry, C. (2014). Impact of Funding and Collaborations on Scientific and 
Technological Performance in Universities, A Review of Literature, European Management Journal, 
Submitted in November 2014. 
 

2. Tahmooresnejad, L., Beaudry, C., & Schiffauerova, A. (2014). The role of public funding in 
nanotechnology scientific production: Where Canada stands in comparison to the United 
States. Scientometrics, 1-35. 
 

3. Tahmooresnejad, L., Beaudry, C. (2014). Impact of Public and Private Funding on Nanotechnology 
Research Quality, International Journal of technology management, submitted in June 2014. 

 
4. Tahmooresnejad, L., Beaudry, C. (2014). Collaboration or Money: Lessons from a Study of 

Nanotechnology Patenting in Canada and the United States, Journal of Engineering and Technology 
Management, Submitted in October 2014. 

 
5. Tahmooresnejad, L., Beaudry, C. (2014). Collaborative networks, productivity, and academic 

research: evidence and implications for the field of nanotechnology, Social Networks, Submitted in 
November 2014. 
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Secondary papers: 

•  Tahmooresnejad, L., Beaudry, C., (2013). Impact du financement privé et public sur le 
développement de la nanotechnologie : étude de la productivité de la recherche au Québec, 
Compendium d'indicateurs de l'activité scientifique et technologique au Québec, édition 2013. 
 
PS: Published in Compendium 2013 
 

•  Tahmooresnejad, L., Beaudry, C., (2013). Does government funding increase patenting in the 
nanotechnology field? A comparison of Quebec and the rest of Canada, Patent Statistics For 
Decision Makers, Rio de Janeiro, Brazil, Novomber 2013. 

 
•  Tahmooresnejad, L., Beaudry, C., (2014). Does government funding have the same impact on 

academic publications and patents? A comparison of Quebec with other provinces, ISPIM 
conference, Montreal, Canada, October 2014. 

 
PS: Received The ALEX GOFMAN BEST STUDENT PAPER AWARD 
Accepted in the special issue of International Journal of Innovation Management
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CHAPTER 3 ARTICLE 2 : THE ROLE OF PUBLIC FUNDING IN 

NANOTECHNOLOGY SCIENTIFIC PRODUCTION: WHERE 

CANADA STANDS IN COMPARISON TO THE UNITED STATES 

Leila Tahmooresnejad, Catherine Beaudry, Andrea Schiffauerova 

3.1 Abstract 

This paper presents cross-country comparisons between Canada and the United States in terms of 

the impact of public grants and scientific collaborations on subsequent nanotechnology-related 

publications. In this study we present the varying involvement of academic researchers and 

government funding to capture the influence of funded research in order to help government 

agencies evaluate their efficiency in financing nanotechnology research. We analyze the 

measures of quantity and quality of research output using time related econometric models and 

compare the results between nanotechnology scientists in Canada and the United States. The 

results reveal that both research grants and the position of researchers in co-publication networks 

have a positive influence on scientific output. Our findings demonstrate that research funding 

yields a significantly positive linear impact in Canada and a positive non-linear impact in the 

United States on the number of papers and in terms of the number of citations we observe a 

positive impact only in the US. Our research shows that the position of scientists in past scientific 

networks plays an important role in the quantity and quality of papers published by 

nanotechnology scientists. 

 

Keywords : Nanotechnology, Research funding, Scientific papers, Collaboration, Network 

analysis 

3.2 Introduction 

Nanotechnology is an emerging technology that is considered one of the primary forces to drive 

future economic development. For this reason, worldwide investment in this emerging 

technology has increased substantially in the past two decades and governments have 
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considerably subsidized nanotechnology-related R&D in recent years. Fitzgibbons and McNiven 

(2006) indicate that in Canada the main funding source for nanotechnology R&D is the Canadian 

government which provides the funding through different organizations: the Natural Sciences and 

Engineering Research Council (NSERC), Canadian Institutes for Health Research (CIHR), 

National Research Council (NRC), Canada Foundation for Innovation (CFI), etc. In addition to 

the federal funding, various activities are concentrated in specific provinces in Canada to develop 

nanotechnology. The British Columbia Nanotechnology Alliance, Nanotechnology Network of 

Ontario, NanoQuebec and NanoAlberta are the main provincial frameworks that help develop 

nanotechnology along with the federal programs (Dufour 2005; Allan et al. 2008; Pelley and 

Saner 2009). According to Roco (2005), the United States invested approximately $1 billion US 

in government funding dedicated to nanotechnology R&D in 2005, 65% of which was 

specifically allocated to academic R&D and education. The US government nanotechnology 

funding has been raised mainly by the National Nanotechnology Initiative (NNI), which was 

launched in 2000 and consists of numerous federal agencies. Fifteen NNI agencies are 

responsible for the funding of nanotechnology research and development. The NNI has invested 

$18 billion in total since 2001, and $1.8 billion has been provided for 2013 alone. The National 

Institutes of Health (NIH) and the National Science Foundation (NSF) are two agencies that 

occupy the second largest investment rank in 2011 between the agency members of the NNI after 

the Department of Energy (DOE) (NNI 2013; Jacob and Lefgren 2011; Sargent 2010). 

Given the magnitude of government investment in nanotechnology research in recent years, it is 

of great importance to measure the efficiency and productivity of research financing. The 

efficient allocation of government resources requires a better understanding of how funding 

influences scientists’ productivity and their scientific output. Such financing evaluations can help 

governments develop policies that will foster the development of this emerging technology. 

Nanotechnology is an emerging technology that will have enormous impact on future products 

and processes. This technology has potential to affect economic development and gives new tools 

for governments to take advantage of the recent leaps in technology and science. Growing 

understanding of the role of public funding research in nanotechnology development will help 

governments to launch strategies that meet their high expectations associated with this new 

concept. Considering the potential new world market of nanotechnology related products, 

countries develop research in the field of nanotechnology to ensure that they are going to take 
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advantage of the opportunities that are available in this area. In this study, we therefore focus on 

government grants rather than other funding sources. This leads to a strong necessity to study the 

impact of public funding, with a special focus on the public funding sources in the field of 

nanotechnology. We hence compare the impact of investments in Canada with that of the US, 

which is a leader in setting up numerous targeted nanotechnology programs and research grants 

in the hope of fostering future economic development. It is of great importance to discover 

whether the research funding strategies have been productive in this field. 

To explore the impact of public funding on scientific papers, to reflect how nanotechnology 

research grants influence researchers’ productivity, we utilize econometric models to measure 

this impact on the quantity and quality of nanotechnology-related papers. The evidence of past 

studies (Huang et al. 2005; Payne and Siow 2003) reveals the positive impact of government 

funding on research output. Because scientists increasingly work in larger teams, in addition to 

research financing, we wish to discuss the role that scientific networks play in the scientific 

production. This paper thus explores the effects that collaboration networks have on research 

productivity by measuring the position of these researchers within scientific co-publication 

networks. According to the work by Ni et al. (2011) and Breschi et al. (2006), researchers who 

have more connections with other scientists in networks publish more papers and tend to 

collaborate more with other researchers, enhancing research output. 

There are some important differences between the US and the Canadian science, technology and 

innovation system. Although Canadian universities play key roles in basic research and produce a 

reasonable number of research papers, their contribution to domestic industrial research is less 

than that of US institutions. The majority of university research funding is provided through 

government grants and industry accounts for a small part in Canada whereas private funding is 

considerable in the US (Niosi 2000). 

Our main contribution consists in further understanding how government research funding and 

scientific networks influence research publications in the field of nanotechnology. The remainder 

of the paper is organized as follows. In Sect. 2, the theoretical background focuses on university 

research funding and social network analysis, from which hypotheses are drawn concerning 

public grants and collaborations. In Sect. 3, we discuss variables, econometric models and the 

methodology employed. Section 4 discusses regression results and graphs, and finally Sect. 5 

concludes. 
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3.3 Conceptual framework 

Nanotechnology is a relatively young discipline characterized by different subfields. It generated 

almost a quarter trillion dollars worth of products worldwide in 2009 and $91 billion of these 

products found their market in the US. This emerging technology draws substantial amounts of 

public and private investment and its relative success encourages governments to increase their 

funding in nanotechnology research (Canton 1999; Freeman and Shukla 2008; Roco and 

Bainbridge 2005; Roco 2011). 

US financial investment in nanotechnology research has been substantial in the last decade. The 

US government plays a central role in nanotechnology research programs and is among the 10 

leading countries in nanotechnology. The US ranked first in terms of nanotechnology public 

funding in 2006 (Roco et al. 2011; Sargent 2008). Youtie et al. (2008) reviewed the rapid growth 

of nanotechnology publications in different countries between 1990 and 2006 and showed that 

the US has been one of the leading countries in nanotechnology research and that it has ranked 

first in terms of the quality of publications. 

Furthermore, the major US federal support of nanotechnology academic research is provided by 

the interagency program of the NNI which is mostly motivated by an interest in economic 

outcomes (Mowery 2011). The public funding of nanotechnology academic research fosters the 

emergence of collaboration among universities, industry and government and highlights a Triple-

Helix of relationships between these organizations (Etzkowitz 2008; Leydesdorff and Meyer 

2006; Schultz 2011). Niosi (2000) shows that universities in the US are frequently encouraged to 

collaborate more with industries and this collaboration streams industry funding toward 

university research. 

In Canada, the majority of university research funding is provided through public funding, while 

private firms account for only a small part of research funding (Fitzgibbons and McNiven 2006; 

Mcfetridge 1993; Niosi 2000). The Natural Sciences and Engineering Research Council 

(NSERC) focuses on university and industry collaborations through Industrial Chairs and 

Collaborative R&D programs. The Canadian Institutes for Health Research (CIHR), the Canada 

Foundation for Innovation (CFI) and National Research Council (NRC) are other federal 

agencies that provide funding for R&D (Gordon 2002). 

Addressing how universities play a significant role in knowledge-based nanotechnology research, 

Hullmann (2006) and Mcfetridge (1993) indeed suggest that the number of academic publications 
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is an appropriate indicator to understand the growth of this new technology. Furthermore, the 

number of citations papers receive is a quality index that can properly measure the impact of 

researchers. 

Many scholars (Hudson 2007; Lawani 1986; Moed 2005; Schoonbaert and Roelants 1996) study 

the number of citations to measure the quality of papers and argue that high quality papers 

receive significantly more citations. Despite some problems that arise in using the number of 

citations as a quality index for papers, it is widely used and still considered to be an appropriate 

indicator. For example critics such as Adler et al. (2009) highlight that citation analysis does 

provide worthwhile information and should be part of the evaluation process. 

Following the massive investment in nanotechnology, the interest in the influence funded 

research has on scientific output has also increased in recent years. Huang et al. (2005) highlight 

that it is imperative to understand the impact of public funding on nanotechnology research 

output and nanotechnology development. Some scholars examine the impact of funding on 

scientific output and their results indicate that government R&D funding in universities increases 

the number of publications (Adams and Griliches 1998; Blume-Kohout et al. 2009; Fitzgibbons 

and McNiven 2006; Mcfetridge 1993). Payne and Siow (2003) demonstrate that a one million 

dollar increase in government funding in a research university yields ten additional papers. In 

another study in the US, Jacob and Lefgren (2007) investigate the influence of the National 

Institutes of Health (NIH) grants on researchers and research productivity. According to their 

study, NIH postdoctoral fellowships increase the rate of publications by nearly twenty percent in 

the following 5 years as well as the citations received by these papers. Obtaining research 

funding affects the productivity of researchers in other ways, for instance, Adams et al. (2005) 

recognized that according to a study in the top 110 US universities, public funding significantly 

affects the size of scientific teams. Scientists with prestigious awards and a large stock of federal 

funding are encouraged to collaborate in larger teams. This collaboration increases research 

quality and consequently these scientists are more cited (Sauer 1988; Adams et al. 2005). Arora 

et al. (1998) raised the point of a positive influence on publication quality and mentioned that it 

acts as a signal for the government to allocate additional funding to higher-quality researchers. 

Although the number of citations can be used as a proxy to measure the scientific quality of 

papers, we must recognize and address the disparity in citation rates of papers published in 

English compared to those in French, a concern evident for Canada. Poomkottayil et al. (2011) 
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found that English papers are seven times more cited based on the Google Scholar database 

compared to non-English papers (German or French papers in their study). The theoretical study 

of Van Leeuwen et al. (2001) showed that the impact factors of non-English language journals 

are considerably lower than English-language journals. Due to increased interest in the 

bibliometric evaluation of papers in recent years, it is important to recognize that the language of 

publication affects such analyses. 

Empirical evidence of Matthew effect can be shown at various aggregation levels: countries, 

research institutions and individual researchers. The Matthew effect holds that the most 

influential scientists gain more influence (Merton 1968; Larivie`re and Gingras 2010). Some 

studies used the number of citations as Matthew indicator and showed that specific papers, 

researchers or even universities are more frequently cited compared to others (Bonitz et al. 1997; 

Katz 1999; Tol 2009). According to Laudel (2006), scientists that have already received funding 

are more likely to receive more funding, which is evidence of Matthew effect in research funding. 

This effect can occur at the individual or department level, hence indicating that those that obtain 

the most funds become even more successful in subsequent grant applications. 

Since the US is a leading country in nanotechnology research and research funding, in light of the 

impact of government research financing on nanotechnology-related scientific output and the 

difference between the influence of research funding in Canada and the US, we aim to probe the 

following hypotheses in this paper separately for Canada and the US. 

 

Hypothesis 1 Increased public funding to nanotechnology scientists contributes to (a) more 

nanotechnology-related publications and (b) higher-quality nanotechnology-related publications. 

 

Scientists generally work in research communities and tend to publish the results in research 

groups. Glänzel and Schubert (2005) highlighted co-publication networks as a tangible measure 

of scientific collaborations. Since the collaboration of researchers is seen to be of great 

importance in fostering output productivity research, funding is commonly allocated to research 

teams, particularly when the amount of financing is rather large. 

Theoretical studies show a positive correlation between the collaboration of researchers and their 

respective scientific output. For example Newman (2001) and Balconi et al. (2004) constructed a 

scientist network using co-authorship information to study the interconnected nature of scientists 
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in these networks. Ni et al. (2011) and Breschi et al. (2006) stated that scientists with central 

positions in the network produce more papers compared to other scientists that are less central. 

Velema (2012) argues that collaborative ties in co-authorship networks lead to receiving more 

citations. The diffusion of knowledge is thus more efficient among researchers who actively 

collaborate and the numerous collaborations help researchers to increase their productivity. The 

question we address in this paper is how evolving scientific networks influence the emergence of 

new publications and enhance the quality of these publications in Canada, as well as the 

difference in this impact between Canada and the US. In order to measure whether collaborations 

in Canada have a similar impact as in the US on nanotechnology scientific output, we therefore 

consider the following hypotheses separately for Canada and the US: 

Hypothesis 2 A better network position7 of nanotechnology scientists within co-publication 

networks has a positive effect on (a) the number of publications and on (b) the quality of 

publications. 

In Canada the proportion of government-funded R&D is high compared to industrial R&D (Niosi 

2000). We therefore propose in our third Hypothesis to test whether this government funding 

leads to scientific production of higher quality and quantity in Canada in comparison to the 

impact of public funding in the US: 

 

Hypothesis 3 Increased public funding to nanotechnology scientists in Canada contributes to (a) 

more nanotechnology-related publications and (b) higher-quality nanotechnology-related 

publications in Canada compared to increased public funding to nanotechnology scientists in the 

US. 

3.4 Data and methodology 

3.4.1 Data and variables 

The rapid growth of nanotechnology implies that governments have to develop a complete 

database of all desired information about nanotechnology development and commercial 

utilization (Holtz 2007). This study requires the evaluation of scientific output during the periods 

                                                

7 We consider higher betweenness centrality and higher cliquishness in terms of better network position. 
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in which public grants were received by researchers. Our data was extracted from different 

databases of articles and patents to which at least one Canadian-affiliated and one American-

affiliated scientist contributed: We extracted publication and authorship data from Elsevier’s 

Scopus using specific keyword searches, described below, for nanotechnology-related 

publications, while the United States Patent and Trademark Office (USPTO) provided the related 

patenting information for these researchers. We chose Elsevier’s Scopus since it provides 

accurate and more comprehensive information regarding author affiliations, which greatly 

facilitates the disambiguation of author’s names, especially for data dating as far back as 1985. 

Scopus directly links authors and their affiliations while this feature is relatively recent in other 

databases. We examined other databases (JCR, Science Direct, Web of Science, Microsoft 

Academic Search, Scirus, Google Scholar, etc.) and realized that Scopus covers a wide diversity 

of fields and additional information, which was deemed more appropriate to our needs regarding 

an emerging multidisciplinary field that may not at first get published in the ‘‘best’’ journals that 

are currently listed in the Web of Science for instance. 

The Canadian Federal granting agencies database provided information on government research 

financing from the National Sciences and Engineering Research Council of Canada (NSERC) 

and the Canadian Institutes of Health Research (CIHR). For US researchers we used Nanobank 

which is a dataset of scientific journal articles, patents and government grants (NIH and NSF 

grants) in nanotechnology (Nanobank 2013; NSF 2013; Zucker et al. 2011). For the purpose of 

this research and in order to have precise data on nanotechnology related publications in the US, 

we combined the keywords from various keyword search strategies of several scholars (Alencar 

et al. 2007; Fitzgibbons and McNiven 2006; Mogoutov and Kahane 2007; Noyons et al. 2003; 

Porter et al. 2008; Zucker and Darby 2005; Zitt and Bassecoulard 2006) while removing the 

redundant keywords after consulting with nanotechnology experts. We believe that the final set 

of keywords is quite comprehensive and is able to effectively identify articles directly related to 

nanotechnology. 

In order to complement and clean the large data, we extracted data using a combination of Scopus 

and Google Scholar since the latter enabled us to search the full text of publications for 

nanotechnology-related keywords. We used the ‘‘Publish or Perish’’ software to filter the results 

in Google Scholar and then matched each identified article with the data from Scopus. This 

methodology allowed us to combine an in-depth full-text search of Google Scholar with well 



63 

 

structured data from Scopus. 

We then merged our data from different sources using a unique ID for each individual scientist. 

A considerable amount of work was required to perform the disambiguation of scientists’ names 

in merging different publishing, patenting and funding databases. We performed a check of 

individuals’ name to avoid ambiguity and bias in our data. We then created a panel dataset in 

which we compiled yearly information for each individual scientist over the period 1985–2005. 

Selecting for the regressions the years 1996 onwards yields 33,655 individual US scientists and 

3,684 Canadian scientists in our final panel data8. 

In relation to our hypotheses, let us first define the variables measuring the quantity and quality 

of papers (H1a and H1b). The variable nbPaper counts the number of papers that are published 

every year by an individual scientist. It is used to measure the impact of government funding on 

the quantity of scientific output. We used three spans of citation counts, nbCitation, that the 

articles of a scientist received within three, 5 and 7 years after the publication year to measure 

paper quality. We found more consistent results using 5-year citations (nbCitation5) for our time 

period (1996–2005). 

This study addresses the impact that funding granted for nanotechnology academic research has 

on scientific output. We thus calculate the average amount of public funding received over 3 

years (GovGrant3) lagged by 1-year to account for the time lapse between receiving government 

grants and generating scientific output. We also add the square of GovGrant3, to investigate the 

non-linear effect of public funding. This will allow the validation of hypothesis 1. 

To examine our second hypothesis we explore how a researcher’s position in his/her 

coauthorship network influences his/her scientific output by computing two measures related to 

their network position: betweenness centrality (BetweenCent) and cliquishness or clustering 

coefficient (Cliquishness). Betweenness centrality is generally employed to evaluate the 

importance of a researcher as an intermediary in a network and refers to the proportion of all 

geodesic distances9 between two scientists that include the specific scientist. This measure 

indicates which researcher potentially controls the flow of knowledge between pairs of scientists 

                                                

8 Even though the regressions are estimated on a sample starting in 1996, we extracted data from 1985 onwards to build the ‘career age’ variable 
described below. 
9 Geodesic distance is a shortest path between any particular pair of researchers in a scientific network. 
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(Benedictis and Tajoli 2008; Izquierdo and Hanneman 2006). 

Cliquishness is computed using the egocentric density10 that refers to the likelihood that two 

scientists who are both connected to a specific third scientist are also connected to each other 

(Barabasi et al. 2002; Singh 2007). These two variables will allow the validation of hypothesis 2 

(H2a and H2b). 

The evolution of collaborations between scientists over years was analyzed using 3-year co-

publication sub-networks. An important consideration relates to the time period of collaboration 

networks. Fleming et al. (2007) used 3-year windows to analyze the effect of past network 

structure on collaborative creativity. Nerkar and Paruchuri (2005) also opt for 3-year windows to 

study the R&D activities in inventor networks. We therefore created 3-year co-authorship sub-

networks11 for all the 3-year moving intervals using the social network analysis software Pajek, 

which is considered to be very suitable for the analysis of large networks (Batagelj and Mrvar 

1998). 

In addition to the variables of interest, another issue that we take into account is nonpublication 

innovative output of researchers that may restrict their scientific output. Debates have arisen 

around the question of whether the involvement of academics in patenting can produce negative 

impacts on their publication record. Despite the concerns about the substitution effects of 

university patents on publications, Geuna and Nesta (2006) argue that university papers and 

patents are not really substitutes, and a growing literature (e.g. Azoulay et al. 2006; Louis et al. 

1989; Carayol and Matt 2004) is in fact proposing that patents and publications are complements. 

Moreover, Van Looy et al. (2004, 2006) show that university researchers who are involved in 

patenting activities publish more articles in applied fields and Azoulay et al. (2009), Czarnitzki et 

al. (2007) and Wong and Singh (2010) reveal that the patenting activity of academic researchers 

positively influences publication output in universities. In this regard, we study the influence of 

academic researchers’ nanotechnology-related patents from the past 3 years to examine whether 

there is a correlation between these patents and their future publications (nbPast3Pat). We also 

add the square of nbPast3Pat to investigate the non-linear effect of researchers’ past patents on 

                                                

10 Egocentric density is the density among a researcher’s direct connections and indicates the fraction of possible links present in the network 
(Koput 2010). 
11 We also constructed 5-year sub-networks, but 3-year sub-networks gave us more consistent results. 
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scientific output. 

Governments implement various mechanisms to allocate funding to universities based on 

research performance (Geuna and Martin 2003; Liefner 2003). A notable concern in our study is 

that researchers with a higher performance receive more funding from governments: this causes 

potential endogeneity due to simultaneity and omitted variable bias. To deal with this potential 

endogeneity, we employ instrumental variables techniques in our econometrics models to correct 

for endogeneity and add a number of control variables in addition to the variables of interest. 

We first identify the career age (CareerAge) of nanotechnology scientists as the time elapsed 

since their first publication in nanotechnology. This variable shows how long a scientist has been 

active in this field and is a proxy for experience of a scientist in this field over time. Some 

scholars such as Cole (1979), Costas et al. (2010) and Stephan and Levin (1993) highlight the 

influence of career age on the performance of scientists to account for the fact that older scientists 

are more productive and more likely to receive grants. To consider the fact that the past articles 

are used to evaluate the proposals that lead to the granting of public funding, we use the average 

number of papers published by researchers in the past 3 years with a 1-year lag (nbAvgPapers3). 

3.4.2 Model specification 

There are various models for count data that have been used in economics and industrial 

organizations. The Poisson model is the most frequently employed method in such modeling 

(Hausman et al. 1984; King 1989; Riphahn et al. 2003). Because of the restriction on the 

distribution in the Poisson model regarding over-dispersion, some researchers find that the 

Negative Binomial Model (NB) is more appropriate (Greene 2008; Hilbe 2011). Many scholars 

have employed one of these two methods to analyze count data (Wang et al. 1998; Fleming and 

Sorenson 2001; Maurseth and Verspagen 2002; Mowery et al. 2002; Payne and Siow 2003; 

Tsionas 2010; Petruzzelli 2011). In the Poisson model, it is assumed that the conditional variance 

equals the mean. The dependent variable yit in Eq. (3-1) follows a Poisson distribution where the 

mean is function of the coefficients ! and of the covariates xit as shown in Eq. (3-2), (i indexes 

individual researchers and t indexes years). 

                                           (3-1) 

  

Pr(yit xit ) =
e!!it!it

yit

yit!
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                                                        (3-2) 

The Poisson model imposes equi-dispersion as shown by Equation (4-3): 

                                                (3-3) 

If the variance of is larger than the mean (E(yit xit ) =Var[yit xit ] ), we have over-dispersion in 

the data, which implies that the Negative Binomial Regression is a proper alternative for this 

method. !"# !!"  is assumed to follow a gamma distribution where the variance equals α and 

the mean equals 1 (Hausman et al. 1984; King 1989; Greene 2008), which yields equations (3-4) 

and (3-5). 

                                                     (3-4) 

                                   (3-5) 

We thus use both the Poisson and Negative Binomial models in our regressions to find the most 

consistent and significant results in measuring the impact of government grants and of network 

position on the quantity of scientific publications (represented by nbPaperit of academic 

researcher i in year t) and on the publication quality (represented by nbCitation5it). In case of 

having excessive zeros in our count data, we consider zero-inflated Poisson versus Poisson and 

zero-inflated negative binomial versus negative binomial model and use the test suggested by 

Vuong (1989). Zero-inflated models allow for complication of analyzing datasets with an 

excessive number of outcome zeros (Greene 1994; Long 1997; Vuong 1989). For the given data, 

the Vuong test proved that zero-inflated models are superior to standard Poisson and negative 

binomial models. 

We express the model to be estimated in Eq. (3-6), which shows our two dependent variables 

explained by the same function. We examined a variety of lag structures during the course of our 

study and presented the models which yield the most consistent results. 

Logically, however, one would think that the team is formed first, then they apply for funding 

and do the work to finally publish. Learning from collaborators and integrating into knowledge 

networks needs time to lead to further jointly developed publications. So we would expect that 

E(yit xit ) = !it = e
xit"

E(yit xit ) =Var[yit xit ]= !it

yit

!it = Exp("xit +#it )

Var[yit xit ]= E(yit xit ) 1+! E(yit xit!" #$( )
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the network variables to be lagged by at least 2 years and the funding variables to be lagged by at 

least 1 year. 

 

(3-6) 

We also test the moderating effect between our variables by introducing interactive variables. 

This helps us to examine whether betweenness centrality has an intrinsic relation with patenting 

and cliquishness, and it also moderates the influence of these two measures on the dependent 

variables. To account for the fact that funding may affect both scientific output and the number of 

patents to which a researcher may have contributed, we treat the amount of grants received as 

endogenous. Given the potential endogeneity, we test three instruments for this variable to correct 

this problem. One of the alternatives that is suggested in econometric studies to estimate the 

parameters in this model on a set of instrumental variables is the Two Stage Least Squares 

(2SLS) method (Biro 2009; Terza et al. 2008; Stephan et al. 2007). 

We thus express the first and second stage of our estimations in Eq. (3-7) to account for the 

endogeneity bias on the average amount of grants received over 3 years by scientists in 

nanotechnology. The first stage regression estimates the endogenous variable on a set of 

instruments and the predicted value is then computed and added to the second stage regressions. 

The resulting first stage and second stage regressions are given by: 
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3.5 Regression results 

Our study evaluates the impact of research funding and collaborations on scientific productions 

by measuring the quantity and quality of publications. The results showed in this section present 

the most reliable results. As mentioned previously we examined a variety of lag structures (1, 2 

and 3 years) to investigate the most appropriate time period for each variable. As expected, the 

most significant results were obtained with a 1-year lag for government grants and a 2-year lag 

for the network. Two groups of results are presented in which the first group does not account for 

potential endogeneity of public funding and the second group represents the results of the second 

stage for 2SLS regressions. We find that the zero-inflated Poisson model (clustering method) 

yields significant and consistent results and hence present only this model in the paper12 as 

justified by Hall and Ziedonis (2001). We start from a simple model and hierarchically add the 

quadratic term of variables to the model. The second stage of four models, shown in Tables 3.1, 

3.2 for the number of papers and Tables 3.3, 3.4 for the number of citations, enable us to study 

the factors that influence scientific production in Canada and the US (for the first stage of 

regressions see Appendix A.1, and Poisson and xtpoisson regressions are presented in Appendix 

A.4). Before turning to the second stage regressions, let us briefly address the first stage results. 

Among the instruments used to correct for endogeneity in the first stage of our model, CareerAge 

is strongly significant to explain the endogenous variable GovGrant3 in both countries.

                                                

12 We estimated more than 15 models as we considered and neglected potential endogeneity using panel data via xtnbreg and xtpoisson. We also 
performed non-paneled regressions using the clustering method of nbreg and Poisson to account for repeated measures of the same individual 
scientist. Note that we tried zero inflated negative binomial model as well, but it does not work on our data for the number of papers and the 
results for the number of citations are similar to zero-inflated Poisson model. 
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Table 3.1:Impact of public funding on nanotech papers in Canada - Second stage of regression 
results of zero-inflated Poisson  

Canada 

nbPaperit
 

zip – model (1)  zip – model (2)  zip – model (3)  zip – model (4) 

W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS 

ln(GovGrant3it-1) 
-0.0056                  -0.0055      -0.0088                  0.0873 *                

(0.0086)                  (0.0087)      (0.0085)                  (0.0480)                 

nbPast3Patit-1
 0.1045 *** 0.0962 ***  0.1506 *** 0.1293 **  0.1120 ** 0.1103 **  0.1194 ** 0.1101 ** 

(0.0149)  (0.0149)   (0.0527)  (0.0520)   (0.0551)  (0.0546)   (0.0552)  (0.0545)  

ln(104×BetweenCentit-2)
 0.3492 *** 0.3330 ***  0.3480 *** 0.3340 ***  0.1782 *** 0.1795 ***  0.1847 *** 0.1792 *** 

(0.0515)  (0.0487)   (0.0508)  (0.0487)   (0.0509)  (0.0510)   (0.0503)  (0.0509)  

ln(103×Cliquishnessit-2)
 0.0495 *** 0.0429 ***  0.0476 *** 0.0416 ***  0.7381 *** 0.7147 ***  0.7233 *** 0.7147 *** 

(0.0127)  (0.0133)   (0.0131)  (0.0137)   (0.0932)  (0.1014)   (0.0918)  (0.1010)  

[ nbPast3Patit]2      -0.0033  -0.0015   -0.0016  -0.0014   -0.0022  -0.0012  
     (0.0030)  (0.0029)   (0.0034)  (0.0033)   (0.0034)  (0.0034)  

[ln(103×Cliquishnessit-2)]2           -0.1047 *** -0.1015 ***  -0.1026 *** -0.1017 *** 

          (0.0143)  (0.0154)   (0.0141)  (0.0153)  

[ln(GovGrant3it-1)]2                -0.0095 **                
               (0.0046)                 

Years (1996-2005) Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  
Prediction(GovGrant3it-1)-
2SLS 

               0.0890 **    0.0801 **                 0.0126     0.0688  
               (0.0375)     (0.0363)                  (0.0319)     (0.0884)  

[Prediction(GovGrant3it-

1)-2SLS]2 
                                                        -0.0051  
                                                        (0.0086)  

Constant 0.7147 *** 0.2103   0.7211 *** 0.2656   0.6965 *** 0.5845 ***  0.6842 *** 0.4375 * 
(0.0812)  (0.2164)   (0.0802)  (0.2082)   (0.0826)  (0.1822)   (0.0830)  (0.2504)  

Inflate                    
                   

ln(GovGrant3it-1) 
-0.0124 *    -0.0120     -0.0101     0.1244 **   

(0.0073)     (0.0073)     (0.0075)     (0.0598)    
nbPast3Patit-1

 -0.0977 *** -0.0940 ***  -0.1999 * -0.1889 *  -0.1721  -0.1617   -0.1638  -0.1673  
(0.0350)  (0.0352)   (0.1073)  (0.1093)   (0.1181)  (0.1200)   (0.1193)  (0.1215)  

ln(104×BetweenCentit-2)
 -0.6803 *** -0.6729 ***  -0.6763 *** -0.6691 ***  -0.1940 ** -0.1995 **  -0.1853 ** -0.1943 ** 

(0.0667)  (0.0669)   (0.0668)  (0.0670)   (0.0779)  (0.0778)   (0.0790)  (0.0777)  
ln(103×Cliquishnessit-2)

 -0.0989 *** -0.0981 ***  -0.0984 *** -0.0975 ***  -1.6485 *** -1.6148 ***  -1.6730 *** -1.6418 *** 
(0.0127)  (0.0127)   (0.0128)  (0.0128)   (0.1779)  (0.1782)   (0.1831)  (0.1773)  

[ nbPast3Patit]2      0.0126  0.0118   0.0121  0.0113   0.0114  0.0117  
     (0.0144)  (0.0148)   (0.0172)  (0.0176)   (0.0174)  (0.0178)  

[ln(103×Cliquishnessit-2)]2           0.2286 *** 0.2239 ***  0.2322 *** 0.2282 *** 
          (0.0264)  (0.0265)   (0.0272)  (0.0263)  

[ln(GovGrant3it-1)]2                -0.0132 **   
               (0.0059)    

Prediction(GovGrant3it-1)-

2SLS 

  -0.0391 **    -0.0401 **    -0.0390 **    -0.1041  

  (0.0176)     (0.0175)     (0.0174)     (0.0671)  

[Prediction(GovGrant3it-

1)-2SLS]2 

                 0.0080  

                 (0.0072)  

Constant 1.5421 *** 1.6764 ***  1.5439 *** 1.6864 ***  1.5334 *** 1.6848 ***  1.5165 *** 1.7610 *** 
(0.0635)  (0.1105)   (0.0637)  (0.1097)   (0.0643)  (0.1053)   (0.0652)  (0.1454)  

Nb observations 
Nb Groups 

8180  8180   8180  8180   8180  8180   8180  8180  

3684  3684   3684  3684   3684  3684   3684  3684  

Loglikelihood 
-6801.2  -6783.95   -6796.89  -6782.06   -

6652.18  -6651.25   -6644.2  -6649.16  

χ2 
200.40 *** 178.09 ***  185.02 *** 165.81 ***  238.11 *** 206.49 ***  246.22 *** 205.61 *** 

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 
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Table 3.2:Impact of public funding on nanotech papers in the US - Second stage of regression 
results of zero-inflated Poisson  

The US 

nbPaperit
 

zip – model (1)  zip – model (2)  zip – model (3)  zip – model (4) 

W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS 

ln(GovGrant3it-1) 
0.0264 ***               

 
 0.0264 ***                 0.0264 ***               

 
 -0.0530 *                

(0.0037) 
 

              
 

 (0.0037) 
 

                (0.0037) 
 

              
 

 (0.0303) 
 

               

nbPast3Patit-1
 0.0035  -0.0006   0.0050  -0.0157   0.0054  -0.0156   0.0058  -0.0062  

(0.0089) 
 

(0.0075) 
 

 (0.0130) 
 

(0.0110)   (0.0130) 
 

(0.0110) 
 

 (0.0131) 
 

(0.0094)  

ln(104×BetweenCentit-2)
 0.1646 *** 0.1377 **  0.1646 *** 0.1347 **  0.1633 *** 0.1296 **  0.1609 *** 0.1272 ** 

(0.0595) 
 

(0.0573) 
 

 (0.0596) 
 

(0.0573)   (0.0593) 
 

(0.0570) 
 

 (0.0596) 
 

(0.0564)  

ln(103×Cliquishnessit-2)
 0.0865 *** 0.0921 ***  0.0865 *** 0.0912 ***  0.2135 *** 0.2781 ***  0.2111 *** 0.3243 *** 

(0.0059) 
 

(0.0059) 
 

 (0.0060) 
 

(0.0059)   (0.0674) 
 

(0.0686) 
 

 (0.0670) 
 

(0.0672)  

[ nbPast3Patit]2      -0.0001  0.0008 **  -0.0001  0.0008 **  -0.0001  -0.0001  
     (0.0004)  (0.0003)   (0.0004)  (0.0003)   (0.0004)  (0.0003)  

[ln(103×Cliquishnessit-

2)]2           -0.0187 * -0.0276 ***  -0.0184 * -0.0320 *** 

          (0.0098) 
 
(0.0099) 

 
 (0.0097) 

 
(0.0097)  

[ln(GovGrant3it-1)]2                0.0067 **                
               (0.0026)                 

Years (1996-2005) Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  
Prediction(GovGrant3it-

1)-2SLS 
               0.2246 ***    0.2267 ***                 0.2272 ***    -0.1958 *** 
               (0.0238) 

 
   (0.0239)                  (0.0238) 

 
   (0.0379)  

[Prediction(GovGrant3i

t-1)-2SLS]2 
                                                        0.0400 *** 
                                                        (0.0037)  

Constant 0.5491 *** -0.5575 ***  0.5482 *** -0.5560 ***  0.5500 *** -0.5590 ***  0.5617 *** 0.4177 *** 
(0.0798) 

 
(0.1586) 

 
 (0.0798) 

 
(0.1583)   (0.0796) 

 
(0.1579) 

 
 (0.0789) 

 
(0.1205)  

Inflate                    
                   

ln(GovGrant3it-1) 
-0.0143 ***    -0.0147 ***    -0.0148 ***    -0.0078    

(0.0030)     (0.0030)     (0.0030)     (0.0233)    

nbPast3Patit-1
 0.0518 *** 0.0532 ***  0.0763 *** 0.0890 ***  0.0760 *** 0.0885 ***  0.0758 *** 0.0951 *** 

(0.0050)  (0.0049)   (0.0079)  (0.0086)   (0.0080)  (0.0086)   (0.0080)  (0.0074)  

ln(104×BetweenCentit-2)
 -0.5410 *** -0.5253 ***  -0.5390 *** -0.5228 ***  -0.5070 *** -0.4922 ***  -0.5097 *** -0.4875 *** 

(0.1175)  (0.1212)   (0.1177)  (0.1218)   (0.1160)  (0.1201)   (0.1168)  (0.1195)  

ln(103×Cliquishnessit-2)
 -0.3030 *** -0.2873 ***  -0.3025 *** -0.2863 ***  -0.8107 *** -0.7937 ***  -0.8122 *** -0.7790 *** 

(0.0056)  (0.0058)   (0.0056)  (0.0058)   (0.0796)  (0.0825)   (0.0797)  (0.0820)  

[nbPast3Patit]2      -0.0015 *** -0.0022 ***  -0.0015 *** -0.0022 ***  -0.0015 *** -0.0029 *** 
     (0.0004)  (0.0004)   (0.0004)  (0.0004)   (0.0004)  (0.0003)  

[ln(103×Cliquishnessit-

2)]2 
          0.0751 *** 0.0750 ***  0.0753 *** 0.0739 *** 
          (0.0117)  (0.0121)   (0.0117)  (0.0121)  

[ln(GovGrant3it-1)]2                -0.0007    
               (0.0020)    

Prediction(GovGrant3it-

1)-2SLS 
  -0.1094 ***    -0.1090 ***    -0.1078 ***    -0.3372 *** 
  (0.0126)     (0.0127)     (0.0128)     (0.0362)  

[Prediction(GovGrant3i

t-1)-2SLS]2 
                 0.0205 *** 
                 (0.0036)  

Constant 2.2126 *** 2.5099 ***  2.1952 *** 2.4759 ***  2.1993 *** 2.4735 ***  2.2021 *** 3.0163 *** 
(0.0292)  (0.0816)   (0.0295)  (0.0817)   (0.0297)  (0.0821)   (0.0294)  (0.0853)  

Nb observations 
Nb Groups 

56511  56511   56511  56511   56511  56511   56511  56511  
33655  33655   33655  33655   33655  33655   33655  33655  

Loglikelihood 
-31075.8 

 

-
30079.1 

 

 
-31064.7 

 
-30052.5  

 
-31029.5 

 

-
30016.6 

 

 
-31003.1  -29717.7  

χ2 454.95 *** 502.94 ***  460.95 *** 508.74 ***  460.52 *** 518.98   468.44 *** 804.35 *** 

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 
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Table 3.3:Impact of public funding on nanotech papers’ quality in Canada - Second stage of 
regression results of zero-inflated Poisson  

Canada 

nbCitation5it
 

zip – model (1)  zip – model (2)  zip – model (3)  zip – model (4) 

W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS 

ln(GovGrant3it-1) 
0.0038 

 
              
 

 0.0038 
 

                0.0018 
 

              
 

 0.0617 
 

               
(0.0103) 

 
              

 
 (0.0103) 

 
                (0.0101) 

 
              
 

 (0.0552) 
 

               
nbPast3Patit-1

 0.1228 *** 0.1206 ***  0.1082  0.1032   0.0861  0.0906   0.0861  0.0906  
(0.0154) 

 
(0.0152) 

 
 (0.0690) 

 
(0.0673)   (0.0692) 

 
(0.0689) 

 
 (0.0692) 

 
(0.0689)  

ln(104×BetweenCentit-2)
 0.2796 *** 0.2750 ***  0.2796 *** 0.2750 ***  0.2796 *** 0.2750 ***  0.2796 *** 0.2750 *** 

(0.0839) 
 

(0.0816) 
 

 (0.0839) 
 

(0.0816)   (0.0839) 
 

(0.0816) 
 

 (0.0839) 
 

(0.0816)  

ln(103×Cliquishnessit-2)
 0.0182 

 
0.0164 

 
 0.0188 

 
0.0175   0.4710 *** 0.4913 ***  0.4627 *** 0.4923 *** 

(0.0175) 
 

(0.0180) 
 

 (0.0182) 
 

(0.0187)   (0.1213) 
 

(0.1313) 
 

 (0.1201) 
 

(0.1308)  
[ nbPast3Patit]2      0.0009  0.0014   0.0020  0.0016   0.0017  0.0018  

     (0.0035)  (0.0033)   (0.0035)  (0.0035)   (0.0035)  (0.0035)  
[ln(103×Cliquishnessit-2)]2 

          -0.0685 *** -0.0713 ***  -0.0673 *** -0.0717 *** 

          (0.0186)  (0.0200)   (0.0184)  (0.0199)  
[ln(GovGrant3it-1)]2                -0.0059                 

               (0.0051)                 
Years (1996-2005) Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Prediction(GovGrant3it-1)-2SLS                0.0328 
 

   0.0252                  -0.0199 
 

   0.0465  
               (0.0455)     (0.0444)                  (0.0407)     (0.1046)  

[Prediction(GovGrant3it-1)-2SLS]2                                                         -0.0062  
                                                        (0.0098)  

Constant 3.7830 *** 3.6283 ***  3.7806 *** 3.6669 ***  3.7689 *** 3.8822 ***  3.7587 *** 3.7174 *** 
(0.1051) 

 
(0.2568) 

 
 (0.1038) 

 
(0.2481)   (0.1043) 

 
(0.2252) 

 
 (0.1051) 

 
(0.3011)  

Inflate                    
                   

ln(GovGrant3it-1) 
-0.0138 **    -0.0135 **    -0.0100     0.0619    

(0.0063)     (0.0063)     (0.0065)     (0.0467)    
nbPast3Patit-1

 -0.1075 *** -0.0995 ***  -0.2024 * -0.1796   -0.1626  -0.1451   -0.1601  -0.1502  
(0.0345)  (0.0351)   (0.1067)  (0.1093)   (0.1168)  (0.1191)   (0.1180)  (0.1205)  

ln(104×BetweenCentit-2)
 -0.7170 *** -0.7060 ***  -0.7140 *** -0.7035 ***  -0.2161 *** -0.2268 ***  -0.2142 *** -0.2227 *** 

(0.0629)  (0.0628)   (0.0629)  (0.0628)   (0.0732)  (0.0733)   (0.0736)  (0.0732)  
ln(103×Cliquishnessit-2)

 -0.1177 *** -0.1140 ***  -0.1166 *** -0.1130 ***  -1.8045 *** -1.7371 ***  -1.8130 *** -1.7615 *** 
(0.0111)  (0.0111)   (0.0111)  (0.0111)   (0.1659)  (0.1675)   (0.1681)  (0.1673)  

[ nbPast3Patit]2      0.0112  0.0094   0.0099  0.0085   0.0097  0.0089  
     (0.0143)  (0.0148)   (0.0171)  (0.0176)   (0.0174)  (0.0179)  

[ln(103×Cliquishnessit-2)]2           0.2504 *** 0.2409 ***  0.2517 *** 0.2449 *** 
          (0.0246)  (0.0248)   (0.0249)  (0.0248)  

[ln(GovGrant3it-1)]2                -0.0071    
               (0.0046)    

Prediction(GovGrant3it-1)-2SLS   -0.0751 ***    -0.0744 ***    -0.0604 ***    -0.1343 *** 
  (0.0146)     (0.0145)     (0.0146)     (0.0504)  

[Prediction(GovGrant3it-1)-2SLS]2                  0.0086  
                 (0.0056)  

Constant 2.0567 *** 2.3675 ***  2.0592 *** 2.3673 ***  2.0567 *** 2.3099 ***  2.0482 *** 2.4142 *** 
(0.0508)  (0.0858)   (0.0508)  (0.0857)   (0.0511)  (0.0847)   (0.0509)  (0.1115)  

Nb observations 
Nb Groups 

8180  8180   8180  8180   8180  8180   8180  8180  

3684  3684   3684  3684   3684  3684   3684  3684  

Loglikelihood 
-49944.9  -49906   -49939.8  -49916.4   -49297.3  -49278.5   -49242.8  -49262.8  

χ2 
215.54 *** 218.76 ***  363.10 *** 367.07 ***  304.72 *** 304.95 ***  301.16 *** 298.35 *** 

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 
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Table 3.4:Impact of public funding on nanotech papers’ quality in the US - Second stage of 
regression results of zero-inflated Poisson  

The US 

nbCitation5it 

zip – model (1)  zip – model (2)  zip – model (3)  zip – model (4) 

W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS  W/O Endog 2SLS 

ln(GovGrant3it-1) 
0.0229 ***               

 
 0.0229 ***     0.0228 ***               

 
 -0.1577 ***                

(0.0087) 
 

              
 

 (0.0087) 
 

    (0.0086) 
 

              
 

 (0.0511) 
 

               

nbPast3Patit-1
 0.0134  0.0076   0.0083  -0.0112   0.0081  -0.0115   0.0076  -0.0045  

(0.0213) 
 

(0.0184) 
 

 (0.0327) 
 

(0.0279)   (0.0326) 
 

(0.0278) 
 

 (0.0312) 
 

(0.0258)  

ln(104×BetweenCentit-2)
 0.3232 *** 0.3027 ***  0.3222 *** 0.3000 ***  0.3187 *** 0.2936 **  0.3082 ** 0.2977 ** 

(0.1205) 
 

(0.1153) 
 

 (0.1200) 
 

(0.1147)   (0.1216) 
 

(0.1157) 
 

 (0.1219) 
 

(0.1161)  

ln(103×Cliquishnessit-2)
 0.0367 *** 0.0452 ***  0.0365 *** 0.0444 ***  0.1384 

 
0.2082 

 
 0.1437 

 
0.2522 * 

(0.0132) 
 

(0.0140) 
 

 (0.0134) 
 

(0.0142)   (0.1411) 
 

(0.1445) 
 

 (0.1381) 
 

(0.1434)  

[ nbPast3Patit]2      0.0002  0.0010 *  0.0002  0.0010 *  0.0002  0.0003  
     (0.0007)  (0.0006)   (0.0007)  (0.0006)   (0.0007)  (0.0007)  

[ln(103×Cliquishnessit-2)]2           -0.0150 
 

-0.0242 
 

 -0.0161 
 

-0.0289  

          (0.0203)  (0.0206)   (0.0199)  (0.0205)  

[ln(GovGrant3it-1)]2                0.0150 ***                
               (0.0044)                 

Years (1996-2005) Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Prediction(GovGrant3it-1)-2SLS                0.1882 ***    0.1894 ***                 0.1900 ***    -0.1312 * 
               (0.0519)     (0.0522)                  (0.0522)     (0.0798)  

[Prediction(GovGrant3it-1)-2SLS]2                                                         0.0303 *** 
                                                        (0.0086)  

Constant 3.7692 *** 2.8438 ***  3.7726 *** 2.8526 ***  3.7750 *** 2.8494 ***  3.7944 *** 3.6014 *** 
(0.1763) 

 
(0.3497) 

 
 (0.1785) 

 
(0.3525)   (0.1780) 

 
(0.3529) 

 
 (0.1753) 

 
(0.2613)  

Inflate                    
                   

ln(GovGrant3it-1) 
-0.0285 ***    -0.0289 ***    -0.0291 ***    0.0111    

(0.0043)     (0.0043)     (0.0043)     (0.0317)    

nbPast3Patit-1
 0.0640 *** 0.0663 ***  0.0938 *** 0.1119 ***  0.0932 *** 0.1113 ***  0.0927 *** 0.1154 *** 

(0.0079)  (0.0077)   (0.0097)  (0.0096)   (0.0097)  (0.0096)   (0.0097)  (0.0105)  

ln(104×BetweenCentit-2)
 -0.3637 *** -0.3704 ***  -0.3619 *** -0.3661 ***  -0.3407 *** -0.3423 ***  -0.3420 *** -0.3410 *** 

(0.0990)  (0.0976)   (0.0991)  (0.0976)   (0.0988)  (0.0980)   (0.0987)  (0.0980)  

ln(103×Cliquishnessit-2)
 -0.3013 *** -0.2920 ***  -0.3005 *** -0.2907 ***  -0.8074 *** -0.8314 ***  -0.8082 *** -0.8226 *** 

(0.0074)  (0.0074)   (0.0074)  (0.0074)   (0.0932)  (0.0941)   (0.0932)  (0.0946)  

[ nbPast3Patit]2      -0.0019 *** -0.0028 ***  -0.0019 *** -0.0028 ***  -0.0019 *** -0.0032 *** 
     (0.0003)  (0.0003)   (0.0003)  (0.0003)   (0.0003)  (0.0004)  

[ln(103×Cliquishnessit-2)]2           0.0748 *** 0.0798 ***  0.0749 *** 0.0790 *** 
          (0.0137)  (0.0138)   (0.0137)  (0.0139)  

[ln(GovGrant3it-1)]2                -0.0034    
               (0.0027)    

Prediction(GovGrant3it-1)-2SLS   -0.1892 ***    -0.1919 ***    -0.1910 ***    -0.2667 *** 
  (0.0123)     (0.0123)     (0.0124)     (0.0565)  

[Prediction(GovGrant3it-1)-2SLS]2                  0.0080  
                 (0.0059)  

Constant 
3.8502 *** 4.5818 ***  3.8316 *** 4.5583 ***  3.8425 *** 4.5632 ***  3.8391 *** 4.6994 *** 

(0.0420)  (0.0706) 
 

  (0.0419)  (0.0700)   (0.0423)  (0.0701)   (0.0421)  (0.1201) 
 

Nb observations 
Nb Groups 

56511  56511   56511  56511   56511  56511   56511  56511  
33655  33655   33655  33655   33655  33655   33655  33655  

Loglikelihood -111860 
 

-107574 
 

 -111839 
 

-107474   -111779 
 

-107356 
 

 -110476  -105360  
χ2 41.57 *** 40.24 ***  43.82 *** 43.22 ***  43.88 *** 43.33 ***  55.68 *** 73.14 *** 

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 

 

Surprisingly we cannot find a significant effect of nbAvgPaper3 on future grants in Canada. 

However, Arora and Gambardella (1998) found that the past performance indirectly affects the 

probability of receiving grants in future. This may be due to the fact that nanotechnology is a 

young discipline in Canada and that researchers only recently started publishing in this field. In 
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contrast this variable is strongly significant in the US. The effect of nanotechnology being a 

young discipline also becomes apparent when we examine the non-linear impact of CareerAge. 

We observe a negative coefficient for the square of age on the scientific production. This result is 

consistent with the findings of Costas et al. (2010) who highlight the fact that as scientists grow 

older, they are likely to be more reluctant to be involved in new fields. However, we need to be 

careful in proposing this interpretation, as there have been many mixed findings on this issue. 

Rappa and Debackere (1993) highlight that the relationship between age and the ability in science 

is influenced by numerous factors such as substantive and methodological perceptions, 

specialized interests and affiliations with certain schools of thoughts, and not only the age of 

scientists. Accordingly, Wray (2003; 2004) examined the contribution of young scientists in new 

scientific specialties and found that it is middle-aged scientists that are responsible for significant 

discoveries. There is an extended and inconclusive literature on age in science, which we will not 

review here. 

In the second stage regressions, we find that the number of publications rises as public funding 

increases. Our findings in Canada and the US show an increasing linear trend for the amount of 

publications. The results show that more simple models may be better able to represent the 

influence of government funding in Canada as we captured endogeneity in the first two models, 

but the additional parameters may not be useful. In the US when we increase the complexity of 

model by adding the quadratic term of government funding in model (4), we observe a right- 

hand of a U-shaped curve which also shows the increasing trend of the number of articles (Fig. 

3.1a). 

In regard to the influence of public funding on the number of citations (nbCitation5), the average 

amount of government funding seems to have no impact for Canada to enhance the quality of 

publications, but exhibiting a J-shaped relationship beyond a point for the US. This observation 

highlights that beyond the minimum value of the J-shaped curve, the number of citations 

increases (Fig. 3.1b)13. These results generally are in accordance with the findings of Blume 

Kohout et al. (2009), Fox and Milbourne (1999) and Payne and Siow (2003), who imply that 

there is a positive correlation between funding and academic outputs. Accordingly, the positive 

                                                

13 We do not believe that this relationship between funding and scientific production (and of its quality) is infinite. We examined a cubic term in 
the regressions but it turned out non significant. Considering the wisdom of the granting councils and of the peer review process, however, we 
very much doubt that an embarrassment of riches in academia is likely to appear. 
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effect of funding suggests that a Matthew effect (Merton 1968) that is at play here, hence 

suggesting that greater productivity and greater influence imply greater funding and thus that 

greater funding implies greater productivity and greater influence. 

The relationship between funding and scientific output always matters to answer policy questions 

and funding allocation decisions. Although prior studies in various fields or specific universities 

have examined this relationship (see Arora et al. 1998; Jacob and Lefgren 2011; Lewison and 

Dawson 1998; Zucker et al. 2007), our study presents a detailed comparison of nanotechnology 

between Canada and the US. 

 

     

Figure 3.1: The effect of average amount of government grants, ln(GovGrant3), on (a) the 
number of papers in the US, (b) the number of citations in the US 

 

Regarding scientific collaborations, we find that betweenness centrality has a remarkably positive 

and significant effect on the number of papers in both Canada and the US. Turning to the 

influence of this central position of researchers on the number of citations received by papers, we 

find a positive impact on the number of citations in both the US and Canada. It shows that a 

higher intermediary position of researchers in co-publication networks increase the number of 

scientific papers and research quality in the field of nanotechnology. 

Continuing on network measures, we find that past individual cliquishness of scientists 

contributes to a positive impact on the publications in Canada and the US. 

When we add the quadratic term of cliquishness, we lose the significant results for the models 

accounting for endogeneity (2SLS models) in Canada. But in the US plotting the resulting 

quadratic curves shows a positive effect on the number of publications up to the maximum value 
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of an inverted U-shaped curve (see Figure A.1 in the Appendix A). This suggests that the number 

of papers starts decreasing with higher cliquishness. 

Although researchers tend to collaborate with other scientists to generate more publications, a 

greater integration eventually hampers their activities beyond their collaborative circle in this 

multidisciplinary field: therefore, researchers should avoid acting solely in higher cliquishness 

groups and explore beyond their restricted networks. 

Similarly, the impact of the past individual cliquishness follows an inverted U-shaped curve on 

the number of citations in Canada when we account for the nonlinear impact indicating that 

scientific production quality starts decreasing beyond the maximum value of the cliquishness, but 

in the US we only capture the linear impact on the number of citations (see Figure A.1 in the 

Appendix A). A better network position generally enhances research productivity and research 

quality of scientists in both studied countries. 

We also examined whether there is a relationship between invention disclosures of academic 

researchers and their scientific output. The results show that the average number of patents to 

which a researcher has contributed over the past 3 years has a positive influence on his/her 

scientific production in Canada. These industrial interests increase the number of publications 

and the results of our first econometric model (model 1) show a reinforcing effect on the research 

quality of academic scientists in Canada. This can also reflect a self-selection effect rather than 

superior performance (see Moed 2007; Wildhagen 2009; Wagner 2010). The observed 

reinforcing effect may therefore derive from the fact that academic scientists with higher prior 

performance regarding scientific production move to patenting activities. Similarly, Cummings 

and Kiesler (2008) show the self-selection bias in successful collaborations in which 

collaborators that have had experience of working closely in the past develop strong ties with 

those collaborators in the future again and this plausibly result in higher performance. 

In the US, no significant results are found for the correlation between the number of patents in 

the past 3 years and the quantity and quality of scientific production in the field of 

nanotechnology. However, our results in Canada are similar to those of Azoulay et al. (2009), 

Czarnitzki et al. (2007) and Van Looy et al. (2006), who suggest a reinforcing effect of patenting 

on scientific outputs and highlight the fact that academic inventors create output of significantly 

higher quantity and quality. We posit that the same effect is at play in Canada in the field of 

nanotechnology and as a consequence, that the involvement in entrepreneurial activities within 
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universities is not negatively associated with publication: on the contrary, these patenting 

activities may increase the quantity and quality of publications. 

We defined a dummy variable taking the value 1 for Canadian scientists and the value of 0 for 

scientists that are affiliated to the US, to examine the difference between Canada and the US. We 

then re-estimated our regressions on the pooled sample. We run regressions for all four models 

but only present the first model in this paper14. The findings show that in the US, government 

funding has a stronger impact on both the quantity and the quality of scientific production 

compared to Canada. But regarding the network characteristics, the intermediary position of 

scientists measured by betweenness centrality comes to be more important in nanotechnology 

research outputs in Canada and cliquishness has higher impact on the quantity of research in the 

US. The results are shown in Table 3-5. 

Our results reveal that scientists who receive government funding contribute to a more prolific 

scientific production in both countries and of a higher quality in the US. Marginal effects are 

commonly used to examine how much a dependent variable is expected to increase or decrease 

by one unit change of other variables (Cameron and Trivedi 2009; Wooldridge 2002). We 

calculated Marginal Effects at the Means (MEMs)15 for the number of papers and the number of 

citations in both Canada and the US (presented in Table 3-6). The marginal effect of government 

grants on the number of papers in Canada and the US shows that additional funding leads to 

approximately 4 times more citations in the US than in Canada but only to a slight increase in 

impact on the number of papers in the US. We also find that for the marginal effect of the 

network characteristics, betweenness centrality corresponds to more papers and higher quality 

papers in Canada compared to the US while cliquishness has quite the same impact on the 

quantity of papers in both countries and higher impact on research quality in Canada. We can 

however conclude that while government funding is more important in the US, collaboration 

between researchers is more likely to enhance quantity and quality of research outputs in Canada. 

 

 

                                                

14 The full results are available from the authors in an unpublished appendix. 
15 In this model, marginal effects are computed to measure a change in one of explanatory variables when the values of other explanatory 
variables are set at their means. 
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Table 3.5:The comparison of the impact of public funding on nanotech papers’ quantity and 
quality in Canada and the US - Second Stage of regression results  

Variables
 nbPaperit

 
 nbCitation5it

 

W/O Endog 
Model (1) 

2SLS 
Model (1) 

 W/O Endog 
Model (1) 

2SLS 
Model (1) 

ln(GovGrant3it-1) 0.0265 *** 
  

 0.0225 ***               
 (0.0037) 

 
              
 

 (0.0087) 
 

              
 nbPast3Patit-1

 
0.0034  -0.0011   0.0128  0.0082  

(0.0089) 
 

(0.0078) 
 

 (0.0215) 
 

(0.0194) 
 ln(104×BetweenCentit-2)

 
0.1671 *** 0.1333 **  0.3245 *** 0.3007 ** 

(0.0577) 
 

(0.0548) 
 

 (0.1218) 
 

(0.1176) 
 ln(103×Cliquishnessit-2)

 
0.0916 *** 0.0956 ***  0.0359 *** 0.0411 *** 

(0.0061) 
 

(0.0059) 
 

 (0.0132) 
 

(0.0137) 
 dCanada 0.2937 *** 1.2064 ***  -0.2335 * 0.4073 ** 

(0.0716)  (0.1036)   (0.1257)  (0.1890)  
dCanada × ln(GovGrant3it-1)

 
-0.0255 *** -0.2295 ***  -0.0071  -0.1445 *** 

(0.0085)  (0.0190)   (0.0125)  (0.0367)  
dCanada × nbPast3Patit-1

 
0.1003 *** 0.1051 ***  0.1116 *** 0.1174 *** 

(0.0159)  (0.0152)   (0.0268)  (0.0242)  
dCanada × ln(104×BetweenCentit-2)

 
0.2005 *** 0.2337 ***  -0.0483  -0.0275  

(0.0765)  (0.0631)   (0.1456)  (0.1364)  
dCanada × ln(103×Cliquishnessit-2)

 
-0.0759 *** -0.0757 ***  -0.0190  -0.0207  

(0.0145)  (0.0134)   (0.0223)  (0.0218)  
Years (1996-2005) Yes  Yes   Yes  Yes  
Prediction(GovGrant3it-1)-2SLS               

 
0.2424 ***                

 
0.1715 *** 

              
 

(0.0203) 
 

               
 

(0.0399) 
 Constant 0.5276 *** -0.6292 ***  3.7725 *** 2.9861 *** 

(0.0823) 
 

(0.1354) 
 

 (0.1762) 
 

(0.2799) 
 Inflate          

ln(GovGrant3it-1) -0.0144 ***    -0.0291 ***   
(0.0028)     (0.0034)    

nbPast3Patit-1
 

0.0557 *** 0.0546 ***  0.1021 *** 0.0988 *** 
(0.0049)  (0.0049)   (0.0083)  (0.0081)  

ln(104×BetweenCentit-2)
 

-0.5422 *** -0.5253 ***  -0.7851 *** -0.7689 *** 
(0.0550)  (0.0564)   (0.0517)  (0.0501)  

ln(103×Cliquishnessit-2)
 

-0.2712 *** -0.2583 ***  -0.2471 *** -0.2414 *** 
(0.0054)  (0.0055)   (0.0061)  (0.0061)  

Prediction(GovGrant3it-1)-2SLS   -0.0566 ***    -0.1097 *** 
  (0.0075)     (0.0081)  

Constant 2.0990 *** 2.1576 ***  3.3520 *** 3.7285 *** 
(0.0269)  (0.0536)   (0.0320)  (0.0494)  

Nb observations 64691 
 

64691   64691 
 

64691  
Nb Groups 37339 

 
37339   37339 

 
37339 

 Loglikelihood -38077.5 
 

-37107.6 
 

 -163417 
 

-158949 
 χ2 639.20 *** 921.81 ***  114.74 *** 125.62 *** 

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 

Table 3.6: Estimated Marginal Effects in Canada and the US  

Variables 

Canada The US 
Delta method (dy/dx) Delta method (dy/dx) 

nbPaperit 

Model (1) 
nbCitation5it 

Model (1) 
nbPaperit 

Model (1) 
nbCitation5it 

Model (1) 
ln(GovGrant3it-1)

 
0.0443 *** 0.0856  0.0507 *** 0.3361 *** 

 (0.0124)  (0.0634)  (0.0025)  (0.0377)  
nbPast3Patit-1

 0.0629 *** 1.1827 *** -0.0075 *** -0.0515 *** 
(0.0125)  (0.2040)  (0.0010)  (0.0195)  

ln(104×BetweenCentit-2)
 

0.3179 *** 4.9079 *** 0.0948 *** 0.5987 *** 
(0.0275)  (0.6094)  (0.0159)  (0.1243)  

ln(103×Cliquishnessit-2) 0.0442 *** 0.6525 *** 0.0545 *** 0.2978 *** 
(0.0049)  (0.1124)  (0.0014)  (0.0232)  

Note : Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1) 
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3.6 Conclusions 

As we mentioned in the introduction, in recent years, governments have launched research 

financing programs increasingly targeted towards nanotechnology development within 

universities to incite the growth of this emerging technology. It is thus of great importance to 

further understand whether government funding can indeed enhance the success of this 

development and can be powerful to lead research in the academic realm. Debates have arisen on 

the question of whether public funding enhances the scientific outputs in emerging high 

technologies and to that effect we have examined publications of the very promising field of 

nanotechnology as a typical example of science-based technology. Nanotechnology is still in the 

early stages of its lifecycle and as such, the role of public funding is of paramount importance for 

its development. We take into account the nanotechnology-related scientific output in Canada and 

compare the efficiency and productivity of government funding in this high technology with the 

US as a leading country in nanotechnology research development.  

At the beginning of this article, we set out to examine three hypotheses, one related to the public 

funding of research and another one to the collaboration related to research. In the third 

hypothesis, we compare the funding effect in Canada and the US. Let us address each of these 

hypotheses in turn. Regarding the influence of public funding on scientific production, the impact 

on the number of papers is overwhelmingly significant and positive in the United States, where 

both the number and the quality of publications increases as funding amount rises. However, for 

the publication quality, this positive relationship is only observed in the US. The results for 

Canada do not show that government funding has an impact on the publication quality. These 

results are supporting both Hypothesis 1a and Hypothesis 1b for the US and only Hypothesis 1a 

for Canada. Our results, hence, are in general accordance with the work of various scholars 

(Adams et al. 2005; Adams and Griliches 1998; Arora et al. 1998; Blume-Kohout et al. 2009; 

Jacob and Lefgren 2007; Payne and Siow 2003; Sauer 1988), on the crucial importance of 

funding for the production of scientific output. Although, in general our results are in line with 

previous studies, to our knowledge, this is the first time that a study focuses on the impact of 

funding on nanotechnology in both Canada and the US and the comparison between these two 

countries in addition to considering the importance of scientific networks at the same time. 

We include the industrial interests of academic researchers to further understand whether patents 

representing potential commercialization are associated with the production of academic 
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publications. Our study on nanotechnology-related patents shows that patenting activities in 

universities are associated with more scientific papers only in Canada and not in the US and even 

in Canada this positive effect is more consistent in terms of the productivity of researchers rather 

than in terms of the quality of their publications. 

However, the relationship between these two types of research outputs could be described as 

complementary and reinforcing rather than substitutive. Although we expected to observe a shift 

in research output of academic inventors toward more applicable and commercial research, we 

found that researchers who contribute to more and higher quality patents in previous years are 

more likely to generate publications of higher quantity in Canada. Nanotechnology, however, is a 

young field and has considerable potential in a wide range of disciplines: It is an emerging 

technology which is close to its science base, but it is getting increasingly closer to technology 

applications in a variety of domains and subdomains. As such, we could find a direct connection 

of academic inventors with their publications, generally similar to the work of some scholars in 

other fields (Azoulay et al. 2009; Breschi et al. 2007; Czarnitzki et al. 2007; Wong and Sing 

2010), implying that academic scientists who produce patents also exhibit a higher research 

performance. We however support their findings in the field of emerging nanotechnology in 

Canada.  

In the field of nanotechnology, we observe an increasing tendency of researchers to form research 

teams whose expertise span over a wide range of domains. Funding agencies thus commonly 

allocate financial resources to teams of scientists rather than individual researchers. In our second 

hypothesis we therefore focus on the way in which these collaborative teams are structured and 

shed some light on the impact of the network architecture on the scientific production of the 

teams. We examine the research performance of scientists using previous collaborations in the 

past 3 years to find the impact on scientists’ subsequent productivity. 

In this empirical study, we discover that the position of individual researchers in scientific 

networks does influence their knowledge production. We find a remarkably positive and 

significant impact of the intermediary position of scientists on their number of publications and 

article quality in both Canada and the US. With respect to the past individual cliquishness of 

researchers in their co-authorship networks, we find that the cliquishness value yields a positive 

impact on scientific output in Canada. As such, we observe this positive impact only when we 

add a quadratic term of cliquishness to the model in which it shows a positive impact until a 
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threshold is reached.  

Beyond this specific point further along the curve, a higher clustering coefficient decreases the 

efficiency of articles published implying that researchers working in more clustered collaborative 

environments become less productive and efficient. This may be explained by the possible 

inclination of authors in cliquish environments to cite scientists with whom they are linked in 

their network. 

Regarding this collaboration measurement in the US, our results tend to support the notion that 

clustered environments enhance scientific productivity and confirm the efficiency of these 

collaborative networks in knowledge diffusion. We find that clustered networks increasingly 

augment scientific productivity and efficiency of a scientist. We thus accept Hypothesis 2a and 

Hypothesis 2b for which our results are generally in line with Balconi et al. (2004), Breschi et al. 

(2006), Newman (2001), Ni et al. (2011), Persson et al. (2004) and Velema (2012) who highlight 

the positive influence of collaborations on research productivity. 

In regards to the comparison of Canada and the US, when we compare the marginal effects in 

both countries and regression results of pooled sample, we find that government grants yield a 

greater effect on the nanotechnology publication in the US, while better network characteristics 

lead to more and higher quality publications in Canada compared to the US. Thus we reject both 

Hypothesis 3a and Hypothesis 3b in terms of the higher influence of government grants in 

Canada rather than in the US. 

There are a number of limitations to this research. One concern is the mobility of researchers 

across the US and Canada: Since the main purpose of this research is the comparison of the 

research productivity for the researchers affiliated to Canadian and American institutions, the 

mobility of these researchers and the resulting changes in the institutional affiliations clearly 

affect the results of this study. This issue, however, could not be considered in this study. The 

other limitation lies in the accurate identification of nanotechnology papers. In spite of our 

attempt to extract and analyze papers most closely related to nanotechnology, we may lose some 

papers due to our narrow definition of what constitutes a nanotechnology article. The other 

limitation is merging different databases that may have caused some deterioration or loss of the 

data. Another issue that concerns this study is using different data sources for Canada and the US, 

which can cause inconsistency in our comparison of the two countries. Despite these caveats, we 

are confident that our results are a step in the right direction and identify avenues for future 
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research on research funding and on the importance and influence of research networks. 
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CHAPTER 4 ARTICLE 3: IMPACT OF PUBLIC AND PRIVATE 

FUNDING ON NANOTECHNOLOGY RESEARCH QUALITY  

Leila Tahmooresnejad, Catherine Beaudry 
 

4.1 Abstract 

Government agencies have a long history in funding academic research and are one of the 

primary forces fostering new technologies in the last decades. Nanotechnology seems to have a 

huge potential to bring benefits for economic growth and has shown its ability to attract interest 

from the private sector as well. This paper analyzes the effects of public and private funding on 

subsequent scientific outputs of academic research in this emerging technology. We investigate 

whether public grants increase research quality and whether private funding is complementary in 

enhancing the quality of scientific publications. Using a panel data set from 1985 to 2005 in 

Quebec, we estimate time-related models that study the factors that influence citations 5 years 

after publication. The results show that the influence of public grants on the number of citations 

as a proxy of paper quality follows almost a positive linear curve implying a positive impact 

proportional to the amount of public funding received. In contrast, industry funding exhibits a 

non-linear negative effect. The estimates suggest that private research funding from industry is a 

detrimental to publication impact. 

Keywords: Research funding, private funding, scientific papers, citations, nanotechnology 

4.2 Introduction 

In the past decades, the government has heavily funded nanotechnology research as larger 

amount of public grants have been awarded for academic research in this emerging technology. 

Various scholars (Canton, 2001, 2007; Knol, 2004; Lorenzoni et al., 2009; Schummer and Baird, 

2006; Vokhidov and Dobrovol’skii, 2010) have studied the anticipated economic value of 

nanotechnology and have forecasted that nanotechnology applications undoubtedly stimulate 

economic growth. This led to a fast increase in nanotechnology funding and subsequent research 

growth to meet this challenge. On an international level, the number of nanotechnology 
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publications has increased tremendously over recent years (Hullmann, 2006; Roco, 2011; Ye et 

al. 2012; Youtie, 2008).  

Although, federal funding is responsible for a considerable portion of university funding, this 

new technology attracts private funding despite the fact that nanotechnology is still inherently 

closer to basic research (Knol, 2004; Lorenzoni et al., 2009; Payne and Siow, 2003; Schummer 

and Baird, 2006). In general, although basic research is significant for development of new 

technologies (Rubini, 2010), but it is less likely to attract private funding and requires sufficient 

government funding, as forecasting or even measuring its economic value is difficult. Dasgupta 

and David (1994) rightfully show that the outcomes of basic research are highly uncertain and 

economic payoffs are not properly observed in the short term. In this regard, private companies 

mostly follow short-term objectives rather than blue-sky research. Yet, according to Gulbrandsen 

and Smeby (2005), private funding might have a role in defining research topics since researchers 

with more industry funding collaborate more with other scientists and their research is described 

as more applied. Identifying the distinctive impact of public and private funding in this research 

will thus contribute to our understanding of the efficiency of funding allocation. This is 

particularly important in light of the recent investments in nanotechnology research. 

Previous studies mostly focus on government funding in academic research and generally show 

that federal funding has a small positive impact on publication quality (Jacob and Lefgren, 2011; 

Payne and Siow, 2003). It is not yet clear from the literature, which still lacks enough studies on 

this issue, especially regarding scientific quality, that research funding from private sources has 

an impact on scientific productivity and quality, whether positive or negative. The lack of studies 

is mainly due to confidentiality issues regarding this type of company-related data. 

Confidentiality issues often preclude scholars from having access to such private investments. As 

a consequence, most prior studies suffer from a lack of information on private funding, 

particularly at the level of the individual researcher. Our access to privileged information 

regarding private contracts for Quebec academic researchers gives us the opportunity to remedy 

to this lack of evidence. 

Quebec has been one of the most active Canadian provinces in terms of nanotechnology 

investment, science, research and development since 2001, and has initiated considerable 

financial support. The creation of NanoQuébec in 2001 exemplifies this public support 
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(NanoQuebec, 2010). Our paper hence complements the studies that find a positive impact of 

public funds on scientific productivity by focusing on the other important source of funding, i.e. 

that invested by industry in a high technology field which has been growing over the last few 

decades. We therefore aim to measure the influence of funding on academic research and to 

compare the impact of two funding sources, i.e. public and private. Following the work of 

Beaudry and Allaoui (2012) on nanotechnology publications, in this study, we focus on the 

quality of scientists’ publications as a measure of a scientist’s impact rather than on scientific 

productivity. 

Understanding the impact of different sources of funding is critical and can result in the efficient 

allocation of each or in a combination of these investments, which then generates higher quality 

research outputs. This paper offers important contributions to the literature to further understand 

the impact of public and private research funding on the quality of publications in an emerging 

field. For instance, our results show that although public funding has considerable impact on the 

quality of publications generated by nanotechnology Quebec scientists, private funding has a 

strong negative impact, even when controlling by the patenting activities of these academics.  

The remainder of the paper is organized as follows. Section 2 presents the conceptual framework, 

based on the literature, that inspires our research hypotheses. We then describe the data, the 

variables and the methodology employed in Section 3. Finally, regression results are analysed in 

Section 4 and concluding remarks are presented in Section 5. 

 

4.3 Conceptual framework 

In recent years, many countries have increased their investment in nanotechnology research in 

universities in order to incite future innovations (Bhattacharya, 2007; Canton, 2001; Davies, 

2007; Hullmann, 2006; Knol, 2004; NSF, 2001). The findings of Seear et al. (2008) illustrate that 

the main sources of global nanotechnology research funding is composed of government and 

corporate investment. According to Roco (2011), the worldwide investment in nanotechnology 

R&D from both the public and private sectors was $15 billion in 2008, resulting from a 35% 

average annual growth between 2000 and 2008. Providing the complex infrastructure and 
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instruments to develop nanotechnology research requires access to sufficiently large amounts of 

investment in order to foster the knowledge development in this multidisciplinary field.  

The relationship between funding and research performance is demanding by policy makers since 

evidences of performance and benefits of funded research are required as sources of funding are 

scarce and needs to be effectively employed (Kuhlmann, 2003; Shapira and Furukawa, 2003). 

Mostly prior studies examine the frequency of publications as a performance indicator and only a 

few focus on research quality; the publication rate of research outputs is a more common issue to 

investigate. For example, Adams and Griliches (1998) find that at the aggregate level (group of 

universities), the relationship between scientific output (measured by both the number of 

publications and citations) and research funding exhibits a constant returns of production process, 

while at the individual university level, the relationship is more akin with diminishing returns. In 

addition, the authors also make a distinction between federal research funding and non-federal 

funding, which could be construed as closer to private funding. They find the elasticities of non-

federal funding to be systematically lower than federal funding, hence implying a more important 

impact of public research funds. In another study, Boyack and Börner (2003) suggest that there is 

little correlation between government funding and citation rates of research publications in the 

behavioural and social sciences field. According to a study by Payne and Siow (2003) on 74 

research universities, government funding has a positive influence on the research outputs of 

universities, although the effect on the number of citations is small and imprecise. In the same 

vein, Jacob and Lefgren (2011) also suggest a relatively modest effect of National Institutes of 

Health (NIH) grants on the number of citations obtained by publications resulting from NIH 

grants. While Similarly Shapira and Wang (2010) found a mixed impact on the citation, Lewison 

and Dawson (1998) found that the number of funding sources matters in publishing articles in 

journals of higher impact factor. 

Receiving public grants has a lever effect on the capacity to raise further research funds. The 

findings of Jacob and Lefgren (2011) show that in the US, receiving NIH funding influences the 

capacity to raise funding from other sources such as that from the National Science Foundation 

(NSF) and from private sources, i.e. from industry. A study of US universities reveals that 

receiving federal funding from NSF and NIH can be a sign of recipient quality and increases the 

chance of receiving non-federal funding (Blume-Kohout et al., 2009). These non-federal 
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organizations assume that federal funding reflects higher quality, which prompts them to allocate 

additional funding. Researchers unsuccessful in obtaining public funding must however find 

other sources in the private sector. Hence there seem to be a substitute/complement ambiguity 

related to public and private funding. 

Previous studies have used different quantitative and qualitative methods to measure how funding 

influences academic research. Wallin (2005) indicates that bibliometric indicators need precise 

knowledge and should be used correctly to obtain appropriate results. Although some studies 

raise a general concern in using citations - such as the number of citations may be due to the 

growth or development of a specific field; or, researchers may discover a flaw in a paper and try 

to correct it in a new publication (Kostoff, 1998; MacRoberts and MacRoberts, 1996; Wallin, 

2005) - citation analyses are frequently used to identify valuable research and to assist grant 

awarding bodies in the efficient allocation of investment (Agasisti et al., 2012; Laudel, 2005; 

Rigby, 2011).  

Other works emphasize the importance of collaboration and social networks on the impact of 

funding on research quality. Adams et al. (2005), for example, state that public funding affects 

the size of scientific teams, which in return leads to more citations. Scientists with prestigious 

awards and a large stock of federal funding indeed collaborate in larger teams and this 

collaboration generally provides better opportunities for their work to be more cited.  

In light of the evidence presented in the literature, we propose the following hypothesis regarding 

the impact of public grants on the quality of nanotechnology-related publications: 

Hypothesis 1: Nanotechnology scientists who receive greater amounts of public funding 

contribute to higher-quality publications. 

The current debate exposes very different views regarding the issue that the integration of 

university research with industry can also influence research outputs. Some studies state that 

increased links with industry have a positive impact on research outputs (Abramo et al., 2009; 

Baba et al., 2009; Banal-Estanbol et al., 2011; Guan & Wang, 2010; Landry et al., 1996; Siegel 

et al., 2003), others argue that it has a negative impact (Argyres and Liebskind, 1998; Owen-

Smith and Powell, 2001; Siegel et al., 2003; Ambos et al., 2008) on scientific outputs. For 

example, Lexchin (2005) shows that industry funding hampers scientific progress and it may 

result in stopping research in mid-flow. Banal-Estanol et al. (2010) suggest that an average level 
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of industry collaboration yields higher quality research outputs, although the number of 

publications diminishes with higher levels of private funding and industry involvement. 

Blumenthal et al. (1996) and Gulbrandsen and Smeby (2002) suggest that industry funding 

positively contributes to academic productivity. Bruno and Orsenigo (2003) highlight the 

importance of university productivity in attracting industrial funds, as scientifically productive 

universities are more likely to receive high levels of funding.  These previous studies however 

aimed at discovering the impact of collaboration between university and industry rather than 

directly analyze the effects of funding from industry. 

Despite the mixed evidence presented above, we propose in our second hypothesis that private 

funds resulting in industry links with academic research have a positive impact on the quality of 

nanotechnology-related publications. 

Hypothesis 2: Nanotechnology scientists who receive greater amounts of private funding 

contribute to higher-quality publications. 

 

4.4 Methodology 

4.4.1 Data and Variables 

The data used in this paper come from a unique dataset of Quebec scientists that relies on a 

combination of several sources: Elsevier’s Scopus provides information on publications and 

authors; Public and private funding information is available via the Système d’Information sur la 

Recherche Universitaire (SIRU) of the Quebec Ministry of Education, Leisure and Sports; The 

United States Patent and Trademark Office (USPTO), the federal agency for granting US patents 

and registering trademarks, provides information on inventors and patents16 (name, affiliation, 

city, application date, grant date, assignees, etc.). We prefer to use the US database because 

Canadian inventors largely tend to register their patents in the USPTO (Beaudry and 

Schiffauerova, 2011). Among the most frequently used scientific databases (Science Direct, 

Scopus, Web of Science, Microsoft Academic Search, Scirus, Google Scholar, etc.), we decided 

                                                

16 Patents are used as control variables and will be described further in this section. 
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to choose Scopus because this database covers a wide diversity of fields and journals, and more 

importantly, it generally matches individuals with their affiliations which greatly facilitates the 

disambiguation of similarly named scientists. Given the multidisciplinary nature of 

nanotechnology a wide range of disciplines is crucial for the purpose of this study. 

SIRU contains both government and industry funding that was awarded to all university scientists 

in Quebec for the period of 20 years (1985-2005)17. The data comes directly from the university 

accounts for each project and provides exact data on a yearly basis18.  

We used the nanotechnology keyword queries of Porter et al. (2008) to extract the relevant 

nanotechnology papers and patents, from which we extracted the names of individuals that we 

then matched to the other databases to build the final dataset. Matching was not trivial our 

approach involved matching data using scientists’ names. This process is likely to result in 

possible errors in uniquely identifying scientists having similar names (synonymy) or assigning 

different IDs to the same scientist whose name is written differently in various databases 

(homonymy). To circumvent these common problems, we utilize a variety of other information 

about scientists to define a unique ID for each academic researcher and thus to minimize the 

incidence of wrong matches. The main information was provided by the affiliation of scientists in 

both Scopus and SIRU in addition to the address of academic inventors in the USPTO database. 

A large amount of manual work and careful examination was however necessary to clean the data 

and assign a unique ID number.  

To validate the hypotheses mentioned in the previous section, we need to integrate these 

publications, patents and funding databases into one dataset using the unique ID for each 

scientist. We then condensed these databases to obtain data on a yearly basis (panel data) which 

contains the number of publication and patents, the number of citations, and the amount of grants 

and contracts per scientist, per year for the 1985-2005 period. We finally restrict our resulting 

sample data to 1996-2005, after having calculated the lagged variables on 3 years and 5 years 

averages. The reason for concentrating on this subset is twofold; first according to the growth of 

                                                

17 The data are available for this period and not for subsequent years. 

18 Any funds that do not transit via the university system is not available but given the size of the grants awarded and 

the necessity for expensive infrastructure, we estimate the hidden funds (grants and contracts) to be minimal.  
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nanotechnology research outputs, scientists had only recently started being involved in this 

emerging area before 1996 and the data is rather scarce prior to that period, hence this timeframe 

seems too early for nanotechnology. Second, there has been a considerable change for the better 

in the quality of Scopus and SIRU after 1996. 

Following the literature that states that higher-quality research receives more citations (Kostoff, 

1998; Lin et al. 2007; MacRoberts and MacRoberts, 1996; Wallin, 2005; Weingart, 2005), we 

use the number of citations as a proxy for paper quality. There is a positive correlation between 

the importance of a paper and the degree to which a paper is cited in later research publications. 

Kostoff (1998) indeed states that citations provide links to the historical context of specific 

contributions to papers and highlight a wide interest in those contributions. We define nbArtCit5 

as the number of citations received within 5 years19 of publication by the articles published. 

During the course of this research, we tried different dependent variables. The average number of 

citations per paper did not provide robust results, nor did the h-index calculated on a yearly basis 

(it is important to note here that we use panel data for our analyses). In fact, the h-index20 is 

somewhat inappropriate because it evaluates the impact of an individual over the course of a 

career while we are interested here in whether better funding enhances paper quality on a yearly 

basis.  

We assess the influence of funding on publication quality based on average amounts of public 

grants (AvgGrant3) and private contracts (AvgContract3) over the past three years. Yearly 

measures proved too volatile to provide robust results and longer periods (five years for instance) 

reduced the sample size because of unreliable data prior to 1996 and were very rarely significant. 

In addition to these two variables of interest, our models include a number of controls which are 

described in the following paragraphs.  

                                                

19 We have calculated citations after 3, 5 and 7 years but present the 5-year citations in this paper as they provided 

the most consistently significant results in the regressions.  

20 The h-index is an indicator based on the set of the most cited papers. This index aims to measure both the 

productivity and citation impact. A researcher has index h if h of the papers received at least h citations each and the 

other papers have not received more than h citations each (Hirsch, 2005). 
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Industry contracting often fosters patenting activities and may contribute to increasing university 

patents because firms are generally associated with applied knowledge and focus on short-term 

objectives. Patenting can however be result of both government and industry funding. To our 

knowledge, few studies in literature concentrate on the effect of academic patenting on research 

quality, although more debates exist on publishing-patenting trade offs. Azoulay et al. (2009), for 

instance, find a positive effect on the rate of publications, but a weak effect on publication 

quality. A study by Breschi et al. (2008) based on a sample of 592 Italian academic inventors 

show that academic inventors publish more and better quality papers compared to their non-

patenting colleagues. We therefore seek to examine the reinforcing or limiting effect of patenting 

activity on nanotechnology publication quality. We therefore include the number of patents to 

which researchers have contributed in the past three years (nbPatent3) in the models to examine 

the influence of innovative activities on the research quality.  

In the theoretical framework, we alluded to the fact that research is rarely performed alone but 

rather within collaborative teams. Many scholars have studied the impact of collaboration on 

research productivity (Breschi and Lissoni, 2005; Eblen et al., 2012; Lee and Bozeman, 2005; 

Sala et al., 2011; Wang and Guan, 2010). Research generally finds that increasing levels of 

collaboration within scientific networks have a positive impact on scientific productivity 

(Frenken et al., 2005; Glänzel and Schubert, 2005; Rigby and Edler, 2005). Balconi et al. (2004) 

specifically suggest that working in collaboration with other scientists helps academic scientists 

gaining a higher citation rate. Within networks, co-authorship enhances research performance 

(Baba et al., 2009; Balconi et al., 2004; Breschi and Lissoni, 2005; Breschi et al., 2006; Ni et al. 

2011; Singh, 2007; Wang and Guan, 2010; Youtie et al., 2013). 

Social network analysis provides sophisticated tools to measure the importance of various 

individuals with the co-publication network. The resulting network characteristics can thus be 

used as controls regarding collaborative work. Better-positioned researchers in the co-publication 

network are more likely to attract citations due to their enhanced reputation. In order to 

investigate a scientist’s position in scientific networks, we characterize the networks of co-

authors using the software Pajek21. We construct time evolving sub-networks corresponding to 

                                                

21 Pajek is an appropriate program to analyze large networks and it is easy to use and free for noncommercial use. 
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three-year and five-year windows using the co-authorship links in order to track and measure the 

evolution of collaboration over time. In this paper, we only include the network characteristics of 

three-year intervals and analyze the impact of these indicators on the publication quality of 

researchers as these three-year intervals generate the most significant results. 

More precisely, we calculate two network indicators: betweenness centrality (BtwCent3) and 

individual cliquishness (Cliqness3) of researchers in three-year moving intervals within co-

authorship networks. Betweenness centrality measures the importance of a node (researcher) as 

an intermediary in the network. For one specific researcher, this attribute is measured by the sum 

of the shortest paths between two researchers that include this researcher over the total number of 

possible shortest paths between these two researchers (Brandes, 2001; West, 2001). Individual 

cliquishness refers to the clustering coefficient of a researcher in the network, defining the 

probability of a connection between two researchers if both are connected to a mutual 

collaborator (Barabasi, 2002). The clustering coefficient, used as a measure of cliquishness, is 

high for the researchers who co-author articles in a highly interconnected subfield and is low for 

an individual researcher who collaborates widely with other researchers that tend not to publish 

together (Pike, 2010). 

Finally, we add year dummy variables to account for residual time related effects. Table B.1 in 

Appendix B presents the variables and their definitions. Tables B.2 and B.3 show the standard 

descriptive statistics. 

4.4.2 Model Specification 

Our model relies upon the assumption that the quality of scientific productions published by 

academic researchers depends on the average amount of research funding that a researcher 

receives from government and industry sources. Due to the fact that the dependent variable is 

count data, two techniques are recommended: the Poisson and negative binomial regressions 

specific to panel data. In the case of over-dispersion, the negative binomial regression is more 

appropriate and enables the model to have better flexibility in modeling. The negative binomial 

model removes the equidispersion restriction of the Poisson via the introduction of latent 

heterogeneity in the conditional mean of the Poisson model (Greene, 2008). 
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While the negative binomial model takes the over-dispersion into account, it cannot adequately 

deal with an excessive number of zero observations in the data. High number of zero counts in 

such data is common and frequently affects estimations and standard errors. To verify the 

presence of an excess number of zeros in our panel data, the Vuong statistic is suggested to test 

whether the number of observed zeros exceeds the number of expected zeros under the negative 

binomial distribution assumption (Vuong, 1989; Green, 1994). The results of the Vuong test 

indeed show that the zero-inflation problem exists in our data and we have to use zero-inflated 

negative binomial (ZINB) regressions instead of negative binomial regressions to accommodate 

for excess zeros. 

If research grants were randomly allocated to researchers in the absence of endogeneity, equation 

(4-1) would be a sufficient model to be estimated. It shows the relationship between our 

explanatory variables and the dependent variable, nbArtCit5it, the number of forward citations 

received by the papers of scientist i in year t, within 5 years of publication22.  

nbArtCit5it = f

AvgGrant3it!1, AvgGrant3it!1[ ]2 ,

AvgContract3it!1, AvgContract3it!1[ ]2 ,

nbPatent3it!1, nbPatent3it!1[ ]2 ,

BtwCent3it!2,Cliqness3it!2, Cliqness3it!2[ ]2 ,
[BtwCent3it!2 "nbPatent3it!1],
[BtwCent3it!2 "Cliqness3it!2 ],dt
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  (4-1) 

An important consideration regards the fact that researchers with higher-quality outputs receive 

more funding, which in turn contributes to generating more publications that then receive more 

citations and contribute to facilitate raising further research funding. Blume-Kohout et al. (2009) 

demonstrate that federal funding is allocated to higher-quality researchers and that it also affects 

the non-federal funding raised. Private companies use the attribution of government funding as a 

sign of researchers’ quality to identify higher quality scientist with whom collaborate. Our 

funding variable (AvgGrant3) is therefore endogenous due to its potential correlation with other 

explanatory variables. A second cause for concern regarding endogeneity arises in our study via 

                                                

22 We tested 3-year, 5-year and 7-year citations and found the consistently significant results using 5-year citations. 
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the omitted variable measuring the intrinsic quality of scientists. Funding is assigned to higher 

quality and highly cited researchers, who are more likely to receive more citations for their later 

publications. Hence, we need to identify a number of instrumental variables to correct for 

potential endogeneity bias. Furthermore, funding is generally allocated to teams rather than to 

single researchers. The two factors, collaboration and funding, are thus intrinsically linked. 

In order to address the bias caused in regressions when faced with endogeneity, Wooldridge 

(2002) suggests the use of instrumental variables. Biro (2009) and Stephan et al. (2007) propose 

specific Two-Stage-Residual-Inclusion (2SRI) regressions as suitable modeling approach for IV 

estimations in this case. The main idea of this method is to estimate the endogenous variable 

(AvgGrant3) using ordinary least squares (OLS) regressions on a set of instruments and on the 

exogenous variables, which is the first stage regression. The second stage regression then uses the 

residual of the first stage regression as an explanatory variable in the model. More specifically, 

the first and second stage regressions to be estimated in our model are expressed as follows: 

ln AvgGrant3it!1( ) =!1 +"A1Ageit!1 +"A2Age2it!1 +"ChChairi +"anbArticle3it!1
+Variables2nd Stage+ #1i +$1it( )

nbArtCit5it =!2 +"G1 ln AvgGrant3it!1( )+!G2 AvgGrant3it!1( )"# $%
2
+ !1i +"1it( )

+!c1 ln(AvgContract3it!1)+!c2[ln(AvgContract3it!1)]
2

"b(ln(10
4 &BtwCent3it!2 ))+"c1(ln(10

3 &Cliqness3it!2 ))

+"c2 ln(10
3 &Cliqness3it!2 )"# $%

2
+!P1nbPatent3it!1 +!P2nbPatent3it!1

2

+"bp[ln(10
4 &BtwCent3it!2 )&nbPatent3it!1]

+"bc[ln(10
4 &BtwCent3it!2 )& ln(10

3 &Cliqness3it!2 )]

+ #tdt
t=1985

2005

' +$2i +%2it

 (4-2) 

As instrumental variables, we include the time elapsed since researchers began their 

nanotechnology-related activities, and use a scientist’s first publication as a proxy for their career 

age in nanotechnology (Age); this variable accounts for the fact that younger scientists probably 

receive less research funds because of their lack of a track record. Furthermore, we add the type 

of research chair (Chair) held by scientists to proxy the quality of a scientist. This variable is 

defined as an ordinal indicator that takes the value 0 if a researcher never had a Chair in the 

period considered, the value 1 if he holds an industrial chair, the value 2 for being a chair of one 
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of two Canadian federal granting councils, and the value 3 for a scientist / academic inventor who 

is a Canadian Research chair23, 24. Finally, to take researchers’ past publications into account for 

the capacity to raise funds from a publication track record, we include the average number of 

papers published over the past three years (nbArticle3) lagged one year.  

Using STATA, we perform the regression analyses with the zinb procedure by hierarchically 

adding the quadratic term of specific variables to examine possible nonlinearities, and interactive 

variables to analyze moderating effects of other variables. Although our data is built as a panel, 

there is no procedure in Stata to run zero-inflation models using panel data. In addition, to 

account for the non independence of repeated observations for the same academic researcher over 

several years we must thus revert to using the clustering option of the zinb procedure. 

4.5 Regression Results 

Our analyses considered numerous factors and lag structures for variables to achieve the most 

consistently significant results. The chosen lag structures of our independent variables are a one-

year lag for research funding and two-year lag for the network characteristics. Table 4.1 presents 

the basic estimates for the effect of public and private funding on the number of 5-year citations. 

These are the results of the zero-inflated negative binomial model that do not account for 

potential endogeneity. In Table 4.2 we empirically shed light on the issue of endogeneity with a 

rich set of control variables.  

As expected, the 2SRI regression suggests that public funding is endogenous. The instruments 

used to capture the potential endogeneity of the amount of grants are generally significant. We 

find that having a higher number of articles in previous years (nbArticle3) and being older and 

more experienced (Age) to have a significant effect in the first stage of regression (see Table B.4 

in Appendix B). Surprisingly, the importance of occupying a chair at some point in one’s career 

(Chair) does not influence fund raising.  

                                                

23 The Canada Research Chair program is at the center of a national strategy to enhance research excellence in 
various fields such as engineering, the natural sciences, health sciences, humanities and social sciences. Chair 
holders aim to improve the knowledge and train students to be highly skilled researchers (http://www.chairs-
chaires.gc.ca/). 
24 We tested both a yearly measure of the chair variable and a fixed ‘career’ measure, and chose the latter as a better 
measure of the inherent quality of a researcher. 
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Table 4.1 : Regression results of zero-inflated negative binomial model without accounting for 
possible endogeneity 

Note: ***, **, * show significance at the 1%, 5% and 10% levels and standard errors are presented in parentheses

nbArtCit5t (1) 
 

(2) 
 

(3) 
 

(4) 
 

(5) 
 

(6) 
 

(7) 

ln(AvgGrant3t-1)
 -0.0076 

 
 -0.0073 

 
 -0.0072 

 
 -0.0168   -0.2095 ***  -0.2230 ***  -0.2050 *** 

(0.0227) 
 

 (0.0225) 
 

 (0.0226) 
 

 (0.0221)   (0.0627) 
 

 (0.0629)   (0.0623)  

[ln(AvgGrantt-1)]2
                                         0.0144 ***  0.0161 ***  0.0142 *** 

                                        (0.0040)   (0.0040)   (0.0040)  

ln(AvgContract3t-1)
 0.0087   0.0301   0.0327   0.0232   0.0342   0.0294   0.0288  

(0.0120) 
 

 (0.0581) 
 

 (0.0576) 
 

 (0.0590)   (0.0557) 
 

 (0.0555)   (0.0564)  

[ln(AvgContractt-1)]2           -0.0020   -0.0024   -0.0012   -0.0033   -0.0030   -0.0029  
          (0.0051)   (0.0051)   (0.0052)   (0.0050)   (0.0050)   (0.0051)  

nbPatent3t-1
 0.0444   0.0475   0.1028 *  0.0906 *  0.0855 *  0.0416   0.1150 * 

(0.0482) 
 

 (0.0492) 
 

 (0.0536) 
 

 (0.0546)   (0.0503) 
 

 (0.0515)   (0.0637)  

[nbPatent3tt-1]2                     -0.0026 **  -0.0023 *  -0.0022 *            -0.0029 * 
                    (0.0013)   (0.0014)   (0.0013)             (0.0016)  

ln(104×BtwCent3t-2)
 0.3394 ***  0.3393 ***  0.3350 ***  0.0927   0.1073 

 
 2.0232 ***  -0.1083 ** 

(0.0582) 
 

 (0.0583) 
 

 (0.0586) 
 

 (0.0715)   (0.0701) 
 

 (0.5701)   (0.0444)  

ln(103×Cliqness3t-2) 
0.0095   0.0095   0.0089   0.8397 ***  0.7679 ***  0.0088   0.6544 *** 

(0.0192)   (0.0191)   (0.0191)   (0.1809)   (0.1752)   (0.0183)   (0.1778)  

[ln(103×Cliqness3t-2)]2         
 

         
 

         
 

 -0.1257 ***  -0.1157 ***            -0.0978 *** 
        
 

         
 

         
 

 (0.0264)   (0.0257) 
 
           (0.0262)  

ln(104×BtwCent3t-2) 
 × NbPatent3t-1

                                                   -0.0176   0.0489  
                                                  (0.0356)   (0.0617)  

[ln(104×BtwCent3t-2) 
 × NbPatent3t-1]2

                                                             -0.0174  
                                                            (0.0111)  

ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)

                                                   -0.3076 ***  0.3561 *** 
                                                  (0.1019)   (0.0911)  

[ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)]2

                   -0.0561 *** 
                  (0.0152)  

Years (1996-2005) Yes   Yes   Yes   Yes   Yes   Yes   Yes  

Constant 3.5961 ***  3.5821 ***  3.5823 ***  3.6116 ***  3.9417 ***  3.9357 ***  3.9110 *** 
(0.3760) 

 
 (0.3602) 

 
 (0.3614) 

 
 (0.3633)   (0.3835) 

 
 (0.3806)   (0.3850)  

Inflate                     

ln(AvgGrant3t-1) 
-0.0439 ***  -0.0446 ***  -0.0444 ***  -0.0364 ***  0.0704 *  0.0775 **  0.0719 * 

(0.0132)   (0.0133)   (0.0133)   (0.0130)   (0.0384)   (0.0393)   (0.0384)  

[ln(AvgGrantt-1)]2
                                         -0.0080 ***  -0.0089 ***  -0.0080 *** 

                                        (0.0028)   (0.0029)   (0.0028)  

ln(AvgContract3t-1)
 -0.0041   -0.0521   -0.0546   -0.0543   -0.0719 *  -0.0721 *  -0.0732 * 

(0.0079)   (0.0423)   (0.0423)   (0.0418)   (0.0422)   (0.0428)   (0.0423)  

[ln(AvgContractt-1)]2
           0.0045   0.0048   0.0047   0.0066 *  0.0069 *  0.0069 * 

          (0.0039)   (0.0039)   (0.0038)   (0.0039)   (0.0039)   (0.0039)  

nbPatent3t-1
 -0.0906 *  -0.0967 *  -0.1562 **  -0.1354 *  -0.1225   -0.0774 *  -0.1080  

(0.0516)   (0.0496)   (0.0740)   (0.0748)   (0.0751)   (0.0448)   (0.0773)  

[nbPatent3tt-1]2
                     0.0031   0.0025   0.0022             0.0016  

                    (0.0029)   (0.0028)   (0.0028)             (0.0026)  

ln(104×BtwCent3t-2)
 -0.8084 ***  -0.8082 ***  -0.8029 ***  -0.2536 ***  -0.2565 ***  -5.2657 ***  -16.3332  

(0.0873)   (0.0874)   (0.0870)   (0.0899)   (0.0898)   (1.4665)   (18.6714)  

ln(103×Cliqness3t-2)
 -0.1395 ***  -0.1391 ***  -0.1381 ***  -1.8442 ***  -1.8236 ***  -0.1407 ***  -1.7782 *** 

(0.0127)   (0.0127)   (0.0128)   (0.1929)   (0.1919)   (0.0128)   (0.1940)  

[ln(103×Cliqness3t-2)]2                               0.2527 ***  0.2501 ***            0.2430 *** 
                              (0.0283)   (0.0281)             (0.0285)  

ln(104×BtwCent3t-2) 
 × NbPatent3t-1 

                                                  -0.2668 *  -0.0741  
                                                  (0.1563)   (0.1945)  

[ln(104×BtwCent3t-2) 
 × NbPatent3t-1]2 

                                                            -0.0508  
                                                            (0.0651)  

ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2) 

                                                  0.7782 ***  5.1317  
                                                  (0.2495)   (6.3146)  

[ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)]2 

                                                            -0.4051  
                                                            (0.5333)  

Constant 
2.4631 ***  2.4769 ***  2.4788 ***  2.4266 ***  2.2524 ***  2.2524 ***  2.2349 *** 

(0.1480)   (0.1492)   (0.1490)   (0.1449)   (0.1402)   (0.1396)   (0.1384)  

ln(alpha) 0.6048 ***  0.6042 ***  0.6009 ***  0.5423 ***  0.5117 ***  0.5511 ***  0.5054 *** 
(0.0739)   (0.0734)   (0.0738)   (0.0722)   (0.0705)   (0.0719)   (0.0712)  

Nb observations 8319   8319   8319   8319   8319   8319   8319  
Nb groups 1382   1382   1382   1382   1382   1382   1382  
Loglikelihood

 
-9200.15 

 
 -9198.98 

 
 -9196.45 

 
 -9113.92   -9096.26 

 
 -9156.21   -9083.25  

χ2 93.32 ***  94.34 ***  99.87 ***  119.80 ***  139.89 ***  131.25 ***  207.48 *** 
Vuong test 14.77 ***  14.79 ***  14.84 ***  15.45 ***  15.48 ***  15.13 ***  15.73 *** 
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Table 4.2 : Second stage regression results of zero-inflated negative binomial model accounting 
for possible endogeneity (2SRI) 

nbArtCit5t (1)  (2)  (3)  (4)  (5)  (6)  (7) 
ln(AvgGrant3t-1)

 
1.4658 ***  1.4485 ***  1.4391 ***  1.7921 ***  1.5293 ***  0.9964 ***  1.3445 *** 

(0.1815) 
 

 (0.1810) 
 

 (0.1821) 
 

 (0.2722)   (0.2662) 
 

 (0.1760)   (0.2603)  
[ln(AvgGrantt-1)]2

 
                                        0.0129 ***  0.0132 ***  0.0127 *** 
                                        (0.0039)   (0.0039)   (0.0039)  

ln(AvgContract3t-1)
 

-0.2263 ***  -0.0739   -0.0715   -0.0936   -0.0755   -0.0505   -0.0749  
(0.0299) 

 
 (0.0597) 

 
 (0.0594) 

 
 (0.0596)   (0.0573) 

 
 (0.0571)   (0.0578)  

[ln(AvgContractt-1)]2           -0.0139 ***  -0.0141 ***  -0.0175 ***  -0.0188 ***  -0.0129 ***  -0.0159 *** 
          (0.0052)   (0.0051)   (0.0057)   (0.0054)   (0.0050)   (0.0054)  

nbPatent3t-1
 

-0.0545   -0.0334   -0.0072   -0.0188   -0.0208   -0.0656 *  -0.1056  
(0.0361) 

 
 (0.0348) 

 
 (0.0535) 

 
 (0.0552)   (0.0481) 

 
 (0.0377)   (0.0734)  

[nbPatent3tt-1]2                     -0.0009   -0.0009   -0.0008             0.0012  
                    (0.0013)   (0.0013)   (0.0012)             (0.0017)  

ln(104×BtwCent3t-2)
 

-0.0488 
 

 -0.0455 
 

 -0.0455 
 

 0.1448 ***  0.1522 ***  0.9095 *  0.1551 *** 
(0.0592) 

 
 (0.0591) 

 
 (0.0595) 

 
 (0.0558)   (0.0563) 

 
 (0.4975)   (0.0593)  

ln(103×Cliqness3t-2) -0.0645 ***  -0.0650 ***  -0.0647 ***  -0.9200 ***  -0.8926 ***  -0.0534 ***  -0.9019 *** 
(0.0188)   (0.0187)   (0.0187)   (0.3159)   (0.3032)   (0.0184)   (0.3097)  

[ln(103×Cliqness3t-2)]2         
 

         
 

         
 

 0.1238 ***  0.1198 ***            0.1233 *** 
        
 

         
 

         
 

 (0.0453)   (0.0435) 
 
           (0.0445)  

ln(104×BtwCent3t-2) 
 × NbPatent3t-1

                                                   0.1795 ***  -0.0066  
                                                  (0.0393)   (0.0508)  

[ln(104×BtwCent3t-2) 
 × NbPatent3t-1]2 

                                                            0.0328 *** 
                                                            (0.0118)  

ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)

                -0.1752 **  0.3129 *** 
               (0.0877)   (0.0842)  

[ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)]2 

                  -0.0553 *** 
                  (0.0146)  

Res(AvgGrant3t-1)a
 

-1.4825 ***  -1.4652 ***  -1.4557 ***  -1.8103 ***  -1.7213 ***  -1.1897 ***  -1.5320 *** 
(0.1868)   (0.1864)   (0.1877)   (0.2779)   (0.2593)   (0.1627)   (0.2537)  

Years (1996-2005) Yes   Yes   Yes   Yes   Yes   Yes   Yes  

Constant -10.7829 ***  -10.6265 ***  -10.5344 ***  -13.9724 ***  -12.8192 ***  -7.6513 ***  -10.9924 *** 
(1.7938) 

 
 (1.7958) 

 
 (1.8046) 

 
 (2.6759)   (2.5240) 

 
 (1.6032)   (2.4624)  

Inflate
 

                    
ln(AvgGrant3t-1) -0.7665 ***  -0.7705 ***  -0.7669 ***  -0.5966 ***  -0.4893 ***  -0.6500 ***  -0.4824 *** 

(0.0853)   (0.0854)   (0.0855)   (0.0828)   (0.0955)   (0.0998)   (0.0964)  
[ln(AvgGrantt-1)]2

 
                                        -0.0071 **  -0.0076 ***  -0.0072 *** 
                                        (0.0028)   (0.0029)   (0.0028)  

ln(AvgContract3t-1)
 

0.1169 ***  -0.0053   -0.0072   -0.0183   -0.0343   -0.0181   -0.0334  
(0.0157)   (0.0423)   (0.0424)   (0.0422)   (0.0426)   (0.0431)   (0.0428)  

[ln(AvgContractt-1)]2
 

          0.0114 ***  0.0116 ***  0.0101 ***  0.0116 ***  0.0127 ***  0.0115 *** 
          (0.0039)   (0.0039)   (0.0039)   (0.0039)   (0.0039)   (0.0039)  

nbPatent3t-1
 

-0.0420   -0.0580   -0.0949   -0.0985   -0.0882   -0.0225   -0.0376  
(0.0398)   (0.0386)   (0.0676)   (0.0710)   (0.0714)   (0.0384)   (0.0733)  

[nbPatent3tt-1]2
 

                    0.0019   0.0018   0.0016             0.0002  
                    (0.0025)   (0.0025)   (0.0026)             (0.0025)  

ln(104×BtwCent3t-2)
 

-0.7169 ***  -0.7170 ***  -0.7142 ***  -0.3426 ***  -0.3430 ***  -4.3428 ***  -16.9988  
(0.0868)   (0.0872)   (0.0872)   (0.0920)   (0.0917)   (1.1985)   (18.5618)  

ln(103×Cliqness3t-2)
 

-0.1081 ***  -0.1069 ***  -0.1064 ***  -1.3228 ***  -1.3135 ***  -0.1095 ***  -1.2472 *** 
(0.0133)   (0.0133)   (0.0133)   (0.2110)   (0.2090)   (0.0132)   (0.2135)  

[ln(103×Cliqness3t-2)]2                               0.1795 ***  0.1784 ***            0.1680 *** 
                              (0.0308)   (0.0305)             (0.0312)  

ln(104×BtwCent3t-2) 
 × NbPatent3t-1 

                                                  -0.1349   -0.0462  
                                                  (0.1512)   (0.1934)  

[ln(104×BtwCent3t-2) 
 × NbPatent3t-1]2 

                                                            -0.0605  
                                                            (0.0629)  

ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2) 

               0.6348 ***  5.3090  
               (0.2024)   (6.2656)  

[ln(104×BtwCent3t-2) 
 × ln(103×Cliqness3t-2)]2 

                         -0.4181  
                         (0.5280)  

Res(AvgGrant3t-1)a 0.7417 ***  0.7452 ***  0.7416 ***  0.5748 ***  0.5623 ***  0.7284 ***  0.5579 *** 
(0.0869)   (0.0869)   (0.0870)   (0.0845)   (0.0842)   (0.0878)   (0.0854)  

Constant 9.5093 ***  9.5661 ***  9.5326 ***  7.8786 ***  7.6020 ***  9.2166 ***  7.5391 *** 
(0.8440)   (0.8458)   (0.8466)   (0.8151)   (0.8210)   (0.8633)   (0.8308)  

ln(alpha) 0.5209 ***  0.5207 ***  0.5190 ***  0.5037 ***  0.4755 ***  0.4832 ***  0.4782 *** 
(0.0724)   (0.0723)   (0.0726)   (0.0733)   (0.0721)   (0.0712)   (0.0723)  

Nb observations 8319   8319   8319   8319   8319   8319   8319  
Nb groups 1382   1382   1382   1382   1382   1382   1382  
Loglikelihood

 
-9093.59 

 
 -9092.03 

 
 -9090.85 

 
 -9052.53   -9037.73 

 
 -9064.63   -9030.36  

χ2 176.4721 ***  181.9911 ***  187.3738 ***  228.1735 ***  295.4559 ***  255.6566 ***  343.2301 *** 
Vuong test 15.09 ***  15.13 ***  15.15 ***  15.62 ***  15.68 ***  15.44 ***  15.82 *** 

Note: a Residual from the first-stage equation. ***, **, * show significance at the 1%, 5% and 10% levels.
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Table 4.2 provides evidence of the importance of government grants on academic publications 

considering the potential endogeneity. The estimates of the IV models described above 

demonstrate that obtaining public funding (AvgGrant3t-1) eventually increases the quality of 

publications and this strong positive effect is consistent and robust for all 7 models that we 

present. In contrast, we see that receiving private funding (AvgContract3t-1) from industry yields 

a negative impact as the citation rate of publications declines with higher amounts of funding. In 

Figure 4.1, we plot the non-linear impacts corresponding to government grants (see Figure 4.1a) 

and industry contracts (see Figure 4.1b) on the number of citations. 

 

 

Figure 4.1: Quadratic effect of (a) average amount of grants, ln(AvgGrant3), (b) average amount 
of contracts, ln(AvgContract3), on the number of citations 

 

Three possible effects are at play here. First, researchers with industry funding are probably 

associated with applied research that may result in patent applications. Banal-Estanbol et al. 

(2011) explain that collaborative research projects with industry typically are generally more 

applied in nature. Second, collaboration with industry may limit scientists in publishing their 

research outputs if the firm wants to patent the research results. Confidential content and 

ownership of intellectual property of the research prevent scientists to freely publish the results as 

they usually do in academic research. Owen-Smith and Powell (2001) mention that the 

commercial interest of industry undermines and controls university research and hence bring a 

degree of secrecy to knowledge. While academic researchers tend to quickly publish their new 

knowledge, companies might hide their findings to benefit from the research outcomes and 
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maintain their competitive advantage, otherwise they patent (Argyres and Liebskind, 1998; 

Ambos et al., 2008). This may affect the quality of publications which are the results of private 

funded research. Third, companies are generally more concerned by their industrial problems and 

short-term research projects may possibly not attract the interest of researchers for them to use 

and cite the resulting publications. The second of these points can be directly addressed on our 

regressions by the inclusion of the number of patents as our explanatory variable. 

An involvement in patenting activities (measured by nbPatent3t-1) in previous years appears to 

have no significant effect on a scientist’s publication quality, and this is true whether we include 

only the linear effect or its non-linear form (models 3, 4, 5 and 7). Only when we moderate the 

patenting activities by the intermediary position of a scientist (BtwCent3t-2 ×  nbPatent3t-1) in 

models 6 and 7, we get a significant result: For patenting to have a positive influence in the 

quality of publications, one has to be fairly central in the co-publication network. In addition, 

when we include a non-linear effect of this interactive variable, we observe a positive impact of 

the quadratic term, implying an exponential rather than a linear moderating effect.  

Whether moderating other variables or not, we generally find that a better intermediary position 

(BtwCent3t-2) has a significantly and consistently positive impact in last 4 models (4, 5, 6 and 7). 

Researchers at the center of the collaboration network seem to benefit from their position to gain 

a higher number of citations. Research is a team activity and the collaboration patterns reflected 

in researchers’ teams not only influence scientific output and control the amount of government 

funding received by team players, but also increasingly contribute to scientific output quality. 

While these findings generally support the assumption that research collaborations are positively 

associated with research production, similarly to the findings of a number of scholars (Frenken et 

al., 2005; Lee and Bozeman, 2005; Rigby and Edler, 2005), these results are new contributions in 

terms of nanotechnology research quality.  

4.6 Concluding Remarks 

The efficacy impact of private and public funding for research purposes is an issue of much 

debate. Previous studies generally concentrate on government funding and the literature 

extensively suffers from a lack of data on the impact of private research financing in universities. 

Moreover the magnitude of this investment in new high technologies deserves as much 
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consideration to understand the impact of funding sources on the quality of scientific production. 

In this paper, we set out to examine the efficiency of two different funding sources on research 

quality in a recently emerging and rapidly growing field. To that effect we suggested two 

hypotheses on nanotechnology research quality: one on public funding and the other on private 

funding. We find that government research funding increases the number of citations received up 

to five years after publication. The consistently significant results confirm that there is a positive 

impact of public funding on research quality hence supporting our first hypothesis. 

Since high quality scholars are more likely to attract funding, we consider public funding as an 

endogenous variable and our instruments for the quality of scholars and their scientific 

production properly address this potential endogeneity. Nanotechnology research and 

development is highly multidisciplinary, drawing from different fields, and needs extensive 

research teams from various departments. Scientists of greater importance undoubtedly occupy 

more central positions in the collaboration network. Our results show that scientists who occupy 

better intermediary positions produce more highly cited research. Hence, we could say that the 

combination of both government funding and a more central position is influencing research 

quality. 

In contrast, contracts with industrial firms have a negative non-linear effect on nanotechnology 

research quality. While raising government funding is considered a sign of a higher quality 

researcher, receiving research funding from the private sector is more likely to restrict the 

publication quality. Industry benefits greatly from nanotechnology research, but unfortunately 

limits knowledge flows and generally delays publications of, or does not completely divulge, the 

results due to commercial issues. This problem highlights a concern about collaboration between 

two different scientific worlds of academic research and commercial innovation, i.e. the desire of 

private companies to protect their scientific outputs from being freely accessible. As a 

consequence, since the amount of private research financing yields a negative effect on the 

number of citations, we reject our second hypothesis. 

Results from scientific research may lay the foundation for advancements of technologies, which 

may then be protected by patents in a variety of patent offices. Our examination of the influence 

of the number of patents to which an academic scientist has contributed in previous years shows 

no hindrance from patenting activities on the quality of publications being produced by 
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academics. Previous literature generally considers either private funding or patents, but rarely 

both measures are considered together in scientific productivity or impact studies. While the 

former can be considered a research input and the latter a research output, our study addresses the 

possible influence that private endeavours may have on scientific impact from both points of 

view. One must also stress that collaboration with the private sector does not necessarily result in 

patents; academics often perform consulting activities that benefit firms without there being a 

patent at the end of the contract. Similarly, all patents are not necessary the result of private 

research investments, but of government supported scientific research. Our models consider these 

two possibilities by accounting for both private funding and patenting activities.  

Our empirical results suggest that government grants represent an important gateway to 

nanotechnology research development and nanotechnology knowledge diffusion. Publicly funded 

research contributes to the worldwide knowledge network and stimulates economic growth. 

Furthermore, this investigation shows that the relationship between public and private funding is 

not one of reinforcement with regards to publication quality. While government research 

financing contributes to increasing the quality of knowledge being produced, and sharing it as 

open science for the benefit of society, industry streams investment toward nanotechnology 

research to the benefit of applied research, new products and potential markets, and to the 

detriment of publication quality. The private sector is interested in short-term research; long-term 

and highly risky research, with a potential for greater impact, should accordingly be supported by 

government. This is not to say that academics should not seek private funding. One must 

recognize that in the filed of nanotechnology, private funding is complementary, but serves other 

purposes than high quality publications.  

There are a number of limitations to this study. The first limitation is the mobility of researchers: 

given that we focus on Quebec and as researchers move out of the province, we lose track of their 

funding. The second limitation is that the field of nanotechnology is an emerging and very 

narrow field and we may not be able to generalize to other fields. The third limitation is our data, 

which was extracted from Scopus, which does not cover all journals; we may be missing a 

number of citations of papers. Despite these limitations, we are nevertheless confident that our 

results provide an interesting contribution to the public versus private support or university 

research. 
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CHAPTER 5 ARTICLE 4: COLLABORATION OR FUNDING: 

LESSONS FROM A STUDY OF NANOTECHNOLOGY PATENTING IN 

CANADA AND THE UNITED STATES 

Leila Tahmooresnejad, Catherine Beaudry 

 

5.1 Abstract 

This paper is concerned with how government research funding and collaboration between 

researchers affect academic technological production in the context of nanotechnology in Canada 

and in the United States. We use the co-invention and co-authorship networks of scientists to 

build indicators of collaborative behaviour. Our results suggest that technological output has the 

potential to offer governments useful guidance concerning the effectiveness of academic grants in 

the United States, and collaboration in Canada. This paper provides evidence that the position of 

researchers in both co-invention and co-publication networks does influence technological 

productivity and quality. 

Keywords: Research funding, Academic patents, Collaboration, Nanotechnology 

5.2 Introduction 

The rapid increase in academic patenting raises issues regarding the development of new 

technologies but more importantly concerning the factors that affect these technological outputs. 

Recent development in relationship between university and industry, especially the growth of 

university patenting has attracted considerable attention over past decades. In 1980, the passage 

of the Bayh-Dole Act in the United States (US) removed patenting restrictions for universities 

and provided greater flexibility for university licensing agreements, and consequently, the 

number of academic patents has dramatically increased (Siegel et al., 2003).  

Academic research, however, has been a significant source for research, particularly in emerging 

knowledge-based technologies (Aghion et al., 2008). Nanotechnology has been widely 

considered as one of the leading drivers of future economic development and has been of 

particular interest for national governments over recent years. Most countries have greatly 
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strengthened their nanotechnology R&D programs and have given nanotechnology research a 

higher priority in their strategic economic planning (Dang et al., 2010; Pandza and Holt, 2007 ; 

Shea, 2005).  

Because of the large amount of investment in nanotechnology, the question of whether this 

substantial investment in nanotechnology research enhances technological innovations in 

universities or only generates scientific output gains is a key issue here. This paper aims to find to 

what extend government research funding influences academic patenting in the field of 

nanotechnology in Canada and the US.  

Paul et al. (2003) indicate that government investment plays an important role in the 

development of emerging technologies which are risky and need long-term research. The US has 

created the first major investment trend through the funding of the National Nanotechnology 

Initiative (NNI) to benefit from this new technology. Initiatives like the NNI have created a new 

wave of government-funded research and have provided a proper base for nanotechnology 

development. The cumulative investment in NNI totals almost $21 billion increasing from $464 

million since 2001 including 2015 federal budget (NNI, 2014).  Roco (2005) declares that 

accordingly many countries have since surged investment in nanotechnology in recent years.  

Similarly, Canada has launched various government-funding programs to support 

nanotechnology development. Federal research funding is provided via organizations such as the 

Canada Foundation for Innovation (CFI) and the National Research Council (NRC). In addition 

to the classic grant awarding organisations such as the Natural Sciences and Engineering 

Research Council (NSERC) and the Canadian Institutes of Health Research (CIHR), the National 

Institute for Nanotechnology (NINT), established in 2001, operates as a partnership between the 

NRC and University of Alberta and was jointly founded by the Government of Canada, the 

Government of Alberta and the University of Alberta. In Canada, the nanotechnology field 

receives a considerable amount of public funding, with provincial and private sector investments 

being less than federal investments. These investments earmarked for nanotechnology help to 

spur R&D, attract leading researchers and facilitate the work of local communities of nano 

researchers in Canada (Hu et al., 2011; Steele, 2008).  

In order to advance knowledge in this field, we examine academic research collaborations linking 

scientists to one another in an open science environment with two types of networks: co-authors 
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and co-inventors. This paper explores the impact of a researcher’s position in networks on 

technological activities and investigates whether the nature of the network plays a role in the 

academic technological productivity and quality. There has been much attention paid to 

university patenting in recent years and its role in university-industry collaborations is of great 

interest (Geuna and Lionel, 2006; Lissoni, 2009; Murray, 2004). Our paper focuses on this 

collaborative behavior of researchers and compares its effect with that of funding on 

technological output. While this study concentrates on an important field, it provides direct 

insight into the scientific and innovative relationships between scientists at the same time, 

something that has not been considered in previous studies. 

A complementary line of study examines this relationship in the US and Canada. The US, being 

one of Canada’s major collaborative partners, there is a high occurrence of co-invention patents 

between the two countries. A study of 12 foreign patenting countries in the USPTO by Marinova 

and McAleer (2003) shows that the US ranked first and Canada ranked fifth in terms of the 

number of nanotechnology patents between 1975-2000. Similarly, Wong et al. (2007) ranked 

Canada in the 6th position amongst the top 10 inventor countries for nanotechnology patents 

between 1976-2004. In addition, they also found that Canada had the largest improvement in 

average citations received per patent between 2000-2004. In assessing nanotechnology patents, 

Chen and Roco (2009) demonstrate that Canada continued to rank in the top 10 nanotechnology 

assignee countries in 2005-2006.  

Using patent data from the United States Patent and Trademark Office (USPTO) and other 

funding databases, this paper makes three useful contributions to the prior study. First, we focus 

on nanotechnology patents resulting from academic research and investigate whether government 

funding and collaborations increase the number of patents and enhance university patent quality. 

Second by focusing on two scientific and innovative collaborations between academic 

researchers, we examine the crucial role of networks in driving technological progress. Third, we 

supplement our analyses with a comparison between the US and Canada. The remainder of the 

paper is organized as follows: the next section briefly describes the existing literature. We then 

introduce the data, variables and methodology employed in Section 3, and Section 4 presents the 

results. Finally, we conclude with a concise discussion in Section 5. 
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5.3 Conceptual framework 

Academic research has been regarded as a key source of new knowledge that contributes to 

technological changes. Since the field of nanotechnology is increasingly knowledge-based in 

nature, universities appear to have an enhanced role in innovations and economic development 

(Etzkowitz et al., 2000). It was not traditionally a prime concern for universities to bring 

academic research results to the industry, but it is now increasingly necessary for universities to 

become significantly involved in economic development, patenting and licensing activities (Van 

Looy et al., 2004; Perkmann and Walsh, 2009; Musico et al., 2013). Basic and applied science 

are highly interconnected in this emerging technology; Narin et al, (1997) highlight that rapidly 

growing linkages exist between scientific publications and patents. Wong et al. (2007) found that 

universities play an increasing role in patenting in Canada and the US. In this regard, 

governments establish and aggressively support academic research to accelerate this progress via 

grants to cover research costs and infrastructure expenses, which are rather high in these new 

technologies. 

Given the influence of this emerging technology on future scientific and economic development, 

it is vital to distinguish the pivotal role of government funding in order to stimulate 

nanotechnology. Due to the growth of funding trends in nanotechnology (Bhattacharya, 2007; 

Crawley, 2007; Davies, 2007; Hullmann, 2006; Roco, 2005; Roco, 2010; Sargent 2008; Seear et 

al., 2008), it is not surprising that investors seek to determine whether such funding increases the 

return to academic research output. According to Arora et al. (1998), public grants affect current 

researcher output and consequently influence their future output. A strong correlation between 

research funding and technological performance has been identified by other scholars, indicating 

that this R&D funding can lead to the growth of technological production (see Chen et al., 2013; 

Coupé, 2001; Foltz et al., 2000; Geffen and Judd, 2004; Huang, et al., 2005; Payne and Siow, 

2003; Piekkola, 2007).  

For instance, the findings of Payne and Siow (2003) show that on average an increase of 

$1 million in government research funding results in 0.2 more patents in universities. 

Furthermore, the statistical analysis of Huang et al. (2005) regarding nanotechnology in the US 

demonstrates that the number of citations that each National Science Foundation (NSF)-funded 

inventor received for patents was 5 times greater than that of other inventors.  
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In the US, there was an increase in public funding and university patenting in the 1980s due to 

the Bayh-Dole legislation, which gives intellectual property ownership rights to academic patents 

derived from publicly funded research (Argyres and Liebskind, 1998; Mowery and Sampt, 2005; 

Siegel et al., 2003; Zucker and Darby, 2005). According to their study of university patenting 

between 1965-1992, Henderson et al. (1998) showed that this act increased the number of patents 

while the number of inventors remained relatively constant. 

Mowery et al. (2001) raise the point that the Bayh-Dole Act was one of the main factors that 

increased university patenting. In 1999, the Expert Panel on the Commercialization of University 

Research of the Canadian Prime Minister also suggested that universities should hold the 

ownership of the patents that resulted from publicly funded research (Mowery and Sampt, 2005). 

However, prior studies that examined the impact of government grants in universities, more 

specifically focused on the scientific output of academic researchers rather their technological 

interests. A few studies (see Huang, et al., 2005; Huang, et al., 2006) also consider 

nanotechnology funding.  

A patent is an open source technology document and patent data are presumed to be indicative of 

the value of innovations (Ernst, 1998). Despite various indicators used to measure the variation of 

patent quality such as patent renewal data (Deng, 2005; Griliches, 1990; Harhoff et al., 1999; 

Hall et al., 2000; Maurseth, 2005; Pakes and Schankerman, 1984; Pakes, 1986; Serrano, 2010; 

Svensson, 2011), or family size (Harhoff et al., 1999; Lanjouw and Schankerman, 1999; 

Maurseth, 2005; Martinez, 2010), citations are better related to the importance and presence of a 

patent in other research, indicating the valuable technological content of that patent. While the 

first indicator is correlated with the value of innovation at the organizational rather than 

individual level, the second considers the number of countries in which a patent application is 

submitted. 

Higher quality patents are more likely to contain technological advances that can create 

subsequent innovations (see Breschi and Lissoni, 2005; Chen and Roco, 2009; Daim, et al., 2006; 

Griliches, 1990; Hall et al., 2002; Huang, et al., 2003; Huang et al., 2004; Li et al., 2007; Wallin, 

2005). Forward citations are the most common indicator to measure patent quality and are 

suggested by many scholars (Baron and Delcamp, 2010; Breschi and Lissoni, 2005; Harhoff et 
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al., 1999; Hall et al., 2000; Lanjouw and Schankerman, 1999; Maurseth 2005; Serrano, 2010; 

Weingart, 2005). 

We also include the number of claims as a proxy of patent quality. Claims describe the essential 

novel features of the invention and circumscribe the property rights conferred by a patent. 

Referring to prior studies, high quality patents contain wide claims and can be considered 

valuable since they indicate the breadth and scope of protection (Baron and Delcamp, 2010; 

Lanjouw and Schankerman, 2004; Tong and Frame, 1994; Trappey et al., 2012). 

We examine how academic inventors are affected by government funding to measure whether 

this dedicated nanotechnology R&D funding increases the technological productivity and quality 

in universities. This assessment is essential for decision-making and R&D planning. In the 

emerging technology fields, however, there is a great need to understand how nanotechnology 

development has evolved through and been influenced by government funding over this quite 

short period of time. We propose Hypothesis 1 to shed light on this issue:  

Hypothesis 1: Academic inventors funded by the government contribute to (a) more patents and 

(b) higher quality patents than other academic inventors. 

Despite research funding, numerous studies have investigated factors other than funding that 

have impacted academic innovation activities. Some previous studies (Azoulay et al., 2009; 

Breschi et al., 2008; Crespi et al., 2008; Thursby and Thursby, 2007; Van Looy et al., 2006) have 

further focused on the link between publications and patents and highlighted a correlation 

between university patenting and publishing activities. Other scholars have examined social 

networks and indicated that social relationships do matter for technological innovations, 

presuming that when researchers work together at least once, they will be able to exchange 

further information later (Balconi et al., 2004; Breschi and Lissoni, 2004; Murray, 2002; 

Newman, 2000; Newman, 2001; Wasserman and Faust, 1994).  

Ma and Lee (2008), and Ruegg (2007) further study technological collaborations and highlight 

the role of these collaborative relationships on technological development. Such analysis 

presumes that when inventors apply for a patent together, they will keep in touch afterwards for a 

period of time to exchange and share their knowledge. In this regard, patents can be exploited to 

map the social relationships between these researchers to measure to what extent collaborative 

behaviour exists within research communities.  
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In recent years, these collaborations have attracted much theoretical attention regarding their 

influence on research productivity given the critical importance of research teams (Cagliano et 

al., 2000; Frenken et al., 2005; Teichert and Ernst, 1999). The structure of networks formed by 

socially connected researchers influences the extent of knowledge diffusion and consequently the 

technological performance of inventors within these networks. Patenting activity is generally 

considered an appropriate proxy to measure technological performance and has been widely used 

in research studies to examine the impact of collaborative networks on research productivity, 

innovations and knowledge flows (Powell, et al., 1999; Ahuja, 2000; Breschi and Lissoni, 2005; 

Breschi and Lissoni, 2009; Lecocq and Van Looy, 2009).  

Co-invention networks are more fragmented than co-publication networks, but academic 

inventors occupy more prominent and connected positions than non-academic inventors in these 

technological networks (Balconi et al., 2004; Breschi and Catalini, 2008; Murray, 2002). 

Similarly, Breschi and Catalini (2010) compared the patterns of connectivity in co-authorship and 

co-invention analysis and indicated that single inventor patents are more common than single 

author publications in scientific output. Furthermore, Breschi and Lissoni (2009) find that 

connected patents in co-inventor networks are of higher quality than non-connected patents 

measured by the number of citations they receive. 

In this regard, we put forward two propositions on network behaviour from academic inventors in 

co-invention and co-publication networks to address the influence of social networks on the 

technological output.  

Hypothesis 2: The technological performance of academic inventors who hold a more influential 

network position in co-invention networks is (a) higher and (b) yields better quality patents. 

Hypothesis 3: The technological performance of academic inventors who hold a more influential 

network position in co-publication networks is (a) higher and (b) yields better quality patents.  

We also compare the influence of research financing on the technological performance of 

academic inventors in Canada and the US. Although Canadian nanotechnology funding 

represents only a small fraction of the US investment, it is nevertheless crucial to compare the 

influence of public funding and of its contribution to the development of public policies. To 

benefit from the nanotechnology advantages, it is important to identify the key issues of policy 

initiatives undertaken by other nanotechnology pioneering countries. Surveying worldwide 
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nanotechnology investment shows that the US has dominated the research efforts and emerged as 

an important player in the global nanotechnology research. The US is amongst the top investors 

in nanotechnology and the support from its government has been increasing in order to advance 

capabilities in contributing to economic growth. According to the substantial amount of funding 

in nanotechnology development in the US comparing to Canada, we suggest the following 

hypothesis. 

Hypothesis 4: Academic inventors in the US who receive government funding contribute to (a) 

more patents and (b) higher quality patents compared to Canadian academic inventors. 

5.4 Data and methodology 

5.4.1 Data  

Our empirical context is associated to the innovative output of academic researchers in 

nanotechnology. To construct the necessary panel dataset, we drew on various funding, patents 

and publication databases in Canada and the US. We created two databases of Canadian and 

American patents in the field of nanotechnology extracted from the United States Patent and 

Trademark Office (USPTO), using the affiliations of authors to distinguish Canadian-based and 

US-based inventors. For the American-based inventors we used the Nanobank and StartechZD 

databanks (which both contain subsets of the USPTO). The justification for using the USPTO 

instead of the Canadian Intellectual Property Office (CIPO) is that the latter does not 

systematically contain inventor’s addresses, which complicates the disambiguation process. 

Beaudry and Schiffauerova (2011) suggest that Canadian nanotechnology inventors file their 

patent applications in the US as well as, or in lieu of, in Canada. Similarly, a study of country 

patent analysis by Li et al. (2007b) demonstrates that the number of Canadian patents in the 

USPTO is much higher than in the European Patent Office (EPO).  

To identify nanotechnology-related patents, we used a set of keywords suggested by Porter et al. 

(2008), Schmoch et al. (2003), Zitt and Bassecoulard (2006), Mogoutov and Kahane (2007) and 

Zucker et al. (2011) and utilized the intersection of the search strategies and then removed the 

redundant keywords after consulting with nanotechnology experts. Using a similar keyword 

query, we then add nanotechnology-related scientific publications from Elsevier’s Scopus. 
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Patents were employed to build collaborative co-invention networks and articles were used to 

construct the co-publication networks in three-, five- and seven-year intervals starting in 1985. 

These time intervals are an important consideration in our analysis since we assume that 

researchers keep in touch to share and exchange their knowledge over time. 

Data on federal grants for the US was collected from the Nanobank and StartechZD databases. 

The government grant data for Canadian researchers was retrieved from two of the three federal 

agencies: the National Sciences and Engineering Research Council of Canada (NSERC) and the 

Canadian Institutes of Health Research (CIHR). We then precisely cleaned the data and merged 

databases to finally end up with a target panel data for the examination. The data from the 

Nanobank and the StartechZD databanks were already cleaned. In Canada, the merge between 

grants, patents and publication databases was performed manually to avoid cases of homonymy 

and of synonymy. We are confident to have minimised ambiguities by proceeding this way for 

Canada. We used a unique ID for each individual researcher to merge the data to avoid ambiguity 

of researchers’ names in merging various databases.  

5.4.2 Dependent variables 

To establish the base model, we take into account the number and quality of patents and the 

complex relationship between funding and collaborative determinants. We specify one dependent 

variable, the number of patents (NPit), to account for the production of patents and two other 

variables, the number of citations received over five years (NCiit) and the number of claims 

(NClit), to proxy for patent quality in the base model (in Eq. 5-6). Additionally, we define a 

categorical variable (C(NCiit)) based on the number of citations received over 5 years. This 

variable takes the value 0 if NCiit is 0, the value 1 if NCiit is between 1 and 5, and the value 2 if 

the number of citations over 5 years is more than 5. Despite the existence of other indicators such 

as patent renewal, triadic patents, backward citations, etc. that have been used in the literature 

(Maurseth, 2005; Lanjouw and Schankerman, 2001; Pakes and Schankerman, 1984), these 

measures are appropriate quality proxies given that they are highly correlated with valuable 

innovations (Trajtenberg, 1990; Hall et al., 2000; Harhoff et al., 1999). Similarly to the networks, 

three different windows of time were considered in order to count the number of citations: 3-year, 

5-year and 7-year. In the final model, we used the 5-year window for which we found more 

consistently significant results rather compared to the two other time windows. 
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For each academic inventor the dependent variables are the following: 

NCiit = nCit pitj
j

j+4

!
p=1

n

!      (5-1) 

C NCiit( ) =
0 if NCiit = 0
1 if 1! NCiit ! 5
2 if NCiit > 5

"
#
$

%$    

(5-2) 

NClit = nClaimpit
p=1

n

!      (5-3) 

Where nCitpitj  and nClaimpit are the number of forward citations after and up to j years and the 

number of claims of patents p for inventor i in year t. 

5.4.3 Independent variables 

The average yearly amount of government funding received by an academic-inventor i over the 

past three years (F) enables us to validate our first hypothesis. For the collaboration variables, we 

make use of the tools developed by social network analysis, i.e. betweenness centrality and the 

clustering coefficient. Betweenness centrality (BC) measures the importance of intermediary 

researchers in the network. It is calculated by the number of shortest connecting path (geodesic 

distance25) between two other academic researchers. Betweenness centrality was first suggested 

by Freeman (1977) as an indicator of the level of control of a specific researcher on 

communication and knowledge sharing within an interrelated community. According to some 

scholars (see Balconi et al., 2004; Salmenkaita 2004; Izquierdo and Hanneman, 2006), 

betweenness centrality in co-invention networks is positively correlated with the productivity of 

scientists. If a researcher with a high level of betweenness centrality leaves the network, the 

network may break into smaller subnetworks. For a researcher k, this indicator is calculated as 

(Leydesdorff, 2007): 

     BC k( ) = gik k( )
gijj

!
i
! , "i # j # k

    
(5-4) 

                                                

25 Geodesic distance is the shortest distance between two nodes indicated the number of relationships in the shortest 
path connecting one researcher to another. 
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where gij indicates the number of geodesic paths between i and j and gikj is defined as the number 

of these paths that include researcher k. For this equation, we derive two variables, PBC measures 

betweenness centrality in the co-invention network (the prefix P stands for patents) and ABC 

measures betweenness centrality in the co-publication network (the prefix A hence stands for 

articles).  

The clustering coefficient (CC) is defined as the likelihood that two researchers are related when 

they both have a mutual relationship with a third researcher in the network. This measure 

represents the tendency of researchers to cluster. According to Schilling and Phelps (2007), 

networks with a high clustering coefficient enhance the innovative output and performance of 

individuals. Clustering offers connectivity between researchers and increases the speed with 

which, and the probability that, partners access knowledge. The clustering coefficient is 

calculated by Eq. 5-5: 

     (5-5) 

where ki is the number of neighbours of i and Ei denotes the number of direct links that connects 

ki nearest neighbours of researcher i (Watts and Strogatz, 1998). For this equation, we also derive 

two variables, PCC measures the clustering coefficient in the co-invention network (the prefix P 

stands for patents) and ACC measures the clustering coefficient in the co-publication network 

(the prefix A stands for articles). 

We employ software package Pajek to calculate these network determinants for our two co-

publication and co-invention networks. The two network characteristics of the co-invention 

network (PBC and PCC) and of the co-publication network (ABC and ACC) are used to evaluate 

hypothesis 2 and hypothesis 3.  

5.4.4 Model 

An important consideration in this study is the potential influence of the time delay between our 

explanatory variables and research output. The patenting of innovations or the publication of 

results is more likely to occur at the end of a funding period or within a few years of setting up a 

scientific or technological network. Given this time delay, we assume a one-year lag for funding 

CCi =
2Ei

ki (ki !1)
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and a two-year lag for the network determinants before publication/application of research 

output. Our model can therefore be expressed as: 

NPit
C NCiit( )
NClit

!

"
#

$
#

%

&
#

'
#
= f

ln Fit(1( ),NPPit(1,PBBit(2,
PCCit(2,ABCit(2,ACCit(2,Dt

)

*+
,

-.

   

(5-6) 

 

where Dt represent time dummy variables.  

To analyze the data, we estimate Poisson and Negative Binomial regression models, which are 

both appropriate for count measures (numbers of patents and claims). The former provides a 

means to deal with skewness and the latter allows us to account for significant over-dispersion. In 

the presence of over-dispersion as we observed in our data, the negative binomial model is more 

appropriate. Because nanotechnology-related patents received fewer citations and are not in 

sufficient numbers to be examined as a count variable, we hence created an ordered categorical 

variable for the number of forward citations (described above). Ordered probit regressions are 

appropriate for modeling with such a categorical dependent variable. This model distinguishes 

unequal differences between ordinal categories of dependent variable (Greene, 2003). 

The inclusion of funding and innovative performance in this equation raises concerns regarding 

potential endogeneity. The decision to assign grants to scientists and their prior and subsequent 

research output are intrinsically linked, in addition to which we may have some omitted variables 

that affect the opportunity to receive grants. To specifically address this concern and control for 

potential endogeneity, we employ the Two-Stage-Residual-Inclusion used by Biro (2009). We 

therefore estimate a variant of the model using a set of instruments for the estimation of funding 

(Eq. 5-7), our endogenous variable. We include the career age of a scientist since the first 

publication or the first grant or the first patent in the field of nanotechnology, Age, as a proxy for 

real age. The quadratic form of this variable (Age2) helps account for potential non-linearities. 

The number of past articles of researchers over three years (NA) is included to explain the fact 

that funding is generally given to academic researchers with a high publication rate (Van Raan, 

2004).  
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ln Fit!1( ) = g
Ageit!1,NAit!2,
NPPit!1,PBCit!2,PCCit!2,
ABCit!2,ACCit!2,Dt

"

#

$
$

%

&

'
'

  

  (5-7) 

The residuals of this first-stage equation are then added to the regressors of the second stage 

equation given by Eq. (5-6) prior to its estimation. Because of a small number of years of 

observations per academic-inventor (our panel is very unbalanced), our estimations provide 

clustered robust standard errors rather than what would be obtained from panel regressions.  

5.5 Empirical Results 

The estimation results for models mentioned in the previous section are shown in Tables 5.1, 5.2 

and 5.3 and include the results of Ordered probit regressions (Table 5.2), Negative Binomial 

regressions (Table 5.1 and Table 5.3 of Eq. 5-6 (second stage) and OLS regression of Eq. 5-6 (no 

endogeneity) using the clustering method appropriate to repeated observations for the same 

individual over a number of years. In each table, we consider 6 models estimated both with and 

without controlling for potential endogeneity (2SRI and No end.). The results of first stage 

regressions (Eq. 5-7) are presented in Appendix C. Our analysis has considered various sets of 

variables in a hierarchical progression including non-linear effects. 

When we consider the number of generated patents, the results in Table 5.1 show no impact of 

funding (F) on technological productivity in Canada: even when we re-estimated the results to 

correct for potential endogeneity, the results are not significant. In the US, in contrast, there is a 

positive impact of lagged federal funding (one-year lag) on the number of patents when we 

account for endogeneity. The results are robust to the introduction of a quadratic effect of 

network measures (Models 3 and 6) and to adding an interactive variable (Models 2 and 5). In 

terms of control variables, all instrument variables are strongly significant and appropriate for the 

US, and in Canada only the number of articles over the past three years (NAit) does not seem to 

be a consistently good instrument. While, we successfully account for endogeneity in the US, the 

results cannot capture the endogeneity in Canada.  
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Table 5.1 : Impact of funding and collaborations on nanotechnology patents in Canada and the United States  
 

Note : ***, **, * show significance at the 1%, 5% and 10% levels and Standard errors are presented at parentheses 

NPit 

 

Canada US 
(1) (2) (3) (4) (5) (6) 

 
1-1 

(NO End.) 
 

1-2 
(2SRI) 

 
2-1 

(NO End.) 
 

2-2 
(2SRI) 

 
3-1 

(NO End.) 
 

3-2 
(2SRI) 

 
4-1 

(NO End.) 
 

4-2 
(2SRI) 

 
5-1 

(NO End.) 
 

5-2 
(2SRI) 

 
6-1 

(NO End.) 
 

6-2 
(2SRI) 

ln(Fit-1)
 -0.0948 

 
-0.1215 

 
-0.0824 

 
-0.1225 

 
-0.0943 

 
-0.2167 

 
0.0218  0.2236 *** 0.0173  0.2216 *** 0.0110 

 
0.1608 *** 

(0.1299) 
 

(0.1911) 
 

(0.1280) 
 

(0.1907) 
 

(0.1291) 
 

(0.1984) 
 

(0.0287)  (0.0391)  (0.0285)  (0.0388) 
 

(0.0259) 
 

(0.0372) 
 [ln(Fit-1)]2

 

0.0100  0.0100  0.0085  0.0086  0.0097  0.0099  -0.0010  -0.0027  -0.0006  -0.0024  -0.0002  -0.0016  
(0.0130) 

 
(0.0129) 

 
(0.0128) 

 
(0.0128) 

 
(0.0129) 

 
(0.0128) 

 
(0.0025)  (0.0026)  (0.0025)  (0.0026) 

 
(0.0022) 

 
(0.0023) 

 NPPit-1 0.3108 *** 0.3100 *** 0.3624 *** 0.3634 *** 0.4127 *** 0.4229 *** 0.1691 *** 0.1540 *** 0.1735 *** 0.1588 *** 0.3097 *** 0.2871 *** 
(0.0308) 

 
(0.0310) 

 
(0.0283) 

 
(0.0290) 

 
(0.0545) 

 
(0.0560) 

 
(0.0072)  (0.0074)  (0.0074)  (0.0076) 

 
(0.0299) 

 
(0.0287) 

 [NPPit-1]2                                                             -0.0096 *** -0.0112 ***                                                             -0.0086 *** -0.0077 *** 
              
 

              
 

              
 

              
 

(0.0035) 
 

(0.0041) 
 

                                                           
 

(0.0021) 
 

(0.0020) 
 ln(104 × 

PBCit-2)  
0.4189 ** 0.4289 ** 0.6574 *** 0.6850 *** 0.2310  0.2552  0.1223  0.1202  0.4884 *** 0.5455 *** 0.0983  0.1341  

(0.1666) 
 

(0.1736) 
 

(0.1665) 
 

(0.1856) 
 

(0.1848) 
 

(0.1854) 
 

(0.0935)  (0.1081)  (0.1325)  (0.1362) 
 

(0.0956) 
 

(0.1119) 
 ln(104 × 

ABCit-2) 
0.0286 

 
0.0330 

 
0.0155 

 
0.0219 

 
-0.0592 

 
-0.0871 

 
0.0321  -0.0514  0.0820  -0.0138 

 
0.0845 

 
-0.0087 

 (0.0767) 
 

(0.0811) 
 

(0.0756) 
 

(0.0797) 
 

(0.0984) 
 

(0.1013) 
 

(0.1688)  (0.1980)  (0.1641)  (0.1876) 
 

(0.1690) 
 

(0.1943) 
 ln(103 × 

PCCit-2)
 -0.0303 

 
-0.0292 

 
-0.0386 * -0.0373 

 
0.4024 * 0.4481 * 0.0056  0.0066  0.0036  0.0044 

 
-0.0641 

 
-0.1570 * 

(0.0231) 
 

(0.0233) 
 

(0.0231) 
 

(0.0232) 
 

(0.2249) 
 

(0.2348) 
 

(0.0073)  (0.0072)  (0.0074)  (0.0073) 
 

(0.0882) 
 

(0.0909) 
 [ln(103 × 

PCCit-2)]2                                                             -0.0660 ** -0.0722 **                                                             0.0081  0.0221  
                                                             (0.0330)  (0.0344)                                                              (0.0131)  (0.0135)  
ln(103 × 
ACCit-2)

 0.0559 ** 0.0562 ** 0.0567 ** 0.0571 ** 0.4125 * 0.5839 ** -0.0227 ** -0.0492 *** -0.0216 ** -0.0487 *** 0.0552 
 

0.0957 
 (0.0232) 

 
(0.0230) 

 
(0.0232) 

 
(0.0230) 

 
(0.2207) 

 
(0.2800) 

 
(0.0093)  (0.0097)  (0.0092)  (0.0096) 

 
(0.1270) 

 
(0.1315) 

 [ln(103 × 
ACCit-2)]2 

              
 

              
 

              
 

              
 

-0.0547 
 

-0.0802 *                                                            
 

-0.0101 
 

-0.0191 
               

 
              
 

              
 

              
 

(0.0334) 
 

(0.0423) 
 

                                                           
 

(0.0189) 
 

(0.0196) 
 ln(104 × 

PBCit-2) × 
NPPit-1

 

              
 

              
 

-0.2099 *** -0.2205 ***               
 

              
 

                              -0.0444 *** -0.0536 ***               
 

              
 

              
 

              
 

(0.0448) 
 

(0.0571) 
 

              
 

              
 

                              (0.0104)  (0.0132) 
 

              
 

              
 Residual(ln(F

it-1)) 
               0.0271                 0.0405                 0.1219                 -0.1877 ***                -0.1892 ***                -0.1377 *** 
               (0.1237)                 (0.1238)                 (0.1332)                 (0.0270)                 (0.0250)                 (0.0270)  

Constant -2.7798 *** -2.6133 *** -2.7460 *** -2.4979 *** -2.7503 *** -2.0046 ** -1.1075 *** -1.8673 *** -1.1135 *** -1.8787 *** -1.2488 *** -1.7978 *** 
(0.2668) 

 
(0.8424) 

 
(0.2581) 

 
(0.8322) 

 
(0.2568) 

 
(0.8821) 

 
(0.0680)  (0.1368)  (0.0678)  (0.1292) 

 
(0.0818) 

 
(0.1336) 

 Years Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  ln(alpha) 

0.0384 
 

0.0428 
 

-0.1376 
 

-0.1319 
 

0.0088 
 

0.0250 
 

-0.3165 *** -0.3795 *** -0.3274 *** -0.3982 *** -0.6455 
**
* -0.6679 *** 

(0.2385) 
 

(0.2432) 
 

(0.2828) 
 

(0.2851) 
 

(0.2451) 
 

(0.2440) 
 

(0.0871)  (0.0861)  (0.0874)  (0.0867) 
 

(0.1175) 
 

(0.1136) 
 Nb 

observations 1329 
 

1329 
 

1329 
 

1329 
 

1329 
 

1329 
 

9157  9157  9157  9157 
 

9157 
 

9157  
Nb Groups 532  532  532  532  532  532  5381  5381  5381  5381  5381  5381  Loglikelihood -655.463 

 
-655.432 

 
-650.532 

 
-650.464 

 
-650.7  -650.2  -6828  -6786.6  -6820  -6777.4 

 
-6689 

 
-6666  

Wald X2
 

168.54 *** 166.48 *** 287.86 *** 285.68 *** 206.86 *** 200.11 *** 256126 *** 214370 *** 212632 *** 214841 *** 227187 
**
* 211769 *** 
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Table 5.2 : Impact of government funding and collaborations on the citations received by nanotechnology patents in Canada and the 
United States  

Note : ***, **, * show significance at the 1%, 5% and 10% levels and Standard errors are presented at parentheses 

C(NCiit) 
 

Canada  US 
(1) (2)  (3) (4) 

 
1-1 

(NO End.) 
 

1-2 
(2SRI) 

 
2-1 

(NO End.) 
 

2-2 
(2SRI)  

 
3-1 

(NO End.) 
 

3-2 
(2SRI) 

 
4-1 

(NO End.) 
 

4-2 
(2SRI) 

ln(Fit-1)
 -0.0142 

 
0.1047 

 
-0.0058 

 
0.1019 

 
 -0.0569  -0.2364  -0.0656  -0.2556 

 (0.1194) 
 

(0.1805) 
 

(0.1203) 
 

(0.1821) 
 
 (0.1722)  (0.1896)  (0.1745)  (0.1942) 

 [ln(Fit-1)]2
 

0.0000  -0.0005  -0.0009  -0.0014   0.0024  0.0028  0.0033  0.0039  
(0.0115) 

 
(0.0117) 

 
(0.0117) 

 
(0.0119) 

 
 (0.0152)  (0.0154)  (0.0154)  (0.0156) 

 NPPit-1
 0.3963 *** 0.4337 *** 0.3842 *** 0.4199 ***  0.1286 *** 0.1557 *** 0.1308 *** 0.1582 *** 

(0.0855) 
 

(0.0851) 
 

(0.0868) 
 

(0.0888) 
 
 (0.0234)  (0.0311)  (0.0234)  (0.0331) 

 [NPPit-1]2
 

-0.0162 ** -0.0170 *** -0.0159 ** -0.0167 ***  -0.0020 *** -0.0027 *** -0.0019 *** -0.0028 ** 
(0.0067) 

 
(0.0064) 

 
(0.0065) 

 
(0.0063) 

 
 (0.0005)  (0.0010)  (0.0005)  (0.0011) 

 ln(104 × PBCit-2)
 0.1489  0.2033  0.0110  0.0777   -0.0814  -0.0418  0.0214  0.0060  

(0.1695) 
 

(0.1733) 
 

(0.2217) 
 

(0.2367) 
 

 (0.1765)  (0.1837)  (0.1910)  (0.1982) 
 ln(103 × PCCit-2)

 
0.1308 *** 0.1061 ** 0.4228 

 
0.3614 

 
 0.0017  -0.0018  -0.2370  -0.1073 

 (0.0422) 
 

(0.0514) 
 

(0.3185) 
 

(0.3379) 
 

 (0.0268)  (0.0271)  (0.2287)  (0.2435) 
 [ln(103 × PCCit-2)]2                               -0.0435  -0.0377                                 0.0359  0.0160  

                               (0.0465)  (0.0481)                                 (0.0345)  (0.0365)  
ln(103 × ACCit-2)

 0.0048 
 

-0.0025 
 

0.0022 
 

-0.0043 
 

 0.0104  0.0118  0.0084  0.0087 
 (0.0338) 

 
(0.0325) 

 
(0.0339) 

 
(0.0326) 

 
 (0.0272)  (0.0279)  (0.0269)  (0.0277) 

 Residual(ln(Fit-1))                -0.1168                 -0.1063                  0.1799 **                0.1872 ** 
               (0.1193)                 (0.1215)                  (0.0717)                 (0.0733)  

Constantcut1 2.1299 *** 2.9056 *** 2.0894 *** 2.7969 ***  2.7530 *** 2.0324 *** 2.7646 *** 2.0160 *** 
(0.4731) 

 
(0.8975) 

 
(0.4733) 

 
(0.9261) 

 
 (0.4623)  (0.5839)  (0.4684)  (0.5893) 

 Constantcut2 2.9937 *** 3.7714 *** 2.9591 *** 3.6681 ***  3.8086 *** 3.1169 *** 3.8240 *** 3.1062 *** 
(0.5182) 

 
(0.9087) 

 
(0.5134) 

 
(0.9339) 

 
 (0.6248)  (0.7400)  (0.6310)  (0.7466) 

 Nb observations 201 
 

201 
 

201 
 

201 
 

 2531  2531  2531  2531 
 Nb Groups 155 

 
155 

 
155 

 
155   1966  1966  1966  1966  Wald X2 

 
62.80 *** 65.43 *** 77.79 *** 82.00 ***  2060.77 *** 1950.95 *** 1950.54 *** 1827.52 *** 

Pseudo R2 0.2700  0.2723  0.2745  0.2738        0.3003       0.3119  0.3140  0.3087  
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Table 5.3 : Impact of government funding and collaborations on the number of claims of nanotech patents in Canada and the United 
States   

NCLit 

 

Canada  US 
(1) (2) (3)  (4) (5) (6) 

 
1-1 

(NO End.) 
 

1-2 
(2SRI) 

 
2-1 

(NO End.) 
 

2-2 
(2SRI) 

 
3-1 

(NO End.) 
 

3-2 
(2SRI)  

 
4-1 

(NO End.) 
 

4-2 
(2SRI) 

 
5-1 

(NO End.) 
 

5-2 
(2SRI) 

 
6-1 

(NO End.) 
 

6-2 
(2SRI) 

ln(Fit-1)
 -0.1471 

 
-0.4137 ** -0.1502 

 
-0.4153 ** -0.1775 

 
-0.5744 **  0.2397 *** 0.4352 *** 0.2346 *** 0.4275 *** 0.2379 *** 0.4161 *** 

(0.1634) 
 

(0.2095) 
 

(0.1630) 
 

(0.2093) 
 

(0.1709) 
 

(0.2324) 
 

 (0.0576)  (0.0705)  (0.0576)  (0.0705) 
 

(0.0591) 
 

(0.0713) 
 [ln(Fit-1)]2

 

0.0153  0.0146  0.0154  0.0148  0.0174  0.0169   -0.0188 *** -0.0193 *** -0.0184 *** -0.0189 *** -0.0188 *** -0.0196 *** 
(0.0163) 

 
(0.0163) 

 
(0.0162) 

 
(0.0163) 

 
(0.0171) 

 
(0.0174) 

 
 (0.0049)  (0.0050)  (0.0049)  (0.0050) 

 
(0.0050) 

 
(0.0051) 

 NPPit-1
 0.3629 *** 0.3651 *** 0.3996 *** 0.4124 *** 0.4482 *** 0.5051 ***  0.2393 *** 0.2115 *** 0.2468 *** 0.2192 *** 0.3066 *** 0.2740 *** 

(0.0589) 
 

(0.0612) 
 

(0.0633) 
 

(0.0647) 
 

(0.0995) 
 

(0.1009) 
 

 (0.0136)  (0.0130)  (0.0141)  (0.0134) 
 

(0.0156) 
 

(0.0150) 
 [NPPit-1]2

 

                                                            -0.0128 ** -0.0199 ***                                                              -0.0055 *** -0.0047 *** 
              
 

              
 

              
 

              
 

(0.0060) 
 

(0.0065) 
 

                                                            
 

(0.0004) 
 

(0.0004) 
 ln(104 × PBCit-2) 

 0.5085 ** 0.6269 ** 0.7310 ** 0.9616 *** -0.0355  0.1088   0.0887  0.1149  0.4065 ** 0.4350 *** -0.0776  -0.0036  
(0.2305) 

 
(0.2587) 

 
(0.3184) 

 
(0.3725) 

 
(0.2118) 

 
(0.2254) 

 
 (0.1166)  (0.1192)  (0.1653)  (0.1640) 

 
(0.1522) 

 
(0.1554) 

 ln(104 × ABCit-2)
 0.1650 

 
0.2212 * 0.1695 

 
0.2247 * -0.0001 

 
-0.1181 

 
 -0.1119  -0.0605  -0.0709  -0.0449 

 
-0.0497 

 
-0.0099 

 (0.1093) 
 

(0.1158) 
 

(0.1122) 
 

(0.1187) 
 

(0.1296) 
 

(0.1326) 
 

 (0.2413)  (0.2530)  (0.2387)  (0.2513) 
 

(0.2495) 
 

(0.2609) 
 ln(103 × PCCit-2)

 

-0.0493 
 

-0.0293 
 

-0.0536 
 

-0.0347 
 

1.0086 *** 1.0506 ***  -0.0019  -0.0009  -0.0036  -0.0026 
 

0.3728 
 

0.2629 
 (0.0391) 

 
(0.0391) 

 
(0.0396) 

 
(0.0395) 

 
(0.3567) 

 
(0.3545) 

 
 (0.0147)  (0.0147)  (0.0149)  (0.0148) 

 
(0.2308) 

 
(0.2312) 

 [ln(103 × PCCit-

2)]2                                                             -0.1586 *** -0.1611 ***                                                              -0.0566 * -0.0401  
                                                             (0.0530)  (0.0527)                                                               (0.0337)  (0.0337)  
ln(103 × ACCit-2)

 
0.0179 

 
0.0289 

 
0.0152 

 
0.0257 

 
0.7979 *** 1.4445 ***  -0.0207  -0.0522 *** -0.0206  -0.0516 *** 0.5505 * 0.7240 ** 

(0.0326) 
 

(0.0323) 
 

(0.0328) 
 

(0.0325) 
 

(0.2805) 
 

(0.3761) 
 

 (0.0162)  (0.0171)  (0.0162)  (0.0171) 
 

(0.2996) 
 

(0.3184) 
 [ln(103 × ACCit-

2)]2 
              
 

              
 

              
 

              
 

-0.1200 *** -0.2149 ***                                                             
 

-0.0842 * -0.1140 ** 
              
 

              
 

              
 

              
 

(0.0420) 
 

(0.0562) 
 

                                                            
 

(0.0438) 
 

(0.0466) 
 ln(104 × PBCit-2) 

× NPPit-1
 

              
 

              
 

-0.2266 *** -0.2937 ***               
 

              
 

                               -0.0552 *** -0.0554 ***               
 

              
               

 
              
 

(0.0833) 
 

(0.1033) 
 

              
 

              
 

                               (0.0134)  (0.0133) 
 

              
 

              
 Residual(ln(Fit-

1)) 
               0.2928 **                0.2904 **                0.4259 ***                 -0.1950 ***                -0.1919 ***                -0.1749 *** 
               (0.1390)                 (0.1386)                 (0.1551)                  (0.0317)                 (0.0314)                 (0.0315)  

Constant 0.3884 
 

1.9930 ** 0.4283 
 

2.0215 ** 0.4609 
 

2.8346 ***  1.8040 *** 1.1190 *** 1.7953 *** 1.1222 *** 1.7564 *** 1.1478 *** 
(0.3276) 

 
(0.8443) 

 
(0.3292) 

 
(0.8459) 

 
(0.3322) 

 
(0.9367) 

 
 (0.0957)  (0.1602)  (0.0961)  (0.1593) 

 
(0.0982) 

 
(0.1602) 

 Years Yes  Yes  Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  Yes  Yes  
ln(alpha) 3.2646 *** 3.2579 *** 3.2629 *** 3.2563 *** 3.2515 *** 3.2395 ***  2.3505 *** 2.3432 *** 2.3497 *** 2.3425 *** 2.3380 *** 2.3322 *** 

(0.0835) 
 

(0.0831) 
 

(0.0836) 
 

(0.0832) 
 

(0.0838) 
 

(0.0836) 
 
 (0.0272)  (0.0272)  (0.0272)  (0.0273) 

 
(0.0272) 

 
(0.0273) 

 Nb observations 1329 
 

1329 
 

1329 
 

1329 
 

1329 
 

1329 
 
 9157  9157  9157  9157 

 
9157 

 
9157  Nb Groups 532  532  532  532  532  532   5381  5381  5381  5381  5381  5381  Loglikelihood -1535.08 

 
-1534.02 

 
-1534.8 

 
-1533.8 

 
-1533.05  -1531.2   -17890.2  -17876.5  -17888.6  -17875.2 

 
-17865.9 

 
-17855  

Wald X2
 

83.50 *** 79.41 *** 100.26 *** 94.70 *** 145.33 *** 142.83 ***  708453.7 *** 635920 *** 692853.7 *** 621759.4 *** 696163 *** 629545 *** 
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Our findings in the US are generally in line with that of other scholars (Chen et al., 2013; Huang, 

et al., 2005; Payne and Siow, 2003) who found a correlation between funding and technological 

productivity. In addition, past experience in patenting activity (NPPit) is associated with new 

patents in both Canada and the US. Examining the quadratic effect of a researcher’s industrial 

interests in the past three years shows that this positive impact has a limit: the maximum 

threshold of the resulting inverted-U relationship corresponds to roughly 21 patents for Canada 

and 18 patents for the US. Contributing to more patents beyond these points is associated with a 

decreasing trend (Figure 5.1). 

 

(a) (b) 

Figure 5.1: Non-linear impact of the number of patents in past three years (NPP) on the number 
of patents in (a) Canada and (b) in the United States 

 

In terms of the role that collaboration in co-invention research networks plays in patenting 

activity, our results find a positive impact of betweenness centrality (PBC) on the number of 

patents. The results are consistently significant in Canada except in Model 3. This is why we add 

quadratic terms in the regressions. In the US we are only able to find this positive impact in 

Model 5 when we include the interactive variable. Turning to the betweenness centrality of co-

authorship networks, we cannot find any impact on the technological productivity of researchers. 

These results confirm that in terms of technological productivity, a more central position in a co-

invention network is more important than in a co-authorship network. 

When we account for the clustering coefficient measure of these two networks (PCC, ACC) 

including the nonlinear form of these variables in the model, we observe a positive linear impact 

and a negative quadratic impact in both of these networks in Canada, indicating an inverted-U 
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shape relationship. This implies that when researchers tend to cluster, they are more likely to 

produce more patents, but a higher clustering coefficient value exhibits decreasing returns (see 

Figure 5.2). In contrast, we cannot observe a significant influence of innovative collaborations for 

the US. Hence, our results for Canada are generally in line with previous studies (Balconi et al., 

2004; Breschi and Catalini, 2008; Murray, 2002; Schilling and Phelps, 2007), highlighting the 

importance of research collaboration. 

  

(a) (b) 

Figure 5.2: Non-linear impact of the clustering coefficient in (a) the co-invention network (PCC) 
and (b) the co-publication network (ACC), on the number of patents in Canada (Model 3-1) 

 

The results as presented in Table 5.2 show a positive impact of the number of patenting activities 

in the past three years (NPP) on categorical variable of citations (C(NCiit)). The results show a 

positive linear impact of clustering (PCC) on patent citations in the first model only for Canada 

(Model 1-1). However, patenting activity is positively associated with patent citation and the 

results are strongly significant for both Canada and the US. We also observe a negative nonlinear 

impact implying that there is a limit for this positive effect and once we reach that limit, the 

probability of receiving more citations starts to decrease.   

The other patent quality determinant we consider is the number of claims (NCLit) declared in 

patent documents. Table 5.3 displays the results of the Negative Binomial model with clustered 

robust standard errors. As expected, the results are positive and highly significant in the US: 

accessing greater amounts of government funding is associated with a higher number of claims. 

In the US the results indicate that beyond a specific amount of funding, patent quality diminishes 

(Figure 5.3a). Surprisingly, when we conducted this analysis for Canada, we found a negative 
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impact of funding on the number of claims in our studied period. Past experience measured by 

the number of patents in the past three years in both Canada and the US positively influences the 

number of claims but only up to a point. Beyond this threshold (13 patents in Canada and 

29 patents in the US), one more patent reduces the number of claims (Figure 5.3b and Figure 

5.4a). 

   

(a) (b) (c) 

Figure 5.3:Non-linear impact of (a) funding (F), (b) the number of patents in past three years 
(NPP) and (c) the clustering coefficient in co-publication networks (ACC) on the number of 

claims in the United States (Model 6-2) 
With respect to the influence of betweenness centrality in innovative and scientific networks, we 

only observed a positive impact in Canada, but once we add the interactive effect of betweenness 

with the number of previous patents, we observed the positive impact in the US as well. In the 

US, our results illustrate that only the co-publication networks enhance patent quality (see Figure 

5.3c), while in Canada, both co-invention and co-publication networks boost patent quality (see 

Figure 5.4b and Figure 5.4c).  
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(a) (b) (c) 

Figure 5.4:Non-linear impact of (a) the number of patents in past three years (NPP), (b) the 
clustering coefficient in co-invention networks (PCC), and (c) the clustering coefficient in co-

publication networks (ACC) on the number of claims in Canada (Model 3-2) 

 

As observed above, that a higher clustering coefficient eventually yields fewer patents, after an 

increase in the relationship, further along the inverted U-shaped curve we notice that more 

integrated clusters also lead to lower number of claims. These findings tend to suggest that 

although collaboration in integrated groups tends to result in higher quality patents, slightly more 

integrated networks eventually decrease the patent quality.  

For the purpose of comparing the effects of funding and network measures in Canada and the US, 

we defined a dummy variable for Canada (dCA) and estimated a model where dCA interacts with 

other variables26. Table 5.4, Table 5.5 and Table 5.6 display the results for the Negative Binomial 

model and the Ordered Probit model for the pooled sample (both Canada and the United States).  

In particular, these results provide further evidence that having previously patented has a stronger 

positive effect on increasing the number of patents in Canada compared to the US (Figure 5.5a). 

The intermediary position of researchers in co-invention networks is only significant when we do 

not consider the quadratic effects and seem to have more influence in Canada than in the US 

(Figure 5.5b). Although both Canada and the US have a positive slope, one unit increase in 

                                                

26 Table C.8 in Appendix C compares the Canadian and US samples for all the variables of interest. Due to the 
difference in the number of observations between Canada and the US, we created 5 random samples without 
replacement from the US data that have approximately the same number of observations as the Canadian sample. We 
ran t-test to investigate whether there is a statistically significant difference in the means of variables in our two 
datasets ([Canada vs US-s1], [Canada vs US-s2], …, [Canada vs US-s5]). The results show that all variables except 
betweenness centrality in the co-invention network (PCC) are significantly different. 
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betweenness centrality will have a stronger impact on the number of patents in Canada. In 

regards to assessing the impact of the clustering coefficient in co-invention networks, Figure 5.5c 

shows that the number of patents is associated with a slight increase in the US while we have a 

negative slope in Canada, i.e. increasing the co-invention clustering coefficient will decrease the 

number of patents in Canada. The results are the opposite for the co-invention clustering 

coefficient: a positive slope for Canada and a negative slope for the US (Figure 5.5d)27. 

Turning now to the patent quality indicators, we find once more that past patenting experience 

has a positive impact on patent citations in Canada, i.e. the probability of higher quality patents 

increases in accordance with the number of patents generated in previous years (Figure 5.6a). 

Additionally, the clustering coefficient in co-publication networks has a higher impact in Canada 

compared to the US, where the relationship is relatively flat (Figure 5.6b). 

                                                

27 We investigated whether the co-invention and co-publication clustering coefficients could have a moderating 
effect on one another by interacting the two variables, but this added interaction term was never significant.  
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Table 5.4 : Impact of government funding and collaborations on the number of patents in 
Canada and the United States together   

NPit 

With dummy variables 
(1) (2) (3) 

1-1 
(NO End.) 

1-2 
(2SRI) 

2-1 
(NO End.) 

2-2 
(2SRI) 

3-1 
(NO End.) 

3-2 
(2SRI) 

ln(Fit-1)
 0.0227 

 
0.1708 *** 0.0182 

 
0.1678 *** 0.0118 

 
0.1183 *** 

(0.0284) 
 

(0.0348) 
 

(0.0282) 
 

(0.0348) 
 

(0.0258) 
 

(0.0328) 
 [ln(Fit-1)]2

 
-0.0011  -0.0022  -0.0007  -0.0019  -0.0003  -0.0012  

(0.0025) 
 

(0.0025) 
 

(0.0024) 
 

(0.0025) 
 

(0.0022) 
 

(0.0022) 
 NPPit-1

 0.1704 *** 0.1580 *** 0.1748 *** 0.1627 *** 0.3109 *** 0.2934 *** 
(0.0071) 

 
(0.0073) 

 
(0.0073) 

 
(0.0075) 

 
(0.0297) 

 
(0.0288) 

 [NPPit-1]2
 

                                                            -0.0086 *** -0.0080 *** 
              
 

              
 

              
 

              
 

(0.0021) 
 

(0.0020) 
 ln(104x PBCit-2) 

 0.1132  0.1141  0.4720 *** 0.5150 *** 0.0900  0.1182  
(0.0922) 

 
(0.1026) 

 
(0.1303) 

 
(0.1315) 

 
(0.0944) 

 
(0.1052) 

 ln(104 x ABCit-2)
 

0.0437 
 

-0.0272 
 

0.0931 
 

0.0137 
 

0.0953 
 

0.0230 
 (0.1657) 

 
(0.1856) 

 
(0.1611) 

 
(0.1763) 

 
(0.1660) 

 
(0.1827) 

 ln(103 x PCCit-2)
 

0.0049 
 

0.0063 
 

0.0029 
 

0.0042 
 

-0.0625 
 

-0.1295 
 (0.0073) 

 
(0.0072) 

 
(0.0074) 

 
(0.0072) 

 
(0.0880) 

 
(0.0898) 

 [ln(103 x PCCit-2)]2                                                             0.0078  0.0180  
                                                            (0.0131)  (0.0134)  

ln(103 x ACCit-2)
 -0.0243 *** -0.0434 *** -0.0234 ** -0.0428 *** 0.0446 

 
0.0715 

 (0.0092) 
 

(0.0094) 
 

(0.0091) 
 

(0.0094) 
 

(0.1258) 
 

(0.1287) 
 [ln(103 x ACCit-2)]2               

 
              
 

              
 

              
 

-0.0088 
 

-0.0148 
               

 
              
 

              
 

              
 

(0.0187) 
 

(0.0192) 
 ln(104xPBCit-2) × NPPit-1 

 

              
 

              
 

-0.0439 *** -0.0504 ***               
 

              
               

 
              
 

(0.0103) 
 

(0.0118) 
 

              
 

              
 dCA -0.8723 *** -0.9564 *** -0.8863 *** -0.9692 *** -0.6830 *** -0.7455 *** 

(0.1459)  (0.1528)  (0.1472)  (0.1545)  (0.1518)  (0.1570)  
dCA×ln(Fit-1)

 -0.1661  -0.1714  -0.1423  -0.1497  -0.1575  -0.1656  
(0.1359)  (0.1362)  (0.1353)  (0.1360)  (0.1371)  (0.1369)  

dCA× [ln(Fit-1)]2 0.0184  0.0179  0.0161  0.0159  0.0176  0.0177  
(0.0136)  (0.0137)  (0.0135)  (0.0136)  (0.0138)  (0.0137)  

dCA×NPPit-1 0.1506 *** 0.1682 *** 0.1934 *** 0.2008 *** 0.0199  0.0205  
(0.0261)  (0.0261)  (0.0371)  (0.0348)  (0.0732)  (0.0721)  

dCA× [NPPit-1]2                                                             0.0066  0.0079 * 
                                                            (0.0043)  (0.0042)  

dCA×ln(104 ×PBCit-1)  0.5693 ** 0.4480 * 0.4079  0.2126  0.3268  0.2396  
(0.2662)  (0.2669)  (0.2612)  (0.2583)  (0.2712)  (0.2766)  

dCA× ln(104 × ABCit-1) 0.0032  0.0538  -0.0480  0.0126  -0.1424  -0.0510  
(0.1874)  (0.2043)  (0.1826)  (0.1950)  (0.1963)  (0.2109)  

dCA×ln(103 × PCCit-2)
 -0.0397  -0.0518 ** -0.0482 * -0.0587 ** 0.4348 * 0.4290  

(0.0247)  (0.0248)  (0.0261)  (0.0261)  (0.2593)  (0.2649)  
dCA× [ln(103 × PCCit-2)]2                                                             -0.0680 * -0.0682 * 

                                                            (0.0378)  (0.0386)  
dCA×ln(103 × ACCit-2)

 0.0826 *** 0.0979 *** 0.0811 *** 0.0971 *** 0.3435  0.1949  
(0.0261)  (0.0266)  (0.0261)  (0.0265)  (0.2630)  (0.2675)  

dCA× [ln(103 × ACCit-2)]2                                                             -0.0413  -0.0172  
                                                            (0.0396)  (0.0403)  

dCA×ln(104×PBCit-2) 
 × NPPit-1

 
                              -0.0865  -0.0518                                
                              (0.0715)  (0.0698)                                

residual(ln(Fit-1))                -0.1395 ***                -0.1401 ***                -0.0991 *** 
               (0.0216)                 (0.0203)                 (0.0218)  

Constant -1.1092 *** -1.6714 *** -1.1153 *** -1.6795 *** -1.2503 *** -1.6444 *** 
(0.0680) 

 
(0.1167) 

 
(0.0678) 

 
(0.1119) 

 
(0.0814) 

 
(0.1168) 

 Years Yes  Yes  Yes  Yes  Yes  Yes  
ln(alpha) -0.2849 *** -0.3381 *** -0.2953 *** -0.3535 *** -0.5966 *** -0.6215 *** 

(0.0842) 
 

(0.0830) 
 

(0.0839) 
 

(0.0831) 
 

(0.1108) 
 

(0.1081) 
 Nb observations 10486 

 
10486 

 
10486 

 
10486 

 
10486 

 
10486 

 Nb Groups 5913  5913  5913  5913  5913  5913  
Loglikelihood 

-7541.86 
 

-7512.21 
 

-7531.91 
 

-7501.66 
 

-7400.94  -7385.65  
Wald X2 

 
1618.1 *** 1649.4 *** 1696.3 *** 1742.8 *** 2880.403 *** 2802.635 *** 
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 Table 5.5 : Impact of government funding and collaborations on the number of claims 

 in Canada and the United States together 

NCLit  

With dummy variables 
(1) (2) (3) 

1-1 
(NO End.) 

1-2 
(2SRI) 

2-1 
(NO End 

2-2 
(2SRI) 

3-1 
(NO End.) 

3-2 
(2SRI) 

ln(Fit-1)
 0.2154 *** 0.2696 *** 0.2105 *** 0.2640 *** 0.2131 *** 0.2493 *** 

(0.0538) 
 

(0.0678) 
 

(0.0537) 
 

(0.0677) 
 

(0.0550) 
 

(0.0688) 
 [ln(Fit-1)]2

 

-0.0171 *** -0.0173 *** -0.0166 *** -0.0169 *** -0.0170 *** -0.0172 *** 
(0.0046) 

 
(0.0046) 

 
(0.0046) 

 
(0.0046) 

 
(0.0047) 

 
(0.0047) 

 NPPit-1
 0.2600 *** 0.2519 *** 0.2673 *** 0.2594 *** 0.3279 *** 0.3210 *** 

(0.0138) 
 

(0.0147) 
 

(0.0143) 
 

(0.0151) 
 

(0.0157) 
 

(0.0169) 
 [NPPit-1]2

 

                                                            -0.0058 *** -0.0056 *** 
              
 

              
 

              
 

              
 

(0.0004) 
 

(0.0004) 
 ln(104x PBCit-2) 

 0.0564  0.0621  0.3634 ** 0.3736 ** -0.0830  -0.0707  
(0.1122) 

 
(0.1127) 

 
(0.1589) 

 
(0.1567) 

 
(0.1430) 

 
(0.1444) 

 ln(104 x ABCit-2)
 

-0.0391 
 

-0.0424 
 

-0.0017 
 

-0.0133 
 

0.0139 
 

0.0099 
 (0.2245) 

 
(0.2261) 

 
(0.2222) 

 
(0.2241) 

 
(0.2313) 

 
(0.2326) 

 ln(103 x PCCit-2)
 

-0.0095 
 

-0.0091 
 

-0.0111 
 

-0.0107 
 

0.2994 
 

0.2808 
 (0.0135) 

 
(0.0135) 

 
(0.0136) 

 
(0.0136) 

 
(0.2098) 

 
(0.2113) 

 [ln(103 x PCCit-2)]2                                                             -0.0468  -0.0440  
                                                             (0.0306)  (0.0309)  
ln(103 x ACCit-2)

 
-0.0280 * -0.0355 ** -0.0278 * -0.0353 ** 0.4628 * 0.4983 * 

(0.0149) 
 

(0.0160) 
 

(0.0149) 
 

(0.0160) 
 

(0.2798) 
 

(0.2856) 
 [ln(103 x ACCit-2)]2               

 
              
 

              
 

              
 

-0.0723 * -0.0783 * 
              
 

              
 

              
 

              
 

(0.0410) 
 

(0.0419) 
 ln(104xPBCit-2) 

 x NPPit-1
 

              
 

              
 

-0.0555 *** -0.0563 ***               
 

              
               

 
              
 

(0.0135) 
 

(0.0128) 
 

              
 

              
 dCA 0.9910 ** 1.0031 ** 1.0005 ** 1.0129 ** 1.1982 *** 1.2036 *** 

(0.4408)  (0.4442)  (0.4408)  (0.4438)  (0.4270)  (0.4293)  
dCA×ln(Fit-1)

 
-0.4791  -0.4822  -0.4741  -0.4776  -0.4874  -0.4881  

(0.3238)  (0.3235)  (0.3222)  (0.3219)  (0.3362)  (0.3355)  
dCA× [ln(Fit-1)]2 0.0490  0.0487  0.0486  0.0483  0.0478  0.0474  

(0.0304)  (0.0303)  (0.0302)  (0.0301)  (0.0318)  (0.0317)  
dCA×NPPit-1 -0.0651  -0.0616  -0.0966  -0.0956  -0.2331  -0.2415  

(0.0692)  (0.0671)  (0.0864)  (0.0852)  (0.1832)  (0.1849)  
dCA× [NPPit-1]2                                                             0.0133  0.0143  

                                                            (0.0109)  (0.0112)  
dCA×ln(104 ×PBCit-1)  1.5121 *** 1.4443 *** 1.0225 ** 0.9628 ** 1.4964 ** 1.4421 ** 

(0.5611)  (0.5200)  (0.3984)  (0.3828)  (0.6295)  (0.6097)  
dCA× ln(104 × ABCit-1) -0.1576  -0.1785  -0.1942  -0.2066  -0.5531  -0.5451  

(0.2801)  (0.2814)  (0.2780)  (0.2790)  (0.3463)  (0.3473)  
dCA×ln(103 × PCCit-2)

 
-0.0518  -0.0554  -0.0494  -0.0526  0.1647  0.1848  

(0.0738)  (0.0746)  (0.0738)  (0.0745)  (0.6770)  (0.6799)  
dCA× [ln(103 × PCCit-

2)]2 
                                                            -0.0313  -0.0344  
                                                            (0.1007)  (0.1010)  

dCA×ln(103 × ACCit-2)
 

0.0117  0.0166  0.0168  0.0219  0.8504  0.7404  
(0.0750)  (0.0766)  (0.0755)  (0.0772)  (0.8402)  (0.8447)  

dCA× [ln(103 × ACCit-

2)]2 
                                                            -0.1280  -0.1109  
                                                            (0.1256)  (0.1263)  

dCA×ln(104×PBCit-2) 
 × NPPit-1

                               0.1741  0.1733                                
                              (0.1593)  (0.1400)                                

residual(ln(Fit-1))                -0.0532                 -0.0523                 -0.0351  
               (0.0392)                 (0.0385)                 (0.0388)  

Constant 1.7998 *** 1.6153 *** 1.7914 *** 1.6105 *** 1.7525 *** 1.6325 *** 
(0.0963) 

 
(0.1701) 

 
(0.0967) 

 
(0.1684) 

 
(0.0988) 

 
(0.1696) 

 Years Yes  Yes  Yes  Yes  Yes  Yes  ln(alpha) 2.5140 *** 2.5132 *** 2.5133 *** 2.5125 *** 2.5013 *** 2.5009 *** 
(0.0273) 

 
(0.0274) 

 
(0.0273) 

 
(0.0274) 

 
(0.0273) 

 
(0.0273) 

 Nb observations 10486 
 

10486 
 

10486 
 

10486 
 

10486 
 

10486 
 Nb Groups 5913  5913  5913  5913  5913  5913  Loglikelihood -19698.8 

 
-19697.5 

 
-19697.2 

 
-19695.9 

 
-19671.2  -19670.6  

Wald X2 
 

1825.5 *** 1836.9 *** 1872.5 *** 1890.7 *** 2220.2 *** 2232.4 *** 
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Table 5.6 :The Comparison of the impact of government funding and collaborations on the 
number of citations received by nanotechnology patents in Canada and the US with dummy 
variables  

C(NCiit ) 

With dummy variables 
(1) (2) 

 
1-1 

(NO End.) 
 

1-2 
(2SRI) 

 
2-1 

(NO End.) 
 

2-2 
(2SRI) 

ln(Fit-1)
 -0.0283 ** 0.0777  0.0121  0.0647 

 (0.0136)  (0.1908)  (0.1715)  (0.1909) 
 [ln(Fit-1)]2

 

-0.0041  -0.0045  -0.0034  -0.0040  
(0.0152)  (0.0155)  (0.0152)  (0.0155) 

 NPPit-1
 0.1145 *** 0.1082 *** 0.1156 *** 0.1102 *** 

(0.0192)  (0.0192)  (0.0191)  (0.0190) 
 [NPPit-1]2

 

-0.0017 *** -0.0015 *** -0.0017 *** -0.0015 *** 
(0.0004)  (0.0004)  (0.0004)  (0.0004) 

 ln(104x PBCit-2) 
 -0.0598  -0.0624  0.0049  0.0124  

(0.1698)  (0.1626)  (0.1752)  (0.1742) 
 ln(103 x PCCit-2)

 

0.0019  0.0042  -0.1213  -0.1626 
 (0.0241)  (0.0240)  (0.2012)  (0.2089) 
 [ln(103 x PCCit-2)]2                               0.0186  0.0250  

                              (0.0303)  (0.0315)  
ln(103 x ACCit-2)

 
0.0322  0.0322  0.0317  0.0315 

 (0.0237)  (0.0243)  (0.0237)  (0.0240) 
 dCA 1.1882 *** 1.1868 *** 1.2177 *** 1.2059 *** 

(0.2762)  (0.2789)  (0.2758)  (0.2778)  
dCA×ln(Fit-1)

 -0.0171  -0.0711  -0.0489  -0.0574  
(0.1299)  (0.2198)  (0.2170)  (0.2208)  

dCA× [ln(Fit-1)]2 0.0026  0.0071  0.0051  0.0057  
(0.0123)  (0.0201)  (0.0199)  (0.0202)  

dCA×NPPit-1 0.3091 *** 0.3227 *** 0.2914 *** 0.3038 *** 
(0.0939)  (0.0910)  (0.0940)  (0.0921)  

dCA× [NPPit-1]2 -0.0160 ** -0.0160 ** -0.0155 ** -0.0156 ** 
(0.0071)  (0.0069)  (0.0069)  (0.0067)  

dCA×ln(104 ×PBCit-1)  0.2212  0.2219  -0.0366  -0.0406  
(0.2455)  (0.2405)  (0.2843)  (0.2828)  

dCA×ln(103 × PCCit-2)
 0.1303 *** 0.1218 ** 0.6672 * 0.6926 * 

(0.0482)  (0.0481)  (0.3797)  (0.3752)  
dCA× [ln(103 × PCCit-2)]2                               -0.0803  -0.0851  

                              (0.0560)  (0.0555)  
dCA×ln(103 × ACCit-2)

 -0.0279  -0.0303  -0.0311  -0.0327  
(0.0431)  (0.0430)  (0.0432)  (0.0429)  

residual(ln(Fit-1))                -0.0552                 -0.0474  
               (0.0554)                 (0.0547)  

Constantcut1 2.7246 *** 2.9655 *** 2.7315 *** 2.9345 *** 
(0.4391)  (0.5976)  (0.4412)  (0.5957) 

 Constantcut2 3.6277 *** 3.8721 *** 3.6405 *** 3.8458 *** 
(0.4883)  (0.6462)  (0.4907)  (0.6446) 

 Nb observations 2732  2732  2732  2732 
 Nb Groups 2121  2121  2121  2121 
 Loglikelihood -277.251  -276.655  -276.174  -275.808 
 Wald X2

 
1701.19 *** 1775.89 *** 1969.50 *** 1759.93 *** 

Pseudo R2      0.4309  0.4321  0.4339  0.4328  
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(a) (b) 

 

(c) (d) 

Figure 5.5: Comparison of the impact of (a) the number of patents in past three years (NPP), (b) 
betweenness centrality in the co-invention network (PBC), (c) the clustering coefficient in co-
invention networks (PCC), and (d) the clustering coefficient in co-publication networks (ACC) 

on the number of nanotechnology patents in Canada and in the United States 
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(a) (b) 

Figure 5.6: Comparison of the impact of (a) the number of patents in past three years (NPP), (b) 
the clustering coefficient in co-invention networks (PCC) on the number of citations in Canada 

and in the United States 

 

Finally, according to the comparison analysis of our second indicator of patent quality (the 

number of claims), a better intermediary position in an innovative network has more impact in 

Canada than in the US and increasing the betweenness centrality will result in higher quality 

patents (see Figure 5.7). Neither the Negative Binomial nor the Ordered Probit regressions could 

provide significant results to compare the importance of dynamic effects of funding in the US 

and Canada. 

 

Figure 5.7: Comparison of the impact of betweenness centrality in the co-invention network 
(PBC) on the number of claims in Canada and in the United States 

5.6 Conclusions  

This paper presents an empirical analysis of the impact of public funding and of collaboration 

between academic researchers on university technological outputs in the emerging science and 
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technology domain, nanotechnology, on a sample of Canadian and American academic patents. A 

limited number of studies have explored in details the influence of funding and collaboration 

together on academic innovative activity. More importantly, the large body of literature generally 

focuses on the influence of funding on scientific productivity. This paper expands the focus of 

research on patenting by examining whether funding and collaboration in both the scientific and 

the technological networks is an issue when scientists address industrial interests. To our 

knowledge this is the first study where technological performance is examined to provide insight 

on the impact of funding and compare between the networks of science and of technology in the 

field of nanotechnology in Canada and in the US. Four hypotheses were proposed at the start of 

the paper, which we discuss in the following paragraphs.  

We focus here on two relatively similar, yet very distinct countries and the results are rather 

different. We find empirical evidence that government funding enhances technological 

productivity in the US, but we are unable to find such a relationship in Canada. We hence accept 

Hypothesis 1a for the US, but reject this hypothesis for Canada. For the second part of the first 

hypothesis on quality, we confirm the impact of public funding on patent quality but only in the 

US, and thus accept Hypothesis 1b for the US. In this regard, the number of claims yields 

significant results while the number of citations, regardless of the form of the indicator, does not, 

even when we include 7-year forward citations following the patent grant year. While more 

government funds in the US undoubtedly lead to more academic patents that are associated with 

higher quality patents, we find there is a limit to the increase in patent quality. This suggests that 

beyond a specific amount of funding (nearly 42 000 $), patent quality begins to decrease. 

In parallel, the amount of public funds at the disposal of researchers in Canada does not yield a 

positive impact on patent quality; hence we reject Hypothesis 1b for Canada. Although, 

government plays a central role as a source of research financing in universities, across the 

different domains of scientific research close to commercial applications, Canadian 

nanotechnology-related patents appear to be independent from research financing. 

Nanotechnology is however in its infancy and technology development is slightly slower in 

Canada than in the US. With respect to the fact that the patents considered in this paper are the 

technological output of academic researchers, because scientists aim first and foremost to publish 

rather than patent, it is possible that more collaboration and funding from industry are necessary 

to incite patenting activities in Canada. 
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This analysis further sheds light on our understanding of the influence that collaboration, within 

the network of science and of technology, has on enhancing commercial interests of academic 

researchers. We characterised two technological and scientific networks based on co-invention 

and co-publication links between individual researchers. In Canada we find that collaborations in 

both networks have a significant influence on patenting productivity and quality, but in the US, 

collaborations are more effective in terms of patent quality and we are not able to capture a 

consistently significant impact on the number of patents. These findings suggest that the position 

of a researcher and the structure of collaborative teams do matter and are effective in enabling 

academic researchers to enhance their technological output. Therefore following previous studies 

(Agrawal et al., 2006; Baba et al., 2009; Balconi et al., 2004; Breschi and Catalini, 2008; Breschi 

and Lissoni, 2009; Murray, 2002; Schilling and Phelps, 2007; Teichert and Ernst, 1999) that 

generally studied the relationship between collaboration and research productivity, we contribute 

to the literature in terms of a detailed analysis of the effect of collaborations on technological 

productivity. We accept Hypothesis 3a and Hypothesis 3b only for Canada and Hypothesis 2a 

and Hypothesis 2b for both Canada and partly for the US as we have seen only betweenness 

centrality in co-invention network has a positive influence on patent quality in the US. It is worth 

noting that although our findings confirm that the structure of clusters in networks of researchers 

can be beneficial, the collaboration of various disciplines is required and the maximum clustering 

coefficient cannot yield fruitful results. As we see in this study, if researchers do not attempt to 

establish relationships beyond their circles and maintain some level of fragmentation, maximum 

clustering leads to a reduction in research productivity and quality. 

Moreover, we extended our models to further our understanding of the role that patenting 

experience plays in future patents. Our results, which are consistently significant in both Canada 

and the US, display a reinforcing direct impact on the technological productivity and quality of 

academic inventors. There is however a limit as we observe a threshold: no positive influence is 

observed beyond a specific number of patents (in terms of the number of patents, our threshold 

are 21 patents for Canada and 18 patents for the US, and in terms of the patent quality, the 

thresholds are 13 patents in Canada and 29 patents in the US).    

We can also formulate some concluding remarks to contribute to the comparison of the US and 

Canada. Although government funding plays an important role in technological productivity and 

patent quality in the US, we cannot capture this effect in the comparison analysis. Moreover, in 
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Canada, if an academic inventor already holds a better intermediary position than other 

researchers and has a well-integrated clique around him/herself (with some level of 

fragmentation), he/she contributes to more and higher quality technological output. These 

findings suggest that collaborations in Canada are effective in enhancing academic technological 

output. In particular, we cannot support Hypothesis 4 as these comparison results were not 

significant to imply that government funds are more effective in the US comparing to Canada.  

From this analysis, we realize that both funding and collaborations contribute to enhancing 

patenting activities in the academic world. The findings highlight the importance and potential of 

both types of network connections. The study of co-authorship collaborations shows that the 

establishment of even these relationships becomes effective in the future technological output. 

Nevertheless, it is also necessary to consider that although our analysis tracks different 

performance in terms of funding and collaboration in nanotechnology area in these two countries, 

attempting to follow nanotechnology development requires the investment of governments not 

only in the young field of nanotechnology, but also in the forming the relationships between 

nanotechnology researchers. Thus, increasing attention to both research financing and knowledge 

exchange and collaboration could have the effect of raising the commercial applications in 

academic area. 

As in all research, there are limitations associated with this study. We focused specifically on the 

field of nanotechnology (a multidisciplinary field), and different keywords were used to 

determine whether a patent is related to nanotechnology. Fields evolve and we may missed some 

of the patents that use emerging keywords to describe the technology. Furthermore, we may have 

used keywords that may be too general and have cast too wide a net. In addition, nanotechnology 

is an emerging field: not only has the number of patents and publications been rapidly growing, 

but funding has also been increasing to develop this new technology. Hence the collaborative 

structures of scientists have been rapidly changing over time. Our database does not cover 

extensively the multidisciplinarity of research and technological collaborations, which should 

bias the results towards more monodisciplinary teams (their position in the network would appear 

stronger than multidisiciplinary teams). Furthermore, in order to measure the applied knowledge 

in terms of innovations, we suggest that the intervention of industrial funding and industry 

collaboration be considered in future research. 
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CHAPTER 6 ARTICLE 5: COLLABORATIVE NETWORKS, 

PRODUCTIVITY, AND ACADEMIC RESEARCH: EVIDENCE AND 

IMPLICATIONS FOR THE FIELD OF NANOTECHNOLOGY  

Leila Tahmooresnejad, Catherine Beaudry 

6.1 Abstract  

Research collaboration among academics and how these collaborative networks affect research 

output are controversial areas. Knowledge exchange that occurs between researchers reveals that 

collaborations are mainly realized through knowledge sharing within academic communities. In 

the academic realm, interconnected researchers in scientific and technological networks play a 

significant role in knowledge creation. In this study, we investigate co-author and co-inventor 

networks in a science-based high technology field, and measure the collaborative knowledge 

production by numbers of nanotechnology-related papers and patents. This paper considers how 

networks affect productivity of nanotechnology researchers and compares Quebec with the rest of 

Canada in this emerging technology. Our findings reveal that the number of publications is 

strongly associated with the position of scientists in co-authorship networks and the innovative 

productivity of researchers only increases with collaboration in a technological network. While 

scientific relationships do not have much significant impact on patents, technological 

relationships appear to have impact on publications.  

Keywords: Collaboration, Scientific papers, Academic patents, Nanotechnology 

6.2 Introduction 

Knowledge networks play a strategic role in producing new knowledge. Academic researchers 

tend to cluster and collaborate in teams to reduce research infrastructure costs, share knowledge 

and benefit from the new ideas and tacit knowledge. Scientific and technological networks have 

attracted much attention in recent years and have emerged in various forms: joint research 

projects, joint publications and patent applications (Powell and Grodal 2005; Scherngell and 

Barber 2009; Lee et al, 2011). Intense group research enhances the creation and diffusion of 

knowledge and decreases the level of uncertainty, particularly in science-based high technologies. 
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Due to the competitive nature of high technologies such as nanotechnology, knowledge must be 

accessed and acquired quickly to stimulate economic development. Nanotechnology has 

experienced rapid growth over the last two decades and most countries have become interested in 

the economic benefits that nanotechnology development promises.  

This study focuses on the influence of collaboration on academic scientists' research productivity. 

To this effect we consider two different types of collaboration in academic networks: while co-

authorship is the most known indicator of an academic collaborative relationship, we also explore 

the effect of co-inventor relationships based upon the assumption that knowledge exchange is 

crucial, even in academic innovation activities. In such a multi-disciplinary field, we aim to 

identify whether the position of scientists in co-publication and co-invention networks increases 

the number of papers and the number of patents. The questions that arise in this context are: 

Which of these knowledge networks have central importance? Does only the co-publication 

network matter in terms of producing publications? Is co-invention of central importance in 

patent applications? 

In recent years, collaborations among researchers and knowledge networks have become an 

interest in scientific community. Policy makers also consider scientist networks essential for the 

production of new knowledge and governments have initiated various programs to increase such 

collaborations. It is argued that the diffusion of knowledge depends on the direct and indirect 

connections between research actors (Katz, 1994; Katz and Martin, 1997).   

There has been a recent growing interest in collaboration networks, but despite the substantial 

body of literature, more specifically on the collaboration between university and industry, 

producing the new knowledge underlying these networks requires further emphasis. This study 

contributes to existing related studies: first, using Social Network Analysis (SNA), we are able to 

investigate the different network structures for research outputs to enrich our understanding of 

the determinants that are more fruitful in research productivity; second, we provide a 

comprehensive picture of two main research activities in universities, publications and academic 

patents; and third, we study scientific and technological networks to develop a richer description 

of the scientific community in light of nanotechnology development.  

Quebec is at the forefront of the nanotechnology revolution in Canada and the province has made 

efforts to promote R&D in this strategic technology. NanoQuebec, founded in 2001, has 
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conducted several university-enterprise projects to facilitate the collaboration between 

universities and industry and has financed different innovative projects over the past decade 

(Allan et al. 2008; Dufour, 2005; Pelley and Saner 2009; Conseil de la science et de la 

technologie du Québec, 2002; NanoQuebec, 2010). In this paper, we therefore aim to shed light 

on the nanotechnology development in Quebec compared to other provinces in Canada. 

In order to do so, we provide a detailed investigation of the network factors that influence 

academic research output, using public funding based on a systematic dataset compiled by the 

Ministry of Education as a control. More precisely, we characterize the types of links within the 

networks of nanotechnology-related researchers and investigate the explanatory power of 

scientific and innovative networks on academic productivity. 

The outline of this paper is as follows. In Section 2, we introduce the theoretical background and 

main hypotheses for our empirical study. Section 3 provides the description of datasets, 

methodology and all the explanatory variables. Section 4 concentrates on the analysis of the 

results, and finally in Section 5 we conclude with a summary of the main findings and propose 

policy implications. 

6.3 Conceptual framework 

The focus of research has been a while shifted from lone scientists and inventors in laboratories 

towards distributed teamwork and collaboration networks in various institutions. The broader 

range of opportunities within networks accelerates the access to pool resources and skills to 

stimulate knowledge sharing and new knowledge creation (Bammer, 2008; Katz and Martin, 

1997; Stokols et al., 2005). Since academic scholars must maintain their research productivity 

during their career and each lone scientist has limited capabilities, scientists highly benefit from 

collaboration to improve their productivity (Hauptman 2005). Collaborative research networks 

have expanded in various regions around the world, revealing the capacity of emerging research 

economies. A number of theoretical arguments have been put forward to examine scientific 

collaboration in terms of regional and geographical separation (Gao et al., 2011; Scherngell and 

Barber, 2011; Wanzenböck et al., 2013) or the impact of collaboration with industry (Baba et al., 

2009; Balconi et al., 2004; Banal-Estañol et al., 2010).  
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6.3.1 Collaboration in co-authorship networks 

Co-authorship is used as one of the most tangible indicators of collaboration and reliably assists 

in tracking almost every aspect of scientific collaboration networks. An increased level of 

collaboration influences research outputs besides other intra-scientific factors (De Stefano et al., 

2013; Glänzel and Schubert, 2005; Melin and Persson, 1996). According to Persson et al. (2004), 

the rise of collaborative research is noticeable from in the steady increase of co-authored 

scientific publications and the number of authors in all subject fields in recent years. Although 

studies by Laudel (2001) and Katz and Martin (1997) show that the majority of researchers 

involved in a publication do not appear in the paper as co-authors and Bellotti (2012) indicated 

that relationships between researchers involve a wider set of interactions rather than co-

authorship, Glänzel and Schubert (2005) suggest that the positive correlation between 

collaboration and co-authorship gives insight into structural changes of collaboration. Thus, the 

question regarding whether or not these collaborations enhance a scholar's performance is of 

particular relevance.  

Despite the good reasons that show collaboration enhances research productivity - such as access 

to tacit knowledge, equipment, new ideas, etc. (Bozeman and Corley 2004; Liberman and Wolf, 

1998; Thorsteinsdottir 2000) - the general idea underlying this issue is that in a research 

community if scientists publish a paper together, the connection between researchers existed prior 

to the publication and remains for a period of time. They are therefore more likely to do research 

together and, to benefit from future joint research and improved scientific productivity. Some 

scholars show that research collaboration has a higher impact on the number of publications 

(Landry et al. 1996; Hollis, 2001) but others cannot find a positive correlation (McDowell and 

Smith 1992). In general, the relationship between scientific collaboration and research 

productivity is not obvious. Lee and Bozeman (2005) highlight the transaction costs, waiting a 

long time for others in teams to finish their research part, disappointing results, etc., as problems 

that scholars face in collaborative research. These difficulties will likely reduce the productivity 

in a research group. 

To better understand the role of co-authorship in academia, we take two main scientific outputs 

into account, publications and patents, to explore the learning effect of teamwork on future 

productivity. To examine this effect, we use Social Network Analysis (SNA) which is an 
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appropriate approach to study collaboration patterns (Barabási et al., 2002; Moody, 2004; 

Hummon and Carley, 1993; Newman 2004 ). A number of scholars (e.g. Abbasi, et al., 2011; 

Barabasi et al., 2002; Cantner and Graf, 2006; Singh, 2007; Youtie et al., 2013) study network 

measures sourced from social network analysis to investigate how the network position of 

scientists affects research performance.  We therefore propose two hypotheses: 

Hypothesis 1: Academic scientists with more central and cliquish co-publication network 

position contribute to more publications in the future. 

Hypothesis 2: Academic scientists with more central and cliquish co-publication network 

position contribute to more patents in the future. 

6.3.2 Collaboration in co-invention networks 

Academic patents can be a useful indicator of entrepreneurial activities in universities. University 

researchers have shown growing interest in patenting activities, since technological opportunities 

encourage academic researchers to proactively commercialize scientific findings. In some ways, 

research universities have been important for industrial progress. Some studies show a major 

increase in the number of university scientists listed as inventors and in university Technological 

Transfer Offices in the last quarter of the 20th century (TTOs) (Crespi et al., 2011; Lissoni et al., 

2008). More specifically, academic patents have become more economically important and 

experienced massive growth since the Bayh-Dole Act of 1980 in the United States caused 

changes in university patenting policies. (Sampat, 2006).  

In recent years, there has been a growing interest in academic collaboration through co-invention 

networks. Creation and diffusion of ideas are widely important in technological innovation and 

induce the circulation of new knowledge from different sources and organizations. According to 

Breschi and Lissoni (2005), co-invention is a co-authorship of patents. The assumption in these 

knowledge networks is the same as that of co-authorship given the fact that when two academic 

inventors work together on even one patent application, they are more likely to keep in touch to 

exchange knowledge. In another empirical study, Breschi and Catalini (2010) highlighted the 

positions that scientists tend to occupy in technological networks and indicated that a small 

number of links ensures that every scientist is connected in the network. Some scholars analyzed 

the connections in networks and local cliques to examine the properties of co-invention networks 
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as a whole (Cowan and Jonard, 2004; Fleming et al., 2007). Based on co-invention patterns 

studied by Carayol and Roux (2007), these networks are highly clustered and the probability that 

an inventor’s neighbors are connected is rather high. 

Nevertheless, there is still an ongoing debate on the impact of collaborations within the network 

on the research productivity. Zhang et al. (2014a), for example, only observed significant impacts 

on patent productivity in provinces where a high number of patents were produced. Singh (2005) 

also showed that the connection among researchers in innovative networks contributes to a 

positive effect on knowledge flow. However, some scholars examined the network clustering and 

found that higher levels of clustering hinder innovation (Fowler, 2005; Chen and Guan, 2010). 

This paper will attempt to investigate the innovative relationships among scientists and address 

their effect on academic research performance in science-intense nanotechnology. Our last two 

hypotheses therefore go as follows: 

Hypothesis 3: Academic scientists with more central and cliquish co-invention network position 

contribute to more publications in the future. 

Hypothesis 4: Academic scientists with more central and cliquish co-invention network position 

contribute to more patents in the future. 

Nanotechnology plays a crucial role in a wide range of high technology sectors and many 

countries have started investing in nanotechnology research and development. Promoting 

collaboration and sharing knowledge in such promising technology undoubtedly fosters efficient 

development. 

6.4 Data sources and methodology 

6.4.1 Data description 

For this study, to investigate the issues discussed above we extracted data from two main 

publication and patent application databases in order to build a comprehensive dataset: Elsevier’s 

Scopus and United States Patent and Trademark Office (USPTO). Scopus includes the list of 

articles by scientist and all other publication information such as title, publication date, abstract, 

etc., and considers a variety of publishers. We found that Scopus contains more publications than 
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Web of Science and also offers more thorough results compared to Web of Science and Google 

Scholar since it covers a wide diversity of fields and additional information. 

In addition, we used USPTO data given that in such an emerging field, inventors prefer to protect 

their IP in a large market. Given the proximity of Canada to the United States, inventors submit 

their patent applications to both USPTO and the Canadian Intellectual Property Office (CIPO). 

The other reason to use USPTO is because we need addresses of researchers to distinguish 

whether two inventors with the same name are the same person, and therefore prevent ambiguity 

in merging data: CIPO does not provide this information in a consistent manner. We then used a 

nanotechnology-related keyword search based on that of Porter et al. (2008) for both publications 

and patents to find scientists conducting nanotechnology research. We first started with a 20-year 

time period (1985-2005) and then restricted our sample to 1996-2005 since nanotechnology 

research before 1996 is not sufficient and reliable for our analysis.  

We invested a considerable amount of time in performing the disambiguation exercise to 

determine if individuals with similar names are the same person, or whether they have changed 

their address over time. This involves manually checking the individual scientists and inventors 

against several sources of information (e.g., author and inventor affiliation) to eliminate similar 

researchers whose name have been spelled differently on papers or patent documents. 

Once the scientists’ names were disambiguated, we created two researchers networks based on 

their co-publication and co-invention ties. We then used three- and five-year time intervals to 

account for extended collaborations and to analyze the network connections among scientists and 

inventors. The construction of our dataset was then completed with matching all these databases 

with funding databases. Over the past two decades, the Natural Sciences and Engineering 

Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR) 

have launched different nanotechnology programs that have influenced increasing the academic 

production of publications and patents (Dang et al., 2010). As we do not have easy and reliable 

access to other provincial funding information, only the data from these two funding agencies 

will be used in this paper for consistency purposes.  
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6.4.2 Variables and estimated model 

We evaluate two dependent variables constructed for each scientist and each academic-inventor 

in a given year t: the number of articles (NumPaper) attributed to each scientist to validate 

Hypothesis 1 and Hypothesis 3, and the number of patents (NumPatent) attributed to each 

academic inventor to validate Hypothesis 2 and Hypothesis 4. 

The network attribute measures on which we focus in this study are degree centrality, 

betweenness centrality, and individual cliquishness. By calculating these network measures in 

both co-publication and co-invention networks, we aim to examine whether the position of 

scientists/academic inventors in these two networks correlates with their research performance. 

The following paragraphs explain these three measures. 

Because both dependent variables are count data with an excess of zeros (Vuong test was 

performed), we chose the Stata procedure zero-inflated Poisson (zip) model with the vce (cluster) 

option to analyze data in this empirical study (Vuong, 1989). 

6.4.3 Degree centrality 

Degree centrality of a researcher corresponds to the number of other researchers connected 

directly to that researcher; it can indicate local centrality in a network and a researcher’s 

popularity. The normalized measure of researcher degree centrality Rk is given in Eq. (6-1) where 

n is the number of researchers in the network and d(Ri,Rk) is a function that equals 1 if researcher 

Ri is connected to Rk, and 0 otherwise (Freeman, 1979; Chung and Hossain, 2009). 

CD (Rk ) =
d(Ri,Rk )

i=1

n

!
n"1

        (6-1) 

6.4.4 Betweenness centrality 

This measure proposed by Freeman (1979) is an indication of the number of times a researcher 

connects two other researchers in a network. The number of shortest paths (geodesics) between 

two researchers is considered in calculating this measure. Eq. (6-2) shows the betweenness of Rk 

where gij denotes the total number of shortest paths from i to j and gij(R) denotes the number of 

geodesics from i to j that pass through Rk (White and Stephan, 1994). 
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CB(Rk ) =
gij (Rk )
gijj

n

!
i

n

! where i " j " k      (6-2) 

6.4.5 Cliquishness  

The clustering coefficient or cliquishness is commonly used to measure the tendency of 

researchers to cluster together. This indicator, introduced by Watts and Strogatz (1998), and is 

always a number between 0 and 1. Given three researchers (i, k, j) in the context of social 

network analysis, if i and k have a relationship and there exists a relationship between j and k, the 

clustering coefficient represents the likelihood that i and j are also connected. Eq. (6-3) shows the 

clustering coefficient for a particular researcher (Rk), where e is the number of links between 

neighbours of Rk and kk is the degree of Rk (Hanneman and Riddle, 2005; Zhou et al., 2005). 

 
CC(Rk ) =

2ek
kk (kk !1)

                                                   (6-3) 

In this study, these network indicators are calculated in two co-publication and co-invention 

networks and we chose 3-year intervals with a one-year lag to determine the importance of a 

researcher as a node in the networks. We define two sets of variables to account for each of these 

network measures: DegCentPaper3, BetCentPaper3, CliquishnessPaper3 to explain the 

connections in co-authorship networks; and DegCenPatent3, BetCentPatent3, 

CliquishnessPatent3 to account for co-invention ties in our models.  

Prior studies show that knowledge diffusion is more efficient in clustered networks since 

collaboration among such network scientists facilitates the sharing of new knowledge (Cowan 

and Jonard, 2004; Cowan, 2005). One problem arises here, however: when scientists are more 

productive and produce more papers or patents, they are more likely to have higher clustered 

networks. This issue therefore gives rise to an endogeneity problem. To correct our model for 

endogeneity, we include instrumental variables to estimate an endogenous variable (the 

cliquishness of co-publication) using Two-Stage Residual Inclusion (2SRI) suggested by Terza et 

al. (2008) and Wooldridge (2002). For the first stage of the 2SRI model, we used an Ordinary 

Least Squares (OLS) regression with a cluster method. The residual of this regression is then 

added to the zero-inflated regression (second stage) as proposed by Stephan et al. (2007). 
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Well-connected scientists, who occupy central positions in their scientific networks, because of 

their higher involvement with other researchers are presumed to possess a greater ability to 

produce scientific outputs. In addition, a researcher with a more cliquish position is more likely 

to attract other researchers to his/her “clique” as additional co-authors or co-inventors by virtue 

of his/her reputation among other researchers.  

For these reasons, we suspect that individual cliquishness is likely to be endogenous. To explain 

the individual cliquishness, we hence add a number of instrumental variables to correct for this 

endogeneity. First, we include the number of papers published by researchers in the past three 

years (NumPaper3). We also add the type of chair (CanadaChair) that these researchers occupied 

at some point in their career using an ordinal indicator that takes the value 0 for no chair, 1 if they 

occupy an industrial chair and also receive funding from NSERC or CIHR, and 2 for being a 

chair of the Canada Research Chair. We also added an ordered measure to our set of instruments 

for the type of funding (Award), which equals 1 if a researcher receives funding through an 

award and 0 otherwise. The granting of academic research can further act as a signal of scientist 

productivity and these scientists may attract additional funding in subsequent years. The literature 

generally finds that scientists with prestigious awards and public funding contribute to more 

scientific and technological outputs (Sauer, 1988; Payne and Siow, 2003; Adams et al., 2005; 

Jacob and Lefgren, 2007; Blume-Kogut et al., 2009). We therefore include the average amount of 

funding over three years (GrantAmount) as an instrument in our models to explain the 

unobserved capabilities of researchers that may influence their position in scientific or 

technological networks. Furthermore, we create a proxy (NanoAge) for the nanotechnology 

experience of academic researchers, using their first publication/patent to account for the fact that 

scientists with more experience may be well connected in their networks.  

To assess the impact of collaborations on academic publications and patenting, we develop the 

following model: 

Yit =! +"1Xit +"2Xit
2 +#tdt +$ i +%it        (i=1, …N and t=1, …T) (6-4) 

Where Yit  is a measure of academic research outputs (NumPaperit and NumPatentit), Xit is a set of 

time-varying network variables, X2
it is the non-linear effect of these explanatory variables, dt is a 
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dummy variable for years, vi is an individual fixed effect to control unobserved scientist 

characteristics which is constant over time, and εit is an error term.  

6.5 Regression Results 

Using our data, we calculate the social network measures of co-publication and co-invention 

relationships with the software Pajek and for regression analysis we use STATA 12. Table 6.1 

and Table 6.2 summarize the results for different model specifications on scientific (papers) and 

technological (patents) activities, respectively. We include various combinations of explanatory 

variables in the model and finally choose two models that yield the most consistent and 

significant results to present in these tables for each dataset. Columns (1-1), (2-1), (3-1), and (4-

1) report the results for the model estimated using a zero-inflated Poisson regressions without 

controlling for endogeneity. The second column of each model accounts for the potential 

endogeneity. 

Based on the results for the impact of collaborations on the number of papers, we capture the 

endogeneity, and the first stage results suggest that these instruments of Age, Age2, and 

NumPaper3 strongly address this potential endogeneity in all models and CanadaChair and 

GrantAmount in some models (the first stage regressions are presented in the appendix D).  
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Table 6.1 : Impact of collaborations on nanotech papers in Quebec and the rest of Canada – 
Regression results of zero-inflated Poisson model  

Note : ***, **, * show significance at the 1%, 5% and 10% levels and standard errors are presented in parentheses. 
a Second Stage of 2SRI method 

NumPapert 
Quebec

 
 Rest of Canada

 
(1-1)

 
 (1-2)a

 
 (2-1)

 
 (2-2)a 

 
 (3-1)

 
 (3-2)a

 
 (4-1)

 
 (4-2)a 

 
 

ln (104×DegCentPaper3t-2)                                 0.5460 ***  0.3685 ***                                  0.5719 ***  0.3761 *** 
              
 

               
 

 (0.0518) 
 

 (0.0553)                 
 

                 (0.0350)   (0.0453)  
ln(104×BetCentPaper3t-2) 0.3741 ***  0.1233 ***                                  0.3679 ***  0.0955 **                                 

(0.0330)   (0.0396)                      (0.0313)   (0.0454)                                  
ln(103×CliquishnessPaper3t-2) 0.0593 ***  0.1825 ***  0.7709 ***  0.6647 ***  0.0544 ***  0.1728 ***  0.6863 ***  0.5567 *** 

(0.0109) 
 

 (0.0163) 
 

 (0.1161) 
 

 (0.0974)   (0.0072) 
 

 (0.0191)   (0.0929)   (0.0606)  
[ln (103×CliquishnessPaper3t-2)]2                                 -0.1157 ***  -0.0837 ***                                  -0.1050 ***  -0.0685 *** 

                                (0.0189)   (0.0163)                                   (0.0164)   (0.0110)  
ln (104×DegCentPatent3t-2)               

 
               

 
 0.0002 

 
 -0.0156                 

 
                 0.0066   0.0019  

              
 

               
 

 (0.0435) 
 

 (0.0424)                 
 

                 (0.0394)   (0.0352)  
ln(104×BetCentPatent3t-2) -0.2759   -0.1072                                   0.0010   0.1147                                  

(0.2134)   (0.1881)                                   (0.1256)   (0.1042)                                  
ln(103×CliquishnessPatent3t-2) 0.0286 **  0.0213 *  0.1633 

 
 0.2453 **  0.0437 ***  0.0070   -0.0908   -0.0238  

(0.0142) 
 

 (0.0115) 
 

 (0.1270) 
 

 (0.1185)   (0.0140) 
 

 (0.0113)   (0.1302)   (0.1433)  
[ln(103×CliquishnessPatent3t-2)]2                                 -0.0227   -0.0349 *                                  0.0159   0.0033  

                                (0.0195)   (0.0184)                                   (0.0188)   (0.0210)  
ln(104×BetCentPatent3t-2)  × 
ln(103×CliquishnessPatent3t-2) 

      -0.0879 **  -0.0844 **        0.0138   0.0179  
      (0.0424)   (0.0420)         (0.0172)   (0.0188)  

Res[ln(103×CliquishnessPaper3t-

2)] 
                -0.1374 ***                  -0.1148 ***                  -0.1247 ***                  -0.1127 *** 
                (0.0144)                   (0.0200)                   (0.0214)                   (0.0201)  

Years (1996-2005)
 

Yes 
 

 Yes 
 

 Yes 
 

 Yes   Yes 
 

 Yes   Yes   Yes  
Constant 0.4374 ***  0.1571 ***  -0.5309 ***  -0.5444 ***  0.4686 ***  0.2811 ***  -0.4827 ***  -0.4319 *** 

(0.0565) 
 

 (0.0597) 
 

 (0.0961) 
 

 (0.0833)   (0.0374) 
 

 (0.0386)   (0.0752)   (0.0532)  
Inflate

 
                       

ln (104×DegCentPaper3t-2)                                 -2.5462 ***  -2.5856 ***                                  -3.3787 ***  -3.1844 *** 
                                (0.3662)   (0.3204)                                   (0.6217)   (0.2702)  

ln(104×BetCentPaper3t-2) -0.6780 ***  -0.0641                                   -0.7800 ***  -0.0575                                  
(0.0636)   (0.0668)                                   (0.0464)   (0.0581)                                  

ln(103×CliquishnessPaper3t-2) -0.1138 ***  -0.5996 ***  0.9808   0.8300 *  -0.1124 ***  -0.6276 ***  1.1321   0.6924 ** 
(0.0111)   (0.0320)   (0.5978)   (0.4785)   (0.0071)   (0.0240)   (0.7581)   (0.2994)  

[ln(103×CliquishnessPaper3t-2)]2                                 -0.1135   -0.0946                                   -0.1189   -0.0680  
                                (0.0900)   (0.0712)                                   (0.1143)   (0.0452)  

ln (104×DegCentPatent3t-2)                                 -0.2078   -0.2015                                   0.0194   0.0770  
                                (0.2046)   (0.2084)                                   (0.2159)   (0.2009)  

ln(104×BetCentPatent3t-2) -0.2266   -0.0995                                   -0.3070 **  -0.2683 *                                 
(0.3208)   (0.2241)                                   (0.1471)   (0.1404)                                  

ln(103×CliquishnessPatent3t-2) -0.0661 ***  -0.0040   -1.0972   -1.0326   -0.0480 ***  0.0110   -0.0626   -0.0181  
(0.0179)   (0.0180)   (0.8691)   (0.9079)   (0.0142)   (0.0141)   (0.6226)   (0.5581)  

[ln(103×CliquishnessPatent3t-2)]2                                 0.1649   0.1565                                   0.0192   0.0096  
                                (0.1286)   (0.1344)                                   (0.0917)   (0.0824)  

ln(104×BetCentPatent3t-2)  × 
ln(103×CliquishnessPatent3t-2) 

      -0.7260   -0.7171         0.0142   0.0092  
      (0.4742)   (0.4952)         (0.1044)   (0.1029)  

Res[ln(103×CliquishnessPaper3t-

2)] 
                0.5650 ***                  0.0308                   0.6042 ***                  0.1246 ** 
                (0.0353)                   (0.0733)                   (0.0265)                   (0.0548)  

Constant 1.2721 ***  1.9707 ***  2.2623 ***  2.3782 ***  1.3791 ***  2.0094 ***  2.5535 ***  2.7083 *** 
(0.0434)   (0.0609)   (0.1607)   (0.1298)   (0.0289)   (0.0423)   (0.1634)   (0.0969)  

Nb observations 12120   12120   12120   12120   37841   37841   37841   37841  
Nb Groups 1164   1164   1164   1164   3722   3722   3722   3722  
Loglikelihood -10683.9 

 
 -10235.6 

 
 -8015.18 

 
 -7967.7   -29992.2 

 
 -28766.9   -21735.9   -21544.3  

X2 454.60 ***  1486.34 ***  1315.9 ***  1853.77 ***  759.43 ***  1582.12 ***  1490.49 ***  3840.95 *** 
Vuong test

 
18.36 ***  18.36 ***  14.59 ***  14.59 ***  28.25 ***  28.25 ***  25.32 ***  25.32 *** 



142 

 

Table 6.2 : Impact of collaborations on nanotech patents in Quebec and the rest of Canada - 
Regression results of zero-inflated Poisson model 

NumPatentt 
Quebec

 
 

Rest of Canada
 

(1-1)
 

 
(1-2)a

 
 

(2-1)
 

 
(2-2)a

 
 

(3-1)
 

 
(3-2)a

 
 

(4-1)
 

 
(4-2)a

 
 

ln (104×DegCentPaper3t-2)                                 0.0262   0.0964                                   0.0668   0.1488  
              
 

               
 

 (0.0593) 
 

 (0.2713)                 
 

                 (0.0427)   (0.2735)  
ln(104×BetCentPaper3t-2) -0.1618   0.4571 *                                  -0.0774   -0.1755                                  

(0.1523)   (0.2775)                                   (0.0896)   (0.1765)                                  
ln(103×CliquishnessPaper3t-2) -0.0439   -0.4177 **  -0.1641   -0.1987   0.0006   0.0632   -0.3516 *  -0.3946 * 

(0.0512) 
 

 (0.1698) 
 

 (0.1805) 
 

 (0.2192)   (0.0343) 
 

 (0.0946)   (0.1839)   (0.2308)  
[ln (103×CliquishnessPaper3t-

2)]2 
      0.0209   0.0187         0.0525 *  0.0505 * 
      (0.0275)   (0.0290)         (0.0289)   (0.0296)  

ln (104×DegCentPatent3t-2)               
 

               
 

 0.6018 ***  0.6050 ***                
 

                 0.5664 ***  0.5703 *** 
              
 

               
 

 (0.1168) 
 

 (0.1119)                 
 

                 (0.1011)   (0.0984)  
ln(104×BetCentPatent3t-2) -0.3678   -0.3289                                   0.1000   0.0918                                  

(0.3139)   (0.3187)                                   (0.2043)   (0.2085)                                  
ln(103×CliquishnessPatent3t-2) 1.2083 ***  1.2732 ***  0.7958 **  0.7828 **  0.9030 ***  0.8831 ***  0.4455 **  0.4521 ** 

(0.3887) 
 

 (0.3673) 
 

 (0.3122) 
 

 (0.3059)   (0.2922) 
 

 (0.2899)   (0.1918)   (0.1914)  
[ln(103×CliquishnessPatent3t-

2)]2 
-0.1574 **  -0.1600 ***  -0.1254 ***  -0.1234 ***  -0.1071 **  -0.1047 **  -0.0712 **  -0.0719 ** 

(0.0611)   (0.0560)   (0.0472)   (0.0462)   (0.0452)   (0.0449)   (0.0293)   (0.0292)  
Res[ln(103×CliquishnessPaper3t-

2)] 
                0.3955 **                  0.0496                   -0.0644                   0.0566  
                (0.1794)                   (0.1952)                   (0.0950)                   (0.1815)  

Years (1996-2005)
 

Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes  
Constant -1.5822 ***  -1.1634 ***  -1.9037 ***  -1.8635 ***  -1.2041 ***  -1.2749 ***  -1.5708 ***  -1.5308 *** 

(0.2723) 
 

 (0.3344) 
 

 (0.3299) 
 

 (0.3604)   (0.1882) 
 

 (0.1997)   (0.2443)   (0.2702)  
Inflate

 
                       

ln (104×DegCentPaper3t-2)                                 0.0556   -0.7678                                   0.0854   -1.0126  
                                (0.4231)   (2.3396)                                   (0.1747)   (1.3995)  

ln(104×BetCentPaper3t-2) -0.1916   0.6963 *                                  -0.0390   -0.2184                                  
(0.3010)   (0.4180)                                   (0.1062)   (0.2526)                                  

ln(103×CliquishnessPaper3t-2) -0.0921   -0.6213 **  0.5556   0.9254   -0.0867 **  0.0258   -0.2762   0.2616  
(0.0588)   (0.2830)   (1.0797)   (1.6645)   (0.0380)   (0.1273)   (0.7125)   (1.2054)  

[ln(103×CliquishnessPaper3t-2)]2       -0.0919   -0.0583         0.0324   0.0631  
      (0.1523)   (0.1588)         (0.1075)   (0.0998)  

ln (104×DegCentPatent3t-2)                                 -60.3402 ***  -56.8985 ***                                  -53.6361 ***  -51.1800 *** 
                                (16.4894)   (15.6466)                                   (12.7598)   (10.5372)  

ln(104×BetCentPatent3t-2) -0.5205   -0.2640                                   0.1925   0.1848                                  
(1.0811)   (0.6714)                                   (0.2491)   (0.2607)                                  

ln(103×CliquishnessPatent3t-2) -1.2071 *  -1.0326   -1.9062   -1.8766   -0.6495 **  -0.6799 **  3.5865 ***  3.2591 *** 
(0.6660)   (0.6861)   (1.7037)   (1.6943)   (0.2837)   (0.2924)   (1.2691)   (1.2370)  

[ln(103×CliquishnessPatent3t-

2)]2 
0.1879 *  0.1714 *  0.2803   0.2740   0.1152 ***  0.1185 ***  -0.4961 ***  -0.4539 ** 

(0.0976)   (0.0966)   (0.2531)   (0.2517)   (0.0424)   (0.0435)   (0.1883)   (0.1806)  
Res[ln(103×CliquishnessPaper3t-

2)] 
                0.5544 *                  -0.6025                   -0.1163                   -0.7604  
                (0.2987)                   (1.5450)                   (0.1232)                   (0.9945)  

Constant 0.6610 *  1.2317 ***  3.5331 ***  3.1147 ***  0.4383 **  0.3183   3.0852 ***  2.7753 *** 
(0.3565)   (0.4489)   (0.3485)   (1.0470)   (0.1834)   (0.2242)   (0.2487)   (0.4498)  

Nb observations 2854   2854   2854   2854   5482   5482   5482   5482  
Nb Groups 288   288   288   288   592   592   592   592  
Loglikelihood -1503.52 

 
 -1499.55 

 
 -1152.39 

 
 -1152.11   -3180.3 

 
 -3179.7   -2552.63   -2551.72  

X2 200.88 ***  238.80 ***  117.28 ***  122.5 ***  136.177 ***  137.21 ***  79.040 ***  79.76 *** 
Vuong test

 
2.32 **  2.32 **  11.64 ***  11.64 ***  4.81 ***  4.81 ***  14.78 ***  14.78 *** 

Note : ***, **, * show significance at the 1%, 5% and 10% levels and standard errors are presented in parentheses. 
a Second Stage of 2SRI method 
 
 

The results show that collaborative ties among scientists influence research performance. 

Positively significant correlations in Table 6.1 expose that in co-authorship relationships, 

scientists who have many collaborations with different researchers and those who frequently 

cross the collaboration paths of other scientists contribute to more publications. Further, 



143 

 

maintaining collaborations within a group of scholars appears to have a positive impact on 

researcher productivity. This cliquishness can be said to have a positive effect, but we found that 

a too integrated network in co-publication relationships is not fruitful. Based on these results, the 

curve follows a non-linear inverted U-shaped relationship for productivity of a scholar in both 

Quebec and the rest of Canada (Figure 6.1a and Figure 6.1b). As such, some degree of integration 

can yield better results, but too integrated groups tend to have a negative impact on the number of 

papers. 

  

 

Figure 6.1: Non-linear effects of the cliquishness in co-authorship networks on the number of 
papers in (a) Quebec (2-2) and (b) the rest of Canada (2-2) 

Whereas co-publication relationships reveal a positive influence on publication productivity, we 

also show a significant impact of co-invention relationships on publication productivity in 

Quebec. Cliquishness in the co-invention network has a positive influence on the number of 

papers, but similarly to what we have seen in the co-publication relationships, the curve follows 

an inverted U-shaped relationship (see Figure 6.1c). Thus, patenting collaborations show a 
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consistently significant impact on the future scientific productivity of a scientist. Degree 

centrality or betweenness centrality in co-invention networks have neither a positive nor a 

negative effect on the number of papers.  

Table 6.2 shows the importance of an academic inventor within co-invention relationships on 

his/her patenting activity. We observe a positive impact of degree centrality in co-invention 

networks indicating that the number of patents for each researcher rises if the number of other 

inventors directly connected to that researcher increases.  

Our findings prove that highly cliquish networks based on co-patenting enhance the innovative 

performance of researchers, but when we examine the non-linear effect, the results are similar to 

those of co-authorship networks: too high cliquishness decreases innovation productivity. These 

empirical results in Table 6.2 however suggest a similar inverted U relationship curve for both 

Quebec and the rest of Canada (Figure 6.2a and Figure 6.2b). These curves demonstrate that too 

highly integrated clusters are associated with diminishing returns on scholarly productivity 

beyond a threshold that corresponds to the maximum of the curve. 

  

Figure 6.2: Non-linear effects of the cliquishness in co-invention networks on the number of 
patents in (a) Quebec (2-2) and (b) the rest of Canada (2-2) 

A further comparison of co-publication collaborations shows that these relationships are not 

efficient enough to influence. We only observe a weak positive impact of an intermediary 

position in a co-authorship network on the patenting activity of a researcher in Quebec; however, 

the clique structure in these co-publication communities does seem to influence the patent 

productivity. In this regard, our results reveal a U-shaped relationship between cliquishness and 

patenting. This indicator suggests that the structure of research groups in co-publication 
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collaborations is more likely to influence the patenting performance of researchers in the rest of 

Canada. 

The nature of interactions among academic scientists and academic inventors are different and 

their communication activity influences their scientific and technological efficiency. This fact 

may imply that a better co-authorship network position may increase publication productivity of 

a researcher, since patenting performance is correlated with the co-invention network position. 

Our examination, however, reveals that collaboration has the same impact on the scientific and 

technological performance of academic researchers in our two samples of Quebec and the rest of 

Canada. To our knowledge, this result is a novel and valuable contribution to the literature. 

Our empirical analysis aims to estimate the marginal effect of independent variables on the 

scientific and technological productivity of researchers. Marginal effects present the change in 

the number of papers and patents given a one-unit change in the corresponding explanatory 

variable controlling the other independent variables. To compare the productivity of researchers 

in Quebec with the rest of Canada, we calculate the marginal effect at the means presented in 

Table 6.3. 

Table 6.3 : Estimated Marginal Effects in Quebec and the rest of Canada  

Note: Standard errors in parentheses and *** p<0.01, ** p<0.05, * p<0.1 

Comparing the marginal effect, results show that a one unit change in the degree centrality 

variable in co-publication relationships, assuming all other variables constant, increases the 

number of papers; this increase is slightly higher in Quebec than the rest of Canada. Our findings 

in terms of betweenness centrality and cliquishness in co-authorship networks in Quebec and the 

rest of Canada also suggest that these indicators have more impact on publication productivity in 

Variables 

Quebec  The rest of Canada 
Delta method (dy/dx)  Delta method (dy/dx) 

NumPaperit NumPatentit  NumPaperit NumPatentit 
Model (1) Model (2) Model (1) Model (2)  Model (3) Model (4) Model (3) Model (4) 

ln (104×DegCentPaper3t-2)   0.4483 ***   0.0094     0.4237 ***   0.0294  
   (0.0539)    (0.0221)     (0.0377)    (0.0191)  
ln(104×BetCentPaper3t-2) 0.0637 ***   0.0058     0.0440 ***   -0.0110    
 (0.0206)    (0.0293)     (0.0140)    (0.0153)    
ln(103×CliquishnessPaper3t-2) 0.2332 *** 0.0106  -0.0069  -0.0688   0.2074 *** 0.0009  0.0115 *** -0.1549 * 
 (0.0133)  (0.0557)  (0.0204)  (0.0667)   (0.0081)  (0.0288)  (0.0044)  (0.0850)  
ln (104×DegCentPatent3t-2)   0.0262    0.8781 ***    -0.0086    0.2711 *** 
   (0.0312)    (0.1342)     (0.0220)    (0.0386)  
ln(104×BetCentPatent3t-2) -0.0126    -0.0296     0.1015 **   -0.0044    
 (0.0750)    (0.0453)     (0.0467)    (0.0429)    
ln(103×CliquishnessPatent3t-2) 0.0091 * 0.1984  0.3341 *** 0.3253 ***  -0.0005  -0.0014  0.2742 *** 0.1950 ** 
 (0.0055)  (0.1258)  (0.0758)  (0.1121)   (0.0040)  (0.0561)  (0.0570)  (0.0832)  
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Quebec (see Figure 6.3). Our results also indicate that a one-unit increase in the clustering 

coefficient of co-publication networks has more effect on the number of patents in the rest of 

Canada. Based on our analysis of technological performance, we can state that particular degree 

centrality and clustering in co-invention networks have a higher impact on the number of patents 

in Quebec, as we observe in Figure 6.3. 

 

Figure 6.3: Comparison of marginal effects in Quebec and the rest of Canada 

To better examining the difference between Quebec and the rest of Canada, we defined a dummy 

variable (dQC) taking the value 1 for Quebec scientists and the value 0 for scientists based in the 

other provinces. Our pooled sample regressions for all models are shown in Table 6.3. The results 

are only significant for the betweenness centrality in co-publication networks. The intermediary 

position of researchers in these networks has a stronger impact on the publication productivity in 

Quebec, which is in line with our comparison results of marginal effects.  
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Table 6.4 : Impact of collaborations on nanotech papers and patents in a pooled sample of Quebec and the rest of Canada - Regression 
results of zero-inflated Poisson model 

Variable NumPapert
 

 NumPatentt
 

(1-1)  (1-2)a  (2-1)  (2-2)a   (3-1)  (3-2)a  (4-1)  (4-2)a   

ln (104×DegCentPaper3t-2)                                 0.5781 ***  0.3797 ***                                  0.0713 *  0.1466  
                                (0.0371)   (0.0410)                                   (0.0426)   (0.2033)  

ln(104×BetCentPaper3t-2) 0.3694 ***  0.0895 **                                  -0.0680   0.0241                                  
(0.0311)   (0.0355)                      (0.0893)   (0.1677)                                  

ln(103×CliquishnessPaper3t-2) 0.0593 ***  0.1825 ***  0.6630 ***  0.5484 ***  -0.0002   -0.0617   -0.3421 *  -0.3821 * 
(0.0109)   (0.0163)   (0.0854)   (0.0579)   (0.0333)   (0.1057)   (0.1823)   (0.2079)  

[ln (103×CliquishnessPaper3t-2)]2 0.0551 ***  0.1748 ***  -0.1010 ***  -0.0671 ***                                  0.0509 *  0.0493 * 
(0.0072)   (0.0153)   (0.0143)   (0.0100)                                   (0.0287)   (0.0291)  

ln (104×DegCentPatent3t-2)                                 0.0039   -0.0003                                   0.6085 ***  0.6143 *** 
                                (0.0392)   (0.0346)                                   (0.0905)   (0.0879)  

ln(104×BetCentPatent3t-2) 0.0039   0.1211                                   0.1260   0.1321                                  
(0.1242)   (0.1037)                                   (0.2054)   (0.2004)                                  

ln(103×CliquishnessPatent3t-2) 0.0435 ***  0.0057   -0.1163   -0.0437   0.8887 ***  0.9076 ***  0.4260 **  0.4306 ** 
(0.0140)   (0.0111)   (0.1275)   (0.1441)   (0.3014)   (0.2979)   (0.1921)   (0.1922)  

[ln(103×CliquishnessPatent3t-2)]2                                 0.0196   0.0062   -0.1065 **  -0.1087 **  -0.0686 **  -0.0690 ** 
                                (0.0184)   (0.0211)   (0.0463)   (0.0459)   (0.0293)   (0.0294)  

ln(104×BetCentPatent3t-2) × 
ln(103×CliquishnessPatent3t-2) 

      0.0152   0.0193              
      (0.0168)   (0.0183)              

dQC 0.0160   -0.0810 *  0.0279   -0.0389   -0.0406   -0.0300   0.0930   0.1180  
(0.0467)   (0.0464)   (0.0853)   (0.0733)   (0.1423)   (0.1443)   (0.1446)   (0.1450)  

dQC× ln (104×DegCentPaper3t-2)       -0.0563   -0.0312         -0.0390   -0.0433  
      (0.0490)   (0.0417)         (0.0706)   (0.0718)  

dQC×ln(104×BetCentPaper3t-2) 0.0007   0.0539 **        -0.0267   -0.0303        
(0.0446)   (0.0236)         (0.1066)   (0.1065)        

dQC×ln(103×CliquishnessPaper3t-

2) 
0.0004   -0.0020   0.1217   0.1228   -0.0392   -0.0380   0.1421   0.1490  

(0.0119)   (0.0107)   (0.0901)   (0.0793)   (0.0392)   (0.0391)   (0.2571)   (0.2575)  
dQC×  [ln 
(103×CliquishnessPaper3t-2)]2 

      -0.0167   -0.0175         -0.0245   -0.0255  
      (0.0138)   (0.0120)         (0.0396)   (0.0396)  

dQC× ln (104×DegCentPatent3t-2)       -0.0057   -0.0171         -0.1182   -0.1248  
      (0.0574)   (0.0537)         (0.0865)   (0.0865)  

dQC× ln(104×BetCentPatent3t-2) -0.3018   -0.2636         -0.3432   -0.3573        
(0.2463)   (0.2161)         (0.2667)   (0.2630)        

dQC× ln(103×CliquishnessPatent3t-

2) 
-0.0154   0.0152   0.2871 *  0.2967   0.3683   0.3669   0.3850   0.3684  

(0.0193)   (0.0153)   (0.1738)   (0.1825)   (0.4135)   (0.4112)   (0.3902)   (0.3861)  
dQC×  
[ln(103×CliquishnessPatent3t-2)]2 

      -0.0428 *  -0.0418   -0.0553   -0.0549   -0.0587   -0.0565  
      (0.0257)   (0.0272)   (0.0636)   (0.0633)   (0.0588)   (0.0582)  

dQC× ln(104×BetCentPatent3t-2)  × 
ln(103×CliquishnessPatent3t-2) 

      -0.0856 *  -0.0844 *             
      (0.0454)   (0.0465)              

Res[ln(103×CliquishnessPaper3t-2)]                 -0.1271 ***                  -0.1132 ***                  0.0635                   0.0513  
                (0.0174)                   (0.0169)                   (0.1049)                   (0.1331)  
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Note :    ***, **, * show significance at the 1%, 5% and 10% levels and standard errors are presented in parentheses. 
a Second Stage of 2SRI method

Table 6.4 : Impact of collaborations on nanotech papers and patents in a pooled sample of Quebec and the rest of Canada - Regression 
results of zero-inflated Poisson model (continued) 
 
Years (1996-2005)

 
Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes  

Constant 0.4588 ***  0.2746 ***  -0.4957 ***  -0.4435 ***  -1.2902 ***  -1.2194 ***  -1.6961 ***  -1.6678 *** 
(0.0347)   (0.0361)   (0.0701)   (0.0494)   (0.1586)   (0.1740)   (0.2070)   (0.2255)  

Inflate
 

                       
ln (104×DegCentPaper3t-2)                                 -3.0236 ***  -2.9639 ***                                  0.0802   -1.0514  

                                (0.3570)   (0.2059)                                   (0.1648)   (1.0536)  
ln(104×BetCentPaper3t-2) -0.7467 ***  -0.0513                                   -0.0285   0.0337                                  

(0.0372)   (0.0440)                                   (0.0882)   (0.2035)                                  
ln(103×CliquishnessPaper3t-2) -0.1141 ***  -0.6253 ***  0.9861 **  0.7147 ***  -0.0875 ***  -0.1278   -0.1013   0.4165  

(0.0060)   (0.0193)   (0.4608)   (0.2496)   (0.0322)   (0.1242)   (0.5858)   (0.8916)  
[ln(103×CliquishnessPaper3t-2)]2                                 -0.1029   -0.0740 **                                  0.0073   0.0465  

                                (0.0687)   (0.0375)                                   (0.0878)   (0.0858)  
ln (104×DegCentPatent3t-2)                                 -0.1180   -0.0661   0.1603   0.1632   -53.7726 ***  -51.9677 *** 

                                (0.1563)   (0.1557)   (0.2302)   (0.2260)   (6.9306)   (5.9557)  
ln(104×BetCentPatent3t-2) -0.2855 **  -0.2292 *                                  0.1603   0.1632                                  

(0.1344)   (0.1197)                                   (0.2302)   (0.2260)                                  
ln(103×CliquishnessPatent3t-2) -0.0556 ***  0.0058   -0.5202   -0.4367   -0.7352 ***  -0.7226 ***  2.9953 **  2.6896 ** 

(0.0111)   (0.0111)   (0.5379)   (0.5361)   (0.2699)   (0.2719)   (1.2617)   (1.2045)  
[ln(103×CliquishnessPatent3t-2)]2                                 0.0843   0.0700   0.1246 ***  0.1233 ***  -0.4175 **  -0.3777 ** 

                                (0.0792)   (0.0791)   (0.0398)   (0.0399)   (0.1842)   (0.1747)  
ln(104×BetCentPatent3t-2)  × 
ln(103×CliquishnessPatent3t-2) 

      0.0462   0.0471              
      (0.0918)   (0.0950)              

Res[ln(103×CliquishnessPaper3t-2)]                 0.5989 ***                  0.1003 **                  0.0416                   -0.7981  
                (0.0214)                   (0.0435)                   (0.1222)                   (0.7335)  

Constant 1.3571 ***  2.0106 ***  2.4487 ***  2.6163 ***  0.5096 ***  0.5500 ***  3.2079 ***  2.8147 *** 
(0.0240)   (0.0348)   (0.1235)   (0.0801)   (0.1787)   (0.2129)   (0.2058)   (0.3969)  

Nb observations 49961   49961   49961   49961   8336   8336   8336   8336  
Nb Groups 9664   9664   9664   9664   1268   1268   1268   1268  
Loglikelihood -40693.7   -10235.6   -29779.2   -29539   -4706.31   -4705.9   -3724.44   -3722.84  
X2 1133.48 ***  1486.341 ***  2679.448 ***  5495.867 ***  241.55 ***  245.9 ***  124.81 ***  128.91 *** 
Vuong test

 
33.52 ***  33.52 ***  29.16 ***  29.16 ***  5.3 ***  5.3 ***  18.4 ***  18.4 *** 
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6.6 Concluding Remarks 

In order to investigate how research collaboration and research performance are correlated, we 

used co-authorship and co-invention data and considered nanotechnology-related papers and 

patents as two important scientific and technological research outputs. As social network analysis 

measures: degree centrality, betweenness centrality, and clustering coefficient (cliquishness) 

provide a promising avenue to analyze both these networks.  

Our analysis results show that scientific performance is positively associated with the 

collaborations of scholars in a co-authorship network: scientists with strong connections yield a 

higher number of publications. Regarding the network measures, researchers with a higher 

number of direct connections, those who hold an intermediary position in a co-authorship 

network, and researchers who collaborate within a group of linked co-authors show higher 

scientific research performance than those with few connections.  

Furthermore, our analysis of co-invention network measures shows no consistently positive and 

significant impact of degree centrality and betweenness centrality on the production of papers. 

We only observe a positive effect of cliquishness in Quebec, showing that collaboration within a 

fairly integrated group can be fruitful for scientific outcomes. Hence, we overwhelmingly accept 

our first hypothesis, which suggests that more collaboration between authors leads to more 

scientific papers, but the impact on technological performance is only partly acceptable 

(Hypothesis 3).  

Regarding the influence of clustering on research performance, our findings show that although 

we observe a positive influence, we find that too high a value of individual cliquishness tends to 

have a negative impact once we account for the nonlinear effect. These results are the same for 

the positive impact of co-invention cliquishness on scientific performance. In the emerging field 

of nanotechnology, it appears to be critical that researchers develop their connections beyond a 

highly integrated cluster to share and diffuse knowledge, and to collaborate with researchers in 

various fields.  

We extend our empirical study to examine whether the innovative performance of researchers 

improves with a better network position. 
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The results suggest that the co-authorship ties between researchers do not yield a convincing 

effect on the number of patents, but in particular, we found that academic inventors exchange 

their knowledge in co-invention relationships, thus their connections create opportunities for 

higher technological performance. This highlights the importance of direct links in such networks 

in order to enhance patenting activities. 

Correspondingly, the relationship between clustering and the number of patents is positive. 

Indeed, similar to our results in co-publication networks, more cliquishness in these networks 

increases the technological performance, but we should expect a diminishing trend if scholars 

collaborate in a too integrated clique. Summing up, the impact of prominent positions in research 

networks on patenting performance of researchers is significantly positive, but to this effect, we 

need to encourage collaborations that involve innovation efforts. In this respect, our results accept 

Hypothesis 4 and partly accept Hypothesis 2. 

Our comparison results suggest that collaborations have a greater impact on nanotechnology 

research performance in Quebec and such a conclusion is consistent both with scientific and 

technological outputs. More co-authorship and co-invention relationships in Quebec are 

associated with higher research productivity and generate more publications and patents in the 

future.  

Our study has revealed, however, that the network structure and level of clustering influences the 

extent of knowledge diffusion. Although clustering is important in an innovation network, it may 

also limit knowledge transmission. To mitigate the problems of very cliquish networks, it is 

necessary that the creation of links outside these integrated clusters is taken into account. 

Since the growth of nanotechnology relates to technologies from various fields, researchers need 

to widen their connections within these domains in order to stimulate growth in this emerging 

high technology. 

Finally, there are the numbers of limitations to this research. The first lies in the examination of 

the narrow field of nanotechnology. We used what we thought was an accurate identification of 

nanotechnology papers and patents but it is entirely possible that we may have missed some 

nanotechnology related articles and patents. However, nanotechnology is an emerging field and 

some new keywords may have been missed in our careful canvassing of the scientific literature. 
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The other limitation is the mobility of scientists that can affect the affiliations and clearly the 

results of this research.  
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CHAPTER 7 GENERAL DISCUSSION 

This research aimed to answer three sets of hypotheses that we discussed in previous chapters. 

The first set aimed at identifying the impact of public funding on the research performance of 

academic scientists; the second examined the influence of collaborative networks of scientists; 

and the third set of hypotheses compared this impact in Canada and the US. Publications and 

patents are the two main research outputs considered as scientific and technological outputs. We 

focused on nanotechnology which is of great importance for policy makers to further understand 

the factors that enhance the success of the development in such an emerging technology. The 

following sections in this chapter discuss these contributions. 

7.1 The impact of Funding 

Governments devote considerable amounts of funds towards basic and applied research and 

development (R&D). Given that academia accounts for a large proportion of research, it is 

important to study funding trends in universities and analyze the effectiveness of these 

government expenditures. We take publications and patents into account to examine the 

efficiency and productivity of government funding in this high technology.  

In this research, we were concerned that there may exist a potential endogeneity problem 

regarding our funding and scientific output variables. We used the common instrumental variable 

techniques, 2SRI and 2SLS models, to control for potential endogeneity. Our instrumental 

variables were validated and verified by examining their correlation with other exogenous 

variables, with dependent variables and with our endogenous variable. We found these 

instrumental variables significant in the first stage of 2SRI and 2SLS models, which suggests that 

these are appropriate instruments to correct the potential endogeneity in our models. 

Regarding the influence of funding on scientific production, the impact on the number of papers 

is overwhelmingly significant and positive in Canada and the US. The results that are presented 

in Paper 2 are supporting Hypothesis 1.1a in both Canada and the US and Hypothesis 1.1b only 

in the US, since the positive impact of government funding on the publication quality is only 

observed in the US and not Canada. Although, the links between government grants and 

academic research are complex and despite the fact that economists have recently paid much 

attention to research productivity, the effect of research expenditures on research output is not 
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trivial in prior studies. Our results in the field of nanotechnology are in general accordance with 

the work of those scholars (Arora & Gambardella, 2005; McAllister and Narin, 1983; Payne and 

Siow, 2003; Peritz, 1990; Zucker et al., 2007) who observed receiving grants positively 

influences the production of scientific output. 

This paper presents an empirical analysis of the impact of public funding on university 

technological outputs in the emerging science and technology domain, nanotechnology, on a 

sample of Canadian and American academic patents. We focus here on two relatively similar, yet 

very distinct countries and the results are a rather different. We find empirical evidence (see 

Paper 4) that government funding enhances the number of patents and patent quality in the US, 

but we are unable to find such a relationship in Canada. We hence accept Hypothesis 1.2 a and 

Hypothesis 1.2 b for the US, but reject this hypothesis for Canada. In order to examine the impact 

of public funding on patent quality, the number of claims yields significant results while the 

number of citations, regardless of the form of the indicator, does not, even when we include 7-

year forward citations following the patent grant year. While more government funds in the US 

undoubtedly lead to more academic patents that are associated with higher quality patents, we 

find there is a limit to the increase in patent quality and beyond a specific amount of funding 

(nearly 42 000 $), patent quality begins to decrease. A limited number of studies have explored in 

details the influence of funding on academic innovative activity. The large body of literature 

generally focuses on the influence of funding on scientific productivity and these results expand 

the focus of research on academic patenting when scientists address industrial interests. 

Although, government plays a central role as a source of research financing in universities, across 

the different domains of scientific research close to commercial applications, Canadian 

nanotechnology-related patents appear to be independent from research financing. 

Nanotechnology is however in its infancy and technology development is slightly slower in 

Canada than in the US. With respect to the fact that the patents considered in this paper are the 

technological output of academic researchers, because scientists aim first and foremost to publish 

rather than patent, it is possible that more collaboration and funding from industry are necessary 

to incite patenting activities in Canada. 

Given the relationship between private funding and publications, the results of our investigation 

in Quebec (see Paper 3) show that paper quality decreases as industry funding increases. The 
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efficacy of private funding for research purposes is an issue of much debate. Previous studies 

generally concentrate on government funding and the literature extensively suffers from a lack of 

data on the impact of private research financing in universities. Moreover the magnitude of this 

investment in new high technologies deserves as much consideration to understand the impact of 

funding sources on the quality of scientific production. 

We also observed that while increased government funding is considered beneficial and a sign of 

a higher quality researcher, increased private funding is more likely to restrict the publication 

quality. Contracts with industrial firms have a negative non-linear effect on nanotechnology 

research quality. This problem highlights a concern about collaboration between two different 

scientific worlds of academic research and commercial innovation. There are concerns as to 

whether these interactions will decrease long-term research or change the culture of open science 

(Martin 2003; Van Looy 2004). As a consequence, since the amount of private research financing 

yields a negative effect in our analysis on the citation impact of scientific output, we reject 

Hypothesis 1.3  

Prior studies on the impact of industry support on the scientific production are mixed.	
  

Gulbrandsen and Smeby (2005) explained that the publishing profile of an industry-funded 

academic researcher may be different from that of a government-funded researcher. An industry-

funded researcher likely publishes more reports or files more academic patents instead of journal 

articles. Additionally, Geuna and Nesta (2006) also suggested a possible substitution effect 

between paper publication and patent application for university scientists with industrial support: 

academic researchers must sometimes withhold research results for months due to intellectual 

property rights. Our results, however, are in line with those studies (Beaudry and Allaoui, 2012; 

Boumahdi et al., 2003; Goldfarb, 2008 ) that found negative impact. 

Moreover, the findings of this thesis generally confirm that government support for evolving 

research areas such as nanotechnology promises the highest socio-economical benefits and will 

result in higher performance research and efficient knowledge diffusion. 

Our contribution shows that there is a high correlation between the amount of grants received and 

research outputs, but that the assumption that this funding yields higher quality research is not 

empirically verified in Canada. 
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This thesis contributes to the literature underlining the fact that grants may fail or not result in 

increasing research performance by providing more grants beyond a certain limit as we observed 

an inverted U-shaped curve. Our analysis of the non-linear relationships appears to show a 

negative impact at some point for our dependent variables. These findings are different from the 

prior studies that they found a positive, a negative or no impact of funding. These results show 

that government grants in smaller amounts can be more fruitful rather than larger grants in 

increasing the research output.   

7.2  The impact of Collaborations and network 

The other major findings from this research relate to the quantity of research output and the 

quality of their outputs given their position in scientific and technological networks. In the field 

of nanotechnology, we observe an increasing tendency of researchers to form research teams 

whose expertise span over a wide range of domains. Funding agencies thus commonly allocate 

financial resources to teams of scientists rather than individual researchers. In our second 

hypothesis we therefore focus on the way in which these collaborative teams are structured and 

shed some light on the impact of the network measures on the research output of the teams.  

The evolution of collaborations between researchers over the years was analyzed using 3-year co-

publication and co-invention sub-networks. We created these sub-networks for all the 3-year 

moving intervals by building one big network of Canada and the US for each co-publication and 

co-invention network. 

In this research, we find a remarkably positive and significant impact of the researchers’ 

collaboration in co-authorship networks on the quantity and quality of publications in both 

Canada and the US that enables us to accept Hypothesis 2.1 (Paper 2). Our results tend to support 

the notion that clustered environments enhance the quantity of scientific output and confirm the 

efficiency of these collaborative networks in knowledge diffusion. We find that clustered 

networks increasingly augment scientific output and quality of research. We contribute to the 

literature by analyzing the position of scientists in their scientific networks. Prior studies have 

generally focused on the number of authors as a measure of collaboration in co-authored 

publications (Frenken et al., 2005; Hollis, 2001; Lee and Bozeman, 2005; Narin et al., 1991). 
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Our analysis results on a detailed study of collaborations and network measures in Paper 5 show 

that scientific performance is positively associated with the collaborations of scholars in a co-

authorship network: scientists with strong connections yield a higher number of publications. 

Regarding the network measures, researchers with a higher number of direct connections, those 

who hold an intermediary position in a co-authorship network, and researchers who collaborate 

within a group of linked co-authors show higher scientific research performance than those with 

few connections. 

This analysis further sheds light on our understanding of the influence that collaboration, within 

the network of science, has on enhancing commercial interests of academic researchers (Paper 4). 

In Canada we find that collaborations in co-authorship networks have a significant influence on 

the number and quality of patents. Our further analysis on more network measures in Quebec 

(Paper 5) shows that the co-authorship ties between researchers cannot yield a convincing effect 

on the number of patents. Hence, we partly accept Hypothesis 2.2.  

Turning to the impact of co-invention networks, our analysis of co-invention network measures 

in Paper 5 shows no consistently positive and significant impact of degree centrality and 

betweenness centrality on the production of papers. We only observe a positive effect of 

cliquishness in Quebec, showing that collaboration within a fairly integrated group can be fruitful 

for scientific outcomes. Hence, the impact on technological performance is only partly acceptable 

(Hypothesis 2.3). 

We also contribute to the literature in terms of a detailed analysis of the effect of co-invention 

collaborations on technological productivity. We accept Hypothesis 2.4 for both Canada and 

partly for the US based on our findings in Paper 4. Our further focus on network metrics in Paper 

5 also shows that academic inventors exchange their knowledge in co-invention relationships, 

thus their connections create opportunities for higher technological performance. This highlights 

the importance of direct links in such networks in order to enhance patenting activities. 

It is worth noting that although our findings confirm that the structure of clusters in networks of 

researchers can be beneficial, the collaboration of various disciplines is required and the 

maximum clustering coefficient cannot yield fruitful results. As such, a higher clustering 

coefficient decreases the efficiency of articles published implying that researchers working in 

more clustered collaborative environments become less productive and efficient. As we see in 
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this study, if researchers do not attempt to establish relationships beyond their circles and 

maintain some level of fragmentation, maximum clustering leads to a reduction in the quantity 

and quality of research output. This may be explained by the possible inclination of authors in 

cliquish environments to cite scientists with whom they are linked in their network. It has proven 

critical that researchers develop their connections and share knowledge beyond a highly 

integrated cluster. 

Very few papers have explored the role of collaboration in the technological performance of 

researchers. Previous studies have mostly analyzed the benefits of university-industry 

collaborations on commercial activities (see D’Este and Patel 2007; Hane 1999; Lee 2000; 

Perkmann and Walsh 2007; Robb1991) or have extensively studied the influence of academic 

patenting efforts on open science publications (Balconi et al. 2004; Meyer 2006; Van Looy et al. 

2004). Using the network measures of academic researchers, we directly focus on the impact of 

innovative networks on university patents and contribute to the literature. 

The findings of this thesis support the idea that collaborations yield more research outputs in 

emerging industries such as nanotechnology. Collaboration and knowledge sharing even in 

innovative networks appear to be fruitful and strengthen the publication performance of 

scientists.  

Given the importance of collaborative linkages, particularly in a multidisciplinary field, this 

finding is of great importance, thus, scientists must be encouraged to develop their connections 

beyond their cliquish environments and cite new researchers. As for the importance of the 

scientific and technological network surrounding academic researchers, while these researchers 

build their network to have access to diverse knowledge of their community, in some fields such 

as nanotechnology, large multidisciplinary teams are required to benefit from knowledge of 

various sources. This would be necessary for an emerging field which is in its infancy to augment 

the research productivity and quality. 

7.3 Comparison of Canada and the US 

This thesis generates empirical evidence to compare the nanotechnology development of Canada 

and the US. We observe that government grants yield a greater effect on nanotechnology 

publications in the US, while network characteristics are more influential in Canada rather than in 
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the US. Thus we reject Hypothesis 3.1 in terms of the higher influence of government grants in 

Canada rather than in the US. 

As a consequence, we capture similar results with respect to the technological performance of 

scientists. Government funding plays an important role in the US. In Canada on the other hand, 

the position of researchers in collaborative networks has been more effective. Although 

government funding plays an important role on technological productivity and patent quality in 

the US, we cannot capture this effect in the comparison analysis. Moreover, in Canada, if an 

academic inventor already holds a better intermediary position than other researchers and has a 

well-integrated clique with some level of fragmentation, this inventor contributes to more and 

higher quality technological output. These findings suggest that collaborations in Canada are 

effective in enhancing academic technological output. However, we cannot support Hypothesis 

3.2 as these comparison results were not significant to imply that government funds are more 

effective in the US comparing to Canada.  

From this analysis, we realize that both funding and collaborations contribute to enhancing 

research output in the academic world. The findings highlight the importance and potential of 

both types of network connections. The study of co-authorship collaborations shows that the 

establishment of even these relationships becomes effective in the future technological output. 

Nevertheless, it is also necessary to consider that although our analysis tracks different 

performance in terms of funding and collaboration in nanotechnology area in these two countries, 

attempting to follow nanotechnology development requires the investment of governments not 

only in the young field of nanotechnology, but also in the forming the relationships between 

nanotechnology researchers.  

Nanotechnology is a young field with considerable potential, but it is an emerging, knowledge-

based technology which is risky and requires long-term research. Hence, given the influence of 

this technology on future economic development, it is vital to consider the impact of government 

funding and collaborations in order to enhance nanotechnology development.  

Thus, purposeful research funding and strong relationships between nanotechnology researchers 

strengthens knowledge exchange and stimulates growth in this emerging high technology. 
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CONCLUSION 

The findings of this thesis provide important contributions to nanotechnology development in 

academia. We first examined to what degree funding stimulates nanotechnology research in 

universities. There have been a number of studies which have investigated the impact of public 

funding in various fields and their results are conflicted: some reveal a positive relationship, 

others a negative impact, and others find no effect in some cases. This thesis has made a major 

contribution in identifying the impact of funding in an emerging nanotechnology.  

This high and interdisciplinary technology holds the potential to yield considerable economic 

benefits and has the ability to generate new products, production processes and technology-

intensive firms. Hence, it is of great importance to examine the factors that effectively influence 

the development of this new technology. Due to the substantial potential of nanotechnology, both 

public and private spending has consistently increased in the past two decades. 

We developed non-linear econometric models to answer our research questions and found that 

the amount of funding allocated to scientists plays a fundamental role in enhancing 

nanotechnology research, particularly in the US. In addition, although we found a positive impact 

of government funding on research performance, in some cases we observed subtle differences; 

while more funding leads to higher research performance, the non-linear relationship shows that 

at some point, researchers experience a decrease since results suggest that this effect follows an 

inverted U shaped curve. The policy implication of these results could be that governments 

allocate various smaller grants to researchers in order to enhance the research output. 

Furthermore, our results from Quebec appear to verify the general belief that industry funding 

negatively impacts the publication quality of academic researchers. This observation may be due 

to the industrial sectors which desire to protect their findings from being freely accessible for 

competitors. The empirical findings of this thesis suggest that government grants represent an 

essential gateway to nanotechnology research development and nanotechnology knowledge 

diffusion. While government research financing contributes to increasing the quality of 

knowledge being produced, and sharing it as open science for the benefit of society, the industry 

directs investment toward nanotechnology research to benefit from applied research and potential 

products and processes. Industry-supported research may lay the foundation for technological 

advancements and is protected by patents in patent offices. The collaboration of private 
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companies in academic research, however, does not necessarily result in more patents, it may 

only provide consulting activities. 

Publicly funded research contributes to the worldwide knowledge network and stimulates 

economic growth. The private sector is interested in short-term research; long-term and highly 

risky research, with a potential for greater impact, should accordingly be supported by 

government. This is not to say that academics should not seek private funding. One must 

recognize that in the filed of nanotechnology, private funding is complementary, but serves other 

purposes than high quality publications.  

Nanotechnology is an interdisciplinary field which is increasingly necessary for scientists to 

research in teams and increase collaborations across disciplines to benefit from other scientists’ 

knowledge to reap its full potential. Thus, the collaboration of researchers and the position that 

they occupy in their networks affect their performance. We indeed find a reinforcing effect 

between research collaboration and performance, particularly in Canada.  

The policy implication of these findings is that governments encourage scientists to work in 

teams. We show that better network positions of scientists in co-authorship and co-invention 

networks affect their research outputs. Thus, this thesis underlines the strong relationship 

between the scientific and technological performance of academic scientists and their 

collaborative behavior in networks. Since the growth of nanotechnology relates to technologies 

from various fields, researchers need to widen their connections within these domains in order to 

stimulate growth in this emerging high technology. 

This thesis uncovers an interesting issue regarding network characteristics. Although a positive 

correlation exists between the structure of research teams measured by the clustering coefficient 

(cliquishness) and research outputs, the maximum clustering coefficient exhibits diminishing 

returns and researchers therefore do not benefit from highly integrated teams and more cliquish 

networks. Scientists are more likely to become less efficient in such clustered collaborative 

environments and need some fragmentation to network in this multidisciplinary field. To mitigate 

the problems of very cliquish networks, it is necessary that the creation of links outside these 

integrated clusters is taken into account. 

The results of this thesis are of great importance for Canada as this research concentrates on 

nanotechnology, which can foster significant economic development. We study this technology 
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in order to understand two important factors that enhance such development: funding and 

collaboration.  

Given these results, we recommend that the Canadian government support nanotechnology 

development by financing academic research, given the crucial role we found financing has 

played in the US. We also recommend the government invest in the development of collaborative 

networks, as we have observed that such networking considerably increases research 

performance in Canada. According to our findings, we suggest that government allocate various 

smaller amounts of grants to teams of researchers in order to enhance the quantity and quality of 

research. In the filed of nanotechnology, large multidisciplinary teams would be more fruitful.  

This research has greatly contributed to the understanding of the impact of government funding 

and scientific and innovation networks on research. It has analyzed not only the quantity, but also 

the quality of scientific and technological outputs in nanotechnology. 

 

Limitations  

An inherent limit of this thesis is that nanotechnology is a rather narrow field. Despite our efforts 

to extract the papers and patents most relevant to the field, it is possible some were not included 

due to our narrow definition of nanotechnology. However, nanotechnology is an emerging field 

and some new keywords may have been missed in our careful canvassing of the scientific 

literature. Also, our study does not take into consideration articles written in languages other than 

English, which may affect the difference in productivity between French-speaking and English-

speaking parts of Canada. 

Another limitation of this study was the ambiguity of scientists’ names in merging different 

publishing, patenting and funding databases. Although we performed a check of individuals’ 

name to avoid this bias, it may have caused some deterioration or loss of the data. 

The other limitation resides in the mobility of researchers across the US and Canada. Given the 

main purpose of this study is to compare outputs from researchers affiliated with either Canadian 

or American institutions, the mobility of these researchers between institutions clearly affects the 

results. This issue however could not be addressed in this study. 
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Another limitation of this thesis is that we could not measure the impact that graduate students 

have on the production of research teams, since they are not academic professors and therefore 

not included in our funding databases. 

Moreover, nanotechnology is an emerging field and not only has the number of patents and 

publications been rapidly growing, but funding has also been increasing to develop this new 

technology. However, the collaborative structure of researchers has been rapidly changing over 

time that can affect the findings we found in this thesis. 

Finally, our study is limited to nanotechnology-related publications and patents, but funding is 

generally granted to researchers and we are not able to separate the amount of funding that is only 

allocated for nanotechnology research of scientists. 

Recommendations for future research  

This thesis can be extended by gathering industry funding data for other provinces in Canada and 

the US. This will allow for a broader understanding of the innovative productivity and patent 

quality of researchers especially since industry partners appear to value the innovative 

performance over publication productivity. 

Furthermore, there is a need for more investigations on how industry funding can affect research 

collaborations. 

Given the role of graduate students in the production of papers and patents, future studies can 

address this knowledge gap. Scholarships and international funds can also be taken into 

consideration in studying the impact of funding on research output. Furthermore, the study can 

also be extended by analyzing the size of grants. Such investigations would reveal further insight 

on the relationship between funding and research outputs, the quality of research outputs, and 

also raise some interesting questions about research teams and co-author/co-inventor 

relationships that can shed some light on the need for further networking policies. 

A final recommendation for future research is to study the economic value of patents contributed 

to academic research. This investigation would further our understanding of patent quality 

indicators and allow us to measure the returns for patent inventors or assignees. 

Numerous opportunities exist for researchers to further our understanding of the funding and 

collaborations due to the great importance of nanotechnology. We hope to observe rich and 
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diverse discussions on the subject in the near future that will provide overarching benefits of 

further study in this field.  
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APPENDIX A – TABLES AND FIGURES of ARTICLE 2 

Table A.1: First stage regressions results –The US (Standard errors in parentheses and *** 

p<0.01, ** p<0.05, * p<0.1) 

The US nbPaper ( FS-reg)  nbCitation5 ( FS-reg) 
Model (1) Model (2) Model (3) Model (4)  Model (1) Model (2) Model (3) Model (4) 

nbPast3Patit-1
 0.0315 *** 0.1174 *** 0.1172 *** 0.1172 ***  0.0315 *** 0.1174 *** 0.1172 *** 0.1172 *** 

(0.0041) 
 

(0.0099) 
 

(0.0099)  (0.0099)   (0.0041)  (0.0099)  (0.0099) 
 

(0.0099) 
 [nbPast3Patit]2                -0.0049 *** -0.0049 *** -0.0049 ***                 -0.0049 *** -0.0049 *** -0.0049 *** 

              
 

(0.0005) 
 

(0.0005)  (0.0005)                  (0.0005)  (0.0005) 
 

(0.0005) 
 ln(104×BetweenCentit-

2)
 

-0.0201  -0.0083  0.0142  0.0142   -0.0201  -0.0083  0.0142  0.0142  
(0.2238)  (0.2232)  (0.2232)  (0.2232)   (0.2238)  (0.2232)  (0.2232)  (0.2232) 

 ln(103×Cliquishnessit-

2)
 

-0.1912 *** -0.1874 *** -0.7074 *** -0.7074 ***  -0.1912 *** -0.1874 *** -0.7074 *** -0.7074 *** 
(0.0133)  (0.0133)  (0.1985)  (0.1985)   (0.0133)  (0.0133)  (0.1985)  (0.1985) 

 [ln(103×Cliquishnessit-

2)]2 
              
 

              
 

0.0769 *** 0.0769 ***                                0.0769 *** 0.0769 *** 
                              (0.0293)  (0.0293)                                 (0.0293)  (0.0293) 

 CareerAge
 1.1155 *** 1.1148 *** 1.1153 *** 1.1153 ***  1.1155 *** 1.1148 *** 1.1153 *** 1.1153 *** 

(0.0160) 
 

(0.0160) 
 

(0.0160)  (0.0160)   (0.0160)  (0.0160)  (0.0160) 
 

(0.0160) 
 [CareerAge]2 -0.0585 *** -0.0584 *** -0.0584 *** -0.0584 ***  -0.0585 *** -0.0584 *** -0.0584 *** -0.0584 *** 

(0.0014) 
 

(0.0014) 
 

(0.0014)  (0.0014)   (0.0014)  (0.0014)  (0.0014) 
 

(0.0014) 
 nbAvgPaper3t-1

 0.1879 *** 0.1895 *** 0.1920 *** 0.1920 ***  0.1879 *** 0.1895 *** 0.1920 *** 0.1920 *** 
(0.0370) 

 
(0.0367) 

 
(0.0366)  (0.0366)   (0.0370)  (0.0367)  (0.0366) 

 
(0.0366) 

 Years
 

Yes   Yes  Yes   Yes   Yes   Yes  Yes   Yes ** 

Constant
 1.2424 *** 1.1643 *** 1.1623 *** 1.1623 ***  1.2424 *** 1.1643 *** 1.1623 *** 1.1623 *** 

(0.0900) 
 

(0.0905) 
 

(0.0905)  (0.0905)   (0.0900)  (0.0905)  (0.0905) 
 

(0.0905) 
 Nb-observations 56511   56511  56511  56511   56511  56511  56511   56511  

Nb-groups
 

33655  33655  
33655  33655   

33655  33655  33655  33655  
Loglikelihood -171712  -171636  -171632  -171632   -171712  -171636  -171632  -171632  
R2 0.1634  0.1656  0.1658  0.1658   0.1634  0.1656  0.1658  0.1658  
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Table A.2: First stage regressions results –Canada (Standard errors in parentheses and *** 
p<0.01, ** p<0.05, * p<0.1) 

Canada nbPaper ( FS-reg)  nbCitation5 ( FS-reg) 
Model (1) Model (2) Model (3) Model (4)  Model (1) Model (2) Model (3) Model (4) 

nbPast3Patit-1
 0.0102 

 
0.2081 

 
0.2034  0.2034   0.0102  0.2081  0.2034 

 
0.2034 

 (0.0749) 
 

(0.1464) 
 

(0.1477)  (0.1477)   (0.0749)  (0.1464)  (0.1477) 
 

(0.1477) 
 [nbPast3Patit]2                -0.0238 * -0.0238 * -0.0238 *                 -0.0238 * -0.0238 * -0.0238 * 

              
 

(0.0140) 
 

(0.0142)  (0.0142)                  (0.0140)  (0.0142) 
 

(0.0142) 
 ln(104×BetweenCentit-

2)
 

-0.0881  -0.0890  -0.2045  -0.2045   -0.0881  -0.0890  -0.2045  -0.2045  
(0.1255) 

 
(0.1257) 

 
(0.1473)  (0.1473)   (0.1255)  (0.1257)  (0.1473) 

 
(0.1473) 

 ln(103×Cliquishnessit-

2)
 

-0.0654 *** -0.0670 *** 0.4253  0.4253   -0.0654 *** -0.0670 *** 0.4253 
 

0.4253 
 (0.0216) 

 
(0.0217) 

 
(0.3408)  (0.3408)   (0.0216)  (0.0217)  (0.3408) 

 
(0.3408) 

 [ln(103×Cliquishnessit-

2)]2 
              
 

              
 

-0.0724  -0.0724                                 -0.0724 
 

-0.0724 
               

 
              

 
(0.0501)  (0.0501)                                 (0.0501) 

 
(0.0501) 

 CareerAge
 0.7714 *** 0.7721 *** 0.7705 *** 0.7705 ***  0.7714 *** 0.7721 *** 0.7705 *** 0.7705 *** 

(0.0342) 
 

(0.0342) 
 

(0.0341)  (0.0341)   (0.0342)  (0.0342)  (0.0341) 
 

(0.0341) 
 [CareerAge]2 -0.0393 *** -0.0394 *** -0.0394 *** -0.0394 ***  -0.0393 *** -0.0394 *** -0.0394 *** -0.0394 *** 

(0.0025) 
 

(0.0025) 
 

(0.0025)  (0.0025)   (0.0025)  (0.0025)  (0.0025) 
 

(0.0025) 
 nbAvgPaper3t-1

 0.0250 
 

0.0196 
 

-0.0036  -0.0036   0.0250  0.0196  -0.0036 
 

-0.0036 
 (0.0493) 

 
(0.0497) 

 
(0.0545)  (0.0545)   (0.0493)  (0.0497)  (0.0545) 

 
(0.0545) 

 Years
 

Yes   Yes   Yes   Yes   Yes   Yes  Yes   Yes  
Constant

 -0.9853 *** -0.9918 *** -0.9854 *** -0.9854 ***  -0.9853 *** -0.9918 *** -0.9854 *** -0.9854 *** 
(0.0800) 

 
(0.0802) 

 
(0.0799)  (0.0799)   (0.0800)  (0.0802)  (0.0799) 

 
(0.0799) 

 Nb-observations 8180 
 

8180 
 

8180  8180   56511  56511  56511   56511  
Nb-groups

 
3684  3684  3684  3684   3684  3684  3684  3684  

Loglikelihood -23680  -23678  -23677  -23677   -23680  -23678  -23677  -23677  
R2 0.2254  0.2258  0.2260  0.2260   0.2254  0.2258  0.2260  0.2260  

 

Table A.3: Descriptive statistics 

 Canada  United States 
Variable Obs Mean Std. Dev. Min Max  Obs Mean Std. Dev. Min Max 
nbPapert	
   8180 1 2 0 44  56511 0 1 0 44 
nbCitation5t	
   8180 8 39 0 985  56511 2 24 0 1766 
ln(GovGrant3t-1)	
   8180 10 1 4 15  56511 11 1 0 17 
nbPast3Patit-1

 
8180 0 1 0 40  56511 3 5 0 53 

ln(104×BetweenCentit-2)
	
  

8180 0 1 0 5  56511 0 0 0 4 
ln(103×Cliquishnessit-2)

	
  
8180 2 3 0 7  56511 1 3 0 7 

CareerAge
	
  

8180 6 5 1 21  56511 5 5 1 21 
nbAvgPaper3t-1	
   8180 0 1 0 37  56511 0 1 0 40 
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Table A.4: Correlation Matrix – Canada 

Variable  1 2 3 4 5 6 7 8 
nbPapert 1 1 

       nbCitation5t 2 0.7545 1 
      ln(GovGrant3t-1) 3 0.0143 0.0162 1 

     nbPast3Patit-1
 

4 0.084 0.0906 0.0086 1 
    ln(104×BetweenCentit-2)

 
5 0.5736 0.4333 0.0305 0.0801 1 

   ln(103×Cliquishnessit-2)
 

6 0.3435 0.2421 0.027 0.0717 0.3096 1 
  CareerAge

 
7 0.1225 0.0866 0.1216 0.0634 0.1569 0.1055 1 

 nbAvgPaper3t-1 8 0.8679 0.6565 0.0253 0.0915 0.6669 0.3879 0.153 1 

 

Table A.5: Correlation Matrix – The US 

Variable  1 2 3 4 5 6 7 8 
nbPapert 1 1        nbCitation5t 2 0.4706 1       ln(GovGrant3t-1) 3 0.0494 0.0361 1      nbPast3Patit-1

 
4 -0.0622 -0.0187 -0.0115 1     ln(104×BetweenCentit-2)

 
5 0.1030 0.0410 0.0088 -0.0331 1    

ln(103×Cliquishnessit-2)
 6 0.3845 0.1385 0.0338 -0.1133 0.1943 1   CareerAge

 
7 0.2097 0.0837 0.1669 -0.0949 0.0674 0.2643 1  nbAvgPaper3t-1 8 0.8967 0.4532 0.0537 -0.0685 0.1123 0.4224 0.2481 1 
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Table A.6: Second Stage of regression results of Poisson model – Impact of public funding on the 
number of papers and the number of citations in Canada and the US (Standard errors in 
parentheses and *** p<0.01, ** p<0.05, * p<0.1) 

Variable
 

nbPaper  nbCitation5 
Canada 
Model (1) 

The US 
Model (1)  Canada 

Model (1) 
The US 

Model (1) 
W/O Endog  2SLS  W/O  

Endog 2SLS  W/O Endog 2SLS W/O 
Endog 

2SLS 

ln(GovGrant3it-1) 
-0.0005 

 
              
 

0.0377 ***               
 
 0.0072 

 
              
 

0.0538 ***                
(0.0081) 

 
              
 

(0.0036)                
 

 (0.0114) 
 

              
 

(0.0105) 
 

               

nbPast3Patit-1
 0.1567 *** 0.1484 *** -0.0331 *** -0.0352 ***  0.1892 *** 0.1837 *** -0.0358  -0.0430  

(0.0197) 
 

(0.0197) 
 

(0.0087)  (0.0079) 
 

 (0.0237) 
 

(0.0238) 
 

(0.0308) 
 

(0.0266)  

ln(104×BetweenCentit-2)
 0.6327 *** 0.6137 *** 0.3414 *** 0.3404 ***  0.6316 *** 0.6200 *** 0.5031 *** 0.5296 *** 

(0.0480) 
 

(0.0460) 
 

(0.0585)  (0.0553) 
 

 (0.0789) 
 

(0.0766) 
 

(0.1185) 
 

(0.1212)  

ln(103×Cliquishnessit-2)
 0.1226 *** 0.1195 *** 0.3138 *** 0.3097 ***  0.1105 *** 0.1089 *** 0.3380 *** 0.3468 *** 

(0.0117) 
 

(0.0117) 
 

(0.0063)  (0.0063) 
 

 (0.0190) 
 

(0.0190) 
 

(0.0184) 
 

(0.0209)  
Years (1996-2005) Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  
Prediction(GovGrant3it-

1)-2SLS 
               (0.1002) ***   0.3491 ***                 0.0696 

 
              

 
0.5329 *** 

               0.0319    (0.0219)                  (0.0500)                 (0.0863)  

Constant -0.7651 *** -1.3227 *** -1.6618 *** -2.9757 ***  2.0338 *** 1.6903 *** 0.3458 * -1.8670 *** 
(0.0848) 

 
(0.1998) 

 
(0.0842)  (0.1349) 

 
 (0.1240) 

 
(0.3038) 

 
(0.2053) 

 
(0.5276)  

Nb observations 8180  8180  56511 
 

 56511 
 

  8180  8180  56511 
 

 56511 
 

 

Nb Groups 3684  3684  33655  33655   3684  3684  33655  33655  
Loglikelihood -8625 

 
-8601  -41322  -38924   -133895 

 
-133755  -413909 

 
-382311  

χ2 714.6 *** 675.9 *** 5104 *** 5266 ***  636.89 *** 631.12 ***  968.10 *** 788.54 *** 

 

Table A.7: Second Stage of regression results of xtpoisson model – Impact of public funding on 
the number of papers and the number of citations in Canada and the US (Standard errors in 
parentheses and *** p<0.01, ** p<0.05, * p<0.1) 

Variable
 

nbPaper  nbCitation5 
Canada 
Model (1) 

The US 
Model (1)  Canada 

Model (1) 
The US 

Model (1) 
W/O Endog  2SLS  W/O  

Endog 2SLS  W/O Endog 2SLS W/O 
Endog 

2SLS 

ln(GovGrant3it-1) 
-0.0145 ***               

 
0.0171 ***               

 
 0.0003 

 
              
 

0.0019 **                
(0.0049) 

 
              
 

(0.0019)                
 

 (0.0015) 
 

              
 

(0.0008) 
 

               

nbPast3Patit-1
 0.2196 *** 0.2156 *** -0.0338 *** -0.0406 ***  0.2248 *** 0.2385 *** -0.0082 *** -0.0189 *** 

(0.0314) 
 

(0.0319) 
 

(0.0033)  (0.0033) 
 

 (0.0094) 
 

(0.0095) 
 

(0.0017) 
 

(0.0018)  

ln(104×BetweenCentit-2)
 0.1642 *** 0.1382 *** 0.2207 *** 0.1534 ***  -0.1501 *** -0.1507 *** 0.4149 *** 0.4100 *** 

(0.0229) 
 

(0.0231) 
 

(0.0431)  (0.0433) 
 

 (0.0077) 
 

(0.0076) 
 

(0.0138) 
 

(0.0138)  

ln(103×Cliquishnessit-2)
 0.0108 

 
0.0008 

 
0.0954 *** 0.1221 ***  -0.0874 *** -0.0810 *** -0.0223 *** -0.0099 *** 

(0.0084) 
 

(0.0083) 
 

(0.0040)  (0.0039) 
 

 (0.0025) 
 

(0.0025) 
 

(0.0015) 
 

(0.0015)  
Years (1996-2005) Yes  Yes    Yes   Yes  Yes  Yes    
Prediction(GovGrant3it-

1)-2SLS 
              
 

0.1770 ***   0.2420 ***                
 

0.1457 ***               
 

0.0863 *** 
              
 

(0.0217) 
 

  (0.0062) 
 

               
 

(0.0073) 
 

              
 

(0.0031)  

Constant -0.3677 *** -1.3967 *** -1.7050 *** -2.7025 ***  3.0109 *** 2.1255 *** 0.0643 
 

-0.3056 *** 
(0.0633) 

 
(0.1290) 

 
(0.0523)  (0.0593) 

 
 (0.0728) 

 
(0.0835) 

 
(0.0613) 

 
(0.0617)  

ln(alpha) 
1.3243 *** 1.3317 *** 2.0456 *** 1.8212 ***  2.8822 *** 2.8617 *** 4.7488 *** 4.7103 *** 

(0.0510)  (0.0502)  (0.0240)  (0.0246)   (0.0360)  (0.0361)  (0.0276)  (0.0278)  

Nb observations 8180  8180  56511 
 

 56511 
 

  8180  8180  56511 
 

 56511 
 

 

Nb Groups 3684  3684  33655  33655   3684  3684  33655 
 

33655  
Loglikelihood -6647.69 

 
-6618.4  -28720.8  -27992.3   -39780.8 

 
-39578.7  -76589.6 

 
-76193.1  

χ2 496.26 *** 545.68 *** 2185.0 *** 3586.8 ***  8692.9 *** 8914.9 ***  6384.3 *** 7102.7 *** 
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Figure A.1: A Quadratic effect of past individual cliquishness of scientists, Cliquishness, on (a) 
the number of papers in the US and (b) the number of citations in Canada 
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APPENDIX B – TABLES OF ARTICLE 3 

 

Table B.1 : Description of dependent and explanatory variables 

Variable Variable 
Type  Description 

nbArtCit5t D Number of forward citations received by the papers of each scientist up to five 
years after publication  

ln(AvgGrant3t-1) En Average yearly amount of grants received in the past 3 years lagged one year 

ln(AvgContract3t-1) Ex Average yearly amount of contracts received in the past 3 years lagged one 
year 

ln(104xBtwCent3t-2)
 Ex Betweenness centrality of scientists in the three-year co-publication 

subnetwork lagged two years 

ln(103xCliqness3t-2)
 Ex Cliquishness centrality of scientists in the three-year co-publication 

subnetwork lagged two years 

Aget In Career age of each scientist defined as the number of years since the first paper 
publication 

Chair In 

Ordinal indicator that takes the value 0 if a researcher has no chair, the value 1 
if he holds an industrial chair, the value 2 if being a chair of one of two 
Canadian federal granting councils, and the value 3 for a scientist who is a 
Canadian Research chair at some point in his career 

nbArticle3t-1 In Average number of articles over the past 3 years lagged one year 
nbPatent3t-1

 Ex Number of patents over past three years lagged one year 
d1997-d2005 Ex Year dummy variables 
Notes: D: Dependent Variable, En: Endogenous Variable, Ex: Exogenous variable, In: Instrumental Variable 

 

Table B.2 : Descriptive statistics 
Variable Obs Mean Std. Dev. Min Max 

nbArtCit5t 8319 6.6875 34.3190 0.0000 878.0000 
ln(AvgGrant3t-1) 8319 11.1988 1.4135 2.9337 16.5820 
ln(AvgContract3t-1) 8319 3.6895 4.9457 0.0000 16.2668 
nbPatent3t-1

 8319 0.1543 0.9919 0.0000 43.0000 
ln(104xBtwCent3t-2)

 8319 0.1350 0.5664 0.0000 4.8911 
ln(103xCliqness3t-2)

 8319 1.8369 2.9486 0.0000 6.9088 
Chair 8319 0.0030 0.0855 0.0000 3.0000 
Aget

 8319 16.6497 2.8822 12.0000 21.0000 
Avg(nbArticle3t-1)

 8319 0.4310 1.2274 0 18.6666 
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Table B.3 : Correlation matrix 

Variable  1 2 3 4 5 6 7 8 9 
nbArtCit5t 1 1.0000         ln(AvgGrant3t-1) 2 0.0896 1.0000 

       ln(AvgContract3t-1) 3 0.0114 0.2580 1.0000 
      nbPatent3t-1

 4 0.0455 0.0632 0.0769 1.0000 
     ln(104xBtwCent3t-2)

 5 0.4210 0.0897 0.0482 0.0793 1.0000 
    ln(103xCliqness3t-2)

 6 0.2361 0.1126 0.0404 0.0701 0.3148 1.0000 
   Chair 7 -0.0031 0.0134 -0.0097 0.0016 -0.0084 -0.0054 1.0000 

  Aget
 8 0.0738 0.1578 -0.0250 0.0037 0.0469 0.1035 0.0476 1.0000 

 Avg(nbArticle3t-1)
 9 0.6045 0.1166 0.0324 0.0825 0.7002 0.4352 -0.0062 0.0938 1.0000 
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Table B.4 : First stage regressions results 

Variables (1) (2) (3) (4) (5) (6) (7) 

ln(AvgContract3t-1)
 0.1650 *** 0.0603  0.0606  0.0604  0.0604  0.0633  0.0650  

(0.0082) 
 

(0.0410)  (0.0411)  (0.0412)  (0.0412)  (0.0404)  (0.0403)  
[ln(AvgContractt-1)]2

 
         0.0098 ** 0.0097 ** 0.0097 ** 0.0097 ** 0.0095 ** 0.0092 ** 
        
 

(0.0038)  (0.0038)  (0.0039)  (0.0039)  (0.0038)  (0.0038)  
nbPatent3t-1

 0.0569  0.0430  0.0528  0.0469  0.0469  0.0766  0.1213  
(0.0615) 

 
(0.0589)  (0.0989)  (0.0995)  (0.0995)  (0.0554)  (0.0994)  

[nbPatent3tt-1]2
 

        
 

         -0.0005  -0.0004  -0.0004           -0.0021  
        
 

         (0.0025)  (0.0025)  (0.0025)           (0.0026)  
ln(104xBtwCent3t-2)

 0.0278 
 

0.0258  0.0255  -0.1105  -0.1105  -0.3480  -0.1955 *	
  
(0.0877) 

 
(0.0875)  (0.0876)  (0.0939)  (0.0939)  (0.4767)  (0.1003)  

ln(103xCliqness3t-2)
 0.0240 

 
0.0247  0.0246  0.6679 *** 0.6679 *** 0.0218  0.7329 *** 

(0.0154) 
 

(0.0154)  (0.0154)  (0.2241)  (0.2241)  (0.0155)  (0.2181)  
[ln(103xCliqness3t-2)]2         

 
                  -0.0944 *** -0.0944 ***          -0.1044 *** 

        
 

                  (0.0330)  (0.0330)           (0.0321)  
ln(104xBtwCent3t-2) x NbPatent3t-1

         
 

                                    -0.1503 ** 0.0278  
        
 

                                    (0.0691)  (0.0702)  
[ln(104xBtwCent3t-2) x NbPatent3t-1]2

 
        
 

                                             -0.0293 *** 
        
 

                                             (0.0080)  
ln(104xBtwCent3t-2) x ln(103xCliqness3t-

2)
 

                                             0.0747  -0.0853  
                                             (0.0845)  (0.1828)  

[ln(104xBtwCent3t-2) x ln(103xCliqness3t-

2)]2
                                                       0.0176  

                                                      (0.0301)  

Chair 0.0287 
 

0.0315  0.0304  0.0453  0.0453  0.0277  0.0382  
(0.3447) 

 
(0.3415)  (0.3419)  (0.3401)  (0.3401)  (0.3422)  (0.3413)  

Aget
 0.0639 *** 0.0647 *** 0.0646 *** 0.0651 *** 0.0651 *** 0.0645 *** 0.0645 *** 

(0.0144) 
 

(0.0144)  (0.0144)  (0.0144)  (0.0144)  (0.0144)  (0.0144)  
Avg(nbArticle3t-1)

 0.1561 *** 0.1580 *** 0.1575 *** 0.1082 *** 0.1082 *** 0.1734 *** 0.1143 *** 
(0.0379) 

 
(0.0380)  (0.0381)  (0.0392)  (0.0392)  (0.0384)  (0.0408)  

Constant 
 

8.9899 *** 8.9913 *** 8.9921 *** 8.9873 *** 8.9873 *** 8.9900 *** 8.9923 *** 
(0.2416)  (0.2418)  (0.2419)  (0.2420)  (0.2420)  (0.2418)  (0.2421)  

Years Yes   Yes  Yes  Yes  Yes  Yes  Yes  

Nb observations 8319  8319  8319  8319  8319  8319  8319  

Nb groups 1382  1382  1382  1382  1382  1382  1382  
R2 0.1014  0.1023  0.1023  0.1031  0.1031  0.1031  0.1046  
F-statistics 40.22 *** 38.68 *** 36.55 *** 35.19 *** 35.20 *** 34.23 *** 31.39 *** 

Note: ***, **, * show significance at the 1%, 5% and 10% levels and standard errors are presented in parentheses 
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APPENDIX C – TABLES OF ARTICLE 4 

Table C.1 : Variable description 

Variable Description 

Dependent variables 

NPit  Number of patents of an academic inventor i in a given year t 

NCiit  Number of citations received by the patent(s) of an academic-inventor i over the following five years. 

C(NCiit)  An ordered categorical variable for the number of citations that takes the value 0 if NCiit is 0, the value 1 

if NCiit is between 1 and 5, and takes the value 2 if the number of citations over 5 years is more than 5.  

NClit  Number of claims contained in the patent(s) of an academic-inventor i applied for in year t. 

Independent variables 

Fit-1  Average yearly amount of government funding received by an academic-inventor i over the past three 

years (t-3 to t-1) 

NPPit-1  Number of applied patents of an academic-inventor i over past three years (t-3 to t-1) 

PBCit-2  Betweenness centrality of an academic-inventor i in the three-year co-invention subnetwork lagged two 

years. 

PCCit-2  Clustering coefficient of an academic-inventor i in the three-year co-invention subnetwork lagged two 

years. 

ABCit-2  Betweenness centrality of an academic-inventor i in the three-year co-publication subnetwork lagged 

two years. 

ACCit-2  Clustering coefficient of an academic-inventor i in the three-year co-publication subnetwork lagged two 

years. 

Dt  Dummy variables for different years (t = 1985, …, 2005) 

Instrumental variables 

Aget Career age of a scientist since the first publication or the first grant or the first patent in the field of 

nanotechnology. 

NAit Number of past articles published by academic inventor i over three years. 
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Table C.2 : First stage regression results – Number of patents – Canada and the United States 

 
NPit 

Canada 
(1) 

US 
(4) 

Canada 
(2) 

US 
(5) 

Canada 
(3) 

US 
(6) 

NPPit-1
 -0.0820 

 
-0.0090 

 
-0.0327 

 
-0.0118 

 
-0.0012 

 
0.0073 

 (0.0768) 
 

(0.0243) 
 

(0.1002) 
 

(0.0254) 
 

(0.1742) 
 

(0.0353) 
 [NPPit-1]2

 

                                                            -0.0095  -0.0012  
              
 

              
 

              
 

              
 

(0.0134) 
 

(0.0009) 
 ln(104 × PBCit-2) 

 0.3518  -0.0562  0.6387 * -0.2338  0.2875  -0.3689  
(0.3143) 

 
(0.2250) 

 
(0.3424) 

 
(0.3500) 

 
(0.4836) 

 
(0.2327) 

 ln(104 × ABCit-2)
 

-0.0513  0.1183  -0.0542  0.1119  -0.2706  0.1799  
(0.2082) 

 
(0.5653) 

 
(0.2088) 

 
(0.5656) 

 
(0.2223) 

 
(0.5636) 

 ln(103 × PCCit-2)
 0.0426  0.0023  0.0375  0.0033  0.1087  0.6898 ** 

(0.0420) 
 

(0.0205) 
 

(0.0424) 
 

(0.0206) 
 

(0.7611) 
 

(0.3131) 
 [ln(103 × PCCit-2)]2                                                             -0.0106  -0.1022 ** 

                                                            (0.1114)  (0.0462)  
ln(103 × ACCit-2)

 -0.0273 
 

0.0781 *** -0.0285 
 

0.0778 *** 0.9590 * -0.7427 
 (0.0463) 

 
(0.0281) 

 
(0.0463) 

 
(0.0281) 

 
(0.4918) 

 
(0.4646) 

 [ln(103 × ACCit-2)]2               
 

              
 

              
 

              
 

-0.1467 ** 0.1209 * 
              
 

              
 

              
 

              
 

(0.0736) 
 

(0.0684) 
 ln(104 × PBCit-2) × NPPit-1

                  -0.2156  0.0261      
                 (0.1567)  (0.0370)      

Ageit 0.3161 *** 0.3847 *** 0.3131 *** 0.3849 *** 0.3107 *** 0.3805 *** 
(0.0849) 

 
(0.0389) 

 
(0.0850) 

 
(0.0389) 

 
(0.0848) 

 
(0.0391) 

 [Ageit]2 -0.0112 ** -0.0119 *** -0.0110 ** -0.0119 *** -0.0113 ** -0.0118 *** 
(0.0048) 

 
(0.0021) 

 
(0.0048) 

 
(0.0021) 

 
(0.0048) 

 
(0.0021) 

 NAit 0.0925  0.2650 *** 0.0925  0.2641 *** 0.0502  0.2627 *** 
(0.0584)  (0.0329)  (0.0586)  (0.0330)  (0.0589)  (0.0330)  

Constant 5.4334 *** 2.0645 *** 5.4327 *** 2.0652 *** 5.4682 *** 2.0798 *** 
(0.5056) 

 
(0.2445) 

 
(0.5055) 

 
(0.2445) 

 
(0.5061) 

 
(0.2453) 

 Years Yes  Yes  Yes  Yes  Yes  Yes  Nb observations 1329 
 

9157 
 

1329 
 

9157 
 

1329 
 

9157 
 Nb Groups 532  5381  532  5381  532  5381  F 87.71 *** 27.66 *** 82.06 *** 26.38 *** 73.81 *** 24.27 *** 

R2
 

0.2245 
 

  0.0432 
 

0.2252 
 

0.0432 
 

0.2266  0.0443 
 Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table C.3 : First-stage regression results – Number of claims – Canada and the United States  

NCLit 
Canada 

(1) 
US 
(4) 

Canada 
(2) 

US 
(5) 

Canada 
(3) 

US 
(6) 

NPPit-1
 -0.0820  -0.0090  -0.0327  -0.0118 

 
-0.0012 

 
0.0073 

 (0.0768)  (0.0243)  (0.1002)  (0.0254) 
 

(0.1742) 
 

(0.0353) 
 [NPPit-1]2

 

                                                            -0.0095  -0.0012  
                                                           

 
(0.0134) 

 
(0.0009) 

 ln(104 × PBCit-2) 
 0.3518  -0.0562  0.6387 * -0.2338  0.2875  -0.3689  

(0.3143)  (0.2250)  (0.3424)  (0.3500) 
 

(0.4836) 
 

(0.2327) 
 ln(104 × ABCit-2)

 
-0.0513  0.1183  -0.0542  0.1119  -0.2706  0.1799  

(0.2082)  (0.5653)  (0.2088)  (0.5656) 
 

(0.2223) 
 

(0.5636) 
 ln(103 × PCCit-2)

 0.0426  0.0023  0.0375  0.0033  0.1087  0.6898 ** 
(0.0420)  (0.0205)  (0.0424)  (0.0206) 

 
(0.7611) 

 
(0.3131) 

 [ln(103 × PCCit-2)]2                                                             -0.0106  -0.1022 ** 
                                                            (0.1114)  (0.0462)  

ln(103 × ACCit-2)
 -0.0273  0.0781 *** -0.0285  0.0778 *** 0.9590 * -0.7427 

 (0.0463)  (0.0281)  (0.0463)  (0.0281) 
 

(0.4918) 
 

(0.4646) 
 [ln(103 × ACCit-2)]2                                                            

 
-0.1467 ** 0.1209 * 

                                                           
 

(0.0736) 
 

(0.0684) 
 ln(104 × PBCit-2) × NPPit-1

     -0.2156  0.0261      
    (0.1567)  (0.0370)      

Ageit 0.3161 *** 0.3847 *** 0.3131 *** 0.3849 *** 0.3107 *** 0.3805 *** 
(0.0849)  (0.0389)  (0.0850)  (0.0389) 

 
(0.0848) 

 
(0.0391) 

 [Ageit]2 -0.0112 ** -0.0119 *** -0.0110 ** -0.0119 *** -0.0113 ** -0.0118 *** 
(0.0048)  (0.0021)  (0.0048)  (0.0021) 

 
(0.0048) 

 
(0.0021) 

 NAit 0.0925  0.2650 *** 0.0925  0.2641 *** 0.0502  0.2627 *** 
(0.0584)  (0.0329)  (0.0586)  (0.0330)  (0.0589)  (0.0330)  

Constant 5.4334 *** 2.0645 *** 5.4327 *** 2.0652 *** 5.4682 *** 2.0798 *** 
(0.5056)  (0.2445)  (0.5055)  (0.2445) 

 
(0.5061) 

 
(0.2453) 

 Years Yes  Yes  Yes  Yes  Yes  Yes  Nb observations 1329  9157  1329  9157 
 

1329 
 

9157  Nb Groups 532  5381  532  5381  532  5381  F 87.71 *** 27.66 *** 82.06 *** 26.38 *** 73.81 *** 24.27 *** 
R2

 
0.2245  0.0432  0.2252  0.0432 

 
0.2266 

 
0.0443  

Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table C.4 : First-stage regression results – Number of citations – Canada and the United States 

C(NCiit)
 Canada  United States 

1 2  3 4 
NPPit-1

 -0.4716  -0.4766   0.0447  0.0335  
(0.3053) 

 
(0.3076) 

 
 (0.0458) 

 
(0.0458) 

 [NPPit-1]2
 

0.0148  0.0149   -0.0011  -0.0011  
(0.0195) 

 
(0.0196) 

 
 (0.0014) 

 
(0.0014) 

 ln(104 × PBCit-2) 
 -0.6760  -0.7409   0.2715  -0.1477  

(0.4815) 
 

(0.6679) 
 

 (0.3729) 
 

(0.4124) 
 ln(103 × PCCit-2)

 
0.2132 * 0.3668 

 
 -0.0107 

 
0.9696 ** 

(0.1132) 
 

(1.1178) 
 

 (0.0386) 
 

(0.4922) 
 [ln(103 × PCCit-2)]2                -0.0230                  -0.1463 ** 

               (0.1667)                  (0.0732)  
ln(103 × ACCit-2)

 0.0361 
 

0.0351 
 

 -0.0202 
 

-0.0230 
 (0.1124) 

 
(0.1123) 

 
 (0.0548) 

 
(0.0547) 

 Ageit 
0.4888 ** 0.4910 **  0.2982 *** 0.3011 *** 

(0.2327)  (0.2341)   (0.0911)  (0.0909)  
[Ageit]2

 
-0.0190  -0.0192   -0.0031  -0.0033  

(0.0130)  (0.0131)   (0.0052)  (0.0052)  
NAit -0.0346  -0.0336   0.1274 ** 0.1282 ** 

(0.0878)  (0.0880)   (0.0535)  (0.0527)  
Constant -2.4917 ** -2.5083 **  2.3235 *** 2.3367 *** 

(0.9860) 
 

(1.0067) 
 

 (0.4848) 
 

(0.4854) 
 Nb observations 201 

 
201 

 
 201 

 
201 

 Nb Groups 155 
 

155 
 

 155 
 

155  F 21.88 *** 20.74 ***  9.52 *** 9.13 *** 
R2

 
0.2948 

 
0.2948 

 
 0.0522 

 
0.0539 

 Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses.
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Table C.5 : First stage regressions – Number of patents, number of claims, and citations – Canada and the United States together  

Variables 

 

NPit NCLit C(NCiit) 

 (1)  (2)  (3)  (1)  (2)  (3)  (1)  (2) 
NPPit-1

 -0.0115 
 

-0.0141 
 

0.0085  -0.0115 
 

-0.0141  0.0085 
 

0.0469  0.0366  
(0.0243) 

 
(0.0253) 

 
(0.0352)  (0.0243) 

 
(0.0253)  (0.0352) 

 
(0.0461)  (0.0461)  

[NPPit-1]2
 

                              -0.0014                                -0.0014  -0.0015  -0.0016  
              
 

              
 

(0.0008)                
 

               (0.0008) 
 

(0.0013)  (0.0014)  
ln(104 × PBCit-2)

 -0.1304  -0.2978  -0.4217 * -0.1304  -0.2978  -0.4217 * 0.1477  -0.2645  
(0.2256) 

 
(0.3515) 

 
(0.2329)  (0.2256) 

 
(0.3515)  (0.2329) 

 
(0.3723)  (0.4088)  

ln(104 × ABCit-2)
 

0.0859  0.0797  0.1457  0.0859  0.0797  0.1457      
(0.5554) 

 
(0.5557) 

 
(0.5541)  (0.5554) 

 
(0.5557)  (0.5541) 

 
    

ln(103 × PCCit-2)
 -0.0110  -0.0101  0.6237 ** -0.0110  -0.0101  0.6237 ** -0.0298  0.9360 * 

(0.0204) 
 

(0.0205) 
 

(0.3147)  (0.0204) 
 

(0.0205)  (0.3147) 
 

(0.0387)  (0.4936)  
[ln(103 × PCCit-2)]2                               -0.0944 **                  -0.0944 **                -0.1442 ** 
                               (0.0465)                   (0.0465)                 (0.0734)  
ln(103 × ACCit-2)

 0.0781 *** 0.0778 *** -0.6873  0.0781 *** 0.0778 *** -0.6873 
 

-0.0230  -0.0258  
(0.0280) 

 
(0.0280) 

 
(0.4653)  (0.0280) 

 
(0.0280)  (0.4653) 

 
(0.0542)  (0.0541)  

[ln(103 × ACCit-2)]2               
 

              
 

0.1128 *               
 

  0.1128 *                               
              
 

              
 

(0.0684)                
 

  (0.0684) 
 

                              
ln(104 × PBCit-2) × 
NPPit-1

   0.0246                   0.0246        
  (0.0369)                   (0.0369)        

Ageit 0.4428 *** 0.4432 *** 0.4372 *** 0.4428 *** 0.4432 *** 0.4372 *** 0.5391 *** 0.5412 *** 
(0.0348) 

 
(0.0349) 

 
(0.0351)  (0.0348) 

 
(0.0349)  (0.0351) 

 
(0.0789)  (0.0789)  

[Ageit]2 -0.0166 *** -0.0167 *** -0.0165 *** -0.0166 *** -0.0167 *** -0.0165 *** -0.0205 *** -0.0207 *** 
(0.0020) 

 
(0.0020) 

 
(0.0020)  (0.0020) 

 
(0.0020)  (0.0020) 

 
(0.0047)  (0.0047)  

NAit 0.2889 *** 0.2882 *** 0.2858 *** 0.2889 *** 0.2882 *** 0.2858 *** 0.1641 *** 0.1649 *** 
(0.0330)  (0.0331)  (0.0332)  (0.0330)  (0.0331)  (0.0332)  (0.0525)  (0.0518)  

dCA 1.1173 *** 1.1149 *** 1.0681 *** 1.1173 *** 1.1149 *** 1.0681 *** 0.7120  0.6521  
(0.2396)  (0.2396)  (0.2410)  (0.2396)  (0.2396)  (0.2410)  (0.6015)  (0.6047)  

dCA × NPPit-1
 -0.1247  -0.1023  -0.1005  -0.1247  -0.1023  -0.1005  -0.5123 * -0.4872  

(0.0774)  (0.1014)  (0.1763)  (0.0774)  (0.1014)  (0.1763)  (0.3003)  (0.2967)  
dCA × [NPPit-1]2                               -0.0031                   -0.0031  0.0154  0.0157  

                              (0.0128)                   (0.0128)  (0.0184)  (0.0182)  
dCA × ln(104 × PBCit-1)  0.4545  0.7390  0.8130  0.4545  0.7390  0.8130  -0.8367  -0.1250  

(0.4356)  (0.5210)  (0.5842)  (0.4356)  (0.5210)  (0.5842)  (0.6240)  (0.7723)  
dCA × ln(104 × ABCit-1) -0.1501  -0.1454  -0.5174  -0.1501  -0.1454  -0.5174      

(0.6028)  (0.6033)  (0.6070)  (0.6028)  (0.6033)  (0.6070)      
dCA × ln(103 × PCCit-2) 0.0079  0.0052  -0.8982  0.0079  0.0052  -0.8982  0.0590  -1.6833  

(0.0493)  (0.0495)  (0.8776)  (0.0493)  (0.0495)  (0.8776)  (0.1328)  (1.2832)  
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Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 

Table C.5: First stage regressions – Number of patents, number of claims, and citations – Canada and the United States together 

(Continued) 

dCA × [ln(103 × PCCit-

2)]2 
                              0.1339                   0.1339                 0.2603  
                              (0.1285)                   (0.1285)                 (0.1905)  

dCA × ln(103 × ACCit-2) -0.0608  -0.0610  2.0723 *** -0.0608  -0.0610  2.0723 *** 0.0716  0.0802  
 (0.0538)  (0.0539)  (0.6885)  (0.0538)  (0.0539)  (0.6885)  (0.1270)  (0.1264)  
dCA × [ln(103 × ACCit-

2)]2 
                              -0.3160 ***                  -0.3160 ***     
                              (0.1021)                   (0.1021)      

dCA × ln(104 × PBCit-2) 
× NPPit-1 

  -0.1118      -0.1118        
  (0.1841)      (0.1841)        

dCA × Ageit
 
 0.5377 *** 0.5345 *** 0.5512 *** 0.5377 *** 0.5345 *** 0.5512 *** 0.7224 *** 0.7242 *** 

(0.0939)  (0.0952)  (0.0947)  (0.0939)  (0.0952)  (0.0947)  (0.2706)  (0.2718)  
dCA × [Ageit]2 

-0.0327 *** -0.0325 *** -0.0335 *** -0.0327 *** -0.0325 *** -0.0335 *** -0.0476 *** -0.0463 *** 
(0.0069)  (0.0070)  (0.0070)  (0.0069)  (0.0070)  (0.0070)  (0.0178)  (0.0177)  

dCA × NAit -0.1733 ** -0.1726 ** -0.2276 *** -0.1733 ** -0.1726 ** -0.2276 *** -0.1266  -0.1343  
(0.0750)  (0.0751)  (0.0750)  (0.0750)  (0.0751)  (0.0750)  (0.1048)  (0.1030)  

Constant 2.2512 *** 2.2518 *** 2.2632 *** 2.2512 *** 2.2518 *** 2.2632 *** 2.1194 *** 2.1380 *** 
(0.2245) 

 
(0.2246) 

 
(0.2256)  (0.2245) 

 
(0.2246)  (0.2256) 

 
(0.4316)  (0.4323)  

Years Yes  Yes  Yes  Yes    Yes  Yes  Yes  
Nb observations 10486 

 
10486 

 
10486  10486 

 
10486  10486 

 
2732  2732  

Nb Groups 5913  5913  5913  5913  5913  5913  2121  2121  
F

 
36.62 *** 34.11 *** 30.59 *** 36.62 *** 34.11 *** 30.59 *** 9.73 *** 9.12 *** 

R2
 

0.0640 
 

0.0640 
 

0.0653  0.0640 
 

0.0640  0.0653 
 

0.0633  0.0649    
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Table C.6 : Correlation Matrix – Canada  

Variable Obs
 

Mean
 

Std. Dev.
 

Min
 

Max
 

 1 2 3 4 5 6 7 8 9 10 11 
NPt 1329 0.2242 (0.9023) 0.00 25.00 1 1           
NCit 1329 0.4605 (3.0835) 0.00 48.00 2 0.2828 1          
NCLt 1329 4.9360 (18.5001) 0.00 265.00 3 0.7944 0.3346 1         
Ft 1329 9.9168 (0.9354) 6.06 13.03 4 -0.0225 -0.0161 0.0104 1        
NPPt 1329 0.7186 (1.8360) 0.00 40.00 5 0.829 0.3767 0.7017 -0.0075 1       
PBCt 1329 0.0403 (0.2842) 0.00 4.89 6 0.067 0.0248 0.1119 0.0341 0.0836 1      
ABCt 1329 0.3593 (0.9247) 0.00 4.97 7 0.0173 -0.0107 0.012 0.0235 0.0357 0.1711 1     
PCCt 1329 2.3144 (3.1827) 0.00 6.91 8 0.2581 0.1707 0.2815 0.0514 0.3997 0.1435 0.1338 1    
ACCt 1329 2.7350 (3.1575) 0.00 6.91 9 0.0193 0.0447 0.0147 -0.0338 0.0688 0.0607 0.3513 0.1304 1   
Aget 1329 5.6110 (4.0906) 1.00 20.00 10 0.0002 0.0734 -0.0045 0.1048 0.0736 0.0146 0.0553 -0.0235 0.0459 1  
NAt 1329 1.0191 (2.6056) 0.00 37.00 11 0.0154 0.0053 0.0258 0.0265 0.0451 0.0446 0.6708 0.1098 0.325 0.0516 1 

 

Table C.7:  Correlation Matrix – United States 

Variable Obs
 

Mean
 

Std. Dev.
 

Min
 

Max
 

 1 2 3 4 5 6 7 8 9 10 11 
NPt 9157 0.4667 (1.0853) 0.00 25.00 1 1           
NCit 9157 0.0282 (1.1145) 0.00 74.00 2 0.1012 1          
NCLt 9157 12.7836 (34.3505) 0.00 1115.00 3 0.8609 0.0938 1         
Ft 9157 11.4381 (1.1189) 5.95 16.59 4 0.0362 -0.0104 0.0366         
NPPt 9157 1.6626 (2.7040) 0.00 41.00 5 0.7531 0.0726 0.6166 0.0493 1       
PBCt 9157 0.0273 (0.2231) 0.00 4.55 6 0.1748 0.0085 0.1641 0.0324 0.2477 1      
ABCt 9157 0.0170 (0.1276) 0.00 2.75 7 -0.0095 -0.0034 -0.0091 0.0043 -0.0134 0.019 1     
PCCt 9157 1.8951 (3.0034) 0.00 6.91 8 0.2201 0.0268 0.1965 0.0194 0.2857 0.1519 0.0098 1    
ACCt 9157 1.3979 (2.7425) 0.00 6.91 9 -0.0457 0.0366 -0.0444 0.0717 -0.0511 -0.0007 0.1777 -0.0059 1   
Aget 9157 10.3610 (5.2142) 1.00 21.00 10 0.0323 -0.0067 0.04 0.1257 0.1157 0.028 -0.0179 -0.0992 0.0552 1  
NAt 9157 1.5193 (2.4994) 0.00 40.33 11 0.095 0.0082 0.083 0.1358 0.143 0.0925 0.0284 0.0355 0.2256 0.1774 1 
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Table C.8: Mean comparison between Canada and five similarly-sized random subsamples for the United States 

Variable 
Canada  
N=1329 

US  
N=9157 

US-s1  
N=1367 

US-s2  
N=1382 

US-s3  
N=1335 

US-s4  
N=1398 

US-s5  
N=1308 

Two-sided p-values 

Canada vs 
US  

Canada vs 
US-s1 

Canada vs 
US-s2 

Canada vs 
US-s3 

Canada vs 
US-s4  

Canada vs 
US-s5  

NPt 0.2242 
(0.9023) 

0.4667 
(1.0853) 

0.4601 
(1.0194) 

0.5014 
(1.2235) 

0.4029 
(0.9769) 

0.4828 
(1.0698) 

0.5045 
(1.0644) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NCit 0.4605 
(3.0835) 

0.0282 
(1.1145) 

0.0651 
(2.0115) 

0. 0086 
(0.1741) 

0.0044 
(0.1160) 

0.0085 
(0.1511) 

0.0114 
(0.1972) 

0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

NCLt 4.9360 
(18.5001) 

12.7836 
(34.3505) 

13.1843 
(34.8538) 

14.3914 
(42.9191) 

10.5790 
(28.2920) 

12.8283 
(31.4050) 

14.3019 
(36.3335) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Ft 9.9168 
(0.9354) 

11.4381 
(1.1189) 

11.412 
(1.0896) 

11.4151 
(1.1463) 

11.4500 
(1.0684) 

11.4517 
(1.0835) 

11.402 
(1.1319) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NPPt 0.7186 
(1.8360) 

1.6626 
(2.7040) 

1.6247 
(2.6154) 

1.6548 
(2.5636) 

1.5048 
(2.5277) 

1.7238 
(2.6842) 

1.6766 
(2.6372) 

0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

PBCt 0.0403 
(0.2842) 

0.0273 
(0.2231) 

0.0284 
(02423) 

0.0222 
(0.1925) 

0.0436 
(0. 3162) 

0.0382 
(0.2629) 

0.0288 
(0.2240) 

0.2340 0.2439 0.0546 0.7737 0.8449 0.2501 

ABCt 0.3593 
(0.9247) 

0.0170 
(0.1276) 

0.0192 
(0.1268) 

0.0151 
(0.1140) 

0.0172 
(0.1411) 

0.0133 
(0.0989) 

0.0144 
(0.1152) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PCCt 2.3144 
(3.1827) 

1.8951 
(3.0034) 

1.8522 
(2.9817) 

1.8548 
(2.9858) 

1.7419 
(2.9247) 

1.9728 
(3.0357) 

1.9154 
(3.0166) 

0.0000 0.0001 0.0001 0.0000 0.0042 0.0010 

ACCt 2.7350 
(3.1575) 

1.3979 
(2.7425) 

0.4224 
(2.7590) 

1.3435 
(2.7006) 

1.5473 
(2.8433) 

1.4064 
(2.7428) 

1.2378 
(2.6165) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NAt 1.0191 
(2.6056) 

1.5193 
(2.4994) 

1.5794 
(2.8198) 

1.5537 
(2.3780) 

1.5003 
(2.9054) 

1.6268 
(2.7673) 

1.3409 
(2.2317) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 

Notes: Standard deviation in parentheses. 
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APPENDIX D – TABLES OF ARTICLE 5 

Table D.1: First stage of regressions results   

Variables 

Quebec  Rest of Canada 

NumPaper 

(1) 

 NumPaper 

(2) 

 NumPatent 

(1) 

 NumPatents 

(2) 

 NumPaper 

(3) 

 NumPaper 

(4) 

 NumPatent 

(3) 

 NumPatents 

(4) 

ln (104×DegCentPaper3t-2)                 0.9921 ***                  1.3322 ***                  0.9583 ***                  1.4125 *** 
              

 
 (0.0414) 

 
               

 
 (0.0717)                 

 
 (0.0381)                   (0.0579)  

ln(104×BetCentPaper3t-2) 0.4582 ***                  0.7448 ***                  0.6534 ***                  1.0314 ***                 
(0.0738)                   (0.1055)                   (0.0960)                   (0.1266)                  

ln (104×DegCentPatent3t-2)               
 
 0.1638 

 
               

 
 0.1159                 

 
 0.2245 **                  0.0995  

              
 
 (0.1323) 

 
               

 
 (0.0988)                 

 
 (0.0952)                   (0.0642)  

ln(104×BetCentPatent3t-2) 0.0417                   0.0338                   -0.1181                   0.1661                  
(0.2665)                   (0.2864)                   (0.2575)                   (0.1930)                  

ln(103×CliquishnessPatent3t-2) 0.0696 ***  -0.7354 
 
 0.0218 

 
 -0.3480   0.0801 ***  -0.1572   0.0494 ***  0.0300  

(0.0240) 
 
 (0.4841) 

 
 (0.0223) 

 
 (0.3028)   (0.0182) 

 
 (0.2441)   (0.0162)   (0.1993)  

[ln(103×CliquishnessPatent3t-

2)]2 
                0.1119      0.0516                   0.0291      -0.0006  
                (0.0706)      (0.0441)                   (0.0359)      (0.0292)  

CanadaChairit 
0.1973 *  0.1331   0.5986 **  0.4425 *  0.1018   0.0622   0.3725 **  0.3235 ** 

(0.1021)   (0.0917)   (0.2827)   (0.2597)   (0.0663)   (0.0585)   (0.1750)   (0.1463)  
Awardit 

0.1595   0.0936   0.7407   0.6086   0.1486   0.0920   0.1075   -0.0303  
(0.2822)   (0.2324)   (0.6186)   (0.4874)   (0.1727)   (0.1469)   (0.4133)   (0.3046)  

NanoAgeit 
0.3777 ***  0.3189 ***  0.1455 ***  0.1109 ***  0.3840 ***  0.3343 ***  0.0643 **  0.0663 *** 

(0.0208)   (0.0169)   (0.0460)   (0.0342)   (0.0134)   (0.0108)   (0.0325)   (0.0246)  
[NanoAgeit]2

 
-0.0192 ***  -0.0158 ***  -0.0072 ***  -0.0046 **  -0.0210 ***  -0.0178 ***  -0.0022   -0.0025  

(0.0013)   (0.0011)   (0.0028)   (0.0022)   (0.0009)   (0.0007)   (0.0024)   (0.0018)  
NumPaper3it 

0.6728 ***  0.3800 ***  0.4250 ***  0.1440 **  0.5686 ***  0.3474 ***  0.2570 **  0.0612  
(0.0982)   (0.0728)   (0.1001)   (0.0576)   (0.1168)   (0.0800)   (0.1137)   (0.0565)  

GrantAmountit-1 
-0.0145 *  -0.0189 ***  0.0012   -0.0097   -0.0055   -0.0075 *  0.0338 ***  0.0306 *** 

(0.0081)   (0.0070)   (0.0178)   (0.0145)   (0.0047)   (0.0042)   (0.0118)   (0.0101)  
ln(104×BetCentPatent3t-2)  × 
ln(103×CliquishnessPatent3t-2) 

   0.0610            -0.0325        

   (0.0711)            (0.0459)        
Years (1996-2005)

 
Yes 

 
 Yes 

 
 Yes 

 
 Yes   Yes 

 
 Yes   Yes   Yes  

Constant 0.3847 ***  0.0493 
 
 0.9938 ***  0.3611 ***  0.4401 ***  0.1132 ***  0.8817 ***  0.2780 *** 

(0.0583) 
 
 (0.0512) 

 
 (0.1674) 

 
 (0.1260)   (0.0366) 

 
 (0.0295)   (0.1087)   (0.0755)  

Nb observations 13968   13968   3456   3456   44664   44664   7104   7104  
Nb Groups 1164   1164   288   288   3722   3722   592   592  

Loglikelihood -32477.9 
 
 -31774.8 

 
 -8300.95 

 
 -7963.16   -100851 

 
 

-
98882.5   

-
16529.1   -15759.4  

F Statistics
 

61.72 ***  204.3 ***  15.00 ***  55.81 ***  175.02 ***  450.83 ***  26.68 ***  106.65 *** 
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Table D.2 : NumPaper-Quebec 

Variable  1 2 3 4 5 6 7 8 9 10 11 12 

NumPapert 1 1 
        

   
DegCentPaper3t-2 2 0.5482 1 

       
   

BetCentPaper3t-2 3 0.4757 0.4212 1 
      

   
CliquishnessPaper3t-2 4 0.2455 0.4775 0.31 1 

     
   

DegCentPatent3t-2 5 0.1199 0.1333 0.1582 0.1029 1 
    

   
BetCentPatent3t-2 6 0.045 0.0607 0.1057 0.0386 0.2092 1 

   
   

CliquishnessPatent3t-2 7 0.1306 0.1515 0.15 0.1175 0.4723 0.207 1 
  

   
GrantAmountt-1 8 0.0965 0.0882 0.0502 0.0862 0.0348 0.0268 0.0467 1     
CanadaChairt 9 0.0241 0.0539 0.0154 0.0564 0.0204 0.0304 0.0212 0.1467 1    
Awardt 10 0.0448 0.0487 0.0354 0.0442 0.0239 0.006 0.0184 0.1251 0.1024 1   
NanoAget 11 0.1736 0.1582 0.1573 0.2189 0.078 0.0366 0.0907 0.2704 0.0987 0.0935 1  
NumPaper3t 12 0.6228 0.5488 0.644 0.3879 0.1287 0.0399 0.1413 0.089 0.0415 0.0553 0.1901 1 
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Table D.3 : NumPatent-Quebec 

Variable  1 2 3 4 5 6 7 8 9 10 11 12 

NumPatentt 1 1 
           

DegCentPatent3t-2 2 0.2664 1           
BetCentPatent3t-2 3 0.0936 0.1588 1          
CliquishnessPatent3t-2 4 0.1067 0.3534 0.168 1         
DegCentPaper3t-2 5 0.0444 0.1055 0.0689 0.1147 1        
BetCentPaper3t-2 6 0.0093 0.1441 0.1218 0.1226 0.5162 1       
CliquishnessPaper3t-2 7 0.0239 0.087 0.0436 0.0954 0.5585 0.3651 1      
GrantAmountt-1 8 0.0046 0.0567 0.0497 0.1039 0.1023 0.0803 0.0893 1     
CanadaChairt 9 -0.0106 0.0446 0.0656 0.0524 0.0517 0.0026 0.078 0.1733 1    
Awardt 10 -0.0056 0.0505 0.0137 0.0437 0.0493 0.0441 0.0638 0.0979 0.1288 1   
NanoAget 11 0.0071 0.0939 0.0419 0.1224 0.0994 0.1248 0.1287 0.2982 0.1196 0.0914 1  
NumPaper3t 12 0.0137 0.0966 0.032 0.1014 0.5855 0.6995 0.388 0.1086 0.0324 0.0418 0.1428 1 
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Table D.4 : NumPaper-The rest of Canada 

Variable  1 2 3 4 5 6 7 8 9 10 11 12 

NumPapert 1 1 
        

   
DegCentPaper3t-2 2 0.5418 1 

       
   

BetCentPaper3t-2 3 0.4441 0.3908 1 
      

   
CliquishnessPaper3t-2 4 0.2216 0.4524 0.3007 1 

     
   

DegCentPatent3t-2 5 0.1292 0.1265 0.1521 0.0969 1 
    

   
BetCentPatent3t-2 6 0.0827 0.0703 0.1174 0.042 0.2725 1 

   
   

CliquishnessPatent3t-2 7 0.126 0.1356 0.146 0.1074 0.4491 0.1766 1 
  

   
GrantAmountt-1 8 0.0863 0.0983 0.0583 0.1087 0.027 0.0099 0.0486 1     
CanadaChairt 9 0.0312 0.0492 0.039 0.0477 0.0208 -0.0014 0.0078 0.113 1    
Awardt 10 0.0085 0.0316 0.0303 0.0282 0.013 -0.0038 0.0061 0.1321 0.094 1   
NanoAget 11 0.1969 0.1668 0.1794 0.2297 0.0768 0.0293 0.0824 0.2976 0.0969 0.0591 1  
NumPaper3t 12 0.6165 0.5174 0.6233 0.3594 0.1355 0.0732 0.1513 0.0886 0.0455 0.0191 0.2034 1 

 

Table D.5 : NumPatent- The rest of Canada 

Variable  1 2 3 4 5 6 7 8 9 10 11 12 
NumPatentt

 1 1 
        

   
DegCentPatent3t-2

 2 0.3097 1 
       

   
BetCentPatent3t-2

 3 0.1061 0.2051 1 
      

   
CliquishnessPatent3t-2

 4 0.1171 0.304 0.1324 1 
     

   
DegCentPaper3t-2

 5 0.0709 0.1188 0.1208 0.119 1 
    

   
BetCentPaper3t-2

 6 0.0366 0.1319 0.1588 0.1123 0.5257 1 
   

   
CliquishnessPaper3t-2

 7 0.0665 0.1063 0.0801 0.1169 0.5791 0.3912 1 
  

   
GrantAmountt-1 8 -0.0031 0.0316 0.0244 0.0832 0.0796 0.0728 0.12 1     
CanadaChairt 9 -0.0148 0.0491 -0.0042 0.0147 0.0382 0.0388 0.0633 0.1223 1    
Awardt 10 -0.0195 0.0165 -0.0103 0.0034 0.0386 0.0427 0.0339 0.1323 0.0983 1   
NanoAget 11 0.0191 0.0481 0.0428 0.0856 0.092 0.0792 0.1254 0.3036 0.0689 0.0519 1  
NumPaper3t 12 0.054 0.0944 0.0836 0.1037 0.5711 0.6561 0.367 0.0967 0.0345 0.0193 0.1029 1 
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APPENDIX E – NANOTECHNOLOGY KEYWORDS 

Search Term Search Queries 

Nano* terms "nano assembly", "nano computer", "nano cubic technology", "nano 

molecular machine", "nano optic", "nano optical tweezers", "nano 

warfare", “nanoarray”, "nanoassembler", "nanobarcode", 

"nanobarcodes particle", "nanobioprocess", "nanobot", "nanobotics", 

"nanobots", "nanobubble", "nanobusiness alliance", "nanobusiness 

company", "nanocatalysis", "nanoceramic", "nanochemistry", 

"nanochip", "nanocircle", "nanocluster", "nanocomputer", 

"nanocone", "nanocontact", "nanocrystal", "nanocrystal antenna", 

"nanodefense", "nanodentistry", "nanodetect", "nanodevice", 

"nanodiamond", "nanodisaster", "nanodot", "nanoelectrospray", 

"nanoengineering", "nanofacture", "nanofacty", "nanofiber", 

"nanofibre", "nanofiltration", "nanofluidic", "nanofoam", "nanogate", 

"nanogear", "nanogenomic", "nanoimaging", "nanoimprint 

lithography", "nanoimprint machine", "nanoimprinting", "nanolabel", 

"nanolithography", "nanomachine", "nanomagnet", "nanomanipulat", 

"nanomanipulation", "nanomanufacturing", "nanomaterial", 

"nanomechanical", "nanomot", "nanoparticles”,nanowire", "nanope", 

"nanope", "nanopharmaceutical", "nanophotonic", "nanophysic", 

"nanoplumbing", "nanoprism", "nano-ring", "nanoscale self 

assembly", "nanoscale synthesis", "nanoscience", "nanoscopic scale", 

"nanoscopic scale", "nanosens", "nanosheet", "nanoshell", 

"nanosource", "nanostructure", "nanostructured", "nanosurgery", 

"nanosystem", "nanotechism", "nanotechnology", "nanotube", 

"nanotube bundle", "nanowalker", "nanowetting" 

 

Quantum terms "quantum cascade laser", "quantum coherence", "quantum 
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computation", "quantum compute", "quantum computer", "quantum 

computing", "quantum conduct", "quantum conductance", "quantum 

conductivity", "quantum confine", "quantum device", "quantum dot", 

"quantum gate", "quantum information", "quantum information 

process", "quantum mirage", "quantum nanophysics", "quantum 

nanomechanics", "quantum system", "quantum well" 

Molecular* terms "molecular assembler", "molecular machine", "molecular 

nanogenerat", "molecular nanotechnology", "molecular robotic", 

"molecular scale manufacturing", "molecular systems engineering", 

"molecular technology" 

Self assembly 

terms 

"fluidic self assembly", "nanoscale self assembly", "self assembled" 

Atomic terms "atomic manipulation", "atomic nanostructure"  

Other terms "biofabrication", "biomedical nanotechnology", "biomimetic 

synthesis", "biomolecular assembly", "biomolecular nanoscale 

computing", "biomolecular nanotechnology", "bionems", "brownian 

assembly", "buckminsterfullerene", "buckyball", "buckytube", "c60 

molecule", "carbon nanotubes", "conductance quantization", "dna 

chip", "electron beam lithography", "epitaxial film", "epitaxy", "fat 

fingers problem", "ganic led", "glyconanotechnology", "grey.goo", 

"immune machine", "khaki goo", "laser tweezer", "limited 

assembler", "military nanotech.", "moletronic", "naneplicat", 

"nanite", "optical trapping", "protein design", "protein engineering", 

"proximal probe", "rotaxane", "single cell manipulation", "spin 

coating", "stewart platfm", "sticky fingers problem", "textronic", 

"universal assembler", "utility fog", "zettatechnology" 


