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RÉSUMÉ 

 

La robinetterie et la tuyauterie industrielles sont des appareils sous pression qui permettent de 

réguler le flux de matériaux (liquides, gaz et boues) en contrôlant les sections de passages. 

L’optimisation des processus, la réduction des coûts et les réglementations gouvernementales 

exigent des équipementiers de maintenir leurs produits à la fine pointe de la technologie. La 

robinetterie a été développée il y a plus de 3000 ans pour alimenter en eau les fermes et les villes 

en utilisant des alliages de bronze, qui fournissent à la fois une résistance à la corrosion et des 

performances tribologiques acceptables. Durant la révolution industrielle, ces antiques robinets 

ont évolué et des matériaux tribologiques plus modernes tels que les alliages Monel cuivre-

nickel, Stellite cobalt-chrome, et le chromage dur appliqué par placage électrolytique  ont été 

développés au début du XX
e
 siècle pour optimiser le comportement tribologique et maximiser la 

durée de vie en service de ces équipements. Depuis cette époque, de nouveaux matériaux ont été 

régulièrement introduits pour étendre le champ d’application de la robinetterie tel que le 

fluoropolymère téflon, pour contrôler certains produits chimiques nécessaire aux procédés 

pétrochimiques, les superalliages à base nickel Hastelloy et Inconel pour les applications 

pétrochimiques et les aciers riches en chrome F91 pour les centrales supercritiques. Plus 

récemment, l'industrie de la robinetterie a adopté l'utilisation des revêtements appliqués par 

projection thermique pour les applications les plus difficiles et continu d’investir massivement 

dans la recherche de revêtements plus performants pour chaque application. Il est de plus en plus 

évident que la solution optimale aux problèmes d'usure érosive, corrosive et par frottement 

rencontrés dans la robinetterie réside dans la conception et la fabrication de revêtements 

multicouches, nanostructurés qui contrôlent à la fois la dureté et l'élasticité, tout en assurant une 

bonne adhérence. Les objectifs généraux de cette thèse sont donc de réaliser, pour la tuyauterie et 

la robinetterie industrielles, l’état de l’art des revêtements protecteurs durs contrôlés 

structurellement offrant des propriétés mécaniques, élasto-plastiques et thermiques sur mesure et 

de développer des solutions innovantes pour améliorer la résistance au frottement, à l'érosion et à 

la corrosion et autres caractéristiques adaptées.  

  

À partir de ces objectifs généraux, trois objectifs spécifiques ont été identifiés : 1) Sélectionner et 

évaluer les meilleurs candidats pour remplacer le chromage dur qui a été classé par l'agence 
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étatsunienne pour la protection de l'environnement (EPA) comme un processus irrespectueux de 

l'environnement; 2) Enquêter sur les défaillances récurrentes du revêtement HVOF Cr3C2-NiCr 

appliquée par projection thermique sur l'Inconel 718 PH lorsqu'il est exposé à des chocs 

thermiques présent dans les centrales électriques conventionnelles supercritiques et à cycles 

combinés, l’objectif étant de comprendre la cause des échecs de ce revêtement et d'évaluer des 

solutions de revêtements possibles pour pallier à ces défaillances; 3)  Développer de nouvelles 

architectures de revêtements multicouches, et de comprendre les propriétés tribo-mécaniques qui 

en résultent. Les principaux résultats sont présentés sous la forme d'articles dans des revues 

révisés par des pairs. 

  

Dans le premier article, une variété de revêtements ne contenant pas de chrome ont été évalués 

comme solutions de rechange au chromage dur (HC), tels que le cobalt-phosphore nanostructuré 

(NCP) appliqué par placage électrolytique et le carbure de tungstène/tungstène (W/WC) déposé 

en phase vapeur. Une série d’essai de de dureté, de micro rayures, de friction bille-sur-plan et de 

polarisation électrochimique a été effectuée afin de comparer les performances de différents 

revêtements. En outre, la résistance mécanique et la résistance à la fatigue ont été évaluées à 

l'aide de prototypes exposés à des conditions d’essais sévères. Le revêtement W/WC a présenté 

une résistance supérieure à l'usure et à la corrosion en raison de sa dureté élevée et de sa haute 

résistance à la corrosion, tandis que le revêtement NCP a offert une meilleure résistance à l'usure 

que le chromage dur dans certaines conditions et un potentiel de corrosion faible ce qui permet 

de l’utiliser comme revêtement de protection. Les revêtements nanostructurés ont donc présenté 

des caractéristiques prometteuses par rapport au chrome dur. 

  

Le second article présente une analyse des modes de défaillance d’un revêtement HVOF 80/20 

Cr3C2-NiCr protegeant des boisseaux sphériques à portées métalliques d’isolation utilisés dans 

les lignes de vapeur supercritique de centrales électriques et ainsi que la qualification de 

revêtements alternatifs qui se sont montrés moins sensibilité à ce mode de défaillance. Le 

revêtement HVOF 80/20 Cr3C2-NiCr est utilisé pour protéger des milliers de robinets sans 

incident. Cependant, dans ce cas spécifique, les robinets sont exposées à des variations rapides 

de pression et de température entraînant une situation unique où le revêtement fissure. Il a été 

constaté que la précipitation de carbure est un facteur majeur causant la fragilisation du 
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revetement. Une fois que la dureté augmente et que la ductilité est réduite, les contraintes 

thermiques, mécaniques et résiduelles peuvent initier et propager des fissures, provoquant la 

défaillance du revêtement lorsqu'il est exposé à des chocs thermiques. Pour pallier à ce problème, 

des solutions de rechange ont été évaluées. 

  
  

Le troisième article présente les propriétés mécanique, tribologique, et la résistance à la 

corrosion de deux nouveaux revêtements hybrides: 1) une couche supérieure de W/WC et une 

couche intermédiaire de rechargement dur d’alliage chrome-cobalt (Co-Cr) (Stellite 6) appliquée 

sur un substrat d'acier inoxydable 316; et 2) une couche supérieure W/WC et une couche 

intermédiaire Ni-W-Cr-B déposé par HVOF et refondu (Colmonoy 88) appliquée sur un substrat 

d'Inconel 718. La diffractométrie par rayons X, l'analyse dispersive en énergie et la microscopie 

électronique à balayage ont été utilisés pour l'analyse de la microstructure de ces revêtements 

hybrides. La microindentation a été utilisée pour mesurer la dureté de surface et le profil de 

dureté des systèmes de revêtements. L’indentation Rockwell a servi à évaluer l'adhérence du 

revêtement selon la norme ISO CEN/TS 1071-8. La capacité de charge a été évaluée en mesurant 

la micro- et macroduretés à des charges élevées. Les propriétés tribologiques ont été évaluées 

avec un tribomètre linéaire alternatif bille-sur-plan, et la résistance à la corrosion a été mesurée 

par la technique de polarisation potentiodynamiques et la spectroscopie d'impédance 

électrochimique.  
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ABSTRACT 

 

Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and 

slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with 

government regulations, original equipment manufacturers (OEMs) must maintain their products 

in state-of-the-art condition.  

The first valves were invented over 3,000 years ago to supply water to farms and cities. They 

were made with bronze alloys, providing good corrosion resistance and acceptable tribological 

performance. The industrial revolution drove manufacturers to develop new and improved 

tribological materials. In the 20
th

 century, innovative alloys such as Monel copper–nickel and 

Stellite cobalt-chrome as well as hard chrome plating were introduced to better control 

tribological properties and maximize in-service life. Since then, new materials have been 

regularly introduced to extend the range of applications for valves. For example, Teflon 

fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based 

superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-

rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use 

of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in 

research to develop the most suitable coatings for specific uses. There is increasing evidence that 

the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and 

manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that 

combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The 

overall objectives of this thesis were 1) to report on advances in the development of structurally 

controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal 

properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other 

characteristics suitable for applications such as pipes and valves.  

 

From these general objectives, three specific objectives were derived: 1) to select and assess the 

best candidates for alternatives to hard chromium electroplating, which has been classified by the 

U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly process; 2) to 

investigate recurrent failures occurring in the field with thermal sprayed HVOF Cr3C2-NiCr 

coating applied to Inconel 718 PH when exposed to supercritical steam lines and thermal shocks 
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in supercritical power plants (determining the root causes of coating failures and assessing 

potential coating alternatives to alleviate these issues); and 3) to develop new coating 

architectures, including complex microstructures and interfaces, and to better understand and 

optimize complex tribomechanical properties. The main results are presented in the form of 

articles in peer-reviewed journals. 

 

In the first article, a variety of chromium-free protective coatings were assessed as alternatives to 

hard chromium (HC) electroplating, such as nanostructured cobalt-phosphor (NCP) deposited by 

electroplating and tungsten/tungsten carbide (W/WC) applied by chemical vapor deposition. In 

order to compare performance across the coatings, a series of laboratory tests were performed, 

including hardness, microscratch, pin-on-disk, and electrochemical polarization measurements. 

Mechanical and fatigue resistance were also determined using prototype valves with coated ball 

under severe tribocorrosion conditions. It was found that W/WC coating exhibits superior wear 

and corrosion resistance due to high hardness and high pitting resistance, respectively, whereas 

NCP exhibits better wear resistance than HC with alumina ball as well as low corrosion 

potential, making it suitable for use as sacrificial protective coating. Both nanostructured 

coatings exhibited superior tribomechanical and functional characteristics compared to HC. 

 

The second article presents an investigation of an HVOF 80/20 Cr3C2-NiCr coating failure in an 

on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant, along 

with an assessment of alternative coating solutions that are less susceptible to this failure mode. 

HVOF 80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs without 

incident. However, in this case the valves were challenged with exposure to rapid variations in 

high-pressure flow and temperature, resulting in a unique situation that caused the coating to 

undergo cracking and cohesive failure. Carbide precipitation was found to be a major factor, 

resulting in coating embrittlement. Reduced coating toughness and ductility allowed thermal, 

mechanical, and residual stresses to initiate cracks and propagate them more easily, leading to 

coating failure with exposure to thermal shock. To alleviate these issues, possible coating 

alternatives were assessed. 
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The third article presents the mechanical, tribological, and corrosion properties of two novel 

hybrid coating systems: 1) a tungsten–tungsten carbide (W-WC) top layer and a laser cladded 

cobalt–chromium (Co-Cr) interlayer (Stellite® 6 superalloy) applied to a 316 stainless steel 

substrate; and 2) the same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer 

(Colmonoy® 88 superalloy) applied to an Inconel® 718 substrate. X-ray diffraction, energy 

dispersive spectroscopy, and scanning electron microscopy were used to analyze the 

microstructure of the coating layers. Microindentation was used to measure surface hardness and 

the hardness profile of the coating systems. Rockwell indentation was used to assess coating 

adhesion according to CEN/TS 1071-8. Surface load-carrying capacity was also assessed by 

measuring micro- and macrohardness at high loads. Tribological properties were assessed with a 

linear reciprocating ball-on-flat sliding wear test, and corrosion resistance was measured by 

potentiodynamic polarization and electrochemical impedance spectroscopy.  
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 INTRODUCTION CHAPTER 1

Many industrial sectors, including transport, power generation, manufacturing, aerospace, and 

automobiles, are seeking new functional coatings, engineered surfaces, and interfaces in order to 

meet increasingly demanding performance requirements. Specifically, improvements are sought 

in the tribological properties (i.e., wear and corrosion resistance) as well as characteristics such 

as long-term stability in hostile environments.  

According to the National Association of Corrosion Engineers, the cost of corrosion in the USA 

in 2006 was 430 billion US$, or 3.5% of the GDP. A more recent study by a private laboratory 

estimated the corrosion cost in the USA in 2013 at over $1 trillion, or 6.1% of the GDP [1]. 

Similar studies have shown that wear imposes 90 billion US$ in costs, or 0.75% of the GDP [2]. 

The seminal 1966 Jost Report, which generated a significant impact worldwide, estimated that 

up to 4% of the GDP could be saved in the UK by eliminating friction-related losses [3].  

In this context, the valve industry is seeking new technologies that could provide high-quality 

coatings combining well-controlled tribological and corrosion performance with high mechanical 

integrity and environmental stability.  

 

Figure 1: Ancient Roman in-line serviceable valve from Pompeii [4]. 

Pipes and valves are pressure vessels that regulate flow of materials, including liquids, gases, and 

slurries, by controlling the passageways. Pressure vessels have been used for thousands of years 

for various applications. Ancient depictions of piping systems show how they improved the 

quality of daily living. Based on remnants discovered by archeologists, we suspect that farming 
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villages were first established from 6,000 to 7,000 years ago during what historians refer to as 

the Neolithic Age.  

It was during this time that the first successful systems to control water-irrigated agricultural 

fields were designed in Mesopotamia and Egypt, with the Sadd-el-Kafara dam in Egypt 

considered the world’s oldest large-scale dam [5]. Neolithic piping systems were intended 

mainly to prevent flooding, and were built of stone and terracotta. During the Bronze Age, 

Greeks and Romans developed sophisticated systems to supply water to urban centers around the 

Mediterranean, including dams, aqueducts, and reservoirs. They also developed an extensive 

canal transport system. Moreover, they initiated the design and manufacture of standard valves 

made of a copper alloy very similar to ASTM B67, illustrated in Figure 1. 

Today, although valves are still used for water regulation and farming, the industrial revolution 

has considerably extended the scope of application. Valves are used to control steam machines 

and power plants that deliver electricity to cities and industries. Valves are also used to control 

the flow of natural resources such as oil, gas, and mining products during extraction, 

transportation, and processing, whereby these crude minerals are transformed into refined 

products.  

 

Figure 2: Modern severe-service metal-seated ball valve. 

To be competitive and to meet an enormous range of requirements, these processes are 

continuously optimized to target maximum production rates at lower cost and maintenance. 

Seat 

Ball 
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Optimizing processes typically involve the use of higher pressure and temperature and/or more 

aggressive chemicals that cannot be handled using off-the-shelf valves. These are usually 

referred to as severe-service conditions, which require tailored materials and valve designs. 

Whereas almost any valve type can be optimized for severe-service, metal-seated ball valves 

(MSBVs) are usually the preferred choice. As illustrated in Figure 2, the sphere of a MSBV is 

located within the valve body, where it opens and closes by rotating 90 degrees. In open position, 

the tunnel bore across the ball is aligned with the piping so that the flow is unobstructed, whereas 

in closed position the tunnel bore is perpendicular to the piping, blocking the flow. Two surfaces, 

called the sealing surfaces, provide the seal in closed position: one is the outside surface of the 

ball and the other is the spherical radius of the seats, which are located in the body and guide the 

ball. MSBV sealing surfaces are inherently protected from particles present in the flow in both 

open and closed position, ensuring a reliable shut-off. MSBVs are relatively easy to operate in a 

slurry application, because the ball rotates on itself without displacing solids present in the line 

while tolerating the use of very powerful drive systems. This ensures rapid closure in critical 

situations.  

     

Figure 3: Typical damage to the sealing surfaces of a MSBV after service. 

Severe-service MSBVs are therefore exposed to high pressure, high temperature, and/or highly 

corrosive environments. These grueling operating conditions are exacerbated by solids present in 

the flow that are wedged between the sealing surfaces. Sealing surface degradation is a major 

cause of severe-service valve failure, and can result in two different failure modes. The first 

occurs when the valve fails to cycle on demand due to excessive friction between the sealing 
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surfaces. The second occurs when the valve performs a cycle on demand but fails to seal in 

closed position due to imperfections in the sealing surfaces. Both failure modes can be caused by 

degradation of the sealing surfaces resulting from one of the wear mechanisms, including plastic 

deformation, abrasion, erosion, galling [6], and spallation combined with corrosion. As reported 

by several authors who performed failure analysis on severe-service MSBVs, and as illustrated in 

Figure 3, surface degradation is frequently caused by a combination of wear mechanisms that 

may or may not act in synergy [7-9]. Nevertheless, to prevent premature failure and mitigate 

wear, original equipment manufacturers (OEMs) use various types of surface treatments and 

invest heavily in R&D on surface engineering.  

In response to the needs of valve manufactures, this research focuses on the development and 

characterization of a new generation of protective coating systems designed to extend valve life, 

whereby the microstructural features of films are controlled to achieve an optimal combination 

of surface and substrate properties that meet specific application requirements, with significant 

economic impact. 
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Background 
 

After completing my Master’s degree in mechanical engineering in 2003, I arrived in Canada 

from France with a one-year visa and was soon hired as an R&D technician at the Velan Granby 

laboratory. My main duties were to help perform prototype tests on industrial valves exposed to 

pressures and temperatures ranging from cryogenic to 650 ºC. With my academic qualifications, 

I was pretty comfortable running R&D test set-ups, operating the old steam boiler, installing 

strain gauges, and using data acquisition systems. However, I was not prepared to properly 

inspect worn surfaces, draw conclusions, or select surface treatments. 

 

Finding myself isolated in the countryside, I began to self-study wear, friction, and surface 

treatments. This interest was exacerbated by the Quebec climate with its unique challenges, 

namely the corrosion, temperature transients, and icing conditions (i.e., the extremely long and 

harsh winter). In 2005, after obtaining OIQ membership, I was placed in charge of the Velan 

Granby laboratory, where I developed a collaboration between Velan and the Functional Coating 

and Surface Engineering Laboratory (FCSEL) at Polytechnique Montréal. At first, we 

characterized worn surfaces and helped perform failure analyses on returned products. A year 

later, when Velan decided to merge the Granby laboratory with a new, larger entity located in 

Montreal, I moved back to the metropolis and returned to Polytechnique Montréal to follow 

evening classes on materials science and friction. In 2008, the three engineers who were 

developing the Velan severe-service MSBV line left the company almost simultaneously. Velan 

asked me to step in as manager of this line, which combines exotic materials with sophisticated 

surface treatments. The mandate was not only to oversee the engineering, but also to develop 

Velan’s coating know-how. I accepted both challenges and ended up with a considerable 

backlog, including boxes full of calculations, several products that had problems in the field, and 

no one to answer my questions.  

 

It was at this time when I intensified Velan’s collaboration with FCSEL, working primarily with 

Professor Jolanta Ewa Klemberg-Sapieha to characterize worn surfaces, but also to assess and 

compare the tribological and mechanical behavior of various surface treatments used by Velan. 

The outcome of this relationship was the creation of a coating matrix designed to compare the 
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tribo-mechanical properties of different coatings applied to valves. Hardness (H), Young’s 

Modulus (E), and toughness were measured using microhardness indentation testers, and wear 

resistance under different conditions such as sliding wear and abrasion were measured by pin-on-

disc and abrasion tests. In parallel, I helped prepare an application for a grant to enable us to 

acquire a novel high load tribometer to perform galling testing. This equipment is currently being 

purchased and will be used to complete our coating matrix.  

 

With all those collaborations and my personal involvement as an external candidate, it was only 

natural that in 2009, when Professors Jolanta-Ewa Klemberg-Sapieha and Ludvik Martinu 

invited me to start a Ph.D. program within their group, I accepted their offer without hesitation. 

This was a way for me to not only strengthen the relationship between Velan and FCSEL, but 

more importantly, to develop new technologies.  

 

Objectives 
 

I have devoted the majority of my professional life to designing and manufacturing better valves. 

The objectives of this thesis are motivated by this long-term commitment, and by tangible 

opportunities that I believe are instrumental for advancing valve technology through a better 

understating of the fundamental physico-chemical mechanisms that govern surface degradation. 

Once the surface degradation mechanisms are fully understood (i.e., at the atomic level), a more 

suitable surface treatment can then be selected to inhibit specific wear mechanisms and 

ultimately extend valve life. Consequently, the fundamental chemical, metallurgical, mechanical, 

and physical concepts that govern surface degradation mechanisms must be accurately 

determined, and a variety of surface treatments can then be developed or improved.  

 

 The first objective arose from the fact that the U.S. Environmental Protection Agency 

(EPA) has classified hard chromium electroplating as an environmentally unfriendly 

process. In accordance with Porter’s hypothesis that environmental regulations should 

trigger the discovery and introduction of not only cleaner but also more efficient 

technologies, thereby improving a company’s commercial competitiveness, 

nanostructured coatings appeared to be viable alternatives from both an engineering and a 

commercial perspective. Therefore, the objective of the study was to select the best 
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candidates for alternatives to hard chromium electroplating. To do so, several factors 

were considered, including the mechanical and tribological performance of recently 

developed coating technologies, potential supply chains, and long-term economic 

viability. In order to further mitigate the risks associated with the use of alternative 

treatments, the wear mechanism of hard chromium plating slid against Stellite 6 was 

examined to comprehend the tribological behavior behind the superior galling resistance 

of this material couple, and to compare it with the mechanisms for potential alternative 

coating materials when slid against Stellite 6. The ultimate goal was to select surface 

treatments that provide the equivalent mechanism to that for hard chromium. 

 

 The second objective was to determine the cause of the recurrent failures occurring in the 

field with thermal sprayed HVOF Cr3C2-NiCr coating applied to Inconel 718 PH when 

exposed to supercritical steam lines and thermal shocks in modern power plants. HVOF 

80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs over the years, 

without incident. However, modern power plants expose valves to the added challenge of 

rapid high pressure and temperature variations, resulting in a severe-service situation 

where coatings undergo cracking and cohesive failure. The purpose of this study was 

therefore to fully understand the degradation mechanism causing the coating failures and 

to evaluate potential coating alternatives to reduce the effects and improve the reliability. 

 

 The third objective was to study the effects of the mechanical properties of a material 

carrying a thin surface treatment on the tribo-mechanical and corrosion performance of 

the coating system. This objective was driven by thin film failures reported by end-users, 

attributed to high stresses at the interface and within the substrate material when 

subjected to highly concentrated load, leading to high stress levels that eventually cause 

permanent surface indentation, crack formation, and/or spallation. These failure modes 

are called brinelling (indentation due to substrate plastic deformation) and eggshell-effect 

(coating fracture and/or coating spallation). The purpose of this study was to design and 

produce innovative graded coating systems consisting of 1) a thin surface treatment with 

high hardness (H) and excellent sliding wear properties, and with superior mechanical 

behavior to that of conventional base materials used in the valve industry; and 2) a 
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hardfaced interlayer with a strain-to-failure characteristic between that of the substrate 

and surface material in order to reduce the mechanical properties gradient and therefore 

reduce the risk of premature failure due to inadequate load carrying capacity. 

 

Thesis outline 
 

This thesis is divided into seven chapters, beginning with the introduction.  

 

Chapter 2 presents a literature review of the key elements required to fully understand this 

project. Chapter 3 presents the methods used for coating characterization. The three articles 

resulting from this work report the main results, and are presented in chapters 4 to 6.  

 

Specifically, Chapter 4 presents a comparative analysis of two nanostructured coatings as 

alternatives to hard chromium: electrodeposited nanostructured cobalt-phosphor and chemical-

vapor-deposited tungsten/tungsten carbide. The wear mechanisms that occur when hard 

chromium plating is slid against Stellite 6 under high load were investigated. After examining 

these interactions at the crystal structure level and determining those that are responsible for the 

exceptional tribological behavior of this material couple, the authors recommended an alternative 

material to hard chromium that provides a similar wear mechanism when slid against Stellite 6.  

 

Chapter 5 presents a case study stemming from an investigation of a thermal sprayed HVOF 

Cr3C2-NiCr coating failure for an on-off metal-seated ball valve (MSBV) used in supercritical 

steam lines in a power plant. HVOF 80/20 Cr3C2-NiCr coating has been used to protect 

thousands of MSBVs, without incident. However, in this case the valves were exposed to the 

additional challenge of rapid high pressure and temperature variations, resulting in a severe-

service situation where the coating underwent cracking and cohesive failure. After an in-depth 

failure analysis, the authors determined the mechanism that led to the failure and subsequently 

evaluated potential coating alternatives. 

 

Chapter 6 examines the combination of hardfaced superalloy and thin film to produce superior 

mechanical performance to that of each individual layer. A critical issue in the deposition of hard 
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coatings onto softer substrates is the mismatch between thermal expansion and the elasto-plastic 

and structural characteristics. This causes high compressive mechanical stress, and hence weak 

adhesion [10]. There is increasing evidence that the optimum solution to erosive, corrosive, and 

adhesive wear problems lies in the design and manufacture of multilayered, graded, and/or 

nanostructured coatings and coating systems that combine controlled hardness and elastic 

modulus, high toughness, and good adhesion [11]. The aim of this study was to characterize two 

coating systems composed of 1) a hard thin film top layer, which provides superior tribological 

properties, and 2) a hardfaced interlayer, which increases the surface load-carrying capacity by 

reducing the elasto-plastic gradient and peak stresses. The first coating system consists of a 

tungsten–tungsten carbide thin film (W-WC) deposited by chemical vapor deposition onto a laser 

cladded Co-Cr hardfaced interlayer (Stellite® 6) applied to a 316 stainless steel substrate, and the 

second consists of the same W-WC top layer and a high velocity oxygen fuel sprayed and fused 

Ni-W-Cr-B hardfaced interlayer (Colmonoy® 88) applied to an Inconel® 718 substrate. 

 

Chapter 8 summarizes the contributions of this thesis and recommends avenues for future 

research.  

 

Appendix A presents a detailed characterization project in which promising ceramic coatings 

were assessed for mechanical and tribological resistance. The goal was to better understand and 

harness the performance of the most promising ceramic coatings for hydrometallurgy processes, 

including pressure oxidation (POx) and high-pressure acid leaching (HPAL). Included was a 

novel n-TiO2-Cr2O3 blend as a candidate for hydrometallurgy application, where air plasma 

sprayed ceramic coatings are vital to protect machines in the harsh abrasive conditions of 

corrosive POx and HPAL processes. Hardness, Young’s modulus, adhesion, shear strength, and 

toughness were assessed using microhardness indentation testers and universal tensile testing 

equipment. Wear resistance of the coatings under various conditions such as sliding wear and 

abrasion were measured by standard pin-on-disc and abrasion tests.  
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submitted to Journal of Thermal Spray Technology, 2014. 

L.Vernhes, D.A. Lee, D. Poirier, D. Li and J.E. Klemberg-Sapieha, “HVOF Coating Case Study 

for Power Plant Process Control Ball Valve Application”. Journal of Thermal Spray Technology, 

2013. 

L. Vernhes, M. Azzi and J.E. Klemberg-Sapieha, “Alternatives for hard chromium plating: 

Nanostructured coatings for severe-service valves”. Materials Chemistry and Physics, 2013.  

 

Table 2: Peer-reviewed publications written in collaboration 

M. Azzi, L.Vernhes, E. Bousser and J.E. Klemberg-Sapieha, “Mechanical, Tribological and 

Corrosion Properties of Co-Cr and NiWCrB Hardfacing Superalloy Coating Systems”. ASME 

2014 International Mechanical Engineering Congress and Exposition, 2014. 

 

Table 3: Working paper 

L.Vernhes, C. Bekins, N. Lourdel, D. Poirier, R.S. Lima, D. Li and J.E. Klemberg-Sapieha, 

“Nanostructured and Conventional Cr2O3, TiO2 And TiO2-Cr2O3 Thermal Sprayed Coatings for 

Metal-seated Ball Valve Applications in Hydrometallurgy”.  

 

Table 4: Conference proceedings and poster presentations 

L.Vernhes, C. Bekins, N. Lourdel, D. Poirier, R.S. Lima, D. Li and J.E. Klemberg-Sapieha, 

“Nanostructured and Conventional Cr2O3, TiO2 and TiO2-Cr2O3 Thermal Sprayed Coatings for 

Metal-seated Ball Valve Applications in Hydrometallurgy”. International Thermal Spray 

Conference, Barcelona, Spain, 2014. 
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L.Vernhes, C. Bekins, N. Lourdel, D. Poirier, R.S. Lima, D. Li and J.E. Klemberg-Sapieha, 

“Nanostructured and Conventional Cr2O3, TiO2 and TiO2-Cr2O3 Thermal Sprayed Coatings for 

Metal-seated Ball Valve Applications in Hydrometallurgy”. Alta, Perth, Australia, 2013. 

L.Vernhes, D.A. Lee, D. Poirier, D. Li and J.E. Klemberg-Sapieha, “HVOF Coating Case Study 

for Power Plant Process Control Ball Valve Application”. Reliability, Durability and 

Performance Assessment of Thermal Spray Coatings Conference, Albany, New York, USA, 

2013. 

L.Vernhes, D.A. Lee, D. Poirier, D. Li and J.E. Klemberg-Sapieha, “HVOF Coating Case Study 

for Power Plant Process Control Ball Valve Application”. Valve World, Dusseldorf, Germany, 

2012. 

L.Vernhes, D.A. Lee, D. Poirier, D. Li and J.E. Klemberg-Sapieha, “HVOF Coating Case Study 

for Power Plant Process Control Ball Valve Application”. International Thermal Spray 

Conference, Houston, USA, 2011. 

L.Vernhes, D.A. Lee, D. Poirier, D. Li and J.E. Klemberg-Sapieha, “HVOF Coating Case Study 

for Power Plant Process Control Ball Valve Application”. Saudi Aramco Global Reliability and 

Safety conference, Houston, USA, 2011. 

L. Vernhes, M. Azzi and J.E. Klemberg-Sapieha, “Alternatives for hard chromium plating: 

Nanostructured coatings for severe-service valves”. Society of Vacuum Coaters Conference, 

poster, FCSE, Montréal, QC Canada, 2011 

L. Vernhes, M. Azzi and J.E. Klemberg-Sapieha, “Alternatives for hard chromium plating: 

Nanostructured coatings for severe-service valves”. Society of Vacuum Coaters Conference, 

Albuquerque, USA, 2010. 
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Table 5: Patents 

Seat arrangement with cavity pressure relief for a ball valve, US Patent No. 8,002,237, 2010. 

A ball valve resilient seat arrangement is provided that permits relief of cavity pressure. 

When the cavity pressure reaches a certain level, a sealing point between the seat and the 

valve body is lost. Communication is thereby provided between the space and the valve 

passage to achieve cavity pressure relief. 

Spring energized resilient Seat for a ball valve, US Patent No. 8,500,090, 2013. 

A ball valve resilient sealing ring is provided for sealing between a ball valve member and 

a valve body. The sealing ring may comprise a ring body having a ball valve member- 

contacting surface and one or more valve body-contacting shoulders for contacting the 

valve seat. The resilient sealing ring may comprise an elastic ring core for providing 

bending resistance. 

 

Table 6: Memberships 

Ordre des Ingénieurs du Québec 

American Society for Testing and Materials, Committee officer, Subcommittee G02 

International Organization for Standardization, P-member, Subcommittee SMC/ISO/TC153/SC1 

American Society of Materials 
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 LITERATURE REVIEW CHAPTER 2

The literature review is divided into three sections to address the three components of this 

doctoral thesis. The first section provides a historical and state-of-the-art review on materials and 

surface engineering methods used in the valve industry, along with their limitations; the second 

summarizes surface engineering methods used to improve tribological behavior; and the third 

reviews the relationships between material properties and tribological behavior. A glossary of 

tribological terms is provided in the Appendix, including wear mechanisms and the underlying 

tribological processes. 

2.1. Surface engineering methods applied to valves 

2.1.1. Historical development  

As mentioned in the introduction, valves were invented thousands of years ago to supply water to 

farms and cities. These antique valves were made of bronze alloys. Bulk bronze provides good 

corrosion resistance and acceptable tribological performance, and bronze continues to be used 

today for similar applications. The first significant technological challenge that triggered the 

introduction of new materials for valves occurred in 1705, when Thomas Newcomen invented 

the first steam engine able to convert steam power into mechanical work using the Rankine 

thermodynamic cycle. Although valves that were originally designed for water piping systems 

were first used for steam engines, the advent of the railroad facilitated access to cast iron, and 

valve manufacturers adopted this strong material to manufacture steam valves [12]. The first 

patent for a valve in the U.S. was filed by James Robertson in 1840. At that time, some of the 

legendary valve companies were founded, including Crane and Powell, which are still in 

operation today. In the 1860s, the Chapman Valve Manufacturing Company patented the now 

classical wedge gate valve.  

 

Steam engine designs were optimized over the years, gradually replacing horses to power 

industrial equipment such as water pumps and locomotives. Efforts to improve the efficiency of 

the Rankine cycle by raising steam temperature and pressure began during the industrial 

revolution (approximately 1760–1840). In the 19th century, iron valves with bronze sliding 

surfaces were introduced. Higher-strength cast irons were also developed toward the end of the 
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19th century to support increasing temperature and pressure requirements at power plants where 

steam-powered turbines drove electrical generators. Engineering firms such as Boulton & Watt, 

founded by Matthew Boulton and James Watt in the UK in 1775, were pressing valve 

manufacturers to develop new valve materials capable of regulating steam flows at temperatures 

up to 260 °C and pressures up to 13.7 bars. Up to the beginning of the 20th century, valve sliding 

surfaces were made of bronze, and the first major innovation in materials was the invention of a 

copper–nickel alloy by David H. Brownein in 1906. It was commercialized under the trade name 

Monel. Solid Monel provided greater hardness combined with better corrosion and wear 

resistance compared to bronze. It therefore replaced bronze for the protection of critical sliding 

areas of valves, thereby extending their in-service life [13]. 

 

The next new material to be adopted by the valve industry was martensitic stainless steel, 

patented in 1912 by Elwood Haynes, who discovered it while developing corrosion-resistant 

materials for horseless carriages. With its typical body-centered tetragonal microstructure 

obtained by heat treatment, martensitic stainless steel provides higher strength than Monel and 

good tribological performance. In addition, the 13% chrome content ensures satisfactory 

corrosion resistance, which made it the material of choice at that time for critical valve sliding 

areas [14]. Elwood Haynes subsequently patented a cobalt alloy commercialized under the trade 

name Stellite in 1913. Composed of chrome carbides embedded in a cobalt-based matrix, this 

alloy exhibits a low friction coefficient under highly loaded sliding contact, and it has become 

the standard wear-resistant material in the valve industry [15].  

 

A low coefficient of friction, superior corrosion resistance, and high resistance to adhesion 

between the contact surfaces under high sliding load (called galling) are the three primary wear 

attributes of Stellite. These features prevent equipment seizure, surface deterioration, and gross 

material transfer between two counter bodies [16]. As reported by several authors, Stellite alloys 

exhibit a particular wear mechanism under high-load sliding wear: material transfer is restricted 

to a nanoscale thin superficial layer that is easily sheared, and which acts as a solid lubricant 

while preventing catastrophic galling and seizure [17]. This thin layer results from a phase 

transformation under high load: from face-centered cubic (fcc) to hexagonal close-packed (hcp), 

providing a preferred slip on the basal plane oriented parallel to the sliding interface. The 
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preferred slip plane provided by the low COF of hcp structures was theoretically demonstrated 

by Buckley and Johnson (1968), and the resulting lamellar structures are useful features of 

common solid lubricant materials such as graphite, molybdenum disulfide, and boron nitride 

[18]. Figure 2-1 shows Stellite under highly loaded sliding contact, revealing a thick fcc 

interlayer and an easily sheared hcp top layer that is regenerated when worn.  

  

Figure 2-1: Wear mechanism of Stellite under highly loaded sliding contact: a) the typical 

dendrite structure is visible in the bulk material along with the heavily deformed top layer; b) the 

thin top layer is transformed under high load from fcc phase to hcp phase; c) fragmented carbides 

are visible in the top layer; and d) transmission electron microscopy of the top layer, showing the 

thin top layer composed of hcp phase oriented parallel to the sliding interface [19]. 

 

This easily sheared superficial layer eases the transfer to a non-stellite counter material, and 

therefore Stellite against Stellite sliding contact occurs, even when only one of the two counter 

bodies is originally constituted of Stellite, as discussed in Chapter 4 [19]. 

 

The invention of this adaptive material marked the beginning of a century of Stellite’s quasi-

monopoly in the valve industry, with grade 6 being the most widely used, disturbed only by the 

introduction of a novel non-metallic material called Teflon, which Dupont patented in 1938. 

During World War II, the US army, needing a fast-acting tight shutoff compact valve with better 

corrosion resistance than martensitic steel, developed the resilient-seated austenitic stainless steel 

ball valve. Based on the ball valve design patented in 1871 by John Warren and John Chapman, 

which required bronze sliding surfaces, the first mass-produced ball valves were built with the 

a) b) 

c) d) 
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now ubiquitous fluoropolymer material. These innovative ball valves played an instrumental role 

in high octane gasoline refining and the production of other valuable oil-based products required 

to support the war effort [20].  

 

After the war, resilient-seated austenitic stainless steel ball valves were first commercialized by 

the Jamesbury Corporation, founded by Howard G. Freeman. They are still used extensively for 

corrosive chemical and petrochemical processes, where they have been made more abrasion-

resistant, and where the range of application has been extended beyond the PTFE temperature 

limit [21]. Thus, valve manufacturers have developed austenitic stainless steel ball valves 

equipped with Stellite seat rings and hard chrome plated austenitic stainless steel balls that can 

operate at 700 ºC while providing excellent corrosion resistance. New nickel-based superalloys 

such as Alloy 20, Hastelloy X (also developed by Haynes, the trade name being a combination of 

Haynes and Stellite), Monel K-500, Inconel 625, Nimonic, and Waspalloy were developed 

during the boom decades after the Second World War, extending both the operating temperature 

and corrosion resistance of valves and piping [22]. Electroless nickel plating combined with heat 

treatment was also introduced for application to austenitic stainless steel balls coated with hard 

chrome that were exposed to attack by weak acids solutions (e.g. nitric or hydrochloric acid). 

Occasionally, electroless nickel was applied between the austenitic stainless steel and hard 

chrome layers as a corrosion barrier to mitigate corrosion attack while retaining the superior 

wear resistance of hard chrome [22].  

 

In parallel with the arrival of new chemicals, petrochemicals, and corrosion-resistant alloys, 

newly engineered chromium-rich steels helped raise the operating temperatures of steel valves, 

enabling engineering firms to improve power plant efficiency by operating above the vapor–

liquid critical point. In the 1960s, the first supercritical power plant operating with steam at 600 

°C and 290 bar was launched in Ohio, US [23]. Since the close of the 20th century, the severe-

service metal-seated valve industry has moved away from traditional, relatively soft anti-galling 

Stellite to embrace hard thermal sprayed coating materials for the most demanding applications. 

The two main drivers for this change were 1) the severe corrosiveness of modern chemical 

processes, which require application-specific surface treatments, and 2) the need for more wear-
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resistant surface treatments that resist erosion and abrasion caused by particles present in the 

flow while providing a longer life cycle [24].  

2.1.2. State-of-the-art materials and challenges  

Stellite, hard chrome plating, and Teflon remain the dominant wear-resistant materials in the 

valve industry. However, continuous advances in industrial processes have called for the 

development of new corrosion- and wear-resistant surface treatments that, despite their enhanced 

performance, have difficulty meeting ever-evolving industry needs. Optimized tribological 

solutions developed over the last decade have already reached their limit for certain extreme 

applications, and the evidence shows that a substantial number of surface treatment challenges 

remain to be overcome.  

 

This chapter describes some of the new materials used in the valve industry over the past two 

decades as well as the most pressing challenges that remain, including those addressed in this 

doctoral research project. 

2.1.2.1. Fossil power generation 

In the last 20 years, combustible costs, environmental policies, and a growing demand for 

electric power have motivated engineering companies such as GE and Siemens to improve the 

efficiency of power plants [25]. Accordingly, coal-fired power generation technologies have 

evolved to operate with steam at higher temperatures and pressures in order to increase 

efficiency, as explained by the thermodynamic laws [12]. Today, most modern power plants 

operate at above the vapor–liquid critical point, producing more power output at higher thermal 

efficiency. These state-of-the-art power plants, called supercritical (SC) combined cycle power 

plants, work at 600 ºC, use 9% chromium steel alloy valves with superior high temperature 

properties, and are equipped with heat recovery steam generators (HRSG) that recover waste 

heat from hot exhaust gas in order to power auxiliary turbines, hence converting over 45% of the 

fuel energy into electricity [26].  

 

In addition to operating under extreme steam temperatures and pressures, the power plants are 

run during peak usage times. Consequently, SC power plants cycle several times per day in order 
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to adjust supply to demand, thereby minimizing fuel consumption. Each time a power plant is 

turned off and on, the piping undergoes intense thermal and pressure stresses, accelerating 

materials aging and shortening valve life, with the worst impacts on the highest temperature 

components [27]. Several cases have been reported in which the Stellite overlay failed 

prematurely, leading to shutdown. One typical failure mechanism is debris present in the flow 

that plows the Stellite overlay, hampering valve tightness. A second typical failure mechanism is 

delamination due to heat affected zone (HAZ) embrittlement combined with thermal stresses 

induced by differing expansion coefficients [28, 29]. Developmental initiatives are ongoing to 

either improve the performance of Stellite or to find alternative solutions to improve valve 

reliability. For example, a study by Bharat Heavy Electricals Limited (2000), the largest Indian 

power plant manufacturer, revealed the superior tribological behavior of an HVOF Cr3C2-NiCr 

coating over Stellite during laboratory testing at high temperature, and reported the successful 

use of HVOF Cr3C2-NiCr-coated valves for four years in one of its power plants [30]. In 2006, 

similar results were found in an experiment using the Advanced Test Reactor at the US 

Department of Energy’s Idaho National Laboratory.  

 

The original Stellited valves, which controlled high temperature steam circulating at 377 °C and 

262 bars, required frequent maintenance to contain leakage. Since their replacement in 1998 by 

valves coated with HVOF Cr3C2-NiCr, failures have stopped and preventive maintenance is no 

longer required [31]. The low coefficient of friction and the mild wear regime for self-mated 

HVOF Cr3C2-NiCr under the highly loaded sliding contact encountered in power generation are 

generally attributed to the formation of a strongly adherent oxide tribolayer containing Cr2O3 and 

NiCr2O4 as well as the presence of graphite on the sliding surfaces (graphitization, or graphite 

formation), which prevents adhesive wear. HVOF Cr3C2-NiCr material loss during sliding is 

commonly attributed to carbide pull-out, matrix extrusion, and carbide fracturing [32]. However, 

HVOF Cr3C2-NiCr coatings are not infallible in SC power plants; Chapter 5 describes an 

investigation of an HVOF Cr3C2-NiCr coating failure by crack propagation in supercritical steam 

lines and presents a proposed solution. Low ductility and high hardness are generally mentioned 

as contraindications for SC power plant application. Accordingly, researchers have attempted to 

create tougher coating materials, such as the NASA-developed PS304 and PS400, which contain 
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a high-strength nickel–chrome matrix with solid lubricants such as Cr2O3, silver, and BaF2/CaF2, 

designed to prevent adhesion at high temperatures and maintain a low COF up to 650 °C [33].  

Even as surface treatments for SC power plants continue to be optimized, major engineering 

firms have already demonstrated the technical and commercial viability of Advanced 

Ultrasupercritical Power plants (A-USC) operating at up to 760 °C and 500 bar and equipped 

with Ni-based alloy piping, which will require new tailored surface treatments [34]. Companies 

such as Fuji Electric Systems are currently performing tribological tests at temperatures over 700 

°C in a high pressure steam environment to select the best candidates, including Ni-based 

superalloy, Tribaloy, and Stellite [35]. 

2.1.2.2. Nuclear power generation 

One of the most compelling challenges for society is to produce carbon-free electrical energy, 

and nuclear power plants are viewed as a highly promising solution. Nuclear power plants have a 

wide range of applications. Among others, they generate the steam that drives modern 

submarines, aircraft carriers, and other naval vessels, and they produce radioisoptopes that are 

used to diagnose diseases. However, most of the valves currently in use in nuclear power plants 

were hardfaced with Stellite, which is problematic. Ocken determined in 1985 that the presence 

of cobalt in the primary circuit of pressurized water reactors (PWRs) is a major cause of high 

radioactivity of the primary circuit water, with the cobalt originating from the wear of the Stellite 

coating that protects the valve sliding surfaces [36]. Since then, cobalt has been identified as the 

main contributor to the radiation exposure of maintenance staff, via the formation of the isotope 

60
Co [37]. This has prompted several nuclear institutes, including the Atomic Energy 

Commission (CEA), the Westinghouse Atomic Power Laboratory, and the Electric Power 

Research Institute (EPRI), to develop and test various cobalt-free alloys as replacement materials 

for Stellite, including Deloro 50 and Colmonoy 5 [38].  

 

One positive outcome of these studies is an alloy called Norem 02. Norem is an iron-based wear-

resistant alloy originally developed by EPRI. It has a higher threshold galling stress (TGS) than 

nickel-based superalloys, as indicated in Figure 2-2 (taken from the Westinghouse Atomic Power 

Laboratory, Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys, 

1997). Norem contains an iron-based austenitic matrix with carbides precipitated at the grain 

http://en.wikipedia.org/wiki/Disease
http://en.wikipedia.org/wiki/Carbide
http://en.wikipedia.org/wiki/Grain
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boundaries. Norem is used in valves installed in several commercial nuclear power plants in the 

US and in the three first European pressurized reactors (EPRs) in Finland, France, and China, the 

most recent nuclear reactor design, produced by Areva. Unfortunately, laboratory assessments of 

Norem have reported higher friction coefficients and inferior sliding wear performance 

compared to Stellite, particularly at temperatures above 180 °C [39].  

 

Figure 2-2: Summary of threshold galling stress values for various Fe-based and Ni-based 

hardfacing alloys and the Co-based hardfacing alloy Stellite 6. Except for the Nucalloy 

453/Nucalloy 488 couples, all hardfacings were tested in the self-mated condition [40]. 

 

Table 2.1: Norem 02 nominal composition (mass %) and physical properties 

Fe Cr Mn Ni Others Hardness 

[HV] 

Density  

[g/cm³] 

Melting Range 

[ºC] 

Base 23–26 4–5 3.7–5 Mo, Si, N, P, S, B 400–500 N/A N/A 

As seen in Figure 2-2, the Norem TGS properties are significantly lower than for Stellite at 

ambient temperature, and the adhesion susceptibility rises dramatically at over 180 ºC, limiting 

its use to mild temperature applications. Because Norem is not fully interchangeable with 

Stellite, products designed for Stellite have to be reinforced to accommodate Norem’s 

tribological properties, and they have a limited temperature range [39]. Consequently, 

considerable research efforts around the world are being directed to develop a better alternative 

to Stellite for PWR applications [41]. In a report by Sumitomo Energy, the total amount of cobalt 
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dilution in a multilayer Al2O3/TiN/TiC coating applied by chemical vapor deposition onto 

Stellite is less than 1% of that for pure Stellite [42]. More recently, Sumitomo reported that a 7 

μm thick CrN film applied by CVD onto Stellite reduced the cobalt dissolution rate into hot 

water by four orders of magnitude while improving sliding wear and galling resistance [43]. 

Hitachi has also developed a cobalt-based alloy with similar chemical composition to that of 

Stellite, but with a different microstructure that mitigates wear, reducing cobalt dissolution by a 

factor of ten [44].  

Apart from cobalt dissolution, nuclear power generation poses other tribological challenges. One 

such challenge is the use of molten fluoride salts as coolant, due to their higher heat transfer 

capabilities compared to water. Because fluoride salts are extremely corrosive at high 

temperatures, they preclude the formation of protective oxides, and therefore require the use of 

nickel-based piping such as Hastelloy [45]. Manley (1958) previously determined that, due to 

this high corrosion and the absence of oxide formation, conventional hardfacing materials tend to 

bond in molten fluoride salts at temperatures above 1000 °F (537.78 °C). Following preliminary 

wear tests, the most promising materials appear to be ceramics and cermets, and particularly 

TiC-Ni and WC-Co [46]. Molten salts are also used in non-nuclear power plants, such as solar 

power plants, for heat transfer and storage, with similar tribological challenges [47].  

2.1.2.3. Exploration and production – The upstream oil sector  

One of the most frequently reported tribological challenges for valves used to control the ground 

to surface flow of crude oil and/or natural gas in sand laden regions is sand particle erosion. 

Extracting crude petroleum from underground deposits requires pressures up to 1000 bars, 

temperatures up to 200 °C, and a flow velocity that exceeds 500 m/s. The concentration of sand 

particles in the oil-field soil normally ranges from 10 to 100 ppm by weight and from 60 to 100 

μm by size [48]. Valve operation becomes critical in such conditions, as underscored by the 2010 

Deepwater Horizon oil spill (also called the BP oil spill) in the Gulf of Mexico. This 

environmental and financial disaster could have been mitigated if at least one of the blowout 

preventer valves had not failed to close. Why all these valves failed at the same time is still under 

investigation, but the dominant wear mechanism for this type of valve application has been well 

documented: the usual culprit is sand particles in the flow.  
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The API 6AV1 and ISO 10432 standards specify the requirements for critical valves operating in 

sandy service in order to reduce the risk of valve failure prior to installation. The significant 

financial impact of valve failure has driven research and innovation in the field of surface 

treatments. In 1997, BP estimated the replacement cost at £500,000 (about $US 795,000) per 

damaged valve, with the annual cost of valve failure at around £30 million ($US 47,567,000) for 

BP alone [49]. Wheeler and Wood (1998) found that because traditional valve-protective coating 

(including hard chrome plating) has lower hardness than sand, the erosion rate is five times 

higher than that for thermal sprayed WC-based coating [50]. Thermal sprayed WC-CoCr is 

therefore one of the most popular coatings for this type of service, particularly for high velocity 

applications. In addition to its superior erosion resistance, it forms a superficial tungsten trioxide 

tribolayer in oxidizing environments, providing good sliding wear properties and low COF while 

preventing adhesion. Tungsten trioxide, which has a lamellar structure similar to graphite, is 

considered a solid lubricant [51]. Because the tribolayer provides no protection against sand 

particles, the erosion mechanism for WC-CoCr, a two-phase anisotropic material, consists of 

minor cutting in the ductile CoCr matrix and cracking in the WC. However, most of the damage 

is caused by subcritical crack growth along the splats and parallel to the surface, followed by 

spallation [52].  

 

Researchers are currently seeking better alternatives and identifying promising materials. For 

instance, Haugen et al. (1995) demonstrated the superior erosion resistance of solid tungsten 

carbide components and SiC ceramics, which are currently used for critical applications [53]. In 

the same study, borided Stellite with a hardness of 1500 HV obtained excellent performance for 

velocities below 50 m.s
-1

, although premature failure occurred at 200 m.s
-1

. Mann et al. (2006) 

investigated other thin surface treatments for oil and gas extraction applications, including a 

TiAlN PVD coating with erosion resistance roughly similar to that of WC-CoCr HVOF coating. 

However, this solution was discarded due to numerous pin hole defects in the coating that 

reduced the corrosion resistance and resulted in premature failure [54]. Wheeler et al. (2006) [55] 

found that a CVD-applied DLC coating on solid tungsten carbide components provided a 50 to 

60% greater resistance to sand particle erosion damage.  
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2.1.2.4. Refining and petrochemical industries – The downstream oil sector  

Once the oil is extracted, it is delivered to petroleum refineries where it is subjected to high 

temperature processes to produce useable fuel, and where further challenges await. Here, hard 

chromium plating is particularly valued for its wear-resistance and anti-sticking properties. It is 

highly useful for applications where oil residues build up and must be removed. Removal is 

facilitated by the natural disaffinity between chromium and carbon-based materials, generally 

attributed to the slow diffusion rate for chrome and carbon, which lowers the risk of adhesion 

problems. Fluid catalytic cracking (FCC) is a traditional high-temperature low-pressure refining 

process that was developed when Stellite and hard chromium plating were more commonly used 

to protect valves [56]. FCC uses a catalyst, a fine silica–alumina powder with a particle 

distribution ranging from 10 to 150 μm, to break long-chain hydrocarbon molecules at 

temperatures up to 740 °C [57]. To mitigate catalytic erosion at high temperatures, valve 

manufacturers have been replacing Stellite and hard chrome plating with boron diffusion into 

Stellite (Cooper et al., 1992). The result is case hardening: a 50 μm deep layer with a hardness 

exceeding 1500 Hv is formed at the surface while allowing the material underneath to remain 

soft, improving the abrasive wear resistance by approximately two orders of magnitude and 

erosion resistance by 50% [58].  

 

Another alternative described by Shidu et al. (2007) is a thermal spray deposited Cr3C2-NiCr 

coating that provides a more robust protection than WC-Co coating at the higher temperatures 

used for coal gasification, where hot corrosion resistance is required [59]. However, when a 

process fluid contains up to 25% of hydrogen sulfide and carbon dioxide, high temperature 

erosive refining processes can generate sulfide stress cracking (SCC) and hydrogen 

embrittlement. One solution investigated by Cataldo (2000) is boron diffusion into nickel to 

protect valves used for oil and gas valve applications in sour gas environments, where resistance 

to abrasion, erosion, and corrosion is required [60].  

 

Another solution examined by Isakaev (2009) and adopted by the valve industry is the use of 

nickel-based self-fluxing hardfacing such as Colmonoy to prevent SCC in these environments 

[61]. In addition to superior SCC resistance, this type of hardfacing provides high hardness at 

high temperatures, improving resistance to the abrasive and erosive wear generated by the 
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catalyst [62]. Stott et al. (1973) showed that self-mated nickel-based superalloys also obtain good 

sliding wear behavior at high temperatures due to the formation of a wear protective glaze layer 

composed of compacted oxide particles that dramatically reduces the coefficient of friction and 

prevents adhesive wear [63]. Gurumoorthy et al. (2007) also observed that the formation of an 

oxide wear-protective glaze layer at 300 °C reduced the wear rate of a self-mated nickel alloy to 

less than 5% of the rate for the same alloy measured at room temperature during a sliding wear 

test under high load (50 N load applied to a 3 mm diameter tip) [64].  

 

The coal-powered industries are facing similar challenges. In an attempt to produce cleaner, 

more efficient energy, they have developed new technologies such as the Integrated Gasification 

Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These next-

generation energy sources use a gasifier to convert coal into synthesis gas via the Fischer–

Tropsch process. In these environments, valves control the flow of coal, fly ash, slag, and coke at 

pressures up to 300 bars, resulting in high velocities and intense slurry flow erosion. In addition, 

gasification temperatures above 900 °C preclude the use of self-fluxing nickel-based hardfacing: 

as explained above, the application temperature is too close to the alloy’s melting point. 

Therefore, ceramic materials are required in areas operating at extremely high temperatures [17]. 

Lugschedier (1991) reported that Tribaloy T-800, consisting of a hard intermetallic Laves phase 

dispersed in a softer cobalt alloy matrix, is used in the valve industry for abrasive applications at 

over 600 °C. It exhibits almost constant hardness, at around 400 HV300, from 400 °C to 800 °C, 

while the presence of stable adherent oxides minimizes friction and prevents adhesion, providing 

good sliding wear behavior [62]. At the low end of the temperature spectrum, Wang et al. (2011) 

demonstrated that a CVD-deposited DLC film onto the working surface of conventional WC-Co 

valve components extended the working lifetime to ~1200 hours, more than three times that of 

conventional tungsten carbide valve components in certain low temperature areas of the IGCC 

[65]. 

 

Petrochemical plants use a variety of chemical processes to transform refined petroleum products 

into detergents, adhesives, and polymers. The most severe-service petrochemical processes 

require the use of zirconium, Hastelloy, Inconel, or titanium vessels, with valve sliding surfaces 

protected by ceramic coating materials such as chrome oxide or titanium dioxide applied by 
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thermal spray and other processes [66, 67]. Hood (2010) observed that a zirconia layer formed 

by diffusing oxygen into zirconium effectively protects severe-service MSBVs that handle acetic 

acid, allowing the use of solid zirconium valves in acetic acid applications where they were 

previously considered inadequate [68]. Hood (2010) also successfully used a fluidized bed 

furnace to diffuse nitrogen into titanium, tantalum, and niobium, which are commonly used in 

the manufacture of valves for sulfuric and hydrologic service. Scrivani investigated thermal 

sprayed WC–CoCr carbide coatings and found high erosion resistance due to their high 

microhardness, which helps mitigate the wear of high pressure gas valves while preventing 

pollution and safety problems [69].  

Although hard chrome plating is not the only solution, refineries and petrochemical plants 

continue to use it extensively, not only for its good wear and corrosion resistance, but also for its 

anti-sticking property, which facilitates oil-based product handling [70]. Finding a viable 

alternative poses a tough but unavoidable challenge for valve manufacturers. For instance, the 

US Environmental Protection Agency (EPA) has declared that short-term exposure to hexavalent 

chromium, the hexavalent oxidation state that is the most toxic form of chromium, may cause 

skin irritation, and long-term exposure can damage the liver, kidneys, circulatory system, and 

nervous system. Accordingly, hexavalent chromium has been classified as one of 17 high-

priority toxic chemicals for voluntary reduction.  

 

It has therefore become critical for the valve industry to find alternative coatings that provide 

similar performance to that of hard chrome plating, but without the risks. The European Union 

(EU) has largely prohibited the use of hexavalent chromium in electronic equipment under the 

Restriction of Hazardous Substances Directive (RoHS) as well as the End-of-Life Vehicle 

Directive (EOLVD), which was adopted to reduce the amount of hazardous waste coming from 

junk vehicles. Identified in the EOLVD as one of the hazardous materials used in vehicle 

manufacturing, hexavalent chromium has been banned in the industry by the EU nation states 

stating in July 2003 [71]. These restrictions have pushed the valve industry to seek cleaner 

alternatives, as evidenced by the number of publications devoted to this topic [72, 73]. To date, 

nanostructured coatings produced by vacuum-based techniques and Cr
6+

-free plating have shown 

great promise as environmentally friendly, cost-effective alternatives to HC [74]. Chapter 3 of 

this thesis addresses this topic. 
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2.1.2.5. Mining 

Mining is synonymous with erosion and abrasion. In mining, valves are instrumental for 

transporting slurry, which is mud composed of solids mixed with water. Conversely to oil and 

gas flow, the solids in the slurry flow are the desirable materials, whereas the liquid serves as the 

carrier. In mining, the ratio of solids to liquid can range from 10% up to 80%, compared to 

around 0.5% to 2% in oil and gas extraction. In a solids carrying pipeline, the transported 

material must be finely ground so it can be suspended in water to achieve a liquid-like flow 

pattern, with a particle size distribution that can span three orders of magnitude. In order to 

reduce friction and mitigate erosion, the flow velocity is typically maintained at 0.5 m/s above 

the flow velocity at which solids deposition occurs [75]. More efficient than trucks and trains, 

slurry pipelines can hurtle mountains, traverse countries, and cross borders to bring mining 

products to processing plants.  

 

The first commercial slurry pipeline, the East Lake slurry line in Ohio, US, was engineered in 

1957 by the Consolidation Coal Company. It was 250 mm in diameter and 170 km long, and 

could carry 1.3 million tons of coal per year from mines near Cadiz to coal-fired power stations 

in Cleveland. It was shut down when the railroad offered tariffs below the pipeline’s rate. At that 

time, due to the limited availability of specific ore-handling equipment, oil extraction companies 

used equipment that was designed to handle solids entrained in the flow. Thus, ball valves 

designed for oil and gas transportation were transposed to the mining industry [76]. These sub-

optimal contrivances, with their relatively soft wear-resistant surface treatments such as Stellite 

and hard chrome plating, incurred high maintenance costs and inconvenient shutdowns.  

 

Hocke et al. (1978) examined the use of polyurethane, rubber, stainless steel, and ceramic 

materials and found that, compared to steel, they provided a six- to sixteen-fold increase in life in 

terms of slurry pipeline flow resistance [77]. Haugen et al. (1995), in a laboratory study 

mimicking field conditions, demonstrated that thermal sprayed WC-NiCr coating had markedly 

superior erosion resistance over Stellite [53]. Hawthorne (1999) showed that thermal sprayed 

coating with a chrome-free matrix was more prone to erosion-corrosion (i.e., impingement 

damage of the natural protective oxide layer, resulting in corrosion acceleration), and should be 
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avoided [78]. Other ceramic-based materials were investigated by Goyal et al. (2012), who found 

that thermal sprayed Cr2O3, Cr3C2–NiCr and WC-CoCr coatings enhanced slurry erosion 

resistance, which was attributed to their higher hardness compared to uncoated CA6NM steel 

[79-81]. More recently, nanostructured cermet powder has emerged as a promising candidate 

[82]. Harrison’s (2009) review describes how valve technology has evolved: high pressure slurry 

pipelines are now equipped with severe-service ball valves that are optimized by finite element 

analysis (FEA) and protected by HVOF WC coating. These valves are designed to control flows 

through pipelines as wide as 750 mm in diameter and operating at pressures up to 280 bars to 

transport zinc, nickel, copper, iron, phosphate, and coal [83].  

 

Slurry pipelines move mining products from mines to mineral processing plants. 

Hydrometallurgy, a mineral processing technology, is also a major user of severe-service valves. 

For these applications, protective coatings are selected according to vastly different criteria. The 

valves are usually manufactured with either titanium or duplex stainless steel substrates to ensure 

corrosion resistance, and are protected by a ceramic coating to enhance tribological performance. 

Conventional Cr2O3 applied by Air Plasma Spray (APS) was the coating of choice 20 years ago 

to protect severe-service valves against the extreme abrasion, pressure, and high temperatures 

inherent to the hydrometallurgy recovery process, where the ore is mixed with sulfuric acid in an 

autoclave. Hydrometallurgy has evolved since then: the most advanced recovery process 

involves leaching ore in a sulfuric acid–oxygen media in an autoclave at up to 4.1 bars and at 

temperatures above 240 ºC. These conditions would corrode the previously used APS-deposited 

Cr2O3 coatings. Because it is relatively inert in this environment, TiO2 appears to be a natural 

alternative to Cr2O3 [7]. However, the mechanical and tribological performance of conventional 

TiO2 is significantly lower than that for Cr2O3, resulting in higher wear rates. The industry has 

therefore been working on optimizing coating solutions for hydrometallurgy [84-86]. Appendix 

A of this thesis presents a detailed characterization study in which the mechanical and 

tribological resistance of the most promising ceramic coatings for hydrometallurgy applications 

are assessed, including a novel nanostructured n-TiO2-Cr2O3 blend.  
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2.2.  Surface engineering techniques 

Surface treatments to improve tribological performance are frequently preferred to using bulk 

materials with the required properties. Surface treatments allow benefiting from highly optimized 

tribological properties only where needed, providing superior wear performance while avoiding 

the undesirable effects of strengthening processes (such as ductility loss) in other areas of the 

components. Surface engineering methods can generally be divided into two categories: surface 

modification and coating. Surface modification methods include some of the material 

strengthening mechanisms that are described in section 2.3.1, but applied to the surface only.  

2.2.1. Surface modification 

2.2.1.1. Peening  

Surface mechanical and tribological properties can be modified by superficial plastic 

deformation. This shallow work hardening may involve blasting the surface with pellets, referred 

to as shot peening. Alternatively, a hard tool can be rolled over the surface, called knurling for a 

textured finish or burnishing for a smooth finish. The burnishing process causes the metal to flow 

plastically from surface peaks to valleys, thereby smoothing the surface finish. Both knurling and 

burnishing increase the surface strength of the material and induce compressive residual stresses 

that make the material more fatigue resistant. Shot peening and knurling produce rough surfaces, 

and are therefore used as an intermediate process prior to coating, whereas burnishing produces a 

mirror finish, and is usually performed as a final operation [87, 88]. Peening generates relatively 

low hardness, as shown in Figure 2-18, and is therefore used on non-sealing surfaces that are 

subjected to relatively low contact pressure. For example, driving shafts that slide against seals 

are burnished to mitigate wear and adhesion while reducing friction. 



29 

 

 
 

 

Figure 2-3: Typical burnishing effects with varying force using a 22 mm roller on steel of 

220 HV hardness (0.20% C; 0.30% Si; 0.80% Mg; 0.05% P; 0.05% S) [89].  

 

Peening is also used to condition sealing surfaces prior to other surface treatments in order to 

obtain the required surface roughness and to increase the strength of the substrate carrying the 

coating. 

2.2.1.2. Superficial quenching  

Superficial quenching involves a process in which the component is heated superficially using a 

flame, an induction system, or other local heating source to perform a shallow heat treatment, 

with induction hardening used extensively for steel and cast iron. The component is heated 

superficially to the austenitizing temperature and then cooled rapidly (quenched) to allow the 

face-centered cubic (fcc) austenite to form a body-centered tetragonal (bct) martensite. This 

produces high dislocation density, thus increasing hardness. The result is the formation of a 700 

HV hard surface layer up to 16 mm thick with relatively minor deformations [90]. Unfortunately, 

this surface engineering method drastically reduces the corrosion resistance by segregating the 

chromium, and is therefore unsuitable for sealing surfaces exposed to corrosive environments. 

Nevertheless, this process is used for worm gears that drive valve shafts [90]. 
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2.2.1.3. Diffusion 

Superficial hardening can be performed by diffusing metalloids or metals into a material surface. 

Diffusing metalloids such as carbon (called carburizing) or nitrogen (called nitriding) increases 

the strength of the surface while reducing its chemical affinity. Carburizing, the first discovered 

diffusion process, was originally developed using solid coal as the carbon source and a process 

temperature above 1,000 °C, resulting in a diffusion layer up to 3 mm thick into steel. Since then, 

carburizing has been refined to reduce part distortion, and gaseous precursors such as carbon 

dioxide or methane are now commonly used. Nitriding was developed later, using urea and 

cyanides as a source of nitrogen, which typically starts diffusing into the metal at 600 °C, 

generating less distortion than carburizing. The two diffusion processes can be combined in a 

process called nitrocarburizing. One drawback common to carburizing, nitriding, and 

nitrocarburizing is the potential formation of chromium-based precipitates (precipitation 

strengthening) such as CrN (1100 HV) and Cr2C3 (2150 HV), which decreases the corrosion 

resistance by segregating chromium. This drawback can be offset by modern high-pressure low-

temperature plasma-assisted diffusion processes that retain metalloids within the metal 

crystalline matrix (solid solution strengthening) [91]. Other diffusion methods include boriding, 

or using the metalloid bore to form the borides Fe2B (1750 HV) or CrB2 (2250 HV) [92], and 

siliconizing, or using silicon to form the silicide MoSi2 (1200 HV) [93].  

The most commonly used metalloid for diffusion coating in the valve industry is boron. Cataldo 

(2000) reported that parts manufactured from borided nickel were virtually impervious to attack 

from hydrochloric, hydrofluoric, and sulfuric acids, and their resistance to abrasion, erosion, and 

corrosion has been substantiated in several applications [60]. Hood also described diffusion 

coating processes whereby oxygen is diffused into zirconium to form a zirconia layer, using a 

fluidized bed furnace process, and where nitrogen is diffused into titanium, tantalum, and 

niobium to protect materials from sulfuric, hydrologic, and acetic acid service [68]. Figure 2-4 

illustrates the strength obtained on steel by the two most commonly used diffusion processes in 

the valve industry: nitriding and boriding [70].  
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Figure 2-4: Hardness as a function of temperature obtained by diffusion coatings made with 

different compounds [70]. 

 

Materials can also be saturated with metals, most often aluminum and chromium, which are 

diffused using processes known as aluminizing and chromizing, respectively. The result is oxide 

formation, which improves the oxidation resistance of coated metals [94]. Aluminizing and 

chromizing are used mainly on gas turbine parts to further improve the high-temperature 

oxidation resistance of superalloys. Publicly disclosed in 1914, the process was developed by 

General Electric Research Laboratories, and was first used on low alloy steel for aircraft engines 

during the Second World War. Since the 1970s, the process has been applied to cobalt and nickel 

alloys for modern engines [95]. Other recently developed technologies include tungstenizing 

(using tungsten) to form WC [96], titanizing (using titanium) to form TiC [97], and vanadizing 

(using vanadium) to form VC [98]. 

2.2.2. Coating deposition 

The second category of surface engineering methods involves depositing an additional top coat 

onto the surface to be protected. There is currently a substantial range of film deposition methods 
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for hard protective coating, each using different processes and materials. The most popular are 

weld overlay cladding, wet chemical methods, thermal spraying, and vapor deposition methods 

[99-101]. As mentioned in the introduction, a special effort was made to conduct a thorough 

review of the literature on weld overlay cladding and thermal spraying, which have been newly 

introduced at FCSEL. 

2.2.2.1. Weld overlay cladding 

 

Weld overlay claddings are metallic coatings bonded onto a substrate by melting both the 

substrate and coating material during deposition. Under the high temperature of the welding 

process, a molecular bond is formed with the base metal, resulting in a fully dense, 

metallurgically bonded coating. Weld overlays have a long history of use in the pipe and valve 

industry [16, 102].  

 

Among the many welding methods applied today, probably the simplest and most widely used is 

shielded metal arc welding (SMAW). Stick welding uses a consumable rod, or electrode, which 

is typically jacketed to minimize oxidation. An electric arc is ignited between the base metal and 

the tip of the rod. This creates an intense heat that liquefies both the substrate and the rod to form 

an alloy of the two metals. Metal inert gas (MIG) welding, also called gas metal arc welding 

(GMAW), is a semi-automated version of SMAW, where instead of a welding rod, the electric 

arc is formed between the substrate and a consumable wire spool (the electrode) to allow 

continuous deposition, while the welding gun feeds a constant flow of inert shielding gas around 

the weld pool to prevent oxidation.  

 

Gas tungsten arc welding (GTAW), formerly known as tungsten inert gas (TIG) welding is an 

advanced form of MIG in which the electrical arc is generated between a nonconsumable 

tungsten electrode and the weld pool, providing a more stable electric arc. As in MIG, a constant 

flow of inert gas around the weld pool prevents oxidation, and the coating material is introduced 

in wired form by an automatic feeder mechanism [103]. Plasma transfer arc welding (PTAW) is 

the latest fully adopted evolution of the arc welding process, and is widely used in the valve 

industry for hardfacing. Although similar to TIG in that an electric arc is formed between a fixed 

tungsten electrode and a substrate, in PTAW the electric arc is isolated from the shielding gas by 

http://en.wikipedia.org/wiki/Welding
http://en.wikipedia.org/wiki/Electric_arc
http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Electrode
http://en.wikipedia.org/wiki/Shielding_gas
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a plasma arc, as illustrated in Figure 2-5. PTAW obtains higher energy density while inputting 

less energy to the base material compared to other electric arc welding methods. For example, 

the PTAW temperature is typically around 28,000 °C, versus about 5,500 °C for other arc 

welding methods. 

 

Figure 2-5: Schematic illustration of plasma transfer arc welding [104]. 

 

The most recent welding method used in the valve industry, and the one that entails the lowest 

energy input, is undoubtedly laser welding [105]. Laser welding melts both the substrate and 

coating using a high-energy-density laser beam, as illustrated in Figure 2-6. As in PTAW, the 

coating material is automatically fed in powder or wire form to allow continuous welding, and 

the weld pool is protected by a constant flow of shielding gas.  

 

Figure 2-6: Schematic illustration of laser welding [104]. 

 

One drawback to the welding process is the formation of a heat-affected zone (HAZ). The HAZ 

is the area where the substrate has not melted, but its microstructure and the resultant physical 

properties have been modified by the energy produced during welding. A second drawback to 

the welding process is the change in the chemistry of the deposited overlay due to an interaction 
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between the base metal and the overlay alloy, called dilution. To minimize both these drawbacks, 

high energy density methods that use less heat input to melt the materials are recommended. 

Figure 2-7 shows the energy density for various welding heat sources [103].  

 

Figure 2-7: Energy density required for various welding methods [103]. 

 

As mentioned in the introduction, the cobalt-based superalloy Stellite is by far the most 

commonly used wear-resistant alloy deposited via weld overlay to protect valves, as reported in 

numerous publications [16]. 

Table 2.2: Nominal composition of Stellite 6 (mass %) and physical properties 

Co Cr W C Others Hardness 

[HV] 

Density  

[g/cm³] 

Melting Range 

[ºC] 

Base 27–32 4–6 .9–1.4 Ni, Fe, Si 380–490 HV 8.44 1285–1410 

 

As alternatives to Stellite, iron-based (Norem) or nickel-based (Deloro, Colmonoy) superalloys 

are preferred when Cobalt has to be avoided (Ref. 2.1.2.2) or when high abrasion resistance at 

high temperature is required (Ref. 2.1.2.4), respectively. However, high energy input renders 

weld overlay claddings incompatible with precipitation hardened substrates, and limited hardness 

yields relatively high wear rates. Consequently, other surface treatments having a more 

controlled microstructure were developed to compensate for these limitations, as described next. 
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2.2.2.2. Wet chemical processes 

Wet chemical processes are used to deposit alloys and metals that are harder than weld overlays 

at lower temperature, using relatively simple and economical equipment. They have therefore 

been extensively used in the valve industry. There are basically two wet chemical processes for 

producing a coating: electroplating and electroless plating. 

 

(i) Electroplating 

Electroplating refers to the deposition of a metallic coating onto a metallic or other conducting 

surface by passing an electric current through a liquid electrolyte. The current produces an 

oxidizing–reducing reaction, whereby the metal cations are dissolved in the solution and 

reduced, and they consequently form a coating on an electrode. One major drawback to 

electroplating is the tendency to exacerbate surface defects as the coating builds up. For the same 

reason, non-spherical components generate an uneven electrical field, resulting in the build-up of 

an uneven coating that requires extra thickness and final grinding.  

Hard chromium (HC) is the most commonly used electroplated coating. In hard chromium 

electroplating, an electrolytic bath containing hexavalent chromium (Cr
6+

) is used to deposit a 

layer of chromium onto a metal component. The HC layer is typically 50 to 150 μm thick with a 

microhardness of around 1,000 HV, and with a microcrack network due to the stresses generated 

during deposition. After plating, a typical surface shows a “cauliflower” morphology, which 

requires grinding, as seen in Figure 2-8. Although the microcrack network limits corrosion 

protection, it is advantageous in that it allows lubrication storage, debris evacuation, and 

improved toughness by withstanding strain without macrofracturing. 

 

Figure 2-8: Typical surface finish after hard chromium electroplating [70]. 

http://en.wikipedia.org/wiki/Direct_current
http://en.wikipedia.org/wiki/Cation
http://en.wikipedia.org/wiki/Electrode
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Several studies have demonstrated the effectiveness of chromium plating in reducing the wear of 

components exposed to sliding wear and abrasion while preventing adhesion. The low COF and 

wear rate of chromium plating are usually attributed to the formation of a Cr2O3 passivation film. 

One limitation of HC is the significant decrease in hardness with increasing temperature: the HC 

layer shows only 600 HV at 400 °C [70]. As reported by Hadachi et al., HC decrease in hardness 

is irreversible after 50 thermal cycles from room temperature to 800 °C, which could be due to 

stress relief [106]. Another drawback is the very limited control of the deposition process, due in 

part to the low cathode efficiency of Cr
6+

, which necessitates excessive coating build-up in high 

current density areas in order to cover low current density areas. The use of Cr
6+

 is further 

limited by strong environmental concerns raised by the Environmental Protection Agency (EPA) 

and other government agencies that classify Cr
6+ 

as a human carcinogen and one of the high-

priority toxic chemicals for voluntary reduction [71]. Nevertheless, HC is unanimously 

considered the first choice among the wet chemical processes when high wear resistance is 

required [107]. HC is therefore used to protect not only severe-service valves, but also piston 

rings, gun barrels, hydraulic rods, and aircraft landing gears.  

 

(ii) Electroless plating 

Electroless plating is a non-electrical chemical reduction process that, unlike electroplating, uses 

catalytic reduction in a solution containing a reducing agent. This makes the process insensitive 

to part geometry, which makes the coating distribution more uniform. The choice of 

electroplating materials is also limited, the most popular hard compound material being NiP 

[108]. Electroless nickel plating uses a nickel–phosphorus alloy with phosphorous content from 

4 to 13%. After deposition, the nickel plating layer is typically from 10 to 100 μm thick, 

amorphous, fully dense, and with a microhardness of around 500 HV. Nickel plating can then be 

precipitation hardened up to 1,000 HV, but it becomes more brittle, and therefore, it generally 

performs worse than HC on wear tests (nickel phosphide Ni3P precipitates). Being pore-free, 

nickel plating seals the substrate from the environment, and is useful as an intermediate layer 

between the HC and the substrate [109]. 
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Unfortunately, wet coating processes such as hard chrome plating cause significant pollution, 

and they have steadily lost popularity due to environmental restrictions (Smurkowski 1994). 

They are now being replaced by alternative coatings such as thermal spray, which are less 

polluting while offering better consistency and superior tribological performance.  

 

2.2.2.3. Thermal spraying 

Thermal spraying (TS) encompasses various methods in which a material powder is totally or 

partially melted in a high temperature gas flame and then sprayed through a nozzle onto the 

substrate. The thermal and kinetic energy of the impact deforms the molten or nearly molten 

droplets of material. These particles strike the surface and undergo rapid deformation and 

solidification to form disk-like splats, which spread onto the surface and are mechanically 

anchored to previously deposited splats as illustrated in Figure 2-9. Multiple passes are needed to 

build up the total coating thickness. 

 

Figure 2-9: Thermal sprayed coating deposition with typical lamellar microstructure [110]. 

 

TS processes allow depositing layers containing high concentrations of hard phases, which are 

difficult to synthesize using the previously described surface engineering methods. As mentioned 

in the mechanical properties section, the carbides, borides, and oxides produced from the 

combination of metalloids and metals have the highest bonding energy. Indeed, TS is one of the 

few surface treatment processes in which these high strength compounds are deposited directly 

onto component surfaces. Furthermore, TS allows tailoring the chemical composition and 
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microstructure of the final coating material to obtain the required mechanical and tribological 

behavior. 

 

The first TS process was invented in 1911 by Max Ulrick Schoop, in Zurich. In his patent, he 

described a “jet of molten particles forming a coating.” In TS, the coating materials are sprayed 

at a high deposition rate to form relatively thick coatings ranging from ten to several hundreds of 

m [111, 112]. Thermal spray processes fall into three main categories, according to the energy 

source. 

 

(i) Chemical heat source – Combustion 

The first category, called flame spraying, involves burning a combustible material mixed with 

oxygen to generate thermal and kinetic energy. Several variants of flame spraying have been 

developed over the years to improve coating density and adhesion. Powder flame spraying was 

the first TS technology to be adopted, introduced in the 1930s. The powder was simply fed into 

the middle of a nozzle where it was melted, accelerated toward the substrate by the exhaust 

gases, and sprayed onto the surface. However, with relatively low speed and high oxygen 

content, these types of coatings have high porosity and are oxidized over 20%. A typical gun is 

illustrated in Figure 2-10.  

  

Figure 2-10: Cross section of a basic flame spray gun [104]. 

 

The flame spraying process was improved during the 1980s, and today the most commonly used 

flame spraying process is the High Velocity Oxygen Fuel (HVOF) process (also known as High-

Velocity Oxy-Fuel). The main difference from a regular flame spray gun is that the exhaust gases 
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are compressed in a chamber and then passed through a converging–diverging nozzle where 

supersonic velocity can be achieved. The powder is typically fed axially into the nozzle, where it 

is heated and accelerated toward the substrate.  

  

Figure 2-11: Cross section of a High-Velocity Oxy-Fuel gun [104]. 

 

HVOF coatings are extensively used as thermal barriers and wear- and abrasion-resistant 

coatings on turbine blades, valves, and moving machine components [112, 113].  

 

(ii) Electrical heat source 

The second category of TS uses electricity to generate heat. The first such process was electric 

arc wire spraying. Two wires of coating material, charged with opposing polarity, are fed into the 

arc gun. As they come into contact, they generate a large amount of heat, which melts the tips. 

Compressed air is used to atomize the molten material and accelerate it toward the substrate 

(Figure 2-12). The electric charge generates higher temperatures than combustion does and 

reduces the risk of contamination from combustion by-products.  

 

Figure 2-12: Cross section of an arc wire gun [104]. 

http://en.wikipedia.org/wiki/De_Laval_nozzle
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One major drawback to arc wire spraying is that the material must be conductive and in the form 

of a wire. The second limitation, similar to flame spraying, is the relatively low particle velocity 

obtained. Air plasma spraying (APS) was developed to offset both these limitations. In plasma 

spraying, the material can be deposited in powder form, including non-conductive materials such 

as ceramics. The converging–diverging nozzle also allows the particles to exceed supersonic 

velocity as illustrated in Figure 2-13. Plasma spraying can also be carried out in a controlled 

environment inside a sealed chamber in low-pressure inert gas atmosphere to mitigate oxidation 

and is then referred to as vacuum plasma spraying (VPS). 

 

Figure 2-13: Cross section of a plasma spray gun [104]. 

  

(iii) Cold spraying 

As the name implies, cold spraying uses mainly kinetic energy to deposit a coating. This method 

was developed in Russia in the 1990s when a coating was accidently formed during erosion tests. 

In cold spraying, particles are accelerated to very high speeds by the carrier gas, which is forced 

through a converging–diverging nozzle. Particles with sufficient kinetic energy deform 

plastically and bond mechanically with the substrate to form a coating. The critical velocity 

required to form bonding depends on the material properties, the powder size, and temperature. 

Soft metals such as Cu and Al are best suited for cold spraying, but coatings made with other 

materials (W, Ta, Ti, MCrAlY, WC–Co, etc.) have been reported [114]. 

http://en.wikipedia.org/wiki/De_Laval_nozzle
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Figure 2-14: Cross section of a cold spray gun [104]. 

 

(iv) Spraying and Fusing  

Spraying and fusing (S&F) is a variant of TS in which a self-fluxing alloy is first deposited onto 

the surface using one of the TS processes described above. In a second step, the coating material 

is heated above its melting point, providing a metallurgical bond (also called a diffusion bond) 

between the splats and substrate while sintering it. This fusing step can be performed with 

various heating sources, including an oxy-acetylene torch and/or a controlled vacuum furnace. 

S&F coatings combine the advantage of weld overlay cladding by forming a metallurgical bond 

and the flexibility of thermal spraying in terms of application. S&F is frequently used to deposit 

abrasion-resistant coatings with high packing density and cohesive strength [115].  

 

With the exception of S&F, a limitation of TS is the weak mechanical bond that is formed 

between the splats and substrate, which limits both the adhesive and cohesive strength of the 

coating, increasing the risk of spallation. This mechanical bond is further compromised by the 

presence of porosities in the TS coating, which increase the risk of crevice corrosion. Therefore, 

when high bond strength and/or low porosity are required, the process must be optimized with 

respect to the combination of thermal and kinetic energy (see Figure 2-15).  
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Figure 2-15: Particle velocity and gas temperature for various thermal spray processes [110]. 

 

In addition to the mechanical bond and porosity, a third limitation of TS, as described in Chapter 

5, and with the exception of S&F, is the quenching of the relatively hot sprayed particles on 

impact with the colder substrate. Consequently, the deposited material is typically in tension and 

in a metastable state, with some amorphous phases; even tough residual stresses can be 

controlled via deposition parameters, some HVOF-deposited and most cold spray-coatings end it 

up in compression.  

 

Hard materials deposited by thermal spray are generally classified into three categories: 

ceramics, cermets, and alloys. The pure ceramic materials, such as Cr2O3 and TiO2-Cr2O3, are 

usually deposited by APS because they have a higher melting temperature and are oxidation-

resistant. Table 2.3 shows that APS ceramic coating exhibits microhardness up to 1,500 HV, 

providing greater sliding wear resistance than hard chromium plating or Stellite 6. In addition to 

superior sliding wear resistance, APS ceramic coatings have a low CTE while maintaining high 

hardness at high temperatures, and are known for corrosion resistance [116]. Despite their 

excellent hardness, however, APS ceramic coatings have relatively low resistance to abrasive 

wear, as shown in Figure 2-16. This puzzling behavior has been attributed to the relatively low 

bond strength between splats and the brittle nature of ceramics, both properties that favor crack 

propagation and debris formation during abrasive wear [117]. This failure mechanism can be 

mitigated by either controlling the chemical composition of the coating (i.e., blending ceramics 
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with differing ductility) or by controlling the microstructure and grain morphology through the 

deposition process and/or the original powder (i.e., fine-structured ceramics are more ductile 

than conventional ceramics) [118].  

Table 2.3: Most commonly used TS coatings for severe-service valves [119]. 

Coating  

Material 

Typical TS deposition 
method  

Nominal 
Composition  

(mass %) 

Microhardness at room 
temperature 

HV-300g 

Sliding wear rate  

Pin-on-disc test 

at room 
temperature 

mm
3
/(N.m)* 

Ceramics Plasma Spraying 

Cr2O3 1500 5.5x10
-8

 

TIO2 – Cr2O3 900 3.7x10
-5

 

Cermets HVOF 

Cr3C2 – NiCr 

(75/25) 
900 1.6x10

-6
 

WC – Co 

(83/17) 
1200 1.5x10

-8
 

WC – NiCr 

(73/20/7) 
1100 2.1x10

-8
 

Self-
fluxing 

Alloys 

Spraying & Fusing 

NiCrB 800 2.0x10
-5

 

NiCrWB 750 1.8x10
-5

 

References 

HC electroplating 1000 3.6x10
-4** 

Stellite 6 overlay 450 3.3x10
-5

 

*A normal load of 25 N was applied to a tungsten carbide 4.75 mm diameter ball. The diameter of the wear track ring was 7 

mm and the rotation speed was 546 revolutions per minute. 

**Substrate was reached. 

 

Another solution is to form composite materials composed of ceramic particles embedded into a 

metallic matrix (see Figure 2-17). Called cermets, these composites constitute the second 

category of thermal spray materials, with higher cohesive strength than pure ceramics [112]. This 

additional cohesive strength compensates for the lower hardness, and produces greater resistance 

to abrasive wear, as shown in Figure 2-16. Given their low melting point and temperature-

sensitive constituents, cermets are usually deposited using HVOF.  
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Figure 2-16: Wear rate of several TS coatings compared to HC coatings during the Taber 

Abraser test – ASTM F1978 [117]. 

 

Although metallic alloys can also be deposited by TS, their porosity and mechanical anchoring 

limit the mechanical and tribological performance. Therefore, with the exception of S&F, TS is 

mainly used to deposit alloys when the deposited overlay materials crack during welding 

(Tribaloy alloys) or when the substrate cannot tolerate high temperature (precipitation hardened 

materials). S&F allows sintering and diffusion at the interface with the substrate and between the 

splats. However, it is limited to self-fluxing alloys with low fusion temperature, such as NiCrB 

and NiWCrB. As reported in several publications, the traditional S&F process provides similar 

microstructures and wear performance to those of modern overlay cladding processes such as 

laser deposition, while being less controllable [120-122].  

 

Figure 2-17: Cross section of agglomerated and sintered cermet powder prior to deposition.  
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Despite their strength and versatility, TS coatings have demonstrated certain limitations in 

several applications, including fossil power generation, as described in Chapter 5, and in mining, 

as described in Chapter 6. These limitations have called for the development of alternative 

coating systems such as PVD and PECVD. 

2.2.2.4. Vapor deposition  

The vapor deposition methods can be divided into two categories: 1) physical vapor deposition 

(PVD), which uses a solid or liquid precursor, and 2) chemical vapor deposition (CVD), which 

uses a chemical vapor precursor. Both methods use vacuum equipment operating under sub-

atmospheric pressure to form thin films.  

 

(i) Physical Vapor Deposition 

PVD involves the formation of vapors from a solid source using thermal energy (evaporation) or 

momentum transfer (sputtering). It is usually performed at low pressure to allow directional 

transport of gaseous species from the source to the substrate. 

Figure 2-18: A typical physical vapor deposition system [123]. 

 

In the evaporation process, the substrate is placed inside a vacuum chamber where the material to 

be deposited is heated to evaporation point and condensed onto the substrate surfaces. The 

growing film can be simultaneously bombarded from an independent ion source in order to 

increase the film density so called ion beam assisted deposition (IBAD) as shown on Figure 

2-18. 

 

In the sputtering process, the material is vaporized at lower temperature than for evaporation, 

using ion bombardment, which causes the atoms of the target material to sputter and condense 

 
 

 
 

 

 

 IBAD 
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onto the substrate surfaces. PVD-produced films have imperfections due to the line-of-sight 

nature of the PVD deposition process, whereby the flux lands onto only higher parts of the 

developing film. Consequently, CVD is used when technically and economically feasible as it 

requires higher temperature and complex (corrosive) chemistry. 

 

(ii) Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is a chemical thin film deposition process in which the 

substrate is exposed to one or more volatile precursors that react on the substrate surface to 

produce the desired coating by thermal activation as illustrated on Figure 2-19. Frequently, this 

process also produces volatile by-products, which are removed by gas flow through the reaction 

chamber. When plasma is used to increase the chemical reaction rates of the precursors, the 

process is referred to as plasma enhanced CVD (PECVD). 

Figure 2-19: Schematic representation of a typical chemical vapor deposition system [123]. 

 

PVD and CVD are used to prepare various types of relatively thin (up to several m) coatings. 

High controllability makes these processes very attractive for producing nitrides and carbides of 

transition metals, as well as oxides, borides, and diamond films [100]. Vapor deposition is 

compatible with a range of substrates, including metals and metal alloys (e.g., steel, titanium, and 

aluminum), cemented carbides, and ceramics. The operation is generally flexible enough to 

provide good process control, and hence control of the film structure and composition. It also 

produces few contaminants and is thus environmentally friendly. Furthermore, because many 

PVD- and CVD-produced hard films are made with transition metal nitrides and carbides, they 

have advantageous mechanical and tribological properties due to the possibility of mixing 

covalent and metallic bonds.  
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Covalently bonded carbon and boron compounds have emerged as highly suitable materials for 

CVD. These include polycrystalline or nanocrystalline diamond, diamond-like carbon (DLC), 

CNx, BN, BC, and some ternary compounds such as B-N-C or Si-C-N [124]. The excellent 

mechanical properties, including high hardness, high erosion and corrosion resistance [125], and 

low surface friction, combined with high density and chemical inertness [126] make these 

materials particularly appropriate for nuclear, military, space, and valve applications as well as 

high wear environments.  

Using the traditional binary and ternary systems described above, these coatings frequently have 

limited hardness and toughness due to the formation and propagation of dislocations and cracks. 

More recently, research has focused on the design and development of thin film systems with a 

microstructure controlled at the nanometer scale, for example, nanocomposites.  

In general, nanocomposite coatings (NC) formed by particles that are several to several tens of 

nanometers in size have greatly enhanced mechanical, tribological, and other functional 

properties while exhibiting superhardness (> 40 GPa), high toughness, and high thermal stability 

[127-130]. They have also shown very high erosion wear and superior corrosion resistance [131, 

132]. These features are due to the high packing density of the film, and particularly the 

introduction of internal interfaces that prevent crack propagation under loading. The critical 

parameters for producing these structure-controlled phase precipitation materials are the grain 

size, intergranular distance, and type of interface [133, 134]. Recent advances in the field, 

including better understanding of deposition and characterization methods, have allowed 

controlling these parameters as illustrated on Figure 2-20.  

 

Figure 2-20: nanocrystalline-TiN/aSiN nanocomposite formation and mechanical properties 

[128]. 
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The nc-TiCN/a-SiCN quaternary NC coating system developed at FCSEL has demonstrated 

exceptional solid particle erosion resistance, high oxidation resistance, and excellent tribological 

properties [128]. Although the Ti-Si-C-N system produces excellent mechanical properties, its 

adhesion and high-temperature oxidation resistance can be improved by adding alloying 

elements. Elements such as Al, B, and V [135-138] have been shown to diffuse to the surface 

and form oxides, which lower the friction and protect against oxidation, while the hard structure 

of the nitride provides good wear resistance. Furthermore, the compatibility of this NC material 

with application-specific substrates can be greatly improved by reducing its elastic modulus E by 

adding a more ductile element (e.g., Ni, Cu [138]). 

According to the Hall–Petch equation, superhardness can be obtained in hard polycrystalline 

materials when the grain boundary sliding is inhibited by introducing strong interfaces. This is 

done by creating a nanocrystalline layer consisting of nanocrystals that are embedded in a 

matrix. This nanocomposite material deforms only when cracks form and grow in the matrix. In 

the available theoretical models [134], the crack formation and growth mechanisms are scaled 

down from traditional fracture mechanics. Both the grain size and the intergranular distance must 

be controlled and optimized to obtain superhardness.  

For use in advanced protective coatings, boron carbide (BC) appears very promising. It is one of 

the hardest materials known to man, after diamond and cubic boron nitride. Depending on the 

deposition conditions and the carbon content, various types of BC can be produced, both 

crystalline (rhombohedral and tetragonal) and amorphous. The rhombohedral phase is the hardest 

of the boron carbides, with H at up to 50 GPa [139].  
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2.3. Surface mechanical response 

The tribological behavior of a coating system is intimately connected to the intrinsic properties 

of the composite materials. Among others, hardness, modulus of elasticity, toughness, load-

carrying capacity, adhesion, and thermal expansion determine contact wear behavior. 

2.3.1. Hardness 

The ability of a surface to resist local plastic deformation is called its hardness (H). Hardness has 

long been considered the main parameter impacting the sliding wear of materials. According to 

the classical Archard wear equation, the volume loss of a material is directly proportional to the 

applied normal load (i.e., force) and the sliding distance and inversely proportional to the 

hardness or yield strength of the softer surface [140]. 

𝑄 =
Contant∗ Load ∗Sliding Distance

H
  (1) 

In 1900, Johan August Brinell proposed the first modern methodology to measure the yield 

strength of material surfaces. His procedure was the basis for the first standard hardness test, 

which is now covered by ISO 6506 and ASTM E10-12. According to the Brinell procedure, the 

material surface is indented at a known load using a hardened steel or carbide ball called an 

indenter. As the indenter penetrates the surface, the diameter of the contact area increases while 

the nominal contact pressure (p) decreases until equilibrium is reached. After the test, the surface 

imprint left by the indenter is measured and the nominal contact pressure at equilibrium is 

calculated using the following equation: 

𝑝 =  
𝐿𝑜𝑎𝑑

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐴𝑟𝑒𝑎
  (2) 

When using this procedure on steel plates, Brinell noticed that p, which was expected to be 

constant for bulk material, increased with increasing load, most probably due to strain hardening. 

Based on this observation, he developed the Brinell Hardness Number (BHN), which provides 

hardness numbers for steel that are almost unaffected by load, as follows: 

𝐵𝐻𝑁 =
Load

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 

(3) 

Since then, other indentation tests using different indenter shapes and loads have been developed 

for specific purposes, including the Vickers and Knoop hardness tests. However, the basic 

principle of measuring the impression left by the indenter remains the same, with nominal 

contact pressure as a dimension of H. Tabor (1951) further demonstrated that for bulk material 

http://en.wikipedia.org/wiki/ASTM
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having a constant yield stress 𝜎𝑦, only one third of the stress plays a role in plastic flow, and 

there is a direct correlation between H and the yield strength of the bulk isotropic material [141], 

as follows:  

𝐻 ~ 3 ∗ 𝜎𝑦  (4) 

The yield strength is the stress at which a material begins to deform plastically, as illustrated in 

Figure 2-21. Therefore, H can be increased by tailoring the strength of the bulk material to 

prevent plastic deformation, thereby increasing hardness and reducing wear. 

  

Figure 2-21: Stress-strain curve for a ductile material [142]. 

 

More recently, depth-sensing indentation (DSI) methods have been developed to determine 

hardness at very shallow depths, where H is calculated from the load-displacement curve as well 

as other elastic–plastic properties of the material. As described in detail in Chapter 3, these 

methods are particularly suitable for hard elastic materials such as nanostructured materials, 

where, as demonstrated by Hill (1949), H is also a function of the elastic–plastic properties 

[143]. 

 

As demonstrated unintentionally by Brinell, material strength can be controlled by work 

hardening, which means increasing the dislocation density in the lattice structure. In other words, 

materials with fewer imperfections in the lattice structure offer less resistance to plastic 

deformation compared to materials with high dislocation density. For example, forgings are 

known to have higher strength than castings for a given material: the forging manufacturing 

process produces higher dislocation density compared to the casting process, which produces 

fewer lattice imperfections. 

 

http://en.wikipedia.org/wiki/Plasticity_(physics)
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Plastic deformation of bulk material can also be limited by alloying elements that provide higher 

packing density and bonding energy. In this process, atoms of one element are added to those of 

another, producing defects in the lattice structure. The added atoms are dissolved within the 

original lattice structure, where they either replace the original atoms (substitutional alloys) or 

occupy non-equivalent sites or the interstices between the original atoms (interstitial alloys). In 

both scenarios, the new atoms generate lattice distortions that prevent plastic deformation, thus 

increasing the yield stress of the material [99].  

 

A third method to prevent plastic deformation consists of precipitating a second phase within the 

material. Precipitates distort the lattice, creating resistance to grain boundary sliding while 

increasing the material strength. This strengthening mechanism, discovered by Alfred Wilm in 

1901 while developing aluminum alloys for the aeronautics industry, can be applied to several 

alloys, including maraging steel, 15-5PH and 17-4PH stainless steel, and the superalloys Inconel 

718 and 750.  

 

Figure 2-22: Categories of hard materials with characteristic crystal structures [144]. 

 

As illustrated in Figure 2-22, the hardest phases are the ceramic phases, which are composed of 

metals combined with metalloids (non-metallic elements), which result in the formation of 

carbide, nitride, oxide, silicide, or boride bonds (e.g., TiN, VN, ZrN [145], TiC [146], and WC 

[147]). For optimal precipitation hardening, the materials must be carefully selected for their 

http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Yield_stress


52 

 

 
 

chemical composition, because not only do the two phases affect the material strength, so do the 

size and shape of the precipitates and their distribution across the alloy. 

 

This leads to the fourth strengthening mechanism, which consists of controlling the grain 

morphology of a given material. As demonstrated by both Hall [148] and Petch [149], the yield 

strength of a material is inversely proportional to the square root of the grain size, using the 

following equation: 

𝜎𝑦 = 𝜎𝑜 +  
𝑘

√𝑑
 (5) 

where 𝜎𝑦 is the yield strength of the hardened material, 𝜎𝑜 is the yield strength of the annealed 

material, d is the grain size, and k is a constant. Therefore, according to the classical Hall–Petch 

equation, hardness can be controlled in hard polycrystalline materials when the grain-boundary 

dislocation is inhibited by a large number of strong interfaces. Stronger interfaces can be 

produced by a structure consisting of nanocrystals embedded in an amorphous matrix. Both the 

grain size and the intergranular distance must be controlled to optimize hardness. Chokshi (1989) 

validated this finding down to a crystallite size of 5 to 50 nm in a study of copper and palladium 

[150]. Below this limit, certain flaws in the material at the grain boundary tend to produce 

decreases in strength and hardness, known as the inverse Hall–Petch effect [151].  

2.3.2. Modulus of elasticity  

Although hardness largely determines the sliding wear resistance of a surface, other mechanical 

properties exert some influence as well. As Hertz demonstrated in his classic paper On the 

contact of elastic solids, the modulus of elasticity (E) affects the contact pressure between solids 

[152]. As shown in Figure 2-21 the modulus of elasticity of a material is the slope of its stress–

strain curve, and it describes the material’s capacity to deform elastically under load, as defined 

by Hooke’s law. Thus, less rigid materials have higher E (i.e., smaller deformation), and less 

elastic materials have lower E (i.e., greater deformation).  

For example, the maximum contact pressure Pmax between two spheres that are pressed against 

each other and have the same radius R is equal to: 

 𝑃𝑚𝑎𝑥 =  
1

𝜋
∗ (

6 ∗ 𝐿𝑜𝑎𝑑 ∗ 𝐸∗ 2

𝑅2
)

1
3⁄  (6) 
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where 
1

E∗
=

1−𝜐1

𝐸1
+

1−𝜐2

𝐸2
, E1, and E2 are the elastic moduli, and υ1 and υ2 are the Poisson ratios for 

each material. Leyland [153] and Musil [135] later discovered that the wear rate is not only 

proportional to the hardness, but also inversely proportional to the material’s modulus of 

elasticity. This seemingly intuitive result is due to the fact that materials with low E are more 

elastic, resulting in lower contact pressure for a given load. Consequently, the ratio of the elastic 

strain to failure (H/E) is a significant indicator of the wear behavior, and should be maximized to 

reduce wear. Another approach to predicting the wear resistance of a coating material is to 

calculate the material’s resistance to plastic deformation using Johnson’s proposed ratio H
3
/E

2
, 

whereby greater resistance to plastic deformation results in a lower wear rate [154]. 

2.3.3. Toughness 

Interestingly, combining high H with low E creates the conditions for greater material toughness. 

The toughness of a material is determined by its capacity to absorb energy and to plastically 

deform prior to crack rupture. Toughness is therefore proportional to the maximum strain that a 

material can withstand prior to fracture. Toughness can be assessed by different methods, 

including the strain-to-fracture test, which measures the amount of strain required to fracture, 

and the fracture toughness (K1c) test, which measures the resistance to crack propagation up to 

rupture. Strengthening can produce a transition from ductile behavior, as shown in Figure 2-21, 

to the brittle behavior that is typical of ceramics, where no plastic deformation occurs before 

fracture, as shown in Figure 2-23.  

 

Figure 2-23: Stress–strain curve for brittle material in tension and in compression [142]. 
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Figure 2-24, published by Zum Gahr, shows various types of plastics, ceramics, and metallic 

alloys as a function of H and K1c, illustrating how the ductility of the materials decreases with 

hardening, and highlighting the trade-off between strength and toughness. 

 

Figure 2-24: Schematic representation of fracture toughness as a function of yield stress [155]. 

 

The main explanation for this ductility loss is the very high E that is generally associated with 

high H [156]. Zhang’s theoretical models show that although superhard nanocomposite materials 

are highly resistant to deformation, they can deform when cracks form and grow in the matrix 

[134]. Fortunately, hard brittle materials can be toughened by adding a ductile component, as 

discussed in Appendix A [136].  

2.3.4. Load-carrying capacity 

Hardness, modulus of elasticity, and toughness are the three classical mechanical properties that 

determine a material’s wear behavior. However, in the case of a coating material, several authors 

have found that when localized stress fields extend beyond the coating thickness, they can 

produce permanent deformation at the coating–substrate interface or within the base material 

without necessarily exceeding the yield strength of the coating itself. The load-carrying capacity 

is therefore the capacity of a surface to distribute peak stresses generated by localized loading 

that do not exceed the yield strength of the coating itself without developing permanent 
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deformation, which includes brinelling (plastic deformation of the substrate without coating 

fracture), the eggshell effect (strain of the substrate up to coating fracture), and spallation 

(coating–substrate interface fracture). Although the load-carrying capacity can be controlled by 

adjusting the mechanical properties of the surface treatment, particularly thickness and modulus 

of elasticity, as shown in Figure 2-25, the mechanical properties of the submaterials also play a 

critical role in regulating stresses within the coating, base material, and interface. This also 

applies to the addition of interlayers, as discussed in Chapter 5: one or more interlayers allow for 

gradual changes in the mechanical properties, thereby reducing the elasto-plastic gradient and 

peak stresses and hence preventing both brinelling and the eggshell effect [157, 158].  

 

Figure 2-25: Schematic illustration of various limiting factors that determine the load-carrying 

capacity of a coated surface. Limiting factors: (a) coating fracture, (b) spallation, (c) substrate 

elastic deformation, (d) substrate plastic deformation, (e) substrate fracture, and (f) plowing 

friction [159]. 

2.3.5. Adhesion  

Hardness, modulus of elasticity, toughness, and load-carrying capacity are the main mechanical 

properties, along with microstructure, that determine the behavior of a material when exposed to 

abrasion, erosion, and sliding contact. However, these properties do not reflect the material’s 

tendency to adhere to a counter body. Adhesion between contacting bodies should be 

distinguished from coating-to-substrate adhesion. There is no unified theory of adhesion and 

adhesive wear, and there is considerable controversy in the literature on this topic. Materials 

show significant differences in properties, and as originally proposed by Roach in 1956, 

mutually soluble elements tend to adhere and therefore should not be slid against each other 
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[160]. This theory has been partially invalidated by several counterexamples, such as pure 

chromium, which slides well on steel despite being soluble into it. The sliding performance of 

chromium can be explained by the Cr2O3 passivation layer that forms naturally over the surface, 

and by a second theory developed by Buckley in 1981, whereby chemically active materials that 

are electron donors have a greater tendency to adhere than passive materials such as chromium 

[161]. Furthermore, as proposed by Buckley and Czichos, the lattice structure appears to have a 

significant effect on adhesion: close-packed hexagonal materials having fewer slip systems (e.g., 

graphite, molybdenum disulfide, or boron nitride) show lower adhesion than more ductile face-

centered and body-centered materials for a given hardness [18, 162]. Debris generated during 

wear tests has also been shown to affect adhesion, as it tends to increase the contact pressure 

between the two bodies by reducing the contact area. Debris is usually produced by the two 

bodies, and is work hardened, and therefore also capable of scoring them.  

 

In certain cases, adhesive wear is beneficial when it favors the retention of a transfer film that 

reduces the wear rate and/or the coefficient of friction, as described in Chapter 3. This can be 

explained by the formation of low-shear-strength films such as a micro-graphite layer 

(graphitization) over a diamond-like coating, or an oxide layer (passivation) over hard chrome 

plating and nickel-based superalloys. These layers release a small amount of debris that reduces 

friction while minimizing wear volume (i.e., a solid lubricant). The tribomechanical properties of 

the transfer microfilm are influenced by the environment (e.g., chemical composition, 

temperature) and the contact conditions (e.g., local pressure and flash temperature, which can 

exceed 1000 °C ) [163].  

 

Although there is no commonly accepted theory of adhesion, adhesion does in fact occur, and it 

can strongly impact the wear rate and the friction coefficient, sometimes up to premature failure 

(i.e., galling). Therefore, material combinations must be carefully selected and debris and 

transfer films must be controlled in order to control both adhesion and sliding wear. Given the 

ongoing theoretical controversy, testing remains the most conservative method to ensure proper 

materials selection and contact design. 
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2.3.6. Thermal expansion 

Thermal expansion is the tendency of a material to change in volume in response to a change in 

temperature. The degree of expansion divided by the change in temperature is called the 

coefficient of thermal expansion (CTE). This property, which is intrinsic to every material, has a 

critical impact on the internal and interfacial stresses after coating deposition (residual stress) 

and during contact (thermal stress). As described in Chapter 4, a thermal expansion mismatch 

between the substrate (CTEs) and the coating (CTEc) along with variations in temperature (ΔT) 

and the modulus of elasticity of the coating (Ec) can produce detrimental thermal stresses. The 

following equation is commonly used to approximate the thermal stresses generated in a coating 

with change in temperature [164, 165]:  

σ𝑡ℎ =  𝐸𝑐∆T(𝐶𝑇𝐸𝑐 − 𝐶𝑇𝐸𝑠) (7) 

 

The differences in the coefficient of thermal expansion (CTE) between the coating and the 

substrate contribute to thermal stresses, which also vary with the temperature gradient and the 

modulus of elasticity for the coating and substrate. 
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 EXPERIMENTAL METHODOLOGY  CHAPTER 3

This research thesis focuses on the development of innovative protective coatings and deposition 

processes to advance valve technology. Three specific objectives are targeted, as follows: 1) the 

development of alternatives to hard chromium electroplating; 2) an investigation of recurrent 

failures in the field; and 3) the development of new coating architectures. For practical 

applications, the mechanical and tribological properties and the microstructure of protective 

coatings are of critical importance [166]. The film has to adhere to the substrate, resist static and 

dynamic mechanical contact, and withstand the effects of the working environment. This chapter 

presents an overview of the methods used to assess these properties in the studies covered in this 

thesis.  

3.1. Mechanical characterization 

3.1.1. Microhardness 

Microhardness (MH) measurements were performed using a micro scratch tester (MST) (CSM, 

Peseux, Switzerland) equipped with a Vickers indenter under loads from 5 to 30N. Indent sizes 

were assessed with an optical microscope. Ten indentations were performed on each sample. 

3.1.2. Load-carrying capacity 

The load-carrying capacity of the coating systems was quantitatively assessed with surface 

hardness measurements using similar equipment to that used for microhardness, at loads varying 

from 5 N to 30 N and a dwell time of 30 seconds. Macrohardness measurements were also 

performed using standard Rockwell equipment at loads varying from 15 Kg to 150 Kg. All 

indent sizes were assessed using an optical microscope, including indents made by the Rockwell 

diamond stylus (120 ° cone angle, 200 μm radius). The corresponding hardness values were then 

calculated as the ratio between the load and the total contact area, estimated based on the 

nominal indenter size. 

 

3.1.3. Nanohardness and modulus of elasticity 

Nanohardness HN and the reduced modulus of elasticity Er were assessed using a triboindenter 

(Hysitron Inc., Minneapolis, USA) equipped with a Berkovich pyramidal indenter tip. The 
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maximum load used to assess HN and Er was 10 mN. The test procedure involves continuous 

monitoring of load and indenter position during loading and unloading cycles. An example of a 

load–displacement (F-h) curve is shown in Figure 3-1. The load–unload curve is measured as a 

function of penetration depth at 1 nm resolution. HN and Er are calculated according to the 

Oliver–Pharr method [167] and based on 100 measurements per coating. The initial slope of the 

unload curve at the maximum load is defined as the stiffness S of the material, which is used 

together with an experimentally derived tip area function to calculate HN and Er. 
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max  (8) 
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Figure 3-1: Typical load–displacement curve obtained by depth-sensing indentation. 

 

where Fmax is the maximum applied load, A is the surface area function, and Smax = dF/dh is the 

stiffness at the maximum load. In this case, Er is the reduced Young’s modulus:  
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 (10) 

where E
’
 and Ei are the elastic modulus of the film and the indenter, respectively, and ’ and i 

are the Poisson’s ratio of the film and the indenter, respectively. For a diamond indenter, Ei = 
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1140 GPa and i = 0.07. The elastic recovery R can then be calculated from the differences in the 

maximum and residual depth obtained from the F–h curve (see Figure 3-1): 

max

max

h

hh
R

p
  (11) 

3.1.4. Scratch hardness 

Scratch hardness (HS) was measured by the MST equipped with a hemispherical diamond 

Rockwell C stylus (50m tip radius) at a constant 10N load. The scratch length was set at 5 mm 

and the sliding speed was kept constant at 6 mm/min. Three scratches were performed on each 

assessed coating. Scratch width was measured at three positions on each scratch track using an 

optical microscope. HS was calculated using the formula Hs =
8∗F

 ∗w2, as described by Suresh and 

al. [168], where w is the scratch width (m) and F is the applied load (N).  

3.1.5. Sliding wear resistance 

The tribological properties of the coatings were assessed with pin-on-disk (CSM, Peseux, 

Switzerland) and pin-on-flat linear reciprocating tribometers (Tricomat, Montreal, Canada) using 

different parameters according to the individual studies. After wear testing, wear tracks were 

inspected using a profilometer to determine the wear volume. The wear coefficient K was 

calculated using the formula K =
V

F∗S
 , where V is the worn volume (mm

3
), S is the sliding 

distance (m), and F is the load (N). SEM observations were made to assess the wear 

mechanisms. 

3.1.6. Friction coefficients 

This test method involved a typical pin-on-disk test apparatus: a ball-shaped upper specimen that 

slides against a rotating disk as a lower specimen under a prescribed set of conditions (contact 

load, speed, etc.). The load is applied vertically downward with a motor-driven carriage that uses 

the force–load sensor for feedback to maintain a constant load. This test allows monitoring the 

actual dynamic normal load, friction force, and friction coefficient during testing. 
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3.1.7. Bond strength 

The bond strength of the coatings was assessed with an MST (CSM, Peseux, Switzerland). The 

MST provides four different methods of assessing layer adhesion: 

1. Acoustic emission detection 

2. Frictional force measurement 

3. Penetration depth measurement 

4. Optical observation via an attached microscope. 

In this test, a hemispherical diamond Rockwell C stylus (50 μm tip radius) is moved along the 

surface under a linearly increasing load from 0.1 N to 30 N. The critical load Lc is the load when 

damage to the coating occurs. Lc values are determined by observations with an optical 

microscope using a calibrated sample positioner. 

Coating adhesion was also qualitatively assessed by Rockwell C indentation according to 

CEN/TS/1071-8 standard using similar equipment to that used to assess the load carrying 

capacity. This procedure allows ranking the coatings based on image analysis after indentation at 

an applied load of 150 Kg. 

3.1.8. Dry sand abrasion resistance 

The dry abrasion resistance of the coatings was tested with the dry sand/rubber wheel abrasion 

test (ASTM G65 / procedure D-modified, 45 N, 2000 wheel revolutions, Shore 60A rubber 

wheel). Two samples of each coating type were tested. Prior to testing, sample surfaces were 

ground with a diamond wheel to produce a surface finish of about 0.2 to 0.3 µm. The sample 

volume loss due to testing was determined with an optical profilometer. 

3.1.9. Wet sand abrasion resistance 

The wet abrasion resistance of the coatings was measured with a wet sand/rubber wheel 

according to modified ASTM G105-02 procedure guidelines using a Falex sand abrasion test 

machine and controlled slurries. For each coating type, one rectangular shaped specimen (1” x 3” 

x 0.5”) was submitted to a 5,000-cycle run under 22 N normal load and using a 7 foot diameter 

Shore A60 neoprene rubber wheel at a nominal speed of 245 rpm. The slurry mixture was 

composed of AFS 50/70 rounded quartz grain sand and deionized water in a ratio of 0.940 kg 
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water / 1.500 kg sand. Prior to testing, the sample surfaces were ground with a diamond wheel to 

produce a surface finish of about 0.2 to 0.3 µm. The test allowed ranking the coatings for 

resistance to penetration into the substrate. The wet abrasion rate was expressed as the mass loss 

(accuracy +/- 0.1 mg) of the specimen. 

3.1.10. Variable temperature galling resistance 

Galling resistance was measured using a custom-designed, automated galling tester developed by 

Engineered Valve International Inc. (Glens Falls, USA) in collaboration with Velan (see Figure 

3-2). The testing procedure consists in quarter-turn rotating an annular coated specimen (12.7 

mm inside diameter x 31.7 mm outside diameter) against a second annular coated fixed specimen 

under controlled contact pressure, stroke motion, and temperature conditions. Contact load and 

stroke motion were respectively applied with a pneumatic thrust actuator (Samson 3277) and a 

quarter-turn actuator (Metso B1CU6/20L), and temperature was adjusted with a radiation furnace 

(Lindberg/Blue M Tube Furnace, Thermo Fisher Scientific Inc., Waltham, MA, USA) coupled 

with a Type K thermocouple probe tack welded onto one specimen. All test parameters were 

controlled from a centralized panel.  

 

The coated surface of each specimen was prepared and inspected before testing. The coated 

surface preparation consists in manually polishing with several grades of polishing cloths (from 

P320 to P1200 grit) using a thin buffer solution containing commercial machinery oil. Specimens 

were selected to have a surface roughness Ra below 10 µin, flatness below 0.005 inch, and a 

mass of +/- 0.5 mg. The test procedure was halted as soon as one coated specimen displayed a 

significant wear pattern (e.g., micro-welding, scoring). The test procedure was repeated for each 

coating type to allow ranking the materials in terms of galling resistance and total mass loss over 

a given period. 
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Figure 3-2: Custom-designed, automated variable temperature galling tester. 

 

3.2. Structure and chemical composition  

3.2.1. Scanning electron microscopy 

Scanning electron microscopy (SEM) is an imaging technique in which the sample is scanned 

with an electron beam. The electrons that impact the material surfaces generate secondary 

electrons, back-scattered electrons, and X-rays. The X-rays are characteristic of the scanned 

materials, thus providing information on the material composition. In this thesis, SEM analyses 

were performed using JEOL JSM-840 SEM and Hitachi S4700 equipment. 

3.2.2. X-ray diffraction  

In X-ray diffraction (XRD), the material is exposed to an incident X-ray beam and gradually 

rotated to detect the diffraction angles θd, which are functions of the spacings dd between the 

lattice planes, the wave length λ, and the crystal structure, as described by Bragg’s law: 
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𝑛𝑑λ = 2𝑑𝑑 sin(θ𝑑) (12) 

  

By comparing the XRD pattern of a material to patterns in a materials database, the 

crystallographic orientation of the material can be identified. The peak widths of the diffraction 

spectra are correlated with the grain size, which can be calculated using the Debye–Scherrer 

formula [169]. 

 

In this thesis, XRD measurements were performed on a Philips XPert-MPD X-ray diffractometer 

using Cu-Kα radiation (λ=1.54056 Å) at 50 kV voltage and 40 mA current.  

3.2.3. Crystallinity index 

XRD was also used to measure powder, and as-sprayed, and aged coatings in order to estimate 

changes in crystallinity and other phase compositions and to determine amorphous content and 

the relative crystallinity index (Ic) [170]. XRD measurements were performed at angles ranging 

from 30° to 55° because peaks and amorphous humps are generally found within this range for 

Cr3C2-based coatings. The crystallinity index was estimated with the following formula: 

Ic =  
Sum of net peak areas

Total net area
∗ 100  (13) 

  

where net peak area = net area of the diffracted peak, and net area = net area of diffracted peaks 

+ background area. Measurements were performed using a D8 Advance XRD diffractometer 

(Bruker Corp.) operating at CuKα, 40mA, and 40 kV.  

3.3. Functional testing 

3.3.1. Corrosion 

Corrosion tests were performed in 3.5 wt.% NaCl aqueous solution using a three-electrode 

electrochemical cell with a standard calomel reference electrode and a graphite counter 

electrode. The coupon served as the working electrode. An Autolab PGSTAT302 potentiostat 

(Eco Chemie, Netherlands) equipped with a frequency response analyzer was used for the 

electrochemical measurements. Corrosion testing consists of first stabilizing the sample in the 

electrolyte for one hour, during which the open circuit potential (OCP) is monitored and 

recorded. Electrochemical impedance spectroscopy (EIS) is then performed at the determined 
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OCP with a 10 mV potential perturbation in the frequency range 10
5
 Hz to 10

-2
 Hz. Finally, 

potentiodynamic polarization is performed starting at -200 mV potential (with reference to the 

OCP) and 1 mV/sec scan rate. The reversal potential is 1,600 mV maximum or when an anodic 

current density of 1 mA/cm
2
 is reached, whichever occurs first. 

3.3.2. Endurance cycle testing 

Coatings endurance tests were conducted on prototype ball valves. An initial static test under full 

differential pressure condition (110% maximal working pressure) was performed to demonstrate 

the coating/substrate mechanical resistance and assess its load-carrying capacity. In a second 

step, prototype valves were overheated using superheated steam at either the maximum capacity 

of the steam generator or the maximum working temperature of the tested unit. Valves were then 

cycled under this severe tribo-corrosion condition. During the cycle test, valve torque and 

tightness levels were monitored over a number of cycles. The steam cycle test is considered to be 

highly abusive for coatings. High temperature removes lubrication films and generates thermal 

stress due to difference in thermal expansion rate; high differential pressure maximizes coating 

stress. 

3.3.3. Aging test 

Carbide reprecipitation (aging) process being suspected to take place on components exposed to 

temperature during service, an aging test was performed on as-sprayed coating coupons at a 

higher temperature in order to exacerbate the phenomena and to grow visible carbides. Several 

HVOF coated coupons were heated and maintained to 704°C (1300
o
F) using an electrical 

furnace. Samples were then removed from the furnace at different intervals (4 hours, 120 hours 

and 5,040 hours) and evaluated using SEM and XRD. 

3.3.4. Thermal shock test 

For the thermal shock test, coated samples were heated to 675°C during 30 minutes using a 

conventional electrical furnace. Samples were then quenched into room temperature water 

(20°C). Samples were visually inspected after each thermal cycle for defect using standard dye 

penetrant inspection methodology. The test procedure was stopped when one coated specimen 
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displayed significant a failure pattern (ex.: cracks or spallation). Repeating this test procedure for 

each coating type allows material ranking based on thermal shock resistance.  
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Abstract: 
   

In this paper, a variety of chromium-free protective coatings were evaluated as alternatives for 

hard chromium (HC) electroplating for valve applications, such as nanostructured cobalt-

phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) prepared by 

chemical vapor deposition. A series of laboratory tests including hardness, micro scratch, pin-on-

disk and electrochemical polarization measurements were performed in order to compare the 

performance of the different coatings. In addition, mechanical resistance and fatigue resistance 

were evaluated using prototype valves with coated ball under severe tribo-corrosion conditions. 

It was shown that W/WC coating exhibits superior resistance to wear and corrosion due to high 

hardness and high resistance to pitting, respectively while NCP exhibits better wear resistance 

than HC with alumina ball and low corrosion potential which allow to use it as protective 

(sacrificial) coating. Both nano-structured coatings exhibited attractive tribo-mechanical and 

functional characteristics compared to hard chromium. 

4.1. Introduction 

 

Hard chromium (HC) electroplating has been the most widely used technique for corrosion and 

wear protection applications for almost a century. It consists of depositing a layer of Cr onto 

                                                
1 Corresponding author. Tel.: +1 514 340 5747; fax: +1 514 340 3218; E-mail address: jsapieha@polymtl.ca (J.E. Klemberg-Sapieha). 
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metal components, using an electrolytic bath containing hexavalent chromium Cr
6+

, which is 

known to be a human carcinogen. In 2007, the Restriction of Hazardous Substances Directive 

(RoHS) was issued, banning several toxic substances including Cr
6+

, and HC electroplating has 

been classified by the U.S. Environmental Protection Agency (EPA) as an environmentally 

unfriendly process [71]. Those classifications have stimulated search for a cleaner alternative.  

 

One of the primary applications of HC is to extend life of heavy equipment such as actuators and 

valves. In valve applications, materials can be exposed to high stresses in highly hostile 

environments. For example, in mining, large critical valves control a flow of slurry containing up 

to 80% solid particules mixed with sulphuric acid (H2SO4) at 300°C and 60 bars in order to 

recover metals from ore [85, 171]. In petroleum refineries, isolation valves work at 800°C in 

highly abrasive environment to crack long hydrocarbon molecules and produce valuable gasoline 

[172]. In power plants, automated valves modulate supercritical steam at 700°C and 300 bars in 

order to efficiently generate electricity [9]. These extreme conditions results in surface 

deterioration which is one of the main causes of possible valve failure.  

 

HC is a well-established and economical solution to protect critical valves, thus rendering its 

replacement difficult. Fortunately, on a number of harsh services, Original Equipment 

Manufacturers (OEMs) have already switched to alternative coatings in order to endure severe 

conditions. Today, the three most popular alternatives to HC in the valve industry are: (i) weld 

overlay of Co#6 alloy (UNS R30006 – Stellite 6 ®) [173], (ii) thermally sprayed Cr3C2-NiCr 

[174-178], and (iii) diffusion processes (ion-nitriding, boriding) [74, 179]. Those costly 

alternatives have found niches, but do not show a potential to fully replace HC across this field, 

mainly for economic reasons [66].   

 

In this context, nanostructured vacuum-based coating techniques and Cr
6+

-free plating have 

received considerable attention as environmentally-friendly cost-effective approaches to the 

replacement of HC [74]. Among coating materials that have been investigated are metals and 

alloys (Co, Ni, Cr) [39], nitrides (CrN, TiN, SiCN) [129, 180], carbides (WC, Cr3C2) [181], and  

nanocomposites (TiSiN, TiSiCN) [128, 130]. 
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This study represents a comparative analysis of two nanostructured coatings as HC alternative, 

namely the electrodeposited nanostructured cobalt phosphor (NCP), and the chemical vapor 

deposited tungsten/tungsten carbide (W/WC). The former one is prepared by electroplating 

process using pulse current and the latter one is prepared by chemical vapor deposition using 

hexafluoride (WF6) precursor. Based on data published by their respective suppliers (thickness, 

hardness and coefficient of friction), those two cost-effective off-the-shelve coatings have the 

potential to fully replace HC. 

4.2. Experimental 

4.2.1.  Material 

 

20mm x 20mm x 5mm square blocks of and 80 mm balls of AISI 316 Stainless Steel (SS) were 

used as substrate. NCP were deposited from a plating solution containing Co
2+

 and P
+
. Pulse 

current was used to control grain growth and grain size, as described by McRea & al. [108, 182, 

183]. W/WC coatings were deposited by exposing the substrates to hot and pressurized tungsten 

hexafluoride (WF6) gas combined with a small amount of carbon, which condensate on the 

substrate surface to produce nanostructured W/WC coatings based on standard thermal CVD 

process elaborated by Zhuk & al. [147, 184].  

All coatings were about 50 µm ± 5 thick as requested by Velan Inc. company. Samples were 

prepared by individual coating suppliers in their own facility.  HC were prepared by Les 

Placages Dumoulin, Terrebonne, Canada, NCP samples were provided by a North-American 

company who wants to remain anonymous, and W/WC coatings were deposited by Hardide, 

Oxfordshire, United Kingdom.  

4.2.2.  Characterization techniques 

4.2.2.1. Microstructure  

 

X-ray diffraction (XRD) measurements were carried out by a Philips XPert-MPD X-ray 

diffractometer using Cu-Kα radiation (λ=1.54056 Å) under 50 kV voltage, and 40 mA current. 

EDS and SEM analyses were performed using JEOL JSM-840 SEM. Grain sizes were calculated 

using the Debye–Scherrer formula [169].  
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4.2.2.2. Tribo-mechanical properties 

 

Nano-hardness, HN, and reduced Young’s modulus, Er, were assessed using a triboindenter 

(Hysitron Inc.) equipped with a Berkovich pyramidal indenter tip. The maximum load used for 

evaluation of HN and Er was 10 mN. This apparatus is able to measure the load – unload curve 

vs. penetration depth with a 1 nm resolution. The HN and Er values are calculated according to 

the Oliver-Pharr method [167] and based on 100 measurements for each coating. 

 

Micro-hardness (HM) measurements were performed using a micro scratch tester (MST) from 

CSM equipped with a Vickers indenter using loads from 5 to 30N. The indent sizes were 

evaluated using an optical microscope.  Ten indentations were performed on each sample. 

 

Scratch hardness (HS) was measured by the MST apparatus equipped with a hemispherical 

diamond Rockwell C stylus (50m tip radius) with a constant 10N load. The scratch length in 

each case was 5 mm, and the sliding speed was kept constant at 6 mm/min. Three scratches were 

performed on each coating. The scratch widths have been measured at three positions on each 

scratch track using an optical microscope. HS was calculated using the formula 𝐻𝑠 =
8∗F

 ∗𝑤2 as 

described by Suresh and al. [168] where w is the scratch width (m) and F is the applied load (N).  

 

Tribological properties of the coatings were evaluated using pin-on-disk instrument from CSM. 

Coatings were tested against three different counterparts, namely 6 mm-diameter alumina and 

Co#6 balls, and Co#6 1 mm diameter flat cylindrical indenter. The load of 6N was used for Pin-

on-disc test leading to a significant wear volume without influencing the substrate. The sliding 

speed was 50 mm/s and the wear track radius was 5 mm. The sliding distance was adjusted to 

each test in order to reach a significant wear volume.  For each of the coating type, a minimum 

of three measurements were performed. The Co#6 counterparts material were used to simulate 

the seat materials used in the valves. 

 

After the wear test, wear tracks were inspected by a profilometer to determine the wear volume. 

The wear coefficient K was calculated using the formula =
V

F∗S
 , where V is the worn volume 
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(mm
3
), S is the sliding distance (m), and F is the load (N). SEM observations were performed to 

asses the wear mechanisms.  

4.2.2.3. Corrosion properties 

 

Corrosion tests were performed in 3.5 wt.% NaCl aqueous solution using a three-electrode-type 

cell. A Standard Calomel Electrode (SCE) and a graphite rod were used as reference and counter 

electrodes, respectively. A potentiostat Autolab PGSTAT302 (Echochemie) equipped with a 

frequency response analyzer was used for electrochemical measurements. The corrosion test 

consisted of stabilizing the electrodes in the electrolyte for one hour, during which the free 

corrosion potential (FCP) was monitored. Then, potentiodynamic polarization was performed, 

starting from 200 mV below the open circuit potential (OCP), in the cathodic zone, to a potential 

at which an anodic current density of 1 mA/cm
2
 was reached, i.e. after pitting had been initiated. 

The corrosion current density, io, was found using the Tafel interpolation technique. The 

breakdown potential, Eb, was identified on the polarization curve as the potential at which an 

irreversible increase in the current took places, as a result of the breakdown of the passive layer. 

4.2.2.4. Functional properties 

 

Three prototype ball valves with 80 mm nominal diameter and 50 bar nominal pressure rating 

were assembled with three different coated SS316 balls. All prototypes were equipped with 

SS316 seats coated with a 1mm Co#6 overlayer. Prototypes were tested as per the following 

protocol: 

 

Mechanical resistance test 

Prototype valves (with an inside coated ball) were fully assembled, filled with water, and 

submitted to full differential pressure in close position during 10 min (110% maximal working 

pressure – 60 bars). Seat leakage was monitored at the beginning and at the end of the 10 min 

pressure test. Prototypes were then dismantled and visually inspected. Visible seat leakage or 

visible damage of coated surfaces (Scoring) were identified as unsuccessful test.  
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Steam cycle test 

Prototype valves were connected to a 100 kW electrical boiler supplying superheated steam at 

315
o
C and 40 bars. The steam cycle consists of opening and closing the valve using an 

automated pneumatic actuator, while continuously recording the resistive torque and monitoring 

seat leakage (in closed position).  Control and data acquisition were realized via Labview®. Test 

bench was able to operate 24h a day, 7 days a week. Valves were cycled every 5 min (Open-to-

Close and Close-to-Open) under the steam atmosphere. Six torque values were recorded for each 

cycle: the peak torque to start valve opening (break-to-open, BTO), the constant torque to move 

the valve from close to open (run-to-open, RTO), the peak torque to finalize valve opening (end-

to-open, ETO), the peak torque to start valve closing (break-to-close, BTC), the constant torque 

to move the valve from open to close (run-to-close, RTC), and the peak torque to finalize valve 

closing (end-to-close, ETC). 

 

The test was stopped when a seat leakage was observed. Based on Velan’s experience, the steam 

cycle test is highly abusive for coatings, and it is more severe than conventional wear tests. High 

temperature removes lubrication films from the surfaces and generates stress due to a difference 

in the coefficients of thermal expansion between the coating and the substrate; high differential 

pressure maximizes stress in the coating and at the interface. 

4.3. Results and discussion 

 

In this section, we first present the microstructural and mechanical characteristics of the coatings, 

then we discuss their functional properties. 

4.3.1.  Microstructure  

 

XRD patterns acquired from the three different coatings are shown in Figure 4-1. HC and W/WC 

coatings mainly consist of b.c.c. chromium and b.c.c tungsten, respectively, and NCP mainly 

consists of h.c.p cobalt. WC crystals are not visible in the W/WC patterns, probably because 

carbide crystals are too small to diffract and they are dispersed in the W matrix. As calculated 
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using the Debye–Scherrer formula [169] , the grain size of HC, NCP and W/WC are 10, 5 and 17 

nm respectively.  

 

Figure 4-1: XRD patterns of (a) HC, (b) NCP, and (c) W/WC materials. 

 

EDS spectra acquired from the three different coatings are shown in Figure 4-2. The chemical 

composition of each coating is confirmed.  Carbon peak was detected on the W/WC EDS 

spectrum. 
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Figure 4-2: a)SEM images of NCP and W/WC cross section, b) EDS spectra of NCP, W/WC and 

HC materials. 

4.3.2.  Tribo-mechanical properties 

 

Figure 4-3 (a) shows the results of the nanoindentation measurements. The W/WC coating 

possesses a HN value of ~16.3 GPa and a Er ~ 280 GPa while the NCP exhibits a lower HN value 

of ~ 7.5 GPa and a Er ~ 160 GPa. HC is in between with HN ~13 GPa and Er ~  230 GPa. The HM 

values obtained under several loads (5N, 10N, 15N and 30N) and HS values for 10 N are 

presented in Figure  (b). 

a) b) 

c) 
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a)  

 

 

b)  

Figure 4-3: Nano-hardness and Young’s modulus (a), Micro-hardness, Scratch-hardness at 10 N, 

and indentation depth/coating thickness as a function of load (b) for different coating types. 

 

The hardness values for all coatings decreases with increasing the load. This correlates well with 

the increasing indentation depth/coating thickness ratio as shown in the same figure. This is 

attributed to an increased contribution from the substrate in the measurement with increasing 

load. It is clearly seen, that at ratio values as low as 10%, a good agreement between HN and HM 

values is obtained.  

 

We can also observe a good agreement between HS and HM values for the different coatings. 

Delamination was not observed during the scratch testing, therefore results were not affected by 

adhesion failures. However, HC scratch mark exhibits regular cracks (See Figure 4-4 (a)). NCP 

& W/WC scratch marks are crack-free (Figure 4-4 (b)), which suggests a more ductile behavior 

than HC.  
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a)    b)  c)  

Figure 4-4: Scratch track at a 10N load for (a) HC, (b) NCP, (c) W/WC coatings. 

 

Figure 4-5 shows the wear rate and friction coefficient for the different coating types using 

different counterfaces. A strong correlation between friction coefficients and wear rates was 

observed. Such relationship has been frequently documented in the literature [168].  

 

Figure 4-5: Wear rate and friction coefficient for different counterparts and different coating 

types. 
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HC wear mechanism 

 

The HC coating exhibited the highest wear rate with alumina ball and the lowest when using 

Co#6 ball and flat indenters. With the Co#6 ball and Co#6 flat intenders the width of the wear 

track is smaller and the wear rate is reduced by a factor of 100. This difference is attributed to the 

hardness of the counterface; for a harder counterface (such as in the case of an alumina ball) 

brittle cracking mechanism takes place and high wear rate is observed. Figure 4-6 (a) shows the 

HC wear track after alumina ball wear testing. A limited number of sharp debris and cracks 

measuring around 30 μm are visible across the wear track. Based on SEM examinations, debris 

are the results of micro-crack propagation into HC.  

 

a)  b)  

  

c)   d)  

 

Figure 4-6: Micrographs of the wear track on a) HC with Al2O3 ball – 5kx, b) HC with Co # 6 

ball – 500x,  c) NCP with Al2O3 ball – 5kx, and d) W/WC with Al2O3 ball – 10kx.  
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HC wear track after Co#6 ball wear testing is shown on Figure 4-6 (b). Wear track shows the 

evidence of material transfer from the Co#6 indenter (tribolayer). SEM confirms HC coating 

integrity. A similar adhesive wear mechanism was observed with the Co#6 flat indenter, leading 

to low HC wear rate.  

 

NCP wear mechanism 

NCP exhibited similar wear rates when using alumina and Co#6 ball counterfaces. However a 

significant increase in the wear rate was observed when flat Co#6 counterface was used 

indicating higher susceptibility for edges (low resistance to scuffing).  Figure 4-6 (c) shows a 

typical NCP wear track, with a large quantity of small debris (around 3 μm diameter round 

shaped) originating from NCP across the wear track. Similar to HC, near-surface cracking / 

delamination wear mechanisms were observed on NCP with all different indenters.  

 

W/WC wear mechanism 

W/WC shows 8 times lower wear rate and 4 times lower friction coefficient than HC when using 

alumina counterpart. With alumina ball, W/WC wear track exhibits micro-cracks but no 

formation of debris were observed (Figure 4-6 (c)). Micro-cracks around 10 μm long exhibit 

sharp edges. With Co#6 indenters, an adhesive wear mechanism similar to the one observed with 

HC, was visible. Material transfer from the indenter to the W/WC coating has been confirmed.   

4.3.3.  Corrosion properties 

 

Figure 4-7 shows the polarization curves of the different coatings. Corrosion current (Io), 

corrosion potential (Ecorr), and breakdown potential (Eb), derived from these curves are 

summarized in Table 1.  
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Figure 4-7: Potentiodynamic polarization curves of HC, NCP, W/WC and bare SS316 materials. 

NCP exhibited very low Ecorr value compared to the other materials and has very low resistance 

to polarization due to the absence of a passivation layer.  

 

Table 4.1: Corrosion parameters 

Sample Corrosion current, io 

(A/cm
2
) 

Corrosion potential, Ecorr 

(mV) 

Breakdown potential, Eb 

(mV) 

HC 3x10
-8

 -267 ~80 

NCP 3x10
-7

 -530 < 0 

W/WC 3.6x10
-7 

-342 > 1750 

SS316 1.0x10
-7 

-224 ~80 

 

 

This coating acts as a sacrificial anode for the stainless steel substrate as confirmed by SEM 

observations of the surface after corrosion testing (see Figure 4-8 (a)).  
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a)      b)  

Figure 4-8: SEM images of (a) NCP and (b) W/WC coatings after corrosion testing. 

 

The HC coating possesses similar properties as the bare substrate since both surfaces are 

passivated by chromium oxide containing layer. The W/WC coating exhibited a very high 

resistance to pitting with the passive zone extending to very high potential values. An SEM 

image of the W/WC surface after corrosion testing is shown in Figure 4-8 (b) confirming the 

absence of pits.   

4.3.4.  Functional properties 

 

All coatings were tested in prototype valves having 80 mm nominal diameter and 50 bar nominal 

pressure rating. The coatings were tested under full differential pressure condition (110% 

maximal working pressure using water).  This initial high pressure static test demonstrated 

sufficient load-carrying capacity for all 3 coatings with no damage observed after the test. 

Prototype valves were then tested for fatigue resistance using superheated steam at 315 ºC and 

maximum working pressure. During the test, valve torque and tightness were monitored over the 

cycles. After 3,000 mechanical cycles, the valve with HC coated ball started leaking. Visual 

inspection confirmed that the HC coating was damaged (Figure 4-9 (a)). An additional 7,000 

cycles were performed with the NCP and W/WC coated valves with no leakage observed. 

Figure 4-9 shows valve components after cycle test. In the case of HC, after 3,000 cycles, most 

of the damages were located on the ball cheek, whereas the NCP and the W/WC balls were in 

like-new condition. However, the matching Co #6 seats were significantly worn out for all three 

coatings.  
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Figure 4-9: Images of valve components after the steam cycle test: (a) HC after 3,000 cycles, (b) 

NCP after 10,000 cycles, (c) W/WC coatings after 10,000 cycles. 

 

Figure 4-10 shows torque evolution over cycles for HC. Similar torque evolution behavior was 

recorded for each coating. It is interesting to note that BTO increases from 250 N.m to 400 N.m 

for all the coating during the test when other torque values such as RTO or BTC remain almost 

constant. BTO increase is correlated with surface degradation of the Co # 6 seats.  

 

 

Figure 4-10: Steam cycle test results: Valve torque as a function of the number of cycles for HC 

coating. 

  

BTO 

RTO ETO 

ETC 
RTC  BTC 
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4.4. Conclusions 

 

In this paper, tungsten carbide deposited by CVD and cobalt phosphor deposited by pulsed 

electroplating nanostructured coatings have been characterized and systematically compared 

with hard chromium electroplating. 

 

Both nanostructured coatings have exhibited attractive tribo-mechanical and functional 

characteristics compared to hard chromium. NCP offers a 4 times lower wear rate and a 3 times 

lower friction coefficient than standard HC plating when using alumina counterbody. However, 

NCP has shown to be more prone to corrosion with a break down potential < 0 volt and a limited 

resistance to scuffing. NCP should be used primarily for low stress contact in a relatively clean 

and non-corrosive service. 

 

The W/WC offers a 8 times lower wear rate and a 4 times lower friction coefficient than hard 

chromium when using alumina counterbody. W/WC has also demonstrated a robust corrosion 

behavior with a break down potential > 1 volt. W/WC should provide good performance in slurry 

and corrosive service with various counter bodies. 
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Abstract 
 

This case study is the result of an investigation on HVOF 80/20 Cr3C2-NiCr coating failure of 

on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant and 

solution. HVOF 80/20 Cr3C2-NiCr coating is used to protect thousands of MSBVs without 

incident. However, in this case the valves are challenged with exposure to rapid high pressure 

and temperature variation resulting in a unique situation where the coating experiences cracking 

and cohesive failure. It was found that carbide precipitation is a major factor causing 

embrittlement of the coating. Once the coating toughness and ductility is reduced, thermal, 

mechanical and residual stresses can initiate and propagate cracks more easily, causing coating 

failure when exposed to thermal shock.  To alleviate those issues, possible coating alternatives 

were then evaluated. 
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5.1. Introduction 

 

Valves are being used on drain and vent lines to extract large quantity of condensate during 

power station start-up in order to get dry superheated steam rapidly. During normal operation, 

drain and vent valves must remain steam-tight to prevent energy loss and maximize plant 

efficiency. For the last decade, metal-seated ball valves (MSBVs) have been the industry 

standard for this application, providing maintenance-free, tight, reliable shut-off. MSBVs in 

question are of a floating ball design with a fixed seat. Ball and seat are manufactured from 

forged Inconel® 718 PH and coated with a HVOF 80/20 Cr3C2-NiCr coating. The primary 

function of the HVOF coating is to increase the load-carrying capacity of the Inconel 718 

surface
2
.  Indeed, it has been demonstrated that the deposition of such thick coating will not only 

reduce the wear rate but also distribute the peak stresses generated by localized loading from the 

surface to the base material and increase the galling threshold resistance (resistance to adhesive 

wear and material transfer) [166, 185].  80/20 Cr3C2-NiCr coating composition is also specially 

adapted to resist to the high temperature, oxidizing conditions experienced by the valve [186, 

187].  

 

A major US-based power company had new challenges with their supercritical steam drain and 

vent lines in one of their plants. This particular fossil-fuel power station runs continuously from 

May to October due to high power demand to run air-conditioning systems. For the balance of 

the year, the plant only runs when the demand called for more power during peak usage times. 

Consequently the operation of the plant changed from base-load to peaking. Every time the plant 

shuts down or start-up, MSBVs are frequently operated and exposed to supercritical steam, going 

up to 15 MPa (2,200 psi) and 675 ºC (1,250 ºF) [9].  

 

HVOF 80/20 Cr3C2-NiCr coating has failed after 1 year and less than 500 mechanical cycles in 

service on balls exposed to supercritical steam, with deterioration extending to regions where 

there is no contact between ball and seats. Coating was applied with a Diamond Jet® HVOF 

                                                
2
 In this paper, load-carrying capacity refers to localized load as discussed by Holmberg et al. (Ref 2). This has to be 

distinguished from structural load-carrying capacity. 
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system using propylene as fuel. Visual examination of damaged components revealed minor 

frictional wear and typical stress/fatigue pattern (Figure 5-1).  

 

 

Figure 5-1: HVOF 80/20 Cr3C2-NiCr coating exhibiting cohesive failure after 1 year in service. 

 

The intent of this failure analysis is to provide valuable information to understand failure 

mechanism and to help preventing this type of failure. The second objective of this study is to 

evaluate alternative coatings to alleviate those issues. 

 

Section 2 describes the failure analysis, including experimental techniques, results and 

discussion. Section 3 presents test results of potential solutions. Section 4 concludes. 

5.2. Failure analysis  

 

The failure analysis was conducted by elimination. A list of potential failure mechanisms was 

established based on literature review and experience. Each potential failure mechanisms was 

investigated and eliminated as it was found not to apply: 
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1) Coating quality: 

- High porosity level, allowing high pressure steam penetration 

- Lack of bonding between coating and substrate, 

- Lack of bonding between splats, 

- Embedded grit, 

- Residual stress (increase with thickness). 

2) Design: 

- Mechanical stresses during operation (excessive load), 

- Thermal stresses due to thermal cycles or thermal shock. 

3) Phase changes: 

- Corrosion, 

- Reaction at interface, 

- Oxidation,  

- Carbide precipitation. 

 

The failure mechanisms have been attributed to either poor coating quality, improper ball valve 

design or coating phase changes. Regarding coating quality, grit embedded at the interface is 

known to substantially lower coating adhesion. Embedded grit can also result in corrosion 

problems [188].  Lack of bonding between coating and substrate results in a poor coating 

adhesion that can lead to premature coating spalling.  Lack of bonding between splats results in a 

poor coating cohesive strength. Poor cohesion can lead to premature coating cracking and 

delamination [188].  The structure of thermal sprayed coatings, made of the piling up of splats, 

can produce significant interlamellar porosity. This porosity is usually associated with poorly 

melted particles that are trapped in the coatings.  Porosity will not only decrease coating cohesive 

strength but can, if interconnected, acts as a path enabling corroding or oxidizing elements to 

penetrate within the coating, and eventually reach the base material [188].  Residual stresses are 

composed of quenching, cooling and peening stresses. They can limit coating adhesion and 

cohesion [188]. 

 

Failure mechanisms related to ball valve design were identified as mechanical stresses during 

operation (excessive load applied on the ball valve) or thermal stresses due to thermal cycles or 
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thermal shock.  Thermal stresses are caused by restricting thermal expansion. They are primarily 

a function of the coefficient of thermal expansion (CTE) mismatch, the variation in temperature 

(ΔT) and the Young modulus of the coating (Ec). The following equation is often used to get an 

approximation of the thermal stresses generated in a coating upon change in temperature [164, 

165]:  

σ𝑡ℎ =  𝐸𝑐∆T(𝐶𝑇𝐸𝑐 − 𝐶𝑇𝐸𝑠) (14) 

 

It was also proposed that a chemical reaction at the coating/substrate interface could occur upon 

heating of the system. The species generated during such chemical reaction could be highly 

detrimental to coating performance and even lead to spallation. Oxidation of the Cr present in 

80/20 Cr3C2-NiCr coatings at high temperature is well documented as a coating degradation 

mechanism [189]. Carbide precipitation can occur due to the metastable nature of the thermal 

sprayed 80/20 Cr3C2-NiCr coatings. During spraying, carbon is dissolved into the matrix. Carbon 

could come from two sources: I- chrome carbides are getting partially dissolved, creating a range 

of Cr composition in matrix from carbon-rich to the original Ni alloy (the higher the spraying 

temperature, the more dissolution occurring); II- carbon comes also from the carbon-rich 

propylene fuel. The high cooling rate “freezes” the carbon-rich matrix in a supersaturated state, 

with amorphous or nanocrystalline zones – a metastable system that can change if heated [190].  

 

A series of experiments were performed in order to find the most dominant failure mechanism.  

5.2.1. Experimental methodology 

5.2.1.1.  Coating quality characterization 

SEM observation was used to compare a set of failed and new ball/seat. The interface between 

coating/substrate was qualitatively inspected by SEM observation. Coating thicknesses, porosity 

and oxidation levels were measured. Coating microstructures were observed using field emission 

SEM (S4700, Hitachi Instruments Inc., Tokyo, Japan) while porosity levels were evaluated from 

image analysis on ten images obtained with the backscattered mode of an SEM equipment (JSM-

6100, JEOL, Tokyo, Japan).  Coating hardness values were measured using a Vickers 

microhardness tester (Micromet II, Buehler, Lake Bluff, IL, USA) operating under a 300 gf load.  
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Nanohardness of coatings and of selected phases were evaluated using the Nano G200 from 

MTS/Nano Instruments (Oak Ridge, USA) with a Berkovitch tip under a load of 0.5 gf. The 

average micro and nano hardness values were obtained from ten and twenty indentations, 

respectively, performed on the cross section of the coatings. Objective lenses were used with the 

nano indenter when targeting specific phases. Otherwise, nano indentations were performed 

randomly to get the overall coating nano hardness (average of all phases).  

5.2.1.2.  Valve design 

The second step was to perform two validation tests to confirm that valve design and materials 

were able to sustain localized load, wear and thermal shock. For the load-carrying capacity of the 

surface and wear resistance test, one prototype valve was assembled with brand new coated 

components and connected to a 100 kW electrical boiler supplying superheated steam at 426°C 

(800 °F) and 12.5 MPa (1,821 psig). The prototype valve was mechanically cycled using an 

automated pneumatic actuator, while monitoring seat leakage (in closed position).  Valve was 

cycled every 2 minutes (open-to-close and close-to-open) under the steam atmosphere.  

For the thermal shock test, new coated balls were heated to 675°C (1247
o
F) during 30 minutes 

using a conventional electrical furnace. Balls were then quenched into room temperature water 

(20°C – 68
o
F).  

5.2.1.3.  Phase changes 

XRD measurements were performed on powder and on “as sprayed” and “aged” coatings in 

order to estimate the change in crystalline and other phase composition, amorphous content and 

to determine the relative Crystallinity index (Ic) [170]. Ic provides relative proportions of 

crystalline and amorphous phases. XRD measurements were performed between 30° deg and 55° 

deg range because peaks and amorphous hump are found within those values for Cr3C2 based 

coatings. Crystallinity index is estimated with the following formula: 

 

Ic =  
Sum of peak net areas

Total Net Area
∗ 100 

(15) 

 

Measurements were performed using a D8 Advance Bruker AXS diffractometer (CuKα, 40mA 

and 40 kV). Spectrum areas were measured with Eva software. 
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5.2.1.4.  Aging test 

Carbide reprecipitation (aging) process being suspected to take place on components exposed to 

temperature during service, an aging test was performed on as-sprayed coating coupons at a 

higher temperature in order to exacerbate the phenomena and to grow visible carbides. Several 

HVOF coated coupons were heated and maintained to 704°C (1300
o
F) using an electrical 

furnace. Samples were then removed from the furnace at different intervals (4 hours, 120 hours 

and 5,040 hours) and evaluated using SEM and XRD. 

5.2.2.  Results  

5.2.2.1.  Coating quality characterization 

 

SEM observations and hardness measurements on failed and new coatings were compared with 

the original equipment manufacturer (OEM) purchasing specification (See Table 5.1).  

 

Table 5.1: Comparison of failed versus new HVOF 80/20 Cr3C2 + [80Ni-20Cr] coating and OEM 

specification. 

 Failed 

Component 
New component 

OEM 

specification 

Thickness (μm) 215 155 ± 35 200 

Porosity 2% 2% <3% 

Oxide <2% <2% N/A 

Bond (MPa) No failure >70 >70 

Microhardness 

(Vickers tip, 300 gf) 
1092 ± 44 897 ± 69 >700 

 

One of the observations of the failed coating was the significant increase in microhardness values 

from nominal 900 HV (300 gf) up to 1400 HV (300 gf). This led to evaluation of the phase 

changes that were thought responsible for coating microhardness increase [191, 192]. 
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Grit used to roughen the surface prior to coating was observed at the coating interface with the 

substrate, but was not excessive and spallation of the coating was not contributed by this 

contamination as coating had remained bonded. The coating that had spalled had delaminated 

above the bond line within the coating. Cracks observed in the remaining coating did not appear 

to originate at the coating/substrate interface nor due to excess porosity. SEM also shows the 

presence of oxides (appears in dark gray on backscattered electron images – See Figure 5-2).  

 

 

Figure 5-2: HVOF 80/20 Cr3C2-NiCr coating, sprayed with C3H6 after 1 year in the field. 

 

Cracks formed and propagated across the coating matrix or at the carbide/matrix interface, 

delaminating layer by layer the coating (See Figure 5-3).  Nanoindentation was used to measure 

the nanohardness of the oxide phase compared to the Cr3C2 phase and the overall coating 

nanohardness (See Table 5.2).  
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Figure 5-3: HVOF 80/20 Cr3C2-NiCr coating, sprayed with C3H6 after 1 year in the field. 

 

Table 5.2: Nanohardness of the oxide phase compared to the Cr3C2 phase and the overall coating 

nanohardness. 

 Nanohardness 

(GPa) 

New ball 15 ± 5 

Damaged ball 18 ± 7 

HCr2O3 - Damaged ball 12 ± 1 

HCr3C2 - Damaged ball ~ 20 

 

Only an approximated value was found for Cr3C2 due to the difficulty to target this specific 

phase during indentation.  Among the different measurements, it appears that the oxide phase 

present in the coating shows the lowest hardness.  

 

5.2.2.2.  Valve design 

 

The prototype valve was able to perform over 2,000 mechanical cycles with 0 seat leakages. 

After disassembly and visual inspection, neither indentation nor excessive wear were observed 
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on ball and seat surfaces confirming the load-carrying capacity of the surface and the acceptable 

wear resistance of the coating respectively. 

 

On the other hand, after 30 consecutive thermal shocks going from 675°C to ambient 

temperatures, HVOF 80/20 Cr3C2-NiCr exhibited a crack network highlighting that the thermal 

shock resistance of the coated ball was not adequate (See Fig. Figure 5-4).  

 

 

Figure 5-4: HVOF 80/20 Cr3C2-NiCr coating, sprayed with C3H6, after 30 thermal shocks going 

from ambient temperatures to 675°C. 

 

5.2.2.3.  Phase changes 

 

Table 5.3 summarizes results and Figure 5-5 shows both XRD spectra. The crystallinity index 

has reduced by more than 35% after coating deposition, indicating the formation of amorphous 

phase and significant crystalline phase dissolution during spraying. 
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Table 5.3: Crystallinity Indices of powder, “as sprayed” and aged coating of the original HVOF 

coating   

Powder 

composition 
Fuel Step Crystallinity index 

80%Cr3C2- 20% 

[80Ni20Cr]  

C3H6 Powder 77 % 

As sprayed 49 % 

4 hrs 67 % 

120 hrs 63 % 

5040 hrs 71 % 

 

  

Figure 5-5: XRD spectrums of HVOF 80/20 Cr3C2-NiCr powder and coating, sprayed with C3H6. 

Cr7C3 and Cr23C6 phases, even though not shown on the graph, could also be present. Peaks 

overlapping has impeded their identification on all XRD spectrums presented in the paper. 

 

 

 

Cr3C2 NiCr 

Powder Coating 
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5.2.2.4.  Aging test 

 

As shown on Figure 5-6, carbide precipitation was observed under SEM after 4 hour exposure to 

704°C (1300
o
F). Coarsening of the carbide precipitates together with growth of the initial 

carbides occurs after 120 hour ageing.  

 

 

Figure 5-6: Microstructure evolution during aging test at 704°C (1300ºF) after (a) 4 hour 

exposure; (b) 120 hour exposure. 

 

XRD measurements were also performed on aged samples to estimate crystalline phase evolution 

during aging (See Figure 5-7). The following Table 5.2 summarizes results. Carbide precipitation 

and growth was detected using the XRD method. The coating crystallinity indices increase after 

4 hours at 704 ºC, reaching levels close to the initial powders (XRD peak sharpening due to 

recrystallisation and carbide precipitation). The indices plateau for longer ageing time.  

b a 

Carbide precipitation 

Growth of  

initial carbides 
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Figure 5-7: XRD spectrums of HVOF 80/20 Cr3C2-NiCr powder, “as sprayed” and aged 

coatings, after 4 hour and 120 hour exposure to 704°C (1300ºF) respectively.  

5.2.3. Discussion 

 

The main difference observed between failed versus new “as sprayed” coating is a 25% hardness 

increase, leading to measurements up to 1,400 HV and a decrease in thermal shock resistance. It 

was proposed that either carbide precipitation and / or oxidation could theoretically increase the 

hardness of the coatings and reduce its thermal shock resistance (aging). Thermal shock test 

results indicate that the CTE mismatch between HVOF 80/20 Cr3C2-NiCr (~ 10×10
−6

 / 
◦
C) and 

the Inconel 718 base material (~ 15.5x10
-6 

/ 
◦
C) leads to high thermal stresses [164]. After aging, 

thermal stresses generate cracks leading to coating failure. Therefore, the following two-step 

failure mechanism is suspected: 

1) Carbon dissolution into 80% Ni - 20% Cr binder during spraying  :   

Carbide dissolution occurring during spraying has a significant influence on the properties of 

80/20 Cr3C2–NiCr coatings.  For instance, plasma sprayed coatings typically present extensive 

carbide dissolution and formation of brittle carbides and oxy-carbides over HVOF or detonation 

gun spray processes due to the higher particle in-flight temperature and residence time [193]. 

This together with the higher porosity levels result in coatings with lower hardness displaying 

poorer performance in impact [194] and abrasion wear [195].  The nature of the feedstock 

Cr2O3 

Cr3C2 

NiCr 
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powder will also affect carbide degradation, and thus, performance of the coating [189]. Carbide 

dissolution has a key role in changing the binder hardness as well as the phases in presence. It 

also appears that the resulting supersaturation of the NiCr matrix makes this phase prone to 

brittle cracking. 

 

2.a) Chrome carbide precipitation: 

In high temperature service, matrix recrystallisation can occur. The nucleation and growth of the 

carbide precipitates will depend on the heat treatment temperature and time but also on the 

spraying parameters. For instance, an extensive dissolution during spraying will favor 

precipitation in the form of agglomeration of nucleated carbides while with minimal dissolution, 

some growth around the retained carbides will preferentially occur [192]. While those 

microstructural changes would happen in service for the 80/20 Cr3C2-NiCr coatings intended for 

high temperature applications, most of the studies replicate this condition by heat treating the 

coatings prior testing. It has been shown that carbide precipitation can improve coating wear 

resistance, adhesion and hardness [192, 196, 197]. Hardness increase could be observed with 

values exceeding the coating initial hardness due to carbide precipitation and to a “sintering” 

effect (decrease in porosity and improved adhesion between splats). The hardness increase could 

keep increasing due to the formation of a fine carbide network [192, 198]. 

 

2.b) Chrome Oxidation: 

When sufficient Cr3C2 dissolution occurs during spraying to get at least 27.5% Cr in the matrix 

(either due to spraying conditions or the type of powder used), only Cr2O3 is formed in a 

continuous layer [196]. Cr2O3 can be adherent to the surface or eventually buckled if carbides are 

large. If there is not enough Cr in solution in the matrix, a NiO scale forms below which a 

continuous Cr2O3 scale develops. NiO can further be consumed to form NiCr2O4 [199].  

 

Water vapor containing atmospheres cause more rapid oxidation of chromia-forming alloys than 

do dry oxygen or air, according to the equation shown below [200]:  
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1

2
𝐶𝑟2𝑂3 (𝑠) + 𝐻2𝑂(𝑔) +

3

4
𝑂2(𝑔) = 𝐶𝑟𝑂2(𝑂𝐻)2(𝑔) (16) 

 

In summary, two reactions involving Cr are competing: Cr can form carbides or can oxidize. At 

the temperatures of interest in this study, i.e. 675°C or below, Cr and C diffusion is slow and it is 

most probable that the Cr in contact with the oxidizing atmosphere will preferentially form 

oxides [196]. However, the Cr present deeper in the coating and not in contact with O2 would 

form carbides. 

 

In this specific case, oxides region displaying low hardness have been observed, possibly due to 

presence of pores and cracks, and perhaps the formation of non-stable oxides. Furthermore, no 

significant trend in hardness from coating top to bottom, where a gradient in oxide concentration 

is expected, was measured. Cr2O3 hardness being around 12 GPa and Cr3C2 hardness around 20 

GPa, the precipitation of extra carbides seems a reasonable explanation for the increase in overall 

coating hardness.  

 

No fine chrome carbides have been detected under SEM into the NiCr binder presumably due to 

very small crystals .  

5.3. Solution 

 

The next step was to test and qualify potential coating solutions, better suited to carry high load 

at elevated temperature and to withstand thermal shock. 

Based on our analysis, the dominant failure mechanism is coating embrittlement due to chrome 

carbide precipitation in-service across coating binder which reduces coating thermal shock 

resistance. Three potential coating formulations were selected to overcome this issue. 

The first candidate, coating #1, was a 75/25 Cr3C2-NiCr coating having a higher binder / carbide 

ratio compare to the standard in order to provide a slightly softer but tougher coating [164]. The 

second candidate, coating #2, was a coating with a chrome free binder in order to minimize the 

risk of carbide precipitation. To compensate for hardness reduction due to the lack of chromium, 

tungsten carbides were added to the chrome carbides. The third solution, coating #3, was a Ni 
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based fused and sintered coating having chemical composition closer to the base material and 

being fused at 1,000 °C to sinter, stress relieve and precipitate carbon. The CTE of Ni based 

fused and sintered coating (~ 16 x10
-6 

/ 
◦
C

  
vs ~ 10 ×10

−6
 / 

◦
C for 80/20 Cr3C2-NiCr coatings) 

more closely matches that of Inconel (~ 15.5 x10
-6 

/ 
◦
C) [201]. Consequently, the Ni based fused 

and sintered coating induces less thermal stresses due to CTE mismatch than HVOF 80/20 

Cr3C2-NiCr when applied on Inconel. 

 

To minimize carbon dissolution during spraying, hydrogen was used instead of propylene 

(carbon-free fuel) and Jet-Kote® HVOF system was used instead of Diamond Jet® (lower in-

flight temperature). Table 5.4 summarizes the selected potential solutions. 

 

Table 5.4: List of potential solutions 

# Chemical composition Process Nominal 

Thickness (μm) 

Remark 

Powder Fuel 

0 80% Cr3C2 

20%[80Ni20Cr] 

C3H6 HVOF 200 Original (Failed) 

1 75% Cr3C2 

25%[80Ni20Cr] 

H2 200 25% matrix to increase 

ductility 

2 65-70% WC 

22-25% Cr3C2 

7% [Ni/NiCr] 

H2 200 Almost chrome-free binder to 

minimize Cr3C2 and Cr3O2 

formation 

3 55% Ni, 

17% W, 

15% Cr, 

4% Si 

3.5% Fe 

3% B 

<1% C 

H2 Spray 

and 

Fuse 

300 55% Ni to provide ductility. 

Fusing at 1,000 °C to sinter, 

stress relieve and precipitate 

carbon. 

 

Brand new samples were produced with those three new coatings. A battery of tests was 

performed to assess their behavior for this specific application. 

 

Valve Design: Load-carrying capacity of the surface and wear resistance of the three coatings 

were evaluated using the cycle test previously described. Coating #1 and #3 exhibited similar 

mechanical resistance than the original HVOF coating, as expected based on literature review 

[202]. Coating #2 demonstrated an exceptional mechanical resistance by performing 5 times 
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more mechanical cycles than the original coating without any leakage. The excellent wear 

behavior of HVOF (W,Cr)C-Ni in dry sliding condition is attributable to the presence of two 

hard phases: WC and (W,Cr)2C. As studied by Berger et al., such a material combination results 

in an hardness over 1,200 HV (300 gf) [203] providing superior tribological performance at high 

temperature [204, 205]. 

 

Thermal stress resistance was evaluated using the thermal shock test previously described. 

Coating #1 exhibited a crack network relatively similar to the one observed on the failed valves 

after 60 thermal shock cycles. Coating #2 exhibited cracking and delamination after exposure to 

675°C during 30 minutes As described by Hou et al., HVOF (W,Cr)C-Ni coating is able to well 

retained hard WC phase at higher temperature than WC but not as high as 80/20 Cr3C2-NiCr 

coatings and exhibits excellent oxidation resistance [206]. However, the relatively low CTE of 

WC compare to nickel-iron base superalloys substrate engenders high interfacial stresses at 

elevated temperature leading to delamination and crack formation as documented by Miller and 

Lowell [207] when on the other hand, the CTE of Cr3C2 is close to the one of nickel and iron 

[208]. Coating #3 successfully passed the thermal shock test (No crack indication after 60 

thermal cycles – See Figure 5-8).  

 

 

Figure 5-8: Coating #1 and #3 were repeatedly subjected to thermal shocks going from ambient 

temperatures to 675 °C. Then they were put through liquid penetrant tests to check for any 

cracking. 
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Phase changes: The third test was to perform XRD measurements on powder and “as sprayed” 

for the HVOF coatings in order to estimate crystalline phases dissolution during deposition. The 

fusing process allowing stress relieving and carbon precipitation, the Ic of coating #3 was not 

evaluated.  The following Table 5.5 summarizes results.  

 

Table 5.5: Crystallinity Indices of powder and “as sprayed” HVOF coating   

Coating ID Crystallinity index 

Powder Coating 

0  77 % 49 % 

1 80 % 51 % 

2  83 % 82 % 

 

While coating #1 displays similar degradation level than the original coating, coating #2 

crystallinity index remains much higher, indicating less amorphisation (See Figure 5-9). 

However, for coating #2, a partial phase transformation (WC → W2C) was observed on the XRD 

spectra after deposition. Therefore, amorphisation is not the only degradation mechanism for this 

composition material.  

 

Figure 5-9: XRD spectrums of HVOF material #1 and #2; powder and “as sprayed” coating. 

 

Cr3C2               WC         (W,Cr)2C       NiCr          Powder        Coating 
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Based on those data, coating #3 appears well suited to withstand high bearing load and thermal 

shock. The coating #3 seems also the least sensitive to aging at high temperatures and therefore 

more durable under these very specific conditions. 

 

Coating #2 is not suitable for temperature over 540 ºC (1,000 ºF). However, it has demonstrated 

the best overall performance at lower temperature. 

5.4. Conclusion 

 

In this study, the failure of a HVOF 80/20 Cr3C2-NiCr coating applied on a metal-seated ball 

valve (MSBV) used in supercritical steam line was investigated. While oxidation definitely 

contributes to coating degradation, it is believed that carbide precipitation is the major factor 

causing embrittlement of the coating. Once the coating toughness and ductility is reduced, 

thermal, mechanical and residual stresses can initiate and propagate cracks more easily, causing 

coating failure when exposed to thermal shock.  

 

A spray-and-fuse NiWCrBSi coating more suitable to support high bearing load when facing 

thermal shock was qualified. This coating is less sensitive to aging at high temperatures and 

therefore more durable under these very specific conditions. 

 

Using this technology, new valves were installed in the plant and have worked successfully for 

the past two years.  
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Abstract: 

The mechanical, tribological, and corrosion properties of two hybrid coating systems were 

assessed: 1) a tungsten–tungsten carbide (W-WC) top layer and a laser cladded cobalt–chromium 

(Co-Cr) interlayer (Stellite® 6 superalloy) applied to a 316 stainless steel substrate; and 2) the 

same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer (Colmonoy® 88 

superalloy) applied to an Inconel® 718 substrate. X-ray diffraction, energy dispersive 

spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the 

coating layers. Microindentation was used to measure surface hardness and the hardness profile 

of the coating systems. Rockwell indentation was used to assess coating adhesion according to 

CEN/TS 1071-8. Surface load-carrying capacity was also assessed by measuring micro- and 

macrohardness at high loads. Tribological properties were assessed with a linear reciprocating 

ball-on-flat sliding wear test, and corrosion resistance was measured by potentiodynamic 

polarization and electrochemical impedance spectroscopy.  

W-WC layers showed class I adhesion to both the SS 316 and Inconel 718 substrates, with and 

without an interlayer. Hardness profile measurements on cross section showed hardness of 13.6 

GPa and 7.0 GPa for W-WC and Co-Cr, respectively, with average hardness of 9.7 GPa for Ni-

W-Cr-B. Furthermore, hardness measurements at different high loads revealed that the addition 

of an interlayer increases surface hardness by up to 200% compared to the same coating system 

provided without an interlayer, quantifying the additional load-carrying capacity provided by the 

supplementary interlayer. The tribological measurements show that, except for the Inconel 718 / 

Ni-W-Cr-B / W-WC system, the hardest interlayer or substrate leads to the highest wear rates.  In 

                                                
3

Corresponding author. Tel.: +1 514 340 5747; fax: +1 514 340 3218; E-mail address: jsapieha@polymtl.ca (J.E. Klemberg-Sapieha). 



103 

 

 
 

addition, the W-WC layer showed excellent corrosion protection, with no pitting observed after 

potentiodynamic polarization testing. 

 

Keywords: tribo-mechanical properties, load-carrying capacity, hybrid coating systems, 

corrosion resistance 

6.1. Introduction 

Valves are vital equipment components that are used in the power, mining, and oil and gas 

industries, among others, to control the flow of materials, including liquids, gases, and slurries. 

Because valves are used in a wide variety of applications, surface solicitation and degradation 

mechanisms vary accordingly. Sealing surface degradation is a major cause of valve failure, and 

can result in two different failure modes: 1) the valve fails to cycle on demand due to excessive 

friction between the sealing surfaces; and 2) the valve performs a cycle on demand but fails to 

seal in closed position due to imperfections in the sealing surfaces. To extend in-service-life, 

valve sealing surfaces are typically hardfaced with wear-resistant superalloys such as Co-Cr 

(Stellite® 6) or Ni-W-Cr-B (Colmonoy® 88), which can withstand high pressures and 

temperatures.  

Hardfacing is a technique whereby a wear- and corrosion-resistant alloy is welded onto a base 

metal to extend the life of components that are exposed to a harsh environment. Conventional 

hardfacings are applied by fusion welding to create metallurgicaly bonded pore-free coatings, 

which also provide the toughness required to withstand impacts and the rapid thermal cycling 

inherent in valve operation [209]. In addition to improving wear resistance, the elasto-plastic 

properties and thickness of fused hardfacings generally increase the strength and load-carrying 

capacity of the surface by acting as a solid bulk material and hence distributing stresses 

generated by high point load to the substrate [166]. Various processes have been developed to 

deposit metallurgicaly bonded hardfacings: low-heat-input processes such as diode laser cladding 

and spray-and-fuse are the leading techniques to produce pore-free overlays, as they minimize 

dilution with the base metal, which preserves grain structures while forming a metallurgical bond 

[210]. However, even when state-of-the-art deposition techniques are used, the tribological 

properties of hardfaced deposits remain inferior to those of hard thin films, and do not meet 

current valve industry needs [2]. 
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CVD-deposited W-WC hard films have demonstrated excellent tribological properties by 

mitigating tribological phenomena such as adhesion and abrasion induced by wear debris [211]. 

However, as reported by several authors, thin film elasto-plastic properties, including modulus of 

elasticity, hardness, and strain to- fracture, differ from those of conventional base materials used 

in the valve industry such as AISI 316 stainless steel (316) and Inconel® 718 (718) [212]. 

Mechanical property differences combined with limited thickness (typically in the range of a few 

micrometers) and a mismatch in the coefficient of thermal expansion produce peak stresses at the 

interface or within the substrate when subjected to high point load. This leads to permanent 

surface deformation and crack propagation [213]. For example, as described by Michler et al., a 

hard TiC:H thin film does not prevent high point-load indentation into stainless steel because the 

base material yields locally, which leads to permanent surface deformation, sometimes without 

thin-film fracture [214].  

This failure mode is typically called brinelling for plastic indentation or eggshell effect when 

cracks and/or spallation occur, whereas the capacity of the surface to distribute stresses generated 

by high point loads to the substrate is called the surface load-carrying capacity [215]. The load-

carrying capacity is therefore the capacity of a surface to distribute peak stresses generated by 

localized loading that do not exceed the yield strength of the thin film itself without developing 

permanent deformation, which includes brinelling (plastic deformation of the substrate without 

coating fracture), the eggshell effect (strain of the substrate up to coating fracture), and 

delamination (coating–substrate interface fracture) [159]. Although the load-carrying capacity 

can be controlled by adjusting the mechanical properties of the surface treatment, particularly 

thickness and modulus of elasticity, the mechanical properties of the subsurface materials also 

play a critical role in regulating stresses within the coating, base material, and interface. This also 

applies to the addition of interlayers that allow for gradual changes in the mechanical properties, 

thereby reducing the elasto-plastic gradient and peak stresses and hence preventing both 

brinelling and the eggshell effect [157]. Bemporad et al. used analytical modeling and 

experimental assessments to demonstrate the higher load-carrying capacity of PVD TiN thin film 

applied on Ti6Al4V substrates when provided with a HVOF WC-Co interlayer [213]. Bolleli et 

al. also reported the increased load-carrying capacity of DLC films deposited on aluminum and 

steel substrates when applied with a HVOF WC-CoCr interlayer [158, 216, 217]. 
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The aim of this study was to characterize two coating systems composed of 1) a hard thin film 

top layer, which provides superior tribological properties, and 2) a hardfaced interlayer, which 

increases the load-carrying capacity by reducing the elasto-plastic gradient and peak stresses at 

the interface or within the substrate. The first coating system consists of a tungsten–tungsten 

carbide thin film (W-WC) deposited by chemical vapor deposition (CVD) onto a laser cladded 

Co-Cr hardfaced interlayer applied to 316 stainless steel substrate, and the second consists of the 

same W-WC top layer and a high velocity oxygen fuel (HVOF) sprayed and fused Ni-W-Cr-B 

hardfaced interlayer applied to a 718 substrate.  

Section 2 describes the experimental procedures, including materials and characterization 

techniques. In section 3 presents the research findings and their analysis. In particular we will 

show that the addition of an interlayer increases the load-carrying capacity and that, except for 

the Inconel 718 / Ni-W-Cr-B / W-WC system, the hardest interlayer or substrate leads to the 

highest wear rates. Section 4 presents the conclusion. 

6.2. Experimental 

6.2.1.  Materials 

20mm x 20mm x 5mm square blocks of 316 and 718 annealed plates were used as substrates. 

Half the 316 samples were hardfaced with 2.5 mm thick Co-Cr alloy using a 4kW direct diode 

laser system (Coherent Inc.), and half the 718 samples were grit-blasted and HVOF coated (JP-

5000) with 200 µm thick Ni-W-Cr-B alloy. The coated 718 samples were subsequently fused 

with an oxy-acetylene torch, providing a metallurgical bond (also called a diffusion bond) 

between the Ni-W-Cr-B splats and substrate while sintering the HVOF-deposited superalloy. All 

718 samples were then age hardened at 790 °C for 8 hours and air cooled to increase the 

hardness, tensile strength, and yield strength of the 718 base material to a minimum of 4 GPa, 

1,040 MPa, and 860 MPa, respectively. Prior to CVD, all samples were mechanically polished 

with 200, 600, and 1,200 grit SiC papers. After polishing, a 50 ± 5 µm thick nanostructured W-

WC coating was deposited on all coupons the substrates were exposed to hot pressurized 

tungsten hexafluoride (WF6) gas combined with a small amount of carbon, which condensed 

onto the substrate surface to produce a nanostructured W-WC coating, according to the standard 

thermal CVD process developed by Zhuk et al. [218]. Before mechanical, tribological, and 

corrosion testing, all samples were mechanically polished using 1,200 grit SiC papers to obtain a 
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smooth surface finish similar to valve sealing surfaces as well as measurement repeatability. 

Hardfacings were deposited by FW Gartner Thermal Spraying (Houston, TX, USA) and W-WC 

thin films were deposited by Hardide (Oxfordshire, United Kingdom).  Figure 6-1 shows the 

schematics of the coupon configurations and Table 6.1 shows the nominal chemical composition 

and mechanical properties for all materials used.  

 

Figure 6-1: Schematic of sample configurations (a) 316 / W-WC, (b) 316 / Co-C / W-WC, (c) 

718 / W-WC, and (d) 718 / Ni-W-Cr-B / W-WC. 

 

Table 6.1: Chemical composition and physical properties. 

Material Thickness  

 

E 

 (GPa)  

H 

(GPa) 

Chemical Composition 

(% mass) 

316 5 mm 156 2.25 18 Cr, 8 Ni, 2 Mo, Fe bal. 

718 5 mm 175 4 18 Cr, 18 Fe, 5 Nb, Ni bal 

Co-Cr 2.5 mm 209 5.5 30 Cr, 5 W, 1 C, Co bal. 

Ni-W-Cr-B 200 μm 208 8.5 17 W, 15 Cr, 4 Si, Ni bal 

W-WC 50 μm 280
 

15 < 1 WC, W bal. 

 

a)  b)  

c)  d)  

316 

W-WC 

316 

Co-Cr 
 

W-WC 

718 

W-WC 

718 

Ni-W-Cr-B 

W-WC 
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6.2.2. Characterization methods 

6.2.3. Microstructure  

X-ray diffraction (XRD) measurements were performed with a Philips XPert-MPD X-ray 

diffractometer using Cu-Kα radiation (λ=1.54056 Å) at 50 kV voltage and 40mA current in the 

standard Bragg–Brentano configuration to determine which crystalline phases are present in the 

sample. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) 

analyses were performed using JEOL JSM-840 SEM to perform a visual inspection of the 

coating system, including porosity level, interlayer bonding, phase distribution, and coating 

system configuration as well as to confirm the chemical composition of the phases composing 

the microstructure of the material. 

6.2.4. Tribo-mechanical properties 

The adhesion of each coating system was qualitatively assessed by Rockwell C indentation 

according to CEN/TS/1071-8 standard. This procedure allows ranking the coatings based on 

image analysis of the fracture behavior of the coating after indentation at an applied load of 150 

Kg.  

Samples were sectioned with a coolant-assisted diamond wheel. Cross sections were then ground 

and polished using standard metallographic preparation procedures. Microhardness values of the 

constituent layers were measured on cross sections using a Micro-Combi Tester (CSM 

Instruments, Switzerland) with a Vickers indenter at 5 N load, a dwell time of 10 seconds, 

loading and unloading times of 30 seconds and calculated according to the Oliver and Pharr 

method [167]. 

The load-carrying capacity of each coating system was quantitatively assessed with visual 

surface hardness measurements using similar equipment at loads varying from 5 N to 30 N, 

dwell time of 30 seconds, and loading and unloading times of 30 seconds each. Macrohardness 

measurements were also performed using standard Rockwell equipment (manufacturer) at loads 

varying from 15 Kg to 150 Kg. All indent sizes were assessed using an optical microscope, 

including indents made by the Rockwell diamond stylus (120° cone angle, 200 μm radius). The 

corresponding hardness values were then calculated as the ratio between the load and the contact 

area estimated from the residual traces and the nominal indenter sizes. Eq. (17) was used for 
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Vickers indentations, Eq. (18) for Rockwell indentations showing a residual trace smaller than 

the projected area of the spherical tip (200 μm), and Eq. (19) for larger Rockwell indentations. 

𝐻 = 2𝑐𝑜𝑠(22°)
𝐿

𝑑2
 (17) 

𝐻 =
2𝐿

𝜋𝐷(𝐷 − √𝐷2 − 𝑑2)
 (18) 

𝐻 =
2𝐿

𝜋(𝐷2 (1 −
√3
2

) +
4𝑑2 − 𝐷2

2√3
)

 
(19) 

where d is the average diameter of the residual traces (mm), L is the indentation load (N), and D 

is the nominal diameter of the Rockwell diamond indenter tip (400 μm). 

Tribological properties of the coatings were measured using a ball-on-flat linear reciprocating 

tribometer (Tricomat, Montreal, Canada). Coating systems were tested for dry sliding wear 

resistance against 4.75 mm diameter Al2O3 balls using a sliding frequency of 2 Hz and stroke 

length of 10 mm. The load was set at 15 N to maximize stress within the coating systems without 

reaching delamination, and the total sliding distance was adjusted to 50 m to obtain a significant 

wear volume without piercing the top coating. After the ball-on-flat sliding test, the cross-

sectional areas of wear tracks were measured with a Dektak 3030ST stylus profilometer (Veeco, 

Plainview, USA). The wear volume was calculated by multiplying the measured area by the 

track length. The wear coefficient K was calculated using the formula K=
V

F∗S
, where V is the 

worn volume (mm
3
), S is the sliding distance (m), and F is the load (N). SEM observations were 

performed to assess the wear mechanisms.  

6.2.5. Corrosion properties 

Corrosion tests were performed in 3.5 wt.% NaCl aqueous solution using a three-electrode 

electrochemical cell with a standard calomel reference electrode and a graphite counter 

electrode. The coupon served as the working electrode. An Autolab PGSTAT302 potentiostat 

(EcoChemie, Netherlands) equipped with a frequency response analyzer was used for the 

electrochemical measurements. Corrosion testing consists of first stabilizing the sample in the 

electrolyte for one hour, during which the open circuit potential (OCP) is monitored and 

recorded. Electrochemical impedance spectroscopy (EIS) is then performed at the determined 

OCP with a 10 mV potential perturbation in the frequency range 105 Hz to 10
-2

 Hz. Finally, 
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potentiodynamic polarization is performed starting at -200 mV potential (with reference to the 

OCP) and 1 mV/sec scan rate. The reversal potential is 1,600 mV maximum, or when an anodic 

current density of 1 mA/cm
2
 is reached, whichever occurs first. 

6.3. Results and discussion 

In this Section, we first present the microstructural and tribo-mechanical characteristics of the 

two coating systems, followed by their corrosion properties. 

6.3.1. Microstructure  

Figure 6-2 shows cross-sectional images of each sample arrangement. Figure 6-2b and Figure 

6-2c show higher magnification of the Co-Cr and W-WC layers, respectively. Images of the two 

coating systems confirmed the thickness of each layer and their arrangement. All layers showed 

fairly dense structure and tight bonding with their respective substrate. The grains in the Co-Cr 

superalloy hardfacing have the typical dendritic shape that is formed during solidification and 

element segregation in the interdendritic region, whereas the Ni-W-Cr-B hardfacing showed a 

matrix containing 5 to 10 μm fine precipitated crystals. 

a)  c)  

b)  d)  

Figure 6-2: Cross section views of the coating systems a) 316 / Co-Cr / W-WC, b) Co-Cr / W-

WC high magnification, c) Co-Cr high magnification, and d) 718 / Ni-W-Cr-B / W-WC.  
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Figure 6-3 shows XRD patterns acquired from the thin film and the two hardfacing materials. 

W-WC coatings consist primarily of bcc tungsten and WC crystals, which are not visible, 

probably because the carbide crystals are too small to diffract. XRD spectra revealed the 

presence of chromium and tungsten carbides in the composition of both superalloy hardfacings 

and the presence of tungsten and chromium borides in the Ni-W-Cr-B alloy. 

 

Figure 6-3: XRD spectra of the thin film and the two hardfacing materials. 

 

Figure 6-4 shows the EDS spectra acquired from the three different coatings. EDS line scans 

performed on the Ni-W-Cr-B hardfacing revealed a Ni-Cr rich matrix containing W-rich and Cr-

rich precipitates (Figure 6-4b). This concurs with the findings in the literature that precipitates 

also contain carbon and boron. These precipitates typically segregate during the solidification of 

Ni-W-Cr-B alloys and form the borides and carbides that are visible on the XRD spectrum [219]. 

Additional EDS line scans performed on Co-Cr showed that the dendrites are Co-rich and the 

interdendritic regions are Cr- and W-rich. As indicated in the literature, carbon segregates during 

the solidification of Co-Cr alloys and forms carbides in the interdendritic region. Therefore, 

although undetectable with EDS line scans, the chromium and tungsten carbides detected with 

XRD were assumed to be present in the interdendritic region [220]. 
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Figure 6-4: a) EDS spectra of the thin film and the two hardfacing materials, b) line scan across a 

precipitated crystal in the Ni-W-Cr-B interlayer. 

6.3.2. Tribo-mechanical properties 

Figure 6-5 shows the adhesion test results according to CEN/TS/1071-8 for the W-WC coating 

with and without an interlayer. None of the tested coupons showed spallation, indicating good 

bonding of the W-WC layer. According to standard classification, the W-WC adhesion is 

therefore considered Class 1 onto bare materials and with the use of an interlayer, even though 

cracks are more visible on the bare substrates than with the use of an interlayer. 

 

Table 6.2 summarizes the cross-sectional microhardness values of the Co-Cr/W-WC and Ni-W-

Cr-B/W-WC coating systems. Figure 6-6 illustrates the various indentations performed on n the 

Ni-W-Cr-B alloy, the Ni-based matrix having a microhardness value around 6.5 GPa and the 

tungsten and chromium boride particles exhibiting a microhardness value around 13 GPa.  
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a)  b)  

c)  d  

Figure 6-5: Adhesion using Rockwell C indentation according to CEN/TS/1071-8 standard for 

(a) 316 / W-WC, (b) 316 / Co-Cr / W-WC, (c) 718 / W-WC, and (d) 718 / Ni-W-Cr-B / W-WC 

coatings. 

  

Table 6.2: Microhardness obtained on cross section. 

Sample H  

(GPa) 

Standard  

deviation 

(GPa) 

Maximum  

value  

(GPa) 

Minimum  

value  

(GPa) 

W-WC 13.6 0.6 14.5 13.1 

Ni-W-Cr-B 9.7 2.3 13.3 6.7 

Co-Cr 7.0 0.4 7.5 6.2 

718 5.3 0.4 4.8 5.7 

316 2.4 0.1 2.6 2.2 
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Figure 6-6: Cross section view of the microhardness measurements on 718 / Ni-W-Cr-B / W-

WC. 

 

Figure 6-7 shows the surface hardness measurements at loads varying from 5 N to 1471 N, 

indentations up to 30 N were performed using a Vickers indenter whereas indentations over 30 N 

were performed with standard Rockwell equipment. At low load, all hardness measurements are 

around 14 GPa, indicating no effect of the base material. At higher loads, the coating provided 

with an interlayer shows higher hardness than the coating without one, indicating higher load-

carrying capacity. The addition of the Co-Cr interlayer increases the hardness of the coating 

system by 30%, from 7 GPa to 9 GPa when measured at 30 N, and the Ni-W-Cr-B interlayer 

applied on to 718 increases the hardness of the coating system by 15%, from 11.5 GPa to 13 GPa 

at the same high load when compared to the coating system without an interlayer. At the higher 

loads, the interlayer increases hardness by approximately 200% for the 316 / Co-Cr / W-WC and 

by 25% for the 718 / Ni-W-Cr-B / W-WC coating systems when compared to the coating system 

without an interlayer.  
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Figure 6-7: Hardness with load for the different coating systems. 

 

Table 6.3 summarizes the results of the macrohardness readings obtained by the Rockwell 

equipment at different loads. Again, the W-WC coating applied with an interlayer shows 

systematically higher hardness, indicating higher load-carrying capacity. For example, at 15 Kg, 

the additional Co-Cr interlayer increases the hardness by 46%, from 58.7 HR15N to 85.9 

HR15N, and the Ni-W-Cr-B interlayer applied to 718 increases the hardness by 7%, from 

84.0HR15N to 89.9 HR15N. Because HR is proportional to indentation depth, the effect of the 

interlayer differs when expressed as contact pressure. 

 

Table 6.3: Surface hardness measurements. 

Sample HRC 

(150 Kg) 

HRA  

(60 Kg) 

HR15N  

(15 Kg) 

Vickers  

(2.5 Kg) 

316 / W-WC 9.5 53.2 58.7 810 

316 / Co-Cr / W-WC 49.9 76.0 85.9 1043 

718 / W-WC 41.4 71.6 84.0 1027 

718 / Ni-W-Cr-B / W-WC 45.8 77.1 89.9 1143 
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Figure 6-8 shows the wear rate and coefficient of friction for the different coating systems, 

illustrating the effect of the base material and the interlayers. The wear track profiles used to 

calculate the wear rates are shown in Figure 6-9. 

 
 

Figure 6-8: Wear rate (bars) and COF (dots) for each coating system. 

 

 

 

Figure 6-9: Wear track profile for each coating system. 
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All wear tracks show a relatively similar pattern, with 10 μm long micro-cracks but no formation 

of large flaking debris, as seen in Figure 6-10, indicating a mild steady-state abrasive wear 

mechanism. 

 

a)  
 

b)  

c)  d)  
 

Figure 6-10: SEM images of wear tracks for (a) 316 / W-WC, (b) 316 / Co-Cr / W-WC, (c) 718 / 

W-WC, and (d) 718 / Ni-W-Cr-B / W-WC coatings. 

 

This, combined with a similar coefficient of friction for all measurements, confirms that the 

results were not affected by adhesion failures. Insignificant traces of aluminum and oxygen were 

detected with EDS, indicating no significant material transfer from the Al2O3 counter body. The 

additional Co-Cr interlayer applied to 316 increases the wear rate by a factor of four, whereas the 

Ni-W-Cr-B interlayer applied to 718 reduces the wear rate by a factor of two. Thus, except for 

the 718 / Ni-W-Cr-B / W-WC system, wear rates are inversely proportional to the hardness of 

the substrate material carrying the thin film. Counterintuitively, the hardest interlayer or substrate 

leads to the highest wear rates, probably due to higher contact pressure for a given load. Results 
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suggest that the difference in wear rate is most probably due to a more uniform stress distribution 

under the Al2O3 ball rather than to a different wear mechanism. Because the modulus of elasticity 

of the base materials and interlayers are of the same order of magnitude, the authors suspect that 

the accommodation mechanism, that yields to a lower contact pressure, result from plastic 

deformations of the base and/or interlayer materials, which were insufficient to crack or 

delaminate the W-WC thin film.  

The inconsistent behavior of the 718 / Ni-W-Cr-B / W-WC system may be attributed to the 

relatively low thickness of the Ni-W-Cr-B layer, which reduces its effect, as well as the 

composite nature of this interlayer. Despite the high average microhardness, the standard 

deviation of microhardness for this multiphase material indicates the presence of low hardness 

zones, which are the first to deform plastically, and which may enable an accommodation 

mechanism that is not directly proportional to hardness, as indicated by the low wear rate of this 

coating system. 

It should be noted that when determining the maximum acceptable load for the ball-on-flat 

sliding test, it was observed that the 316 / Co-Cr / W-WC coupons delaminated systematically 

first. This premature delamination was most likely caused by a local phase transformation within 

the interlayer from face-centered cubic (fcc) to hexagonal close-packed (hcp). This stress-

induced phase transformation occurs on Co-Cr superalloy hardfacing when subjected to high 

contact pressure, and forms a superficial nanoscale layer that acts as a solid lubricant and 

prevents galling [19]. When used as an interlayer, the stress-induced phase transformation most 

probably occurred beneath the W-WC thin film, dramatically reducing the interface shear 

strength and causing premature delamination of the thin film. 

 

6.3.3. Corrosion properties 

Figure 6-11 shows the OCP measurements of the substrates, overlays, and W-WC coating. All 

samples acquired a stable potential after 1 hour of immersion. Co-Cr shifted the potential of 316 

to a more noble potential, whereas Ni-W-Cr-B shifted the potential of 718 to a more active 

potential. The W-WC coating showed lower OCP compared to the substrates and overlays, 

which is very important for corrosion protection because the substrates and overlays are 
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sacrificially protected by the coating in case of coating detachment or scratching and galvanic 

coupling between the W-WC coating and the substrate and overlay. 

 
 

Figure 6-11: OCP measurements for a) substrate and hardfacings, and b) the four coating 

systems. 

 

Figure 6-12 shows the EIS spectra of the substrates, overlays, and coating. EIS results are 

presented in Nyquist plots and are interpreted using the basic Randles electrical circuit, shown in 

the inset of Figure 6-12 a. The circuit consists of a resistor Rs in series with a constant phase 

element Q in parallel with a resistor Rp. Rs corresponds to the resistance of the test electrolyte 

between the working electrode and the reference electrode, and Rp is the polarization resistance, 

which represents the resistance to general corrosion. Q is a constant phase element (CPE), which 

is often used to replace a capacitor. Its impedance is expressed as: 

ZQ = 1/[Yo(jw)
n
] 

where Yo is the parameter of Q (F.sec
n-1

.cm
-2

), w is the angular frequency (Hz), and n is an 

empirical exponent, which is always situated between 0.5 and 1 [18]. When n = 1, the CPE 

describes an ideal capacitor with capacitance Yo. For 0.5 < n < 1, Q describes a non-ideal 

capacitor, and when n = 0.5, Q represents a Warburg impedance referred to as anomalous 

diffusion.  

      a)       b) 
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Figure 6-12: EIS spectra for a) substrate and hardfacings, and b) the four coating systems. 

 

Co-Cr shows the highest impedance, with capacitive behavior at low frequencies as the phase 

angle approaches 90 degrees. Ni-W-Cr-B shows lower impedance, with a tendency towards more 

resistive behavior. W-WC significantly reduces the impedance of the substrates and overlays. All 

EIS spectra simulation data are shown Table 6.4.  

Table 6.4: EIS spectra simulation results. 

Sample Rs (Ω.cm
2
) Q (Yo) 

(F/cm
2
) 

Q 

 (n) 

Rp 

(Ω.cm
2
) 

316 29 0.33x10
-4 

0.89 1.95x10
6 

316/Co-Cr 28 0.13x10
-4 

0.85 6.56x10
6 

718 33 0.23x10
-4 

0.90 4.21x10
6 

718/Ni-W-Cr-B 32 0.15x10
-4 

0.89 0.75x10
6
 

316/W-WC 35 0.14x10
-3

 0.92 3.3x10
4
 

316/Co-Cr /W-WC 37 0.15x10
-3

 0.89 2.2x10
4
 

718/W-WC 28 0.14x10
-3

 0.90 3.5x10
4
 

718/Ni-W-Cr-B/W-WC 31 0.15x10
-3

 0.90 0.8x10
4
 

 

  

Rs values are similar because the same solution was used for all tests. Co-Cr showed the highest 

Rp, indicating the highest resistance to general corrosion among the tested substrates and 

overlays. Co-Cr improved the corrosion resistance of the 316 substrate by almost three times. 

However, Ni-W-Cr-B decreased the corrosion resistance of the 718 substrate by almost five 

times. 

The results obtained on all W-WC samples were almost identical, indicating no effect of the 

underlying layers on the corrosion performance of W-WC. The results show that Rp values were 

approximately two orders of magnitude lower compared to the substrates and overlays, 

      b)       a) 

Rs 

Rp 

Q 
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indicating lower resistance to general corrosion. Figure 6-13 shows the potentiodynamic 

polarization curves of the substrates, overlays, and W-WC coating. The corrosion current io and 

the breakdown potential Eb derived from these curves are presented in Table 6.5. 

 

Table 6.5: Corrosion current io and breakdown potential Eb for each coasting system 

 

Sample io (A/cm
2
) Eb (mV) 

316 / W-WC 2.1x10
-6

 N/A 

316 / Co-Cr / W-WC 2.4x10
-6

 N/A 

718 / W-WC 2.6x10
-6

 N/A 

718 / Ni-W-Cr-B / W-WC 2.2x10
-6

 N/A 

 

718 shows high Eb and low io, indicating high resistance to general and localized corrosion while 

the Ni-W-Cr-B overlay significantly reduced the corrosion resistance of 718. In contrast, the Co-

Cr overlay improved the corrosion resistance of the 316 substrate by decreasing io and increasing 

Eb.  

 

       

 

Figure 6-13: Potentiodynamic polarization curves for a) substrate and hardfacings and b) the four 

coating systems. 

 

The polarization curves for all samples with the W-WC coating are similar, confirming the 

masking effect of the W-WC layer. In addition, the passive zone extends to 1600 mV with no 

      b) 
      a) 
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signs of pitting. This was confirmed by optical microscopy after polarization, as no pits were 

observed on the exposed area. 

 

6.4. Conclusions 

Two coating systems were investigated: a W-WC thin film deposited onto a laser cladded Co-Cr 

interlayer applied to an 316 substrate, and a W-WC top layer deposited onto an HVOF sprayed 

and fused Ni-W-Cr-B interlayer applied to an 718 substrate. X-ray diffraction, energy dispersive 

spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the 

coating layers. Adhesion, hardness, and load-carrying capacity were assessed using Vickers and 

Rockwell indentation. Wear resistance was also assessed with linear reciprocating ball-on-flat 

sliding wear tests, and corrosion resistance was measured by potentiodynamic polarization and 

electrochemical impedance spectroscopy.  

The interlayers showed no negative impact on W-WC adhesion, as all coating systems applied to 

the 316 and 718 substrates were considered Class 1 according to CEN/TS 1071-8, with and 

without an interlayer. The addition of an interlayer increased the micro- and macrohardness of 

W-WC under high loads, providing the surface with higher load-carrying capacity. However, the 

sliding wear results were counterintuitive: except for the 718 / Ni-W-Cr-B system, the hardest 

interlayer or substrate leads to the highest wear rates probably because of a higher contact 

pressure for a given load. The contrary behavior of the 718 / Ni-W-Cr-B system is most probably 

due to the composite nature of this interlayer that, despite an overall high hardness, offers zones 

that can be easily plastically deformed, lowering the contact pressure, as indicated by the low 

wear rate. Systematic premature delamination of the 316 / Co-Cr / W-WC compared to other 

coating systems was observed and attributed to the stress-induced fcc → hcp phase 

transformation of the Co-Cr interlayer that occurs at high load and reduces dramatically the 

interface shear strength. In terms of corrosion, the polarization curves for all samples were 

similar, confirming that the interlayers did not lower the corrosion resistance of the coating 

systems.  

In summary, superalloy hardfacing used as an interlayer substantially increased the mechanical 

properties of both studied coating systems, and particularly the load-carrying capacity, without 

significantly altering corrosion properties of the thin film. Therefore, a hardfaced interlayer is a 
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promising solution to increase the load-carrying capacity of thin films, and an effective way to 

adjust the performance of a substrate–coating system. 
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 GENERAL DISCUSSION, CONCLUSION AND CHAPTER 7

PERSPECTIVES 

 

Valves are critical pieces of equipment for today’s industries. They ensure safe, efficient 

production and flow of the energy and materials required for a myriad of demanding 

applications. As illustrated by this thesis, material selection is a key factor for minimizing valve 

wear while maximizing in-service life. Because valves are used in such a vast variety of 

operations, surface solicitation and degradation mechanisms vary as well, making materials 

selection a challenge for both valve manufacturers and end users.  

 

Since World War II, three wear-resistant materials, Stellite 6, hard chrome plating, and Teflon, 

have been predominantly used to mitigate friction and extend the in-service life of these vital 

machine components. Continuous advances in industrial processes have called for the 

development of new corrosion- and wear-resistant surface treatments. These include 1) Cr3C2-

NiCr applied by High Velocity Oxy-fuel (HVOF) deposition for valves operating in high-

temperature high-pressure steam environments (fossil power generation); 2) iron-based galling-

resistant hardfacing (Norem 02) applied by plasma transfer arc (PTA) to minimize the presence 

of cobalt in the primary circuit of pressurized water reactors (nuclear power plants); 3) WC-CoCr 

applied by HVOF for erosive applications at the moderate temperatures encountered in the 

upstream oil sector (exploration and production) and for high-pressure slurry pipelines; 4) self-

fluxing nickel-based hardfacing (NiCrB); and 5) boriding for abrasive applications in the sour 

environments encountered in the downstream oil sector (refining and petrochemical industries); 

and 6) pure ceramics (TiO2 and/or Cr2O3) applied by air plasma spray (APS) for the abrasive 

conditions encountered in corrosive processes (i.e., hydrometallurgy). However, the optimized 

tribological solutions that have been developed over the last decade have already reached their 

limit, and the evidence shows that a substantial number of surface treatment challenges remain to 

be overcome.  
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General Discussion 
 

This work has contributed to develop a better understanding of the fundamental physico-

chemical phenomena that govern the surface degradation mechanisms occurring during valve 

life, in conformity with the main objective of the thesis. This was achieved by the completion of 

four detailed mechanical and tribological studies covering the main wear-resistant materials 

protecting severe-service valves. Those studies enabled the comprehension of the surface 

degradation mechanisms, and once the mechanisms were fully understood, more suitable surface 

treatments were then selected to precisely inhibit these specific degradation mechanisms and 

ultimately extend valve life. 

 

We established that the comprehension of the degradation mechanism at the micro- and nano- 

structure levels is essential to understand both the mechanical and tribological response of 

surfaces; and how they interact with each other to ultimately yield to surface degradation. We 

found that both adhesion and sliding wear can be controlled by applying tailored thin films 

possessing high hardness (H) and excellent sliding wear properties. Special care must be given to 

contact design, because debris and transfer films have an impact on stress distribution, adhesion 

and sliding wear.  

 

We also established that thin surface treatments with enhanced tribological properties typically 

exhibit mechanical behaviors that differ from conventional base materials used in the valve 

industry. This mismatch, combined with limited thickness, might create a high amount of stress 

at the interface and within the substrate material when subjected to a high concentrated load. 

This results in high stress levels that can evolve up to permanent surface indentation, crack 

formation, and / or spallation.  The response of the surface is also significantly influenced by the 

material carrying the top coating; and the system should be optimized as a whole, with respect to 

tribological performance, mechanical responses, and environmental stability. There is increasing 

evidence that the optimum solution to erosive, corrosive, and adhesive wear problems lies in 

multilayered and/or graded coating systems that combine controlled hardness elastic modulus, 

toughness, and high load-carrying capacity. 
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This doctoral research project is divided into four parts. The research results are presented in the 

form of three articles corresponding to three chapters, with the fourth part presented in the 

Appendix.  

 

Conclusion 
 

The first article (Chapter Four) presents a comprehensive analysis of two nanostructured coatings 

that are potentially suitable as alternatives to hard chromium (HC). HC, which has been 

classified by the U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly 

process, is a widely used surface treatment in the valve industry to protect valves operating at 

pressures up to 50 bars. The first objective of this research project was therefore to search for a 

cleaner alternative to HC. Two cost-effective off-the-shelf nanostructured coatings with hard 

chromium electroplating were identified as candidates and systematically characterized. The two 

coating systems, tungsten carbide deposited by CVD (W/WC) and cobalt phosphor deposited by 

pulsed electroplating (NCP), showed attractive tribomechanical and functional characteristics. 

NCP produces a fourfold lower wear rate and a threefold lower friction coefficient than standard 

HC plating when using alumina counterbody. However, NCP has proven to be more prone to 

corrosion, with limited scuffing resistance, whereas W/WC provides a lower wear rate and lower 

friction coefficient as well as robust corrosion behaviour.  

 

Based on these results Velan Inc. has successfully replaced hard chrome plating with CVD-

W/EC for a few projects. These include a petrochemical application, where the cellulose ester 

sludge containing acetic acid was attacking the interface between the hard chrome plating and 

SS316, and a nuclear power generator, where hard chrome plating was prohibited by the 

customer and where a pure Stellite ball had failed. 

 

Chapter Five presents a case study, consisting of a failure analysis of an HVOF 80/20 Cr3C2-

NiCr coating applied to metal-seated ball valves (MSBVs) used in supercritical power plant 

steam lines. Although oxidation is known to contribute to coating degradation, carbide 

precipitation is thought to be the major factor for coating failure. Based on the analysis results, 

the identified mechanism is that native chrome carbide dissolution due to the high temperatures 

combined with potential carbon from the fuel enrich the nickel chrome matrix during deposition. 
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In high-temperature service, chrome carbides reprecipitate across the NiCr matrix, producing a 

fine network of Cr3C2 precipitates that drastically increases the matrix and coating hardness 

while drastically reducing its toughness. Once the coating toughness and ductility is reduced, 

thermal, mechanical, and residual stresses can initiate and propagate cracks more easily, causing 

coating failure when the valve is exposed to thermal shock.  

 

A self-fluxing nickel-based hardfacing that appeared more suitable to support high bearing loads 

under severe thermal shock was then assessed. This coating is less sensitive to aging at high 

temperatures, and therefore more durable under these severe conditions. In 2011, based on our 

failure analysis, Velan modified its material selection, and now offers two coating / substrate 

combinations for MSBVs used in power plants. Since then, no field service issues have been 

reported.  

 

Chapter Six presents an investigation of two coating systems: a W-WC thin film deposited onto a 

laser cladded Co-Cr interlayer applied to an SS 316 substrate, and a W-WC top layer deposited 

onto an HVOF sprayed and fused Ni-W-Cr-B interlayer applied to an Inconel 718 substrate.  

 

The introduction of an interlayer increased the micro- and macrohardness of W-WC under high 

loads, providing the surface with higher load-carrying capacity. The interlayers showed no 

negative impact on W-WC adhesion, as all coating systems applied to the SS 316 and Inconel 

718 substrates were considered Class 1, with and without an interlayer. However, the results on 

sliding wear were positive and counterintuitive: except for the 718 / Ni-W-Cr-B system, wear 

rates were inversely proportional to the yield strength of the material carrying the thin film. This 

result is most probably due to a more favorable stress distribution under the pin, which may be 

due to plastic deformation of the substrate and/or interlayer. Another hypothesis in the case of 

the Stellite interlayer is a local phase transformation. In terms of corrosion, the polarization 

curves for all samples were similar, confirming that the interlayers did not lower the corrosion 

resistance of the coating systems. In summary, superalloy hardfacing used as an interlayer 

substantially increased the mechanical properties of both coating systems, and particularly the 

load-carrying capacity, without significantly altering the tribological or corrosion properties of 

the thin film. Therefore, a hardfaced interlayer is a promising solution to increase the load-
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carrying capacity of thin films, and an effective way to maximize the performance of a substrate–

coating system. 

 

Appendix A provides a report on four recently developed APS ceramic coatings that are 

potentially suitable for HPAL, namely Cr2O3, n-TiO2, Cr2O3-TiO2, and n-TiO2-Cr2O3. Each 

coating was subjected to a detailed characterization and an analysis of the wear mechanisms.  

 

The pure Cr2O3 blend showed the highest hardness and best sliding wear resistance and COF, 

whereas the n-TiO2 showed the lowest hardness, the poorest wear rate, and the highest COF. As 

expected, the Cr2O3-TiO2 and n-TiO2-Cr2O3 blends provided hardness and sliding characteristics 

that were in between those of the pure ceramics. In terms of abrasion, the results were positive 

and counterintuitive: the n-TiO2-Cr2O3 blend showed superior resistance for both dry and wet 

abrasion tests compared to the pure ceramics. Based on the literature, the high performance of 

the n-TiO2-Cr2O3 can be attributed to the optimized balance between the hard and brittle Cr2O3 

phases and the soft and ductile TiO2 phases.  

 

The results of this investigation demonstrate how the synergy between the two pure ceramics 

provides superior abrasion performance to that for the individual ceramics. Promisingly, the 

novel n-TiO2-Cr2O3 blend produced consistently better tribological performance than the TiO2-

Cr2O3 blend. Consequently, this novel blend promises to be a significant advance over the 

current TiO2-Cr2O3 blend.  
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Perspectives 
 

Being the first Ph.D. candidate from FCSEL to devote his research to surface engineering 

applied to valves, I had to make a fresh start by exploring areas of this multifaceted industry that 

are underrepresented in the literature. I hope that this doctoral work will accelerate the learning 

curve for future Ph.D. candidates. In fact, certain high-potential research avenues have emerged, 

pointing the way to future research directions, along with more general observations on surface 

engineering principles applied to valves that may inspire further initiatives.  

 

Starting with the specifics, the disaffinity of hard chrome plating for heavy petroleum products 

and the resulting anti-sticking property have been insufficiently documented. Given that these 

properties are crucial for downstream applications, more research is needed to quantify the oil-

repealing capacity of available surface treatments, including the alternative coatings investigated 

in this doctoral work. Future studies could consider the different classes of heavy petroleum 

products, such as bitumen, asphalt, and tar, as well as the different operating conditions, such as 

pressure and temperature, which could result in diverse solidification and bonding mechanisms.  

A second research avenue would be to improve the wear resistance of cobalt-chrome adaptive 

materials. New manufacturing processes could aim to optimize the grain size (i.e., 

nanostructured particles) and phase distribution (i.e., homogeneity or controlled inhomogeneity) 

in order to maximize the material strength without affecting the anti-galling properties. This 

optimization process will require novel feedstock material (e.g., powder, gas) and deposition 

processes (e.g., thermal spraying, vapor deposition), and the outcomes should be dramatically 

increased hardness and abrasion resistance. An optimized microstructure should limit the volume 

loss over time and enable the use of cobalt-chrome adaptive materials in areas where they are 

currently not the preferred solution, especially for the nuclear power generation, refining, and 

petrochemical industries. 

For power generation, four particular items merit investigation:  

1) The mechanical properties of Inconel 718 coated with self-fluxing nickel-based hardfacing 

needs to be more systematically documented, in particular the impact of post-fusing treatment on 
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the nickel-based superalloy. In addition, alternative deposition processes such as laser cladding 

should be assessed. 

2) A trim composed of an Inconel 718 ball hardfaced with self-fluxing nickel-based and an 

Inconel 718 seat coated with HVOF Cr2C3-NiCr should also be analyzed. In fact, the HVOF-

coated seat has never failed in service, most likely due to its higher rigidity and thermal inertia. 

This combination of dissimilar materials should mitigate the risk of galling while improving 

sliding wear.  

3) A significant number of high-temperature applications requiring Inconel 718 hardfaced with a 

self-fluxing nickel-based alloy are required to operate at temperatures ranging from 540 °C to 

590 °C. This performance should be achievable with a novel martensitic stainless steel (UNS 

S42200 – AISI 616) provided with an HVOF coating. 

4) Researchers should continue to develop coatings for use in gamma-prime strengthened nickel-

based materials for SC and U-ASC applications up to 760 °C / 500 bar, keeping in mind that 

thermal stress, aging, and galling are more likely to occur than sliding wear. With their high 

ductility (i.e., strain to fracture), elevated high-temperature hardness, and a coefficient of thermal 

expansion close to that for Waspaloy, Inconel 740, and/or Haynes 282, 50/50 Cr3C2-NiCrMoNb 

(Amperit 595) and Triballoy 800 are promising candidates for protective coatings. In addition, 

the use of colder deposition processes should be investigated to minimize in-flight 

decarburization. Post-deposition heat treatment should also be considered for controlling the 

final microstructure and bond strength (i.e., diffusion).  

With respect to thin-on-thick hybrid coatings in particular and protective coatings in general, 

finite element models would be useful for predicting mechanical and thermal stress and for 

identifying the need for added interlayers to improve stress control. This would be particularly 

salient for coating processes that result in an abrupt coating–substrate interface, such as CVD 

and thermal spraying, as well as laser cladding. These processes are widely used in industries 

because they minimize impacts on bulk material and limit dilution. In addition, cross-sections of 

thin-on-thick samples should be analyzed, and particularly the interlayer and the substrate 

material beneath the wear track. Special attention should be paid to potential Stellite phase 
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transformation: it may explain high wear rate and delamination, and could be mitigated by pre-

treatment. 

 

For the highly corrosive environments encountered in hydrometallurgy, systematic failure 

analyses are needed to guide the development of n-TiO2-Cr2O3 coating, powder preparation, and 

spraying parameters in order to inform adjustments to maximize cohesive strength, strain to 

fracture, and corrosion resistance. Different sealants (epoxy, silicone, and urethane) should also 

be assessed in corrosion tests, and the development of an HVOF process capable of spraying n-

TiO2-Cr2O3 could be considered to minimize quenching. The challenge here would be to ensure 

that the Cr2O3 particles melt in order to avoid particle rebound when impacting the substrate as 

well as particle erosion of the deposited TiO2 layer. Thermal spray processes have intrinsic 

weaknesses, and should be viewed as “local optimums” when applying ceramics for corrosive 

applications. Finally, new deposition methods (e.g., vapor deposition) that are less prone to 

spalling would offer innovative directions.  

 

Although I do not pretend to have either the resources or the time to solve all the above 

challenges, or others to come, I am gratified that my doctoral work has influenced Velan to join 

the NSERC Multisectorial Industrial Research Chair in Coatings and Surface Engineering (MIC-

CSE), launched in 2012 by Ludvik Martinu and Jolanta Ewa Klemberg-Sapieha in collaboration 

with six industrial partners. By actively participating in this conglomerate, Velan has joined a 

partnership that will facilitate the definition of mid- and long-term R&D projects, set priorities, 

and systematically overcome challenges in the field of protective coatings. While efforts are 

needed to mitigate sliding wear and increase the in-service life of existing valves by optimizing 

materials selection, special care should be taken to collect quantitative data (e.g., maximum 

pressure x temperature coefficients for material couples) and to develop methodologies (e.g., 

finite element analysis) to facilitate the engineering of made-to-order products that are compact 

and robust, using optimized contact design (e.g., elevated uniform bearing stress distribution 

combined with debris evacuation features). These highly optimized products will not be prone to 

premature catastrophic failures caused by surface-degradation mechanisms such as spalling, 

galling, plastic deformation, egg-shell effect, and corrosion. Furthermore, this effort should 
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include fundamental research to deepen the understanding of material properties, contact 

geometry, stress intensity, and sealing capability. 
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APPENDIX A NANOSTRUCTURED AND CONVENTIONAL Cr2O3, TiO2 

AND TiO2-Cr2O3 THERMAL SPRAYED COATINGS FOR METAL-

SEATED BALL VALVE APPLICATIONS IN HYDROMETALLURGY 

 

A.1. Introduction  

 

In collaboration with the NRC and Polytechnique Montréal, Velan undertook a detailed 

characterization project in order to assess the mechanical and tribological resistance of promising 

ceramic coatings for hydrometallurgy applications, including a novel nanostructured n-TiO2- 

Cr2O3 blend. All test results were compiled to facilitate Velan’s selection of the most appropriate 

coating to optimize MSBV performance in POx and HPAL applications
4
.  

 

Over the last two decades, metal-seated ball valves (MSBVs) have become the industry standard 

for hydrometallurgy applications. They ensure tight, reliable shut-off, a critical service that 

facilitates maintenance and contributes to a safe working environment. The typical MSBV 

design for hydrometallurgy applications consists of a floating ball in contact with a fixed seat. 

The ball and seats consist of either titanium or duplex stainless steel substrates protected by a 

ceramic coating. The primary function of the ceramic coating is to enhance the load-carrying 

capacity and tribological performance of the base material, thus extending the in-service life of 

the equipment, especially during ball motion phases. 

 

Twenty years ago, conventional Cr2O3 applied by air plasma spraying (APS) was the preferred 

coating for protecting MSBVs from the extreme abrasion, pressure, and elevated temperature 

inherent to the pressure oxidation (POx) recovery process used in gold processing, in which gold 

ore is mixed with oxygen and sulfuric acid in an autoclave. Over time and based on field 

experiments, silicon dioxide (SiO2) and titanium dioxide (TiO2) were added to the original Cr2O3 

blend to improve the ductility and toughness. Velan’s Cr2O3 blend has proven effective in gold 

extraction at sites such as the NERCO Con Mine (Canada) and the Barrick Goldstrike and Lone 

                                                
4
 This appendix is based on a working paper coauthored with Craig Bekins and Nicolas Lourdel from Velan, 

Rogerio S. Lima and Dominique Poirier from National Research Council of Canada, and Duanjie Li and Jolanta E. 

Klemberg-Sapieha from Polytechnique Montréal. 
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Tree mines (USA). The Lihir and Porgera gold mines (Papua New Guinea) have also reported 

good results with Velan’s Cr2O3 blend applied to MSBVs [86].  

 

Similar to POx, high-pressure acid leaching (HPAL) is used in the nickel recovery process, 

whereby laterite ore is leached in a sulfuric acid environment in an autoclave at 4.1 bar (600 psi) 

and temperatures above 240 ºC (464 ºF). Unlike POx, HPAL operates at high pressure, which, 

combined with a higher chloride content, produces a more corrosive environment (e.g., titanium 

is susceptible to crevice corrosion in HPAL). Based on Velan’s experience with different coating 

blends at Falconbridge Mines (Canada), the Cr2O3 blend optimized for POx corrodes 

prematurely when used in HPAL. Because it is relatively inert in this environment, TiO2 would 

appear to be a promising choice for HPAL [7]. However, the mechanical and tribological 

performance of conventional TiO2 are significantly lower than those of Cr2O3, resulting in higher 

wear rates, as observed by Velan at the Cawse and Murin-Murin nickel mines (Australia).  

 

The industry has been working to optimize coating solutions for HPAL [171]. Several options 

for mitigating corrosion have been considered and tested by various companies, with generally 

unsuccessful results. Attempts included the use of intermediate bond coats, such as gold and 

tantalum, placed between the base material and the Cr2O3 top coat. One engineering firm used a 

nanostructured TiO2 coating, which has worked reasonably well at Ravensthorpe (Australia) and 

Ramu (Papua New Guinea) [84, 85]. Meanwhile, Velan developed a proprietary ceramic blend 

containing TiO2 and Cr2O3, designed to obtain the corrosion resistance of pure TiO2 and the 

tribological performance of Cr2O3. This coating has demonstrated superior performance in 

several HPAL projects, including Coral Bay (The Philippines), and has performed satisfactorily 

at most recent installations, such as Goro (New Caledonia) and Ambatovy (Madagascar) [86]. 

All critical isolation valves installed at the recent Taganito (The Philippines) project also used 

this optimized TiO2-Cr2O3 blend.  

 

Section 2 describes the experimental procedures, including the materials and characterization 

methods. Section 3 presents the research findings and their analysis. Section 4 presents the 

conclusions and some directions for further research. 
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A.2. Experimental 

A.2.1.  Materials 

A.2.1.1. Base Material  

All coatings were applied onto titanium grade 5 coupons (ASTM B348) that were previously grit 

blasted (Al2O3 – grit 24). A nominal coating thickness of 0.020in (500 µm) was targeted.  

A.2.1.2. Powder Materials  

The following powder materials were selected based on a literature review and field experience: 

1) Cr2O3 (Velan’s proprietary blend), 

2) TiO2-Cr2O3 (Velan’s proprietary blend), 

3) n-TiO2 (supplied by Millydine), 

4) n-TiO2- Cr2O3 (Velan’s proprietary blend). 

 

Cr2O3 and TiO2-Cr2O3 are currently Velan’s proprietary ceramic coatings for hydrometallurgy.  

The authors consider selected n-TiO2 as the finest TiO2 available on the market. This powder is 

formed from nanosize constituents that are agglomerated and sintered into larger particles to 

allow spraying. Figure A-1 shows the n-TiO2 powder microstructure, X-ray diffraction (XRD), 

and particle size distribution measured by laser diffraction. 
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a)  

b)  
 

c)  

Figure A-1: n-TiO2 powder characteristics: (a) SEM micrographs – A: anatase, R: rutile, (b) 

XRD pattern, and (c) particle size distribution – logarithmic scale  
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A novel blend of n-TiO2 and Cr2O3 was specifically prepared by the authors for this project. The 

n-TiO2 powder (supplied by Millydine) was mixed with Metco 106, a fused, sintered, and 

crushed Cr2O3 powder. 

 

A.2.2. Deposition Techniques 

High velocity oxygen fuel (HVOF) and APS are the two dominant thermal spray processes used 

to apply these coatings. APS, at an in-flight particle temperature ~2,600 °C (~4,700 °F), is more 

appropriate for applying Cr2O3 (melting point ~2,350 °C / 4,260 °F) compared to HVOF 

(maximum in-flight particle temperature ~2,300 °C / 4,172 °F). Consequently, all coatings were 

deposited using APS. 

 

Velan’s proprietary blends were deposited using an SG100 torch (Praxair Surface Technologies, 

USA), as presented in Table A.1. 

Table A.1: Spraying parameters. 

 

 Cr2O3 TiO2 - Cr2O3 n-TiO2 n-TiO2 - Cr2O3 

Torch SG-100 SG-100 
Mettech 

Axial III 

Mettech 

Axial III 

Ar flow (lpm) 53 53 37.5 62.5 

H2 flow (lpm) Confidential 37.5 62.5 

N2/He flow (lpm) 41 He 41 He 75 N2 125 N2 

Current (A) 800 800 230* 230* 

Voltage (V) ~42 ~42 152 205 

Power (kW) 33.6 33.6 105 141 

Net Power (kW) or Enthalpy 

(kJ/L) 
Confidential 15.0 kJ/L 18.2 kJ/L 

Nozzle 
730 Anode / 129 

Cathode 

730 Anode / 129 

Cathode 
3/8in 3/8in 

Spraying Distance (cm) 6.35 6.35 14 14 

Feedrate (g/min) ~30 ~30 18 18 

Ar Carrier Gas flow (lpm) 5  5  9 9 

In-flight Temperature (°C) 
Confidential 

2578±166** 2590±258** 

In-flight Velocity (m/s) 269±45** 457***±91** 
*Current per electrode set – 3 electrode sets in the torch. 
**The standard deviation corresponds to the sample distribution, not the experimental error. 
***Approximation; velocity higher than the standardized range. 

 

The n-TiO2 and n-TiO2-Cr2O3 coatings were deposited using a high power Mettech Axial III 

APS torch. The optimal set of spraying parameters for sliding wear performance of the n-TiO2 
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feedstock was determined in a previous NRC study and used for the present study. The gas 

flows, current, and spraying distances for the n-TiO2-Cr2O3 powder blend were varied to produce 

coatings with different structures and properties (preliminary trials). The parameter set that 

produced the hardest and toughest coating was selected for coating production.  

 

All spraying parameters are presented in Table A.. In-flight particle temperature and velocity 

were measured with a DPV 2000 thermal spray sensor (Tecnar Automation, Canada). 

 

A.2.3. Characterization techniques 

A.2.3.1. Microstructure 

Coating microstructures were obtained using SEM (JSM-6100 microscope, JEOL, Japan) or 

back-scattered electron (BSE) imaging (FE-SEM S4700 microscope, Hitachi, Japan). EDS 

analyses were performed using a JSM-840 SEM microscope (JEOL, Japan). Coatings were 

sectioned with a coolant-assisted diamond wheel and then cold-vacuum mounted in an epoxy 

resin. Cross-sections were then ground and polished using standard metallographic preparation 

procedures 

A.2.3.2.  Mechanical Property Characterization  

Microhardness and shear strength were determined using microhardness indentation testers and 

universal tensile testing equipment, respectively.  

 

Microhardness was measured on polished coating cross-sections with a Micromet II Tester 

(Buehler, USA) equipped with a Vickers tip under a 300 gf load. A minimum of 12 indentations 

were performed on each specimen (straight line pattern at the center of the coating cross-

section), and the highest and lowest values were removed from the dataset. 

 

Coating adhesion to the Ti substrate was assessed with shear tests (ASTM F1044). An Instron 

5582 Universal Testing Machine (Instron, Canada) was used to determine the maximum shear 

loads required to obtain sample separation.  
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A.2.3.3. Tribological Behavior Assessment  

Wear resistance of the coatings under different conditions such as sliding wear and abrasion were 

measured by standard pin-on-disc tests and abrasion tests, respectively. Galling resistance was 

measured using a custom-designed automated galling tester. 

 

A custom-made pin-on-disc tribometer was used to assess the sliding wear behavior of the 

coatings. A normal load of 25 N was applied to a tungsten carbide ball (4.75 mm diameter) used 

as a counterpart material. A new ball was used for each test. The diameter of the wear track ring 

d was 7 mm and the rotation speed was 546 revolutions per minute (rpm). This results in a linear 

speed of 20 cm/s (7.9 in/s). The coefficient of friction COF was recorded every second during 

the test. The wear rate K was assessed using the formula K=V/(F×s), where V is the worn 

volume, F is the normal load, and s is the sliding distance. Pin-on-disc wear track profiles were 

determined using a Sloan Dektak II profilometer, and the wear track morphology was examined 

by optical microscopy (Nikon Epiphot 200).  

 

The dry abrasion resistance of coatings was tested with the dry sand/rubber wheel abrasion test 

(ASTM G65 / procedure D-modified, 45 N, 2000 wheel revolutions, Durometer A-60 wheel). 

Two samples were tested for each coating type. Prior to testing, sample surfaces were ground 

with a diamond wheel to produce a surface finish of approximately 0.2 to 0.3 µm. Sample 

volume loss due to testing was measured with an optical profilometer. 

 

The wet abrasion resistance of the coatings was tested with the wet sand/rubber wheel and 

measured according to a modified ASTM G105-02 procedure using a Falex
®
 sand abrasion test 

machine and controlled slurry. For each coating type, one rectangular-shaped specimen (1 in x 3 

in x 0.5 in) was submitted to a 1000-cycle run at 22 N normal load using a 7 in diameter and an 

A-60 Durometer rubber wheel at a nominal speed of 245 rpm. The slurry mixture consisted of 

rounded quartz grain sand AFS 50/70 and deionized water at a ratio of 0.940 kg water / 1.500 kg 

sand. Prior to testing, sample surfaces were ground with a diamond wheel to produce a surface 

finish of approximately 0.2 to 0.3 µm. Sample volume loss due to testing was measured with an 

optical profilometer. 
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Galling resistance was measured using a custom-designed automated galling tester developed by 

Engineered Valve International Inc. (Glens Falls, USA) in collaboration with Velan (see Figure 

A-2). The test involves quarter-turn rotating an annular coated specimen (12.7 mm inside dia x 

31.7 mm outside dia) against a second annular coated fixed specimen under controlled contact 

pressure, stroke motion, and temperature conditions.  

 

Figure A-2: Custom-designed automated variable temperature galling tester. 

 

Contact load and stroke motion were applied with a pneumatic thrust actuator (Samson 3277) 

and a quarter-turn actuator (Metso B1CU6/20L), respectively, and temperature was adjusted with 

a radiation tube furnace (Lindberg Blue M Tube Furnace) coupled with a thermocouple Type K 

probe tack-welded onto one specimen. All test parameters were controlled from a centralized 

panel. Prior to testing, the coated surface of each specimen was prepared by manual polishing 

with several grades of polishing cloths (P320–P1200 grit) using a thin buffer of commercial 

machinery oil and then inspected. Specimens presenting a surface roughness Ra below 0.3 µm, 
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flatness below 0.1 mm, and specimen mass +/- 0.5 mg were selected for wear pattern tests. For 

each coating type, one set of two self-mated specimens was tested according to the procedure 

described in Table A.2. Testing was halted when a coated specimen displayed a significant wear 

pattern (e.g., micro-welding, scoring). The test procedure was repeated for each coating type to 

allow ranking the materials for galling resistance and total mass loss over a given period. 

 

Table A.2: Variable temperature galling test procedure. 

Step 
Duration 

(no. of cycles) 

Specimen 

temperature, °C 

(°F) 

Nominal contact 

pressure, MPa 

(psi) 

No. of cycles 

per minute 

0° → 90° and  

90° → 0° stroke 

times (s) 

Temporization at 0° 

and 90° position (s) 

1 50 R.T. 
6.9 MPa +/- 0.3 

(1,000 +/- 50) 
0.2 10 +/- 0.5 140 

2 50 
220 +/- 7 * 

(428 +/- 12) 

6.9 MPa +/- 0.3 

(1,000 +/- 50) 
0.2 10 +/- 0.5 140 

3 50 
220 +/- 7 * 

(428 +/- 12) 

10.3 MPa +/- 0.3 

(1,500 +/- 50) 
0.2 10 +/- 0.5 140 

4 50 
220 +/- 7 * 

(428 +/- 12) 

13.8 MPa +/- 0.3 

(2,000 +/- 50) 
0.2 10 +/- 0.5 140 

*: Heating ramps are adjusted to 204 °C (400 °F) per hour. 

A.3. Results and discussion 

A.3.1. Microstructure 

The microstructures of the Cr2O3, TiO2, n-TiO2, and n-TiO2-Cr2O3 coatings are shown in Figure 

A-3. The two phases present in the coatings with the blend powder feedstock are Cr2O3 (light 

grey) and TiO2 (dark grey), respectively. All coatings showed low porosity. The fine cracks seen 

in the particles and at particle boundaries are thought to be formed due to quenching. The large 

cracks are typically formed as stress relief due to stresses from CTE mismatch with the substrate 

and/or residual stresses within the coating.  
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a)  b)  

c)  d)  

e)  f)  

g)  h)  

Figure A-3: Coating microstructures: Cr2O3 at (a) 150X and (b) 1000X. TiO2-Cr2O3 at (c) 150X 

and (d) 1000X. n-TiO2 at (e) 150X and (f) 1000X. n-TiO2-Cr2O3 at (g) 150X and (h) 1000X. 
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EDS spectra acquired from the four different coatings are shown in Figure A-4. The chemical 

composition of each coating is confirmed.  
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Figure A-4: EDS spectra of the Cr2O3, TiO2- Cr2O3, n-TiO2-Cr2O3 and n-TiO2-Cr2O3 materials. 

A.3.2. Microhardness 

Microhardness results are presented in Table A.3. As expected, the highest microhardness was 

achieved when the hardest phase, Cr2O3, was used primarily for the coating. The n-TiO2-Cr2O3 

coating showed the second highest microhardness.  

 

The improved hardness of n-TiO2-Cr2O3 over conventional TiO2-Cr2O3 was probably due to the 

use of the Mettech Axial III torch for spraying. The higher power of the torch together with the 

high gas flow used provides very high in-flight particle speed, which is known to contribute to 

overall coating quality [221].  
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Table A.3: Coating properties. 

Coating 

 

 

Microhardness 

(HV-300gf, n=10) 

Dry Abrasion: 

Volume loss with 

ASTM G65 D-mod 

method(mm3, n=2) 

Wet Abrasion: 

Volume loss with 

ASTM G105 

mod 

method(mm3, 

n=2) 

Shear Strength 

(MPa, n=5) 

Cr
2
O

3
 1423 ± 62 17.1 ± 2.1 10.48 ± 0.1 > 42 ± 7 

d
 

TiO
2
-Cr

2
O

3
 912 ± 42 20.5 ± 0.5 34.6 ± 0.1 > 46 ± 2 

b
 

n-TiO
2
 729 ± 45 31.6 ± 0.6 43 ± 3.2 36 ± 2 

a
 

n-TiO
2
-Cr

2
O

3
 1200 ± 49 7.8 ± 0.6 8.5 ± 0.1 38 ± 5 

a
 

a  
Adhesive failure (occurs at bond line with substrate) 

b
 Epoxy failure (glue) 

c
 Cohesive failure (failure within the coating) 

d
 Mixed mode: all or partial failure of the above types. 

Please note that it is inconceivable to have interface and epoxy failure without some cohesive failure. 

A.3.3. Adhesion  

All produced coatings provided good bonding to the substrate. The best coating adhesion in 

shear was achieved with TiO2-Cr2O3. Although the variation in coating adhesion was relatively 

low, the n-TiO2 and n-TiO2-Cr2O3 coatings showed lower adhesion, probably due to the greater 

thickness of these coatings (Table 1). Thicker thermal sprayed coatings typically showed lower 

adhesion due to the buildup of residual stresses [222].  

 

A.3.4. Tribomechanical properties 

 

A.3.5. Sliding Wear Resistance  

Figure A-5 shows the coefficient of friction COF as a function of the sliding distance. In the first 

500 m sliding distance, the COFs for the different coatings range from 0.6 to 0.7. After the 

accommodation period (resulting in the high COF of ~0.65 at the beginning of the wear test for 

Cr2O3), the COF for Cr2O3 decreases progressively to reach a stable COF of ~0.5. The COF for 

the n-TiO2-CrO3 coating fluctuates, ranging from ~0.6 to ~0.7 during its relatively long 

accommodation period, eventually reaching a COF of ~0.6. In comparison, the COFs for the 

TiO2-Cr2O3 and n-TiO2 coatings increase progressively, from ~0.6 to ~0.7 and from ~0.7 to ~0.8, 

respectively.  
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The frictional behavior of the different coatings correlates with their respective wear resistance, 

as shown in Figure A-6. The wear resistance of the Cr2O3 coating shows substantial 

improvement, at a wear rate of ~5.5 x 10
-8

 mm
3
/(N.m), whereas the n-TiO2-Cr2O3

 
coating shows 

a low wear rate of ~1.3 x 10
-6

 mm
3
/(N.m). In contrast, the TiO2-Cr2O3 and n-TiO2 coatings show 

wear rates of ~3.73 x 10
-5

 and ~7.6 x 10
-5

 mm
3
/(N.m), respectively, approximately three orders 

of magnitude higher than for the Cr2O3 coating. This is in agreement with the microscopy 

observation of the wear tracks after pin-on-disc tests, as shown in Figure A-7: the TiO2-Cr2O3 

and n-TiO2 coatings have wide and deep wear tracks. In contrast, the Cr2O3 and n-TiO2-Cr2O3 

coatings show small wear scars on the shallow surface, indicating mild abrasive wear.  
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Figure A-5: Coefficient of friction vs. sliding distance for the different coatings. 
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Figure A-6: Wear rate for the different coatings. 
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(a) Cr2O3 

 

 
(b) TiO2 - Cr2O3 

 
(c) n-TiO2 

 
(d) n-TiO2- Cr2O3 

Figure A-7: Wear tracks after pin-on-disc tests at 50X. 

A.3.5.1.  Dry Sand Abrasion  

Table A.3 shows that the best dry abrasion wear performance is achieved with the n-TiO2-Cr2O3 

coating, most probably due to the use of the Mettech torch combined with the use of the n-TiO2 

and Cr2O3 blend. However, improved coating wear performance with added n-TiO2 was also 

shown to be due to improved coating toughness [85, 223]. 

In contrast, the n-TiO2 coating, which showed the lowest hardness, showed the poorest wear 

performance. Despite the much higher hardness of the Cr2O3 coating, it showed only average 

wear performance. This disappointing performance is attributed to the brittleness of the Cr2O3 

material. Wear tracks are shown in Figure A-8. 
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(a) Cr2O3 

 

(b) TiO2-Cr2O3 

 

(c) n-TiO2 

 

(d) n-TiO2-Cr2O3 

Figure A-8: Wear tracks for specimens after dry abrasion testing. 

 

A.3.5.2. Wet Sand Abrasion 

In line with the dry abrasion results, Table A.3 and Figure A-9 show that the n-TiO2-Cr2O3 

coating had the best wet abrasion wear performance with an average volume loss ~8.5 mm
3
. The 

Cr2O3 coating showed a slightly larger volume loss, and the n-TiO2 and TiO2-Cr2O3 coating 

showed the poorest performance and the largest volume loss. Substrate was reached on a small 

area that should not significantly affect the results. 

 

(a) Cr2O3 

 

(b) TiO2-Cr2O3 

 

(c) n-TiO2 

 

(d) n-TiO2- Cr2O3 

Figure A-9: Wear tracks for specimens after wet abrasion testing. 
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A.3.5.3. Variable Temperature Galling Resistance 

Figure A-10 shows the number of steps prior to observing a significant wear pattern and the total 

mass loss for the different self-mated specimens (rotating + fixed specimens). Total mass loss 

was measured between 0 cycles (initial mass) and 100 cycles (i.e., after Step 2). 

 

Figure A-10: Galling resistance of self-mated specimens after variable temperature galling 

resistance. Mass loss is given between 0 (initial mass) and 100 cycles (i.e., after Step 2). 
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(a) Cr2O3 fixed specimen after Step 4 (b) Cr2O3 rotating specimen after Step 4 

  
(c) TiO2-Cr2O3 fixed specimen after Step 3 (d) TiO2-Cr2O3 rotating specimen after Step 3 

  
(e) n-TiO2 fixed specimen after Step 2 (f) n-TiO2 rotating specimen after Step 2 

  
(g) n-TiO2-Cr2O3 fixed specimen after Step 4 (h) n-TiO2-Cr2O3 rotating specimen after Step 4 

Figure A-11: Wear patterns of specimens after variable temperature galling test. 
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Figure A-11 shows macro-scale images of the specimens after the variable temperature galling 

test. The Cr2O3 (6-11-a and 6-11-b) and n-TiO2-Cr2O3 (6-11-g and 6-11-h) coatings showed the 

best galling resistance, with the appearance of light material pick-up and scoring during Step 4 

(200 cycles / 220 °C / 13.8 MPa). However, the Cr2O3 mass loss after 100 cycles (77 mg) was 

approximately four times higher than that for n-TiO2-Cr2O3 (20 mg). In comparison, both the n-

TiO2 (6-11-e and 6-11-f) and TiO2-Cr2O3 (6-11-c and 6-11-d) coatings combined moderate 

galling resistance with low mass loss: galling, micro-welding, and material pick-up at Step 2 

(100 cycles / 220 °C / 6.9 MPa) and Step 3 (150 cycles / 220 °C / 10.3 MPa), respectively, with 

mass loss at below 22 mg after 100 cycles. The Cr2O3 coating lost more mass than the other 

specimens, probably due to brittleness. With the highest number of steps prior to observing a 

significant wear pattern combined with a low mass loss, the n-TiO2-Cr2O3 coating was ranked 

1st. The Cr2O3, TiO2-Cr2O3, and n-TiO2 coatings were ranked 2nd, 3rd, and 4th, respectively. 

 

A.4. Conclusions 

 

We assessed the load-carrying capacity and tribological resistance of four ceramic coatings for 

potential suitability for HPAL.  

 

The Cr2O3 ceramic material alone showed the highest hardness and best sliding wear resistance 

and COF, whereas the n-TiO2 ceramic material showed the lowest hardness, the poorest wear 

rate, and the highest COF. As expected, the Cr2O3-TiO2 and n-TiO2-Cr2O3 blends produced 

hardness and sliding wear resistance between that for each of the ceramic constituents. 

 

In terms of abrasion, the results are positive and counter-intuitive. The n-TiO2-Cr2O3 blends 

produced superior resistance under both dry and wet abrasion testing compared to the ceramic 

materials alone. According to a study published by Velan, the high performance of the TiO2-

Cr2O3 coating was attributed to the optimized balance between the hard and brittle Cr2O3 phases 

and the soft and ductile TiO2 phases. The results of the present study indicate that the synergy 

between these two materials produced abrasion performance that exceeded that for each material 

alone.  
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With respect to galling, the n-TiO2-Cr2O3 coating ranked first, with the highest number of steps 

before observing a significant wear pattern and the lowest mass loss. The Cr2O3, TiO2-Cr2O3, 

and n-TiO2 ranked 2nd, 3rd, and 4th, respectively. 

 

Promisingly, the novel mix of n-TiO2 and Cr2O3 provided consistently superior tribological 

performance to Velan’s proprietary TiO2-Cr2O3 blend. Consequently, this novel blend appears to 

be a promising evolution of the current TiO2-Cr2O3 blend. Further optimization is needed for 

commercial application. 

 

Further work is also needed to optimize the surface preparation, spraying procedures, and post-

treatment of the novel Cr2O3 and n-TiO2 blend in order to achieve equivalent or better results 

compared to the current TiO2-Cr2O3 blend, particularly in terms of bond and shear strength. In 

fact, the current TiO2-Cr2O3 blend showed the highest bond and shear strength of all the 

materials, including nanocoatings. For instance, it would be useful to develop an HVOF process 

for TiO2-Cr2O3 spraying. The challenge in this case would be to ensure that the Cr2O3 particles 

melt in order to avoid particle rebound when impacting the substrate, as well as erosion of the 

deposited TiO2 layer by the same particles.  

 

Further work is also needed to secure the supply chain and to develop quality standards for this 

novel material in order to prevent production delays and/or quality issues. Corrosion tests will 

also be required to fully assess material corrosion performance using different types of sealant.  

 

In the meantime, our results indicate that TiO2-Cr2O3 provides the best overall tribological 

performance compared to the other tested ceramics, namely Cr2O3 and n-TiO2. 
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APPENDIX B TRIBOLOGY TERMS 

Active Standard G40-13, published by ASTM International, provides the terms and their 

definitions used in tribology, tribology being defined as “the science and technology concerned 

with interacting surfaces in relative motion, including friction, lubrication, wear, and erosion” 

[224]. The following definitions based on G40-13 cover the key tribological terms used in this 

work. 

B.1. Abrasion  

Abrasion is “the process by which relative motion between a surface and hard particles or 

protuberances on an opposing surface produces abrasive wear of that surface.” Abrasive wear is 

“the result of hard particles or hard protuberances forced against and moving along a solid 

surface.” Hard particles can be debris detached from one of the sliding surfaces or particles 

stemming from a different source. 

B.2. Adhesion  

Adhesive wear is “wear due to localized bonding between contacting solid surfaces leading to 

material transfer between the two surfaces or loss from either surface.” The adhesive bonding is 

stronger than the local cohesive strength of the material. Galling is typically considered a severe 

form of adhesive wear. In some cases, adhesive wear can be beneficial when it favors the 

creation of a transfer film, whereby material is transferred from one surface to another, reducing 

the wear rate and/or coefficient of friction, as described in Chapter 4 of this doctoral thesis.  

B.3. Coefficient of friction  

The coefficient of friction (COF) is “the ratio of the friction force (F) between two bodies to the 

normal force (N) pressing these bodies together.”  

COF =
F

N
 (20) 
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B.4. Debris 

Debris is defined as “particles that have become detached in a wear or erosion process.” 

Depending on the type of contact and the debris evacuation system, debris may or may not play a 

role in the wear mechanism, including the formation of a transfer film. 

B.5. Erosion 

ASTM defines erosion as a “progressive loss of original material from a solid surface due to 

mechanical interaction between that surface and a fluid, a multicomponent fluid, or impinging 

liquid or solid particles.” 

B.6. Galling 

Galling is “a form of surface damage arising between sliding solids, distinguished by 

macroscopic, usually localized, roughening, and the creation of protrusions above the original 

surface; it is characterized by plastic flow and may involve material transfer.” The ASTM 

definition of galling does not refer to debris, and the ASTM G98 and G196 test specifications for 

evaluating galling resistance are based on extremely short tests generating very little if any 

debris.  

B.7. Load-carrying capacity 

The load-carrying capacity is the capacity of a surface to distribute peak stresses generated by 

localized loading to the base material, preventing plastic deformation. In this thesis, load-

carrying capacity refers to the localized load, as discussed by Holmberg et al. [225]. This should 

be distinguished from the structural load-carrying capacity. 

B.8. Plastic deformation  

Plastic deformation occurs when the stress generated by the contact exceeds the yield strength of 

the material. Plastic deformation includes plowing for horizontal load (parallel to the surface) 

and brinelling for vertical load (perpendicular to the surface). 
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B.9. Sliding wear 

Sliding wear is the wear due to the relative motion in the tangential plane of contact between two 

solid bodies. Sliding wear can produced scoring, which is a severe form of abrasion 

characterized by the formation of extensive grooves and scratches in the direction of sliding.  

B.10. Spallation 

Spallation is “the separation of macroscopic particles from a surface in the form of flakes or 

chips.” Two types of spallation are frequently reported in the literature: 1) spallation due to 

cohesive failure, which results from cracks propagating within a material; and 2) spallation due 

to adhesive failure, which results from cracks propagating at the interface between coating and 

substrate. 

B.11. Wear 

Wear is the “alteration of a solid surface by progressive loss or progressive displacement of 

material due to relative motion between that surface and a contacting substance or substances.” 

Mechanical solicitations can cause surface alteration by forming small debris (abrasion, erosion), 

by transferring material to another surface (adhesion, galling) or by resulting in permanent 

deformation (plowing, brinelling, eggshell effect). In addition, non-mechanical mechanisms are 

also considered as wear mechanisms such as corrosion (destruction of the passivation film), or 

melting / evaporation (flash temperature). 
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