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RÉSUMÉ 

Les émetteurs-récepteurs radiofréquences (RF) sont les circuits de communication les plus 

communs pour établir des interfaces home-machine dédiées aux dispositifs médicaux 

implantables. Par exemple, la surveillance continue de paramètres de santé des patients souffrant 

d'épilepsie nécessite un étage de communication sans-fil capable de garantir un transfert de 

données rapide, en temps réel, à faible puissance tout en étant implémenté dans un faible volume. 

La consommation de puissance des dispositifs implantables implique une durée de vie limitée de 

la batterie qui nécessite alors une chirurgie pour son remplacement, a moins qu’une technique de 

transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a 

travers les tissus humains.  

Dans ce projet, nous avons conçu, implémenté et testé un émetteur RF à faible puissance 

et haut-débit de données opérant à 902-928 MHz de la bande fréquentielle industrielle-

scientifique-médicale (ISM) d’Amérique du Nord. Cet émetteur fait partie d'un système de 

communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques 

implantables et mettables et bénéficie d’une nouvelle approche de  

modulation par déplacement de fréquence (FSK). Les différentes étapes de conception et 

d’implémentation de l'architecture proposée pour l'émetteur sont discutées et analysées dans cette 

thèse. Les blocs de circuits sont réalisés suivant les équations dérivées de la modulation FSK 

proposée et qui mènera à l'amélioration du débit de données et de la consommation d'énergie. 

Chaque bloc est implémenté de manière à ce que la consommation d'énergie et la  surface de 

silicium nécessaires soient réduites. L’étage de modulation et le circuit mélangeur ne nécessitent 

aucun courant continu grâce à leur structure passive. 

Parmi les circuits originaux, un oscillateur en quadrature contrôlé-en-tension (QVCO) de 

faible puissance est réalisé pour générer des signaux différentiels en quadrature, rail-à-rail avec 

deux gammes de fréquences principales de 0.3 à 11.5 MHz et de 3 à 40 MHz. L'étage de sortie 

énergivore est également amélioré et optimisé pour atteindre une efficacité de puissance de ~ 

37%. L'émetteur proposé a été implémenté et fabriqué à la suite de simulations post-layout 

approfondies. Les résultats de simulations et de mesure sont discutés et comparés avec ceux des  

émetteurs modernes démontrant ainsi la contribution de ce travail dans ce domaine de recherche 
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très populaire. Le facteur-de-mérite (FOM) a été amélioré impliquant essentiellement 

l'augmentation du débit de données et la réduction de la consommation d'énergie du circuit. 

L'émetteur est implémenté en utilisant une technologie CMOS de 130 nm alimentée par une 

tension 1.2 V. Avec 1.4 mA de consommation de courant, un débit de données de 8 Mb/s a été 

mesuré résultant en une consommation d'énergie de 0.21 nJ/b. L'émetteur fabriqué occupe une 

surface active de silicium inférieure à 0.25 mm
2
. 
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ABSTRACT 

Wireless radio frequency (RF) transceivers are the most common communication front-

ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of 

body behaviour of patients suffering from Epilepsy, for example, requires a wireless 

communication front-end capable of maintaining a fast, real-time and low-power data 

communication while implemented in small size. Power budget limitation of the implantable and 

wearable medical devices obliges engineers to replace or recharge the battery cell through 

frequent medial surgeries or other power transfer techniques.  

In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-

American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, 

implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the 

wireless interface of implantable and wearable medical devices and benefits from a new efficient 

Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages 

of the proposed transmitter architecture are discussed and analyzed in this thesis. The building 

blocks are realized according to the equations derived from the proposed FSK modulation, which 

results in improvement in data-rate and power consumption. Each block is implemented such that 

the power consumption and needed chip area are lowered while the modulation block and the 

mixer circuit require no DC current due to their passive structure.  

Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) 

is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges 

of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized 

to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated 

following deep characterisation by post-layout simulation. Both simulation and measurement 

results are discussed and compared with state-of-the-art transmitters showing the contribution of 

this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, 

meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The 

transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-

rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 

0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm
2
. 
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CHAPTER 1  

INTRODUCTION 

1.1 RF transceivers in medical applications 

Medical applications of implantable and wearable body sensors keep short-range wireless 

communication as a challenging and hot research topic for monitoring and detection of various 

health parameters, such as temperature, pressure, oxygenation, seizures and other signs of 

diseases. For instance, the continuous monitoring of oxygen level of the blood for patients 

suffering from epilepsy may help locating, treating and even preventing the emerging of seizures. 

Even monitoring the behaviour of freely-moving animals, where free-running circuits are 

demanded, offers the chance to extract medical information in realistic conditions, thanks to 

wireless technologies. However, all requirements of a medical interface have to be considered 

and implementing such wireless communication interface remains challenging in many aspects. 

Thanks to CMOS technology, the small size of the implemented front-ends helps to get 

rid of external bulky components. Among all challenges to realize the link between the implanted 

device and the external processing base station, the main challenge in addition to the size is in 

reducing the power consumption of the communication front-end for transferring information. 

Since the implanted devices have limitation over power storage, different circuits and systems 

design techniques have to be employed [1-4]. Radio Frequency (RF) transceivers, as the wireless 

communication front-end of body sensors, have the role of transmitting (Tx) and receiving (Rx) 

information (Figure  1.1) and usually they sink more than 90% of consumed power in emerging 

bio-devices. Data modulation is necessary to transmit the digital or analog data and to efficiently 

use the limited electrical bandwidth. Specific frequency ranges are allocated to be used as the 

electrical frequency bandwidth for the mentioned transceivers, mostly North-American 

Industrial-Medical-Scientific (ISM) frequency band (902-928 MHz) and European Medical-

Implant-Communication-Service (MICS) frequency band (402-405 MHz). Consequently, the 

transceiver architecture and the employed modulation directly affect the performance of the 

target transmitter in terms of size, power consumption and data-rate. 



2 

 

  

Wireless sensor networks show their importance in communication for remote and 

inaccessible locations including inside the human body. Wireless transceivers are usually the 

most critical blocks in sensors in terms of power consumption. In addition to power consumption, 

the size, communication data-rate and, in total, designing high-efficiency wireless transceivers 

have been an interesting topic in circuit and system designs. 

T°

O2

RF Tx/Rx

Body 

Sensors

Short-Range 

Communicaiton

Implantable/ 

Wearable Device External 

Analysis
 

Figure  1.1: RF Transceivers used for human-machine wireless interface 

In general, the transmitter power may be reduced to less than 1 mW in short-range 

communication application to relax the total current budget [5]. As an example, in the 400 MHz 

transmitter [6], the output power level is reduced to -59 dBm when the transmitter consumes less 

than 0.5 mW for transmitting each bit of data for a 1 m communication distance. As another 

example for monitoring freely-moving animals, a 900 MHz transmitter [7] consumes 1 mW to 

maintain the communication in ~2 m range. Power harvesting techniques may be used to power 

up the device, but, managing the collected power is a great challenge itself. The related reported 

front-end circuits in the literature and their performance are summarized and discussed in the 

following chapter.  

In total, in addition to the current budget, the number of needed external components and 

maximum data-rate still remain challenging issues in implantable/wearable wireless 

communication devices. In practice, the medical sensor node is used to detect and monitor the 

target information from body using a number of channels, such as in electroencephalography 

(EEG) recordings. After the biomedical signal acquisition, the signal is digitized by an analog-to-
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digital converter (ADC) with a specific sampling rate and reasonable precision. Finally, the 

extracted data can be processed (compressed for example) before the transmission starts with a 

high data-rate RF transmitter operating in range of few Mb/s [8]. 

The electrical bandwidth together with the signal-to-noise ratio, according to the well-

known Shannon-Hartley theorem, defines the maximum communication channel capacity. Signal 

power level is usually defined according to the application and can be lowered in low-power 

applications to reduce energy consumption. In practice, the power level may be at least 30 to 40 

dB higher than noise level and the attenuation caused by the working environment has to be 

considered. On the other hand, modulation is necessary to wisely use the limited electrical 

bandwidth and to physically transmit the digital or analog data. When the information signal is 

digital and the amplitude is varying according to the digital data, the Amplitude Shift-Keying 

(ASK) modulation, such as OOK, is used. Similarly, when the information is integrated into the 

frequency or phase, the modulation is called FSK and Phase Shift-Keying (PSK), respectively. In 

the following, characteristics of the FSK and OOK modulation schemes are briefly discussed and 

compared. Then, advantages and disadvantages of the common RF transmitter architectures, 

heterodyne and direct-conversion, are reviewed towards low-power implementation. In the next 

chapter, an overview on the architectures, behaviour, advantages and disadvantages of the low-

power ISM-band transmitters is presented. The literature review is narrowed down to 915 MHz 

Binary FSK (BFSK) transmitters concluding that a high data-rate and low-power integrated 

design is mandatory for emerging medical devices. 

1.1.1 Modulation: FSK vs. OOK 

Proper choice of architecture results in how efficient the system can operate [9]. In order 

to have a low-power transceiver, the modulation scheme has to be as simple as possible. As 

reported in literature [10-19], the modulation schemes of FSK and OOK are widely used in 

transmitter (Tx) and receiver (Rx) building blocks, respectively, since they are phase independent 

and can be detected by non-coherent architectures. Implementing a data modulator with low-

power consumption in wireless transceivers is of interest as the power budget is limited 

especially in implantable devices where long-life batteries are required. 
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In general, carrying information in the amplitude requires a highly linear power amplifier 

and the signal would be more susceptible to noise. In implantable and low-power consumption 

applications, where the level of signal is intentionally reduced, the information is more likely to 

be carried in the frequency. When the signal level is low, a linear power amplifier is needed in 

OOK modulation while FSK modulation has constant envelope with continuous phase and can be 

realized using non-linear power amplifiers [4, 20, 21]. In practice, the frequency content of the 

information is shifted up using a carrier frequency (fc) to reduce the effect of noise and 

disturbance from surrounding instrument and, hence, a Local Oscillator (LO) is necessary. In 

OOK, the biasing point of the transmitter circuit and the oscillator have to settle in less than a 

single bit period and this may limit the data-rate. Due to discontinuity in phase, the power 

spectrum of the binary PSK has larger side lobes than that of the binary FSK. As a result, FSK 

modulation is the best candidate in the implantable side while the OOK modulation is used in the 

external side. In FSK modulation, which is generally simpler than PSK in terms of detection, the 

center frequency is shifted to two close frequencies and this can be considered as sending the data 

of '1' and '0', as shown in Figure  1.2. The minimum bandwidth for FSK modulation is 

approximated as B=2(Δf+fd), where B is the channel bandwidth, Δf is the shifting frequency and 

fd is the data-rate. In definition, Modulation Index (MI) for FSK modulation can be defined as the 

frequency deviation over the data-rate and the frequency deviation can be chosen due to 

bandwidth availability or data-rate requirement. Large modulation index of 2 in an FSK 

modulation, for example, can help relaxing the precision requirement [4] which means less 

deviation from the constellation points and, hence, smaller FSK error is expected.  

t
Tx

t

Base-Band Signal

BFSK Signal

‘1’‘0’

f

‘1’‘0’

fc+Δf

B

fc-Δf

 

Figure  1.2: Generation of FSK signal from baseband data 
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1.1.2 General RF Transmitter Architectures  

Performance of any RF transmitter in terms of total power consumption and data-rate 

depends on its architecture and the employed modulation [22]. As reported in a survey in [9], 

which reviews the transceivers reported from 1997 to 2007 in IEEE Solid-State forums, Zero-IF 

architecture is a first choice for Rx path as well as Direct-Up Conversion for Tx path in most 

communication standards. Expensive and bulky heterodyne architectures with their high-power 

consumption are not acceptable for mentioned applications. Also, image-reject architectures 

suffering from first and secondary images need a high I/Q matching and even a two-step-up 

conversion still suffers from image problem. Low cost, high integration level, simplicity and 

having no image problem make the Zero-IF/Direct-Up Conversion architectures suitable for 

implantable transceivers.  

A transceiver has both transmitter and receiver parts which may share one or more 

circuitries. RF modules are used for high speed data-transmission and they may be implemented 

with both analog and digital circuits. Since digital circuits may consume less power, in particular 

cases, and give advantage of scalability, it is preferable to bring the digital domain closer to the 

antenna which can be very challenging. Passive components may also be used to reduce the 

power consumption. Simplicity, data-rate and power dissipation as well as number of external 

components are the primary criteria in choosing transceiver architecture. Depending on the 

application and the required specifications, different architectures may be used to develop a 

transmitter. Practically, the goal is to modulate the data by varying one or more properties such 

that the transmission or reception would be beneficial in terms of speed and power consumption.  

The RF transmitter performs modulation, up-conversion and power amplification. The 

two main transmitter architectures, Heterodyne and Direct-Conversion, are discussed in the 

following. 

1.1.2.1 Direct-Conversion transmitters 

To achieve a highly integrated and low-power consumption transceiver, direct-conversion 

method is used which can replace the heterodyne architecture. In this architecture, the baseband 

data is quadrature modulated while the I and Q signals are up-converted using a local oscillator 
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(ωc), as shown in Figure  1.3. Simplicity of this architecture makes suitable for implantable and 

low-power applications. Also, the image-rejection is no more a problem in the receiver side for 

direct down-conversion. In total, avoiding the problem of image-rejection and having less current 

consuming building blocks are two main benefits of this architecture [23]. Also, Direct-Up 

Conversion architecture needs a simple frequency plan for multi-standard designs [9].  

PA+
Cos (ωct)

MatchingSin (ωct)

Tx 

Data
I/Q 

Modulator

Digital Domain

I

Q

 

Figure  1.3: General direct-conversion transmitter architecture 

Notice that the baseband signals generated in the transmitter side are sufficiently strong 

and noise of mixers is not critical such as in receivers [22]. However, the leakage of PA output to 

the oscillator is still an issue since the output of the PA is a modulated waveform with high signal 

power and a spectrum centered around the LO frequency. Due to imperfection of shielding, 

injection pulling is inevitable and the noisy and amplified output of PA corrupts the spectrum of 

the oscillator. Moreover, phase and amplitude mismatch of I/Q signals in addition to DC offset 

and 1/f noise may lead to large error in constellation diagram and have to be minimized.  

1.1.2.2 Two-Step transmitters (Heterodyne) 

A heterodyne transmitter (Figure  1.4) is the reverse operation of a heterodyne receiver [1, 

24]. Two-step up-conversion gives the advantage of having less severe issues with injection 

pulling as the baseband signal is up-converted in at least two steps using two oscillators (ω1 and 

ω2). As illustrated in Figure  1.4, the output frequency is far from the frequency of each oscillator. 

However, more filtering is needed and the band-pass filter (BPF) has to reject the unwanted 

sideband by large factor since the second up-converting mixer generates wanted and unwanted 

sidebands with equal magnitudes [22]. The necessity of off-chip passive components in filters 
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limits the integration aspect. Also, the additional oscillator circuit brings more complexity and 

power consumption to the architecture. In total, heterodyne architectures have a more reliable 

performance with a flexible frequency plan at the expense of being bulky and consuming more 

power than the direct-conversion based circuits. 

PA+
Cos (ω1t)

Sin (ω1t)

I

BPF BPF

Cos (ω2t)

ω1 2ω1
ω

ω1 2ω1 ω

ω1-ω2 ω

ω

ω1+ω2

ω1+ω2

Q

 

Figure  1.4: Two-step up conversion transmitter architecture 

Generation of RF signal, its modulation and driving it into an antenna are the basic 

functions of any RF transmitter [4, 22]. Direct-Up conversion architecture is chosen to avoid 

image-rejection problem. FSK modulation is also chosen to realize the transmitter side since 

OOK is strongly susceptible to interference and a linear power amplifier (PA) is required. In 

practice, two desired frequencies corresponding to data '1' and '0' are generated by the transmitter. 

The frequency deviation depends on the available channel bandwidth which is essential in 

narrow-band applications. 

To sum up, the principles of the FSK modulation in comparison with OOK modulation 

were reviewed and it was conferred that the FSK modulation is more suitable and common for 

implantable transmitter section of a bidirectional transceiver while OOK modulation is more used 

for the receiver section. Then, the basic transmitter architectures, Direct-Conversion and Two-

Step, were reviewed concluding that the Direct-Conversion architecture is more fit to integrated 

and low-power applications. 
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1.2 Motivation 

Continuous monitoring and detection of health parameters of patients' body is practicable 

these days using new implantable and wearable biomedical sensors. Indeed, human-machine 

direct interaction can be minimized by using such wireless sensors and the patients do not need to 

be connected permanently (or for long period of time) to monitoring equipment. High energy-

efficient circuits and systems design techniques are demanded to realize smart medical devices 

where low-power consumption, size and speed of communication are the priorities [25]. Different 

wireless sensor network (WSN) platforms may be used for health monitoring where wearable and 

implantable wireless circuits are needed. Such medical devices can have electrode-tissue 

interface or an implanted sensor and they may be used for detection of different body parameters 

such as temperature or drug delivery.  

As depicted in Figure  1.1, Radio Frequency transceivers as the communication interface 

of wireless sensor networks (WSNs) are required in several biomedical applications such as 

monitoring brain activities for patients with brain diseases (Epilepsy). Such implanted devices 

have to consume very low power; otherwise, the battery cell of these devices has to be recharged 

through frequent medical surgeries. In general, the goal is to keep the implantable transmitter as 

simple and low-power as possible. Instead, the external receiver can be more complex. 

The implemented transmitter in this thesis is dedicated to a target EEG-fNIRS brain 

monitoring sensor for patients suffering from Epilepsy, similar to [26]. In this research, the goal 

is to transfer the extracted information from blood to predict the seizure using up to 32 channels 

of EEG and 128 channels of fNIRS with 320 and 20 Hz needed sampling rate, respectively. A 

16-bit analog-to-digital convertor (ADC) is also considered for digitization. The approximate 

required data-rate for real-time monitoring is then estimated by channels × sampling rate (Hz) × 

bits (ADC) resulting in about 500 kb/s of data-rate in the communication front-end. However, the 

data needs to be encoded and the necessary communication protocols have to be applied, which 

mean a throughput rate of 3 or 4 times higher in Mb/s range is necessary. One may use a novel 

encoding technique to lower the total needed power such as in [27], but the power-hungry analog 

front-end is usually the center of attention when low-power and high data-rate communication is 

of interest.  
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As a result, a much higher data-rate in range of few Mb/s is needed for real-time 

monitoring while the integrated front-end consumes as low power and small area as possible. In 

practice, a new modulation and architecture can be implemented to realize a low-power and high 

data-rate communication interface. Then, circuits of the composing building blocks in the 

designed architecture need to be carefully designed and implemented to minimize current 

consumption and area. Finally, the corresponding prototype has to be tested and verified 

according to the target requirements. 

1.3 Research objectives and contributions 

The RF integrated transmitter section of a power-efficient bidirectional communication 

front-end in the implantable side (Figure  1.5) is the target of this research. The transmitter section 

has to be carefully and separately investigated and implemented such that it is able to efficiently 

communicate with its external counterparts.  

The goal of this research is to design and implement a binary Frequency-Shift-Keying 

(FSK) based integrated wireless transmitter section of the target transceiver, such as in Figure 

 1.6, operating at North American ISM frequency band with center frequency of 915 MHz. The 

main objectives for designing such RF transmitter are low-power consumption, high data-rate 

and small silicon area, as addressed in this thesis. 
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Figure  1.5: Target FSK transmitter in the communication front-end 

In this project, a new FSK modulation scheme is introduced and developed using the 

basic modulation principles and the mathematics background. Reduction in total current 

consumption was the first advantage of the presented architecture and the corresponding block 
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diagram and initial implementation simulation results were published in a conference, CCECE 

2011, titled as “A New FSK-based Transmitter Dedicated For Low-Power Wireless Medical 

Transceivers” [28]. 
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Figure  1.6: General architecture for RF transmitters and receivers 

The proposed transmitter architecture was implemented and optimized for high data-rate 

performance and the post-layout simulation results were published in a second conference paper, 

ICECS 2012, titled as “A 20 Mb/s 0.084 nJ/bit ISM-band Transmitter dedicated to medical 

sensor networks” [29]. The performance of the presented transmitter and its characteristics were 

also published in NEWCAS 2013, titled as “A 0.084 nJ/b FSK Transmitter And 4.8 μW OOK 

Receiver For ISM-band Medical Sensor Networks” [30].  

 The proposed FSK modulation scheme and the corresponding transmitter architecture 

were further investigated and characterized. The alternatives for applying the modulation block as 

well as the sensitivity over phase and amplitude discrepancies were studied. 

The circuits of the composing building blocks of the proposed transmitter architecture are 

adopted, designed and optimized towards low-power, high data-rate integrated transmitter. A new 

quadrature voltage controlled-oscillator (QVCO) was implemented to provide differential rail-to-
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rail quadrature signals with tunable frequency from 300 kHz to 11.5 MHz with very small current 

consumption of 0.5 to 160 uA, respectively. This QVCO is in important building block in the 

proposed transmitter architecture to avoid additional external reference frequency. The interesting 

design point for this oscillator is the frequency of 2 MHz with current consumption of 5.5 uA. 

The results were published in the IET Electronics Letters, titled as “A New Differential Rail-To-

Rail Voltage-Controlled Quadrature Ring-Oscillator For Low-Power Implantable Transceivers”, 

2014. Moreover, as an alternative frequency tuning range, the proposed QVCO oscillates at a 

frequency varying between 3 and 40 MHz with a current consumption of 3 to 117 uA, 

correspondingly. The related results are summarized and reported in chapter 5 of this thesis. 

The layout of the designed transmitter was implemented for fabrication using the 130 nm 

CMOS technology to test and confirm the performance. Thanks to high frequency measurement 

setup, the experimental results were compared with state-of-the-art and similar related RF 

transmitters. The implemented transmitter prototype provided a data-rate of up to 8 Mb/s with 

2.13% average FSK error while consuming 1.4 mA from a 1.2 V voltage supply and relatively 

small active silicon area of 0.25 mm
2
. The achieved measurement results were submitted to a 

journal paper, Analog Integrated Circuits and Signal Processing, titled as ”An Energy-Efficient 

High Data-Rate 915 MHz FSK Wireless Transmitter for Medical Applications”, 2014. The 

related simulation and measurement results as well as the developed test-setup are reported in 

chapter 5. 

1.4 Thesis outline 

In Chapter 2, the two widely-used data modulation schemes for low-power transceivers, 

FSK and On-Off-Keying (OOK), as well as two main transmitter architectures, Direct-

Conversion and Two-Step, are reviewed and compared. A technical overview of low-power RF 

transceivers is presented. The transceivers are intended for the communication interface of 

medical implants where the size, power consumption and data-rate are the main challenges. The 

focus is narrowed down to integrated transmitters operating at ISM frequency band (915 MHz) 

and the design constraints and parameters as well as Figure-Of-Merit (FOM) are discussed.  

In Chapter 3, a new efficient FSK modulation scheme is introduced and corresponding 

mathematical equations are presented towards realizing the block diagram of the target 
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transmitter. Characteristics and behaviour of the proposed modulation scheme, such as 

sensitivity, is then discussed. Finally, the proposed transmitter architecture is presented. 

In Chapter 4, the building blocks in the proposed transmitter architecture are implemented 

in circuit- and layout-level. Alternative design and implementation choices for each block and 

their behaviour are briefly discussed. A novel low-power rail-to-rail differential QVCO, which 

can be tuned in different frequency ranges, is introduced and implemented. Special attention was 

paid to design the output stage of the transmitter, the Power Amplifier (PA), including its 

optimization. The final layout of the fabricated transmitter is also presented. 

Post-layout simulation and measurement results of the integrated QVCO and the energy-

efficient RF transmitter are presented in Chapter 5. Different parameters of the implemented 

QVCO and transmitter are investigated in simulation and measurement. The achieved 

performance of the proposed transmitter in this work is then compared with State-Of-The-Art 

showing the improvement in size, power consumption, data-rate and FOM. 

Summary and conclusion of this dissertation are brought in Chapter 6, where the 

contributions of the overall work are outlined and benefits of this work are discussed. The 

possible future work is then discussed and a few related circuits are recommended to be designed 

and implemented. 

In the Appendices, the related system-level test-bench and layouts of the implemented 

QVCO are shown. 
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CHAPTER 2  

LOW-POWER ISM-BAND RF TRANSMITTERS: A REVIEW  

2.1 RF transmitters in medical applications 

As mentioned earlier, implantable wireless Microsystems for human bodies may be used 

to detect and transfer different information such as Oxygen level of the blood for treatment of 

different diseases [31]. Low-power CMOS RF transmitters have been always an interesting 

challenging research topic, such as the 915 MHz transmitter [32] published in 1996 with up to 

160 kb/s and relatively large power consumption. The reported ISM-band low-power transmitters 

and their energy efficiencies are discussed in the following section. As a recent example of body 

implantable devices, a CMOS transceiver is presented in [33] for telemetry services. In  [33], the 

transmitter side communicates at 400 MHz frequency range with a data-arte of 500 kb/s with an 

output power of -2.87 dBm while consuming 22 mW which is relatively high. The corresponding 

energy consumption is 44 nJ per transmitting bit. The power consumption has to be reduced by 

using less complex circuits or by improvement in data-rate which is directly affected by the 

architecture and the employed modulation. As another example, the Bluetooth module of [34] is 

produced in 2013 for communication with a data-rate of 186 kbps and energy efficiency of 13 

nJ/b. Alternatively in [35], the battery-powered and wirelessly-powered RF body sensors are 

reported to be useful for monitoring of temperature and blood behaviour, for example, but the 

data-rate of the emerging methods is around 100 kb/s with a short period of operating time. In 

total, the goal is to come up with an energy-efficient communication front-end which consumes 

low power for transmitting each bit of data. 

New medical experiments such as monitoring a given animal’s activity is feasible with 

light and tiny medical devices, such as battery-free RFID sensing tags on freely-behaving insect 

and small animals in [36] and [37]. Experiments on freely-moving rats are also very interesting 

where the micro-size integrated sensors are promising. For example, the telemetric system for 

recording EEG activity in freely-moving rat in [38] uses an implantable transmitter which 

communicates a sampling rate of 500 b/s with the external receiver via radio transmission over a 

short distance (less than 3m) similar to Figure  2.1. In this system the data-rate is reported 115.2 
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kb/s when 1.6 mA is drawn from two batteries of 1.55 V (~ 5 mW) for only 14 hours of 

measurements. 

 

Figure  2.1: Continuous monitoring of freely-moving rats using implanted transmitter [38] 

2.2 Case studies of low-power 915 MHz transmitters 

In this section, the main FSK-based ISM-band transmitters are reviewed and studied. The 

state-of-the-art transmitters from literature, simulated and fabricated using CMOS technology, are 

summarized. The target range of current consumption is around 1 mA and the typical supply 

voltage is between 1.2 and 1.8 V depending on the used technology and the circuit design. 

Moreover, a few off-the-shelf transmitter chips are also reviewed to understand the level of 

performance in the market. 

Comparing customized integrated RF transmitters is not an easy task due to the fact that 

each one is designed and optimized for a specific application with specific power level or 

frequency range and bandwidth. Consequently, similar designs with similar specifications have to 

be investigated to have a fair comparison.  

Figure  2.2 shows the power consumption of recent low-power 915 MHz binary FSK 

transmitters. Each of the mentioned transmitters in this graph is discussed in the following as well 

as other related transmitters. In this figure, the trend in power consumption and data-rate is 

summarized while the dashed lines shows the constant lines of consumed energy per transmitting 

bit. Other concerning parameters, such as size, simplicity and suitability for implantable medical 

devices, are also discussed in the following sections. Also, notice that the technical overview on 

the performance of the related ISM transmitters brought in this dissertation is actually based on 
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what the authors have reported in their work. Not everyone reports and discusses all parameters in 

their published work and, therefore, important parameters are basically discussed here. In addition 

to the absolute value of current consumption, simplicity and size, the main focus is to compare the 

commonly-used FOM of the low-power ISM band transmitter, which is the consumed energy per 

transmitting bit (J/b).  
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Figure  2.2: Trend in recent energy-efficient binary FSK 915 MHz transmitters 

One of the best reported transmitters was published in the JSSC [11] in 2011, which is an 

energy-efficient 915 MHz FSK-based transceiver for wireless body sensor network (BSN) 

applications. It is implemented in 0.18 um CMOS technology with 0.7 V supply. The architecture 

is based on injection-locked frequency divider (ILFD) for the low-energy consumption. In the 

receiver, the ILFD in the signal path converts the received FSK signal to amplitude-modulated 

signal which is applied to the next envelope detector. In the transmitter, the ILFD is used as 

digitally-controlled oscillator (DCO) which directly modulates the FSK signal with digital data. 

This is, indeed, one example of sharing components in both receiver and transmit path to reduce 

the total needed chip area. Also, the DCO is claimed to replace the frequency synthesizer to 
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eliminate the crystal oscillator to reduce power consumption and cost. The active chip area is 

around 0.35 mm
2
 while 5 off-chip inductors are used. The transmitter consumes 700 uW at -10 

dBm output power with a data rate of 5 Mb/s, resulting in the energy consumption of 0.14 nJ per 

transmitted bit. The transmitter efficiency of 15 % is reported when the output power is set to -10 

dBm. The 5 MHz bandwidth is used to provide a data-rate of 5 Mb/s with the modulation index 

of 1.  

The reported current and energy consumption is one of the best leading designs in the 

literature; however, there are still few issues to consider.  The transceiver has to detect whether 

injection locking occurs or not, and needs to calibrate the frequency drift of DCO over 

temperature variation. The calibration process requires a complicated additional circuitry where a 

frequency bandwidth of 5 MHz is necessary. This is actually not vey suitable when many 

channels are needed for narrowband RF communication. Moreover, three different LC tanks for 

matching, harmonic filtering and oscillation are needed in the transmitter path in addition to the 

capacitor bank which is used to tune the desired frequency.  

In total, the published architecture has shown good performance in terms of data-rate and 

energy efficiency. The total current consumption and, hence the energy consumption are low in 

spite of the need for 5 off-chip inductors for higher quality factor and the required process of 

calibration. In other words, the required area needs to be reduced to make it more suitable for 

implantable devices where frequent surgeries for calibrations are not feasible. 

Similarly, an ultra low power 400 MHz transmitter also uses FSK as the modulation 

scheme and its oscillator requires being periodically calibrated [39]. In practice, it is claimed that 

a ring-type oscillator has been considered instead of LC-type as it reduces the buffer’s power 

consumption immediately following the oscillator. A switch is used in order to disconnect the 

frequency calibration unit and to turn on the PA after the channel frequencies have been 

calibrated. According to simulation results, the transmitter is claimed to work from a data rate of 

250 kb/s to 1 Mb/s. It draws an average current of 180 μA from a 1.6V supply to provide an 

output power of -16 dBm achieving a very low current consumption for a transmitter designed at 

the 400 MHz band and allowing for multichannel operation. The transmitter is not tested yet and 

the inductor is off-chip with very high quality factor of 50 in the simulations. 
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The minimum required power for transmission is generally a function of the operating 

frequency and distance as well as receiver sensitivity and losses of the path. As reported in [24], 

for a transmission range of about 2 m, a 1 GHz communication system requires about -18 dBm of 

transmission power with a sensitivity of -60 dBm in the receiver side. Also, according to the 

modeling and optimization methods for different carrier frequencies shown in [40] an optimal 

transmission frequency and antenna size can be found such that a 1 Mb/s of data-rate over a 1-m 

wireless link with a transmitter power consumption of 10 uW is achievable which is very much 

challenging to realize. In [40], the power consumption for two data-rates of 10 kb/s and 1 Mb/s is 

studied and it is also shown that the difference in needed power consumption for the two data-

rates is much larger at higher frequencies of 2.4 and 5 GHz comparing with 400 and 915 MHz. In 

other words, for data-rate communication, the needed power consumption at higher frequencies 

(2.4 and 5 GHz) is much larger than that at lower frequencies (sub-1 GHz). As a result, in spite of 

the smaller antenna size for higher frequencies, sub-1 GHz frequencies are more common as the 

carrier frequency of the communication front-ends in low-power applications. 

 The BFSK-based transmitter in published in JSSC, 2011, which has injection-locking 

oscillator, has lowered the output power to -17 dBm (20 uW) with 22% transmitter efficiency to 

achieve the energy efficiency of 0.45 nJ/b with a data-rate of 200 kb/s [13]. In this transmitter, 

the injection-locking oscillator generates low-frequency signals of A1-9 in Figure  2.3a and the 

edge-combiner circuit of Figure  2.3b combines the received pulses to generate the high-frequency 

signal in the output node before the LC matching circuit. The nine received phases from the 

oscillator are, in fact, combined to generate the 400 MHz output frequency. The edge-combiner is 

acting as a multiplier, indeed. In this way, the high-frequency node is shifted toward the antenna.  
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(a) (b) 

Figure  2.3: The frequency multiplication used in [13]: (a) A1-9 phases from the oscillator and (b) 

schematic of the edge-combiner to multiply the frequency by 9 

The maximum data-rate in this work is dependent on the behaviour of the employed 

external Crystal oscillator. In practice, a part of the loading capacitor of the Crystal oscillator is 

switched on and off using the input digital data to distinguish between data ‘1’ and ‘0’. The 

switching time for this capacitor is limited and cannot provide a high data-rate. Also, the value of 

the loading capacitance is also limited and cannot have a wide frequency tuning range. Moreover, 

for 915 MHz frequency generation the number of transistor branches is doubled and more 

mismatch and harmonics will be introduced. In total, the power consumption is reduced 

significantly. 

In some transmitters, the baseband data is used to directly control the behaviour of the 

transmitter. The transmitter published in [12] (ISSCC 2013) is a multichannel one that supports 

different FSK modulations to provide up to 5 Mb/s for high-bandwidth channels. In this 400 

MHz transmitter, the baseband data is used to directly control the synthesizer inputs using a 

pulse-shaping filter and it achieves various FSK modulations, such as BFSK and Gaussian FSK 

(GFSK). In GFSK, the baseband waveform passes through a filter to smooth the transitions and 

limit the spectral width. Off-chip matching network is used to improve the output efficiency. The 

reported BFSK error for this work is about 12% when the data-rate is 5 Mb/s with modulation 
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index of ~0.5. The produced output power is -8 dBm when 2.35 mA is consumed. The related 

FOM for this work is 0.11 nJ/b and it is considered as one of the best energy-efficient 400 MHz 

multichannel transmitters. 

The low-power FSK transmitter presented in [41] uses a direct VCO modulation scheme 

where the LC-based VCO is directly modulated to change the tank capacitance. It is dedicated for 

body area network applications with carrier frequency of 2.4 GHz. The FSK synthesizer 

consumes 600 μW. A few buffers drive the power amplifier (PA) where the output stage is a 

differential class-E stage and a differential transformer is required for antenna matching resulting 

in a large consumed area. The load impedance seen by the PA is 840 Ω and an integrated step-up 

transformer is used to up-convert the antenna impedance. The circuits are integrated in a 0.13-μm 

CMOS technology. The overall transmitter consumes 8.9 mA to deliver +1.9 dBm to the antenna 

with a total power efficiency of 17.4%. The reported RF output power of -5.7 dBm with power 

efficiency of about 7% in this work is due to the current of 3.7 mA from 1 V supply. The data-

rate is reported 1 Mb/s resulting in the FOM of 3.7 nJ/b. The FSK modulation index for this work 

is also 0.5±10% and the FSK error is not reported. In total, the proposed direct VCO modulation 

technique is proved to be novel, simple and functional; however, the total current consumption is 

high which makes it not suitable for implantable devices. 

Several transmitters in literature with relatively larger current consumption are also notable 

to understand the range of concerning parameters in non-recent transmitters. For example, 14 mA 

is drawn from a 2.7 V supply in the 915 MHz BFSK transmitter of [42] (reported in 2003) to 

provide 0 dBm of output power and 115.2 kb/s data-rate with an energy efficiency of 328 nJ/b. 

The size of the chip is also reported 5.4 mm
2
 using 0.35 um technology which is relatively large. 

Similarly, the large current of 32.3 mA from 1.2 V supply in [43] (reported in 2005) gives an 

energy efficiency of 387 nJ/b when the data rate is 100 kb/s with FSK modulation index of 2. 

Also, in the off-the-shelf BFSK 915 MHz transmitter chip of [44] (reported in 2006), a data-rate of 

76.8 kb/s with modulation index of ~1.7 is reported. In this chip, 8.6 mA is consumed to provide 

an output power of -20 dBm giving an energy efficiency of ~335 nJ/b. As another example, the 

900 MHz transmitter in [19] (reported in 2007) consumes 16 mA from a 1.8 V supply to provide 

an output at 0 dBm. The reported FSK error is 6.3% for 40 kb/s data-rate resulting in an energy 

efficiency of 720 nJ/b. The die size is also reported 2.16 mm
2
 using 0.18 um CMOS technology. 
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Several ISM-band transmitters are available in the market and each one has its own 

specifications in terms of current consumption and data-rate. A few of the related low-power 

ISM-band integrated transmitters are summarized and compared here. In general, the commercial 

transmitters have many supporting blocks and features, such as control units for programmable 

outputs, selectable modulations, ADCs, integrated switches, power management blocks, etc. 

Therefore, the range of reported current consumption in the data-sheet of these products is 

usually higher unless specified.  

Table  2.1 summarizes the specifications of the transmitter section of the selected related 

off-the-shelf ICs. Notice that the reported values in this table are due to the FSK-mode 

performance of the transmitter sections. As predicted, the total power consumption of these 

transmitters is relatively large and, hence, the Figure-Of-Merit (FOM), which was defined as 

consumed Energy per transmitting bit (J/b), remains large. In practice, FOM is calculated by 

dividing the DC power consumption (VDD×IDC) by the data-rate. As highlighted in Table  2.1, 

only the integrated circuit of ZL70250 [34] has a relatively small current consumption resulting 

in the best and lowest FOM of 19.35 nJ/b. For this case, FSK modulation is used to provide the 

data-rate of 186 kb/s and modulation index of ~0.5.  

The presented FSK transmitters in Table  2.1 operate at 915 MHz. However, the off-the-

shelf transmitters in 400 MHz range have similar performance. For example, the 433 MHz 

version of the integrated chip, ZL70101 [45] can provide up to 256 kb/s data-rate with 5 mA 

current consumption and 35 nJ/b of energy consumption. Also notice that the commercialized 

integrated circuit are likely to use higher voltages (~3 V) for the supply for more compatibility 

with other chip such as the microcontroller. This is another reason why the total power 

consumption is still high. In the integrated transmitter circuit of TRC103 produced by Murata Co. 

[46], both OOK and FSK modulations are used to provide up to 200 kb/s of data-rate and up to 

+11 dBm transmit power from 3.6 supply voltage. 

As shown in Table  2.1, the range of the reported data-rates are less than 500 kb/s which is 

mainly due to the general requirement of applications. More importantly, the reported current 

consumptions are very large that is an interesting research area. Speaking of low-power 

implantable devices, a low-power RF transmitter is consequently required.  
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Table  2.1: Summary of selected off-the-shelf low-power integrated ISM-band (915 MHz) 

transmitters 

IC [Ref] 

(year)/ 

Company 

Modulation 
Maximum 

Data-Rate 

Tx Current/ 

VDD 

FOM 

Energy/bit 

(nJ/b) 

Output 

power 

Related 

Applications 

TRC103 

[46] (2012)/ 

Murata 

OOK/FSK 200 kb/s – /3.6 V - > 11 dBm 
- General 

Applications  

AT86RF212 
[47] (2010)/ 

ATMEL 

BPSK 40 kb/s 
17 mA/3.6 V 

1530  
5 dBm 

- General 

Applications 
QPSK 200 kb/s 306 

ZL70250/70

101 

[34] (2013)/ 

Microsemi 

FSK  

(MI:~0.5) 

915 MHz: 

186 kb/s 
2 mA/1.8 V 19.35 -13 dBm - Body-Area 

Network 

- WSN 
433 MHz: 

400 kb/s 
5 mA/2.8 V 35 -4.5 dBm 

ADF7020 

[48] (2012)/ 

Analog 

Devices 

FSK/GFSK 200 kb/s 14.8 mA/3.6 V 266 -20 dBm 

-Low cost 

wireless data 

transfer 

CC1150 

[49] (2009)/ 

Texas Inst. 

BFSK/GFS

K/MSK 
500 kb/s 15.2 mA/3 V 91 0 dBm 

- Low power 

telemetry 

- WSN 

MICRF405 

[50] (2006)/ 

Micrel 

ASK/FSK 200 kb/s 9.6 mA/3 V 144 -7 dBm 

- Remote 

control 

systems 

- Wireless 

security 

systems 

 

One common way to reduce the current consumption and area is to share few blocks in 

the architecture of the transceiver as is reported in literature. An example of sharing building 

blocks is the energy-efficient transmitter-receiver of [51]. A configurable and energy-efficient 

transceiver architecture is introduced in [51], 2009 and is operating at 2.4 GHz using PSK 

modulation. Active mode power consumption is reported to be 11 mW and 14 mW in receive and 

transmit modes, respectively, on a 1.6 V supply in 0.18 μm technology. In this transceiver, in 

addition to the mixer, the LNA circuitry is also shared for both transmission and reception. The 
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transceiver is designed for the short range wireless sensors but complexity of the proposed 

structure is still one of its drawbacks. In this work, the LNA is used in a loop such that it also 

functions as the VCO for both paths, Tx and Rx. However, the loop and the total Rx/Tx paths are 

still complicated and many blocks are involved. Moreover, the number of on- and off-chip 

inductors makes it not fit for implantable devices. 

Another example in which the LNA and the PA stages are reconfigurable to save silicon 

area is reported in [52]. In this work, the LNA and PA stage are combined to realize a 

reconfigurable antenna interface. The transmitter uses BFSK modulation with modulation index 

of ~1 to provide 100 kb/s of data-rate while consuming 1.6 mW to produce an output power of -5 

dBm. The energy consumption then becomes 28 nJ/b. Notice that a differential transformer is 

used in addition to the inductor of the LC tank and more area is consumed. In total, the presented 

transmitter has shown a fairly efficient performance as a result of trade-off between power 

consumption, data-rate and silicon are. 

Simplicity of the architecture directly leads to a high performance transmitter if the blocks 

are carefully optimized and implemented. For instance, the transmitter in [20] is implemented 

using 0.5 μm CMOS technology and uses direct-conversion architecture. It operates at 434 MHz 

frequency band and uses FSK modulation to maintain a data-rate of 25 kb/s. The initial proposed 

Tx architecture seems to be very simple as shown in Figure  2.4, but, the complexity of each block 

is a disadvantage. 

In this transmitter, the I/Q signals with the deviation frequency are determined by a digital 

baseband modulator based on an analog oscillator circuit and the absolute value of the frequency 

is controlled by the Δf Ctrl signal. When the input data changes, the settling time for the new 

deviation frequency may limit the data-rate. This modulator has several blocks, including several 

OTAs and active mixers resulting in a large required chip area. The reported power consumption 

is 0.5 mW for an output of 10 dBm with overall efficiency of 38% from a 1.2 V supply voltage. 

Also, the power amplifier is composed of three-stage class-A preamplifiers with 7 mW power 

dissipation and an output class-B stage with 8 mW power dissipation. Moreover, the matching 

circuit is realized using off-chip inductors and capacitors. 
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Figure  2.4: Simplified FSK-based Tx diagram reported in [20] 

In total, the presented Tx architecture is simple but requires a large area and the 

complexity of several blocks has increased the total power consumption to 25 mW which makes 

inappropriate for low-power implantable applications. It is shown later in the following chapters 

and the proposed transmitter architecture benefits from its simplicity while the building blocks 

are implemented with less complexity to lower the total current and area. 

The BFSK transmitter in [14] operates at 868/915 MHz and was implemented using 0.13 

μm CMOS technology in 2009. Zero-IF architecture is used to implement the transceiver. The 

simplicity in [14] is an advantage where the number of blocks (Figure  2.5) is low and, hence, the 

current consumption is supposed to be at a low level. However, an additional block of divide-by-

2 is used to divide the output frequency from the synthesizer and to bring it to 915 MHz. Binary 

FSK modulation is used to realize a 45 kb/s data-rate. In total, the reported current consumption 

of the transmitter is 1.8 mA from a 1.5 V supply voltage to generate an output of -6 dBm. The 

power amplifier is a class-AB which is reported to be very suitable for low-power output, but, it 

requires three different supply voltages in addition to several resistors and capacitors.  
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Figure  2.5: Simplified TX architecture in [14] 

One of the most interesting circuits in [14] is the modulator circuit which is implemented 

using digital circuits, as shown in Figure  2.6. In this configuration, the TX data, the quadrature 

signals with deviation frequency and the quadrature signals from the synthesizer are the inputs. 

The TX data chooses between the I and Q signals with the deviation frequency to get mixed with 

the LO signals through multiplexers. The output FSK signal is generated through the logic gates. 

In this modulator, multiplication is replaced by an XOR function while the summation function is 

replaced by AND/NOR functions. However, the current consumption is 110 μA. The output 

frequency is fLO+Δf for Tx D='1' and fLO–Δf for Tx D='0'.  

TX Data

TX Data

ΔfI

ΔfQ

ΔfI

ΔfQ

LOI

LOQ

Out

 

Figure  2.6: The digitally implemented modulator in [14] 
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The current consumption of this modulator in addition to the PA stage is reported as more 

than 1.14 mA. The maximum overall efficiency of the PA stage is 32.4 % when delivering -4 

dBm. However, the digital FSK-modulator is claimed to be functional but has sub-optimum 

performance when combined with the PA. In total, using digital components has reduced the total 

power consumption and the transmitter is implemented with a simple architecture. In the 

following chapters, a proposed FSK modulation scheme is implemented with small current 

consumption where the main modulation block consumes no DC current. 

Reviewing all the mentioned ISM-band transmitters, it is notable that implementing an 

energy-efficient transmitter suitable for implantable and wearable devices has many issues to 

address, more importantly current consumption, data-rate and chip area. As a result, a new RF 

transmitter is proposed to realize the wireless communication interface of medical devices. This 

transmitter is the subject of next chapters.  

2.3 Summary 

Medical application of RF transmitters for human-machine interactions and freely-moving 

animals were discussed. A technical overview on several related published low-power ISM-band 

transmitters for short-range communication was given while focusing on their performance in 

terms of size, power consumption, maximum data-rate and, in total, energy efficiency. Several 

related low-power off-the-shelf components were also listed and their performances were 

compared in spite of higher level of needed power consumption. 

The strength of the presented transmitter in this work is the energy efficiency to provide a 

high data-rate, simplicity of the employed FSK modulation and the small size. Moreover, low 

complexity is a benefit when the low-power transmitter circuit is implemented. The proposed FSK 

modulation scheme and the corresponding architecture are presented in the next chapter.  
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CHAPTER 3  

PROPOSED BFSK 915 MHZ TRANSMITTER 

3.1 Target ISM-band transmitter 

This transmitter is a part of a bidirectional target transceiver operating at the license-free 

North American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) and as the 

communication front-end. It is dedicated to wireless interface of medical body sensors to avoid 

using discrete external off-the-shelf components and shrink the total size of the sensor. The center 

frequency of 915 MHz is usually used to address this frequency band. Other frequency bands 

may also be used in other regions with their own design constraints, such as antenna restrictions 

or availability of frequency bandwidth. However, the circuits may be redesigned for other 

frequency bands, such as European frequency band (434 MHz) with less available bandwidth or 

worldwide frequency band (2.4 GHz or 5.7 GHz) with circuits with generally higher power 

consumption and more sensitive to parasitic components.  

Performance of any wireless transmitter as a power-hungry communication front-end is 

significantly dependent on the employed modulation. More importantly the power consumption 

and data-rate can be improved by careful selection of the signal modulation while meeting other 

design constraints such as area, simplicity, and integration. Both transmitter and receiver circuits 

of the target transceiver are to communicate in the mentioned frequency band with a limited 

bandwidth with high data-rate and low-power characteristics. In general, some blocks can be 

shared to minimize the power and area, such as the local oscillator (LO). In the target transceiver, 

the high quality LO’s In- and Quadrature-phase (I and Q) signals are generated by a very low-

power fully integrated integer-N frequency synthesizer which was previously implemented and 

reported in [53]. It is designed to allow the selection of different channels equally spaced in the 

902–928 MHz ISM frequency band while offering differential, quadrature versions of the carrier. 

It consumes 600 µA from 1 V supply while showing good phase noise immunity, large tuning 

range and fast settling time. 

The proposed transmitter in this work benefits from an efficient FSK modulation scheme 

which has the main advantages of being a high data-rate, low-current design with small needed 
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area. It is shown in the following sections how the required signals with the frequencies 

corresponding to the transmitting data are produced and results in high data-rate communication. 

The corresponding circuit implementation allowed realizing the transmitter with low-power 

consumption. 

3.2 Proposed FSK modulation scheme 

The modulation principle of a binary FSK modulation is shown in Figure  3.1. The signal 

spectrum gets shifted up and down to distinguish between data ‘1’ and ‘0’, respectively. Indeed, 

data=’1’ is realized by shifting the center frequency to fc+fs and data=’0’ is realized by shifting 

the center frequency to fc-fs. Here, fc is considered as the center frequency while fs (or Δf) is the 

shifting frequency (or deviation frequency). 

 

Figure  3.1: FSK modulation principle 

In this research, the FSK signals are generated using the mathematical trigonometric 

equations towards realizing the final simplified equations.  

In the first scenario, consider the trigonometric signals with frequency of fc+fs, meaning  

             and             , as shown in Eqs. (3.1) and (3.2). 

                                                (3.1) 

                                                (3.2) 

 Combining the above equations Eq. (3.3) can be obtained. The sinusoidal terms in Eq. 

(3.3) are then replaced by the following terms in Eq. (3.4). 
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   (3.3) 

                               (3.4) 

In the above equations,       and       are the In- and Quadrature-phase (I and Q) signals 

with frequency of fc (the frequency of the local oscillator) and       and       are the I and Q 

signals with frequency of fs (the shift frequency or deviation frequency). It is worth remarking 

that as long as the sinusoidal terms with frequency of fs keep the 90 degrees phase-shift they will 

be considered as I and Q signals and, in other words, the π/4 delay for both terms in Eq. (3.3) can 

be ignored when generating the signals. The factor of √2 is not also the concern at this step. 

Similarly, in the second scenario, the signal with frequency of fc–fs can be produced by 

changing ωs to –ωs in Eq. (3.3) resulting in Eq. (3.5).  

                           
 

 
                  

 

 
   (3.5) 

Notice that in this equation the sinusoidal terms containing fs are still I and Q signals with 

90 degrees phase difference. Therefore, one can simply replace terms similar to Eq. (3.4) to 

obtain the output signal with frequency of fc–fs, which is shown in Eq. (3.6). 

                               (3.6) 

It can be seen that the only change in the output generated terms containing frequency of 

fc+fs and fc–fs is that one of the signals, here       or      ,  changes its sign. In other words, the 

polarity of the mentioned signal is inverted, when differentially implemented. Therefore, the 

output generated frequency can be switched between fc+fs and fc–fs, the two desired FSK 

frequencies. Indeed, the negative sign can be applied to any of the sinusoidal terms. It can even 

be applied to the product of the two signals before the sum operation. However, in this work, 
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changing the polarities of a signal with frequency of fs was considered for applying the negative 

sign summarizing all the equations to Eq. (3.7).  

                                         (3.7) 

The block diagram of the above obtained simplified equation is realized in the following towards 

realizing the proposed transmitter architecture. 

3.3 Proposed Transmitter Architecture 

3.3.1 Block Diagram 

The simplified equation to generate the desired FSK signals, Eq. (3.7), consists of the 

sinusoidal terms, sum and multiplication operations. Figure  3.2 shows the conceptual block 

diagram of the mentioned equation. The sinusoidal terms are the inputs, the multiplication and 

sum operations are realized by mixer and adder, respectively. 

Modulation

D='1':

D='0': -Vfs,I

Vfs,I

Vfc,Q

Vfc,I

D='1'

D='0'

fc+fs

fc-fs

Vfs,Q

 

Figure  3.2: Conceptual diagram of the proposed FSK Modulation 

In practice, the signals are usually implemented differentially to lower the noise and avoid 

third harmonic distortions, especially for high-frequency circuits. The adder is usually followed by 

an amplifier, here called Power Amplifier (PA), to increase the signal amplitude to a higher level 

in order to avoid mixing the generated desired signal with the unwanted distortion generated by 
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other surrounding instruments. Figure  3.3 shows a more complete diagram of the proposed FSK 

modulation.        and,       the I and Q signals from the Local Oscillator (LO) are renamed as LO-

I and LO-Q, respectively, to easily distinguish between the carrier signal and the one with the 

deviation frequency. The modulation block, which is controlled by the input data, has the task of 

changing the polarities of its input, here      , in order to switch between the two desired scenarios, 

as mentioned earlier. The PA is also controllable by Vctrl to adjust the output amplitude and current 

consumption.  

PA

Mod.

Input Data

LO-I

LO-Q
+
-
-
+

Mixers Output Stage

Vctrl

FSK

(fC±fS)

01 10

Vfs,I

Vfs,Q
 

Figure  3.3: Simplified diagram of the proposed transmitter architecture 

As a result, changing the polarities of only one of the signals is interpreted as changing 

the transmitting data from '1' to '0' or from '0' to '1' and the short needed switching time helps 

increasing the data-rate. This, in fact, is one big advantage of the proposed modulation technique 

which results in high data-rate and is another major contribution of this work in addition to the 

reduction in power dissipation and size. Notice that the proposed transmitter is different from 

conventional ones in principles and achieved performance and the simplicity of this design makes 

it very suitable for implantable and wearable medical devices. 

Figure  3.4 shows the global block diagram of the proposed BFSK-based transmitter 

architecture. In this architecture, the signals containing the deviation frequency are provided by 

an integrated low-power differential QVCO, when enabled by EN signal. Alternatively, the Poly-

Phase Filter (PPF) stage is used to generate the required I and Q signals. Both integrated and 

external choices to provide the signals with frequency deviation (      and      ) were considered. 
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The poly-phase filters itself can also be on- or off-chip. Notice that all signals are differential 

except the output of the PA stage, which goes the 50-Ohm antenna. 

PA

Q

Mod.

Input Data
P

P
F

Δf (fS)

+
-

-
+

Mixers
Output Stage

Vctrl

FSK

I

(fC±fS)

Ring

(fs)
VCO

01 10

Vfs,I

Vfs,Q

LO

(fC)

EN

EN
 

Figure  3.4: Proposed Transmitter Architecture 

3.3.2 Alternative spots for applying the modulation  

As discussed, the proposed FSK modulation is realized by changing the polarities of a 

signal when producing the transmitter output voltage. The generated output signal is toggling 

between Eq. (3.4) and Eq. (3.6). Referring to Eq. (3.7), changing the polarities of the sinusoidal 

term sin(ωst) was the basis of the presented modulation. However, the presented technique can be 

applied not only on one sinusoidal term but also on the product of them, here, 

                   
   , or            . Figure  3.5 shows the possible choices (1, 2 and 3) for 

applying the modulation within the FSK signal path. Spot number 3 is, in fact, inside the adder 

due to its symmetrical differential circuit implementation. Notice that the modulation blocks are 

practically differential CMOS switches used to change the polarities of its input signal.  
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Figure  3.5: Choices for applying the modulation in the proposed transmitter architecture 

The propagation time from the modulation block to the antenna may be shorter which 

results in a faster circuit. But, on the other hand, the low-frequency input node of the mixer is 

easier to access once fabricated. The input signals of the mixers were considered to be fed both 

internally and externally for testing purposes. According to the simulation results for comparing 

the propagation time for the three mentioned modulation spots, the delay difference was 

negligible. As a result, the modulation block was chosen to be located before the mixer due to 

easiness of dealing with low-frequency circuits. 

3.3.3 Sensitivity over variation in phase and amplitude 

Sensitivity of the generated output signal in Eq. (3.7) is studied in this section. The output 

generated signal is observed by considering a small variation in phase and amplitude of the I/ Q 

signals. Eq. (3.8) shows the output signal as a function of and the variation in amplitude and 

phase, respectively.  

                                                          (3.8) 

Considering the error signal of VERR in Eq. (3.9), sensitivity of the output signal is 

interpreted by calculating the rms value of the error signal, VERR,rms in Eq. (3.10).  

                                  (3.9) 
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   (3.10) 

Figure  3.6 shows the 3D demonstration of the error signal (VERR,rms) to observe the 

sensitivity over both phase and amplitude generated in MATLAB environment. In Figure  3.6, the 

value of VERR,rms reaches its maximum when phase variation between the I and Q signals is close 

to 90 degrees (or       in Eq. (3.8)). Assuming an amplitude of 1 V for each sinusoidal term 

in Eq. (3.8) and 90 degrees phase discrepancy results in VERR,rms of 1 V and may increase by 

larger amplitude discrepancies. The error reaches zero for the ideal case where there exists no 

discrepancy in phase and amplitude. Notice that for frequency variations close to 180 degrees, the 

value of VERR,rms drops to zero again, but, in fact, such unacceptable phase discrepancy is so large 

that the output desired frequency changes from one frequency to another. The time-domain 

behaviour of VERR,rms is shown in Figure  3.7.  

 

Figure  3.6: Output sensitivity over amplitude and phase discrepancy 

The error resulting from the detection of the output FSK frequency is also displayed in 

Figure  3.8, where the correct FSK frequency (915 MHz + 500 kHz for data=’1’) gets shifted 

down to 915 MHz – 500 kHz resulting in an incorrect detection of data. As mentioned earlier and 
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according to Figure  3.8, the maximum error occurs when the two I and Q signal have become in 

opposite phases where ∆φ for each sinusoidal term is 45 degrees. For ∆φ larger than 45 degrees, 

every bit of data (‘1’ or ‘0’) will be incorrectly detected. 

 

Figure  3.7: Variation of VERR for ∆φ =1, 22, 45, 77 and 90 degrees when ∆a=0 
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Figure  3.8: Frequency domain behavior of Vout(∆a,∆φ) for ∆φ =2, 23, 45, 77 and 90 degrees 

when ∆a =0 

As a conclusion, minimizing the effect of discrepancy in phase is more important than in 

amplitude, however, both should be carefully dealt with. A few degrees of phase discrepancy 

might be tolerable but it has to be minimized to reduce the error. In practice, the phase 

discrepancy directly increases FSK error as it was observed during the measurements. Therefore, 

a quadrature oscillator with small amount of phase discrepancy between I and Q signals should 

be used. The system-level verification of the presented architecture was also done in ADS 

environment (Figure  3.9). Figure  3.10 also shows the generated output FSK signals when data=’1 

and ‘0’ that verifies the proposed modulation scheme. Notice that the frequency of 1 GHz was 

used in the simulations for simplicity. The frequency deviation is also chosen to be 100 kHz in 

Figure  3.9 where the phase of the 100 kHz signal is shifted up and down by 45 degrees to 

generate the I and Q signals. The power amplifier is not shown in this figure. 
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Figure  3.9: Simplified block diagram of the test-bench for system-level verification of the 

transmitter architecture in ADS software (See Appendix A) 

Data=’0’:  

fout=fc - fs=1 GHz - 100 kHz 

 

Data=’1’:  

fout=fc + fs=1 GHz + 100 kHz 

 

Figure  3.10: Output generated FSK signal in ADS when data='1' and '0' 
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3.4 Summary 

In this chapter, the background theory of the proposed FSK modulation scheme was 

described and the methodology of realizing the corresponding target transmitter architecture was 

presented. It was shown that the proposed FSK modulation leads to a low complexity transmitter 

and can theoretically provide a high data-rate due to the short needed time to generate the output 

FSK signal as input data varies. The supporting mathematical equations were discussed along 

with sensitivity analysis over phase and amplitude discrepancy and system-level verification. It 

was shown that the phase and amplitude discrepancies can result in error in the desired output 

FSK signal. Alternative configurations for applying the needed modulation were also discussed. 

The building blocks intended to implement the proposed transmitter can be achieved through 

low-power circuits described in next chapter. 
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CHAPTER 4  

CIRCUIT DESIGN AND IMPLEMENTATION 

In this chapter, circuit-level design of the building blocks of the proposed transmitter 

architecture (Figure  3.4) is described.  The composing building blocks were initially introduced 

in [28] and developed in [29] and [30]. The proposed transmitter can be realized using different 

implementations which may result in different performances for either customized or general 

applications. A fully integrated design is targeted towards a low-power prototype, however, some 

off-chip design choices are also considered. Building blocks of the proposed radio frequency 

transmitter were simulated using two CMOS technologies of TSMC 90 nm and IBM 130 nm 

showing similar performance. The results due to IBM 130 nm technology are presented in this 

thesis. 

4.1 Differential Quadrature Voltage-Controlled Oscillator (QVCO) 

Implantable biomedical sensors require very small and low-power communication front-

ends and wireless radio frequency transceivers are the most challenging blocks to maintain the 

data communication. Design of crystal-less and inductor-less Voltage-Controlled Oscillators 

(VCOs) helps to implement the fundamental building blocks in implantable communication and 

VLSI systems with different frequency ranges as demonstrated by several reported literatures 

such as in [54-56]. As mentioned earlier, in widely-used binary FSK-based transceiver 

architectures, the carrier frequency gets shifted up and down by the frequency deviation to 

distinguish between ‘1’ and ‘0’. Such frequency deviation is usually defined by differential 

quadrature signals which can be generated by cascaded flip-flops acting as a frequency divider 

fed by an external reference clock or crystal oscillators. However, crystal oscillators may not be 

suitable for integrated sensors. The frequency may also vary depending on the application and the 

available channel bandwidth.  

In this section, a new low-power differential rail-to-rail quadrature voltage-controlled 

oscillator (QVCO) is presented. The proposed CMOS QVCO in this work is a 2-stage ring-
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oscillator and consumes small area, which is suitable for implantable devices with low-voltage 

and low-power circuits. The generated quadrature signals in this work are targeted to operate with 

a frequency between 500 kHz and 2 MHz to modulate the carrier signal (915 MHz) and to realize 

the binary FSK modulation in the target radio frequency transmitter architecture. The frequency 

of the presented QVCO can be tuned between 300 kHz and 11.57 MHz by varying the control 

voltage from 0.35 to 0.9 V by consuming a current between 0.5 and 160 uA. As discussed in the 

following, the related parameters can be varied to obtain another range of frequency. Here, the 

frequency range of 3-40 MHz was also achieved while consuming a current of between 3 and 117 

uA. The simulation results for both cases are shown in this section. 

4.1.1 QVCO’s Block Diagram 

This voltage controlled quadrature oscillator was designed and implemented to generate 

differential quadrature signals, I+, I-, Q+ and Q-. Notice that the generated I and Q signals are, in 

fact, the Vfs,I and Vfs,Q signals in the transmitter architecture in Figure  3.4. Figure  4.1 shows the 

block diagram of the designed quadrature oscillator including two delay cells and a start-up 

block. This structure can be considered as a ring oscillator where no external clock signal is 

required and facilitates the integration of the oscillator. However, the start-up circuit still needs to 

take care of initiating the oscillation.  

I-

I+ Q+

Q-

VSU

EN

VDDOSC

VDDVDD

1.2 V

in
+

-
in
+

-

out
+

-
out

+

-

Start-Up 

Circuit

 

Figure  4.1: Block diagram of the 2-stage tunable quadrature oscillator including 2 delay cells and 

start-up 

Once enabled by EN signal, the start-up circuit sends the start-up signal, VSU, to the 

oscillator block to initiate the oscillation and after a specific delay the start-up circuit 



40 

 

  

automatically gets disconnected from the oscillator circuit by floating the node of VSU. The 

external supply voltage, VDDOSC, is also used to tune the frequency of the quadrature signals. No 

inductor is necessary to save chip area for the target frequency range. Notice that the start-up 

block is fed by the 1.2 V supply and consumes relatively negligible current. 

4.1.2 QVCO’s Circuit 

Figure  4.2 shows the circuit-level implementation of the delay cells of the oscillator 

blocks. Each delay cell is similar to a bi-stable circuit triggered by the rising edge of its inputs 

and provides differential outputs. The NMOS transistors, Mn5-8, are the input transistors while 

transistors Mn1-4 and Mp1-4 form the output inverters. Each I and Q nodes are, in fact, the outputs 

of the CMOS inverters that can be powered up by a low supply voltage to reduce the power 

consumption. The voltage variations on both terminals of the capacitors, Ct, are concurrent. As 

shown in the following, the total current of this oscillator is less than 6 uA when generating 

quadrature differential signals with frequency of 2 MHz.  

Alternatively, the PMOS transistors can be used as input transistors, where the delay cells 

are sensitive to the falling edge of the inputs. The symmetrical layout of the proposed QVCO 

implemented using IBM 130 nm CMOS technology in Cadence Environment is shown in 

Appendix B. Capacitors are in practice consuming the largest area. 
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Figure  4.2: Proposed 2-stage quadrature voltage-controlled oscillator 
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The transient behaviour of I and Q signals is shown in Figure  4.3, where Tnp is the delay 

from the rising edge of the input of one delay cell to the next rising edge occurring at the input of 

the other delay cell. This interval includes the propagation of signal through two NMOS and 

PMOS transistors. Notice that in practice the falling and rising time for NMOS and PMOS 

transistors can be different depending on their width and length. Here, both falling and rising 

time of the nodes are assumed to be close and the symmetrical behaviour of differential signals 

will be kept. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) ...

Q+

Q-

I+

I-

Time

Events:

T
Tnp  

Figure  4.3: Time-domain behaviour of I and Q signals showing the sequence of events in one 

period of T 

For instance, the propagation of the signal from I+ to Q- is described here. Assuming a 

large enough voltage of VDDOSC to power up the transistors, the voltage of I+ is raised using the 

rising edge of a pulse produced by the start-up circuit that is the starting point, event (1) in Figure 

 4.3. Then, the rising edge propagates through Mn7 to Q+ as a falling edge due to In occurring at 

event (2) followed by the rising edge of Q- due to Ip at event (3). Therefore, Tnp can be estimated 

as follows: 

    
               

  
 

               

  
 (4.1) 

In Eq. (4.1), Cp1 and Cp2 are the total capacitance at the gate of PMOS transistors and the 

output nodes, respectively, which can be considered equal and replaced by Ctot. VHigh - VLow can 
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be replaced by VDDOSC. Ip and In, which are also functions of VDDOSC, are the current of the 

PMOS and NMOS transistors, respectively, and can be considered equal. Consequently, the total 

period, T, can be estimated by Eq. (4.2). 

        
             

    
 (4.2) 

The presented quadrature structure can be used as a digitally-controlled oscillator either 

by controlling an additional capacitor-bank in parallel with Ct or by adding parallel transistors to 

change the current capacity and, hence, the frequency. Here, the supply voltage of the proposed 

oscillator’s circuit, VDDOSC, is used to tune the frequency and to realize the VCO. The current 

consumption and frequency range of the generated differential I and Q signals of the proposed 

structure may vary according to the chosen parameters and the target application (here low-power 

implantable transceivers). The maximum frequency is limited by the required settling time for 

each output voltage after its transition from High to Low levels and vice-versa. There is a trade-

off between the slew-rate and the current budget. The achieved frequency range and 

corresponding current consumption are shown in the results section in the following chapter. 

4.1.3 QVCO’s Start-Up Circuit 

The goal of this start-up circuit is to generate a pulse with a rising-edge to change VSU (the 

gate voltage of the PMOS transistor Mp1 in Figure  4.2) to a non-zero value and to initiate the 

oscillation as described earlier. As initial conditions in the start-up circuit of Figure  4.4a, Vb2 is 

zero when EN is still zero. The non-zero value of Vb1 forces Vp to stay at zero. The stack of 

diode-connected NMOS transistors are used to provide the two voltages of VDDS and Vb1 such 

that VDDS>Vb1 while consuming less than 0.4 µA.  

The conceptual transient behaviour of the nodes of the presented start-up circuit is 

illustrated in Figure  4.4b and can be explained in three steps. In the first step, by enabling the 

oscillator and the start-up circuit, the voltages VDDS and VSU reach their non-zero values. In step 

two, the voltage Vb2 starts rising due to the charges accumulating in Cd until Vb2 becomes larger 

than Vb1 by a delay proportional to the inverse of Cd. In step three, the voltage Vp changes from 
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‘0’ to ‘1’ and disconnects VDDS and VSU by turning off the corresponding PMOS transistor, 

MPSU, leaving the oscillator disconnected from the start-up circuit. The simulated time-domain 

behaviour of the mentioned nodes is shown in Figure  4.5 which is following the behaviour of 

nodes explained in Figure  4.4b. Layout of the implemented start-up circuit using 130 nm CMOS 

technology is also shown in Appendix C.  
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Vb2

IDC 
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Vb1

Cd

Vp

EN

VDDs
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Delay α 1/Cd

Vb2

VDDs
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EN
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Figure  4.4: Start-up circuit: a) Schematic, and b) Transient behavior of its nodes 

 

Figure  4.5: Simulated time-domain behavior of the nodes in start-up circuit 
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The circuit of the proposed QVCO was simulated and fabricated using IBM 130 nm 

technology in Cadence environment. The simulation and measurement results of the proposed 

QVCO are reported in chapter 5. 

4.2 Poly-Phase Filter (PPF) 

As discussed earlier, the frequency deviation of an FSK signal is defined mainly by the 

available channel bandwidth. Once the desired frequency deviation is defined, the differential I/Q 

signals are generated correspondingly for the presented transmitter architecture. To generate I/Q 

signals a passive poly-phase filter (Figure  4.6a) was implemented to avoid DC current 

consumption. The poly-phase filter is a symmetric RC network with inputs and outputs 

symmetrically disposed in relative phases. The target frequency of such structure is defined by 

1/2πfRC. Notice that all resistors have equal values as well as the capacitors.  

The detailed characteristics of the PPF structure was analyzed in [57] with more details. 

Here, some characteristic of this filter is studied. Layout of each resistor was implemented with 

multiple fingers in an interleaved pattern to further reduce the effect of process variation and 

mismatch (Figure  4.7). Since the on-chip passive resistors and capacitors take relatively large die 

area, PPF is more suitable for implementing test prototypes of circuits operating at higher 

frequencies (several MHz and higher). However, on the other hand, active poly-phase generators 

may add more current consumption and complexity. The new designed VCO in this thesis can be 

also replaced to save chip-area.  
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Figure  4.6: 2-stage PPF: a) Schematic, b) Simualted quadrature signals with fs=500 kHz 

 

Figure  4.7: One stage of PPF layout with interleaved-shaped resistors to minimize mismatch. 

Ra1…4 form Ra in Figure  4.6 

According to Authors of [57], one way to study the performance of such PPF is to input it 

with four signals with 90 degrees phase-shift, similar to Figure  4.8a. This configuration is 

actually the case for the second stage in a 2-stage cascaded PPF. In this way, the attenuation of 

the image signal can be observed. According to the performed Monte-Carlo simulations in this 
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research, two stages of PPF may be used to decrease the effect of mismatch and process variation 

and to improve the quality of the generated I and Q signals by further weakening the image 

signal. Using 100 iterations in Monte-Carlo simulation showed that by using 2 stages of PPF the 

attenuation of the image signal at -fs (fs=500 kHz, for example, in Figure  4.9) remains around 20 

dB for 30% variation in the center frequency while for one stage of PPF the attenuation is only 

6.7 dB for the same variation in the center frequency. In other words, when the center frequency 

of the PPF stage varies due to mismatch and process variation, the image signal remains low 

enough. 

As a result, two stages of PPF were considered in this design to lower the effect of 

mismatch and process variation. The layout was also designed in Cadence environment using 

interleaved configuration to further minimize the effect of mismatch and process variations. 

Larger number of stages may results in better image-reduction but losing more die area.  

 

Cos(ωs+0) Ra

Rb

Ca

Cb

Cos(ωs+90)

Cos(ωs+180)

Cos(ωs+270)

Vs,I+,2

Vs,I+,1

  

(a) (b) 

Figure  4.8: Image reduction in PPF: a) Inputs configuration with fs=500 kHz, b) Outputs of the 

first and second stages in frequency domain 
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Figure  4.9: Effect of mismatch and process variation on quadrature signals due to 100 iterations 

of Monte-Carlo simulation 

4.3 Passive Mixer 

Multiplication of sinusoidal terms in Eq. (3.7) and, hence, up-conversion is realized using 

the well-known linear passive CMOS mixers of Figure  4.10. They draw no dc current from the 

voltage supply that is suitable choice for low-power designs. However, port-to-port isolation 

could be a challenge and may result in LO feed-through [1]. Passive mixer layout design has to 

be done very carefully to avoid any mismatch between transistors. One may use an active mixer, 

such as Gilbert cells [1] to minimize the signal attenuation in expense of more complexity and 

current. The current-driven mixer in [58] also requires large current consumption. 

 In this mixer, I and Q signals with the deviation frequency (or shifting frequency), fs, are 

mixed with the Local Oscillator signals, Vfc,I and Vfc,Q, with frequency of fc referring to Eq. (3.5). 

Therefore, the sum expression will be cos(ωc+ωs)t+sin(ωc+ωs)t with frequency of fc+fs, while 

the sub expression is cos(ωc–ωs)t+sin(ωc–ωs)t with frequency of fc-fs. The input data has already 

determined which output is to be generated. 
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Figure  4.10: Differential CMOS passive mixer 

Figure  4.11 shows the simulated differential output signals of the two mixers in the I and 

Q paths in the transmitter architecture. In the related test-bench, the low-frequency input, Vin1, has 

amplitude of 100 mV with frequency of 500 kHz, which is the deviation frequency, fs. The high-

frequency input, Vin2, has amplitude of 200 mV with frequency of 1 GHz, which is the carrier 

frequency, fc. The DC voltage of the above signals are considered zero. Decoupling capacitors are 

used to avoid any dc path between the local oscillator and its following blocks. Also, the outputs 

of the mixer are passing through series capacitors (~200 fF) before reaching the output stage. The 

capacitor, CM, has also value of 20 fF for this simulation. The width and length of the transistors 

are chosen to be 7/0.12 um/um to maintain a trade-off between the total parasitic capacitance and 

minimum dc on-resistance and largest output. 

 

 

Figure  4.11: Simulated mixers' outputs 
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4.4 Transmitter’s Output Stage  

Depending on the target transmission distance, the output stage of the transmitter needs to 

provide an adequately large signal due to the existing losses, noise and disturbances from other 

instruments nearby. The required signal amplitude is usually smaller in implantable devices to 

lower the current dissipation while the current budget is more relaxed in wearable devices with 

higher power efficiencies. However, there is always a trade-off between the PA’s current 

consumption and the provided output power to the antenna. The output stage in this architecture 

was considered for both low-power implantable and high-efficiency wearable applications.  

The Power Amplifier is known to be the most power-hungry block in RF transmitters. Its 

job is to amplify the generated transmitting signal before reaching the antenna. The main 

challenge in addition to the power efficiency is the size of the inductors for biasing or matching. 

Efficiency (η) of the power amplifier is usually calculated as Pout/PDC in percentage. Pout is the 

generated and delivered output power to the 50-Ohm antenna. PDC is the total DC power 

consumption which is the total current consumption multiplied by 1.2 V, the supply voltage. The 

PA stage is optimized in terms of efficiency to provide high-output power when it is used for 

applications with wearable devices. As shown in the following, the tuneable driver as adjusts and 

reduces the current and the output amplitude. The inductor is also integrated to have less external 

components, although better signal quality is expected if external LC matching network is used. 

4.4.1 Output stage in the fabricated Tx 

Figure  4.12 shows the block diagram of the implemented output stage in the fabricated 

transmitter chip. Figure  4.13 also shows the transistor-level implementation of the output stage of 

the integrated transmitter. The two differential signals from the mixers (V1 and V2) are added up 

through a single-ended adding amplifier. This single-pole signal, Vo1, which is the generated FSK 

signal, contains the desired information and needs to be fed to the antenna. Transferring large 

signal amplitude from such CMOS circuit to the 50-Ohm antenna would be challenging and 

inefficient unless a power amplifier with matching circuit is used.  
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Figure  4.12: Block diagram of the integrated transmitter’s output stage including the 2-stage PA 

The circuit of the power amplifier has 2 stages of tuning and amplification where the 

control voltages (Vtune and Vctrl) are considered to control the current consumption, signal 

amplitude and power efficiency. Alternatively, as specified in Figure  4.13, the gate voltages of 

the cascode transistors in the output branch, Vctrl,R and Vctrl,LC are considered to further control 

current for integrated and off-chip matching scenarios, respectively. 
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Figure  4.13: Transmitter’s output stage (fabricated chip) 

In this output stage, Vo1 is amplified through 2 different stages. The first stage consists of 

Mn1 and Mp1. Mn1 is chosen small to lower the loading capacitance of the adding amplifier and to 
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lower the signal loss at high frequency. The gate voltage of Mp1, Vtune, is considered for tuning 

the DC voltage at the gate terminal of Mno in the second stage. In this way, the effect of process 

variation on Mn1 or Mp1, which may change the DC voltage of the gate terminal of Mno, can be 

adjusted. Another benefit of this tuning voltage is to control the current of Mno in the output 

branch. This current is also controlled by the gate voltage of the cascode transistor, Mn,R, which 

changes from ~400 mV to 1.2 V. Notice that the gate terminal of Mn,LC is always set to zero 

unless external LC matching circuit is to be used. In such scenario, the gate terminal of Mn,R will 

be set to zero and the control voltage is Vctrl,LC. 

Both Mn,R and Mn,LC may be removed to avoid their drain-source voltage drop, leaving 

Vtune the only control voltage. In this case, increasing the current of the output branch by 

increasing Wno, the width of Mno, results in maximum efficiency of 9 % while consuming 2.7 mA 

to generate -5 dBm of output power (Figure  4.14). As a result, this output stage was modified to 

improve the efficiency. 

 

Figure  4.14: Efficiency and Pout vs. Wno, the width of Mno in output branch of Figure  4.13 

4.4.2 Modification and optimization of PA 

The presented circuit of the power amplifier was modified in order to increase the power 

efficiency of the output stage of the target transmitter by adding an inverter stage consisting of 

Mn2 and Mp2 (stage 2 in Figure  4.15). This inverter enhances the total gain while consuming a 

small current. The goal is to find the best range for Vtune, the best sizing for transistors and the 
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corresponding matching circuit. The approach is to come up with a low gain for the first and 

second stages and higher gain for the third stage. As mentioned before, the width of Mn1 in stage 

1 should be considered small to minimize the loading capacitance to the adder stage. 

As the first step, Figure  4.16 shows the efficiency versus width of Mn2 and Mp2, W2, 

where W2= 3 µm gives the best efficiency. For simplicity, Wp2 and Wn2 were considered equal 

(Wn2=Wp2=W2) and the lengths are the minimum length. By varying Vtune, the gate voltage of 

Mp1, the total current and, hence, the output power and efficiency are varied. In this case, 

Vtune=674 mV gives the highest efficiency of 36.3% while the output power is 3.3 dBm and IDC,tot 

4.88 mA. The value of Vtune, which give the maximum efficiency, is then used to re-adjust the 

size of Mn3, the NMOS transistor in the output branch. The maximum efficiency reaches its 

maximum with Wn3=50 µm. Notice that the power added efficiency (PAE), which is (Pout-

Pin)/PDC, takes the input power into consideration and follows the behaviour of Efficiency (η). 

The final optimized widths of transistors in Figure  4.15 are shown in Table  4.1. Notice 

that values of the inductor, L, and capacitors, C1 and C2, are accordingly tuned when different 

widths of Mn3 are used. As mentioned before, the integrated inductor, L, is also the current path 

of the output branch. The inductor was taken from the library of IBM 0.13 um CMOS technology 

for simulations in Cadence environment. Inductance of the bonding-wires was also included in 

the simulations. The inductor is around 10 nH and the capacitors are around 5 pF in the used 

matching circuit. 
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Figure  4.15: Modified and optimized power amplifier 

 

Figure  4.16: Efficiency vs. W2, transistors’ width in the added inverter 

Table  4.1: Transistors sizing of the optimized PA 

 Mn1 Mp1 Mn2, Mp2 Mn3 

W/L (um/um) 4/0.2 8/0.2 3/0.2  50/0.2 
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Figure  4.17 shows the characteristics of the final design of the optimized PA as a function 

of Vtune. In this case, for Vtune=676 mV the highest efficiency is 37.3% while the output power is 

3.7 dBm and IDC,tot=5.2 mA. As another operating point, considering a current budget of 0.8 mA, 

Pout reaches -12.6 dBm with an efficiency of 5.8 %.  

 

Figure  4.17: Efficiency, Pout and total current vs. Vtune after optimization 

The simulation results for the designed PA are summarized in Table  4.2 and compared 

with other related PAs. Notice that PA designs are usually customized according the required 

specifications in different applications and it is not easy to compare their respective FOMs. In 

addition to the efficiency, the size of the implantable and even wearable devices is also one of the 

main issues to deal with. On-chip inductors take a huge portion of the die area and implementing 

a high performance front-end with less number of inductors is an advantage. Therefore, power 

efficiency has to be considered as a FOM while taking other parameters into account, such as the 

die-area and number of external components. According to simulation results, the optimized 

power amplifier of this work has shown a relatively good and comparable performance among 

other similar designs, as shown in Table  4.2. For wearable applications, where higher value of 

current is allowed, Vtune may be set such that the maximum efficiency is achieved. On the other 

hand, for implantable applications with limitation on current consumption, Vtune can be adjusted 

to lower the current. Moreover, an additional NMOS transistor could be used in parallel with Mn3 

in Figure  4.15 with a smaller width to provide lower current when Mn3 is switched off. 
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Alternatively, in order to perform the future tests on the OOK receiver, Vtune can be also 

controlled by a digital signal to generate the OOK outputs signals to be transmitted to the 

receiver, which was not the focus of this research. 

Table  4.2: Comparison of similar CMOS power amplifiers 

PAs Pout IDC(Pdiss) η (%) 
VDD 

(V) 

Tech. 

(um) 
Freq. 

Level of 

integration 

[20]  

(2001) 

10 dBm  

(10 mW) 
12.5 mA 38 % 

1.2 0.5  
430 

MHz 

External 

matching 0 dBm 

(1 mW) 
5.56 mA 15 % 

[59]  

 (2004) 

4.1 dBm  

(2.6 mW) 
- 

35 %  

(PAE: 26 %) 
1.2 0.13  

1.9  

GHz 

Bond-wire & 

off-chip for 

matching 

[60]  

(2005) 

6.5 dBm  

(4.5 mW) 
11 mA (PAE: 28 %) 1.4 0.18  

2.45 

GHz 
Integrated  

[14]  

(2009) 

-6 dBm  

(0.25 mW) 
1.8 mA 9.2 % 1.5 0.13  

915 

MHz 

External 

matching 

[61]  

2009 

-16 dBm  

(0.025 mW) 
0.27 mA ~ 20 % 0.7 0.18  

403 

MHz 

External 

matching (2 

inductors) 

[13]  

(2011) 

-17 dBm 

(0.02 mW) 
- 22 % 1 0.13  

400 

MHz 

External 

matching 

[11]  

(2011) 

-10 dBm 

(0.1 mW) 
0.7 mA ~ 25 % 0.7 0.18  

920 

MHz 

External 

matching 

This Work 

(wearable) 

3.7 dBm  

(2.34 mW) 
5.22 mA 

37.6 %  

(PAE: 33%) 
1.2 0.13  

915 

MHz 

Fully 

Integrated This Work 

(integrated) 

-12.6 dBm 

(~0.55 mW) 
0.8 mA ~ 6 % 

 

In summary, the circuit of the fabricated PA was shown in this section followed by the 

modified version and its optimization. In this power amplifier, only one on-chip inductor is used 

for both biasing and matching. The circuit of power amplifier was then optimized for maximum 

efficiency and the amplitude of the output signal is adjustable. The results were finally 

summarized and compared with similar circuits. 
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4.5 Transmitter Layout and Packaging 

Figure  4.18 shows the transmitter circuit which was fabricated and tested to prove the 

functionality, efficiency and characteristics of the proposed transmitter. The reported 

measurement results in the following sections are, in fact, based on this implementation while the 

first version of the power amplifier was integrated. The layout of this proposed transmitter was 

implemented using IBM 130 nm CMOS technology under Cadence environment. For this 

technology, the typical VDD is 1.2 V with minimum transistor length of 120 nm. 

Layouts of all transistors were instantiated from IBM 130 nm package with MA 

metallization option. Notice that the dummy layers are not shown in Figure  4.19. Table  4.3 lists 

the input and output ports briefly describing the role of each terminal. In the layout, the VDD 

terminal of the output branch (consisting of Mno, Mn,R and L in Figure  4.13) is separated from 

that of the driver stage for test purposes. Also, the I/O pads are tried to be located as far from the 

integrated inductor as possible to lower any possible parasitic capacitors ad resistors from the 

high-frequency output signal to other nodes.  
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Figure  4.18: Transmitter circuit (fabricated chip) 
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Figure  4.19: Transmitter layout (1.2×1.2 mm
2
) 

Table  4.3: Port definition of the integrated circuit 

Ports Function 

VDD_GEN General VDD terminal of the chip 

VDD_LC VDD terminal of the last branch in PA 

VDD_PA (VDD_DRIVER) VDD terminal of the driver stage 

VSS Ground terminal 

VGP_ADDER,  

VBP_ADDER,  

VBP_DRIVER 

Biasing signals for testing purposes 

D, DN Input Data (‘1’ and ‘0’) 

I_P (I+45P) & I_N (I+45N) 

Q_P (Q+45P) & Q_N (Q+45N) 
External I/Q signals containing the frequency deviation  

LO+, LO- Carrier inputs containing fc 

OUT_PA_R Output of the transmitter going to the antenna  

VCTRL_R 
Control signal to control the current when OUT_PA_R is 

used 

OUT_PA_LC 
Output of the transmitter going to the external LC 

matching before the antenna 

VCTRL_LC 
Control signal to control the current when OUT_PA_LC 

is used. Otherwise it is set to zero. 

VOPQ, VONQ, VOPI, VOPI Monitoring points within the circuits 
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The layout of the transmitter was fabricated through CMC Microsystems and MOSIS by 

IBM, and the resulting die was packaged using Quad-Flat No Lead (QFN) package with 28 pins. 

This type of packaging is suitable for high-frequency tests as the unwanted parasitic capacitance 

and resistance of the leads are eliminated. Figure  4.20 shows the packaged chip with 1.44 mm
2
 

total die area including the ESD-protection pads and test circuits with relatively small active area 

(~0.2 mm
2
).  

 

Figure  4.20: Chip microphotography of the fabricated transmitter (1.2×1.2 mm
2
) 

4.6 Summary 

In this chapter, circuit-level implementation of the building blocks of the proposed 

transmitter diagram was presented. The novel design of the differential quadrature VCO (QCVO) 

was also shown along with the start-up circuit. The introduced QVCO provides two ranges of 

frequency tuning, 0.3-11.57 MHz and 3-40 MHz and the corresponding ranges of current 

consumption are 0.5-160 uA and 3-117 uA, respectively. The circuit of the poly-phase filter 

(PPF) was discussed including the Monte-Carlo simulations and layout considerations. Mixers 

and the output stage were also implemented following by optimization of the power amplifier and 

comparison with similar designs. The layouts of the presented circuits were then demonstrated 

and discussed followed by summary on description of the packaged chip and the developed test 

setup. As a conclusion, the circuit of the proposed transmitter was implemented with small area 
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and low-current consumption as will be shown in the next chapter, where the simulation and 

measurement results are reported and discussed. 
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CHAPTER 5  

SIMULATION AND MEASUREMENT RESULTS 

5.1 Fabricated Tx chip: Test-setup and general considerations 

The fabricated layout of the implemented transmitter is used to confirm functionality and 

to compare the simulation results with the corresponding experimental performance. In particular, 

current consumption, capability of generating the desired FSK signals, and measuring the data-

rate are priorities. The achieved transmitter was implemented using IBM 130 nm CMOS 

technology and supply voltage of 1.2 V, as mentioned earlier. The post-layout simulation results 

of the designed transmitter using 90 nm and 130 nm CMOS technologies for the same transmitter 

were similar, as reported in [28-30]. In this chapter, the simulation and measurement results due 

to IBM 130 nm CMOS technology are reported and used for comparison.  

Simplified diagram of the test-setup used for measurements is shown in Figure  5.1 an RF 

signal generator was used to replace the local oscillator signal, which was converted to a 

differential signal through an external transformer (balun). A Spectrum Analyzer was used to 

observe and measure the characteristics of the generated FSK signal including the variation of 

output captured frequency over time, extracting modulated bits from analog signal and the FSK 

error in the constellation diagram. Also, for the implemented QVCO, an Oscilloscope was used 

to capture the differential I and Q signals when enabled by EN signal.  
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Figure  5.1: Simplified diagram of the setup used for testing the fabricated chip 

The Printed-Circuit Board (PCB) is also shown in Figure  5.2 with the mounted packaged 

chip in the middle. The inputs, output, the external transformer (balun) and the input matching 

circuit are shown. 

 

Figure  5.2: The developed Printed Circuit Board (PCB) for measurement 
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In general, preparing the test setup for high-frequency measurements is a time consuming 

process and interfacing has usually issues to resolve during the measurements. In this chapter, the 

post-layout simulation and measurement results are reported and discussed, and the achieved 

performances of the fabricated transmitter are reported and compared. 

5.2 QVCO: Simulation and measurement results 

The circuit of QVCO was implemented using IBM 130 nm CMOS technology and a 

control voltage (VDDOSC) of less than 1.2 V. According to the post-layout simulation results, the 

frequency can be tuned from 300 kHz to 11.57 MHz by varying the control voltage from ~0.35 to 

~0.9 V for a set of parameters (Table  5.1). Figure  5.3 shows the I+ and Q+ signals of the 

oscillator with the frequency of 11.5 MHz using the supply voltage of 0.89 V. Figure  5.4 also 

shows the achieved frequency range and the corresponding current consumption as VDDOSC 

varies. As mentioned earlier, this oscillator is dedicated to generate differential quadrature signals 

to define the frequency deviation and to realize the FSK modulation in very low-power RF 

transceivers. Notice that the oscillator’s delay cells are fed through a PMOS transistor and a small 

voltage drop on this additional transistor is inevitable. 

Table  5.1: Parameters of the delay cells for generating the frequency range of 0.3-11.57 MHz 

Component Size 

Mp1-4 30/0.4 (µm/µm) 

Mn1-4 8/0.4 (µm/µm) 

Mn5-8 0.5/4 (µm/µm) 

Ct 1.4 pF 
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Figure  5.3: Time-domain I and Q signals (related to frequency of 11.5 MHz when VDDOSC is 

0.89 V) using the parameters of Table  5.1 

An interesting point of this design is highlighted in Figure  5.4 where only 5.5 µA is 

consumed to generate 2 MHz differential quadrature signals used to define the frequency 

deviation in FSK modulation for low-power implantable transceivers. Notice that this level of 

current consumption is actually very important to keep the total current consumption of the 

transmitter low. 

 

Figure  5.4: Frequency and current consumption of the proposed QVCO vs. VDDOSC related to 

parameters of Table  5.1 
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Figure  5.5: A 2 MHz I/Q signal generated by the proposed QVCO with VDDOSC=0.45 V using 

paramters of Table  5.1 

This VCO is not only providing one range of frequency by tuning its control voltage but 

also can be controlled by other parameters. The capacitance and the transistors’ sizing may be 

changed to achieve another range of frequency. Using the parameters shown in Table  5.2, the 

frequency range of 3 to 40 MHz can be achieved while consuming a current between 3 and 117 

uA, as summarized in Figure  5.6.  

Table  5.2: Parameters of the delay cells for generating 3-40 MHz 

Component Size 

Mn1-4 & Mp1-4 10/0.4 (µm/µm) 

Mn5-8 0.5/1 (µm/µm) 

Ct 0.3 pF 
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Figure  5.6: Frequency and current of the oscillator vs. VDDOSC using parameters of Table  5.2 

 

Figure  5.7: 40 MHz I/Q signal generated by the proposed QVCO with VDDOSC=0.45 V using 

parameters of Table  5.2 

The external voltage supply is provided through a PMOS transistor in this design and the 

sharp rising and falling edges of I and Q signals cause small ripples at their High level due to the 

existence parasitic capacitors. This effect can be reduced by enlarging the capacitance at the 

VDD terminal of the VCO in expense of losing some area or using a voltage regulator. 

To sum up, a novel low-power rail-to-rail voltage-controlled quadrature oscillator is 

designed and presented in this section. Eliminating the use of external reference frequency, the 
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generated differential quadrature signals were used to provide the differential signals with 

deviation frequency for the FSK-based implantable RF transmitter. The proposed QVCO and its 

start-up circuits were implemented using IBM 130 nm CMOS technology. According to post-

layout simulation results the frequency can be tuned from 300 kHz to 11.57 MHz by varying the 

supply voltage from 0.35 to 0.9 V while consuming a current between 0.5 and 160 µA. 

Alternatively, using another set of parameters, the frequency can be tuned from 3 to 40 MHz by 

varying VDDOSC from 0.37 to 0.85 V and consuming a current from 3 to 117 uA. 

To study the effect of the process variation on the oscillation frequency, Monte-Carlo 

simulation was used with 100 iterations. In addition to the fact that oscillation happens at all 

iterations, Figure  5.8 shows that the variation in the frequency of the QVCO when parameters of 

Table  5.1 are used. Histogram of the obtained frequencies is also shown in Figure  5.9. 

Monte-Carlo simulation with 100 iterations was also used to verify the effect of process 

variation on the target signals in the start-up circuit. Figure  5.10 shows the generated voltage of 

Vp in the start-up circuit for 100 iterations. The corresponding produced delays are shown in 

Figure  5.11 with the corresponding histogram in Figure  5.12. The delay is, in fact, the time 

interval from enabling moment of the start-up circuit to the moment that the start-circuit is 

disconnected from the oscillator blocks. 

 

Figure  5.8: Variation in oscillation frequency for 100 iterations of Monte-Carlo simulation for a 

set of parameters in Table  5.1 when VDDOSC=0.5 V 
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Figure  5.9: Histogram of the oscillation frequencies due to 100 iterations of Monte-Carlo 

simulation 

 

 

Figure  5.10: Produced signal of Vp in the start-up circuit due to 100 iterations of Monte-Carlo 

simulation 



68 

  

 

Figure  5.11: Produced delay due to signal of Vp in the start-up circuit due to 100 iterations of 

Monte-Carlo simulation 

 

Figure  5.12: Histogram of the produced delays in the start-up circuit due to 100 iterations of 

Monte-Carlo simulation 

Finally, the proposed QVCO was fabricated for testing and verification. Figure  5.13 

shows the captured differential I/Q signals on the oscilloscope. In this figure, the frequency is 

~250 kHz and the amplitude is ~0.615 V (~1.23 V differentially) when VDDext=0.75 V. To 

consider the effect of the parasitic of test setup, capacitive and resistive loads have to be 

considered in simulations. The measured frequency range is different from the one in simulation 
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results which is mainly due to the parasitic capacitance of the test-setup. The difference between 

the current range in measurement and simulation results is also due to the voltage drop on the 

parasitic resistance. These additional loading capacitance and resistance are actually replacing the 

capacitance and resistance due to bonding-wires, package, PCB traces, connector headers, 

external cables and the probes. The small difference between the captured I and Q signals are 

mainly due to the mismatch, process variation and asymmetrical traces of the test-setup. In 

practice, to observe the effect of the loading capacitance and resistance of the test-setup a parallel 

70 pF capacitor at the output nodes and a series 500 Ohm resistor at the VDDext terminal were 

used in simulation. Figure  5.14 shows the measured frequency and current range as a function of 

the control voltage (VDDext) in comparison with those from simulations. 

 

Figure  5.13: Captured differential I and Q signals generated by the fabricated QVCO 

As a result, the new QVCO circuit was designed and implemented to provide the 

differential quadrature I/Q signals. Monte-Carlo simulations also showed that the oscillation will 

start even if the process variation exists. The simulation and experimental results confirmed the 

functionality of the proposed QVCO. The effect of the test-setup was considered in simulation in 

order to compare with measurement results. 
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Figure  5.14: Simulated and measured frequency and current consumption of the implemented 

QVCO considering the external capacitive and resistive loads 

5.3 DC simulation and measurements of the fabricated Tx 

The DC current consumption of the fabricated transmitter was measured for different 

samples with negligible variations in the measured values. In total, 5 samples were used in the 

test setup, where 4 of them were biased as expected and one last sample failed to be biased with 

zero current drawn from the supply. In practice, a few of the packaged chips were damaged in 

different steps of the measurements, such as applying larger voltage than VDD to some nodes, 

and the following reported results are due to 4 available undamaged chips. Prior to the process of 

wire-bonding, the short-circuit tests were done on each unpackaged die. The effect of inductance 

of bonding-wires was already considered in simulations. Figure  5.15 shows the simulated and 

measured total current consumption with the same set of inputs as a function of Vctrl, the control 

voltage at the gate terminal of the output transistor (Vctrl,R in Figure  4.13). Notice that only small 

amounts of current are of interest due to the low-power application. According to simulation and 

measurement results, the maximum current reaches 1.5 mA when Vctrl=1.2 V. Setting Vctrl to a 

very small value turns off the output branch and the total current, which is the nearly constant, is 

due to the driver stage. The small drop in the slope of the measured current may be due to the 

parasitic resistance from the I/O pads to the actual voltage supply. Also, the low voltage drop on 

the inductor makes the cascode NMOS transistor approaching its triode region when its gate 
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voltage is at maximum. The highlighted point on the I-V curve is an interesting point of operation 

with 0.8 mA which is reported together with 0.6 mA considered for the local oscillator.  

 

Figure  5.15: Simulated and measured current consumption 

Concerning the simulation results due to the design using 90 nm technology, the amounts 

of current are similar and only the sizing of transistor is varied according to the minimum value 

for the length of transistors.  

5.4 High-frequency simulation and measurements of the fabricated Tx 

The simulated time-domain behaviour of the output generated FSK signal is shown in 

Figure  5.16 where data is varying between ‘1’ and ‘0’ with a rate of 4 Mb/s. Since the frequency 

is relatively high the envelope can be seen from Figure  5.16 rather than the sinusoidal signal 

itself and, therefore, the magnified version of the signal is shown. In practice, the envelope of the 

input signal containing the frequency deviation affects the envelope of the output generated 

signal. This is obviously due to the fact the inputs of the adding amplifier is coming from the 

mixers which are controlled by the inputs containing the shifting frequency (Vfs). It is not easy to 

observe that the shifting frequency is mixed with the carrier frequency in time-domain analysis.  
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Figure  5.16: Simulated FSK signal when data varies between '1' and '0' with 4 Mb/s rate related 

to the implemented transmitter using 130 nm technology 

In practice, when the low-frequency signals (Data or Vfs) have a square-wave shape, the 

sharp rising and falling edges would propagate through the parasitic capacitances of the mixer 

and the output stage. The short signal propagation time from the input data to the output node 

when the data is changed results in a fast settling time, which means the data-rate can go even 

higher. For instance, the transient behaviour of the output generated FSK signal is shown in 

Figure  5.17 for data-rates of 8, 10 and 20 Mb/s. In this figure, it can be seen that the settling time 

starts to be vital as data-rate reaches 20 Mb/s. Notice that, similar to Figure  5.16, the graphs are 

high frequency signals and the envelope of the output generated signals can be observed. 

However, the bandwidth is limited in most applications and sampling of the captured high data-

rate signal in the spectrum analyzer will be also more difficult.  
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Figure  5.17: Simulated output FSK signal when data varies with 8, 10 and 20 Mb/s rates 

 

Figure  5.18 shows the simulated frequency content of the FSK signal and confirms the 

existence of the desired frequencies. Notice that in this figure the center frequency was set to 1 

GHz for simplicity. As described before, the upper frequency (fc+fs=1 GHz + 500 kHz) is 

generated when the input data is ‘1’ and the lower frequency is for data=’0’.  
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Figure  5.18: Simulated output FSK signals when data='1' or '0' when Δf=0.5 MHz 

The output of the fabricated chip was captured using the Spectrum Analyzer (Figure  5.19) 

for two scenarios of data=’1’ and ‘0’ which is similar to what we had in simulation in Figure  5.18. 

The noise level of the Spectrum Analyzer is in the range of -80 dBm and the tails of the simulated 

FSK signals in Figure  5.18 can be partially displayed.  

 

Figure  5.19: Captured output FSK signals when Δf=4 MHz 

Characteristics and demodulation properties of the captured FSK signal in Figure  5.19 are 

discussed in the following. One important phenomenon in the captured FSK signal in the 

Spectrum Analyzer is the appearance of the unwanted signal with the frequency of 915 MHz, the 

local oscillator. This is mainly due to LO signal passing through the mixer and appearing in the 

output node. In other words, any mismatch due to the transistors of the mixers and weak input 
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matching can increase the amplitude of the unwanted signal. Moreover, radiating the input signal 

from anywhere in the test-setup to the output node is also helping this phenomenon. 

Consequently, the receiver or the Spectrum Analyzer has more difficulty in extracting the bits 

from FSK-modulated signal.  

As discussed earlier, the current consumption and the output amplitude can be adjusted by 

the control signal and in different biasing conditions. Figure  5.20 also shows the output amplitude 

(Pout) as a function of Vctrl for a set of inputs in both simulation and measurement due to 0.13 um 

CMOS tehcnology. In this case,           
     

     

    
  where Vout is the RMS value of the 

output signal. The difference between the simulation and measurement curves is mainly due to 

the imperfect matching circuit which was very challenging at the time of preparing the test-setup. 

Notice that this first prototype was implemented to have low current consumption and the PA 

stage was not optimized for high-output power and high efficiency. Optimization of the PA stage 

was described in chapter 4.  

 

Figure  5.20: Measured and simulated amplitude of the generated output signal (Pout) 

As mentioned earlier, the packaged chips showed expectedly similar results with only 

difference in the amplitude of the output generated signal which can be adjusted by tuning the 

consumed current using the control voltages. One other sample also failed in biasing level with 

zero current drawn from the voltage supply. Figure  5.20 shows the measured output amplitude 

due to the 4 characterized chips. 

The captured FSK signal was characterized by investigating the demodulation properties 

on the Spectrum Analyzer.  The constellation diagram, which shows the possible symbols 
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generated by the FSK modulation scheme, was observed for the demodulated FSK signal in the 

Spectrum Analyzer. The deviation from the constellation points is the FSK error, which is an 

important parameter when comparing the FSK transmitters.  

One way of showing the demodulated FSK signal is by showing the variation of the 

frequency of the captured FSK signal over time. The captured frequency variation over time for 

data-rates of 100 kb/s, 1, 2 and 4 Mb/s are shown in Figure  5.21, Figure  5.22, Figure  5.23 and 

Figure  5.24, respectively. These graphs also present the demodulation of the stream of input bit, 

thanks to the Spectrum Analyzer. Notice that due to the limitation on the channel bandwidth and, 

hence, the sampling rate, the number of data points on the graphs has decreased as data-rate 

increases. The captured frequency variation over time for the data-rate of 8 Mb/s is not shown, 

however, other demodulation properties of the 8 Mb/s FSK signal are shown in Figure  5.25 and 

discussed.  

 

Figure  5.21: Captured frequency variation vs. time for data-rate=100 kb/s and Δf=460 kHz 

 

Figure  5.22: Captured frequency variation vs. time for data-rate=1 Mb/s and Δf=460 kHz 
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Figure  5.23: Captured frequency variation vs. time for data-rate=2 Mb/s and Δf=2 MHz 

 

Figure  5.24: Captured frequency variation vs. time for data-rate=4 Mb/s and Δf=2 MHz 

As shown in the above figures, limitation in the sampling rate as well as appearance of the 

unwanted signals in the considered bandwidth does not allow obtaining a sharp square-wave 

graph, especially for Figure  5.24. However, other demodulation properties presented in Figure 

 5.25 help understanding the characteristics of the captured 8 Mb/s FSK signal. Larger FSK errors 

were observed, as expected, at higher data-rates which are not acceptable. 
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Captured 8 Mb/s FSK signal 

by Spectrum Analyzer 

 

Extracting 100 bits with an 

average FSK error of 2.13% 

when fs=4 MHz 

 

FSK error for 100 bits 

 

Constellation Diagram 

 

Figure  5.25: Demodulation properties of the captured 8 Mb/s FSK signal with frequency 

deviation of 4 MHz showing an average FSK error of 2.13% for 100 extracted bits 
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As observed on the Spectrum Analyzer, the measurement suffers from the jitter issue and 

the triggering mode was used to lower the effect of jitter by synchronizing the demodulator and 

the input data. In practice, the demodulator in the receiver, here the Spectrum Analyzer, can 

easier distinguish between the received frequencies when the two frequencies are farther. But, on 

the other hand, it has a limited channel bandwidth and, hence, limited sampling rate that means 

larger error is inevitable at higher data-rates. Here, the maximum bandwidth of the Spectrum 

Analyzer is 10 MHz which allows having a deviation frequency less than 5 MHz. This is why the 

shifting frequency of 4 MHz was used in measurements to achieve 8 Mb/s of data-rate. However, 

more harmonics and interferences will be captured in a wider BW. As mentioned earlier, the 

approximate required bandwidth is B=2(Δf+DR), where Δf is the shifting frequency (same as fs) 

and DR is the data-rate. Therefore, for the channel bandwidth of <10 MHz and the shifting 

frequency of 2 MHz, data-rate of 3 Mb/s is considered to show very small FSK error. For 

instance, a small FSK error of 0.64% for 100 extracted bits (Figure  5.26) was observed when fs=1 

MHz and data-rate =1 Mb/s. Consequently, as data-rate is increased larger FSK error is expected 

which is similar to the achieved measurements. 

Average FSK error=0.64% 

( fs=1 MHz & 

data-rate =1 Mb/s) 

 

Figure  5.26: Demodulation properties of the captured 1 Mb/s FSK signal with frequency 

deviation of 1 MHz showing an average FSK error of 0.64% for 100 extracted bits 

Testing and measurements issues are also challenging parts of RF circuit implementations 

and verifications. Providing high quality inputs to the developed testing board might be 

challenging such as generating the carrier signal in differential mode with exactly 180 degrees 

phase shift. In this work, the single-pole output from the RF Generator was converted to 

differential waves using discrete off-chip balun, which can cause a few degrees of phase 

discrepancy. Moreover, the cross-talk of the high frequency routes before reaching the die is 

inevitable. The input data (D and DN) may not be perfect square-waves and can suffer from 
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overshoot when the frequency (data-rate) goes higher resulting in unwanted harmonics. In total, 

preparing and debugging such high frequency test-setup requires good care and effort and is a 

time consuming process.  

5.5 Comparison and discussion 

In this section, the results of the designed binary FSK-based 915 MHz transmitter are 

compared with other similar transmitters followed by discussion on different parameters and the 

Figure-Of-Merit (FOM).  

Table  5.3 summarizes important parameters of the measurement results of the mentioned 

transmitters. The typical supply voltage of 1.2 V is used when 130 nm is the fabrication 

technology. As discussed earlier, comparison of these kinds of transmitters is possible only if all 

parameters and characteristics are considered. Current Consumption, data-rate with small FSK 

error and area were mentioned as the main constrains when reporting performance of RF 

transmitters. As frequently reported, the consumed energy per transmitting bit (J/b) was 

considered as FOM while simplicity and size must be taken into consideration when making a 

comparison. In the following, the achieved performance and parameters of the implemented 

transmitter are discussed and compared with the similar FSK transmitters. 

The amount of current consumption is 1.4 mA including 0.6 mA for the local oscillator 

(implemented in [53]) and 0.8 mA for the presented building blocks of the implemented 

transmitter, mainly the output stage. As described before, QVCO, mixer, PPF stage and 

modulation block, have negligible contribution in current consumption. Besides, the reported 

current consumption (~0.8 mA) and the corresponding output power (-20 dBm) are due to the 

implemented PA in the fabricated prototype which was optimized later to -12 dBm (Table  4.2). 

However, the presented transmitter in this work is still competitive with other transmitters. 
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Table  5.3: Comparison of recent 915 MHz binary FSK transmitters 

Ref. 
Tech.  

(um) 

VDD 

(V) 

Pout 

(dBm) 

Tx 

Current 

(mA) 

Freq. 

Deviation 
Data Rate 

FOM 

(Energy/bit) 

nJ/b 

Die area 

(mm
2
) 

[17]  

JSSC 

(2008) 

0.13 1.2 -10 2.37 50 kHz 50 kb/s 56.9 
16 

(Total die) 

[18] 

ASSCC 

(2009) 

0.18 1.8 -14.5 11.5 
714 kHz – 

3.2 MHz 

1 Mb/s 

(FSK Error: 

14.68%) 

20.7 
3.04 

(Total die) 

[14] 

 RFIC
 

(2009) 

0.13 1.5 -6 1.8 190 kHz 48 kb/s 56.25 
1.5  

(Total die) 

[11]  

JSSC 

(2011) 

0.18 0.7 -10 1 5 MHz 5 Mb/s
*
 0.14 

0.35  

(Active area) 

(5 off-chip 

inductors) 

[34] 

Microsemi 

Co.  

(2013) 

– 
1.2 – 

1.8 
-13 2 450 kHz 180 kb/s 11.7 – 

This work 0.13 1.2 -20 1.4
$
 4 MHz 

8 Mb/s 

(Avg. FSK 

Error: 2.13 %) 

0.21 

LO: 0.25
#  

TX: 0.2
# 

(Active area) 

*
 Requires 5 MHz bandwidth for calibration  

#
 Estimated from figure including 1 on-chip inductor 

$
 Including 0.6 mA for the synthesizer [53] and 0.8 mA for the presented Tx 

As shown in Table  5.3, the presented transmitter of this work has improved the data-rate 

and, hence, FOM. The achieved data-rate of 8 Mb/s with an average FSK error of 2.13 % is 

proving the great performance of the presented modulation scheme and the developed transmitter. 

This data-rate is high enough to maintain a data communication when a specific protocol with 

control bits is applied. More than 1 Mb/s was estimated as the needed data-rate for a medical 

sensor channel. Besides, the reported typical FSK error is around 15% [18] which means the 

achieved FSK error of this transmitter is in the acceptable range. The data-rate of the transmitter 

in [11] is up to 5 Mb/s but it has to deal with calibration in a wide frequency locking range and, 

hence, channel bandwidth of minimum 5 MHz is needed. It also requires several off-chip 

inductors. The die area was reduced in this work by using less number of external components 
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and on-chip inductors. The total chip area of the implemented transmitter prototype was 1.4 mm
2
 

including ESD protection pads with the guard-rings, test circuits and one inductor. The estimated 

active area of the presented FSK transmitter was around 0.25 mm
2
 which is relatively small. 

However, the area of the previously designed local oscillator should not be neglected. In total, the 

needed area was considerably reduced and this makes this work suitable for implantable devices. 

The reported energy consumption per transmitting bits (FOM) for the recent 915 MHz 

FSK transmitters of Table  5.3 are alternatively demonstrated and compared in Figure  5.27 where 

the inclined dashed lines show the constant values of FOM (consumed energy/ transmitting bit). 

Note that, as another advantage of this work, area was further saved with less number of external 

components and on-chip inductors. Finally, the measurements showed the functionality and the 

efficiency of the proposed transmitter up to 8 Mb/s with small FSK error and power 

consumption. The impacts from the measurement setup will be diminished when the target FSK 

transmitter is integrated with the digital counterparts in the sensor node and when less external 

components are involved. 

 

 
 

[11] 2011  

JSSC 
 

[14] 2009 

RFIC 
 

[18] 2009 

ASSCC 
 

[17] 2008 

JSSC 

 

[34] 2013 

Microsemi Co. 

 

Figure  5.27: Comparison of recent energy-efficient 915 MHz FSK transmitters 
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5.6 Summary 

In this chapter, the DC and high frequency simulation and measurement results of the 

fabricated chip were presented and discussed. The measured current consumption and output 

power were compared with the simulation results. The time- and frequency-domain simulation 

results of the implemented transmitter showed the settling-time as limiting factor of maximum 

data-rate. The trend of the effect of the settling time for different data-rates and possibility of 

achieving a data-arte of up to 20 Mb/s depending on the available bandwidth were discussed.  

In the measurements, the constellation diagram and extracted bits were reported to show 

the characteristics of the 8 Mb/s FSK signal with 2.13 % for average FSK error. To further 

investigate the characteristics of the implemented FSK transmitter, frequency variation over time 

was observed for different data-rates to demonstrate the demodulation behavior of the FSK signal 

and FSK error was reported accordingly. Using the high frequency test equipment, the developed 

test-setup was used to test the fabricated chips and measurement issues were also briefly 

discussed. The achieved performance of the implemented transmitter was compared with similar 

state-of-the-art transmitters showing the significant improvement in the concerning parameters 

and characteristics, meaning current consumption, size and data-rate. In the following chapter, the 

presented work in concluded and a few recommendations are discussed as future work. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this research, a radio frequency ISM-band transmitter is designed and implemented. 

This transmitter is a part of a transceiver dedicated to the interface of wireless and wearable 

medical implants. It benefits from a new efficient FSK modulation scheme that improves the 

data-rate, power consumption and size. Different design and implementation stages were studied 

and presented including the proposed architecture, circuit and layout design and implementation. 

Simulation and measurement results were discussed and compared with similar transmitters 

showing the contribution of this work in the field by improving the Figure-Of-Merit, meaning 

mainly increasing the data-rate and lowering the power consumption. The fabricated transmitter 

prototype was tested and main parameters were measured using adequate equipment. 

The transmitter operates at North-American ISM frequency band (902-928 MHz). The 

integrated circuits were simulated using IBM 130 nm CMOS technology with 1.2 V supply 

voltage. The architecture of the proposed transmitter was discussed and analyzed. The building 

blocks were designed and implemented according to the developed mathematical equations of the 

proposed FSK modulation scheme, which intended to improve the data-rate and power 

consumption. Here, the design choices in implementing the circuit of each building block of the 

transmitter architecture play an important role to achieve a low-power design. Cautious design 

and implementation of every single circuit in this work directly affect the performance of the 

target RF transmitter. Implementing the circuits with passive configuration, such as in the poly-

phase filter and the mixer, reduced the needed current consumption.  

The introduced architecture, the proposed FSK modulation scheme and circuit 

implementations were initially published in 3 different conference papers, titled as “A new FSK-

based transmitter dedicated for low-power wireless medical transcievers”, 2011 [28], “A 20 Mb/s 

0.084 nJ/bit ISM-band transmitter dedicated to medical sensor networks”, 2012 [29] and “A 

0.084 nJ/b FSK transmitter and 4.8 uW OOK receiver for ISM-band medical sensor networks”, 

2013 [30]. Each block was implemented and optimized such that the power consumption and 

needed chip area is lowered while the modulation block and the mixer require no DC current.  
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As a novel design, a new quadrature voltage controlled oscillator (QVCO) was introduced 

to provide differential quadrature signals with very low current with adjustable frequency to 

realize the required frequency deviation in the FSK architecture. This oscillator is designed to 

avoid using external reference signal or Crystal oscillators and minimize the number of external 

components. The results of designing this oscillator was accepted in IET journal, titled as “A New 

Differential Rail-To-Rail Voltage-Controlled Quadrature Ring-Oscillator for Low-Power 

Implantable Transceivers”, 2014. This journal was also selected to be featured in IET magazine. 

As a result of this design, the related parameters for two ranges of frequencies, meaning 0.3-11.5 

MHz and 3-40 MHz, were obtained. For the two mentioned cases, a tuning voltage controls the 

frequency while the current consumption lies in the ranges of 0.5-160 uA and 5-117 uA, 

respectively. 

The power-hungry output stage was improved, where the power amplifier of this stage 

was optimized to achieve a power efficiency of ~37%. This output stage was optimized for high 

output power wearable devices, with high efficiency. The amplitude of the generated FSK signal 

was decreased for short distance transmission to further reduce the energy consumption in 

implantable devices.  

The layout of the designed transmitter was then prepared for post-layout simulation and 

fabrication using IBM 130 nm CMOS technology. According to the measurement results of the 

fabricated chip, a maximum data-rate of 8 Mb/s with 2.13 % average FSK error for 100 extracted 

bits was measured. The current consumption for the presented building blocks in this work is in a 

small range of ~ 0.8 mA (for modulator, mixer, QVCO and PA). Considering all concerning 

parameters, the results were compared with similar 915 MHz FSK transmitters and the Figure-

Of-Merit of 0.21 nJ/b (consumed energy per transmitting bit) was achieved. The achieved 

measurement results were also submitted to Analog Integrated Circuits and Signal Processing 

(AICSP) Journal, titled as “An Energy-Efficient High Data-Rate 915 MHz FSK Wireless 

Transmitter for Medical Applications”, 2014. 

This transmitter is dedicated to continuous brain monitoring for patients suffering from 

Epilepsy. Such implantable transmitters are highly demanded to realize the communication 

frond-end of biomedical implants. The proposed transmitter in this research is beneficial in any 

low-power wireless application where an integrated energy-efficient high data-rate wireless 
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communication interface is needed. The battery cell has a limited life and frequent medical 

surgeries to replace or recharge the battery are not welcome by the patients, even if other 

techniques for battery recharging are used. The implemented transmitter in this thesis reduces the 

total power consumption and, in fact, the rate of data transfer is greatly increased while the 

required power for transmitting each bit is reduced. 

Besides, shrinking the size of the transmitter itself helps to perform more monitoring on 

patients. For example, patients suffering from Epilepsy require real-time monitoring devices and 

such integrated transmitter is beneficial to maintain a high data-rate data-communication with an 

external base station. Performing tests on animals’ behaviour is also doable thanks to light and 

small wireless implants, such as in freely-moving-rat projects. In total, the designed and 

implemented RF transmitter is contributing in biomedical monitoring and treatments which are 

hot topics in today’s life. 

Finally, it is worth mentioning again that different levels of design, implementation and 

testing of the presented work in this thesis, which were done in Polystim Neurotechnologies 

laboratories at Polytechnique Montreal, required huge amount of time, effort and hard work. For 

instance, implementing the designed circuits in layout level is an important engineering task such 

that a separate team of engineers is only responsible for the layout implementation in most 

industrial microelectronics jobs. Preparing the necessary and high-quality test-setup to perform 

precise experiments on the implemented circuits presented in this thesis was very challenging. It 

was a lengthy process to optimize and improve the test-setup for reducing its effect on the 

performance of the integrated circuits. Consulting with a few Polygrames members at 

Polytechnique Montreal, the needed test-setup was further analyzed to improve the quality of the 

experimental results when capturing and recording the produced signals by the implemented 

circuits. More than 20 different PCBs, for example, were developed to assess the performance of 

the designed circuits and to reduce the effect of parasitic components on the quality analysis of 

the integrated circuits. The reported results in this thesis, which were compared with state-of-the-

art, are indeed due to the latest versions of the test-setup which were improved according to the 

gained experience. 
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6.2 Recommendations For Future Work 

To further reduce the power consumption of the target transceiver design, a high 

frequency ring oscillator could be implemented to replace the existing local oscillator. In practice, 

in order to achieve a highly integrated transceiver node, the small area and current consumption 

of a new ring oscillator may be traded with the phase immunity and programmability of the 

former designs. Therefore, a new low-power ring-oscillator could further complete the target 

low-power implantable transceiver. Alternatively, as the next prototype, the transmitter and 

receiver and the frequency synthesizer should be integrated on a single chip with the same 

technology to verify the characteristics of the target integrated transceiver.  

As another recommended work on generating an ISM-band signal, the new designed 

QVCO may be modified in order to directly generate the desired FSK signal by adding a 

multiplier block. In this way, no frequency synthesizer and potentially no external Crystal 

oscillator are needed. However, the programmability and phase-noise immunity have to be 

investigated. 

In general, the digital domain circuitry in architecture are likely to be implemented as 

close to the antenna as possible in order to get rid of power-hungry blocks and to benefit from 

scalability. Analog circuit design techniques require relatively higher attention as each design is 

customized for different applications. Digital implementation of few blocks may also help 

reducing the time-to-market. Accordingly, a control unit needs to be developed in order to control 

the communication protocol between each block such as their power management, etc.  

As another difficulty in implementing RF communication front-ends, the size of the 

antenna has been always an issue for implantable circuits. Some new structures of antenna should 

be developed to come up with small size of antenna while having a high efficiency power 

transmission. On-board traces and inductors forming the antenna might be good options for this 

concern. Especially that inductive-links used in power transfer techniques have the same structure 

and could share the same inductor with some circuit modifications although they operate at 

different frequencies. In this way, the area can be further reduced. 

The presented architecture in this thesis benefits from passive mixers followed by analog 

amplifier. A new configuration of adder combined with modulation and mixer stages would help 

reducing the total size and current consumption. It might be possible to realize the adding stage 
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using switched capacitors; however, the maximum data-rate might be affected due to needed 

charge-discharge time. 
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Appendix A Test-bench in ADS 

 

 

Test-bench used in ADS environment for system-level simulation: 
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Appendix B QVCO Layout 

 

Layout of the delay cells in the novel QVCO (140 um × 110 um) 
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Appendix C QVCO’s Start-Up Layout 

 

Layout of the start-up circuit used in the novel QVCO (100 um × 60 um) 

 


