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RÉSUMÉ 

Le perçage dans les matériaux composites constitue un prérequis essentiel pour faciliter 

leur assemblage. L'un des principaux défis en matière de perçage est de fournir une excellente 

finition du produit et de minimiser les coûts de production.  

L'objectif de ce mémoire est d'étudier la relation entre la vitesse d’avance/vitesse de 

rotation et les caractéristiques de qualité du processus de perçage définies par: le délaminage à 

l'entrée et la sortie, la rugosité de la surface, l’erreur du diamètre à l’entrée et la sortie, et la 

circularité à l’entrée et la sortie. En outre, trois variables mesurables, non contrôlables par 

l’opérateur, (force de poussée, force de découpe et moment de torsion) sont analysées afin de 

comprendre comment ils réagissent au changement de la vitesse d'avance et de rotation, ainsi que 

la façon dont ils affectent les caractéristiques de qualité. Les méthodes de régression linéaire, 

linéaire multiple et non linéaire sont développées pour comprendre l'effet et l'importance de 

chaque variable d'entrée sur les caractéristiques de qualité du processus. Ce mémoire présente la 

collecte de données faite durant le perçage, leur modélisation mathématique et leur analyse 

statistique. En plus, le rôle et l’implication de chaque caractéristique de qualité dans le processus 

de perçage sont documentés.  

La méthode de régression linéaire multiple a démontré des bons résultats dans le cas des 

variables suivantes: force de poussée, force de découpe, moment de torsion, délaminage à l’entrée 

et sorite. Cette application n’est pas recommandée pour l’analyse ainsi que la prédiction des 

autres variables. De plus, les résultats indiquent d’une part que la vitesse d’avance a énormément 

d’impact sur toutes les variables de sorties étudiées, y compris les variables mesurables, à 

l'exception de la circularité à l'entrée. D'autre part, l’impact de la vitesse de rotation s’est avéré 

significatif sur les variables suivantes: la force de poussée, le délaminage à la sortie, l’erreur de 

diamètre à l'entrée et la sortie et la circularité à la sortie. Ainsi, dans le but de combiner les 

variables d’entrées avec les variables mesurables, l'application de l'analyse de covariance est 

développée, mais les résultats se sont avérés non concluants en raison de la forte corrélation 

présente entre les variables d'entrée. Par conséquent, la méthode de covariance est incohérente et 

non valable dans le processus du perçage. En conclusion, les résultats établissent un modèle de 

prédiction mathématique qui explique et surtout quantifier l'influence des variables d’entrée sur 

les caractéristiques de qualité du processus de perçage. Cette étude démontre également comment 

ces variables sont reliées et corrélées entre eux. 
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ABSTRACT 

Hole drilling in composite materials is an essential requirement in facilitating their 

assembly. One of the main challenges in drilling is providing an excellent product finish and 

achieving cost effectiveness. 

The purpose of this dissertation is to investigate the relationship between the feed 

rate/spindle speed and the drilling quality characteristics as defined by: delamination at entry, 

delamination at exit, surface roughness, diameter at entry, diameter at exit, circularity at entry and 

circularity at exit. Also, three measurable variables (thrust force, cutting force and torque) are 

analyzed to understand how they relate to the feed rate and the spindle speed as well as how they 

affect the other quality characteristics. Multiple linear and nonlinear regression techniques are 

used to understand the effect and the importance of each input variable on the quality outputs. 

Data collection, mathematical modeling and statistical analysis were utilized in this dissertation. 

Furthermore, the role of each quality characteristics in drilling process is documented as well as 

the measurable variables. 

Results show that the multiple regression models showed significance in a subset of the 

outputs (thrust force, cutting force, torque, delamination at entry and delamination at exit) and 

proved insignificant on the study of the other drilling quality characteristics. The results also 

indicate that of all the variables studied including the measurable variables, the feed rate appeared 

to be the most significant on the outputs except for the circularity at entry. On the other hand, the 

spindle speed was shown to impact significantly the following variables: trust force, delamination 

at exit, diameter error at exit and entry, and circularity at exit. Furthermore, the application 

ANCOVA methodology is investigated on the drilling outputs but it provided inconclusive results 

due to strong correlation among the input variables.  Therefore, the ANCOVA methodology was 

deemed not suitable in the study of this drilling process. 

In conclusion, the results establish a mathematical prediction model that explains and 

more importantly quantifies the influence of the various variables (inputs) on the quality 

characteristics of the drilling process (outputs). This novel model also demonstrates how these 

variables are related amongst each other. 
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CHAPTER 1 INTRODUCTION 

Over the years, composites were found to be one of the most important materials used in many 

critical industries: infrastructure, aerospace, and military applications because of its several 

structural advantages and qualities: rigidity, durability, lightness, corrosion resistance and 

hardness. That being said, the cost remains relatively high. Composites are products made from 

two major constituents: fiber and matrix whereas the matrix provides protection of the fiber. This 

combination provides the final product built with the composites material higher and surpassing 

performance than the starting materials. The structural behavior depends on the properties of the 

fibers (their amount and orientations) and the matrix, and is manufactured in distinct layers. 

These different layers or plies bonded together form a laminate [1]. 

The fabrication methods in these different industries range from very simple to complex 

processes with expensive operations equipment.  Machining of composites materials is one of the 

critical processes. The most common machining processes are drilling, turning, cutting and 

milling. The process selected to fabricate the end product using the composite part is dependent 

upon factors such as the design requirements, part complexity and surface finish and appearance. 

The manufacturing method analyzed in this research is drilling. 

Drilling is the most popular conventional machining process and one of the most essential metal-

cutting operations, comprising approximately 33% [2] of all metal-cutting operations. The 

drilling process is mainly characterized by the feed rate, the cutting speed, the tool 

(coated/uncoated), the laminate design and the cooling strategy. These factors are known to be 

controllable because they are defined by the process experts and can be regulated by the operator. 

Also, other uncontrollable factors, which can only be measured during the running of the process, 

are involved. These factors are the thrust force, the torque, the cutting force, the cutting 

temperature, and the tool wear. At the process monitor and control level, most of the hole’s 

defects observed are surface delamination, circularity errors, surface roughness and diameter 

error. These undesirable imperfections need to be investigated to avoid the failure of the material 

structure. In an aircraft construction for example, the holes must be drilled with keen attention to 

ensure minimum defects based on pre-defined design and manufacturing requirements, and error 

tolerance. Failure to do so can result in the parts becoming scrapped and major disaster of the 

whole product dysfunction. This study addresses the problems related to the characterizations 
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presented above to develop an approach for damage-free drilling composites by predicting their 

comportment.  

A. Organization of the dissertation 

Feed rate and spindle speed are the only two parameters considered in this study as the 

controllable and explanatory variables. Accordingly, in chapter 1, the quality characteristics of 

the delamination at entry, the delamination at exit, the hole surface roughness (in microns), the 

hole diameter error at exit (in %), the hole diameter error at entry (in %), the hole circularity at 

exit (in %) and the hole circularity at entry (in %) are explained to understand their effect on the 

drilling process performance. Also, the uncontrollable variables (thrust force, cutting force and 

torque) impacts are explored. 

In chapter 2, a literature review of past studies, facts and experiments are presented to identify 

the researcher’s methodologies and works in modeling drilling operation. 

In chapter 3, analytical models of the uncontrollable variables and the quality characteristics are 

developed using the regression method. A detailed presentation and analysis of this technique are 

underlined. As a result, the accuracy of each model will be investigated for future usage. 

B. Statement of the problem and process parameters 

During this drilling process, seven hole quality characteristics outputs are measured: the 

delamination at entry, the delamination at exit, the surface roughness, the diameter error at exit, 

the diameter error at entry, the circularity at exit and the circularity at entry. Their definition and 

impact is presented below. 

The delamination is one of the major concerns in drilling. It is considered a severe damage since 

it reduces the service life of the material. It is caused by the acting between the drill feed motion 

and the thrust force that leads to cracks between the plies in the drilled hole which may result in 

deterioration of its mechanical performance (durability and strength). The surface delamination is 

defined by the separation of the plies where the cutter enters and exits the composite materials. 

Therefore, two types of delamination are differentiated: the push-out at entry and the peel-up at 

exit. Figure 1.1 displays a representation of the delamination factor and its mechanism.  
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Figure 1.1: Representation of the delamination factor and mechanism [3] 

The delamination is mostly affected by the feed rate, spindle speed, drill diameter, drill point 

design, and material configuration [3]. The delamination on the outer surface plies generally 

increases with the rise of the feed rate and spindle speed. Also, it is noticed that the exit 

delamination is highly correlated with the thrust force which is dependent on the drill point 

geometry [3]; the push-out delamination is reduced by lowering the thrust force. Also, it has been 

found that the push-out delamination is more severe than the peel-up [4]. The delamination could 

be measured by different practices: digital image processing [5], ultrasound [6], x-ray [7], and 

laser-based imaging [8]. In machinability, an improved delamination is obtained by machining at 

high spindle speeds and low feed rates. A delamination factor (F) is defined as the ratio of the 

maximum diameter (dmax) of the damage zone to the hole diameter (d) [4]: 𝐹 =
𝑑𝑚𝑎𝑥

𝑑
. 

Another essential quality characteristic to be precisely controlled and monitored by the experts is 

the surface roughness which corresponds to the finer surface irregularities on the surface’s 

texture. Figure 1.2 illustrates the surface roughness as a result of the manufacturing process [8]. 

Surface finish in drilling composite materials have been found to be influenced by the feed rate, 

cutting speed, drill geometry, tool wear and tool material [9].  

 

 

 

 

 

 

Figure 1.2: Surface Roughness illustration [10] 
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Another important quality attribute in drilling is the circularity; it is measured at entry and exit. 

A large circularity value is problematic for parts with relative motion because it induces vibration 

and heat. Figure 1.3 represents a sketch of the circularity error. The circularity of the microhole 

essentially reflects the surface finish at the rim of the hole machined and is measured from the 

difference between two concentric boundaries: maximum and minimum height of the 

irregularities at the rim [11].   

 

Figure 1.3: Representation of the hole circularity errors [11] 

An additional output of interest for the hole quality is the diameter error; it is measured at entry 

and exit using a coordinate measuring machine. In drilling, it is important to produce accurate 

diameter within pre-defined tolerances. The difference between the measured diameter and the 

designed diameter is the diameter error. As a result, a positive error indicates over-sizing of the 

holes. Figure 1.4 illustrates the diameter error. 

 

Figure 1.4: Representation of the hole diameter error [12] 

During this drilling process, three uncontrollable variables (thrust force, cutting force and torque) 

are measured to study their behavior when varying the feed rate and the spindle speed at different 

levels. The definition and the main interests of these variables are presented below. 

The thrust force is generated by the cutting action of the cutting edges and the chisel edge. For 

metal, using conventional twist drill, the thrust force could be correlated with the feed rate and 

the drill diameter by the empirical relationship below [4]. 



5 
 

𝐹𝐴 = 𝑑2𝐻𝐵[ 𝐾1

𝑓0.8

𝑑1.2
+ 𝐾2(

𝑐

𝑑
)2 ] 

Where:  

HB is the work piece Brinell hardness in kg/mm
2
  

f is the feed rate in mm/rev 

c is the chisel edge length 

K1 and K2 are constants that depend on the work piece material, thickness and 

drill point geometry 

The torque is caused by the cutting force couple (Fc) acting on the major cutting edges and its 

magnitude is defined by the magnitude of the cutting force and the drill diameter (d) [4]. 

Mathematically, the torque is represented by: 𝑀 = 𝐹𝑐
𝑑

2
. 

The force and torque signals were measured using a Kistler-four component piezoelectric 

dynamometer model 9272. The thrust force and the torque are influenced by the feed rate, the 

cutting speed and the drill geometry. They both increase significantly with the rise of the feed rate 

due to its direct influence on uncut chip size. Also, it has been observed that the interaction 

combining the effect of the feed rate and the drill diameter on the thrust force and the torque is 

found to be more significant than the separate effect of either one of the variables. However, the 

cutting speed effect could have less significant effect on the thrust force and the torque [4]. The 

cutting force is dependent on the feed rate, and it is generally directly proportional to it [4]. In this 

experiment, the cutting force was derived from the torque. 

Therefore, a big challenge is facing the industry of drilling manufacturing: how can they produce 

higher quality holes with minimum damages. To understand the effects and relations between the 

factors under study and the quality characteristics while drilling a composite material, several 

studies are conducted using the following statistical methods: multiple linear regression (MLR), 

analysis of variance (ANOVA) and response surface model (RSM).  

C. Description of the tool 

The tool material used in the present investigation is a standard carbide twist drill (M43236), a 

product of Kennametal Inc. This drill is a 2- flute, right hand spiral, right-hand cut drill with a 30
o
 

helix angle and 118
o
 point angle. The carbide grade is ISO K10 - K20 with approximately 7% 

cobalt as binder. This drill is shown in Figure 1.5. 
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Figure 1.5: Two Flute Standard Point Solid Carbide Twist Drill of 5 mm diameter 

D. Description of the machine 

The drilling experiments were carried out on a 5-axis high-speed, high-power horizontal 

machining centre Makino A88 (shown in Figure 1.6). It has the following characteristics: 50 kW 

spindle power, 3 linear and 2 rotary axes, maximum spindle speed of 18,000 rpm, maximum feed 

rate of 50 m/min, minimum feed setting unit of 1µm, tool clamping force of 19.6 kN and HSK 

100A spindle adapter.  

 

 

 

  

 

 

 

Figure 1.6: Makino A88 

E. Description of the material 

The work piece comprised of woven carbon fibre as the reinforcements and epoxy as the matrix 

material. The woven prepreg, L-930 HT 139, used for manufacturing the laminate was supplied 

by J.D. Lincoln Inc. The woven prepreg was a plain weave fabricated out of T300 graphite fibers 

each having 3000 filaments. 

F. Research objectives 

The objective of this research is to formulate analytical models to predict the quality 

characteristics under study and the uncontrollable variables during the drilling of composite 

material using the regression method.  
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Therefore, the following steps will be used: 

a) Use a full factorial design with two factors at appropriate levels of the independent 

variables. 

b) Analyze the data distribution of each output to understand the existing relationship 

with the input variables. 

c) Develop a mathematical model of each output using the multiple linear regression 

method. 

d) Add an interaction effect of the independent variables to the model and refit the data 

to a new multiple linear regression model. 

e) If an accurate model couldn’t be found through the multiple regression methodology, 

attempt a new fitting with the nonlinear regression technique or different types of 

transformation. 

f) For each developed model, check the model adequacy by demonstrating how well the 

model fits the observed data and how well the regression model predicts new 

observations. 
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CHAPTER 2 LITERATURE REVIEW 

In the literature, several experiments were carried out on drilling of CFRP composites. S. Jayabal 

& U (2010) used a full factorial design with three factors at three levels each (3
3
 equal 27 

experimental runs) to evaluate the mechanical and machinability characteristics of hybrid 

composites [13]. The measured responses were the thrust force, the torque and the tool wear and 

the process control factors were the bit-drill diameter, the spindle speed and the feed rate. The 

multiple regression technique was used to identify the mathematical model of the interaction of 

the specified main effects in the drilling process. The machinability study determined that the 

feed rate has the most significant role on the machining characteristics. To conclude their 

experiment, the authors defined the best combination of the drilling parameters to minimize the 

effects of the thrust force, the torque and the tool wear. Using this design, the average absolute 

errors for thrust force (2.56%), torque (2.91%) and tool wear (2.93%) are between 2.5% and 3%. 

The variability of the model was 92.96% for thrust force, 89.32% for the torque and 96.72% for 

the tool wear which is considered very good estimates. 

In another paper, S. Jayabal & U. Natarajan (2011) carried out a statistical modeling to develop 

mathematical models to relate few outputs (thrust force, torque and tool wear) to three inputs 

(drill-bit diameter, feed rate and spindle speed) through the multiple linear regression technique 

[14]. The ANOVA was performed to test the significance of the obtained coefficients at one per 

cent level of significance. The developed models were verified by eight sets of experiments. They 

used a Box-Behnken Design (BBD) with three factors at three levels each to study the effects of 

each factor and their interactions on predefined hole’s characteristics with a total of 17 

experiments. To analyze the collected data, a quadratic design was chosen for the thrust force and 

the torque models. However, linear terms were used to define the model of the tool wear. The 

RSM was used to define the optimal responses (thrust force, torque and tool wear) for each input 

(drill bit diameter, spindle speed and feed rate). In that study, the feed rate and the drill bit 

diameter were found to be the most significant factors affecting the thrust force. To confirm the 

accuracy of the obtained results, the percentage of the error between the observed and predicted 

values was calculated using the following equation:  

% of error =  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
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Using the developed mathematical model, the percentage of error calculated was within the 

acceptable ranges which confirm the adequacy of the results. In fact, the average absolute errors 

for the thrust force (0.4%), the torque (0.08%) and the tool wear (0.57%) were less than 1%. The 

variability of the model was 99.88% for the thrust force, 99.88% for the torque and 96.22% for 

the tool wear. 

The difference between the previous two papers presented above is that the authors chose to use a 

full experiment design in the first versus a BBD in the second. In general, every machine used in 

a production process allows its operators to adjust various settings affecting the quality 

characteristics of the manufactured product. Experimentation and testing allow the manufacturing 

engineer to learn which factors have the highest impact on the resultant quality characteristics by 

adjusting the settings of the machine in a methodical manner. Using this information, the settings 

can be regularly enhanced until optimum features are achieved. Moreover, it is important to know 

what to change in order to produce a better product at minimum cost. At first, experimenters 

considered three factors (bit-drill diameter, spindle speed and feed rate) affecting the production 

process at three levels to determine whether any of these changes would affect the outputs under 

study (thrust force, torque and tool wear). The most instinctive approach to study those factors 

would be to vary the three factors (thrust force, torque and tool wear) in a full factorial design; to 

try all possible combinations of settings. This method is acceptable when the number of factors 

under study and the settings are small. In fact, the number of necessary observations (runs in the 

experiment) increases when more factors and settings are involved. For example, to study six 

factors, the necessary number of runs in the experiment would be 2
6
 = 64 observations and for 10 

factors, it’s 2
10

 = 1024 observations. Every observation involves time and cost to set and reset the 

machine. In a production environment, it’s usually not feasible to run a high volume of a set of 

production for the experiment. In these conditions, fractional factorials (reduced number of 

observations) are used to "sacrifice" interaction effects so that the main effects may still be 

computed correctly. By running fewer experiments, the same results and conclusions may be 

pulled to determine the optimum values of the process and to analyze the behavior of each factor.  

In the second paper, the authors selected an alternate design of experiment to reveal significant 

interactions and find the optimum operating conditions for a high-quality drilling: the BBD. This 

design is specially made for factors with three levels coded as (-1, 0, +1). BBD is an independent 
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quadratic design and not a fractional factorial design. Consequently, with the same 3 factors (bit-

drill diameter, spindle speed and feed rate), 17 runs are completed:  

 Four points in the center of each face which makes a total of 12 points (refer to figure 2.1 

for a basic illustration), and 

 Five replicates of the center points. 

 

Figure 2.1: The basic geometric representation [15] for a BBD for three factors 

The use of +1 and -1 for the variable settings is called “coding the data”. In this case, the authors 

used three coded levels: -1 for the higher value, 0 for the center point and +1 for the lower value. 

This specific methodology was chosen to fit a second-order response surfaces for the three factors 

under study. In both papers, the results are showing that the most important factor affecting the 

thrust force, torque and tool wear is the feed rate. In fact, the BBD methodology compared to the 

full factorial experimental design saved the researchers 10 experiments; a significant difference in 

time, material consumption and cost. The lesson to learn is that BBD can efficiently be applied 

for modeling drilling factors (bit-drill diameter, spindle speed and feed rate) in an economical 

way of obtaining the information with least number of runs. Refer to annex B note 5 for the 

experimental design matrix in terms of coded factor levels for a BBD for three factors. 

Coding is a simple linear transformation of the original measurement scale. In the real scale, the 

highest value is Xh and lowest is XL. The scaling transformation takes any original X value and 

converts it to: 

𝑇𝑅(𝑋) =
(𝑋 − 𝐴)

𝐵
 

Where: 

𝐴 =  
𝑋ℎ+𝑋𝐿

2
 ; 𝐵 =  

𝑋ℎ−𝑋𝐿

2
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 If X = Xh then, TR(Xh)= (Xh-XL)/ (Xh-XL) = 1. 

 If X = XL then, TR(XL)= - (Xh-XL)/ (Xh-XL) = -1. 

 If X = average of the settings = A then, TR(Xavg)=[(Xh+XL)-(Xh+XL)]/(Xh-XL)= 0. 

To transform back a coded value to its original measurement scale, multiply the coded value by B 

then, add A: 𝑋 = (𝑐𝑜𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒) ∗ 𝐵 + 𝐴. As an example, if the variable X is pressure and the 

high setting is 100 psi and the low setting is 20 psi then, A= (100 + 20)/2 = 60 psi and B = (100 - 

20)/2 = 40 psi. The real value of the coded value of the center point 0 has a temperature of: X = 

0*(40) + 60 = 60 psi. 

Before presenting further studies, the design of experiments (DOE) concept is explained. The 

DOE screens a large number of factors with a minimum sample size. From a cost-effective and 

time-reduction point of view, engineers and physicists can no longer afford to experiment in a 

trial-and-error manner testing by changing one factor at a time. Consequently, a more effective 

method known by design of experiments, has been conceived. It’s an efficient systematic 

approach and powerful tool based on a stochastic search technique for solving optimization 

problems, which has been widely applied in many scientific and engineering fields for process 

efficiency and product quality. The type of design is highly dependent on the number of factors 

studied. This method: 

 Considers all factors simultaneously; 

 Provides an effective way to solve serious operational and production problems; and  

 Reveals information about the interaction of factors and the way the whole system works 

(even the interaction between the factors), a fact not obtainable through testing one factor 

at a time. 

The input factors are independent variables that affect the responses and outputs under study. 

Each factor has a set of settings defined by the experimenter. This approach tackles the drilling 

quality problems by performing the minimum number of experiments needed. Then, develop 

analytical equations that express all the important and significant factors which can be used, 

depending on the drilling conditions to predict the desired outputs. Therefore, the constructed 

model is able to identify the significant factors affecting one or multiple outputs, achieve an 

optimal process output (combination for best quality) and reduce variability. Refer to annex A to 

understand in details how to build a DOE.  
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In this research, the experts completed 35 runs which are considered a full factorial plan that 

combines all combinations with no replications. Other plans can be built to provide more 

adequate results. Here are two recommended designs that can be used: 

 With the same number of runs: 2
2
+1 with 7 replicates equal to 35 runs. In this case, two 

levels (minimum and maximum) are defined for each input variables: feed rate (20, 800) 

and spindle speed (1500, 15000). The “+1” represents the center point (200, 8500). In this 

design, the observations in table 2.1 are replicated 7 times. 

Table 2.1: Experiment setup with 35 runs 

Run # Feed rate Spindle speed 

1 20 1500 

2 20 15000 

3 800 1500 

4 800 15000 

5 200 8500 

 With less number of runs: 2
3
 with two replications equal to 18 runs. In this case, three 

levels (minimum, center and maximum) are defined for each input variables: feed rate 

(20, 200 and 800) and spindle speed (1500, 8500 and 15000). This design represents half 

of the current experiments done and will provide good results. In this design, the 

observations in table 2.2 are replicated twice. 

Table 2.2: Experiment setup with 18 runs 

Run # Feed rate Spindle speed 

1 20 1500 

2 20 8500 

3 20 15000 

4 200 1500 

5 200 8500 

6 200 15000 

7 800 1500 

8 800 8500 

9 800 15000 

Replications are added in both plans to determine the experimental error εi. 

In another study, the authors [16] performed an analysis of the thrust force in drilling of glass 

fiber-reinforced plastic. During this investigation, the spindle speed, the feed rate, and the drill 

diameter were considered as machining input parameters at three levels each. The authors 
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selected “Tagushi’s L27” experimental design with three repetitions (81 runs in total) to examine 

the relations between the inputs (spindle speed, feed rate, and drill diameter) and the output 

(thrust force). For a first estimation, Pareto ANOVA (a graphical method to understand the 

overall relationships but not very exact whereas no error terms are considered) was employed to 

determine the significant factors and interactions. For further analysis, the ANOVA was exploited 

at 95% confidence level to understand the effects of every factor. Using the RSM, a mathematical 

model was deduced and the correlation verified between the spindle speed, feed rate, and drill 

diameter, and the thrust force. As per the authors, the obtained results are only near optimal. 

As reported in many papers, to analyze the process and to find the optimum response, one may 

turn to the RSM methodology. The RSM is the collection of mathematical and statistical 

techniques that are useful for the modeling and analysis of problems in which a response of 

interest is influenced by several variables and the objective is to optimize that response [18]. 

RSM also quantifies the relationship between the controllable input parameters and the obtained 

response surfaces [19]. This technique helps experts to define the best settings combination for 

the factors under study to provide the most appropriate values for the desired responses. 

An alternative approach [17] involving the design of experiments has been used to select the 

optimal cutting parameters of carbon fiber reinforced thermosets. The input variables under study 

were cutting speed, feed rate and tool point angle at five levels each. The outputs to be optimized 

for enhanced hole quality characteristics are the thrust force, the delamination, the damage width 

and the surface roughness. The methodology used in that study combines tagushi’s technique, 

RSM and ANOVA. 

Another related research involves the use of the regression technique is presented. In this paper 

[20], the authors employed regression and artificial neural network (ANN) to predict tool wear in 

end milling. The conducted experiments to measure tool wear are based on the DOE of five levels 

of four factors full factorial technique. The input variables under study are the feed rate, the helix 

angle, the spindle speed and the depth of cut against the tool wear being the only output. The 

ANN techniques provided a higher accuracy rate (average error < 2%) models compared to the 

results obtained from the classic statistical regression model (average error < 5%). As a first step, 

the authors normalized all the raw data of input values to develop an appropriate model via the 

regression model. Then, they used the data generated from the previous model to demonstrate a 
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new one through the ANN method to predict the minimum value of tool wear and estimate the 

best combination values of the process. 

During this exploration, some researchers used the ANN and the support vector regression (SVR) 

methods to predict the drilling and cutting output values for better sensitivity and specificity; 

statistical measures of the performance of the diagnostic. The sensitivity is the capability to 

correctly identify the output with the identified problem; however test specificity is to incorrectly 

identify those with the known problem. There are two types of errors intrinsic in every technique 

[21]:  

 Sensitivity = error Type I (FP - False Positive): error of deciding when an action should 

be taken while the system is in a normal condition and, 

 Specificity = error Type II (FN - False Negative): error of deciding that the system is in a 

normal condition while it is not.  

There are four possible outcomes of the simulation: 

 True negative (a) = correctly rejected 

 False negative (b) = incorrectly rejected 

 False positive (c) = incorrectly identified 

 True positive  (d) = correctly identified 

From a mathematical point of view, the sensitivity and specificity are defined by: 

 Sensitivity = Probability of FP (p1): 𝑝1 =  
𝑐

𝑎+𝑐
 

 Specificity = Probability of FN (p2):  𝑝2 =  
𝑏

𝑏+𝑑
 

Then, the probability of correct decision will be defined by (Pc): 𝑃𝑐 =  
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
. 

The ANN technique is usually used when the researchers want to search for certain patterns in the 

data or if they face complex relationships between inputs and outputs. Artificial neural networks 

implement the empirical risk minimization principle to minimize the error on the training data, 

while SVR adheres to the structural risk minimization (SRM) principle seeking to set up an upper 

bound of the generalization error (Vapnik et al., 1996). In fact, Jixin Li performed some 

experiments to understand the performance of both methods and he concluded that both have 

similar performance in binary classification, but support vector machines (SVM) outperformed 

ANN in multi-class classification [22]. Refer to annex B note 3 for the ANN process description. 
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Another author [23] developed empirical models to predict surface roughness and tool wear in the 

cutting process. He used three different techniques: RSM, ANN and SVR. The process 

parameters were the cutting speed, the feed rate and the cutting time. The RSM method was used 

to estimate the response value based on a full quadratic regression model. Then, the author relied 

on the ANOVA to justify the goodness of fit for the developed RSM models. Afterwards, the 

ANN and SVR were applied for the same purpose. After comparing and evaluating the results 

given by the models, it has been found that ANN and SVR models are much better than RSM 

models for predicting surface roughness, tool wear and power. 

Some of the quality characteristics of the drilling process under study may not be modeled by the 

multiple linear regression technique. In this case, a different approach is applied: the nonlinear 

regression. The fundamental idea of nonlinear regression is the same as the linear regression. It is 

characterized by the fact that the prediction equation depends nonlinearly on one or more 

unknown variables. Whereas linear regression is often used for building a purely empirical 

model, nonlinear regression usually arises when there are physical reasons for believing that the 

relationship between the response and the predictors follows a particular functional form. In the 

general normal nonlinear regression model, the function relating the response to the predictors is 

not necessarily linear: 

yi = f(β, Xi) + εi 

Where: 

Xi is a vector of predictors for the ith of n observations  

i = 1, 2,..., n 

β is the vector of regression parameters to be estimated 

εi is the random error 

The use of nonlinear regression is seen in many applied sciences, ranging from biology to 

engineering to medicine to agriculture. From the examined articles, few articles are found to use 

the nonlinear regression method to extract the prediction model. In one of the studies, the authors 

[24] explored two techniques which are the multiple regression analysis and the artificial neural 

networks to study the influence of the cutting speed, feed, and volume fraction of the 

reinforcement particles (inputs) on the thrust force and torque (outputs) in the drilling process of 

self-lubricated hybrid composite materials. They also compared both prediction models to 

examine the prediction accuracy of each one. The results showed that the linear regression model 
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works well on the thrust force R
2

adj= 92.2%. The R
2

adj is the adjusted coefficient of determination 

indicating how well the data values fit the developed statistical model; a detailed explanation is 

presented in chapter 3. The closer the R
2

adj is to 100%, the better the model is. However, the 

prediction model for the torque was determined to be ineffective with R
2

adj= 76.6%. To improve 

on the variability, they transformed the outputs (thrust force and torque) into a logarithmic scale 

(ln) to create a linear relationship between the input and the output. In fact, this action was very 

successful because higher values of R
2
adj were obtained: 95.46 % for ln(thrust force) and 92.65% 

for ln(torque). The challenge of the nonlinear regression technique is to find out what should be 

used as the basis of transformation. Usually, this is determined by the examination of scatter plots 

or from the understanding of the underlying process itself. If a transformation is not possible, the 

use of different nonlinear functions can be attempted. The common models used [25] are: 

 Least squares estimates; 

 The Box–Cox Method [18]. 

 Logarithmic regression: 𝑓(𝑥, 𝜃) =  𝜃1exp (−𝜃2𝑥) 

Where: 

x is the predictor variable 

θ is the parameter vector (estimated from the data by minimizing a suitable 

goodness-of-fit expression with respect to θ) 

A transformation is used for three purposes [18]:  

 Stabilize response variance,  

 Make the distribution of the response variable closer to the normal distribution, and  

 Improve the fit of the model to the data.  

Very few researchers put together the controllable and incontrollable variables in the same model 

in metal drilling and cutting processes. One of the known methods is the analysis of covariance 

(ANCOVA) which is used to evaluate the collected data and to predict an accurate mathematical 

model of outputs. This technique is usually selected to improve the precision of an experiment 

and to evaluate how strong the relationship is between two variables and there are five 

assumptions that underlie the use of the ANCOVA model [26]. One of these assumptions is that 

the variables must not be correlated.  
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In fact, this methodology has not been applied in modeling of the drilling process because one of 

the main issues is that the uncontrollable (thrust force, cutting force and torque) and the 

controllable variables (feed rate and spindle speed) are highly correlated among each other. In 

fact, is considered a major violation of one of the assumptions. Table 2.3 indicates that all 

variables, but spindle speed are strongly correlated. Consequently, combining those variables 

(controllable and uncontrollable) is not recommended to determine an appropriate covariance 

model. In presence of correlation between the variables, it is difficult to distinguish if the 

variation on the dependent is due to one or the other predictor. The uncontrollable variables 

(thrust force, cutting force and torque) are extremely dependent on the feed rate. Also, the 

uncontrollable variables are correlated among each other. 

Table 2.3: Correlation table between all variables for ANCOVA 

 

In this literature survey, the MLR was only used to investigate few drilling characteristic outputs: 

surface roughness or delamination. In this research, this method will be applied over the seven 

different characteristic outputs described previously. The next section will present the regression 

analysis methodology of all the desired outputs. Also, at the end of chapter 3, the thrust force 

and the cutting force will be analysed as inputs to predict the delamination at entry and exit.  

  

      torque     0.9485  -0.2591   0.9840   1.0000   1.0000 

cuttingforce     0.9485  -0.2591   0.9840   1.0000 

 thrustforce     0.9330  -0.2731   1.0000 

spindlespeed     0.0000   1.0000 

        feed     1.0000 

                                                           

                   feed spindl~d thrust~e cuttin~e   torque

(obs=35)

. spearman feed spindlespeed thrustforce cuttingforce torque, matrix
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CHAPTER 3 REGRESSION ANALYSIS TECHNIQUE WITH 

CONTROLLABLE VARIABLES AS INPUTS 

The regression analysis was developed by Sir Francis Galton in the latter part of the 19
th

 century 

and to this day, the term regression describes the existing statistical relations between variables. 

This relationship is defined by a regression model and may differ in the form of the regression 

function (linear, curvilinear, etc.). It may contain more than one predictor variable. Here are the 

steps to construct a regression model [27]: 

 Select the major inputs that contribute the most to reduce the variation on the output, 

 Attempt the approximation of a complex regression function by a linear regression 

function, and 

 Restrict the coverage of the model to region of values of the predictor variables.  

A basic regression model is known to be “simple linear” and this model is written as [27]: 

Yi = β0 + β1Xi + εi 

Where:  

Yi is the value of the response variable in the ith trial 

β0 and β1 are parameters or regression coefficients 

Xi is a known constant, the value of the predictor variable in the ith trial 

εi is a random error term with mean E{εi}=0 and variance σ
2
 {εi}= σ

2
; εi and εj are 

uncorrelated so that their covariance is zero 

i = 1,…, n 

The difference between simple and linear terminologies is defined in annex B note 1. Experts 

can be facing a model which is not simple and has more than one predictor variable. In this case, 

the multiple linear regression is used. Therefore, suppose there are two predictor variables, and 

the relationship is linear between these variables and the dependent, the model will be [27]: 

Yi = β0 + β1Xi1 + β2Xi2 + εi 

(Multiple Linear Regression model with two independent variables) 

Where:  

Xi2 is the value of the second predictor variables in the ith trial 
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For some cases, the data won’t be fitted by a linear simple regression. In this case, another type of 

fitting may be used known as “Transformed Variables”. It may be represented for example by the 

following model [27]: 

Yi= log (Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi 

(Transformed Variables Regression model with three independent variables) 

Where: 

Yi is the transformed response 

In this model, the response is transformed to a logarithmic function but it can be any other 

mathematical function. 

To better understand the variability of the response when analyzing the variables, an 

“Interaction effect” is involved. It represents the combined effect of the independent variables. 

When an interaction is present, the impact of one variable depends on the level and intensity of 

the other variable [27]. The model corresponds to: 

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1 Xi2 + εi 

(Interaction effect with two independent variables) 

If the data cannot be fitted with the linear or the transformed regression model, the nonlinear 

regression method is developed. An example of this technique would be: 

Yi = β0 exp(β1Xi) + εi 

(Non-linear regression with one independent variable) 

The regression coefficients interpretation depends on the: 

 Magnitude of the coefficient for each independent variable which provides the size of the 

effect that the variable have on the dependent variable, and  

 Sign of the coefficient (negative or positive) withdraws the trend of the effect.  

The coefficient helps experts understand how much the dependent variable is expected to 

increase/decrease when that independent variable increases/decreases by one, holding all the 

other independent variables constant. 

When conducting any statistical analysis, it is important to evaluate how well the model fits the 

data and that the data meet the assumptions of the model. To determine if a linear regression 

model is appropriate, the following assumptions shall be verified: 

 Independency: the response variables Yi are independent, 
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 Linearity-Outliers: the relationship between Y and X is a straight line, 

 Normality: Yi are normally distributed, and 

 Homoscedasticity-variability: Yi have all the same variance  

The assumptions on the residuals are the same as the response variables [18]. As a result, if the 

assumptions on the random errors are satisfied thereby, the assumptions on the response variable 

are validated. Residuals (e) are defined to be the random errors, the differences between the 

observed values (Yi) and the values fitted (Yi) by the model [27]. The residual is denoted by: 

ei = 𝑌𝑖 - 𝑌𝑖̂ where i = 1,…, n 

Independence of the response variables is subject to the design of the study and the way the 

data have been collected. The errors associated to different observations must be statistically 

independent from each other including the predicted response. The residuals in time order of data 

collection is plotted to detect any substantial correlation [18]; a tendency to have runs of positive 

and negative residuals indicates positive correlation. Ideally, most of the residual should fall 

within the 95% confidence bands around zero, which are located at roughly ±2/√n where n is 

the sample size. If there is significant correlation, it indicates a fundamental structural problem 

in the model and can interfere with the analysis of variance. If the plot does not reveal any 

pattern, the independence assumption is satisfied. A common pattern is that the residuals increase 

as the fitted values increase. 

To investigate the normality structure of the distribution, a normal probability plot of the 

residuals is plotted [18]. The plot shows the residuals against a theoretical normal distribution. 

The normality is confirmed if the values lay on a straight line. When examining this plot, 

emphasis will be on the fitting of the central values than on the extremes. Therefore, retreats from 

this straight line indicate retreats from the normality distribution. Lack of normality assumption 

may provide misleading interpretations of the results.  

To verify the linearity (random errors have zero means) and homoscedasticity (constant 

variation), a scatterplot of the standardized residuals versus the fitted values is plotted. The 

standardized residuals are the deviations of the observations away from the predicted values. The 

variability in the residuals should not depend in any way on the predicted value. If both 

assumptions are satisfied, the residuals are expected to vary randomly around zero and the spread 
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of the residuals to be about the same throughout the plot. Any observed pattern in the residual 

plot suggests a violation of one or more assumptions or it’s an indication that there may be a need 

for data transformation. In this study, for a better understanding of the data behavior, the 

scatterplots of the output against the independent variable under study is plotted to verify the 

linearity assumption. Also, in some cases when verifying the homoscedasticity, the plot of the 

standardized residuals versus the fitted values may not be convincing; subsequently, the Breusch-

Pagan test may be used to confirm the constancy of error variance [18]. 

In each output study, the regression model is presented then, the assumptions are verified to 

conclude if the model is valid for future use or not.  

Assume that two independent variables are involved in the process: the feed rate and the spindle 

speed, and the output variable is the thrust force. The global F-test in the ANOVA table tests the 

null hypothesis: 

H0: β1 = β2 = 0 

vs. the alternative hypothesis 

H1: β1 ≠ 0 or β2 ≠ 0 

If H0 is accepted, it indicates that the feed rate and spindle speed are non-significant variables on 

the thrust force. However, if H0 is rejected, it means that at least one of the variables has an 

impact on the behavior of the thrust force. However, it doesn’t necessarily suggest that the found 

model is the best. For more accurate models, researches can attempt to add more independent 

variables or higher order terms. On the other hand, experts must be careful not to over-fit the 

model to the sample points. Errors can occur in every statistical process. α is the Type I error that 

occurs when that the process is declared to be out of control when in fact it is not, H0 is rejected 

when in fact it is true. In a production setting, this sort of error is extremely costly. That’s the 

reason why α is defined to be the smallest possible. However, H0 should not be retained if there is 

no enough evidence; in this case, the process is out of control and consequently, some results are 

missed. Table 3.1 explains the relationship between the null hypothesis and the type of errors. 

Table 3.1: The relationship between the null hypothesis and the type of statistical errors 

 

 

 

Statistical Decision True State of H0 

H0 is true H0 is false 

Reject H0 Type I error 

(Wrong 

conclusions) 

Correct 

 
Do not reject H0 Correct Type II error 

(Misidentify correct 

conclusions) 
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In this research, the main testing will be on the significance of the sample coefficients of the 

predictor variables. There is little relevance in testing the significance of the estimate of the y-

intercept. Thus, it doesn’t provide anything about the usefulness of the model. 

Analysis of variance known by ANOVA or Fisher’s ANOVA was developed in the 1920s by 

R.A. Fisher (1890-1962). ANOVA helps determine whether there are any differences among the 

population output means when the input values are changed, and specifically which pairs of 

means are significantly different (H0: µ1 = µ2=…=µa / H1: µ1 ≠ µ2 ≠…≠µa). This technique 

performs a series of F-tests (designed to test if two population variances are equal by comparing 

the ratio of two variances), one for each pair of means. In an F-test, an F-statistic is computed and 

compared to a critical value. Alternatively, the p-value approach could be used for decision-

making [26]. The p-value is a probability ranging between zero and one. It represents the 

confidence that the null hypothesis is right by proving that all of the alternatives are wrong. The 

lower the p-value is the more significant the results are. If p-value for the F-statistic is less than 

the predefined level of significance (0.01, 0.05 or 0.1), H0 is rejected.  

It has become a scientific standard to say that p-values exceeding 0.05 aren't strong enough to be 

the sole evidence that factors being studied differ in their effect. When the p-value is lower than 

this conventional reference point, it indicates that the factor is significant and has an imperative 

influence on the output results. 

After each ANOVA analysis, the R
2
 known as the coefficient of multiple determination is studied 

to assess the usefulness of the regression model developed. Many authors discuss the importance 

and how to calculate this value. The R
2
 is defined as the proportion of variation in the response 

that is explained by the regression model [28]. The value of R
2
 varies between 0 and 1. An R

2
 that 

is near 0 indicates that the regression model does not fit the data well and there is no vital 

relationship between the data. While an R
2
 closer to 1 indicates that the regression line fits the 

data very well and most of the variability is included in the model to predict the outcome 

accurately.  

The formula of the coefficient of determination is: 

𝑅2 =  
𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 − 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

In Mathematical term: 
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𝑅2 =  
∑(𝑌 − 𝑌)

2
− ∑(𝑌 − 𝑌̂)

2

∑(𝑌 − 𝑌)
2   

Where: 

𝑌 is the calculated mean  value of the variable  

𝑌̂ is the  value predicted of the variable by the regression model 

To balance the effect that the number of independent variables has on the coefficient of the 

multiple determinations, the adjusted R
2
 is investigated in our analysis, instead of the R

2
. It is 

calculated by: 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑛 − 1

𝑛 − 𝑘 − 1
(1 − 𝑅2)  

Where: 

n is the sample size 

k is the number of independent variables 

In this study, a mathematical model is developed based on the mechanics and dynamics of the 

drilling process to predict the influence of the feed rate and the spindle speed on the measured 

holes quality characteristics: delamination, surface roughness, circularity and diameter error. 

Using these models and with set values of the feed rate and the spindle speed, the trend of each 

output can be predicted. However, with the regression technique, the effect of the uncontrollable 

variables cannot be combined to the independent variables due to high correlation (refer to table 

2.3). Thus, to better understand the interactions between all variables, two steps are required: 

1. Consider the uncontrollable variables which are measured during the experiments as the 

outputs and construct a prediction model using the controllable factors as inputs; and  

2. Build up a regression model of each of the seven characteristic outputs (e.g. delamination 

at entry) and the controllable inputs (feed rate and spindle speed). 

The drilling process involves two factors which are independent and controllable (refer to table 

3.2). The levels are the settings of each factor in the study chosen by the implicated experts. 

Table 3.2: Controllable factors involved in the drilling process 

 Factors Units Levels 

A Feed (F) Micron/rev 20 – 60 – 100 – 200 – 400 – 600 – 800 (7 levels) 

B Spindle Speed 

(SS) 

Rpm 1500 – 5000 – 8500 – 12000 –15000 (5 levels) 
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In this chapter, the following variables are not controlled during this process, but they are 

measured within the experiment to determine how they would affect the final product’s quality:  

1. Thrust force (Tf)  

2. Cutting force (Cf) 

3. Torque (T) 

These variables are analyzed as outputs to study their variability when the feed rate and spindle 

speed vary within the specified levels in table 3.2. 

The quality outputs of the experiments are measurable outcomes potentially affected by the 

independent factors at their respective levels. The dependents described below are analyzed to 

determine the significant factors and their modelling fit: 

1. Hole Delamination at entry (Den) 

2. Hole Delamination at exit (Dex) 

3. Hole Surface Roughness (SR) 

4. Hole Diameter Error at Exit (Drx) 

5. Hole Diameter Error at Entry (Dre) 

6. Hole Circularity at Exit (Cex) 

7. Hole Circularity at Entry (Cen) 

A series of experiments are conducted using a full factorial plan that includes all the 

combinations of the controllable factors levels: 35 runs (7 levels feed rate x 5 levels spindle 

speed). Table C.1 in annex C lists the data collected for each factor and measured outputs.  

Because the regression analysis entails a lot of calculations, the data analysis is conducted using 

the statistical program Stata (Version 13, StataCorp, College Station, Texas) to perform the 

parameter estimates, ANOVA and coefficient of determination results, and all graphical 

illustrations using the experimental data in table A1.1 in annex A. 

In this chapter, the analysis of the ten variables mentioned previously is presented using the 

simple linear and multiple linear regression applications. To better understand the distribution of 

the output data compared to the independent variables, the box-and-whisker is plotted, also 

known by the boxplot. This procedure illustrates the symmetry, tail sizes, and median value of the 

sample as well as indicating the possible existence of outliers and inhomogeneous data [29]. 

Also, this scheme has lines extending vertically from the boxes which indicate the variability 
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outside the upper and lower quartiles. The line from the end of the box to the largest and smallest 

values that are not outliers is called whiskers. If the upper whisker is much longer than the lower 

whisker, it gives the impression of positive skewness. Refer to annex B note 2 for a visual 

representation of the boxplot. After analyzing the boxplot, three different tables below are 

presented to investigate the effects of the independent variables and the model’s variability: 

1. ANOVA table consists of: 

a) SS: three types of sum square are important to the regression model: 

i. SSmodel is the sum of squares due to treatments 

ii. SSError is the sum of squares due to error (the squared differences between the 

actual value y and the prediction of y) 

iii. SStotal = SSmodel + SSError [26] 

b) Degrees of Freedom (df) [26]: 

i. dfIntercept = 1 

ii. dfmodel = υ1= a - 1 (where a refers to the number of treatments) 

iii. dferror =  υ2 = N - a, (where N is the total number of experiments). 

iv. Total = N – 1 

In this case, there are 35 observations thus, N = 35 and a = 7 (7 levels of the feed rate used); 

the degrees of freedom will be: 

 dfIntercept = 1 

 dfmodel = 6 

 dferror = 35 - 7 = 28 

 Total = 35 – 1 = 34 

c) MS: is the mean square and there is two mean squares that are important: 

i. MSmodel: is the explained variability and it’s the mean square of the model equal: 

MSmodel = (Sum of the square)model / dfmodel 

ii. MSerror: is the unexplained variability and it’s the mean square of the error: MSerror 

= (Sum of the square)error / dferror 

The significance tests associated with the ANOVA are based on F-statistic. It tests the null 

hypothesis that all the regression coefficients are equal to zero; the alternative hypothesis is that 

at least one of the coefficients is non-zero. If F is large, then the null hypothesis can be rejected.  

2. Parameter estimates table includes: 
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a) The variable Parameter: they are the coefficients of the model used to predict the 

response. 

b) The standard error: is the estimate of the variability of the coefficient; a measure of the 

precision with which the regression coefficient is measured. The smaller the standard 

error, the more representative the regression coefficient will be. 

c) The variable t-value: it’s the variable “Parameter” divided by its standard error. 

d) The variable p-value: test if our parameter is significantly different from 0. 

e) Conf. Lmt (-95%) and (+95%): it’s the confidence interval of the regression coefficients 

values. Approximately 95% of the data are expected to fall within two standard deviations 

of the regression line. For example, if a β coefficient is equal to zero, it means that this 

variable has no influence on the dependent variable. In this case, if the 95% CL contains 

the zero, the p-value of this variable is expected to be greater than 0.05. Also, the other 

important information to extract from the 95%CL is the precision. The 95%CL is a 

function of the standard deviation (measure of how the numbers are spread out). Thus, a 

wider 95%CL indicates a poor precision.  

3. Coefficient of determination table contains: 

a) Number of observations 

b) F-value: is the ratio of the mean regression sum of squares divided by the mean error sum 

of squares (MSmodel/MSerror). Its value will range from zero to an arbitrarily large number. 

The larger the F is, the more useful the model.  

c) P-value: is Pr (F > F1, n−2).  

d) R
2
 

e) Adjusted R
2
 

f) Root MSE 

After each ANOVA, a fitted model is constructed and a plot of the estimated regression model is 

generated to identify any abnormal fit or outliers. On the graphical illustration, the confidence 

interval is drawn. The confidence band enables the experts to see the region in which the entire 

regression line lies to determine the appropriateness of the fitted function (how well the data 

define the best-fit curve) [27]. The distance between the observed values and the estimated 

regression equation is the error (residual) of each observation. While analyzing the data, multiple 
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well-fitted models for the same output under study may be found. In this case, the tool to be used 

to compare the models is called Akaike Information Criterion (AIC).  

This method helps selecting the more appropriate model from a set of models to predict the 

chosen output. The AIC approach yields consistent results and is independent of the order in 

which the models are computed [30]. The smallest the AIC is, the better the model is. 

Mathematically, it is defined by:  

𝑨𝑰𝑪 = 𝑛 ∗ log((𝑅𝑆𝑆/𝑛)2) + 2 ∗ 𝐾 

Where: 

n is the number of observations 

K is the number of parameters in the model +1 

RSS is the residual sum of squares 

All the following analysis will be developed using the same steps to be consistent with the 

conclusions. The dependent variable experimental data will be fitted through: 

1. A first order regression analysis against the feed rate, 

2. A first order regression analysis against the spindle speed, 

3. A multiple linear regression model without and with an interaction effect, and 

4. The nonlinear regression or transformation, if applicable. 

3.1 Thrust force analysis 

3.1.1 Thrust force distribution study over feed rate 

In this section, the feed rate is analyzed as the only effect on the thrust force. This process is the 

simple linear regression because only one independent variable is involved. As a start, the 

parameter estimates, ANOVA and coefficient of determination results are generated in table 3.3 

to understand the effect of the feed rate on the thrust force. This table indicates that the calculated 

p-value is near 0, lower than 0.05 which implies that the feed rate has a significant effect on the 

thrust force. The adjusted R
2
 corresponds to 0.6792 which indicates that 67.93% of the variability 

is explained only by the feed rate. Therefore, the feed rate has a major influence on the thrust 

force. 
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Table 3.4: Parameter estimates and ANOVA results of thrust force against feed rate 

 

The boxplot in figure 3.1 demonstrates that the thrust force is higher as the feed rate increases. 

Thus, the feed rate is directly proportional to the thrust force. The thrust force reaches its 

maximum value when the feed rate is at its maximum as well. An obvious difference is seen 

between the boxes at 20 to 400 and 600 to 800: 

 For feed rate from levels 20 to 400, the boxes are comparatively short. This suggests that 

the thrust force observations are contained within a very small segment of the sample. 

 At level feed rate 600 and 800, the boxes are tall which indicates that the thrust force 

varies much more within these samples. 

Also, at feed rate equal to 100, an outlier outside the upper boundary is observed which may 

affect the fitted model. 

 

Figure 3.1: Thrust force boxplot against feed rate 

3.1.2 Thrust force distribution study over spindle speed 

In this section, the spindle speed is analyzed over the thrust force to understand their relationship 

and dependency. As shown in table 3.4, the p-value of the spindle speed is at 0.050, equal to the 

conventional reference point (α = 0.05), which indicates that the spindle speed does have a 

                                                                              

       _cons     28.65518   18.22439     1.57   0.125    -8.422616    65.73298

        feed     .3738568   .0437615     8.54   0.000     .2848232    .4628903

                                                                              

 thrustforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    543021.771    34  15971.2286           Root MSE      =   71.58

                                                       Adj R-squared =  0.6792

    Residual    169080.126    33  5123.64019           R-squared     =  0.6886

       Model    373941.645     1  373941.645           Prob > F      =  0.0000

                                                       F(  1,    33) =   72.98

      Source         SS       df       MS              Number of obs =      35
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limited effect on the thrust force trend. In fact, to perform this analysis, the most significant 

factor, the feed rate, is removed and its effect was added to the residual which makes the spindle 

speed effect irrelevant. The fact to pull a variable or an interaction from the ANOVA is known by 

“Pooling” [31]. In fact, the interaction effect and other unknown variables’ effects that do not 

appear in the model are added into the residual sum of squares and the model is estimated. To 

investigate the pooling effect, the adjusted coefficient of determination R
2
 must be analyzed. The 

outcome seen her is the “pooling” effect. The adjusted R
2
 is equal to 0.0846 which indicates that 

only 8.46% of the variability of the thrust force data is explained by the spindle speed. This 

indicator is very low and endorses the results given by the ANOVA that the spindle speed has 

very limited influence on the thrust force behavior. 

Table 3.4: Parameter estimates and ANOVA results of thrust force against spindle speed 

 

In figure 3.2, a slight decrease of the thrust force is observed with the increase of the spindle 

speed. Accordingly, the thrust force is inversely proportional to the spindle speed. Also, it is 

noticed that the variability of the thrust force within each level of the spindle speed is very wide. 

The overall data is positively skewed because the majority of the whiskers are pushed up.  

 

Figure 3.2: Thrust force boxplot against spindle speed 

                                                                              

       _cons     217.7367   41.12607     5.29   0.000     134.0651    301.4084

spindlespeed     -.008649   .0042486    -2.04   0.050    -.0172929   -5.16e-06

                                                                              

 thrustforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    543021.771    34  15971.2286           Root MSE      =  120.91

                                                       Adj R-squared =  0.0846

    Residual    482436.558    33  14619.2896           R-squared     =  0.1116

       Model    60585.2134     1  60585.2134           Prob > F      =  0.0499

                                                       F(  1,    33) =    4.14

      Source         SS       df       MS              Number of obs =      35
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3.1.3 Thrust force multiple linear regression analysis 

In this section, the MLR is developed which is an extension of simple linear regression in which 

more than one independent variable (feed rate and spindle speed) is used to predict a single 

dependent variable (thrust force). The predicted value of the thrust force is a linear transformation 

of the independent variables. From a mathematical point of view, the difference is that the simple 

linear regression only expresses two weights (the intercept β0 and the slope β1); while in this case, 

three weights (β0, β1, and β2) are estimated.  

As mentioned in previous sections, the parameter estimates, ANOVA and coefficient of 

determination results are generated to perform the MLR analysis. The p-value of each variable is 

shown in table 3.6. The feed rate and the spindle speed have both a p-value near 0, lower than the 

conventional reference point (α = 0.05). There is enough evidence to reject the null hypothesis at 

α = 0.05. Therefore, by examining the p-value of each variable, the feed rate and spindle speed 

are significant at α = 0.05 confidence level. Both variables are important to the prediction of the 

thrust force. A remarkable change in significance is observed with the spindle speed compared to 

what has been observed in section 3.1.2. 

As demonstrated in sections 3.1.1 and 3.1.2, while compiling the linear regression method, the 

feed rate contributed significantly to the thrust force outcome, while the spindle speed did not. In 

the multiple regression method and in the presence of the feed rate, the spindle speed is strongly 

significant as indicated by the near-zero p-values for both variables from table 3.5. This occurs 

because the spindle speed included in the model significantly reduces the sum of squares for the 

error and consequently, the mean square error; which is the denominator of the F-test, for testing 

hypotheses about the terms of the model. When this indicator is small, it will make the test 

statistic larger which allows experts to detect important differences such as significant variables. 

Also, the loss of degrees of freedom for estimating the error does not compensate the reduction in 

the sum of squares of the error. The adjusted R
2
 of the MLR of the thrust force data is 0.7877. 

This model fits the data well. There is good concurrence between the experimental and predicted 

values: 78.77% of the variability is explained by the feed rate and the spindle speed. The 

remaining 21.23% are attributed to unknown variability and noise (variables that are not being 

controlled by the researches). In fact, this model has no interaction effect which may cause this 

unknown variability. Since the p-value of this model is lower than 5% (0.00000 < 0.05), H0 is 



31 
 

rejected and this regression model is judged to be useful. Based on the parameter estimates and 

ANOVA tables, this model is found to be acceptable with an explained variability of 78.77%, and 

the significant factors on the thrust force trend are the feed rate and the spindle speed.  

Table 3.5: Parameter estimates and ANOVA results of the thrust force using MLR 

 

Based on table 3.5, the fitted regression model of the thrust force is given by: 

Tf = 101.307 + 0.3739*F - 0.0087*SS 

Interpretation of the coefficients 

1. Constant (β0): when the feed rate and spindle speed are equal to zero, the expected mean of 

the thrust force is 101.3. 

2. Feed rate (β1): for each change of one unit of the feed rate, the thrust force will increase by 

0.037 when the spindle speed is held constant. 

3. Spindle speed (β2): for each change of one unit of spindle speed, the thrust force will decrease 

by 0.0087 when the feed rate is held constant. 

MLR attempts to model the relationship between the feed rate and the spindle speed by fitting a 

linear equation to the thrust force observed data. Therefore, it is interesting to review the plot of 

the predicted versus the observed of the thrust force values. A straight line is drawn to provide the 

best estimate of the observed trend. If the model is appropriate for the data, the points are 

expected to follow the straight line. However, if this plot displays a non-linear pattern, it indicates 

that the model doesn’t fit the data properly. The distance between the predicted data and the fitted 

line are the residuals. Figure 3.3 is a graphical illustration of the thrust force observed values 

against the predicted ones using the multiple linear regression method. This figure displays that: 

 The regression fitted-model represented by the straight line, 

 The values around the fitted line are the predicted values, and 

                                                                              

       _cons     101.3071    22.6972     4.46   0.000     55.07438    147.5398

spindlespeed     -.008649    .002046    -4.23   0.000    -.0128167   -.0044814

        feed     .3738568   .0355986    10.50   0.000     .3013448    .4463688

                                                                              

 thrustforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    543021.771    34  15971.2286           Root MSE      =  58.228

                                                       Adj R-squared =  0.7877

    Residual    108494.913    32  3390.46603           R-squared     =  0.8002

       Model    434526.859     2  217263.429           Prob > F      =  0.0000

                                                       F(  2,    32) =   64.08

      Source         SS       df       MS              Number of obs =      35

. regress thrustforce feed spindlespeed
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 The interval of confidence at 95% is represented by the dashed lines. 

 

Figure 3.3: Thrust force plot fitted against observed values using MLR 

By investigating the shape of the values around this line, it indicates a linear fit and the scatter of 

points lie roughly close to the regression line and are within the 95% confidence of interval of the 

predicted values. The overall trend tends to rise. However, some outliers are identified to be 

indicating a lack fit of the model. Further investigations are needed into the assumptions to check 

the validity of this model. Refer to table C.2 in Annex C for the predicted and observed values. 

Before presenting the conclusions for this model-fitting, the appropriateness of the regression 

model for the thrust force data is examined. 

Independency assumption: Figure 3.4 displays the graphical representation of the residuals 

against the run order of the data collection of the thrust force. This plot shows a random pattern of 

residuals, and does not show any recognizable patterns. Thus, the observations are independent.  

 

Figure 3.4: Plot of residuals of the thrust force data versus run order 

Normality assumption: The normal probability plot below shows a slight deviation of the 

straight line at the lower and upper tail which could be potentially due to the influence of outliers. 
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Note that the line crossing the points is added as a reference line to detect easily any outliers. To 

better validate the normality assumption, the Shapiro-Wilk test is performed. 

 

Figure 3.5: Normal probability plot for the thrust force data using MLR 

Shapiro test implicates that the null hypothesis is that the data are normally distributed. If the 

calculated p-value is lower than 0.05, then the null hypothesis that the data are normally 

distributed is rejected. If the p-value is greater than 0.05, then the null hypothesis is not to be 

rejected. As indicated in table 3.6, the p-value is 0.04411, lower than 0.05. Consequently, the 

experimental data of the thrust force does not follow a normal distribution. 

Table 3.6: Shapiro-Wilk Test for thrust force normality using MLR 

 

Homoscedasticity assumption: The residual plot below confirms that the variance of the 

residual is not constant and the values are not fluctuating randomly around zero. The line crossing 

the points is plotted as a reference to visualize the structure of the values. Most values are 

concentrated around 0-200 and there are many observations that differ from the main trend. The 

issue with the variance being not constant may be due to the influence of some observations to 

the model. However, in several cases, transforming the dependent variable or developing a non-

linear model may resolve this issue without excluding any observations. 
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rthrustforce       35    0.93659      2.263     1.705    0.04411

                                                                

    Variable      Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data

. swilk rthrustforce



34 
 

 

Figure 3.6: Residual plot for the thrust force data using MLR 

Linearity assumption: The relationship between the independent variable and the dependent 

variable must be linear. To verify this assumption, the respective scatterplots of the thrust force 

against the feed rate, and the spindle speed are presented.  

 

Figure 3.7: Scatterplots of thrust force versus feed rate and spindle speed 

 The “lowess” outline on both figures is generated by the software as the computations of the 

locally-weighted polynomial smoother. The name "lowess" is derived from the term "locally 

weighted scatter plot smooth". Its purpose is to fit a smoother outline to the data under study. If 

the data follows a linear distribution, this line will overlap the regression line. Otherwise, it will 

fit another model. Figure 3.7 indicates that both lowess and the regression outlines are 

overlapping which confirm that the existent relationship between the thrust force and each 

independent variable is linear. 

As explained previously, to be able to use the MLR model of the thrust force, assumptions must 

be verified and validated. Below is a summary of the assumptions’ validation results for the thrust 

force multiple linear regression model (Table 3.7).  
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Table 3.7: Illustration of the assumption validation results for thrust force using MLR 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity No 

Linearity Yes 

Based on this series of analysis, this model does not follow the normality and the 

homoscedasticity assumptions. In this case, the linear regression model does not suit this data and 

experts cannot rely on this fitting model to predict the trend of the thrust force at any point of this 

experimental domain. For further verifications and to better understand the relationship between 

the thrust force and the independent variable, the interaction between the feed rate and the spindle 

speed is added to the regression model fitting in the next section.  

3.1.4 Thrust force multiple linear regression analysis with interaction 

As described in the previous sections, the feed rate is an important variable to the thrust force 

regression model. However, the spindle speed was identified to moderately affect the thrust force. 

In subsequent analysis, an interaction effect between the main variables, feed rate and spindle 

speed is added to evaluate if this interaction against the thrust force is substantial.  

As a standard procedure, the most important tables are pulled from the software to process the 

multiple regression analysis. Table 3.8 demonstrates the parameter estimates, ANOVA and 

coefficient of determination results.  

The ANOVA results above indicate that the feed rate with p-value equal to 0, lower than 0.05, 

and the effect between the feed rate and spindle speed with p-value corresponding to 0, lower 

than 0.05. As observed, an interaction is revealed important on the thrust force behavior. 

However, the spindle speed is not as significant as it was in the multiple linear regression analysis 

without interaction and this was caused by combining the interaction effect into the residual. In 

fact, the spindle speed has a p-value equal to 0.048, around the critical value of 0.05, which 

makes this variable non-significant. However, the spindle speed cannot be removed because his 

effect is reflected in its interaction with the feed rate. 
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Table 3.8: Parameter estimates and ANOVA results for thrust force using MLR-interaction 

 

 Based on table 3.8, the following MLR fitted model with interaction is pulled: 

Tf = 3.922 + 0.687*F + 0.003*SS – 0.000037*F*SS 

This model suggests that the thrust force is more sensitive to the feed rate than the spindle speed 

because the feed rate has a bigger impact and the spindle speed has a minimum influence (via the 

interaction), the overall trend is to rise. The adjusted R
2
 is at 95.42% which is a significant 

indication that this model may be a good fit. The variability of the multiple first-order regression 

model developed previously was 78.77% compared to 95.42% with the multiple regression with 

interaction. Consequently, the variability is improved, thus this model fits better the thrust force 

experimental data. Below is the plot of the observed against the fitted values of the thrust force 

using the MLR with interaction. This fitting seems to suit the data. Most of the predicted values 

are within the 95% interval of confidence. Few observations lie right at the edge but they are not 

outliers. Refer to table C.3 in annex C for the fitted and the observed data. 

 

Figure 3.8: Thrust force plot fitted against observed values using MLR-interaction 

                                                                              

       _cons     3.921716   13.86343     0.28   0.779    -24.35293    32.19637

         fds    -.0000372   3.44e-06   -10.82   0.000    -.0000442   -.0000302

spindlespeed     .0029445   .0014322     2.06   0.048     .0000235    .0058654

        feed      .686562   .0332897    20.62   0.000     .6186672    .7544569

                                                                              

 thrustforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    543021.771    34  15971.2286           Root MSE      =  27.059

                                                       Adj R-squared =  0.9542

    Residual     22698.621    31  732.213582           R-squared     =  0.9582

       Model     520323.15     3   173441.05           Prob > F      =  0.0000

                                                       F(  3,    31) =  236.87

      Source         SS       df       MS              Number of obs =      35

. regress thrustforce feed spindlespeed fds
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To verify the adequacy of this model, the same assumptions must be verified except linearity and 

independency because it was already verified in the previous regression analysis: normality and 

homoscedasticity. 

Normality assumption: Figure 3.9 is the normal probability plot of standardized residuals for 

the thrust force data to validate the normality assumption. It displays a straight line which 

represents that the random errors are normally distributed and no deviation from the straight line 

is observed. To better validate the normality assumption, the Shapiro-Wilk test is performed as 

well. From table 3.9, the calculated p-value corresponds to 0.69273, greater than 0.05. 

Consequently, the null hypothesis that the standard residuals are normally distributed cannot be 

rejected. Thus, the experimental data of the thrust force do follow a normal distribution in this 

case. 

Figure 3.9: Normal probability plot of standardized residuals for the thrust force with MLR-

interaction 

Table 3.9: Shapiro-Wilk Test for Thrust Force Normality for MLR-interaction 

 

Homoscedasticity assumption: Figure 3.10 is a plot of the predicted values against raw 

residuals to validate the Homoscedasticity assumption. The reference line at 0 emphasizes that 

the residuals are split about 50-50 between positive and negative. This plot confirms that this 

assumption is violated: the variance of the residual is not constant. To make sure that this 

assumption is violated, the BPCW test is completed and the chi-square value is at 8.76 and its p-

value is 0.0031, lower than 0.05. This test indicates that the variance of the residuals is not 

constant. 

      rtffds       35    0.97799      0.786    -0.504    0.69273

                                                                

    Variable      Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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Figure 3.10: Thrust force fitted values against standardized residuals 

Below is a summary of the assumptions’ validation results. Because the homoscedasticity 

assumption is violated, this model cannot be accepted even with 96% accuracy. As discussed 

earlier, if a suitable model is not found with the MLR, a non-linear/transformation model will be 

attempted. 

Table 3.10: Illustration of the assumption validation results 

Assumptions Valid for this model 

Independency Yes 

Normality Yes 

Homoscedasticity No 

Linearity Yes 
 

3.1.5 Thrust force data transformation 

The software tries different types of transformation and performs a statistical test to evaluate if 

the data is normally distributed. The transformation with a p-value greater than 0.05, indicates 

that the hypothesis that the data follows a normal distribution cannot be rejected. One of the 

important set of statistical tests is the chi-squared test which allows experts to test for deviations 

of observed frequencies from expected frequencies. In other words, it’s called a goodness of fit. 

In this case, the chi-square is used to test if the transformed thrust force data came from a normal 

distribution. The null hypothesis in this test is that the data follows a normal distribution and the 

alternative hypothesis is that the data does not follow a normal distribution. If the p-value is lower 

than 0.05, the null hypothesis is to be rejected. In table 3.11, this method suggests that three 

transformations are possible with a p-value greater than 0.05: 

 Inverse with p-value equals to 0.148, 

 Log with p-value equals to 0.318, and 
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 1/(square root) equals to 0.271. 

Table 3.11: Goodness of fit of thrust force transformations 

 

In this case, the log of dependent variable is the best option whereas its p-value is the highest one 

to be over 0.05 and the null hypothesis cannot be rejected. In the following analysis, the log 

transformation is verified to construct the thrust force prediction model. 

Table 3.12: Parameter estimates and ANOVA results of log-thrust force 

 

The ANOVA results indicate that the feed rate and the spindle speed p-values are near 0, lower 

than 0.05 which indicate that these variables are both significant. Based on the table above, the 

following multiple regression fitted model is pulled: 

Log (Tf) = 4.291 + 0.00247*F - 0.000045*SS 

Table 3.12 indicates as well that the adjusted R
2
 is at 90.5%; a very good estimation. The 

variability of the MLR with interaction developed previously was 95.42% compared to 90.46% 

with the log transformation. The variability is explained better by the MLR with interaction 

model; however, the assumptions were violated. In a transformation, the interpretation of the 

coefficients is slightly different: 

1. Intercept exp(β0) = exp(4.291) = 73.05 : when the feed rate and the spindle speed are zero, the 

expected geometric mean of thrust force is 73.05. 

1/cubic                1/(thrust~e^3)         30.99        0.000

1/square               1/(thrust~e^2)         17.87        0.000

inverse                1/thrust~e              3.82        0.148

1/(square root)        1/sqrt(thrust~e)        2.61        0.271

log                    log(thrust~e)           2.29        0.318

square root            sqrt(thrust~e)          7.04        0.030

identity               thrust~e               15.93        0.000

square                 thrust~e^2             30.85        0.000

cubic                  thrust~e^3             39.60        0.000

                                                                  

Transformation         formula               chi2(2)       P(chi2)

                                                                              

       _cons     4.291173   .0917605    46.76   0.000     4.104263    4.478083

spindlespeed    -.0000453   8.27e-06    -5.48   0.000    -.0000622   -.0000285

        feed      .002469   .0001439    17.16   0.000     .0021758    .0027621

                                                                              

        lntf        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    19.7458939    34  .580761585           Root MSE      =   .2354

                                                       Adj R-squared =  0.9046

    Residual    1.77327636    32  .055414886           R-squared     =  0.9102

       Model    17.9726175     2  8.98630875           Prob > F      =  0.0000

                                                       F(  2,    32) =  162.16

      Source         SS       df       MS              Number of obs =      35

. regress lntf feed spindlespeed
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2. Feed rate exp(β1): for changes of one unit of feed, the expected geometric mean of thrust 

force expects to increase 13.4% since  exp(0.1259229)= 1.13. 

3. Spindle Speed exp(β2): for changes of one unit of spindle speed, the expected geometric mean 

of thrust force expects to have no change, since exp(-0.0000453)=1.00. 

Figure 3.11 is the plot of the log thrust force fitted model using a logarithmic transformation of 

the dependent. This plot displays a linear fit. Also, the predicted values are slightly lying on the 

fitted line and within the interval of confidence. This indicates that this model fits well the thrust 

force data. Refer to table C.4 in Annex C for the fitted and observed values of the log thrust 

force transformation. 

 

Figure 3.11: Plot of the log thrust force fitted model against the feed rate and spindle speed 

To be able to use this model, the following assumptions must be validated: normality, 

homoscedasticity and linearity. 

Normality Assumption: To validate the normality assumption, the Shapiro-Wilk test is 

performed. The p-value from table 3.13 is equal to 0.08268, greater than 0.05. Consequently, the 

null hypothesis that the standard residuals are normally distributed cannot be rejected. Thus, this 

assumption is validated. 

Table 3.13: Shapiro-Wilk Test for log thrust force 

 

Homoscedasticity assumption: Figure 3.12 displays no specific pattern of the residuals so this 

assumption is validated. To validate it mathematically, the BPCW test is completed. The 

calculated chi-square value is 1.36 and its p-value is 0.2434, greater than 0.05. This test indicates 

as well that the variance of the residuals is constant. 
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       rlntf       35    0.94554      1.944     1.387    0.08268

                                                                

    Variable      Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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Figure 3.12: Plot of residual vs fitted values for log thrust force transformation 

Linearity Assumption: As displayed on figure 3.13, the relationship is linear. The points on 

each plot are the observed thrust force value at each corresponding level of feed rate or spindle 

speed. The line crossing these points is the fitted trend of the overall data to provide us a visual 

illustration of the distribution. 

 

 

 

 

 

Figure 3.13: Scatterplot of feed rate and spindle speed against log thrust force 

Table 3.14 summarizes the assumptions’ validation results. Because all assumptions are 

validated, this model can be used by the experts with 91% of accuracy. 

Table 3.14: Illustration of the assumption validation results for log thrust force model 

Assumptions Valid for this model 

Independency Yes 

Normality Yes 

Homoscedasticity Yes 

Linearity Yes 
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3.1.6 Comparison of the methods used for thrust force 

Table 3.15 explores all the options and indicates the more appropriate model to use for prediction 

purposes. Based on the best variability and assumptions validation adequacy, researchers can 

readily apply this model to predict the thrust force trend by:  

Log (Tf) = 4.291 + 0.00247*F - 0.000045*SS  

Table 3.15: Comparison of all methods used for the thrust force analysis 

Method used Validity to use Variability  

(Adj R
2
) 

Significant 

Variablsvariables MLR Non-normality and 

variance not constant 

78.77% Feed rate and spindle speed 

MLR with 

interaction 

Variance not constant 95.42% Feed rate and interaction 

Log transformation Valid 90.46% Feed rate and spindle speed 

3.2 Cutting force analysis 

3.2.1 Cutting force distribution study over feed rate 

For this simple linear regression analysis, the boxplot and the parameter estimates, ANOVA and 

coefficient of determination results are pulled. Figure 3.14 indicates that the cutting force is 

higher as the feed rate increases. Thus, the feed rate is directly proportional to the cutting force. 

The cutting force reaches its max value when the feed rate is at its max as well. The variability is 

wider when the feed rate increases. No outliers are detected. 

In table 3.16, the calculated p-value is near 0, lower than 0.05 which demonstrates that the feed 

rate has a significant effect on the cutting force. The adjusted R
2
 corresponds to 0.7930 which 

indicates that 79.3% of the variability is explained only by the feed rate; which constitutes a 

major effect on the cutting force. To perceive the trend of the cutting force against the feed rate, 

the boxplot below is drawn.  

 

Figure 3.14: Boxplot of feed rate against cutting force 
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Table 3.16: Parameter estimates and ANOVA results of cutting force against feed rate 

 

3.2.2 Cutting force distribution study over spindle speed 

In this section, a simple linear regression analysis is performed to understand the relationship and 

interaction between the cutting force against the spindle speed. From table 3.17, the calculated p-

value corresponds to 0.067 which is greater than 0.05. This indicates that the spindle speed has no 

major effect on the cutting force. There are other combined variables into the error term that may 

have influence on the cutting force. The effect of the feed rate is combined into the residual. The 

adjusted R
2
 corresponds to 0.0705 which implies that 7.05% of the variability is explained by the 

spindle speed effect.  

By examining the boxplot, on figure 3.15, a slight decrease of the cutting force with the increase 

of spindle speed is detected. The thrust force is inversely proportional to the spindle speed. The 

variability of the cutting force on each spindle speed value is very large; cutting force values vary 

significantly on each spindle speed level. 

Table 3.17: Parameter estimates and ANOVA results of cutting force over spindle speed 

 

                                                                              

       _cons     26.12345   4.577721     5.71   0.000     16.81001     35.4369

        feed     .1259229   .0109923    11.46   0.000     .1035588    .1482869

                                                                              

cuttingforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    53091.1728    34  1561.50508           Root MSE      =   17.98

                                                       Adj R-squared =  0.7930

    Residual    10668.0582    33   323.27449           R-squared     =  0.7991

       Model    42423.1147     1  42423.1147           Prob > F      =  0.0000

                                                       F(  1,    33) =  131.23

      Source         SS       df       MS              Number of obs =      35

. regress cuttingforce feed

                                                                              

       _cons     86.60818   12.95866     6.68   0.000      60.2436    112.9728

spindlespeed     -.002532   .0013387    -1.89   0.067    -.0052556    .0001917

                                                                              

cuttingforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    53091.1728    34  1561.50508           Root MSE      =  38.098

                                                       Adj R-squared =  0.0705

    Residual    47898.9085    33  1451.48208           R-squared     =  0.0978

       Model    5192.26432     1  5192.26432           Prob > F      =  0.0674

                                                       F(  1,    33) =    3.58

      Source         SS       df       MS              Number of obs =      35

. regress cuttingforce spindlespeed
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Figure 3.15: Boxplot of cutting force against spindle speed 

3.2.3 Cutting force multiple linear regression analysis 

The parameter estimates, ANOVA and coefficient of determination results are acquired to obtain 

the fitted model with the multiple linear regression technique. Table 3.18 indicates that the feed 

rate and the spindle speed are both significant and affect the cutting force. From a statistical point 

of view, both p-values are inferior to 0.05. Also, the adjusted R
2
 is 89% which indicates that the 

model fits well the data. The remaining 11% are related to unknown variability.  

Table 3.19: Parameter estimates and ANOVA results for cutting force using MLR  

 

The estimated MLR model of the cutting force is given by: 

Cf = 47.3922 + 0.126*F – 0.0025*SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of cutting force is 47.3922. 

2. Feed (β1): for each one-unit change of feed, cutting force will increase by 0.126 when the 

spindle speed is constant. 

3. Spindle Speed (β2): for each one-unit change of spindle speed, cutting force will decrease by 

0.0025 when the feed rate is constant. 
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       _cons      47.3922   5.099072     9.29   0.000     37.00573    57.77867

spindlespeed     -.002532   .0004597    -5.51   0.000    -.0034683   -.0015957

        feed     .1259229   .0079975    15.75   0.000     .1096326    .1422132

                                                                              

cuttingforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    53091.1728    34  1561.50508           Root MSE      =  13.081

                                                       Adj R-squared =  0.8904

    Residual    5475.79384    32  171.118557           R-squared     =  0.8969

       Model     47615.379     2  23807.6895           Prob > F      =  0.0000

                                                       F(  2,    32) =  139.13

      Source         SS       df       MS              Number of obs =      35

. regress cuttingforce feed spindlespeed
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By investigating the regression coefficients, it is noticed that the spindle speed has lower 

influence on the cutting force compared to the feed rate. 

Figure 3.16 displays the fitted values on the horizontal axis and the observed values on the 

vertical axis. The utility of this graph is to view whether the model predicts any value poorly. 

Ideally, the points should lie on a 45-degree straight line. In this case, the points are fluctuating 

around the fitted line. Hence, the data may fit the model properly. Table C.5 in annex C presents 

the data of this plot. 

 

Figure 3.16: Plot of the observed vs predicted values for cutting force using MLR 

As explained previously, the assumptions shall be verified to validate the accuracy of the MLR.  

Independency assumption: Figure 3.17 displays the graphical representation of the residuals of 

the fitted cutting force against the run order of the data collection for the cutting force data. As 

observed, the independence assumption is violated because the residuals have a structured 

pattern. Some variables that change over order time are essential and haven’t been included in the 

design. The relationship between the case number and the residuals seems to be curvilinear.  

 

Figure 3.17: Plot of standardized residuals of the cutting force versus case number 
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Normality assumption: Figure 3.18 represents the normality fit of the standardized residuals of 

the cutting force experimental data. The residual values lie on the straight line, thus the random 

errors are normally distributed and no outliers are detected. Thus, the cutting force experimental 

data follows a normal distribution. 

 

Figure 3.18: Normality plot of the standardized residuals of the cutting force data 

To verify mathematically this assumption, the Shapiro-Wilk test for normality is completed in 

table 3.19. The calculated p-value is 0.64561, greater than 0.05. Consequently, the null 

hypothesis (data follows a normal distribution) cannot be rejected. This test confirms the 

reasonableness of the conclusion that the error terms are fairly normally distributed. 

Table 3.19: Shapiro-Wilk test for cutting force using MLR 

 

Homoscedasticity assumption: Figure 3.19 allows a visual assessment between the predicted 

values of the cutting force and its raw residuals. It illustrates that the variance of the residual is 

non-constant due to a structured pattern. When observing this figure, some experts will think that 

the variance is constant. To confirm this result, BPCW test is completed. Thus, the calculated 

square-chi value is 4.24 and its p-value is at 0.0395, lower than 0.05 which indicates that the 

variance is not constant. 
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        rcut       35    0.97657      0.836    -0.373    0.64561
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                   Shapiro-Wilk W test for normal data
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Figure 3.19: Cutting force fitted values versus residuals 

Linearity assumption: The linearity assumption is assessed by looking at figure 3.20 

representing respectively the scatterplots of the feed rate and the spindle speed against the cutting 

force.   

Figure 3.20: Scatterplots feed rate and spindle speed against cutting force 

 In fact, by observing these plots, they indicate that the relationship between the feed rate and the 

cutting force, and spindle speed and the cutting force are both linear. The outline of the lowess of 

the feed rate overlays the fitted values line to indicate a moderately linear fit between the feed 

rate and cutting force. And, the lowess of the spindle speed overlaps perfectly the fitted values 

line to imply a linear fit between the spindle speed and cutting force. 

Table 3.20 describes the validation results of the assumptions of the cutting force model using 

the MLR. The model proposed by the MLR cannot be used because the independency and 

homoscedasticity assumptions are violated; the fitted values from the linear regression will be 

biased and estimates are not meaningful. With this model, an increased risk of Type I errors may 

be perceived. In further sections, another fit of regression analysis will be fitted to find the most 
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suitable prediction model. Also, the independency assumption may be violated because of the 

high correlation between the variables. 

Table 3.20: Illustration of the assumption validation results for cutting force MLR 

Assumptions Valid for this model 

Independency No 

Normality Yes 

Linearity Yes 

Homoscedasticity No 

3.2.4 Cutting force multiple linear regression with interaction 

In this section, the data are attempted to fit a MLR with interaction. This method evaluates the 

interaction between the feed rate and the spindle speed against the cutting force in addition to the 

separate variables.  

Table 3.21 shows that the feed rate and the interaction between the feed rate and spindle speed 

are significant. It is evident that their p-values are near 0, lower than 0.05. The spindle speed has 

no impact on the cutting force whereas its p-value equals to 0.43, greater than 0.05. The adjusted 

R
2
 is equal to 94.78% which is considered a very good estimate; since only 5.22% is related to 

unknown variability. The thrust force is more sensitive to the feed rate than the spindle speed 

because the feed rate has a bigger impact; the overall trend is to rise.  

Table 3.21: Parameter estimates and ANOVA results for cutting force using MLR-interaction 

 

Based on table 3.21, the fitted regression model for the cutting force is expressed by: 

Cf = 29.335 + 0.184*F – 0.0004*SS – 0.000007*F*SS 

Figure 3.21 illustrates the estimated regression line of the cutting force using the MLR with 

interaction. This plot indicates a linear relationship between the dependent and independent 

variables. No outliers are detected and most predicted values are within the interval of 

                                                                              

       _cons     29.33509    4.62483     6.34   0.000     19.90269    38.76749

         fds    -6.90e-06   1.15e-06    -6.02   0.000    -9.24e-06   -4.56e-06

spindlespeed    -.0003823   .0004778    -0.80   0.430    -.0013568    .0005921

        feed     .1839044   .0111054    16.56   0.000     .1612547    .2065541

                                                                              

cuttingforce        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    53091.1728    34  1561.50508           Root MSE      =   9.027

                                                       Adj R-squared =  0.9478

    Residual    2526.09494    31  81.4869335           R-squared     =  0.9524

       Model    50565.0779     3   16855.026           Prob > F      =  0.0000

                                                       F(  3,    31) =  206.84

      Source         SS       df       MS              Number of obs =      35

. regress cuttingforce feed spindlespeed fds
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confidence. This model may be used if the assumptions are validated. Refer to table C.6 in 

annex C for this plot data. 

 

Figure 3.21: Observed vs predicted values of the cutting force using MLR-interaction 

The variability of the MLR model developed previously for the cutting force was 89% compared 

to 94.78% by adding the interaction effect. Accordingly, the variability is enhanced with this type 

of regression. Before concluding that this model can be used to predict the cutting force, the 

following assumptions must be validated: normality and homoscedasticity. The independency 

and linearity assumptions have already been completed in the previous analysis. 

Normality assumption: Figure 3.22 displays that the distribution follows a normal distribution. 

The values are distributed around the straight line so we can assume that the random errors are 

normally distributed and no extreme points are perceived. When the Shapiro-Wilk test (table 

3.23) is performed, the calculated p-value is 0.35199, greater than 0.05. Consequently, this test 

confirms the visual examination. 

 

Figure 3.22: Normality plot for cutting force residuals using MLR-interaction 
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Table 3.22: Shapiro-test for cutting force using MLR-interaction 

 

Homoscedasticity assumption: The residual plot below indicates that there is no pattern within 

the data and the values are fluctuating randomly around zero. Therefore, the variance is constant. 

To verify that the geometric illustration is interpreted correctly, the BPCW test is completed. The 

computed square-chi value is 0.22 and the p-value is equal to 0.6413, greater than 0.05. In this 

case, the variance is constant even if the chart may provide us a different reasoning. 

 

Figure 3.23: Plot of fitted against residual values for cutting force with MLR-interaction 

Table 3.23 describes the validation results of the assumptions for this method. The presence of 

the interaction term provides a slight better fit of the model from 89% compared to 94.78%. 

However, it is important to keep in mind that the interpretation of the coefficients is different in 

the presence of the interaction term. For instance, as the interaction term is statistically 

significant, it means that the feed rate has an effect on cutting force but the intensity of this effect 

depends on the spindle speed value. 

Table 3.23: Illustration of the assumption validation results for cutting force using MLR-

interaction 

Assumptions Valid for this model 

Independency No 

Normality Yes 

Linearity Yes 

Homoscedasticity Yes 

      rcffds       35    0.96639      1.200     0.380    0.35199

                                                                

    Variable      Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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3.2.5 Comparison of the methods used for cutting force data 

To find an accurate model to predict the cutting force with feed rate and spindle speed as inputs, 

two methods are qualified: multiple regression with and without an interaction effect. To compare 

the studied models, the AIC is generated for each one.  

Table 3.24: Akaike’s results for Thrust force model with MLR–no interaction 

 

Table 3.25: Akaike’s results for Thrust force model with MLR–with interaction 

 

Tables 3.24 and 3.25 indicate that: 

AIC no interaction = 286.84 compared to AIC with interaction = 263.32 

Table 3.26 explores all the models and presents the most useful one. The MLR with interaction 

improves the model by 5.78%. In fact, the AIC of this model is slightly smaller and has a better 

variability. Experts can apply the following regression model with interaction to predict the 

cutting force trend: 

Cf = 29.335 + 0.184*F – 0.0004*SS – 0.000007*F*SS 

Table 3.26: Comparison of main methods used for cutting force analysis 

Method used Assumptions Variability  

(Adj R
2
) 

Significant variables AIC 

MLR 
Variance not 

constant 

 

89.04% 
Feed rate and spindle 

speed 
286.84 

MLR with interaction Valid 94.78% Feed rate and interaction 263.32 

This experiment is achieved by running randomly each observation while drilling the composite. 

The observations are not dependent on the time of collection, but highly correlated among each 

other. Therefore, the independency assumption would be violated, this model is still 

recommended to use.  

                                                                             

           .       35   -177.8402   -138.0859      3     282.1718    286.8378

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

                                                                             

           .       35   -177.8402   -124.5468      4     257.0936     263.315

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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3.3 Torque analysis 

3.3.1 Torque distribution study over feed rate 

To evaluate the significance of the feed rate on the torque, the parameter estimates, ANOVA and 

coefficient of determination results are generated. From table 3.27, the calculated p-value of the 

feed rate is near 0, lower than 0.05 which suggests that the feed rate has a significant effect on the 

torque. The adjusted R
2
 corresponds to 0.7930 which is considered a very good estimate. 79.3% 

of the variability is explained by the feed rate. The rest of the variability (20.7%) is attributed to 

missing other explanatory variables and unknown parameters. 

Table 3.27: Parameter estimates and ANOVA results for the torque against the feed rate 

 

 A box-and-whisker plot of the torque, figure 3.24, is drawn below for each group of the feed 

rate, providing a visual representation of the differences between the ranges under study. The 

boxplot demonstrates that the torque has a rising relationship with the feed rate. In fact, the torque 

is higher as the feed rate increases. The feed rate is directly proportional to the torque. Also, the 

variability of the torque is smaller when the feed rate ranges between 20 and 200. When the feed 

rate varies between 400 and 800, the torque variance is more stretched which involves more 

variability between the observations. No outliers are detected. 

 

Figure 3.24: Boxplot of the torque against the feed rate 

                                                                              

       _cons     130.6169   22.88852     5.71   0.000     84.04981    177.1839

        feed     .6296165   .0549614    11.46   0.000     .5177968    .7414362

                                                                              

      torque        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    1327284.73    34  39037.7861           Root MSE      =  89.899

                                                       Adj R-squared =  0.7930

    Residual    266699.478    33  8081.80237           R-squared     =  0.7991

       Model    1060585.25     1  1060585.25           Prob > F      =  0.0000

                                                       F(  1,    33) =  131.23

      Source         SS       df       MS              Number of obs =      35

. regress torque feed
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3.3.2 Torque distribution study over spindle speed 

In this section, the spindle speed is analyzed as the only effect on the torque. To verify the effect 

of the spindle speed on the torque, the parameter estimates, ANOVA and coefficient of 

determination results are produced in table 3.28. The p-value of the spindle speed corresponds to 

0.067, greater than 0.05 which means that the spindle speed is not a significant effect on the 

torque. As a matter of fact, when the feed rate is removed, its effect is combined to the residual 

(pooling result) which makes the spindle speed effect inappropriate.  

Table 3.28: Parameter estimates and ANOVA results for the torque against spindle speed 

 

On figure 3.25, the boxplot displays the relationship between the spindle speed and the torque. A 

slight decrease is observed of the torque value with the increase of the spindle speed. The boxes 

are all centered which indicates that the distribution follows a normal distribution. Also, no 

significant shift of the boxes is observed and no outliers are detected. 

 

Figure 3.25: Boxplot of the torque against the spindle speed 

3.3.3 Torque multiple linear regression analysis 

In the previous sections, the relationship between each independent variables and the torque was 

exposed to understand the behavior of the outcome when varying the levels of the feed rate and 

the spindle speed. In this section, both explanatory variables are put together to present the 

                                                                              

       _cons     433.0426   64.79333     6.68   0.000     301.2195    564.8656

spindlespeed    -.0126601   .0066936    -1.89   0.067    -.0262784    .0009581

                                                                              

      torque        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    1327284.73    34  39037.7861           Root MSE      =  190.49

                                                       Adj R-squared =  0.0705

    Residual    1197474.73    33  36287.1131           R-squared     =  0.0978

       Model    129809.995     1  129809.995           Prob > F      =  0.0674

                                                       F(  1,    33) =    3.58

      Source         SS       df       MS              Number of obs =      35

. regress torque spindlespeed
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multiple linear regression analysis of the torque. The parameter estimates, ANOVA and 

coefficient of determination tables are generated in table 3.29 to process the regression analysis. 

It demonstrates that the feed rate and the spindle speed have significant effects on the torque. In 

fact, both p-values are close to zero, lower than 0.05. Also, this model has an adjusted R
2
 of 89% 

which reveals a good fit of the model to the data. As observed earlier, the feed rate has the most 

impact on the torque compared to the spindle speed. The MLR model of the torque is given by: 

T = 236.962 + 0.63*F – 0.127*SS 

Table 3.29: Parameter estimates and ANOVA tables for the torque using MLR 

 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of torque is 236.9625. 

2. Feed rate (β1): for each one-unit change of feed rate, the torque will increase by 0.63 when the 

spindle speed is constant. 

3. Spindle speed (β2): for each one unit change of spindle speed, the torque will decrease by 

0.127 when the feed rate is constant. 

Figure 3.26 illustrates the predicted values on the vertical axis by the observed values on the 

horizontal axis. The observed relationship is linear and most of the predicted values are within the 

interval of confidence of 95% which may indicate a good fit to the model. Table C.7 in annex C 

presents the observed and predicted torque data. 

                                                                              

       _cons      236.962   25.49486     9.29   0.000     185.0307    288.8933

spindlespeed    -.0126601   .0022982    -5.51   0.000    -.0173415   -.0079788

        feed     .6296165   .0399865    15.75   0.000     .5481667    .7110663

                                                                              

      torque        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    1327284.73    34  39037.7861           Root MSE      =  65.405

                                                       Adj R-squared =  0.8904

    Residual    136889.483    32  4277.79635           R-squared     =  0.8969

       Model    1190395.24     2  595197.622           Prob > F      =  0.0000

                                                       F(  2,    32) =  139.14

      Source         SS       df       MS              Number of obs =      35

. regress torque feed spindlespeed
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Figure 3.26: Plot of observed versus predicted values for torque using MLR 

Even if the model’s variability is good, the four assumptions discussed previously shall be 

validated before confirming the adequacy of this model. 

Independency assumption: Figure 3.27 is a graphical representation of the standardized 

residuals of the fitted torque against the run order of the data collection of the torque data. As 

observed, the independence assumption is violated because the residuals have a curvilinear 

pattern.  

 

Figure 3.27: Plot of the standardized residuals of the fitted torque against the run order of the data 

collection 

Normality assumption: Figure 3.28 shows a straight line. Thus, the random errors are normally 

distributed and no outliers are identified. By performing the Shapiro-Wilk test for normality 

checking (table 3.31), the generated p-value is 0.64571, greater than 0.05. This test endorses the 

same conclusion as the graphical illustration: the normality assumption is validated. 
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Figure 3.28: Normality plot for the torque experimental data 

Table 3.30: Shapiro-Wilk test for normal data for torque using MLR 

 

Homoscedasticity assumption: Figure 3.29 presents the standardized residuals of the torque 

experimental data. It displays that the variance of the residual is not constant with a bent shape 

pattern. To verify that the geometric illustration is providing accurate information, the BPCW test 

is completed and the calculated square-chi value is equal to 4.24 and the p-value corresponds to 

0.0395, lower than 0.05. In this case, the variance is not constant which confirms the same results 

pulled from the graph.  

 

Figure 3.29: Observed vs residual values plot of the torque data using MLR 

Linearity assumption: To verify the linearity, the relationship of the torque against both 

independent variables is investigated by plotting the scatterplots below. Figure 3.30 indicates that 

the relationship between the torque-feed rate, and the torque-spindle speed are both linear. The 

lowess outline of the feed rate-torque slightly overlaps the fitted regression line. However, the 

one for the spindle speed-torque is close to a perfect match of a linear fit. 
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Figure 3.30: Scatterplots feed rate and spindle speed against torque 

Table 3.31 describes the validation results of the assumptions. Because two of the four 

assumptions are violated, the fitted model above shall not be used for prediction purposes.   

Table 3.31: Illustration of the assumption validation results for torque using MLR 

Assumptions Valid for this model 

Independency No 

Normality Yes 

Homoscedasticity No 

Linearity Yes 

3.3.4 Torque multiple linear regression with interaction 

As explored in previous sections, the feed rate has a major effect on the torque unlike the spindle 

speed. For further investigation, the data is fitted to the MLR technique by adding an interaction 

effect. This method allows researchers to evaluate the interaction between the feed rate and the 

spindle speed against the torque in addition to the other effects.  

The ANOVA results below (table 3.32) show that the feed rate (p-value = 0 < 0.05) and the 

effect between the feed rate and spindle speed (p-value = 0 < 0.05) are significant. However, the 

spindle speed (p-value = 0.430 > 0.05) has no important impact on the torque. Also, the adjusted 

R
2
 is very good which corresponds to 94.78%; Very little variability (5.22%) is left unexplained. 

The presence of the interaction term provides a better fit of the torque model from 89% to 

94.78%. The variability is explained better so the second model fits well the thrust force. 

However, it is important to keep in mind that interpretation of the coefficients is different in the 

presence of the interaction term. For instance, as the interaction term is statistically significant, 

the feed rate has an effect on torque but the intensity of this effect depends on the spindle speed.  

Table 3.32: Parameter estimates and ANOVA tables for torque using MLR with interaction 
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From the table above, the following fitted regression model is constructed: 

T = 146.68 + 0.92*F – 0.0019*SS – 0.000035*F*SS 

Figure 3.31 displays the estimated regression line of the torque. The confidence band at 95% is 

the dash red line. Most of the fitted values are within this interval which indicates a good fit of 

the estimated model. Also, the predicted values lie approximately on the linear fitted plot. By this 

visual inspection, the model fits well the data. Table C.8 in annex C the data for this plot. 

 

Figure 3.31: Plot of torque observed against predicted values using MLR-interaction 

Knowing that the independency and linearity assumptions were already completed in the previous 

section, the normality and homoscedasticity assumptions will be verified. 

Normality assumption: Figure 3.32 shows a straight line which indicates that the random errors 

are normally distributed and no critical deviation from the straight line is observed. The Shapiro-

Wilk test (table 3.32) indicates that the p-value corresponds to 0.35176, greater than 0.05. Thus, 

the null hypothesis that the data follows a normal distribution cannot be rejected. This test 

confirms the plot’s results. 

                                                                              

       _cons     146.6793   23.12402     6.34   0.000     99.51756    193.8411

         fds    -.0000345   5.74e-06    -6.02   0.000    -.0000462   -.0000228

spindlespeed    -.0019122   .0023889    -0.80   0.430    -.0067843    .0029599

        feed      .919515   .0555269    16.56   0.000     .8062673    1.032763

                                                                              

      torque        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    1327284.73    34  39037.7861           Root MSE      =  45.135

                                                       Adj R-squared =  0.9478

    Residual    63151.6843    31  2037.15111           R-squared     =  0.9524

       Model    1264133.04     3  421377.681           Prob > F      =  0.0000

                                                       F(  3,    31) =  206.85

      Source         SS       df       MS              Number of obs =      35
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Figure 3.32: Normal probability plot of the torque using the MLR-interaction 

Table 3.32: Shapiro-Wilk test for torque using MLR-interaction 

 

Homoscedasticity assumption: Figure 3.33 is the plot of the predicted values of the torque data 

against the raw residuals to validate the homoscedasticity assumption. This plot confirms that this 

assumption is validated. The same observations are displayed in figure 3.23 due to variables 

being highly correlated. 

 

Figure 3.33: Predicted torque values against residuals using MLR-interaction 

As discussed in the previous section, the independency assumption is violated due to a strong 

correlation among the variables which implicates that this model can be used with 94.78% of 

accuracy. Table 3.33 describes the validation results of the assumptions. 

Table 3.33: Illustration of the assumption validation results for the torque MLR-interaction 

Assumptions Valid for this model 

Independency No 

Normality Yes 

Homoscedasticity Yes 

Linearity Yes 
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3.3.5 Comparison of the methods used for torque 

To find an accurate model to predict the torque with feed rate and spindle speed as inputs, MLR 

method was applied. Table 3.34 explores all the options and presents which one to use. 

Table 3.34: Comparison of all methods used for torque analysis force analysis 

Method used Validity to use Variability  

(Adj R
2
) 

Significant variables 

MLR Variance not constant 89.04% Feed rate and spindle speed 

MLR with interaction Valid 94.78% Feed rate and interaction 

Experts shall apply the MLR fitted model with interaction to predict the torque trend by: 

T = 146.68 + 0.92*F – 0.0019*SS – 0.000035*F*SS 

As explained in chapter 1, the torque and the cutting force are highly correlated thus, they 

behave similarly. In fact, by examining both fitted models, the torque is observed to be equal to 

five times the cutting force. Here is a recall of the cutting force model using the MLR with 

interaction: 

Cf = 29.335 + 0.184*F – 0.0004*SS – 0.000007*F*SS 

To confirm this relationship, the following is the mathematical comparison of the values: 

 Intercept of the torque = 146.68 vs Intercept of the cutting force = 29.335. By dividing 146.68 

by 29.335, the ratio is equal to 5. 

 βFT = 0.92 vs βFCf = 0.184. By dividing 0.92 by 0.184, the ratio is equal to 5. 

 βSST = 0.0019 vs βSSCf = 0.0004. By dividing 0.0019 by 0.0004, the ratio is equal to 5. 

 βIT = 0.000035 vs βICf = 0.000007. By dividing 0.000035 by 0.000007, the ratio is equal to 5.  

3.4 Delamination at entry analysis 

3.4.1 Delamination at entry distribution study over feed rate 

In this section, the feed rate is considered the only effect on the delamination at entry. Figure 

3.34 displays the association between the feed rate and the delamination at entry to be linear. The 

outline shape is investigated in details in an anterior section. In fact, the delamination at entry is 

higher as the feed rate increases. The feed rate is directly proportional to the delamination at 

entry. The delamination at entry is directly proportional to the feed rate; it varies depending if the 

feed rate increases or decreases. At feed rate 20, 60 and 100, flat boxes are identified because the 

delamination at entry has the same value (it’s equal to 1). The first outlier is distinguished at feed 
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rate equals to 20 whereas delamination at entry is at 1.081. Six other outliers are detected on the 

plot at different feed rate values when feed rate ranges from 200 to 800. The variance at each 

range of feed rate is considered small.  

 

Figure 3.34: Boxplot of delamination at entry against feed rate 

To evaluate the effect of the feed rate on the delamination at entry, the parameter estimates and 

ANOVA table is generated. Table 3.35 indicates that the computed p-value of the feed rate is 

near 0, lower than 0.05 which designates that the feed rate has a significant effect on the 

delamination at entry. The adjusted R2 corresponds to 0.8215. This indication is very good 

considering that only the feed rate is involved in the delamination at entry. Only 17.85% of the 

variability is not explained. 

Table 3.35: Parameter estimates and ANOVA results for the delamination at entry against feed 

rate 

 

3.4.2 Delamination at entry distribution study over spindle speed 

In this section, the spindle speed is the only effect analyzed on the delamination at entry. Figure 

3.35 displays the relationship between the spindle speed and delamination at entry. It indicates a 

slight decrease of the delamination at entry with the increase of spindle speed. Also, no outliers 
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       _cons     1.007659   .0162706    61.93   0.000     .9745558    1.040762

        feed     .0004903   .0000391    12.55   0.000     .0004108    .0005698

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .06391

                                                       Adj R-squared =  0.8215

    Residual    .134770913    33  .004083967           R-squared     =  0.8267

       Model    .643078995     1  .643078995           Prob > F      =  0.0000

                                                       F(  1,    33) =  157.46

      Source         SS       df       MS              Number of obs =      35

. regress delentry feed
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are detected. However, the variance at each spindle speed range is high which suggests that the 

data is spread out and not concentrated around similar values. 

 

               Figure 3.35: Boxplot of delamination at entry against spindle speed 

To detect the effect of the spindle speed on the delamination at entry, the parameter estimates and 

ANOVA results are generated in table 3.36. The calculated p-value of the spindle speed is 0.449, 

greater than 0.05. Thus, the spindle speed is not a major factor and has no impact on the 

delamination at entry. The adjusted R
2
 which intends to approximate the actual percentage of 

explained variance is slightly negative and very close to zero; -0.0123. It’s an indication that the 

regressor in this model, spindle speed, is useless. More terms should be added to the model for 

better interpretation. 

Table 3.36: Parameter estimates and ANOVA results for the delamination at entry against spindle 

speed 

 

3.4.3 Delamination at entry multiple linear regression analysis 

This section presents the multiple linear regression analysis of the delamination at entry which is 

dependent on the feed rate and spindle speed. As a start, the parameter estimates and ANOVA 

tables are generated to detect the variables that have substantial effect on the delamination at 
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       _cons      1.19479   .0517618    23.08   0.000      1.08948      1.3001

spindlespeed    -4.10e-06   5.35e-06    -0.77   0.449     -.000015    6.78e-06

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .15218

                                                       Adj R-squared = -0.0123

    Residual    .764229654    33  .023158474           R-squared     =  0.0175

       Model    .013620254     1  .013620254           Prob > F      =  0.4486

                                                       F(  1,    33) =    0.59

      Source         SS       df       MS              Number of obs =      35

. regress delentry spindlespeed
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entry. Table 3.37 indicates that the feed rate is the significant variable on the delamination at 

entry with a p-value equal to 0 lower than 0.05, in despite to the spindle speed whereas its p-value 

is at 0.067, greater than 0.05. Accordingly, the delamination at entry is affected significantly by 

the feed rate. However, the spindle speed variation has no significant effect on the delamination 

at entry. The adjusted R
2
 for delamination at entry using MLR is 83.45%. Based on this indicator 

only, the model fits well the data because a good amount of the variability is explained.  

Table 3.37: Parameter estimates and ANOVA results for delamination at entry using MLR 

 

 From table 3.37, the MLR model of the delamination at entry is given by: 

Den = 1.042 + 0.00049*F – 4.1 x 10-6 *SS 

Interpretation of the coefficients 

1. Constant (β0): when feed rate and spindle are zero, the expected mean of delamination at 

entry is 1.042. 

2. Feed rate (β1): for each one unit change of feed rate, delamination at entry will increase by 

0.00049 when the spindle speed is constant. 

3. Spindle Speed (β2): for each one unit change of spindle speed, delamination at entry will 

decrease by 4.10 x 10-6 when the feed rate is constant. 

Figure 3.36 shows the estimated plot of the delamination at entry using the multiple regression 

technique. The relationship between the independent variables and the dependent is linear. The 

predicted values are within the 95% interval of confidence and no outliers are identified. Table 

C.9 in annex C presents the observed and predicted values of this delamination at entry model. 

                                                                              

       _cons     1.042106   .0239845    43.45   0.000     .9932513    1.090961

spindlespeed    -4.10e-06   2.16e-06    -1.90   0.067    -8.50e-06    3.03e-07

        feed     .0004903   .0000376    13.03   0.000     .0004136    .0005669

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .06153

                                                       Adj R-squared =  0.8345

    Residual     .12115066    32  .003785958           R-squared     =  0.8442

       Model    .656699248     2  .328349624           Prob > F      =  0.0000

                                                       F(  2,    32) =   86.73

      Source         SS       df       MS              Number of obs =      35

. regress delentry feed spindlespeed
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Figure 3.36: Delamination at entry observed values against predicted using MLR 

To be able to use this model, the same four assumptions shall be validated. 

Independency assumption: Figure 3.37 is a graphical representation of the standardized 

residuals of the fitted delamination at entry against the run order of the data collection of the 

delamination at entry data. As observed, the independence assumption is valid because the 

residuals do not follow a structured pattern.  

 

Figure 3.37: Plot of the standardized residuals of the fitted delamination at entry against the run 

order of the data collection 

Normality assumption: Figure 3.38 represents the normality fit of the standardized residuals of 

the delamination at entry. The curved line indicates a non-normal distribution. It has a sharp 

lower and upper bound that differs from a bell shaped curve. The Shapiro-Wilk test is completed 

table 3.38. The calculated p-value is 0.02320, lower than 0.05. Therefore, the null hypothesis that 

the data does follow a normal distribution is rejected. This test confirms the graphical results. 

.8
1

1
.2

1
.4

1
.6

O
b

s
e
rv

e
d

1 1.1 1.2 1.3 1.4
Fitted values

95% CI Fitted values

DelEntry

-2
-1

0
1

2

S
ta

n
d
a

rd
iz

e
d

 r
e

s
id

u
a
ls

0 10 20 30 40
Case

Delamination at Entry



65 
 

 

Figure 3.38: Normality plot for the delamination at entry 

Table 3.38: Shapiro-Wilk test for normal data for delamination at entry 

 

Homoscedasticity assumption: Figure 3.39 displays that the variance of the residual is constant 

with an undefined pattern. The BPCW test is completed to confirm this result. The calculated 

square-chi value is equal to 1.18 and the p-value is 0.2768 is greater than 0.05. In this case, the 

variance is constant and the assumption is validated. 

 

Figure 3.39: Predicted vs standardized residual values plot of the delamination at entry 

Linearity assumption: To validate the linearity assumption, the scatterplot of each independent 

variable against the delamination at entry is presented. Figure 3.40 confirms that the relationship 

is linear between each independent variable and the delamination at entry. As a result, the 

linearity assumption is validated. 
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Figure 3.40: Scatterplots feed rate and spindle speed vs delamination at entry 

 Table 3.39 describes the validation results of the assumptions. 

Table 3.39: Illustration of the assumption validation results 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

The normality assumption is violated subsequently; the fitted model generated may be used for 

prediction purposes. However, it may not be the ideal model; the next section will explore the 

interaction effect.   

3.4.4 Delamination at entry multiple linear regression with interaction 

In research, studying multiple effects rather than only the isolated effects of the single variables 

may contribute considerably to the process performance. As a consequence, in this part of the 

study, the regression analysis of the delamination at entry is performed by adding the interaction 

effect of the feed rate and the spindle speed then, a prediction equation is constructed. The 

parameter estimates ANOVA and coefficient of determination results are computed in table 3.40. 

The ANOVA outcomes indicates that the feed rate (p-value = 0), and the interaction of the feed 

rate and spindle speed (p-value = 0.033) are significant; their p-values are both lower than 0.05. 

The p-value of the spindle speed corresponds to 0.741, greater than 0.05, which designates that 

this variable has minimum effect on the delamination at entry. However, the presence of a 

significant interaction indicates that the effect of the feed rate on the delamination at entry 

depends on the values of the spindle speed. The adjusted R
2
 corresponds to 85.28% which is 

considered to be a good estimate. Adding an interaction term to this regression model can greatly 
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expand the understanding of the relationships among the variables in the model. In fact, this 

model provided 1.83% more explained variability than the model without the interaction. 

Table 3.40: Parameter estimates and ANOVA results for delamination at entry using MLR-

interaction 

 

 From table 3.40, the estimated regression model with interaction for the delamination at entry is: 

Den= 1 + 0.00063*F + 1.02x10-6*SS – 1.7x10-8*F*SS 

Figure 3.41 shows the estimated regression line of the delamination at entry. This model fits well 

the data and the relationship is linear. Table C.10 in annex C presents the data of this plot. 

 

Figure 3.41: Delamination at entry observed against predicted values using MLR-interaction 

To be able to use this fitted model, the following assumptions shall be validated before using the 

fitted model: normality and homoscedasticity. 

Normality assumption: Figure 3.42 indicates that the data does not follow a normal 

distribution. The lower and upper tails are not following the straight line and many outliers are 

identified. The Shapiro-Wilk test is performed to check the adequacy of the results observed by 

                                                                              

       _cons     .9990699   .0297312    33.60   0.000     .9384328    1.059707

         fds    -1.65e-08   7.38e-09    -2.23   0.033    -3.15e-08   -1.41e-09

spindlespeed     1.02e-06   3.07e-06     0.33   0.741    -5.24e-06    7.29e-06

        feed     .0006285   .0000714     8.80   0.000     .0004829    .0007741

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .05803

                                                       Adj R-squared =  0.8528

    Residual    .104395499    31  .003367597           R-squared     =  0.8658

       Model    .673454409     3  .224484803           Prob > F      =  0.0000

                                                       F(  3,    31) =   66.66

      Source         SS       df       MS              Number of obs =      35

. regress delentry feed spindlespeed fds
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the graphical illustration. The computed p-value is 0.00432 (from table 3.41), lower than 0.05. 

Thus, the null hypothesis is rejected, and the data does not follow a normal distribution.  

 

Figure 3.42: Normality plot for delamination at entry using MLR-interaction 

Table 3.41: Shapiro-Wilk test for normal data for delamination at entry 

 

Homoscedasticity assumption: This assumption aims to verify that the dependent variable 

exhibits similar amounts of variance across the range of fitted values. This assumption is checked 

by visual examination of a plot of the standardized residuals against the fitted values. Figure 3.43 

displays no specific pattern and the values are fluctuating randomly around zero. To confirm this 

result, the BPCW test is completed. The calculated square-chi value is equal to 1.43 and the p-

value is at 0.2324, greater than 0.05. In this case, the null hypothesis is accepted and the variance 

is homogeneous. 

 

Figure 3.43: Residual plot versus fitted data of delamination at entry using MLR-interaction 
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Table 3.42 describes the validation results of the assumptions. This model may be used. 

However, a transformation and a non-linear regression fitting will be attempted in the next 

section to check if the normality issue can be fixed.  

Table 3.42: Illustration of the assumption validation results of delamination at entry using MLR-

interaction 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

3.4.5 Delamination at entry nonlinear regression 

The main objective of this section is to predict delamination at entry during drilling of 

composites. In the previous sections, it hasn’t been possible to outline a satisfactory estimated 

multiple regression model. In fact, in case of the assumptions are violated, the results of the 

analysis are incorrect and misleading which makes the model unusable. As introduced at the 

beginning of this study, if the multiple regression methodology can’t be used, the nonlinear 

regression technique will be developed to fit a model. Researchers are looking for a model that is 

not linear in its parameters. Finding the function that provides the best fit of the data under 

investigation and the type of nonlinear regression that coexists between the predictor variable and 

the response variable is a challenge. It requires a good knowledge of the process, a validation of 

the nonlinear regression assumptions and trial and error analyses. The software helps computing 

different type of transformation in order to find the most suitable one: exponential, logarithmic, 

trigonometric, sigmoidal curves, etc. The transformation with a p-value greater than 0.05, 

indicates that the hypothesis that the data follows a normal distribution cannot be rejected. From 

table 3.43, this method suggests two transformations with a p-value greater than 0.05: 

 Cubic with p-value equals to 0.227; and 

 Square with p-value equals to 0.123. 

In this case, the cubic model is the best option, whereas its p-value is the highest one to be over 

0.05. In the following analysis, the cubic transformation is verified to determine the delamination 

at entry fitted model. 
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Table 3.43: Goodness of fit of the delamination at entry transformations 

 

The ANOVA table below indicates that both feed rate and spindle speed are significant variables 

on the delamination at entry with respective p-values 0 and 0.017, lower than 0.05.  

Table 3.44: Parameter estimates and ANOVA results of cubic transformation of the delamination 

at entry 

 

 From table 3.44, the following transformation fitted model is determined: 

Dee
3
 = 1.01681 + 0.0021*F – 0.0000214*SS 

Table 3.44 indicates that the adjusted R
2
 is at 85.67%; a good estimation of the variability. The 

adjusted R
2
 of the MLR model with interaction developed previously was 85.28% compared to 

85.67% with the cubic transformation. In fact, a little more variability is explained by this model. 

To select the model to use, the AIC of all the developed models are computed below. 

Table 3.45: AIC of the transformation of the delamination at entry 

 

 

1/cubic                1/(delentry^3)         33.88        0.000

1/square               1/(delentry^2)         25.85        0.000

inverse                1/delentry             18.33        0.000

1/(square root)        1/sqrt(delentry)       14.97        0.001

log                    log(delentry)          11.97        0.003

square root            sqrt(delentry)          9.36        0.009

identity               delentry                7.18        0.028

square                 delentry^2              4.20        0.123

cubic                  delentry^3              2.97        0.227

                                                                  

Transformation         formula               chi2(2)       P(chi2)

                                                                              

       _cons      1.16837   .0945619    12.36   0.000     .9757539    1.360987

spindlespeed    -.0000214   8.52e-06    -2.51   0.017    -.0000387   -4.01e-06

        feed     .0020924   .0001483    14.11   0.000     .0017903    .0023945

                                                                              

   delentry3        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    13.9666423    34  .410783598           Root MSE      =  .24259

                                                       Adj R-squared =  0.8567

    Residual    1.88320376    32  .058850117           R-squared     =  0.8652

       Model    12.0834386     2  6.04171929           Prob > F      =  0.0000

                                                       F(  2,    32) =  102.66

      Source         SS       df       MS              Number of obs =      35

. regress delentry3 feed spindlespeed

               Note:  N=Obs used in calculating BIC; see [R] BIC note

                                                                             

           .       35   -33.58601     1.47869      3     3.042621    7.708665

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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Table 3.46: AIC of the MLR model of the delamination at entry 

 

Table 3.47: AIC of the MLR model with interaction of the delamination at entry 

 

Table 3.48: Critical values of the models developed for delamination at entry 

Method Adjusted R
2
 AIC 

MLR 83.45% -92.9867 

MLR with interaction 85.28% -96.19639 

Non-linear regression 85.67% 3.042621 

When comparing models among each other, several parameters can be used: the adjusted R
2
 

coefficient (the higher), the MSE value (the lowest) and the AIC (the lowest). Based on the AIC 

value from the tables above, the cubic transformation model should not be retained, as it did not 

improve the multiple linear regression models. The AIC of the multiple linear regression models 

with and without interaction are very similar. The adjusted R
2
 of the MLR with interaction 

(85.28%) is slightly better than the MLR without interaction (83.45%). In this case, the suggested 

model to use is the MLR with interaction: 

Den= 1 + 0.00063*F + 1.02x10-6*SS – 1.7x10-8*F*SS 

Normality is not needed to fit the regression line. Therefore, even if this model doesn’t follow a 

normal distribution, it still can be used for prediction purposes because the model is strongly 

linear and the variance behavior is constant. The prediction accuracy whereas measured by mean 

square error, is little affected by the normality assumption. Below is a table comparing all the 

methods used to analyze the delamination at entry. 

Table 3.49: Comparison of all methods used for delamination at entry analysis 

Method used Validity to use Variability  Significant variables 

MLR Non-normality  83.45% Feed rate 

MLR with interaction Non-normality  

 

85.28% Feed rate and interaction 

Cubic Transformation AIC too high 85.67% Feed rate and spindle speed 

                                                                             

           .       35    16.95212    49.49335      3     -92.9867   -88.32065

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

                                                                             

           .       35    16.95212    52.09819      4    -96.19639     -89.975

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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3.5 Delamination at exit analysis 

3.5.1 Delamination at exit distribution study over feed rate 

In this section, the feed rate is analyzed as the only effect on the delamination at exit. Table 3.50 

indicates that the p-value of the feed rate is near 0, lower than 0.05. Consequently, the feed rate 

has a significant impact on the delamination at entry behavior. Only 55.17% of the variability is 

explained by the feed rate effect. 

Table 3.50: Parameter estimates and ANOVA results for the delamination at exit against feed rate 

 

To understand the relationship between the feed rate and delamination at exit, the boxplot below 

is drawn.  

 

Figure 3.44: Boxplot of delamination at exit against feed rate 

Figure 3.44 displays that the delamination at exit, similar to delamination at entry, tends to rise 

when the feed rate increases. This figure indicates that: 

 The flat boxes at feed rate 20, 60 and 100 indicate that all values of delamination at exit 

are equal to 1,  

 The observation at feed rate equal to 20 whereas the delamination at exit is at 1.075 is 

away from the data but is not identified as an outlier. In fact, the delamination at this low 

                                                                              

       _cons      1.00043   .0108507    92.20   0.000     .9783542    1.022506

        feed     .0001705   .0000261     6.55   0.000     .0001175    .0002236

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .04262

                                                       Adj R-squared =  0.5517

    Residual    .059937636    33  .001816292           R-squared     =  0.5649

       Model    .077817093     1  .077817093           Prob > F      =  0.0000

                                                       F(  1,    33) =   42.84

      Source         SS       df       MS              Number of obs =      35

. regress delexit feed
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feed is high due to potential rubbing between the tool and the work piece and thermal 

softening at high speed and low feed [32], and 

 There are three more outliers found at feed rate 200 and 400. The variability at feed rate 

600 and 800 is very high compared to the other boxes.  

Thus, a substantial amount of outliers is explored: 11.4% (4/35) of the total number of 

observations. The existence of extreme points in this data may affect the model variability and 

make the model unusable. To evaluate the effect of the feed rate on the delamination at exit, the 

parameter estimates, ANOVA and coefficient of determination results are generated.  

3.5.2 Delamination at exit distribution study over spindle speed 

In this section, the spindle speed is analyzed as the only effect on the delamination at exit. To 

detect the effect of the spindle speed on the delamination at exit, the parameter estimates, 

ANOVA and coefficient of determination results are computed in table 3.51. The p-value of the 

spindle speed equals 0.055, greater than 0.05, which means that the spindle speed is not a major 

factor and has no impact on the delamination at exit. 

Table 3.51: Parameter estimates and ANOVA results for the delamination at exit against spindle 

speed 

 

Figure 3.45 displays the relationship between the spindle speed and delamination at exit. It 

indicates a minor decrease of the delamination at entry with the increase of spindle speed. 

Therefore, the delamination at entry is inversely proportional to the spindle speed. No outliers are 

detected. However, the variance at each spindle speed range is high which suggests that the data 

is spread out and not concentrated at similar values. However the higher the spindle speed is, the 

smallest the variability is. 

                                                                              

       _cons     1.089409    .020765    52.46   0.000     1.047162    1.131656

spindlespeed    -4.27e-06   2.15e-06    -1.99   0.055    -8.63e-06    9.46e-08

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .06105

                                                       Adj R-squared =  0.0801

    Residual    .122989377    33  .003726951           R-squared     =  0.1072

       Model    .014765352     1  .014765352           Prob > F      =  0.0549

                                                       F(  1,    33) =    3.96

      Source         SS       df       MS              Number of obs =      35

. regress delexit spindlespeed
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Figure 3.45: Boxplot of delamination at exit against spindle speed 

3.5.3 Delamination at exit multiple regression analysis 

This section presents the multiple regression analysis for the delamination at exit which is 

dependent on the feed rate and spindle speed. As a start, the parameter estimates, ANOVA and 

coefficient of determination results are computed in table 3.52 to detect the factors that have 

substantial impacts on the delamination at exit. It indicates that the feed rate is a significant 

variable on the delamination at exit with a p-value equal to 0 which is lower than 0.05. The 

spindle speed has a p-value of 0.003, lower than 0.05. Accordingly, the delamination at entry is 

affected significantly by the feed rate and the spindle speed. The adjusted R
2
 of the MLR for the 

delamination at exit is 0.6516. Based on this indicator only, the model may fit the data. However, 

this value is considered to be reasonably low; 34.84% of the variability is not explained.  

Table 3.52: Parameter estimates and ANOVA results for delamination at exit using MLR 

 

From table 3.52, the estimated regression model of the Delamination at exit is given by: 

Dex = 1.036 + 0.00017*F – 4.27 x 10-6 *SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of delamination at exit is 

1.036. 

1

1
.0

5
1

.1
1

.1
5

1
.2

1
.2

5

D
e
la

m
in

a
ti
o
n

 a
t 
E

x
it

1500 5000 8500 12000 15000

Distribution of Delamination of exit over Spindle Speed

                                                                              

       _cons     1.036296   .0146455    70.76   0.000     1.006464    1.066128

spindlespeed    -4.27e-06   1.32e-06    -3.23   0.003    -6.96e-06   -1.58e-06

        feed     .0001705    .000023     7.42   0.000     .0001238    .0002173

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .03757

                                                       Adj R-squared =  0.6516

    Residual    .045172284    32  .001411634           R-squared     =  0.6721

       Model    .092582445     2  .046291223           Prob > F      =  0.0000

                                                       F(  2,    32) =   32.79

      Source         SS       df       MS              Number of obs =      35

. regress delexit feed spindlespeed
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2. Feed (β1): for each one unit change of feed, delamination at exit will increase by 0.00017 

when the spindle speed is held constant. 

3. Spindle Speed (β2): for each one unit change of spindle speed, delamination at exit will 

decrease by 4.27 x 10-6 when the feed rate is held constant. 

Figure 3.46 shows the estimated plot of the delamination at exit using the MLR technique. The 

grey area represents the 95% interval of confidence. At least three points are outside the interval 

of confidence which indicates that this model may not be a good fit. Table C.11 in annex C 

displays the values of this plot. 

 

Figure 3.46: Delamination at exit estimated plot using MLR 

To be able to use this model, the four assumptions shall be verified. 

Independency assumption: As observed on figure 3.47, the independence assumption is 

validated because the residuals do not follow a structured pattern.  

 

Figure 3.47: Plot of the standardized residuals of the fitted delamination at exit against the run 

order of the data collection 

Normality assumption: The plot in figure 3.48 suggests a slight deviation of the straight line at 

the upper tail due to outliers and influential observations. Shapiro-Wilk test is performed and it 
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indicates that the calculated p-value is 0.01409 (table 3.53), lower than 0.05. Therefore, the null 

hypothesis that the data does follow a normal distribution is rejected which endorses the graphical 

illustration result. 

 

Figure 3.48: Normality plot for the delamination at exit with MLR 

Table 3.53: Shapiro-Wilk test for delamination at exit using MLR 

 

Homoscedasticity assumption: Figure 3.49 displays that the variance of the residual is constant; 

no specific pattern is identified. To verify this interpretation, the BPCW test is completed. The 

computed square-chi value is equal to 2.98 and the p-value equal to 0.0844, greater than 0.05. In 

this case, the null hypothesis is accepted and the variance is constant. 

 

Figure 3.49: Predicted vs standardized residual values plot of the delamination at exit  

Linearity assumption: To validate the linearity assumption, the scatterplots in figure 3.50 of 

each independent variable against the delamination at entry is presented. The scatterplots below 

indicate that the relationship is linear between the feed rate and the delamination at exit and is 
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moderately linear between the spindle speed and the delamination at exit; the shape is slightly 

bell-shaped. Both lowess outlines overlap a linear fit. 

Figure 3.50: Scatterplot feed rate and spindle speed vs delamination at exit 

Table 3.54 describes the validation results of the assumptions using the multiple regression 

technique. 

Table 3.54: Illustration of the assumption validation results of the delamination at exit using 

MLR 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

The normality assumption is violated. Therefore, the fitted model generated may be used for 

prediction purposes but the MLR with interaction is attempted for better variability estimation.   

3.5.4 Delamination at exit multiple linear regression analysis with interaction 

This section presents the multiple regression analysis for the delamination at exit with the 

interaction between the feed rate and the spindle speed. As a start, the parameter estimates, 

ANOVA and coefficient of determination results are generated in table 3.55. It indicates that the 

feed rate, spindle speed and their interaction effect are significant on the delamination at exit. 

Their p-values are respectively 0, 0.016 and 0; lower than 0.05. Accordingly, the delamination at 

entry is affected significantly by the feed rate, the spindle speed and their interaction. The 

adjusted R
2
 of the MLR with interaction model corresponds to 89.44%. A considerable amount of 

variability is explained by this model. The adjusted R
2
 of the previous model was 65.16%. The 

current model is offering 24.28% better explained variability by adding the interaction effect. 
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Table 3.55: Parameter estimates and ANOVA results for delamination at exit using MLR-

interaction 

 

From table 3.55, the estimated regression model with interaction of the delamination at exit is 

given by: 

Dex = 0.98 + 0.00036*F + 2.8 x 10-6 *SS – 2.3x10-8*F*SS 

Figure 3.51 shows the estimated plot of the delamination at exit using the MLR with interaction. 

Table C.12 in annex C displays the data of this plot. To be able to use this model, the following 

assumptions shall be validated: normality and homoscedasticity. 

 

Figure 3.51: Delamination at exit observed values against predicted using MLR-interaction 

Normality assumption: Figure 3.52 represents the normality fit of the standardized residuals of 

the delamination at exit experimental data. This plot suggests a slight deviation of the straight line 

at the lower and upper tail due to outliers and influential observations. To confirm these results, 

the Shapiro-Wilk test is computed. The calculated p-value is 0.02383 (table 3.56), lower than 

0.05. Hence, the null hypothesis that the data does follow a normal distribution is rejected.  

                                                                              

       _cons     .9769103   .0105992    92.17   0.000      .955293    .9985275

         fds    -2.27e-08   2.63e-09    -8.63   0.000    -2.81e-08   -1.73e-08

spindlespeed     2.80e-06   1.09e-06     2.56   0.016     5.67e-07    5.03e-06

        feed     .0003612   .0000255    14.19   0.000     .0003093    .0004131

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .02069

                                                       Adj R-squared =  0.8944

    Residual    .013268005    31     .000428           R-squared     =  0.9037

       Model    .124486724     3  .041495575           Prob > F      =  0.0000

                                                       F(  3,    31) =   96.95

      Source         SS       df       MS              Number of obs =      35

. regress delexit feed spindlespeed fds
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Figure 3.52: Normality plot for the delamination at exit with MLR-interaction 

Table 3.56: Shapiro-Wilk test for normal data for delamination at exit MLR-interaction 

 

Homoscedasticity assumption: Figure 3.53 presents the standardized residuals of the fitted 

delamination at exit. It displays that the variance of the residual is constant because no pattern is 

identified. To verify that the plot is interpreted correctly, the BPCW test is completed. The 

computed square-chi value is equal to 0.51 and the p-value is at 0.4739, greater than 0.05. In this 

case, the variance is declared constant. 

 

Figure 3.53: Predicted vs standardized residual values plot of the delamination at exit using 

MLR-interaction 

Table 3.57 describes the validation results of the assumptions. One assumption is violated. In 

fact, the lack of normality for prediction purposes in regression (to get unbiased estimates of the 

regression coefficients) may not be as important as the homoscedasticity and linearity [33]; 

whereas the normality of residuals is mandatory to validate testing hypothesis. For further 

investigation, a transformation of the dependent variable is attempted. In table 3.59, no 
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transformation is suggested because no p-value is found to be greater than 0.05. It may be due to 

the presence of outliers. 

Table 3.57: Illustration of the assumption validation results for delamination at exit MLR-

interaction 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

Table 3.58: Goodness of fit of the delamination at exit transformations 

 

Table 3.59: AIC of the MLR model of the delamination at exit 

 

Table 3.60: AIC of the MLR model with interaction of the delamination at exit  

 

 

Based on the AIC value from the tables above, the MLR model with interaction is suggested: 

Dex = 0.98 + 0.00036*F + 2.8 x 10-6 *SS – 2.3x10-8*F*SS 

Table 3.61 presents all the methods developed to analyze the delamination at exit fitting model.  

Table 3.61: Comparison of all methods used for delamination at exit analysis 

Method used Validity to use Variability 

(Adj R
2
) 

Significant variables 

MLR Non-normality 65.16% Feed rate and spindle speed 

MLR with interaction Non-normality 89.44% Feed rate and interaction 

1/cubic                1/(delexit^3)           5.74        0.057

1/square               1/(delexit^2)           7.08        0.029

inverse                1/delexit               8.60        0.014

1/(square root)        1/sqrt(delexit)         9.41        0.009

log                    log(delexit)           10.25        0.006

square root            sqrt(delexit)          11.11        0.004

identity               delexit                11.99        0.002

square                 delexit^2              13.77        0.001

cubic                  delexit^3              15.58        0.000

                                                                  

Transformation         formula               chi2(2)       P(chi2)

               Note:  N=Obs used in calculating BIC; see [R] BIC note

                                                                             

           .       35    47.24565    66.75799      3     -127.516   -122.8499

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

               Note:  N=Obs used in calculating BIC; see [R] BIC note

                                                                             

           .       35    47.24565    88.19774      4    -168.3955   -162.1741

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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3.6 Surface roughness analysis 

3.6.1 Surface roughness distribution study over feed rate 

In this section, the feed rate is analyzed as the only effect on the surface roughness. Figure 3.54 

displays the relationship between the feed rate and the surface roughness. This boxplot indicates a 

very large variability when the feed rate is at 20. At the other feed rate levels, the variability is 

acceptable and relatively small. It also displays a moderately linear fit and identifies an outlier 

when the feed rate is at 600. To evaluate the effect of the feed rate on the surface roughness, the 

parameter estimates, ANOVA and coefficient of determination results are generated in table 

3.62.  

 

Figure 3.54: Boxplot of surface roughness against feed rate 

Table 3.62: Parameter estimates and ANOVA results of the surface roughness over feed rate 

 

The computed p-value of the feed rate is near 0, lower than 0.05 which indicates that the feed rate 

has a significant effect on the surface roughness. Only 38.45% of the variability is explained by 

the feed rate. 
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       _cons     1.221086   .1436997     8.50   0.000     .9287266    1.513445

        feed     .0016274   .0003451     4.72   0.000     .0009254    .0023295

                                                                              

holesurfro~h        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    17.5982756    34  .517596341           Root MSE      =  .56441

                                                       Adj R-squared =  0.3845

    Residual    10.5123218    33  .318555206           R-squared     =  0.4027

       Model     7.0859538     1   7.0859538           Prob > F      =  0.0000

                                                       F(  1,    33) =   22.24

      Source         SS       df       MS              Number of obs =      35

. regress holesurfrough feed
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3.6.2 Surface roughness distribution study over spindle speed 

In this section, the spindle speed is analyzed as the only effect on the surface roughness. Figure 

3.55 displays the relationship between them. It demonstrates that the variability at all spindle 

speed level is very large; the data is very spread and not concentrated around a specific value. 

 

Figure 3.55: Boxplot of surface roughness against spindle speed 

To detect the effect of the spindle speed on the surface roughness, the parameter estimates, 

ANOVA and coefficient of determination results are computed in table 3.63. The calculated p-

value of the spindle speed equals 0.080, greater than 0.05, which indicates that the spindle speed 

is not a major factor and has no impact on the surface roughness. Only 6.27 % of the variability is 

explained by the spindle speed. 

Table 3.63: Parameter estimates and ANOVA results of the surface roughness over spindle speed 

 

3.6.3 Surface roughness multiple linear regression analysis 

This section presents the MLR analysis for the surface roughness which is dependent on the feed 

rate and spindle speed. The parameter estimates, ANOVA and coefficient of determination results 

are computed in table 3.64, to detect the variables that have substantial effect on the output and to 
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       _cons      1.35599    .236919     5.72   0.000     .8739746    1.838005

spindlespeed     .0000443   .0000245     1.81   0.080    -5.52e-06    .0000941

                                                                              

holesurfro~h        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    17.5982756    34  .517596341           Root MSE      =  .69654

                                                       Adj R-squared =  0.0627

    Residual    16.0105265    33  .485167469           R-squared     =  0.0902

       Model    1.58774913     1  1.58774913           Prob > F      =  0.0796

                                                       F(  1,    33) =    3.27

      Source         SS       df       MS              Number of obs =      35

. regress holesurfrough spindlespeed
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evaluate the known variability. This table indicates that the feed rate and spindle speed are both 

statistically significant with respectively a p-value equal to 0 and 0.023; both lower than 0.05. 

Accordingly, the surface roughness is affected significantly by the feed rate and spindle speed. 

The adjusted R
2
 of the MLR for the surface roughness is 46.12%. This indicator specifies that the 

model does not fit the data properly. In fact, this value is considered to be low; 53.88% variability 

is not explained by the feed rate and spindle speed.  

Table 3.64: Parameter estimates and ANOVA results for surface roughness using MLR 

 

 From Table 3.64, the estimated MLR model of the surface roughness is given by: 

SR = 0.85 + 0.0016*F + 0.000044*SS 

Interpretation of the coefficients 

1. Constant (β1): when feed rate and spindle are equal to zero, the expected mean of surface 

roughness is 0.85. 

2. Feed rate (β2): for each one unit change of feed, the surface roughness will increase by 0.0016 

when the spindle speed is constant. 

3. Spindle Speed (β3): for each one unit change of Spindle Speed, the surface roughness will 

increase by 0.000044 when the feed rate is constant. 

Figure 3.56 shows the estimated plot of the surface roughness using the multiple regression 

technique. Table C.13 in annex C shows the observed and predicted surface roughness values. 

                                                                              

       _cons     .8491616    .205855     4.13   0.000     .4298488    1.268474

spindlespeed     .0000443   .0000186     2.39   0.023     6.48e-06    .0000821

        feed     .0016274   .0003229     5.04   0.000     .0009698    .0022851

                                                                              

holesurfro~h        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    17.5982756    34  .517596341           Root MSE      =   .5281

                                                       Adj R-squared =  0.4612

    Residual    8.92457268    32  .278892896           R-squared     =  0.4929

       Model    8.67370293     2  4.33685146           Prob > F      =  0.0000

                                                       F(  2,    32) =   15.55

      Source         SS       df       MS              Number of obs =      35

. regress holesurfrough feed spindlespeed
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Figure 3.56: Surface roughness observed values against predicted using MLR 

To be able to use this model, the following assumptions must be validated: independency, 

linearity, normality and homoscedasticity. 

Independency assumption: Figure 3.57 is a graphical representation of the standardized 

residuals of the fitted surface roughness against the run order of the data collection of the surface 

roughness data. As observed, the independence assumption is valid because the residuals do not 

follow a structured pattern.   

 

Figure 3.57: Plot of the standardized residuals of the fitted surface roughness against the run 

order of the data collection 

Normality assumption: Figure 3.58 displays the normality fit of the standardized residuals of 

the surface roughness experimental data. This plot suggests a slight deviation of the straight line 

at the lower and upper tails due to outliers’ observations. To verify this geometric observation, 

the Shapiro-Wilk test is performed. Table 3.65 indicates that the p-value is 0.00197, lower than 

0.05. Thus, the null hypothesis that the data does follow a normal distribution is rejected. This 

test confirms the results seen on the plot. 
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Figure 3.58: Normality plot for the surface roughness experimental data 

Table 3.65: Shapiro-Wilk test for normal data for surface roughness 

 

Homoscedasticity assumption: Figure 3.59 illustrates the standardized residuals of the surface 

roughness data against the fitted ones. It displays that the variance of the residual is constant and 

no pattern is identified.   

 

Figure 3.59: Predicted vs standardized residual values plot of the delamination at exit 

To verify that the plot is providing the right conclusion, the BPCW test is completed. The 

calculated square-chi value is equal to 1.05 and the p-value to 0.3053, greater than 0.05.  

Consequently, this test demonstrates that the variance is constant. 

Linearity assumption: To validate the linearity assumption, the scatterplot of each independent 

variable against the surface roughness is presented in figure 3.60. It confirms that the relationship 

is linear for both the feed rate and the spindle speed against the surface roughness.  
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Figure 3.60: Scatterplots feed rate and spindle speed against surface roughness 

Table 3.66 describes the validation results of the assumptions. The normality assumption is 

violated. Hence, the fitted model generated may be used for prediction purposes. However, the 

MLR with interaction will be developed in search of better variability estimation.  

Table 3.66: Illustration of the assumption validation results for the surface roughness using MLR 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

3.6.4 Surface roughness multiple linear regression analysis with interaction 

This part of the study presents the multiple regression analysis for the surface roughness by 

adding the interaction effect between the feed rate and spindle speed.  

As a start, the parameter estimates, ANOVA and coefficient of determination results are 

generated in table 3.67 to detect the variables that have important effects on the surface 

roughness. It indicates that the both the feed rate and the spindle speed are respectively 

significant with a p-value equals to 0.001 and 0.016. However, this table reveals that the 

interaction between the feed rate and spindle speed is not statistically significant; its p-value 

corresponds to 0.210, greater than 0.05.  

The adjusted R
2
 of the MLR with interaction is 0.4717. Only 47.17 % of the variability is 

explained by the feed rate, spindle speed and their interaction. In fact, adding the interaction fact 

improved the known variability by 1.057% compared to the previous model (46.12%).  
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Table 3.67: Parameter estimates and ANOVA results for surface roughness using MLR-

interaction 

 

From table 3.67, the estimated regression model with interaction of the surface roughness is 

given by: 

SR = 0.63 + 0.00234*F + 0.000071*SS – 8.5x10-8*F*SS 

Figure 3.61 shows the estimated plot of the surface roughness using the MLR with interaction. 

Table C.14 in annex C displays the data of this estimated plot. 

 

Figure 3.61: Surface roughness observed values against predicted using MLR-interaction 

To be able to use this model, the following assumptions shall be validated: normality and 

homoscedasticity. 

Normality assumption: Figure 3.62 displays the normality plot of the standardized residuals of 

the delamination at exit experimental data. This plot suggests a slight deviation of the straight line 

at the lower and upper tail due to outlying and influential observations. The Shapiro-Wilk test is 

performed to confirm this observation. The computed p-value is 0.00630 (table 3.68), lower than 

0.05. Hence, the null hypothesis that the data does follow a normal distribution is rejected. 

                                                                              

       _cons     .6266841   .2679088     2.34   0.026     .0802805    1.173088

         fds    -8.50e-08   6.65e-08    -1.28   0.210    -2.21e-07    5.05e-08

spindlespeed     .0000708   .0000277     2.56   0.016     .0000143    .0001272

        feed     .0023418   .0006433     3.64   0.001     .0010297    .0036539

                                                                              

holesurfro~h        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    17.5982756    34  .517596341           Root MSE      =  .52292

                                                       Adj R-squared =  0.4717

    Residual    8.47680423    31  .273445298           R-squared     =  0.5183

       Model    9.12147138     3  3.04049046           Prob > F      =  0.0000

                                                       F(  3,    31) =   11.12

      Source         SS       df       MS              Number of obs =      35
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Figure 3.62: Normality plot of the surface roughness data using MLR-interaction 

Table 3.68: Shapiro-Wilk test for surface roughness using MLR-interaction 

 

Homoscedasticity assumption: Figure 3.63 presents the standardized residuals of the surface 

roughness. It displays that the variance of the residual is constant. To confirm this interpretation, 

the BPCW test is completed. The computed square-chi value corresponds to 0.43 and the p-value 

is equal to 0.5105, greater than 0.05. In this case, the variance is homogenous. 

 

Figure 3.63: Predicted vs standardized residual values plot of the surface roughness using MLR-

interaction 

Table 3.69 describes the validation results of the assumptions. The normality assumption is 

violated. Therefore, the fitted model generated may be used for prediction purposes. However, 

the correlation between the surface roughness and the independent variables (feed rate and 

spindle speed) is poor. In consequence, the inclusion of the interaction term did not improve the 

model drastically. The non-normality of the residuals is probably due to the presence of outliers 

as shown in the normality plot.   
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Table 3.69: Illustration of the assumption validation results for surface roughness with MLR-

interaction 

Assumptions Valid for this model 

Independency Yes 

Normality No 

Homoscedasticity Yes 

Linearity Yes 

To find a suitable model, the influence of the outliers must be investigated and a transformation 

of the surface roughness variable might be successful. In previous sections, a suitable prediction 

model couldn’t be determined using the multiple regression method. The outlier observation is 

displayed in table 3.70. 

Table 3.70: Outlier in surface roughness transformation 

 

 To evaluate the influence of this outlier, the DFBETA of the feed rate and the spindle speed are 

evaluated and displayed in table 3.71. Refer to annex B note 5 for the DFBETA definition. In 

this case, the cut-off value for DFBETAs is 2/sqrt(35)= 0.338. The results show that observation 

at feed rate (20) and spindle speed (12000), strongly affect the coefficients of regression. 

Including this observation, the regression coefficient of the feed rate and the spindle speed will 

respectively increase by about 0.88 times and 0.63 times the standard error than the case with the 

observation excluded. Thus, one alternative is possible is to re-fit a model without this 

observation.  

Table 3.71: DFBETA of feed rate and spindle speed in surface roughness transformation 

 

                                

    3.682326     20      12000  

    1.947428     20       8500  

    1.132659    600       8500  

     1.02524    800       8500  

    .9740008     20      15000  

                                

     .705222    400       8500  

    .5727679    800       1500  

    .5180496    200       8500  

    .5179452    800      12000  

    .3734655    200       1500  

                                

        rhsr   feed   spindl~d  

                                

                                               

  5.     20      15000   -.1842228   .2397928  

  4.     20      12000   -.8850979   .6284093  

  3.     20       8500   -.3752383   .0074004  

  2.     20       5000   -.0326362   -.021884  

  1.     20       1500    .1896229    .258041  

                                               

       feed   spindl~d   _dfbeta_7   _dfbet~8  
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 The next analysis is the regression results after excluding the observation at feed (20) and spindle 

speed (12000). Table 3.72 indicates that both the feed rate and the spindle speed are significant 

variables on the surface roughness data; their p-values are near 0, lower than 0.05. Also, the 

adjusted R
2
 is at 0.6377 which indicates that 63.77% of the variability is explained by the feed 

rate and spindle speed. 

Table 3.72: Parameter estimates and ANOVA results for the surface roughness with n=34 

 

The fitted regression model is: 

SR= 0.80 + 0.00185*F +0.000035*SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of surface roughness is 0.8. 

2. Feed rate (β1): for each one-unit change of feed, surface roughness will increase by 0.00185 

when the spindle speed is constant. 

3. Spindle Speed (β2): for each one-unit change of spindle speed, surface roughness will increase 

by 0.0.000035 when the feed rate is constant. 

Figure 3.64 is the plot of this fitted model. The fitted line represents a linear fit. Some outliers are 

identified on this plot. Table C.15 in annex C presents the data for this plot.  

 

Figure 3.64: Surface roughness observed values against predicted using MLR with n=34 

                                                                              

       _cons     .7982598   .1591269     5.02   0.000     .4737184    1.122801

spindlespeed     .0000353   .0000144     2.44   0.020     5.84e-06    .0000647

        feed     .0018478   .0002533     7.30   0.000     .0013313    .0023644

                                                                              

holesurfro~h        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    15.1120583    33  .457941159           Root MSE      =  .40731

                                                       Adj R-squared =  0.6377

    Residual     5.1429173    31  .165900558           R-squared     =  0.6597

       Model    9.96914096     2  4.98457048           Prob > F      =  0.0000

                                                       F(  2,    31) =   30.05

      Source         SS       df       MS              Number of obs =      34
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To be able to use this model, the following assumptions are verified: normality of residuals and 

constant variance of residuals.  

Normality assumption: Figure 3.65 illustrates the normality plot of the standardized residuals 

of the surface roughness with the excluded observation. It suggests that the data is spread over the 

straight line which indicates that the data follow a normal distribution. 

 

Figure 3.65: Plot of normality of the surface roughness with n=34 

The Shapiro-Wilk test is performed to confirm the visual examination. Table 3.73 presents these 

results. The p-value corresponds to 0.283, greater than 0.05. Subsequently, the experimental data 

of the diameter error at exit does follow a normal distribution. 

Table 3.73: Shapiro-Wilk Test for surface roughness with n=34 

 

 Homoscedasticity assumption: To verify the variance status, the residual plot is drawn. The 

residuals on figure 3.67 are structure less which indicates that the variance is constant. After 

performing the BPCW test, the computed square-chi value is 0.04 and the p-value is equal to 

0.8342, greater than 0.05. In this case, the null hypothesis is not rejected and the variance is 

recognized to be constant. 
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Figure 3.66: Residual plot of the surface roughness experimental data with n=34 

To compare the studied models, the Akaike’s information for each one of them is explored. The 

“best” model is the one with the lowest AIC. The models to compare are: 

1. Multiple regression model with interaction with n=35, and 

2. Multiple regression model with n=34 (observation excluded at feed rate equal to 20 and 

spindle speed equal to 12000). 

Table 3.74: Akaike’s results for surface roughness model with MLR-interaction 

 

Table 3.75: Akaike’s results for surface roughness model with MLR n=34 

 

Tables 3.74 and 3.75 indicate that: 

AICn=35 = 57.49681 compared to AIC n=34 = 38.27066 

From a mathematical point of view, the second model is better than the first one for the following 

reasons: 

1. The adjusted R
2
 coefficient obtained after exclusion of an observation compared to the 

original model (0.4717 vs 0.6377) is higher.  

2. The AIC for the new model is -21.03 compared to 96.28. The smallest the AIC is, the 

better the model is. 

3. The residual plot in the second model turned out to be normally distributed. 
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           .       35   -37.63077   -25.74841      3     57.49681    62.16286

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

               Note:  N=Obs used in calculating BIC; see [R] BIC note

                                                                             

           .       34   -34.45916   -16.13533      3     38.27066    42.84974

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion
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The outlier identified by the software doesn’t constitute a “real” outlier to the drilling process. A 

mechanical failure (at the surface roughness) is expected to happen at low feed rate and high 

values of spindle speed. Therefore, the model with an excluded observation cannot be selected for 

prediction purpose. The MLR technique cannot fit models that include outliers that are identified 

mathematically. Below is a table presenting all the models produced for the surface roughness. 

No model is recommended. 

Table 3.77: Comparison of all methods used for surface roughness 

Method used Validity to use Variability  

 

Significant variables 

MLR Non-normality 46.12% Feed rate and spindle speed 

MLR with interaction Non-normality 47.17% Feed rate and spindle speed 

MLR with Observation excluded Not valid 63.77% Feed rate and spindle speed 

3.7 Diameter error at exit analysis 

3.7.1 Diameter error at exit distribution study over feed rate 

In this section, the feed rate is analyzed as the only input to the diameter error at exit. The boxplot 

below provides information on the skewness of the distribution, the central location, the 

variability and the presence of outliers. Figure 3.67 displays the relationship between the feed 

rate and the diameter error at exit. The correlation between these two variables seems to be very 

poor and there is no movement. The graphical illustration indicates a very low variability of the 

data at all feed rate levels. From levels 20 to 600, the boxes are flat which indicates that all 

observations are clustered around a single value. However, a small variability is noticed when the 

feed rate is at 800 and three outliers are observed when the feed rate corresponds respectively to 

20, 200 and 600. This representation suggests a lack of influence of the feed rate on the diameter 

error at exit. 

 

Figure 3.67: Boxplot of diameter error at exit against feed rate 
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To evaluate the effect of the feed rate on the delamination at exit, the parameter estimates, 

ANOVA and coefficient of determination results are computed. Table 3.77 indicates that the p-

value of the feed rate is 0.048 which suggests that the feed rate has a limited effect on the 

diameter error at exit. The known variability explained by the feed rate is at 8.69%. This result 

confirms the relationship observed on figure 3.68. 

Table 3.77: Parameter estimates and ANOVA results for the diameter error at exit against feed 

rate 

 

3.7.2 Diameter error at exit distribution study over spindle speed 

In this section, the spindle speed is analyzed to be the only effect on the diameter error at exit. In 

figure 3.68, the boxplot displays the relationship between the spindle speed and diameter error at 

exit. This plot suggests a lack of influence of the spindle speed on the diameter error at exit. Also, 

six outliers are identified at the following spindle speed levels: 1500, 5000, 8500 and 15000. The 

variability is very small and observations are all gathered at the same value. 

 

Figure 3.68: Boxplot of diameter error at exit against spindle speed 

To detect the effect of the spindle speed on the diameter at exit, the parameter estimates, ANOVA 

and the coefficient of determination results (Table 3.78) are investigated. The computed p-value 

                                                                              

       _cons     .3783936   .2106202     1.80   0.082    -.0501163    .8069036

        feed    -.0010407   .0005058    -2.06   0.048    -.0020697   -.0000117

                                                                              

holediaerr~t        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    25.4809711    34  .749440327           Root MSE      =  .82725

                                                       Adj R-squared =  0.0869

    Residual    22.5832562    33  .684341097           R-squared     =  0.1137

       Model    2.89771492     1  2.89771492           Prob > F      =  0.0476

                                                       F(  1,    33) =    4.23

      Source         SS       df       MS              Number of obs =      35
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of the spindle speed equals 0.067, greater than 0.05. Thus, the spindle speed is not a major factor 

and has minor impact on the diameter error at exit. Only 7.1% of the variability is explained by 

the spindle speed. 

Table 3.78: Parameter estimates and ANOVA results for the diameter error at exit against spindle 

speed 

 

3.7.3 Diameter error at exit multiple linear regression analysis 

In the previous sections, the feed rate and spindle speed were determined to be individually 

irrelevant on the diameter error at exit behavior. Therefore in this section, the feed rate and the 

spindle speed are put together as inputs to construct a regression model with the diameter error at 

exit as outcome. As a start, the parameter estimates, ANOVA and coefficient of determination 

results are calculated in table 3.79 to detect the variables that have important effect on the 

diameter error at exit. This table shows that the feed rate is a significant variable on the diameter 

error at exit with a p-value equal to 0.039, lower than 0.05. However, the spindle speed has a p-

value equal to 0.054, over 0.05, which indicates that the spindle speed variation has no trivial 

effect on the diameter error at exit. Accordingly, the diameter error at exit is affected more by the 

feed rate than the spindle speed. The adjusted R
2
 is at 0.1626. Only 16.26% of the variability is 

explained by the feed rate and the spindle speed. This indicator is extremely low to justify the 

appropriateness of the estimated model.  

 

 

 

 

 

                                                                              

       _cons    -.4125319    .283837    -1.45   0.156    -.9900026    .1649387

spindlespeed     .0000556   .0000293     1.90   0.067    -4.08e-06    .0001152

                                                                              

holediaerr~t        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    25.4809711    34  .749440327           Root MSE      =  .83448

                                                       Adj R-squared =  0.0708

    Residual     22.979662    33  .696353395           R-squared     =  0.0982

       Model    2.50130909     1  2.50130909           Prob > F      =  0.0668

                                                       F(  1,    33) =    3.59

      Source         SS       df       MS              Number of obs =      35

. regress holediaerrexit spindlespeed
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Table 3.79: Parameter estimates and ANOVA results for diameter error at exit using MLR 

 

 From table 3.80, the estimated regression model of the diameter error at exit is given by: 

Drx = -0.0884 - 0.001041*F + 0.0000556*SS 

Interpretation of the coefficients 

1. Constant (β0): when the feed rate and spindle are equal zero, the expected mean of diameter 

error at exit is -0.0884. 

2. Feed rate (β1): for each one unit change of the feed rate, the diameter error at exit will 

decrease by 0.001041 when the spindle speed is constant. 

3. Spindle Speed (β2): For each one unit change of the spindle speed, the diameter error at exit 

will increase by 0.00006 when the feed rate is constant. 

This model cannot be used because the justified variability is very low. To analyze what the next 

step would be to determine an accurate regression model, the following assumption is 

investigated: homoscedasticity. 

Homoscedasticity assumption: Figure 3.69 presents the plot of the standardized residuals of the 

diameter error at exit experimental data against the fitted values. By visually checking this 

representation, it indicates that the residuals are not evenly scattered around the line and the 

variance of the residual is not constant. To verify this interpretation, the BPCW test is completed. 

The calculated square-chi value is 22.27 and the p-value is equal to 0, lower than 0.05. Thus, the 

null hypothesis is rejected and the variance is acknowledged as not constant. In this case, a 

transformation of the diameter error at exit may be good alternative to find a suitable model. In 

the next section, both procedures will be investigated. 

                                                                              

       _cons     -.088424   .3087952    -0.29   0.776    -.7174193    .5405712

spindlespeed     .0000556   .0000278     2.00   0.054    -1.13e-06    .0001123

        feed    -.0010407   .0004843    -2.15   0.039    -.0020272   -.0000542

                                                                              

holediaerr~t        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    25.4809711    34  .749440327           Root MSE      =  .79219

                                                       Adj R-squared =  0.1626

    Residual    20.0819471    32  .627560847           R-squared     =  0.2119

       Model    5.39902401     2    2.699512           Prob > F      =  0.0222

                                                       F(  2,    32) =    4.30

      Source         SS       df       MS              Number of obs =      35

. regress holediaerrexit feed spindlespeed
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Figure 3.69: Predicted vs standardized residual values plot of the diameter error at exit  

3.7.4 Diameter error at exit transformation 

In previous sections, a suitable prediction model couldn’t be determined using the MLR model. 

In this part of the study, a transformation is applied to the diameter error at exit to attempt finding 

the best fit model. Table 3.80 displays the testing results of multiple types of transformations of 

the diameter error at exit. 

Table 3.80: Testing results of the transformations of the diameter error at exit 

 

To accept any type of transformation, the p-value should be over 0.05 which means that the 

hypothesis if the data follows a normal distribution is accepted. As observed in table 3.80, none 

of the transformation is recommended to fit the diameter error at exit data. To find a suitable 

model, the transformation of the independent variables is attempted. As a first step, the feed rate 

will be transformed. Table 3.81 indicates that the log transformation of the feed rate may be a 

good option; the p-value corresponds to 0.072, over 0.05. 
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1/cubic                1/(holedi~t^3)         16.66        0.000

1/square               1/(holedi~t^2)         34.06        0.000

inverse                1/holedi~t             12.67        0.002

1/(square root)        1/sqrt(holedi~t)           .            .

log                    log(holedi~t)              .            .

square root            sqrt(holedi~t)             .            .

identity               holedi~t               48.29        0.000

square                 holedi~t^2             53.65        0.000

cubic                  holedi~t^3             53.91        0.000

                                                                  

Transformation         formula               chi2(2)       P(chi2)
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Table 3.81: Test of the transformation of the feed rate 

 

To analyze furthermore this model, the parameter estimates, ANOVA and coefficient of 

determination results are generated in table 3.82. The feed rate is the only significant effect on 

the diameter error at exit whereas the p-value is equal to 0.008. The p-value of the spindle speed 

is at the conventional reference point (0.05) which indicates that this variable has no effect on the 

outcome. The adjusted R
2
 corresponds to 0.234 which still a very low indication of the known 

variability and the model may not be satisfactory. 

Table 3.82: Parameter estimates and ANOVA results for diameter error at exit 

 

The prediction model under investigation is:  

Drx = 1.1 - 0.2936028* log(F) + 0.000056*SS 

After the log transformation of the independent variable, feed rate, the following assumption is 

verified: homoscedasticity.  

Homoscedasticity assumption: To verify the variance status, the residual plot is drawn. Refer to 

figure 3.70. It is clear on the plot below that the variance is not constant and a pattern is observed 

within the data. The Log transformation of the independent variable, feed rate, did not improve 

the model fitting. Also, an outlier is identified to be far from the overall data trend. For instance, 

1/cubic                1/(feed^3)             17.10        0.000

1/square               1/(feed^2)             16.64        0.000

inverse                1/feed                 12.83        0.002

1/(square root)        1/sqrt(feed)            7.01        0.030

log                    log(feed)               5.27        0.072

square root            sqrt(feed)             11.32        0.003

identity               feed                    6.70        0.035

square                 feed^2                  6.87        0.032

cubic                  feed^3                 10.51        0.005

                                                                  

Transformation         formula               chi2(2)       P(chi2)

                                                                              

       _cons     1.100217    .592878     1.86   0.073    -.1074355     2.30787

spindlespeed     .0000556   .0000266     2.09   0.045     1.34e-06    .0001098

      lnfeed    -.2936028   .1036287    -2.83   0.008    -.5046875    -.082518

                                                                              

holediaerr~t        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    25.4809711    34  .749440327           Root MSE      =   .7577

                                                       Adj R-squared =  0.2340

    Residual    18.3712692    32  .574102161           R-squared     =  0.2790

       Model    7.10970195     2  3.55485097           Prob > F      =  0.0053

                                                       F(  2,    32) =    6.19

      Source         SS       df       MS              Number of obs =      35
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this observation arises (Drx=20.89178) when the feed rate is at 20 and the spindle speed is at 

15000. 

 

Figure 3.70: Residual plot for the diameter error at exit experimental data 

This mathematical outlier is causing the regression method to be ineffective and inconclusive. It 

is important to keep in mind that a poor correlation exits between the diameter at exit and the 

independent variables. Below is a table resuming all the models developed for the diameter error 

at exit fitting. Unfortunately, no model is recommended. 

Table 3.83: Comparison of all methods used for the diameter error at exit 

Method used Validity to use Variability  

 

Significant 

variables 
MLR 

Non-normality and 

variance not constant 
16.26% Feed rate 

Transformation of the feed rate 
Non-normality and 

variance not constant 
23.4% Feed rate 

3.8 Diameter error at entry analysis 

3.8.1 Diameter error at entry distribution study over feed rate 

In this section, the feed rate is analyzed as the only effect on diameter error at entry. To 

understand the relationship between the feed rate and the diameter error at entry, the boxplot 

below is presented. Figure 3.71 indicates multiple outliers at the following feed rate levels: 20, 

60, 100, 200, 400 and 600. The overall trend of the diameter error at entry has a tendency to 

slightly decrease with the rise of the feed rate level. The outlier at feed rate 20 is very far from the 

overall data distribution. This influential point may have a major effect on the multiple regression 

analysis and the fitting model. The variability of the diameter error at entry within each sample of 
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the feed rate is very small except at level 800, the variability within this sample is larger than the 

others. 

 

Figure 3.71: Diameter error at entry boxplot against the feed rate 

Table 3.84 indicates that the feed rate is not an important variable on the diameter error at entry 

whereas its p-value is equal to 0.083, greater than 0.05. Only 6% of the variability is explained by 

the feed rate. 

Table 3.84: Parameter estimates and ANOVA results for diameter error at entry against feed rate 

 

3.8.2 Diameter error at entry distribution study over spindle speed 

In this section, the spindle speed over the diameter error at entry is analyzed to understand their 

correlation.  In figure 3.72, a slight increase of the diameter error at entry is observed with the 

increase of the spindle speed. Accordingly, the diameter error at entry is inversely proportional to 

the spindle speed. Also, it is noticed that the variability of the diameter error at entry within each 

sample of the spindle speed is very small. This is an indication that the values are concentrated 

around the same value. Also, five outliers are identified on the boxplot below at the following 

spindle speed levels: 1500, 5000, 8500 and 12000. Another extreme observation is observed, at 

the top right on the plot, to be far from the overall distribution at spindle speed level 15000. 
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       _cons     .3897053    .247324     1.58   0.125    -.1134791    .8928898

        feed    -.0010611   .0005939    -1.79   0.083    -.0022694    .0001472

                                                                              

holediaerr~y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    34.1522336    34  1.00447746           Root MSE      =  .97141

                                                       Adj R-squared =  0.0606

    Residual    31.1400376    33  .943637505           R-squared     =  0.0882

       Model    3.01219599     1  3.01219599           Prob > F      =  0.0832

                                                       F(  1,    33) =    3.19

      Source         SS       df       MS              Number of obs =      35

. regress holediaerrentry feed
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These outliers and influential points will have an imperative impact on the analysis of regression 

and will make it unusable. 

 

Figure 3.72: Diameter error at entry boxplot with the spindle speed 

Table 3.85 indicates that the spindle speed is an important variable on the diameter error at entry 

whereas its p-value is equal to 0.041, lower than 0.05. Only 9.37% of the variability is explained 

by the spindle speed effect. 

Table 3.85: Parameter estimates and ANOVA results for diameter error at entry against spindle 

speed 

 

3.8.3 Hole diameter error at entry multiple linear regression analysis 

After looking over the relationship of the diameter error at entry against the feed rate and the 

spindle speed individually, this section puts together those independent variables to observe their 

effect on the diameter error at entry. As a first step, the MLR analysis is attempted by varying the 

feed rate and spindle speed on the diameter error at entry data. The regression analysis starts by 

examining the most important independent variables to the output. As shown in table 3.86, the p-

value of the feed rate is equal to 0.068, greater than 0.05, which indicates that this independent 

variable is not significant on the diameter error at entry. However, the p-value of the spindle 
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       _cons    -.5392431   .3245281    -1.66   0.106    -1.199501    .1210143

spindlespeed     .0000713   .0000335     2.13   0.041     3.04e-06    .0001395

                                                                              

holediaerr~y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    34.1522336    34  1.00447746           Root MSE      =  .95411

                                                       Adj R-squared =  0.0937

    Residual    30.0407221    33  .910324911           R-squared     =  0.1204

       Model    4.11151157     1  4.11151157           Prob > F      =  0.0411

                                                       F(  1,    33) =    4.52

      Source         SS       df       MS              Number of obs =      35

. regress holediaerrentry spindlespeed
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speed corresponds to 0.035, lower to 0.05, which suggests that this variable is slightly significant 

on the outcome. The adjusted R
2
 corresponds to 0.1591.  

Thus, this parameter is very low and indicates that only 15.91% of the variability of the diameter 

error at entry is explained by the feed rate and the spindle speed. In general, this indication makes 

the model inaccurate to be used for any prediction; it cannot determine whether the coefficient 

estimates and predictions are biased, the residual plot must be assessed.  

Table 3.86: ANOVA and parameter estimates tables for the diameter error at entry using MLR 

 

 From table 3.86, the fitted regression model of the diameter error at entry is: 

Dre = -0.209 - 0.00106*F + 0.000071*SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of diameter error at entry is 

-0.209. 

2. Feed rate (β1): for each one-unit change of feed rate, the diameter error at entry will decrease 

by 0.00106 when the spindle speed is constant. 

3. Spindle speed (β2): for each one-unit change of spindle speed, the diameter error at entry will 

increase by 0.000071 when the feed rate is constant. 

On figure 3.73, a clear pattern is observed: a straight line with outliers rather than the 

randomness that is expected. This indicates a bad fit. To find a suitable fitted model, a 

transformation will be attempted.  

                                                                              

       _cons    -.2087949   .3582439    -0.58   0.564    -.9385139     .520924

spindlespeed     .0000713   .0000323     2.21   0.035     5.47e-06     .000137

        feed    -.0010611   .0005619    -1.89   0.068    -.0022056    .0000834

                                                                              

holediaerr~y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    34.1522336    34  1.00447746           Root MSE      =  .91904

                                                       Adj R-squared =  0.1591

    Residual    27.0285261    32   .84464144           R-squared     =  0.2086

       Model    7.12370756     2  3.56185378           Prob > F      =  0.0237

                                                       F(  2,    32) =    4.22

      Source         SS       df       MS              Number of obs =      35
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Figure 3.73: Residual plot for diameter error at entry using MLR 

3.8.4 Diameter error at entry transformation 

In this part of the study, a transformation is researched for the diameter error at entry to find a 

suitable prediction model. Table 3.87 presents the results of all these transformations. As 

demonstrated by these results, none of the transformation is recommended to fit the diameter 

error at entry data. In fact, no p-value is found to be over 0.05; this data distribution does not 

follow a normal distribution and no transformation is possible.  

Table 3.87: Results for the transformation of the diameter error at entry 

 

When checking the observations, an outlier is found to be at feed rate 20 and spindle speed 15000 

(same outlier as in previous sections) which can be affecting the data distribution comportment 

and may be restraining the researches from finding a suitable model at this point. The inclusion of 

an observation could either contribute to an increase or a decrease in a regression coefficient. In 

this case, the cut-off value for DFBETAs is 2/sqrt(35) = 0.338. The DFBETA of the feed rate is 

5.7 (in absolute value) and the DFBETA of the spindle speed is 7.39. That indicates that 

including this observation in the fitting, the regression coefficient of the feed rate and the spindle 

speed will respectively increase by about 6 times and 7.4 times the standard error than the case 

with the observation excluded. This outlier strongly affects the coefficients of regression. Again, 

-2
0

2
4

6

R
e
s
id

u
a
ls

-1 -.5 0 .5 1
Fitted values

1/cubic                1/(holedi~y^3)         42.92        0.000

1/square               1/(holedi~y^2)         37.40        0.000

inverse                1/holedi~y             15.76        0.000

1/(square root)        1/sqrt(holedi~y)           .            .

log                    log(holedi~y)              .            .

square root            sqrt(holedi~y)             .            .

identity               holedi~y               50.44        0.000

square                 holedi~y^2             53.83        0.000

cubic                  holedi~y^3             53.93        0.000

                                                                  

Transformation         formula               chi2(2)       P(chi2)
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this outlier cannot be excluded to complete the regression modelling because this observation is 

part of the normal behavior of the drilling process. 

Table 3.88: BFBETAs for diameter error at entry 

 

 

 

 

 

Table 3.89 explores the only analysis method performed to determine the best fitting model for 

the diameter error at entry. An interaction effect hasn’t been explored for this output because it’s 

clear from the previous analysis that the independent variables have no impact on the dependent. 

Table 3.89: Comparison of all methods used for the diameter error at entry analysis 

Method used Validity to use Variability  

(Adj R
2
) 

Significant 

variables 
MLR 

Non-normality and 

variance not constant 
15.91% Feed rate 

3.9 Circularity at exit analysis 

3.9.1 Circularity at exit distribution study over feed rate 

In this section, an ANOVA is performed to understand the relationship between circularity at exit 

and feed rate. A boxplot is drawn below to discern the trend of the circularity at exit against the 

feed rate and to indicate the degree of dispersion in the data and identify any outliers.  

 

Figure 3.74: Boxplot of the circularity at exit over feed rate 

As displayed on figure 3.74, the circularity at exit outline resembles to a bell shaped curve. At 

feed rate levels 20 and 800, the observations cover a wide range which anticipates a large spread 
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of the data. At feed rate levels 60, 100, 200, 400 and 600, the observations are clustered around a 

single value to suggest a smaller spread of the data. No outliers are distinguished. In table 3.90, 

the calculated p-value of the feed rate is near 0, lower than 0.05 which demonstrates that the feed 

rate has a significant effect on the circularity at exit.  

Table 3.90: Parameter estimates and ANOVA results for circularity at exit against feed rate 

 

3.9.2 Circularity at exit distribution study over spindle speed 

In this section, an ANOVA analysis is performed to understand the relationship between the 

value of the circularity at exit and the explanatory variable, the spindle speed. The boxplot below 

illustrates the relationship and liaison between the circularity at entry against the spindle speed 

and to indicate the degree of variability in the data. As displayed on figure 3.75, the dispersion is 

large at spindle speed levels 1500, 12000 and 15000. However, a smaller spread is displayed at 

levels 5000 and 8500. The relationship between both variables seems to be linear which will be 

confirmed in the next section. Also, this boxplot singles out two outliers at spindle speed levels 

5000 and 8500. These observations may affect the fitted model and result in less accurate results. 

 

Figure 3.75: Boxplot of the circularity at exit over spindle speed 

                                                                              

       _cons     .1225944   .0341373     3.59   0.001     .0531415    .1920473

        feed     .0003338    .000082     4.07   0.000      .000167    .0005006

                                                                              

 holecirexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .891326657    34   .02621549           Root MSE      =  .13408

                                                       Adj R-squared =  0.3142

    Residual    .593260745    33  .017977598           R-squared     =  0.3344

       Model    .298065912     1  .298065912           Prob > F      =  0.0003

                                                       F(  1,    33) =   16.58

      Source         SS       df       MS              Number of obs =      35

. regress holecirexit feed
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In table 3.91, the calculated p-value is 0.01, lower than 0.05 which indicates that the spindle 

speed has a significant effect on the circularity at exit.  

Table 3.91: Parameter estimates and ANOVA results for circularity at exit against spindle speed 

 

3.9.3 Circularity at exit multiple linear regression 

In previous sections, the relationship of the circularity at exit against the feed rate and the spindle 

speed was analyzed individually, and both variables were found to have significant effect on the 

outcome. This segment presents the MLR analysis of the circularity at exit. As a first step, the 

parameter estimates, ANOVA and coefficient results are generated and studied in table 3.92. It 

indicates that the p-values of the feed rate (0.00) and spindle speed (0.001) are both lower than 

0.05, which specifies that both independent variables are significant on the dependent. The 

adjusted R
2
 corresponds to 0.4877 which explains half of the variance in the process. 

Table 3.92: Parameter estimates and ANOVA results for the diameter error at exit MLR 

 

 From table 3.92, the fitted regression model generated is: 

Cex = 0.0032 + 0.000334*F + 0.000014*SS 

 

                                                                              

       _cons     .1071818   .0505129     2.12   0.041     .0044125     .209951

spindlespeed     .0000142   5.22e-06     2.72   0.010     3.59e-06    .0000248

                                                                              

 holecirexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .891326657    34   .02621549           Root MSE      =  .14851

                                                       Adj R-squared =  0.1587

    Residual    .727796258    33  .022054432           R-squared     =  0.1835

       Model      .1635304     1    .1635304           Prob > F      =  0.0103

                                                       F(  1,    33) =    7.41

      Source         SS       df       MS              Number of obs =      35

. regress holecirexit spindlespeed

                                                                              

       _cons     .0032333   .0451716     0.07   0.943    -.0887783    .0952449

spindlespeed     .0000142   4.07e-06     3.49   0.001     5.92e-06    .0000225

        feed     .0003338   .0000708     4.71   0.000     .0001895    .0004781

                                                                              

 holecirexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .891326657    34   .02621549           Root MSE      =  .11588

                                                       Adj R-squared =  0.4877

    Residual    .429730346    32  .013429073           R-squared     =  0.5179

       Model    .461596312     2  .230798156           Prob > F      =  0.0000

                                                       F(  2,    32) =   17.19

      Source         SS       df       MS              Number of obs =      35
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Interpretation of the coefficients 

1. Constant (β0): when feed rate and spindle speed values are zero, the expected mean of 

circularity at exit corresponds to 0.0032. 

2. Feed rate (β1): for each changes of one unit of feed, circularity at exit will increase by 

0.000334 when the spindle speed is constant. 

3. Spindle speed (β2): for each changes of one unit of spindle speed, circularity at exit will 

decrease by 0.000014 when the feed rate is constant. 

Figure 3.76 is the plot of this fitted model and table C.16 in annex C presents the circularity at 

exit fitted and observed values.  

 

Figure 3.76: Plot of the circularity at exit fitted vs observed values using MLR 

To be able to use this model, the regression assumptions shall be verified: independency, 

normality, homoscedasticity and linearity. 

Independency assumption: The plot below represents the standardized residuals against the 

cases. The independency assumption is violated due to an observed pattern in the data. 

 

Figure 3.77: Plot of the standardized residuals of the circularity at exit data against the number of 

cases 
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Normality assumption: The residual plot in figure 3.78 suggests a slight deviation of the normal 

distribution at the lower and upper tail, which could be due to the influence of the outliers. The 

Shapiro-Wilk test (in table 3.93) confirms that the standardized residuals are not normally 

distributed as p-value corresponds to 0.00312, lower than 0.05 and the null hypothesis is rejected.  

 

Figure 3.78: Normal plot of the standardized residuals of the circularity at exit data 

Table 3.93: Shapiro-Wilk test for normal data of the circularity at exit data using MLR 

 

 Homoscedasticity assumption: Figure 3.79 displays that the variance is not constant. When 

observing this plot, some experts may think that the variable is constant. Therefore, to confirm 

this observation, the BPCW test is completed. In this case, it’s expected that the p-value will be 

lower than 0.05 to accept the null hypothesis. After performing this test, the calculated square-chi 

value corresponds to 9.14 and the p-value is at 0.0025, lower than 0.05 which indicates than H0 

cannot be rejected. Hereafter, the variance is not constant in this case. 

 

Figure 3.79: Residuals plot for circularity at exit 
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Linearity assumption: Figure 3.80 indicates that the relationship between the circularity at exit 

and the feed rate is not linear. However, the association between the circularity at exit and the 

spindle speed is linear. Thus, this assumption is not valid unless both scatterplots reflect a linear 

fitting. 

 

Figure 3.80: Scatterplots feed rate and spindle speed against circularity at exit 

 Table 3.94 presents a brief description of each assumption’s validation. Hence, this model 

cannot be used because all the assumptions are violated. This issue may be caused by some 

outliers. Prior to building another regression model, the observations with extreme values of the 

independent variables is identified and their influence investigated. 

Table 3.94: Illustration of the assumption validation results for circularity at exit using MLR 

Assumptions Valid for this model 

Independency No 

Normality No 

Linearity No 

Homoscedasticity No 

The leverage against the normalized residual squared plot is drawn (figure 3.81).  

 

Figure 3.81: Plot of the leverage against normalized residual squared of the circularity at exit 
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The leverage measures how far an independent variable deviates from its mean. High leverage 

points could have a prodigious effect on the estimate of the coefficients of regression. The 

inclusion of these influential points can substantially change the estimate of the regression 

coefficients. Figure 3.81 reveals high leverage points on the upper left corner of the plot and high 

points in the absolute of residuals at the lower right corner. Also, there are points high in leverage 

and in the absolute of residuals are situated on the upper right portion.  

In this case, the cut-off value for DFBETAs is 2/sqrt(35) = 0.338. To identify which observations 

are associated with the extreme point on the plot, the DFBETA of the feed rate and spindle speed 

are generated and all points with dfbeta_5 and dfbeta_6 over 0.34 are the researched extreme 

values. Table 3.95 presents the calculated DFBETA of the feed rate (dfbeta_5) and spindle speed 

(df_beta6). It indicates as well that the observation at feed rate [800] and spindle speed [15000] 

would increase the coefficient for feed rate and spindle speed by respectively 0.94 and 0.73 

standard errors. Thus, one alternative would be to refit a model without this observation.  

Table 3.95: Values of DFBETA of feed rate and spindle speed for circularity at exit 

      

 

 

                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                

 35.    800      15000    .9384779    .7286533  

 34.    800      12000    .6452944    .2732835  

 33.    800       8500    .4923854    .0057924  

 32.    800       5000    .2110224   -.0844035  

 31.    800       1500   -.3564699    .2893509  

                                                

 30.    600      15000    -.179476   -.2359272  

 29.    600      12000   -.2258269    -.161922  

 28.    600       8500   -.1952087    -.003888  

 27.    600       5000   -.1413853    .0957438  

 26.    600       1500   -.0901102     .123837  

                                                

 25.    400      15000   -.0732426   -.3136859  

 24.    400      12000   -.0535439   -.1250834  

 23.    400       8500    -.036115   -.0023436  

 22.    400       5000   -.0201866     .044538  

 21.    400       1500     .000981   -.0043925  

                                                

 20.    200      15000    .0836339   -.2847151  

 19.    200      12000     .038221   -.0709722  

 18.    200       8500    .0160362   -.0008272  

 17.    200       5000    .0042752    .0074975  

 16.    200       1500   -.0234244   -.0833686  

                                                

 15.    100      15000    .0905163   -.1624007  

 14.    100      12000    .0411455   -.0402663  

 13.    100       8500    .0016023   -.0000436  

 12.    100       5000   -.0284356    -.026282  

 11.    100       1500   -.0344371   -.0645941  

                                                

 10.     60      15000    .1979255   -.2986153  

  9.     60      12000    .0333368   -.0274342  

  8.     60       8500   -.0192315    .0004396  

  7.     60       5000   -.0838542   -.0651734  

  6.     60       1500   -.0403156     -.06359  

                                                

  5.     20      15000   -.4919004    .6402801  

  4.     20      12000   -.3877818    .2753206  

  3.     20       8500   -.0182153    .0003592  

  2.     20       5000   -.0771417   -.0517269  

  1.     20       1500   -.0425977   -.0579675  

                                                

       feed   spindl~d   _dfbeta_5   _dfbeta_6  
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As a first step of the re-fitting model without the observation at feed rate [800] and spindle speed 

[15000] is to generate the parameter estimates, ANOVA and coefficient of determination results 

in table 3.96. 

Table 3.96: Parameter estimates and ANOVA results for hole circularity at exit with n=34 

 

Table 3.96 indicates that the feed rate and spindle speed are both significant variables on the 

circularity at exit with respective p-values of 0 and 0.005; both lower than 0.05. Also, the 

adjusted R
2
 corresponds to 0.3995 revealing that 39.95% of the variability is explained by the 

feed rate and spindle speed.  

Based on this table, the fitted regression model is: 

Cex = 0.0351 + 0.000274*F + 0.0000115*SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of circularity at exit is 

0.0351. 

2. Feed rate (β1): for each one-unit change of feed, circularity at exit will increase by 0.000274 

when the spindle speed is constant. 

3. Spindle Speed (β2): for each one-unit change of Spindle Speed, circularity at exit will increase 

by 0.0000115 when the feed rate is constant. 

Figure 3.82 is the plot of this fitted model and table C.17 in annex C presents the circularity at 

exit data values after excluding the observation at feed rate [800] and spindle speed [15000]. 

                                                                              

       _cons     .0350705   .0423153     0.83   0.414    -.0512321     .121373

spindlespeed     .0000115   3.80e-06     3.04   0.005     3.78e-06    .0000193

        feed     .0002737   .0000674     4.06   0.000     .0001362    .0004111

                                                                              

 holecirexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .602756962    33  .018265362           Root MSE      =  .10473

                                                       Adj R-squared =  0.3995

    Residual    .340030081    31  .010968712           R-squared     =  0.4359

       Model    .262726881     2   .13136344           Prob > F      =  0.0001

                                                       F(  2,    31) =   11.98

      Source         SS       df       MS              Number of obs =      34
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Figure 3.82: Plot of the circularity at exit fitted vs observed values n=34 

To compare the studied models, the Akaike’s information is calculated for each one. 

Table 3.97: Akaike’s results for circularity at exit model with MLR 

 

Table 3.98: Akaike’s results for circularity at exit model with multiple regression–n=34 

 

 Tables 3.97 and 3.98 indicate that: 

AICn=35 = -48.67 compared to AIC n=34 = -52.82 

In this case, the first model is better than the second one for the following reasons: 

1. The adjusted R
2
 coefficient obtained after exclusion of an observation compared to the 

original model is lower: 0.3995 vs 0.4877. No improvement seen after excluding the 

influential point. 

2. As indicated in the ANOVA results for both models: 

i. The SS residuals of the 2
nd

 model is smaller (0.34) compared to the SS residual of 

the 1
st 

model (0.43). However, percentage-wise, SS residuals of the 2
nd

 model 

constitute 56.67% from the total SS versus 48.31% for the 1st model. 

ii. The root MSE is reduced by the new model (0.105 vs 0.116). The smaller this 

value, the closer the fit is to the data. 

3. The AIC for the new model is -52.82 compared to -48.67. The smallest the AIC is, the 

better the model is. 
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           .       35    14.56902     27.3362      3    -48.67239   -44.00635

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC

                                                                             

Akaike's information criterion and Bayesian information criterion

                                                                             

           .       34    15.01388    29.41249      3    -52.82499   -48.24591

                                                                             

       Model      Obs    ll(null)   ll(model)     df          AIC         BIC
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The model with the excluded observation did not provide better results. A transformed or non-

linear model won’t provide better results because of the presence of an outlier. The table below 

presents a summary of all the analysis performed on the circularity at exit. However, none of the 

models are recommended to be used to their low significance. 

Table 3.99: Comparison of all methods used for the circularity at exit analysis 

Method used Validity to use Variability  Significant variables 

MLR 
Non-normality, non-linearity 

and variance not constant 
48.77% 

Feed rate and spindle 

speed 

MLR with excluded 

observation 

Non-normality and 

variance not constant 
39.95% 

Feed rate and 

interaction 

3.10 Circularity at entry analysis 

3.10.1 Circularity at entry distribution study over feed rate 

In this section, an ANOVA is accomplished to understand the relationship between the circularity 

at entry and the feed rate. A boxplot is drawn below to discern the trend of the circularity at entry 

against the feed rate and to indicate the degree of dispersion in the data and identify any outliers. 

As displayed on figure 3.83, the circularity at entry outline is close to a linear. At feed rate levels 

20 and 800, outliers are identified at the upper side which may cause issues in the fitted 

regression model. The dispersion of the data within each level is large which indicates that the 

data doesn’t vary around the same value. In table 3.100, the calculated p-value is near 0.097, 

greater than 0.05 which demonstrates that the feed rate has no significant effect on the circularity 

at entry. Also, only 5.36% of the variability is explained by the feed rate. 

 

Figure 3.83: Boxplot of circularity at entry over the feed rate 
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Table 3.100: Parameter estimates and ANOVA results for circularity at entry over feed rate 

 

 3.10.2 Circularity at entry distribution study over spindle speed 

After verifying the relationship between the circularity at entry and feed rate, this section will 

attempt to verify the association between the circularity at entry and the spindle speed. The plot 

below is a visualization to view how the data is distributed. As displayed on figure 3.84, the 

circularity at entry against the spindle speed outline is slightly curved. Also, the boxplot detects 

outliers and extreme points at spindle speed levels 5000 and 15000 on the upper side. From the 

length of each box, the variability is determined to be large which indicates that the data is spread 

within each range. By observing the horizontal line inside each box which represents the median, 

it suggests that the distribution is skewed because the median is mostly not centered. In table 

3.101, the calculated p-value is 0.764, greater than 0.05 which indicates that the feed rate has no 

significant effect on the circularity at entry. The adjusted R
2
 is roughly equal to 0 which is in 

indication of lack of explanation of the known variability. The spindle speed doesn’t contribute at 

all to the circularity at entry performance. 

 

Figure 3.84: Boxplot of circularity at entry over the spindle speed 

 

 

                                                                              

       _cons     .1486858   .0240103     6.19   0.000     .0998366    .1975351

        feed     .0000986   .0000577     1.71   0.097    -.0000187    .0002159

                                                                              

holecirentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     .31950439    34  .009397188           Root MSE      =   .0943

                                                       Adj R-squared =  0.0536

    Residual    .293481604    33  .008893382           R-squared     =  0.0814

       Model    .026022786     1  .026022786           Prob > F      =  0.0965

                                                       F(  1,    33) =    2.93

      Source         SS       df       MS              Number of obs =      35

. regress holecirentry feed
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Table 3.101: Parameter estimates and ANOVA results for circularity at entry over spindle speed 

 

3.10.3 Circularity at entry multiple linear regression 

In previous sections, the relationship of the circularity at entry against the feed rate and the 

spindle speed were examined. As a first step in the analysis of regression, the parameter 

estimates, ANOVA and coefficient of determination results are generated and studied. Table 

3.102 indicates that the p-value of the feed rate (0.101) and spindle speed (0.758) are both greater 

than 0.05, which specifies that both independent variables are not significant on the hole 

circularity at entry data. The adjusted R
2
 corresponds to 0.027; this indication is very low and 

means that only 2.7% of the variability is explained by the feed rate and spindle speed. 

Table 3.102: Parameter estimates and ANOVA results for circularity at entry using MLR 

 

From table 3.102, the fitted regression model is: 

Cen = 0.14 + 0.00010*F + 1x10-6*SS 

Interpretation of the coefficients 

1. Constant (β0): when feed and spindle are zero, the expected mean of the circularity at entry is 

0.14 

2. Feed rate (β1): For each changes of one unit of feed, the circularity at entry will increase by 

0.00010 when the spindle speed is constant. 

                                                                              

       _cons     .1706318   .0334222     5.11   0.000     .1026338    .2386298

spindlespeed     1.04e-06   3.45e-06     0.30   0.764    -5.98e-06    8.07e-06

                                                                              

holecirentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     .31950439    34  .009397188           Root MSE      =  .09826

                                                       Adj R-squared = -0.0275

    Residual    .318621934    33   .00965521           R-squared     =  0.0028

       Model    .000882456     1  .000882456           Prob > F      =  0.7643

                                                       F(  1,    33) =    0.09

      Source         SS       df       MS              Number of obs =      35

. regress holecirentry spindlespeed

                                                                              

       _cons     .1399176   .0372738     3.75   0.001     .0639933     .215842

spindlespeed     1.04e-06   3.36e-06     0.31   0.758    -5.80e-06    7.89e-06

        feed     .0000986   .0000585     1.69   0.101    -.0000205    .0002177

                                                                              

holecirentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total     .31950439    34  .009397188           Root MSE      =  .09562

                                                       Adj R-squared =  0.0270

    Residual    .292599148    32  .009143723           R-squared     =  0.0842

       Model    .026905241     2  .013452621           Prob > F      =  0.2448

                                                       F(  2,    32) =    1.47

      Source         SS       df       MS              Number of obs =      35
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3. Spindle Speed (β2): for each changes of one unit of spindle speed, the circularity at entry will 

decrease by 0.000001 when the deed rate is held constant. 

Figure 3.85 is the plot of this fitted model and table C.18 in annex C presents the circularity at 

entry fitted and observed values. 

 

Figure 3.85: Plot of the circularity at entry fitted vs observed values using MLR 

As observed previously, the plot displays the occurrence of outliers. This model is not useful 

because of lack of known variability and presence of outliers. Despite the uselessness of this 

model, the assumptions will be verified to better understand the lack of fitness of this case. 

Independency assumption: As observed on figure 3.86, this assumption is violated because the 

residual follow a repetitive structured pattern. Also, outliers are observed. 

 

Figure 3.86: Plot of standardized residuals of the circularity at entry against case number 

Normality assumption: The residual plot, in figure 3.87, suggests a deviation of the normal 

distribution at the lower and upper tail; and outliers are detected as well at the upper side. It is an 

indication that the standardized residuals are not normally distributed. The Shapiro-Wilk test, 

from table 3.103, confirms the results observed on the illustration below with a p-value equal to 0 

lower than 0.05; the null hypothesis of the normality test is rejected. 
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Figure 3.87: Plot of standardized residuals of the circularity at entry 

Table 3.103: Shapiro-Wilk test for the circularity at entry 

 

Linearity assumption: Figure 3.88 suggests that the relationship between the feed rate and the 

circularity at entry is slightly linear. However, the outline in the scatterplot of the spindle speed 

and the circularity at entry is not perfectly linear. This assumption is violated. 

 

Figure 3.88: Scatterplots feed rate and spindle speed against circularity at entry 

Homoscedasticity assumption: The residuals variance of the circularity at entry in figure 3.89 

suggests that the residuals behavior is not constant. BPCW test is carried out to verify the results 

of the illustration above. The calculated square-chi value is 4.90 and p-value is at 0.0268, lower 

than 0.05 which indicates than H0 is rejected and the variance is confirmed to be not constant.  
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Figure 3.89: Residuals plot for circularity error at entry 

Table 3.104 presents a brief description of each assumption’s validation. 

Table 3.104: Illustration of the assumption validation results for circularity at exit 

Assumptions Valid for this model 

Independency No 

Normality No 

Linearity No 

Homoscedasticity No 

Hence, this model cannot be used because all the assumptions are violated. This issue may be 

caused by the outliers identified in the analysis. Because the independent variables, the feed rate 

and spindle speed do not affect the circularity at entry and because the variance of the residuals is 

not constant, the exclusion of the outliers will not significantly change the regression coefficients. 

The table below presents a summary of all the analysis performed on the circularity at entry. 

Table 3.105: Comparison of all methods used for the circularity at entry analysis 

Method used Validity to use Variability  

 

Significant 

variables 

MLR 
Non-normality, non-linearity and variance 

not constant 
2.7% None 

 

In previous sections, the analysis was done using the feed rate and the spindle speed as the 

independent input variables to study their effect combined together on the uncontrollable 

variables and the desired quality characteristics. As explained previously, the cutting force and 

the torque are highly correlated which indicates that when they are put together in the same 

analytical model as inputs, it may generate inaccurate and unreliable results. To get conclusive 

results and avoid variables cancelling each other, researches decided to study the effect of the 

thrust force and the cutting force on the delamination at entry and exit using the simple and 

multiple regression applications. The boxplots won’t be presented because the variables under 
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study are continuous and can’t be grouped together. Boxplots are made to compare groups. In 

previous sections, the distribution of the uncontrollable variables is pulled across the different 

group of values of the feed rate and the spindle speed. In the following sections, the two 

comparable variables (thrust force and cutting force) are continuous. 

3.11 Delamination at exit analysis versus thrust force and cutting force 

3.11.1 Delamination at exit distribution study over thrust force 

In this section, the thrust force is analyzed as the only effect on the delamination at exit. As a 

start, the parameter estimates, ANOVA and coefficient of determination results are generated in 

table 3.106. 

Table 3.106: Parameter estimates and ANOVA results of delamination at exit against thrust force 

 

This table reveals that the calculated p-value is near 0, lower than 0.05 which indicates that the 

thrust force has a significant effect on the delamination at exit. The adjusted R
2
 corresponds to 

0.8625 which implies that 86.25% of the variability is explained by the thrust force. Thus, the 

thrust force has an important influence on the delamination at exit comportment. The simple 

linear model is represented by: 

Dex = 0.9855196 + 0.0004689*TF 

Figure 3.90 is the plot of this simple linear regression of the thrust force against the delamination 

at exit. It indicates that the observed values lie closely to the fitted line except two observations. 

Table C.19 in annex C presents the data for this plot. 

       _cons     .9855196   .0061251   160.90   0.000     .9730579    .9979813

 thrustforce     .0004689    .000032    14.64   0.000     .0004037     .000534

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =   .0236

                                                       Adj R-squared =  0.8625

    Residual    .018386699    33  .000557173           R-squared     =  0.8665

       Model     .11936803     1   .11936803           Prob > F      =  0.0000

                                                       F(  1,    33) =  214.24

      Source         SS       df       MS              Number of obs =      35

. regress delexit thrustforce
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Figure 3.90: Plot of the thrust force against the delamination at exit 

Before moving forward with the cutting force analysis, it’s important to investigate if this simple 

regression model can represent the delamination at exit. Thus, the three assumptions described 

previously are verified: normality, homoscedasticity and linearity. 

Normality assumption: The normal probability plot below suggests a deviation of the straight 

line at the lower and upper tail which could be potentially be due to the influence of the outliers 

noticed earlier. Shapiro test (table 3.107) indicates that the p-value is 0.00004, lower than 0.05. 

Consequently, this assumption is violated. 

 

Figure 3.91: Normal probability plot for the delamination at exit simple regression 

Table 3.107: Shapiro-Wilk Test for delamination at exit normality delamination at exit against 

thrust force 

 

Homoscedasticity assumption: The residual plot below demonstrates that the variance of the 

residual is constant and the values are fluctuating randomly around zero. The BPCW test is 

performed and the calculated chi-square corresponds to 0.54 and the p-value of the chi-square is 
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0.4613; higher than 0.05 which indicates that the null hypothesis that the variance of residuals is 

constant cannot be rejected. 

 

Figure 3.92: Residual plot for the delamination at exit data using simple regression 

Linearity assumption: Figure 3.93 indicates that the lowess outline closely overlaps the 

regression outline which confirms that the existent relationship between the thrust force and the 

delamination at exit is linear. 

 

Figure 3.93: Scatterplot of thrust force versus feed rate 

Below is a summary of the assumptions’ validation results for the delamination at exit simple 

linear regression model (Table 3.108) while the only input is the thrust force.  

Table 3.108: Illustration of the assumption validation results for delamination at exit-simple 

regression 

Assumptions Valid for this model 

Normality No 

Homoscedasticity Yes 

Linearity Yes 
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Based on this series of analysis, this model does not follow the normality assumption. As 

discussed previously, the normality is not a mandatory requirement for prediction purposes. In 

this case, the linear regression model does suit this data and experts can rely on this fitting model 

to predict the trend of the thrust force at any point of this experimental domain of the 

delamination at exit.  

3.11.2 Delamination at exit distribution study over cutting force 

In this section, the cutting force is analyzed over the delamination at exit to understand their 

relationship and dependency. As shown in table 3.109, the p-value of the cutting force is lower 

than 0 which is below the conventional reference point, which indicates that the cutting force 

does have an important effect on the delamination at exit. The adjusted R
2
 equals to 0.8042 which 

indicates that 80.42% of the variability of the delamination at exit is explained by the cutting 

force. 

Table 3.109: Parameter estimates and ANOVA results of cutting force against delamination at 

exit 

 

 The simple linear model is represented by: 

Dex = 0.9588188 + 0.0014497*CF 

Figure 3.94 is the plot of the simple linear regression of the cutting force against the 

delamination at exit. The overall trend tends to rise. The plot indicates that the scatter of points lie 

closely to the regression line and are within the 95% confidence of interval of the predicted 

values. However, one outlier is identified to be indicating a possible lack fit of the model. Further 

investigations are needed into the assumptions to check the validity of this model. Table C.20 in 

annex C presents the data of this plot. 

                                                                              

       _cons     .9588188   .0092972   103.13   0.000     .9399034    .9777341

cuttingforce     .0014497   .0001222    11.86   0.000     .0012011    .0016984

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .02816

                                                       Adj R-squared =  0.8042

    Residual    .026173141    33  .000793125           R-squared     =  0.8100

       Model    .111581588     1  .111581588           Prob > F      =  0.0000

                                                       F(  1,    33) =  140.69

      Source         SS       df       MS              Number of obs =      35

. regress delexit cuttingforce
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Figure 3.94: Plot of the cutting force against the delamination at exit 

Before presenting any conclusions, the appropriateness of the regression model for the 

delamination at exit data is examined. 

Normality assumption: The normal probability plot below shows a deviation of the straight line 

at the lower and upper tail. The Shapiro-Wilk test is performed and the results are presented in 

table 3.110. It indicates that the calculated p-value is 0.00137, lower than 0.05. Thus, the thrust 

force does not follow a normal distribution. 

 

Figure 3.95: Normal probability plot for the cutting force data against the cutting force 

Table 3.110: Shapiro-Wilk Test for cutting force normality using simple regression 

 

Homoscedasticity assumption: The residual plot below confirms that the variance of the 

residual is constant. The calculated chi-squared
 
corresponds to 0.03 and the p-value of the chi-

squared is 0.8572, higher than 0.05 which indicates that the null hypothesis that the variance of 

residuals is constant cannot be rejected. 
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Figure 3.96: Residual plot for the cutting force versus delamination at exit data using simple 

linear regression 

Linearity assumption: The relationship between the cutting force and the delamination at exit 

must be linear. Thus, to verify this assumption, the scatterplot of the cutting force against the 

delamination at exit is illustrated in figure 3.97. The lowess fitted curve suggests a bell-shaped 

model: the quadratic. 

 

Figure 3.97: Scatterplot of cutting force against delamination at exit 

Below is a summary of the assumptions’ validation results for the delamination at exit simple 

regression model (Table 3.111).  

Table 3.111: Illustration of the assumption validation results for delamination at exit versus 

cutting force using simple regression 

Assumptions Valid for this model 

Normality No 

Homoscedasticity Yes 

Linearity No 
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Based on this series of analysis, this model does not follow the normality and the linearity 

assumptions. In this case, the linear regression model does not suit this data. Because the linearity 

assumption is not validated, the option to fit this model is to develop a nonlinear model. Note that 

data transformation is used to refit the data only when the variance is not constant. Therefore, as 

illustrated on figure 3.97, the most apparent model to fit properly this data is the quadratic fit. 

The following analysis outlines the nonlinear analysis to get a mathematical model. 

Table 3.112 indicates as well that the adjusted R
2
 is at 88.85%; a very good estimation. The 

variability of the simple regression model developed previously was 80.42% compared to 88.85% 

with the quadratic model. 

Table 3.112: Parameter estimates and ANOVA results of delamination at exit against cutting 

force using nonlinear regression 

 

Based on the table above, the following nonlinear regression fitted model is pulled: 

Dex = 1.007646 - 0.0002544*CF + 0.0000108*CF
2
 

Below is the plot of the quadratic fitted model of the delamination at exit against the cutting 

force. The predicted values are slightly lying on the fitted line and within the interval of 

confidence. This indicates that this model fits well the thrust force data. Table C.21 in annex C 

presents the data of this plot.  

                                                                              

       _cons     1.007646   .0118796    84.82   0.000     .9834481    1.031844

         cf2     .0000108   2.12e-06     5.09   0.000     6.48e-06    .0000151

cuttingforce    -.0002544    .000347    -0.73   0.469    -.0009613    .0004525

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .02125

                                                       Adj R-squared =  0.8885

    Residual     .01445449    32  .000451703           R-squared     =  0.8951

       Model    .123300239     2   .06165012           Prob > F      =  0.0000

                                                       F(  2,    32) =  136.48

      Source         SS       df       MS              Number of obs =      35

. regress delexit cuttingforce cf2
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Figure 3.98: Plot of the quadratic delamination at exit fitted model 

3.11.3 Delamination at exit distribution study over thrust force and cutting force 

In this section, the thrust force and cutting force are combined together against the delamination 

at exit to understand their effect’s impact. As indicated in table 3.113, the calculated p-value of 

the cutting force is 0.308 higher than 0.05 which indicates that the cutting force does not have an 

important effect on the delamination at exit. The p-value of the thrust force is 0 lower than 0.05 

which indicates that the thrust force have an important effect on the delamination at exit. 

Table 3.113: Parameter estimates and ANOVA results of thrust force and cutting force against 

delamination at exit 

 

The adjusted R
2
 is equal to 0.8628 which indicates that 86.28% of the variability of the 

delamination at exit is explained by the cutting force and the thrust force. The MLR model is 

represented by: 

Dex = 0.9783124 + 0.0003197*CF + 0.003745*TF 

Figure 3.99 is the plot of the multiple linear regression model of delamination at exit. The overall 

trend tends to rise. The plot indicates that the scatter of points lie closely to the regression line 

and are within the 95% confidence of interval of the predicted values. However, two outliers are 
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       _cons     .9783124    .009262   105.63   0.000     .9594463    .9971785

 thrustforce     .0003745   .0000964     3.88   0.000     .0001781     .000571

cuttingforce     .0003197   .0003085     1.04   0.308    -.0003086     .000948

                                                                              

     delexit        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .137754729    34   .00405161           Root MSE      =  .02358

                                                       Adj R-squared =  0.8628

    Residual    .017789479    32  .000555921           R-squared     =  0.8709

       Model     .11996525     2  .059982625           Prob > F      =  0.0000

                                                       F(  2,    32) =  107.90

      Source         SS       df       MS              Number of obs =      35

. regress delexit cuttingforce thrustforce 
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identified to likely indicate a lack fit of the model. Further investigations are needed into the 

assumptions to check the model’s validity. Table C.22 in annex C presents the data of this plot. 

 

Figure 3.100: Plot of the delamination at exit using MLR 

Normality assumption: The normal probability plot below shows a deviation of the straight line 

at the lower and upper tail. Also, as presented in the Shapiro-Wilk test (in table 3.114) the 

calculated p-value is 0, lower than 0.05. Consequently, the experimental data of the thrust force 

do not follow a normal distribution. 

 

Figure 3.101: Normal probability plot for the delamination at exit using MLR 

Table 3.114: Shapiro-Wilk Test for delamination at exit normality using MLR 

 

Homoscedasticity assumption: The residual plot below confirms that the variance of the 

residual is constant and the residuals values are fluctuating randomly around zero. The BPCW 

test is performed and the calculated chi-squared corresponds to 0.04 and the p-value of the chi2 is 

0.8488 higher than 0.05 which indicates that the null hypothesis that the variance of residuals is 

constant cannot be rejected. 
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Figure 3.102: Residual plot for the delamination at exit data using MLR 

Test of collinearity: The collinearity concept is the undesirable state where two variables are 

highly correlated with each other. This can lead to inaccurate and erroneous results because they 

are explaining almost the same variability in the output. However, it is beneficial to investigate 

the relationship of the output by excluding one of the input variables which was done in sections 

3.11.1 and 3.11.2; the adjusted R
2
 of the thrust force and the cutting force when analyzed 

separately were respectively 86.25% and 80.42%. Therefore, the same variability is explaining 

the output. To be able to combine the thrust force and the cutting force within the same analytical 

model to predict properly the delamination at exit, the test of collinearity must be negative which 

means absence of correlation is needed for conclusive results. 

 

Figure 3.103: Test of collinearity 

The visual illustration in figure 3.103 displays that the cutting force and the thrust force are 

highly correlated. In 88.66% of the case, the delamination at exit is predicted in the same way. As 

indicated in table 3.113, both coefficients are very similar 0.003197 and 0.003745 for 

respectively the cutting force and the thrust force. To verify how the variables are correlated, the 
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spearman test can be used. In this case, the rs calculated corresponds to 0.984 which indicated a 

high positive correlation. Thus, the model developed previously cannot be used due to this issue. 

Researchers may use the following models to predict the delamination at exit: 

 From the thrust force only: 

Dex = 0.9855196 + 0.0004689*TF 

 From the cutting force only: 

Dex = 1.007646 - 0.0002544*CF + 0.0000108*CF
2
 

3.12 Delamination at entry analysis versus thrust force and cutting force 

3.12.1 Delamination at entry distribution study over thrust force 

In this section, the thrust force is analyzed as the only effect on the delamination at entry. As a 

start, the parameter estimates, ANOVA and coefficient of determination results are generated to 

understand the effect of the thrust force on the delamination at entry. Table 3.115 demonstrates 

that the calculated p-value is near 0, lower than 0.05 which indicates that the thrust force has a 

significant effect on the delamination at entry. The adjusted R
2
 corresponds to 0.6878 which 

indicates that 68.78% of the variability is explained by the thrust force. 

Table 3.115: Parameter estimates and ANOVA results of delamination at entry against thrust 

force 

 

The simple linear model is represented by: 

Dee = 1.015377 + 0.0009992*TF 

Figure 3.104 is the plot of this simple linear regression of the thrust force against the 

delamination at entry. It indicates that the observed values follow the fitted line. Table C.23 in 

annex C presents the data for this plot.  

                                                                              

       _cons     1.015377   .0219312    46.30   0.000     .9707578    1.059996

 thrustforce     .0009992   .0001147     8.71   0.000     .0007658    .0012325

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .08452

                                                       Adj R-squared =  0.6878

    Residual    .235719122    33  .007143004           R-squared     =  0.6970

       Model    .542130786     1  .542130786           Prob > F      =  0.0000

                                                       F(  1,    33) =   75.90

      Source         SS       df       MS              Number of obs =      35

. regress delentry thrustforce
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Figure 3.104: Plot of the thrust force against the delamination at entry 

To verify if this model fits properly the delamination at entry data, the following assumptions are 

verified: normality, homoscedasticity and linearity. 

Normality assumption: The normal probability plot below suggests a deviation of the straight 

line at the lower, center and upper tail. Also, the Shapiro-Wilk test is performed. As indicated in 

table 3.116, the p-value is 0.00818, lower than 0.05. Consequently, the delamination at entry 

does not follow a normal distribution. 

 

Figure 3.105: Normal probability plot for the delamination at entry using simple regression with 

thrust force 

Table 3.116: Shapiro-Wilk Test for delamination at entry normality using simple regression 

 

Homoscedasticity assumption: The plot below demonstrates that the variance of the residual is 

constant. No specific pattern is recognized. The BPCW test is performed and the calculated chi-

squared corresponds to 0.01 and the p-value of the chi2 is 0.93; higher than 0.05 which confirms 

that the null hypothesis that the variance of residuals is constant cannot be rejected. 
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Figure 3.104: Residual plot for the delamination at entry data using simple regression 

Linearity assumption: Figure 3.105 indicates that the “lowess” outline does not overlap the 

regression outline which indicates that the existent relationship between the thrust force and the 

delamination at exit is nonlinear.  

 

Figure 3.105: Scatterplot of thrust force against delamination at entry 

Below is a summary of the assumptions’ validation results for the delamination at entry linear 

regression model (Table 3.117).  

Table 3.117: Illustration of the assumption validation results for delamination at entry with 

simple regression 

Assumptions Valid for this model 

Normality No 

Homoscedasticity Yes 

Linearity No 

Based on this series of analysis, this model does not follow the normality assumption and is not 

linear. To determine an appropriate fitted model, the attempt of transforming the thrust force or 

the delamination at entry will be completed. From section 3.1.5, it was determined that the log 

transformation of the thrust force was a best choice than the linear whereas its p-value is the 

highest one to be over 0.05 and the highest one between all the suggested models. In the 
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following analysis, the log transformation is verified to construct the delamination at entry 

prediction model. As a standard procedure, the parameter estimates, ANOVA and coefficient of 

determination results are generated to analyze the fitted model and the independent variable 

effect. Table 3.118 indicates that the logarithmic term of the thrust force is significant: its p-value 

is near 0; lower than 0.05. Also, the adjusted R
2
 (81.72%) is higher after transforming the 

independent variable compared to the previous regression analysis (68.78%). 

Table 3.118: Parameter estimates and ANOVA results of transformed thrust force against 

delamination at entry 

 

The fitted regression model is represented by: 

Den = 0.3179846 + 0.1800144 *log (Tf) 

Figure 3.106 is a graphical illustration of delamination at entry observed vs predicted values 

against the logarithmic thrust force. Also, table C.24 in annex C presents the data of this plot. 

 

Figure 3.106: Plot of the delamination at entry observed vs predicted values against thrust force 

transformation 

Normality assumption: As demonstrated in figure 3.107, the graphical representation suggests a 

deviation of the normal distribution. Also, the Shapiro-Wilk test confirms that the standardized 

residuals are not normally distributed as p-value corresponds to 0.00818, lower than 0.05.  

                                                                              

       _cons     .3179846   .0689648     4.61   0.000     .1776746    .4582946

        lntf     .1800144   .0145517    12.37   0.000     .1504087      .20962

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .06466

                                                       Adj R-squared =  0.8172

    Residual    .137980929    33   .00418124           R-squared     =  0.8226

       Model    .639868979     1  .639868979           Prob > F      =  0.0000

                                                       F(  1,    33) =  153.03

      Source         SS       df       MS              Number of obs =      35

.8
1

1
.2

1
.4

1
.6

1
.8

O
b

s
e
rv

e
d
 v

a
lu

e
s

1 1.2 1.4 1.6
Fitted values

95% CI Fitted values

DelEntry



133 
 

 

Figure 3.107: Normal plot of the standardized residuals of the delamination at entry 

Table 3.119: Shapiro-Wilk test for normal data for delamination at entry 

 

Linearity assumption: Figure 3.108 indicates that the relationship between the delamination at 

entry and the log (thrust force) is linear.  

 

Figure 3.108: Scatterplot of the delamination at entry against the log (thrust force) 

Homoscedasticity assumption: Figure 3.109 displays that the variance is constant and no 

specific pattern can be identified. After performing the BPCW, the calculated chi-squared value 

corresponds to 0.01 and the p-value is at 0.93, higher than 0.05 indicating than H0 cannot be 

rejected. In this case, the variance is constant. 
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Figure 3.109: Residuals plot for circularity at exit 

Table 3.120 presents a brief description of each assumption’s validation. 

Table 3.120: Illustration of the assumption validation results 

Assumptions Valid for this model 

Normality No 

Linearity Yes 

Homoscedasticity Yes 

Hence, this model can be used to predict the delamination at entry from the thrust force.  

3.12.2 Delamination at entry distribution study over cutting force 

In this section, the cutting force is analyzed over the delamination at entry. As shown in table 

3.121, the p-value of the cutting force is lower than 0 which is lower than 0.05, which indicates 

that the cutting force does have an important effect on the delamination at entry trend. The 

adjusted R
2
 is equal to 0.8057 which indicates that only 80.57% of the variability of the 

delamination at entry is explained by the cutting force. 

Table 3.121: Parameter estimates and ANOVA results of cutting force against delamination at 

entry 

 

The simple regression model is represented by: 

DEE = 0.930548 + 0.003448*CF 
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       _cons     .9350548   .0220094    42.48   0.000     .8902764    .9798333

cuttingforce      .003448   .0002893    11.92   0.000     .0028593    .0040366

                                                                              

    delentry        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    .777849908    34  .022877938           Root MSE      =  .06667

                                                       Adj R-squared =  0.8057

    Residual    .146677658    33  .004444778           R-squared     =  0.8114

       Model     .63117225     1   .63117225           Prob > F      =  0.0000

                                                       F(  1,    33) =  142.00

      Source         SS       df       MS              Number of obs =      35

. regress delentry cuttingforce
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Figure 3.110 is the plot of this simple linear regression of the cutting force against the 

delamination at entry. The overall trend tends to rise. The plot indicates that the scatter of points 

lie closely to the regression line and are within the 95% confidence of interval of the predicted 

values. Table C.25 in annex C presents the data of this plot. 

 

Figure 3.110: Plot of the cutting force against the delamination at entry 

Normality assumption: The normal probability plot above shows that the overall trend follows 

the straight line. This indicates that the data do follow a normal distribution. As indicated in table 

3.122, the calculated p-value is 0.27282, higher than 0.05. Consequently, this test confirms the 

plot observation. 

 

Figure 3.111: Normal probability plot for the delamination at entry vs cutting force data using 

simple regression 

Table 3.122: Shapiro-Wilk Test for cutting force normality using simple regression 

 

 Homoscedasticity assumption: The residual plot below confirms that the variance of the 

residual is constant. The BPCW test is performed and the calculated chi-squared
 
corresponds to 
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0.03 and the p-value of the chi
2 

is 0.8527 higher than 0.05 which indicates that the null hypothesis 

that the variance of residuals is constant cannot be rejected. 

 

Figure 3.112: Residual plot for the delamination at entry versus cutting force data using simple 

regression 

Linearity assumption: The scatterplot of the cutting force against the delamination at entry is 

illustrated in figure 3.113. The “lowess” fitted line suggests a linear shape. 

 

Figure 3.113: Scatterplot of cutting force against delamination at entry 

Below is a summary of the assumptions’ validation results for the delamination at exit simple 

regression model (Table 3.124). Based on this series of analysis, this model can be used by the 

experts to predict the delamination at entry.  

Table 3.124: Illustration of the assumption validation results for delamination at entry vs cutting 

force using simple regression 

Assumptions Valid for this model 

Normality Yes 

Homoscedasticity Yes 

Linearity Yes 
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Table 3.123 explores all the investigations described in this chapter concerning the delamination 

at entry. 

Table 3.123: Presentation of all analysis completed for the delamination at entry against thrust 

force and cutting force 

Method used Validity to use Variability  Significant variables 

Simple linear regression with 

thrust force 

Non-normality and 

non-linear 
68.78% Thrust force 

Nonlinear Regression with 

Thrust force 
All valid 81.72% 

Logarithmic term of 

the thrust force 

Simple linear regression with 

cutting force 
All valid 80.57% Cutting force 

Researchers may use the following models to predict the delamination at entry: 

 From the thrust force: 

Dee = 0.3179846 + 0.1800144*log (TF) 

 From the cutting force: 

Dee = 0.930548 + 0.003448*CF  
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CHAPTER 4 CONCLUSION 

An aircraft is built with thousands of rivets and bolts hovering with thin metal sheets. They are 

inserted through holes which are drilled by the manufacturer based on exact specifications. 

Working away from the manufacturing requirements and practices may affect the structural 

integrity of the aircraft. The end result of the hole’s quality is based on many factors: feed rate, 

spindle speed, tool wear, depth of the cut, drill-bit diameter, etc. 

In the preceding chapters, the comprehensive principles of the simple and multiple linear 

regression analysis have been described and applied to construct a suitable fitted model based on 

the mechanics of drilling for each one of the following outputs: 

1. Thrust force 

2. Cutting force 

3. Torque 

4. Delamination at entry 

5. Delamination at exit 

6. Surface roughness (in microns) 

7. Diameter error at exit (in %) 

8. Diameter error at entry (in %) 

9. Circularity at exit (in %) 

10. Circularity at entry in (%) 

The inputs under study are the feed rate (micron/rev) and the spindle speed (rpm) at their 

respective levels [20, 60, 100, 200, 400, 600, 800] and [1500, 5000, 8500, 12000, 15000]. 

The following is a summary of the main aspects of the simple and multiple regression 

analysis: 

1. Explore the distribution of each output. Then, explore the relationship between the 

independent variables and the dependents. The simple linear regression provides the 

contribution of each independent variable to the prediction of the output by analyzing 

the parameter estimates, ANOVA and coefficient of determination results. 

2. Discover the impact of the combined independent variables and their interaction 

effect on the dependent. In fact, a prediction model will be fitted through MLR. Thus, 

the important of the feed rate, spindle speed and interaction are judged by comparing 

their relative p-values to the conventional reference point (α=0.05). 

3. Generate the regression fitted model by pulling the regression coefficients from the 

parameter estimates table. 

4. Compute the adjusted coefficient of determination. It represents the percent of the 

data that is the closest to the best fitted line. 
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5. Examine the plot of the estimated model to visually inspect the fit of the model 

developed. If the regression line passes roughly through every point on the plot, the 

model would be able to explain all of the variation. The further the line is away from 

the predicted points, the less the model is able to explain the variability. 

6. Validate the fitted model with assumptions verification. 

In today’s economic-oriented and competitive marketplace, manufacturing practices 

simulation based on the mechanics of the drilling helps achieve a better drilling quality 

and therefore, predict the quality in advance. During this research, the common 

significant independent variable revealed was the feed rate. The dependence on the 

spindle speed of the different outputs is not observed on all outputs. Table 4.1 displays 

the relationship between each independent variable and the outputs. 

Table 4.1: Relationship between independent variables and outputs 

Output Effect increasing feed 

rate on dependent 

Effect the increasing spindle 

speed on dependent Thrust force Linear increase Linear decrease 

Cutting force Linear increase Linear decrease 

Torque Linear increase Linear decrease 

Delamination at entry Cubic increase Cubic with slightly decrease 

Delamination at exit Linear increase Linear with decrease 

Surface roughness Linear increase Linear slightly increase 

Diameter error at exit Linear slightly decrease Linear slightly increase 

Diameter error at entry Linear slightly decrease Linear slightly increase 

Circularity at exit Curvilinear bell-shaped  Linear increase 

Circularity at entry Linear slightly increase None 

As explained in chapter 2, the settings can be transformed to a uniform coded scale: 

Table 4.2: Coded values for the feed rate and spindle seed settings 

 Coded (-1) Coded (0) Coded (+1) 

Feed rate 20 410 800 

Spindle speed 1500 6750 15000 

Table 4.3 summarizes the conclusions and the models found for each output. The 

mathematical models presented in this table are the real settings for the feed rate and the 

spindle speed. The feed rate ranges from 20 to 800 and the spindle speed from 1500 to 

15000.  For some outputs as shown in the table below, new models are presented with the 

coded scale above. These models are centered to 0.  
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Table 4.3: Models for the outputs studied 

 

  

  

Output - type 

of model 

Significant 

Variables 

Variability  Mathematical model to use 

Thrust force - 

Transformation 

Feed rate and 

spindle speed 
90.46% 

Log (Tf) = 4.291 + 0.00247*F - 

0.000045*SS 

Cutting force - 

MLR with 

interaction 

Feed rate and 

interaction 
94.78% 

Cf = 29.335 + 0.184*F –0.0004*SS–

0.000007*F*SS 
Cfcentered= 65.34+ 0.184*F –0.0004*SS–

0.000007*F*SS 

Torque - 

MLR with 

interaction 

Feed rate and 

interaction 
94.78% 

T = 146.68 + 0.92*F – 0.0019*SS – 

0.000035*F*SS 
Tcentered= 326.7+ 0.92*F – 0.0019*SS – 

0.000035*F*SS 

Delamination 

at entry - 

MLR with 

interaction 

Feed rate and 

interaction 
85.28% 

Den= 1 + 0.00063*F + 1.02x10-6*SS –

1.7x10-8*F*SS 
Dencentered= 1.160 + 0.00063*F + 1.02x10-6*SS –

1.7x10-8*F*SS 

Delamination 

at exit - 

MLR with 

interaction 

Feed rate, 

spindle speed 

and 

interaction 

89.44% 

Dex = 0.98 + 0.00036*F + 2.8 x 10-6 *SS 

– 2.3x10-8*F*SS 
Dexcentered= 1.054+ 0.00036*F + 2.8 x 10-6 *SS – 

2.3x10-8*F*SS 

Surface 

roughness - 

Transformation 

with n=34 

Feed rate and 

interaction 
63.77% No model retained  because of outliers 

Diameter error 

at exit - 

MLR with 

n=34 

Feed rate and 

spindle speed 
38.28% No model retained because of outliers 

Diameter error 

at entry - 

MLR with 

n=34 

Feed rate and 

spindle speed 
51.59% No model retained because of outliers 

Circularity at 

exit - no model 
None NA 

No model retained because of outliers and 

fundamental assumptions are violated 

Circularity at 

entry – no 

model 

None NA 
No model retained; no significant 

variables found 
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During this drilling process review and evaluation, the regression method allowed the 

researchers to mathematically express five of the ten outputs under study to predict their 

behavior. However, experts are aiming to explain as much variance as possible while 

controlling as many additional factors as possible. Also, the goal was to be able to predict 

the ten outputs for a better process control. 

When diagnosing the ANOVA results, a coefficient of determination helped define how 

much variance is explained. Any unexplained variance may be due to random or 

unconsidered variables. So far, only the feed rate and the spindle speed were explored. 

Furthermore, additional variables may be added to the original experiment effect to 

reduce the model variability like the tool wear.  

The application of this project can be used to the NRC engineers to understand the 

relationship between the different variables in the drilling process from a 

statistical/mathematical point of view. Also, whenever accurate models are found valid 

using the regression method, the engineers will be able to define the best combination for 

the optimum to minimize the quality defects while drilling a hole whereas decreases the 

experimental cost. Because regression models haven’t able to be found for five of the ten 

variables, one of the continuations of this project is to explore the artificial intelligence 

methods that are proven to be effective by many researchers in different fields (electric, 

civil and mechanical engineering and medical), such as the: 

 ANN: the Artificial Neuron Network [34], a nonlinear statistical data modeling 

tool, based on neuron networks able to learn and recognize data patterns. 

 LAD: the Logical Analysis of Data [35], a data analysis methodology which 

extracts patterns from a large set of data, first established by Peter L. Hammer in 

1986. 

 SVM: the Support Vector Machines is a modeling and prediction tool, founded by 

Vapnik [36] a Russian mathematician in the early 1960s based on the structural 

risk minimization principle.  

These methods will be able to combine the controllable and uncontrollable variables to 

predict the desired outputs. Also, during their pattern’s study, it will recognize the 

mechanical failure to avoid them. 
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ANNEX A 

 

Below is a recommended outline of the steps to build an appropriate design of experiment 

[1]: 

1. Recognition of and statement of the problem: formulate a concise description of 

the problem and the objectives of the experiment. 

2. Choice of key factors and levels: determine the significant factors on the outputs and 

the settings to be used on each factor. It is generally best to keep the numbers of 

factors levels low (most used is 2 and 3).  

3. Selection of the response variable: select the outputs to be analyzed.  

4. Choice of experimental design: determine the design to use and the number of runs 

to accomplish. This selection involves the sample size and the number of factors, and 

their settings.  

5. Performing the experiments: execute each run randomly within the same production 

environment and record the results. 

6. Data analysis: analyze the data collected with statistical methods and graphical 

representations.  

7. Conclusions and recommendations: document and summarize the results in tabular 

and graphical forms. Also, present the recommendations and link the conclusions to 

the problems described in step 1. 

  

                                                        
1 D. C. Montgomery, Introduction to Statistical Quality Control, 6

th
 edition, Hoboken: John Wiley & Sons, 

2012 
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ANNEX B 

 

Note 1: 

 

Difference between “Simple” and “Linear” terminologies [2]: 

“Simple” implies that the model only contains one predictor variable, and 

“Linear” denotes that no parameter appears as an exponent or is multiplied or divided by   

another parameter and the variable appears only in the first power; it does not refer to the 

shape of the response surface.  

A model that is simple linear is also called “first-order model”. 

 

Note 2: 

Figure B.1: Boxplot representation 

 
 

Note 3: 

 

An ANN process is defined by the following: 

1. The definition of the most adequate input variables for a most relevant outputs, 

2. The training process to learn from the data in order to obtain the expected results, 

3. The activation function that predicts the output using an appropriate mapping 

function, 

                                                        
2 J. Neter, M. Kutner, C. Nachtsheim, W. Wasserman, Applied Linear Statistical Models, 

4
th

 Edition, Chicago: Irwin, 1996. 
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4. The validation of the predicted values by analyzing the errors, and 

5. The selection of the optimal set of values for the input factors that lead to higher 

quality of outputs. 

Note 4: 

Table B.2: Experimental matrix for a Box-Behnken design for three factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 5: 

To determine how much impact each observation has on a particular predictor, the 

software calculates a measure called DFBETAs. The DFBETA for a predictor and for a 

specific observation is the difference between the regression coefficient calculated for all 

of the data and the regression coefficient calculated with the observation deleted,  scaled 

by the standard error calculated with the observation deleted. DFBETAs can be either 

positive or negative. Any value exceeding the 
2

𝑠𝑞𝑟𝑡(𝑛)
 where n is the number of 

observations, needs further investigation. 

  

Run 
Factors 

Factor 1 Factor 2 Factor 3 

1 -1 -1 0 

2 1 -1 0 

3 1 -1 0 

4 1 1 0 

5 -1 0 -1 

6 -1 0 1 

7 1 0 -1 

8 1 0 1 

9 0 -1 -1 

10 0 -1 1 

11 0 1 -1 

12 0 1 1 

13 0 0 0 

14 0 0 0 

15 0 0 0 

16 0 0 0 

17 0 0 0 
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ANNEX C 

Table C.1: Experiments data collection [3] 

 

 

 

  

                                                        
3 Rawat, S. (2006), The Characterization of Drilling Process of Woven Composites Using 

Machinability Maps,  Thesis, McGill University, Montreal, QC, Canada.  
 

Feed SpindleSpeed DelExit DelEntry HoleSurfRough HoleDiaErrExit HoleDiaErrEntry HoleCirExit HoleCirEntry ThrustForce CuttingForce Torque

20 1500 1.000 1.000 0.453 0.032 0.016 0.056 0.074 58.23 26.38 131.90

20 5000 1.000 1.000 1.194 0.138 0.020 0.128 0.112 54.26 20.76 103.80

20 8500 1.000 1.000 2.255 0.182 0.044 0.142 0.118 47.00 17.34 86.70

20 12000 1.000 1.000 3.282 0.088 0.072 0.402 0.202 36.50 14.72 73.60

20 15000 1.075 1.081 2.030 4.800 5.650 0.484 0.594 30.43 13.10 65.50

60 1500 1.000 1.000 0.601 -0.006 -0.104 0.072 0.108 77.50 39.36 196.80

60 5000 1.000 1.000 0.900 -0.004 -0.104 0.154 0.122 58.96 34.72 173.60

60 8500 1.000 1.000 0.720 -0.026 -0.082 0.158 0.136 46.50 28.42 142.10

60 12000 1.000 1.000 0.820 0.038 -0.052 0.170 0.122 43.50 21.98 109.90

60 15000 1.000 1.000 1.060 0.064 0.156 0.104 0.094 48.00 25.56 127.80

100 1500 1.000 1.000 0.972 -0.084 -0.114 0.086 0.168 78.50 53.10 265.50

100 5000 1.000 1.000 1.160 -0.050 -0.104 0.132 0.156 60.00 44.95 224.75

100 8500 1.000 1.000 0.990 -0.034 -0.098 0.156 0.152 67.00 43.53 217.66

100 12000 1.000 1.000 1.200 0.014 -0.068 0.172 0.136 62.30 38.20 191.00

100 15000 1.000 1.000 1.140 0.004 0.210 0.176 0.116 50.00 31.91 159.53

200 1500 1.079 1.252 1.429 -0.052 -0.138 0.128 0.136 103.00 64.06 320.31

200 5000 1.053 1.223 1.305 -0.060 -0.120 0.134 0.166 98.00 63.06 315.30

200 8500 1.051 1.215 1.820 -0.040 -0.064 0.164 0.200 93.00 50.84 254.20

200 12000 1.040 1.212 1.890 -0.046 -0.064 0.178 0.144 90.00 53.10 265.50

200 15000 1.034 1.157 1.870 0.034 0.100 0.154 0.130 103.00 58.58 292.90

400 1500 1.105 1.291 1.620 -0.074 -0.164 0.160 0.216 200.00 108.15 540.75

400 5000 1.060 1.242 1.757 -0.050 -0.110 0.166 0.158 175.65 90.96 454.80

400 8500 1.061 1.245 2.243 -0.070 -0.068 0.182 0.220 162.00 87.16 435.80

400 12000 1.060 1.226 2.140 -0.090 -0.048 0.198 0.158 154.00 73.04 365.20

400 15000 1.049 1.162 2.273 -0.036 0.090 0.208 0.136 140.24 71.14 355.70

600 1500 1.223 1.330 2.000 -0.116 -0.284 0.172 0.250 370.00 141.3 706.50

600 5000 1.144 1.296 1.783 -0.090 -0.144 0.188 0.208 310.00 111.64 558.20

600 8500 1.102 1.275 2.782 -0.136 -0.124 0.204 0.152 260.00 99.46 497.30

600 12000 1.044 1.260 2.256 -0.094 -0.090 0.238 0.162 182.50 75.86 379.30

600 15000 1.050 1.165 1.912 -0.024 0.030 0.312 0.152 145.50 87.92 439.60

800 1500 1.243 1.480 2.492 -1.090 -1.004 0.178 0.198 570.00 164.78 823.90

800 5000 1.174 1.402 1.957 -1.090 -0.968 0.413 0.453 461.40 140.82 704.10

800 8500 1.109 1.383 3.036 -0.068 -0.150 0.556 0.244 310.00 118.36 591.80

800 12000 1.070 1.368 2.937 -0.042 -0.084 0.648 0.202 184.00 96.60 483.00

800 15000 1.048 1.347 2.198 -0.022 0.036 0.756 0.184 147.00 76.02 380.11
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Table C.2: Thrust force fitted against observed values using MLR 

Number Observed Fitted 

1 58.23 95.81065 

2 54.26 65.53903 

3 47 35.26741 

4 36.5 4.995792 

5 30.43 20.95131 

6 77.5 110.7649 

7 58.96 80.4933 

8 46.5 50.22168 

9 43.5 19.95006 

10 48 5.997041 

11 78.5 125.7192 

12 60 95.44757 

13 67 65.17596 

14 62.3 34.90433 

15 50 8.95723 

16 103 163.1049 

17 98 132.8333 

18 93 102.5616 

19 90 72.29001 

20 103 46.34291 

21 200 237.8762 

22 175.65 207.6046 

23 162 177.333 

24 154 147.0614 

25 140.24 121.1143 

26 370 312.6476 

27 310 282.3759 

28 260 252.1043 

29 182.5 221.8327 

30 145.5 195.8856 

31 570 387.4189 

32 461.4 357.1473 

33 310 326.8757 

34 184 296.6041 

35 147 270.657 
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Table C.3: Thrust force fitted against observed values using MLR with interaction 

Number Observed Fitted 

1 58.23 20.95284 

2 54.26 28.65257 

3 47 36.35231 

4 36.5 44.05204 

5 30.43 50.65181 

6 77.5 46.18171 

7 58.96 48.66969 

8 46.5 51.15767 

9 43.5 53.64565 

10 48 55.7782 

11 78.5 71.41058 

12 60 68.68681 

13 67 65.96304 

14 62.3 63.23926 

15 50 60.90459 

16 103 134.4828 

17 98 118.7296 

18 93 102.9764 

19 90 87.22328 

20 103 73.72057 

21 200 260.6271 

22 175.65 218.8152 

23 162 177.0033 

24 154 135.1913 

25 140.24 99.35252 

26 370 386.7715 

27 310 318.9008 

28 260 251.0301 

29 182.5 183.1594 

30 145.5 124.9845 

31 570 512.9158 

32 461.4 418.9864 

33 310 325.0569 

34 184 231.1274 

35 147 150.6164 
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Table C.4: Table fitted values vs observed for the log-thrust force transformation 

Number Observed Fitted 

1 4.064401 -37.58065 

2 3.993787 -1.27903 

3 3.850147 11.73259 

4 3.597312 31.50421 

5 3.415429 51.38131 

6 4.350278 -33.26492 

7 4.076859 -21.5333 

8 3.839452 -3.721683 

9 3.772761 23.54994 

10 3.871201 53.99704 

11 4.363099 -47.21919 

12 4.094345 -35.44757 

13 4.204693 1.824047 

14 4.131961 27.39567 

15 3.912023 41.04277 

16 4.634729 -60.10487 

17 4.584968 -34.83325 

18 4.532599 -9.561629 

19 4.49981 17.70999 

20 4.634729 56.65709 

21 5.298317 -37.87622 

22 5.168493 -31.95461 

23 5.087596 -15.33298 

24 5.036952 6.93864 

25 4.943355 19.12575 

26 5.913503 57.35243 

27 5.736572 27.62405 

28 5.560682 7.895668 

29 5.20675 -39.33271 

30 4.980176 -50.38561 

31 6.345636 182.5811 

32 6.134265 104.2527 

33 5.736572 -16.87568 

34 5.214936 -112.6041 

35 4.990433 -123.657 
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Table C.5: Observed vs predicted values for cutting force using MLR 

Number Observed Fitted 

1 26.38 46.11267 

2 20.76 37.25069 

3 17.34 28.38871 

4 14.72 19.52673 

5 13.1 11.93075 

6 39.36 51.14958 

7 34.72 42.2876 

8 28.42 33.42562 

9 21.98 24.56364 

10 25.56 16.96766 

11 53.1 56.1865 

12 44.95 47.32452 

13 43.53 38.46254 

14 38.2 29.60056 

15 31.91 22.00458 

16 64.06 68.77879 

17 63.06 59.91681 

18 50.84 51.05482 

19 53.1 42.19284 

20 58.58 34.59686 

21 108.15 93.96336 

22 90.96 85.10138 

23 87.16 76.2394 

24 73.04 67.37742 

25 71.14 59.78144 

26 141.3 119.1479 

27 111.64 110.2859 

28 99.46 101.424 

29 75.86 92.56199 

30 87.92 84.96601 

31 164.78 144.3325 

32 140.82 135.4705 

33 118.36 126.6085 

34 96.6 117.7466 

35 76.02 110.1506 
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Table C.6: Cutting force table fitted vs observed values using MLR with interaction 

Number Observed Fitted 

1 26.38 32.2326 

2 20.76 30.41123 

3 17.34 28.58987 

4 14.72 26.76851 

5 13.1 25.20734 

6 39.36 39.17462 

7 34.72 36.38689 

8 28.42 33.59917 

9 21.98 30.81145 

10 25.56 28.42197 

11 53.1 46.11664 

12 44.95 42.36256 

13 43.53 38.60848 

14 38.2 34.8544 

15 31.91 31.63661 

16 64.06 63.4717 

17 63.06 57.30172 

18 50.84 51.13174 

19 53.1 44.96176 

20 58.58 39.67321 

21 108.15 98.18181 

22 90.96 87.18004 

23 87.16 76.17826 

24 73.04 65.17648 

25 71.14 55.7464 

26 141.3 132.8919 

27 111.64 117.0583 

28 99.46 101.2248 

29 75.86 85.39121 

30 87.92 71.81958 

31 164.78 167.602 

32 140.82 146.9367 

33 118.36 126.2713 

34 96.6 105.6059 

35 76.02 87.89277 
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Table C.7: Torque fitted values versus observed using MLR 

Number Observed Fitted 

1 131.9 230.5641 

2 103.8 186.2536 

3 86.7 141.9432 

4 73.6 97.6327 

5 65.5 59.65229 

6 196.8 255.7488 

7 173.6 211.4383 

8 142.1 167.1278 

9 109.9 122.8174 

10 127.8 84.83695 

11 265.5 280.9334 

12 224.75 236.623 

13 217.66 192.3125 

14 191 148.002 

15 159.53 110.0216 

16 320.31 343.8951 

17 315.3 299.5846 

18 254.2 255.2741 

19 265.5 210.9637 

20 292.9 172.9833 

21 540.75 469.8184 

22 454.8 425.5079 

23 435.8 381.1974 

24 365.2 336.887 

25 355.7 298.9066 

26 706.5 595.7417 

27 558.2 551.4312 

28 497.3 507.1208 

29 379.3 462.8103 

30 439.6 424.8299 

31 823.9 721.665 

32 704.1 677.3546 

33 591.8 633.0441 

34 483 588.7336 

35 380.11 550.753 
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Table C.8: Torque observed against predicted values using MLR with interaction 

Number Observed Fitted 

1 131.9 161.166 

2 103.8 152.0574 

3 86.7 142.9489 

4 73.6 133.8404 

5 65.5 126.0331 

6 196.8 195.8759 

7 173.6 181.9357 

8 142.1 167.9956 

9 109.9 154.0554 

10 127.8 142.1067 

11 265.5 230.5858 

12 224.75 211.814 

13 217.66 193.0422 

14 191 174.2704 

15 159.53 158.1803 

16 320.31 317.3605 

17 315.3 286.5096 

18 254.2 255.6587 

19 265.5 224.8078 

20 292.9 198.3642 

21 540.75 490.91 

22 454.8 435.9009 

23 435.8 380.8918 

24 365.2 325.8827 

25 355.7 278.732 

26 706.5 664.4595 

27 558.2 585.2922 

28 497.3 506.1248 

29 379.3 426.9575 

30 439.6 359.0998 

31 823.9 838.009 

32 704.1 734.6835 

33 591.8 631.3579 

34 483 528.0323 

35 380.11 439.4676 
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Table C.9: Delamination at entry fitted and observed values using MLR 

Number Observed Fitted 

1 1 1.04576 

2 1 1.031407 

3 1 1.017054 

4 1 1.002701 

5 1.81 0.9903983 

6 1 1.065371 

7 1 1.051018 

8 1 1.036665 

9 1 1.022312 

10 1 1.010009 

11 1 1.084982 

12 1 1.070629 

13 1 1.056276 

14 1 1.041923 

15 1 1.02962 

16 1.252 1.134009 

17 1.223 1.119656 

18 1.215 1.105303 

19 1.212 1.09095 

20 1.157 1.078647 

21 1.291 1.232063 

22 1.242 1.21771 

23 1.245 1.203357 

24 1.226 1.189004 

25 1.162 1.176701 

26 1.33 1.330117 

27 1.296 1.315764 

28 1.275 1.301411 

29 1.26 1.287058 

30 1.165 1.274755 

31 1.48 1.428171 

32 1.402 1.413818 

33 1.383 1.399465 

34 1.368 1.385112 

35 1.347 1.372809 
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Table C.10: Delamination at entry fitted and observed values using MLR with interaction 

Number Observed Fitted 

1 1 1.012679 

2 1 1.015106 

3 1 1.017533 

4 1 1.019961 

5 1.081 1.022041 

6 1 1.036831 

7 1 1.036955 

8 1 1.037078 

9 1 1.037202 

10 1 1.037309 

11 1 1.060982 

12 1 1.058803 

13 1 1.056623 

14 1 1.054444 

15 1 1.052576 

16 1.252 1.12136 

17 1.223 1.113423 

18 1.215 1.105486 

19 1.212 1.097549 

20 1.157 1.090746 

21 1.291 1.242117 

22 1.242 1.222664 

23 1.245 1.203211 

24 1.226 1.183758 

25 1.162 1.167084 

26 1.33 1.362873 

27 1.296 1.331905 

28 1.275 1.300936 

29 1.26 1.269967 

30 1.165 1.243423 

31 1.48 1.48363 

32 1.402 1.441146 

33 1.383 1.398661 

34 1.368 1.356176 

35 1.347 1.319761 
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Table C.11: Delamination at exit fitted and observed values using MLR 

Number Observed Fitted 

1 1 1.033303 

2 1 1.018358 

3 1 1.003414 

4 1 0.988469 

5 1.075 0.975660 

6 1 1.040124 

7 1 1.02518 

8 1 1.010236 

9 1 0.995291 

10 1 0.982482 

11 1 1.046946 

12 1 1.032002 

13 1 1.017058 

14 1 1.002113 

15 1 0.989304 

16 1.79 1.064001 

17 1.53 1.049056 

18 1.51 1.034112 

19 1.4 1.019168 

20 1.34 1.006359 

21 1.105 1.09811 

22 1.6 1.083166 

23 1.61 1.068221 

24 1.6 1.053277 

25 1.49 1.040468 

26 1.223 1.132219 

27 1.144 1.117275 

28 1.102 1.10233 

29 1.44 1.087386 

30 1.5 1.074577 

31 1.243 1.166328 

32 1.174 1.151384 

33 1.109 1.13644 

34 1 1.121495 

35 1.48 1.108686 
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Table C.12: Delamination at exit fitted and observed values using MLR with interaction 

Number Observed Fitted 

1 1 0.987654 

2 1 0.995865 

3 1 1.004076 

4 1 1.012286 

5 1.075 1.019324 

6 1 1.000741 

7 1 1.005774 

8 1 1.010807 

9 1 1.015839 

10 1 1.020153 

11 1 1.013829 

12 1 1.015683 

13 1 1.017538 

14 1 1.019392 

15 1 1.020982 

16 1.079 1.046547 

17 1.053 1.040456 

18 1.051 1.034365 

19 1.04 1.028274 

20 1.034 1.023054 

21 1.105 1.111983 

22 1.06 1.090002 

23 1.061 1.06802 

24 1.06 1.046039 

25 1.049 1.027197 

26 1.223 1.17742 

27 1.144 1.139548 

28 1.102 1.101675 

29 1.044 1.063803 

30 1.05 1.031341 

31 1.243 1.242857 

32 1.174 1.189094 

33 1.109 1.135331 

34 1.07 1.081568 

35 1.048 1.035485 
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Table C.13: Surface roughness fitted and observed values using MLR 

Number Observed Fitted 

1 0.453 0.9481253 

2 1.194 1.103094 

3 2.255 1.258062 

4 3.282 1.413031 

5 2.03 1.545861 

6 0.601 1.013223 

7 0.9 1.168191 

8 0.72 1.323159 

9 0.82 1.478128 

10 1.06 1.610958 

11 0.972 1.07832 

12 1.16 1.233288 

13 0.99 1.388257 

14 1.2 1.543225 

15 1.14 1.676055 

16 1.429 1.241063 

17 1.305 1.396031 

18 1.82 1.551 

19 1.89 1.705968 

20 1.87 1.838798 

21 1.62 1.566549 

22 1.757 1.721517 

23 2.243 1.876486 

24 2.14 2.031454 

25 2.273 2.164284 

26 2 1.892035 

27 1.783 2.047004 

28 2.782 2.201972 

29 2.256 2.356941 

30 1.912 2.48977 

31 2.492 2.217521 

32 1.957 2.37249 

33 3.036 2.527458 

34 2.937 2.682426 

35 2.198 2.815257 
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Table C.14: Surface roughness fitted and observed values using MLR with interaction 

Number Observed Fitted 

1 0.453 0.777112 

2 1.194 1.018826 

3 2.255 1.260541 

4 3.282 1.502255 

5 2.03 1.709439 

6 0.601 0.865682 

7 0.9 1.09549 

8 0.72 1.325298 

9 0.82 1.555106 

10 1.06 1.752084 

11 0.972 0.954251 

12 1.16 1.172153 

13 0.99 1.390055 

14 1.2 1.607956 

15 1.14 1.794729 

16 1.429 1.175675 

17 1.305 1.363811 

18 1.82 1.551947 

19 1.89 1.740083 

20 1.87 1.901343 

21 1.62 1.618523 

22 1.757 1.747128 

23 2.243 1.875733 

24 2.14 2.004337 

25 2.273 2.114569 

26 2 2.061372 

27 1.783 2.130445 

28 2.782 2.199518 

29 2.256 2.268591 

30 1.912 2.327796 

31 2.492 2.50422 

32 1.957 2.513761 

33 3.036 2.523303 

34 2.937 2.532845 

35 2.198 2.541023 
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Table C.15: Surface roughness fitted and observed values using MLR with n=34 

Number Observed Fitted 

1 0.453 0.8881406 

2 1.194 1.01163 

3 2.255 1.13512 

4 2.03 1.364458 

5 0.601 0.9620539 

6 0.9 1.085544 

7 0.72 1.209033 

8 0.82 1.332523 

9 1.06 1.438371 

10 0.972 1.035967 

11 1.16 1.159457 

12 0.99 1.282946 

13 1.2 1.406436 

14 1.14 1.512284 

15 1.429 1.220751 

16 1.305 1.34424 

17 1.82 1.46773 

18 1.89 1.59122 

19 1.87 1.697068 

20 1.62 1.590317 

21 1.757 1.713807 

22 2.243 1.837297 

23 2.14 1.960786 

24 2.273 2.066635 

25 2 1.959884 

26 1.783 2.083374 

27 2.782 2.206864 

28 2.256 2.330353 

29 1.912 2.436201 

30 2.492 2.329451 

31 1.957 2.452941 

32 3.036 2.57643 

33 2.937 2.69992 

34 2.198 2.805768 
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Table C.16: Circularity at exit fitted and observed values using MLR 

Number Observed Fitted 

1 0.056 0.0312234 

2 0.128 0.0809572 

3 0.142 0.130691 

4 0.402 0.1804248 

5 0.484 0.2230537 

6 0.072 0.0445746 

7 0.154 0.0943084 

8 0.158 0.1440421 

9 0.17 0.193776 

10 0.104 0.2364049 

11 0.086 0.0579257 

12 0.132 0.1076595 

13 0.156 0.1573933 

14 0.172 0.2071271 

15 0.176 0.2497561 

16 0.128 0.0913037 

17 0.134 0.1410375 

18 0.164 0.1907713 

19 0.178 0.2405051 

20 0.154 0.283134 

21 0.16 1580596 

22 0.166 0.2077933 

23 0.182 0.2575271 

24 0.198 0.3072609 

25 0.208 0.3498899 

26 0.172 0.2248154 

27 0.188 0.2745492 

28 0.204 0.324283 

29 0.238 0.3740168 

30 0.312 0.4166458 

31 0.178 0.2915713 

32 0.413 0.3413051 

33 0.556 0.3910389 

34 0.648 0.4407727 

35 0.756 0.4834017 
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Table C.17: Diameter error at entry fitted and observed values using MLR 

Number Observed Fitted 

1 0.056 0.0578364 

2 0.128 0.0981848 

3 0.142 0.1385333 

4 0.402 0.1788817 

5 0.484 0.2134661 

6 0.072 0.068784 

7 0.154 0.1091324 

8 0.158 0.1494808 

9 0.17 0.1898293 

10 0.104 0.2244136 

11 0.086 0.0797315 

12 0.132 0.12008 

13 0.156 0.1604284 

14 0.172 0.2007768 

15 0.176 0.2353612 

16 0.128 0.1071004 

17 0.134 0.1474489 

18 0.164 0.1877973 

19 0.178 0.2281457 

20 0.154 0.2627301 

21 0.16 0.1618382 

22 0.166 0.2021866 

23 0.182 0.2425351 

24 0.198 0.2828835 

25 0.208 0.3174679 

26 0.172 0.216576 

27 0.188 0.2569244 

28 0.204 0.2972729 

29 0.238 0.3376213 

30 0.312 0.3722057 

31 0.178 0.2713138 

32 0.413 0.3116622 

33 0.556 0.3520106 

34 0.648 0.3923591 
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Table C.18: Circularity at entry fitted and observed values using MLR 

Number Observed Fitted 

1 0.074 0.1434559 

2 0.112 0.1471093 

3 0.118 0.1507627 

4 0.202 0.1544161 

5 0.594 0.1575476 

6 0.108 0.1474008 

7 0.122 0.1510542 

8 0.136 0.1547076 

9 0.122 0.158361 

10 0.094 0.1614925 

11 0.168 0.1513457 

12 0.156 0.1549992 

13 0.152 0.1586526 

14 0.136 0.162306 

15 0.116 0.1654375 

16 0.136 0.1612081 

17 0.166 0.1648615 

18 0.2 0.1685149 

19 0.144 0.1721683 

20 0.13 0.1752998 

21 0.216 0.1809328 

22 0.158 0.1845862 

23 0.22 0.1882396 

24 0.158 0.191893 

25 0.136 0.1950245 

26 0.25 0.2006575 

27 0.208 0.2043109 

28 0.152 0.2079643 

29 0.162 0.2116177 

30 0.152 0.2147492 

31 0.198 0.2203822 

32 0.453 0.2240356 

33 0.244 0.227689 

34 0.202 0.2313424 

35 0.184 0.2344739 
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Table C.19: The fitted vs observed values of the thrust force against the delamination at 

exit 

Number Observed Fitted 

1 1 1.012821 

2 1 1.01096 

3 1 1.007556 

4 1 1.002633 

5 1.075 0.9997867 

6 1 1.021856 

7 1 1.013163 

8 1 1.007321 

9 1 1.005915 

10 1 1.008024 

11 1 1.022324 

12 1 1.013651 

13 1 1.016933 

14 1 1.014729 

15 1 1.008962 

16 1.079 1.033811 

17 1.053 1.031467 

18 1.051 1.029123 

19 1.04 1.027716 

20 1.034 1.033811 

21 1.105 1.07929 

22 1.06 1.067873 

23 1.061 1.061474 

24 1.06 1.057723 

25 1.049 1.051271 

26 1.223 1.158995 

27 1.144 1.130864 

28 1.102 1.107421 

29 1.044 1.071085 

30 1.05 1.053738 

31 1.243 1.252765 

32 1.174 1.201848 

33 1.109 1.130864 

34 1.07 1.071788 

35 1.048 1.054441 
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Table C.20: The fitted vs observed values of the cutting force against the delamination at 

exit 

Number Observed Fitted 

1 1 0.9970624 

2 1 0.988915 

3 1 0.983957 

4 1 0.9801587 

5 1.075 0.9778101 

6 1 1.01588 

7 1 1.009153 

8 1 1.00002 

9 1 0.9906837 

10 1 0.9958737 

11 1 1.035799 

12 1 1.023984 

13 1 1.021925 

14 1 1.014198 

15 1 1.005079 

16 1.079 1.051688 

17 1.053 1.050238 

18 1.051 1.032523 

19 1.04 1.035799 

20 1.034 1.043744 

21 1.05 1.115606 

22 1.06 1.090686 

23 1.061 1.085177 

24 1.06 1.064707 

25 1.049 1.061952 

26 1.223 1.163665 

27 1.144 1.120666 

28 1.102 1.103008 

29 1.044 1.068795 

30 1.05 1.086278 

31 1.243 1.197704 

32 1.174 1.162969 

33 1.109 1.130408 

34 1.07 1.098862 

35 1.048 1.069027 
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Table C.21: Table fitted values vs observed of the quadratic delamination at exit 

Number Observed Fitted 

1 1 1.008455 

2 1 1.007022 

3 1 1.006484 

4 1 1.006243 

5 1.075 1.006168 

6 1 1.014373 

7 1 1.011839 

8 1 1.009144 

9 1 1.007275 

10 1 1.008203 

11 1 1.024604 

12 1 1.018043 

13 1 1.017047 

14 1 1.013696 

15 1 1.010531 

16 1.079 1.03569 

17 1.053 1.034571 

18 1.051 1.022641 

19 1.04 1.024604 

20 1.034 1.029823 

21 1.05 1.106512 

22 1.06 1.073903 

23 1.061 1.067557 

24 1.06 1.046708 

25 1.049 1.044232 

26 1.223 1.187425 

27 1.144 1.113912 

28 1.102 1.089229 

29 1.044 1.050528 

30 1.05 1.068801 

31 1.243 1.259103 

32 1.174 1.186084 

33 1.109 1.128902 

34 1.07 1.083898 

35 1.048 1.050749 
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Table C.22: The fitted vs observed values of the delamination at exit using MLR 

Number Observed Fitted 

1 1 1.008556 

2 1 1.005272 

3 1 1.00146 

4 1 0.9966894 

5 1.075 0.993898 

6 1 1.019923 

7 1 1.011496 

8 1 1.004815 

9 1 1.001632 

10 1 1.00446 

11 1 1.02469 

12 1 1.01515 

13 1 1.01732 

14 1 1.01385 

15 1 1.00724 

16 1.079 1.03737 

17 1.053 1.03517 

18 1.051 1.02939 

19 1.04 1.02899 

20 1.034 1.03561 

21 1.05 1.08779 

22 1.06 1.07318 

23 1.061 1.06685 

24 1.06 1.05934 

25 1.049 1.05358 

26 1.223 1.16206 

27 1.144 1.13011 

28 1.102 1.10749 

29 1.044 1.0709 

30 1.05 1.06091 

31 1.243 1.24448 

32 1.174 1.19614 

33 1.109 1.13226 

34 1.07 1.07811 

35 1.048 1.05767 
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Table C.23: The fitted vs observed values of the thrust force against the delamination at 

entry 

Number Observed Fitted 

1 1 1.073559 

2 1 1.069593 

3 1 1.062338 

4 1 1.051847 

5 1.081 1.045782 

6 1 1.092813 

7 1 1.074289 

8 1 1.061839 

9 1 1.058841 

10 1 1.063338 

11 1 1.093813 

12 1 1.075328 

13 1 1.082322 

14 1 1.077626 

15 1 1.065336 

16 1.252 1.118293 

17 1.223 1.113297 

18 1.215 1.108301 

19 1.212 1.105303 

20 1.157 1.118293 

21 1.291 1.215213 

22 1.242 1.190883 

23 1.245 1.177244 

24 1.226 1.169251 

25 1.162 1.155502 

26 1.33 1.385073 

27 1.296 1.325123 

28 1.275 1.275164 

29 1.26 1.197727 

30 1.165 1.160758 

31 1.48 1.584909 

32 1.42 1.476398 

33 1.383 1.325123 

34 1.368 1.199226 

35 1.347 1.162256 
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Table C.24: Delamination at entry observed vs predicted values against thrust force 

transformation 

Number Observed Fitted 

1 1 1.073559 

2 1 1.069593 

3 1 1.062338 

4 1 1.051847 

5 1.081 1.045782 

6 1 1.092813 

7 1 1.074289 

8 1 1.061839 

9 1 1.058841 

10 1 1.063338 

11 1 1.093813 

12 1 1.075328 

13 1 1.082322 

14 1 1.077626 

15 1 1.065336 

16 1.252 1.118293 

17 1.223 1.113297 

18 1.215 1.108301 

19 1.212 1.105303 

20 1.157 1.118293 

21 1.291 1.215213 

22 1.242 1.190883 

23 1.245 1.177244 

24 1.226 1.169251 

25 1.162 1.155502 

26 1.33 1.385073 

27 1.296 1.325123 

28 1.275 1.275164 

29 1.26 1.197727 

30 1.165 1.160758 

31 1.48 1.584909 

32 1.402 1.476398 

33 1.383 1.325123 

34 1.368 1.199226 

35 1.347 1.162256 
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Table C.25: The fitted vs observed values of the cutting force against the delamination at 

entry 

Number Observed Fitted 

1 1 1.026012 

2 1 1.006635 

3 1 0.9948425 

4 1 0.9858088 

5 1.081 0.9802232 

6 1 1.070767 

7 1 1.054768 

8 1 1.033046 

9 1 1.010841 

10 1 1.023185 

11 1 1.118142 

12 1 1.090041 

13 1 1.085145 

14 1 1.066767 

15 1 1.045079 

16 1.252 1.155931 

17 1.223 1.152483 

18 1.215 1.110349 

19 1.212 1.118142 

20 1.157 1.137037 

21 1.291 1.307952 

22 1.242 1.248682 

23 1.245 1.235579 

24 1.226 1.186894 

25 1.162 1.180343 

26 1.33 1.422252 

27 1.296 1.319986 

28 1.275 1.277989 

29 1.26 1.196617 

30 1.165 1.2382 

31 1.48 1.50321 

32 1.42 1.420597 

33 1.383 1.343156 

34 1.368 1.268128 

35 1.347 1.197169 

 


