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RESUME

Les écoulements diphasiques sont présents dans plusieurs applications industrielles. No-
tamment, ils sont d’une grande importance dans les générateurs de vapeur des centrales
nucléaires. A I'intérieur de ces générateurs, des écoulements a bulles traversent des faisceaux
de tubes et engendrent des vibrations substantielles sur ces derniers. Dans le but de prévoir
le spectre des forces agissant sur ces tubes, un modele numérique a été développé au sein de
la chaire de recherche industrielle en interaction fluide-structure CRSNG/BWC/EACL. Bien
que le modele soit prometteur, certains éléments pourraient étre affinés.

Le but de ce mémoire est d’apporter par des méthodes expérimentales et théoriques
des améliorations aux hypotheses a la base du modele élaboré. Plus particulierement, de
développer des relations de fermeture pour la masse ajoutée de bulles dans un nuage de
bulles. Egalement, de créer un modele d’impact entre une bulle et une structure afin de
connaitre les efforts sur la bulle et sur la structure.

Dans un premier temps, le probleme de masse ajoutée est traité. Sous ’hypothese d'un
écoulement potentiel, une méthode de résolution d’écoulement a l'intérieur d’un nuage de
bulle est développée. Les bulles sont considérées comme des spheres rigides de taille identique
avec des conditions de glissement imposées a leur surface. Une relation permettant de prédire
la force de masse ajoutée sur une bulle au centre d'un nuage est développée. Elle prend en
compte un effet individuel, un effet de confinement et un effet induit par les autres bulles. Il
est ainsi possible, a partir de la géométrie d’un nuage de bulle, de déterminer quelle sera la
force de masse ajoutée subie par n’importe quelle de ces bulles.

Ensuite, 'approche précédente est étendue pour le cas d’une bulle ellipsoidale et défor-
mable approchant d’un mur. Des relations de masse ajoutée sont développées tant pour le
mode de translation que pour le mode de compression. La notion de force de jet est également
discutée et son utilité pour la conservation de I’énergie est mise en évidence. Ces forces sont
ensuite mises ensemble afin de créer un modele d’impact sur un mur. Ce modele peut non
seulement servir a prédire les forces sur la bulle, mais également les forces sur le mur.

Afin de valider ce modele, plusieurs expériences ont été réalisées. Le premier montage
permet de réaliser des impacts de bulles sur une mur fixe. De ces expériences, des relations
de restitutions sont extraites. Elles permettent de prédire 1’état de la bulle apres collision a
partir de ses caractéristiques initiales. Il devient évident que la catégorie de bulle (lente ou
rapide) a un effet significatif sur la dynamique de la collision. Plus encore, I’élément clé qui
dicte le comportement au rebond semble étre le rapport d’aspect de la bulle.

Un deuxieme montage expérimental permet de réaliser des impacts de bulles millimé-



triques sur une structure flottante. Les résultats expérimentaux révelent que la structure
flottante subie une force répulsive en provenance des bulles. Cette force est observée a partir
d’une distance bulle-mur d’environ 5 rayons de bulle. Bien que I'analyse effectuée ne soit que
partielle, le modele prédit une force a distance qui est du bon ordre de grandeur. Les forces
en jeux sont de 'ordre du microNewton.

Finalement, différents mécanismes a la base de la fragmentation d’une bulle sont observés.
Contrairement a nos attentes, les éclatements ne sont pas causés par un contact avec une
structure, mais davantage par des déchirements. Ces déchirements sont causés par des vortex
stationnaires et des zones d’accélération subite dans 1’écoulement.

Bien que les sujets explorés soient tous différents, ils ont tous leur part d’importance. Non
seulement apportent-ils des connaissances générales sur le comportement des bulles, mais
également des pistes a suivre pour le développement de modeles numériques représentant des

écoulements a bulles.
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ABSTRACT

Two-phase flows are present in many industrial applications. In particular, they are of
interest in the steam generators of nuclear power plants. In these equipment, bubbly flows
go through tube bundles and produce substantial vibration on the constitutive tubes. In
order to model the force spectrum acting on the tubes, a numerical model was developed by
the Industrial Research Chair in fluid-structure interaction NSERC/BWC/AECL. Although
promising, some elements of the model could be refined.

The purpose of this paper is to provide theoretical and experimental methods to improve
the developed code. In particular, to develop added mass closure relations for bubbles in a
cloud of bubbles. Also, to create a bubble-structure collision model. This model should allow
the prediction of the forces acting on the bubble as well as the forces acting on the structure.

To begin, the problem of added mass is treated. Under the potential flow theory, a method
for solving the flow inside a cloud of bubbles is developed. The bubbles are considered as
rigid spheres of the same size with a slip condition prescribed on their surface. From these
flows, an expression to predict the added mass force on any given bubble is developed. It
takes into account an individual effect, a confinement effect and an induced effect caused by
other bubble accelerations. It is therefore possible, from a known geometry of bubbles, to
determine what will be the added mass force exerted on any of these bubbles.

Then, the above approach is extended to the case of an ellipsoidal and deformable bubble
approaching a wall. Added mass relations are developed for both the translation mode for the
compression modes. The concept of jet force is also discussed and its usefulness for energy
conservation is highlighted. These forces are then put together to create an impact model on
a wall. This model is used to predict the forces on the bubble and on the wall.

To validate this model, several experiments were conducted. The first one is the impact
of rising bubbles with a rigid horizontal wall. Restitution relations are extracted from the
experimental results. These relations allow to predict the state of a bubble after impact from
the characteristics before impact. It becomes clear that the category of bubble (slow or fast)
has a significant effect on the collision behavior. Moreover, the key element that drives the
rebound behavior seems to be the aspect ratio of the bubble.

As a second experimental part, the impact of rising bubbles on a floating structure was
performed. Experiments shows that the floating structure experiences a repulsive from the
bubble. This force is becomes significant for bubble-wall distances of approximately 5 bubble
radius. Although the analysis is preliminar, the model predicts the right order of magnitude

for this repulsive force. These forces are of the order of micronewton.
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Finally, bubble fragmentation was observed. Contrary to our expectations, the fragmen-
tations were not caused by contact with a structure, but by tearing. Tearing were observed
in a stationary vortex and in an area of sudden acceleration in the flow.

Although the topics explored are all different, they all have their share of importance. Not
only do they provide a general understanding of the behavior of bubbles, they also suggests

avenues for the development of numerical model representing bubbly flows.
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CHAPITRE 1

INTRODUCTION

Les générateurs de vapeur sont des composants essentiels au fonctionnement des centrales
nucléaires. A intérieur de ces générateurs, un important débit d’eau circule au travers d’un
faisceau de tubes caloporteurs. Durant le contact, la température de ’eau augmente jusqu’au
point ou la phase vapeur commence a étre générée. Le fluide diphasique ainsi créé interagit
avec le faisceau en retour et induit des vibrations substantielles aux tubes. Afin de limiter
I'amplitude de déplacement des tubes, des supports antivibrations (AVB) sont insérés au

travers du faisceau. La figure [I.T]illustre un générateur de vapeur, les faisceaux de tubes ainsi

que les AVB.

/, Sortie de
vapeur

Tube en U

Support AVB

Figure 1.1 Illustration d'un générateur de vapeur

Bien que les supports soient efficaces pour le controle des vibrations, les points de contact
entre les tubes et les AVB sont sujets a une détérioration prématurée due au frottement.
Cette usure diminue significativement la durée de vie des générateurs de vapeur et entraine

des cotits majeurs pour la réparation et la restauration de ces composants.



Afin de pouvoir prévoir ces défaillances, les forces agissants sur des faisceaux de tubes
ont été étudiées. Pour des faisceaux soumis a des écoulements transverses, on peut nommer

différents mécanismes d’excitation des tubes :

La turbulence;;

Le détachement tourbillonnaire (vortex shedding);

Les instabilités fluide-élastiques ;

Les forces quasi-périodiques (pseudo-turbulence) ;

La résonance acoustique;

Si ’écoulement est monophasique liquide, les trois premiers mécanismes d’excitation
peuvent étre observés. Les contributions de chacun de ces mécanismes sont indiquées sur
la figure (Gorman), [1976)). La figure présente 'amplitude de vibration d’un tube dans
un faisceau en fonction de la vitesse interstitielle de 1’écoulement. La turbulence crée une
augmentation de I'amplitude de vibration qui est proportionnelle a la vitesse du fluide. Un
premier pic dans I'amplitude de vibration apparait lorsque la fréquence des détachements
tourbillonnaires s’approche de la fréquence naturelle des tubes. Puis, a partir d’une certaine
vitesse critique, 'instabilité fluide-élastique se développe. La vibration devient alors hors de
controle.

Toutefois, lorsque 1’écoulement devient diphasique, il y a une modification dans les modes
d’excitation. Bien que l'instabilité fluide-élastique persiste, les lachés tourbillonnaires dispa-
raissent et la nature des forces turbulentes change. Lance et Bataille (1991)) ont démontré
qu’a partir de faibles taux de vide (g > 1%), la turbulence classique causée par le cisaillement
cede place a une pseudo-turbulence créée par le déplacement des bulles.

Les effets de la pseudo-turbulence sur un faisceau de tubes ont été étudiés par plu-
sieurs anciens étudiants de la chaire de recherche industrielle d’interaction fluide structure
BWC/EACL/CRSNG (Zhang), 2007, Senez, [2010; [Perrot, [2011)). 11 a été montré que cette
pseudo-turbulence génere des forces quasi-périodiques. Ces forces quasi-périodiques sont ca-
ractérisées par une distribution fréquentielle relativement bien définie avec un maximum
spectral augmentant avec de la vitesse du fluide (Up) tant en amplitude qu’en fréquence
(Fig. . L’hypothese actuellement acceptée au sein du groupe de recherche est que cette
force quasi-périodique est causée par I'impact régulier d’amas de bulles sur les tubes. Dans
cette optique, [Senez et Etienne (2011)) ont développé un modele numérique ayant pour but
de recréer ces spectres de force sous ’hypothese d'un écoulement a bulle.

La figure illustre I'essence du modele. Il s’agit d’une vue en coupe d’un faisceau de
tubes soumis a un écoulement a bulle. Les portions grises correspondent aux tubes et les

cercles blancs correspondent a des bulles. Les bulles sont traitées comme des spheres rigides
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Figure 1.2 Réponse vibratoire d'un tube a l'intérieur d’un faisceau soumis a un écoulement
transverse monophasique (Gorman, 1976).
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Figure 1.3 Spectre du couple agissant en trainée sur un tube compris dans un faisceau.

(e =50%). Le trait rouge indique la force quasi-periodique (Perrot| (2011)))

subissant 1’écoulement de la phase liquide (en bleu). Chacune est traitée individuellement dans

un formalisme Lagragien. Les forces appliquées sur une bulle sont la poussée d’Archimede

ainsi qu’une trainée induite par I’écoulement local de la phase liquide autour de la bulle.
Durant I’évolution de ce systeme, les bulles peuvent rencontrer deux situations de contact :

bulle-bulle et bulle-tube. Il pourra alors y avoir trois comportements : coalescence des bulles



(bulle-bulle), éclatement (bulle-tube) ou rebond élastique (bulle-bulle / bulle-tube). Entre ces
évenements, les bulles évoluent indépendamment les unes des autres jusqu’a ce qu’un nouveau
contact soit détecté. De plus, I'écoulement est considéré indépendant de la distribution des

bulles. Il s’agit donc d'un couplage unidirectionnel de 1’écoulement sur les bulles.

Figure 1.4 Illustration du modele développé par |Senez et Etiennel d2011[)

Bien que ce modele a réussi a recréer une certaine périodicité dans les forces, son accord

avec les spectres expérimentaux laisse place a amélioration.

1.1 Objectifs de recherche

Les objectifs de la recherche sont d’apporter des améliorations aux hypotheses utilisées

dans le modele présenté par |Senez et Etiennel (|201 1b par des méthodes théoriques et expéri-

mentales. Plus spécifiquement :
e Développer les expressions de force de masse ajoutée pour des bulles seules, a proximité
d’une structure et dans un nuage de bulles;
e Développer un modele d’'impact entre une bulle et une structure afin de
— Prédire le comportement d'une bulle lors d'une collision avec un mur;

— Prédire les forces transmises aux murs durant 'impact.

Notez que les impacts traités dans ce document ont lieu entre une bulle est un mur plan.
Il n’y aura pas de traitement explicite des collisions bulle-tube. On considere, en premiere

approximation, que le tube se comportera comme un mur plan du aux différences de rayons



entre la bulle et le tube (Tpue << Trupe)-

1.2 Plan du mémoire

Le corps de ce mémoire est divisé en quatre chapitres. Le premier traite des forces de
masse ajoutée agissant sur des bulles sphériques et rigides pour différentes configurations
géométriques. Les deux chapitres suivants traitent de collisions bulle-structure au point de
vue expérimental et théorique respectivement. Pour ces deux sections, 'hypothese sphérique
de la bulle est délaissée pour faire place a des bulles partiellement déformables. Finalement, le
dernier chapitre traite de sujets connexes qui ont été étudiés dans le cadre de cette maitrise,
mais qui n’ont pas été présentés dans les trois premiers chapitres soit : les forces a distance,
I’éclatement des bulles et une note concernant la conservation de I’énergie dans les systemes
comportant un corps a masse variable.

Les trois premiers chapitres sont composés d’articles soumis pour publication dans des
journaux. Le dernier chapitre ajoute a ce qui n’a pas été inclus dans ces articles. Ces quatre

chapitres de développement sont précédés d'une revue de littérature et suivis d’une conclusion.



CHAPITRE 2

REVUE DE LITTERATURE

Cette revue de littérature se divise en trois parties. La premiere décrit de maniere générale
le comportement des bulles dans un milieu infini et stagnant. La deuxieme discute des forces
de masse ajoutée et de trainée sur une bulle dans différentes situations. La troisieme traite

du cas particulier ou une bulle entre en collision avec un mur.

2.1 Comportement d’une bulle

Une bulle est constituée par un fluide interne séparé d’un fluide externe par une interface
de forme variable. Les vitesses tangentielles des fluides de part et d’autre de I'interface sont
égales afin de respecter la continuité des vitesses. Si la viscosité du fluide interne tend vers
I'infini, la vitesse interne du fluide sera nulle. La vitesse tangentielle sur la surface sera donc
nulle et il y aura adhérence du fluide externe. Ceci est I'équivalent d’un corps solide. A
I'opposé, pour une viscosité nulle du fluide interne, il n’y aura aucune contrainte sur la vitesse
tangentielle a 'interface. On dit alors qu’il y a glissement a I'interface. Cette hypothese de
glissement est considérée comme respectée pour une bulle d’air dans de ’eau pure, car Iair
est beaucoup moins visqueux que 1’eau.

Toutefois si ’eau contient des contaminants, lorsqu’une bulle d’air s’y déplace, des surfac-
tants sont réputés venir se coller a I'interface. Sur ces surfactants, la condition de glissement
n’est pas respectée et ils sont poussés vers l'arriere de la bulle. Ce faisant, la condition a
I'interface de la bulle est en glissement vers ’avant ou l'interface est propre et en adhérence a
larriere ou elle est contaminée (Tomiyama et al), 2002). La proportion glissement-adhérence
est variable selon la quantité de surfactant. Des lors, il est difficile d’établir une regle univer-
selle pour prédire la condition frontiere de ’écoulement a la surface de la bulle.

Certains auteurs ont choisi des conditions de glissement (Moore, |1965; Kushch et al.,[2002;
Van Wijngaardenl |1976; Kokl [1993) tandis que d’autres ont préféré la condition d’adhérence
(Canot et all [2003; Podvin et al., 2008]). Cette différence de mobilité a la surface a longtemps
été prise pour cause de la disparité dans les vitesses terminales observées expérimentalement.
Les travaux de |Wu et Gharib| (2002)) et plus récement de [Peters et Els (2012) ont permis de
démontrer que cette interprétation était fausse. La dispersion dans ces valeurs provient des
différents modes stables de translation des bulles. Dans les faits, deux modes sont observés.

Les bulles du premier mode présentent des formes plutot aplaties et possedent des vitesses



d’ascension rapides. A I’opposé, les bulles du deuxieme mode ont des formes plus sphériques
et des vitesses d’ascension plus faibles. Ces bulles sont donc nommeées respectivement des
bulles rapides et des bulles lentes (Peters et Els, 2012). La figure illustre les résultats
de Wu et Gharib| (2002)) a cet effet. x représente le rapport d’aspect, i.e. le rapport entre le
grand et le petit axe de la bulle.
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Figure 2.1 Données obtenues par |Wu et Gharib| (2002) pour dans bulles dans de ’eau purifié.
(V) et (+) sont des bulles rapides. (o) sont des bulles lentes.

Il faut noter que ces bulles ont été créées dans le méme liquide et donc dans les méme
concentrations de surfactant. Leur conclusion est que la déformation initiale des bulles conduit
aux deux comportements observés. Cette conclusion est en accord avec celle de [Tomiyamal
et al. (2002) et |Peters et Els| (2012). Une forte perturbation initiale mene a des bulles rapides
et I'inverse mene a la génération de bulles lentes.

Bien que la différenciation entre les bulles rapides et lentes a été faite au point de vue
expérimental, il n’y a toujours pas de cadre théorique pour décrire les deux comportements
(Peters et Els, 2012). En fait, seul le comportement des bulles rapides semblent pouvoir étre
expliqué théoriquement (Wu et Gharib, |2002).

L’unique dérivation analytique de la forme des bulles provient de Moore| (1965)). Sa pre-
miere approche était d’équilibrer la force créée par la pression dynamique avec la force de
tension de surface pour une bulle sphérique. La force liée a la pression est obtenue en intégrant

la pression dynamique (Paynamique) Sur la surface d'une bulle sphérique.

1
denamique = —50112 (21)

La force de tension de surface est associée a ’énergie emmagasinée dans la déformation

de la bulle. En effet, lorsque la bulle est sphérique, I’énergie de surface est minimale. Des que



la bulle change de forme, 'aire de l'interface (S) augmente et I’énergie de déformation (E,)
augmente proportionnellement. Mathématiquement, F, = ¢S. Puisqu’il s’agit d’une énergie
potentielle, une force conservatrice y est associée. Dans I’approche de Moore, cette force sera

projetée sur la coordonée y et sera calculée comme

F- —%Eam (2.2)

En équilibrant ces deux forces, Moore obtient une premiere expression liant xy au nombre

de Weber (We = 2rypvi /o). Cette relation est valide pour x » 1.

9
=1+—We 2.3
X o (2.3)
Il étend ensuite cette relation a des bulles de plus grands rapports d’aspect. Il exige encore
I’équilibre de la pression dynamique a la tension de surface, mais cette fois sur une bulle
ellipsoidale. L’exigence n’est toutefois imposée qu’aux points de stagnation et a I’équateur.

La relation obtenue est
We =4x"3(x* + x - 2)[x*sec 'x - (X2 - DV (x* - 1)3 (2.4)

Cette relation surestime légerement 1’aplatissement des bulles lorsqu’elle est comparée a
des x expérimentaux. Elle est tracée en trait tireté sur la figure (b) Afin de rendre compte

des observations exprérimentales, Legendre et al.| (2012) proposent la relation empirique

1

_— (2.5)
- %W@

X =
qui décrit le comportement des bulles rapides. Aucune relation de ce type n’est présente
dans la littérature pour les bulles lentes.

Comme dernier point de description du mouvement des bulles : leur trajectoire. Il a été
montré que les bulles rapides peuvent se déplacer selon trois types de trajectoires : rectili-
néaire, zig-zag et hélicoidale. Ellingsen et Risso (2001) ont montré que ces trois trajectoires
se succedent dans Dordre. A partir d’'un mode rectilinéaire, le mode zig-zag se développe.
Ce mode se caractérise par une oscillation spatiale comprise dans un seul plan. Une fois
I’amplitude de ce mode saturée, le mode hélocoidal apparait. Ce mode se caractérise par un
mouvement circulaire dans le plan perpendiculaire a la gravité.

Il faut noter que si des perturbations significatives sont apportées au systeme, une bulle
peut se retrouver dans le mode hélicoidal sans passer par les autres modes. Pour les bulles

lentes, seul le mode zig-zag a été observé (Tomiyama et all 2002).



2.2 Force sur la bulle

Outre les forces qui menent aux oscillations dans la trajectoire des bulles et la force d’Ar-
chimede, on note deux autres types de force : masse ajoutée (Fy;) et trainée (Fp). La force
de masse ajoutée est une force proportionnelle a I'accélération d’une bulle et de sens inverse.
Il s’agit d’une force résultant de ’accélération du fluide autour de la bulle engendrée par 'ac-
célération de la bulle. Cette force peut s’interpréter comme l'inertie ajoutée par 'accélération
du fluide environnant la bulle. La force de trainée est quant a elle dépendante de la vitesse

et agit dans la direction inverse. Elle a une composante de pression et de viscosité.

Fo Vv Fm a

(a) Trainée. (b) Masse ajoutée.

Figure 2.2 Illustration des forces de trainée et de masse ajoutée.

Pour de grandes valeurs du nombre de Reynolds (Re = 2ryuppe/p), la composante de
pression est dominante. Au contraire, pour de faibles valeurs, la composante visqueuse est
plus imporante. Cependant la force visqueuse influence le détachement de la couche limite et
par la meme occasion la trainée de pression

2.2.1 Masse ajoutée

La force de masse ajoutée agissant selon z sur une bulle de volume V, se définit mathé-

matiquement comme :

FMZ = —ngbCMé (26)

ou Cyy est le coefficient de masse ajoutée

Mouvement dans un milieu infini

Le cas le plus simple qui peut étre étudié est la translation d’une bulle sphérique et rigide
dans un fluide infini et stagnant. Dans ce cas, sous ’hypothese d'un écoulement potentiel,

Milne-Thomson| (1968) a montré par un raisonnement énergétique que
Cy =05 (2.7)

La forme sphérique d’une bulle est respectée pour des faibles nombres de Weber (Legendre
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et al., 2005) mais une forme ellipsoidale est plus appropriée pour décrire des bulles d’air
millimétriques dans de 'eau (Clift et Weber} 1978). Lamb (1932) a également utilisé une
approche a écoulement potentiel pour démontrer que le coefficient de masse ajoutée d’une
telle bulle en translation s’exprime comme

Cyu = 2 ot a-= 2 [1-(x*-1)"acos(x™)] (2.8)

2-« x2-1

avec x est le rapport entre le grand (b) et le petit axe (a) de la bulle (voir fig. . Une
linéarisation de cette relation est donnée par Klaseboer et al (2001)) (Eq. [2.9).

Chr = 0.62y —0.12 (2.9)

Figure 2.3 Hypothese de forme ellipsoidale de la bulle

Kushch et al| (2002), par une technique similaire a |Milne-Thomson| (1968), ont obtenu
la force de masse ajoutée s’exercant sur le degré de liberté de compression de la bulle. Dans
leur approche, le volume de la bulle est considéré constant et la forme de la bulle est un
ellipsoide de révolution (fig. . La compression correspond alors a une diminution de a et
une augmentation de b conservant le volume. En exprimant ce mouvement en fonction du

petit axe a, on obtient pour le coefficient de masse ajouté :
Ch = 0.2 M7 (2.10)

Mouvement a proximité d’un mur

Les équations précédentes sont valables dans un milieu infini, mais lorsqu’une bulle s’ap-
proche d’un mur, un effet de confinement apparait. Ce confinement augmente le coefficient

de masse ajoutée. La correction equivalente peut étre exprimée sous la forme d’une série.
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Milne-Thomson| (1968) avait obtenu le premier terme de cette série. Une approche plus géné-
rale par Kok| (1993) permet de calculer les termes de la série par des relations de récurrence.

Les premiers termes sont :

3 Ty 3 3 Ty 6 9 Ty 8 3 T 9
=05(1+=(— — = — | — — | — 2.11
Cu(h) 05( +8(h)+64(h)+256(h)+512(h)+ (211)
ou h représente la distance entre le centre de la bulle. Aucune relation équivalente n’a été

trouvée dans la littérature pour une bulle ellipsoidale s’approchant d’un mur ot oscillant pres

d’un mur.

Mouvement dans un nuage de bulles

Dans la situation ot une bulle est entourée de bulles, plusieurs facteurs viennent en compte
dans le calcul de la masse ajoutée. Le principal est la distribution géométrique du nuage de
bulles. Toutefois, il est bien plus simple de parler de taux de vide que de configuration d’un
nuage de bulles. Le taux de vide correspond au rapport volumique du gaz sur le liquide.
Relativement a ce taux de vide, différents auteurs ont calculé des relations de masse ajoutée
distinctes (Tableau . Ces relations sont majoritairement des approximations au premier

ordre.

Tableau 2.1 Relation de masse ajoutée en fonction du taux de vide

*Van Wijngaarden7(1976) Cul(e) ~ 5+ 28
kNiemann et Laurien! (1991) Cu(e) m i+ 384 TTc2
WBiesheuvel et Spoelstra (1989) | Ci(e) » 3 + 222¢
kMokeyev (1977) R Cu(e) ~ 5+ %2

kZuber et Hench7(1962) Cu(e) w5+ 3¢

[ Wallis (1080) Car(e, \) = $ 529208

Malgré que les 5 premiers auteurs ont tous une approche différente, leurs résultats sont
similaires avec une dépendance positive en . La seule relation nettement différente provient
de Wallis (1989)). Avec son parametre A vallant 0 & +o00, sa relation peut avoir une dépendance
soit positive soit négative en e. Le parametre A est lié a I'impédance du milieu et ne peut

étre explicitement associé a une configuration géométrique d’'un nuage de bulles.
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2.2.2 Trainée

Le second type de force est la force de trainée. Elle est proportionnelle au carré de la

vitesse et s’exprime traditionnellement par I’entremise du coefficient de trainée C'p.

1
FD = —5,0414()01)1)? (212)

Milieu infini

Plusieurs relations pour déterminer ce coefficient existent dans la littérature. Les prin-
cipales sont identifiées dans le tableau avec une breve description. Stokes/Potentiel fait
référence au type d’écoulement considéré. Glissement /Adhérence fait référence a la condition
limite sur I'interface bulle-liquide. x indique I’hypothese d’une bulle ellipsoidale. La derniere
relation a été calculé a partir d'un écoulement potentiel partout sauf a proximité de la bulle
ou un écoulement a couche limite a été considéré.

Les deux premieres relations du tableau sont des cas particuliers du développement théo-
rique de Taylor et Acrivos (1964). En effet, @, représente le rapport des viscosités entre les
fluides interne et externe a la bulle. On retrouve la condition de glissement pour ®,, - 0 et la
condition d’adhérence pour ®, — oo. Dans le cas d'une bulle d’air dans de 'eau, ®, ~ 0.02.

On considere toutefois que les écoulements de stokes sont valables pour Re<1.

Tableau 2.2 Relations de trainée

Stokes
: _u
Clift et Weber| (1978)) Cp =% Adhérence
Stokes
. . _ ﬁ
Michaelides| (2006) Cp =% Clissement
Taylor et Acrivos) (1964) Cp=% (%) [1+O(Re)] Stokes
Potentiel
- 48
Batchelor| (2010)) Cp =% Clissemont
Potentiel
Moore, ((1959) Cp = 2G(x) Glissement
X
Potentiel
8 H(x) Glissement
Moore| (1965) CD—mG(X)(]_-FE-F...) N
Couche limite
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Les relations G(x) et H(x) sont données par :

4/3 2 _1)1/2 - (2 -2 -1
G(X) - X_(XQ _ 1)3/2 [(X ) ( X )Sec (2()] (2'1?))
3 [x*sec™ () = (x* - 1)*/?]
H(x) = 0.0195x"* - 0.2134x3 + 1.7026 2 — 2.1461y — 1.5732 (2.14)

De plus, un coefficient de trainée pour un mouvement de compression peut également étre
défini. [Kushch et al.|(2002) ont utilisé un écoulement potentiel et la technique de dissipation
visqueuse (Batchelor] 2010 pour obtenir la relation [2.15

128 1
CnH="" 1.25
b 3 Reax

(2.15)
avec Re, = 2rypeaf .

Proximité d’un mur

Lorsqu’une bulle approche d’un mur, le confinement génere une augmentation de la trai-
née. Sous 'hypotheése d'un écoulement potentiel, Kok| (1993)) a décrit sous la forme d’une

série cette correction. Les premiers termes de la série sont :

48 A rb)6 11(rb)8 1(rb)9 39(rb)10
Cp(h)=—|1+|=— = — = — = — | = 2.16
p(h) Re( +(2h)+4(2h "3\ To\an) T \an) 7 (2.16)

Aucune relation n’est présente dans la littérature pour la trainée d’une bulle ellipsoidale

en translation ou en compression a proximité d’un mur.

2.3 Impact sur un mur

Pour traiter de I'impact d’une bulle sur un mur, différentes approches ont été utilisées dans
la littérature. La plus simple a été développée par Legendre et al. (2005)). Ils considerent une
goutte liquide dans un milieu liquide comme un oscillateur harmonique amorti. A partir de
cette hypothese, ils extraient une dépendance fonctionnelle du coefficient de restitution. Leur
travail a été adapté pour des bulles d’air par [Zenit et Legendre (2009). Cette approche est
toutefois limitée par son impossibilité a prédire ce qui se passe avant et apres I'impact. Elle ne
décrit que le moment ou il y a contact entre la bulle et le mur. Toute la dynamique d’impact
est résumée en un coefficient de restitution. De plus, elle ne permet pas de déterminer les

forces sur le mur.
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Un modele plus complet a été développé par |Klaseboer et al| (2001). Dans leur modele,
la bulle est considérée comme completement déformable et tout le mouvement hors contact
est pris en compte. Le drainage du film entre la bulle et le mur est résolu. Ainsi, en cou-
plant 1’écoulement dans le film avec la déformation de la bulle et la position du centre de
masse, le systeme est complet. Cette approche a été étendue a un mur incliné par Moraga et
R.T. Lahey| (2005) et [Podvin et al|(2008). Les prédictions du modele sont comparables a l'ex-
périence. Toutefois, au-dela d’une inclinaison de 60°, le modele n’est plus valide. Il faut aussi
noter qu’a chaque itération temporelle du modele s’accompagne d’une résolution spatiale de
I’écoulement, de la forme de l'interface et du mouvement de la bulle. Ce dernier aspect en
fait une approche couteuse en calcul.

Finalement, certains autres auteurs ont résolu I’écoulement complet autour de la bulle.
Canot et al| (2003) a résolu 'écoulement en 2 dimensions autour d’une bulle completement
déformable via une simulation par éléments frontieres (BEM). L’écoulement est considéré
comme irrotationnel et la condition d’adhérence a la surface a été choisie. Kushch et al|(2002])
ont quant a eux résolu ’écoulement irrotationnel autour de bulle ellipsoidale et compressible
avec une condition de glissement aux interfaces. La force du mur est intégrée via la théorie

de la lubrification dans le film entre la bulle et le mur.
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CHAPITRE 3

ARTICLE 1 : VOID FRACTION INFLUENCE ON ADDED MASS IN A
BUBBLY FLOW

En premiere approximation, une bulle peut étre considérée comme une sphere rigide avec
des conditions de glissement imposées sur sa surface. Basé sur cet hypothese et sur la théorie
des écoulements potentiels, I'article suivant développe un formalisme pour déterminer la force

de masse ajoutée agissant sur une bulle.

Soumis pour publication dans : Furopean Journal of Mechanics - B/Fluids

C. BEGUIN, E. PELLETIER & S. ETIENNE
BWC/AECL/NSERC Chair of Fluid-Structure Interaction
Department of Mechanical Engineering, Ecole Polytechnique,
P.O.Box 6079, succ. Centre-Ville, Montréal (Québec), Canada, H3C 3A7
* cedric.beguin@polymtl.ca

Abstract

This paper proposes a relation for the added mass coefficient of spherical bubbles depen-
ding on void fraction based on results obtained by a semi-analytical method.

This information is essential to completely characterize finely dispersed bubbly flows,
where small spherical gas bubbles are present in a continuous liquid phase. Most of the
closure relations for Euler-Euler or Euler-Lagrange models are obtained from experiments
involving single bubbles. Their applicability to systems with high void fraction is therefore
questionable.

This paper uses solid harmonics to solve 3D potential flow around bubbles. Several confi-
gurations were calculated for different numbers of particles and spatial configurations. Our
results are compared with previous studies. Depending on the model proposed by previous
authors, added mass forces could increase or decrease with void fraction. This paper solves
these discrepancies by underlining the effect of induced added mass.

The main purpose of this work is to develop simple formulas fitting our semi-analytical
results. These simple formulas are suitable for further use, particularly as added mass models

for multiphase flow averaged equations.
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Nomenclature
Variables : Subscripts :(see Figure below)
a: bubble radius (m) 7,6, : Spherical coordinates
F: force (N) x,y, z : Cartesian coordinates
P fluid pressure (Pa) Dimensionless numbers :
U: velocity (m/s) e Void fraction
p: mass density (kg/m?) Chr - Added mass coefficient

L\ Z

Spherical coordinates are :

r, the radial distance

6 € [0 7], the polar angle

¢ € [0 27], the azimuthal angle.

Cartesian coordinates are :
x =rcospsinf,
y =rsinpsinfd and

z=rcosf

Other symbols are defined in the text.

3.1 Introduction

We are concerned with the motion of a body surrounded by a fluid. The fluid mass
displaced by the body increases its inertia which defines the added mass. The added mass

force acting on a body is defined as :

Fy=-pVC— 3.1

V' stands for the volume of the body and p for the fluid density surrounding the body. Its
velocity U is expressed in the six degrees of freedom (translation and rotation). Including
rotation requires inclusion of torques in Fyy, which is therefore a 6 components vector. Cis

a tensor with 6 x 6 components. If we only consider translation, Fp; becomes a 3 component
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vector and C a 3x3 component tensor. C is called induced inertia tensor by Batchelor| (2010)).

As a consequence of C, Fy and dU/dt are generally misaligned depending on the body
shape and the presence of other bodies or walls. This paper will only focus on the added mass
coefficient of spherical bodies (bubbles).

This information is essential to completely characterize finely dispersed bubbly flows,
where small spherical gas bubbles are present in a continuous liquid phase. Using either Porous
Medium, Euler-Euler or Euler-Lagrange models, some authors use the widely accepted closure
correlations [a.o. closure relations proposed by Tomiyama et al.| (1995, [2002))]. As underlined
by Darmana et al.| (2009), since most of the closures are empirically obtained from experiments
involving single bubble, their applicability to systems with high void fraction is questionable.
Moreover, even if some correlations available in the literature take into account the effect of
the local void fraction on added mass, very few numerical models use them. [shii and Hibiki
(2006)) propose the use of correlation depending on void fraction proposed by [Zuber| (1964])
but [Tomiyama et al|(1995] 2002) propose the use of the added mass of a single bubble.

In particular, the effect of induced added mass on surrounding bubbles should be more
appropriately emphasized. The induced added mass is the force exerted by one accelerating
body to another through the fluid. When literature results are available, comparison with
our results will be made. This paper uses solid harmonics to solve 3D potential flow around
bubbles with various configurations.

A sphere in an infinite fluid medium experiences an added mass force collinear to its
acceleration and the tensor C is reduced to C = 0.5I. I stands for the identity tensor le.g.,
Milne-Thomson| (1968), Brennen (2005)]. This means that a sphere displaces a volume of
surrounding fluid equivalent to half of its volume. For the sake of brevity, we will study the
added mass of spherical bodies which we will designate as bubbles.

Added mass forces are of interest in naval research (inertia forces of underwater or floating
objects), for the chemical industry (bubble chamber), for the energy industry (oil and nuclear)
and any application involving multiphase fluid dynamics. These industrial applications are
particularly affected by two factors that can strongly modify inertia forces on dispersed
bubbles or particles : presence of walls and other bubbles. A simple formula for C, depending
only on these two factors, is needed to construct a good estimation of forces acting within a
multiphase mixture.

Some of the simplest situations have already been solved analytically from the perspective
of potential flow theory [Milne-Thomson (1968]), Zuber| (1964), Van Wijngaarden| (1976)),
Sangani et al| (1991)), Van Wijngaarden (1991))/Wallis| (1989), Cai and Wallis (1994))]. First
authors until |[Van Wijngaarden| (1991)) accordingly with the first formulation of |Zuber| (1964)

found an increase of added mass with void fraction. |Wallis (1989)) however found that the
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added mass force decreases with the void fraction. |Cai and Wallis (1994) proposed a more
general description of added mass with two limiting cases as the one suggested by |[Zuber| (1964])
corresponding to an upper bound and the one suggested by Wallis (1989)) corresponding to
the lower bound, with an unknown parameter A related to the external impedance of the
cell around the bubble. The external impedance depends on the boundary conditions of the
cell related to the bubble configuration. But as this value remains unknown, the authors
concluded that there “may not exist a universal definition of added mass for an array of
particles that can be applied to all the situations”. Our paper solves this issue and proposes a
model that can be applied for any array of identical spherical particles assuming a potential
flow.

Some researchers have extended the first formulation of |Zuber| (1964)). For example, Spelt
and Sangani| (1997) include velocity fluctuation effects or Kushch et al| (2002) ellipsoidal
bubble shape effects. Some researchers have conducted DNS simulations [Niemann and Lau-
rien| (1991)); Legendre et al|(2003)); Simcik et al.| (2008)] and finally few others have conducted
experiments (Mokeyev| (1977), [Kendoush et al| (2007)). In the case of two bubbles, the nu-
merical results of Legendre et al| (2003) show no influence of the Reynolds number (0.1 -
300) or of the acceleration parameter (0.1-1000) on the added mass force and a very good
agreement between DNS and potential flow theory.

It is clear that the added mass force is a key parameter in the description of multiphase
systems. It is particularly important in situations where the density ratio is large and the
motion is unsteady. Thus, in this paper, we use a semi analytical method to explore the
possibility of determining the added mass force in a variety of important situations.

Following the introduction, the paper includes four sections. In the first section, we expose
a method to calculate the unsteady potential flow for a cloud of bubbles. The second section
presents the procedure to deduce added mass force. The third section presents results for
two bubbles. The fourth section presents a new formulation for the added mass forces. This
formula is compared to results with a bubble close to a wall, a row and a column of bubbles.
The fifth section presents results for regular and random clouds of bubbles and shows that
the new model is able to accurately predict the added mass forces inside a cloud of bubbles.
Finally, the main results are summarized in the conclusion section. Appendices are dedicated

to readers wishing to have more information on the methodology.
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3.2 Potential Flow

3.2.1 Solid Harmonics

If ® is the velocity potential, it is the solution of Laplace’s equation V2® = 0 and can

therefore be expressed as :

o(r)=3" S frRI(x) + g8 (r), (3.2)

=0 m=—¢

where f;" and g7 are constants and R}* and S} are respectively the normalized regular and

irregular solid harmonics, solutions of Laplace’s equation :

|m|+m

Ry'(r) = Ry (r,0,9) = (-1) 7= r'Y"(0,¢)  -L<m<l.

3 N e Y, (6
Sm(r) = 57(r,0, ) = (_1)'2% _l<m<d. (3.3)

Y;"(#,¢) are normalized spherical harmonics generally defined as

Y (0,0) = %%i%%%.dmkame)amw —l<m<d. (3.4)

where P;" are the associated Legendre polynomials. Note that the fully normalized associated

Legendre polynomials are normalized such that

/j(éﬁfdle 0<m<l. (3.5)

and are related to the unnormalized associated Legendre polynomials by

[0+ 1)(£-m)!
2(0+m)!

Pr(z) = (-1)" Pr(z)  0<m<d. (3.6)
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Therefore, we can also define Y;™(6, @) as :

Y"(0,9) = (-1)™/ %F—Jrlpllm'(cosé) eime -l<m<d. (3.7)

For an isolated sphere of radius a,, and velocity (U,, 0, =0, p, = 0) expressed in spherical

coordinates, the velocity potential is well known [see |[Milne-Thomson| (1968))] and defined as :

Upal cos®  Uyad z
2 2 2 ¥

qbn:

(3.8)

Applying a rotation of angle 6,, around the y-axis and angle ,, around the z-axis, the general
expression for the potential with the velocity expressed in spherical coordinates (U, 0, ¥n)
is deduced :

U

nan
2r2

an(r) ==

[cos B, cos B + sin 6, sin 0 (sin ¢, sin @ + cos p, cos )], (3.9)

Introducing &,,,9,,2, we have :

3
on(r) = —% (2, cos0 + &, sinfsin ¢ + ¢, sin @ cos p) . (3.10)
r

or as a function of normalized spherical harmonics :
a [ . - V2o o s
¢n(r) = 2_72 {_Znyio(97 QO) + 7 [(‘r” + Zy'fl)Yi 1(97 90) + ('r’fl - Zyn)}/il(97 ()0)]} . (311)

3.2.2 Potential flow around N, bubbles

To calculate the potential flow around N, bubbles, the radius and velocity of the n'”

bubble are respectively denoted as a,, and (&, 9n, 2,). The potential is defined as :

Z ~ ~
> iRy (ta) + 973,57 (1n), (3.12)

0m=—¢

NgK

Ny
®=2
n=1

4

r, is the position vector expressed in the frame of the n'* bubble. Jiy and g7, are constants to
be determined. However, as the velocity should converge to zero when r — oo, we must have
fin =0,Ym, £,n in equation (3.12) above [see solid harmonics definition (3.2)]. g;;, constants
will be determined by the no penetration condition which compels the normal velocity at the

surface of the n'" bubble (a,) to be equal to the normal velocity of an isolated bubble. Thus,
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the potential derivative is :

%(ar‘) 3%(%)-Znﬁ(&s@)—i((xnﬂynm1(9,@ (i = 15)V(0,9)) . (3.13)

where ¢,, is the potential for a sphere moving in an infinite medium defined in equation (3.11]).

Therefore, we need to express ¢,, and ® in terms of ry. Yet the expression of S} expressed
in the frame attached to the center of the n'* bubble is (cf. Van Gelderen| (1998)) :[|

i [frx]| < flenll

S (rn) = S (Car + 1) = 3 Z DS (e R (v10)

A0 p==2 (3.14)
with
At l+m—p\(A+L-m+p
myp _ A+
D“ (-1) \/( {+m )( {-m )

where ¢y is the center of the £ bubble expressed in the frame attached to the center of the

n'" bubble [see Figure 3.1] (ry = cax + ri)]. We deduce from Eq. (3.12) :

oo /{ Ny, -
v-£ 3|3 (5 £ preismosiren s a1

=0m=—4| n=1 A=0 p=-X\
n#k

with the definition of RY and S% (3.3)), we have :

_(ak) Z Z ZGZn(ak) sz( 1) = g+2Y (O, 1) |, (3.16)
=0 m=—¢ n#k
where
el m ~
Zln(ak) :gé,nZ Z( 1) 2 D #)‘ e IS)\+£'LL(an)Y/\“((9k7Q0k)' (317)
A=0 p=-X

As the f&“ constitute an orthogonal basis, the no penetration condition 1} is equivalent
to :

1. Note that the translation formula contains a typographical error as the sum on p should be between
-\ and .
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n” bubble

k' bubble

Figure 3.1 Illustration of the change of reference frame. cyy is the center of the k' bubble
expressed in the frame attached to the center of the n'® bubble. a;, is the radius of the k™

bubble.

VEeN k< Ny, VAeN,VueZ, |ul <A

Il &, By o1 & u e A+ 1 i
Z Z Z ge,n(_l) > D Aa SV (en) | = g5, (51) 2 2 = 0x1Ly,
n=1 \ (=0 m=—¢ ’ 7 Tk
n+k
with :

—7(.17],C +Zyk) if o= -1 (318)
Li=1 3 if 1=0

—T(xk —agy) ifp=1

By limiting [ < L, this becomes a system of N,(L+1)? linear equations to solve (see Appendix

for the numerical approach description).
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3.3 Added mass forces

3.3.1 Added and Induced added Mass Theory

The unsteady Bernoulli equation for a constant density is :

0P 1
P=  —p— —=pU%-pgz+P 3.19
P oy 5PV = pgz+ I, (3.19)
unsteady term steady terms

where @ is the velocity potential. In the case of the flow around NV, bubbles, with arbitrary

location, velocity and acceleration we denote :

0D ) 0D '

o0y, Tn ox,, Tn

OP ) OP _
00 | - | du. | ¥ | 00 | 5 Un

— Yn — - = Yn d n= 2

U, T dt  Ory and U (3.20)

0P . 0D .

— Zn -— Zn

0%, Oz,

where (2, Yn, 2,) denotes the n'™ bubble location. We then have on the k' sphere surface
[see Kumaran and Koch (1993)] :

00 Ny 9d dU, Ny 00
i . LA U, -V U, 3.21
ot nzl oU, dt nzl Orn 8 (3:21)

This generalizes the single body problem by [Batchelor (2010)). Batchelor divides the potential

flow as the scalar product of the vector ® and body velocity such as
o=®-U (3.22)

As the velocity potential is linear with each bubble velocity, ® is in fact equal to 0®/0U,,
and depend on the bubble locations only and not on their velocity. We deduce the active
force on a body as the prime integration of the pressure on its boundary. The added mass
force corresponds to the acceleration dependent term. All terms, except the first sum, in
equation above are velocity dependent and therefore not related to the added mass
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force. Consequently, for the k™™ bubble of radius a, the total added mass force is :

T r2r 9 dUy m r2n N 9p dU
Fpr, = f f ds f f n A4S, . 3.23
Mg 0=0 J =0 p@Uk dt ko 0=0 J =0 p; ouU, dt k ( )
n+k
added mass induced added mass

Thus, we can write
drad Do . dU
Far = — ESY Cpp—2 3.24

where an is the added mass tensor when n = k and the induced added mass tensor otherwise.

We have :

. 3 T 2 a(I)
Gl = —— f / ds
K drad Jo-o Jp-0 OU, K

0o 0P 0P
. sin? @ cos ¢ 5’_yn sin? 6 cos ¢ PR sin? 6 cos ¢
d d d
3 x o 8' sin? # sin 0 — sin? # sin 0 — sin? # sin © (3.25)
dmay, Jo=0 Jp=0
0o P
—sinfcosd ——sinfcosf ——sinfcosl

This notation will be used in what follows.

3.3.2 Added and Induced added Mass Calculus

As shown in the previous section we are able to solve the potential flow for any cloud
of bubbles. This section shows how to deduce the associated added mass tensor and forces.
According to equation (3.25)), for the & bubble of radius aj, denoting generically 9®/0s,, =

® ., we have :we have :

Cos sin’ 6 cos ¢

3 ™ 27
Cay = “dray .[9=0 fgo=0 s, | sin?fsing |dOde. (3.26)
C.. sin 6 cos 6
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Yet, according to equations and the velocity potential is linear with each bubble
velocity. Consequently 0®/0#,, = ®;, is equivalent to the potential flow with Yk # n, &) =
Uk = 2k =0, Yo = 2, = 0 and &, = 1. Therefore, three calculations (z, = 1, ¢, = 1 and 2, = 1) will
allow us to construct the complete added mass tensor. From the definition of solid harmonics
(3.3) and equation (3.15)), we have on the & bubble surface :

=0 m=—

o~

Ny (o) by B
Z (gm S D;g“@*;agplﬂl(cose)ewsm(cnk)) + o

A=0 p=-X

Z i (3.27)
> 9 P‘m‘(cosﬁ)e’m@”
(=0 m=—¢
with
mefm| | (€= [m])!
= (-1 — 3.28
Consequently, we obtain :
Cox sin? @ cos ¢
3 ™ 2m
_ .92 .
Coy = ira, '/9:0 —[p:O Do, | sin?fsing |dbde.
Cl. o sind cos# (3.29)
o £ Ny o A - N
= -2 2 (9?22 > D5 Qfay Sy (an)IK) +
=0 m=—£ n=1 A=0 p=-X
' n+k
— 9ix
) Im
Z(:)mzﬂ ai+2 ‘
with
sin® 6 cos ¢
If =—— f / Q“P'“'(COS@)@’W sin?@sinp |d0dp. (3.30)

sin @ cos 6
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Thanks to the orthogonality of associated Legendre polynomials, we conclude that we have

I§ = 0 except for :

and I% e 2 . (331)

Cow Dy Sy (o) - Dy S (cnk)

o0 E Nb gznn L= L~
ol T ;)mze% 3| DT SE (ea) + Dy SE () [

n+ ~
Coz _\/§DZ1’OSZ7:1(CUI<)
nh (3.32)
91k - gik
1

Vaat | otk oie)

—\/59(1),1@
Appendix details the numerical implementation of this equation.

3.3.3 Convergence study of the Added mass coefficient computation

In the case of one bubble of radius @ moving at a constant velocity U, the added mass

coefficient can also be evaluated through the total kinetic energy in the fluid as [see Milne-

Thomson| (1968)] :
Y P

where @ is the velocity potential around one bubble of radius @ moving at a constant velocity
Up. As (VD)2 =V - (®V®) + AP, the divergence theorem allows us to write :

2T 3

C = =
U p(Gmat) U} dma

NC N P
U2 fe_o [p_o ®(a)- - (a)sin §dbdp. (3.34)

In the case of two identical bubbles moving toward one another with the same velocity, the

plane between the two bubbles is a plane of symmetry which is equivalent to an infinite rigid
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Figure 3.2 Convergence study.
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wall. Consequently the added mass of a bubble approaching a wall is :

c ! 5 i[” f% ()22 (a,) sin 6d0d (3.35)
= = n)—(a,,) si ) )
" p(4na3) U2 8malU} 1= Jo,=0 Jpn=0 or 7

3

The energy approach leads to the same added mass as our direct approach as long as the non
penetration condition is satisfied 0®/0r (a,) = 0¢,/0r(a,) (3.13).

Consequently, the added mass coefficient calculated directly becomes closer to that
obtained with the energy approach as the no penetration condition becomes more
accurate. This fact is used as an additional convergence proof presented in Figure [3.2]

The convergence study was performed in order to evaluate the required number of Asso-
ciated Legendre polynomials for a desired accuracy, previously denoted as L (see Appendix
3.8.A)). The case chosen for the convergence study is that of one bubble moving perpendicu-
larly to a wall at a distance of 1.1 radius of its center. Figure [3.2] also presents the residual
for direct approaches (|Cp(L) - Cpr(L = 251))).

As shown in table [3.1] using the direct approach and limiting to L =10 the maximum

degree of Associated Legendre polynomials allows to already have four significant digits.

3.4 Results : two Bubbles

3.4.1 Added mass and induced mass of two side by side and in-line bubbles

This section focuses on the case of two identical bubbles where only one accelerates.
If we number “1” the accelerating bubble and “2” the second one, according to the previous
notation, cq2 is the vector going from the center of the first bubble to the center of the second
bubble. For the sake of brevity, we will denote the distance separating the two bubbles ¢ where
¢ = [le12|-

Figure |3.3| presents the scalar components of added mass and induced added mass tensor
for two bubbles. In Figure (a) one bubble is accelerating perpendicular to the line joining
the two bubbles centers. The added and induced added mass forces are parallel and opposed
to the acceleration. In Figure (b) one bubble is accelerating parallel to the line joining
the two bubbles centers. The added and induced added mass forces are again parallel to the
acceleration. However, the induced added mass force is in the same direction as that of the
acceleration ; scalar component of the induced added mass tensor is negative [see definition
of added mass forces (3.1))]. Taylor expansions of these two cases can be calculated using [Kok
(1993) approach (see Appendix and [3.8.D)). If the two bubbles centers belong to the
z—axis, added mass and induced added mass tensors are defined by the four following new

relations :
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O Direct approach added mass : Cjy
O Direct approach Induced added mass : Ciy,,..
New relations
Q.). 0.4
g
o
&
%
8 0.3
S c
= <>
B
g 0.2
<
0.15
0 : = = = £ = £ = £
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(a) side by side bubbles.

o Direct approach added mass : C)/
0.6 o Direct approach Induced added mass : Cay, g0
M New relations
)
= 04f
&)
.
=
2
<
& c
5
8 0.2
<
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o
[
©
<
< O |- £
-0.2
1 1 1 1 1 |

(b) in-line bubbles

Figure 3.3 Added mass (on bubble “1”) and induced added mass coefficient (on bubble “27)
of two identical bubbles (the accelerating bubble is numbered “1” and the second “27).
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Figure 3.4 Pressure on surface and acceleration streamlines of two identical bubbles where

only one accelerates.



Tableau 3.1 Convergence study results.

N O Ut ke W NN = O

Cum
0.5939143
0.6554726
0.6663727
0.6718499
0.6741711
0.6750725
0.6754069
0.6755283

Added mass tensor Cq;

e Side by side bubbles

1 3
xr = S 1+—
¢ 2['+%6(

ny = O:van

e In-line bubbles

1
= -1
C.. 2[

3 (2a
+_
64

C

c

) s
+_
256

)6 9 (Qa
+ _ —_
256 \ ¢

i

L
8

9
10
11
12
13
14
15

)+

Cur
0.6755721
0.6755879

0.6755937
0.6755958
0.6755966
0.6755969
0.6755970
0.6755971

27 (Qa)m
+—— +
4096 \ ¢ -

9 (2a)10+
512\ ¢ -
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(3.36)
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Induced Added mass tensor C;»

¢ Side by side bubbles
3 9 11 ) n
o [ ) (2 2 2 5 ()
2116\ ¢ 4096 \ ¢ 2048\ ¢ i &

ny ind = Cxx ind?

(3.37)

e In-line bubbles
o) - () - () S ()]
21 8\e¢ o912\ ¢ 1024 \ ¢ i c
with exact values of d,, and d™ are presented in tables and for n < 70 and n < 66
respectively. Exact values of e,, and e¢ are presented in tables and for n < 42.

Note that in this basis, both tensors are diagonal. As no forces are observed in the direction
perpendicular to the acceleration.

As shown by previous equations and , the side by side case leads to smaller
added and induced added mass forces than the in-line case. Figures (a) and (b) provide
a good explanation. Figure (a) presents side by side bubbles, the left bubble accelerates
upwards ; Figure (b) presents in-line bubbles, the downside bubble accelerates upward.
In both cases the second bubble is at rest. Pressure on its surface represents the induced
added mass effect. Note that the color chart is not linear with pressure in order to magnify
the pressure profile on the bubble. For the in-line case, the accelerating bubble creates a larger
gap between the bubbles than for the side by side case. Consequently, this creates a larger
depression behind the accelerating bubble thus resulting in a loop of acceleration streamlines.
Finally, in-line and side by side cases are completely different, both in terms of magnitude

and direction of the induced added mass. This leads to completely different added mass forces

for accelerating bubble columns and rows.

3.4.2 Convergence study of the analytical Added mass coefficient calculation

In equation (3.36]) and (3.37) the maximum admissible value of 2a/c is unity. The evolution

dind ind

of coefficients d,,, d\'*, e,, e;'® gives raise an error estimate. As presented in Figure we

can conjecture that the coefficient d, and e, follow respectively 1.5/n* and 1/n** laws for
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Figure 3.5 Coeflicient of the Taylor expansion of the component of added mass and induced

added mass tensor.
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n > 250. Indeed, we verify :

1.45 1.55

— < d, <—5 forniseven and n € [68-250]
n n

1.55 . 1.45

-—5 < dmnt < -— for nis odd and n € [71-250]
n n
(3.38)

0.95 1.05 .

1< e <7 for n is even and n € [42-250]
0.95 , 1.05

o eind < a1 for n is odd and n € [43-250]

The maximum power of the Taylor expansion is equal to the maximum Legendre polynomial
considered. The numerical method truncation to L = 250 is equivalent to the analytical Taylor

expansion truncation to N=250. Consequently, we neglect the following terms

Forizl Forizl.l
2a 2a

> © 1.5 > dy,

> d< [ =dr <0.006 3 11107
n=250 250 X n=z50 11" (3.39)

and

e <[°°idx<ooo32 S g1

WSk Jso x24T T ns250 1.1

Choosing L = 250, we reach for the added mass coefficient a 2 digit accuracy for ¢/(2a) = 1
and 13-digit accuracy for ¢/(2a) = 1.1. This proves that the accuracy increases significantly

as ¢/(2a) becomes greater than unity as shown by the residuals convergence (see Figure [3.2).

3.4.3 Added mass and induced mass of two bubbles with an angle

When the acceleration is at an angle relative to the line joining the two bubbles centers,
there are two components of the added mass force that can be deduced from the tensor
described previously in Eq. and . In order to define a basis, we define the vector
N2 as the unit vector in the direction cq3. The vector T15 completes the basis in the plane
containing ¢y and dU;/dt. The angle a5 is the angle between N15 and dU;/dt or, written
differently the angle between the line joining the two bubbles centers and the acceleration

vector. The angle ajs is equal to 0 when dU;/dt and Ny are collinear and to 7/2 when
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Figure 3.6 Added mass and induced mass coefficient of two identical bubbles (the accelerating
bubble is numbered “1” and the second “2”).
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dU,;/dt and T, are collinear. The angle a5 and vectors Nja, T12 are shown in Figure .
They can actually be deduced from :

Ny = €12 ’
c
aUu dU
d—thOS 19Ny = ( dtl 'N12) N2, (3'4())
au, . dU dU
T snenTia = St = (S Nua) N

For aqo = 0 or m, T2 is not defined. This is without consequence since the added force is
along the vector N15 solely.

Ultimately, because the bubble configuration is no longer symmetrical, the force is not
aligned with the acceleration. The results are presented in Figure [3.6] The new relations

presented are :
e Added Mass : Cq;
Chry = Crpsina,
Cuy =Czcosa,

(3.41)
e Induced Added Mass : Ci2

CY]\JT ind OII ind s,
CY]\JN ind = CZZ ind cos av.

Note that the energy approach is unable to capture this fact, as it only calculates the total

force value and not its direction.

3.5 New Formulation of Added mass force for a bubble inside a cloud

In order to simply evaluate the added mass of a bubble inside a cloud of identical bubbles
(all bubbles radii are a), we propose the following formulation of the added mass forces acting
on the £ bubble inside a cloud of N, bubbles :

Arad [ 1dU, Xy
- fion + Foc : 3.42
3 2 dt +TLZ=; k + kmduced ( )
n#k

FkZ—,O
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where

1dUy/dt is the added mass of a single bubble in an infinite medium.
o fi, is the added mass force correction due to the presence of the n'" bubble (depending on
the acceleration of the k" bubble).

. is the induced added mass force correction due to the n'™ bubble (depending on

nkinduced
the acceleration of the n'"* bubble).

fin and fox. . are deduced from equation (3.41)) :

o et )|

fa

sin gy Tin + (C’zz(c;m) ) H

c0S g Nkn,

c0S Nk, (3.43)

sin anank + sz ind (Ckn)

Kinduced = Cxx 1nd(ckn) ‘ dt

with Ckn = ||Ckn”

and similarly to equation (3.40)),

HdUk cos aankn _ (dUk ) Ckn ) Ckn
dt ||Ckn|| ||Ckn||
(3.44)
dUy sin g, Ty = dUy, 3 (dUk ~ Ckn ) Ckn '
ke dt dt  [|cinl|/ [/l

The Taylor expansions of C.., C.. | , are presented in tables[3.2]and [3.3] The Taylor expansion
of Cpz = Cyy, Cog 1y = Cyy ,q are presented in tables [3.4] and [3.5]

This formulation assumes, that the effect of one bubble to another is not affected by the
presence of other bubbles. As underlined in the introduction Cai and Wallis| (1994) concluded
that it “may not exist a universal definition of added mass for an array of particles that can
be applied to all the situations”. The formulation proposed above applies for any array of
identical spherical particles assuming a potential flow. The following section shows that this
formulation accurately predicts the added mass force and is an universal definition of added

mass for an array of identical particles.

3.5.1 Added Mass force of one bubble close to a wall

In the case of two identical bubbles accelerating toward one another with identical ac-
celeration magnitude, the plane between the two bubbles is a plane of symmetry which can
be replaced by an infinite rigid wall. Milne-Thomson| (1968]) proposed three formulas in this

case and calculated the added mass coefficient with the energy approach using a truncation
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3.7 Added mass of a bubble moving close to the wall.
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Figure 3.8 Added mass of a bubble moving close to the wall with an angle.
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Figure 3.9 Added mass of two bubbles with a parallel acceleration.

of Legendre polynomials up to L = 1 for both the integration of the kinetic energy and the
velocity potential calculation. As shown in Figure [3.2] the energy approach using a truncation
of Legendre polynomials up to L = 1 is very close to Milne Thomson’s formula. The diffe-
rence is explained by the fact that the integration of the kinetic energy is done numerically
without any truncation in our case. As shown in Figure|3.7(a) and [3.7(b), Milne-Thomson’s
formulas are very good approximations up to a bubble-wall distance of one bubble

diameter. For smaller distances, Milne Thomson’s approximation underestimates the added

mass force. Results compare well with other numerical results [Legendre et al|(2003); |Simcik

et al. (2008))] or empirical results [Kendoush et al| (2007))].
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e Parallel motion
1 3 (a\®
CM—§(1+E(E) ),
e Perpendicular motion
1 3(a\®
= — 1 — | —
Cu 2( i (h) )

¢ Angle motion

1 3 (a)’ 9
CM_§(1+E(E) (1 + cos a)).

With 2h = ¢, for these three cases, equation ([3.42)) leads to :

(3.45)

e Parallel motion

1 3 (a\> 3 (a\® 3 [a)® 3 (a)’ & , a\"
i () () 2 () () 5 (2]
M5 +16(h) +256(h) +256(h) +4096(h) +n;0(e rear )y
e Perpendicular motion

1[. 37a\*> 3 (a\* 9 (a\* 3 [(a)’ & 4 a\"

L) A ) () () 5 e (2)

Cu=3] +8(h) +64(h) +256(h) +512(h) * 2 (=) (g ] (3.46)
e Angle motion

1 3(a\> 3 (a\’ 9 [(a\® & , a\"
C =_l1+=(= = I e dn_dznd (_)
M 2[ +8(h) +64(h) +256(h) # 2 (=) ]COSO"

1 3 (a\> 3 (a\® 3 [a)\® & may (@] .
CMT:§[1+E(E) +%(E) +%(ﬁ) +T;(€n+€nd)(ﬁ) ]sma.

These equations were obtained by summing the added mass and induced added mass of the

mirror bubble. These equations are equal to those obtained by Kok (1993). This result is in
fact the sum of the added mass and induced added mass of the mirror bubble. In case of a
bubble acceleration toward the wall, as Spence’s function has an exact solution for h/a = 1,
(>>1/k* = 7?/6), using values from table and assuming inequalities remains
true when n — oo, we can deduce Cy/(h/a =1) =0.8033 + 0.0004.

Similarly to the case of two bubbles with an angle, because the bubble configuration is no
longer symmetrical, the force is not aligned with acceleration. Figure shows that for
an angle close to 50° at h/a = 1.1 the force is at an angle of 45° (Cyy,, = Chr,). As previously
underlined by Milne-Thomson| (1968), the added mass increases has a consequence : as bubbles
come closer to each other or closer to a wall, added mass force act as a repelling force. Indeed,

if a bubble is moving toward a wall or another bubble without extraneous forces, the total



42

energy must remain constant. Since its added mass increases, its velocity must decrease.
The bubble is therefore repelled from the wall and from other bubbles. This phenomenon
minimizes the occurrence of impact between bubbles or between bubbles and walls. However,
this conclusion needs to be refined in the case of in line bubbles or accelerating bubbles

columns as shown in the next section.

3.5.2 Added Mass of two accelerating bubbles

In this section, the case of two identical bubbles having identical accelerations is consi-
dered. The acceleration makes an angle o with the line joining the two centers. a = 90°
corresponds to the parallel motion of one bubble close to a wall. As previously noted, the
added mass force is not collinear with the acceleration, but in order to compare our results
with those of other authors [Simcik et al| (2008); Kendoush et al| (2007)], Figure pre-
sents only the added mass coefficient corresponding to the total force. In agreement with the
conclusion of |[Kendoush et al. (2007)), two identical bubbles accelerating side by side lead to
Chr > 0.5. However, two identical bubbles accelerating in line lead to Cy; < 0.5. In both cases,

as the distance between bubbles increases, C'y; approaches monotonically to the value of 0.5.

3.5.3 Added Mass of a bubble column, a bubble row and bubble plane

This section explores the case of N, aligned bubbles accelerating in the same direction.
Figure (a) and (b) present respectively the added mass coefficient of the central bubble
in an accelerating bubble column (in-line) and in an accelerating bubble row (side by side).
Note : In case of N, = 2, the central bubble has no meaning. However both bubbles have
the same added masses. The simple formula assumes, that the effect of one bubble to
another is not affected by the presence of other bubbles. It leads to a very good approximation
within +0.03 of the total value of the added mass coefficient. As expected and already shown
by previous authors [Simcik et al| (2008); Kendoush et al| (2007)], when bubbles located
in-line with the acceleration (bubble column) come closer, the added mass force decreases.
However, when bubbles located perpendicularly with the acceleration (bubble row) come
closer, the added mass force increases. This fact explains the main difficulty to propose a
valid added mass coefficient when the location of the bubbles are not known. We will explore
more carefully this fact in the next section dedicated to clouds of bubbles.

The spatial distribution of bubbles is usually determined by dynamic simulations. The
case of buoyant rise of bubbles by dynamic simulations was also examined by [Sangani and
Didwanial (1993)) and [Smereka| (1993)). The dynamic simulations of bubbly flow by Sangani
and Didwania| (1993) show that bubbles tend to position themselves in planes. Consequently,
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Figure 3.10 Added mass of the central bubble in an accelerating bubble line or plane.
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they observed an increase of their added mass up to C; = 1.5 which is the typical value we
obtain for close bubbles aggregates in a planes, see Figure[3.10] (¢). [Smerekal (1993) concludes
also that the most stable bubble cloud corresponds to higher added mass. The tendency for
the formation of these plane clusters is explained by potential interactions among bubbles.
Pairs of bubbles aligned within about 55° to the direction of mean bubble motion are repelled
by each other, while those aligned in a plane perpendicular to that are attracted toward each
other [Biesheuvel and Van Wijngaarden| (1982)].

This should lead to an increased probability of finding bubble horizontally aligned. Howe-
ver, all these simulations were purely irrotational for all forces (including drag). The authors
conclude that random vorticity is probably the mechanism that prevents the bubbles to aggre-
gate. In other word, the tendency to form plane aggregates decreases as velocity fluctuations
in the bubbly flows increase. As two-phase flow is known to be highly turbulent, random

configuration of bubbles is more often encountered.

3.6 Added Mass of a bubble inside a cloud

In order to propose an effective model for bubbly flows, it is crucial to understand how
the added mass force depends on void fraction and bubbles configuration. For the sake of
conciseness, we focus on identical bubbles. Some results have been obtained for simple geo-
metric configurations. Zuber| (1964) proposes to use the classical result of a spherical body
inside a spherical domain [cf. Milne-Thomson| (1968)]. Noting void fraction as the ratio of the

spherical body over the volume of the spherical domain leads to :

11+2e 1 3
- Z ~ 4 e 4
CM 91—z 2+2€ (3 7)

Other results have been obtained and usually take the form :

1
Cu=g+ gg +o(2), (3.48)

with & taking the value of 2.78 [Van Wijngaarden (1976))], 1+ (1 -2/Z) [Van Wijngaarden
(1991)] 3.26 |Niemann and Laurien| (1991)], 3.32 [Biesheuvel and Spoelstra (1989))], or 4.2
[Mokeyev| (1977)] with Z the sphericity correction factor which takes into account the effect
of ellipticity of the bubble. All these results lead to an increase of the added mass with the
void fraction. However, in some cases such as bubble columns, the added mass force could
decrease as bubbles come closer. |Wallis (1989)) proposed to allow the motion of the spherical

domain rather than to fix it [Zuber| (1964) assumption]. This boundary condition is called an
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Figure 3.11 Added mass of a central bubble in a cubic array (bubble in a box).
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Figure 3.12 Added mass of a central bubble in a 7 bubbles column compared to CFD result of
a bubble in a periodic box with pressure release by [Simcik et al.| (2008) and Wallis correlation
of a spherical cell with “ideally compliant pressure release surface”.

“ideally compliant pressure release surface”. Wallis (1989)) obtained the following correlation :

12-2¢

Cy = .
M=99 ¢

(3.49)

Cai and Wallis (1994) proposed a more general description of the added mass coefficient :

1(2-2¢) + A(1 +2¢)

CM:Q 2+e)+A(1-¢) ’

(3.50)

with the unknown parameter A related to the external impedance of the cell around the
bubbles. A =0 and A - oo correspond respectively to the two extreme cases. The case sugges-
ted by Wallis| (1989)) corresponds to the lower bound while the one suggested by Zuber| (1964])
corresponds to an upper bound of the added mass. The external impedance would depend on
the boundary conditions of the cell related to the bubble’s configuration. Formulation
proposed in this paper can be applied for any array of identical spherical particles assuming
a potential flow. It solves the problem of the unknown effect of bubbles configuration. We
will show in this section that the proposed model is an universal definition of added mass for
an array of identical particles.

The simple case considered by Zuber (1964) (a spherical body in a spherical domain)
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Figure 3.16 Bubble inside a cubic lattice with only the six closest bubbles.

yields an exact solution implying regular solid harmonics . Our approach relies only on
irregular solid harmonics because regular solid harmonics diverge to infinity. Consequently,
we cannot obtain this exact solution. However, this simple case can be estimated if bubbles
are located in a cubic lattice with alternatively one plane accelerating upward and one plane
accelerating downward. Figure presents a 3x3 array of bubbles, where arrows stand for
bubbles accelerations. For an infinite array of this kind, the cube around the central bubble is
surrounded by symmetry planes which can be considered as a slip wall condition. This leads

to the case of one bubble in a cubic box. Void fraction can then be defined as :

. (2)37 (3.51)

where c is the center-to-center distance equal to the width of the cubic box. This case has been
numerically solved by Simcik et al| (2008]). This configuration is unrealistic of a real cloud
of bubbles as all bubbles will have roughly the same direction of acceleration. As underlined
by (Cai and Wallis (1994)), this case corresponds more to an upper bound for the added mass
coefficient. Results are presented in Figure . Up to 30% void fraction, all models are in
good agreement : the new relation , the direct calculation with a cubic array of 3x3x3,
5x5x5 and 7x7x7 bubbles, [Zuber| (1964) formula (3.47), Van Wijngaarden! (1976) formula
and Simcik et al| (2008) CFD results.

The correlation proposed by Wallig| (1989)) (3.49) corresponds to an “ideally compliant
pressure release surface”. This condition seems to correspond to the case of a bubble co-
lumn. Choosing the same definition for void fraction , Wallis’s correlation and direct
calculation with seven bubbles are in good agreement as illustrated by Figure [3.12

As the present model allows an added mass determination in a very short amount of
computational time, we generate a random cloud of identical bubbles (same sizes and acce-

lerations) around a central bubble. The radius of the sphere, where all bubble centers are
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located, is R = 6a (a is the radius of all bubbles). The number of bubbles varies from 1 to 70.
For each number of bubbles, up to 70 different random clouds of bubbles are generated. Void
fraction is defined by the volume occupied by bubbles over the volume of a control volume.
The control volume is a sphere of radius R set between R = 2a and R = 5a. Consequently, as
we have at least one central bubble, the minimum void fraction is € = (a/R)?. For a control
volume radius R = 2a, we have &,,;, = 12.5% and for a control volume radius R = 5a, we have
Emin = 0.8%.

All bubbles accelerate along the z-axis. The added mass coefficient for this direction is
around 0.5 with a slight increase with void fraction, whereas the added mass coefficients for
x and y directions are close to zero. Figure [3.13|shows added mass coefficient results, moving
average and standard deviation. Moving average and standard deviation are calculated using
a Hanning window. The different curves correspond to different sizes of control volume from
R =2a up to R = 5a in order to calculate the void fraction. We propose two correlations for
the added mass :

1
Ch, = 57 0.34¢?,

Cw, = C, =0, (3.52)

where the z-axis is the axis of the cloud acceleration. All the results obtained with a control
volume with R = 5a and the proposed correlations are presented in Figure |3.14] These corre-
lations have a standard deviation increasing with void fraction up to a typical value of 0.1.
This standard deviation comes from different bubble configurations having the same void
fraction. The added mass force also possesses a component perpendicular to the acceleration
of the cloud attributed to the asymmetry of the cloud. This effect could be interpreted as
a “random” force due to random bubble configuration. Indeed, these effects is due to the
fact that the total added mass force decreases when bubbles are located in-line with the
acceleration but increases when located perpendicularly as shown in section [3.5.3

Figure also presents the correlation proposed by Zuber| (1964]) . As expected,
this correlation is close to a maximum value of the added mass. The correlation proposed
by (Wallis (1989) (3.50| with A = 0) is also shown. As expected, this correlation is close to a
minimum value of the added mass. The correlation proposed by Wallis (1989)) corresponds
to a boundary condition called an “ideally compliant pressure release surface”. As shown by
the result, even for a low void fraction of 10%, the added mass coefficient can vary from 0.3
to 0.8. Consequently, the added mass of a bubble can be multiplied by almost a factor of 3
with a change in the location of surrounding bubbles.

Unlike previous studies, we do not have any dependence with ¢ but only with 2. This
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fact can be easily understood if we place bubbles inside a cubic lattice and only consider the
six closest bubbles, see Figure m [two located vertically (dark gray) four located laterally
(black)]. All bubbles accelerate upward and at the same distance ¢ of the central bubble (light
gray). The added mass force on the central bubble deduced from (3.42)) is :

F- _p47ra3 (1 dUb

3 5 dt +2 (fver. + fver-induced) +4 (flat, + flat~induced)) . (353)

fier. and £ represent respectively the added mass correction and induced added mass

induced

due to the two bubbles located vertically (dark gray in Figure [3.16]) :

3 (a)ﬁ 9 (a)8 du,
fver.: — |- + =1 - + o),

2\c 2\c dt
f [ %(9)34_%(9)94_ dUb
Ver.induced 2 c 2 c dt .

fiae. and fia¢, .., Tepresent respectively the added mass correction and induced added mass
of the four lateral bubbles (black in Figure [3.16]) :

f — §(g)6+§(g)8+ %
Bt g\e) T2\e) ) At

(3.54)

3(a\> 3 (a)’ dU, (3.59)
fla =|-|- — | = .
lat.induced (4 (C) + 16 (C) + ) dt
With ¢ = 47/3(a/c)?, this leads to :
drad (1 9 3 dU drad (1 dU
o 1,93 2,0 8/3) b, _ (_ 2,0 8/3)—‘°. 3.56
P3 (2+247r€+ E) g =3 g 0 ) (3.56)

Indeed, at first order, the four lateral bubbles increase the added mass coefficient by a factor
of 4 x 3/4 while the two bubbles located vertically decrease the added mass coefficient by a
factor of 2x3/2 leading to no dependence with 0(¢). Equation is close to the correlation
for a random bubble configuration ([3.52]).

In the case of a Lagrangian approach where the location and acceleration of each bubble
is known we can use new formula . The absolute error of this model is presented in
Figure [3.15] The absolute error is defined as the difference between the added mass coefficient
calculated using the new formula and the one calculated with the direct approach. This
model allows to take into account, more precisely, the effect of bubble distribution on the
added mass. Consequently the model increases the accuracy in the prediction of bubble cloud
dynamics. The model tends to over-predict the added mass in the acceleration direction. The

average absolute error plus or minus standard deviation (-0.014 and +0.054) are shown in the
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Figure. This is an improvement compared to the Euler modeling with a standard deviation
of 0.1 (see Figure [3.14)).

For the added mass coefficient in the direction perpendicular to the cloud acceleration the
average absolute error plus or minus standard deviation is —0.014,+0.014. The model tends
to under-predict the magnitude of this lateral force. Indeed the new formula (3.42)) under-
predicts positive values (ex : Model : 0.16 Direct approach : 0.2) and over-predicts negative
values (ex : Model : -0.16 Direct approach : -0.2). This model is an important improvement
compared to the Euler modeling with a standard deviation of 0.05 (see Figure . Mo-
reover, it allows to model the “random” force, including its components perpendicular to the

acceleration of the bubble.

3.7 Conclusion

The paper presents a relation for the added mass coefficient of spherical bubbles depending
on void fraction obtained by a semi-analytical method using solid harmonics to solve 3D
potential flow around bubbles. Several configurations were calculated for different numbers
of particles and spatial configurations. The simple formulas are suitable for further use,
particularly as an added mass model in an averaged equations for multiphase flow in the case
of Euler-Lagrange modeling. The added mass force on the k* bubble inside a cloud of N,
identical bubbles is :

4rad [ 1dU, %
- fio + Fure |, .
3 5 dt +nz::1 kn T K ina (357)
n+k

Fk:—p

with the first term, fi,, and £,
the added mass correction and induced added mass on the k*" bubble due to the presence of
the n'* bubble. Details are given in the section .

For an Euler-Euler model, assuming enough turbulence to ensure a random distribution,

.q Tepresenting respectively the added mass of a single bubble,

a value of Cjy; = 0.5 + 0.34¢? is the most suitable. The standard deviation linearly increases
with the void fraction. This effect could be interpreted as a “random” force induced by
the randomness of the bubble configuration. This added mass force has also a component
perpendicular to the acceleration of the cloud. These effects will be difficult to model with
an BEuler-Euler model.

Bubbles located side by side lead to an added mass increase as they come closer with
Chr > 0.5. This corresponds to a repelling force. However, bubbles located in-line lead to an
added mass decrease as they come closer with C'y; < 0.5. This corresponds to an attractive
force.

The presence of a wall leads to increase added mass as the bubbles come closer to the
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wall with C; > 0.5. This corresponds to a repelling force.
The future of this work is to explore the effect of random size of bubbles and bubble

clouds close to a wall.

3.8 Appendices

3.8.A Potential Computation

To numerically solve equation (3.18) rewritten below, we will limit the sum up to L.
VEeN k< Ny, VAeN,VueZ, |ul <A

Q& & m 2R Smony  A-1 Gm—p u e A+ 1 u
Z Z Z ge,n(_l) 2 Dy Aay Sy, (Cnk) _g)\k(_l) 2 5 =1Ly
n=1 \/=0 m=—¢ ’ ) ak
n+k
with :
2 3.58
_§($k+zyk) lfﬂz—l ( )
LZ =9 % if =0

—T(mk—zyk) if p=1

We can note that this equation leads to Yk e N, ggJC = 0. Equation 1) with the sum limit

up to L can then be rewritten as :
VEeN k< Ny, VAeN* NS L VueZ, |u| <A

> (Z . ah D S >) PR

g n Y + an —g = >\’
S\G 2T 1 T Ak 1%
n+k
with :

V2ad o

g o) ifpe= (3.59)
H az .
Ak = —;zk if = 0
2a; . N
- 4k(xk_2yk) lf:uzl

Noting
9o = Tj = T(n-1)L(L+2)+1241+m> (3.60)
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equation (3.59) is reduced to N equations and can be written as :

by - by x1 hy
= S (3.61)
bni - baw TN hy
) ) —
g?fn A‘)J:(an)
with N = N, L(L +2) and
Y,k b, NeN?> n < Ny, k< Ny, 0 <L A<L,
Vm, e Z3|m| < €, |u| < A
i=(n-1)L(L+2)+ X+ X+u
j=(k-1D)L(L+2)+P+1+m
- /\a2)\+1 - '
—D&/\’“ﬁsﬂe"(cnk) ifn+k
0 , Otherwise

V2ai o
1 Pap +ug)  if p=-1
a3
hj =dx1 —?kz'k if =0
2ap .
- 4k(xk—zyk) if p=1

D} is evaluated through Pascal’s rules :

n n-1 n-1
(k)_(k—1)+( k ) (3:63)
This allows to reach theoretically L = 1035 for 64 bit real number definition, but for most of

the cases we reach zero machine around L = 50.
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3.8.B Added Mass Computation

According to equation (3.32)), we can define the added mass coefficients of the k' bubble
as :

Cos Dy Sy (enk) - D)y S (enk)

0o ¢ Ny g'gnn - -
Co |~ Zmiiﬁ (DS (o) + DY S (o)) [+

n+ -
Coz —\ﬁDZfOngl(an)
ik (3.64)
gi,k—gi,k
1

oz | Tkt oi)
—ﬂg?,k

. m o .
Noting ¢/, = Tj = T(n-1)L(L+2)+12+14m, WE have :

Cles
Ny L(L+2)
Co | = 2 G (3.65)
j=1
C..
nk
with
e Vn+k
Dy S (car) = DYy ST (cakd)
1 & { N R R
Ci= _2; Ze Zl —(D}y S (enk) + D ST (ent)) |- (3.66)
e ek }
_\/iDZfOSZ1(an)
eForn=%k

2I7Y ifl=1,m=-1 orj=(n-1)L(L+2)+1

1| -I9 ifl=1,m=0 orj=(Mn-1)L(L+2)+2

Ci=—=1 (3.67)
Glort ifl=1m=1 orj=(n-1)L(L+2)+3

0 af 0+ 1
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3.8.C In line case - analytical solution

We will study the specific case of two identical bubbles : bubble “1”, located in [0 0 0], has a
vertical velocity Z and bubble “2” located in [0 0 c],has a vertical velocity —Z . Consequently,
in spherical coordinates, we have c15 = [¢ 0 0] and ca1 = [¢ 7w 0]. As P;"(1) = dom and
P (~1) = (=1)*8o,, we deduce from equation (3.3)) :

dom
Sm(C12) 2+1
(3.68)

Sy (car) = (—1)@507”

Cé+1

System (3.59)) leads to Yu # 0, ¢!, = ¢/'. = 0. With the superscript * removed for clarity and
H 12 = 91

A+l
knowing Dg”g = (—1)’\( Z ) , system (13.59)) yields

e A+0\ XA aMl ad .
E=1: (gm(l ( ) —) gag =0x1—=%2

= A+ 1 A+l 5

Zgol A+ N\ g2l & (369)
k=2: 1) A arm _ s 0

e; (ge 1( ( 14 ))\ +1 C/\+€+1) Ix2 Al 5 Z

Equations for k = 1 and k = 2 become equivalent, if we have A,a**? = 9geq = (—1)59&2, we

o GURNC ) I

l=1

obtain :

oo 2 k
Z .
Assuming A; = Z 50@7;@( ) , we obtain :
k=0

BBl () B o

ol

¢=1 \n=0 c
We deduce
ay g =0 except a0 =-1 VE<A+1 : )
kE-)\-1 )\+€ )\ 372
= —f — VEk2>2A+2
Q) ;aé,k)\fl( / )/\+17 2 AT+

Then we will study the specific case of two identical bubbles : bubble “1”, located in [0 0 0],

has a vertical velocity Z and bubble “2” located in [0 0 c], has a vertical velocity 2. The system



o8

becomes :

& A+0y A oMl a’
k=1: (gw 1)( ))\+1m) g,\1—5,\152

=1 R 3 (3.73)
k=2: ;(gél 1)( ))\+1m) a2 =017 %
Equations for k£ = 1 and k = 2 become equivalents, if we have B,a‘*? = Gea = (—1)“19&2. We
get :
00 A+ /0 A a A+l+1 P
- By=-0y1= 3.74
(o (2) ) @14

k
Assuming Y] = Z ng (2) , we obtain :
c

k= 0
2 (i ﬁf’”(AZK)Ai 1 (E)MWI) : ;BM (%)k =0 (3.75)

¢=1 \n=0 c
we deduce
Bk =0 except B1=-1 Vk<A+1
k-X-1 /\ + f )\ (376)
= g — VE>A+2
Bk ; ﬂé,kAEl( / ))\+17 > A+

Finally, one bubble,located in [0 0 0], with a vertical velocity z and one still bubble located
in [0 0 ¢] is the sum divided by two of the two preceding cases. It generates the following

velocity potential :

9o

0P _ i i g+ Beg (g)ka,m Py(cosb) .\
9z |

= 4 c rit
(3.77)
i(—l)ew’k — Bk (E)kaem Py(cosby)
4 c it
9ge,2
From equation ([3.32)) we can express the added mass of bubble “1” :
& 1
sz = - ng 2Dg 1Se+1(c21 - _391 1
¢=1
o A 6(/% Rt > arg+ Pig (@)
= -2 ( ) («?+1)—Z—4 (—) (3.78)
=0 k=0 ¢ ¢

%[“6%(%“)%(%“) () £ ()]
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Exact values for d,, up to n = 66 are presented in table [3.2] The values, for which d,, is not
reported, are null.

From equation (3.32)) we can express the added mass of bubble “2” :

> ~ 1
szind = _Zg£71D271052+1(C12) - _3g1,2
k+0+2
_ _Zzaewrﬁek( ) (C+1)+ Z 51k( ) (3.79)
0=0 k=0 c &

ey - ) Sy
21 8\ ¢ 512 1024\ ¢ Yy

Exact values for d™ up to n = 69 are presented in table The values, for which d
is not reported, are null. According to the trend of d,, and d"* when n — oo, C,, and C,,, |,

approximation can be expressed with a dilogarithm also known as Spence’s function. Note

that Spence’s function has analytical values for ¢/(2a) =1, ¢/(2a) =2 and ¢/(2a) — oo.

3.8.D Side by side case - analytical solution

We will study the specific case of two identical bubbles : bubble “1”, located in [0 0 0],
has an horizontal velocity & and bubble “2” located in [0 O c|, has a horizontal velocity —i.

Consequently, in spherical coordinates, we have ¢12 = [¢ 0 0] and co1 = [c 7 0]. As P*(1) = dom
and P*(=1) = (=1)*Som, from equation (3.3)), we deduce :

dom
Sy (c12) = :

€+1

57 (em) = (-1

C€+1

(3.80)

System (3.59) leads to V|u| # 1,9}, = g}, = 0. We will denote g, = g;,, = =gy, Considering :

-1,- A+ /0 (+1)
L=1 _ pLl _ r_1)A+1
DZ,)\ _DZ,)\_( 1) (£+1) /\(>\+1)7 (381)
system (13.59) becomes YA e N*V|u| =1
oo A+/ (0+1) X a2t NS
k=1: 1 e+1( ) s
e; ge2(-1) (+1 \ A+ 1) A+ 1At gx1 = 0x1 1 T
[y (3.82)
00 A+0) | (l+1) A oM N
=92 _1\A+1 B _
i 2.; gea(=1) (€+1)\ AA+1) A+ 1 el gr2=—0x1 1 T




Tableau 3.2 ANALYTICAL EXPANSION OF C.,

n d, d, x n?
0 1 ~ 0

6 3/64 ~1.69
8 9/256 ~2.25
10 9/512 ~1.76
12 33/4096 ~1.16
14 9/2048 ~0.86
16 27/8192 ~0.84
18 789/262144 ~ (.98
20 1503/524288 ~1.15
22 5625/2097152 ~1.30
24 5121/2097152 ~1.41
26 36477/16777216 ~ 1.47
28 64017/33554432 ~ 1.50
30 111513/67108864 ~ 1.50
32 6205851/4294967296 ~1.48
34 5411979/4294967296 ~ 1.46
36 75978129/68719476736 ~1.43
38 268836237/274877906944 ~1.41
40 959870979/1099511627776 ~1.40
42 3458446581/4398046511104 ~1.39
44 6283543599/8796093022208 ~1.38
46 23004849681/35184372088832 ~1.38
48 169523528265/281474976710656 ~1.39
50 156971731833/281474976710656 ~1.39
52 2335368160413/4503599627370496 ~1.40
54 2178780852285/4503599627370496 ~1.41
56 8152205367807/18014398509481984 ~1.42
58 7641749644947/18014398509481984 ~1.43
60 114811018046739/288230376151711744 ~1.43
62 107968452140781/288230376151711744 ~1.44
64  1626682348775871/4611686018427387904 ~1.44
66  3067263855097249/9223372036854775808 ~1.45

> 66 ~1.5/n if n is even, 0 else ~1.45-1.55

60



n

3

9

11

13
15
17
19
21

23
25
27
29
31

33
35
37
39
41

43
45
47
49
51

53
55
57
59
61

63
65
67
69
> 69

Tableau 3.3 ANALYTICAL EXPANSION OF C,..

dind
-3/8
~3/512
~9/1024
9/1024
~243/32768
-189/32768
_9277/524288
—-6867/2097152
-2655/1048576
-34155/16777216
-229053/134217728
-6219/4194304
—-177435/134217728
-10289523/8589934592
-18809505/17179869184
-34518501/34359738368
-507412029/549755813888
-1864880361/2199023255552
-856618335/1099511627776
-25185714363/35184372088832
-2894330493/4398046511104
-85249856997/140737488355328
—-157202961801/281474976710656
-2324076583131/4503599627370496
-269094543057/562949953421312
-63981599146629/144115188075855872
-119180377216323/288230376151711744
—-111310668397413/288230376151711744
-833953103134705/2305843009213693952
-391521679577675/1152921504606846976
-5896304563677775/18446744073709551616
-5562443587404469/18446744073709551616
~=1.5/n? if n is odd, 0 else

dind x p?
~ 3.38
~0.48
~1.06
~1.49
~1.67
~1.67
~1.57
~1.44
~1.34
~1.27
~1.24
~1.25
~1.27
~1.30
~1.34
~1.38
~1.40
~1.43
~1.44
~1.45
~1.45
~1.45
~1.45
~1.45
~1.45
~1.44
~1.44
~1.44
~1.44
~1.43
~1.43
~1.44

~1.45-.55

61
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Equations for k = 1 and k = 2 become equivalents, if we have Gya?/\/0({+1) = go1 =
(-1)“gs. We obtain :

oG Joed e

f= &

T a\* i
Assuming Gy = ) —7Yex (—) , we obtain :
c

oo [ oo A+ / A a A+l+n+1 oo a k
c ~) =-0 84
e;(ngow’n(ﬁ+1)>\+1( ) )J“I;)Wk(c) Al (3.84)

c
We deduce
Ik =0 except v10 = -1 Vk<A+1
P! A0y A (3.85)
= - A—l— — Vk>A+2
v ; W,k,\e1(€+1))\+1, > A+

We consider now the specific case of two identical bubbles : bubble “1”,located in [0 0 0], has
an horizontal velocity @ and bubble “2” located in [0 0 c|, has a horizontal velocity &. We will
denote again gy, = gt}’n = —gg}l and then the system 1' becomes VA € N*V|u| =1

A+ /0 (+1) X o V2a3 |
-1 €+1( ) _ _
90274 \| NN T1) AT o | 9 = T
5 (3.86)
A+ /0 (+1) X oMt 2a3
-1 )\+1( ) _ _
g =D \| MO F1) ha 1 oo | e = o

Equations for k = 1 and k = 2 become equivalents, if we have FEya"2/\/¢({+1) = g;, =
(-1)"*'gs2. We obtain :

o

Il

—_
[-]¢

&~
1}
—_

~
I
N\
(18

~
I
—_

(0 () )

o . a k
Assuming Ej = Z 56“; (—) , we obtain :

) o >\+£ )\ a A+l+n+1 o a k
Z(Z Ee’"(€+1))\+1(_) )_ZEA’k(E) 2(5)\71. (388)

o
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We deduce
exk =0 except €19 =1 VE<A+1
P! A+0) A (3.89)
Exk = Z €€,k)\€1( ’ )m, VE>A+2

=1
Finally, one bubble, located in [0 0 0], with a horizontal velocity @ and a still bubble still,
located in [0 O c], generates the following velocity potential (sum divided by two of the two

preceding cases) :

1 -1
9¢,1=90 157901

6_(1)__5’3 i Yer +Eok (ﬁ)kaew P}(cosf;) 2cos

+
0 H | Aa/ie+1) ritt 0+ 1)

- 1 (3.90)

a)k 2 P}(cosby) 2cosp,

];]( 1yr Ik Z Stk Vek ~Euk (_ - T

NG

~

S R |
90,259y 2=7Yp 2

From equation 1) we can express the added mass of bubble “1” (note that g, = g,}m =
-1
_gé,n) :

& V2
CZ‘CE = ny = - Z 29[ QDZ 1S€+1(c21) - _9171

=1
) k+0+2 ) k
ek—ﬁm Y1k T €Lk
_ 3.91
ZZ (c) kz_: 4 (c) ( )

=1k=0

1 3 (2@) 3 (2@) 27 (2@) d (2@)”
I+ —(—| +— —— =] + > en|—

2 256\ ¢ 256 \ ¢ 4096 \ ¢ oo c

Exact values for e, up to n=40 are presented in table [3.4, The values, for which e, is not

reported, are null.
From equation ((3.32)) we can express the added mass of bubble "2“ as :

Q

V2
YWind — Z \/—gé 1Dz 1 Se+1(C12) - _91 2

o oo k+0+2 k
Ye,k +€zk Y1,k €1k
ZZ (C) + 2—4 (5) (3.92)

=0 k=0 k=0
li(2—@) T R R 6
2|16 4096 2048 e c

Exact values for e up to n=41 are presented in table | The values, for which e

C‘rzind
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ind

me when n — oo, Cy, and

is not reported, are null. According to the trend of e, and e
Cya,,, @pproximation can be expressed as a polylogarithm function also known as Jonquiere’s

function.



Tableau 3.4 ANALYTICAL EXPANSION OF C,, or Cy,

2,4

n en en X N
0 1 ~ 0

6 3/256 ~ 0.86
8 3/256 ~1.72
10 27/4096 ~1.66
12 195/65536 ~1.16
14 21/16384 ~0.72
16 689/1048576 ~0.51
18 24121/50331648 ~0.49
20 3753/8388608 ~0.59
22 118983 /268435456 ~0.74
24 0232443/21474836480 ~0.88
26 19414531 /48318382080 ~1.00
28 3360179819/9277129359360 ~1.08
30 26380886429/82463372083200 ~1.12
32 47933417293/173173081374720 ~1.13
34 3038387628451/16624615811973120  ~ 1.12
36 805224694292273/3989907794873548800  ~ 1.10
38 58838001082253/341992096703447040  ~ 1.06

40 3136888504211549/21279508239325593600 ~ 1.03
> 40 ~1/n** if n is even, 0 else ~0.95-1.05



Tableau 3.5 ANALYTICAL EXPANSION OF C,,., or C,,, ,

n e;ilnd e;nd x n2,4
3 3/16 ~2.62
9 3/4096 ~0.14
11 3/2048 ~0.47
13 59/32768 ~ 0.85
15 1827/1048576 ~1.16
17 3075/2097152 ~1.32
19 4751/4194304 ~1.33
21 3354637/4026531840 ~1.24
23 2904515/4831838208 ~1.11
25 939073/2147483648 ~0.99
27 338657701/1030792151040 ~0.89
29 2243249765/8658654068736 ~0.84
31 15976663637/74217034874880 ~ 0.82
33 6663776732011/35624176739942400 ~0.83
35 3098143748599/18471795346636800 ~ 0.85
37 5657390434351/36943590693273600 ~ 0.89

39 14997472824454259/106397541196627968000 ~ 0.93
41 49787904667645363/383031148307860684800 ~ 0.97
> 41 ~1/n** if n is odd, 0 else ~0.95-1.05
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CHAPITRE 4

ARTICLE 2 : EXPERIMENTS OF AIR BUBBLES IMPACTING A RIGID
WALL IN TAP WATER

Dans la section précédente, les bulles étaient considérées comme rigides et la dynamique
du mouvement des bulles n’a pas été discutée. Ce chapitre s’intéresse expérimentalement a

la dynamique des collisions de bulles sur un mur.

Soumis pour publication dans : Physics of Fluid

E. PELLETIER, C. BEGUIN & S. ETIENNE
BWC/AECL/NSERC Chair of Fluid-Structure Interaction
Department of Mechanical Engineering, Ecole Polytechnique,
P.O.Box 6079, succ. Centre-Ville, Montréal (Québec), Canada, H3C 3A7

Abstract Trajectory and impact dynamics of bubbles in tap water were studied. Results
confirm that bubbles with identical radii can be classified in two categories : fast bubbles and
slow bubbles. FEach category of bubble can describe zig-zag or helical motion. The aspect ratio
and terminal velocity of a bubble depend on its radius and category.

Restitution relations are also presented for the two categories of bubble after impact with
an horizontal wall. With these relations, the ejection state of a bubble can be predicted from its
wnatial state. The initial aspect ratio of the bubble is found to play a key role in the dynamics
of the impacts.

Finally, collisions with an inclined wall were studied. Sliding and repeated bouncing mo-
tions were observed. On repeated bounces, images suggest that the bubble rolls into a prolate

shape before ejection. Repeated bounces were only observed for fast bubbles.

4.1 Introduction

Bubbly flows appear in many industrial applications such as steam generators, heat ex-
changers and chemical reactors. Different approaches can be used to model these flows :

homogeneous, drift-flux, Euler-Lagrange, Euler-Euler and direct numerical simulation. In an
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Euler-Lagrange formalism, bubbles are individually tracked through an Fulerian defined li-
quid phase. They are considered as classic bodies on which forces are applied. This approach
was used by many authors to model collisions of bubbles on walls.

Many of these models (Klaseboer et all [2001; Moraga and R.T. Lahey, 2005; Canot et al.,
2003; Kushch et al., 2002) were only compared with the study from [T'sao and Koch| (1997) in
which only one bubble-wall impact was described. Later, Zenit and Legendre (2009) as well
as Podvin et al|(2008) developed their models and compared them to their own experiments.
For the majority of these studies, the water was considered pure and the bubble trajectories
were rectilinear.

Unfortunately, in real applications, these conditions are rarely met. First, the water is
likely to be contaminated to a certain degree with surfactant thus increasing shear stress
at the interface. The latter or any other perturbation from the system is likely to trigger
trajectory instability leading to a zig-zag or an helical path (Tomiyama et al., 2002; Ellingsen
and Risso|, 2001)).

The aim of this study is to present a realistic dataset to compare with models. The
next section presents the experimental apparatus. Section describes the details of the
post-processing method. Results concerning the shape and trajectory of bubbles are grouped
in section [£.4] Data from impacts with an horizontal wall are shown in section and a

qualitative analysis of impact on an inclined wall is presented in section

4.2 Experiments

The experimental setup is shown in Fig. . The container is built from 2 cm thick
plexiglas. Its dimensions are 10 x 10 x 40 cm?®. The contact plate is made from the same
plexiglas. It is held in position at a 20 cm height. Two contact plates were made for different
inclinations :0° and 60°. Compression feedthroughs were inserted at the base of the column
to adequately position the air feeding tubes. Two horizontal, flat ended tubes were used :
2.4mm inner diameter (ID) plastic tube and 0.6mm ID metal tube. The tubes were connected
to a 1 cm?® syringe via flexible tubing.

Bubble motions were tracked by a high-definition, black & white high speed camera at
1000 Hz. With the optical setup illustrated on Fig. , simultaneous and perpendicular
views were obtained. This is achieved by targeting two light paths side by side on the camera
sensor. Each light path starts of a halogen light source. It is then diffused by soft-box diffuser
(LS) and confined by a mask to limit the exposed area (MS). The light then goes through
the center of the plate, gets reflected by an optical mirror (M) and again by the beam splitter
(BS). The light path ends at the high-speed camera (HSC). This set-up allowed a resolution
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HSC

(a) Isometric view of the experimental set- (b) Top view of the optical system.
up.

Figure 4.1 Experimental apparatus.

of 38 um /pixel. Each view having therefore a real size of approximately 2.2 cm width x 3.8 cm
height. Each impact event includes approximately 300 images.

Tap water was poured into the container to roughly 30 cm high. The water was left
still over the night to reach thermal equilibrium with the room and to allow the removal
of solubilized air. Room temperature was approximately 20°C. The syringe was manually
actuated in a back-and-forth motion to generate an isolated bubble. Once the bubble reaches

the plexiglas plate and does not move anymore, a squeegee is used to remove it.

4.3 Post-Process

From raw images (Fig. [4.2h), a threshold is selected to distinguish bubble area from non-
bubble area. On each view, the center of mass of the bubble area is calculated. The location
of the center of the bubble is defined as the average of both centers of mass. z defines the
vertical axis, x and y are both set perpendicular to a view.

The bubble shape is assumed to be a revolution ellipsoid of small axes a1, as and great axis
b. Angles 6, and 6, refer to rotation about their associated axis (see Fig. . An optimization
algorithm is used to fit these variables to the bubble projections. Fig.[4.2p illustrates this with
the bubble projections in black and the contour of best fitted projection in white. Fig. [1.2c
and Fig. are the projection and isometric view of the reconstructed 3D bubble.

Once this process has been conducted on every frame, the equivalent radius of the bubble,
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Figure 4.2 a) Raw images ; b) Threshold Best projection fit ; ¢) Projection ; d) 3D reconstruc-
tion.

rp, can be determined. This equivalent radius is defined as the radius of a sphere having the
same volume as the ellipsoid [i.e. : (a5 + az)b* = 277]. Fig. shows the calculated values of
ry, as well as the average radius for a given experiment. Small oscillations of 7, are observed
before the impact (fimpact=0.7s) and decay after contact has been made. The variation is yet
of the order of the pixel throughout the experiment. The error on the radius estimation is
therefore set to 1 pixel (~40um)
From the measured ellipsoidal characteristics (ag,as,b) , the aspect ratio x is defined as
X = 2 (4.1)

ap + as

Note that all reported values without subscripts are averages. They were calculated from
all the images of a sequence in which the bubble-wall distance is greater than 2 r,. Values

with ¢ or f subscripts are instantaneous values.
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Figure 4.4 Variation on the post-processed equivalent radius ry.

4.4 Free rise of the bubbles

In the following section, general characteristics of the bubble shapes and trajectories are
presented. It will be shown that the aspect ratio of the bubble is likely to be a key driver in

the terminal velocity yet it may not play an essential role in the trajectory type.

4.4.1 Types of bubble

As already described by other authors (Tomiyama et al., [2002; Peters and Els, [2012), the
initial deformation of a bubble determines the bubble behavior. A small initial deformation
generates a low terminal velocity and a small aspect ratio bubble. In contrast, a high initial
deformation leads to a higher terminal velocity and a larger aspect ratio. Our study borrows
Peters and Els| (2012) notation by referring to those two types of behaviors as slow bubbles
and fast bubbles respectively. The associated trajectory shape will be discussed in section
4.4.2,
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Figure 4.5 Bubble terminal velocities. (O) and (A) present experiments. (A) and (@) |Peters
and Elg| (2012)) experiments . (——) lower and upper boundaries defined by |Clift and Weber
([1979).

Fig. shows the terminal velocities of the bubbles from this study and from |Peters
and Els (2012) experiments . Both dataset behave similarly. The upper branch corresponds
to fast bubbles and the lower branch to slow bubbles. Our slow bubble branch shows a
small systematical upshift in terminal velocity. Also, our fast bubble branch presents more
scatter than Peters and Els results. These discrepancies might be attributed to the variable
contamination on each bubble and to the small window over which our data were collected.
Peters and Els averaged the rise velocity over a distance of 560 mm. Our average was over

approximately 20 mm. The following section gives details about the bubble trajectories.

4.4.2 Trajectory of bubbles

After spatial reconstruction of the bubble trajectories, projections of the motions can be
plotted in the z —y plane (Fig. . Both slow and fast bubbles have demonstrated zig-zag
and helical trajectories. Helical trajectory seems to occur less often for slow bubbles. Table
describes the properties of the bubbles from which the projection of Fig. are extracted.

Fast bubbles in our experiments are related to the bubble type studied by |Ellingsen
and Risso (2001). They show a high aspect ratio and are past the onset of path oscillation
defined by |Clift and Weber| (1978)) as Re > 450 (Re=2rpp,v/p). Also, note that the fast
bubbles presented in Fig. are of similar sizes to those characterized by Ellingsen and
Risso (r, = 1.25mm, y = 2.05). The transition of a bubble trajectory from rectilinear to zig-
zag to helical is well described by [Ellingsen and Risso| (2001)). As this transition progresses, a

decrease in rise velocity v, is observed while the total velocity v remains constant. The same
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Figure 4.6 = —y projection of the bubble trajectories for |z| > 2ry.

behavior is observed in our experiments even though the nature of the growing instability
might not be identical.

Slow bubbles were described by [Tomiyama et al.|(2002) as zig-zag bubbles. As mentioned
by [Tomiyama et al| (2002), some bubbles evolve from zig-zag (x ~ 1) to helical. Yet there
is no mention of the aspect ratio of these helical bubbles. Our experiments show some near
spherical slow bubbles exhibiting helical motion as presented in Fig. 4.6| (top-right).

Fast bubbles were generally obtained with the small capillary while slow bubbles were
obtained with a larger diameter plastic tube. This is in agreement with other author’s ob-
servations (Wu and Gharib| [2002). Furthermore, the bubbles were generated by a rocking
motion in the syringe. Doing so, perturbations in the wake were probably facilitating the
developpement of path instabilities. This could explain the early occurence of helical motion
on both bubble types.

4.4.3 Aspect ratio

As it will be described in section [4.5] the aspect ratio seems to have a primordial role in the
impact and the rebound of bubbles on walls. The aspect ratio of each bubble at terminal rise

velocity is presented as a function of their radii in Fig. [4.7] For most of these experiments, the
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Tableau 4.1 Characteristics of the bubbles associated with trajectories of Fig.

. T v, v
Type Trajectory (mm) X (cm/s) (cm/s)
Helical 1.31 1.9 26.0 30.7
Zig-Z.ag 1.33 2.1 28.4 31.3
Helical 1.03 1.14 19.2 19.9
Zig-Z.ag 1.02 1.13 18.7 19.4

fast Bubble

slow bubble

aspect ratios were slightly fluctuating over the observed period so the average was calculated.

Two branches appear on this graph and they are used to define the slow and fast bubble type.

2.5
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O Fast bubble
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Figure 4.7 Aspect ratio of the bubbles as a function of the equivalent radius 7.

Comparison to other works

Fig. shows the aspect ratios of all the observed bubbles as a function of their Weber
number (We) :
We = 2pryw?/o (4.2)

On the graph are also shown two relations from |Moore, (1965)). Eq. (4.3) is a first order shape
approximation obtained from the equilibrium of dynamical pressure and surface tension on
the surface of a spherical bubble.

Y=+ 6%We (4.3)

The second relation is based on the same equilibrium condition yet it is only imposed at
the stagnation points and at the equator of an ellipsoidal bubble (Eq. (4.4))). Note that both
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relations were developed in a no shear stress hypothesis (i.e. purified water).
We =4y + x = 2)[Psec ' x - (° - )PP (x* - 1)° (44)

Legendre et al.| (2012)) proposed relation (4.5)) based on experimental fits on their experiments
of bubbles rising in tap water . Note that this equation fits Moore’s Eq. (4.3]) for small We.

(4.5)

A Slow bubble

O Fast bubble

Figure 4.8 Aspect ratio (x) as a function of Weber number. (0) and (4) this study ; Eq. (4.3))
is (-); Eq. (4.4) is (Gray, -); Eq. (5] is (Gray, —-); Eq. (4.6) is (—-).

Once again, two branches appear on Fig. Slow bubbles lie on the lowest branch
whereas fast bubbles are distributed on an upper branch. As the higher branch is well fitted
by Legendre et al. relation, the first branch does not fit with any relation found in the
literature. In fact, its dependency on x is smaller than the first order approximation by
Moore. The best fit on the lowest branch is

x=1+ 6—74We (4.6)

This section described the terminal rising state of the bubbles. The next section will

discuss the impact of a bubble with a rigid wall.

4.5 Impacts

In our study, bubbles did not depict rectilinear trajectories. This adds some complexity to

the impact analysis. To describe the collision events, three parameters were chosen : (z,r,x).



78

z-axis is perpendicular to the wall. r-axis is tangent to the wall in the direction of the bubble
velocity. Therefore, near the wall, the bubble velocity is defined as v = (v, v,). The motions
of the bubbles are considered to stay in a fixed plane when close to the wall. That is, x and
y axes can be treated as a single radial axis r.

Fig. shows typical impacts with regards to z and y. Fig. shows sequences of images
associated with the same impacts. These experiments were chosen to compare fast and slow
bubbles of similar radius. The reader will note, without surprise, two distinct behaviors for
different bubble categories. The bubble characteristics for each experiment are described in
the caption. Dimensionless numbers with z subscript were calculated with the z component
of velocity only. The angle between the velocity vector and vertical is defined as 6.

Slow bubbles exhibit high compression on impact compared to their initial states yet they
show very low rebound height. In contrast, fast bubbles showed variable compression rates
upon impact with regards to their initial states. The bubble of Fig. [.10¢ compresses on im-
pact in contrast with Fig. that does not compress. For fast bubbles, from the first point
of contact between the bubble and the wall, a nearly rigid body rotation is induced. For hi-
gher We number bubble, a more complex deformation is observed as presented in Fig. [£.10(d,
third image.

4.5.1 Restitution relations

In this section, the initial and ejection states of the bubbles are compared. When dealing
with bubbles in rectilinear motion, it might be possible to describe the impact dynamic from
a single restitution coefficient. In our case, it is not considered sufficient for some reasons.
First, handling oscillatory trajectories requires the use of a tangential restitution coefficient as
well. Second, to fully characterize a system, not only must the perpendicular ejection velocity
be known but also a x-velocity in order to combine it with the center of mass position and
the aspect ratio. Finally, to complete this characterization, a time relation should also be
observed.

The initial state was arbitrarily chosen to be the instant at which the bubble center is at
a distance of 2r, from the wall. This distance is considered to be large enough so that the
wall does not influence significantly the bubble yet small enough for the tangential velocity
to stay linear. Fig. shows a typical 2 -y projection of the bubble position after t(z = 2r,).
It shows that the bubble radial motion stays almost linear. The ejection state is chosen to be
the instant of maximal perpendicular departure velocity of the center of mass after maximal
compression. In other words, it is the instant of maximal rebound velocity. At both instants, z

positions, aspect ratios x and velocity vectors v = (v,,v,.) are stored. As a notation convention,
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(c) Fast bubble, 7, = 0.93mm, Re=540 Re,=470, We=2.17, We,=1.63, x = 1.68, 6 = 30°
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(d) Fast bubble, 7, = 1.58mm, Re=865, Re, =800, We=3.3, We,=2.7, x = 2.25, 0 = 23°

Figure 4.9 Typical motion (z) and aspect ratio (x) for bubble impacting against horizontal
wall.

the initial and the final states will be referred to with , and ; subscripts respectively.
Also, for the restitution relations, the choice of independent axis was somewhat subjective.

The ones which produced the best collapse of data for both bubble types were selected.
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Figure 4.10 Sequence of image from which Fig. graphs were extracted. All images share
the same spatial scale but time scale is variable to illustrate the bounce.
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Figure 4.11 Projection of the bubble position in the x —y plane from ¢(z = 2r},) and later.
Square is initial state. Solid circle is the moment of maximum compression.

Location at ejection

Fig. shows the location of the bubble centers at ejection as a function of the bubble
radius. Slow bubbles are on or below the z; = r;, line and the fast bubbles are above. The
relation best fitting the slow and fast bubbles are given by Eq. and Eq. (4.8). The
relations could have been given in terms of the E6tvis number (pgr,/o). But as 1, was varied

on a small range, the dimensional form r, was preferred.
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zjclow =1y, —0.10r7; (4.7)
Zf% =y + 0.17r5; (4.8)
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Figure 4.12 Distance from center of bubble to wall at ejection. (O) and (A) this study ; Thick

black is (zf =14); (——) is Eq. (4.8); (-) is Eq. (4.7)).

Aspect ratio at ejection
Fig. shows the aspect ratio x; at ejection as a function of the initial deformation ..
Eq. (4.9) and Eq.(4.10)) are fits for slow and fast bubbles respectively .

X7 =1+ 1.62(x0 - 1); (4.9)

X =1.02; (4.10)

Aspect ratio velocity at ejection

Fig. shows the x velocity at ejection as a function of the initial compression. Note
that the velocity was rendered dimensionless by multiplying by the characteristic time r;/v,,,.
Eq. (4.11)) and Eq. (4.12)) are fits for slow and fast bubbles respectively.

* slow Vzo
X7 = - ” (Txo - 6.35) (4.11)
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Figure 4.13 Aspect ratio of the bubble at ejection (0) and (4) this study ; (--) is Eq. (4.10) ;
solid is Eq. (4.9).
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Figure 4.14 Aspect ratio velocity at ejection. (0) and (2) this study; (--) is Eq. (4.12)); (-)

is Eq. (4.11).

Normal restitution coefficient

Fig. presents the z restitution coeflicient (¢7) as a function of the initial aspect ratio

(left) and as a function of initial velocity (right). The restitution coefficient is calculated as
Vo [Us0 - Eq. (4.13)) is the fit for the left figure.
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£.=0.73{1—exp[-2.69 (x, - D]} (4.13)
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Figure 4.15 Normal restitution coefficient ;(0) and (A) this study; (—-) is Eq. (4.13));

Tangential restitution coefficient

Fig. presents the tangential restitution coefficient, in the r direction, as a function
of the initial radial velocity. The restitution coefficient is calculated as v, f/v,,. Note that the
restitution coefficient determined for small initial radial velocities are subjected to large un-
certainties due to error propagation. As the radial velocity increases, the restitution coefficient
seems to converge to a constant value of ¢, (Eq. )

£, =0.55 (4.14)

Time interval

Fig. shows the time interval between initial and final states as a function of initial
deformation. Time was made dimensionless by dividing by the characteristic time ry/v, (Zenit
and Legendre, 2009)). Note that the uppermost point for slow bubble is the largest bubble
with 7, =2.2 mm. Eq. fits the experimental results.

fp—to=2+1.84 (x, - 1)/ (4.15)
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Figure 4.17 dimensionless time interval between initial and final state (O) and (A) this study ;

() is Eq. (I9).

Note on the angle dependency

It is surprising that the angle of approach does not demonstrate any correlations with
previous parameters. Only €, seems to present a slight dependency on the initial angle and
solely for fast bubbles. This effect might be attributed to the terminal rise velocity which is
also affected by this angle. Indeed, our data reveals that the velocity magnitude is constant.
Ellingsen and Risso| (2001)) arrived at the same observation. In other words, the more inclined
the bubble trajectory is, the slower is the rise velocity. As it can be seen from the right side
of Fig. the terminal rise velocity has a significant effect on the restitution coefficient.

Therefore, the angle of contact is not considered significant in the analysis of the rebound.
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On the other hand, the angle of approach do have an influence on the radial displacement
between the initial and the final states. From the previous relations, it is possible to estimate
this radial displacement (Ar). First, let us assume that the bubble approaches the wall
without deceleration. The dimensionless time at contact is therefore ¢ = 2. For ¢ < 2, the
radial velocity is v,.,. For the remaining of the time of contact (2 < <), the radial velocity
is assumed to be 0.55v,, (see Eq. ) Altogether, the total radial displacement is written

as Eq. (L10).
Ar

=2+ 0 = D) tan(9) (4.16)

where tan(0) = v,.,/v.,. Fig. illustrates this relation calculated with experimental y, and

0. Eq. (4.16)) is adequately representing the radial displacement on the full range of approach
angles.
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Figure 4.18 Radial displacement of the bubble as a function of the angle of approach.

4.5.2 Discussion

As it can be seen from the previous sections, there is a clear distinction between slow and
fast bubbles. Indeed, terminal velocities, aspect ratios and bouncings all behave differently.
For small radius bubbles, one could argue that the difference in bounce behavior stems from
the difference in rise velocity. But in the limits of large r;,, both bubble types converge to the
same terminal velocity yet the bounce behavior is still radically different. The aspect ratio
might therefore be at the origin of the discrepancies. It is easily understood by considering
the energy stored in the surface deformation. Under the assumption of a perfect ellipsoidal
shape and by using Klaseboer et al|(2001]) relation for added mass coefficient C, , the kinetic
energy can be calculated as Ej = 1/2Cy(x)Vipv? with V, the bubble volume. The surface
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deformation energy can be calculated as Es = 0S5, where o is the surface tension (0.072 N/m)
and S the bubble surface area. For instance, a slow and a fast bubble of 7, = 2mm will have
aspect ratio of 1.3 and 2.4 and a terminal rise velocity of approximately v, = 23 cm/s. The
fast bubble has twice the kinetic energy and ten times the surface deformation energy of the
slow bubble. For the fast bubble, the surface tension energy represents one third of the total
energy. Altogether, there is 2.7 times more energy in the fast bubble than in the slow bubble

available to propulse the bubble away from the wall.

4.5.3 Comparison with other works

Legendre et al. (2005) studied drops impacting an horizontal wall. They developed a
theoretical framework to determine the functional dependency of the restitution coefficient
e, by considering bubbles as a damped harmonic oscillators. They defined ¢, as the ratio
of the departure velocity (loss of contact point) over the terminal rise velocity. Restitution

coefficients were found to follow the relation :
e, = exp(—-£1/St") (4.17)

where St* is the modified Stokes number :

St* =2pChryv, [ (9u) (4.18)

and Cy = Cy(x) is the added mass coefficient given by Klaseboer et al| (2001)).

The relation was later on compared to experiments of air-bubble impact by |Zenit and
Legendre| (2009). The functional dependence to St* was found out to be satisfied with 5, = 3.5.
Fig. shows the results from the present study compared with those obtained by |Zenit
and Legendre (2009). Our data for fast bubbles are in agreement with their experiments and
with |Legendre et al| (2005)) functional dependence . It seems that even though the bubbles
depict oscillatory motions, the coefficient of restitution still follows the same trend. Also, the
scatter in our values for fast bubbles is comparable to the scatter of rectilinear bubbles. Since
the trajectory types are attributed to the configuration of the bubble wake. This suggests
that the interaction of the wake with the rebound dynamic is not significant. The trajectory
motion of the bubble could be omitted to describe the impact.

However, the coefficients of restitution for slow bubbles do not fit the suggested relation.
Since data were collected on a limited Stokes number range, no further comparison will be
made.

Zenit and Legendre| (2009)) suggested that the functional dependence could be described
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Figure 4.19 Restitution coefficient ; (0) and (2) this study ; () and (O) rectilinear and oscil-
latory path from Zenit and Legendre| (2009) ; Solid line is Eq. (4.17)).

by

€, =exp (—Bg gﬁ) (4.19)

where Ca is the capillary number (Ca = pv,/o) and (B = 30. Fig. |4.20| presents our data
and Zenit data as well as Eq. (4.19). Although the dependence in St* fits our fast bubbles

dataset, this new dependence in C'a/St* does not.
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Figure 4.20 Restitution coefficient ; (O) and (A) this study ; (@) and (O) rectilinear and oscil-
latory from Zenit and Legendre| (2009) ; Solid line is Eq. (4.19)).
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4.6 Collision with an inclined wall

Finally, the impacts of a few oscillatory bubbles with a rigid wall at an angle of 60°
with the horizontal were studied. Due to the oscillatory motion, the impact dynamic is more
difficult to quantify. In the approach stage, it is almost impossible to distinguish the influence
of the wall from that of the oscillatory motion. Even very close to the wall, the oscillatory
forces dominate the wall force and the previous definition on initial state cannot be used.
For instance, a bubble at a perpendicular distance of 2r, from the wall might or might not
touch the wall depending on the evolution of the oscillatory motion. Therefore, we could
not generate a database large enough to take into account each and every parameter of the
impact with oscillatory bubbles.

Nonetheless, generic comments can be made regarding the behavior of slow and fast
bubbles. As already described by other authors (Tsao and Koch, [1997; Podvin et al., 2008]),

bubbles can either exhibit a repeated bouncing or a bounce-and-slide motion. Those two

phenomena are illustrated in Fig. [4.21]

Wall distance (z/73)

| —— slow-bubble| | | ——fast-bubble

0 0.1 0 0.1
time (s) time (s)

Figure 4.21 Distance from the wall for a 1.25mm bubble at impact with a 60° wall for slow
(left) and fast bubble (right).

Tsao and Koch varied the angle of the wall for bubbles with equivalent radii of 0.5-
0.7mm. It was found that for inclination greater than 55°, bubbles started to exhibit repeated
bouncing (Tsao and Koch, [1997)). This critical angle can also be seen in terms of normal-
velocity Weber number (We,). They expected that for bubbles with We, >0.4 | repeated
bouncing would be observed. Also, the onset angle would be smaller as the bubble diameter
increases. [Podvin et al|(2008)) did a similar study with a range of bubble radii slightly larger :

0.65-0.7mm. The critical angle was found to be between 50-60° in agreement with I'sao and

Koch| (1997)).
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In our experiments, fast bubbles had radii in the range 1.15-1.25mm while slow bubbles
ranged from 0.7-1.45mm. Figure [4.21] presents the normal distance from the bubble centers
to the wall for slow and fast bubbles of equal radii (left and right sides respectively). We,
number values are of 0.24 and 0.71 (left and right sides respectively). This is in agreement
with Tsao’s expectation regarding the onset of repeated bouncing for We, > 0.4 . Also, note
that both bubbles approached the wall almost vertically.

The behavior on the first bounce for both bubble types is similar to those illustrated in
Fig. [4.10] Slow bubbles compress and bounce with a nearly spherical shape and are then
rapidly damped thus inducing the sliding motion as obserbed by [T'sao and Koch| (1997). For
fast bubbles, a rigid body rotation combined with sliding is observed upon contact with the
wall. Then, the bubble leaves the wall with a nearly spherical shape. After a variable number

of transient bounces, repeated bouncing motion settles.

30
- -\ - ~rN L e
—_ 20 /’, ig-“~", \~~/', \\‘-.,', ]
<z vl
E/ 10 "\I i
z NN N )
E 0 \P// \/ \/
g
-10+ i i
—— Normal velocity
- - - Tangent velocity
_20 L L L T
0 0.05 0.1 0.15 0.2 0.25
time (s)

Figure 4.22 Normal and tangent component of the velocity during the collision of a fast
bubble with an inclined wall r, = 1.14mm, We, = 1.4, x, =2.15 .

Repeated bounces differ slightly from the first one mainly in the approach velocity and
contact angle. Fig. shows the normal and tangent components of the velocity relative to
the wall. As expected, the velocity at impact is constant for every bounce following the first.
Fig. shows the first and the third bounce for a given bubble on steady bouncing motion.
Left and right columns show the left and front views of the same bubble. On the first impact,
the left view shows the bubble great axis rotating around its center before ejection. Note that
the bubble was compressed throughout this rotation process in an oblate ellipsoidal shape.
Now let’s consider the third impact, once the great axis starts to rotate about its center, the
projection of the bubble in the left view becomes almost spherical. Yet in the front view, it

is still an oblate ellipsoid. The only way to have those two projections simultaneously is to
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have a prolate ellipsoid with its major axis perpendicular to the left view. This observation
was repeatable through all our experiments.

An hypothesis that would explain this behavior is that the slip condition on the surface
is not satisfied. Therefore, the interface in contact with the liquid film between the bubble
and the wall would be immobile thus inducing a rolling effect. The inertia of the bubble
would then create the prolate ellipsoid observed. While it might not be evident by looking
at still images, the animated sequence supports this rolling mechanism. This explanation of
the phenomenon is also in agreement with |[Podvin et al| (2008) hypothesis on the no-slip
condition on the bubble for collisions with an inclined wall. Note that this phenomenon is
only observed upon contact with fast bubbles. Slow bubbles show almost spherical shapes

and appear to slide on the wall.

4.7 Conclusion

In agreement with [Peters and Els (2012)), bubbles behaved in two ways : slow and fast
bubbles. Results show that both bubble categories could exhibit zig-zag or helical trajectories.
A detailed study of the generation of the bubble with a broader window would be needed
to deepen the understanding of this behavior. Especially, it would be interesting to identify
if the helical slow bubble motion is stable or if it is a precursor to fast bubble with helical
motion.

A set of restitution relations was given for these two categories of bubbles impacting a
wall. Two conclusions are drawn. First, fast bubbles describing oscillatory motion follow the
Stokes functional dependence as proposed by Zenit et al. for rectilinear bubbles. Second, the
aspect ratio before impact is the key driver of the rebound process. Slow bubbles, having
a low aspect ratio prior to impact, demonstrated almost no bounce in contrast with fast
bubbles.

Also, a qualitative analysis of the impacts of slow and fast bubbles with an inclined
wall at 60° was presented. Results show that for the studied range of radii, all slow bubbles
showed the sliding motion as the fast bubbles exhibited the repeated bouncing motion. More
importantly, results show that in steady bouncing motion, upon contact, the bubble takes a

prolate shape. This suggests that the bubble rolls against the wall.
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(a) First impact. (b) Third impact.

Figure 4.23 Left and Front view of an impact with an inclined wall. Time evolution is directed
bottom-up. 5ms separate each pair of images. r, = 1.23mm, We, =0.71, x, = 1.95
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CHAPITRE 5

ARTICLE 3 : MODELLING OF BUBBLE-WALL COLLISION

Afin de rendre compte des observations expérimentales sur la dynamique d’impact des
bulles sur un mur, un modele théorique a été créé. Le prochain article décrit les éléments de ce
modele. Les prédictions du modele sont ensuite comparées avec les résultats expérimentaux

du chapitre précédent.
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A model for bubble-wall interaction is developed assuming that the bubble shape is a revo-
lution ellipsoid of constant volume. Two degrees of freedom are considered : distance from the
wall and aspect ratio. Forces acting on the bubble are derived from the potential flow theory.
Regression relations are calculated for the added mass and the drag coefficients as a function
of both degrees of freedom. The model is then compared to experimental impacts of air bubble
(0.5 to 4.4 mm diameter) on a rigid wall in tap water. Experimental data contains 30 impacts
of slow bubbles and 42 impacts of fast bubbles.
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Nomenclature
a :Small axis of the bubble [m)] 2, @ Center of the bubble position [m)]
X : Aspect ratio of the bubble rp, : Equivalent radius of a bubble [m]
ps : Density of the gas phase [kg/m?] pe : Density of the liquid phase [kg/m?|
V,  : Volume of a bubble [m?] v : Interface element velocity [m/s]
Cy : Added mass coefficeint u : Flow velocity [m/s]
Cp  : Drag coefficeint C; : Jet coefficeint
Re, : z-Reynolds number (2rypp2,/ 1) Re, : a-Reynolds number (2r,p,a/p)
We. : z-Weber number (2r,p.32/0) We : Weber numberr (2ryp,vi /o)
A, @ Cross-section area of the equivalent spherical bubble (7r7) [m?]

Values with , and ; subscripts relate to specific instants before and after impact respec-

tively.

5.1 Introduction

Two phase flows are present in many industrial applications such as steam generators, heat
exchangers and chemical reactors. At some point in these processes the flow will take a bubbly
structure. In an effort to create a numerical model for these flows, a Lagrangian formalism can
be used to describe the motion of each bubble. The computational power required to perform
the simulations increases with number of bubbles. For example, the amount of computations
increases quadratically if you consider all bubble-bubble interactions. Thus, it is important
that the model describing the motions of bubble be efficient. This paper focuses on the
efficient modelling of bubbles impacting walls.

Different approaches are reported in the literature to model this phenomenon. The sim-
plest of them was developed by |Legendre et al.| (2005) to characterize the restitution coefficient
of drops in liquid . Their method was to consider the bubbles as damped harmonic oscillators
and to describe the rebound velocity as a function of initial conditions. The technique was
then applied to air bubbles in water by Zenit and Legendre (2009). This method only deals
with a part of the motion however it gives a clear understanding of the controlling mechanism.

Klaseboer et al.| (2001) introduced a more complete model by coupling the drainage pres-
sure in the film between a deformable bubble and the wall to a Lagragian description of the
bubble motion . As it leads to good agreement when compared to experiments, the method
was extended to inclined walls by |Moraga and R.T. Lahey| (2005) and later by Podvin et al.
(2008) . Again, up to inclination angles of 60°, the agreement with experiments was good.
This technique is suited to describe the approach motion, rebound and eventually immobili-

zation. It is computationally expensive since drainage flow, interface deformation and bubble
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motion have to be calculated at each time step.

Down the road of complexity, other authors solved the entire flow around deformable
bubbles under some simplifying assumptions. For instance, |Canot et al| (2003)) solved an
irrotational flow by the boundary element method. No-slip condition on the interface was
prescribed and a 2D geometry was assumed. [Kushch et al.| (2002) solved the potential flow
around the bubble using ellipsoidal harmonics . Drainage pressure was added as a force on
the bubble center and slip condition was prescribed on the interface. Although both methods
present comparable results with experiments, they are not computationally efficient for clouds
of bubbles and they do not give insight about the control mechanism.

In this study, the potential flow around a partially deformable bubble was considered. The
bubble is assumed tobe a deformable revolution ellipsoid of constant volume. A set of flow
configurations are solved prior to the simulation. From these flows are extracted regression
relations for forces acting on the bubble. Simulations are then compared to experimental

results. It will be shown that this model can predict the restitution coefficient of slow and
fast bubbles.

5.2 Flow resolution

5.2.1 Definition of the problem

The bubble is considered to be a revolution ellipsoid of constant volume with small axis a
and great axis ay. The equivalent radius 7, is defined as the radius of the sphere having the
same volume as the ellipsoidal bubble (rf = a®*x?). The distance from the wall to the closest
apex of the bubble is given by the parameter d as illustrated in Fig. and is defined as a
positive quantity.

As mentioned previously, the flow is considered to be inviscid and irrotational. Under
these assumptions, the flow around the bubble can be extracted from the potential function
® which is solution of Eq. and satisfies appropriate boundary conditions.

V20 =0 (5.1)

Two boundary conditions are prescribed. First, a no shear stress condition on the interface
of the bubble is assumed. This condition, namely the slip condition, is represented by Eq. (/5.2))

where u is the flow velocity, v the interface velocity and n its normal vector directed outward.

A~

u-i=v-n where u = VO (5.2)

The interface velocity will be defined by the motion type. In the model, two motion types
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Figure 5.1 Geomerical definition of the problem.

are considered : translation and compression. Translation is a solid body motion in the direc-
tion of the small axis. Compression is defined as a modification of x along with a modification
of a to preserve the volume. The boundary condition on the translation mode is given by
v = %,z where Z, is the velocity of the center of the bubble. It has a constant value everywhere
on the surface of the bubble. The boundary condition associated with the compression mode
is less trivial. The exact derivation is given in the work by van Wijngaarden and Veldhuis
(2008). Equations (5.3p) and (5.3b) show these boundary conditions. ¢ represents the height
of a surface element relative to the center equatorial plane of the bubble and a the velocity

of the uppermost apex relative to the velocity of the center of mass z,.

u-fi=2z,-0 Translation mode (5.3a)
3¢2/a? - 1
u-n=a X3¢/~ 1) =ap Compression mode (5.3b)

2[1+ (x2-1)¢2/a2]'"?

In order to take into account the presence of the wall, a virtual bubble is used similarly
to [Milne-Thomson| (1968). Both bubbles are symmetrically located on a line perpendicular
to the desired wall. With respect to that wall, velocities are also symmetrical. This geometry
ensures a no-penetration condition through the symmetry plane thus creating a wall with an

implicit slip condition.
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5.2.2 Resolution

This sectionl focuses on the resolution of the flow around the bubble. Solution of Eq. (|5.1))

in spherical coordinates is assumed to be in the form of

O=Y Y gk Sk () (5.4)

k ¢m

where Szm(r) is the solid harmonic function of mode ¢,m in the reference frame of bubble
k and me is its associated coefficient that has to be determined. Index k refers to the real
bubble when k£ =1 and to the virtual bubble when k = 2. The solid harmonic functions are
defined as

D)™ | (L-m)!

St (1) = Sk (0.9 = | (i1 (05 (55)

Due to the azimuthal symmetry of the system, only modes SZO contribute to the descrip-
tion of the flow. m indices will therefore be dropped. Assuming a limited number of spherical

hamonics, the boundary condition given by Eq. (5.2]) can be rewritten as

2 L
> 2 9 (VSE(r)h) =v -4 (5.6)
k=10=0 “——

ug(r)

In Eq. was introduced the velocity vector uf induced by the mode ¢ of bubble n at

position r in the reference frame of bubble k.

Since the orthogonality of spherical harmonics can only be used on spheres, no analytic
solutions can be found on the surface of an ellipsoidal bubble. In order to find an approximate
solution for the g§ coefficients, L points on the polar arc of the surface were chosen upon
which is enforced compliance with the boundary conditions (see Fig. . S and S’ are the
source points of the harmonic functions for the real and virtual bubble. p; and p;” are the
enforcement points of the boundary conditions on the real and virtual bubble. Eq. can

be written for the evaluation point 7 as
2 L
PIDIN (ue (TL) 'ni) =V (5.7)
k=100
Symmetry of the problem yields
u; (pp) -0 =uf (pi) -1y (5.8)

g =(-1)'g (5.9)
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Figure 5.2 Scheme of the resolution approach.

Relations (5.8) and (5.9) state that to evaluate the gf coefficients, calculation from a
single source term is sufficient. Eq. (5.7) becomes a linear system of L equations with g; as

the unknowns.

7

The numerical application is straightforward. The term in the bracket of Eq. (5.10]) must
be evaluated to fill the (7, ¢) element of the coefficient matrix. The non-homogeneous vector
is filled with the right-hand term of Eq. ([5.10) and corresponds to the boundary condition

on each node.

2 Hgé [(uf(pi) + (-1 i (pY)) - f] = Yo vi iy (5.10)

5.2.3 Note on the numerical application

The number of evaluation points is equal to the maximal order of harmonic functions
used. This yields the only existing solution to the system. Unfortunately, this choice generates

), an ill-conditioned matrix is

numerical issues. Since the harmonic functions vary as |r|_(€Jrl
obtained when |r| is different from unity when L grows. Thus, a limited analysis is done for
L=30 and 0.9 < y < 1.25. All of the relations given in this article must be seen as a first order

approximation around the spherical shape.
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5.3 Force extraction

In the previous section, the resolution method for the flow was presented. This section
focuses on the forces induced by the flow on the bubbles. It also serves as a validation of
the algorithm by comparing to relations available in the literature. These forces are of two

types : pressure and viscous.

5.3.1 Pressure Forces

Bernoulli unsteady equation states that the pressure in a potential flow can be calculated

as
od 1

P=—p— — —pu® - 11

Peat 2/)1511 pegz (5 )

Using the definition of total derivative as well as the chain rule, Eq. (5.11)) yields

0o b, 0d . O 1
Pep| s+ 25 2 O uvd 4 S (VD) + 5.12
Plaz? 9 Yo, T aa Y 5 (V®)"+ 92 (5.12)
A B c D

In Eq. (5.12), four terms on the right hand side are identified. The added mass term (A)
is proportional to the acceleration. The jet term (B) is the reaction induced by the varying
added mass. The third term is the dynamic pressure (C) and the last term is the usual
buoyancy (D).

From linearity of the Laplace’s equation (Eq. (1)), the potential function ® can be obtained
from the sum of the two functions associated to the translation and compression modes. Also,
since the boundary conditions are linear with velocities 2, and @, each mode can be defined as
the product of this velocity with its associated normalized potential function. These functions,
¢, and ¢,, are solutions of the system with 2, and a taken as unity in Eq. respectively. ¢,
and ¢, depend only on the position and shape of the bubble. The general potential function

is defined as

® = 20, (a,2) + aga(a, zp) (5.13)

Note that by substituting Eq. (5.13)) into (5.12]), coupled pressure terms between the
translation and compression modes appear.

In the following sections, forces acting on each mode are detailled. Eq. (5.14p) and (5.14p)
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are used to calculate these forces from the pressure relation. They are derived from a virtual

work approach where the fluid pressure is projected on each mode.

Fo=- [ P2 ds Translation mode (5.14a)

F,=- f P 3ds Compression mode (5.14b)
whith  defined in Eq. (5.3)).

Added Mass - Validation

As traditionally formulated, the general added mass induced by g, on ¢ is

FMQLQZ = _pE%CM41,Q2Q'2 (515>

The added mass force is the result of the integration of the first two terms of Eq. .
Our numerical approach gives comparable results with existing relations for C},. Fig.
compares our solution to the analytical solution of Kok (1993) for a spherical bubble ap-
proaching a wall with a limited expansion of 5 terms. Both relations are in good agreement
for large d and present a small drift as d approaches 0. This discrepancy stems from the
limited number of terms used in the expansion. The series expansion containing 100 terms
fits perfectly our calculations. Fig. compares the added mass coefficient of an ellip-
soidal bubble in translation mode to the results of Klaseboer et al| (2001). Note that the
calculated results follow closely the exact solution given by (Klas.1). Relation (Klas.2) is the
linearization calculated by [Klaseboer et al. (2001)(Chy. . = 0.62x —0.12) .

Fig. shows the points calculated for the added mass coefficient on the compression
mode compared to the relation obtained from Kushch et al| (2002) (Cir,, = 0.2x"'7). Again,

a good agreement is found and results in a validation of the present approach.

Added mass - Relation

The previous section compared our results for added mass coefficients to those already
published in the literature. The goal of this section is to extract regression relations to describe
forces acting on z or a as a result of the acceleration in either of these two coordinates as
a function of the shape of the bubble and its distance from the wall. We imposed that the

regression formulas are the product of two independent functions. i.e. :

Cu(d; x) = D(d)X (x) (5.16)



102

0.8 " " "
O Numeric O Numeric
| Kok (1993) Klas. 1
0.7 - - -100 Terms |1 0.6/~ Klas. 2
. .
E
Q
0.5
n n 04 n n n n
0 1 2 3 0.9 1 1.1 1.2 1.3
{i/’l";\ X

(a) Spherical bubble approaching a wall. (b) Ellipsoidal bubble translating in un-
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Figure 5.3 Validation of approach for added mass coefficients.

Also, at each time relations were found in the literature, they were adopted when the
accuracy was found acceptable. Under these assumptions, we constructed relations (5.17a),
(5.17b) and (5.17c) for added mass coefficients.

CMZ,,Zz(0.62X—0.12)l1+§(@)3 3(@)6+i(@)8+i(@)9+...] (5.17a)

s\%) Tea\n 256 \ I 512\ i
1
=(0.2y"17) [ 1 1
Chraa = (0.2 )l +(d/rb+1_1)7.25] (5.17h)
1
Citu . =Chura. =(0.035y - 0.016) | ——— 5.17
Ma,z Ma,z ( X )|:(d/7’b+05)3] ( C)

where h is the dimensionless distance from the center of a spherical bubble to the wall as
demonstrated by Kok (1993). With the present formalism, this translates to h =d+ 1. As it
can be observed on Fig. |5.4(a)p5.4(c), decomposing the coefficient function as a product of
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two independent functions yields good results in the computed range of x for all values of

the distance d.
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Figure 5.4 Regression (line) and calculated values (nodes) of added mass coefficients.

5.3.2 Jet force

As mentioned previously, the jet force is a result of the spatially varying added mass
coefficient. To illustrate this, let us consider a simple case of a body of mass m = m(z).
The right way to describe the motion of the body is to use the conservation of momentum
as presented in Eq. . The jet force of Eq. is analogous to the last term of the
right-hand side of Eq. . The only difference is that in our case, the mass depends on

two coordinates (zp,a).

%(mé):cil—?z+m2=ZF — mé:ZF—%—TZzQ (5.18)
fi
Jet force

Substituting Eq. ((5.13)) in Eq. (5.11])) and keeping only the terms relative to the jet force
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yields

200,  ,00, .(&bz 8%)]
_ 2 2
Fr= pz[zb 0z Ta da T 8a+82

By integrating Eq. (5.19) over the surface of the bubble and defining the format of the
resulting force as a traditional drag force, the jet force coefficient can be defined by Eq. (5.20)).

(5.19)

1 .
FJQl:QzQs = _§p€7rT§OJq1,Q2qs 4293 (5'2())

where the force is applied on coordinate ¢; and is proportional to the product of coordinates
¢2q3. For instance, Cj, .. would be the force coefficient on a as a result of the cross-coupling

between a and z,. After some manipulations, the jet coefficients can be expressed in terms of
the added mass coefficients from Eqs. (5.17)). Their expressions are listed in Eqgs. (5.21)).

Crone = 3 Cores (5.21a)
Civaa= 5 Coras (5.21b)
Cra,zz g%CMa,z (5.21c)
CJaaa = g%CMa,a (5.21d)
Coone =5 (5 Cotas 5o (5.21¢)
Ciane= 5 (5-Cotas + 5-Cota) (5.216)

5.3.3 Dynamic pressure

It has been shown by Legendre et al. (2003) that the potential flow is a valid approximation
for added mass relations in a wide range of Reynolds number values. This fact supports the
significance of the relations in section [5.3.1] and [5.3.2]

As shown by Moore (1965)) and |Batchelor| (2010)), the application of drag forces derived

from dynamic pressure in potential flow is questionnable. However, the dissipation method by

Levich| (1949)) adequately predict the drag forces by including both pressure and viscous drag,.
For these reasons, dynamic pressure terms are considered through the dissipation method of
section [5.3.9l
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5.3.4 Buoyancy

Buoyancy pressure term resumes to the usual buoyancy force which depends and acts
only on z,.
Ey=Vi(pe = pg)g (5.22)

In the present case, we will neglect p, as the gas density is much smaller than the liquid

density.

5.3.5 Viscous dissipation - Validation

Viscous drag is estimated by the dissipation rate induced by viscosity (see Batchelor
(2010)). From this technique, one can extract the drag force acting on a body from the total
work rate in the fluid. Eq. defines this dissipation rate. After some manipulation,
Eq. shows that there are components of the dissipation rate associated to pure modes
(32 and @*) and to a cross-coupled term (Z,a). In order to ensure that the proper amount
of energy is dissipated, this last term has to be explicitely distributed on both modes. This
energy dissipation is distributed in a manner proportional to the relative velocity of each
mode as described by Eq. . Doing so, dissipation rates are always preserved and no

drag forces are applied on modes that are not active.

o M/f V2 (V (365 + acha) ) dV (5.234)
= fff [V2(V20.)? + VA(Vag,)? + 2V2(Vipgs - Vad,) | dV (5.23D)
=E,+ E,+2E,, (5.23¢)
= 221 + 21, + asd, . (5.23d)
= Zb ([z + |Zb| . aIa,z) +d ([a + = |a| X Zb[a,z) (5236)

RS 2] + [l
2Fp, 2Fp,

The total domain contains two identical bubbles, the real one and its image. Thus, the
total dissipation rate corresponds to twice that of a single bubble (see Eq. ) Drag
forces Fp, and Fp, can be described by the sum of two terms. Each term can be written in
the form of Eq. where the drag coefficients C'p are defined with the same formulation

as for the jet coefficients.
1 .
FDq,qqu = _§p€7TTZCDQMI2Q3 4243 (5'24)
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For pure translation and compression modes, the associated drag coefficients are compared

to known relations in Fig. |5.5(a)ip.5(c)l Fig. [5.5(a)| presents a limited 5 terms expansion
series by Kok in dashed and a higher order solution. Fig. |5.5(b)| presents the x dependency

of the drag compared results of Moore (1965)). The numerical calculation leads to a perfect

agreement with Moore’s relation. However, when comparing the drag on the compression
mode, a slight deviation from Kushch et al| (2002)) results is observed. Yet the agreement

between both curves is good .

———— 70
O Numeric O  Numeric

Semi-analytic
. T Rk | Moore (1965)

40
40 - - : : - 0.9 1 11 1.2 13
0 0.5 1 15 2 25 3 X

(a) Spherical bubble approaching the wall. (b) Ellipsoidal bubble translating.
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(c¢) Ellipsoidal bubble compressing.

Figure 5.5 Validation of the numeric approach for viscous drag coefficients.

5.3.6 Viscous dissipation - Regression relation

As it was done previously with the added mass coefficients, the drag coefficient regressions
are modelled as the product of two independent functions. Doing so, a set of relations for
drag coefficients is constructed in Eq. ((5.25)-([5.28]). These relations are then compared to the

numerical calculation in Fig. [5.6(a){5.6(c)|
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o= o |1+ Gy | 600 (5.29
Cpaaa = 1?2{13 [1 " (d]ry +11.O9)8] X (5.26)
Obzaz = Rlez [(d/rb +1i1.86)1-85] (2.05¢~1) (5:27)
Chaas = Rlea l(d/m +1i1.86)1-85] (2.05x - 1) (5.28)

(5.29)

where G() is the relation of Eq. (5.30)) given by Moore (1965]) and the functional depen-
dency in x'* comes from the work by Kushch et al| (2002).

[(x* = 1)12 = (2 - x?)sec™! (x)]
[x2sec!(x) - (x2 - 1)1/2]°

G(x) = %/B(XZ - 1)%2 (5.30)

5.4 Model

This section focuses on the equation of motion governing the system and its application.

5.4.1 Equation of motion

Given the theoretical work presented in section[5.3] the equation of motion can be written
as Eq. (5.31)). Two new forces acting on a are introduced as F,, and F¢. The first is the surface

tension force and the second is the force induced by the translation motion on the compression

mode.
22
. Zb
P Vi CVMz,z CMa,z <b _ 1p A CDz,zz + CJz,zz CJz,aa CDz,az + CJz,az d2
Vb N Y S 2 )
C’Ma,z C1Ma,a a 2 CJa,zz C(D(;L,aa + C’Jz,aa CDa,az + CJa,az a3
b

peVbg
+
FC + F°

(5.31)
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Figure 5.6 Regression (lines) and calculated values (nodes) of drag coefficients.

The accelerating mass of air is neglected since the added mass term is much larger due to

density difference.

5.4.2 Surface tension force : [

The potential energy stored in the surface is calculated as E, = ¢S where o is the surface
tension. S is the surface area of the bubble. Since surface deformation energy is conservative,
the force acting against deformation can be calculated from F, = —0F,/da. This relation can

be fitted by the expression
F, =4.4820r, (x> - 1) (5.32)

for x ranging from [0.8-3]. In the present model, o was set to 0.072 N/m.
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5.4.3 Compression force : F¢
The compression force is defined as :

1 .
Fe = —§pg7rr§C'Cz§ (5.33)

where C¢ is the compression coefficient fitted to each experiment. This approach was selected
to ensure that the initial state taken from the experiment is a steady state in the model. In
other words, under terminal rise conditions, F + F,, = 0. Therefore, no net forces are acting
on a. Note that this equilibrium also gives rise to a x(We,) relation where We, is the usual
Weber number calculated with the z velocity component only.

As pointed out by Peters and Els (2012), two categories of bubbles can be generated in
tap water : slow and fast bubbles. Each type having specific compression dependency over
the We number. The expression allows us to take these bubble categories into account.

5.4.4 Note on the drag forces

From the viscous dissipation rate theory detailed in section [5.3.5], the drag coefficients are
found to decrease monotically with increasing Reynolds number for both a and z,. As this is
true for small Reynolds numbers, drag coefficients are empirically found to be bounded to a
minimal value. This lower bound was added to the model.

For the translation mode, the terminal drag coefficient was calculated as the equilibrium

between drag and buoyancy :
_ 8 gn

3(a)2

This value is set as the lower boundary of the Cp, ., coefficient and allows initial conditions

Che (5.34)

to create steady states.
The same limiting behavior is expected from the drag in the compression mode. As there
is no empirical data on this drag relation, the lower boundary of Cp,, o, Was arbitrarily defined

to be 5. It was chosen to produce similar behaviors between simulation and experiment.

5.4.5 Contact with the wall

Upon contact with the wall (i.e. a = —z;), the system no longer depends on 2 degrees of
freedom (DoF) since both coordinates are now equal. The governing equation during contact
can be calculated as the difference of both lines of Eq. with a = —z,. The bubble
becomes analogous to a damped oscillator of variable mass. Initial conditions are calculated

assuming preservation of kinetic energy from the 2 DoF to the 1 DoF system. The kinetic
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energy is evaluated through added mass coefficients as the total kinetic energy in the fluid
(Milne-Thomson, |1968).

5.4.6 Departure from the wall

During contact, the condition Z, = —a is enforced thus eliminating the need for a reaction
force from the wall. A departure condition must therefore be defined without resorting to
a reaction force. Departure from the wall occurs if the decompression speed of a bubble is
not fast enough to compensate for the exit velocity. Numerically, this happens when a < -2,
considering the 2 DoF system.

To evaluate this condition, Eq. is used to calculate the acceleration of each mode
assuming no contact. An event location routine is used to identify the exact time of departure.
From that moment on, the system is modeled with the 2 DoF described previously with initial

conditions a = —Zp.

5.5 Results

This section focuses on the applications of the model. First, a qualitative look over the
model is given. Then, the model is compared with the experiment of [Tsao and Koch| (1997).
Finally, a statistical comparison with our experimental results is done. Our experimental me-
thod and results are presented in another article (Pelletier et al.,|2014]). The initial conditions

of the simulations were extracted from experimental points and are denoted with subscript

o

5.5.1 Qualitative description

Fig. shows a comparison of the model and the experiments for different bubble proper-
ties. Fig. represents the smallest bubble of our experimental dataset. The experimental
curve of z,/r, shows an overdamped behavior of the bubble motion upon impact. The model
predicts small oscillations before immobilization yet the overall behavior is respected. The
slight offset between the equilibrium positions is of the order of the experimental resolution.
Note that the aspect ratio is almost constant both for the model and the experiments (y ~1).

The second and third row (Fig. and Fig. are typical results for middle range
radius of a fast and a slow bubble. On both z,/r, graphs, the model is underestimating the
contact time. Also, the oscillation frequency is higher in the model than what is observed.
This is likely to be a consequence of an overestimation in the bubble stiffness related to suface

tension energy.
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As previously described in [Pelletier et al| (2014), fast and slow bubbles have different
behaviors upon impact. Fast bubbles depict high rebound height while slow bubbles barely
leave the wall. The present model is able to capture this behavior difference to the limit of
the first bounce. After the second contact with the wall, the model overestimates the energy
dissipation and the bouncing becomes heavily damped.

Finally, the last row (Fig. shows the biggest bubble observed experimentally. The
model does not fit well with this particular experiment. This is mainly due to the fact that
the bubble is further away than the assumed ellipsoidal shape. Visual inspection of images
at impact shows high complexity deformation that cannot be taken into account with this
model. Yet, the conclusions made previously for the stiffness overestimation and damped

motion still hold.

5.5.2 Comparison with other work

Fig. compares the present model to the data by Tsao and Koch| (1997)). Computation
were done with r, = 0.83mm, (%), = .25m/s and x, = 1.8. The height of the rebound predicted
by the model is underestimated when compared to the experimental results. The agreement is
better for a higher value of x, as illustrated. Note that the calculation of x by Tsao and Koch
comes from a 2D projection of the bubble. This application might lead to underestimated x
if the motion of the bubble trajectory is not perfectly rectilinear.

The present model describes adequately the approach, contact and rebound stages. Dis-
crepancies are observed after this first rebound and tend to amplify over time. From the data
available in Tsao and Koch article, a restitution coefficient and a time interval were extracted
and they will be compared to our experiments in section [5.5.3]

5.5.3 Statistical description

Numerous experimental impacts were conducted by changing the bubble size in our la-
boratory (Pelletier et al), 2014)). The first bounce of these bubbles will be studied in more
details. To describe this process from the experimental point of view, an initial state and a
final state were chosen. The initial state corresponds to the instant at which z, = -2r, and is
referred to with the , subscript. The final state (ejection sate) is the time at which the center
of mass velocity is maximal and is referred to with the ; subscript. Relations between these
states are given in |Pelletier et al.| (2014]).

For each experimental impact, a simulation was run. The initial values of the simulations
were taken from the experimental initial state. The ejection state of the model was defined

similarly to the experimental ejection state. The following sections will discuss the results.
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Figure 5.7 Distance from wall and aspect ratio of bubbles for different collision events :
experiment and model.

Location at ejection

Fig. illustrates the location of the center of mass at ejection (zf) as a function of

the bubble radius. Experimentally, fast and slow bubbles create two branches. The model
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Figure 5.8 Comparison of the present model with Tsao & Koch (1997).

predict similar locations at ejection for both bubble types. The bouncing mechanism is based
on the ellipsoidal shape assumption of bubbles. Experiments have shown that slow bubbles
follow closely the assumed shape during the bounce. Fast bubbles, in contrast, go through
a triangular shape during rebound as described by |Zenit and Legendre| (2009). This specific
shape might be at the origin of the higher branch (see Fig. |5.14]).

Fig. [5.10| shows the aspect ratio of the bubbles at ejection. There is a good agreement for
slow bubbles and a considerable difference for fast bubbles. The discrepancy is induced again
by the ellipsoidal bubble shape assumption. The model predicts that fast bubbles will bounce
while preserving ellipsoidal shape thus creating a linear dependency to the initial aspect ratio
as with the slow bubbles.
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Figure 5.9 Center of mass position at maximal ejection velocity.
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Velocity at ejection

Fig. and show the velocity characteristics of the bubble at ejection. Fig.
shows the restitution coefficient as a function of the initial aspect ratio. The restitution
coefficient is described as the ejection velocity over the initial velocity. These are in good
agreement when y, > 1.25. For smaller x,, the discrepancy is mainly due to a lack of drag
forces on the bubble. For these bubbles, Reynolds number values are in the range 35-400.
These bubble sizes would probably benefit from a Stokes flow analysis flow or the use of
lubrication model.

Fig. shows a dimensionless x s as a function of x,. For slow bubbles, since the model
ejection velocities are greater than the experimental results, the predicted x velocities are
also greater than in the experiments. Also, the predictions for the fast bubbles y velocity are
almost on a linear extrapolation of the slow bubbles x velocity. This is in contrast with the

constant values obtained from experimental fast bubbles.

Time delay

Fig. shows the time interval between the initial and final state. The time is set non-
dimensional by dividing by a characteristic time 7 = r;/2;,. Both the model and experimental
points follow the same trend although the time interval for the model is systematically shorter

than what is observed. This is caused by the overestimation of the bubble stiffness as discussed

in section B.5.1] .
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5.6 Discussion

Two causes of discrepancy can be identified from the previous sections. First, at low Rey-
nolds number (< 400), the model underestimates the energy dissipation induced by the wall
confinement. Therefore, predictions on the restitution coefficient are higher than observed.
Nonetheless, for these low-velocity bubbles, the energy returned as kinetic energy is quickly
dissipated and the overall behavior of the impact is verified (see Fig. [5.7(a)).

Second, some aspect of the bounce dynamic cannot be captured by the ellipsoidal bubble
shape approximation. It must be understood that this shape is not an eigen vibration mode

of the bubble. The eigen modes were shown to follow the shapes prescribed by the spherical

harmonic functions Y, (Sommers and Foster, |2012). Note that the oscillation frequency of

these vibration modes increases with /.

By compelling the ellipsoidal shape to the bubble, some high /-order modes are used.
These high order modes might not be activated in the dynamics of real bubbles. Thus, the
overall stiffness of the system is increased. Also, another consequence is that specific modes
cannot be excited one-by-one. For instance, mode ¢ = 3 is dominant during the rebound of
fast bubbles. This third mode cannot be accounted for with the present model (see Fig.[5.14]).
This is likely to be at the origin of the collapse of the branches.

(a) Experiment. (b) (--) Eigen mode shape (¢ = 3).

Figure 5.14 Triangular shape of bubble on rebound.

It is also important to keep in mind that the model is based on a 1D spatial coordinate
(zp). Yet most of the experimental impacts occured with bubbles having a non-zero tangential

velocity to the wall. This brings an important point regarding the closure of the system with

a x(We) relation. The work by |[Ellingsen and Risso| (2001)) suggests that the aspect ratio

X is a function of the velocity magnitude and not of the rise velocity . This implies that

knowing only the rise velocity is not sufficient to determine the aspect ratio. In other words,
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a universal relation for x(We,) cannot be defined.

To overcome this difficulty, the compression coefficent C was introduced in section [5.4.3]
This coefficient serves two purposes. First, it implicitly takes into account for the bubble
category (slow or fast). Indeed, no subjective choice of category has to be made in the model.
Second, the compression coefficient removes the necessity of having a xy(We,) relation. Note
that the C¢ coefficient could be defined analytically through a y(We) relation with the use
of an additional DoF describing the bubble trajectory.

5.7 Conclusion

Finally, although some discrepancies exist between the model and the experiment, the
overall behaviors are in agreement. The developed model offers a 2 DoF' system to predict the
impact dynamics of bubbles with rigid walls. It can efficiently be applied to two-phase bubbly
flow simulations with a Lagragian formalism without having to solve the flow configuration
at each time iteration. The next step in development would be to consider two additionnal
DoF. One will represent the ¢ = 3 mode exhibited by fast bubbles. The other will be used to
describe the path trajectory.
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CHAPITRE 6

SUJETS SUPPLEMENTAIRES

Ce dernier chapitre couvre brievement trois autres sujets étudiés dans le cadre de cette
maitrise. Premierement, les forces agissant sur un mur lors d’un impact. Deuxiemement,
quelques observations sur 1’éclatement de bulles puis finalement une remarque sur la conser-

vation de I’énergie dans un systeme a masse variable.

6.1 Force d’intéraction bulle-mur

Dans cette portion du travail, une analyse expérimentale des forces transmises lors d’une
collision bulle-structure sera effectuée. Il sera montré qu’une bulle induit des forces substan-
tielles a distance sur une structure durant son approche. De plus, dans le cadre du modele
développé pour une collision bulle-mur au chapitre [5] des expressions théoriques de ces forces

seront présentées.

6.1.1 Approche expérimentale

Dans le but de caractériser les forces générées par la collision d’une bulle, un banc d’essais
a été construit. Celui-ci est constitué d’une colonne d’eau d’environ 30 cm de hauteur avec
des trous a la base permettant I'injection de bulles d’air. L’injection est faite manuellement
par un mouvement de va-et-vient. Suite a I'injection, la bulle s’éleve sous I'action de la gravité
jusqu’a l'obtention de sa vitesse terminale. Un dispositif de mesure de force est positionné
au-dessus du site d’injection afin que la bulle ascendante le heurte.

La figure[6.1(a)| présente une vue schématique de ce dispositif. Il est composé d’un cylindre
carré et creux, fermé a une extrémité, flottant a la surface de I'eau. Il est tenu en position
verticale par 2 groupes de 3 élastiques a tension ajustable disposés en triangle sur deux plans
superposés et déphasés de 60° (non-illustrés). Le positionnement a été fait de maniere a
maximiser 'amplitude du pilonnement tout en minimisant ’amplitude de roulis du flotteur.
En plus des élastiques, une raideur supplémentaire est apportée par la poussée d’Archimede.
La raideur équivalente mesurée est d’environ 6 N/m. Hors masse ajoutée, le flotteur pese 6 g.

Le systeme ainsi créé se comporte comme un oscillateur amorti. S’il y a contact entre une
bulle et le flotteur, son déplacement sera indicateur des forces transmises. L’évenement de
contact est filmé en lumiere transmise par une caméra ultra-rapide a une fréquence de 1kHz.

La source de lumiere est une ampoule halogene. Trois cercles noirs sont dessinés sur le flotteur
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afin de faciliter la détection de ses mouvements. La figure [6.1(b)[ montre une image capturée
lors d’une expérience a un temps précédent I'impact. Sur cette image, le rayon équivalent de

la bulle est r, = 0.65mm et la largeur d'un c6té du cylindre est de 12.5mm.

74

Air
Eau
Y Yr
o0
d
5mm
O, =
(a) Schéma du montage (b) Image capturée

Figure 6.1 Montage expérimental pour 'observation des forces d’impact.

6.1.2 Post-traitement

La position du flotteur est obtenue par un traitement numériquesur les trois cercles noirs.
Le traitement va comme suit :

1. Application d’un seuillage sur les gris pour identifier les cercles ;

2. Remplissage des trous dans les formes (si nécessaire) ;

3. Localisation du centre de masse de chaque cercle;

4. Moyenne sur les 3 positions des centres de masse;;

5. Chargement de la nouvelle image et retour a 1.

La distance bulle-flotteur est définie comme la distance entre le front avant de la bulle et

la position lors du contact avec le flotteur. Le traitement automatisé est :
1. Identification sur 'image #1 d’un point sur le front avant de la bulle;

2. Définition d’'une vignette carrée ( 1/4 taille de la bulle) centrée sur ce point;
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3. Optimisation de la position de cette vignette sur I'image suivante ;

4. Enregistrement de la position de cette vignette et retour a 2.

6.1.3 Résultats

Trois essais ont été réalisés avec ce montage. Les caractéristiques des bulles sont présentées
dans le tableau [6.1] Les résultats du post-traitement sont illustrés sur les graphiques de la
figure [6.2] La colonne de gauche fait référence & la position temporelle du flotteur (Yz) sur
la durée totale de I'expérience. La colonne de droite présente ces mémes courbes autour du

moment d’impact. La distance bulle-flotteur (d) est reportée sur I’axe de droite.

Tableau 6.1 Caractéristiques des bulles

Bulle ‘ Catégorie ‘ Rayon
#1 Lente 0.65mm
#2 Lente 1.35mm
#3 Rapide | 0.95mm

On note que le flotteur oscille déja avant I'impact dans les trois expériences. En effet, le
systeme est extrémement sensible a toutes perturbations. La perturbation qui est a 'origine
de l'oscillation initiale est probablement I’augmentation du niveau de 1’eau suite a la création
de la bulle a la base de la colonne. De plus, la position d’équilibre du flotteur diminue dans
le temps pour les expériences #1 et #2. Cette baisse est causée par une légere infiltration
d’eau dans le cylindre augmentant ainsi sa masse. Malgré cet état initial perturbé, I'impact
reste clairement visible pour les trois situations.

Les graphiques de la colonne de droite illustrent un phénomene important : le mouvement
du flotteur débute avant le contact. Dans les faits, on observe une déviation de la trajectoire
initiale du flotteur lorsque la bulle est a une distance d’environ 5 r, dans les trois expériences.
Une analyse de la vitesse du flotteur indique que 1’essentiel de la vitesse est transmise avant

contact.

6.1.4 Force potentielle sur le mur

Sous I'hypothese que la bulle est beaucoup plus petite que le flotteur, la situation peut étre
considérée comme une interaction bulle-mur. Cette hypothese sera d’autant plus respectée
quand la bulle sera tres proche du flotteur. L’écoulement associé a cette configuration a
été développé au chapitre 4/ Comme premiere approximation, la bulle est considéré comme

sphérique et non déformable (i.e. : a =ry). Le systéme considéré est illustré sur la figure [6.3]
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Figure 6.2 Position du flotteur et de la bulle durant I'impact. Les figures de la colonne de
droite sont des agrandissements des zones encadrées dans les figures de la colonne de gauche.
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Figure 6.3 Systeme considéré pour le calcul des forces potentielles sur le mur

Rappelons 1'équation de la pression instationnaire de Bernoulli (Eq. . Notez que le
terme de convection est retiré car le mur est considéré immobile. Le terme de gravité est
également omis du a sa constance. La force subite par le mur est calculée par 'intégration
de la pression (Eq. sur sa surface. La figure présente les profils de pression associés
a chacun des trois termes : Masse ajoutée, Jet et Pression dynamique. L’intégration a été
effectuée numériquement en se limitant a une surface circulaire de rayon Riyicqration=575,107%

et 507, centrée au-dessus de la bulle et ce, pour différentes distances bulle-mur (d).

0P 0P 1
Pe-p| 55 +o—i- (V) 6.1
pe 9, 2 92 Zb 5 (Vo) (6.1)
N—— N—— —
Masse ajoutée Jet Pression dynamique

Les résultats sont présentés dans la figure [6.5[sous la forme de coefficients de force tel que

décrit par les équations [6.2] [6.3] et [6.4] = est défini positif comformément & la figure [6.3]

10000

(a) Pression de masse ajoutée (b) Pression de jet (c) Pression dynamique

Figure 6.4 Forme des profils de pression sur le mur avec Rintegration = 1013 et d=3 1y



125

1
FJ = §p€AbCJ22 (63)
1 9
FPD = EpéAbCPDZ (64)

Deux phénomenes sont observés sur ces courbes. Premierement, lorsque d approche de
zéro, les coefficients ont tendance a augmenter rapidement. Ceci est du a ’hypothese d’un
fluide non visqueux. En effet, afin de respecter les conditions aux frontieres, les vitesses dans
le film entre la bulle et le mur peuvent prendre de tres grandes valeurs. Or, il a été montré
que lorsque d S 0.1ry, les effets visqueux dominent dans ce film (Klaseboer et al| 2001). Les
valeurs de ces coefficients au contact sont donc a prendre avec discernement.

Ensuite, plus Rintegration €5t grand, plus la période de décroissance des coefficients de masse
ajoutée et de jet est grande. Ceci est également un résultat de 1'hypothese d’écoulement
potentiel. Dans ce type d’écoulement, toute perturbation se propage instantanément sans
dissipation au travers du fluide. Ce faisant, un point du mur se situant a plus de 507, de la
bulle peut ressentir une variation de pression non-négligeable. Dans le cas d'un fluide réel, ces
variations seraient probablement dissipées par la viscosité. Il s’agit entre autres de la raison
pour laquelle différents rayons d’intégration sont présentés.

De plus, la largeur du flotteur dans nos expériences est compris entre 10 et 20 r,. Les
forces qu’il subit doivent étre proches de celles calculées avec ces rayons d’intégrations. Selon
ces relations, une bulle s’approchant créerait une force répulsive du a la force de jet a partir
d’'une distance d’environ 10 r,. Puis, durant le contact, puisqu’elle subit une accélération
négative (vers les z négatifs), une force négative de masse ajoutée devrait se rajouter.

De maniere qualitative, on peut voir ce comportement sur les figures et
6.2(f)l En effet, le flotteur accélere vers le haut durant la phase d’approche de la bulle ou on
voit la pente augmenter. Puis, peu apres le contact, pendant une accélération de la bulle vers
le bas, la vitesse du flotteur diminue.

Il est possible également d’avoir un ordre de grandeur de ces forces. Prenons 'exemple
d’une bulle de 1 mm de rayon se trouvant a une distance de d = 2r, du mur. Sa vitesse
d’ascension sera d’environ v =20cm/s. L’intervalle de temps avant le contact avec le mur peut
étre évaluée comme 0t = d/v = .01s. L’ordre de grandeur de l'accélération sera de (dv/dt =

—20m/s?). En prenant les rayons d’intégration de 5 7y, les forces peuvent étre évaluées comme :
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Fy ~ 67uN
Fy~32uN
FPD ~ O[I,N

En réalité, la bulle ne décélere pratiquement pas avant le contact. La décélération se fait
par 'entremise du mode de compression de la bulle. Donc 'essentiel de la force a distance
proviendrait de la force de jet. Il est possible de comparer la grandeur de la force de jet
calculée en exemple avec I'expérience #3. En effet, le rayon de la bulle donnée en exemple
(rp = lmm) est tres proche de celle mesurée a l'expérience #3 (1, = 0.95mm).

Sous I'hypothese que le flotteur est en équilibre avec la force de jet, on peut calculer
son déplacement. Il serait d’environ de 5.3pum. On note expérimentalement un déplacement
similaire (4 pm) (voir Fig.[6.2(f)). Ceci suggere que la force de jet pourrait bien étre & 'origine

de ces forces a distance.

6.1.5 Travaux futurs

Afin de pouvoir mener a terme ces travaux et de comparer le modele de force aux expé-
riences, une part expérimentale et une part théorique doivent étre complétées. Premierement,
la partie expérimentale consiste a caractériser davantage le systeme de captation des forces.
Bien que le systeme se comporte comme un oscillateur harmonique amorti, ses caractéris-
tiques ne sont pas bien connues. En fait, seul w = \/k:/_m est défini tandis que k et m ne sont
pas connus avec précision.

En effet, la masse réelle du flotteur est connue mais sa masse ajoutée ne 'est pas. Puisque
la densité apparente du flotteur est plus faible que celle de 1'eau, la contributation de la masse
ajoutée risque d’étre importante. De plus, la raideur du systeme est difficile a quantifier car
elle comporte une composante dynamique. Cette composante provient de 'attachement du
ménisque a la paroi du flotteur. En oscillant, 'angle du ménisque change et apporte des
variations substantielles a la raideur statique.

Du point de vue théorique, un aspect est manquant pour décrire le processus de collision.
Bien que I'approche pourrait étre décrite par un modele a bulle sphérique (et rigide), au
moment de I'impact, la bulle se déforme. Si cette déformation n’est pas prise en compte,
I’arrét instantané de la bulle génere une accélération infinie et donc une force de masse
ajoutée infinie sur le mur. Ainsi, le mode de compression de la bulle (tel que présenté dans

le chapitre [5]) doit étre utilisé pour décrire les forces au moment de 'impact.
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Figure 6.5 Force a distance sur un mur pour différents rayons d’intégration
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6.2 Eclatement de bulle

Malgré un nombre important d’expériences en milieu stagnant, aucun éclatement de bulle
n’a été observé. Un banc d’essais a été construit afin d’observer des collisions bulle-mur avec
des vitesses plus élevées en espérant observer des éclatements. La figure [6.6]illustre un schéma
du montage. Il s’agit d’une section carrée au milieu de laquelle une plaque horizontale est
fixée. Cette section est connectée sur une boucle d’alimentation en eau déja existante au
laboratoire. La vitesse a l'entrée peut varier entre 0 et 1m/s et la section d’entrée du fluide
mesure 10cmx10cm. Tous les composants sont en plexiglas afin de permettre la visibilité.
Les bulles sont générées manuellement a ’aide d’une seringue. Bien que les résultats obtenus

n’ont pas été ceux attendus, différents points méritent mentions.

—  Vue de coupe B

K

Vue de coupe A

Zone 1
__Accélération __
subite

Zone 2
-—-Vortex -1
Stationnaire

AR

Ecoulement uniforme (0-1m/s) Ecoulement uniforme (0-1m/s)

N

Vue de coupe A Vue de coupe B

Figure 6.6 Schéma du banc d’essais pour des impacts a haute vitesse.
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6.2.1 Vitesse d’approche

Il s’est avéré impossible de produire des collisions bulle-mur avec des vitesses d’approche
plus élevées que la vitesse d’ascension en milieu stagnant. Ceci s’explique par la forme de
’écoulement. La figure [6.7] présente une approximation de cet écoulement tel que vu dans le
plan de coupe B de la figure Le champ de vitesse (noir) est construit par interpolation
des vitesses des particules en suspension dans le fluide (rouge). Par ce champ de vitesse, il

est possible de connaitre la vitesse locale a tout endroit en amont de la plaque.

O, ——F - - - - T T - - =5 35—
/é\ \e\\\\:\\:i‘s\\:\;\\r;//// VRV AP
& -1t ~ \\:{\\;\\:\\\\\Q\\\\ \‘ 'r;’ 1’/,;f/’//// ;oo
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g AW *\1”1‘1“ h f:r’f/////
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=] AR Ml“lefH/‘/f/
2 \\H\MWHHH!/H//
A —3f \\HMHWHHHHH/
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-4 -2 0 2 4

Position x (cm)

Figure 6.7 Champ de vitesse en amont de la plaque (coupe B de la figure

Pour une bulle dans un écoulement de vitesse locale w, la force de trainée se définie
comme :
Fp =50 AiCollve - wil(vi, - w) (6.5)
Loin du mur, w est grand et participe a la vitesse élevée de la bulle. Or, a proximité de la
plaque, la composante normale au mur de w est nulle. Il ne reste que la force de trainée en
milieu stagnant. On observe expérimentalement que l'inertie de la bulle est négligeable par
rapport au terme forcant. En effet, la vitesse de la bulle s’adapte tres rapidement a la vitesse
locale du fluide et n’est pas entrainée par son inertie. Il est donc difficile de concevoir une
technique d’impact de bulle sur un mur a des vitesses élevées car la vitesse normale au mur
tombe nécessairement a zéro sur sa surface.
Notez que cette conclusion est valable lorsque le taux de vide est faible. Si le taux de
vide augmente, des effets de confinements et des forces inter-bulles apparaitront. Ce type
d’intéraction causerait des forces supplémentaires pouvant potentiellement créer des vitesses

d’impact plus élevées.
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6.2.2 Eclatement

Bien qu’aucun éclatement de bulle ne s’est produit lors d’impacts, plusieurs éclatements
de bulles ont été observés. Ces évenements ont plutot eu lieu aux endroits ou il y a un fort
cisaillement. Typiquement, ce sont également les endroits de forts gradients d’accélération.
A Tintérieur de notre section d’essais, on peut noter deux zones d’éclatement. La premiere
est une zone d’accélération subite (zone 1) et la deuxiéme comporte un vortex stationnaire
(zone 2)(voir fig. [6.6)).

La figure[6.8]illustre les éclatements observés. Les séquences (a) et (b) sont des éclatements
dus a des vortex (vue par les deux coupes) et la séquence (c) est un éclatement par accélération

subite. Dans les trois cas, une bulle avec un rayon équivalent de I'ordre du millimetre éclate en

une multitude de bulles ayant des dimensions d’au moins un ordre de grandeur plus petites.

(a) Vortex Stationnaire - Vue de coupe B

(b) Vortex Stationnaire - Vue de coupe A

(¢) Accélération subite

Figure 6.8 Eclatements observés expérimentalement

6.2.3 Discussion

Le but de cette portion de travail était de comparer le modele développé dans au chapitre
avec des impacts a haute vitesse sur un mur. On en conclut que ce type d’impact ne peut se

produire. Toutefois, deux modes d’éclatement de bulle ont été observés. Ces observations sont
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importantes car elles mettent en lumiere les mécanismes qui doivent étre pris en compte afin
de bien prévoir ’éclatement de bulle. Ces mécanismes devraient étre inclus dans le modele
de Senez et Etienne| (2011).

6.3 Notes sur la conservation de I’énergie

Finalement, cette derniere section a comme but de souligner les particularités liées a la
résolution de systemes comprenant des corps a masse variable en espace. Dans un systeme
classique a masse constante, il est naturel d’affirmer que toutes variations de I’énergie ciné-
tique provient du travail d’'une ou de plusieurs forces externes (F.,;). Par contre, lorsque la
masse varie dans ’espace, une force supplémentaire doit étre prise en compte. C’est le cas
d’une bulle approchant d’un mur ou de 'oscillation d’une bulle ellipsoidale car Cy; = Cys (2, x)

Considérons le mouvement d’une masse m = m(x) selon une coordonnée x et définissons

v = 2. En partant de la deuxieme loi de newton puis en multipliant par v de chaque coté :

d d
E(m’u) => Fopy = v- E(mv) => Fop-v (6.6)
dv dm
> mva+?}2E=ZFem"U (67)

On utilise la relation

Pour obtenir

d (1 1 .d
a(ﬁ’ﬂnﬁ) = ZFemt'U_§U3d_m (69)
< , T
B Wezt W,

ou E. est 'énergie cinétique, W, le travail fait par les forces extérieures et W, le travail
fait par la force que nous avons nommeé jet. La dérivée en chaine a été utilisée pour obtenir
dm/dt = v-dm/dz. Notez qu’en I’absence de forces extérieurs, la variation d’énergie cinétique

n’est pas nulle.

Application a la bulle oscillante

Prenons I'exemple de l'oscillation d’'une bulle en compression. Aux fins de I'exercice, la
dissipation visqueuse sera négligée. L’état initial de la bulle sera pris comme a =7, et a = a,.

Par analogie avec la relation (6.7)), I’équation du mouvement est :
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dcC
PVoCitaaii = Fy — 62 pgVy—tac (6.10)
avec, tel que défini au chapitre [f]
E, = 4.48207; [ (ry/a) % - 1] (6.11)
On peut alors définir 'énergie cinétique (E.) et 1'énergie potentielle (E,) comme :
1 N
Ec = §ngbCMaaa (612)
E :f Foda = 448207 —(—) —(—) 6.13
r= S, Ty [3.324 ™ ™ (6.13)
Le travail fait pas la force de jet s’exprime
a 9 d
Wi == [ a0V (-Coraa ) da (6.14)
T da

Les figures|6.9(a)|et6.9(b)| présentent 1’évolution énergétique du systeme de bulle oscillante

pour deux relations de masse ajoutée. La figure est un cas classique ou la masse ajoutée
n’est pas variable en espace. Il n’y a donc pas de force de jet et la somme des énergies
cinétique et potentielle est constante. La figure est le cas de masse ajoutée variable
avec Chraa = 0.2Y1 7. 11 devient évident que la somme des énergies cinétique et potentielle
n’est pas constante. Le travail fait par la force de jet stabilise le bilan énergétique.

Les équations du mouvement peuvent également étre obtenues a partir des équations de
Lagrange. Or, un terme de force généralisée supplémentaire doit étre ajouté pour prendre en
compte la masse ajoutée variable (Pesce et al., 2006). Dans le cas étudié ci-dessus, la bonne

formulation des équations de Lagrange est :

d (o0 0 1 d .9
“Zr)-Zr=-= — 1
dt ((%LE) E%LE ZpZVE) (daCMaa) “ (6.15)
avec la définition habituelle
L=FE.-E, (6.16)

Il convient donc d’étre particulierement vigilant lorsque que l'on veut décrire de maniere

énergétique la dynamique d’un corps;a masse variable en espace.
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Figure 6.9 Conservation de I’énergie pour une bulle oscillant en compression sans dissipation.
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CHAPITRE 7

DISCUSSION GENERALE ET CONCLUSION

Le but de cette maitrise était d’apporter des améliorations aux hypotheses du modele
développé par|Senez et Etienne (2011). En ce sens, plusieurs nouveaux éléments sont apportés.

Ce dernier chapitre regroupe 'essentiel des conclusions tirées précédemment.

7.1 Synthese des travaux

Une approche a été développée pour résoudre 1’écoulement autour d’'un nuage de bulles
sphériques de méme dimension sous ’hypothese d'un écoulement potentiel. A partir de cet
écoulement, des expressions pour les forces de masse ajoutée ont été décrites sous deux
formes : déterministe et statistique.

Dans sa forme déterministe, I'expression de la force de masse ajoutée permet de prendre en
compte la géométrie exacte du nuage de bulles. On y voit trois composantes : la masse ajoutée
en milieu infini, la correction due au confinement de chacune des autres bulles et les forces
induites par I’accélération des autres bulles. Cette relation est utile pour les simulations Euler-
Lagrange ot les bulles sont suivies individuellement dans I’espace. Ce résultat est directement
applicable au modele de Senez et Etienne (2011)). Cette expression est rapide a calculer et ne
nécessite aucune résolution explicite de ’écoulement.

Ensuite, une étude expérimentale de collision de bulle sur un mur a été réalisée. Il a été
montré que les bulles rapides et les bulles lentes peuvent présenter des tajectoires zig-zag et
hélicoidale. Egalement, peu importe leur trajectoire, I’élément clé pour décrire la dynamique
des collisions des bulles est leur rapport d’aspect y. Cette valeur est indicatrice que la quantité
d’énergie qui pourra étre redéployée dans un mouvement de rebond de la bulle. Ainsi, une
bulle lente de forme sphérique aura un rebond tres fortement amorti tandis qu’une bulle
rapide aura un rebond vigoureux. Des relations décrivant 1’état de rebond d’une bulle en
fonction de ses caractéristiques d’approche sont données. Entre autres, il a été montré que
des bulles lentes ont des coefficients de restitution d’environ 0.3 et les bulles rapides d’environ
0.7. Ces valeurs ainsi que les autres relations de restitution pourraient étre intégrées a des
simulations numériques traitant d’impact de bulle sur des structures.

Un modele d'impact de bulle a également été créé afin de comparer avec les résultats des
expériences. Dans ce modele, les bulles sont considérées comme des ellipsoides de révolution

partiellement déformables a volume constant et peuvent se déplacer en une seule dimension
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spatiale. Les forces agissant sur la bulle ont été extraites et des régressions sont développées.
Il n’est donc pas nécessaire de résoudre ’écoulement entier entre une bulle et un mur pour
connaitre les forces agissant sur la bulle. Bien que le modele prédise adéquatement le co-
efficient de restitution, il ne peut rendre en compte toutes les subtilités observées dans les
expériences. Nommons par exemple I'impossibilité du modele de rendre compte de la forme
triangulaire des bulles rapides lors du rebond.

L’approche utilisée dans le précédent modele pour calculer les forces sur la bulle a égale-
ment été étendue pour calculer les forces sur le mur. Il en résulte de la prédiction d’une force
répulsive qui commence a agir a distance. Les calculs théoriques prédisent un effet a partir
d’une distance bulle-mur d’environ 10 r,. Un banc d’essais a été construit afin d’évaluer la
force transmise lors d’'un tel contact. Expérimentalement, ces forces a distance sont obser-
vées a partir d'une distance bulle-mur de 5 r,. Bien que 'analyse quantitative n’a pu étre
approfondie, les premiers résultats suggerent que les forces issues de ’écoulement potentiel
pourraient étre suffisantes pour prédire ces forces a distance. Ces relations pourraient éga-
lement étre appliquées au modele numérique de [Senez et Etienne (2011) afin de calculer les
efforts sur les tubes.

Quelques observations supplémentaires ont également été faites durant cette maitrise. Au-
cun éclatement de bulle n’a pu étre observé suite a un contact avec une structure. Toutefois,
deux autres mécanismes d’éclatement ont été identifiés : déchirement en vortex et éclatement
par accélération subite. Le déchirement par vortex est un phénomene qui devrait probable-
ment étre intégré au modele de Senez et Etienne (2011)) car des zones de recirculation sont

identifiées derriere les tubes et pourrait créer ’éclatement des bulles.

7.2 Améliorations futures

Beaucoup de pistes restent a étre explorées, et ce, pour chacun des sujets étudiés. Dans le
cas des forces de masse ajoutée a I'intérieur de nuage de bulles, la variation des dimensions
des bulles pourrait étre prise en compte. En effet, dans les écoulements réels, les bulles n’ont
pas toutes les mémes dimensions. La distribution est probablement fonction du taux de vide
et devrait étre mesurée.

Dans le contexte expérimental des collisions bulle-mur, la méthode d’injection de bulle
d’air pourrait étre améliorée en s’inspirant des travaux de |[Peters et Els (2012). Il serait
ainsi possible de reproduire des impacts de bulles rapides et lentes sur une grande plage de
diamétre de maniére plus répétable. Egalement, il serait possible d’obtenir des trajectoires
rectilinéaires permettant une étude plus approfondie des collisions avec un mur incliné ou

bien une étude plus détaillée de la déformation des bulles lors de I'impact.
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Cette étude de forme pourrait alimenter des améliorations au modele théorique. En ef-
fet, il a été discuté que la forme ellipsoidale au contact n’est peut-étre pas optimale. Non
seulement elle augmente artificiellement la raideur équivalente de la bulle, mais elle n’est pas
représentative de la forme triangulaire de certaines bulles rapides. Davantage de mode pour-
raient étre introduits afin de mieux décrire théoriquement la forme des bulles. Ces modes
supplémentaires permettraient probablement une meilleure représentation dynamique des
impacts.

Finalement, il serait également utile de pouvoir étendre le modele théorique d’impact a des
obstacles plus compliqués que des murs infinis. Ainsi, la force créée sur un flotteur pourrait
étre mieux prédite. Ce faisant, il faudrait également améliorer le dispositif de capture de force

afin d’obtenir des résultats précis et répétables.
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