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RESUME

Le probléme d’affectation des types d’avion aux vols (fleet assignment problem, FAP) consiste
a déterminer le type d’avion a utiliser pour chaque segment de vol d'un horaire donné de
facon & maximiser les profits anticipés, c’est-a-dire les revenus estimés moins les cotits. Les
frais d’exploitation dépendent de I'affectation des types d’avion et se calculent relativement
bien, tandis que les revenus varient selon la demande des passagers et sont sensiblement
plus difficiles & estimer. La plupart des modéles dans la littérature utilisent une estimation
par segment de vol, ce qui néglige I'interdépendance des revenus entre les vols ainsi que le
débordement et la récupération des passagers. Des modéles de flot de passagers (passenger
flow models, PFMs) ont été développés pour améliorer la fonction objectif du FAP, mais ils
ont tous divers défauts. La majorité implique un controle total de la compagnie aérienne sur
ses passagers, sinon ils nécessitent des temps de calcul beaucoup plus importants. De plus, la
demande des passagers est sujette a des variations d’une semaine a ’autre au courant d’une
saison et d’une journée a 'autre dans une méme semaine, ce qui rend sous-optimale toute

solution au FAP qui serait répétée période aprés période sans changement.

Cette thése cherche a accroitre la prise en compte de la demande des passagers dans le
FAP afin d’améliorer la qualité et la robustesse de la solution. Le premier volet propose
un algorithme faisant appel a un modéle de flot de passagers durant la résolution du FAP
afin d’améliorer l'estimation des revenus. Dumas (2008) introduit dans sa thése un modéle
de flot de passagers réaliste qui utilise la solution du FAP pour déterminer la répartition
des passagers sur les segments de vol et ainsi fournir une meilleure estimation des revenus.
Il développe une méthode de résolution itérative qui alterne entre le FAP et le PFM en
utilisant cette nouvelle estimation pour mettre & jour les revenus dans la fonction objectif du
FAP. Cette méthode donne de meilleurs résultats que la résolution d’un modéle standard, au
prix de multiplier les temps de calcul par un facteur de 10 ou plus. L’algorithme que nous
proposons utilise le PEM pour réévaluer périodiquement les revenus des segments de vol

durant la résolution du FAP par un algorithme heuristique d’énumération implicite. Cette



méthode permet d’accélérer les temps de calcul par un facteur de 2 a 3 tout en préservant la

qualité de la solution.

Le deuxiéme volet de ce travail de recherche consiste a intégrer la variabilité de la demande
dans la modélisation et la résolution du FAP. Lorsque la journée des opérations approche
et que la demande se précise, les compagnies aériennes tentent de faire des changements
d’affectation pour rentabiliser au maximum leur flotte. Puisque 'affectation initiale n’a pas
été faite en tenant compte de ces échanges futurs, il y a généralement peu d’opportunités de
réaffectation. Pour remédier a ce probléme, nous développons différents modéles d’affectation
des types d’avion aux vols avec réaffectation et scénarios de demande. Ces modéles différent
selon la complexité du probléme de départ et des hypothéses établies. Ils permettent de
planifier des opportunités d’échanges de types d’avion en fonction de plusieurs scénarios

représentant la variation de la demande au cours d’une saison.

Nous développons deux méthodes de résolution que nous testons sur une des variantes du
probléme. La premiére méthode utilise la décomposition de Benders pour tenter d’accélérer
la résolution, les sous-problémes étant définis pour les scénarios de demande. Les résultats ne
sont pas aussi bons qu’espérés; la convergence de ’algorithme est assez lente et des erreurs
numériques se glissent en cours de résolution lorsque les coupes d’optimalité, qui ont des
coefficients beaucoup plus élevés que ceux de la matrice de contraintes, sont ajoutées au
probléme maitre. Nous proposons quelques réflexions pour remédier & ces problémes. La
deuxiéme méthode est une approche directe par CPLEX. Plusieurs expérimentations sont
faites sur des instances de tailles diverses avec différents ensembles de scénarios. Les résultats
obtenus montrent que l'utilisation de multiples scénarios de demande permet d’améliorer la
qualité de la solution de 1 & 3 % comparée au FAP standard et jusqu’a doubler le nombre
de réaffectations de types d’avion effectuées en moyenne par rapport a ’utilisation d’un seul

scénario représentant la demande moyenne par itinéraire.
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ABSTRACT

The fleet assignment problem (FAP) consists of determining the aircraft type to use on
each flight leg of a given schedule in order to maximize the expected profits, which are
the expected revenues minus the costs. The operating costs depend on the aircraft type
assignment and can be computed relatively easily, while revenues vary with passenger demand
and are significantly harder to estimate. Most models in the literature use an estimation per
flight leg, that neglects the interdependency of revenues between flights as well as the spill
and recapture of passengers. Passenger flow models (PFMs) have been developed to improve
the FAP objective function, but they all have various flaws. The majority of them implies
total control by the airline company over its passengers, otherwise they require much larger
computational times. Furthermore, passenger demand is subject to variations from one week
to the other during a season and from day to day in the same week, making sub-optimal any

solution to the FAP that would be repeated period after period without change.

This thesis seeks to augment the consideration of passenger demand in the FAP in order to
improve the quality and robustness of the solution. The first part proposes an algorithm
that calls a PFM while solving the FAP to improve the estimated revenues. Dumas (2008)
introduced in his thesis a realistic passenger flow model that uses the FAP solution to de-
termine the distribution of passengers on flight legs and thus provides a better estimate of
revenues. He developed an iterative solution method that alternates between the FAP and
the PFM using this new estimate to update revenues in the FAP objective function. This
method gives better results than the usual approach on the standard FAP model, at the
cost of increasing computational times by a factor 10 or more. Our proposed algorithm uses
the PFM to reevaluate periodically the flight leg revenues while solving the FAP within a
heuristic branch-and-bound algorithm. This method speeds up computational times by a

factor of 2 to 3 while preserving solution quality.

The second part of this research consists of integrating the demand variability in the mod-

eling and solution process of the FAP. When the operation day is approaching and demand
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becomes more accurate, airlines try to make fleet assignment changes to maximize their fleet
utilization. Since the initial fleet assignment was not made taking into account these future
exchanges, there is generally few reassignment opportunities. To address this problem, we
develop different fleet assignment models with reassignment and demand scenarios. These
models differ depending on the initial problem complexity and the assumptions made. They
allow to plan aircraft type exchange opportunities based on several scenarios representing

demand variation during a season.

We develop two solution methods that we test on one of the problem variants. The first
method uses Benders decomposition to try to accelerate the solution process, sub-problems
being defined for the demand scenarios. The results are not as good as hoped for; the
convergence of the algorithm is quite slow and numerical errors are introduced during the
solution process when optimality cuts, which have much higher coefficients than those of the
constraint matrix, are added to the master problem. We offer some thoughts to remedy to
these problems. The second method is a direct approach using CPLEX. Several tests are
done using instances of various sizes with different sets of scenarios. The results show that
using multiple scenarios improves solution quality by 1 to 3% relative to the standard FAP
and up to double the number of aircraft type reassignments done on average compared to

using a single scenario representing the average demand per itinerary.



viil

TABLE DES MATIERES

REMERCIEMENTS . . . . . . e e iii
RESUME . . . . .. iv
ABSTRACT . . . . e vi
TABLE DES MATIERES . . . . . .. .. .. viii
LISTE DES TABLEAUX . . . . . . . e xi
LISTE DES FIGURES . . . . . . . . . . e Xii
INTRODUCTION . . . . . e e e 1
CHAPITRE 1 REVUE DE LITTERATURE . . . .. .. ... .. ... ....... 8
1.1 Affectation des types d’avion aux vols . . . . . . . .. .. .. ... .. .. 8
1.1.1  Affectation des types d’avion aux vols avec modification de I'horaire . 11

1.1.2  Affectation des types d’avion aux vols avec contraintes supplémentaires 14
1.1.3 Reéaffectation des types d’avion aux vols lors du processus de réservation 17

1.1.4 Affectation des types d’avion aux vols en tenant compte des réaffecta-

tions possibles . . . . ... L 19

1.2 Modeéles de flot de passagers . . . . . . . . ... 20
1.2.1 Modéle de flot de passagers avec optimisation systéme . . . . .. .. 20

1.2.2  Modéle de flot de passagers avec optimisation utilisateur . . . . . . . 21

1.3 Critique de la littérature . . . . . . . . . .. . ... ... . 22
CHAPITRE 2 ORGANISATION DE LA THESE . . ... ... ... ... ..... 24

CHAPITRE 3 ARTICLE 1 : AIRLINE FLEET ASSIGNMENT WITH INTERNAL
PASSENGER FLOW REEVALUATIONS . . . . . . . . . . ... ... .. 26
3.1 Introduction . . . . . . . . . .o 27



X

3.2 The solution method of Dumas et al. (2009) . . . ... ... ... ...... 31
3.2.1 Fleet assignment model . . . . . . ... ... o000 32
3.2.2 Passenger flow model . . . . . ... 0oL 35
3.2.3 Fleet assignment with external PFM reevaluation . . . .. .. .. .. 38

3.3 Fleet assignment with internal PFM reevaluation . . . . ... .. ... ... 39
3.3.1 Variable fixing strategy . . . . . . . ... oo 41
3.3.2 Revenue losses update . . . . . ... ... ... ... 41
3.3.3 Branch-and-bound algorithm and iterative process . . . . . . . .. .. 42

3.4 Computational results . . . . .. ... ... 43
3.4.1 Instances. . . . . . . . .. 43
3.4.2 Parameter values . . . . . . ... Lo oL 44
3.4.3 Comparative results for the 5,180-leg network . . . . ... ... ... 45
3.4.4 Sensitivity analysis . . . . . ... oo 48
3.4.5 Comparative results for the 10,360-leg network . . . . . . . .. .. .. 50

3.5 Conclusion . . . . . . .. 52

CHAPITRE 4 AFFECTATION DES TYPES D’AVION AUX VOLS AVEC REAF-
FECTATION ET SCENARIOS DE DEMANDE : MODELES ET METHODES DE

RESOLUTION . . . . .. 56
4.1 Problématique . . . . . . . .. 26
4.2 Notations . . . . . . . . . . e 60
4.3 Modeles mathématiques . . . . . . . . ... 64
4.3.1 FAP avec chaines connues, sans cout sur les échanges . . . . . . . .. 64
4.3.2 FAP avec chaines connues et coit sur les échanges . . . . . . . .. .. 66
4.3.2.1 Premiére formulation . . . . .. .. ... 00 0L 67

4.3.2.2 Deuxiéme formulation . . . ... ... ... ... 70

4.3.3 Modeéle d’affectation des types d’avion avec chaines libres . . . . . . . 72

4.4 Méthodes de résolution . . . . . . . . .. ..o oL 74
4.4.1 Approche directe par CPLEX . . . . . ... ... ... L. 75

4.4.2 Décomposition de Benders . . . . .. ... 7



4.42.1 Principe . . . . . ..o 78
4.4.2.2 Formulation mathématique . . ... .. ... ... ... .. 82
4.4.2.3 Algorithme de résolution . . . . . . .. ... ... ... ... 87

CHAPITRE 5 AFFECTATION DES TYPES D’AVION AUX VOLS AVEC REAF-
FECTATION ET SCENARIOS DE DEMANDE : EXPERIMENTATIONS ET RE-

SULTATS . . . e 91
0.1 Imstances. . . . . . . . . 91
5.2 Geénération de scénarios . . . ... ... Lo 96
5.3 Décomposition de Benders . . . . . . ... ..o 99
5.3.1 Reésultats préliminaires . . . . . . . . . ... L 99
5.3.2 Pistes de solution . . . . .. ..o oL Lo 101

5.4 Approche directe par CPLEX . . . . . . . ... o oo 102
5.4.1 Série de tests sur 'instance n®1 . . . . . . . ... ... ... 104
5.4.2 Reésultats sur 'ensemble des instances . . . . . . . ... .. ... ... 106
CHAPITRE 6 DISCUSSION GENERALE ET CONCLUSION . . . . ... ... .. 114
6.1 Synthése des travaux . . . . . . . . . ... 114
6.2 Limitations de la solution proposée et améliorations futures . . . . . . . . .. 116

REFERENCES . . . . . . 118



Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Tableau 5.1
Tableau 5.2
Tableau 5.3
Tableau 5.4
Tableau 5.5

LISTE DES TABLEAUX

Parameter values for both internal and external methods . . . . . ..
Detailed results of the internal and external methods . . . . . . . ..
Statistics on the FAM solution process (5,180-leg network) . . . . . .
Sensitivity analysis on the parameter values for the internal method .
Detailed results of the internal and external methods (10,360-leg net-
work) .o
Nombre de vols au départ des principales villes de I’horaire . . . . .
Nombre de vols et de chaines pour chaque instance . . . . .. .. ..
Résultats des deux formulations aprés 80 minutes . . . . . . ... ..
Résultats détaillés pour I'instance n° 1 apres 5 itérations . . . . . ..

Résultats pour les 9 instances . . . . .. .. .. ... .. ... ....

xi

45
47
48
49



Figure 1
Figure 2

Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5

Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

xii

LISTE DES FIGURES

Processus de planification dans une compagnie aérienne. . . . . . . . 2
Interaction cyclique entre 'affectation des types d’avion aux vols et la

distribution des passagers. . . . . . . .. ..o 5
Example of a time-space network with three stations . . .. ... .. 33
The method of Dumas et al. (2009): fleet assignment with external

PEM reevaluation . . . . . . . . ... ... 39
The proposed method: fleet assignment with internal PFM reevaluation 40

Average results of the internal and external methods (5,180-leg net-

work) Lo 46
Average results of the internal and external methods (10,360-leg net-

work) .o 51
Echange de types d’avion entre deux boucles compatibles . . . . . . . 58

Exemple de réseau pour une station et un type d’avion donné avec

deux banques . . . .. ... 61
Echange de types d’avion entre trois chaines . . . . ... ... ... . 62
Algorithme de résolution pour ’approche directe par CPLEX . . .. 76

Algorithme de résolution pour I’approche par décomposition de Benders 88

Evolution du profit espéré moyen pour un test typique . . . . .. .. 103
Résultats moyens pour l'instancen®1 . . . . . .. . ... ... ... 104
Résultats moyens pour les 3 instances d’une journée (instances n°1,

n°2etn®3) ... 106
Résultats moyens pour les 3 instances de 2 jours (instances n®4, n°5,

N°6) . . 107
Résultats moyens pour les 2 instances de 3 jours (instances n°7, n°8) 107
Résultats moyens pour les 8 premiéres instances . . . . . . .. .. .. 109
Résultats moyens pour l'instance n®9 . . . . .. .. ... ... ... 110
Résultats supplémentaires pour 'instance n°9 . . . . . . ... .. .. 113



INTRODUCTION

L’industrie aérienne évolue dans un contexte économique trés difficile avec une forte concur-
rence. Depuis le début des années 2000, trois événements majeurs ont contribué a la placer
dans un état si précaire : les attentats de septembre 2001, la flambée du prix du pétrole et
la crise financiére mondiale qui s’est étalée de 2007 a 2010. Aprés avoir accumulé une perte
globale de 26,1 milliards en 2008 et 4,6 milliards en 2009 selon 1’Association Internationale
du Transport Aérien (IATA, 2014), I'industrie aérienne a renoué avec les profits depuis 2010.
Ceux-ci devraient augmenter en 2014, mais la marge de profit par passager reste relative-
ment faible a 5,65 $. Dans un tel contexte, les compagnies aériennes se doivent d’étre trés
compétitives et de tout faire pour maximiser leurs revenus et minimiser leurs cotits. Depuis
des dizaines d’années, la recherche opérationnelle fournit aux compagnies aériennes différents
outils d’aide a la décision afin d’optimiser la planification de leurs opérations. Ce processus
de planification étant trés complexe, il est typiquement subdivisé en cing étapes qui sont ré-
solues successivement (Klabjan, 2005). Nous donnons une bréve description de chaque étape

du processus (voir la figure 1).

Elaboration de I’horaire de vols

La premiére étape de la planification (Flight scheduling en anglais) consiste & déterminer les
marchés a exploiter et ['horaire des vols. En partant d’un horaire d’une saison précédente et
en utilisant les études de marché ainsi que les informations disponibles sur la concurrence,
la compagnie aérienne choisit les paires de villes & connecter par des vols directs, a quelle
fréquence, a quelles heures de la journée et a quelles journées de la semaine. Cette étape doit
tenir compte de la flotte d’avions disponibles afin que les problémes suivants d’affectation

des types d’avion aux vols et de construction d’itinéraires des avions soient réalisables.



Elaboration de I'horaire de vols
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Figure 1: Processus de planification dans une compagnie aérienne.

Affectation des types d’avion aux vols

Une fois I'horaire établi, le probléme d’affecter les types d’avion aux vols (Fleet assignment
problem, FAP) cherche a utiliser la flotte d’avions le plus efficacement possible. Chaque type
d’avion ayant une capacité et des frais d’exploitation différents, cette étape vise & déterminer
pour chaque segment de vol quel type d’avion est le plus approprié en cherchant & maxi-
miser les profits anticipés, soit les revenus anticipés provenant des passagers moins les frais
d’exploitation. L’affectation doit respecter des contraintes de conservation de flot a chaque
station pour chaque flotte en tout temps afin de permettre d’obtenir un ensemble d’itinéraires
couvrant tous les vols a I’étape suivante. Elle doit aussi satisfaire la contrainte de disponibilité

des avions de chaque type.



Construction des itinéraires d’avion

La troisiéme étape (Aircraft routing) établit un itinéraire pour chaque avion spécifique tout
en respectant 'affectation de la phase précédente. Les itinéraires doivent également respecter
différentes contraintes quant a ’entretien périodique des avions. En général, il s’agit d’un
probléme de faisabilité, mais l'objectif de déterminer les connexions les plus profitables ou

les plus robustes peut étre poursuivi.

Construction des rotations d’équipage

Les deux derniéres étapes traitent de I’horaire du personnel. La premiére partie construit des
rotations d’équipage (Crew pairing) de fagon a couvrir chaque vol. L’objectif est de minimiser
les frais d’exploitation des équipages. Une rotation est une suite d’activités (segments de vol,
attentes, repos ...) réalisées par un équipage qui débute et se termine au méme aéroport,
soit une des bases pour les membres d’équipage. Ces rotations sont soumises aux différentes

regles des conventions collectives et aux normes de sécurité en transport aérien.

Confection des horaires mensuels pour les membres d’équipage

La derniére étape de la planification consiste a établir les horaires de travail pour le personnel
de bord (Crew rostering). Un horaire est une suite de rotations, congés, vacances, formations
et autres activités pertinentes. Le probléme est avant tout de trouver une solution réalisable
couvrant l’ensemble des rotations et respectant les conventions collectives des employés. La
compagnie aérienne cherche également a maximiser la satisfaction des préférences des em-

ployés ou a équilibrer la charge de travail entre ces derniers lors de cette étape.

En pratique, ces étapes ne sont pas indépendantes et leur résolution séquentielle entraine
une solution sous-optimale. Certaines recherches proposent de résoudre simultanément plus
d’une phase du processus de planification. Par exemple, Barnhart et al. (1998) présentent un

modéle fusionnant le probléme d’affectation des flottes d’avions avec celui de la construction



des itinéraires. D’autres permettent des fenétres de temps pour varier les heures de départ et

d’arrivée des vols (voir par exemple Desaulniers et al. (1997) et Rexing et al. (2000)).

Problémes a I’étude

Ce travail de recherche vise a améliorer la prise en compte de la demande des passagers dans
le probléme d’affectation des types d’avion aux vols ainsi que la robustesse de la solution
obtenue. Peu de recherches traitent de maniére réaliste le comportement des passagers pour
bien estimer les revenus lors de ’affectation des types d’avion aux vols. La plupart des modéles
estiment les revenus par segment de vol. Ceci ne tient pas compte de 'interdépendance de ces
derniers due aux itinéraires a plusieurs segments. Avec une estimation par segment de vol,
les revenus d’un passager intéressé par un itinéraire de Montréal & Vancouver comprenant
deux segments de vol, de Montréal a Toronto et de Toronto a Vancouver, seront séparés sur
chaque vol. Les revenus de ce passager peuvent alors étre comptabilisés sur un segment et ne

pas I’étre sur 'autre si 'avion est plein.

Pour remédier a ce probléme, certaines recherches modélisent les revenus des passagers par
itinéraire. Ceci est plus réaliste, mais I'intégration directe dans le modéle d’affectation des
types d’avion aux vols implique généralement un controle total de la compagnie aérienne
sur la distribution des passagers. Le modéle choisit le nombre de passagers pour chaque
itinéraire, sans dépasser la demande, afin de respecter le nombre de siéges de chaque avion
et maximiser les revenus. Ceci veut dire qu’un passager sur un itinéraire moins payant peut
étre refusé au profit d’'un autre passager sur un autre itinéraire. En pratique, bien que les
compagnies aériennes aient accés a des outils de gestion des revenus, elles ne peuvent pas

controler les passagers de la sorte.

Au moment de la planification des opérations, la distribution des passagers n’est pas connue.
La compagnie aérienne peut cependant évaluer quelle sera la demande en passagers pour
chaque itinéraire de l'horaire proposé. Il est alors possible de résoudre un probléme qui
estimera la distribution des passagers sur chaque vol et, par le fait méme, le nombre de billets

vendus afin d’estimer les revenus. L’affectation des types d’avion aux vols peut alors étre faite



Distribution des passagers Affectation des types d’avion aux vgls
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Figure 2: Interaction cyclique entre I'affectation des types d’avion aux vols et la distribution
des passagers.

en ayant comme objectif de maximiser les profits en tenant compte de la distribution des
passagers. Il y a cependant un probléme : 'affectation des types d’avion modifie la distribution
des passagers sur les vols. En effet, la compagnie aérienne peut décider pour des raisons de
cotut d’affecter un avion de 100 places sur un vol alors que la demande est estimée a 150
passagers. Il y aura donc un débordement des passagers en trop sur des vols équivalents,
des vols d’autres compagnies aériennes, d’autres modes de transport que ’avion ou certains
passagers décideront tout simplement de ne pas voyager. Ceci aura pour effet de modifier
la distribution des passagers sur les vols ce qui a son tour influencera 'affectation des types
d’avion aux vols. L’interaction est donc cyclique comme le montre la figure 2, chaque probléme

nécessitant la solution de 1’autre pour étre optimisé.

Une autre problématique de la demande des passagers reliée au probléme d’affectation des
types d’avion aux vols provient de sa variabilité. Typiquement, le FAP est résolu sur un
horizon d’une journée ou une semaine et la solution sera répétée pour une saison entiére
avec treés peu de changements. Pour trouver cette solution, une estimation de la demande
moyenne est utilisée. Cependant, au cours d’une saison la demande varie généralement d’une
semaine a ’autre et d’une journée a 'autre dans une méme semaine. Lorsque la journée des
opérations approche et que la demande en passagers se précise, les compagnies aériennes
peuvent faire des échanges de types d’avion manuellement pour maximiser leurs profits.

Cependant, 'affectation initiale n’est pas faite en fonction de ces futurs échanges et des



différentes possibilités de la demande des passagers.

Contributions

Les contributions de cette thése sont divisées en trois volets. Le premier volet de la theése
porte sur I’amélioration d’un algorithme existant qui fait appel au modele de flot de passagers
pendant la résolution du FAP. Dumas (2008) développe dans sa thése de doctorat un modéle
de flot de passagers réaliste qui recoit en entrée la solution du FAP. Il congoit un algorithme
de résolution qui itére entre les deux problémes afin de converger vers une meilleure solution
qui tient compte de la distribution des passagers. Le nombre d’itérations nécessaires et le
temps de calcul sont cependant relativement élevés et rendent ’algorithme plus ou moins
réaliste dans un contexte pratique. L’objectif de ce volet est de diminuer le temps de calcul

en préservant la qualité de la solution.

Le deuxiéme volet de la thése est le développement de modéles mathématiques pouvant tenir
compte des variations journaliéres de la demande dans le FAP. Les compagnies aériennes
ayant un réseau en étoile (hub-and-spoke) ont plusieurs vols qui forment des aller-retour,
appelés boucles. Elles peuvent utiliser cette structure pour échanger deux avions sur des
boucles compatibles (méme aéroport de départ et d’arrivée, heures semblables) lorsque la
demande pour une semaine spécifique le justifie, mais actuellement ceci n’est pas fait de

facon systématique.

L’objectif de cette partie est d’obtenir une solution plus robuste au probléme d’affectation
des types d’avion aux vols en intégrant des scénarios de demande. La solution pourra ainsi
mieux faire face a la variabilité de la demande et plus d’opportunités d’échanges d’avions
seront possibles. Trois modéles différents seront présentés. Les deux premiers supposent que
les boucles compatibles sont connues a ’avance, le deuxiéme permettant en plus de compter
les échanges et de leur associer un coitt. Le troisiéme modéle, le plus complexe, laisse libre a
Ioptimiseur la facon de regrouper les vols en boucles ou méme en chaines compatibles, une
chaine étant une suite de vols ou 'aéroport d’arrivée n’est pas nécessairement le méme que

I’aéroport de départ.



Le troisiéme volet porte sur la résolution d’un des trois modéles de la partie précédente, soit
celui ou les boucles sont connues d’avance et les échanges sont comptabilisés avec un coiit
associé. Deux méthodes de résolution sont proposées. La premiére utilise la décomposition
de Benders. Le probléme maitre trouve 'affectation initiale et chaque sous-probléme, un par
scénario de demande, effectue une réaffectation et renvoie l'information au probléme maitre
sous la forme d’une coupe d’optimalité. Cette méthode a ’avantage de pouvoir supporter un
grand nombre de scénarios, mais la convergence de la résolution entre le probléme maitre
et les sous-problémes peut nécessiter beaucoup d’itérations et les contraintes d’intégralité

complexifient la résolution.

La deuxiéme méthode est une résolution directe par énumération implicite (branch-and-
bound) en utilisant le solveur CPLEX. Cette méthode permet d’itérer avec le modéle de flot
de passagers pour mettre a jour les revenus d’une facon semblable a ce qui est fait dans Dumas
et al. (2009) et qui est décrite dans le premier volet. Bien que cette méthode ne puisse pas
utiliser autant de scénarios pour obtenir un temps de calcul raisonnable, elle en a un nombre
suffisant pour capturer les variations de la demande et, pour les jeux de données testés,
un plus grand nombre de scénarios n’apporte pas de changement significatif a la solution

obtenue.

Le reste de la thése est divisé comme suit. Le prochain chapitre présente une revue de la
littérature pour le probléme d’affectation des types d’avion aux vols et pour les modéles de
flot de passagers. Le chapitre 2 présente plus en détail le corps principal de la thése et le
lien entre les différentes parties. L’article Airline fleet assignment with internal passenger
flow reevaluations est présenté au chapitre 3. Celui-ci présente un algorithme de résolution
pour le FAP faisant appel au modéle de flot de passagers en cours de résolution. Différents
modéles et méthodes de résolution pour résoudre un FAP intégrant des scénarios de demande
et la possibilité de réaffectation sont décrits au chapitre 4. Le chapitre 5 présente la phase
d’expérimentations et les résultats obtenus pour un modéle décrit au chapitre précédent.

Nous terminons la thése par une discussion générale et une conclusion au chapitre 6.



CHAPITRE 1

REVUE DE LITTERATURE

Ce chapitre propose une revue de littérature des travaux pertinents dans le domaine de I'opti-
misation dans le transport aérien. Nous nous concentrons sur les deux problémes comportant
un intérét pour cette recherche soit 'affectation des types d’avion aux vols et les modeles
de flot de passagers. Pour plus d’informations sur le sujet, les articles synthéses de Klabjan

(2005) et Sherali et al. (2006) peuvent étre consultés.

1.1 Affectation des types d’avion aux vols

Le probleme d’affectation des types d’avion aux vols est un sujet d'un grand intérét tant au
niveau académique que dans I’industrie aérienne depuis des dizaines d’années. Du point de vue
académique, le probléme est suffisamment simple pour étre résolu sous certaines hypothéses,
mais suffisamment complexe pour qu’aucune solution ne fasse 'unanimité et que plusieurs
chercheurs y travaillent encore aujourd’hui. Gu et al. (1994) démontrent d’ailleurs que le
probléme est NP-difficile lorsque le nombre de flottes est plus grand que deux et que le saut
d’intégrité grandit a mesure que le nombre de types d’avion augmente. Certains chercheurs
tentent de mieux modéliser les revenus, d’autres d’ameéliorer la robustesse de la solution ou
tenir compte d’autres étapes de la planification telles que 1’élaboration de ’horaire de vols, la
construction des itinéraires d’avion et les rotations d’équipage ou encore de mieux modéliser
le comportement des passagers. Dans l'industrie, les progrés des derniéres décennies auraient
permis a certaines compagnies aériennes d’augmenter leur profit de plus de 100 millions de
dollars par année (Abara, 1989; Subramanian et al., 1994). Ces derniéres ont donc un grand
intérét a ce que les recherches se poursuivent. Cette section passe en revue le développement

du modéle de base pour le FAP et examine différentes extensions possibles.



Abara (1989) présente une des premiéres applications d’un modéle d’affectation des types
d’avion basée sur son travail & American Airlines. Il développe un modéle linéaire en nombres
entiers avec des contraintes de couverture de vols, de conservation de flot des avions et de
disponibilité des avions de chaque type. Un réseau de connexions est utilisé, ce qui spécifie
les connexions entre les segments de vol. Ceci a ’avantage de modéliser la route de chaque
avion, mais 'inconvénient de contenir beaucoup de variables. L’auteur restreint le nombre
de connexions possibles afin de controler la taille du probléme. L’objectif principal est de
maximiser les profits pour la compagnie aérienne ou le revenu de chaque segment de vol est

supposé indépendant.

Subramanian et al. (1994) décrivent I'implantation d’'un modéle d’affectation des types d’a-
vion aux vols chez Delta Air Lines. Leur modéle s’appuie sur un réseau espace-temps. Ce
type de réseau contient moins d’arcs qu'un réseau de connexions, mais il est impossible
de distinguer entre les avions d’une méme flotte. En plus des contraintes obligatoires pour
résoudre le probléme (couverture des vols, conservation de flot, disponibilité des avions), les
auteurs s’intéressent a d’autres aspects pour permettre I'implantation de la solution trouvée
en pratique tels que I'ajout de contraintes de maintenance et des contraintes sur les périodes
de repos des pilotes ainsi que sur le nombre d’heures de vol qu’ils peuvent travailler. Une
méthode de points intérieurs est utilisée pour résoudre la relaxation linéaire du modéle puis
les variables binaires égales & un sont fixées afin de réduire la taille du probléme. Le probléme

restant est alors résolu par séparation et évaluation progressive.

Hane et al. (1995) présentent ce qui est maintenant considéré comme le modéle de base pour
le probléme journalier d’affectation des types d’avion. Ils décrivent le probléme comme un
modele de flot de type multicommodité dans un réseau espace-temps ot chaque type d’avion
représente une commodité. Un sous-réseau est construit pour chaque type d’avion avec des
lignes de temps a chaque station. Les lignes de temps sont circulaires et représentent une
période de 24 heures. Chaque arrivée ou départ est représenté par un nceud, ceux-ci étant
reliés par des arcs d’attente au sol. Chaque vol est représenté par un ensemble d’arcs, un pour
chaque flotte pouvant étre affectée a ce vol. Un arc de retour reliant le dernier événement de

la journée au premier compléte la ligne de temps et assure une solution réalisable de jour en



10

jour.

Leur réseau se traduit par un modele linéaire en nombres entiers ot ’'objectif est de minimiser
le coit global d’affectation des types d’avion aux vols. Ce colit comprend une portion fixe
selon 'affectation choisie, une portion variable en fonction du nombre de passagers estimés,
des cotits de débordement pour les passagers refusés sur un vol et des revenus provenant de
la récupération de passagers provenant d’autres vols. Un débordement (spill en anglais) se
produit lorsque le nombre de passagers désirant prendre un vol excede la capacité de ’avion.
Lorsque les passagers refusés changent leur choix pour prendre un vol de la méme compagnie
aérienne, nous parlons de récupération (recapture en anglais). Les effets de débordement
et de récupération sont calculés indépendamment pour chaque segment de vol plutot que
par itinéraire. Les contraintes sont les mémes que celles proposées par Abara (1989) soit la

couverture des vols, la conservation de flot et la disponibilité des avions.

Les auteurs proposent une méthode d’agrégation de nceuds afin de réduire la taille du ré-
seau. Comme le réseau cherche uniquement a préserver le flot des avions et s’assurer que
les connexions sont bien faites, il n’est pas nécessaire d’avoir un noeud pour chaque arrivée
pourvu qu’il n’y ait aucun départ entre-temps. Le méme principe peut s’appliquer pour les
départs. Ainsi, chaque nceud couvre un intervalle de temps qui débute par une suite d’arrivées
consécutives suivies de départs consécutifs. Le modéle est testé sur un horaire d’une journée
pour une flotte moyen-courrier composé de 2500 vols desservant 150 villes et effectués par 11
types d’avion. Plusieurs méthodes de résolution sont étudiées dont les algorithmes primal et
dual du simplexe et une méthode de points intérieurs. L’algorithme dual du simplexe avec
le critére de sélection steepest edge, utilisé conjointement avec la perturbation des coiits,
I’agrégation du modéle et la fixation de variables, s’avére le plus performant avec un saut

d’intégrité maximal de 0,02 % et un temps de résolution moyen inférieur a une heure.

Bien que le modéle proposé soit résolu efficacement, trop de facteurs sont négligés pour
qu’il soit implanté tel quel en pratique. Nous avons déja fait état a la section précédente
de recherches intégrant une certaine flexibilité & 'horaire des vols par ’ajout de fenétres de

temps. D’autres contraintes concernant ’entretien périodique des avions, la conception des
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routes d’avion et I’horaire des équipages sont généralement ajoutées. Elles servent a s’assurer
de la faisabilité de la solution aux étapes de planification subséquentes et d’empécher de

mauvaises solutions d’apparaitre.

1.1.1 Affectation des types d’avion aux vols avec modification de 1’horaire

Les décisions les plus importantes qu'une compagnie aérienne doit prendre concernent la
conception de I’horaire de vols. La complexité et la taille des problémes impliqués expliquent
pourquoi peu de recherches ont été faites sur le sujet et que plusieurs compagnies aériennes
développent encore leur horaire de vols manuellement avec peu d’optimisation. Une grande
partie des recherches actuelles partent d’un horaire existant en ayant comme objectif de
I’améliorer, ce qui permet d’avoir un modéle plus facile a optimiser. Ceci est tout de méme
réaliste puisque les marchés exploités et la flotte d’avions d’une compagnie aérienne ne varient

pas beaucoup d'une année a l'autre.

Lohatepanont et Barnhart (2004) tentent de résoudre un probléme intégrant ’élaboration
de I’horaire de vols et 'affectation des types d’avion. En partant d’un horaire précédent, ils
considérent une liste de vols obligatoires et une liste de vols optionnels que le modéle décide
de couvrir ou non. Ces vols ont un horaire fixe et doivent étre fournis en entrée au modele. Il
y a donc une certaine subjectivité sur le choix des vols optionnels par I’'opérateur. Les auteurs
utilisent le modéle de répartition des passagers de Barnhart et al. (2002) pour tenir compte des
effets de débordement et de récupération. La profitabilité d’un vol est étudiée en considérant
sa demande en passagers et son taux de récupération. La demande en passagers est calculée
par itinéraire sans les contraintes de capacité sur les vols (unconstrained itinerary demand)
et des termes correctifs sont ajoutés pour évaluer 'influence de ’annulation d’un itinéraire
sur un autre, c’est-a-dire lorsqu’au moins un segment de vol de l'itinéraire est annulé. Seuls
les termes correctifs de premier ordre sont inclus dans le modéle, mais les auteurs admettent
que jusqu’a n ordres de termes correctifs seraient nécessaires lorsque n vols optionnels sont

supprimeés pour avoir une meilleure estimation de la demande.

Une faille majeure de leur modéle concerne la répartition des passagers. Les auteurs sup-
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posent un controle total de la compagnie aérienne, qui peut décider de refuser des passagers
sur des itinéraires moins profitables pour garder des places pour les passagers sur des iti-
néraires plus rentables. Elle controle également le débordement d’un vol en offrant un seul
itinéraire alternatif aux passagers refusés. En pratique, la forte compétition entre les diffé-
rentes compagnies et le grand choix d’itinéraires pour la majorité des marchés empéchent une
compagnie aérienne d’exercer un controle aussi important sur ses passagers sans voir sa part
de marché grandement diminuée. Ceci sera vu plus en détail & la section sur les modéles de
flot de passagers. Les auteurs résolvent leur modéle par un algorithme itératif en utilisant la
génération de colonnes, un algorithme d’énumération implicite (branch-and-bound en anglais)

et en ajustant les termes correctifs de demande a chaque itération.

Dans son mémoire de maitrise, Ndikumagenge (2004) présente un modéle de réoptimisation
d’un horaire de vols. Pour ce faire, il analyse la solution du FAP pour déceler des segments
de vol non rentables et proposer des annulations ou des fusions de vols. Pour décider de la
rentabilité d’un vol, Pauteur présente une mesure de bénéfice pondéré BY qui estime le profit
ou la perte par passager par heure de vol si un avion de type k effectue le vol v. A partir de
cette mesure, une analyse globale permet d’identifier rapidement les vols non rentables pour
la compagnie aérienne. Une analyse détaillée par paire de villes permet ensuite de proposer
différents scénarios d’annulations ou de fusions de vols. Ndikumagenge présente un modéle
de répartition des passagers et d’attraction des vols afin d’estimer la nouvelle demande en
passagers a la suite d’'une annulation ou une fusion de vols. Il réoptimise alors le FAP en
utilisant une extension du modéle de Hane et al. (1995) qui permet d’annuler ou fusionner

des vols.

Le modele de flot de passagers utilisé pose comme hypothése que le seul critére d’attraction
d’un vol est son heure de départ et il ne tient pas compte de la concurrence. La demande glo-
bale pour un marché donné reste donc inchangée qu’il y ait des annulations ou fusions de vols
ou non. De plus, si deux vols consécutifs sont fusionnés, seuls les vols précédents et suivants de
la méme paire de villes auront leur demande en passagers influencée. Ceci est une conséquence
d’utiliser un modeéle par segment de vol plutot que par itinéraire. En pratique, 'annulation

d’un segment de vol Montréal-Toronto peut influencer le marché Montréal-Vancouver en sup-
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primant un itinéraire qui utilisait ce segment de vol. Ceci aura pour conséquence d’influencer
la répartition des passagers sur plusieurs segments de vol des différents itinéraires du marché

Montréal-Vancouver.

Afin de simplifier la complexité des calculs, plusieurs chercheurs utilisent différentes méthodes
heuristiques pour résoudre leur modéle. Ces méthodes ont 'avantage d’étre généralement plus
simples, plus rapides et peuvent supporter un modéle plus complexe que les méthodes exactes.
Elles sont cependant moins précises et ne garantissent pas 'optimalité de la solution trouvée.
En 1980, Soumis et al. présentent un modele ou les variables de décisions sont ’horaire de
vol, la fréquence des vols et I'affectation des types d’avion. Ils analysent 'interaction entre
le comportement des passagers et ’affectation des types d’avion. Leur modéle trouve le flot
de passagers le plus profitable pour la compagnie aérienne plutot que de supposer le libre
choix des passagers selon leur préférence. Leur modéle est résolu par une méthode heuristique

basée sur 'algorithme de Frank-Wolfe (Frank et Wolfe, 1956).

Burke et al. (2009) étudient un modéle d’optimisation a objectifs multiples dont le but est
d’améliorer la robustesse et la flexibilité de I’horaire de vols. Plus précisément, ils cherchent
a maximiser le nombre possible d’échanges d’avions et minimiser la probabilité de retard des
vols. Pour ce faire, les auteurs permettent une modification de ’heure de départ des vols
et certains changements dans les rotations d’avion en gardant fixe ’affectation des types

d’avion. L’heuristique utilisée est un algorithme de type génétique.

Ahuja et al. (2002) proposent un modéle intégrant 'affectation des types d’avion aux vols et
la sélection des vols avec escales. Un vol avec escales (through flight en anglais) est composé
de plusieurs segments de vol empruntés par le méme avion. Les passagers sont généralement
préts a payer plus cher pour ces vols puisqu’ils n’ont pas a changer d’avion. Une heuristique
de recherche a grand voisinage est développée pour améliorer progressivement une solution

initiale non optimale.

Plusieurs recherches ont été faites sur 'affectation des types d’avion en permettant de varier
I’heure de départ des vols a 'intérieur d’une fenétre de temps. Ceci permet généralement

une meilleure affectation des types d’avion sans trop influencer la demande en passagers.
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Desaulniers et al. (1997) résolvent simultanément le probléme journalier d’affectation des
types d’avion et celui de la construction des itinéraires d’avion avec des fenétres de temps
pour chaque vol. Ces fenétres de temps sont les mémes pour tous les vols et la demande en
passagers ne varie pas a 'intérieur des fenétres de temps. Rexing et al. (2000) présentent un
modéle semblable avec des fenétres de temps discrétisées. Il en résulte que le modéle est une
généralisation du modéle de base pour l'affectation des types d’avion de Hane et al. (1995),
celui-ci pouvant étre vu comme ayant des fenétres de temps de longueur nulle, et que les vols

peuvent avoir des fenétres de temps de longueur variable.

D’autres recherches ont été faites sur le sujet, notamment par Bélanger et al. (2006a) qui
font varier la demande en passagers lorsque le temps entre deux vols sur le méme marché
est trop court. Lan et al. (2006) tentent de minimiser les délais et perturbations ainsi que
les connexions ratées par les passagers en construisant des itinéraires d’avion plus robustes
et en modifiant I’heure de départ des vols. loachim et al. (1999) résolvent le probléme heb-
domadaire d’affectation des types d’avion aux vols, plutot que sur un horizon quotidien. Des
contraintes de synchronisation d’horaires sont intégrées pour assurer que les vols de méme nu-
méro partent a la méme heure chaque jour. Mercier et Soumis (2007) résolvent simultanément
la construction des itinéraires d’avion et la confection des horaires d’équipage en permettant
une modification & ’heure de départ des vols. L’objectif est d’obtenir des routes d’avion
ayant un horaire plus compatible avec celui de I’équipage pour permettre une diminution des

cotts.

1.1.2 Affectation des types d’avion aux vols avec contraintes supplémentaires

Clarke et al. (1996) présentent une extension du modéle de Hane et al. (1995) dans lequel
certains aspects concernant la maintenance des avions et la conception des horaires d’équipage
sont traités. Des opportunités de maintenance sont ajoutées sous forme de contraintes qui
exigent qu'une fraction de la flotte passe la nuit dans une station de maintenance. Une
autre méthode proposée ajoute des arcs de maintenance, semblable aux arcs de vols. Les

auteurs cherchent également a améliorer I'horaire des pilotes en minimisant le nombre de
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nuits solitaires, ces derniéres ayant un coit élevé pour la compagnie aérienne. Ces nuits
surviennent lorsqu’un équipage arrive le soir & une station qui n’est pas sa base et que ’avion
avec lequel il est arrivé repart avant que 1’équipage ait eu un repos suffisant (généralement
onze heures). S’il n’y a aucune autre activité a cette station, I’équipage devra attendre au
surlendemain pour repartir. Clarke et al. ajoutent des arcs de cotlit négatif de durée égale au
repos minimal pour inciter les affectations évitant les nuits solitaires. Une autre méthode est
d’ajouter un vol de mi-journée a cette station pour permettre a ’équipage de repartir avec
ce vol. Il faudra tout de méme deux équipages, mais le temps a 'extérieur de la base sera

réduit.

Plusieurs facteurs tels que les conditions météorologiques, la congestion aérienne ou un bris
mécanique peuvent entrainer des retards ou des annulations de vols. Ces perturbations dans
I’horaire de vols peuvent avoir de graves conséquences si elles provoquent une réaction en
chaine, entrainant de nouvelles perturbations dans I’horaire. Dans son mémoire de maitrise,
Ait-Benali (2006) cherche & améliorer la robustesse de 'horaire de vols face aux conditions
météorologiques. Elle propose un modéle pour résoudre le FAP en utilisant une structure en
pétales de fleur dont le principe général est que des vols d'un pétale peuvent étre annulés
sans influencer le reste du réseau. Smith et Johnson (2006) proposent de limiter le nombre de
flottes desservant une station pour augmenter la flexibilité de I’horaire et diminuer les frais
d’exploitation. Rosenberger et al. (2004) présentent un modéle dans un réseau en étoile qui
limite l'influence des perturbations en ayant des cycles de vols courts. Un cycle est une suite
de segments de vol débutant et se terminant au méme aéroport. Lorsqu’un vol est retardé
ou annulé, tous les vols de son cycle sont généralement affectés, d’ou l'intérét de garder les
cycles relativement courts. Le modéle suppose cependant une durée fixe pour un vol donné,

peu importe le type d’avion y étant affecté.

Une autre approche pour améliorer la formulation du FAP est de s’intéresser a la fonction
objectif du modeéle. L’objectif général est de maximiser les profits anticipés qui sont influencés
par plusieurs facteurs. La complexité de bien modéliser les revenus associés a chaque vol
ameéne la majorité des chercheurs a simplifier cette partie de la fonction objectif. En effet,

une bonne modélisation implique une estimation des revenus par itinéraire plutéot que par
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segment de vol afin de bien tenir compte des effets de débordement et de récupération. Ceci
nécessite un modele de flot de passagers qui permet de déterminer en fonction des vols offerts

et de la demande, comment les passagers vont se répartir parmi les itinéraires.

Barnhart et al. (2009) cherchent a améliorer la formulation présentée dans Barnhart et al.
(2002). IIs proposent un modéle de sous-réseau pour l'affectation des types d’avion aux vols.
Les vols sont répartis en sous-réseaux mutuellement exclusifs et les effets de débordement et
de récupération sont supposés indépendants pour chaque sous-réseau. La formulation utilise
des variables de décisions composites représentant 1’affectation simultanée de types d’avion
a des vols de plusieurs sous-réseaux. Un algorithme heuristique est proposé pour résoudre le
modéle. Les tests effectués rapportent une augmentation potentielle des profits de 45 millions
de dollars par année par rapport au modeéle de base pour une compagnie aérienne majeure

aux Etats-Unis.

Dumas et al. (2009) améliorent la formulation des revenus en intégrant I'information prove-
nant du modéle de flot de passagers développé dans Dumas et Soumis (2008). Ce modéle
calcule la répartition des passagers par itinéraire en tenant compte des effets de débordement
et de récupération et ne controle pas les passagers a ’avantage de la compagnie aérienne.
Puisque la demande en passagers influence le type d’avion choisi pour chaque vol, étant donné
les capacités différentes de chaque type, et que 'affectation des types d’avion aux vols in-
fluence la répartition des passagers, étant donné les effets de débordement et de récupération,
les auteurs proposent une méthode itérative pour pallier ce probléeme. L’algorithme présenté
résout une premiére fois le probléme d’affectation avec une estimation des revenus par seg-
ment de vol, puis utilise la solution pour résoudre le modéle de flot de passagers. Ce dernier
donne alors une nouvelle estimation des revenus qui est utilisée pour répéter le processus.
Une version locale du modéle de flot de passagers, limitée a un sous-réseau, est utilisée pour
réduire le temps de calcul. Les tests montrent une augmentation des profits, exprimés en
pourcentage des frais d’exploitation, par rapport au modéle de base allant de 0,3 a 0,9 %.
Cependant, une dizaine d’itérations sont nécessaires pour arriver a cette amélioration ce qui

multiplie le temps de calcul par un facteur de 10 ou plus.
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1.1.3 Reéaffectation des types d’avion aux vols lors du processus de réserva-

tion

La solution trouvée en résolvant le FAP est généralement répétée chaque jour ou chaque
semaine au cours d’une saison avec trés peu de modifications. Une réaffectation des types
d’avion lorsque le processus de réservation des passagers est entamé peut causer des problémes
dans les étapes subséquentes de la planification des opérations, notamment la maintenance
des avions et les horaires d’équipages. Par contre, les pilotes sont souvent qualifiés pour plu-
sieurs types d’avion, soit ceux ayant la méme configuration de cockpit qui forment une famille
de types d’avion. Faire une réaffectation de types d’avion a l'intérieur d’'une méme famille
engendre beaucoup moins d’inconvénients au niveau des équipages. En conséquence, les re-
cherches actuelles sur le sujet se concentrent sur la réaffectation de types d’avion appartenant

A la méme famille.

Berge et Hopperstad (1993) sont les premiers a développer 'idée d’une révision systématique
de Daffectation des types d’avion. Ils introduisent le concept de Demand Driven Dispatch
(D3) qui consiste a changer dynamiquement 1'affectation (dans une méme famille d’avions)
a différents moments planifiés avant la journée des opérations en utilisant les plus récentes
prévisions et les réservations faites jusqu’a présent. La demande en passagers est donnée par
segment de vol et classe tarifaire et elle suit une distribution normale. Il est supposé qu’il n’y
a pas de récupération des passagers victimes de débordement. Leur recherche rapporte une
amélioration des profits de 1 a 5 %. Talluri (1996) propose une amélioration en développant
un algorithme qui garantit de trouver un échange sur une seule journée, s’il en existe un. Il

est cependant limité a deux types d’avion seulement.

Jarrah et al. (2000) utilise un modéle de réaffectation pour modifier I'affectation des types
d’avion progressivement. Leur objectif est de générer plusieurs solutions quasi-optimales
contenant un certain nombre d’échanges. Des coupes sont ajoutées au probléme chaque ité-
ration pour exclure la solution précédente et assurer que la prochaine contienne un sous-
ensemble strict de celle-ci. Bish et al. (2004) étudient les bénéfices d’une approche appelée

Demand Driven Swapping (DDS) qui échange les types d’avion sur des boucles compatibles,
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c’est-a-dire des allers-retours avec le méme aéroport d’origine et de destination et des heures
de départ et d’arrivée semblables. Ils examinent deux stratégies différentes : une stratégie
d’échanges limités, ou les échanges sont faits une seule fois 4 & 6 semaines avant la journée
des opérations, et la stratégie d’échanges multiples, ot un échange peut étre révisé plusieurs
fois en utilisant la plus récente mise a jour des prévisions de la demande. Leur étude montre
que la stratégie d’échanges limités est attrayante lorsque la différence moyenne entre la de-
mande de boucles compatibles est grande et que la variance de la demande est faible, sinon

la stratégie d’échanges multiples est préférable.

Sherali et al. (2005) proposent un modéle de réaffectation régi par la demande (demand
driven refleeting, DDR) pour une unique famille d’avions. Ils considérent une demande par
itinéraire déterministe en incorporant la formulation du modéle de répartition des passagers
comme dans Barnhart et al. (2002). Leur approche suppose un controle de la compagnie

aérienne sur le comportement des passagers et qu’il n'y a pas de récupération des passagers

débordés.

Jiang (2006) et Warburg et al. (2008) présentent un modéle pour modifier I’heure de départ
des vols et réaffecter les types d’avion durant le processus de réservation pour mieux tenir
compte de la variation de la demande en passagers. Le modeéle de répartition des passagers
utilisé est celui de Barnhart et al. (2002) en enlevant la récupération. Le modéle est un
programme linéaire mixte résolu a l’aide de CPLEX avec une méthode de séparation et
évaluation progressive. Warburg et al. (2008) montrent que la réaffectation de la flotte est
majoritairement responsable de I'augmentation des profits et que plus la réoptimisation de
I’horaire se fait proche du jour d’opération, plus les profits sont élevés. Jiang et Barnhart
(2009) améliorent la formulation de Jiang (2006). Ils supposent une récupération parfaite des
passagers entre des itinéraires d’'un méme marché (méme origine et destination, heures de
départ et nombre d’escales similaires) et aucune récupération entre des itinéraires de marchés
différents. Ils rapportent une amélioration des profits de 2,28 % sur un horaire hebdomadaire
comparé a un cas statique en utilisant les moyennes historiques pour prédire la demande

future des passagers.
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1.1.4 Affectation des types d’avion aux vols en tenant compte des réaffectations

possibles

Les recherches précédentes ont en commun d’effectuer une réaffectation des types d’avion a
partir d’une affectation initiale provenant de la résolution d’'un FAP standard. Cette étape est
faite pres de la journée des opérations alors qu’il est trop tard pour recommencer le processus
de planification en résolvant le FAP a nouveau. Cependant, cette affectation initiale ne tient
pas compte qu’il y aura d’éventuelles réaffectations ce qui rend le processus dans son ensemble
sous-optimal. Des recherches se sont penchées sur ce probléme en proposant des modéles pour
le probléme d’affectation des types d’avion aux vols qui tiennent compte des réaffectations

possibles.

Sherali et Zhu (2008) développent davantage le travail de Sherali et al. (2005) en présentant
une approche en deux étapes ou la premiére étape effectue une affectation initiale au niveau
des familles d’avions et la deuxiéme étape effectue ’affectation finale des types d’avion sur
chaque segment de vol. Plusieurs scénarios sont utilisés pour refléter la nature stochastique
de la demande. Un algorithme basé sur la méthode L-shaped est utilisé pour résoudre le
modéle et ils rapportent une augmentation des profits entre 1,1 et 1,7 % comparativement &

un modéle d’affectation déterministe.

Pilla et al. (2008) présentent un modéle similaire en deux étapes et utilisent une approche
statistique pour estimer la fonction des profits espérés. Pilla et al. (2012) étendent cette
recherche en développant un algorithme utilisant une méthode de plans coupants pour op-
timiser le modéle en deux étapes. Ils rapportent des temps de résolution plus rapides par

rapport a la méthode L-shaped et des profits similaires.

Jiang et Barnhart (2013) développent un design d’horaire robuste pour un réseau en étoile
sans banques avec l'objectif que la solution initiale facilitera les modifications aux heures
de départ et la réaffectation des types d’avion effectuée par le modéle de réoptimisation de
Jiang et Barnhart (2009). Le modéle cherche a maximiser le nombre d’itinéraires potentiels
en fonction de leurs revenus respectifs en permettant une certaine flexibilité sur ’heure de

départ des vols. Chaque segment de vol a 7 copies & 10 minutes d’intervalle allant de -30 & 430
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minutes de décalage par rapport a I’heure de départ originale. Selon la copie de chaque vol
choisie, certains itinéraires, qui n’étaient pas réalisables (temps de connexion trop court ou
trop long), peuvent le devenir et ainsi contribuer a la fonction objectif. Les revenus de chaque
itinéraire sont les mémes pour chaque copie des segments de vol qu’il contient et chaque type
d’avion et ce peu importe le sous-ensemble des itinéraires potentiels qui sont offerts. Le cott
des avions est ignoré dans le modéle et tous les types d’avion sont supposés avoir des vitesses
de croisiére et des temps minimums de connexion semblables. Ils rapportent une augmentation
des profits par rapport a leurs travaux précédents, I’horaire robuste performant mieux lorsque

la variabilité de la demande augmente.

1.2 Modéles de flot de passagers

Il existe différents modeéles de flot de passagers, mais tres peu sont fideles a la réalité. Les
modéles de flot de passagers peuvent étre classés en deux types d’optimisation : systéme
ou utilisateur. Pour les modéles du premier type, le flot des passagers est influencé par la
compagnie aérienne, tandis que les modeéles au profit de 'utilisateur supposent le libre choix

des passagers.

1.2.1 Modéle de flot de passagers avec optimisation systéme

Le modéle de répartition des passagers avec optimisation systéme a d’abord été développé
par Kniker (1998). Ce modéle, appelé Passenger Miz Model (PMM), cherche a maximiser
la répartition des passagers au profit de la compagnie aérienne. Le modéle regoit en entrée
la capacité du type d’avion affecté sur chaque vol, la demande en passagers pour chaque
itinéraire avec le revenu qui lui est associé et le taux de récupération by, c’est-a-dire le pour-
centage de passagers débordés de 'itinéraire p que la compagnie aérienne réussit a rediriger
vers 'itinéraire r. Les variables de décisions du modéle sont le nombre de passagers débordés
d’un itinéraire vers un autre. L’objectif du modéle est alors de maximiser les revenus pro-

venant des passagers avec comme contrainte de respecter la capacité des avions sur chaque
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vol et de respecter la demande totale d’'un itinéraire en ne transférant pas plus de passa-
gers sur d’autres itinéraires que cette demande. L’avantage de ce modéle est qu’il peut étre
intégré directement a la formulation du FAP (voir Barnhart et al., 2002; Lohatepanont et
Barnhart, 2004) puisque toutes les décisions ont le méme objectif d’améliorer les profits de
la compagnie aérienne. Cette derniére peut répartir les passagers comme bon lui semble, en
bloquant certains itinéraires moins rentables et en offrant un seul choix d’itinéraire alternatif
aux passagers refusés sur leur premier choix de vol. Ceci est justifié par une gestion dyna-
mique de 'offre (revenue management en anglais), mais en pratique la compagnie aérienne
n’exerce pas un controle aussi grand sur les passagers. Ce type de modéle nous semble irréa-
liste, car il ne tient pas compte des préférences des passagers et aura tendance a surestimer

les revenus.

1.2.2 Modéle de flot de passagers avec optimisation utilisateur

Les modeéles optimisant au profit de I'utilisateur supposent le libre choix des passagers, ces
derniers agissant dans leur propre intérét. Dans sa thése de doctorat, Soumis (1978) développe
différents modeles de flot de passagers dont un est un modéle d’équilibre tenant compte du
débordement et de la récupération (voir Soumis et Nagurney, 1993, pour plus de détails).
Dumas (2008) reprend ce modéle, que nous appellerons Passenger Flow Model (PFM), dans
sa thése de doctorat et 'améliore. Le modéle de flot de passagers recoit en entrée : 1) I'horaire
de vols avec 'affectation des types d’avion ; 2) la distribution de la demande en passagers pour
chaque itinéraire sous forme de variable aléatoire ; 3) la distribution dans le temps des requétes
de réservation pour chaque itinéraire; et 4) la proportion du débordement d’un itinéraire
attiré par un itinéraire alternatif donné. Il en ressort une estimation de la répartition des
passagers sur ’ensemble du réseau. Le PFM est décrit sous la forme d'un systéme d’équations
non linéaires. Plusieurs variables sont impliquées comme la probabilité qu’un itinéraire ou
un segment de vol soit plein et ’espérance du nombre de passagers acceptés sur un itinéraire
ou un segment de vol. Le systéme d’équations est résolu par tranche de temps par une
méthode de point fixe. A chaque tranche de temps, le processus part d’une solution initiale

utilisant 'information de la tranche de temps précédente et la demande par itinéraire pour
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cette tranche de temps. La valeur de chaque variable est ensuite mise a jour en utilisant le
systéme d’équations jusqu’a ce qu’un critére d’arrét concernant la convergence soit atteint.
La solution est trouvée en moins de 10 secondes pour un réseau de 30 000 itinéraires avec
une erreur d’environ 0,1 % par rapport a une solution trouvée par simulation, qui prend trois
jours de calcul. En plus de traiter des effets de débordement et de récupération, le modéle
proposé respecte 1’aspect stochastique de la demande et le caractére temporel du processus
de réservation sans controler le choix des passagers, ce qui le rend plus fidele a la réalité. Ce

modéle sera celui utilisé lors de cette recherche.

1.3 Critique de la littérature

Les modéles proposés dans la littérature pour tenir compte de la demande par itinéraire
et intégrer les effets de débordement et de récupération supposent généralement un grand
controle de la compagnie aérienne sur la répartition des passagers. A notre connaissance,
Dumas et al. (2009) sont les premiers a présenter une approche de résolution du FAP avec
une optimisation utilisateur pour déterminer les revenus a l'aide d’un modéle de flot de
passagers. Leur algorithme alternant entre la résolution du FAP et celle du modéle de flot
de passagers permet d’améliorer les profits, mais il nécessite une dizaine d’itérations ce qui
fait augmenter beaucoup les temps de calcul. Afin de résoudre un FAP de grande taille, la
fixation de variables est fréquemment utilisée comme méthode heuristique pour résoudre les
temps de calcul. A cet égard, le premier volet de la thése présente un algorithme profitant
de la fixation de variables pour réévaluer les revenus a ’aide du PFM lors de la résolution
du FAP. Ceci permet de prendre des décisions basées sur une estimation plus récente des
revenus et obtenir une solution de qualité équivalente plus rapidement en effectuant moins

d’itérations.

Les recherches présentant des approches pour tenir compte de la variabilité de la demande
et permettre des changements a D'affectation des types d’avion aux vols sont relativement
peu nombreuses. Deux contextes sont a distinguer. Les approches permettant la réaffectation

de types d’avion lors du processus de réservation sont intéressantes pour une compagnie aé-
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rienne ne voulant pas modifier son processus de planification, mais cherchant tout de méme a
maximiser ses profits et ayant la possibilité de faire certaines modifications a ’affectation des
types d’avion. Le probléme dans ce contexte est que la flexibilité pour apporter des change-
ments a I'affectation des types d’avion est généralement assez restreinte puisque 'affectation
initiale n’a pas été faite en fonction de ces futures réaffectations. Les gains possibles sont

donc relativement faibles.

Le deuxiéme contexte est de prévoir les réaffectations lors de la planification pour avoir une
affectation initiale plus flexible permettant plus de changements de types d’avion afin d’avoir
des gains plus importants. Les recherches dans ce contexte utilisent toutes une optimisation
systéme pour estimer les revenus provenant des passagers. Les approches présentées par She-
rali et Zhu (2008) et Pilla et al. (2012) sont trés semblables et présentent les mémes faiblesses.
L’optimiseur peut décider du nombre de passagers exacts a accepter par itinéraire et par scé-
nario pour optimiser les revenus, pourvu que la demande (par itinéraire et par scénario) ne
soit pas dépassée et que la somme de tous les passagers acceptés sur les itinéraires emprun-
tant un segment de vol ne dépasse pas la capacité du type d’avion affecté a ce dernier. Cette
approche est, a notre avis, irréaliste et aura tendance a surestimer les revenus. L’approche
présentée par Jiang et Barnhart (2013) se concentre sur la modification de I’heure de départ
des vols pour permettre de nouveaux itinéraires qui étaient sinon irréalisables. Leur approche
permet une modification de ’heure de départ de plus ou moins 30 minutes, ce qui semble
beaucoup a notre avis dans le contexte actuel ou les aéroports ont des plages horaires relati-
vement serrées pour les portes d’embarquement et les heures de décollage et d’atterrissage.
Leur approche n’utilise pas de scénarios pour modéliser la variabilité de la demande et utilise

également une optimisation systéme pour optimiser les revenus.

Les deuxiéme et troisiéme volets de la thése cherchent a combler ce manque dans la littérature
en présentant différents modeéles du FAP qui utilisent des scénarios de demande et tiennent
compte des réaffectations éventuelles. Le PFM développé par Dumas et Soumis (2008) est
utilisé pour estimer les revenus provenant des passagers afin de préserver leur libre choix ainsi

que le caractére temporel du processus de réservation.
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CHAPITRE 2

ORGANISATION DE LA THESE

Cette thése a pour objectif d’améliorer la qualité et la robustesse de la solution du probléme
d’affectation des types d’avion aux vols en renforcant la considération de la demande des pas-
sagers. Nous avons identifié certains travaux portant sur ce sujet dans la revue de littérature
au chapitre précédent et nous avons également soulevé certaines faiblesses des modéles exis-
tants par rapport a la demande des passagers. Plusieurs modeéles présentent des hypothéses
plus ou moins réalistes comme le controle de la répartition des passagers par la compagnie
aérienne et la profitabilité de leurs solutions en pratique est discutable. D’autres sont plus
fidéles a la réalité, mais leurs temps de calcul trés élevés rendent leur application difficile.
Nous proposons deux approches réalistes intégrant la prise en compte de la demande dans le

FAP permettant d’obtenir des solutions utilisables en pratique et de meilleure qualité.

En premier lieu, nous présentons un algorithme permettant de réévaluer les revenus en cours
de résolution du FAP a 'aide d’un modéle de flot de passagers. Ceci est une approche amé-
liorée de celle développée par Dumas et al. (2009). Plutét que d’uniquement alterner entre la
résolution du FAP et du PFM, nous profitons de la fixation de variables pour mettre a jour
les revenus des segments de vol se trouvant dans un voisinage de ceux ayant une variable
fixée. Ceci permet de limiter les réévaluations de revenus aux vols étant impliqués dans les
derniéres décisions prises et ainsi limiter le temps de calcul du PFM. Cet algorithme permet
de diminuer le nombre d’itérations nécessaires pour obtenir des solutions de qualité équiva-
lente et de résoudre des instances de plus de 10 000 vols. Ceci est présenté au chapitre 3
dans article Airline fleet assignment with internal passenger flow reevaluations, publié dans

la revue EURO Journal on Transportation and Logistics.

En deuxiéme lieu, nous définissons une extension au FAP que nous appelons le probléme

d’affectation des types d’avion aux vols avec réaffectation et scénarios de demande. Nous
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développons trois variantes de différents niveaux de complexité de ce probléme. Sachant que
les compagnies aériennes font des changements d’affectation a ’approche de la journée des
opérations lorsque la demande observée différe suffisamment de la demande prévue, I'objectif
de cette partie est de trouver une solution permettant de planifier ces échanges de fagon
optimale afin de maximiser les profits espérés. La solution trouvée doit étre assez flexible
pour permettre des échanges de types d’avion selon la variation de la demande sans que le
reste de I’horaire soit affecté. Ces variations sont représentées par des scénarios de demande
et le FAP cherche & maximiser I'espérance des profits sur I’ensemble des scénarios plutot que
de se limiter a la demande moyenne. Nous développons deux méthodes de résolution : une
approche directe par CPLEX et une utilisant la décomposition de Benders. Pour ces deux
méthodes, le PFM est intégré dans I'algorithme de résolution de facon semblable & la méthode
externe décrite au chapitre 3 afin de mettre a jour les revenus et améliorer la qualité de la
solution. Le chapitre 4 décrit la définition du probléme d’affectation des types d’avion aux
vols avec réaffectation et scénarios de demande ainsi que le développement des modéles et des
méthodes de résolution. Le chapitre 5 présente la fagon utilisée pour générer des ensembles
de scénarios avec relativement peu d’informations ainsi que les expérimentations effectuées

sur une des variantes du probléme et les résultats obtenus.

Finalement, en guide de conclusion, la derniére partie dresse une synthése des travaux présen-
tés dans cette thése et quelques remarques sur les limitations des méthodes proposées ainsi

que les améliorations qui pourraient y étre apportées.



26

CHAPITRE 3

ARTICLE 1 : AIRLINE FLEET ASSIGNMENT WITH INTERNAL
PASSENGER FLOW REEVALUATIONS!

DAvID LASALLE [ALONGO
Guy DESAULNIERS

GERAD and Ecole Polytechnique de Montréal

ABSTRACT

The airline fleet assignment problem consists of assigning an aircraft type to each flight leg
of a flight schedule in order to maximize the airline expected profit. Most existing fleet
assignment models (FAMs) use an estimation of the revenues per flight leg that neglects the
interdependency between the flight legs and poorly approximates the spill and recapture of
the passengers. To overcome this difficulty, Dumas et al. (2009) have introduced an iterative
solution method that solves at each iteration a FAM and a passenger flow model (PFM). A
solution to the PFM provides the expected number of passengers on each leg, taking into
account spill and recapture. These numbers are then used to better estimate the revenues
per flight leg for the next iteration. Compared to solving a FAM once, this method yields
better quality solutions but requires much larger computational times (by a factor 10 or
more). In this paper, we aim at reducing these computational times while preserving solution
quality. To do so, we propose to reevaluate periodically the flight leg revenues via the PFM
while solving the FAM with a heuristic branch-and-bound algorithm. Computational results
obtained for a large-scale real-life network and various demand levels show that the proposed
method can reduce the average computational time by a factor of 2 to 3 to obtain solutions

of similar quality.

1. LASALLE TALONGO, D. and DESAULNIERS, G. (2014). Airline fleet assignment with internal
passenger flow reevaluations. EURQO Journal on Transportation and Logistics, 3, 121-142.
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ger revenues, heuristic branch-and-bound, variable fixing.

3.1 Introduction

Planning the operations of an airline is complex and usually divided into several steps (Klab-
jan, 2005): flight schedule design, fleet assignment, aircraft scheduling including maintenance
checks, and crew scheduling. The fleet assignment problem aims at maximizing the produc-
tivity of a heterogeneous set of available aircraft. Given that each aircraft type has specific
capacity, flying speed, and operating costs, this step determines for each flight leg of a (e.g.,
weekly) schedule which type of aircraft should operate it so as to maximize the total expected
profit, that is, the difference between the expected passenger revenues and the operating costs.
In certain cases, cargo revenues may also be considered for a passenger airline, but we assume
here, for reasons of conciseness, that this is not the case. On the one hand, the operating
costs (fuel costs, crew salaries, etc.) are, in general, well estimated and given by flight leg and
aircraft type. On the other hand, the expected revenues depend on the passenger demand by
pair of origin and destination, and the distribution of this demand over the itineraries offered
by the airline. This distribution is determined by the itineraries desired by the passengers
and the seating capacity of the aircraft assigned to each flight leg. The evaluation of this
distribution is called the passenger flow evaluation. Observe that there is a cyclic interaction
between the fleet assignment problem and passenger flow evaluation: the former problem
requires revenues per leg to determine the capacity on each leg, while the latter requires a ca-
pacity on each leg to compute their revenues. This cyclic interaction has not been addressed

directly in most works on the fleet assignment problem.

Hane et al. (1995) have introduced what is considered the basic fleet assignment model (FAM)
for the daily fleet assignment problem, that is, when the same flight schedule replicates day
after day. This model is a multi-commodity network flow model defined on a time-space
network. The revenues are estimated by flight leg. The FAM is solved by a branch-and-bound

heuristic that uses the dual simplex method with the steepest edge selection criterion, variable
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fixing, and node aggregation in the network. Various extensions of this model integrating
certain features of the other steps of the operations planning process have been proposed.
Clarke et al. (1996) incorporate certain aspects of aircraft maintenance and crew scheduling
in the FAM. Desaulniers et al. (1997) and Rexing et al. (2000) consider time windows on the
flight departure times which allow to slightly change the flight schedule. Ahuja et al. (2002)
integrate the selection of multi-leg flights.

In practice, the flight schedules may differ from day to day, especially between weekdays and
weekends. Furthermore, demand on certain flights may fluctuate significantly over the days
of the week, justifying different assignments. For these reasons, some studies have considered
the weekly fleet assignment problem. Barnhart et al. (1998) use a flight string model to solve
the aircraft fleeting and routing problems simultaneously. Toachim et al. (1999) consider the
weekly fleet assignment problem with time windows and schedule synchronization constraints,
where the flights with the same flight number (operating on different days) must have the
same departure time. As an extension to this work, Bélanger et al. (2006a) handle revenues
depending on the flight departure times and spacing constraints between the departure times
of consecutive flights servicing the same market. Bélanger et al. (2006b) add homogeneity
constraints that favor as much as possible the assignment of the same aircraft type to the
flights with the same flight number. Smith and Johnson (2006) impose station purity, which
limits the number of fleet types serving each station, to improve the robustness of the fleet

assignment.

All FAMs cited above and earlier ones use an estimation of the revenues per flight leg even
though numerous passenger itineraries contain two legs or more. This simplification neglects
the interdependency between the flight legs: for instance, a passenger that must travel on
a two-leg itinerary may be accepted on the first leg (together with the partial revenue it
generates) but rejected on the second. The simplification also approximates poorly the spill
and recapture of the passengers. Spilling occurs when the number of passengers willing to
take an itinerary exceeds the aircraft seating capacity of one of the leg in this itinerary.
When the rejected passengers change their choice for another itinerary of the same airline,

we talk about recapture. Clearly, there is a need to estimate the revenues by itinerary rather
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than by flight leg. Farkas (1996) and Barnhart et al. (2002) have developed the itinerary-
based FAM (IFAM) which incorporates these network effects by adding decision variables on
the itineraries that the passengers will choose. This system-optimization approach assumes
that the airline can control the behavior of the passengers. Barnhart et al. (2009) have en-
hanced the IFAM by considering subnetworks and employing composite decision variables
that represent the simultaneous assignment of fleet types to one or more flight legs of dif-
ferent subnetworks. Jacobs et al. (2008) incorporate origin and destination (O&D) network
effects into the FAM by adding constraints to model the O&D revenue management process.
The revenue approximation comes from a network flow model that maximizes the expected
revenue subject to the seating capacity of each flight. This model also assumes that the
airline controls the passenger behavior. The problem is solved using Benders decomposition.
The linear relaxation of the FAM (master problem) is solved first and its solution is used
in the network flow model (subproblem) to determine a new revenue approximation to add
to the FAM. This process is repeated until the profit estimation from both models are close
enough. The FAM is then solved to integrality and the network flow model is solved one
more time to estimate the final expected profit. Sherali et al. (2006) provide a survey of the

revenue modeling approaches for the fleet assignment problem.

The problem of treating the itineraries chosen by the passengers as decision variables arises
from the fact that there exists a conflict between the airline’s objective (profit maximization)
and those of the passengers (cost minimization, schedule preferences, minimum number of
legs, etc.). The airline can use yield management tools to influence the passenger flow on its
flights, but it cannot fully control the passengers. The fleet assignment problem should rather
be viewed as a bilevel optimization problem incorporating the cyclic interaction mentioned
above. At the first level, the airline assigns aircraft types to the flight legs which determines
the operating costs. At the second level, the passengers choose their itineraries, allowing to

compute the revenues.

To our knowledge, Dumas et al. (2009) were the first to propose a bilevel optimization ap-
proach that involves a user-optimization viewpoint to determine the revenues. Their iterative

algorithm relies on a FAM with revenues per leg that are recomputed at each iteration using
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the passenger flow model (PFM) developed by Dumas and Soumis (2008). The PFM pre-
serves the stochastic aspect of the demand and the temporal nature of the booking process,
without controlling the passenger choice. The FAM is solved through a branch-and-bound
heuristic similar to that of Hane et al. (1995) and the PFM is tackled by a fixed point
method. The algorithm starts by solving the FAM with the traditional estimated revenues
per leg. Given the resulting fleet assignment and the associated seating capacity for each
leg, it then solves the PE'M to reevaluate the expected revenues by itinerary. These revenues
are then split by leg to redefine the FAM objective function and the FAM is reoptimized to
begin a new iteration. For their computational experiments, Dumas et al. (2009) performed
ten iterations of this algorithm to generate solutions (for a weekly fleet assignment problem
involving more than 5,000 flight legs) yielding additional profits varying between 0.3% and
0.9% of the total operating costs when compared to the profits obtained by solving the tra-
ditional FAM only once. The main drawback of this iterative solution process is the large
increase in the computational times: on average, they are more than 10 times larger for the
tests they realized on instances with around 5,000 flight legs. Their average computational
time was about 2.5 hours, which may seem quite reasonable for a planning problem. Note,
however, that there exist much larger instances, involving more than 10,000 daily flights and
requiring much larger computational times. Furthermore, as stated above, more complex
variants of the fleet assignment problem (with time windows, maintenance requirements,. . .)
are now tackled using mathematical programming techniques that can be combined with the
passenger flow evaluation process. Solving large-scale instances of these variants is highly
time-consuming compared to the basic fleet assignment problem. Finally, when designing a
flight schedule for a whole season, the corresponding fleet assignment problem is typically
solved to check schedule feasibility and estimate expected profits. Given that schedule design
is an iterative process that necessitates testing numerous scenarios (e.g., 100 scenarios over
a one-month period), too large computational times for solving the fleet assignment problem
with passenger flow evaluation limit the number of schedule scenarios that can be tested.
For these reasons, we believe that the solution method of Dumas et al. (2009) has a limited

applicability and should be improved.
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In this paper, we revise the solution algorithm of Dumas et al. (2009) with the aim of
reducing considerably the computational times while preserving solution quality. To do so,
we propose to integrate the passenger flow evaluation within the branch-and-bound heuristic
used to solve the FAM. The new algorithm consists of solving at each iteration a sequence
of linear relaxations of the FAM before starting the branch-and-bound phase. After solving
each linear relaxation in this sequence, variables are fixed, a restricted PFM is solved, and
revenues are reevaluated. This integration allows a reduction of the number of iterations
(and of the computational time) required to obtain solutions of quality comparable to that
obtained by Dumas et al. (2009). The new algorithm is, thus, more suitable for solving very

large-scale FAMs or fleet assignment problems involving complex features.

The paper is structured as follows. In Section 3.2, we summarize the solution algorithm
of Dumas et al. (2009). In Section 3.3, we describe the proposed integrated algorithm.
Computational results obtained on instances derived from a real-world dataset involving 5,180
legs and from a larger network involving more than 10,000 legs are reported in Section 3.4.

Concluding remarks are presented in Section 3.5.

3.2 The solution method of Dumas et al. (2009)

The fleet assignment problem addressed in this paper, the same as in Dumas et al. (2009),
integrates passenger flow evaluation to compute the passenger revenues and we refer to it
as the fleet assignment problem with passenger flow evaluation. It can be stated as follows.
Consider a flight network of an airline that spans a set S of stations (airports). Let L be
the set of flight legs to operate over this network in a cyclic schedule spanning a time period
(e.g., a day or a week). Here, cyclic means that the schedule repeats period after period
and, thus, the computed solution must also be repeatable period after period. A leg in L is
indexed by [ or more explicitly by (o,d,t) to indicate that the leg is from origin station o
to destination station d and departs at time t. To operate this schedule, aircraft of different
types are available. Let I’ be the set of aircraft types and n; the number of aircraft in

fleet f € F. Given the various characteristics (capacity, flying speed, autonomy, etc.) of the
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aircraft types, only a subset F; of types can be assigned to a given leg ! € L. When fleet f € F,
is assigned to leg [, it incurs an operating cost of Cy;. The seats available in an aircraft are
partitioned into fare classes for each leg. We denote by W the set of fare classes and by cap),
weW,l e L and f € F, the number of seats of class w on leg [ if operated by an aircraft
of type f. The potential passengers are interested to buy tickets for a set I of itineraries,
where an itinerary is defined by a sequence of legs in L and a fare class in W for each leg.
For each itinerary ¢ € I, we know its demand d; (number of passengers requesting it) and the
average ticket price p; paid by a passenger. To approximate the number of passengers spilled
and recaptured on each itinerary, let ¢;; be the proportion of passengers on itinerary ¢ € I
that, when rejected by a lack of capacity, are spilled onto itinerary j € I. For a given ¢ € I,
the sum Zje] ¢;; may be less than 100% to model passengers that opt for another airline or
another mode of transportation, that is, passengers that do not spill onto another itinerary
in I. The fleet assignment problem with passenger flow evaluation consists of assigning an
aircraft type f € Fj to each leg [ € L such that the expected profits (expected revenues minus
costs) are maximized, aircraft flow conservation by aircraft type is satisfied in the network
at all times (that is, no deadhead flights can be added to balance the schedule), a minimum
connection time is allowed between any pair of consecutive legs assigned to the same aircraft,
and the number of available aircraft in each fleet is never exceeded. Computing properly the
expected revenues involves determining the number of passengers that will buy a ticket on
each itinerary ¢ € I, that is, evaluating the passenger flow in the network given the seating

capacity of the aircraft assigned to each leg.

The ingredients of the solution algorithm proposed by Dumas et al. (2009) for solving the fleet
assignment problem with passenger flow evaluation and the algorithm itself are discussed in

the following paragraphs.

3.2.1 Fleet assignment model

The algorithm of Dumas et al. (2009) relies on a FAM that is an adaptation of the one

introduced by Hane et al. (1995). The FAM of Hane et al. uses expected revenues per leg
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Figure 3.1: Example of a time-space network with three stations

that depend on the aircraft type assigned to each leg. These revenues are approximated
from a PFM solution by distributing the expected revenues for each itinerary i € I over the
legs composing it and in proportion of their flight duration. Instead of considering expected
revenues, Dumas et al. (2009) proposed to use expected revenue losses with respect to the
maximum revenues that could be achieved by assigning a fictitious aircraft of infinite capacity.
Let RLy; be this expected revenue loss on leg [ € L if an aircraft of type f € F' is assigned
to it. With these revenue losses, the objective function consists of minimizing the sum of the
operational costs and the expected revenue losses. This is equivalent to maximizing the total

profits.

The FAM is a multicommodity network flow model with side constraints that is defined over
a time-space network. In this network (see Figure 3.1), there exists a cyclic timeline for
each aircraft fleet f € F and each station s € S. A potential event corresponding to a
departure or an arrival of an aircraft of type f at station s at time t is represented by a
node {f,s,t} on the timeline associated with station s and fleet f. To ensure the respect of
the minimum connection time between two consecutive legs, the arrival time ¢ includes this
minimum time. It is denoted 77,4 for a leg (o0, d,t) € L assigned to an aircraft of type f. On
a timeline, the nodes are ordered in chronological order. The time associated with the node
preceding the time of an event occurring at time t is denoted by ¢~, while that of the next

node by t*. Assuming that a timeline contains n nodes numbered from 1 to n, we let ¢ = t;
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and t; =t,. Let N be the set of nodes in this time-space network. As shown in Figure 3.1,
the network contains two types of arcs. Flight (diagonal) arcs represent the flight legs, each
one linking the departure node of the corresponding leg on the departure station timeline
to its arrival node on the arrival station timeline. Ground (horizontal) arcs represent idle
periods at stations and link consecutive event nodes on every station timeline (as well as the

last event node to the first event node at a station).

To impose aircraft availability per fleet, the aircraft of each fleet used in the solution needs
to be counted once at a specific time ¢. Let [tsf,t:f], s € Sand f € F, be the time interval
that is delimited by two consecutive events on the timeline associated with station s and
fleet f, and such that ¢t € [tgf,t:f]. Furthermore, let Of be the set of flight legs that can
be operated by an aircraft of type f and whose operating time (including the subsequent

minimum connection time) spans ¢.

The proposed FAM involves two types of decision variables (one type for the flight arcs
and the other for the ground arcs). For each leg | = (0,d,t) € L and each fleet f € [,
there is a binary variable X (or Xy,q4) that takes value 1 if fleet f is assigned to leg [ and
0 otherwise. For each fleet f € F, each station s € S and each time interval [¢,¢*] on the
timeline associated with f and s, there is a nonnegative variable Y4+ indicating the number
of aircraft of type f on the ground at station s in this interval. With this notation, the FAM

is as follows:

min Z Z Xfl (Cﬂ —+ RLﬂ) (31)

leL feF;
subject to: Y Xp=1, Vel (3.2)
JeF
Z Z Xfost’ + stt*t - Z stdt - }/fsttJr = 07 v{fv S, t} S N7 (33)
0€S thTp, =t desS
S Xp+ Zsttsft:f <ns;, VfeF, (3.4)
lEOf sesS
Xpe{0,1}, Viel, feF, (3.5)

sttt+ Z 0, V{f, S,t} € N. (36)
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The objective function (3.1) aims at minimizing the sum of the operating costs and the
expected revenue losses. Constraints (3.2) ensure the assignment of exactly one fleet to
each flight leg in L. Constraints (3.3) enforce flow conservation in the network for each
aircraft type. Aircraft availability by fleet is imposed through constraints (3.4). Binary and
nonnegativity requirements (3.5)—(3.6) restrict the feasible domains of the variables. Note

that constraints (3.3) and (3.5) imply the integrality of the Y}q+ variables.

The FAM (3.1)-(3.6) can be solved by a branch-and-bound algorithm. To limit the compu-
tational times for large-scale instances, variable fixing is often applied at the beginning of

the solution process. The details of this algorithm are provided in Section 3.3.

3.2.2 Passenger flow model

Dumas and Soumis (2008) developed a PFM that allows the evaluation of the expected rev-
enues yielded by a FAM solution. It aims at determining the expected number of passengers
on each itinerary ¢ € [ taking into account the seating capacity offered by the FAM solution
on each flight leg [ € L and for each fare class w € W. The PFM requires the following

inputs:

1. The flight schedule L and the aircraft type assigned to each flight leg [ € L;

2. The seating capacity in each fare class w € W on each leg [ € L (a pair (w,!) of fare

class and leg is called an arc by Dumas and Soumis, 2008);

3. The distribution of the passenger demand for each itinerary + € I which is seen as a

random variable (following, e.g., a normal distribution);
4. The temporal distribution of the booking requests for each itinerary ¢ € I;
5. The proportion g;; of passengers spilled from a closed itinerary ¢« € I to another itinerary

jel

An arc is said to be closed when the number of passengers booked on this arc reaches its
capacity and an itinerary is closed when at least one of its arcs is closed. Notice that,

in the PEFM of Dumas and Soumis (2008), the passengers’ objectives (cost minimization,
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schedule preferences, minimum number of legs, etc.) are not explicitly modeled. Instead, the
distribution of the overall demand of a given market on all its possible itineraries is assumed
to be known and is implicitly taken into account in the passenger demand distribution of
each itinerary. The PFM is partitioned into disjoint time slices to preserve the temporal
aspect of the booking process. In each time slice, it is composed of a system of nonlinear
equations that involves several variables. There are variables indicating the expected number
of booking requests in that time slice for each itinerary and for each arc, as well as variables
providing the probability that an itinerary or an arc is closed during that time slice. The
system contains two main sets of equations. The first set expresses, for each itinerary, the
expected number of booking requests in the current time slice as a function of its demand,
the temporal distribution of its booking requests, the total number of booking requests on
the other itineraries, the probability that each itinerary is closed in that time slice, and the
proportions of the spilled passengers. The second set of equations relate the probability that
an itinerary is closed in the current time slice to the probability that one of its arcs is closed.
The other equations allow the computation of various quantities used in the first two sets of
equations (for more details, see Dumas and Soumis, 2008). The equation system is solved
using a fixed point method (see, e.g., Burden and Faires, 2010, chapter 10) and its solution

provides the passenger flow in the network at the end of the time slice.

The solution process of the whole PEM proceeds sequentially, solving the PEM restricted to
the time slices in chronological order. In each time slice, the fixed point method starts from
an initial solution. In this solution, the total number of booking requests for an itinerary
is set to the itinerary demand for that time slice, whereas the probability that an itinerary
or an arc is closed is set to its final value in the previous time slice (or to 0 if it is the first
slice). The values of the variables are then updated one after the other using the system of
equations until a stopping criterion is met. Computational experiments performed by Dumas
and Soumis (2008) over different networks showed that 15 iterations is sufficient to provide
an acceptable solution. The expected revenues yielded by the FAM solution are derived from

the passenger flow at the end of the last time slice.
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The PFM solution allows to compute the expected revenues per leg as a function of the
aircraft type (seating capacity) assigned to each leg. This information is incomplete for the
FAM that requires the expected revenues (or rather the expected revenue losses RLy;) for
each leg | € L and each aircraft type f € F; that can be assigned to it. To obtain all
these revenue losses, one can solve a large number of PFM instances, namely, one for each
valid combination of leg and aircraft type. This approach would, however, yield very large
computational times. To speed up these computations, Dumas et al. (2009) introduced a local
version of the PEFM. On the tested instances, they observed that this version can achieve a

speedup factor of 400 without losing too much solution accuracy.

The local version of the PFM is defined for a pair of leg [ € L and aircraft type f € F.
It is similar to the full PFM but restricted to a subnetwork denoted (A;,I;). The set I
contains all itineraries involving leg [ as well as all itineraries that can recover passengers
from these first itineraries. The set A; is composed of all arcs used by at least one itinerary
in [;. Considering only the itineraries in [; is not sufficient to determine the passenger flow
on the arcs of A;. Indeed, there are other itineraries that involve these arcs or whose demand
can spill onto them. Consequently, to take these other itineraries into account, the full PEM
is first solved (using the fleet assignment of the FAM solution) and, after each time slice,
the following information are kept in memory: for each itinerary ¢ € I, the expected number
of passengers accepted and rejected in the time slice and, for each arc, the probability that
it is closed. When solving the local PFMs thereafter, these stored information are used to

preassign passengers to their corresponding itineraries.

The PFM can be defined and solved even if the FAM solution is fractional. Indeed, the FAM
solution provides seating capacity per fare class and flight leg. When a FAM solution assigns
a convex combination of aircraft types to a leg, its seating capacity per fare class can be
computed as the corresponding convex combination of the capacities of these aircraft types.
We exploit this possibility in the method proposed for solving the fleet assignment problem

with passenger flow evaluation.
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3.2.3 Fleet assignment with external PFM reevaluation

The iterative procedure used by Dumas et al. (2009) for solving the FAM with an external

reevaluation of the revenues by the PFM is summarized in Figure 3.2. More precisely, a

first evaluation of the revenues per leg is performed to compute the initial vector of expected

revenue losses RL’. For a leg | € L and an aircraft type f € F, the component RL}; of this

vector is computed as the expectation of the demand that exceeds the capacity of an aircraft

of type f multiplied by a weighted average of the ticket price paid by the passengers spilled

from the itineraries containing leg [. The iterative procedure starts at iteration 0 that serves

as the reference point to compare the results. At iteration & > 0, the following steps are

performed:

Using the vector RL" in its objective function (3.1), the FAM (3.1)—(3.6) is solved by a
commercial mixed integer programming solver (CPLEX in our case). The solution process
can be stopped prematurely whenever a feasible solution is found and its value is close
enough to the current lower bound on the optimal value, that is, if it respects a tolerance
on the optimality gap. The computed fleet assignment solution is denoted X*.

The full PEM is executed for the solution X* and the numbers of booking requests and
of spilled passengers for each itinerary and each time slice are kept in memory. This step
allows to compute the expected revenues of the current solution X* and, therefore, the
value of this solution.

The stopping criterion is then checked. In Dumas et al. (2009), the iterative process stops
whenever a maximum number of iterations is reached.

When the process is not halted, it continues by reevaluating the revenue losses per leg
according to the current fleet assignment solution X*. To do so, the local PFM is first
executed for each leg [ € L and each fleet f € F;. In this execution, the numbers of
booking requests and of spilled passengers per time slice for each itinerary that is not part
of the subnetwork of leg [ (information stored in memory from the last solution of the full
PFM) are fixed as constant. The revenue loss vector obtained from these computations is
denoted RL""". Rather than using directly this vector to redefine the objective function

of FAM, Dumas et al. (2009) use a convex combination of this vector and the previous one
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Figure 3.2: The method of Dumas et al. (2009): fleet assignment with external PFM reeval-
uation

RL*: the new vector is given by RLFF1 = oRL™ + (1 — a)RLF, where a € [0,1] is a
parameter. This smoothing strategy allows to avoid too large variations of the components
of the revenue loss vector from one iteration to the next. Numerical experiments realized
by Dumas et al. (2009) show that the value o« = 0.3 provides fast convergence and good
quality solutions.
Notice that the method of Dumas et al. (2009) does not guarantee a decrease of the FAM
optimal (total revenue loss) value from one iteration to the next. Nevertheless, its smoothing
strategy helps, in practice, generating a sequence of decreasing values until getting close to

optimality.

3.3 Fleet assignment with internal PFM reevaluation

In this section, we present our proposed method for solving the fleet assignment problem
with passenger flow evaluation and highlight how it differs from the method of Dumas et al.

(2009). Our goal is to produce similar quality solutions as those obtained by Dumas et al.
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Figure 3.3: The proposed method: fleet assignment with internal PFM reevaluation

(2009) but in faster computational times and to produce better solutions if both methods

are run for the same amount of time.

For solving large-scale FAMs, variable fixing is commonly used as a heuristic to reduce
computational times (Hane et al., 1995; Sherali et al., 2010). The general idea of the proposed
method is to fix variables and reevaluate revenues with the PFM simultaneously. In this way,
the decisions made after each revenue reevaluation are based on updated revenues and should,
therefore, yield a better solution than the solution obtained without any revenue reevaluation.
Figure 3.3 summarizes this method with internal PFM reevaluation. Instead of solving
directly the FAM (3.1)—(3.6) with integrality requirements like in the method of Dumas et al.
(2009), we begin by solving only its linear relaxation. Then fleet assignment variables are fixed
and the revenue losses per leg are reevaluated for the legs impacted by the imposed decisions.
The modified linear relaxation is solved again. This process repeats until one of the three
following conditions hold: a predefined number of iterations is reached, a predefined number
of variables is fixed, or no more variables can be fixed. The reduced FAM resulting from this
variable fixing process and the PFM reevaluations is then solved using a branch-and-bound
algorithm. Below, we give details on the variable fixing strategy (Section 3.3.1), the revenue

losses update (Section 3.3.2), and the branch-and-bound algorithm (Section 3.3.3).



41

3.3.1 Variable fixing strategy

In a typical solution of the linear relaxation of the FAM (3.1)-(3.6), there is a variable Xy
equal to 1 for around 80% of the legs [ € L, that is, the aircraft type is not fixed for around
20% of the legs. As in Sherali et al. (2010), one can decide to leave unfixed the variables
equal to 1 to offer more leeway to the MIP solver. However, because these variables represent
a large proportion of the positive-valued variables and most of them remain at 1 when only
fractional-valued variables are fixed, we have chosen to fix some of them at each iteration
in order to substantially reduce the size of the FAM. The number of variables to fix at each
iteration is limited by a parameter denoted V;. Furthermore, we also impose that at most
a given percentage PV of the variables equal to 1 for a given aircraft type f € F be fixed
to 1 (this parameter was fixed to 75% for our tests). This limit per fleet ensures a relatively
good distribution of the fixed variables among the different fleets. To change the solution
from one iteration to the next, we also fix a certain number of fractional-valued variables X ;.
These variables are first sorted in decreasing order of their value, and then the first V5 of
them are fixed to 1 as long as their value is greater than or equal to a predefined minimum
threshold B;,;. No other variables are fixed, which means that no variables are fixed at 0.
After fixing to 1 the chosen variables, the linear relaxation of the FAM is solved to obtain a
new linear relaxation solution that may still contain fractional-valued variables. In this case,
variable fixing is repeated. We allow V., variables to be fixed overall. When this limit is
reached, the reduced FAM is solved with integrality requirements. Notice that V,,,, should
be large enough to obtain relatively fast computational times but not too large to ensure
that variable fixing does not yield an infeasible reduced FAM. In Section 3.4.2, we discuss

the values attributed to the parameters Vi, Vs, V40, and By, for our tests.

3.3.2 Revenue losses update

After solving the linear relaxation of FAM and fixing certain variables, the revenue losses per
leg are reevaluated using the local version of the PEFM. The method described in Section 3.2.2
is then used to update the vector RL in the objective function of the FAM.
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Two observations allow to accelerate this process. Firstly, the revenue losses of the legs fixed
to 1 do not have any impact on the optimization process. They are now fixed and considered
as constant in the objective function. Hence, there is no need to reevaluate them until the
end of the solution process, where the revenues for each leg will be computed once again with
the full PFM to obtain the value of the final solution. Secondly, significant changes to the
revenue losses do not occur for all legs after fixing certain variables. To limit the number of
legs for which revenue losses need to be reevaluated, we consider only the legs that can be
directly impacted by the fixed variables. For a leg [ € L for which a variable X, was fixed at
this iteration, these legs are those in I; (that is, the set of itineraries containing [ and those

that can recover passengers from these itineraries).

3.3.3 Branch-and-bound algorithm and iterative process

Once a sufficient number of variables are fixed, the reduced problem is solved by a commercial
MIP solver, namely, CPLEX. The search tree is first explored using a depth-first search strat-
egy until finding a first integer solution. If the value of this solution respects a tolerance on
the optimality gap, then the solution process is terminated. Otherwise, the exploration of the
search tree is pursued using a combination of depth-first search and best-first search strate-
gies until reaching a predefined maximum number of nodes (set to 500 for our tests). More
precisely, we set the tolerance backtracking parameter of CPLEX (CPX PARAM BTTOL)
to 0.5. This allows to explore sufficiently each branch using a depth-first search as long as the
branch remains promising and to switch to a more promising branch as soon as the current

branch does not seem promising anymore.

When a feasible solution respecting the tolerance optimality gap is found, the full PFM
derived from the fleet assignment solution is solved a final time to evaluate the expected
revenues on all flight legs and the total expected profits of the solution. This final evaluation
allows a fair comparison between the solutions produced by our method and those of Dumas

et al. (2009).

To improve the fleet assignment solution, the method of Dumas et al. (2009) with external
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PFM reevaluation performs multiple iterations in which the expected revenue losses per leg
are reevaluated at each iteration. In the proposed method with internal PFM reevaluation,
these revenue losses are reevaluated less than once for a large number of legs. Thus, we
propose to also embed our method into an iterative process that will repeat several times
the algorithm described in Figure 3.3, using as the starting point of each iteration, the
fleet assignment solution computed in the previous iteration. As it will be shown by the
computational results presented in the next section, this iterative process converges very
rapidly and, therefore, allows to preserve the quality of the solutions produced by the Dumas

et al. (2009) method while reducing the overall computational times.

3.4 Computational results

This section reports the results of various computational experiments that we conducted to
assess the performance of the proposed method with internal PFM reevaluation against that
of the method of Dumas et al. (2009) with external PFM reevaluation. In this section, we
refer to these methods as the internal and the external method, respectively. Both methods
were implemented in C+-+ and rely on the commercial MIP solver CPLEX, version 12.4. All
tests were performed using a single core of an Intel Xeon X5670 processor clocked at 2.93GHz

and 24Gb of RAM.

3.4.1 Instances

For our computational experiments, we use a part of Air Canada’s flight network in 2002.
It contains 5,180 legs operated by 205 aircraft of 15 different types. The passengers were
distributed among 23,948 itineraries and 3 fare classes. As this is the unique large-scale
network for which we have all necessary information to solve the PE'M, we applied the demand
perturbations suggested by Dumas et al. (2009) to create two other sets of expected demand
on each itinerary. These perturbations are obtained by multiplying the expected demand
for each itinerary by a random number taken from a uniform distribution in the interval

[0.55,1.55]. The new demands are then scaled so that the overall modified demand be equal
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to the total original demand. In 2002, demand was relatively low with an average load factor
of around 74.8% for our network. In comparison, Air Canada had an average load factor of
82.7% in 2012 (Air Canada, 2012, p.2), which is closer to their usual one. Consequently, to
create demands yielding higher load factors, we introduce a parameter that multiplies the
expected demand for each itinerary. For each of the three demand structures, we use five

different parameter values, resulting in a total of 15 instances.

To show that the proposed method can yield faster computational times than the method
of Dumas et al. (2009) when solving large instances, we also created a larger network by
duplicating each leg and each aircraft of the 5,180-leg network mentioned above. The de-
parture time of each new leg was shifted forward by 73 minutes to avoid duplicated legs at
the same time. Itineraries were also copied and new ones were created to take into account
the new possibilities. Finally, we adjusted the proportion ¢;; of passengers spilled from a
closed itinerary ¢ € I to another itinerary j € I, keeping the same overall recapture rate for
a given itinerary. This new network contains 10,360 legs, 410 aircraft of 15 types, and 65,169
itineraries. From this network, we derived 9 instances with different demand structures as

described above.

3.4.2 Parameter values

As mentioned in Section 3.3.1, the variable fixing strategy of the internal method relies on
several parameters whose values need to be calibrated. To reduce the computational times,
we integrate the same variable fixing strategy into the external method. However, as this
method does not modify the revenue losses per leg during the FAM solution process, the best
parameter setting may differ for each method. Consequently, we calibrated the parameter
values independently for each method and also for each network. The selected values are given
in Table 3.1. To assess the impact of the parameter values on the quality of the solutions
produced by the internal method and its computational time, see Section 3.4.4 that reports

the results of a sensitivity analysis on these parameters for the 5,180-leg network.
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Table 3.1: Parameter values for both internal and external methods

5,180-leg network 10,360-leg network
Value for Value for | Value for Value for

Parameter Description internal  external | internal external

Vinaz Max. number of variables to 3,000 3,500 7,000 7,000
fix overall

Vi Max. number of variables equal 350 300 600 500
to 1 fixed at once

Vs Max. number of fractional-valued 200 300 400 350
variables fixed at once

Bins Min. value threshold for fixing 0.8 0.75 0.75 0.75
a variable

3.4.3 Comparative results for the 5,180-leg network

For each pair of demand structure and load factor (3 x 5 = 15 pairs overall) for the 5,180-leg
network, we solved the problem instance using both internal and external solution methods.
To measure the quality of a computed solution, we compare its expected profit with that of
the solution produced by solving only once the fleet assignment problem without reevaluating
the expected revenues per leg, that is, solution X° of the external method. As Air Canada
(like most airlines) was struggling for profitability in 2002, it would not be representative to
provide profit improvement in relative value (profits were negative and close to 0). We rather

report the profit improvement in percentage of the costs of the initial solution X°.

For each method, Figure 3.4 illustrates the average of the profit improvement for the solu-
tions computed throughout the solution process (each point corresponds to the best solution
obtained up to a given iteration). In this figure, the horizontal axis indicates the average
computational time at the end of each iteration. These two curves clearly show that the
internal method converges more rapidly than the external method and to a higher improve-
ment value. It thus requires fewer iterations to obtain solutions of similar quality, yielding

shorter computational times.
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Figure 3.4: Average results of the internal and external methods (5,180-leg network)

In Table 3.2, we present the results (profit improvement in percentage of the total costs of
the initial solution X° and computational time in seconds) obtained for each instance after
17 iterations of the external method (no improvements were observed in the few next itera-
tions) and those obtained after 4 and 11 iterations of the internal method. The last line of
this table reports averages over all instances. After 4 iterations of the internal method, we
obtain a solution that is slightly better on average than the best one of the external method,
and this in just over a third of the time. After 17 iterations, the external method achieves
an average profit improvement of 2,390,667$ compared to 2,394,000$ for the internal method
with 4 iterations. While their average profit improvements are very close, the internal method
requires 63.8% less time than the external method in this setting. For this network, the inter-
nal method reaches after 15,201 seconds an average profit improvement that is slightly larger
than that of the external method. Note that, with both methods, the average improvement
is substantial compared to the traditional approach for solving the fleet assignment problem
without reevaluating the revenues per leg. We also observe that the improvement increases
with the load factor, that is, when spill and recapture are very active. In this case, a first

approximation of the expected revenues per leg is often not very good.

Even if both methods alternate between solving the FAM and the PFM, they do not spend
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Table 3.2: Detailed results of the internal and external methods

External method Internal method
17 iterations 4 iterations 11 iterations

Demand Load Average load | Imp. Time | Imp. Time Imp. Time
structure multiplier  factor (%) (%) (s) | (%) (s) (%) (s)
1.05 76.5 1.26 9550 | 1.23 3315 1.26 10 687

1.1 79.0 1.33 9521 | 1.35 3429 1.35 9 383

| 1.15 81.1 1.58 10488 | 1.53 3847 1.58 11 306

1.2 82.9 1.72 10120 | 1.74 4985 1.74 20793

1.25 84.5 1.89 20318 | 1.93 5092 193 17005

105 76 | 1.64 9102 1.62 398 1.62 10659

1.1 79.8 1.72 11249 | 1.70 4137 1.71 13 438

IT 1.15 81.6 1.89 11036 | 1.85 4557 1.91 15 560

1.2 83.1 2.18 19730 | 220 8054 220 20824

1.25 84.4 2.51 22144 | 251 7017 254 17752

105 775 | 153 10112 151 4095 155 12070

1.1 79.7 1.81 10590 | 1.81 4886 1.81 14 125

11 1.15 81.5 2.02 14203 | 2.04 5473 2.04 15024

1.2 83.1 2.20 10397 | 2.25 4141 226 12639

1.25 84.3 2.50 24770 | 2.54 6558 257 26 745

Average 1.853 13 555 | 1.855 4 905 1.872 15 201

the same proportion of time on each problem component. The external method solves the
full PEM only once per iteration and spends on average 88.1% of the total time on the FAM,
devoting only 11.9% to the PFM. On the other hand, the internal method solves the full
PFM once per iteration but also the local version of the PFM for a subset of the legs each
time that variables are fixed, that is, about 6 to 8 times per iteration. A larger proportion

of the total time is, therefore, necessary to solve the PFM, namely, about 33.7%.

To conclude this section, Table 3.3 reports some statistics on the solution process of the FAM
within the tested methods. For each method, we give the time in seconds required to solve the
linear relaxation, the total computational time per iteration in seconds (excluding PFM), the

total number of branch-and-bound nodes explored and the total number of cuts generated by
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Table 3.3: Statistics on the FAM solution process (5,180-leg network)

External Internal

method method
Linear relaxation time per iteration (seconds) 95.1 96.2
Total time per iteration (seconds) 783 912
No. branch-and-bound nodes (reduced MIP) 22.0 23.8
No. of cuts (reduced MIP) 134 11.9
No. of PFM reevaluations - 6.6

CPLEX while solving the reduced MIP, and, finally, the number of PFM reevaluations (only
for the internal method). All these results correspond to averages per iteration and instance.
From these results, we observe that the FAM solution process behaves very similarly in both
methods except that the internal method performed an average of 6.6 PEM reevaluations
while the external method did not use such reevaluations. In particular, note that the
average number of branch-and-bound nodes per iteration is relatively low (22.0 and 23.8 for
the internal and the external method, respectively). However, as reported in Dumas et al.
(2009), there are very few branch-and-bound nodes explored in most iterations (10 or less)
while some of them require a relatively large number. In the former cases, the first integer
solution found is within the tolerance on the optimality gap while in the latter cases, it

exceeds this tolerance.

3.4.4 Sensitivity analysis

To evaluate the impact of the parameter values used in the internal method on the solution
quality and the computational time, we performed a sensitivity analysis on these values
considering 9 instances of the 5,180-leg network (those corresponding to load multipliers
1.05, 1.15, and 1.25). Starting from the values used for the external method (V.. = 3,500,
Vi = 300, Vo = 300, B;,y = 0.75), we varied the value of a single parameter at a time
and solved the instances with the internal method allowing 4 iterations. The average profit
improvements and the computational times obtained are reported in Table 3.4. In this table,

the first row provides the results for the reference values of the parameters. Then, each of
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Table 3.4: Sensitivity analysis on the parameter values for the internal method

Parameters Average improvement Average time
Vinaz Vi Vo By (% of costs) (s)
3500 300 300 0.75 1.819 5 089
2500 300 300 0.75 1.815 6 312
3000 300 300 0.75 1.819 4 065
4000 300 300 0.75 1.817 5 951
3500 250 300 0.75 | 1830 4911
3500 350 300 0.75 1.833 4 905
3500 400 300 0.75 1.826 4144
3500 300 100 0.75 | 1836 6031
3500 300 200 0.75 1.829 5 007
3500 300 400 0.75 1.803 3 992
3500 300 300 0.7 | 1820 4478
3500 300 300 0.8 1.824 4 495
3500 300 300 0.85 1.823 5 157
3000 350 200 0.8 1.862 4 882

the following four block of rows reports the results for different values (in bold) of a single
parameter while the others stay at their reference value. When comparing the results in a
block, the first row should also be considered. Finally, the last row gives the results for the

best value of each parameter, that is, the results reported in the previous section.

Let us discuss the results for each parameter. Decreasing the maximum number of variables
fixed overall, V.., does not change much the solution quality. At each iteration, fixing fewer
variables yields a larger reduced MIP and, thus, the solution process is less heuristic. On the
other hand, the revenue losses are revised less frequently, loosing precision on the coefficients
of the objective function. The average computational time seems to vary arbitrarily because
fixing fewer variables reduces the time spent in the variable fixing phase (including the time
for the PEM reevaluations) but increases the time required to solve the reduced MIP that
contains more variables. One would expect that the latter time would increase much more
rapidly than the former time, but the first solution found by the MIP solver often meets the

optimality gap tolerance.
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We remark that decreasing the value of V5, the maximum number of fractional-valued vari-
ables fixed at once, the solution quality improves at the expense of longer computational
times. Indeed, the solution quality improves because the average value of the variables fixed
increases (the decisions are thus safer) and the PFM is reevaluated more often. The same
behavior is not observed when decreasing the value of V; because this parameter controls the

variables equal to 1.

The minimum value threshold B, s is closely related to parameter V5 because both limit
the number of fractional-valued variables that can be fixed at once. We remark that setting
Biny = 0.8 or 0.85 yields a slightly higher average solution quality. At the opposite, a lower
value for B;, s increases the risk of imposing bad decisions and producing solutions of poor

quality. We observe that the average computational time varies arbitrarily.

Finally, observe that the selected parameter values (last row in Table 3.4) yield the best aver-
age profit improvement over all parameter combinations and an average computational time

that is more or less in the middle of the times obtained with the other configurations.

3.4.5 Comparative results for the 10,360-leg network

To assess if the computational time reductions yielded by the internal method and observed
for the 5,180-leg network can be reproduced for larger instances, we created a network with
10,360 flight legs (as described in Section 3.4.2) and three demand structures for this network.
For each demand structure, three different load multipliers (1.05, 1.15, 1.25) were applied
to generate a total of 9 instances. These instances were then solved using the external
and the internal method. Figure 3.5 presents graphically the average profit improvement
in percentage of the costs of the initial solution obtained at each iteration by each method.
As for the 5,180-leg instances, the internal method converges much more rapidly than the
external method and requires fewer iterations to obtain solutions of similar quality. For this
network, both methods reaches a similar profit improvement after 70,000 seconds (no further

improvements occur in the next iterations).
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Figure 3.5: Average results of the internal and external methods (10,360-leg network)

Detailed results for all instances are reported in Table 3.5. On average, the internal method
computes in 4 iterations a solution of similar quality to the best solution computed by the
external method in 11 iterations, saving 54.7% of the computational time. These solutions
correspond to an average profit improvement of around 7,900,000$. Here again, we observe
that the profit improvement and the computational time reduction (derived after 4 iterations

of the internal method) increase with the average load factor.

Doubling the size of the network has a bigger impact on the computational time devoted to
the PFM than on that devoted to the FAM. Indeed, the FAM time is partly controlled by the
size of the reduced MIP which was kept relatively low for the large network. Consequently,
the proportion of time devoted to the PFM increased in both methods. For the 10,360-leg
network, the external method spent 16.5% of the total time solving the PFM while it required
11.9% for the 5,180-leg network. The increase is much sharper for the internal method that
performed on average twice the number of PFM reevaluations in each iteration. As a result,
solving the PFM in the internal method required 61.6% of the total time for the large network
while it took only 33.7% for the 5,180-leg network.

The results of the experiments conducted on both networks show that the internal method
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Table 3.5: Detailed results of the internal and external methods (10,360-leg network)

External method Internal method
11 iterations 4 iterations 8 iterations

Demand Load Average load | Imp. Time | Imp. Time Imp. Time

structure multiplier  factor (%) (%) (s) | (%) (s) (%) (s)

1.05 77.0 241 49 682 | 2.30 24856 231 54430

I 1.15 81.1 3.22 54 346 | 3.17 30692 3.21 65821

1.25 84.1 4.59 79106 | 4.60 36 785 4.61 82227
105 778 | 267 73943 | 264 28916 2.70 59 358

II 1.15 81.4 4.01 76199 | 4.08 44451 4.08 82 344

1.25 84.3 5.26 114 190 | 5.22 34897 5.23 82114
105 778 | 283 59986 | 2.87 32137 2388 65341

11 1.15 81.3 4.03 76284 | 4.05 35816 4.05 94751

1.25 84.1 5.52 90 056 | 5.57 36280 5.57 78981

Average 3.838 74 866 | 3.833 33 870 3.849 73 930

can yield substantial average time reductions compared to the external method (63.8% and
54.7% for the networks with 5,180 and 10,360 legs, respectively). We believe that the in-
ternal method would also produce similar time savings for larger instances or for fleet as-
signment problems involving more complex features that would require larger computational

times.

3.5 Conclusion

In this paper, we addressed the fleet assignment problem with passenger flow evaluation, an
airline fleet assignment problem that computes revenues using a PFM. Recently, Dumas et al.
(2009) developed an iterative solution method for this problem that solves alternately a FAM
with expected revenues per flight leg and a PFM to revise the revenues per leg. It appears,
however, to be too time-consuming for solving very large-scale instances or instances of
problem variants involving additional features such as time windows or aircraft maintenance

requirements. Our goal was, thus, to develop an alternative method that reevaluates the
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revenues while solving the FAM in the hope of reducing substantially the computational
times. Our method with internal revenue reevaluations has turned out to be efficient. It
converges much more rapidly to solutions of the same quality as those produced by the
method of Dumas et al. (2009), yielding much faster computational times (around 2 to 3

times faster).
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CHAPITRE 4

AFFECTATION DES TYPES D’AVION AUX VOLS AVEC
REAFFECTATION ET SCENARIOS DE DEMANDE : MODELES ET
METHODES DE RESOLUTION

4.1 Problématique

L’horaire de vol d’une compagnie aérienne est établi par saison. Les saisons ne concordent pas
nécessairement aux saisons réguliéres, mais elles vont plutot dépendre de la situation géogra-
phique de la compagnie aérienne et de son marché. Par exemple, Air Canada a deux saisons
principales : une de la fin du printemps jusqu’au début de ’automne avec une augmentation
de l'offre de vols vers I’Europe et une I'hiver avec plus de vols vers les destinations soleil.
Deux saisons plus courtes font le lien entre les saisons principales. Une compagnie aérienne
définira ses saisons de fagon a ce que celles-ci regroupent des semaines consécutives ayant
une demande prévue assez semblable. De ce fait, ’horaire de vol lors d’une saison est trés
régulier d’'une semaine & ’autre. Il I'est également d’une journée a l'autre dans une meéme
semaine, ’heure de départ d’un vol étant généralement synchronisée chaque jour ou celui-ci

est offert.

Etant donné cette régularité dans ’horaire, la facon classique de résoudre le probléme d’affec-
tation des types d’avion aux vols (FAP) est de le résoudre pour une journée ou une semaine
typique de la saison en fonction de la demande moyenne prévue pour chaque itinéraire.
L’affectation des types d’avion aux vols ainsi obtenue est alors reproduite pour toutes les
semaines de la saison ou tous les jours de la semaine. Pourtant, la demande varie d’une se-
maine a ’autre dans une méme saison et d’une journée a ’autre dans une méme semaine.
Des modifications dans I'affectation sont parfois faites de fagon manuelle, mais une modifica-
tion systématique avant un vol n’est pas une pratique habituelle. Une réaffectation des types

d’avion peut entrainer des problémes dans les étapes suivantes du processus de planification
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des opérations aériennes, notamment la maintenance des avions et I'horaire des pilotes. Ces
derniers sont généralement qualifiés pour piloter une seule famille d’avions ayant la méme
configuration de cockpit. Les recherches actuelles en réaffectation de types d’avion limitent
donc cette réaffectation a un type d’avion de méme famille (Berge et Hopperstad, 1993; Bish

et al., 2004; Jiang et Barnhart, 2009).

Les compagnies aériennes ayant un réseau en étoile (hub-and-spoke) ont une quantité im-
portante de vols étant des allers-retours. Un réseau en étoile présente la caractéristique que
la plupart des segments de vol relient un ou plusieurs aéroports principaux, appelé hub. Un
passager partant d’un aéroport secondaire, appelé spoke, aura typiquement un premier vol
vers un hub puis un second vol vers sa destination finale. Plusieurs routes d’avion dans un tel
réseau font donc des allers-retours a partir d’'un hub. De maniére générale, une route d’avion
peut étre décomposée comme une suite de vols commencant a une station s; et terminant a
une station so. Le plus souvent s; = sy et cette suite de vols forme alors une boucle. Nous
généralisons le concept d'une boucle a celui d’une chaine, c’est-a-dire a toute suite de vols
effectués par le méme avion, méme si s; # so. Cette structure du réseau aérien peut étre
exploitée pour permettre une réaffectation des types d’avion entre des chaines compatibles
(départ du méme aéroport, arrivée au méme aéroport, a des heures rapprochées dans les deux
cas) en minimisant les perturbations sur I’horaire du personnel, les équipages étant mainte-
nus dans les mémes avions, mais sur des chaines différentes. Cette réoptimisation est faite
apres que les horaires des équipages aient été établis, puisqu’avant le FAP complet peut étre
réexécuté (avec certaines contraintes pour assurer la maintenance des avions) sans trop de
perturbations. Bish et al. (2004) mentionnent que Paffectation est, en général, révisée 4 a 6

semaines avant la journée des opérations.

La figure 4.1 donne un exemple d’échange entre deux boucles compatibles a partir d’un hub,
qui est le type d’échange le plus fréquent. Dans cet exemple, les arcs représentent des vols. 11
y a donc deux chaines, que nous appellerons A et B, partant du hub a des heures semblables
(9h00 et 9h05) et revenant a des heures semblables (12h20 et 12h15). Afin de simplifier
I’exemple, nous supposons ici que les heures de départ et d’arrivée ne dépendent pas du type

d’avion affecté. En fonction de la demande moyenne prévue, la chaine A se voit affecter le
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Demande moyenne (nouvelle demande anticipée)

Planification
120 (145) ‘ A —

Avion avec 125 sieges

4-6 semaines avant
le jour des opérations

137 (121)

Avion avec 150 siéges

146 (128) ‘ B

Figure 4.1: Echange de types d’avion entre deux boucles compatibles

type d’avion plus petit lors de la planification. Pour une semaine spécifique de la saison, il se
peut que la demande anticipée pour la chaine A augmente et que celle de la chaine B diminue,
rendant ainsi profitable un échange des types d’avion. Dans cet exemple, nous remarquons
que la nouvelle demande anticipée du vol de retour de la chaine B est de 128, ce qui est
supérieur aux 125 siéges du type d’avion qui lui sera affecté apres échange. Cela signifie que
des passagers seront refusés et potentiellement récupérés sur un autre itinéraire, ce qui est
calculé a ’aide du modéle de flot de passagers (PFM). Généralement, des contraintes seront
ajoutées lors de la réaffectation pour interdire un échange qui placerait sur un vol un type

d’avion ayant moins de siéges que le nombre de billets déja vendus pour ce vol.

Ce type d’échange se fait déja par les compagnies aériennes, mais 'affectation des types
d’avion aux vols lors de la planification n’est pas faite en fonction de ces échanges éventuels.
Lors de la résolution du FAP, nous utilisons une demande moyenne par itinéraire, ce qui
revient & se limiter & un seul scénario de demande. Nous proposons d’optimiser ’affectation
initiale en fonction de plusieurs scénarios de demande, ce qui permet d’obtenir une solu-
tion initiale au FAP qui pourra mieux s’adapter a d’éventuelles variations journaliéres de la
demande et ainsi maximiser le potentiel des échanges de types d’avion. Par exemple, deux
chaines compatibles prises individuellement peuvent se voir affecter un avion de 100 places
chacune. Cependant, avec plusieurs scénarios de demande et en regardant les chaines dans
leur ensemble, un avion de 100 places et un de 125 places pourraient étre affectés aux deux

chaines. Selon la réalisation de la demande, un échange des types d’avion pourra alors étre
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fait pour toujours optimiser 1'utilisation des deux avions. Une réoptimisation de l'affecta-
tion des types d’avion aux vols quelques semaines avant la journée des opérations peut étre
faite pour chaque semaine ou chaque journée en tenant compte de ’affectation initiale, des
billets vendus jusqu’a présent et des informations les plus récentes en terme de prévision de

la demande.

Le probléme est que ces chaines ne sont pas toujours connues a ’avance. Méme lorsqu’une
compagnie aérienne a plusieurs allers-retours pouvant former des chaines, ce n’est pas néces-
sairement avantageux d’affecter le méme avion a l’aller et au retour. Il est donc possible de
déterminer comment regrouper les vols en chaines a 1’avance (soit a partir d’une résolution
initiale ou en fonction de I'horaire de 'année précédente) ou de laisser les vols libres. Dans le
premier cas, il y a deux variantes du probléme envisageables selon que nous voulions mettre
un coiit sur les échanges de types d’avion ou non. Mettre un cotit sur les échanges néces-
site un modeéle plus complexe avec plus de variables, mais il sera plus réaliste. En pratique,
une compagnie aérienne ne voudra pas faire trop de changements de types d’avion dans une
méme journée et elle voudra une amélioration minimale de ces profits. Un changement de
type d’avion ne vaut pas la peine s’il rapporte uniquement 100$. Dans le cas ou les vols
sont libres, les chaines ne sont pas connues a I’avance. Il est alors possible d’énumérer toutes
les chaines potentielles et laisser I'optimiseur choisir comment les vols seront regroupés pour
savoir quelles chaines seront formées. Afin de limiter la complexité du modéle, il est malgré
tout préférable de restreindre ’ensemble de chaines potentielles, notamment en limitant le
nombre de vols ou la durée totale d'une chaine. Ceci méne donc a trois variantes différentes

du probléme que nous décrivons plus en détail a la section 4.3.

Plutot que de simplement maximiser le profit moyen (un seul scénario de demande), tous
les modéles proposés pour résoudre le FAP cherchent a optimiser 'espérance du profit sur
un ensemble de scénarios de demande. Tous les modéles n’utilisent pas les mémes variables
concernant l'affectation d’un type d’avion a un vol, mais ils ont tous les mémes contraintes
standards de couverture des vols, de conservation de flot et de disponibilité des avions. De
nouvelles variables concernant la réaffectation des types d’avion dans chacun des scénarios

de demande sont ajoutées avec des contraintes correspondantes assurant la couverture de



60

chaque vol. Des contraintes sont ajoutées pour s’assurer que les échanges se font entre chaines
compatibles uniquement, ce qui assure aussi que le flot est conservé. Pour chaque scénario
de demande, le cout de 'affectation finale est calculé et le PEM de Dumas et Soumis (2008)
défini au chapitre précédent est utilisé pour connaitre la distribution des passagers et estimer
les revenus. La fonction objectif est alors une somme pondérée des profits de chaque scénario
selon la probabilité d’occurrence de chacun d’entre eux, plus potentiellement une pénalité

sur les échanges de types d’avion.

La section suivante définit les concepts et notations nécessaires a la compréhension des dif-
férents modéles. Les modéles mathématiques sont détaillés a la section 4.3. Nous expliquons
ensuite a la section 4.4 deux méthodes de résolution pouvant s’appliquer a tous les modeéles :
une résolution directe par CPLEX et une décomposition de Benders ou chaque sous-probléme

correspond & un scénario et renvoie au probléme maitre des coupes d’optimalité.

4.2 Notations

Nous allons d’abord définir les termes utilisés dans nos modéles. A chaque station, des arrivées
et des départs ont lieu dans un intervalle de temps spécifique, appelé banque. Une banque
est composée d’une suite d’arrivées consécutives suivie d’une suite de départs consécutifs
pour augmenter les opportunités de connexions. Le temps minimum de connexion est ajouté
a ’heure d’arrivée pour assurer qu’un vol arrivant dans une banque donnée est toujours
admissible a repartir sur un autre vol de cette méme banque. La notion de banque est
généralement utilisée & un hub, mais nous prenons une définition de banque plus générale
qui s’applique a chaque station, qu’elle soit un hub ou non. Nous définissons une banque l{;j}i
comme 'intervalle de temps [a, d] durant lequel des vols arrivent puis repartent de la station s
avec le type d’avion f. Les intervalles sont définis automatiquement en fonction de I'horaire.
Une banque se termine lorsqu’un départ est suivi d’une arrivée, celle-ci faisant partie de
la banque suivante. Puisque la durée de vol et le temps minimum de connexion varient
généralement d’un type d’avion a ’autre et que tous les types d’avion ne sont pas admissibles

sur les mémes vols, les banques sont spécifiques pour chaque type d’avion. La figure 4.2 montre
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Banque 1 Banque 2

>
Temps

Figure 4.2: Exemple de réseau pour une station et un type d’avion donné avec deux banques

un exemple pour une station et un type d’avion donné.

Une boucle, telle que définie précédemment, est une suite de deux segments de vol auxquels
est affecté le méme avion ou la station de départ du premier vol est la méme que la station
d’arrivée du second. Evidemment, tous les vols dans un réseau ne font pas partie d’une boucle.
Meéme dans un réseau en étoile, certains vols sont des singletons qui ne peuvent pas étre reliés
a un autre vol. La compagnie aérienne peut aussi décider de ne pas affecter le méme avion
a l'aller et au retour si la demande en passagers est suffisamment différente. Afin d’englober
tous les types de vols sous une méme notation, nous généralisons le concept de boucle a
celui d’une chaine. Une chaine est simplement une suite de segments de vol (possiblement
seulement un) exploités par le méme avion. Deux chaines hy et hy sont dites étre des chaines
compatibles par rapport a un type d’avion donné si elles ont les mémes banques de départ et
d’arrivée pour ce type d’avion. Comme les banques sont spécifiques pour chaque type d’avion,
deux chaines peuvent étre compatibles pour un type d’avion f;, mais incompatibles pour un
type d’avion f5. Pour qu’'un échange soit possible entre ces deux chaines, elles doivent étre

compatibles pour au moins deux types d’avion.

Les échanges de types d’avion peuvent étre plus complexes et impliquer plus de deux chaines.
La figure 4.3 donne un exemple d’échange impliquant trois chaines hy, ho et h3 et trois avions
de types différents fi, fo et f3, chaque avion devant étre affecté & une chaine différente.
Ici, un arc représente une chaine et chacune d’elle peut se voir affecter deux types d’avion
seulement. Par exemple, les types d’avion f et f3 peuvent étre affectés a la chaine hy, qui est
compatible avec ho pour le type f; et avec hg pour le type f3. Nous remarquons qu’aucune

paire de chaines n’est compatible pour deux types d’avion différents, mais il existe tout de
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. Chaines Affectation Réaffectation
Type d’avion . . .
compatibles initiale scénario w
hy
h,
h,
hy
hy
hy

Figure 4.3: Echange de types d’avion entre trois chaines

méme une réaffectation différente de D’affectation initiale. Pour un type d’avion donné et
pour chaque ensemble de chaines compatibles, la seule contrainte est que le nombre d’avions
affecté doit rester le méme entre 'affectation initiale et la réaffectation pour chaque scénario

de demande.

La notation étant sensiblement la méme pour chaque modéle, nous décrivons ici les ensembles
et paramétres utilisés. Lorsqu’un modéle utilise une notation distincte, celle-ci sera précisée

a la section décrivant le modéle en question. Les ensembles utilisés sont :

S ensemble des stations du réseau, indexé par s
F: ensemble des types d’avion, indexé par f

K¢ : ensemble des banques de la station s pour le type d’avion f, indexé par k

Q- ensemble des scénarios de demande, indexé par w

H ensemble des chaines, indexé par h

Fy . ensemble des types d’avion admissibles pour la chaine A

E;:  ensemble des ensembles de chaines compatibles pour le type d’avion f,

indexé par e
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E5 :  ensemble des ensembles de chaines compatibles de cardinalité 2 ou plus
H, :  ensemble des chaines faisant partie d'un ensemble e de cardinalité 2 ou plus pour
au moins deux types d’avion différents

Oy : ensemble des chaines admettant un avion de type f durant I’heure de comptage

Pour chaque type d’avion f, nous regroupons dans un ensemble e les chaines ayant la méme
banque de départ et d’arrivée pour ce type d’avion. Pour chaque chaine h et chaque type
d’avion admissible f, il existe un unique ensemble e € E; tel que h € e. Une chaine qui
n’est compatible avec aucune autre chaine pour un type d’avion donné est dans son propre
ensemble e de cardinalité 1. Un ensemble e d’une cardinalité plus grande ou égale 4 2 (e € Es)
aura le potentiel d’échanger les types d’avion des chaines h € e lors de la réaffectation. Une
chaine h étant dans un ensemble e € E5 pour au moins deux types d’avion a le potentiel
d’étre impliquée dans un échange de types d’avion, alors h € H,. Cette notation, bien qu’un
peu lourde, permet de réduire la taille des différents modéles en évitant de définir inutilement
les variables et contraintes reliées a la réaffectation d’un nouveau type d’avion sur un segment
de vol si ce dernier ne peut pas étre impliqué dans un échange. Nous utilisons la notation k™~
et kT pour identifier la banque qui précéde et celle qui suit la banque k a la méme station
pour le méme type d’avion. La création des scénarios de demande sera vue en détail a la

section 95.2.

Les parameétres utilisés sont :

ng: nombre d’avions disponibles de type f

ne : nombre de chaines dans I’ensemble de chaines compatibles e

O : banque d’origine pour ’ensemble de chaines compatibles e

d, : banque de destination pour ’ensemble de chaines compatibles e
p* probabilité d’occurrence du scénario w

Cyp - cott de I'affectation d’un avion de type f a la chaine h
RL%, : perte de revenus d’un avion de type f a la chaine i pour le scénario w par rapport

a une flotte fictive de capacité infinie

La perte de revenus RLY), est la méme que celle utilisée dans le chapitre précédent, mais

elle dépend de la distribution des passagers pour chaque scénario de demande. Les variables
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de décision n’étant pas les mémes d’un modéle a 'autre, elles seront décrites en détail pour

chaque modéle a la section suivante.

4.3 Modéles mathématiques

Nous présentons maintenant chaque modéle en détail. Tous les modéles ont en commun
de vouloir minimiser 1'espérance des cotts et des pertes de revenus (ce qui est équivalent a
maximiser les profits) sur 'ensemble des scénarios de demande en fonction de leur probabilité
d’occurrence. L’affectation initiale est obtenue en considérant ’ensemble des scénarios. Une
affectation finale est trouvée pour chaque scénario et celle-ci différe de I'affectation initiale
uniquement, par des échanges de types d’avion entre chaines compatibles. Chaque modéle
reprend les groupes de contraintes d’un modéle d’affectation des types d’avion standard (voir
Hane et al., 1995) : affectation d’exactement un type d’avion a chaque vol, la conservation
du flot des avions dans le réseau et le respect du nombre d’avions disponibles pour chaque

flotte.

4.3.1 FAP avec chaines connues, sans cofit sur les échanges

La premiére variante du probléme ne met aucun coit sur les échanges. Elle suppose égale-
ment que les ensembles de chaines compatibles e sont les mémes pour tous les types d’avion,
c’est-a-dire que deux chaines qui sont compatibles pour un type d’avion donné seront com-
patibles pour tous les types d’avion. Ceci sera le cas pour une compagnie aérienne dont toute
la flotte a la méme vitesse de croisiére, des temps minimums de connexion semblables et
que tous les types d’avion sont admissibles sur tous les vols (Jiang et Barnhart, 2013, font
une telle hypothése). Ceci est une hypothése assez forte, mais elle a 'avantage de réduire
considérablement la complexité du probléme. Pour le modéle de cette variante du probléme,
nous remplacons donc les ensembles F; par F qui est I’ensemble des ensembles de chaines

compatibles, chaque chaine h appartenant & un et un seul ensemble e € E.

L’affectation initiale n’intervenant pas dans la fonction objectif, il n’est pas nécessaire de
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connaitre I'affectation précise sur chaque chaine. En effet, utiliser de telles variables entraine-
rait de la symétrie, c’est-a-dire qu’il existerait plusieurs solutions différentes avec exactement
la méme valeur pour la fonction objectif. Seulement la somme a travers toutes les chaines
d’un ensemble de chaines compatibles nous intéresse vraiment. Si le nombre de chaines dans
I’ensemble de chaines compatibles e est n® = 3, il faut s’assurer de placer 3 avions, mais
'affectation précise n’est pas importante a ce stade. Nous utilisons donc les variables Ny,
pour l'affectation initiale, ou Ny, est égale au nombre d’avions de type f affecté a 'ensemble
des chaines compatibles e. L’affectation précise a chaque chaine se fait lors de la réaffectation
pour chaque scénario avec les variables Z%,, ou ZF, est égale a 1 si le type d’avion f est
affecté a la chaine h, 0 sinon, apres réaffectation, dans le scénario w. La variable Y},+ donne

le nombre d’avion de type f au sol entre les banques k et k™ pour k € K.

Afin de respecter le nombre d’avions disponibles par flotte, ceux-ci doivent étre comptés a un
moment spécifique £. Ce temps doit étre choisi de sorte que pour chaque ensemble e, toutes
les chaines h € e sont soit au sol, soit en vol. Pour chaque station s et chaque flotte f, soit
la banque ks qui inclut 'heure de comptage ¢. De plus, nous utilisons les ensembles Oy,
qui regroupent les ensembles e (plutot que les ensembles Oy qui regroupent les chaines)
admettant un avion de type f couvrant ’heure de comptage ou dont la banque d’origine o,

ou la banque de destination d. inclut I’heure de comptage.

Le modéle mathématique proposé est :

min Zp“’ Z Z Zg, (Cpn + RLY,) (4.1)

wes heH feF,
sujet a: ZNfe =n°, VeckF, (4.2)
fer
ZNfe+Yfk*k_ZNfe_Yfkk+:O> \V/k‘EKSf, SGS, fEF, (43)
eck: eck:
de=k oe=k

eEOfe ses



 zZp, =1, VheHuweQ, (4.5)
fEFY,
> Zj,—Nie=0, VecE, feF weq, (4.6)
hee
N¢e >0, VfeF eck, (4.7)
Zp, €40,1}, VfeF, he H, we, (4.8)
Yfkk+ >0, Vkest, seS, fePF. (49)

La fonction objectif (4.1) minimise les coiits et les pertes de revenus pour tous les scénarios
en fonction de leur probabilité d’occurrence. Les trois premiers groupes de contraintes re-
présentent les contraintes pour un FAP standard. Les contraintes (4.2) assurent que chaque
ensemble de chaines se voit affecter le bon nombre d’avions dans l'affectation initiale. Les
contraintes (4.3) garantissent la conservation de flot dans le réseau. La disponibilité des avions
est respectée a l'aide des contraintes (4.4). Les deux groupes de contraintes suivants gérent
la réaffectation des types d’avion. Les contraintes (4.5) assurent que chaque chaine est effec-
tuée par exactement un type d’avion admissible lors de la réaffectation pour chaque scénario.
Les contraintes (4.6) garantissent que les réaffectations de types d’avion pour chaque scé-
nario et chaque ensemble de chaines compatibles e conservent le méme nombre d’avions
de chaque type que dans l’affectation initiale. Finalement, les contraintes binaires et de

non-négativité (4.7)—(4.9) restreignent le domaine de faisabilité des variables.

4.3.2 FAP avec chaines connues et coiit sur les échanges

Cette deuxiéme variante du probléme met une pénalité dans la fonction objectif sur chaque
échange. Elle est plus complexe que la précédente en permettant des durées de vol et des
temps de connexion au sol différents selon le type d’avion et en limitant 'admissibilité des
types d’avion sur chaque vol. L’affectation initiale doit donc étre spécifique pour chaque
chaine pour étre certain d’affecter un type d’avion admissible et pour savoir s’il y a un
changement ou non lors de la réaffectation. Nous utilisons donc les variables X, o Xy, est

égale a 1 si le type d’avion f est affecté a la chaine h, 0 sinon, dans ’affectation initiale. Nous
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développons deux modéles différents qui sont équivalents du point de vue mathématique. Le
premier place la totalité des cotits et des pertes de revenus sur les variables de réaffectation
par scénario Zp,. Ceci donne une formulation plus simple avec moins de contraintes qui
est plus facile a résoudre directement a l’aide d’un solveur comme CPLEX. Le deuxiéme
modéle utilise plus de variables et de contraintes, mais il est plus facilement décomposable en
probléme maitre et sous-problémes afin de pouvoir utiliser la décomposition de Benders, ce
qui peut étre nécessaire lorsque la taille du probléme ou le nombre de scénarios augmentent.

Ceci sera vu plus en détail a la section 4.4 sur les méthodes de résolution.

4.3.2.1 Premiére formulation

Nous présentons le modéle mathématique général auquel s’ajouteront d’autres contraintes

pour le calcul de la pénalité sur les échanges. Le modéle mathématique donne :

min pr Z Z Zg, (Cpn + RLY,) + Colit des échanges (4.10)
weN heH feF),
sujet a: Zth:l’ Vh € H, (411)
fEFK
ZZth—l-Yfkfk— ZZth—Yfkk+:O, V]{ZGKSf, s €S, fGF, (4.12)
ecEy: hee e€Ey: hee
de=k oc=k
heO; s€S
> Zp,=1, VYheHuweQ, (4.14)
fEFK
> Z{ =D Xp=0, Ve€Es feF,weQ,  (415)
hee hee
th S {O, 1}, Vfel, heH, (4.16)

74, €4{0,1}, VfeF, he H, we, (4.17)
YkaWL >0, Vke st, seS, feF. (418)
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Les contraintes (4.11) assurent d’affecter exactement un type d’avion a chaque chaine et les
contraintes (4.15) garantissent que les échanges de types d’avion dans chaque scénario se font
entre chaines compatibles seulement. Les autres contraintes ont toutes la méme fonction que

dans le modéle précédent, excepté que l'affectation initiale se fait sur les variables X .

Pénalité sur les échanges

L’imposition d’'une pénalité assure qu’une réaffectation est faite seulement lorsque le gain
est suffisant et permet de tenir compte d’autres coiits comme le salaire de 1’équipage. En
effet, chaque membre d’équipage sera payé le maximum entre le salaire de sa route initiale
prévue et celui de sa nouvelle route aprés réaffectation. L’ajout d’une pénalité dans le modéle
mathématique ajoute un certain nombre de contraintes. Nous présentons deux versions pour
la pénalité : une étant constante pour tous les échanges et une étant spécifique pour chaque
chaine h, chaque affectation de flotte initiale f; et chaque réaffectation de flotte fo. Comme
expliqué a la section 4.2, la pénalité est calculée uniquement lorsqu’il y a effectivement un

échange possible pour la chaine h, soit lorsque h € Ho.

Cofit des échanges constant

La premiére facon de modéliser le cott sur les échanges est d’affecter une pénalité constante
Pez & chaque changement de flotte entre 'affectation initiale et la réaffectation pour chaque
chaine. Ceci réduit le nombre de contraintes puisqu’il n’est pas nécessaire de distinguer les
échanges entre eux. La variable binaire 9;’ est égale & 1 si le type d’avion a changé sur
la chaine h entre ’affectation initiale et le recours dans le scénario w, 0 sinon. Avec ces

paramétres, le cott des échanges dans la fonction objectif sera :

Colit des échanges = pe, Z op, (4.19)
heH»
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et les contraintes a ajouter au modele mathématique pour gérer cette pénalité sont :

Z}Uh—th—l—(S;f >0, VfeF,heHywe- ), (4.20)

oy € {0,1}, Vh € Hy,w € . (4.21)

Les contraintes (4.20) forcent les variables 93’ a étre égale a 1 lorsque Xy, = 1 et Z}, =0
et la minimisation du cotit des échanges dans la fonction objectif aura pour effet que 9;” = 0

dans toute autre situation.

Cott spécifique pour chaque échange

La deuxiéme facon de modéliser le cott sur les échanges est d’avoir une pénalité spécifique
pour chaque échange possible. Cette pénalité py, r,, dépend de la chaine h, de I'affectation
initiale f; et de l'affectation finale f, (# fi). Chaque changement étant unique, il faut
remplacer la variable 0; par les variables AY ., pour chaque paire de flottes f1 et fa possible
pour la chaine h. La variable A}Ulth est égale a 1 si le type d’avion sur la chaine h passe de
la flotte f; a Daffectation initiale a la flotte fo lors de la réaffectation dans le scénario w, 0
sinon. Ce modéle est plus complexe que le premier, mais il a le bénéfice d’étre plus précis
et peut s’avérer nécessaire s’il y a une grande variabilité dans le cotiit des échanges pour la

compagnie aérienne. Le cott des échanges dans la fonction objectif sera :

Colit des échanges = g E E N AV (4.22)
heHy f1€F}, f2€F},
f1#f2

et les contraintes a ajouter au modele mathématique pour gérer cette pénalité sont :

Xflh‘i_Z}'l;h_ }‘;fzhg 1, Vfl,fg EFh,fl #fg,hEHg,U)EQ, (423)

fpn €101} Vi, fo € Fy, fi # fo, h € Hayw € Q) (4.24)

De la méme fagon que pour une pénalité constante, la minimisation des cotits dans la fonction

objectif cherche & avoir A%, = 0 dés que possible et la contrainte (4.23) associée a fi, fa,
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h et w force la variable A% ., a étre égale a 1 seulement si affectation de la chaine h passe
du type d’avion f; lors de l'affectation initiale (X, = 1) au type d’avion f; lors du recours

dans le scénario w (23, = 1).

4.3.2.2 Deuxiéme formulation

Ce modéle place une partie des coiits et des pertes de revenus sur 'affectation initiale donnée
par les variables X. Les pertes de revenus provenant du PFM étant calculées par scénario
de demande, une moyenne sur tous les scénarios est faite, en fonction de leur probabilité
d’occurrence. Les variables A définies précédemment sont utilisées pour calculer la variation
des cotits et revenus par scénario a la suite de la réaffectation ainsi que la pénalité sur chaque
échange. Nous présentons le modéle mathématique complet sans décomposition et détaillons

les différences avec le premier modéle par la suite :

Z Z Xin (Cpn + prRL}Uh) + pr Z [ Z Z AY o [(Crn — Cpin)

hEH fcFy, we we heHs “f1€F}, fo€F),

+ (RLY,, — RLY,,)] Z Z pflfzhAflhh:” (4.25)

f1EF, f2€F),
fi#f2

sujet a: Z th =1, VheH, (426)
fEFK
SN Xt Y= > S Xph Vi =0, VkeKy, seS feF,  (427)
ecEy: hee e€Ey: hee
de=k oc=k
PIRTEDD Yigtr, <ng, V€L (4.28)
heOy s€S
feFr,
ZZ}Uh—ZthIO, Vee€ E,, feF,we, (4.30)
hee hee
Xflh + Z}l;h - 1j€1f2h <1, Vfi,fo€ F,,he Hy,w €, (431)
Z Z Afleh Vh’ S H27w S Qv (432)

f1€Fy, f2€F),
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thE{O,l}, VfGFh, h e H,
Yfkk+207 VkEst, s €S, feF,
Z, €40,1}, Vf€F, he HyweQ,

Y n €{0,1},  Vfi, fo € Fy, h € Hy,w € QU

Comme expliqué au début de cette section, I'objectif de ce modéle est de pouvoir utiliser la
décomposition de Benders de fagon plus efficace comparé au premier. Dans celui-ci, les va-
riables Z n’apparaissent plus dans la fonction objectif. Elles sont uniquement impliquées dans

les contraintes (4.29)—(4.31) qui gérent la réaffectation et la pénalité de chaque échange.

Les variables binaires AY ., sont ici définies pour tout type d’avion admissible f, et fo.
Lorsque fo = fi, cela signifie qu’il n'y a pas eu d’échange. La portion de la fonction objec-
tif avec la variable A% ., sera alors égale a 0 (aucune variation). Ceci est nécessaire, car
la variation des cotts et des pertes de revenus en modifiant 'affectation peut étre néga-
tive. La minimisation de la fonction objectif ne fixera donc pas forcément A% ., = 0. Les
contraintes (4.31) assurent que AY ;, = 1si Xy, = 1 et Z3, = 1 et les contraintes (4.32)
assurent qu’une et une seule variable A sera égale & 1 pour une chaine h € H, et un scéna-

rio w € §) donné.

Les contraintes (4.26)—(4.28) sont les mémes que dans la premiére formulation et gérent res-
pectivement 'affectation initiale sur chaque chaine, la conservation du flot dans le réseau et le
respect de la disponibilité des avions. Les contraintes (4.29) et (4.30) sont trés semblables aux
contraintes (4.14) et (4.15) de la premiére formulation, mais elles sont ici définies uniquement
pour les chaines h € H, et les ensembles e € E5 respectivement. Ceci est possible, car les
cotts et les pertes de revenus sont mis sur 'affectation initiale. Les chaines ne pouvant pas
étre impliquées dans un échange peuvent étre ignorées lors de la réaffectation dans chaque
scénario, ce qui n’était pas possible dans le premier modéle. Les contraintes (4.29)—(4.32) sont
donc définies uniquement pour les chaines ayant un échange de types d’avion possible, tout
comme les variables Z et A. La section 4.4.2 présente en détail comment la décomposition

de Benders est utilisée pour résoudre ce modéle.
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4.3.3 Modéle d’affectation des types d’avion avec chaines libres

La troisiéme variante du probléme ne suppose pas que les chaines sont connues a ’avance
comme dans les deux variantes précédentes, la notation est donc sensiblement différente.
L’affectation initiale est identique au FAP standard. Elle se fait sur I'ensemble des vols L,
indexé par [ ou {odt}, représentant un vol de l'origine o vers la destination d au temps t.
L’ensemble des nceuds du réseau est représenté par N. Nous utilisons les variables X, ot X[
est égale a 1 si la flotte f est affectée au vol [, 0 sinon, dans 'affectation initiale. ’ensemble
des types d’avion admissibles pour un vol [ est donné par F;. Le nombre d’avions de type
f au sol & la station o durant l'intervalle [t, t7] est représenté par la variable Yj,+. Le
comptage des avions se fait de la méme fagon que dans le FAP standard (voir section 3.2.1).
Oy représente 'ensemble des vols [ traversant I'heure de comptage et [t,7, t:f] est l'intervalle

de temps a la station s pour le type d’avion f qui inclut I’heure de comptage.

Simultanément avec l'affectation initiale, le modéle doit étre en mesure de choisir quelles
chaines seront activées, ces derniéres pouvant différer d’un scénario a 'autre. Plutot que de
connaitre ’ensemble des chaines H comme dans les modéles précédents, H représente 1’en-
semble des chaines potentielles (qui inclut également chaque vol comme étant une chaine
d’un seul vol). Il est possible d’énumeérer toutes les chaines potentielles ou de limiter leur
nombre a inclure dans H en fonction de différents critéres : le nombre de vols par chaine,
le temps de connexion entre chaque vol ou la durée totale d'une chaine par exemple. En
incluant toutes les chaines d’un seul vol, une solution réalisable du FAP standard sera aussi
réalisable pour ce modéle. Chaque vol [ peut faire partie de plusieurs chaines potentielles.
L’ensemble des chaines potentielles incluant le vol [ est identifié par H;. Les chaines poten-
tielles sont regroupées en ensembles de chaines compatibles e € E comme dans les modeles

précédents.

Des contraintes sont ajoutées au modéle pour savoir quelles chaines potentielles sont actives
lors de la réaffectation pour chaque scénario. Une chaine peut étre active seulement si tous les
vols de cette chaine ont le méme type d’avion lors de 'affectation initiale. De plus, pour chaque

vol une et une seule chaine incluant ce vol peut étre active par scénario. Nous définissons
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les variables binaires V', ou Vi est égale a 1 si la chaine h est active pour le scénario w et
est effectuée par le type d’avion f dans Paffectation initiale, 0 sinon. Les variables V; font
donc le lien entre I'affectation initiale sur les vols avec les variables Xy et la réaffectation
faite sur les chaines pour chaque scénario w avec les variables Z7; définies dans les modeles

précédents. Le modéle mathématique s’écrit alors :

min pr Z Z Zg, (Cpn + RLY),) + Colit des échanges (4.37)
weQ heH feFy,
sujet a: Y Xp=1, Vel (4.38)
fer
Z Z Xfost’ + stt*t - Z stdt - vastt+ = Ov v{fu S, t} S N7 (439)
0ES tiTp o=t desS
Y Xu+Y Yy, Sng, VfEF (4.40)
IEOf seS

Xp =V 20, VweQ heH,feF,lel, (441)

> V=1, VieLweq, (4.42)
heH; feF;

> zp =Y ViH=0, VheH weqQ, (4.43)
fery feFry

> Zp, =Y V=0, Vec€E, feF, weq, (4.44)
hee hee

Xfle{ovl}u vfeﬂv ZELu
Vi, €40,1}, VfeF, he H, weq,
Z, €40,1}, VfeF, he H, we,

sttt+ Z O, V{f, S, t} - N

La fonction objectif est la méme que celle du modéle (4.10)—(4.18) présenté a la section
précédente (4.3.2.1). Les contraintes (4.38)—(4.40) qui gérent laffectation initiale sont les
mémes que celles du FAP standard présenté a la section 3.2.1. Les contraintes (4.41) assurent
que la variable V; peut étre égale a 1 (ce qui représente l'activation de la chaine h avec

le type d’avion f dans le scénario w) uniquement si tous les vols [ faisant partie de cette
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chaine ont la flotte f comme affectation initiale. Les contraintes (4.42) imposent qu’une et
une seule chaine A comprenant le vol [ puisse étre active par scénario. Les chaines d’un
méme ensemble de chaines compatibles e € E ne sont pas nécessairement toutes actives
dans un méme scénario de demande. Des contraintes doivent étre ajoutées afin d’assurer
qu’une chaine active h dans un scénario w (peu importe le type d’avion f) se voit affecter
un type d’avion lors de la réaffectation, qu’il y ait un échange ou non. Ceci est imposé par
les contraintes (4.43). Les contraintes (4.44) s’assurent que les échanges de types d’avion
se font entre chaines compatibles seulement. Finalement, les contraintes binaires et de non-

négativité (4.45)—(4.48) restreignent le domaine de faisabilité des variables.

Ce modéle permet également d’ajouter une pénalité sur les échanges de types d’avion selon
les deux méthodes décrites plus haut. Le cott & ajouter a la fonction objectif sera le méme
qu’aux équations (4.19) et (4.22) selon que la pénalité est constante ou spécifique pour chaque
échange respectivement. Pour les contraintes a ajouter au modéle, il suffit de remplacer la
variable Xy, par les variables V;. Pour une pénalité constante, les contraintes a ajouter sont

donc :

Zip = Vi +0, 20, VfeF,heHywe(, (4.49)
6 €{0,1}, Vhe HyweQ (4.50)

et, pour une pénalité spécifique pour chaque échange, nous obtenons :

Vi + 25, — A pn <1, Vfi, fo € Fy, fi # fo, h € Hy,w € Q, (4.51)

}vlhh € {O, 1}, \V/fl, f2 c Fh, h e HQ,’LU e Q. (452)

4.4 Meéthodes de résolution

Nous présentons maintenant deux méthodes de résolution pouvant étre utilisées pour ré-
soudre chacun des modéles : une approche directe par CPLEX et une approche utilisant

la décomposition de Benders. Les deux méthodes sont appliquées a la deuxiéme variante du
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probléme présentée a la section 4.3.2. L’approche directe par CPLEX est appliquée sur le pre-
mier modele de cette variante (section 4.3.2.1) tandis que la méthode de résolution utilisant

la décomposition de Benders est appliquée sur le deuxiéme (section 4.3.2.2).

4.4.1 Approche directe par CPLEX

La premiére méthode de résolution consiste a résoudre le modéle (4.10)—(4.18) dans son
ensemble directement par CPLEX. Un algorithme semblable & celui utilisé pour résoudre le
FAP avec réévaluation externe des revenus a la section 3.2.3 est appliqué. L’algorithme est
résumé a la figure 4.4. Tout d’abord, les segments de vol doivent étre regroupés en chaines.
Ceci peut étre fait a partir d’'une résolution initiale ou de I’horaire de ’année précédente.
Cette étape peut varier sensiblement d’une compagnie aérienne a ’autre selon 'ensemble des
vols de leur horaire. Nous présentons a la section 5.1 le découpage de chaines utilisé pour
nos tests. Ensuite, les pertes de revenus sont initialisées pour chaque scénario de demande et
pour chaque chaine a 'aide du PFM. Cette initialisation est la méme que celle utilisée dans
le chapitre précédent. Les pertes de revenus des segments de vol formant une chaine sont

calculées par le PFM et additionnées pour donner les pertes de revenus de la chaine.

L’algorithme itére ensuite entre la résolution du FAP avec réaffectation et scénarios de de-
mande et la résolution du PFM pour chaque scénario afin de mettre a jour les pertes de
revenus par chaine. Une fois le critére d’arrét atteint (généralement un certain nombre d’ité-
rations), le processus est arrété. Puisque 1’objectif est d’obtenir une solution suffisamment
flexible pour répondre aux différentes variations possibles de la demande, nous évaluons les
solutions obtenues aprés chaque itération sur un ensemble de scénarios de demande différents
que ceux utilisés lors de la résolution. Ceci nous permet d’observer I’amélioration des profits
espérés d’une itération a ’autre et de comparer les profits selon le nombre de scénarios de

demande utilisés.

L’évaluation d’une solution X sur un scénario de demande w spécifique se fait en trois étapes.
.\ w . . .
Premiérement, les pertes de revenus RLY), par type d’avion f et par chaine h pour ce scénario

sont calculées par le PEM en utilisant la capacité des types d’avion de la solution X . Ensuite,
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Figure 4.4: Algorithme de résolution pour I'approche directe par CPLEX
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un probléme d’échanges de types d’avion pour ce scénario est résolu. Le modele mathématique

donne :

min SN Zy (Cpu+ RLY,) +pew Y 61

heH feF, heHz

sujet a: Y zZp, =1, VheH,

feF,

ZZ}Uh:Zth’ V€€Ef, fGF,

he€e hee

Z}Uh—f—(s}?f zyfh, \V/fGFh,hEHQ,

5v € {0,1}, Vh e Hy,

Z €10,1}, VfeF, heH.

(4.53)

(4.54)

(4.55)

(4.56)
(4.57)
(4.58)

La résolution du modéle (4.53)—(4.58) permet d’obtenir la solution spécifique pour ce scéna-

rio apres les échanges de types d’avion entre chaines compatibles. Le modéle est obtenu en
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limitant & un scénario le modéle complet (section 4.3.2.1) et en remplagant les variables X
et Y par la solution X et Y. Les contraintes impliquant uniquement les variables X et Y sont
ainsi enlevées. Les contraintes (4.54) assurent l'affectation d’exactement un type d’avion par
chaine. Les contraintes (4.55) garantissent que pour chaque ensemble de chaines compatibles
le nombre d’avion de chaque type dans la solution initiale X est respecté lors des échanges de
types d’avion. La pénalité sur les échanges est gérée par les contraintes (4.56). Nous utilisons
ici un colt constant p., par échange avec le colt dans la fonction objectif donné a 1’équa-
tion (4.19). Les contraintes (4.56)—(4.57) sont équivalentes aux contraintes (4.20)—(4.21), avec
la variable Xy, remplacée par la valeur th obtenue de la solution du probléme maitre. Un
colit spécifique par échange py, f,, pourrait aussi étre utilisé en remplacant le cotit des échanges
dans la fonction objectif par le cout donné a I’équation (4.22) et les contraintes (4.56)—(4.57)
par les contraintes (4.23)—(4.24). Finalement, le PFM est réexécuté avec la solution de ce
modeéle pour obtenir I’évaluation des revenus pour ce scénario de demande. Cette évaluation
est faite pour un grand nombre de scénarios pour obtenir une moyenne des profits espérés et

ainsi bien évaluer la flexibilité de la solution face a une variation de la demande.

4.4.2 Décomposition de Benders

La décomposition de Benders (1962) est une méthode souvent utilisée pour résoudre des
problémes complexes comme des problémes stochastiques ou en programmation mixte en
nombres entiers, ol certaines variables prennent une valeur entiére tandis que d’autres peuvent
étre réelles. Le principe général de la décomposition de Benders est d’exploiter la structure
d’un modeéle pour le résoudre en le séparant en un probléme maitre et un sous-probléme.
L’algorithme itére entre la résolution du probléme maitre, qui attribue une valeur provisoire
aux variables qu’il contient, et le sous-probléme, qui est obtenu en fixant les variables du
probléme maitre & leur valeur provisoire. A chaque itération, le sous-probléme transmet de
I’information au probléme maitre sous forme de coupes de faisabilité et d’optimalité, réduisant

I’espace de solution jusqu’a ce qu’il y ait convergence vers une solution optimale.

Dans le cas de notre probléme d’affectation des types d’avion aux vols avec réaffectation et
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scénarios de demande, I'utilisation de scénarios donne une structure spécifique au modéle
qui se préte bien a la décomposition de Benders en ayant plusieurs sous-problémes, soit
un par scénario. Le probléme maitre regroupe les variables associées a l'affectation initiale
et sa résolution permet d’obtenir une solution provisoire. Chaque sous-probléme regroupe
les variables spécifiques a la réaffectation d’un scénario. Il utilise la solution provisoire du
probléme maitre afin de trouver les réaffectations a effectuer pour ce scénario ainsi que la
variation des colts et des revenus par rapport a P'affectation initiale. Cette information est

transmise sous forme de coupes d’optimalité au probléme maitre et le processus itératif

recominermnce.

Nous présentons d’abord le principe de la décomposition de Benders sur un modele général
ayant la méme structure que le modéle présenté a la section 4.3.2.2. La formulation mathé-
matique de la décomposition de Benders appliquée sur ce modéle est ensuite présentée et

nous terminons en expliquant la stratégie de résolution avec cette technique.

4.4.2.1 Principe

Nous présentons la décomposition de Benders sur un probléme stochastique général a deux
étapes, qui est appelé probléme stochastique avec recours. La premiére étape correspond a
une décision initiale, celle-ci prenant une décision sur le futur sans disposer de toute I'informa-
tion. Cette incertitude est représentée comme un événement aléatoire w parmi un ensemble
d’événements possibles ). La deuxiéme étape est le recours qui dépend de I'événement w.
Soit z le vecteur des variables pour la décision initiale et ¢ son vecteur de colits associés.
Le recours a la suite de 'événement w € ) est représenté par le vecteur de variables y* et
son vecteur de coiits associés est f*. Nous supposons que ’ensemble d’événements €2 est fini
(w=1,...,WW) avec une probabilité d’occurrence p* pour un événement w donné. Le modéle

peut alors s’écrire sous la forme :

(P) min T+ p () y"] (4.59)

weN
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sujet a: Az =, (4.60)
BYz + Dy* =d*, YweQ, (4.61)
x>0,y >0, Ywe/( ), (4.62)

ouce R, fYe R beR™, d¥ € R™, B et D sont des matrices de taille my x ny et
mg X ng respectivement. Les contraintes (4.60) sont reliées a la décision initiale, tandis que
les contraintes (4.61) sont reliées au recours. Nous remarquons que la matrice D ne dépend
pas de ’événement w. La matrice des contraintes a donc une structure duale bloc-angulaire

qui peut étre exploitée :

A 0 .- 0
B D

B* 0 D

BY D

Cette structure permet de décomposer le probléme (P) en un probléme maitre (PM) et diffé-

rents sous-problémes (SP"), un pour chaque événement w. Le probléme maitre donne :

(PM) min o+ Z prov (4.63)
wesd

sujet &: Az =, (4.64)

x>0, 0"ecR, VYwe. (4.65)

Les variables 6" représentent le cott du recours w qui provient du sous-probléme (SPY).
Comme celui-ci n’est pas connu initialement, les variables 6" sont fixées a zéro (en supposant
que la fonction objectif de tous les sous-problémes est non-négative, sinon il faut fixer 6% a

une borne inférieure). Une fois le probléme maitre résolu, la solution optimale T obtenue est
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utilisée pour résoudre chaque sous-probléme. Le sous-probléme (SP") s’écrit alors :

(SP") min (f)Tyv (4.66)
sujet a: Dy" =d" — B, (4.67)
y* > 0. (4.68)

La résolution du sous-probléme permet d’obtenir des coupes d’optimalité si le sous-probléme
est réalisable et des coupes de faisabilité dans le cas contraire. Celles-ci sont ajoutées au
probléme maitre afin de restreindre la variable . Pour notre probléme d’affectation des types
d’avion aux vols avec réaffectation et scénarios de demande, les sous-problémes sont toujours
réalisables, car ceux-ci gerent la réaffectation pour un scénario de demande et I'affectation
initiale peut toujours étre conservée. Nous expliquons donc uniquement le calcul des coupes
d’optimalité. L’application de la décomposition de Benders sur notre modéle est expliquée

en détail & la section suivante.

Pour calculer une coupe d’optimalité, nous considérons d’abord le dual du probléme (SP")

qui s’écrit comme suit :

(SPD") max (7)*(d¥ — B¥7) (4.69)
sujet a: (7)YTD < fv, (4.70)
™ > 0. (4.71)

Ici, 7 est le vecteur des variables duales associées aux contraintes (4.67) du sous-probléme
(SP™). Le théoréme de la dualité faible assure que (f*)Ty* > (7%)?(d¥ — B¥Z). De plus,
puisque la faisabilité du probléme dual ne dépend pas de Z, nous obtenons donc (f*)Ty® >
()T (d¥ — B¥z). Ceci entraine la contrainte suivante a ajouter au probléme maitre a la suite
de la résolution du dual du sous-probléme :

0w > (7)T(d“ — B x). (4.72)

La contrainte (4.72) est une coupe d’optimalité et elle est ajoutée au probléme (4.63)—(4.65)
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uniquement si la solution courante (7, 0) la viole, c¢’est-a-dire, si

“w

0 < (7)T(d“ — B“7). (4.73)
De plus, I'inégalité (4.73) sert de critére d’arrét de I’algorithme. Si elle n’est pas satisfaite pour
au moins un événement w, alors il n’y a plus de coupe d’optimalité a ajouter, ’algorithme

se termine et la solution trouvée est optimale.

Itération du processus et critére d’arrét

L’objectif de la décomposition de Benders est de résoudre le probléme (P) en alternant entre
la résolution du probléme maitre (PM) et celle des sous-problémes (SP™) jusqu’a ce qu’il y
ait convergence vers la solution optimale. En pratique, nous calculons des bornes inférieure et
supérieure sur la solution optimale a chaque itération et nous arrétons le processus lorsque le
gap est suffisamment petit. Le probléme (P M) ignorant les variables y et les contraintes (4.61)
du probléme (P), il aura toujours une solution inférieure a la solution optimale. Etant donné
qu’a chaque itération nous ajoutons une ou plusieurs contraintes qui ont pour effet de res-
treindre 'espace de solution du probléme maitre, cette borne inférieure sera améliorée. A

I'itération v, soit la solution du probléme maitre (Z,, 0,), la borne inférieure sera alors

LB =c"T,+ Y p"f,. (4.74)

weQ
Une borne supérieure sur la fonction objectif du probléme (P) peut étre calculée a chaque
itération. Il suffit de calculer la fonction objectif du probléme (P) (équation 4.59) a l'aide
des valeurs des solutions du probléme maitre et des sous-problémes. A I'itération v, soit 7, la
solution du probléme maitre et 7 les solutions pour les sous-problémes. La borne supérieure

A cette itération sera alors :

UB, =c"Z,+ > p" (/)7 . (4.75)

we
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Cette borne supérieure n’est pas garantie de diminuer d’une itération a ’autre. Nous mettons
donc & jour la borne supérieure a chaque itération en conservant uniquement la meilleure
valeur :

UB= min UB, (4.76)

Jj=1,...v

Nous avons donc une borne inférieure non décroissante et une borne supérieure non crois-
sante ce qui délimite progressivement plus étroitement la valeur de la fonction objectif du
probléme (P). L’algorithme de la décomposition de Benders peut étre stoppé lorsque la diffé-
rence relative entre les bornes supérieure et inférieure est en dessous d’un certain seul e fixé,

soit lorsque nous avons (en supposant LB > 0) :

(UB— LB)/LB < ¢ (4.77)

4.4.2.2 Formulation mathématique

Nous présentons la décomposition de Benders appliquée au modéle (4.25)—(4.36) présenté a
la section 4.3.2.2. Le probléme maitre gére I'affectation initiale avec la conservation du flot et
le respect du nombre d’avions. Les sous-problémes, un par scénario, traitent la réaffectation

de la flotte et la pénalité sur les échanges.

Probléme maitre

Le probléme maitre correspond au FAP standard auquel on ajoute des coupes d’optimalité. La
fonction objectif correspond a la fonction objectif standard du FAP calculée avec I'affectation
initiale (variables X). La perte de revenu est la somme pondérée des pertes de revenus des
scénarios. A ceci s’ajoute une somme pondérée de la variation des profits de chaque scénario
(par rapport aux profits de l'affectation initiale), représentés par 6*, en fonction de leur
probabilité d’occurrence. Les variables 8" représentent la valeur de la fonction objectif du

sous-probléme associé a chaque scénario w et elles apparaissent également dans les coupes
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d’optimalité.

(PM) min SN X (Con+ > pURLYE) + > pUo” (4.78)

heH feF, we we)
sujet a: > Xp=1, Vhed, (4.79)
feFry

Z Zth +Yfk;ks - Z Zth — Yfkskj =0, Vk,eK,, s€8, feF, (4.80)
ecE: hece ecFE: hee
de=ks ook

Z X+ nyksok;o <ns, VfeF (4.81)

heOgp, s€S

Coupes d’optimalité,
the{O,l}, VfGFh, h e H,
Yfkska(], VkSEKs,SGS,feF,
0 e R, Yw €.

Les contraintes (4.79)—(4.81) et (4.83)—(4.84) sont identiques aux contraintes (4.26)—(4.28)
et (4.33)—(4.34). Les coupes d’optimalité (4.82) seront formulées ci-dessous.

Sous-problémes par scénario

Les sous-problémes se limitent aux ensembles de chaines compatibles de cardinalité plus
grande ou égale a 2, c’est-a-dire les ensembles ol un échange est possible. Le sous-probléme

associé & un scénario w est le suivant :

(SPw) min Z [ Z Z Aiflfzh [(Cflh - szh) + (RL?}lh - RL%h)}

heHy Lfi€F}y, f2€F},

+ Pes Z Z A?lfzh

f1EF) f2€F,
fi#f2

(4.86)
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sujet a: Y zp, =1, VheH, (4.87)
FEF
ZZ}Uh = nyhu Vec E,y, feF, (4.88)
hee hee
f1f2h < szha vfla f2 S Fh> h S H2, (489)
Zn =A% pn 20, Vfi, fo € iy h € Hy, (4.90)

>N AV =1 VheH, (4.91)

f1eFy f2€F),

73, €10,1}, VYf € F,, he Hy, (4.92)
Af1f2h < {07 1}7 vfla f2 € Iy, h € Hy. (4.93)

ott X sp, est la solution du probléme maitre, Vf € Fj,,h € H.

Nous rappelons que la variable A}Ulfzh est égale & 1si Z), =1 et Yfzh = 1, 0 sinon. Ces
variables permettent de calculer la différence des cotits et des revenus entre la solution initiale

X et la solution apres réaffectation pour chaque scénario Z*.

Soit my, agy, BY 4, et vy les variables duales associées aux contraintes (4.87), (4.88), (4.89)
t (4.91) respectivement. La coupe d’optimalité & ajouter au probléme maitre aprés avoir

résolu la relaxation linéaire du sous-probléme associé au scénario w est :

0" > Z 7_‘_}1{1 + Z Zag)f(z th> + Z Z Z ﬁ}lifthth + Z 7}110 (494)

heHs ecE> feF hee heHy fi€Fy, foeFy heHs

La coupe est ajoutée seulement si la solution courante du probléme maitre 'enfreint, tel que
décrit par I'inégalité (4.73). Dans cette coupe, les X, sont bien des variables. Les valeurs des
variables duales sont obtenues en utilisant la méthode du simplexe dual lors de la résolution de
chaque sous-probléme. Afin d’obtenir ces valeurs, il est nécessaire de résoudre la relaxation
linéaire du sous-probléme. Nous détaillons a la section suivante 1’algorithme utilisé pour
obtenir une solution entiére. Le sous-probléme est toujours réalisable puisque la solution du
probléme maitre peut étre conservée, ce qui représente qu’aucun échange de chaines n’est

fait. Il n’y a donc jamais lieu d’ajouter des coupes de faisabilité au probléme maitre.
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Sous-problémes par scénario et par ensemble de chaines compatibles

Nous remarquons que les décisions prises lors de la réaffectation sont indépendantes d’un
ensemble de chaines compatibles a autre. Il est donc possible de définir les sous-problémes
pour chaque scénario w € €) et pour chaque ensemble de chaines compatibles e € E5. Ceci re-
vient & résoudre le sous-probléme (4.86)—(4.93) séparément pour chaque ensemble de chaines
compatibles en remplacant h € Hy par h € e et en définissant les contraintes (4.88) unique-
ment pour ’ensemble de chaines compatibles e qui est considéré. Le sous-probléme associé

au scénario w € € et a I’ensemble de chaines compatibles e € Fs est le suivant :

(SP) min Z[Z > AV [(Crn = Cpp) + (RLY,, — RLY,,)]

hee Lfi€Fy, foeFy
+ Dex Z Z Af1f2h (4.95)
f1€F}, f2€F),
N1#f2
sujet a: Z Zip, =1, Vhee, (4.96)
feF,
> zZp=> Xp, VfEF (4.97)
hee hee
flfzh < Xth, Vfi, fo € Fj,h € e, (498)
Z}clih Aﬁfzh >0, Vfl, f2 € Fj,,h €e, (499)

YD Af=1 Vhee (4.100)

f1E€Fy f2€F,
Z, €{0,1}, VfeF, hee, (4.101)

Aflfzh S {O, 1}, Vfi, fo € Fp, h €e. (4102)

Dans cette situation, la fonction objectif de (SPY) peut étre représenté par Y. La variable
6" sera remplacée dans la fonction objectif du probléme maitre (4.78)-(4.85) a 'aide de la
relation suivante : 0 = > _p 0. Soit 7, afy, BY ,, et v les variables duales associées
aux contraintes (4.96), (4.97), (4.98) et (4.100) respectivement. La coupe d’optimalité, a

ajouter au probléme maitre si sa solution courante I’enfreint, associé au sous-probléme (SPY)
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est :

00 = "m0 ah O X+ Y B X+ Y (4.103)

hee fer hee hee fLEF), f2€F), hee

Avantages par rapport a la premiére formulation

Bien que les deux modéles présentés a la section 4.3.2 soient équivalents, il y a certains avan-
tages a appliquer la décomposition de Benders sur le deuxiéme modéle (4.25)—(4.36), plutot
que sur la premiére formulation (4.10)—(4.18). Cette derniére mettant tous les cotts et les
pertes de revenus sur les variables Z, sa décomposition en probléme maitre et sous-problémes

ne serait pas idéale. La fonction objectif du probléme maitre serait simplement :

min > pre, (4.104)

we

tandis que celle du sous-probléme pour le scénario w serait :

min S 1D ZE (Con+ RLY,) + pex Y 03| (4.105)

we heH feF, heHs
Ceci présente deux faiblesses. La premiére est qu’il y a plusieurs affectations a des chaines
qu’il n’y a pas lieu de recalculer pour chaque scénario. En pratique, il existe plusieurs chaines
qui ne sont compatibles avec aucune autre chaine. Elles n’ont pas de réaffectation possible
pour chaque scénario et leur cott devrait étre dans le probléme maitre ce qui n’est pas le
cas. La décomposition de Benders appliquée a la deuxiéme formulation permet de limiter les

sous-problémes aux chaines ayant une possibilité de réaffectation (h € Hs).

Deuxiémement, les variables 6* dans le probléme maitre prendront initialement des valeurs
significativement plus élevées. En effet, elles considérent les coiits et les pertes de revenus
totales pour chaque chaine. Le deuxiéme modéle considére plutdt la variation des coiits et
des pertes de revenus entre l'affectation initiale et la réaffectation, et ce uniquement pour

les chaines h € H,. Ceci aura pour effet que les coupes d’optimalité, qui seraient ajoutées
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au probléme maitre en appliquant la décomposition de Benders au premier modéle, auraient
des coefficients beaucoup plus élevés pour chaque variable. Ceci est problématique, car les
coefficients des variables pour le reste des contraintes se limitent exclusivement a -1, 0 ou 1.
Ajouter des contraintes avec des coefficients trés élevés peut causer des erreurs numériques
lors de la résolution par ordinateur. Nous pouvons également nous attendre a moins d’itéra-
tions de la méthode de Benders appliquée a la deuxiéme formulation. En effet, les premiéres
solutions du probléme maitre seront dans la bonne région de ’espace des solutions et les
coupes s’appliqueront aussi dans la région prés de la solution optimale. Ce sont d’ailleurs ces

problémes qui ont motivé le développement de ce deuxiéme modéle.

4.4.2.3 Algorithme de résolution

L’algorithme de résolution utilisant la décomposition de Benders est résumé a la figure 4.5. De
la méme maniére que pour I'approche directe par CPLEX (voir figure 4.4), le PFM est intégré
afin de mettre a jour les pertes de revenus. La méme initialisation pour regrouper les segments
de vol en chaines et initialiser les pertes de revenus est faite. Le FAP avec réaffectation et
scénarios de demande est ensuite résolu en utilisant la décomposition de Benders. Ces étapes
sont regroupées dans ’encadré sur la figure et remplacent 'unique étape Résolution du FAP

avec réaffectation et scénarios de demande de I'approche directe par CPLEX.

De maniére plus spécifique, la résolution se fait en trois phases. L’algorithme est semblable
a celui utilisé par Cordeau et al. (2001). La premiére phase relaxe les contraintes d’intégrité
pour le probléme maitre et les sous-problémes. La résolution itére entre les deux et les coupes
d’optimalité sont ajoutées au probléme maitre. Lorsque le critére d’arrét est atteint, nous
passons a la deuxiéme phase ou le probléme maitre est résolu en nombres entiers a chaque
itération. Le critére d’arrét utilisé est le méme que celui expliqué précédemment, avec la borne
inférieure calculée de la méme fagon qu’a I’équation (4.74) et la borne supérieure a 1'équa-
tion (4.76). Nous imposons une tolérance sur la différence relative entre ces deux bornes. En
pratique, celle-ci diminue lentement et un grand nombre d’itérations sont nécessaires pour

que le gap soit suffisamment petit. Nous limitons donc également le nombre d’itérations pour
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limiter le temps de calcul. La deuxiéme phase réintégre les contraintes d’intégrité pour le
probléme maitre et ’algorithme continue d’itérer entre la résolution du probléme maitre et
la relaxation linéaire des sous-problémes. Des coupes d’optimalité sont ajoutées au probléme
maitre et un critére d’arrét semblable est utilisé pour stopper le processus, le nombre d’ité-
rations maximal pouvant étre différent que pour la premiére phase. Finalement, la troisiéme
phase réintegre les contraintes d’intégrité sur les sous-problémes afin d’obtenir une solution
entiére en les résolvant une derniére fois en nombres entiers, la valeur des variables du pro-

bléme maitre étant gardée fixe.

Une fois qu'une solution est obtenue pour le FAP avec réaffectation et scénarios de demande,
le PE'M est résolu pour chaque scénario, les pertes de revenus sont mises a jour et le processus
recommence. Le méme critére que pour 'approche directe par CPLEX est utilisé pour arréter
ce processus, soit un nombre d’itérations. Finalement, la solution de chaque itération est

évaluée sur un ensemble de scénarios de demande différents.

L’algorithme utilisé présente deux aspects heuristiques. Premiérement, les sous-problémes
sont résolus en nombres entiers uniquement a la toute fin. Il est nécessaire de résoudre la re-
laxation linéaire des sous-problémes afin de pouvoir générer les coupes d’optimalité & ajouter
au probléme maitre, mais ceci rend le processus sous-optimal. Le deuxiéme aspect heuristique
est le critére d’arrét utilisé par ’algorithme pour stopper ’exécution des deux phases. Plus
la tolérance utilisée est petite et le nombre d’itérations élevé plus I'aspect heuristique sera

minimisé.

Différentes techniques d’accélération pourraient étre implémentées pour accélérer la conver-
gence de l'algorithme et ainsi réduire le nombre d’itérations nécessaires. Magnanti et Wong
(1981) proposent d’ajouter des coupes Pareto-optimales. En repartant de la définition gé-
nérale d’une coupe optimale donnée a I’équation (4.72), une coupe 0¥ > (7¥)T(d¥ — B*x)
domine une autre coupe 0¥ > (7¥)T(d¥ — B¥x) si (7)1 (d¥ — B¥z) > (7¥)T(d¥ — B%x)
pour tout x € X avec une inégalité stricte pour au moins un point de X, avec X étant 1'en-
semble solution du probléme maitre (4.63)—(4.65) initial (lorsque 6" = 0 pour tout w € ).

Une coupe Pareto-optimale n’est dominée par aucune autre coupe. Rei et al. (2009) utilisent
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le branchement local pour améliorer les bornes inférieure et supérieure et ainsi accélérer le
processus de résolution. A chaque itération de la décomposition de Benders, le branchement
local peut étre utilisé pour résoudre une série de sous-problémes pour trouver d’autres solu-
tions réalisables. La borne supérieure est améliorée si une des solutions trouvées a un cott
plus petit que la borne supérieure actuelle et chaque solution réalisable permet de générer
une coupe d’optimalité ce qui a pour effet d’améliorer la borne inférieure. Saharidis et al.
(2010) présentent une nouvelle stratégie qu’ils appellent (covering cut bundle generation). Ils
observent que la plupart du temps les coupes ajoutées au probléme maitre sont des coupes
de faible densité, c’est-a-dire qu’elles impliquent peu de variables de décision. Ces coupes
ne restreignent pas significativement 1’espace de solution du probléme maitre. L’algorithme
qu’ils proposent permet de générer plusieurs coupes de faible densité plutot qu'une seule,
I’objectif étant que la majorité des variables de décisions soient impliquées dans au moins
une coupe. L’espace de solution est alors plus restreint et 1’algorithme devrait ainsi converger

plus rapidement.



91

CHAPITRE 5

AFFECTATION DES TYPES D’AVION AUX VOLS AVEC
REAFFECTATION ET SCENARIOS DE DEMANDE :
EXPERIMENTATIONS ET RESULTATS

Ce chapitre présente les expérimentations et les résultats obtenus a partir des modéles et
des méthodes de résolution décrits au chapitre précédent. Le modéle utilisé pour les expéri-
mentations est celui développé a la section 4.3.2. Nous décrivons d’abord a la section 5.1 les
instances sur lesquelles les tests ont été effectués et 1’algorithme développé pour regrouper les
segments de vol en chaines. La section 5.2 explique comment les scénarios de demande ont
été générés. Les expérimentations et les résultats obtenus en appliquant la décomposition de
Benders pour résoudre les deux variantes du modéle de la section 4.3.2 sont présentés a la
section 5.3. Les expérimentations et les résultats obtenus avec I’approche directe par CPLEX

sur la variante (4.10)—(4.18) sont présentés a la section 5.4.

5.1 Instances

Nous utilisons pour nos expérimentations le méme réseau que celui décrit a la section 3.4.1
qui provient d’une partie du réseau d’Air Canada en 2002. Il contient 5 180 segments de vol
répartis sur 7 jours et 205 avions de 15 types différents. Les passagers sont répartis parmi
23 948 itinéraires pour chacune des 3 classes tarifaires. Nous définissons un arc comme étant
un segment de vol associé a une classe tarifaire. Un itinéraire est donc composé d’un ensemble
d’arcs. Afin de pouvoir comparer 'utilité de notre modéle d’affectation des types d’avion aux
vols avec réaffectation et scénarios de demande sur des horaires de tailles diverses, nous avons

sélectionné des sous-ensembles de ce réseau pour former plusieurs instances plus petites.

Pour former une instance, les journées consécutives la formant sont d’abord sélectionnées,
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puis les segments de vol, les itinéraires de passagers et les avions sont traités dans l'ordre.
Initialement, les segments de vol ayant leur heure de départ au courant d’une des journées
choisies font partie de l'instance. Il est cependant possible que ce sous-ensemble de vols
n’admette pas une solution réalisable pour l'affectation des types d’avion. La conservation
du flot des avions et les contraintes de cyclicité de la solution (c’est-a-dire que la solution
doit étre répétable période aprés période) peuvent en effet étre difficiles & respecter. Nous
résolvons donc un FAP standard sur ce sous-ensemble ot les contraintes de couverture de vols
ont été relaxées en placant une forte pénalité pour chaque vol non couvert. Il est par la suite
possible de retirer les segments de vol problématique de l'instance, soit ceux non couverts
par la solution trouvée. Une fois les vols choisis, les itinéraires de passagers sont traités. Les
itinéraires conservés sont ceux dont tous les arcs font partie de I'instance. Leur demande est
ajustée afin de préserver la demande totale de chaque arc le plus possible. De maniére plus
spécifique, soit d; la demande originale pour 'itinéraire ¢ € I, ou I est ’ensemble de tous les
itinéraires. La demande totale originale pour 'arc @ est alors : D, = ), d;. Or, tous les
itinéraires ne font pas partie de I'instance. Soit ICI , ’ensemble des itinéraires de 'instance

considérée. La demande non ajustée de 'arc a pour cette instance est alors :

D, =Y d; (5.1)

i€a;
el

Nous fixons la demande ajustée de I'itinéraire ¢ pour l'instance considérée comme étant

~ 1 D,
d; = n_i[;@@’ (5.2)

ou n; est le nombre d’arcs dans 'itinéraire 7. Les taux de récupération entre itinéraires sont
également ajustés. Lorsqu’un arc est rempli & capacité, il est considéré comme fermé. Les
itinéraires contenant cet arc sont alors fermés et la demande restante est en partie débordée
sur d’autres itinéraires, en partie perdue. Soit g;; la proportion des passagers de l'itinéraire ¢ €
I qui sont récupérés par 'itinéraire 57 € I lorsqu’il y a un tel débordement. Nous ajustons ces
taux de récupération pour répartir équitablement la proportion des passagers qui auraient

été récupérés par des itinéraires qui ne font pas partie de I'instance. Le taux de récupération
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ajusté pour les itinéraires 7,7 € I donne :

qij

— =7 (5.3)
1- Zkg{fqik

Gij =
Finalement, le nombre d’avions de chaque type et leur cott fixe d’utilisation sont ajustés.
Meéme pour une instance d’une seule journée, le nombre total d’avions ne varie pas beaucoup
par rapport a I’horaire complet car la majorité des avions sont utilisés chaque jour, mais un
ajustement est tout de méme nécessaire. Ceci est fait manuellement en réduisant le nombre
d’avions de facon graduelle et en gardant une marge de manoeuvre minimale. Le cotut fixe
pour l'utilisation de chaque avion est ajusté en fonction du nombre de jours dans 'instance.
Par exemple, une instance d’une journée aura des coits fixes sept fois plus petits que 'horaire

complet qui est sur sept jours.

Cette procédure est appliquée sur I'horaire complet pour obtenir 8 instances différentes :
3 instances d'une journée (lundi, jeudi et dimanche) ayant entre 678 et 759 vols, 3 instances
de deux jours (lundi-mardi, jeudi-vendredi et samedi-dimanche) ayant entre 1 391 et 1 518 vols
et 2 instances de trois jours (lundi & mercredi et vendredi & dimanche) ayant respectivement
2 257 et 2 151 vols. Le nombre d’avions est de 194 pour chaque instance. L’horaire complet
sans modifications sur 7 jours avec 5 180 vols et 205 avions est aussi utilisé comme une
instance pour les tests. En plus de ces 9 instances, nous utilisons les deux autres structures
de demande décrites a la section 3.4.1 ainsi qu’un paramétre multipliant la demande espérée

de chaque itinéraire afin de tester différents taux d’occupation.

Pour chacune des 9 instances, les segments de vol doivent étre regroupés en chaines. La facon
de faire ce regroupement va considérablement dépendre de ’horaire de vol et de la compagnie
aérienne. L’horaire doit étre analysé pour observer ou les opportunités d’échanges se situent.
Un mauvais regroupement limitera I'affectation des types d’avion et pourrait mener a une
solution pire que celle obtenue en résolvant un FAP standard. L’horaire que nous utilisons
provient d’Air Canada qui a trois bases au pays, soit & Toronto, & Vancouver et a Montréal.
En ajoutant Calgary et Ottawa, ces cinq villes sont responsables d’environ 60 % du trafic

aérien de notre horaire. Le tableau 5.1 donne le nombre de vols en partance de chaque ville,
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Tableau 5.1: Nombre de vols au départ des principales villes de I'horaire

Nombre de vols

Ville
en partance
Toronto 1538
Vancouver 526
Montréal 417
Calgary 331
Ottawa 271

le nombre d’arrivées étant exactement le méme. A lui seul, 'aéroport de Toronto est donc
impliqué dans 3 076 vols sur 5 180, soit presque 60 %, et il y a environ 20 vols par jour en
moyenne avec Montréal dans chaque direction, 15 avec Vancouver. Cependant, lorsque nous
regardons 'affectation qu’Air Canada a utilisée en 2002 pour cet horaire, ces vols ne forment
pas toujours des allers-retours, c’est-a-dire que des vols consécutifs entre deux villes n’ont pas
toujours la méme affectation. Ceci est normal quand la demande en passagers est différente
d’un vol a 'autre et que les avions peuvent étre affectés de fagon plus profitable sur d’autres

vols.

L’algorithme développé pour regrouper les vols en chaines tient compte de ces conditions
spécifiques. Pour chaque instance, un FAP standard est d’abord résolu pour obtenir une
affectation des types d’avion aux vols et une méthode heuristique est utilisée pour obtenir les
itinéraires des avions. Nous divisons chaque route d’avion en plusieurs chaines. Nous limitons
les chaines a une suite d’au plus n vols débutant et terminant au méme aéroport et nous
fixons un ordre de priorité pour les cing aéroports principaux de I’horaire. L’aéroport de
Toronto étant impliqué dans le plus de vols, il a la priorité 1 et il n'y a aucune restriction
sur les chaines qui y partent. Vancouver et Montréal ont la priorité 2, c’est-a-dire que les
chaines partant de ces aéroports ont comme seule restriction de ne pas passer par Toronto.
Finalement, Calgary et Ottawa ont la priorité 3. Les chaines au départ de ces aéroports ne
peuvent pas passer par les villes de priorité 1 et 2. Toutes les autres villes n’ayant pas assez
de vols pour qu'’il y ait des échanges possibles, aucune chaine partant d’elles n’est créée et
elles ont la priorité 4. Pour chaque route d’avion 7, nous avons la liste des vols effectués dans

I’ordre par cet avion. En partant du premier vol, nous tentons de former une chaine respectant
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Algorithm 5.1: Déterminer ’ensemble des chaines H

pour chaque route r faire
tant que r est non vide faire
ChaineAjoutée = FAUX
=2
tant que i < n ET i < longueur(r) faire
si r|i|.priorité < r[1].priorité alors
break
fin si
si r|i].destination = r|1].origine alors
Ajouter a H la chaine composée des ¢*" vols de r
Enlever de 7 les i vols
ChaineAjoutée = VRAI
break
fin si
1 1+1
fin tant que
si ChaineAjoutée = FAUX alors
Ajouter a H la chaine r[1]
Enlever de r le 1°" vol
fin si
fin tant que
fin pour

les critéres mentionnés ci-dessus. Si cela est possible, la chaine est créée et les vols la formant
sont enlevés de la liste, sinon une chaine est créée uniquement avec le premier vol et celui-ci
est enlevé de la liste. Le processus recommence jusqu’a ce que tous les vols de la route fassent

partie d’une chaine. L’algorithme 5.1 présente le pseudo-code de ce processus.

Il est possible de créer des chaines de différentes longueurs, mais plus elles contiennent de vols,
plus les chances qu’il existe une autre chaine compatible avec elle sont faibles. Nous avons
testé différentes valeurs pour le parameétre n fixant le nombre maximal de vols par chaines.
La valeur de n = 2 donne le meilleur regroupement en ensembles de chaines compatibles.
Ceci revient donc a se limiter & des chaines simples d’un seul vol et des chaines étant des
allers-retours. Pour I’horaire complet de 5 180 vols, nous obtenons 3 516 chaines dont 394
font partie d’un ensemble de chaines compatibles de cardinalité 2 ou plus pour au moins

deux types d’avion (c’est-a-dire dans l'ensemble H, défini & la section 4.2). Le tableau 5.2
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Tableau 5.2: Nombre de vols et de chaines pour chaque instance

Instance Nombre Nombre Nombre de chaines A Nombre de chaines h

n° de jours de vols he H h € Hy
1 1 678 525 68
2 1 756 577 56
3 1 759 572 67
4 2 1391 1018 106
5 2 1 508 1073 132
6 2 1518 1088 119
7 3 2 151 1515 186
8 3 2 257 1575 175
9 7 5 180 3516 394

donne ces statistiques pour chacune des 9 instances. Excepté pour la premiére instance (qui
représente I'horaire d’une seule journée de fin de semaine, le dimanche), le pourcentage de

vols faisant partie d’une chaine h € Hy est relativement stable, entre 14,8 % et 17,7 %.

5.2 Génération de scénarios

L’ajout de scénarios dans le probléme d’affectation des types d’avion aux vols a pour objectif
d’améliorer la robustesse de la solution. Les modéles décrits au chapitre précédent peuvent
tous étre utilisés avec un seul scénario qui représente alors la demande moyenne estimeée
pour chaque itinéraire et des échanges entre chaines compatibles seraient possibles malgré
tout. Cependant, ceci limiterait le nombre d’opportunités d’échanges, car I'interdépendance
des chaines compatibles serait ignorée. D'un autre coté, I'utilisation de trop de scénarios de
demande avec des variations extrémes donnerait une solution certainement trés flexible, mais
celle-ci aurait des profits moyens plus faibles et ses opportunités d’échanges seraient rarement,
utilisées en pratique. Les scénarios doivent étre représentatifs de la variabilité de la demande
pour la compagnie aérienne, le marché et la saison concernés. Afin de tester 'efficacité de
I'utilisation de scénarios multiples, nous allons générer des ensembles de scénarios de diffé-
rentes tailles (5, 10, 15 et 20) que nous allons pouvoir comparer avec 'utilisation d’un seul
scénario. Comme décrit a la section 4.4.1, les solutions obtenues seront alors testées sur un

autre ensemble de 100 scénarios pour bien évaluer leur robustesse.
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Une facon de générer des scénarios de demande serait d’utiliser les données de l’année pré-
cédente, chaque semaine ou chaque journée correspondant a un scénario. Ceci nécessiterait
d’avoir la réalisation de la demande pour chaque itinéraire au courant de la saison. Nous
avons malheureusement uniquement acceés a la demande moyenne pour chaque itinéraire.
Dans cette situation, la génération des scénarios dépendra beaucoup des hypothéses faites
sur la variabilité de la demande. Nous supposons que la demande totale sur ’ensemble du ré-
seau au courant d’une saison ne subit pas d’importantes variations, mais que ceci est possible
pour un itinéraire particulier. Plus spécifiquement, nous limitons a £15 % la variation de la
demande totale pour un scénario et & =50 % la variation de la demande pour un itinéraire.
Pour chaque ensemble de scénarios générés, nous nous assurons que la demande totale des
scénarios sera distribuée uniformément dans U'intervalle [85 %, 115 %] de la demande totale
originale et que la moyenne des demandes d’un itinéraire a travers les scénarios correspondra
a la demande originale de cet itinéraire. Nous expliquons ce que cela signifie en détaillant les

étapes de la génération d’un ensemble de scénarios.

Soit d; la demande originale de I'itinéraire i, D = ) ._,d; la demande totale originale et
w € {1, ..., W} un ensemble de scénarios a générer. Pour chaque scénario w, nous fixons a P*
la variation de la demande totale de ce scénario par rapport a la demande totale originale,
ces variations étant distribuées uniformément a 15 %. Par exemple, pour un ensemble de

D scénarios, nous avons :
(P*; P?; P*; P*; P°) = (0,88;0,94;1,00;1,06; 1,12). (5.4)

La formule spécifique pour chaque scénario est :

0,3w — 0,15

PY =10,85
;09 + W

(5.5)

Ceci est fait pour chaque ensemble de scénarios, sauf pour I’ensemble de 100 scénarios servant
a I’évaluation des solutions. La variation de la demande totale de ces derniers est distribuée

aléatoirement. Nous avons donc pour cet ensemble de scénarios, P* = U(0,85;1,15).

Nous générons ensuite la demande initiale pour l'itinéraire ¢ dans le scénario w comme
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étant :
d;’fo =U(0,5;1,5)d; P". (5.6)

Nous ajustons ces demandes afin d’assurer que la moyenne & travers ’ensemble des scénarios

sera égale a la demande moyenne originale de I'itinéraire. Nous avons donc :

~ w
w=1 %0
A ce point, la demande totale D¥ d’un scénario w ne sera pas égale & PD comine nous
le désirons. Nous pouvons ajuster les demandes pour que ce soit le cas, mais ceci modifiera
la moyenne des demandes des itinéraires a travers I’ensemble des scénarios. Nous itérons
donc 100 fois entre 'ajustement de la demande d’un itinéraire donné a travers les scénarios
et 'ajustement de la demande de tous les itinéraires d’un scénario donné. A litération j,

I’ajustement assurant que la moyenne de la demande d’un itinéraire ¢ a travers 1’ensemble

des scénarios sera égale a d; donne :

~ Wd,
diy = di' (5.8)
’ ’ Zg/:l i1

Ceci est suivi de I'ajustement assurant que la demande totale du scénario w sera égale

aPvD:

~ PYD
diy =dy———=—. (5.9)
b2 9 w
Zz’el di,j
Nous fixons la demande de l'itinéraire i pour le scénario w comme étant d;” = d’;y. Apres

100 itérations, les critéres que nous avons posés sur les demandes sont respectés, c’est-a-dire

que nous avons :

w
1
D=3 df =P'D, Ywe{l,..W} et 5> df=d; Vi€l
w=1

iel

Cette procédure est utilisée avec le programme Matlab pour générer des ensembles de 5, 10,
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15 et 20 scénarios qui serviront aux tests et un ensemble de 100 scénarios pour I’évaluation

des solutions.

5.3 Décomposition de Benders

Nous appliquons la méthode de résolution utilisant la décomposition de Benders présentée a
la section 4.4.2 aux deux modéles de la section 4.3.2. La premiére formulation (4.10)—(4.18)
placant la totalité des cotlits et pertes de revenus sur les variables Z qui se retrouvent dans
les sous-problémes, nous nous attendons a ce que sa résolution soit plus lente que celle de
la deuxiéme formulation (4.25)—(4.36). Nous nous intéressons au temps de calcul nécessaire
pour atteindre le méme niveau de convergence en utilisant une comparaison en absolu et en
relatif. Pour évaluer le niveau de convergence & une itération donnée, nous calculons le gap
entre la valeur de la variable 6%, associée au sous-probléme w dans le probléme maitre, et
la valeur optimale du sous-probléme SP". Lorsqu’il y a convergence compléte, ces valeurs
sont égales pour chaque sous-probléeme. Nous présentons d’abord les résultats préliminaires
obtenus, puis nous discutons des problémes rencontrés et des pistes de solution a explorer

pour les résoudre.

5.3.1 Reésultats préliminaires

Afin de comparer lefficacité de I'application de la décomposition de Benders aux deux mo-
déles, nous nous concentrons d’abord sur la premiére phase de l’algorithme de résolution
(voir figure 4.5) qui consiste a résoudre le probléme maitre et les sous-problémes en relaxant
les contraintes d’intégrité. L’instance n°1 et un ensemble de 5 scénarios sont utilisés pour
nos tests. Le tableau 5.3 présente les résultats obtenus pour les deux formulations apres
80 minutes de temps de calcul. Malgré que les deux modéles souffrent d’'un probléme de
convergence, la deuxiéme formulation est sensiblement meilleure. La fonction objectif des
sous-problémes SP" pour la premiére formulation prend des valeurs beaucoup plus grandes,
de I'ordre de 107, comparativement a celle des sous-problémes de la deuxiéme formulation,

qui est de 'ordre de 10°. Cette différence fait que le gap moyen par scénario en relatif est plus
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Tableau 5.3: Résultats des deux formulations aprés 80 minutes

Premiére Deuxiéme

formulation  formulation

Algorithme utilisé pour résoudre le PM Barriére ~ Simplexe dual

Nombre d’itérations 212 1150

Gap moyen par scénario (en relatif) 2,84 % 4,31 %
Gap moyen par scénario (en absolu) 465 560 22 090
Temps de calcul : 17¢ itération 0,5 sec. 0,5 sec.
Temps de calcul : 200° itération 53,1 sec. 2,0 sec.

petit pour la premiére formulation, mais il est environ 20 fois plus grand en absolu, ce qui
rend beaucoup plus lente sa convergence, car 'impact par rapport a la valeur globale du pro-
bléme maitre est plus important. Effectivement, le gap total des 5 scénarios pour le premier
modéle représente 14,2 % de la valeur du probléme maitre comparativement a 0,4 % pour
le deuxiéme. De plus, la deuxiéme formulation est considérablement plus rapide en terme
du temps de calcul par itération. Ceci s’explique principalement par le fait que la résolution
du probléme maitre est plus rapide. En effet, celui-ci subit nettement moins de changements
d’une itération a ’autre dans le deuxiéme modele, car les chaines n’ayant pas de changement
de types d’avion possible ne sont pas considérées dans les sous-problémes. Ceci rend l'utili-
sation de la méthode du simplexe duale beaucoup plus rapide pour réoptimiser le probléme
maitre & chaque itération. Méme si le probléme maitre est augmenté de coupes d’optimalité
a chaque itération, le temps de calcul n’augmente pas beaucoup passant de 0,5 seconde a
la premieére itération a 2 secondes a l'itération 200. Le probléme maitre du premier modéle
change suffisamment a chaque itération que son temps de calcul augmente significativement,
rendant I'utilisation de ’algorithme barriére préférable pour ce modéle. Bien que plus rapide,
la deuxiéme formulation souffre tout de méme d’un probléme de convergence. L’instance n° 1

contient uniquement 678 vols et s