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RÉSUMÉ 

L’arthrose rhumatoïde est une maladie inflammatoire auto-immune. Elle provoque une 

inflammation chronique des articulations et des os qui conduisent à une destruction progressive 

de ces derniers. Cette maladie affecte 0.5 à 1 % de la population des pays industrialisés et impose 

des coûts importants au système de santé. La société canadienne de l’arthrose rapporte que 6 % 

des hospitalisations totales au Canada sont imputables à l’arthrite.  La cytokine TNFα joue un 

rôle important dans le processus inflammatoire lié à l’arthrose de ce fait la neutralisation et/ou 

l’inhibition de la surexpression de cette cytokine est une cible prometteuse pour le traitement de 

l’arthrose rhumatoïde. Il existe plusieurs molécules biologiques bloquant la cytokine TNFα, 

utilisées avec grand succès pour le traitement de l’arthrose tel que l’anticorps monoclonal anti 

TNFα Infliximab et le récepteur soluble TNFRII Etanercept. Cependant la durée de vie de ses 

protéines en circulation est faible et peut nécessiter une augmentation des doses et des injections, 

avec le risque d’augmentation de la toxicité de ses protéines. Ces inconvénients associés à cette 

approche thérapeutique peuvent être contournés par une approche de thérapie génique qui permet 

une production stable de la protéine dans le temps et une expression localisée du transgène. Notre 

objectif est, en choisissant le rat comme modèle animal de l’arthrose rhumatoïde, de construire 

des plasmides recombinants contenant des transgènes codant pour des protéines recombinantes 

correspondantes au récepteur soluble du TNFα capables de bloquer le TNFα. Les plasmides 

recombinants sont livrés in vitro aux cellules à l’aide d’un système de livraison polymérique, le 

chitosane. Le chitosane s’est avéré le système de livraison idéal pour la protection de L’ADN 

plasmidique contre la dégradation par les nucléases et pour leur livraison au niveau du cytosol.  

Nous avons donc construit trois transgènes codant pour des protéines mimant le récepteur soluble 

du TNFα du rat. Le premier (TNFR) code pour la partie extracellulaire soluble du récepteur 

TNFRII. Le second (IgTNFR) code pour la partie extracellulaire soluble du récepteur TNFRII  

couplé à la séquence codante pour les régions CH2 et CH3 de la partie constante d’une 

immunoglobuline de type G1 (IgG1) du rat excluant la région charnière. Le troisième (IgTNFRd) 

composé de la partie extracellulaire soluble du récepteur TNFRII  couplée à la séquence codante 

pour les régions CH2 et CH3 de la partie constante d’un IgG du rat incluant la région charnière. 

La région charnière permet la dimérisation via pont disulfure de l’anticorps et donc de la protéine 

recombinante IgTNFRd. Le vecteur d’expression eucaryotique pVax1 sécuritaire et approuvé par 

la FDA (food and drugs administation) a été utilisé pour l’expression de nos trois transgènes. Les 
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plasmides recombinants sont livrés in vitro aux cellules à l’aide d’un système de livraison 

polymérique, le chitosane. Le chitosane s’est avéré le système de livraison idéal pour la 

protection de L’ADN plasmidique contre la dégradation par les nucléases et pour leur livraison 

au niveau du cytosol. Le chitosane 92-10-5 (degré de désacétylation-masse moléculaire-ratio 

azote : phosphate) a été complexé à l’ADN recombinant pour générer des nanoparticules utilisées 

lors des expériences de transfection in vitro de la lignée cellulaire HEK293. Les résultats en  

microscopie électronique (ESEM) et en DLS (diffusion dynamique de la lumière)  démontrent 

que les nanoparticules sont respectivement de forme  majoritairement sphérique et cylindrique 

avec un diamètre de l’ordre de 95 nm et un potentiel δ de l’ordre de 30 mV. La capacité des 

nanoparticules Chitosane/ADNp  à résister à la digestion par les nucléases à des niveaux 

supraphysiologiques est testée. La taille la charge et la capacité des nanocomplexes de chitosane 

à protéger l’ADN de la digestion par les nucléases en fait un système de livraison génique 

adéquat théoriquement. La capacité de ce système à induire la prise en charge du transgène par 

les cellules transfectées est vérifiée in vitro. Les ARN messagers correspondant à la transcription 

des transgènes codant TNFR, IgTNFR et IgTNFRd sont retrouvés dans les cellules HEK 293 et 

CHO transfectées par nos nanocomplexes de chitosane. La traduction de ces ARNm est 

confirmée par un test ELISA non quantitatif permettant de détecter la présence des protéines 

recombinantes TNFR, IgTNFR et IgTNFRd dans les surnageant des cellules HEK293 

transfectées. La bioactivité de nos protéines recombinantes est ensuite testée à l’aide des cellules 

de la lignée WEHI-var-13. Les cellules de la lignée WEHI-var-13 sont sensibles à la présence du 

TNFα dans leur milieu de culture qui entraine leur mort cellulaire. Les surnageants de cellules 

HEK293 transfectées par des nanocomplexes de chitosane transportant les transgènes codant 

TNFR, IgTNFR et IgTNFRd sont capables d’inhiber cette mort cellulaire induite par TNFα. Les 

protéines recombinantes produites par les cellules transfectées possèdent donc bien une activité 

inhibitrice du TNFα. Les nanocomplexes de chitosane transportant les transgènes codant TNFR, 

IgTNFR et IgTNFRd sont donc capables de transfecter des cellules in vitro et de conduire à 

l’expression des protéines recombinantes bioactives. 
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ABSTRACT 

Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects joints and leads to 

gradual destruction of bones and articulations. RA affects 0.5 to 1 % of the population in 

industrial countries and imposes considerable cost on the healthcare system. According to The 

Arthritis Society 6 % of total hospitalization in Canada are due to arthritis. The tumor necrosis 

factor (TNF), a proinflammatory cytokine, plays a key role in the pathogenesis of RA and a lot of 

drugs targeting this molecule have emerged to treat RA. These molecules such as anti-TNF 

monoclonal antibody or soluble TNF receptor II, Etanercept, are currently in use to treat RA with 

success. However, this molecule have some limitation, their half-life is short in circulation 

requiring high doses and multiple injections which increases their risk to different infections. 

This limitation can be overcome by gene therapy based strategy. Gene therapy allows a stable 

and localized production of the therapeutic transgene. Our goal was to design and construct three 

recombinant plasmids encoding soluble TNF receptors capable of inhibiting TNF in solution. The 

first recombinant plasmid, TNFR encodes for the extracellular region of the rat TNF receptor II. 

The second recombinant plasmid, IgTNFR encodes for the extracellular region of the rat TNF 

receptor II merged to the CH2 and CH3 regions of the constant region of rat immunoglobulin G1 

without the hinge region. The third recombinant plasmid, IgTNFRd encodes for the extracellular 

region of the rat TNF receptor II merged to the CH2 and CH3 regions of the constant region of 

rat immunoglobulin G1 including the hinge region. The hinge region is responsible for antibody 

dimerization by disulfure bond. The safe and FDA (food and drugs administration) approved 

eukaryote plasmid, pVax was selected as expressing vector of the three transgenes. The 

recombinant plasmids are complexed with the polymeric carrier chitosan to form chitosan-based 

nanoparticles that protect plasmid DNA against digestion by nucleases until their delivery to the 

cytosol.  The formulation of chitosan 92-10-5 (degree of deacetylation- molecular weight- ratio 

nitrogen: phosphate) was used to complex recombinant pDNA to form nanoparticles. These 

nanoparticles were characterized using techniques of electron microscope (ESEM) and dynamic 

light scattering (DLS). These two techniques showed nanoparticles with spherical and cylindrical 

shapes with an average diameter of 95 nm and a zeta potential of 30 mV. During this research 

project, we have clearly demonstrated the capacity of chitosan to protect the plasmid DNA 

against nuclease digestion at supraphysiological concentrations with the detection of transgene-

specific mRNA specific transgene in HEK293 and CHO transfected cell lines. The production 
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and secretion of TNFR, IgTNFR and IgTNFRd recombinant proteins by transfected HEK 293 

cells was demonstrated by ELISA while the bioactivity of the recombinant proteins was tested 

using WEHI-var-13 cells. WEHI-var-13 cells are sensitive to TNF in their culture medium, which 

lead to the cells death. Supernatant from transfected HEK293 cells were able to inhibit the cells 

death induced by TNF on WEHI-var-13 cells. Chitosan noncomplex system with TNFR, IgTNFR 

and IgTNFRd transgenes were able to transfect cells and lead to bioactive recombinant proteins 

expression. 
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INTRODUCTION 

L’arthrose rhumatoïde (AR) est une maladie inflammatoire auto-immune touchant les cartilages 

et des os causant leur lente dégradation. Cette maladie très répandue touchant  près de 1 % de la 

population des pays industrialisés [1], provoque un handicap de travail important et à un impact 

néfaste sur l’économie qui est par exemple estimé à 320 milliards de dollars aux États-Unis en 

2003 [2]. L’AR se traduit plus spécifiquement par une inflammation non résolue du synovium de 

l’articulation enclenchée à la suite de la reconnaissance d’auto-antigènes. Il s’en suit une réaction 

auto-immunitaire provoquant le recrutement de cellules du système immunitaire activés et le 

largage de nombreuses cytokines inflammatoires dans le milieu. À la tête de ses cytokines pro-

inflammatoires, nous avons le TNFα [3] qui joue également un rôle dans la destruction des os en 

troublant le cycle de résorption/reconstruction des os [4]. À la pointe des traitements existant 

pour le traitement de l’AR, se trouve des agents biologiques  dirigés contre la cytokine TNFα, 

ceux-ci sont principalement composés d’anticorps monoclonaux humain ou chimérique humain 

murin ou encore des protéines recombinantes construites à partir du récepteur du TNFα [5]. 

Néanmoins l’utilisation de ces agents biologiques est associée à des risques d’infection sérieux et 

développement de la tuberculose [6-8] et peut conduire à l’apparition chez le patient d’anticorps 

dirigés contre l’agent biologique le rendant inefficace [9]. Ces risques sont dus au caractère 

immunosuppresseur local au niveau de l’injection. Ces protéines ont justement une demi-vie 

courte en circulation due à la présence de protéases et à une élimination rapide par le foie et les 

reins, nécessitant de répéter les injections. Une alternative à tous ces effets indésirables pourrait 

être  la thérapie génique. En effet, elle consiste à introduire le matériel génique sous forme de 

transgène codant la protéine thérapeutique qui sera exprimée in situ  par les cellules de l’hôte. Ce 

principe devrait permettre une production stable et localisée des transgènes et permettre ainsi 

d’éviter les effets néfastes de la présence systémique de la protéine [10]. Un des défis majeurs de 

la thérapie génique est de faire parvenir efficacement le transgène à la cellule, tissus ou organes à 

traiter. Pour ce faire, il s’avère nécessaire d’utiliser un système de livraison adéquat. Les vecteurs 

viraux ne conviennent pas à cause entre autres de leur préparation assez complexe, leur 

immunogénicité et le risque associé à leur utilisation pour développer d’autres maladies [11]. Il 

nous reste donc les vecteurs chimiques parmi lesquels se trouve le chitosane polymère 

biocompatible, biodégradable, peu toxique, peu immunogène et facile de production et de 
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manipulation. L’utilisation du chiosane comme système de livraison génique est la spécialité de 

notre groupe de recherche [12-14]. Le but de ce projet de recherche   consiste à produire des 

plasmides d’expression recombinant contenant les  transgènes codant pour des protéines 

recombinantes, TNFR, capables de bloquer le TNFα en surexpression in vivo. Ces plasmides 

recombinants sont ensuite complexés au chitosane pour générer des nanoparticules   capables de 

transfecter efficacement les cellules et de livrer leur cargo au niveau du cytosol pour l’expression 

de protéines recombinantes TNFR fonctionnelles. Les objectifs fixés pour la réalisation de notre 

but sont i)  construction de différents plasmides recombinants avec différents transgènes TNFR; 

ii) générer des nanoparticules à base de chitosane, chitosane/pDNA suivi de leur caractérisation 

physico-chimique pour s’assurer de leur pouvoir à transfecter les cellules in vitro et 

éventuellement in vivo; iii) confirmer, par biologie moléculaire et sérologie, du niveau 

d’expression des protéines recombinantes TNFR et de leur bioactivité. Ce mémoire présentera 

une revue de littérature abordant les thèmes de l’arthrose rhumatoïde et de son lien avec la 

cytokine TNFα, puis les thérapies géniques et enfin le véhicule de livraison génique polymérique 

le chitosane. La revue de littérature sera suivit des méthodes utilisées pour la réalisation des 

objectifs, des résultats de ces expériences, d’une discussion des résultats et enfin de conclusions 

globales. 
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CHAPITRE 1 REVUE DE LITTÉRATURE 

1.1 L’Arthrose Rhumatoïde 

1.1.1  Les aspects sociaux économiques 

 

L’arthrose rhumatoïde (AR) est la forme la plus courante d’arthrite. C’est une maladie auto-

immune inflammatoire chronique des articulations de la main et du pied, menant à leur 

dégradation progressive. Une étude prospective menée sur des patients atteints d’AR [15] a 

estimé que le handicap apparait chez 25 % des malades après 6,4 ans et chez 50 % après 20,9 ans, 

cela se traduit chez le malade par une baisse de revenus et une augmentation du risque de 

chômage et de dépression. L’AR est de plus très répandu puisqu’elle affecte 0.5-1 % de la 

population adulte des pays industrialisés [1]. En 1995 la proportion d’Américains atteints d’une 

des formes d’arthrose est estimée à 15 % (soit 40 millions de personnes) et est projetée à 18,2 % 

(59.4 millions de personnes) en 2020 [2]. Ces patients nécessitent souvent une prise en charge 

coûteuse pour les systèmes de santé. En France, en 2004 le coût direct annuel par patient était 

estimé entre 1812-11792 € et le coût indirect entre 1260-37994 € [16]. Aux États-Unis, en 2003, 

les dépenses dues à l’arthrose et autres rhumatismes  sont estimés à 321.8 milliards de dollars 

[17]. Du côté du Canada, la société canadienne de l’arthrite [18] indique que le coût total de cette 

maladie est estimé à 33 milliards de dollars par année. Ce coût impressionnant pour la société 

s’explique de deux façons  i)  par les coûts d’hospitalisations (6% des hospitalisations totales au 

Canada sont imputables à l’arthrite) et ii) par une perte de productivité, puisque qu’un quart des 

personnes atteintes d’arthrite entre 25 et 44 ans sont inactifs à cause de cette maladie.  L’AR est 

donc un enjeu majeur de recherche, le gouvernement du Canada a par exemple investi  77.7 

millions de dollars en 2009-2010 dans la recherche contre les maladies musculo-squelettiques et 

l’arthrose [19].  
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1.1.2  La pathologie 

 

L’articulation est composée de deux os, recouverts de cartilage, joints par une capsule contenant 

le liquide synovial composant le synovium. L’arthrose rhumatoïde se traduit par une 

inflammation de ce synovium. Cette inflammation se produit suite à la reconnaissance par le 

système immunitaire d’un auto-antigène dont la nature n’est toujours pas bien élucidée  ce qui 

donne à cette pathologie son caractère auto-immun. Il semble, toutefois, que des protéines 

citrullinés capables d’induire la production d’anticorps soient des candidates possibles [20], 

puisqu’elles sont retrouvées chez un grand nombre de patients atteint par l’AR [21]. Toutefois, le 

rôle fonctionnel des protéines citrullinées sur des modèles murins expérimentaux d’arthrites mène 

à des résultats non probants [22]. La reconnaissance de cet auto-antigène mène à l’engagement du 

système immunitaire inné puis adaptatif et largage par celles-ci de nombreuses cytokines pro-

inflammatoires. Il se produit ensuite une érosion locale des os à la périphérie de la zone 

enflammée. Il y a habituellement un équilibre parfait entre résorption des os effectuée par les 

cellules ostéoclastes et reformation effectuée par les cellules ostéoblastes permettant l’entretien 

de la matrice osseuse. Mais dans l’AR le synovium enflammé produit des cytokines pro-

inflammatoires IL-1α, IL-1β, IL-6, IL-11 et TNFα capables d’induire le recrutement, la 

différenciation et l’activation des ostéoclastes tels [3], ce qui conduit à un déséquilibre du cycle 

de reformation des os en faveur de la résorption des os par les ostéoclastes. Le rôle de TNFα est 

particulièrement intéressant dans ce processus, puisqu’il perturbe un mécanisme de régulation du 

cycle de reformation des os, via l’activateur du récepteur du ligand NF-κB(RANKL). 

1.1.3 La destruction des os : le rôle de RANKL et de TNFα 

 

Dans un processus normal (voir Figure 1-1-A), les ostéoblastes régulent la formation 

d’ostéoclastes d’une part, via la production de RANKL qui va interagir avec le récepteur du 

ligand NF-κB (RANK) à la surface des cellules progénitrices d’ostéoclastes conduisant à leur 

différentiation en ostéoclastes matures, et d’autre part, via la production d’ostéoprotegerin (OPG) 

qui est un récepteur soluble pour RANKL qui va inhiber son action sur les progéniteurs 

d’ostéoclastes [4]. Les ostéoblastes sont donc capables d’augmenter, via RANKL, ou de 

diminuer, via OPG, la formation d’ostéoclastes matures. Dans un processus anormal ou 
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pathologique (voir Figure 1-1-B) la cytokine TNFα produit par les cellules du système 

immunitaire va avoir pour double effet de stimuler l’expression de RANKL et de supprimer 

l’expression de OPG par les ostéoblastes [4]. Ces deux évènements conduisent tous deux à une 

surproduction d’ostéoclastes matures, déséquilibrant le cycle de reformation des os vers une 

destruction des os par les ostéoclastes. 

 

Figure 1-1: rôle de RANKL dans le cycle de reformation des os (modifié à partir de [23]). 

1.1.4 Tumor Necrosis Factor α (TNFα)  

 

1.1.4.1 Historique 

 

L’histoire du TNF commence en 1868, lorsqu’un physicien allemand remarque une régression 

des tumeurs humaines après infection de celle-ci par un pathogène [24]. Cette observation a 

amené 23 ans plus tard à l’utilisation par l’oncologiste W. Coley d’extrait bactérien pour le 

traitement du sarcoma un cancer des os [25]. En 1943, Shear et coll. isole les lipopolysaccharides 

(LPS) des extraits bactériens comme étant responsables de cette régression tumorale [26]. C’est 

finalement seulement en 1962 qu’O’Malley et coll. montrent que cette régression tumorale n’est 

Normal Anormal 
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pas due directement aux LPS, mais par l’induction d’un facteur soluble que l’on nomme alors 

Tumor Necrotizing Factor [27], renommer ensuite Tumor Necrosis Factor (TNF) [28]. 

Parallèlement en 1968 la lymphotoxine (LT) est découverte. C’est une protéine produite par les 

lymphocytes pouvant tuer les cellules cancéreuses [29]. C’est ensuite en 1984 que l’on découvre 

par séquençage de l’ADN que  LT et  TNF sont deux protéines homologues, car possédant des 

séquences proches [30]. Une homologie fonctionnelle est ensuite découverte, les deux protéines 

peuvent se fixer aux mêmes récepteurs [31]. Le TNF sera ensuite distingué sous le nom TNFα et 

LT sous le nom TNFβ, mais TNFα est souvent décrit dans la littérature sous le simple acronyme 

de TNF. La découverte de ces deux cytokines a porté les bases de l’identification d’une famille 

de cytokine : la superfamille TNF dont les récepteurs et les ligands sont décrits dans le tableau 1-

1 [32]. 

Tableau 1-1 Expression cellulaire des ligands et des récepteurs de la superfamille TNF [32] 
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1.1.4.2 TNFα et ses récepteurs 

 

TNFα est une cytokine pro-inflammatoire pléiotropique qui joue un rôle important dans la 

régulation de la défense de l’hôte, de l’inflammation et de l’apoptose [32]. Elle est produite 

principalement par les cellules du système immunitaire tel que les macrophages, lymphocytes T 

et B, mais aussi par d’autres cellules somatiques comme les cellules endothéliales et les tissus 

neuronaux [33]. Elle existe à la fois sous la forme transmembranaire (tmTNF, un homotrimère 

constitué de monomères de 26-kDa) et sous forme soluble (sTNF homotrimère constitué de 

monomères de 17-kDa) une fois clivé par l’enzyme TACE (TNFα converting enzyme), leurs 

récepteurs sont TNFRI et TNFRII. TNFRI est exprimé par la quasi-totalité des cellules du corps 

et TNFRII principalement par les cellules du système immunitaire et les cellules endothéliales 

[32]. TNFα active les deux récepteurs, bien que TNFRII soit préférablement activé par TNFα 

sous sa forme membranaire [34]. En effet, sTNF se lie préférentiellement à TNFRI (constante de 

dissociation [kd]~20 pM) plutôt qu’à TNFRII ([kd]~400 pM), ce qui suggère que le sTNF se liant 

à TNFRII va rapidement être relâché et transféré à TNFRI [35]. Ces deux récepteurs à la 

fonctionnalité distincte peuvent également être clivés par protéolyse pour prendre une forme 

soluble capable de neutraliser l’action de TNFα (Figure 1-3). TNFRI est présent sur la plupart des 

types cellulaires et active des voies cellulaires menant à la production de signaux pro-

inflammatoires (production de cytokine inflammatoire), apoptotique (mène à l’apoptose de la 

cellule) et cytotoxique (production de protéines cytotoxiques). À l’inverse TNFRII est surtout 

exprimé par les lymphocytes et conduit à une activation et prolifération lymphocytaire. La voie 

tmTNF-TNFRII joue un rôle très important notamment dans l’expansion des lymphocytes T 

régulateurs [36]. C’est donc très important de maintenir cette voie puisque les lymphocytes T 

régulateur permettent de contrôler les lymphocytes T effecteurs auto-réactifs présents de façon 

normale chez tous les individus sains [37]. Il est intéressant de noter ici que l’inhibiteur de TNFα 

Etanercept  possède un pouvoir d’inhibition relativement faible pour tmTNF [38], ce qui le rend 

potentiellement moins susceptible d’inhiber la voie tmTNF-TNFRII.  La liaison des récepteurs 

TNFR ou des TNFα bloqueurs au tmTNF peuvent induire une signalisation inverse, conduisant à 

l’activation, la suppression de la production de cytokine ou à l’apoptose de la cellule porteuse de 

tmTNF [39]. L’activation inverse correspond à la transduction du signal vers le noyau non pas dû 
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à l’engagement du récepteur membranaire avec son ligand soluble, mais au contraire à 

l’engagement du ligand transmembranaire avec son récepteur ou inhibiteur soluble. Les 

interactions entre TNFα et ses récepteurs sont récapitulés dans la Figure 1-2. 

 

Figure 1-2 interactions entre TNF et récepteurs [40] 
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Figure 1-3  Forme soluble et transmembranaire du TNFα et de ces récepteurs [41]. 

1.1.5  Principaux traitements de l’arthrose rhumatoique rhumatoïde 

 

Il existe principalement trois types de traitements l’arthrose, les agents chimiques qui traitent 

principalement les symptômes, les agents chimiques qui traitent les symptômes et qui sont 

capables de modifier la maladie et les agents biologiques capables de traiter les symptômes et 

d’améliorer la maladie [42].  

Pour le traitement des symptômes, des analgésiques ou des anti-inflammatoires non-stéroïdaux 

sont utilisés. Ils réduisent la douleur et la raideur au niveau des articulations. Leur usage est remis 

en question à cause de leurs inefficacités à modifier la course de la maladie à long terme et leurs 

effets toxiques sur le système cardiaque et gastro-intestinal [43, 44]. 

Les drogues anti-rhumatiques modifiant la maladie (DARM) sont largement utilisées pour le 

traitement de l’arthrose, leurs utilisations sont recommandées le plus tôt possible après la 

confirmation du diagnostic [45]. Elles agissent sur la plupart des symptômes  réduction de la 

douleur, des gonflements et améliore la mobilité de l’articulation ; ralentissent les dommages aux 

articulations et conduisent même à des rémissions [46, 47]. Methotrexate est le DARM le plus 

utilisé. Il existe également dans une liste non exhaustive : le Sulfasalazine, l’hydroxichloroquine  

et le Rituximab [48]. Les DARMs sont utilisés seul ou en combinaison les uns avec les autres, 
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elles peuvent être biologique ou synthétique et leur mode de fonctionnement est très varié 

[49].Cependant certains patients n’acquièrent pas une réponse satisfaisante au traitement et 

nécessitent une thérapie additionnelle [50], notamment en combinaison avec des agents 

biologiques. 

Les agents biologiques se sont développés à la suite de découvertes significatives dans la 

compréhension des mécanismes cellulaires et moléculaires de l’inflammation. Ceci a permis de 

développer des agents biologiques capables de cibler les médiateurs biologiques associés à 

l’arthrose et d’ouvrir la voie à de nouveaux traitements très efficaces [51]. La cible la plus 

courante de ces agents biologiques et la première à avoir été approuvé est la cytokine TNFα, mais 

des agents biologiques dirigés contre d’autres cibles commencent à émerger [5](Tableau 1-2: 

Agents biologiques approuvés pour le traitement de l'AR [5]). 

Tableau 1-2: Agents biologiques approuvés pour le traitement de l'AR [5] 
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1.1.6 Les agents biologiques bloqueurs de TNFα 

 

Les 5 principaux agents biologiques dirigés contre TNFα utilisés dans le traitement de l’arthrose 

sont Infliximab, Etanercept, Adulimunab, Certolizumab et Golimunab leur structure 

précédemment décrite dans le Tableau 1-2 est schématisé sur la Figure 1-4. Excepté Etanercept 

ils sont composés d’anticorps monoclonaux dirigés contre TNFα. Les anticorps sont constitués 

d’une chaine lourde (CH : heavy chain) et d’une chaine légère (CL : light chain), possédant 

chacune un fragment constant aussi dit cristallisable (Fc) et un fragment variable (Fv).  

Infliximab, Adalimumab et Golimunab sont des anticorps monoclonaux entiers totalement 

humanisés de classe IgG1. Infliximab est un anticorps chimérique contenant des peptides du Fv 

d’un anticorps de souris anti-TNFα dans la région variable monté sur  un anticorps monoclonal 

humain de classe IgG1 et Certolizumab est un Fv d’anticorps monoclonal humain de classe IgG1 

dans lequel est inséré quelques régions dérivées d’un Fv d’anticorps monoclonal anti-TNFα de 

souris, le tout lié de façon covalente à du polyéthylène glycol. Etanercept quant à lui est une 

fusion entre la portion extracellulaire du récepteur TNFRII fusionnée au Fc d’un anticorps de 

classe IgG1 humain. L’affinité des bloqueurs de TNFα pour sTNF a été déterminée par 

résonnance du plasmon [52] : la constante de dissociation à l’équilibre d’etanercept, 

certolizumab, adalimumab, et infliximab sont respectivement33.4, 89.3, 157.4, et 227.2 pmol/L, 

les valeurs les plus faibles indiquent la plus grande affinité. Etanercept et certolizumab ont donc 

une plus grande affinité qu’adalimumab et infliximab. Cependant sTNF peut rapidement se 

dissocier d’etanercept (90 % de dissociation après 3h), mais reste fixé à infliximab [53]. De plus, 

etanercept se lie uniquement à sTNF sous forme trimérique avec un ratio d’un dimère 

d’etanercept pour un trimère de sTNF alors que infliximab et adalumimab peuvent se lier à sTNF 

sous forme trimérique et monomérique. Pour l’affinité envers tmTNF en revanche etanercept se 

lie de façon moins forte qu’infliximab (1.15 nmol/L contre 0.45 nmol/L). Certolizumab, 

infliximab, et adalimumab ont un potentiel de neutralisation de la voie de signalisation de tmTNF 

deux fois plus grands qu’etanercept [52]. Etanercept, infliximab, et adalimumab peuvent induire 

une cytotoxicité dépendante de l’anticorps(CCDA) [54]. Ils sont tous très efficaces pour traiter 

l’AR mais aussi d’autre maladie inflammatoire comme le psoriasis.  
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Figure 1-4 Structure des 5 principaux bloqueurs de TNFα (tiré de [40]) 

 Cependant ces agents biologiques sont associés, d’après de nombreuses études et méta-analyse 

avec des risques d’infections sérieuses [6, 7] et de développement de la tuberculose [8] chez les 

patients traités nécessitant d’évaluer la balance bénéfice/risque d’un tel traitement. Ces risques 

sont dus au caractère localement immunosuppresseur de ces agents, causant notamment des 

risques d’infections au niveau de la zone d’injection. De plus ces traitements peuvent conduire à 

l’apparition chez le patient d’anticorps dirigés contre l’agent biologique le rendant inefficace [9]. 

Il existe également d’autres stratégies d’administration de ces agents biologiques tels que la 

thérapie génique. L’utilisation du gène codant pour la protéine  se révèle plus adéquate que 

l’utilisation de la protéine, car la thérapie génique permet une production stable de la protéine 

dans la durée et une expression localisée du transgène qui permet d’éviter les effets néfastes de la 

présence systémique de la protéine [10]. 
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1.2 Thérapie génique 

 

La thérapie génique consiste à un transfert d’acide nucléique sous forme d’ADN ou d’ARN dans 

les cellules malades. Par cette approche il est possible de remplacer un allèle défectueux par un 

allèle fonctionnel dans le cas des maladies héréditaires ou bien surexprimé une protéine ayant un 

effet thérapeutique. Le choix des cellules cibles et du vecteur permettant de transporter le 

matériel génétique jusqu’à celles-ci sont les facteurs critiques qui déterminent l’efficacité de la 

livraison génique [55]. L’agence américaine Food and Drug Administration (FDA) définie quant 

à elle la thérapie génique comme des substances « qui produisent des effets par transcription et/ou 

traduction de matériel génétique transféré et/ou par intégration au génome de l’hôte et qui est 

administré sous forme d’acides nucléiques, virus ou microorganismes modifiés génétiquement. 

Ces substances peuvent être utilisées pour modifier des cellules in vivo ou transférées à des 

cellules in vitro avant d’injecter ces dernières à un receveur ». Deux types de thérapie génique se 

distinguent, la thérapie génique sur cellules germinales ou sur cellules somatiques, la différence 

est qu’avec les cellules somatiques la modification génétique n’est pas transmise à la génération 

suivante. Aujourd’hui seule la thérapie génique visant les cellules somatiques est autorisée chez 

l’humain. 

1.2.1 Historique 

 

Le concept théorique de la thérapie génique a été évoqué dès les années 1960 par le prix Nobel 

Joshua Lederberg. Mais c’est seulement dans les années 1980 que la première étude clinique 

utilisant le transfert d’un gène a eu lieu [56]. L’équipe de Rosenberg s’est servi  d’un vecteur 

rétroviral pour introduire dans des lymphocytes infiltrant les tumeurs prélevées sur les patients un 

gène marqueur de résistance à la néomycine. Ces lymphocytes sont ensuite réintroduits chez les 

patients et la production du marqueur par ces cellules va permettre de les suivre à long terme. Le 

séquençage du génome humain dans les années 1990 a permis d’identifier des gènes surexprimés 

dans certaines maladies et donc d’identifier de potentielles cibles de traitement, par ailleurs le 

développement des technologies permettant la manipulation de l’ADN a permis d’ouvrir la voie 

vers le développement de traitement basé sur la thérapie génique. Un des premiers succès dans ce 
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domaine s’est produit dans les années 2000, par une équipe française du professeur Alain Fisher 

[57], il s’agit de traiter une immunodéficience due à une mutation du gène codant pour le 

récepteur de cytokine γ en transférant aux cellules de la moelle osseuse une copie normale de ce 

gène, cette approche apporte un grand espoir à tous ceux qui ne peuvent recevoir de greffe de 

moelle faute de donneur compatible. A ce jour, c’est plus de 1800 études cliniques en thérapie 

génique qui ont été menées dans plus de 31 pays [58].  

 

1.2.2 État actuel de la thérapie génique 

 

Dans les études cliniques de thérapie génique qui sont actuellement en cours, les trois principaux 

types de gènes que l’on cherche à introduire sont des gènes codant pour des antigènes dans le 

cadre de vaccin ou de désensibilisation, des cytokines ou des molécules suppressives de tumeur. 

La principale application de ces thérapies géniques est de loin le traitement des cancers. Les 

principaux vecteurs utilisés pour cela sont des adénovirus et des rétrovirus.  
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Figure 1-5 1.2.3 État actuel des études cliniques en  thérapie génique [59] 
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1.2.3 Principe de thérapie génique 

 

L’introduction du matériel génétique à la base de la thérapie génique se fait via un véhicule de 

livraison. Plusieurs types de matériels génétiques sont utilisés en thérapie génique : l’ADN 

double brin, l’ADN simple brin, l’ADN plasmidique [60], les oligonucléotides antisens, les ARN 

interférences et les micros ARN [61]. Ce transfert peut se faire ex vivo, le gène est alors transféré 

à la cellule cible dans le laboratoire puis la cellule est alors  réinfusée au patient Ce transfert peut 

se faire également in vivo, le gène est cette fois injecté directement au patient. Dans le cas d’un 

transfert de gène, la séquence du gène cible que l’on souhaite introduire est accompagnée de 

séquence d’ADN permettant de contrôler l’expression du gène par la cellule (séquence 

promotrice). Cette séquence forme la cassette d’expression. Cette cassette qui correspond le plus 

souvent à un plasmide (ADN circulaire double brin) va ensuite être insérée dans un véhicule de 

livraison. En effet, le transfert d’ADN nu dans le modèle  animal c’est avéré peu efficace en 

raison de son élimination rapide [62].L’ADN et l’ARN sont sensibles à la dégradation par les 

nucléases présentes dans le milieu biologique, de plus leur caractère hydrophile et sa charge 

négative [63] les empêchent de pénétrer naturellement la membrane cellulaire. Ce véhicule  peut-

être de nature virale ou non virale et permet d’accroitre l’efficacité et la spécificité du transfert 

génique et permet le passage de la membrane cellulaire et parfois de la membrane nucléique. Le 

choix de la cassette génique et du véhicule de livraison est critique pour contrôler l’expression 

génique. La voie d’administration ex vivo ou in vivo est également un facteur important à prendre 

en compte. 

L’approche ex vivo permet un ciblage très précis de la population de cellules et donc du tissu, 

puisque celle-ci est purifiée dans le laboratoire avant d’y transférer un gène ou de modifier ses 

gènes. Dans cette approche les cellules traitées doivent être capable de se répliquer une fois 

réinjectées, il est parfois préférable d’utiliser un système de livraison qui permet l’intégration du 

gène pour qu’il persiste au cours des divisions cellulaires. Les thérapies géniques ex vivo 

permettent par exemple de traiter des immunodéficiences héréditaires, comme la leucodystrophie 

[64], en utilisant un vecteur qui permet l’intégration durable du gène manquant dans le génome 

des cellules. Ou des maladies telles que l’hémophilie A  par le transfert, à des fibroblastes 

autologues, du gène codant pour le facteur de coagulation VIII [65]. La thérapie génique ex vivo 
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est utilisée pour l’induction des cellules souches pluripotentes et dans l’ingénierie des tissus en 

introduisant des gènes pour moduler leur croissance et les protéger contre le rejet par l’hôte [66]. 

La thérapie ex vivo permet un choix plus large de véhicule de livraison, car le  caractère 

immunogène et la toxicité moins importante à prendre en compte. Car le receveur ne sera au final 

au contact qu’avec des résidus du véhicule présents sur les cellules qui lui seront réinjectées. 

Dans la stratégie in vivo de thérapie génique, le véhicule transportant est injecté directement au 

tissu cible ou dans le flux sanguin menant à ce tissu. Ce transfert peut se faire à l’aide de véhicule 

viral ou non viral. Cette stratégie évite le processus compliqué d’isolement, de culture et de 

manipulation in vitro des cellules du patient, mais comporte d’autres défis, dont le premier est le 

choix du véhicule de transport génique.  

 

1.2.3.1 Véhicule génique à base viral 

 

La plupart des essais cliniques de thérapie génique utilisent des virus modifiés comme véhicule 

génique [60]. En effet les virus possèdent des mécanismes très efficaces pour internaliser leur 

propre génome dans la cellule hôte. Un virus est une nanoparticule composée d’acide nucléique 

et de quelques protéines qui la protège de la dégradation extracellulaire et contrôle son 

internalisation dans la cellule cible. Les vecteurs viraux utilisés pour la thérapie génique sont 

constitués d’un virus auquel la plupart des gènes codant pour les protéines virales responsables de 

sa pathogénicité ont été enlevées de son génome. La séquence cis-actine requise pour la 

réplication du génome du virus est en revanche conservée. Les gènes codant pour les protéines de 

structure sont déplétés du génome afin que le vecteur ne puisse pas se répliquer. Dans un contexte 

de production du vecteur viral uniquement et non pour la thérapie génique elle-même les 

protéines de la structure du virus sont exprimées directement par la cellule productrice du 

véhicule viral (qui n’est pas la cellule à traiter). Ceci est fait soit par co-transfection à l’aide d’un 

plasmide codant les protéines de structure soit par ingénierie préalable du génome de la cellule 

productrice du véhicule viral pour lui faire exprimer les protéines de structure du virus [67]. Il 

existe 4 classes principales de virus utilisé comme véhicule pour la thérapie génique : les 

gammarétrovirus, les lentivirus, les adénovirus et les virus adéno-associés (Figure 1-6). 
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Les gammarétrovirus et les lentivirus sont des rétrovirus  leur génome est sous forme d’ARN. Ils 

sont capables d’insérer le transgène dans les chromosomes de l’hôte permettant une expression 

permanente [68, 69]. Les gènes codant les protéines virales étant absents de son génome le 

rétrovirus est capable d’effectuer un unique cycle d’infection. La voie d’entrée du véhicule 

gammarétrovirus est dans le noyau de la cellule est passive elle ne peut se faire qu’au moment de 

la division cellulaire lorsque la membrane nucléaire se résorbe [70, 71]. Les véhicules géniques à 

base gammarétrovirus ne peuvent donc transfecter que les cellules qui se divisent. Au contraire la 

voie d’entrée dans le noyau pour les lentivirus est active. Les lentivirus forment un complexe de 

ré-intégration capable d’interagir avec les protéines au niveau des pores nucléaires [72]. Les 

véhicules à base lentivirus sont donc capables d’infecter les cellules qui ne se divisent pas.  

Les adénovirus humains sont capables d’infecter un large panel de cellule puisque le récepteur 

coxsackie/adénovirus qui lui permet d’entrer dans la cellule est exprimé par la plupart des types 

cellulaires [73]. Ils exploitent la machinerie cellulaire pour l’amener à produire les protéines 

virales sans pénétrer le noyau [73]. Les véhicules géniques à base adénovirus n’intègrent donc 

pas le transgène dans le génome de l’hôte.  

Les véhicules géniques basés sur les virus adeno-associés(VAA) sont capables de transfecter les 

cellules qui ne se divisent pas et sont relativement sûres par rapport aux autres véhicules viraux, 

car les VAA ne sont associés à aucune maladie connue [67]. Ils sont particulièrement intéressants 

dans le cas de l’arthrose puisque les VAA sont les plus efficaces pour délivrer un transgène dans 

le synovium [74]. D'ailleurs plusieurs, essais cliniques ont été réalisés dans le cadre d’une 

thérapie génique à base d’anti-TNF contre l’arthrose. Elle utilise un virus adéno-associé 

recombinant (VAAr) pour le transfert d’un transgène de fusion entre le gène codant la partie 

soluble du récepteur TNF et le fragment cristallisable d’une immunoglobuline (sTNFR:Fc) [75, 

76]. L’avantage du VAAr pour le traitement de l’arthrose est sa capacité à transfecter les cellules 

qui ne se divisent pas et sa faible immunogénivcité [77]. Dans l’étude clinique rAAV-TNFR:FC 

un ADNc codant etanercept (TNFR:Fc) a été incorporé à un AAV pour former le vecteur rAAV-

TNFR:Fc. L’efficacité de ce vecteur a été montrée sur une étude phase I [75], et une étude phase 

II sur 100 patients atteints d’AR [76]. Cette étude n’a cependant pas montré de réponse clinique 

statistiquement significative. 
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Figure 1-6 Vecteurs dérivés de virus [67]. 

Les véhicules viraux ont rencontré quelques succès récents notamment sur le traitement de 

l’immunodéficience due à la déficience en adénosine deaminase à l’aide d’un véhicule rétroviral 

transportant le gène codant l’adénosine deaminase [78] ou encore sur une forme congénitale de 

cécité (Amaurosis congénital de Leber) dû au défaut de la protéine oculaire RPE-65 traité par 

VAA transportant le transgène codant RPE-65 [79]. Malgré ces succès et les améliorations 

toujours plus nombreuses faites sur la sécurité de ses vecteurs, ils peinent encore à faire oublier 

les déboires qu’ils ont rencontrés dans les années 2000. La mort d’un patient lors d’une 

expérimentation pour traiter un déficit en ornithine-transcarbamylase(un enzyme du cycle de 

l’urée) utilisant les adénovirus en 1999, le développement d’une leucémie chez quatre enfants 

traités contre la SCID-X1(immunodéficience héréditaire causée par l’absence d’une protéine dont 

le gène est présent sur le chromosome X qui prend part dans la formation de nombreux récepteurs 

à interleukine) avec des gammarétrovirus en 2002 à paris [80, 81],suivit d’un enfant d’une 

cohorte différente traitée à Londres [82].Ce développement de lymphome était dû à des mutations 
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insertionnelles du génome dues à l’insertion référentiel du transgène dans un région proto-

oncogène LMO2 (LIM domain only 2) [83]. Dans ce contexte d’inquiétude au niveau de la sureté 

des véhicules viraux, les véhicules géniques non-viraux constituent une alternative de choix pour 

les thérapies géniques. 

1.2.3.2 Véhicules géniques non viraux 

1.2.3.2.1 Véhicules physiques 

1.2.3.2.1.1 Electroporation 

Le principe de l’électroporation est d’augmenter la perméabilité de la membrane cellulaire par 

l’application d’une  pulsation électrique intense, permet à l’ADN injectée de traverser la 

membrane cellulaire [84].Cette technique a été utilisée avec succès sur de nombreux tissus 

comme la peau [85], les muscles [86] (transfert d’un plasmide codant Il-5 à des souris), le foie 

avec un [87] (transfert de la GFP (green fluorescente protein) au foie des rats) et des 

tumeurs(mélanomes murins) [88].L’électroporation est utilisée en phase clinique pour la livraison 

de plasmide codant  l’IL-12 pour le traitement des mélanomes [89]. Cette technique présente 

l’avantage de livrer l’ADN de façon efficace et reproductible [90], mais comporte des limites 

notamment in vivo puisqu’il faut placer l’électrode à 1cm du tissu visé ce qui peut nécessiter une 

chirurgie et le courant électrique peut causer des dommages aux tissus [91]. 

1.2.3.2.1.2 Transfert balistique d’ADN (gène gun) 

Dans cette méthode des microbilles de métaux biocompatibles comme de l’or, du tungstène ou de 

l’argent sont recouverts de l’ADN à transférer et projeter à haute vitesse vers le tissu cible 

[92].Cette technique est utilisée in vivo sur des animaux et permet d’atteindre de nombreux 

organes sans léser les tissus environnant comme le foie [93], le cœur [94], le cerveau [95] et les 

muscles [96] avec le transfert d’un plasmide codant la GFP pour suivre l’efficacité de 

transfection. Comme pour l’électroporation de la chirurgie peut être nécessaire pour atteindre les 

tissus profonds. 
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1.2.3.2.1.3 Les ultrasons 

 

Cette technique est proche de l’électroporation à la différence que ce n’est plus une pulsation 

électrique, mais une onde acoustique qui crée des pores dans la membrane cellulaire par 

cavitation acoustique permettant à l'ADN de pénétrer. Cette technique est non invasive et permet 

d’atteindre les organes profonds sans chirurgie [97].Elle est utilisée pour transférer de l’ADN 

dans les muscles (transfert d’un plasmide codant GFP dans les muscles de la souris) [98], les 

tumeurs solides(transfert d’un plasmide codant la  β-galactosidase pour suivre la croissance de 

tumeurs rénales chez la souris) [99], le foie (livraison du gène codant le facteur IX dans le foie de 

souris) [100], les reins (transfert d’un plasmide codant GFP dans les reins de la souris) [101] et le 

cœur (transfert d’un plasmide codant la luciférase dans le cœur du rat) [102]. 

1.2.3.2.2 véhicules chimiques 

 

Les véhicules chimiques consistent en la formation de nanocapsule ou nanoparticule qui ont pour 

but de masquer la charge négative de l’ADN/ARN de condenser les molécules d’ADN/ARN et 

de les protéger de la dégradation par les nucléases du milieu intracellulaire [103]. Les 

nanoparticules doivent entrer en interaction avec les phospholipides et les glycoprotéines de 

charge négative à la surface de la membrane cellulaire pour permettre aux nanoparticules d’entrer 

dans la cellule, une corrélation est même observée entre la quantité de charges positives 

qu’exhibe la nanoparticule et le taux de transfert du gène vers la cellule [104]. L’interaction entre 

la nanoparticule et l’ADN, qui se fait par liaison électrostatique ou chimique, permet à l’ADN 

d’être protégé de la digestion par les enzymes du milieu intracellulaire [105]. Les matériaux 

composants ses nanoparticules peuvent être divisées en deux catégories : les matériaux 

organiques et les matériaux inorganiques. Dans les matériaux organiques, il y a les lipoplexes 

(Figure 1-7) et les polyplexes (Figure 1-8). Les matériaux inorganiques utilisés pour nano-

encapsuler l’ADN comportent principalement la silice, les oxydes de fer et les nanoparticules 

d’or, ils forment ensuite soit des composites avec des polymères cationiques où directement des 

propriétés d’absorption de l’ADN, les particules si elles sont magnétiques peuvent être adressées 

vers leur cible via l’application d’un champ magnétique [106]. 
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Les lipoplexes sont composés de complexes entre des lipides cationiques et de l’ADN ou de 

l’ARN chargé négativement. Le lipide cationique qui sert de véhicule à l’ADN ou l’ARN est 

composé de trois parties. Ils possèdent une ancre hydrophobe composée de deux chaines 

aliphatiques ou d’un dérivé du cholestérol, une tête hydrophile chargée positivement connectée à 

l’ancre par l’intermédiaire d’un « espaceur » [103]. Le premier lipoplexe qui a été utilisé pour le 

transport d’ADN par l’équipe de Felgner en 1987 était composé du lipide N[1-(2,3-

dioleyloxy)propyl]-N,N,N,trimethylammonium chloride (DOTMA). Depuis de nombreux autres 

lipides sont utilisés pour former des lipoplexes pour le transfert génique (Figure 1-7). Les 

lipoplexes se sont montrés capables de condenser l’ADN et d’induire des niveaux de transfection 

élevé in vitro [107, 108] et in vivo [109]. L’internalisation du lipoplexe par la cellule se fait par 

deux mécanismes possibles. Le premier correspond à la fusion de la membrane plasmique 

promue par l’interaction entre le lipide cationique du lipoplexe et un lipide présent sur la 

membrane [110]. Le second mécanisme implique les voies de l’endocytose [107]. Le segment 

hydrophibique du lipide est un élément clef qui détermine la charge et la taille du lipoplexes. Il a 

été montré que la taille et la charge influencent l’internalisation du lipoplexe [111] et peuvent 

donc affecter l’efficacité de transfection du lipoplexe [112]. 

Le polyplexe est formé d’un polymère cationique qui condense des acides nucléiques anioniques 

via des interactions électrostatiques en un complexe de taille nanométrique. Les polyplexes 

compressent les molécules d’ADN pour former des particules de taille suffisamment faible pour 

faciliter l’internalisation dans la cellule et donc accroitre l’efficacité de transfection [113]. En 

1988 le premier polyplexe utilisé pour le transfert de gène in vivo est composé du polymère poly-

l-lysine (PLL) [114]. Il a été suivi par d'autres (Figure 1-8), dont les plus utilisés comme véhicule 

génique in vitro et in vivo sont le poly ethylenimine (PEI) [115] et le chitosane [116]. Le 

chitosane a pour avantage d’être de synthèse simple, de coût réduit, de ne pas avoir de limite de 

taille pour l’ADN lors de la formation des polyplexes et d’avoir une structure et une chimie 

ajustable (Masse moléculaire MM et degré de désacétylation DDA) [117, 118]. Lavertu a montré 

au sein de notre laboratoire qu’un choix adéquat du DDA et de la masse moléculaire permet 

l’obtention in vitro de niveau de transfection similaire à un système phospholipidique commercial 

[118]. C’est pour ses qualités que le chitosane est choisi dans ce projet comme véhicule de 

livraison de nos transgènes. 
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Figure 1-7 Exemples de lipoplexes couramment utilisés comme vecteurs [119] 
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Figure 1-8 exemples de polyplexes utilisés comme vecteurs [120]. 
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1.3 Le chitosane 

 

1.3.1 Origine et structure du chitosane 

 

Le chitosane est un polymère obtenu par désacétylation alcaline de la chitine qui est le second 

polysaccharide le plus abondant sur Terre après la cellulose, son unité monomérique est le N-

acétyl-β-D-glucosamine relié par une liaison glycosidique (14) (Figure 1-9). La chitine est 

principalement extraite des organismes marins issus des déchets de pêche [121]. Pour la 

désacétylation alcaline, la chitine est resuspendue dans une solution alcaline  à haute température, 

le contrôle de la température et du temps de réaction permettent d’obtenir différents degrés de 

désacétylation (DDA). Il est possible de contrôler le DDA par complète désacétylation de la 

chitine puis réacétylation dans un mélange 80 % eau-méthanol (v/v) en présence d’une quantité 

stœchiométrique d’acide acétique pour le DDA désiré [122]. Le contrôle de la masse moléculaire 

du chitosane se fait par clivage des liaisons glycosidiques par l’utilisation d’acide nitrique 

concentré [123]. La caractérisation du chitosane produit peut se faire par spectroscopie infrarouge 

ou par résonance magnétique du proton et du carbone [124]. La caractérisation du chitosane est 

importante, car ses propriétés telles que son DDA et sa masse moléculaire sont des paramètres 

déterminants pour son efficacité en tant que vecteur de transfection, nous allons développer plus 

en détail cette influence dans la suite de la revue de littérature.   

 

Figure 1-9 structure chimique du chitosane [125] 

1.3.2 Chitosane comme vecteur de transfection génique 

 

Le chitosane fait partie des vecteurs non viraux organiques, c’est un polymère cationique à pH 

acide. Les groupements amines du chitosane lui permettent de lier l’ADN (ou l’ARN) chargé 
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négativement via des interactions électrostatiques et de l’encapsuler. La condensation de l’ADN 

dans la nanoparticule est évaluée via le rapport du nombre de molécule d’azote (des groupements 

amines du chitosane chargés positivement) sur le nombre de molécules de phosphate (chargés 

négativement présents sur les bases d’ADN) : N/P. 

 

Figure 1-10 formation des nanoparticules Chitosane/ADN (ou ARN) [125] 

1.3.3 Influence des caractéristiques du chitosane 

 

 Le DDA la masse moléculaire et le ratio N/P sont des paramètres qui influencent grandement 

l’efficacité de livraison du chitosane, mais aussi d’autres propriétés comme la toxicité, le 

caractère immunogène et la stabilité des nanoparticules [118, 126]. 

 

1.3.3.1 L’influence de la masse moléculaire et du DDA 

 

Le DDA de chitosane correspond au nombre de groupements amines désacétylées, ce qui modifie 

la charge et donc le potentiel électrostatique [127]. Le pKa du chitosane est de 6.5, il possède 

donc une charge positive à pH acide (< 6.5) et perd cette charge [125] et sa solubilité [128] à pH 

neutre et basique. La charge de la nanoparticule de chitosane est donc dépendante du pH et du 

DDA. Cela est confirmé par plusieurs études qui rapportent une augmentation du potentiel zêta 
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avec l’augmentation du DDA [129, 130]. Une charge de surface positive est favorable à 

l’interaction avec la membrane cellulaire chargée négativement et favorise la transfection 

[131].De plus un DDA trop faible (et donc une charge de surface faible)  n’est pas favorable à la 

formation de nanoparticule stable avec les acides nucléiques [132].Toutefois une densité de 

charge trop élevée peut induire de la cytotoxicité [133] c’est pourquoi il est important de 

sélectionner un DDA conduisant à un compromis entre efficacité de transfection et toxicité. De 

nombreuses études montrent que des nanoparticules de chitosane avec des masses moléculaires 

faibles (<150kDa) ont une efficacité de transfection plus élevée comparée aux chitosanes de 

masse moléculaire plus élevées [134-136]. Pour le DDA c’est sont les plus élevés (>80 %) qui 

ont la plus grande efficacité de transfection [137, 138], à l’exception du cas où l’on utilise des 

chitosanes avec une MM très élevée (390 kDa). Ce couplage qu’il semble exister entre MM et 

DDA a été étudié par Lavertu au sein de notre laboratoire [139], il ressort de cette étude que la 

balance entre MM et DDA du chitosane  gouverne sont affinité de liaison à l’ADN et influence ça 

capacité à transfecter de façon efficace. L’efficacité de transfection est la plus élevée pour des 

chitosanes avec une affinité intermédiaire pour l’ADN afin de permettre le relargage de celui-ci 

[140]. Les chitosans avec la meilleure efficacité de transfection sont donc ceux possédant un 

DDA relativement élevé (>90 %) associé avec une masse moléculaire relativement faible (<20 

kDa) et les chitosanes possédant un DDA relativement faible (<90 %) associé à une masse 

moléculaire relativement élevée (>20 kDa). Par exemple les chitosanes 92-10 et 80-40 présentent 

une efficacité de transfection similaire [139]. Il est important de maitriser avec précision les 

caractéristiques du chitosane pour l’utiliser en tant que véhicule de transfection génique. 

 L’influence du ratio N/P 

 

Le ratio N : P(N pour le groupement amine du chitosane et P pour la base phosphate de l’ADN) 

traduit la quantité d’ADN que l’on a mis en présence du chitosane au moment la formation des 

nanoparticules. Il influence l’habilité de la nanoparticule à interagir avec l’ADN (plus il y a de 

chitosanes par rapport à l’ADN et plus l’interaction sera forte) et avec la membrane chargée 

négativement et donc l’efficacité de transfection [126]. Un excès de chitosanes par rapport à 

l’ADN (ratio N:P plus grand) provoque la formation d’un polyplexe légèrement plus grand [136, 

141]. Or une nanoparticule de plus petite taille est plus efficace pour transfecter les cellules [142] 
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Les ratios N/P les plus efficaces sont d’au moins 3-5, c’est-à-dire dans des situations où l’on a un 

excès de polycation qui reste libre [143, 144]. Les travaux de Jean au sein du laboratoire 

suggèrent que l’excès de polycation améliore le relargage du complexe chitosane/ADN du 

lysosome dans lequel il se trouve une fois qu’il a pénétré le cytoplasme. L’excès de chitosane 

libre de charges positives provoque une augmentation de la pression osmotique à l’intérieur de la 

vésicule endo-lysosomal qui permet la rupture de la vésicule et la libération de la nanoparticule 

[145]. Cependant le ratio N/P optimal dépend des autres propriétés du chitosan. Un chitosane de 

haute masse moléculaire présente une efficacité de transfection plus élevée à faible ratio N/P et 

inversement [138]. Pour une même masse moléculaire, les chitosans avec les plus bas DDA 

(donc le moins de charges positivent) vont nécessiter un ratio N:P plus grand pour complètement 

condenser l’ADN [118].  

 

1.3.4 Utilisation du chitosane en thérapie génique 

 

Comme nous l’avons déjà vu le chitosane à la faculté d’empaqueter l’ADN et l’ARN par 

interactions électrostatiques formant des nanoparticules. Cet empaquetage améliore 

l’internalisation de l’ADN, car en tant que biomatériaux adhésifs le chitosane prolonge le contact 

entre le nanocomplexe transportant le transgène et la cellule cible [146]. De plus il augmente la 

perméabilité de la membrane cellulaire en perturbant les jonctions serrées entre les cellules via 

altération l’actine cellulaire, ce qui améliore l’internalisation de de l’ADN [147]. Le chitosane 

permet également à l’ADN internalisé d’échapper des endolysosomes par augmentation de la 

pression osmotique [145]. Ces propriétés permettent l’utilisation pour plusieurs applications. 

1.3.4.1 Application aux vaccins 

 

Dans ce contexte le nanocomplexe de chitosane doit non seulement transporter l’ADN codant 

pour l’antigène contre lequel est développé l’immunité, mais aussi promouvoir l’activation du 

système immunitaire. Pour cela l’antigène codé par l’ADN doit être présenté à la surface de 

cellule appropriée afin d’être présenté aux lymphocytes B et T. Cela se fait par la transfection des 

cellules somatiques qui va conduire à l’activation des lymphocytes T cytotoxique via la voie de 



29 

 

présentation croisée ou part la transfection directe des cellules présentatrices d’antigènes [148, 

149]. La voie orale et intranasale sont des voies de choix pour la vaccination, puisque ce sont les 

voies communes par lesquels entre les pathogènes et sont donc capables de générer une réponse 

immune locale et systémique. Le vecteur chitosane/ADNplasmidique a été utilisé avec succès sur 

ses voies d’administration chez la souris pour immuniser contre un allergène d’arachide [150] ou 

contre le virus de l’hépatite B [151]. D’autres voies d’administration peuvent être considérées, 

Jean et coll. montrent que l’injection sous-cutanée de chitosane/ADN plasmidique codant pour 

les protéines FGF-2 et PDGF-BB conduit chez la souris à la production d’anticorps spécifiques. 

Par ailleurs cette réponse immunitaire spécifique dépend de la formulation du chitosane utilisé : 

le chitosane avec le plus petit DDA (80%) et la plus haute masse moléculaire (80 kDa) est celui 

qui induit le plus d’anticorps spécifiques de l’antigène et l’infiltration de cellules inflammatoire. 

L’autre formulation au contraire, haut DDA (92 %) faible masse moléculaire (10 kDa) conduisant 

à une production faible d’anticorps spécifique de l’antigène. 

1.3.4.2 Application à l’expression de protéine thérapeutique 

 

Cette fois la réponse immunitaire n’est plus souhaitée et l’expression du transgène doit être 

soutenue. La structure chimique du chitosane, sa taille et sa charge sont des facteurs qui influent 

sur l’efficacité de transfection du transgène et un large nombre d’études montrent une expression 

soutenue du transgène dans les études animales utilisant des chitosanes de propriété très 

varié(dont la revue est faite dans [14]). L’équipe de Bowman est notamment parvenue à traiter de 

façon efficace l’hémophilie sur un modèle murin d’hémophilie A(Facteur VIII KO) en utilisant 

des chitosane de formulation 84-390 et 70-390 (DDA-MM) par voie orale [152]. Ces chitosanes 

ont été utilisés comme véhicule d’un plasmide codant le facteur VIII (ou facteur anti-

hémophilique A, cofacteur de coagulation) et permis l’induction de la synthèse du facteur VIII. 

La présence du facteur VIII est détectable dans le plasma sanguin un mois après administration 

orale. Le chitosane a également rencontré un succès par administration par voie intramusculaire 

et sous cutanée. Jean a utilisé des chitosanes de formulation 92-10 et 80-10 (DDA-MM) pour la 

livraison d’un plasmide codant la protéine GLP1(glucagon like peptide 1 )[13]. GLP1 est une 

hormone intestinale qui augmente la production de glucose dépendante de l’insuline utilisée pour 

le traitement du diabète de type 2 [153]. Le chitosane livrant le plasmide est injecté par voie sous-
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cutanée et intramusculaire chez des rats « Zucker Diabetic fatty » utilisés comme modèle animal 

pour le traitement du diabète de type 2. Les rats traités montrent une concentration accrue de 

GLP1 et d’insuline dans le plasma associé à un retour à la normale de leur niveau de glucose 

sanguin. Cet effet persiste jusqu’à 24h après la 5
ème

 et dernière injection. L’accroissement du 

niveau de GLP1 est sanguin et plus rapide chez les rats traités en sous cutané et les niveaux de 

GLP1 atteint sont plus important avec le chitosane de formulation 92-10. Dans le cadre de notre 

projet, nous utilisons le chitosane 92-10 qui semble être le plus prometteur pour l’expression 

thérapeutique de nos protéines recombinantes bloqueuses de TNF.  
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CHAPITRE 2 MÉTHODOLOGIE 

2.1 Clonage 

Des réactions de polymérisation en chaine (RPC) sont effectuées à partir d’un échantillon 

d’ADN complémentaire (ADNc) issu de la rétro-transcription des ARN messagers (ARNm) 

provenant de cellules de la rate du rat. Pour isoler la séquence des gènes d’intérêts, nous avons 

utilisé des amorces nucléotidiques qui ont été choisies pour permettre l’amplification spécifique, 

par RPC, des gènes correspondant à la partie extracellulaire du récepteur du TNFα de type II 

(TNFR) et à la partie constante d’une immunoglobuline de type G (IgG). Un cycle de RPC 

comporte 3 étapes : une étape de dénaturation à 94 °C de l’ADN matrice, une étape d’hybridation 

(annealing) à la température de fusion, TM moins 5 °C)  et une étape d’élongation 

(polymérisation) à 68 °C.     

 

2.1.1 Clonage de la séquence codante la partie extracellulaire du récepteur 

TNFRII du rat (TNFR) et de la séquence codante pour la région  

constante de l’immunoglobuline (Ig) du rat. 

Des amorces nucléotidiques ont été dessinées  de façon à permettre l’amplification 

spécifique du gène correspondant à la partie extracellulaire du récepteur du TNFα de type II 

(TNFR)  (GenBank: NM_130426.4) et des régions CH2, CH3 avec ou sans région charnière de la 

partie constante d’une Ig de type G1  du rat(GenBank ACCESSION   BC088240), mais aussi la 

mutation de ses séquences afin d’ajouter des sites pour enzymes de restrictions. Les sites 

correspondant aux endonucléases HindIII (15207-038, Invitrogen, Carlsbad, CA, USA), KpnI 

(15232-010 , Invitrogen, Carlsbad, CA, USA), XbaI (15226-012, Invitrogen, Carlsbad, CA, 

USA) vont permettre le clonage directionnel dans le vecteur d’expression pVax1. Les fragments 

d’ADN ainsi amplifiés ont été insérés dans un plasmide de clonage bactérien pCR2.1. Les 

amorces utilisées sont présentées dans le Tableau 2-1. 
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Tableau 2-1 Amorces pour clonage des gènes TNFR et Ig 

Gène Amorce sens  Site de 

restriction 

ajouté 

Amorce anti-sens Site de 

restricti

on 

ajouté 

TNFR 5’-

TAAGCTTAGAGCGGG

AGCTACC-3’ 

HindIII 5’-

TCGTTGGACTGACAGGT

ACCA-3’ 

KpnI 

CH2-CH3 5’-

GGGTACCAGAGTATC

ATCTGTCTT-3’ 

Enzyme KpnI 5’-

AGTCTCTAAACTCTCCTC

TAGAC-3’ 

Enzyme 

XbaI et 

codon-

stop 

CH2-CH3 + 

charnière 

5’-

GGTACCAAAATTGTG

CCAAG-3’ 

Enzyme KpnI 5’-

AGTCTCTAAACTCTCCTC

TAGAC-3’ 

Enzyme 

XbaI et 

codon-

stop 

La réaction RPC est effectuée dans un thermocycleur programmable Rotor-Gene6000 

(Corbett Life Science, NSW, Australie) en utilisant la crimson Taq (Crimson Taq DNA 

Polymerase, NEB, M0324S, New England, US) à partir de l’ADN complémentaire issu des 

ARNm des cellules de la rate du rat (CDNA-rat normal tissu : spleen, C1434246, BioChain, 

Newark, CA, USA). Pour cela 0.5µg d’ADNc 0.2µM des amorces,200µM de nucléotide 1.25 

unité de polymérase est utilisé pour un volume total de 50µL avec le programme suivant : 

dénaturation initiale à 94 °C pendant 2 minutes; 35 cycles de dénaturations  (94°C, 1minutes), 

hybridation (49 °C, 30 secondes) et élongation (68 °C 50 secondes); élongation finale à 68 °C 

pendant 2 minutes. 

Le produit RPC a  été séparé par électrophorèse sur gel d’agarose à  0.8 % pendant 45 

minutes à 100 V. Le gel a été coloré au  bromure d’éthidium (Ethidium bromide solution, E1510, 

Sigma-Aldrich, St Louis, MO, USA) à 0.5 µg/mL qui permet la visualisation des bandes d’ADN 

sous lumière UV à l’aide de l’appareil Biovision (Vilbert Lourmat, Marne-la-Vallée, France). La 

bande correspondant au fragment d’ADN amplifié ont été extraites du gel en utilisant le  kit 
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d’extraction de Quiagen (QUIAquick gel extraction Kit,28704, QUIAGEN, hilden, Germany). La 

réaction de ligation et de transformation a été effectuée à l’aide du  kit TOPO cloning  en suivant 

le protocole suivant (TOPO TA cloning kit, Invitrogen,45-0641, Carlsbad, CA). Les bactéries 

transformées sont sélectionnées sur pétire de milieu LB à l’aide de l’antibiotique ampicillin 

(Ampicillin sodium salt, A0166, Sigma-Aldrich, St Louis, MO, USA) dont le gène de résistance 

est présent dans pCR2.1 et par sélection blanc/bleu à l’aide du système LacZ/X-gal. 

Les bactéries transformées sont repiquées dans 3 mL de milieu LB liquide avec 

ampicilline (100µg/µL) et incubées toute la nuit à 37 °C avec agitation horizontale à 200 rpm. 

 

 

Après 14 à 16 h d’incubation 1.5 mL des cultures liquides de bactéries ont été 

centrifugées dans des tubes eppendorf à 800 rpm pendant 3 minutes. Le plasmide a ensuite été 

extrait du culot obtenu en utilisant le kit mini prep de Quiagen (QUIAprep Spin miniprep 

Kit,27106, QUIAGEN, hilden, Germany) comme décrit dans le manuel. Rapidement les culots 

sont dissouts avec 250 µL de solution P1, 250 µL de solution P2 est ajoutée (P2 est une solution 

basique qui permet la lyse des bactéries provoque la libération leur contenu en solution), les tubes 

sont ensuite agités par inversion puis incubés 5min à température pièce. 350 µL de solution N3 

est ajoutée et les tubes sont agités jusqu’à observation d’un précipité blanc (N3 réduit le pH 

causant la précipitation des protéines et de l’ADN génomique et laissant le plasmide en solution). 

Pour éliminer ce précipité blanc qui correspond aux débris cellulaires et l’ADN génomique,  les 

tubes sont centrifugés 10 min à 13000 rpm avant de récupérer le surnageant qui contient le 

plasmide. Les surnageants sont ensuite transférés sur les colonnes puis centrifugés 1 min à 13000 

rpm, les colonnes sont ensuite lavées  pour purifier l’ADN plasmique avec 500µL de solution PB 

puis 750 µL de solution PE (qui contient de l’éthanol afin d’éliminer l’excès de sel). Enfin le 

plasmide purifié est récupéré de la colonne à l’aide de 50µL d’eau. Les plasmides sont ensuite 

migrés sur un gel d’agarose 0.8 %. La longueur de la chaine d’ADN des plasmides purifiés est 

vérifiée. Les plasmides issus des colonies blanches (plasmide qui contient le fragment cloné) ont 

une chaine d’ADN plus longue que les plasmides issus des colonies bleues (plasmide qui ne 

contient pas le fragment cloné) L’absorbance à 260 nm et à 280 nm des échantillons est ensuite 

mesurée  avec le spectrophotomètre (JENWAY 6405 UV/VIS, JENWAY, Burlington, NJ, USA). 
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La mesure à 260 nm correspond à la longueur d’onde d’absorption de l’ADN et la mesure à 280 

nm à la longueur d’onde d’absorption des protéines. L’absorbance à 260 nm fournit la 

concentration de l’ADN dans l’échantillon (1 unité d’absorbance à 260 nm correspond à 50 

µg/ml d’ADN doubles brins). Le ratio  ratio A260/A280 permet lui, d’évaluer la proportion de 

contaminants protéiques dans l’échantillon (plus le ratio est élevé plus l’échantillon d’ADN est 

pur. Les échantillons avec un ratio A260/A280 < 1.8 sont rejetées. Les échantillons restants sont 

envoyés pour séquençage à l’IRIC. Les séquences obtenues sont comparées à la séquence 

d’origine disponible sur Gene Bank,  

2.1.2 Formation des trois constructions plasmidiques pVax/TNFR, 

pVax/IgTNFR et pVax/IgTNFRd 

Le fragment TNFR comportant les sites pour KpnI et XbaI est prêt à être inséré dans le plasmide 

pVax. Le plasmide pCR2.1/TNFR et le plasmide pVax1 (pVax1, V260-20 , Invitrogen, Carlsbad, 

CA, USA) sont digérés par les enzymes Hind III et XbaI (digestion avec une unité d’enzyme par 

µg de plasmide pendant 1 h à 37 °C) afin de générer des bout cohésifs. 

Les bouts cohésifs ainsi générées sont assemblés en utilisant la ligase ADN T4 (T4 DNA 

ligase, M0202S, NEB, New England, US) en utilisant la procédure suivante : l’équivalent de 

100fmol de pVax sont mélangés à 600fmol de l’insert TNFR et 4µL du tampon de la ligase dans 

un volume total de 20 µL, le tout est incubé 16 h à 14 °C dans le bain réfrigéré (HAAKE G) 

permettant l’obtention du plasmide pVax/TNFR.  

Les bactéries transformées sont cultivées sur des pétris formés d’agar, de milieu LB en 

présence kanamycine (Kanamycin sulfate, from Streptomyces Kanamyceticus, K1377, Sigma-

Aldrich, St Louis, MO, USA)  à la concentration 50 µg/ml durant une nuit à 37 °C.L’antibiotique 

utilisé est la kanamycine et non l’ampicilline contrairement à précédemment, car le gène de 

résistance à l’antibiotique (ou le gène de sélection) présent sur pVax est un gène de résistance à la 

kanamycine. Les bactériées sont repiquées, cultivées et les plasmides sont purifié comme décrit à 

la section 2.1.1. 

Les plasmides pCR2.1/CH2-CH3 et pCR2.1/CH2-CH3+charnière sont digérées par les 

enzymes HindIII et KpnI. Les fragments sont ensuite liées aux fragments TNFR au niveau de leur 

extrémité cohésive générée par l’endonucléase KpnI en utilisant de 600 fmol de l’insert TNFR et 
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600 fmol de l’insert CH2-CH3 ou CH2-CH3+charnière  à l’aide de la T4 ligase comme décrit au 

paragraphe précédents. Les fusions IgTNFR (fusion entre TNFR et les région CH2-CH3 de l’Ig) 

et IgTNFRd (fusion entre TNFR et les régions CH2-CH3+charnière de l’Ig) sont ainsi générés, 

elles sont ensuite insérées via les sites HindIII et KpnI dans le plasmides pVax tel que décrit au 

premier paragraphe de se chapitres 

Des bactéries E.Coli (DH5α-T1) chimiquement compétentes sont transformées avec les 

plasmides pVax/TNFR, pVax/IgTNFR et pVax/IgTNFRd : 2 µL de produit de ligation sont 

ajoutés à un vial de bactérie E.Coli (DH5α-T1) et incubés sur glace pendant 5 minutes. Les 

bactéries subissent ensuite un choc en plongeant le vial pendant 30 secondes dans un bain à 42 °C 

avant de le remettre sur glace ceci permet de déstabiliser la membrane plasmique pour permettre 

l’entrée du plasmide. Pour régénérer les bactéries, 250 µL de milieu nutritif SOC sont ajoutés 

avant d’incuber le vial à 37 °C, avec rotation horizontale à 200 rpm. 

2.2 Préparation des particules de chitosane/ADN plasmidique 

(ADNp) 

2.2.1 Préparation des formulations de chitosane 

Le chitosane (Laboratoire BCL, polytechnique Montréal, Montréal, Canada) 92-10 (degré 

de désacétylation-masse moléculaire) a été dissout pendant une nuit à température pièce avec une 

solution d’acide chlorhydrique en quantité stœchiométrique par rapport au groupement amide, 

afin d’obtenir une solution liquide de chitosane à 5 mg/mL. Les solutions ont ensuite été filtrées à 

0.2µm sous une hôte biologique. Une solution de chitosane diluée est formée de façon à ce que 

une fois mélangé en proportion 1:1 avec de l’ADN plasmidique à la concentration 0.1 µg/µL elle 

donne des nanoparticules de chitosane avec un  ratio défini. Par exemple, pour obtenir 1mL de 

solution de travail nécessaire pour former des nanoparticules 92-10-5 il faut diluée 58 µL de la 

solution de chitosane dilué 92-10 à 5mg/mL dans un volume total de 1 mL d’eau pure. 

2.2.2 Formation des nanoparticules chitosane/ADNp 

Le volume désiré d’ADNp à la concentration 0.1 µg/µL est ajouté à un tube eppendorf, le 

même volume de solution de travail est ajouté et immédiatement mélangé par pipetage (environ 

20 fois) et incubée une trentaine de minutes pour permettre la formation des nanocomplexes. 
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2.3 Caractérisation physico-chimique des nanoparticules 

chitosan/ADNp 

2.3.1 Détermination de la taille et du potentiel ζ des nanoparticules 

chitosan/ADNp 

La taille hydrodynamique, c’est-à-dire la taille de la particule et de la couche d’eau qu’il 

absorbe et le potentiel δ des nanoparticules ont été déterminées avec l’appareil Zetasizer Nano ZS 

(DLS, Malvern Zetasizer Nano ZS, Malvern, Worcesterchire, UK). La mesure de la taille 

hydrodynamique repose sur le principe de la diffusion dynamique de la lumière issue d’un laser  

lorsqu’il rencontre les particules en solution qui sont soumises à un mouvement brownien. La 

mesure de l’intensité de diffusion de la lumière du laser qui rencontre la particule permet 

d’évaluer son mouvement brownien qui dépend de la taille hydrodynamique de la nanoparticule. 

Par ce biais  la taille hydrodynamique de la particule est calculable.  

Le potentiel δ est une mesure de la charge de surface de la nanoparticule. Sa mesure a été 

faite dans le même instrument que pour la taille hydrodynamique. Cette fois c’est le principe 

physique de la vélocimétrie à rayon laser à effet Doppler qui donne accès au potentiel δ.  

Les nanoparticules formées comme indiqué dans le chapitre 2.2.2 sont diluées 10 fois  

dans une solution de NaCl à 10 mM. Un volume de 500 µL de cette solution a ensuite été placé 

dans une cuvette transparente (759075D, plastibrand, Brand, Wertheim, Allemagne) pour 

mesurer la diffusion de la lumière sous un angle de 173 ° à température pièce afin de déterminer 

la taille hydrodynamique de la nanoparticule. La solution est ensuite à nouveau diluée par deux 

dans une solution de NaCl à 10mM (dilution par 20 par rapport à la solution initiale) et introduit 

dans une cuvette destinée à la mesure du potentiel δ (cellule capillaire jetable, DTS1061, Malvern 

Instruments, Worcesterchire, UK). 

2.3.2 Analyse des nanoparticules chitosan/ADNp par microscopie 

électronique à balayage 

La microscopie électronique à balayage permet de visualiser la forme des nanoparticules 

chitosan/ADNp. Les nanoparticules préparées de la façon décrite au chapitre 2.2 ont été 

vaporisées sur un support de silicium et recouvertes d’une mince couche d’or. La taille des 
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particules d’or a été ajustée entre 1 à 2 nm de façon à éviter l’interaction avec les nanoparticules 

par l’instrument Agar Manuel Sputter Coater (Marivac Inc., Lakefield, QC, Canada). Le support 

a ensuite été placé dans la chambre du microscope électronique à balayage réglé en mode vide 

élevé (ESEM, Quanta 200 FEG, FEI Compagny Hillsboro, OR, USA). Des images ont été prises 

au grossissement 80000 X et 160000 X pour déterminer l’homogénéité des formes des 

nanoparticules au sein de la population observée et déterminé une taille à faire corrélé avec les 

résultats de diffusion dynamique de la lumière. 

2.3.3 Étude de la protection de l’ADNp complexé au chitosane (nanoparticules 

de chitosane/ADNp) contre la digestion par l’ ADNase. 

Pour convenir comme système de livraison in vitro et in vivo en particulier, le chitosane doit 

protéger l’ADN qu’il véhicule contre la dégradation par les nucléases du milieu physiologique, 

afin de permettre à l’ADN de rejoindre sa cible. Les dilutions suivantes de la solution de 

chitosane 92-10 à 5 mg/mL (préparées comme indiqué dans la section 2.2) sont effectuées 

comme indiqué dans le Tableau 2-2 . 

Tableau 2-2 dilution de la solution de chitosane 92-10 à 5 mg/ml 

Formulation de 

chitosane cible 

92-10-0.5 92-10-2 92-10-5 92-10-10 92-10-20 

Volume total 1000 µL 500 µL 100 µL 100 µL 100 µL 

Volume de la 

solution de 

chitosane 92-10à 

5mg/ml(µL) 

 

5µL 

 

11µL 

 

5µL 

 

 

11µL 

 

22µL 

Volume d’eau (µL) 995µL 489µL 95µL 89µL 78µL 

 

 Ces dilutions sont utilisées pour former des nanocomplexes avec l’ADN plasmidique (en 

utilisant la procédure décrite à la section 2.2.2) de formulation 92-10-0.5, 92-10-2, 92-10-5, 92-

10-10, 92-10-20. 20 µL de ces nanocomplexes et un contrôle ne contenant que l’ADNp  ont été 

incubés en présence de quantités croissantes de ADNase de type I (DNAse 1 amplification 
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grade,Sigma ALdrich, Product N° AMPD1-1KT) : 0, 1, 2 et 4 Unités dans un volume total de 30 

µL du tampon de l’ADNase, pendant 30minutes à 37 °C. Puis la réaction de digestion a été 

arrêtée par l’ajout de 2 µL d’EDTA  à 50 mM (l’EDTA inhibe la DNAse par chélation des ions 

Ca
2+

 nécessaire à l’activité de l’enzyme). Ces mêmes échantillons ont été ensuite digérés par 80 

mU de chitosanase (Chitosanase from Streptomyces, Sigma Aldrich, Product N°C-9830-10UN) 

pendant 1h30 à 37 °C afin de libérer l’ADNp des nanoparticules. La réaction de digestion est 

finalement arrêtée par incubation 15minute à -20 °C. Les échantillons migrés  par électrophorèse  

sur un gel d’agarose 0.8 %. Le gel est ensuite coloré au  bromure d’éthidium (Ethidium bromide 

solution, E1510, Sigma-Aldrich, St Louis, MO, USA) à 0.5 µg/mL qui permet la visualisation 

des bandes d’ADN sous lumière UV à l’aide de l’appareil Biovision (Vilbert Lourmat, Marne-la-

Vallée, France) Culture des lignées cellulaires et transfection 

2.3.4 Culture cellulaire 

Les lignées cellulaires suivantes ont été utilisées pour les expériences in vitro : HEK293, CHO et 

WEHI-13-Var (ATCC, Manassas, VA, USA). Les lignées cellulaires HEK293 et CHO ont été 

utilisées pour les transfections et la lignée WEHI13-Var a été utilisée pour l’expérience de 

biofonctionnalité. Les HEK293 ont été cultivées dans du milieu DMEM (DMEM : Dulbecco’s 

modified Eagle’s medium) à glucose élevé (12100-046, Gibco, Invitrogen, Carlsbad, CA, USA) 

supplémenté de 1.85 g/L de NaHCO3 (S-5761, Sigma-Aldrich, St Louis, MO, USA) et de 10 

%(volume/volume) de FBS (FBS : fœtal bovine serum, 26140079, Gibco, Invitrogen, Carlsbad, 

CA, USA). Les CHO ont été cultivées dans du milieu MEMalpha (Minimum Essential Medium 

(MEM) Alpha Medium, 11900073, Gibco, Invitrogen, Carlsbad, CA, USA). Supplémenté de 6 % 

de FBS dialysé (Dialyzed Fetal Bovine Serum, 26400036, Gibco, Invitrogen, Carlsbad, CA, 

USA) et de L-glutamine à 4mM  (L-Glutamine, 25030-081, Gibco, Invitrogen, Carlsbad, CA, 

USA). Les WEHI-13-Var ont été cultivées dans le milieu RPMI 1640 (RPMI 1640, 30-2001, 

ATCC, Manassas, VA, USA)  supplémenté de 10 % (volume/volume) de FBS (FBS : fœtal 

bovine serum, 26140079, Gibco, Invitrogen, Carlsbad, CA, USA). Les cellules sont toutes 

maintenues  à 37 °C en atmosphère contrôlée à 5 % de CO2. 
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2.3.5 Transfection des cellules in vitro avec les nanoparticules chitosan/ADNp. 

Les transfections ont été effectuées avec des nanoparticules à base de chitosane (92-10-5)/ADNp  

préparées de la façon décrite au chapitre 2.2. Les cellules HEK293 ou CHO ont été ensemencées 

dans une plaque 24 puits la veille de la transfection de façon à atteindre les 50% de confluence le 

jour de transfection. Le jour de transfection, le milieu de culture est remplacé par du milieu de 

transfection en présence de 10 % de FBS et fraichement ajusté au pH 6.5 et des nanoparticules de 

chitosan/ADNp de façon à avoir 1 µg d’ADN par puits. Le milieu de transfection est composé du 

milieu DMEM (DMEM : Dulbecco’s modified Eagle’s medium) à glucose élevé (12100-046, 

Gibco, Invitrogen, Carlsbad, CA, USA) supplémenté de 0.839 g/L de NaHCO3 (S-5761, Sigma-

Aldrich, St Louis, MO, USA) et de 0.977 de MES (MES hydrate, M2933, Sigma-Aldrich, St 

Louis, MO, USA), ajusté au pH 6.5. Au bout de 24 h, le milieu de transfection a été remplacé par 

le milieu de culture normal. Les surnageants et/ou les culots ont été collectés au bout d’une autre 

24h d’incubation dans leur milieu de culture. 

2.4 Expression de l’ARN messager (ARNm) correspondant au 

transgène. 

Les cellules HEK293 et CHO ont été transfectées par des nanoparticules chitosane (92-10-

5)/ADNp, avec les trois ADNp correspondants à pVax/TNFR, pVax/IgTNFR et pVax/IgTNFRd. 

Des cellules restent non transfectées comme contrôle. Les culots de cellules sont récupérés après 

48 h de transfection dans des eppendorf de 1.5 ml. L’ARN total a ensuite été extrait en utilisant le 

kit d’extraction RNA XS (MCN74090250, Macherey-Nagel, Biolynx, Brockville, ON, Canada) : 

les culots sont lysés à l’aide de 100 µL de solution RA1 qui inhibe également les ARNases et 2 

µL de solution TCEP qui réduit les ponts disulfure et favorise la liaison de l’ARN à la silice, 5 

µL de solution « carrier » ARN est ensuite ajoutée pour faciliter la précipitation des ARN. Le 

produit de lyse est ensuite filtré à l’aide d’une membrane par centrifugation 30 seconde à 11000 

g. 100 µL d’éthanol 70 % est ajouté pour ajuster les conditions de liaison de l’ARN à la silice. Le 

mélange est ajouté à la mini colonne de silice et centrifugé 30 seconde à 11000 g (l’ARN est 

maintenant lié à la colonne de silice). 100 µL de tampon de dessalage est ajouté à la colonne qui 

est centrifugée 30 secondes à 11000 g. L’ADN contaminant notre membrane de silice est digéré 

en utilisant 25 µL de mixture de DNAse incubé 15 minute à température pièce. La membrane est 
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ensuite lavée par l’utilisation successive de 200 µL des tampons RA2 et RA3. Enfin l’ARN 

purifié est élué de la colonne à l’aide de 10 µL d’eau sans ARNase.  Une fois récolté l’ARN total 

a été rétrotranscrit en ADN complémentaire en utilisant le kit Quantitect reverse transcription kit 

(205311, QIAGEN, Hilden, Germany) selon les instructions du fabricant. Rapidement, l’ADN 

génomique contaminant restant est éliminé de notre échantillon d’ARN purifié par incubation 

2min à 42°C avec le tampon « gDNA wipeout ». Le mélange réactionnel pour la 

rétrotranscription est ensuite effectué en mélangeant : 1 µL de reverse transcriptase, 4 µL du 

tampon de la reverse transcriptase, 1 µL des amorces de la reversetranscriptase et 14 µL de notre 

ARN purifié. Le mélange est successivement incubé 15 minutes à 42 °C puis 3 minutes à 95 °C 

pour inactivé la reverse transcriptase. Une RPC est ensuite effectuée avec des amorces permettant 

d’amplifier nos trois une séquence spécifique de nos transgènes TNFR, IgTNFR et IgTNFRd 

(Tableau 2-3). Pour cela 20 µL du produit de retrotranscription avec  0.2 µM des amorces, 200 

µM de nucléotides et 1.25 unité de polymérase sont utilisés pour un volume total de 50 µL avec 

le programme suivant : dénaturation initiale à 94 °C pendant 2 minutes; 50 cycles de dénaturation 

(94 °C, 15 secondes), hybridation (58 °C-0.5 °C pendant les 10 premiers cycles, 30 secondes) et 

élongation (68 °C, 30 secondes); élongation finale à 68 °C pendant 5 minutes. 

Tableau 2-3 séquences des amorces utilisées pour détection des ARNm 

amorces pour détecter Foward primer Reverse primer 

TNFR 5’- GACACCACATCATCCACAGA-3’ 5’-GAGCTCGGATCCACTAGTCC-3’ 

IgTNFR 5’- GACACCACATCATCCACAGA-3’ 5’- AGGTCACGTGTGTTGTGGTA-3’ 

IgTNFRd 5’- GACACCACATCATCCACAGA-3’ 5’- AGGTCACGTGTGTTGTGGTA-3’ 

Les échantillons de RPC sont ensuite migrés sur gel d’agarose 0.8 %. Le gel est ensuite coloré au  

bromure d’éthidium (Ethidium bromide solution, E1510, Sigma-Aldrich, St Louis, MO, USA) à 

0.5µg/mL qui permet la visualisation des bandes d’ADN sous lumière UV à l’aide de l’appareil 

Biovision (Vilbert Lourmat, Marne-la-Vallée, France)  et le gel est coloré au bromure d’éthidium 

pour faire apparaitre les bandes d’ADN 

Bioactivité des protéines recombinantes TNFR, IgTNFR et IgTNFRd. Les cellules HEK293 ont 

été transfectées par des nanoparticules chitosane (92-10-5)/ADNp, avec les trois ADNp 
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correspondant à pVax/TNFR, pVax/IgTNFR et pVax/IgTNFRd. Afin d’être utilisé comme 

contrôle des cellules sont  transfectées avec un chitosane (92-10-5)/ADNp codant pour la protéine 

GFP (pEGFPluc, 6169-1, Clontech, Mountain View, CA, USA), avec du chitosane seul et le 

plasmide GFP seul et d’autres sont laissées non transfectées. Le jour précédent la collecte des 

surnageants de transfection, des plaques 96 puits ont été ensemencées avec 15000 cellule/puits de 

WEHI-13-Var  afin d’atteindre 50 % de confluence le lendemain. Les puits d’autres plaques 96 

puits ont été remplis avec 50 ng d’actinomycin D (Sigma aldrich,Product N°A1410, St Louis, 

MO, USA) et différentes quantités de TNFα (R &D system, Product N°510-RT-050, 

Minneapolis, MN ,USA): 300, 250, 200, 180, 150, 100, 75, 50, 25 et 0 pg en triplicata pour 

chaque échantillon et chaque contrôle. Les puits ont ensuite été complétés par 100 µL des 

surnageants de transfection et les contrôles ont incubé 3 h à 37 °C, 5 % CO2. A cette étape un 

contrôle est ajouté : une partie du surnageant des cellules non transfectées est mis en présence de 

10 ng/µL d’anticorps anti-TNFalpha (R &D system, Product N°BAF-510, Minneapolis, MN 

,USA).  Le milieu de culture des plaques contenant les WEHI-13-Var a été finalement remplacé 

par le milieu précédent contenant le TNFalpha et les surnageants, puis les cellules ont été 

incubées toute la nuit à 37 °C, 5 % CO2. 

Le lendemain un test MTT est effectué en utilisant le kit MTT cell proliferation assay (ATCC, 

Product N°30-1010K) : 10 µL de réactif MTT ont été ajouté aux puits de la plaque contenant les 

cellules, les plaques ont été incubé à 37 °C, 5 % CO2 jusqu’à apparition d’un précipité violet (2 à 

4 h), 100 µL de détergent a été ajouté avant d’incubé les plaques à température pièce à l'abri de la 

lumière pendant toute la nuit. 

Le lendemain les plaques sont lues à l’aide du Microplate reader Tecan Infinite M200 (Teacan, 

Männedorf, Switzerland) à 570 nm. 

2.5 Comparaison de l’activité des protéines recombinantes TNFR, 

IgTNFR et IgTNFRd contre TNFα : ELISA de compétition.  

Les cellules HEK293ont été transfectées par des nanoparticules chitosane (92-10-5)/ADNp, avec 

les trois ADNp correspondants à pVax/TNFR, pVax/IgTNFR et pVax/IgTNFR. Comme contrôle 

les cellules ont également été transfecté avec un chitosane (92-10-5)/ADNp codant pour la 

protéine GFP (pEGFPluc, 6169-1, Clontech, Mountain View, CA, USA), avec du chitosane seul 
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et le plasmide GFP seul et des cellules non transfectées. Le jour précédent la collecte des 

surnageants de transfection, différente quantité de TNFα de rat (R &D system, Product N°510-

RT-050, Minneapolis, MN ,USA) ont été fixés sur une plaques 96 puits pour ELISA à l’aide d’un 

tampon carbonate/bicarbonate au pH 9.5. Les quantités de TNFα ont été fixé à 800, 600, 400, 

300, 200, 100, 50 et 0 pg. Le lendemain les surnageants sont collectés et les puits de la plaque 

d’ELISA sont bloqués 1 h avec 250 µL de tampon carbonate/bicarbonate, 5 % de BSA (Sigma, 

A3294, St Louis, MO, USA), puis lavé avec 100 µL de PBS (Phosphate Buffered Saline, Sigma, 

D5652-10X1L, St Louis, MO, USA). Un volume de 100 µL des surnageants a ensuite été ajouté 

et incubé à 4 °C toute la nuit. Le lendemain les plaques ont été à nouveau lavées au PBS et un 

volume de 100 µL contenant 10 ng d’anticorps anti-TNFalpha (R &D system, Product N°BAF-

510, Minneapolis, MN, USA) dilué dans du PBS, 2%BSA a été ajouté à chaque puits. La plaque 

a ensuite été incubée toute la nuit à 4°C. Le lendemain la plaque a été lavée avec 100 µL de PBS 

et 100 µL de Streptavidin-HRP(R &D system, DY998, Minneapolis, MN ,USA) dilué 1/200 dans 

une solution de PBS, BSA 1 % a été ajouté au puits et le tout a été incubé à température de la 

pièce 1h. La plaque a ensuite été lavée cinq fois au PBS et 100 µL du substrat de la streptavidin 

(Substrate reagent pack, R&D systems, Product N°Dy999, Minneapolis, MN, USA) a été ajouté 

au puits. La plaque a été incubée à température pièce et la réaction de coloration stoppée avec 

50µL d’acide sulfurique. La plaque a ensuite été lue à l’aide du Microplate reader Tecan Infinite 

M200 (Teacan, Männedorf, Switzerland) à 450 nm. 
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CHAPITRE 3 RÉSULTATS 

3.1 Clonage 

3.1.1 Clonage de la construction correspondant à la partie extracellulaire du 

récepteur TNFRII du rat (TNFR) vectorisée dans le plasmide pVax1 

(pVax/TNFR) 

3.1.1.1 Clonage du fragment TNFR dans le plasmide  pCR2.1  

L’ADN amplifié par RPC est d’abord cloné dans le plasmide pCR2.1, en se basant sur le 

principe des nucléotides T et A dépassants dans les amplicons  de RPC (TOPO TA cloning kit 

(45-0641, Invitrogen, Carlsbad, CA).  Le fragment cloné contient deux séquences nucléotidiques 

de deux  sites de restrictions lui permettant d’être clivé par les enzymes HindIII à son extrémité 

5’  et par KpnI à son extrémité 3’, voir Figure 3-1. 

 

Figure 3-1 Schéma de la séquence de TNFR clonée  

En bleu à l’extrémité 5’ le site de restriction pour l’enzyme HindIII, en rouge à l’extrémité 3’ le 

site de restriction pour l’enzyme KpnI. 

 La présence de la séquence TNFR dans le plasmide pCR2.1 est vérifiée par digestion avec les 

enzymes HindIII et KpnI afin d’extraire le fragment TNFR suivit d’une électrophorèse sur gel 

d’agarose (Figure 3-2. Photo du Gel d’agarose 0.8% montrant les produits de digestion du 

plasmide  

pCR2.1/TNFR par les enzymes HindIII et KpnI.Figure 3-2). Une bande d’environ 4000 paires de 

bases (pb) et une bande d’environ  850 pb sont observées et qui correspondent respectivement au 

plasmide pCR2.1 linéarisé et au fragment TNFR dont la longueur est de 848 pb.  

HindIII KpnI TNFR (848 paires de base) 

 

5’ 3’ 
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Figure 3-2. Photo du Gel d’agarose 0.8% montrant les produits de digestion du plasmide  

pCR2.1/TNFR par les enzymes HindIII et KpnI. 

La ligne M correspond au marqueur 1Kb+ et la ligne A au produit de digestion du plasmide 

pCR2.1 par les enzymes HindIII et KpnI 

L’identité de la séquence clonée a été  vérifiée par séquençage  (annexe 1), la séquence obtenue 

est 100% homologue à la séquence du gène TNFR (GenBank : NM_130426.4). 

 

3.1.1.2 Transfert dans le plasmide d’expression pVax1 

Le fragment TNFR a ensuite été extrait du plasmide pCR2.1 et a été transféré dans le vecteur 

d’expression eucaryotique pVax1. La réussite du transfert a été vérifiée  par double digestion du 

plasmide avec les enzymes HindIII et KpnI, suivit d’une  migration sur gel d’agarose (Figure 3-7) 

et du séquençage du fragment TNFR (la séquence obtenue est 100 % identique  à celle présentée 

dans l’annexe 2). Une bande à 3000 paires de bases (pb) et à 850 pb sont observées qui 

correspondent respectivement au plasmide pVax1 linéarisé et au fragment TNFR. 

4000pb 

3000pb 

1650pb 

850pb 

pCR2.1 4000pb 

Fragment TNFR 848pb 

M A 
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Pour cette construction on n’introduit pas de codon de terminaison directement dans la séquence 

du fragment TNFR. Le codon de terminaison se trouve dans la séquence de pVax1. La séquence 

nucléotidique du fragment TNFR,  du codon d’initiation au codon de terminaison, est donnée à 

l’annexe 2 et la séquence en acides aminés  déduite est représentée dans l’annexe 3. La masse 

moléculaire prédite pour cette protéine est de l’ordre de 34,45 kDa. 

3.1.2 Clonage de la construction correspondant à la partie extracellulaire du 

récepteur TNFRII du rat (TNFR) liée à la partie constante d’une 

immunoglobuline G (Ig) vectorisée dans le plasmide pVax1 

(pVax/IgTNFR) 

3.1.2.1 Clonage du fragment Ig dans le plasmide  pCR2.1 

L’ADN du fragment Ig est amplifié par RPC puis inséré dans le plasmide pCR2.1. Le fragment 

cloné contient les séquences de deux sites de restriction lui permettant d’être clivé par les 

enzymes KpnI à son exréminté 5’ et par l’enzyme XbaI à son extrémité 3’  (Figure 3-3). 

 

Figure 3-3 Schéma de la séquence du fragment Ig clonée 

En rouge à l’extrémité 5’ le site de restriction pour l’enzyme KpnI, en vert à l’extrémité 3’ le site 

de restriction pour l’enzyme XbaI  

 

La présence de la séquence correspondant au fragment Ig dans le plasmide pCR2.1 a été 

confirmée par double digestion enzymatique. Le plasmide pCR2.1/Ig est digéré par les enzymes 

KpnI et XbaI afin d’extraire le fragment Ig. Le produit de digestion est ensuite migré par 

électrophorèse sur gel d’agarose (Figure 3-4). Une bande à 4000 paires de bases (pb) et  une 

bande à 650 pb sont observées, elles correspondent respectivement au plasmide pCR2.1 linéarisé 

et au fragment Ig  de 647 pb de taille. 

KpnI XbaI Ig (647 paires de bases) 

 

5’ 3’ 
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L’identité de la séquence a été confirmée par séquençage  (Annexe 4), la séquence obtenue est 

100% homologue à la séquence du gène Ig (GenBank ACCESSION   BC088240). 

 

 

 

 

Figure 3-4 Digestion du plasmide pCR2.1 contenant le fragment Ig 

La ligne M correspond au marqueur 1 Kb+ et la ligne A au produit de digestion du plasmide 

pCR2.1/Ig par les enzymes XbaI et KpnI 

 

3.1.2.2  Fusion des fragments Ig et TNFR précédemment clonés 

Les fragments Ig et TNFR  sont extraits de leur plasmide respectif après digestion par les 

enzymes XbaI et KpnI pour le fragment Ig et HindIII et KpnI pour le fragment TNFR. Ces 

fragments sont ensuite liés ensemble en présence de la T4 DNA ligase au niveau des bouts 

cohésifs générés par  KpnI. Le produit ainsi obtenu (Figure 3-5) a été cloné dans le plasmide 

pCR2.1. 

4000pb 

3000pb 

1650pb 

850pb 

pCR2.1 4000pb 

Fragment Ig 647pb 

M A 

650pb 
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Figure 3-5. Schéma du produit de liaison entre le fragment Ig et TNFR (IgTNFR).  

En bleu à l’extrémité 5’ le site de restriction pour l’enzyme HindIII, en vert à l’extrémité 3’ le site 

de restriction pour l’enzyme XbaI, en rouge au centre le site KpnI permettant la liaison des deux 

fragments 

 

3.1.2.3 Transfert dans le plasmide d’expression pVax1 

Le fragment IgTNFR a été d’abord cloné dans le plasmide pCR2.1 pour générer le plasmide 

recombinant  pCR2.1/IgTNFR. Le fragment IgTNFR est ensuite extrait via digestion du plasmide 

pCR2.1/IgTNFR par les enzymes XbaI et HindIII, puis cloné dans le plasmide pVax1, pour 

former le plasmide pVax/IgTNFR. Ce plasmide peut être utilisé pour la transfection de cellule de 

mammifère. Le plasmide pVax/IgTNFR est ensuite digérée par les enzymes XbaI et HindIII puis 

migré sur gel d’agarose afin de vérifié la présence du fragment IgTNFR (voir Figure 3-7), un 

séquençage est également effectué pour vérifier la séquence du fragment (Annexe 5). La 

séquence obtenue de 1480 pb correspond parfaitement à la séquence clonée. Une bande à 3000 

paires de bases (pb) et à 1480 pb sont observées qui correspondent respectivement au plasmide 

pVax1 linéarisé et au fragment IgTNFR dont la taille est de 1480 pb. La séquence en acides 

aminés déduite est donnée à l’annexe 6. La masse moléculaire prévue pour cette protéine est de 

52.10 kDa. 

 

 

 

 

HindIII KpnI 

IgTNFR (1480 paires de 

bases) 

 

5’ 3’ 

XbaI 
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3.1.3 Clonage de la construction correspondant à la partie extracellulaire du 

récepteur TNFRII du rat (TNFR) liée à la partie constante d’une 

immunoglobuline G (Ig), incluant la région charnière lui permettant de 

se dimériser, vectorisée dans le plasmide pVax1 (pVax/IgTNFRd) 

Pour créer cette nouvelle construction il est nécessaire de généré un nouveau fragment Ig 

contenant la région charnière (Ig+charnière). Le fragment cloné contient deux séquences de 

restriction lui permettant d’être clivé par l’enzyme KpnI à son extrémité 5’ et par l’enzyme XbaI 

à son extrémité 3’ (Figure 3-6). La séquence de ce nouveau fragment de 685 paires de bases est 

donnée à l’annexe 7. Ce fragment a été amplifié par RPC et cloné dans un premier temps dans le 

plasmide pCR2.1. Ce fragment est lié à l’aide  d’une ligase au fragment TNFR via le site KpnI 

puis cloné dans le plasmide pVax1 via les sites HindIII et XbaI pour générer le plasmide 

pVax/IgTNFRd. La présence du fragment IgTNFRd a été vérifiée par digestion à l’aide des 

enzymes HindIII et XbaI et par migration sur gel d’agarose 0.8 % (Figure 3-7) puis par 

séquençage (annexe 8). Une bande à 3000 paires de bases (pb) et à 1525 pb sont observées qui 

correspondent respectivement au plasmide pVax1 linéarisé et au fragment IgTNFRd de 1525 pb 

de taille. Le séquençage donne également une séquence de 1525pb correspondant parfaitement à 

la séquence du fragment cloné et disponible sur GenBank(séquence du gène Ig : ACCESSION   

BC088240, séquence du gène TNFR : NM_130426.4). La séquence déduite en acides aminés est 

donnée à l’annexe 9 et correspond à une protéine de 53.64 kDa. 

 

 

 

 

5’ 3’ 

Ig+charnière (685pb) 
KpnI 

XbaI 
Charnière 

Figure 3-6. Schéma  de la séquence du fragment Ig+charnière clonée 

En rouge à l’extrémité 5’ le site de restriction pour l’enzyme KpnI, en vert à l’extrémité 

3’ le site de restriction pour l’enzyme XbaI et en orange la région charnière permettant 

la dimérisation de l’immunoglobuline. 
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A B C D E F 

4000bp 

3000bp 

1650bp 

850bp 

M 

pVax1 (3kb) 

TNFR (848bp) 

IgTNFR (1480bp) 

IgTNFRd (1525bp) 

 

  

Figure 3-7 Digestion des constructions pVax/TNFR, pVax/IgTNFR et pVax/IgTNFRd par les 

enzymes de restriction permettant d'extraire les fragments TNFR, IgTNFR et IgTNFRd 

Ligne M : marqueur 1kb+; Ligne A : plasmide pVax/TNFR digéré par HindIII; ligne B : plasmide 

pVax/TNFR digéré par HindIII et KpnI; ligne C : plasmide pVax/IgTNFR digéré par HindIII; 

ligne D plasmide pVax/IgTNFR digéré par hindIII et XbaI; Ligne E : Plasmide pVax/IgTNFRd 

digéré par HindIII; ligne F : plasmide pVax/IgTNFRd digéré par hindIII et XbaI. 

Encadrés en rouge les fragments d’ADN correspondant aux protéines TNFR,ITNFR,IgTNFRd 

libérées lors de la double digestion du plasmide. 
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3.2  Caractérisation physico-chimique des nanoparticules 

chitosane/ADNp 

3.2.1 Analyse par DLS 

La DLS nous a permis de déterminer  la taille et le potentiel δ de nos nanoparticules 

composées de chitosane 92-10 (DDA, MM) et des vecteurs d’expressions contenant les 

séquences codantes pour les bloqueurs de TNFα : pVax/TNFR, pVax/IgTNFR et 

pVax/IgTNFRd. Ces nanoparticules ont été générées avec un ratio groupement azote sur 

groupement phosphate (N:P) de 5, 92-10-5-pvax/TNFR, 92-10-5-pVax/IgTNFR et 92-10-5-

pVax/IgTNFRd. Ces deux paramètres sont importants, car une petite taille est favorable pour 

traverser la membrane cytoplasmique et un potentiel δ positif permet à la nanoparticule 

d’interagir avec la surface de la cellule chargée de façon négative, comme nous l’avons vu dans 

la revue de littérature. Les résultats de DLS qui sont résumés dans le Tableau 3-1, nous donne des 

particules dont le diamètre hydrodynamique moyen est autour de 95 nm, dont le potentiel δ est 

aux alentours de 30 mV et un indice de polydispersité (PdI) autour de 0,2. Le PdI est une mesure 

de la distribution en masse moléculaire de notre échantillon (un PDI de 1 indique un échantillon 

très uniforme composé de nanoparticules de même masse moléculaire) 

Tableau 3-1 résultats de DLS 

Nanoparticule Diamètre 

hydrodynamique 

moyen 

Pdl Potentiel δ 

 

92-10-5-

pVax/TNFR 

95.1 nm 0,22 27.3 mV 

92-10-5-

pVax/IgTNFR 

97.2 nm 0,18 28 mV 

92-10-5-

pVax/IgTNFRd 

90.3 nm 0.18 25.8 mV 
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3.2.2 Analyse par microscopie électronique à Balayage  

La microscopie électronique à balayage nous a fourni de  l’information sur la taille de nos 

nanoparticules ce qui nous a permis de confirmer les résultats de l’analyse par DLS mais aussi 

une information visuelle sur la forme,  et l’hétérogénéité des nanoparticules (Figure 3-8, Figure 

3-9, Figure 3-10). Pour les nanoparticules de chitosane complexées aux plasmides 92-10-5-

pVax/TNFR, 92-10-5-pVax/IgTNFR et 92-10-5-pVax/IgTNFRd, des formes similaires 

majoritairement sphériques ou cylindriques sont observées. Leurs tailles varient de 50 et 100 nm 

et sont  relativement hétérogènes ce qui supporte bien avec les résultats de DLS qui donnaient des 

tailles de l’ordre de 95 nm avec un PDI de 0.2. 

 

Figure 3-8 Observation en microcopie électronique à balayage des nanoparticules 92-10-

5pVax/TNFR au grossissement 80000 x 
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Figure 3-9  Observation enmicrocopie électronique à balayage des nanoparticules 92-10-5-

pVax/IgTNFR au grossissement 80000 x  

 

Figure 3-10 Observation en microcopie électronique à balayage des nanoparticules 92-10-5-

pVax/IgTNFRd au grossissement 80000 x  
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3.2.3 Protection de l’ADN plasmidique apportée par le chitosane contre la 

digestion par les nucléases 

Un bon véhicule de livraison génique doit être capable de protéger sa cargaison contre les 

différentes nucléases du milieu sanguin. Une en particulier est dommageable dans notre cas, la 

DNAse, capable de digérer l’ADN. Pour cette expérience différentes formulations de 

nanoparticules ont été comparées   92-10-0.5, 92-10-2, 92-10-5, 92-10-10, 92-10-20 ; en présence  

de concentrations  de DNAse allant de 0 à 4 U. Les résultats sont présentés à la Figure 3-11,  la 

formulation 92-10-0.5 qui comporte un excès de plasmide par rapport au chitosane n’apporte 

aucune protection pour les trois plasmides, la formulation 92-10-2 apportent quant à elle une 

protection de très faible à nulle. Les formulations 92-10-10 et 92-10-20 apportent une protection 

jusqu’à 2 U (0.066 U/µL) de DNAse. Seul la formulation de nanoparticule 92-10-5 apportent une 

protection complète des ADNp contre la digestion par  DNAse jusqu’à 4 U.  
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A 

B 

C 

Control/No chitosan 92-10-0,5 92-10-2 92-10-5 92-10-10 92-10-20 

0     1    2      4 0     1     2      4  0    1     2      4  0     1       2     
4 

0      1     2    4 0      1    2    4 DNAse 
(U) 

Control/No chitosan 92-10-0,5 92-10-2 92-10-5 92-10-10 92-10-20 

0     1      2      4 0      1     2     4  0     1    2      4  0       1    2     4 0       1      2    4 0     1      2     4 DNAse 
(U) 

Control/No chitosan 92-10-0,5 92-10-2 92-10-5 92-10-10 92-10-20 

0     1      2      4 0      1     2     4 0      1     2     4 0      1     2     4 0      1     2     4 0      1     2     4 DNAse 
(U) 
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Figure 3-11 Protection de l’ADN plasmidique contre la digestion par l'ADNase 

Gel A : nanoparticules chitosane-pVax/TNFR de formulation 92-10-0.5,92-10-2,92-10-5,92-10-

10,92-10-20 et un contrôle plasmide pVax/TNFR non complexé digéré en présence de 0, 1, 2, 4 U 

de DNAse dans volume de 30 µL, Gel B : nanoparticules chitosane-pVax/IgTNFR de formulation 

92-10-0.5,92-10-2,92-10-5,92-10-10,92-10-20 et un contrôle plasmide pVax/IgTNFR non 

complexé digéré en présence de 0,1,2,4U de DNAse dans volume de 30 µL, Gel C : 

nanoparticules chitosane-pVax/IgTNFRd de formulation 92-10-0.5,92-10-2,92-10-5,92-10-

10,92-10-20 et un contrôle plasmide pVax/IgTNFRd non complexé digéré en présence de 0, 1, 2, 

4 U de DNAse dans volume de 30 µL. 

3.3 Expression des ARN messagers (ARNm) 

Les lignées cellulaires HEK293 et CHO ont été transfectées par des nanoparticules de 

chitosane 92-10-5 contenant les trois plasmides, pVax/TNFR, pVax IgTNFR et pVax/IgTNFRd. 

Les ARN totaux ont été extraits et reverse transcrits en ADN complémentaire sur lequel nous 

avons  effectué une RPC avec des amorces permettant l’amplification de fragment d’ADN 

correspondant spécifiquement aux TNFR, IgTNFR ou IgTNFRd. Une première paire d‘amorces 

est  choisie de façon à amplifier une région qui chevauche le fragment Ig et TNFR qui permet la 

détection du transgène IgTNFR et IgTNFRd, seule la taille de l’amplicon va être différente, car 

les amorces englobent la région charnière. La seconde paire d’amorces amplifie une région 

chevauchant le fragment TNFR et la séquence de pVax1, elle permet la détection du transgène 

TNFR. L’amplification par RPC de l’ADN complémentaire (ADNc) issu des ARN extraits des 

cellules transfectées est effectuée en utilisant les amorces décrites ci-dessus, et est visualisé après 

électrophorèse sur gel d’agarose. La présence d’un produit d’amplification  nous indique que nos 

ARNm transgènes sont transcrits par les cellules transfectées, une preuve directe que nos 

plasmides sont pris en charge par la machinerie cellulaire de transcription. La présence d’ADN 

amplifié dans les lignes 3, 4 et 5 pour les deux lignées cellulaires (Figure 3-12) témoigne de la 

présence de l’ARNm correspondant à nos transgènes dans les cellules. Ces amplicons ont été  

extraits et séquencés pour confirmer l’identité et l’intégrité des séquences de nos fragments 

clonés. L’amplicon présent dans le contrôle négatif A2 a été également séquencé pour montrer 

qu’il s’agit d’un artefact de RPC et ne correspond à aucune séquence connue. La présence des 

ARNm correspondants à nos transgènes dans les cellules transfectées par nos constructions est un 
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indice fort de la production par les cellules transfectées des protéines recombinantes 

correspondantes. 

 

Figure 3-12. Photo du Gel d’agarose montrant les  produits RPC à partir des ADNc 

correspondant à l’ARN extrait des cellules transfectées par nos constructions.  

 

Figure 3-12-A, réaction RPC sur les ADNc issu des ARN extraits des cellules transfectées de la 

lignée HEK293 

Figure 3-12-B, réaction RPC sur les ADNc issus des ARN extraits des cellules transfectées de la 

lignée HEK293 

Sur la ligne 1, contrôle négatif : produit de réaction RPC où l’ADNc a été remplacé par de l’eau  

avec des amorces permettant l’amplification du transgène   TNFR. Sur la ligne 2, contrôle 

négatif : une réaction RPC où l’ADNc a été remplacé par de l’eau en présence d’amorces 

permettant l’amplification d’un fragment correspondant au transgène IgTNFR ou IgTNFRd. Sur 

la ligne 3, produit de réaction RPC de l’ADNc issu de l’ARN produit par des cellules transfectées 

par des nanoparticules chitosane 92-10-5/TNFR avec des amorces pour la détection de TNFR. 

Sur la ligne 4, produit de réaction RPC de l’ADNc issu de l’ARN produit par des cellules 

transfectées par des nanoparticules chitosane 92-10-5/IgTNFR avec des amorces pour la 

A 
      1             2         3           4          5 

B 
      1             2         3           4          5          6             7 
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détection d’IgTNFR ou IgTNFRd. Sur la ligne 5, produit de réaction RPC de l’ADNc issu de 

l’ARN produit par des cellules transfectées par des nanoparticules chitosane 92-10-5/IgTNFRd 

avec des amorces pour la détection de IgTNFR ou IgTNFRd.   

3.4   Bioactivité des protéines recombinantes TNFR, IgTNFR et 

IgTNFRd 

Les trois protéines recombinantes miment le récepteur du TNFα et sont donc capables en 

le liant d’inhiber son activité en solution. Cette  activité inhibitrice a été évaluée par un test de 

cytotoxicité utilisant   les cellules WEHI-var-13 qui en présence conjointe de TNFα (qui activent 

via ces récepteurs une voix menant à l’apoptose) et d’actinomycin D (agissant comme inhibiteur 

métabolique) subissent une mort cellulaire [154]. Pour tester la bioactivité de nos protéines 

recombinantes  la survie des WEHI-var-13 cultivées avec du TNFα et de l’actinomycin D est 

évaluée en présence du surnageant de cellules HEK293 transfectées avec nos constructions 

géniques.  Le surnageant de ces cellules qui doivent contenir nos protéines recombinantes doit 

être capable de protéger les cellules contre la mort cellulaire induite par TNFα, en se liant à 

TNFα. L’effet des surnageants de cellules non transfectées, transfectées par des nanoparticules 

chitosane/plasmideGFP, par du chitosane seul et par le plasmide GFP seul est également testé 

comme contrôles négatifs. Le surnageant de cellules non transfectées mises en présence d’un 

anticorps polyclonal de chèvre anti-TNFα est utilisé comme contrôle positif. La bioactivité  de 

nos protéines recombinantes est évaluée par un test de cytotoxicité sur les cellules WEHI-var-13, 

nos protéines doivent en effet protéger les cellules contre la mort cellulaire induite par la présence 

du TNFα.  Les résultats présentés aux Figure 3-13, Figure 3-14, Figure 3-15 et Figure 3-16. Une 

protection significative de nos protéines recombinantes par rapport aux contrôles est observée, 

puisque les cellules en présence des surnageants de cellules transfectées conservent une survie 

proche de 100% au-delà de 3 pg/µL de TNFα. Les cellules en présence des contrôles ne survivent 

pas  (Figure 3-13). L’anticorps polyclonal de chèvre anti-TNFα biotinylé utilisé à 10pg/µL 

n’offre pas de protection contre la mort cellulaire par rapport aux contrôles négatifs.  
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Figure 3-13 Test de cytotoxicité pour l'évaluation de la bioactivité par protection contre l’effet 

cytotoxique induit par le TNF. 

Cette figure conserve uniquement les contrôles : surnageant de cellules transfectées par un 

complexe codant GFP, surnageant de cellules cultivées en présence du plasmide GFP seul et de 

chitosane seul, et le contrôle positif : surnageant de cellules non transfectées mises en présence 

de 10 pg/µL de l’anticorps polyclonal de chèvre anti-TNFα biotinylé.  
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Figure 3-14 Test de cytotoxicité pour l'évaluation de la bioactivité par protection contre l’effet 

cytotoxique induit par TNF: protéines recombinantes et contrôles négatifs 

La survie cellulaire est évaluée en utilisant la lignée cellulaire WEHI-var-13 mise en présence 

conjointe d’actinomycin D, de concentration progressive de TNFα induisant la mort cellulaire et 

les surnageant issus des cellules transfectées par les constructions géniques codant TNFR, 

IgTNFR, IgTNFRd 

Cette figure montre la protection contre la mort cellulaire des WEHI-var-13 induite par TNF α 

conférée par les échantillons : surnageant de cellules transfectées par les complexes codant 

TNFR, IgTNFR et IgTNFRd, et le contrôle négatif ( moyenne des courbes surnageant des cellules 

non transfectées, des cellules transfectées par un complexe chitosane/GFP , des cellules cultivées 

en présence du plasmide GFP seul, de chitosane seul). 



60 

 

 

Figure 3-15 Test de cytotoxicité pour l'évaluation de la bioactivité par protection contre l’effet 

cytotoxique induit par TNF: protéines recombinantes diluées 1 :2 et contrôles négatifs 

Cette figure montre la protection contre la mort cellulaire des WEHI-var-13 induite par TNF α 

conférée par les échantillons : surnageant de cellules transfectées par les complexes codant 

TNFR, IgTNFR et IgTNFRd dilués 1:2 dans du milieu de culture frais, et le contrôle négatif ( 

moyenne des courbes surnageant des cellules non transfectées, des cellules transfectées par un 

complexe chitosane/GFP , des cellules cultivées en présence du plasmide GFP seul, de chitosane 

seul). 
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Figure 3-16 Test de cytotoxicité pour l'évaluation de la bioactivité par protection contre l’effet 

cytotoxique induit par TNF: protéines recombinantes diluées 1:4 et contrôles négatifs 

Cette figure montre la protection contre la mort cellulaire des WEHI-var-13 induite par TNF α 

conférée par les échantillons : surnageant de cellules transfectées par les complexes codant 

TNFR, IgTNFR et IgTNFRd dilués 1:4 dans du milieu de culture frais, et le contrôle négatif 

(moyenne des courbes surnageant des cellules non transfectées, des cellules transfectées par un 

complexe chitosane/GFP, des cellules cultivées en présence du plasmide GFP seul, de chitosane 

seul). 

 

3.5 Capacité d’inhibition des protéines recombinantes TNFR, 

IgTNFR et IgTNFRd contre TNFα : ELISA de compétition. 

La capacité d’inhibition des protéines recombinantes a été évaluée à l’aide d’un test ELISA de 

compétition contre un  anticorps polyclonal de chèvre anti-TNFα biotinylé. Le TNFα est fixé à 

différentes concentrations dans les puits d’une plaque ELISA et l’anticorps polyclonal de chèvre 
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anti-TNFα biotinylé vient les détecter. Une compétition entre nos protéines recombinantes 

contenues dans le surnageant de cellules transfectées (qui fixe TNFα) et l’anticorps polyclonal de 

chèvre anti-TNFα biotinylé est préalablement ajouté. Plus nos protéines recombinantes fixent de 

TNFα, moins l’anticorps polyclonal de chèvre anti-TNFα biotinylé en fixe. Le signal émis par 

l’anticorps polyclonal de chèvre anti-TNFα biotinylé est donc réduit par la compétition contre 

nos protéines recombinantes. Les résultats de ce test ELISA (Figure 3-17) montrent une 

compétition entre nos protéines recombinantes et l’anticorps de détection pour le TNFα, prouvant 

à nouveau la production par les cellules de protéines recombinantes bioactives. Afin d’aller plus 

en détail dans l’analyse des résultats  la Figure 3-18 ne présente plus que la courbe correspondant 

à la compétition due au surnageant des cellules transfectées par la construction codant IgTNFRd 

et la courbe contrôle. Cette figure montre la réduction du signal due à la compétition de la 

protéine IgTNRd contre l’anticorps polyclonal de chèvre anti-TNFα biotinylé. Par rapport à 

l’expérience de bioactivité, cette expérience nous permet d’apprécier les différences d’efficacité 

de chacune de nos protéines recombinantes à inhiber le TNFα. C’est IgTNFR et IgTNFRd qui 

entre le plus en compétition avec l’anticorps pour la fixation au TNFα et à des niveaux 

pratiquement égaux. La présence d’IgTNFR et IgTNFRd réduit fortement le signal émis par 

l’anticorps polyclonal de chèvre anti-TNFα biotinylé comparé à la courbe contrôle. La protéine 

recombinante TNFR à en revanche une activité de compétition plus faible contre l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé. TNFR inhibe moins de sites sur la molécule TNFα 

pour la liaison de l’anticorps polyclonal de chèvre anti-TNFα biotinylé comparé à IgTNFR et 

IgTNFRd. 
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Figure 3-17. Résultats du test ELISA de compétition  

Compétition entre TNFR présent dans les surnageants de cellules transfectées et l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé (rond vide). 

Compétition entre IgTNFR présent dans les surnageants de cellules transfectées et l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé (triangle plein). 

Compétition entre IgTNFRd présent dans les surnageants de cellules transfectées et l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé (triangle vide). 

Contrôle : compétition entre le surnageant de cellules non transfectées et l’anticorps polyclonal 

de chèvre anti- TNFα biotinylé (rond plein). 

Nos protéines recombinantes ainsi que l’anticorps polyclonal de chèvre anti-TNFα biotinylé sont 

capables de fixer le TNFα  à différentes concentrations (de 0 à 8 pg/µL). Le TNFα fixé sur les 

plaques ELISA est d’abord mis en contact avec les surnageants de cellules transfectées par nos 

constructions codant les protéines recombinantes TNFR, IgTNFR et IgTNFRd, puis mises en 
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contact avec l’anticorps polyclonal de chèvre anti-TNFα biotinylé. L’interaction préalable avec 

les protéines recombinantes réduit le nombre de sites disponibles pour l’anticorps polyclonal de 

chèvre anti-TNFα biotinylé et donc  réduit le signal émis par ce dernier après réaction 

colorimétrique dépendante du marqueur. 

 

Figure 3-18. Résultats du test ELISA de compétition entre IgTNFRd et l’anticorps polyclonal de 

chèvre anti-TNFα biotinylé. 

Compétition entre IgTNFRd présent dans les surnageants de cellules transfectées et l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé (rond vide). 

Contrôle : compétition entre le surnageant de cellules non transfectées et l’anticorps polyclonal 

de chèvre anti-TNFα biotinylé (rond plein). 

Sur cette figure une seule protéine recombinante IgTNFRd est montrée pour une meilleure 

appréciation de l’effet de compétition de cette dernière avec l’anticorps anti-TNFα pour la 

fixation au TNFα. 
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CHAPITRE 4 DISCUSSION 

L’arthrite rhumatoïde est une inflammation chronique des articulations déclenchée par une 

réaction auto-immune. Un des traitements les plus efficaces aujourd’hui est l’utilisation d’agents 

biologiques bloqueurs de TNFα [5]. Mais cette approche comporte des défauts, la durée de vie 

des protéines en circulation est faible et nécessite une augmentation des doses et des injections et 

conduit à une augmentation de la toxicité de ses protéines [6]. La thérapie génique au contraire 

permet une production stable de la protéine dans la durée et une expression localisée du 

transgène, entrainant  moins de complication [10]. C’est dans ce contexte que nous nous 

orientons dans le cadre de ce projet de recherche à la construction de trois transgènes codant pour 

trois protéines recombinantes mimant le récepteur du TNFα. Le système de livraison génique 

choisi et développé au  sein du laboratoire est basé sur le chitosane. Le chitosane est capable de 

former des nanoparticules stables avec l’ADN plasmique. Les nanoparticules ont été formées et 

caractérisées, afin de vérifier que leur propriété convenait à la transfection de cellules. Il a 

également été vérifié que les cellules transfectées étaient  capables de produire les protéines 

recombinantes et que celles-ci sont bioactives. C’est-à-dire qu’elles sont capables d'inhiber l’effet 

de la cytokine TNFα connu pour son rôle dans la polyarthrite rhumatoïde.  

4.1 Clonage 

La première partie du projet est la construction de trois vecteurs d’expression codant pour 

des bloqueurs de TNFα. Ceux-ci sont inspirés du bloqueur TNFα  commercial Etanercept 

distribué par AMGEN. Il s’agit d’une protéine de fusion dimère type immuno-adhésine 

composée de la partie extracellulaire du récepteur humain du TNFα de type II (TNFRII) couplée  

au domaine Fc (fragment cristallisable) d’une immunoglobuline de type G1 humaine (IgG1). Il est 

connu depuis longtemps que la partie extracellulaire du récepteur du TNFα libérée naturellement 

par les cellules agit comme un inhibiteur soluble naturel du TNFα [155], un clone recombinant 

soluble de cette partie extracellulaire du récepteur du TNFα possède également une forte affinité 

pour le TNFα ,est capable d’inhiber son activité cytotoxique in vitro [156] et est même utilisé sur 

des modèles in vivo de traitement de l’arthrose [157]. C’est sur ce modèle qu’est construit, dans 

notre projet, le transgène codant la protéine recombinante TNFR. Seul  l’ADN correspondant à la 

partie extracellulaire du récepteur comprenant les sites de liaison pour le TNFα est cloné. 
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 La fusion de la partie extracellulaire du récepteur TNFα (TNFR) à la partie constante 

d’une immunoglobuline (aussi appelé fragment cristallisable ou Fc) est également utilisée comme 

stratégie pour obtenir une protéine dimérique ayant une demi-vie augmentée dans le sérum et une 

capacité à lier le TNFα accru par rapport au simple TNFR soluble [158]. La demi-vie est 

augmentée via des mécanismes de recyclage déclenchés par liaison de la partie Fc présente sur la 

protéine, au récepteur Fc néonatal [159]. Une telle protéine de fusion TNFR-Fc a été utilisée avec 

succès pour le traitement de l’arthrose dans des modèles animaux chez la souris [160-

162].Etanercept est également une protéine de fusion TNFR-Fc dimérique qui est actuellement 

utilisée pour le traitement de l’arthrose chez l’humain [163]. C’est sur le modèle d’Etanercept 

qu’est construit notre transgène codant pour la protéine recombinante IgTNFRd. IgTNFRd est 

une protéine de fusion entre la partie extracellulaire du récepteur du TNFα du rat avec la partie Fc 

(région CH2, CH3 et charnière) d’une immunoglobuline de type G1 (IgG1) du rat. Cette dernière 

construction, comme la plupart des molécules anti-TNFα utilisées pour le traitement de 

l’arthrose, est capable d’induire la cytotoxicité dépendante de l’anticorps (CCDA) via la 

reconnaissance du Fc de l’IgG1 avec le récepteur Fc gamma présent sur les macrophages et les 

cellules NK [164, 165].Cependant l’intérêt d’induire l’CCDA dans le traitement de l’AR est mal 

compris. L’argument en faveur de l’CCDA est qu’elle permet la destruction des cellules 

productrices de TNFα via fixation de la protéine recombinante sur les molécules de TNFα 

membranaires [165, 166]. La reconnaissance par les macrophages et les cellules NK du Fc exhibé 

par la protéine recombinante provoque la destruction des cellules productrices de TNFα.  

Cependant l’CCDA est également soupçonnée d’être la cause de toxicité indésirable [167, 168]. 

C’est pourquoi des molécules anti-TNFα, comme Certolizumab, utilisées dans le traitement de 

l’arthrose ont été développées pour ne pas activer l’CCDA [167]. 

La Fc de l’immunoglobuline G utilisée pour la construction de IgTNFRd est composée de 

trois domaines CH2, CH3 et la région charnière. L’affinité du fragment Fc pour récepteur Fc 

gamma (présent sur les macrophages et cellules NK) est fortement dépendant de région charnière 

[169]. La présence des ponts disulfures dans la région charnière du Fc est également responsable 

du caractère dimérique des protéines de fusion TNFR-Fc. Une protéine de fusion TNFR-Fc sans 

cette région charnière devrait donc à la fois devenir monovalente et moins susceptible d’induire 

l’CCDA. Le récepteur Fc néonatal qui participe à l’augmentation de la demi-vie de la protéine est 
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lui capable de reconnaitre une portion CH2 de la Fc [170]. La suppression de la région charnière 

ne devrait donc pas avoir de conséquence sur l’interaction avec le récepteur Fc néonatal.  

C’est basé sur ses observations que nous construisons le transgène codant la protéine 

recombinante monomérique IgTNFR fusion de la partie extracellulaire du récepteur du TNFα du 

rat  avec la partie Fc (région CH2, CH3) d’une immunoglobuline G de rat. Cette forme ne 

comportant pas la région charnière n’aura pas la même rigidité qu’IgTNFRd car elle ne comporte 

pas de pont disulfure entre les deux parties CH2-CH3 de l’Ig. Bien que ce changement peut 

affecter son efficacité pour inhiber TNFα cette protéine pourrait induire moins de toxicité, mais 

cela sera évalué lors de l’essai in vivo qui va suivre ce projet. 

 Le plasmide pVax1 est un vecteur d’expression eucaryote développé pour les vaccins à 

ADN .Il répond aux exigences en la matière de la Food and Drugs Administration (FDA) [171]. 

Les séquences non nécessaires à la réplication chez la bactérie et à l’expression  de la protéine 

recombinante dans les cellules de mammifère sont enlevées afin de réduire de possible homologie 

avec le génome humain et de minimiser les possibilités d’intégration chromosomal [171]. Il 

contient un promoteur CMV( Human cytomegalovirus) lui apportant un niveau expression élevé 

dans une large gamme de cellules de mammifères [172], un signal de polyadénylation 

BGH(Bovine growth hormone) pour une transcription efficace des ARNm et un gène de 

résistance à l’antibiotique bactérien kanamycine. Ce système  a de plus été utilisé plusieurs fois 

avec des nanoparticules à base de chitosane [173, 174]. Ce plasmide répondant au critère de la 

FDA est choisi pour l’expression de nos transgènes, car ce projet a pour but d’être suivi d’une 

étude animale et éventuellement clinique.  

Un système de nanoparticule de chitosane est utilisé pour la transfection de nos 

transgènes :pVaxTNFR, pVaxIgTNFR et pVax/IgTNFRd, car ce système de transfection est 

maitrisé par notre équipe que ce soit in vitro [118] ou in vivo [13, 175]. De plus, ces 

nanoparticules de chitosan sont biocompatibles, biodégradables, peu toxiques, peu immunogènes 

n’activent pas le complément, facile de production et de manipulation [14, 176]. Ce système est 

également plus simple à mettre en place pour des études in vivo comparées à des méthodes de 

transfections physiques tels que l’électroporation qui bien que plus efficaces pour des cellules in 

vitro, deviennent plus compliquées à mettre en place sur un modèle animal ou même humain, 

puisqu’il nécessite une chirurgie [91]. 
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4.2 Caractérisation physico-chimique des nanoparticules 

Chitosane/ADNp 

Les propriétés physico-chimiques des nanoparticules à base de  chitosane affectent l’efficacité de 

livraison  du gène à la cellule et donc l’efficacité de transfection de la cellule. Le degré de 

désacétylation (DD) de 92 % et la masse moléculaire (MM) de 10 kDa choisit pour notre 

chitosane sont cohérents avec les résultats préliminaires du groupe qui ont montré l’expression du 

transgène est plus important pour les formulations de chitosane avec un haut DDA et une faible 

MM[118]. Les analyses de DLS et ESEM, nos nanoparticules de chitosan 92-10-5 contenant le 

plasmide codant pour le transgène ont des tailles aux alentours 95 nm, c’est suffisamment petit 

pour permettre d’échapper à la filtration rénale [177], à l’absorption par les  macrophages du foie 

ou cellules de Kupffer (internalise préférentiellement des particules >140 nm) [178] et d’entrer 

dans la cellule. 

 Les  potentiels ζ positifs, aux alentours de 30mV, observés chez  nos nanoparticules, est 

classique des formulations de chitosane possédant un degré de désacétylation (DD) élevé tel que 

le nôtre qui est de 92 % [13, 175, 179]. Cette charge positive importante est également associée à 

un excès de chitosane dans nos nanoparticules par rapport à l’ADN, le ratio base anime : base 

phosphaté (N:P) relativement élevé de 5 entraine un excès de charge positive. Cette charge 

positive de la nanoparticule est favorable à la transfection puisqu’elle permet à la nanoparticule 

d’interagir avec les protéines de surface chargées négativement de la cellule [180]. De plus 

l’excès de chitosane par rapport à l’ADN associé aux particules chargées positivement permet en 

augmentant la pression osmotique, le relargage du lysosome dans laquelle la nanoparticule est 

séquestrée [145]. 

 Les formes sphériques et cylindriques observées pour les nanoparticules chitosane/ADNp par 

microscopie électronique à balayage est conforme à ce qui a été observé par notre groupe pour 

des nanoparticules chitosan92-10-5-ADNp [13, 175] et le reste de la littérature [181] ou l’on 

retrouve des nanoparticules d’environ 100nm sphériques et cylindriques. Ces formes sont 

associées à des complexes chitosane/ADNp capables de transfecter les cellules de façon efficace. 

 L’étude de protection contre les nucléases montre que la formulation de chitosane 92-10-5 

protège contre des concentrations d’ADNase de l’ordre de 133 U/mL (4 U dans 30 µL) on est 
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bien au-dessus de la concentration physiologique d’ADNase qui se situe autour de 0,5 U/mL 

[182]. La formulation 92-10-5 semble apporter une meilleure protection que les formulations 92-

10-10 et 92-10-20 ce qui est contre-intuitif et n’a pas été précédemment observé: Plus il y a de 

chitosane autour de l’ADN (ratio N:P élevé) plus celui-ci devrait être protégé contre la digestion 

par les nucléase. L’EDTA est utilisé pour inhiber l’ADNase avant de décomplexer les 

nanoparticules et de vérifier l’intégrité de l’ADN quelle contient. Or l’EDTA est capable 

d’interagir à pH 6 proche du pH 6.5 de notre réaction [183]. Cette interaction entre le chitosane et 

l’EDTA provoque probablement une inhibition affaiblie de la DNAse pour les formulations avec 

le plus de chitosane (les plus grands N:P) amenant à une dégradation plus importante de l’ADN. 

Cependant, il a été montré que l’efficacité de transfection est plus importante pour les 

nanoparticules de chitosanes ayant un ratio N:P relativement faible, mais permettant un excès de 

chitosane (autour de 3-5) [14]. Le ratio N:P de 5 de notre formulation de chitosane  92-10-5 est le 

parfait compromis puisque son ratio N:P est suffisamment élevé pour protégé les nanoparticules 

contre la dégradation par les nucléases tout en restant relativement faible. 

Le compromis entre protection face à la dégradation, l’excès de chitosane et le relativement faible 

ratio N:P nous a conduits à préférer les nanoparticules 92-10-5. Cette formulation a par ailleurs 

déjà fait ses preuves dans des travaux précédents du groupe que ce soit in vitro sur les cellules 

HEK293 [118] ou in vivo chez la souris [13, 175]. Les caractéristiques physico-chimiques (taille, 

charge, DD, MM) de nos nanoparticules à base de chitosane leurs permettent de traverser le 

système sanguin en évitant la destruction et la dégradation de sa cargaison génique, tout en lui 

permettant d’entrer dans la cellule. Ceci en fait un système tout à fait adéquat pour la transfection 

des cellules.  

4.3 Production de protéines recombinantes bioactives par les 

cellules transfectées 

Les nanoparticules chitosanes 92-10-5-pVax/TNFR, 92-10-5-pVax/IgTNFR et 92-10-5-

pVax/IgTNFRd ont des propriétés physico-chimiques adéquates pour être utilisées dans la 

transfection cellulaire. Elles ont été testées afin de déterminer leur capacité à transfecter in vitro 

des cellules et  à exprimer  les protéines recombinantes bioactives associées aux transgènes. Les 

cellules de la lignée HEK 293 et CHO sont transfectées par nos nanoparticules et l’ensemble des 
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ARNm produits ont été collectés. Parmi ces ARNm se trouvent des ARNm issus de la 

transcription de nos transgènes codant pour les protéines recombinantes TNFR, IgTNFR et 

IgTNFRd. Ceci prouve que les nanoparticules de chitosane 92-10-5-ADNp sont capables de 

transfecter les cellules de la lignée HEK293 et CHO. L’efficacité du système chitosane-ADNp 

comme système de livraison est supportée par les résultats de notre groupe. Cette efficacité est 

montrée in vitro sur les cellules de la lignée HEK293 pour le transfert d’un plasmide contenant 

un transgène codant pour la protéine GFP (« green fluorescent protein ») [118]. L’efficacité du 

système chitosane-ADNp a également été montré in vivo notamment par les travaux de Jean avec 

le transfert du plasmide pVax contenant un transgène codant la protéine GLP-1 pour le traitement 

du diabète chez les souris Zucker Diabetic Fatty [13], ou encore avec le plasmide pVax contenant 

un transgène codant pour les facteurs de croissance FGF-2 et PDGF-BB pour mener à 

l’expression génique chez la souris Balb/c [175]. 

 La bioactivité des protéines recombinantes dans les surnageants des cellules transfectées, est 

prouvée par leur pouvoir à inhiber la mort cellulaire induite par la présence de TNFα. Après 

transfection des cellules, nos protéines recombinantes sont récupérées dans les surnageant. La 

capacité de 100 µL de ces surnageants contenant TNFR, IgTNFR ou IgTNFRd à inhiber la mort 

des cellules WEHI-var-13 exposées à des doses croissantes de TNF est évaluée. Ils sont tous les 

trois capables d’inhiber la mort des WEHI-var-13 exposées des doses de TNFα allant au-delà de 

3 pg/µL. D’autre part 10 pg/µL de l’anticorps polyclonal anti-TNFα produit chez la chèvre ne 

suffisent pas à protégé WEHI-var-13 contre la mort induite par TNFα (voir Figure 3-13). 

L’explication la plus probable est qu’à cette concentration l’anticorps polyclonal de chèvre anti-

TNFα, ne bloque pas suffisamment de site sur la molécule TNFα pour inhiber son action 

biologique. En effet, le TNFα forme un homotrimère capable de lié jusqu’à trois de ses 

récepteurs [36], il suffit donc que l’anticorps polyclonal de chèvre anti-TNFα laisse libre une 

unité monomérique sur l’homotrimère pour que le TNFα puisse tout de même fixer son récepteur 

et causer la mort des cellules. Les 100 µL des surnageants contenant TNFR, IgTNFR ou 

IgTNFRd dilués 1:2 (Figure 3-15) et 1:4 (Figure 3-16) dans du milieu de culture protège 

également de la mort cellulaire au-delà de 3 pg/µL de TNFα dans le milieu. Mais on observe trois 

régimes un régime où la protection est de 100 % (jusqu’à 25 pg/µL pour les surnageants dilués 

1:2 et jusqu’à 15 pg/µL pour les surnageants dilués 1:4), puis un régime où la protection diminue 

faiblement en fonction et enfin un décrochage. Le décrochage est observé pour les surnageants 
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issu des cellules transfectées par TNFR dilué 1:4 à partir de 25 pg/µL de TNFα. Cela suggère 

deux explications, soit TNFR est moins efficace pour inhiber TNFα, soit TNFR est produit en 

moins grande quantité lors de la transfection.  L’effet protecteur des surnageants contenants nos 

protéines recombinantes est tout à fait comparable au résultat de Scallon et coll. [184]. L’équipe 

de Scallon a construit une protéine de fusion entre la partie constante d’une immunoglobuline de 

souris (domaine CH2-CH3 et région charnière) et le récepteur TNFRII murin, qu’il nomme p75P-

sf3. Cette protéine est donc très semblable à notre IgTNFRd. Il démontre qu’une concentration de 

100 pM de p75P-sf3 est suffisante à inhiber la cytotoxicité induite par 2 pg/µL de TNF sur les 

cellules WEHI-var-13. Nos trois constructions inhibent la mort des WEHI-var-13 au-delà de 3 

pg/µL qui est la concentration maximale de TNFα utilisé. Sur la gamme de concentration de 

TNFα utilisé, nos constructions sont donc toutes les trois aussi efficaces dans les surnageants de 

transfections non dilués. Il faut aller jusqu’à la dilution 1:4 pour commencer à observer une 

différence qui suggère que la protéine recombinante TNFR est moins efficace ou moins exprimée 

que IgTNFR et IgTNFRd. 

Afin de différencier l’efficacité de chacune de nos protéines recombinantes à inhiber le TNFα un 

ELISA de compétition est réalisé. Il est important pour l’inhibition de TNFα de bloquer le 

maximum de sites de liaison, car cette molécule est capable lié jusqu’à trois de ses récepteurs 

[36]. Ces résultats montre que l’anticorps polyclonal de chèvre anti-TNFα qui est le même que 

celui utilisé dans l’expérience de bioactivité est bien capable de fixer TNFα. Cela confirme que 

sa non-efficacité à protéger les WEHI contre la mort cellulaire dans l’expérience de bioactivité 

est due à la trop faible concentration utilisée de 10 pg/µL. Les résultats (Figure 3-17 et Figure 

3-18) montrent que nos protéines recombinantes ne Co pétitionnent pas à 100% avec l’anticorps 

polyclonal de chèvre anti-TNFα biotinylé. L’incubation avec un excès de nos protéines 

recombinantes sur une quantité limitante de TNFα laisse tout de même des sites libres pour que 

l’anticorps polyclonal de chèvre anti-TNFα biotinylé se fixe. Ce résultat trouve son explication 

dans la littérature. L’Etanercept protéine de fusion nous ayant servi de modèle pour la 

construction de nos transgènes ne peut fixer qu’un homotrimère de TNFα [52]. L’anticorps 

polyclonal de chèvre anti-TNFα biotinylé est lui, en revanche capable de se lier à une plus grande 

variété de sites sur la molécule de TNFα. L’interaction entre nos protéines recombinantes et le 

TNFα laisse des sites de liaison vacants disponibles pour l’anticorps polyclonal de chèvre anti-
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TNFα biotinylé. Bien qu’étant toujours inférieure à 100 % cette compétition est nette : la 

compétition la plus forte vis-à-vis de l’anticorps polyclonal de chèvre anti-TNFα biotinylé est 

obtenue de la part des protéines recombinantes IgTNFR et IgTNFRd. Cela suggère que IgTNFR 

et IgTNFRd sont capables de bloquer plus de sites sur l’homotrimère de TNFα et conduisent à 

une inhibition plus importante comparée à TNFR. Ce résultat est le même que l’on soit à haute ou 

à faible quantité de TNFα lorsque nos constructions sont en excès et n’est donc pas dû à une 

différence de production de nos protéines par les cellules transfectées. Cela est consistant avec les 

résultats de l’expérience de bioactivité où un décrochage de la protection contre la mort des 

cellules WEHI-var-13 est observé pour TNFR (Figure 3-16) à haute concentration de TNFα et 

non chez IgTNFR et IgTNFRd. La protéine recombinante TNFR est donc moins efficace pour 

inhiber TNFα par rapport à IgTNFR et IgTNFRd. L’expression in vitro de nos transgènes via le 

système de nanoparticule chitosane 92-10-5-ADNp conduit à l’expression dans le surnageant des 

cellules transfectées des protéines recombinantes TNFR, IgTNFR et IgTNFRd bioactives pour 

l’inhibition du TNFα. 
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CONCLUSION 

La pathologie de l’arthrose rhumatoïde repose sur la surproduction de la cytokine inflammatoire 

TNFα responsable de la lente destruction des cartilages et des os au niveau des articulations. Les 

molécules biologiques inhibitrices du TNFα utilisées jusqu’ici pour le traitement des cas les plus 

sévères comportent des risques sérieux d’infections et peuvent provoquer une réaction 

immunitaire dirigée contre elles. Ces risques ajoutés aux difficultés intrinsèques des traitements à 

base d’injection de protéines, tel que la digestion par les protéases et l’élimination par le foie et 

les reins sont contournables en passant par une stratégie de transfert génique.  

Notre projet de recherche nous a permis de concevoir trois transgènes codants des protéines 

recombinantes inhibitrices du TNFα, TNFR, IgTNFR et IgTNFRd. TNFR est une protéine 

monomérique correspondant à la partie extracellulaire du récepteur du TNF de type II du rat. 

IgTNFR est une protéine correspondant à la partie extracellulaire du récepteur du TNF de type II 

du rat fusionnée à la partie constante d’une immunoglobuline de type G1 de rat n’ayant pas la 

rigidité de la liaison pont disulfure entre ses parties Ig. IgTNFRd est une protéine dimérique 

correspondant à la partie extracellulaire du récepteur du TNF de type II du rat fusionnée à la 

partie constante d’une immunoglobuline de type G1 de rat. 

Nos travaux de recherche ont montré que les nanoparticules formées du chitosane de formulation 

92-10-5 complexé avec le plasmide pVax1 contenant nos transgènes forment des nanoparticules 

cylindriques et sphériques, de 30 mV et de 95 nm. Ceci permet aux nanoparticules d’interagir et 

d’entrer dans la cellule. Les nanoparticules de chitosanes protègent également les transgènes de la 

dégradation par les nucléases sanguines à des niveaux supra-physiologique. Toutes ces 

caractéristiques font de nos nanoparticules de chitosane un système de livraison favorable à une 

utilisation pour la transfection de cellule in vitro, mais aussi in vivo dans un futur modèle animal. 

Nous avons réussi via l’utilisation des nanoparticules de chitosane transportant nos transgènes à 

transfecter des cellules humaines HEK293 in vitro. Ces cellules produisent les ARN messager 

correspondant à nos transgènes, prouvant la prise en charge de nos transgènes par la machinerie 

cellulaire. Les transgènes présents dans les surnageants des cellules transfectées sont capables de 

fixer le TNFα comme nous l’avons montré à l’aide d’un ELISA de compétition. Ces protéines 
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recombinantes produites sont également capables d’inhiber l’activité biologique du TNFα sur la 

mort cellulaire des cellules de la lignée WEHI-var-13. 

Ces résultats prometteurs prouvent l’efficacité de notre système in vitro et permettent d’envisager 

la prochaine étape de cette recherche qui consiste à tester ce système in vivo sur un modèle 

d’arthrose du rat induit par collagène (CIA :collagene induce arthritis). 
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ANNEXE 1 - Produit du Séquençage du fragment TNFR 

 

 

Les séquences surlignées en jaune correspondent aux amorces utilisées pour le clonage et la 

séquence surlignée en vert correspond au codon d’initiation.  

TAAGCTTAGAGCGGGAGCTACCGCCGCCCCTATGGCGCCCGCCGCCCTCTGGGTCGC

GCTGGTCGTCGAACTGCAGCTGTGGGCCACCGGGCACACAGTGCCCGCCAAGGTTGT

CTTGACACCCTACAAGCCAGAACCTGGGAACCAGTGCCAGATCTCACAGGAGTACTA

TGACAAGAAGGCTCAGATGTGCTGTGCTAAGTGTCCCCCTGGCCAGTATGCAAAACA

CTTCTGCAACAAGACTTCAGACACCGTGTGTGCGGACTGTGCGGCAGGCATGTTTACC

CAGGTCTGGAACCATCTGCATACATGCCTGAGCTGCAGTTCTTCCTGTAGTGATGACC

AGGTGGAGACCCACAACTGCACTAAAAAACAGAACCGAGTGTGTGCTTGCAACGCTG

ACAGTTACTGTGCCTTGAAATTGCATTCTGGGAACTGTCGACAGTGCATGAAGCTGA

GCAAGTGTGGCCCTGGCTTCGGAGTGGCCCGTTCAAGAACCTCAAATGGAAACGTGA

TATGCAGTGCCTGTGCCCCAGGGACGTTCTCTGACACCACATCATCCACAGATGTGTG

CAGGCCCCACCGCATTTGTAGCATCCTGGCTATTCCTGGAAATGCAAGCACAGATGC

AGTCTGTGCATCCGAGTCCCCAACTCCAAGCGCTGTTCCAAGGACAATCTACGTATCT

CAGCCAGAGCCCACAAGATCCCAGCCCATGGATCAAGAGCCAGGGCCTAGCCAAACT

CCACACATCCCTGTGTCCTTGGGTTCAACCCCCATCATTGAACCAAGCATCACGGGTG

GCATCTCTCTTCCAATTGGTCTGATCGTTGGACTGACAGGTACC 

 

Annexe  1 Produit du Séquençage du fragment TNFR 
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Surligné en vert le codon d’initiation, surligné en rouge le codon de terminaison, la séquence en 

gris appartient au plasmide pVax1et la séquence en noir correspond au fragment TNFR. 

ATGGCGCCCGCCGCCCTCTGGGTCGCGCTGGTCGTCGAACTGCAGCTGTGGGCCAC

CGGGCACACAGTGCCCGCCAAGGTTGTCTTGACACCCTACAAGCCAGAACCTGGG

AACCAGTGCCAGATCTCACAGGAGTACTATGACAAGAAGGCTCAGATGTGCTGTG

CTAAGTGTCCCCCTGGCCAGTATGCAAAACACTTCTGCAACAAGACTTCAGACACC

GTGTGTGCGGACTGTGCGGCAGGCATGTTTACCCAGGTCTGGAACCATCTGCATAC

ATGCCTGAGCTGCAGTTCTTCCTGTAGTGATGACCAGGTGGAGACCCACAACTGCA

CTAAAAAACAGAACCGAGTGTGTGCTTGCAACGCTGACAGTTACTGTGCCTTGAA

ATTGCATTCTGGGAACTGTCGACAGTGCATGAAGCTGAGCAAGTGTGGCCCTGGC

TTCGGAGTGGCCCGTTCAAGAACCTCAAATGGAAACGTGATATGCAGTGCCTGTG

CCCCAGGGACGTTCTCTGACACCACATCATCCACAGATGTGTGCAGGCCCCACCGC

ATTTGTAGCATCCTGGCTATTCCTGGAAATGCAAGCACAGATGCAGTCTGTGCATC

CGAGTCCCCAACTCCAAGCGCTGTTCCAAGGACAATCTACGTATCTCAGCCAGAG

CCCACAAGATCCCAGCCCATGGATCAAGAGCCAGGGCCTAGCCAAACTCCACACA

TCCCTGTGTCCTTGGGTTCAACCCCCATCATTGAACCAAGCATCACGGGTGGCATC

TCTCTTCCAATTGGTCTGATCGTTGGACTGACAGGTACCGAGCTCGGATCCACTAG

TCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTCGAGTCTA

GAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCA

TCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGA 

 

Annexe 2 - Séquence nucléotidique codante pour le  fragment TNFR cloné à 

l’intérieur de pVax1. 
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Les acides aminés en noir correspondent à la protéine TNFR les acides aminés en gris 

correspondent à la traduction d’une partie de pVax. Les séquences surlignées en rouge 

correspondent au site de liaison pour la protéine TNFα 

MAPAALWVALVVELQLWATGHTVPAKVVLTPYKPEPGNQCQISQEYYDKKAQM

CCAKCPPGQYAKHFCNKTSDTVCADCAAGMFTQVWNHLHTCLSCSSSCSDDQVE

THNCTKKQNRVCACNADSYCALKLHSGNCRQCMKLSKCGPGFGVARSRTSNGNV

ICSACAPGTFSDTTSSTDVCRPHRICSILAIPGNASTDAVCASESPTPSAVPRTIYVSQP

EPTRSQPMDQEPGPSQTPHIPVSLGSTPIIEPSITGGISLPIGLIVGLTGTELGSTSPVW

WNSADIQHSGGRSSLEGPFKPADQPRLCLLVASHLLFAPPPCLP 

 

Annexe 3 - Séquence en acides aminés déduite de la séquence nucléotidique  

pVax/TNFR 
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Les séquences surlignées en jaune correspondent aux amorces utilisées pour le clonage et la 

séquence surlignée en vert correspond au codon de terminaison. Les séquences surlignées en 

bleu clair correspondent à la partie CH2 (heavy chain 2) et la partie surlignée en vert foncé à la 

partie CH3 de la partie Fc de l’immunoglobuline G. 

GGGTACCAGAGTATCATCTGTCTTCATCTTCCCCCCAAAGACCAAAGATGTGCTC

ACCATCACTCTGACTCCTAAGGTCACGTGTGTTGTGGTAGACATTAGCCAGAATG

ATCCCGAGGTCCGGTTCAGCTGGTTTATAGATGACGTGGAAGTCCACACAGCTCA

GACTCATGCCCCGGAGAAGCAGTCCAACAGCACTTTACGCTCAGTCAGTGAACTC

CCCATCGTGCACCGGGACTGGCTCAATGGCAAGACGTTCAAATGCAAAGTCAACA

GTGGAGCATTCCCTGCCCCCATCGAGAAAAGCATCTCCAAACCCGAAGGCACACC

ACGAGGTCCACAGGTATACACCATGGCGCCTCCCAAGGAAGAGATGACCCAGAG

TCAAGTCAGTATCACCTGCATGGTAAAAGGCTTCTATCCCCCAGACATTTATACG

GAGTGGAAGATGAACGGGCAGCCACAGGAAAACTACAAGAACACTCCACCTACG

ATGGACACAGATGGGAGTTACTTCCTCTACAGCAAGCTCAATGTAAAGAAAGAA

ACATGGCAGCAGGGAAACACTTTCACGTGTTCTGTGCTGCATGAGGGCCTGCACA

ACCACCATACTGAGAAGAGTCTCTAAACTCTCCTCTAGAC 

 

Annexe 4 - Séquence nucléotidique du fragment Ig à l’intérieur du plasmide 

pCR2.1/Ig 
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AAGCTTAGAGCGGGAGCTACCGCCGCCCCTATGGCGCCCGCCGCCCTCTGGGTC

GCGCTGGTCGTCGAACTGCAGCTGTGGGCCACCGGGCACACAGTGCCCGCCAAG

GTTGTCTTGACACCCTACAAGCCAGAACCTGGGAACCAGTGCCAGATCTCACAG

GAGTACTATGACAAGAAGGCTCAGATGTGCTGTGCTAAGTGTCCCCCTGGCCAGT

ATGCAAAACACTTCTGCAACAAGACTTCAGACACCGTGTGTGCGGACTGTGCGG

CAGGCATGTTTACCCAGGTCTGGAACCATCTGCATACATGCCTGAGCTGCAGTTC

TTCCTGTAGTGATGACCAGGTGGAGACCCACAACTGCACTAAAAAACAGAACCG

AGTGTGTGCTTGCAACGCTGACAGTTACTGTGCCTTGAAATTGCATTCTGGGAAC

TGTCGACAGTGCATGAAGCTGAGCAAGTGTGGCCCTGGCTTCGGAGTGGCCCGTT

CAAGAACCTCAAATGGAAACGTGATATGCAGTGCCTGTGCCCCAGGGACGTTCT

CTGACACCACATCATCCACAGATGTGTGCAGGCCCCACCGCATTTGTAGCATCCT

GGCTATTCCTGGAAATGCAAGCACAGATGCAGTCTGTGCATCCGAGTCCCCAACT

CCAAGCGCTGTTCCAAGGACAATCTACGTATCTCAGCCAGAGCCCACAAGATCC

CAGCCCATGGATCAAGAGCCAGGGCCTAGCCAAACTCCACACATCCCTGTGTCCT

TGGGTTCAACCCCCATCATTGAACCAAGCATCACGGGTGGCATCTCTCTTCCAAT

TGGTCTGATCGTTGGACTGACAGGTACCAGAGTATCATCTGTCTTCATCTTCCC

CCCAAAGACCAAAGATGTGCTCACCATCACTCTGACTCCTAAGGTCACGTGTGTT

GTGGTAGACATTAGCCAGAATGATCCCGAGGTCCGGTTCAGCTGGTTTATAGATG

ACGTGGAAGTCCACACAGCTCAGACTCATGCCCCGGAGAAGCAGTCCAACAGCA

CTTTACGCTCAGTCAGTGAACTCCCCATCGTGCACCGGGACTGGCTCAATGGCAA

GACGTTCAAATGCAAAGTCAACAGTGGAGCATTCCCTGCCCCCATCGAGAAAAG

CATCTCCAAACCCGAAGGCACACCACGAGGTCCACAGGTATACACCATGGCGCC

TCCCAAGGAAGAGATGACCCAGAGTCAAGTCAGTATCACCTGCATGGTAAAAGG

CTTCTATCCCCCAGACATTTATACGGAGTGGAAGATGAACGGGCAGCCACAGGA

AAACTACAAGAACACTCCACCTACGATGGACACAGATGGGAGTTACTTCCTCTA

CAGCAAGCTCAATGTAAAGAAAGAAACATGGCAGCAGGGAAACACTTTCACGTG

TTCTGTGCTGCATGAGGGCCTGCACAACCACCATACTGAGAAGAGTCTCTAAACT

CTCCTCTAGA 

 

Annexe 5 - Séquence nucléotidique du fragment d’ADN codant pour la 

protéine recombinante IgTNFR 
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La séquence en bleue correspond à la séquence du fragment TNFR et la séquence  en rouge 

correspond à la séquence du fragment Ig. Les séquences surlignées en gris correspondent, 

respectivement aux sites de clivage pour les enzymes de restriction HindIII, KpnI et XbaI. Les 

séquences surlignées en vert clair correspondent aux codons d’initiation et de terminaison. Les 

séquences surlignées en jaunes correspondent aux amorces utilisées lors des expériences 

d’amplification par RPC. Les séquences surlignées en bleu clair correspondent à la partie CH2 

(heavy chain 2) et la partie surlignée en vert foncé à la partie CH3 de la partie Fc de 

l’immunoglobuline G.  
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La séquence en bleue correspond à la séquence du fragment TNFR et la séquence   en rouge à la 

séquence du fragment Ig. Les séquences surlignées en rouge correspondent au site de liaison 

pour la protéine TNFα et la séquence surlignée en rose correspond à un triplet d’acides aminés 

ne correspondant ni à l’immunoglobuline, ni à la partie extracellulaire du récepteur TNFα mais 

uniquement due au site de restriction utilisé pour fusionnée les deux fragments. 

MAPAALWVALVVELQLWATGHTVPAKVVLTPYKPEPGNQCQISQEYYDKKAQMCCA

KCPPGQYAKHFCNKTSDTVCADCAAGMFTQVWNHLHTCLSCSSSCSDDQVETHNCTK

KQNRVCACNADSYCALKLHSGNCRQCMKLSKCGPGFGVARSRTSNGNVICSACAPGT

FSDTTSSTDVCRPHRICSILAIPGNASTDAVCASESPTPSAVPRTIYVSQPEPTRSQPMDQE

PGPSQTPHIPVSLGSTPIIEPSITGGISLPIGLIVGLTGTRVSSVFIFPPKTKDVLTITLTPKVT

CVVVDISQNDPEVRFSWFIDDVEVHTAQTHAPEKQSNSTLRSVSELPIVHRDWLNGKTF

KCKVNSGAFPAPIEKSISKPEGTPRGPQVYTMAPPKEEMTQSQVSITCMVKGFYPPDIYT

EWKMNGQPQENYKNTPPTMDTDGSYFLYSKLNVKKETWQQGNTFTCSVLHEGLHNH

HTEKSL  

 

Annexe 6 - Séquence en acides aminés déduite à partir de la séquence 

nucléotidique IgTNFR. 
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Surlignés en jaune les amorces utilisées pour la RPC, en rouge la séquence correspondant à la 

région charnière, en gras les séquences des sites de restriction KpnI et XbaI, surligné en bleu la 

séquence correspondant à la région CH2, surligné en vert foncé la séquence correspondant à la 

région CH3 et surligné en Vert le codon de terminaison. 

GGTACCAAAATTGTGCCAAGGGAATGCAATCCTTGTGGATGTACAGGCTCAGAAGT

ATCATCTGTCTTCATCTTCCCCCCAAAGACCAAAGATGTGCTCACCATCACTCTGAC

TCCTAAGGTCACGTGTGTTGTGGTAGACATTAGCCAGAATGATCCCGAGGTCCGGTT

CAGCTGGTTTATAGATGACGTGGAAGTCCACACAGCTCAGACTCATGCCCCGGAGA

AGCAGTCCAACAGCACTTTACGCTCAGTCAGTGAACTCCCCATCGTGCACCGGGACT

GGCTCAATGGCAAGACGTTCAAATGCAAAGTCAACAGTGGAGCATTCCCTGCCCCC

ATCGAGAAAAGCATCTCCAAACCCGAAGGCACACCACGAGGTCCACAGGTATACAC

CATGGCGCCTCCCAAGGAAGAGATGACCCAGAGTCAAGTCAGTATCACCTGCATGG

TAAAAGGCTTCTATCCCCCAGACATTTATACGGAGTGGAAGATGAACGGGCAGCCA

CAGGAAAACTACAAGAACACTCCACCTACGATGGACACAGATGGGAGTTACTTCCT

CTACAGCAAGCTCAATGTAAAGAAAGAAACATGGCAGCAGGGAAACACTTTCACGT

GTTCTGTGCTGCATGAGGGCCTGCACAACCACCATACTGAGAAGAGTCTCTAAACTC

TCCTCTAGA 

 

Annexe 7 - Séquence du fragment Ig contenant la région charnière 
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AAGCTTAGAGCGGGAGCTACCGCCGCCCCTATGGCGCCCGCCGCCCTCTGGGTC

GCGCTGGTCGTCGAACTGCAGCTGTGGGCCACCGGGCACACAGTGCCCGCCAAG

GTTGTCTTGACACCCTACAAGCCAGAACCTGGGAACCAGTGCCAGATCTCACAG

GAGTACTATGACAAGAAGGCTCAGATGTGCTGTGCTAAGTGTCCCCCTGGCCAG

TATGCAAAACACTTCTGCAACAAGACTTCAGACACCGTGTGTGCGGACTGTGCG

GCAGGCATGTTTACCCAGGTCTGGAACCATCTGCATACATGCCTGAGCTGCAGT

TCTTCCTGTAGTGATGACCAGGTGGAGACCCACAACTGCACTAAAAAACAGAAC

CGAGTGTGTGCTTGCAACGCTGACAGTTACTGTGCCTTGAAATTGCATTCTGGGA

ACTGTCGACAGTGCATGAAGCTGAGCAAGTGTGGCCCTGGCTTCGGAGTGGCCC

GTTCAAGAACCTCAAATGGAAACGTGATATGCAGTGCCTGTGCCCCAGGGACGT

TCTCTGACACCACATCATCCACAGATGTGTGCAGGCCCCACCGCATTTGTAGCAT

CCTGGCTATTCCTGGAAATGCAAGCACAGATGCAGTCTGTGCATCCGAGTCCCC

AACTCCAAGCGCTGTTCCAAGGACAATCTACGTATCTCAGCCAGAGCCCACAAG

ATCCCAGCCCATGGATCAAGAGCCAGGGCCTAGCCAAACTCCACACATCCCTGT

GTCCTTGGGTTCAACCCCCATCATTGAACCAAGCATCACGGGTGGCATCTCTCTT

CCAATTGGTCTGATCGTTGGACTGACAGGTACCAAAATTGTGCCAAGGGAATGC

AATCCTTGTGGATGTACAGGCTCAGAAGTATCATCTGTCTTCATCTTCCCCCCAA

AGACCAAAGATGTGCTCACCATCACTCTGACTCCTAAGGTCACGTGTGTTGTGGT

AGACATTAGCCAGAATGATCCCGAGGTCCGGTTCAGCTGGTTTATAGATGACGT

GGAAGTCCACACAGCTCAGACTCATGCCCCGGAGAAGCAGTCCAACAGCACTTT

ACGCTCAGTCAGTGAACTCCCCATCGTGCACCGGGACTGGCTCAATGGCAAGAC

GTTCAAATGCAAAGTCAACAGTGGAGCATTCCCTGCCCCCATCGAGAAAAGCAT

CTCCAAACCCGAAGGCACACCACGAGGTCCACAGGTATACACCATGGCGCCTCC

CAAGGAAGAGATGACCCAGAGTCAAGTCAGTATCACCTGCATGGTAAAAGGCTT

CTATCCCCCAGACATTTATACGGAGTGGAAGATGAACGGGCAGCCACAGGAAA

ACTACAAGAACACTCCACCTACGATGGACACAGATGGGAGTTACTTCCTCTACA

GCAAGCTCAATGTAAAGAAAGAAACATGGCAGCAGGGAAACACTTTCACGTGT

TCTGTGCTGCATGAGGGCCTGCACAACCACCATACTGAGAAGAGTCTCTAAACT

CTCCTCTAGA 

 

Annexe  8 - Séquence nucléotidique du fragment d’ADN codant pour la 

protéine recombinante IgTNFRd 
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Surlignés en jaune les amorces utilisées pour la RPC, en bleu la séquence d’ADN correspondant 

à la partie extracellulaire du récepteur TNF(TNFR) en rouge la séquence correspondant à la 

région charnière, en gras les séquences de restriction pour les enzymes KpnI et XbaI, surligné en 

bleu la séquence correspondant à la région CH2, surligné en vert foncé la séquence 

correspondant à la région CH3 et surligné en Vert le codon de terminaison. 
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MAPAALWVALVVELQLWATGHTVPAKVVLTPYKPEPGNQCQISQEYYDKKAQMCC

AKCPPGQYAKHFCNKTSDTVCADCAAGMFTQVWNHLHTCLSCSSSCSDDQVETHNC

TKKQNRVCACNADSYCALKLHSGNCRQCMKLSKCGPGFGVARSRTSNGNVICSACAP

GTFSDTTSSTDVCRPHRICSILAIPGNASTDAVCASESPTPSAVPRTIYVSQPEPTRSQPM

DQEPGPSQTPHIPVSLGSTPIIEPSITGGISLPIGLIVGLTGTKIVPRECNPCGCTGSEVSSV

FIFPPKTKDVLTITLTPKVTCVVVDISQNDPEVRFSWFIDDVEVHTAQTHAPEKQSNSTL

RSVSELPIVHRDWLNGKTFKCKVNSGAFPAPIEKSISKPEGTPRGPQVYTMAPPKEEMT

QSQVSITCMVKGFYPPDIYTEWKMNGQPQENYKNTPPTMDTDGSYFLYSKLNVKKET

WQQGNTFTCSVLHEGLHNHHTEKSL 

 
En bleu la séquence d’acide aminé correspondant à la partie TNFR de la protéine recombinante, 

en rouge la séquence d’acide aminé correspondant à la partie Ig de la protéine, surlignés en 

rouge les sites de liaison pour la protéine TNF, surligné en bleu nuit la séquence correspondant à 

la région charnière et surligné en violet la séquence correspondant à l’introduction du site de 

restriction KpnI pour effectuer la liaison entre les deux fragments au niveau de l’ADN.  

Annexe  9 - Séquence déduite en acides aminés correspondant à la séquence 

nucléotidique du fragment IgTNFRd 


