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RÉSUMÉ 

Le développement des installations de production de biocarburants, de produits biochimiques et 

de biomatériaux est une condition importante pour réduire la dépendance aux ressources fossiles 

limitées et permet une transition vers une bioéconomie mondiale. L’industrie des pâtes et papiers 

en Amérique du Nord est confrontée à une consommation importante d'énergie coûteuse 

entrainant des coûts de production élevés. D’autre part, elle doit faire face à une concurrence 

intense de la part des économies émergentes. Les Bioraffineries Forestières Intégrées (IFBR) ont 

été proposés comme un moyen de diversifier la production, d'accroître les revenus des industries 

des pâtes et papiers et d’atteindre un aspect durable. Cette intégration est réalisable car elle utilise 

la biomasse forestière comme source d'alimentation après la transformation du bois. De plus, 

l'intégration d'un processus de bioraffinerie partageant des infrastructures existantes et des 

services publics sur le site de l'usine de pâtes permettrait de diminuer les coûts d'investissement et 

les risques associés.  

Les usines de fabrication de pâte par le procédé Kraft présente une possibilité d’intégration de 

bioraffinerie prometteuse car elles possèdent une étape de pré-hydrolyse pour extraire les sucres 

d’hémicelluloses avant la mise en pâte du bois ou encore lors du procédé de la mise en pâte. Les 

hémicelluloses extraites peuvent ensuite être transformées en une vaste gamme de produits à 

valeur ajoutée, ce qui élargirait la gamme de produits de l’usine réceptrice. Pour un bon 

fonctionnement d’une bioraffinerie utilisant les hémicelluloses, de nouveaux procédés qui sont 

techniquement et économiquement implantables sont nécessaires. Il est indispensable d'identifier 

les produits qui seraient rentables et d’imaginer des processus économes en énergie, qui 

permettront aux industries de pâte réceptrice de produire de l’énergie et des produits chimiques et 

de répondre aux exigences matérielles de l'unité de bioraffinerie. L'objectif de cette thèse est de 

développer les bioraffineries ciblant les hémicelluloses pour leur intégration dans un procédé de 

mise en pâte Kraft. Une usine de pâte à papier était l'étude de cas de référence. La transformation 

des sucres hémicellulosiques par conversion chimique et biochimique en furfural et en l'éthanol 

comme produits représentatifs pour chaque voie a été étudiée.  

 

En tant que première partie du travail, la faisabilité de la concentration d’un préhydrolysat grâce à 

une membrane d'osmose inverse a été étudiée.  L’étape de concentration est nécessaire afin de 
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réduire le besoin en énergie pour les opérations de conversion ultérieures et permet de réduire la 

taille des équipements de traitement. Des solutions reconstituées de préhydrolysat contenant 

différentes concentrations de glucose, xylose de l'acide acétique, le furfural et syringaldéhyde ont 

été utilisées pour déterminer la faisabilité de leurs concentrations avec une membrane d'osmose 

inverse. Les effets de la composition de la solution et des conditions de fonctionnement (vitesse 

d'écoulement transversale, température et pression) sur la sélectivité de la membrane et le flux de 

perméat ont été étudiés. Les résultats ont révélé que, indépendamment de la composition de pré-

hydrolysat, la pression d'alimentation et la température présentent l'effet le plus important sur le 

flux de perméat. Une baisse de flux de perméat a été observée dans toutes les expériences et les 

mécanismes responsables de cette baisse de flux ont été expliqués. Il a également été confirmé 

que l'encrassement de la membrane est réversible et que sa régénération peut être réalisée avec 

succès grâce à un nettoyage avec une solution d'hydroxyde de sodium.  

La deuxième partie du travail a été consacrée à la conversion chimique lors de la production de 

furfural. Une solution de préhydrolysat a été générée en utilisant des copeaux de bois similaires à 

ceux utilisés par l'usine de référence. Ce pré-hydrolysat a été utilisé pour évaluer la concentration 

par membrane nécessaire pour une bonne production de furfural. Le taux de rétention et les 

caractéristiques de flux de six membranes organiques commerciales fabriqués à partir de 

différents polymères (polyamide, acétate de cellulose et polypiperazine amide) et avec des seuils 

de coupure différents (poids moléculaires coupées (MWCO) compris entre 100 et 500 Da ont été 

comparés. Une membrane présentant une rétention totale des sucres de 99% et un MWCO 

d'environ 200 Da a été mise en avant pour être la plus appropriée pour un processus de 

production de furfural à partir des critères suivants: une faible consommation d'énergie pour la 

concentration et un faible degré de colmatage et des rétentions importantes des composés désirés 

(sucres, l'acide acétique et du furfural). Le facteur de concentration volumique maximale a été 

déterminé égale à 4, le dépassement de cette limite entraîne une augmentation de l'encrassement 

de la membrane. Le nettoyage de la membrane est réalisé avec de l'hydroxyde de sodium par flux 

inverse, le flux de perméat à 75%, par rapport à une membrane vierge. Un modèle de réponse de 

surafce de surface est développé pour minimiser la baisse de flux lors de la concentration.  

La troisième partie de ce travail traite la conversion biochimique lors de la production d’éthanol. 

Les composés organiques du préhydrolysat qui sont capables d'inhiber la fermentation des sucres 

en éthanol en provoquant la mort des micro-organismes de fermentation doivent être éliminés. 
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Les membranes appropriées qui pourraient être appliquées pour la détoxification ont été 

identifiées lors d’un test de différentes membranes. L'efficacité d'élimination des composés 

inhibiteurs suivants ont été obtenus: composés phénoliques (20%), furfural (80%), acide acétique 

(94%) et hydroxymethlyfurfural (89%). La filtration sur membrane peut être utilisée pour la 

concentration et l'élimination de la plupart des inhibiteurs, elle ne présente cependant pas 

d’efficacité sur l'abattement des composés phénoliques. L'identification d'une étape de 

détoxification secondaire avec une haute spécificité pour l'élimination des composés phénoliques 

a été nécessaire. Des expériences visant à évaluer l'utilisation de l'adsorption sur charbon actif et 

la floculation avec du sulfate ferrique, de l'aluminium ou de la chitine ont montré que le sulfate 

ferrique réduit de façon significative la concentration en composés phénoliques en évitant une 

perte trop importante de sucres. L'élimination des composés phénoliques optimale tout en 

conservant une quantité importante des sucres a été déterminée en présence d’un rapport des ions 

fer/phénols: [Fe] / [Phénols] = 1 g/g et pour une opération réalisée à un pH compris entre 6,5 et 

7,7. Une stratégie de détoxication pouvant être utilisé pour le préhydrolysat a donc été déterminée 

en combinant la nanofiltration membranaire et la floculation au sulfate ferrique.  

Les modèles de simulation pour la production de furfural et d'éthanol à partir des hémicelluloses 

présentes dans le préhydrolysat ont été développés avec la contribution des résultats 

expérimentaux. La bioraffinerie pour la production de furfural est composée de 3 étapes : la 

concentration de préhydrolysat, la transformation des sucres et la valorisation des produits. Un 

réseau d'échangeurs de chaleur optimisé et une pompe absorbant la chaleur ont été avancés pour 

réduire la consommation d'énergie. La faisabilité de l’intégration d'énergie et du matériel pour 

l’intégration de la bioraffinerie a été justifiée et les demandes en électricité peuvent être égalées 

par la production de l'usine de référence. Une évaluation technico-économique du procédé 

développé a montré qu'il est économiquement viable et un retour sur les dépenses en capital 

(ROCE) atteignant 36% peut être obtenu. Le processus de bioraffinerie d'éthanol a présenté un 

besoin en énergie thermique plus faible que le processus furfural et peut également être intégrée 

avec succès à l’industrie réceptrice.  

Dans la dernière phase de cette recherche, les stratégies pour la mise en œuvre des bioraffineries 

hémicellulosiques sont proposées pour les usines de pâtes et papiers canadiennes. Une analyse 

des modifications requises pour les différents types de procédés de fabrication de pâte Kraft, 

l'optimisation énergétique des approches pour répondre à la demande accrue d'énergie après 
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intégration, les facteurs à considérer lors de la sélection des bioproduits et les types de 

collaboration pouvant être utilisés pour réduire les risques et les coûts d'investissement plus 

faibles ont été approchés. 
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ABSTRACT 

The development and wide spread acceptance of production facilities for biofuels, biochemicals 

and biomaterials is an important condition for reducing reliance on limited fossil resources and 

transitioning towards a global biobased economy. Pulp and paper mills in North America are 

confronted with high energy prices, high production costs and intense competition from emerging 

economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have 

been proposed as a mean to diversify their product streams, increase their revenue and become 

more sustainable. This is feasible because they have access to forest biomass, an established 

feedstock supply chain and wood processing experience. In addition, the integration of a 

biorefinery process that can share existing infrastructure and utilities on the site of pulp mill 

would significantly lower investment cost and associated risks.  

Kraft pulping mills are promising receptor processes for a biorefinery because they either possess 

a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added 

by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of 

value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, 

novel processes that are technically and economically feasible are required. It is necessary to 

identify products that would be profitable, develop processes that are energy efficient and the 

receptor mill should be able to supply the energy, chemicals and material demands of the 

biorefinery unit. The objective of this thesis is to develop energy efficient and economically 

viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp 

mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and 

biochemical conversion pathway, with furfural and ethanol as representative products for each 

pathway was studied. 

In the first part of this work, the feasibility of concentrating prehydrolysate solution with a 

reverse osmosis membrane was studied. The concentration step is required to reduce the energy 

demand of the subsequent conversion processes and the size of process equipments. 

Reconstituted prehydrolysate solutions containing different concentrations of glucose, xylose 

acetic acid, syringaldehyde and furfural was used to determine the feasibility of concentrating 

with a reverse osmosis membrane. The effect of the solution composition and operating 

conditions (cross flow velocity, temperature and pressure) on the selectivity of the membrane and 
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the permeate flux were investigated. The results revealed that irrespective of the prehydrolysate 

composition, the feed pressure and temperature had the most dominant effect on the permeate 

flux. A permeate flux decline was observed in all experiments and the mechanisms responsible 

for the flux decline were elucidated. It was also confirmed that the membrane fouling is 

reversible and regeneration can be successfully carried out by cleaning with a sodium hydroxide 

solution. 

The second part of this work focussed on a chemical conversion pathway for furfural production. 

A prehydrolysate solution was generated by using a wood chips furnish that is similar to that of 

the reference mill and used to evaluate the membrane concentration requirements for furfural 

production. The retention and flux characteristics of six commercial organic membranes made 

from different polymers (polyamide, cellulose acetate and polypiperazine amide) and with 

molecular weight cut offs (MWCO) between 100 and 500 Da were evaluated. A membrane with 

total sugar retention of 99% and a MWCO of about 200 Da was shown to be the most suitable for 

a furfural process based on the criteria: low energy requirement for concentration, low degree of 

fouling potential and high retentions of the desired components (sugars, acetic acid and furfural). 

The maximum volumetric concentration factor was determined to be 4, exceeding this limit leads 

to increased fouling of the membrane. Cleaning of the membrane with sodium hydroxide 

returned the permeate flux back to 75%, relative to a virgin membrane. A response surface model 

was developed for minimizing the flux decline during concentration.  

The third part of this work covered a biochemical conversion pathway for the production of 

ethanol. The organic compounds in the prehydrolysate, that inhibit fermentation of the sugars 

into ethanol and cause the death of the fermentation microorganisms, must be removed. Suitable 

membranes that could be applied for the detoxification were identified during the membrane 

screening. The following inhibitor removal efficiencies were achieved: phenols (20%), furfural 

(80%), acetic acid (94%) and hydroxymethylfurfural (89%). Membrane filtration could be used 

for concentration and elimination of most of the inhibitors, it was however not efficient for the 

removal of phenolic compounds. The identification of a complementary detoxification step with a 

high specificity for phenols removal was necessary. Experiments to assess the use of activated 

charcoal adsorption and flocculation with ferric sulfate, alum or chitin showed that ferric sulfate 

significantly removes the phenolic compounds relative to sugar loss. To maximize the removal of 

phenolic compounds, the optimum ratio of iron to phenols ions [Fe]/[Phenols] was found to be 
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1g/g and the pH between 6.5 and 7.7. A detoxification strategy that can be used for 

prehydrolysate detoxification was developed by combining nanofiltration and flocculation with 

ferric sulfate as the coagulant. 

Simulation models for the production of furfural and ethanol from hemicelluloses prehydrolysate 

were developed with inputs from the experimental results. The furfural biorefinery was made up 

of 3 steps, prehydrolysate concentration, sugars transformation and product recovery. An 

optimized heat exchanger network and an absorption heat pump for implementation were 

designed to lower the energy consumption. The feasibility of the energy and material integration 

of the biorefinery was demonstrated and the utility demands can be met by the reference mill. A 

techno-economic evaluation of the developed process showed that it is economically feasible and 

a return on capital employed (ROCE) as high as 36 % can be obtained. The ethanol biorefinery 

process was shown to have a lower thermal energy requirement than the furfural process and can 

also be successfully integrated with the receptor mill.  

In the last phase of this research, the guideline for the implementation of hemicellulosic 

biorefineries in Canadian pulp and paper mills are proposed. It included analyses of the 

modifications required for different types of Kraft pulping processes prior to their conversion into 

a biorefinery, energy optimization approaches to address the increased energy demand after 

integration, factors that must be considered during bioproducts selection and types of 

collaboration that can be used to reduce risk and lower investment.  
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INTRODUCTION 

Pulp and paper mills in North America have been confronted with a decline in the demand for 

pulp and paper commodity products, high energy prices and intense global competition from 

emerging economies with lower production costs in the past decade. The conversion of a pulp 

and paper mill into integrated forest biorefineries (IFBRs) where lignocellulosic biomass will be 

converted into a broad spectrum has been proposed as a means for mills to diversify their sources 

of revenue and become more sustainable. In the past decades, this interest has led to widespread 

research on the best way to develop IFBRs.  

Several alternatives for valorizing cellulose, hemicelluloses and lignin, the three main classes of 

wood components are being evaluated and in most cases, significant scientific and technological 

breakthroughs are still required. Several pulp mills in North America are characterized by high 

energy consumption and ageing equipments that must be upgraded or replaced before a 

biorefinery process can be integrated. Furthermore, the cost of producing biochemicals, 

bioproducts or biofuels from woody biomass is higher than for alternative feedstock such as 

sugar cane or corn due to its higher recalcitrance. Biorefinery processes that are technically and 

economically feasible must be developed in order for pulp and paper mills to play a role in the 

emerging bio-economy. 

Wood pulping is a mature process that has been carried out since decades using mechanical, 

chemical or hybrid methods. The Kraft process, a full chemical pulping method, is the most 

utilized method for pulping globally[1] and it is a cost effective method because most of the 

chemicals used in the process can be recovered. The pulp produced also has a higher quality than 

the pulp produced with other methods due to the stronger fibre. Types of pulp that can be 

produced from hardwoods using the Kraft process include paper grade and dissolving pulp. 

Dissolving pulp has higher cellulose purity (≥96 compared to paper pulp (72-79%) [2-4]. The 

hemicelluloses and lignin are typically combusted to produce energy in the Kraft process.  

Hemicelluloses are polymers that comprise of hexoses (mannose, glucose and galactose) and 

pentoses (xylose and arabinose). They are typically burnt in the Kraft process to produce energy 

but they can be extracted prior to Kraft pulping and diverted for transformation into higher value 

products in a biorefinery. Hemicelluloses extraction would not lead to a significant reduction of 

the energy production capacity of the mill because the heating value of hemicelluloses is lower 
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than that of lignin[5]. On the contrary, the pulp production capacity can be increased if it is 

constrained by the recovery boiler. A suitable method for extraction must be compatible with the 

subsequent Kraft pulping step and not lead to a pulp yield reduction or a lower pulp quality. 

Furthermore, depending on the desired application of the hemicelluloses, attaining an acceptable 

level of sugar purity and a low amount of toxic compounds that can inhibit fermentation might be 

necessary.  

Bridging the gap between research and implementation of IFBRs requires the development of 

novel process concepts and the adaption of process operations that would be economically 

feasible and ready for scale up within a short time frame. This thesis deals with biorefinery 

technology development and the main focus is to develop hemicelluloses biorefinery processes 

that can be integrated into Kraft dissolving pulp mills. To achieve this goal, retrofit biorefinery 

processes were developed for the production of ethanol and furfural from hemicelluloses 

prehydrolysate. Ethanol and furfural were selected as representative bioproducts via biochemical 

(fermentation) and chemical conversion pathways respectively. Furfural is a low market volume 

product while ethanol is a high market volume product. The composition of a prehydrolysate 

solution is pre-determined by the extraction step of the receptor Kraft process, therefore a 

dissolving pulp mill was used as a case study. 

Concentration of the prehydrolysate stream is necessary to reduce the process equipment size and 

energy cost in both processes. In addition, the ethanol process requires a detoxification step for 

the removal of the organic compounds in the prehydrolysate, which are toxic to the fermentation 

microorganisms. Experiments revealed that nanofiltration membranes can be successfully used 

for concentration in the furfural process and the conditions that would lead to a low flux decline 

during membrane were identified with a response surface model. The ethanol process however 

needed a complementary process step for detoxification. A novel detoxification strategy that 

combines membrane filtration and flocculation with ferric sulfate was developed to this effect.  

The experimental results were used for process design evaluation. Computer based simulation 

models were developed to compute the mass and energy balances of the alternatives. Energy 

optimizations of the biorefineries were carried out by performing a heat exchanger design and 

implementing an absorption heat pump. The level of integration that can be achieved between the 

receptor mill and the biorefinery plant was determined. The results revealed that energy, material 
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and chemical demands can be supplied by the receptor mill. The process development 

methodology has been used to develop practical guidelines for the integration of hemicelluloses 

biorefineries into Kraft pulp mills. 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Context and Motivation 

The forest industry comprising of wood products, pulp and paper and wood derived value added 

products groups is an important sector of the Canadian economy. It contributes to the GDP, 

provides export earnings and creates employment. A comparison of the industry indicators for the 

pulp and paper segment between 2004 and 2011 showed that manufacturing revenues reduced by 

28%, and the number of employees by 42 %. Several pulp and paper mills have closed down in 

Canada in the past decade. The closures can be attributed to a falling demand for paper and paper 

commodity products as illustrated in Figure 1–1, high production costs, intense global 

competition and high energy prices. [5] The mills are usually located in rural areas where they 

serve as drivers for economic activity and the impact of closures are disruptive to the 

communities.   

 

Figure 1–1: Forest industry production trend in Canada [6] 

It is therefore imperative to develop a sustainable approach for using forest resources (biomass) 

in order to prevent the closure of currently operating mills and to also bolster the economy of 

several regions that are largely dependent on pulp and paper mills.  
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1.2 Biomass Potential 

Biomass can be used to produce a broad spectrum of products that include energy, biomaterials 

and biochemicals. Biomass resources include sources of wood, wood waste, agricultural crops, 

algae and aquatic plants. The potential of biomass for different regions is shown in Table 1.1. The 

consumption in North America constitutes about 16% of the potential. 

Table 1.1: Distribution and consumption of biomass by regions, 103 PJ/year [7] 

Biomass potential 
Middle 

East 
Europe 

Former 

USSR 

North 

America 
Africa 

Latin 

America 
Asia World 

Woody biomass  0.4 4 5.4 12.8 5.4 5.9 7.7 41.6 

Energy Crops 0 2.6 3.6 4.1 13.9 12.1 1.1 37.4 

Straw 0.2 1.6 0.7 2.2 0.9 1.7 9.9 17.2 

Other 0.1 0.7 0.3 0.8 1.2 1.8 2.9 7.6 

Total potential 0.7 8.9 10 19.9 21.4 21.5 21.6 103.8 

Use 0 2 0.5 3.1 8.3 2.6 23.2 39.7 

Use / Potential (%) 0 22 5 16 39 12 107 38 

In the past decade, the use of renewable feedstock has gained acceptance as an important means 

for transitioning towards a global bioeconomy. Daleet al. [8] identified the key features of a 

mature bioeconomy. The success of industries could depend on factors such as: 

 Production capacity and yield: High production yields and efficient processes are 

necessary, cost advantages improve as the capacity increases but after a certain point 

diminishing returns could set in  

 Integration feasibility: The ease with which a biorefinery can be integrated with other well 

established processes and locations 

 Market saturation: Products from biorefineries have different world demands, an 

oversupply of a product with a limited market size will lead to market saturation and 

affect the price 

 Feedstock supply: having a guaranteed supply of feedstock is essential for a biorefinery or 

commodity process such as a pulping mill 

 Technology diffusion: The rapid development and deployment of biomass conversion 

technologies and processes will influence the cost of production 

 Substitute products: the availability of substitute products in the target market might pose 

a competition for bioproducts and hinder commercialization 

A bioeconomy can lead to infrastructure development and the creation of jobs that are necessary 

for running the biorefinery and other associated industries.  
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1.3 Pulping Processes 

Pulping refers to the separation of fibres (celluloses) that are fixed in a wood or plant matrix. 

Several bonds that exist within the wood structure must be ruptured in the process and it could be 

necessary to separate the other classes of wood components (hemicelluloses and lignin) from the 

fibres. Some of the existing methods for pulping can be grouped into four classes: chemi-

mechanical and chemical pulping , semi-chemical, chemi-mechanical and mechanical  [9]. The 

classifications are listed in the order of increasing dependence on mechanical energy and 

increasing dependence on the use of chemicals to facilitate fibre separation. Although mechanical 

pulping requires a higher amount of energy than the other methods, its main advantage is that a 

yield of up to 95% of the dry weight of wood can be obtained [4]. Chemical pulping on the other 

hand has a lower yield but the strength of the produced pulp is higher and the chemicals 

employed in the process can be recovered, a detailed description of the various pulping processes 

is available in published literature [4, 9]. Kraft pulping, a full chemical process is the most 

predominant pulping method in use worldwide and about 89 % of global pulp production is based 

on this process [1]. The process can be used to produce conventional Kraft pulp and Kraft 

dissolving pulp. 

1.3.1 Kraft Pulp 

Wood chips are composed primarily of cellulose (40-45%), hemicelluloses (softwood - 25-30%, 

hardwood – 30-35%) and lignin (softwood - 25-30%, hardwood – 20-25%) [10]. Delignification 

can be carried out in either a batch or continuous digester. It is known that the dissolution of 

lignin is a selective reaction which has three distinct kinetic phases, the initial, bulk and terminal 

phase [11]. In the first phase, the solubilisation of lignin and some hemicelluloses occurs; the 

second phase is characterized by selective lignin dissolution until about 90% of all lignin has 

been dissolved. In the final phase lignin cannot be removed easily without a consequential 

dissolution of cellulose. The delignification should be stopped prior to the terminal phase to 

prevent pulp yield losses and quality reduction. A schematic of the Kraft process is shown in 

Figure 1–2. The active chemical required is white liquor, a mixture of sodium hydroxide (NaOH) 

and sodium sulphide (Na2S). 
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Figure 1–2: A simplified diagram of the Kraft process 

Some of the important variables [4, 9] for Kraft cooking include:  

1. Wood species and geometry or chip size, especially chip thickness. 

2. Liquor sulfidity which is the ratio of sulphides to active alkali, Na2S/ (NaOH+Na2S). 

3. Ratio of active alkali to the weight of dry wood and liquor to wood.  

4. The cooking time and temperature that are conveniently combined to a single 

parameter the H-factor. 

After delignification, the cellulose fibres are separated from the spent liquor (black liquor) using 

countercurrent washers and subsequently bleached. Bleaching of pulp is carried out to further 

remove lignin which is present in pulp because not all the lignin present in the wood is liberated 

during cooking. Results from a study by Gellerstedt [12] indicate that this could be due to a 

condensation mechanism which involves sulphur elements. It is therefore necessary to control the 

degree of delignification in order to prevent a deterioration of pulp bleachability. The recovered 

black liquor is concentrated using a multi-effect evaporator train and sent to the recovery boiler 

where it is combusted to produce energy. A causticizer is used to regenerate white liquor from the 

smelt produced in the recovery boiler in a soda lime reaction. 
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1.3.2 Dissolving Pulp 

Dissolving pulp has a higher cellulose content (≥ 96 %) than Kraft pulp (72-79%) [3]. The higher 

purity level is achieved by carrying out prehydrolysis to remove hemicelluloses prior to 

delignification. Prehydrolysis can be carried out sequentially in the same digester for 

delignification in a batch process but a separate digester dedicated to prehydrolysis will be 

necessary if the Kraft process utilizes a continuous digester. Traditional pre-hydrolysis processes 

use steam or hot at temperatures between 150–180ºC but a lower temperature of about 110–

120ºC would be sufficient if dilute acid is used as catalyst. Some recent mediums for 

prehydrolysis that have been proposed include a near neutral liquor [13], SO2 –Ethanol -Water 

[14], Formic Acid [15]. A comparison of the prehydrolysis methods is difficult because each 

method requires different levels of investment, level of chemical recovery, operating costs and 

secondary effects on the wood chips that cannot be quantified at an experimental scale. 

Furthermore, if the recovery and transformation of the extracted hemicelluloses into sugar based 

chemicals or fuels is desired, the prehydrolysis method will also influence the investment and 

operating cost of the biorefinery Products such as rayon, cellophane and cellulose nitrates can be 

produced from dissolving pulp [16]. A list of derivatives and end use applications of cellulose is 

given in Figure 1–3. 

Hardwood / 

Softwood

Specialty Grades

Dissolving 

Pulp

Rayon Grades

Dissolving Pulp

FEEDSTOCK  PULP GRADE

Cellophane

CELLULOSE DERIVATIVES

Casings

Lyocell

Viscose Staple Fiber

Industrial Filaments

Microcrystalline Cellulose (MCC)

Nitrate

Diacetate & Triacetate

Ether

Sponge

Textile Filament

Flexible Packaging Material

END USE

Ham & Sausage Casings

Textiles, Non-woven

Hi-performance Tires, Transportation hoses & Belts, Air springs

Tableting agent, water-binder, Bulking agent, Retardant Agent

Inks, Paint, Lacquers, Nail varnish, Explosives

Cigarette Filter, Plastics, films

Oil drilling, Food Products, Pharmaceuticals, Cosmetics, Detergents, Thickeners

Household and Industial

 

Figure 1–3: Dissolving pulp derivatives and end use [17] 

A dissolving pulp process has a lower yield than a Kraft pulp but this could be compensated for 

by its higher price of the product. Dissolving pulp production is also economically attractive 
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when the price of wood is low or the prices of substitute natural fibres (cotton) or synthetic fibres 

(petroleum based) are high. A correlation between the economic feasibility of dissolving pulp 

production (pulp price) and the price of wood in relation to oil, process yield, pulp and the 

heating value of black liquor and oil has been proposed by Lonnberg [18]. 

1.4 Enhancing the competitiveness of Kraft pulp mills 

Reported approaches for making Kraft pulp mills more competitive and sustainable can be 

categorized into three groups: 

 Water and thermal energy consumption improvement 

 Mill conversion and repurposing 

 Development of integrated forest biorefineries 

They can all be implemented while a mill is still operational except for the repurposing of a mill, 

which can be implemented after closure of a mill. 

1.4.1 Improvement of water and thermal energy consumption  

Improving the thermal energy and water consumption of Kraft pulp mills present an opportunity 

for cost savings. This is because most of the Canadian mills are older than those in competing 

countries and their respective consumptions are not at par with other modern mills. Reported 

typical steam and water consumption for the Canadian pulp and paper industry and the 

Scandinavian industry that is renowned for its best practice are compared in Table 1.2. Values 

presented are for both real and ideal mills.  

Table 1.2: Steam and fresh water consumption for Canadian and Scandinavian industry [19-22] 

 

Real Mills Model Mills 

Canadian  Scandinavian  Canadian  Scandinavian 

Water consumption (m3/adt) 70 15 40 15.9 

Steam consumption (GJ/ODt) 22.10 13.20 9.18* 10.4 

*Theoretical possible energy consumption 

Improving the water and steam consumption can be achieved by modifying the operating 

conditions, upgrading or changing inefficient equipments. The required adjustments can be 

identified by carrying out an equipment performance analysis [23].  
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Other means of reducing the energy and water consumption are internal heat recovery, water 

reutilization and energy upgrading. The recovery of internal heat that is hitherto unutilized in a 

process can be achieved by using the pinch analysis technique [24-26] or mathematical 

programming [27, 28].  

Kraft pulping is a water based process in which the quality of the final product can be influenced 

by the presence of contaminants. Water contamination occurs during operations such as 

screening, scraping, equipment/product washing and extraction processes. Water pinch which is 

analogous to the thermal pinch technique can be used to determine the extent to which water can 

be reutilized based on the maximum allowable contaminant concentration in each process step 

[29].  

Energy and water consumption are interrelated in the pulping process and a reduction of energy 

consumption in the form of steam consequently leads to a reduction of fresh water consumption. 

Methods which involve the simultaneous optimization of energy and water consumption have 

been proposed by Savulescuet al. [30] and a similar method has been applied for a case study in 

the pulp and paper industry by Mateos-Espejelet al. [31]. 

Heat pumps are devices for upgrading low temperature energy that is available in a process to a 

higher temperature. Heat pumps can be widely used in the petroleum refineries and 

petrochemical industry, food and beverages, utilities and the forest industry [32]. Areas of 

application in the forest industry include: black liquor concentration (pulp production), flash 

steam recovery (paper manufacturing), process water heating (paper manufacturing) and product 

drying (lumbering). Types of heat pumps include the closed-cycle mechanical heat pumps, open-

cycle mechanical vapour compression (MVC) heat pumps, open-cycle thermo-compression heat 

pumps and closed-cycle absorption heat pumps (AHP).The implementation of an AHP has been 

shown to be a promising alternative for energy upgrade, especially at high energy costs [33] and 

guidelines for their implementation have been proposed by Bakhtiari [34]. 

1.4.2 Mill conversion 

Another strategy for improving the economic viability of Kraft pulp mills is the conversion of the 

mills. Possible mill conversions can be grouped into three different scenarios. 

1 Conversion from Kraft pulp to dissolving pulp production 
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2 Conversion from dissolving pulp (back) to Kraft pulp 

3 Kraft process repurposing 

The incentive for converting a Kraft pulp mill into a dissolving pulp mill is primarily an increase 

in the price of dissolving pulp coupled with increased demand for dissolving pulp. This spurred 

the conversion of about 5 mills in Canada within the last decade while 3 other mills were under 

conversion between 2010 and 2012 [2]. The dissolving pulp produced from the converted mill is 

a higher value product and it can be used to manufacture specialty products. The evolution of the 

global demand for dissolving pulp is illustrated in Figure 1–4. The yield of the dissolving pulp 

process (30 - 35% , of the wood input) is lower than that of the Kraft pulp process (~50%) [35]. 

Therefore, the price of dissolving pulp must be high enough to compensate for the lower process 

yield and to ensure profitability. Furthermore, hemicelluloses could also be extracted in the 

dissolving pulp process to provide additional source of revenue. 

 

Figure 1–4: Global dissolving pulp demands  [36] 

The price of dissolving pulp (delivered to China) has fallen from the peak price of about 2,200 

US$ /tonne in 2011 down to about 950 US$ /tonne in 2014 [36]. This could have been caused by 

additional dissolving pulp capacity that came online due to the conversion of several mills. Some 

consequences of the price drop include the reconversion of some dissolving pulp mill back to 

Kraft pulp, postponing of planned conversion from Kraft to dissolving pulp and implementing 

phased conversion into dissolving pulp mill to lower capital investment. The ease of conversion 
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between dissolving pulp and Kraft pulp indicates that both processes are mature with low 

technological risks. The associated risks are mainly related to the product prices.  

Repurposing involves the conversion of a mill to produce a different product other than pulp. The 

equipments can be used to produce cellulose that can further be hydrolyzed into sugars for sale or 

for fermentation. Some studies on the repurposing of a mill to produce ethanol have been carried 

out [37-39]. Ethanol as an end product would not be cost effective in the IFBR context unless the 

cost of producing the fermentable sugars is low. This is because the value of ethanol is lower than 

that of pulp or dissolving pulp. A repurposed mill might also be economically viable if 

biochemicals or bioproducts with a higher price than pulp can be produced at a sustainable cost. 

1.4.3 Development of integrated forest biorefineries 

An Integrated Forest Biorefineries (IFBR) is the coupling of different biorefinery technologies 

that utilize lignocelluloses feedstock, with existing pulp and paper mills. In an IFBR with a Kraft 

pulp mill as the receptor process, the cellulose fraction of the wood feedstock is dedicated to pulp 

production while part of the lignin and hemicelluloses fractions can be extracted and transformed 

into value added products for the biorefinery. It is necessary that the extraction of these fractions 

do not negatively impact the pulp production capacity, chemical balance, power generation and 

production cost of the base pulping process. The IFBR should be capable of producing a broad 

spectrum of biochemical, biomaterial and /or biofuels. 

Several studies on the integration of biorefineries with existing pulp and paper mills are ongoing. 

Pulp and paper mills especially Kraft pulp mills are ideal receptors for the integration of 

biorefinery processes because paper mills have vast experience with securing, handling and 

processing of biomass, they are situated in proximity to numerous sources of biomass, their 

thermal efficiencies can be improved to liberate enough for a biorefinery and some mills already 

have experience with the production of energy from biomass [40]. 

Different authors have highlighted the motivations, benefits and challenges that need to be 

surmounted in order to achieve successful integration of a biorefinery as shown in Table 1.3. 

Although some of the reviewed literature stated slightly varying justifications for why an 

integrated forest biorefinery should be set up, the reasons are all in mutual agreement and do not 

stand in contradiction with each other 
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Table 1.3: Motivations for developing integrated forest biorefineries 

Incentive Challenges (C)and/or limitations (L) Source 

 Diversification of 

business model 

 Transformation of the enterprise (C) 

 Selection of best product and product portfolio (C) 

 Phasing of biorefinery implementation (C) 

Chambostet 

al. [41] 

 Energy affordability 

 Reduced environmental 

impact of energy supply 

 Shortage of capital for integration (C) 

 Based on syngas / Gasification only (L) 
Connor [40] 

 Reliable energy supply 

 Reduction of emissions 

 Energy security over the 

importation of energy 

 Protection of core business of the industry (C) 

 Leveraging on the rare alignment of societal and industrial 

interests (C) 

Closset et al. 

[42] 

 Changes to how forest 

resources will be 

processed and utilized 

 Research still needed for available technologies to reach 

level of commercialization (C) 

 Distinguishing between classes of products (main products, 

co- products & by products) and their long term 

interrelationship (C) 

Söderholm 

et al. [43] 

 Energy supply assurance  Potential life cycle of plant (C) 

 Identifying the best pathways for production (C) 

 Identification of best projects by comparison of alternatives 

(C) 

Thorpet al.  

[44] 

 Reduced pulp and paper 

production cost 

 Diversification of revenue 

sources for pulp mills 

 Smooth integration (C) 

 Ascertaining the impact of modernizing a mill (C) 

 Determining the order of magnitude of different biorefinery 

cases 

Hytönen et 

al. [45] 

An incentive, which stands out from other sources is that biorefinery integration leads to reduced 

pulp and paper production cost by Hytönen et al. [45]. The focus of biorefineries has shifted in 

the past 5 years from focusing mainly on biofuels production to the inclusion of biochemicals and 

biomaterials, despite a smaller market size than for biofuels. 

Some types of biorefineries that have been proposed for integration with a Kraft pulping process 

are gasification, lignin extraction and hemicelluloses extraction [46]. 

1.4.3.1 Gasification Based Biorefineries 

Gasification is the conversion of low quality solids such as wood residue and low quality liquids 

such as black liquor into a fuel gas. The fuel gas is referred to as either synthesis-gas or syngas 

and comprises mainly of hydrogen and carbon monoxide. Fuel gas can be combusted in gas 

turbines for the production of electricity. Products that can be obtained from syngas include 

Fischer-Tropsch liquid (FTL), Dimethyl Ether (DME), and Mixed alcohols (MA). Consonni et al. 

carried out a study on gasification based biorefineries for the pulp and paper industry and 
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concluded that for products such as FTL and DME, the technology for gasification exists 

commercially and is being used in other non-pulp industries [47]. The challenge for a gasification 

based biorefinery lies in the integration. Only MA still requires much research on the production 

technology side. Black liquor gasification has also been proposed by Naqvi as an alternative to 

the Tomlinson recovery boiler for improving on safety , energy efficiency and the flexibility of a 

pulp mill [48]. Recently explored technologies for black liquor gasification include the Booster 

System and the Black Liquor Gasification Combined Cycle System (BLGCC) by Chemrec [49] 

as well as the the Carbo-V® process developed by Choren [50]. 

1.4.3.2 Lignin Based Biorefineries 

The lignin fraction of the wood fed to Kraft pulp mills end up in the black liquor that is normally 

concentrated using multi-effect evaporators before combustion in recovery boiler to produce 

energy. In several cases, the recovery boiler operates at its maximum thermal load and cannot be 

upgraded or replaced due to the high costs. This limits the pulp production capacity of the mill. 

The recovery and acid precipitation of lignin can be used for increasing the production capacity 

[51]. In addition, lignin based chemicals such as poly-urethane and vanillin, which can lead to 

increased revenue, can be produced. Some processes for lignin precipitation include the 

LignoboostTM process developed by Innventia and more recent LignoForce SystemTM developed 

by FPInnovations [52, 53].  

1.4.3.3 Hemicelluloses Based Biorefineries 

In Kraft pulp mills, most of the hemicelluloses content from the wood feedstock is dissolved 

along with lignin during pulping and combusted in the recovery boiler. A better use of the 

hemicelluloses can be achieved by their extraction prior to pulping and subsequent conversion 

into value added products. To extract the hemicelluloses, a prehydrolysis step, which is also used 

in a dissolving pulp mill, is required. The prehydrolysis condition must be optimized to maintain 

a high pulp yield and maintain the pulp quality (fibre strength, length, bleachability). The 

composition of the generated prehydrolysate stream must also meet the requirement for the 

subsequent transformation process. To successfully develop an IFBR, all the steps required for 

the implementation (the extraction of hemicelluloses, conversion into value added product and 

the integration of the biorefinery process with a receptor pulp mill) must be studied collectively. 

Currently, there is limited information on such studies. 
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1.5 Hemicelluloses: Extraction, Concentration and Conversion  

Hemicelluloses are polysaccharides of pentoses (xylose, arabinose) and hexoses (glucose, 

galactose, and mannose) that bind cellulose and lignin within the cell wall of plants. They rank 

behind cellulose as the second most abundant natural occurring polymer [54]. They have a lower 

degree of polymerization compared to cellulose [55, 56] and branches with short lateral chains 

that result in lower chemical and thermal stabilities, so they are more soluble and easily 

hydrolyzed [57]. 

 

Figure 1–5: Structural representation of hemicellulosic sugar monomers [58] 

Hemicelluloses are heterogeneous and their pentose and hexose distribution depends on the type 

of feedstock as illustrated in Table 1.4. The main difference between hardwoods and softwoods is 

that hardwood contains a higher fraction of pentoses. This also influences a decision on the target 

product of hemicelluloses biorefineries. 

Table 1.4 Composition of different lignocellulosic materials [59] 

 
Hardwoods Softwoods 

Maize 

Straw 

Cereal 

Straw 

Recovered 

Paper 

Celluloses (%) 30 -43 40 - 48 35-41 38-40 50-70 

Hemicelluloses  

     Hexoses (%) 2 – 5 12 -15 2 2-5 ─ 

Pentoses (%) 17 – 25 7-10 15-28 17-21 6-15 

Lignin (%) 20-25 26 – 31 10-17 6-21 15-25 
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1.5.1 Hemicelluloses Extraction 

The selective extraction of hemicelluloses from woody biomass is possible because hydrolysis of 

hemicelluloses occurs more readily than cellulose [60-63]. In general, different methods such as 

dilute acid and concentrated acids, alkali, hot water, ionic liquids, steam explosion, ammonium 

fibre explosion (AFEX), ozonolysis and organosolv can be employed [64, 65]. However, 

selecting a method is constrained because it must not have a negative impact on the subsequent 

Kraft cooking of the chips, reduce the pulp yield and lower the pulp quality (tensile strength, tear 

strength, viscosity). The characteristics of the common extraction methods can be compared 

based on criteria that include: whether biomass size reduction is required, occurrence of lignin 

degradation, weight ratio of wood chips to aqueous medium, the amount of toxic compounds 

produced, occurrence of sugar degradation, quantity of sugars extracted, catalyst or regeneration 

requirement, quantity of waste produced, heat and power requirements. The most suitable method 

depends on the feedstock and the receptor mill requirement. Compromises have to be made in 

most cases between these characteristics. Some of the promising methods for the IFBR utilize hot 

water or steam with acids, alkali, or other solvents as catalysts. 

1.5.1.1 Acid pre-treatment  

This method is similar to that published in 1982 by Springer et al. [66]. It involves bringing 

biomass in contact with dilute or concentrated solutions of acids at temperatures between 160-

180°C for a period that could range from a few seconds to minutes. The acid catalyzes the 

hydrolysis of hemicelluloses into sugar monomers. This method has the advantage that the acid 

charge and temperature which does not result in cellulose degradation is relatively known [67]. 

Dilute acid extraction can be carried out in a batch or flow through process. Acids that can be 

employed include nitric acid (HNO3), phosphoric acid (H3PO4), hydrochloric acid (HCl) and 

sulfuric acid (H2SO4). The most commonly used acid treatment catalyst is H2SO4. 

1.5.1.2 Alkaline pre-treatment  

This requires the use of alkali such as ammonia (NH3), sodium hydroxide (NaOH) or Lime 

(Ca(OH)2) [68, 69]. These processes generally require lower temperatures and pressure in 

comparison to acid hydrolysis pre-treatment, but consequently have a longer duration that can 

range from several hours to days, in comparison to a few minutes for dilute acid extraction [64, 
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68, 69]. An attribute which makes the alkaline extraction unattractive at a large scale is the fact 

that it is suited to small wood chips size, thus the size of the wood feedstock could need reduction 

prior to pulping [67]. It has been shown that using alkali pre-treatment is less effective for woody 

materials than agricultural residue [65]. Another undesired consequence of alkaline pre-treatment 

methods is the removal of lignin which is important for power generation in the chemical 

recovery cycle of the Kraft process [69] 

1.5.1.3 Hot water or steam pre-treatment 

These two methods can be used in Kraft pulp mills and are therefore adaptable for an integrated 

forest biorefinery. An important advantage of using either water or steam is that the 

hemicelluloses extraction is free of chemicals that might have to be neutralized, treated or 

recovered. The process effluents will therefore be easier to manage and the material for the 

reactor design would be less expensive due to a lesser degree of corrosion. A main difference 

between steam and hot water hydrolysis is that the extracted hemicelluloses remain within the 

wood chips when steam is used [3] while it is solubilised with hot water [70]. In a typical Kraft 

process, steam hydrolysis is followed by neutralization with a mixture of hot black liquor and 

white liquor, and this leads to a degradation of the sugars. Steam hydrolysis is more suitable 

when the main goal of the Kraft process is dissolving pulp and valorization of the sugars is not 

envisaged. Hot water hydrolysis on the other hand is advantageous when the hemicellulosic 

sugars are to be recovered for conversion in a biorefinery. 

1.5.1.4 Other emerging extraction methods 

Near neutral extraction method involves the use of chemicals already existing in the Kraft 

pulping process (a mixture of green and white liquor). A technical and economic analysis of this 

process has been carried out by Mao [13]. A complementary study has also been carried out by 

Umet et al. [71] and the mass balance was shown to be exact. Some of its reported advantages 

include the pulp quality and quantity being unchanged; it also brings about a reduction of the 

amount of organics in the black liquor. This reduction makes it possible to increase the pulp 

production if it is constrained by the calorific capacity of the recovery cycle. A disadvantage of 

the near neutral method is that the amount of extracted sugar is less than with the acid or hot 

water method. Inorganic salts are also introduced to the sugars stream. The use of organic 

solvents (organosolv) can also be employed for the extraction of hemicelluloses. Some of the 
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alternative solvents that have been reported include ethanol, formic acid, methanol, glycerol, 

acetone, propylene and 1,4 –butanediol. A mineral acid or alkali catalyst could be used as a 

catalyst for the solvents. One of the main advantages of this method is that it can be used for 

fractionating widely varying feedstock such as hardwoods, softwoods, municipal lignocellulosic 

wastes and agricultural residue [72]. The lignin fraction produced also has a low molecular 

weight and narrow distribution, and it can be separated easily from the pulping solvent [73, 74]. 

The use of formic acid or SO2-Ethanol-Water (SEW) Pulping has been shown to prevent the 

formation of sticky lignin [14]. A major challenge associated with organosolv is that the solvent 

must be recovered and regenerated. 

1.5.1.5 Selection of an extraction method for an IFBR 

The cost effectiveness can be used as a selection criterion for the extraction methods but it is 

difficult to determine the costs associated with each method due to feedback effects which cannot 

be quantified directly in the pulping process. The pentose and hexose components of 

hemicelluloses have different degrees of resistance to the extraction methods, therefore a 

different method will be required for softwoods and hardwoods [75]. A list of some 

hemicelluloses extraction methods that have been proposed in the framework of an integrated 

forest biorefinery is given in Table 1.5. A direct comparison of the methods is not always 

possible as different feedstock, and conditions were used in all cases. 

Table 1.5: Some proposed methods for hemicelluloses extraction in forest biorefineries 

Method Wood Species Key Features Ref 

Near Neutral Mixed hardwood Green liquor is available in the Kraft process [13] 

NaOH Aspen wood Low temperature and clean prehydrolysate stream [76] 

White liquor Birchwood No decrease in pulp yield and paper strength properties [77] 

Hot water Sugar maple wood Significantly accelerates Kraft delignification [78] 

SO2-Ethanol-Water Spruce Prevents the formation of sticky lignin [14] 

SO2 Maple, aspen & birch mix High sugar monomers yield [70] 

Green Liquor Eucalyptus Increased pulping efficiency, lower black liquor solids [79] 

Formic acid Southern hardwood High sugar monomers concentration [15] 

The selection of a method for a specific biorefinery requires an evaluation of the Kraft pulp 

quality and impact on the Kraft process. These are acceptable criteria especially when the 

targeted hemicelluloses derivative has a lower value than the pulp.  
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1.5.2 Hemicelluloses Concentration and Detoxification 

The prehydrolysate stream extracted prior to Kraft pulping usually contains less than 30 g/L of 

sugars. As shown in Table 1.6, it also contains lesser quantities of other organic compounds, 

furfural, phenolic compounds and organic acids. The typical sugar composition of the 

hemicelluloses extract is too low for subsequent conversion processes. It would lead to high 

energy requirement and cost due to the size of equipments. A concentration step is therefore 

necessary for process intensification (a reduction in the size of equipments or number of required 

unit operations). 

Table 1.6: Composition of mixed maple aspen prehydrolysate solution [80] 

Components Concentration (g/L) 

Pentose┼ 17 .1 

Hexose┼ 4.1 

Phenolics 4.7 

Acetic Acid 3.8 

Furfural 0.7 

Hydroxymethylfurfural 0.09 

Lipids 0.2 

Na 0.02 

Ca 0.15 

K 0.04 
┼  Total monomers and oligomers   

Two potential methods can be employed for the concentration of prehydrolysate streams at an 

industrial scale, evaporation and membrane filtration. Types of evaporators include vacuum 

evaporation and multi-effect evaporators. The latter uses a series of evaporator vessels with each 

operating at a lower pressure than the previous. As a result of the boiling point decrease due to a 

lower pressure, the vapour that exits an evaporator vessel can be used to heat the subsequent 

vessel thus reducing the total energy consumption significantly. Nevertheless, evaporation is 

characterized by a high consumption of energy due to the phase change required. In comparison, 

membrane filtration requires a lower amount of energy because no phase change is involved. 

Energy savings of up to 84 % can be achieved through the use of membranes for sugars 

concentration in place of evaporators [81]. It is a well established method for concentrating dilute 

sugar streams and has also been proposed as a means for separation and purification of wood 

derived hemicelluloses [82]. Depending on the size and form of the hemicellulosic sugars, three 
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different membrane classes, Reverse Osmosis (RO), Nanofiltration (NF) or Ultrafiltration (UF), 

can be used for the recovery of the sugars as shown in Figure 1–6. 
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Figure 1–6: Classification of membrane filtration based on pore size 

1.5.2.1 Membrane Concentration and Detoxification 

RO, NF and UF utilize a pressure gradient to drive the diffusion of a solute and solvent through 

the membrane filter. The stream that is retained is referred to as concentrate or retentate while the 

stream that traverses the membrane is known as the permeate. The permeate flux is directly 

proportional to the pressure gradient. The retention (rejection) is measure of the selectivity of a 

membrane and can be calculated from R = (1−Cp/Cf) × 100, where Cp and Cf are solute 

concentration in the permeate and feed streams respectively. The retention exhibited by a 

membrane depends on three set of factors [83]: 

1. Membrane intrinsic properties e.g. molecular weight cut off (MWCO), electrostatic 

charge and hydrophobicity  

2. Feed solution characteristics e.g. solutes molecular size, electrostatic charge, geometry 

and hydrophobicity, the ionic strength and pH of the solution, presence of organic and  

inorganic compounds 

3. Operating conditions and parameters e.g. cross flow velocity, trans-membrane pressure, 

flow channel configuration 
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Most state-of-the-art organic membranes are thin film composites (TFC) that have a dual layer, a 

thin layer that is selective and a porous support layer [84]. The three main kinds of active layers 

are made from cellulose acetate, polyamide or polypiperazine amide, and they all have different 

properties. The membrane requirement for prehydrolysate concentration depends on the desired 

hemicelluloses derivative as shown in Figure 1–7. The removal of only water might be sufficient 

in applications that involve a thermo-chemical conversion of the sugars while the removal of the 

toxic compounds (acetic acid, furfural and phenolics) might be necessary when fermentation of 

the sugars by microorganisms will be carried out. 

 

Figure 1–7: Membrane requirement for A) concentration B) concentration and detoxification 

It is difficult to predict the separation of components that can be achieved for the prehydrolysate 

solution because the organic compounds have different molecular weights, degree of ionization, 

hydrophobicity and hydrophilicity. The classifications of some compounds that can be found in a 

hemicelluloses prehydrolysate solution are shown in Figure 1–8.  
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Figure 1–8: Classification of organic compounds in hemicelluloses prehydrolysate 

Previously reported studies on prehydrolysate treatment were carried out under different 

experimental conditions; using prehydrolysate generated with different methods, and mainly with 
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the objective of producing fermentation based biofuels but not chemicals. The retention 

mechanisms of some of the organic compounds are considered to be complex and contrasting 

explanations have been reported [85]. In process applications, data on rejection of organic 

compounds by high pressure membranes have been derived mainly from pilot and industrial scale 

experimental observation and this has resulted in only empirical and limited knowledge [86]. 

Several challenges limit membrane applications in hemicelluloses based biorefineries: Firstly, 

identifying and selecting a membrane for specific hemicelluloses prehydrolysate solutions is 

required. In addition, the operating conditions (temperature, pressure and cross flow velocity) 

must be identified and the target flux level for different concentration factors must be defined. 

The viscosity of a prehydrolysate solution increases during concentration and as a result, the 

permeate flux might become too low and place a limit on the extent of concentration that can be 

achieved. Lastly, several flux decline mechanisms might occur over the life of the membrane at 

intervals which could range from a few days to months. This makes it mandatory to evaluate 

whether the flux decline would be tolerable or if it would necessitate regular membrane cleaning 

and replacement. The main causes of flux decline include compaction of the membrane, 

concentration polarization, increased osmotic pressure and fouling [87, 88].  

Compaction (creep) is a reversible or irreversible deformation of the membrane active layer due 

to physical compression [89] and it decreases the permeability of the membrane. Creeping of the 

membrane is dynamic and a function of the state of the membrane, the pressure to which it is 

subjected and the duration of exposure [90]. In membrane applications, carrying out a pre-

compaction of the membrane prior can be used to limit the consequent flux decline during 

filtration operation. 

During concentration of a solution, the osmotic pressure which depends on the solute 

concentration increases. Consequently, this reduces the permeate flux and a higher operating 

pressure would be required to return the permeate flux to the desired level. The flux decline can 

be compensated by increasing the operating pressure for membranes that have a high permeate 

flux at its lower operating pressure limit. 

Concentration polarization is a phenomena that occurs when solutes accumulate near the 

membrane active surface due to convective mass transport, and lead to a lower trans-membrane 

flux [91]. Consequently, the solute concentration near the surface exceeds that in the feed 
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solution [92] and this can also lead to scaling, precipitation and crystallization on the membrane 

surface [93]. Concentration polarization can be controlled by the cross flow velocity of the feeds 

solution and the use of a temperature high enough to reduce precipitation where applicable. 

Fouling is an increase in resistance to mass transfer that takes place when materials (foulants) that 

interact with the membrane surface are deposited and accumulate on the active layer. It leads to a 

reduction of the permeate flux and can also change the retention characteristics of a membrane. 

The main types of foulants can be grouped into four categories [94, 95]: 

 Particulates inorganic or organic colloidal particles 

 Microorganisms that cause the formation of a biofilm on the membrane surface 

 Organic matter that are adsorbed on the active surface of the membrane 

 Inorganic dissolved components that cause scaling due to their limited solubility  

Fouling is inevitable but it can be managed, reduced and the membranes can be cleaned 

periodically. The development of cleaning strategies and fouling resistant membranes has 

evolved to be a research area [96-98]. Currently proposed approaches for cleaning include 

physical strategies (flushing, scrubbing, sonication and vibration) [99, 100], chemical reaction 

strategies (solubilisation, hydrolysis, saponification, dispersion and chelation), and biological 

strategies (enzymes, bacteriophages) [101, 102]. A decline ranging from insignificant to almost 

100 % decline of the permeate flux has been observed during the concentration of hemicelluloses 

prehydrolysate [80]. The retention characteristics of a membrane can be altered by all the flux 

decline mechanisms. 

1.5.2.2 Detoxification of hemicellulosic prehydrolysate 

In addition to C5 and C6 sugars, hemicelluloses prehydrolysate solution also contains furans 

(furfural and hydroxymethylfurfural), organic acids (acetic and formic acids) and phenolic 

compounds (syringaldehyde, vanillin), which are toxic for fermentation microorganisms. These 

compounds (inhibitors) are the degradation products of hemicelluloses, celluloses and lignin, 

which are produced during the extraction step [103].  

Organic acids are generally weak acid and they exhibit incomplete dissociation in water. Their 

effect on fermentation microorganisms is pH dependent [103]. In the case of yeast fermentation, 

the undissociated acid penetrates the cell membrane and dissociates in the cell cytoplasm where it 
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lowers the otherwise neutral pH [104]. The cell consequently tries to regulate the pH by diverting 

energy to pump out the protons (H+) ions, this leads to inhibition of cell growth and death [105]. 

Both furfural and hydroxymethylfurfural (furans) inhibit the metabolism pathway of many 

organisms (growth). The synthesis of protein and RNA is deteriorated; there is breakdown of 

DNA and a decrease of ethanol yield in a similar manner due to both inhibitors [104, 106, 107]. 

The inhibition mechanisms for the phenolic compounds are not well understood but a proposed 

mechanism is that it breaks down biological membranes resulting in a loss of integrity and 

difficulty for the membrane to have a selective barrier [107, 108]. The low molecular weight 

phenolic compounds are considered to have the inhibitoriest effect on fermentation 

microorganisms [105, 109].  

The extracted sugars are mainly in oligomeric form with a low fraction of monomers. A finishing 

hydrolysis step using inorganic acids or enzymes is required to convert the sugar oligomers into 

monomers because microorganisms only ferment the sugars in monomer form. The use of an acid 

hydrolysis method leads to the production of more inhibitors for the fermentation 

microorganisms that produce biofuels such as ethanol [110-112] and butanol [113-116]. 

Enzymatic hydrolysis on the other hand produces less inhibitory compounds but it is itself 

affected by the presence of inhibitors [117-119] and it has longer hydrolysis duration. Its milder 

hydrolysis conditions, high sugar monomers yield and absence of corrosive inorganic acids that 

introduce metal ions into the prehydrolysate makes the use of enzymes a widespread method for 

hydrolysis. The tolerance to different amounts of inhibitors is organism specific and the presence 

of several inhibitory compounds could also lead to a synergy effect. The removal of the 

compounds is therefore an important step in the development of hemicellulosic biorefineries. 

Detoxification refers to the removal of the inhibitory compounds from the prehydrolysate 

solution. The selection and use of an appropriate membrane during the concentration step could 

help to achieve a simultaneous partial detoxification of the prehydrolysate. Efficient and near 

complete removal of organic acids and furans from a sugar maple prehydrolysate solution with a 

nanofiltration membrane has been demonstrated [115]. However, only about 50% of the phenolic 

compound could be eliminated during the process. A complementary detoxification method 

would therefore be required to achieve a high removal of all inhibitory compounds. 

Detoxification methods can be classified as chemical, physical and biological as shown in Table 

1.7. 
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Table 1.7: Classification of different detoxification methods for inhibitors removal 

METHODS FEATURES REFERENCES 

Physical   

 Membrane Nanofiltration or ultrafiltration membranes (pressure driven) [82, 115] 

Evaporation Vacuum evaporation (thermal energy driven) [120]  

Chemical     

Neutralization  Addition of alkali e.g. Ca(OH)2, NaOH or NH4OH [121, 122]  

Overliming  Use of Ca(OH)2  to raise pH to ≈10 before neutralizing [121, 123] 

Activated charcoal Variables are Temperature, pH, ratio of charcoal to liquid  [124-126]  

Ion exchange resins Functional groups important for selectivity [125-128] 

Extractive solvents Use of solvents such as ethyl acetate, Trialkylamine   [107] 

Oxidative processes Use of hydrogen peroxide (H2O2) or ozone (O3) [129] 

Biological     

Microbial treatment Use of bacteria, fungi and yeasts   [106, 130] 

Enzymatic treatment laccase or peroxidise for phenolics removal  [106, 131] 

The inhibitory compounds have widely varying characteristics (molecular weight, degree of 

ionization, solubility, volatility and conductivity) hence it is not feasible that a single method 

would be capable of eliminating all inhibitors. A detoxification strategy for the hemicelluose 

prehydrolysate in an IFBR can be developed by combining two or more methods. 

A suitable detoxification method or strategy should have the following characteristics: 

1. Concentration and detoxification of the prehydrolysate stream should be feasible 

2. Lead to removal of volatile and non-volatile inhibitors 

3. Be selective for inhibitors removal and not lead to loss of hemicellulosic sugars 

4. Have a low energy requirement  

5. Have a short duration 

6. Regeneration of the chemicals or materials employed should be cost effective 

7. Generate no waste  

8. Contain no compounds or ions that could be potential inhibitors 

The development of a detoxification strategy must be case specific and should only be developed 

after the hemicelluloses extraction method has been optimized for low inhibitors production 
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1.5.3 Hemicelluloses Conversion Pathways and Derivatives 

Hemicelluloses can be utilized directly or after a chemical or biochemical transformation into a 

broad range of products in different industries as shown in Figure 1–9. The prehydrolysate 

solution is a crude mixture of pentoses and hexoses and other inhibitory compounds. To use the 

sugars directly, pure sugars could be required and this is a drawback for prehydrolysate use. 

Other promising uses of the hemicellulosic sugars include for the production of enzymes, 

ethanol, organic acids and furfural and xylitol [1, 132]. Some of the derivatives can only be 

produced from either pentoses or hexoses, therefore the sugars composition (ratio of pentoses to 

hexoses) should be an important factor for selecting a target product. 
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Figure 1–9: Schematic hemicelluloses derivatives production and end uses 

The development of technologies that can be used industrially is required for most of the 

proposed products. An example of a mature biochemical conversion process for the 

transformation of sugars is ethanol production. The production of ethanol from the hemicellulosic 

sugars would be advantageous because both the pentose and hexose fractions can be utilized. 

Some of the most studied organisms for the production of ethanol are the yeasts (saccharomyces 
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cerevisiae and pichia stipitis) and bacteria (escherichia coli and zymomonas mobilis) [110, 133]. 

Essential characteristics for any selected organisms include: having a high ethanol yield, being 

tolerant to ethanol, resistant to inhibitors, capable of carrying out fermentation at a low pH and 

being able to utilize a broad range of substrates [134]. Saccharomyces cerevisiae is the most 

commonly used ethanologens but its disadvantage is the inability to ferment xylose (pentoses) 

[135]. To correct this, yeasts that can ferment xylose have been discovered through investigation 

and genetic modification [136, 137].  

Another promising chemical that can be produced from hemicelluloses prehydrolysate is furfural. 

In contrast to ethanol, only the pentose fraction is utilized for furfural production and a chemical 

conversion process is required. Two sets of reactions in series are required for furfural formation. 

In the first reaction, the hydrolysis of the pentose oligomers into monomers takes place while in 

the second reaction, a dehydration reaction to remove three molecules of water from the pentose 

to form furfural occurs. Both reactions require identical conditions (high temperature, high 

pressure and a low pH). The kinetics of the hydrolysis reaction is faster than the formation of 

furfural [138], hence both reactions can be carried out in the same reactor. Several existing and 

proposed furfural production processes have been reported [138-142]. Furfural can be utilized 

directly or converted into derivatives for use in a wide range of industries.  

1.6 Critical Review 

There have been several suggestions on approaches to the development of an Integrated Forest 

Biorefinery (IFBR). Most of them however focus on specific aspects and not the entire process 

chain. Examples of this include: product selection [143, 144], pre-treatment and hemicelluloses 

extraction [67, 70, 79, 145-148], production technology and optimization [6, 149, 150] and 

products recovery [151, 152]. A comprehensive investigation that combines all steps of the 

process could lead to the identification and development of novel processes and implementation 

methodologies. In addition, it is necessary to determine and maximize the levels of material, 

energy and chemical integration that can be achieved between the biorefinery plant and receptor 

Kraft pulp mill. This could significantly enhance the technical and economic feasibility of forest 

biorefineries. 
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Based on the review of literature, the following areas were identified to require further 

investigation: 

 There is limited knowledge on the implementation of membrane filtration as an energy 

efficient method for the concentration and detoxification of prehydrolysate solution 

 Energy requirement minimization and upgrading are rarely considered in proposed 

biorefinery processes for integration into Kraft pulp mills 

 Previous studies focused mainly on the production of biofuels and there is lack of 

knowledge on integrated biorefineries for the production of biochemicals 

 The energy, material and chemical integration of an hemicelluloses biorefinery with a 

receptor Kraft process is not typically evaluated 

 Only few studies involving the techno-economic evaluation of a hemicelluloses based 

IFBR has been carried, previous work focused on biorefineries using agricultural 

feedstock 

 The modifications required to a receptor mill are not typically taken into consideration 

while selecting a biorefinery product 

 Hemicelluloses biorefinery proposals are developed under different hypothesis, no 

practical guidelines for implementation exists 

All the above mentioned points were treated in this thesis.  
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CHAPTER 2.  METHODOLOGY, OBJECTIVES AND THESIS 

ORGANIZATION 

2.1 Objectives 

The literature review showed current work on a broad range of methods for extracting 

hemicellulosic sugars from wood chips prior to pulping, the potential conversion pathways and 

some hemicelluloses derivatives. Despite the well known hemicelluloses conversion mechanisms 

and the end uses of the sugars that have been proposed, based on laboratory scale studies, 

significant scientific and technological breakthroughs are necessary to enhance industrial 

applications and commercialization. Hence, the development of processes that can be 

implemented in Kraft pulp mills for the valorization of hemicelluloses deserves investigation.  

This research deals with biorefinery process technology development and the main objective is to 

develop energy efficient and economically viable hemicelluloses biorefineries for integration into 

Kraft pulp mills. 

The sub objectives are: 

1. To propose novel wood prehydrolysate concentration techniques for hemicelluloses 

biorefineries and evaluate their feasibility 

2. To develop detoxification strategies for wood prehydrolysate, and evaluate their feasibility 

3. To develop and evaluate hemicellulosic biorefinery processes suitable for integration into 

Kraft pulp mills based on the previous objectives 

4. To optimize the energy and material requirements of the biorefineries and determine the 

degree of integration with a receptor mill that can be achieved 

5. To propose practical guidelines for the implementation of forest biorefineries in the Canadian 

forest industry sector 
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2.2 Methodology 

Two products, furfural and ethanol, were selected as case studies in order to bracket the range of 

conversion pathways, product value and the size of the market for hemicelluloses derivatives. 

These products are representative for a chemical and biochemical conversion pathways. 

However, the identification of novel process technologies for each pathway would be applicable 

for other bioproducts with similar pathways. A qualitative comparison of the differences between 

the products is given in Table 2.1. The prices are given in US$ (globally adopted currency) to 

enable a comparison. 

Table 2.1: Comparison of biorefinery products selected as case studies 

 FURFURAL ETHANOL Ref 

Conversion Pathways Chemical (Dehydration) 
Biochemical 

(Fermentation) 

- 

Selling Price ($/t) 1,400-1,500 695* [153, 154] 

Market Volume (Mt/a)    

Global (Mt/a) 0.35 69 [155, 156] 

North American (Canadian) 0.02 (n/a) 41 (1.6) [156, 157] 

* 0.55 $/L, Prices for August 2014 in the US  

An eastern Canadian Kraft dissolving pulp mill that produces 670 odt/d (odt = oven dried tons) of 

dissolving pulp from hardwood (a mixture of maple and aspen) was selected as a receptor mill.  
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The process development methodology consisted of different aspects:  

1. Experimental investigation to generate data 

a. The prehydrolysate generation experiments were carried out at FPInnovations, 570 St 

Jean, Pointe-Claire, QC H9R 3J9 

b. The experiments on membrane concentration and the development of a detoxification 

strategy were conducted at the Centre National en Électrochimie et en Technologies 

Environnementales, 2263, avenue du Collège, Shawinigan (QC) G9N 6V8 

2. Computer based process simulation and integration studies at Polytechnique Montreal 

All the prehydrolysate solutions that were used in the concentration and detoxification 

experiments were generated from a wood furnish similar to that of the case study receptor mill. 

The proximate compositions of the wood species are given in Table 2.2. 

Table 2.2: Composition of wood species used for generating prehydrolysate solutions 

Percentage Composition % Maple Aspen 

Arabinan 0.9 0.5 

Xylan 15.7 16 

Mannan 2.3 2.1 

Galactan 0.6 0.4 

Glucan 47.9 53.5 

Cellulose 44 49.6 

Hemicellulose 23.4 22.9 

Lignin 30.7 24.3 

Acetone extractives 1.9 3.2 

Total 100 100 

The process simulation was based on the capacity of the receptor mill. The methodology for the 

process development for the biorefineries is illustrated in Figure 2–1. 
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Figure 2–1: Stepwise approach for biorefinery processes development 

2.3 Structure and Organization 

2.3.1 Presentation of Publications 

The six following chapters contain the results of this thesis. The first paper is presented in chapter 

4. It is entitled “Concentration of hemicelluloses prehydrolysate by membrane filtration: 

Feasibility and effect of composition on flux decline mechanisms” and it has been submitted to 

Separation and Purification Technology in May 2014. The flux decline mechanisms resulting 

from the main prehydrolysate components were identified by using a synthetic prehydrolysate 

solution identified in this fundamental investigation.  
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The second article entitled “Retention and flux characteristics of nanofiltration membranes during 

hemicelluloses prehydrolysate concentration” is an applied research investigation of the 

feasibility of utilizing nanofiltration membranes for concentration of real hemicelluloses 

prehydrolysate solutions. It involved the screening of six commercial organic membranes with 

varying molecular weight cut off (MWCO) and different active layers made of polyamide, 

cellulose acetate and polypiperazine amide polymers. A membrane that produced high sugars 

retention was identified for concentration and a response surface model to minimize the flux 

decline during concentration was developed. This article has been accepted for publication in the 

chemical engineering journal.  

Article 3 is presented in chapter 5 under the title “Furfural production in an integrated forest 

biorefinery: process development and techno-economic assessment”. This article documents the 

development of novel biorefinery process for furfural production that utilizes 69% lower energy 

than existing processes and is suitable for integration into a Kraft dissolving pulp mill. This 

article has been submitted to Chemical Engineering Research and Design in August 2014. 

The fourth article will be submitted to Biomass and Bioenergy in October 2014. It is titled 

“Concentration and detoxification of Kraft prehydrolysate by combining nanofiltration with 

flocculation”. A novel detoxification strategy that can be successfully used to remove most of the 

inhibitory compounds from a prehydrolysate solution was developed and proposed. 

The evaluation of the requirements for integrating an ethanol plant into a Kraft dissolving pulp 

mill was presented in chapter 5. The results may be extended into a paper that will be submitted 

to the Canadian Journal of Chemical Engineering. 

“Hemicelluloses based integrated forest biorefineries: implementation strategies” is presented as 

in chapter 7. This chapter discusses proposed guidelines for the implementation of integrated 

forest biorefineries. The results may be extended into a paper that will be submitted tor Biofuels, 

Bioproducts and Biorefining 

2.3.2 Link between Publications 

Chapter 3 (Article 1) is a fundamental study and it establishes the feasibility of membrane 

applications to the treatment of hemicelluloses prehydrolysate. The types of flux decline 

mechanisms caused by solution components were determined. Chapter 4 (Article 2) is specific to 
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a furfural biorefinery process and it shows the suitable operating conditions for membrane 

concentration and a modeling approach to minimize the flux decline. Chapter 5 (Article 3) 

summarizes the furfural biorefinery process development and evaluation of its technical and 

economic feasibility. Articles 4 and 5 focus on the ethanol biorefinery. Chapter 6 (Article 4) 

presents a novel detoxification strategy that can be used to remove inhibitory compounds from 

hemicelluloses prehydrolysate while Chapter 7 covers the integration of the developed ethanol 

process with a receptor mill. Chapter 8 discusses the perspectives for future integrated biorefinery 

development based on the results and knowledge acquired during this doctoral research. 

Implementation strategies for integrated biorefineries are also proposed. 
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Abstract 

Prehydrolysate, a dilute solution comprising mainly of C5 and C6 sugars as well as lesser 

quantities of organic acids, furfural and phenolics is generated in the Kraft dissolving pulp 

process prior to wood chips cooking. A more profitable alternative for pulp and paper mills in 

comparison to the typical practice of combusting the concentrated prehydrolysate solution, is to 

valorize the sugars by conversion into value added bioproducts such as furfural. Prior to 

conversion, it is important to concentrate the stream to reduce the energy cost and capital 

investment of the subsequent conversion and separation stages. Retaining the organic acid during 

concentration also lowers the pH that favours the conversion of pentose into furfural. The 

purpose of this work was to evaluate the impact of prehydrolysate composition and main 

operating parameters such as the feed temperature, pressure and tangential velocity on the 

component separation and permeate flux during concentration of model prehydrolysate solutions. 

Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were 

screened and one was selected for use based on its higher sugar and acetic acid retention. A 
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Taguchi L18 experimental design array was then applied to determine the dominant parameters. 

Results showed that the feed pressure and temperature have the highest impact on permeate flux 

but the least effect on sugar retention. Further experiments to quantify how fouling and osmotic 

pressure contribute to flux decline showed that furfural has the highest membrane fouling 

tendency and can limit the lifetime of a membrane. Regeneration of the membrane by cleaning 

with a solution containing sodium hydroxide is also effective for reversing fouling. It has been 

demonstrated that RO concentration can be accomplished. 

Keywords 

Membrane filtration, Prehydrolysate, Kraft Process, Furfural Production 

3.1 Introduction  

Since the closure of several Kraft pulp mills in the past decade, efforts to reposition the sector has 

resulted in a revision of the business model of presently operating mills by transforming them 

into Integrated Forest Biorefineries (IFBRs) [1]. An IFBR generally involves the diversification 

of the product portfolio of a mill by integrating new processes for sustainable products such as 

biochemicals, bioenergy, biofuels or biomaterials, which are new sources of revenue. Other 

advantages of a biorefinery integrated into a Kraft dissolving pulping mill include: i) the existing 

infrastructure on site can reduce the investment costs for the biorefinery ii) skilled manpower 

with experience in biomass handling and processing is available on site iii) the heating and 

cooling utility requirements can be provided by the mill. Five Kraft pulp mills in Canada have 

been converted from paper grade to dissolving grade pulp processes in the past. Three other mills 

are currently under conversion due to an increase in the price and global demand for dissolving 

grade pulp, which can be used for the manufacture of textile fibres [2]. Dissolving Kraft pulp 

mills are suitable for the integration of a sugar platform biorefinery because the prehydrolysis of 

the wood chips to remove the hemicelluloses fraction is carried out prior to cooking. Presently, 

the hemicelluloses are typically combusted to produce energy in the chemical recovery cycle of 

the pulping process. Several methods exist for the prehydrolysis of wood chips. The use of hot 

water is advantageous because it is a mature, cost efficient technique and does not require the use 

of additional chemicals. Furthermore, the hemicellulosic sugars can be easily extracted and 

recovered. The resulting stream is dilute and contains a mixture of pentose and hexose sugars 
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with less than 4% wt/vol total sugars [3] and lesser quantities of organic acids and phenolics. 

Valorization of this stream via a biochemical pathway to produce biofuels such as ethanol and 

butanol or a chemical pathway for bioproducts such as furfural or xylitol is possible. It is 

advantageous to utilize a chemical conversion pathway in mills that utilize hardwood as 

feedstock. This is because the pentoses, which make up the highest proportion of the 

prehydrolysate stream, are more difficult to ferment into biofuels than hexoses but are valuable 

feedstock in biochemical production. Also, it is not yet economically competitive to produce 

biofuels from such a stream because the cost of production from alternative feedstock like sugar 

cane or corn is comparatively lower [4]. Furfural is a platform chemical that can replace many 

industrial organic compounds that are presently produced from crude oil. Currently, it is mainly 

produced from agricultural residue such as corn cobs. The production cost and energy 

requirement in existing processes for furfural production are high (~42 GJ/t) but it can be reduced 

by integrating a furfural biorefinery with other processes that utilize biomass as feedstock [5, 6], 

such as the Kraft pulping process. It is projected that the growth in demand for furfural will rise 

from 300 kt/a to 1,000 kt/a in 2020 [6]. Some of its promising applications include the production 

of tetrahydrofuran (THF) which is an important industrial solvent [7]. Resins and biopolymers 

can also be derived from furfural [8, 9]. As a result of the “Montreal Protocol on Substances that 

Deplete the Ozone Layer”, the use methyl bromide for soil fumigation is being phased out by the 

United States Environmental Protection Agency (EPA). The use of furfural and its derivatives is 

being investigated and already has been identified as an alternative nematocide [10, 11].  

To produce high purity furfural from prehydrolysate in an IFBR, three main steps are required:(i) 

concentration of the generated prehydrolysate, (ii) sugars (pentose) conversion by a dehydration 

reaction into furfural and (iii) product purification by distillation as shown in Figure 3–1. The 

concentration step is specific to an IFBR based on Kraft pulp mill for dissolving pulp production 

and it is essential for reducing the energy cost and process equipment dimension.  
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Figure 3–1: Schematic representation of an Integrated Forest Biorefinery for furfural production 

A low pH is required to catalyze the conversion of sugars into furfural. Organic acids such as 

formic [12] and acetic acids are suitable catalysts that can also reduce the mineral acid 

requirement. It is therefore important that the method for concentration retains the organic acids 

present in the prehydrolysate along with the sugars during concentration. Multiple-effect 

evaporators are efficient and widely used in many industrial applications for concentration when 

large volumes of water must be recovered but two drawbacks are associated with its potential use 

in the furfural biorefinery. Firstly, a large amount of energy in the form of steam is required and 

acetic acid, the main organic acid will be lost because it is volatile. These drawbacks can be 

avoided by membrane filtration, an energy efficient technique of concentration and water 

recovery in a wide range of industrial applications. No previously reported studies on the 

application of reverse osmosis or nanofiltration membranes for concentration in a furfural process 

were found in existing literature. Furthermore, earlier studies conducted on membrane application 

focused mainly on the removal of inhibitors from real and synthetic [13] hydrolysate solutions for 

biofuels production. This is not required when producing furfural. To the best of our knowledge, 

no investigation of the flux decline mechanism caused by the main prehydrolysate components 

has been carried out, although it is important for evaluating the feasibility of membrane 

concentration. Also, the effect of varying prehydrolysate composition and filtration conditions on 

the separation characteristics and permeate flux has not been investigated. The objective of this 

work is to evaluate the potential of technologically and economically feasible membrane 

concentration in a furfural biorefinery. Synthetic solutions that bracket the wide range of 

compositions that can be found in a furfural process using prehydrolysate from dissolving pulp 

mills were employed. The experiments were carried out in three phases:  
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 To identify membranes with suitable component retention 

 To determine the optimum conditions for high permeate flux  

 To evaluate the impact of prehydrolysate composition and feed conditions on flux decline 

3.2 Material and methods 

3.2.1 Membranes 

Two similar spiral wound commercial RO membranes, Dow Filmtec TW30-2540 and Dow 

Filmtec BW30-4040 were used in this study. They were made of polyamide thin film composites, 

had a continuous operation pH Range of 2-11, maximum operating temperature of 45˚C, 

maximum operating pressure of 4100 kPa and Molecular Weight Cut Off (MWCO) of about 100 

Da. The new membrane element were cut length wise and opened up. They were then immersed 

in a solution of 1% wt/vol of sodium metabisulfite to loosen the membrane pores and prevent the 

growth of microorganisms. Prior to filtration experiment runs, flat sheets were cut from the 

membrane roll and placed in distilled water for at least three days to remove the sodium 

metabisulfite and condition the membrane.  

3.2.2 Experimental Setup 

A lab-scale SEPA CF II (GE Osmonics, United States) cross-flow flat-sheet membrane test unit 

was used in this experimental study. It had a rectangular tangential flow canal that can 

accommodate any type of flat-sheet membrane with dimensions: 9.6 cm (breadth) and 14.5 cm 

(length). A hydraulic hand pump (SPX maximum pressure 70000 kPa) was used to pressurize the 

flat sheet between the two stainless steel half cells. The feed tank is made of stainless steel and it 

had a capacity of 4 Litres. It had a hollow wall with glycol circulated between the walls to control 

the temperature of the model solution in the tank. A Hydra Cell M03 type high pressure pump 

(11.25 L/min maximum volume flow delivery) is used to feed the solution to the membrane cell. 
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Figure 3–2: Schematic of the reverse osmosis concentration setup, batch mode 

In a batch run for concentration, the permeate stream is collected in a cylinder while it is directed 

back into the feed tank in a closed loop. A closed loop makes it possible to evaluate the 

membrane separation without any interference from the concentration of the model solution. 

3.2.3 Model Solutions Preparation 

All chemicals were reagent grade and obtained from different suppliers. D-Xylose was obtained 

from Bioshop Canada. D-Glucose and Acetic Acid were obtained from Fisher Scientific while 

Furfural and Syringaldehyde were from Sigma Aldrich. They were used as received without any 

further purification. Some physico-chemical properties of the compounds are summarized in 

Table 3.1.  

Table 3.1: Physico chemical properties of the model solution compounds 

Chemical D-Glucose D-Xylose Acetic Acid Syringaldehyde Furfural 

Formula C6H12O6 C5H10O5 C2H4O2 C9H10O4 C5H4O2 

Molecular 

Structure 

O

OH
OH

OH

OH

HO

 

O

OH
OH

OH OH

 

O

H3C OH
 OCH3

O

H

H3CO

HO

 

O O

H

 

MW (g/mol) 180.16 150.13 60.05 182.17 96.08 

D (x 10−5cm2/s) 0.67 [14] 0.75 [14] 1.29 [15] N.A 1.01 [16] 

pKa 12.46 [15] 12.14 [15] 4.76 [15] 7.34 [17] N.A- 

MW: Molecular Weight; D= Diffusion coefficient at 25°C and pKa: Dissociation constant 
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Model solutions for each experimental run were prepared by dissolving predetermined amounts 

of glucose, xylose, syringaldehyde, acetic acid and furfural in distilled water. The mixture was 

then heated to 40°C and thoroughly mixed with magnetic stirrers before allowing it to cool to the 

test temperature level. All final solutions contained 35 g/L of glucose and 10 g/L of xylose, 

which are typical sugar compositions of prehydrolysate generated by hot water hydrolysis. The 

compositions of the other chemical compounds were varied to investigate their effects on 

filtration performance. No pH adjustment of the solutions was carried out. 

3.2.4 Filtration Procedure 

Preliminary characterization tests were carried out on a virgin membrane to determine the pure 

water permeate flux and its evolution over extended periods of use. This served as a benchmark 

for all the membranes used in the concentration experiments. Prior to concentration experiment 

runs, the two membranes (TW30 and BW30) were screened under identical conditions to select 

one with the most suitable separation characteristics for the 18 concentration runs. A fresh 

membrane sheet was used in all experiment runs. In the screening run, 1.5 L of model solution is 

supplied into the feed tank and continuously filtered in a close loop run (the permeate stream was 

directed back into the feed tank). Approximately 10 mL was collected at 15 minutes interval for a 

total of 90 minutes from the permeate and retentate streams. The permeate flow rate was also 

measured at the same interval. During the batch concentration operation mode (Figure 3–2), 1.6 L 

of model solution was introduced into the feed tank and the permeate was collected in a cylinder. 

Approximately 10 mL of permeate sample is taken after each 200 mL of withdrawn permeate. To 

have a sugar concentration factor of 3, a total of 1.06 L of permeate was withdrawn. Samples of 

the model solution in the feed tank were taken before and after concentration. All the collected 

samples were analyzed for the concentrations of glucose, xylose, acetic acid, furfural and 

syringaldehyde. Before and after filtration of the model solutions, the permeate flow (L/min) at 

690, 1378 and 2068 kPa was determined using distilled water at a constant cross flow velocity of 

0.4 m/s in order to determine the fouling of the membrane.  
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3.2.5 Analytical Methods 

The concentrations of xylose and glucose were quantified by HPLC (Agilent Technologies, 

Germany) equipped with a Refractive Index (RI) detector and Inertsil NH2 (250 X 4.6 mm) 

column. An Acetonitrile - Water mixture (CH3CN 80% – H2O 20%) was used as eluent. The flow 

rate of the mobile phase was 2 mL/min and the column temperature was 40 C. Furfural 

concentration was analyzed by the same HPLC using a 280 nm diode array detector (DAD) and a 

Nucleosil C18 (150 X 4.6 mm) column. A mixture of Acetonitrile – Water – Acetic Acid 

(CH3CN 15% – H2O 84% – C2H4O2) was utilized as eluent. The flow rate of the mobile phase 

was 1 mL/min and the column temperature was 25°C. Acetic Acid was analyzed using a 210 nm 

(DAD) coupled with an Inertsil ODS-3 (150 X 4.6 mm) column. The mobile phase was a mixture 

of 50 mM potassium phosphate that was adjusted to a pH of 2.8 with phosphoric acid (H3PO4) 

and acetonitrile (KH2PO4 99% - CH3CN 1%) that was fed at 1.25 L/min into the column at 40°C.  

Syringaldehyde quantification was done by colorimetric analysis using Folin–Ciocalteau reagent 

in a procedure similar to that described by Singleton and Rossi [18]. In each tube, 500 µL of 

diluted model solution sample was added followed by 3.8 mL of water and 200 µL of Folin–

Ciocalteau reagent. After 3 minutes, 500 µL of sodium hydroxide (6%, w/v) was added into the 

tube and the tube allowed to stand at room temperature in the dark. After 1 hour, the absorbance 

(725 nm) was measured with a visible Novaspec II spectrophotometer (Pharma Biotech, 

Cambridge). A calibration curve was prepared, using a standard solution of gallic acid (50, 100 

and 150 mg/L). Results were expressed as mg gallic acid equivalents (GAE)/L of syringaldehyde. 

The pH and conductivity of the feed, permeate and concentrate streams were determined by an 

Accumet AB250 pH/ISE Meter (Fisher Scientific, USA) and a Orion 3-Star Benchtop 

Conductivity Meter (Thermo Scientific, Canada ) 

3.3 Theory and computation method 

3.3.1 Design of experiments (DOE) by the Taguchi method 

The Taguchi method was used for designing the experiments. It is a simple, systematic and 

efficient approach of determining the factor levels that will result in the best performance of a 

process. It requires the use of special arrays (standard orthogonal arrays) that are derived from the 
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degree of freedom of the process parameters [19].The steps for carrying out a Taguchi 

experiment design are: experiment planning, conducting the experiments and results analysis and 

evaluation [20]. Experiment planning consists of defining the variables, selecting their levels and 

using standard orthogonal arrays to determine the number of experiments. After the experiments 

are conducted, an analysis of variance (ANOVA) is carried out. This is followed by determining 

the optimum combination of variables and confirmatory experiments to validate the predictions 

obtained by the analysis of variance. The Taguchi method involves a data transformation for 

analysis of the experimental data, the variation of the measured responses is expressed as the 

Signal-to-Noise ratio (S/N) [21]. Three different standard types of S/N ratios can be used 

depending on the desired objective, they are characterized as: 

 Smaller is better (S/N)s, to minimize the measured response 

 Nominal is the best (S/N)N, to attain a set value for the measured response 

 Larger is better (S/N)L, to maximize the  measured response 

For 6 parameters having 3 levels each, 18 experiment runs were required with the adopted L18 

orthogonal array. The six controlling factors were A (Furfural concentration), B (Acetic Acid 

concentration), C (Phenolic concentration), D (Temperature), E (Pressure), F (Cross Flow 

Velocity). Their levels are given in Table 3.2. All the solutions contained a fixed amount of 

sugars, 35 g/L of xylose and 10 g/L of glucose. 

Table 3.2: Experimental design of six controlling factors with three levels  

Controlling Factors Levels Units 

 

1 2 3   

A (Furfural concentration) 0.6 1.8 3.5 g/L 

B (Acetic Acid concentration) 0.5 3.5 10 g/L 

C (Phenolics concentration) 0.3 2.8 6 g/L 

D (Temperature) 20 30 40 º C 

E (Pressure) 3100 3800 4500 kPa 

F (Cross Flow Velocity) 0.3 0.4 0.5 m/s 
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The experiment run matrix, designed using the statistically analytical software package 

STATISTICA 10 (StatSoft software, Inc.), is shown in Table 3.3. The same software was used 

for the interpretation of the results. 

Table 3.3: Orthogonal array of L18 (36) and measured parameters 

Expt 

Nrs. 

Levels of parameters RS RA QP-i QP-i / QP-f 

A B C D E F (%) (%) (L/min) 

 

1 1 1 1 1 1 1 0.95 0.74 3.2 32 

2 1 2 2 2 2 2 0.92 0.70 6.0 5 

3 1 3 3 3 3 3 1.00 0.78 8.8 3 

4 2 1 1 2 2 3 1.00 0.83 6.6 3 

5 2 2 2 3 3 1 0.86 0.88 5.5 18 

6 2 3 3 1 1 2 0.98 0.81 2.2 4 

7 3 1 2 1 3 2 0.99 0.81 3.7 4 

8 3 2 3 2 1 3 0.98 0.79 2.4 3 

09 3 3 1 3 2 1 0.97 0.61 4.8 16 

10 1 1 3 3 2 2 0.90 0.62 8.2 21 

11 1 2 1 1 3 3 0.99 0.79 13.2 2 

12 1 3 2 2 1 1 0.95 0.66 4.0 10 

13 2 1 2 3 1 3 0.97 0.71 7.3 7 

14 2 2 3 1 2 1 0.96 0.91 3.7 5 

15 2 3 1 2 3 2 1.00 0.79 11 3 

16 3 1 3 2 3 1 0.98 0.84 4.0 4 

17 3 2 1 3 1 2 0.99 0.70 8.0 6 

18 3 3 2 1 2 3 1.00 0.91 3.3 4 

A: Furfural concentration; B: Acetic Acid concentration; C: Phenolic concentration;  D: 

Temperature;  E: Pressure;  F: Cross Flow Velocity;  Rs: Sugar Retention; RA: Acetic 

Acid  Retention; QP-i: Initial permeate flow; QP-f: final permeate flow 
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3.3.2 Measures of membrane perfomance 

The volumetric concentration factor (VCF) achieved with a membrane can be defined by 

equation 1, where V represents the volume. In a closed loop run with no concentration such as the 

membrane screening experiments, Vfeed = Vconcentrate. 

VCF=Vfeed/Vconcentrate    ( 1 )  

For a two component system, it is assumed that the solution diffusion model is a valid means of 

relating the flux with the operating pressure of the membrane [22]. Based on the model, the 

permeate flux can be expressed as the solvent flux (Jv) and the solute flux (Js) given by equations 

2 and 3 respectively. The solvent transport coefficient (Aw) and solute transport coefficient (Bs) 

are membrane dependent. In equation (3), Cf is the concentration of the solute in the feed and Cp 

its concentration in the permeate. 

Jv= Aw (∆P-∆π)    ( 2) 

Js=Bs(Cf-Cp)    ( 3) 

They are both related by equation 4 at low solute concentration, 

Js=Jv.Cp     ( 4) 

where ∆P is the transmembrane pressure and ∆π the osmotic pressure difference between the feed 

and permeate side. The application of the solution diffusion model to the experiments was limited 

in some experimental runs as the solutions used were multicomponent mixtures. Also, the model 

is not considered to be applicable for the separation of organic systems [23]. In such cases, the 

permeate flux J, was therefore estimated from a simplified relationship between the volume of 

permeate V, that flows through a specific surface area of the membrane A over a period of time t.  

J= Q/A.t     ( 5) 

To assess the separation performance of the membranes at different conditions, the percentage 

retention of all the components in the fed model solution were calculated from equation 6. 

   % 𝑹𝒊 = (𝟏 −
𝑪𝒑𝒆𝒓𝒎𝒆𝒂𝒕𝒆

𝑪𝒇𝒆𝒆𝒅
)

𝒊

× 𝟏𝟎𝟎   (6) 

where the Cpermeate is the concentration of the ith component in the permeate and Cfeed its 

concentration in the  
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feed. The recovery of the ith component cab be obtained from the mass balance equation given in 

equation 7  

CfeedVfeed= CpermeateVpermeate + CconcentrateVconcentrate  ( 7) 

During membrane operation, reduction of the permeate flux over time occurs and this can be due 

to any or a combination of increased osmotic pressure, compaction of the membrane, membrane 

fouling, or concentration polarization. As the solutes become more concentrated, the osmotic 

pressure, a function of solute concentration, also increases. A higher feed pressure is required to 

compensate for this increased osmotic pressure (equation 2). Compaction is a deformation of the 

membrane as a result of physical compression when it is placed under pressure and it could either 

be reversible or irreversible [24]. It leads to a decline of the permeate flux and can also alter the 

separation efficiency of a membrane. However, compensation for compaction can be made at the 

design stage of a membrane system. Concentration polarization is a phenomena that arises when 

the solute concentration near the surface of the membrane exceeds the concentration in the bulk 

liquid resulting in lower trans-membrane flow [25]. Fouling is a resistance to mass transfer 

leading to a reduction in the permeate flux of a membrane. It occurs as a consequence of the 

deposition and accumulation of materials on the surface during operation. The main types of 

fouling are classified in four groups [26]: 

 organic fouling from organic compounds  

 particulate fouling due to the presence of suspended and colloidal matter  

 biofouling due to the growth of bacteria after their adhesion to the membrane surface  

 scaling due to the precipitation of compounds that are sparingly soluble.  

Fouling is inevitable and cannot be completely eliminated, but it can be reduced [27]. 

3.4 Results and Discussion 

3.4.1 Membrane screening 

Two different model solution compositions were used for comparing the separation 

characteristics of the two membranes (Dow Filmtec TW30 and BW30). The concentration levels 

were selected to cover the minimum and maximum combination of component concentrations 

that can be obtained from the levels of furfural concentration, acetic acid and phenolics for the 
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experimental design given in Table 3.2. The membrane system was run in closed loop to avoid 

the effect of interference from concentration on the components separation. All screening 

experiments were carried out at a feed temperature of 36 ºC, pressure of 1380 kPa, cross flow 

velocity of 0.4 m/s and a duration of 90 minutes. Samples of the permeate and concentrate were 

taken at 15 minutes interval. Three criteria were used for selecting a membrane. They were the 

permeate flow, flux decline (fouling potential) and most importantly the retention of the sugars 

and acetic acid. The component retention results are shown in Figure 3–3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3–3. Retention of components by membrane at a) minimum and b) maximum component 

concentrations 

All the screening tests model solutions contained the same amount of sugars (35 g/L of xylose 

and 10 g/L of glucose). At the minimum concentration of the other components, the pH and 
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conductivity of the model solution were 3.55 and 171.8 µS/cm while they were 2.55 and 904 

µS/cm at maximum concentration of the other components.  

For the screening at minimum concentration, the retention for xylose, glucose and phenolics by 

both membranes were comparable. However, the retentions of acetic acid and furfural were 

slightly higher with the TW30 than the BW30 membrane. At the maximum concentration, the 

TW30 exhibited higher retentions than the BW30 for all components. The permeate flux for the 

TW30 membrane was 11 % higher than for the BW30 for the minimum concentration solution 

but it was 33% less for the maximum concentration solution. The flux decline, indicated by the 

ratio of pure water flux achieved with the membrane after use to the pure water flux of the virgin 

membrane, was comparable for both membranes. A decline of 12% was observed for the TW30 

membrane and 13% for the BW30 membrane. The difference in separation characteristics and 

permeate flux with the two different solutions can be explained as an effect of the interaction 

between the solution and the membrane. At maximum concentrations, the membranes were prone 

to flux reduction mechanisms such as fouling and concentration polarization which leads to a 

lower permeate flux. The pH and conductivity of the solution can also influence the isoelectric 

pore and therefore the observed difference in component separation. Due to the higher 

component retention with the TW30 membrane, it was selected for use in all the subsequent 

experiments. 

3.4.2 Influence of variables on permeate flux 

The ANOVA described in the experimental design section performs a statistical test for 

determining the most significant factors and their order of significance. Its main goal is to 

compute the ratio of variation within each factor level to the observed total variation of the 

results. The computed result consists of several statistical terms: the sum of squares, the mean 

square (variance), degree of freedom, F-ratio and p-value. The sum of squares reflect the 

deviation of each run result from the mean of all the results, the degree of freedom is (n-1), where 

n is the number of experiments in a set. The mean square is the ratio of the sum of squares to the 

degree of freedom. The F-value reveals the magnitude of the influence for each parameter and it 

is the ratio of the variance by each parameter divided by the residual variance (error). The p value 

is the test for significance that shows the probability of obtaining the calculated F-values. A 

parameter is considered to be significant if its p value is less than 0.05.The residue represents the 
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level of uncertainty associated with the experiments. It may represent factors that are beyond 

control in the experiment design, parameters that were not included in the experiment or errors 

while conducting experiments. ANOVA was used to determine which of the six factors has the 

most significant effect on the permeate flux, the results for the L18 orthogonal arrays are shown 

in Table 3.4. The sugar content of the model solutions was the same for all the experiments (35 

g/L of xylose and 10 g/L of glucose). 

Table 3.4: ANOVA table: Impact of parameters on permeate flux 

      SS DF MS F  P  I (%) 

1 A (Furfural concentration) 35.7 2 17.9 1.4 0.3 10.8 

2 B (Acetic Acid concentration) 5.2 2 2.6 0.2 0.8 1.6 

3 C (Phenolics concentration) 51.8 2 25.9 2.1 0.2 15.6 

4 D (Temperature) 67.7 2 33.9 2.7 0.2 20.4 

5 E (Pressure) 85.6 2 42.8 3.5 0.1 25.8 

6 F (Cross Flow Velocity) 23.5 2 11.7 0.9 0.4 7.1 

   Residue  61.9 5 12.4       18.7 

SS: sum of squares; DF: Degree of freedom; MS: Mean sum of square; F: F-value; p: P-

value and I (%) ; the factor influence  

The results from the experiments with the TW30 membranes indicate that out of the six 

parameters studied, the pressure had the highest influence on the permeate flux, followed by the 

temperature, phenolics concentration, furfural concentration, cross velocity and acetic acid. 

Although, no single factor exhibited a dominant effect, all the factors contributed to the permeate 

flux in different degrees given by the percent factor influence, I. To visualise how the response 

relates to each of the variables, a graphical representation by the main effects plot is used. It 

shows the (S/N)L ratios for the experiment parameters (Figure 3–4). The difference between the 

highest and lowest (S/N)L ratio for each parameter indicates the influence of the parameter on the 

permeate flux. 
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Figure 3–4: Main effect plots for permeate flux (dashed line indicates standard error) 

The larger the better quality characteristic was used to determine the optimum combination of 

factors. The optimum combinations to achieve high permeate flux were the highest values for 

each parameter from the main effects plot and is A1/B2/C1/D3/E3/F3. Importantly, this optimum 

combination of variables was not among the L18 treatments in Table 3.3. Confirmation of the 

predicted optimum combination gave a permeate flow of 22 mL/min, the highest permeate flux 

obtained in all experiment runs. 

3.4.3 Influence of variables on sugar retention 

ANOVA was also used to evaluate the influence of the variables on the retention of sugars. Two 

mechanisms (size exclusion and electrostatic repulsion) determine the retention of a specific 

component during membrane filtration. The average retention of the sugars in all experiments 

shown in Table 3.3 was 97%. Results from the analysis of variables given in Table 3.5 showed 

that the temperature and pressure had the least influence on the retention of the sugars. It can be 

implied that since the temperature and pressure directly influence the size exclusion 

characteristics while the composition influences the electrostatic repulsion of the membrane, the 

composition of the model solution and the cross flow velocity plays the most important role in 

sugar retention. 
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Table 3.5: ANOVA table: Impact of parameters on retention of sugars 

      SS DF MS F  P  I (%) 

1 A (Furfural concentration) 0.3 2 0.2 1.7 0.3 15 

2 B (Acetic Acid concentration) 0.3 2 0.1 1.5 0.3 13 

3 C (Phenolics concentration) 0.3 2 0.2 1.7 0.3 14.5 

4 D (Temperature) 0.2 2 0.1 1.1 0.4 9.8 

5 E (Pressure) 0.1 2 0 0.3 0.7 3 

6 F (Cross Flow Velocity) 0.5 2 0.3 2.7 0.2 23.1 

   Residue  0.5 5 0.1 

  

21.7 

 SS: sum of squares; DF: Degree of freedom; MS: Mean sum of square;  

F: F-value; p: P-value and I (%) ; the factor influence  

 

The optimum points for high total sugar retention are A3/B3/C1/D1/E1/F3 as shown in Figure 3–

5. Nevertheless, the increase in sugar retention that can be achieved using this point is limited 

since the average retention observed was 97 %. 
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Figure 3–5: Main effect plots for sugar retention (dashed line indicates standard error) 

Further confirmatory experiments were conducted with 2 model solutions. The sugar 

compositions, xylose (35 g/L) and glucose (10 g/L) were the same in both solutions. The first 

solution contained no furfural, acetic acid and phenols while the other contained furfural (3.5 
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g/L), acetic acid (3.5 g/L) and syringaldehyde (2.8 g/L) It was observed that the sugar retentions 

when only the sugars are present in the model solution was 100 %. However, with the presence 

of the other compounds in the model solution the retention fell to 97 % for xylose while the 

glucose retention remained at 100 %. Despite the lower molecular weight of xylose compared to 

glucose (150 vs 180 g/mol), the observed difference of 3% was not significant. 

3.4.4 Influence of variables on acetic acid retention 

It was observed from the analysis of the results that the retention of acetic acid did not depend on 

the composition of the model solution only. The highest influence came from the cross flow 

velocity followed by the pressure as shown in Table 3.6. It can be inferred that since the 

molecular weight of acetic acid of 68 g/mol is less than the molecular cut off weight (MWCO) of 

the membrane of 100 g/mol, electrostatic repulsion plays a dominant role in the observed 

retention. In summary, the retention of acetic acid is strongly affected by any or a combination of 

electrostatic repulsion of all the other components and acetic acid itself. The electrostatic charge 

interaction at the membrane surface depends on the pH of the solution, which is also determined 

by the degree of ionization of the acid, the membrane characteristics and operating conditions. 

Table 3.6: ANOVA table: impact of parameters on acetic acid retention 

      SS DF MS F P 

I 

(%) 

1 A (Furfural concentration) 0.03 2 0.02 0.04 0.96 0.1 

2 B (Acetic Acid concentration) 1.40 2 0.70 1.61 0.29 4.7 

3 C (Phenolics concentration) 2.4 2 1.22 2.82 0.15 8.3 

4 D (Temperature) 4.6 2 2.27 5.28 0.06 15.5 

5 E (Pressure) 7.6 2 3.81 8.84 0.02 25.9 

6 F (Cross Flow Velocity) 12.9 2 06.45 14.94 0.01 43.8 

   Residue  2 5 0.43 

  

1.7 

 SS: sum of squares; DF: Degree of freedom; MS: Mean sum of square;  

F: F-value; p: P-value and I (%) ; the factor influence  

Acetic acid retentions were between 61 and 91 % as shown in Table 3.3. The optimum point for 

high acetic acid retention is A2/B2/C3/D2/E3/F3 and it is illustrated in Figure 3–6. Confirmatory 
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experiments at the optimum condition showed that 92 % retention of acetic acid can be achieved. 

This does not differ significantly from the highest value obtained in the experiment design which 

was 91 %.  
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Figure 3–6: Main effect plots for acetic acid retention (dashed line indicates standard error)  

Further experiments to expand the observed trend were carried out with two different model 

solutions. The first solution contained only acetic acid, while the second had all the other 

components, furfural (3.5 g/L), acetic acid (3.5 g/L) and syringaldehyde (2.8 g/L), in addition to 

sugars. The acetic acid retention in the mixture was 74%, and 51 % for the solution containing 

only acetic acid. It was evident that a complex mixture results in higher acetic acid retention, this 

could be due to the accumulation of the other compounds on the membrane or to an increased 

electrostatic effect between the acetic acid and the membrane surface. 

3.4.5 Influence of variables on flux decline 

The C5 sugars concentration has to be increased from 35 g/L to at least 105 g/L (a concentration 

factor of 3) to obtain a furfural composition comparable to state of the art furfural processes in 

the subsequent conversion step. Comparison of the permeate flow at the beginning of 

concentration and end of concentration was carried out and is shown in Figure 3–7. The flux at 

the beginning and end of each experiment depends on the combination of the model solution 

composition and operating conditions shown in Table 3.3. 
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Figure 3–7: Initial and final permeate flux for the L18 Taguchi experiments 

A permeate flux decline was observed during all the concentration experiment runs. Some of the 

experiments with the highest initial flux (experiments 3, 11 and 15) were carried at the highest 

feed pressure. Although the concentration factor for all the 18 model solutions was 3, the flux 

decline was greater than a factor of 3 in about 77 % of the experiments. This indicates the 

presence of other flux decline mechanisms, different from the osmotic pressure increase. 

Furthermore, the permeate flux observed in half of the experiments was lower than a typical 

heuristic design permeate flux (20 L/m2h) that corresponds to 5 mL/min in Figure 3–7: Initial and 

final permeate flux for the L18 Taguchi experiments 

The influence of the six factors by the analysis of variables is given in Table 3.7. The order of 

ranking is Cross Flow Velocity > Pressure > Temperature > Phenolics > Acetic Acid > Furfural. 

The results imply that an interaction between the physical parameters and the model solution 

components was responsible for the flux decline. In addition, compaction can be excluded from 

the main flux decline mechanisms because the preliminary characterization tests described in 

section 2.4 did not reveal compaction of the membrane for the selected cross flow velocity, 

pressure and temperature. 
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Table 3.7: ANOVA results for the parameters influencing flux reduction 

      SS DF MS F  P  I (%) 

1 A (Furfural concentration) 0.04 2 0.02 0.04 0.96 0.1 

2 B (Acetic Acid concentration) 1.39 2 0.70 1.62 0.29 4.5 

3 C (Phenolics concentration) 2.43 2 1.22 2.82 0.15 7.8 

4 D (Temperature) 4.55 2 2.28 5.28 0.06 14.6 

5 E (Pressure) 7.62 2 3.81 8.84 0.02 24.5 

6 F (Cross Flow Velocity) 12.89 2 6.45 14.95 0.01 41.5 

 Residue 2.16 5 0.43   6.9 

 SS: sum of squares; DF: Degree of freedom; MS: Mean sum of square; F: F-value; p: 

P-value and I (%) ; the factor influence  

As a result of the analysis, 5 sets of confirmatory tests were performed to show the individual 

effects of each model solution component. All test experiments contained different amounts of 

the model solution components, as shown in Table 3.8. The feed conditions were 40 ºC, 3100 kPa 

and a cross velocity of 0.4 m/s. The same initial sugars concentration for the 18 experiments was 

also used in the confirmation experiments.  

Table 3.8: Conditions for confirmation of permeate flux decline 

Expt 

Nr. 
Description 

A 

(g/L) 

B 

(g/L) 

C 

(g/L) 

Sugars 

X (g/L) G (g/L) 

1 Sugars only 0 0 0 35 10 

2 Acetic Acid Only 3.5 0 0 0 0 

3 Furfural Only 0 3.5 0 0 0 

4 Phenols Only 0 0 2.8 0 0 

5 Mixture 3.5 3.5 2.8 35 10 

A: Furfural concentration; B: Acetic Acid concentration; C: Phenolics 

concentration;  X: Xylose concentration ; G: Glucose concentration  

 



56 

 

The results made it possible to identify the different flux decline mechanisms present. As shown 

in Figure 3–8, the initial permeate flux measured in terms of the initial permeate flow was 

approximately 45 mL/min for all experiments. Concentration by withdrawal of the permeate 

stream commenced 3 minutes after the feed pump was started and this corresponds to a 

concentration factor of 1.0. The lowest permeate flux decline was observed for the model 

solution containing only acetic acid. A pure water flux of 43 mL/min was achieved after this 

concentration run and flushing of the system with distilled water. This indicated that the presence 

of acetic acid in the model solution did not contribute to the flux decline observed. The permeate 

flow for the sugar only solution fell from 24 mL/min at the onset to about 6 mL after 

concentration. The ratio of initial to the final permeate flow was 4 and it can be concluded that 

since the ratio is in the same range as the concentration factor which is 3, the reduction 

experienced with sugars only solution can be attributed to the osmotic pressure which is directly 

proportional to the concentration factor. The difference in flux between the beginning and end of 

concentration was less than 5 mL/min for the three other model solutions: furfural only, phenols 

only and mixture. It can also be seen that the decline with these 3 solutions were present from the 

onset of concentration.  

 

Figure 3–8: Comparison of flux decline caused by the model solution components 

A comparison of the pure water flux obtained after each concentration experiment revealed that 

the model solutions that contained furfural resulted in the highest pure water flux decline. The 

flux reduction by the phenolic compound is less than that of furfural. Experiments to determine 
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the osmotic pressure contribution of each component with the same composition shown in Table 

3.8 was also performed. Results showed that the osmotic pressure in acetic acid only, phenols 

only as well as the furfural only solution tends to zero. The effect of the model solution 

component on the osmotic pressure using the same graphical approach is shown in Figure 3–9.  

.  

Figure 3–9: Effect of model solution components on the osmotic pressure 

The difference between each intercept and the pure water intercept is a simplified estimate of the 

osmotic pressure. 

The difference in osmotic pressure between the sugars only and mixture solutions can be 

explained by the occurrence of flux decline mechanisms. It can thus be inferred that the flux 

decline caused by the presence of sugars is due to the osmotic pressure while for furfural and the 

phenolic compound; it can be due to either fouling of the membrane, concentration polarization 

or both. The flux decline experienced due to each of the models solution components can be 

classified as either physically or chemically reversible. Physical reversibility refers to the fraction 

of the initial pure water flux that can be obtained after the membrane has been used and 

subsequently cleaned with distilled water. Chemically reversibility is the fraction that can be 

obtained after use and subsequent cleaning with a sodium hydroxide solution, a base cleaning 

agent. As a result, chemical cleaning (NaoH solution) also did not result in increased flux either. 

It became evident that, the presence of furfural contributes to the flux decline of the membrane by 

fouling. This can be seen in Figure 3–10 a) and 10 e), for which the highest flux decline was 
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observed. The effectiveness of using a cleaning agent can also be seen. This suggests that a 

sodium hydroxide based cleaning agent can partially reverse the fouling caused by furfural. 

 

 

 

Figure 3–10: Permeate flow against feed pressure to differentiate fouling from concentration 

polarization 

Since fouling of membrane cannot be completely eliminated, being able to regenerate a 

membrane by cleaning is an essential factor to be considered to make membrane concentration 

feasible. 
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3.5 Conclusions 

The feasibility of concentrating hemicelluloses prehydrolysate using RO membrane filtration was 

studied using model solutions containing glucose, xylose, acetic acid, furfural and 

syringaldehyde. Two commercial membranes, the BW30 and TW30 were evaluated and the 

TW30 membrane was shown to be the most efficient for the simultaneous concentration of the 

sugars and acetic acid. The dependence of the component retention on the composition and 

operating conditions was determined. The permeate flux decline mechanisms caused by each of 

the main compounds that can be found in prehydrolysate solutions have been identified. It is 

expected that since membrane cleaning after use with a solution containing only sodium 

hydroxide was possible, the use of commercial cleaning agents will also be possible for 

regenerating the membrane. The experimental results suggest that RO membrane filtration can be 

successfully applied to the concentration of hemicelluloses prehydrolysate in a furfural 

production process. 
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Abstract 

The prehydrolysate generated in the Kraft pulping process prior to cooking of wood chips can be 

converted into value added products such as furfural, ethanol or xylitol. To make a furfural 

biorefinery economically feasible, it is proposed to reduce the energy use and process equipment 

size by concentrating the prehydrolysate stream prior to conversion. This work demonstrates the 

feasibility of simultaneously concentrating the hemicellulosic sugars and acetic acid in the 

prehydrolysate solution from a Kraft dissolving pulp mill by nanofiltration membrane. The 

performances of 6 commercial organic membranes made of polyamide, cellulose acetate and 

polypiperazine amide polymers and of different Molecular Weights Cut Off (MWCO) were 

evaluated. Special attention was directed to high retention of sugars, acetic acid and furfural. A 

membrane with a MWCO of about 200 Da and total sugars retention of 99% was selected. 

Cleaning of the membrane using NaOH returned the permeate flux up to 75% of the pure water 

flux level prior to use. A response surface model correlating the permeate flux to the temperature 

and pressure of the system has been developed. 

Keywords 

Membrane filtration, Prehydrolysate, Kraft Process, Furfural Biorefinery, Hemicelluloses 

Concentration 
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Highlights 

 Six organic membranes were screened for concentrating a Kraft dissolving pulp mill 

hemicellulose prehydrolysate 

 The influence of the feed conditions on the retention properties and flux decline of a 

selected membrane (NF90) was evaluated 

 A response surface model was developed for optimizing the membrane filtration system 

 Nanofiltration membranes can be utilized in integrated biorefinery processes  

4.1 Introduction  

Forest biomass comprises of three main types of polymers; cellulose, hemicellulose and lignin. In 

a Kraft dissolving pulp process, the hemicelluloses are typically extracted in a prehydrolysis step 

prior to chemical delignification of the wood chips. The prehydrolysate stream obtained is made 

up mainly of the hemicellulosic sugars along with lesser quantities of organic acids, phenolic 

compounds and furfural. The cellulose fibres are processed into pulp after delignification. The 

extracted hemicelluloses fraction is merged with the lignin fraction that is removed during 

delignification and typically directed to the recovery cycle where it is combusted to produce 

energy. A better use of the hemicelluloses would be to divert the prehydrolysate stream and 

convert the sugars into biofuels or bioproducts such as ethanol, furfural or xylitol [1]. To 

minimize the cost of valorizing the sugars, concentration of the prehydrolysate is mandatory 

before the conversion of the sugars into any value added product. Concentration allows to reduce 

the energy consumption and the investment cost for the subsequent process steps of the 

biorefinery. The concentration objectives (component separation and final sugars concentration) 

depend on the targeted biorefinery final product. For a Kraft pulp mill that uses hardwood as a 

feedstock, it is proposed to produce furfural from the prehydrolysate through the dehydration of 

the C5 sugars. The C5 sugars in the prehydrolysate make up to 80% of the total sugars. Furfural is 

a platform chemical for bio-products that can substitute industrial organic compounds, which are 

currently produced from fossil sources. Furfural can also be converted into liquid biofuels [1, 2] 

or used as a solvent in petrochemical refineries [3] and as pesticides or nematocides [4]. A 

process for producing furfural from hemicelluloses prehydrolysate has been proposed by Ajao et 

al.  [5] and it is illustrated in Figure 4–1. After concentration of the prehydrolysate, the furfural is 
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produced by two subsequent reactions; the oligomeric sugars in the prehydrolysate are 

hydrolyzed into sugar monomers which are then converted into furfural. A low pH is required to 

enhance the conversion process and this can be provided by introducing mineral acid into the 

reactor. Purification of furfural is done by distillation. Since furfural forms and azeotrope with 

water and has an azeotropic point of 35 % wt, a decantation step is required between the two 

distillation columns to get above the azeotropic point. 

FURFURAL

Concentration

(nanomembrane 

filtration)

Sugar 

Conversion

Dist

DistDecantation

Bottoms

Water
Acid

Dilute 

Prehydrolysate 

from pulp mill 

 

Figure 4–1: Proposed biorefinery for producing furfural from hemicellulose prehydrolysate [5] 

In a biorefinery for furfural production, an important requirement for the concentration step is to 

retain the acetic acid along with the sugars; organic acids provide a low pH and act as catalysts, 

thereby reducing the mineral acid required for pentoses conversion to furfural [6]. Concentration 

with the typical use multi-effect evaporators is not feasible because the organic acids in the 

prehydrolysate are volatile and would be lost. Furthermore, evaporators have high energy 

consumption due to the latent heat for water that must be supplied. Membrane concentration on 

the other hand requires a lower amount of energy as it does not involve a phase change. The 

hemicellulose prehydrolysate treated in this work is a complex solution containing several 

organic compounds and the sugars present range from simple monomers to oligomers. The 

organic acids, phenolic compounds and furfural also influence the retention and flux that can be 

obtained during concentration [7].The use of membrane filtration presents some challenges that 

must be addressed before economically feasible membrane concentration of prehydrolysate can 

be carried out. A suitable membrane that is capable of simultaneously retaining the sugars and 

organic acids with acceptable energy consumption must be used. Also, the occurrence of flux 

decline over the life of a membrane makes it important to determine if the operation would 
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necessitate frequent cleaning or changing of the membrane. Lastly, there is a limit beyond which 

the permeate flux of the membrane would be too low and further concentration of the 

prehydrolysate will not be possible. To the best of our knowledge, the application of membrane 

filtration to real prehydrolysate solution for a furfural biorefinery has not been investigated. Also, 

the effect of varied operating conditions on the flux decline has not been investigated. Thus, the 

objectives of this work have been to screen commercially available membrane suitable for 

hemicelluloses concentration, determine the flux reduction of a selected membrane over extended 

periods of use and develop a model relating the operating conditions to the membrane flux and 

useful life. Screening of six commercial organic membranes made of polyamide, cellulose acetate 

and polypiperazine amide polymers and having different Molecular Cut Off Weights (MWCO) 

between 100 and 500 Da was carried out. In the screening experiments, the separation of 

components in a prehydrolysate solution generated from a wood supply similar to that of a 

Canadian dissolving pulp mill was determined for all membranes. The selected membrane for the 

concentration studies had a MWCO of about 200 Da. The effect of feed condition on flux decline 

has already been documented [7], this is the first paper to clearly demonstrate how it relates to the 

concentration of hemicelluloses prehydrolysate from a Kraft dissolving pulp process. The 

generated data could be applied to the design of efficient membrane concentration systems and 

successfully used in forest biorefinery processes. 

4.2 Materials and methods 

4.2.1 Prehydrolysate Generation 

The prehydrolysate used in this study was generated in a 56 litre digester using a 60 % Aspen- 40 

% Maple wood furnish. The typical compositions of the wood chips are shown in Table 4.1. 

Table 4.1: Composition of maple and aspen wood chips (% by weight, dry basis) 

Component 
Maple Wood Aspen Wood 

wt. % wt. % 

Cellulose 44% 50% 

Hemicellulose 23% 23% 

Lignin 31% 24% 

Extractives 2% 3% 
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The wood chips had a moisture content of 37% and were purged with steam (138 kPa) to remove 

the air content and preheat the chips prior to cooking. After the digester had been sealed, 

prehydrolysis of the wood chips was carried out in two successive steps. In the first step, steam 

was introduced directly into the digester for 50 minutes until a pressure of 700 kPa and a 

temperature of 170ºC were reached, the temperature was held at this value for another 60 

minutes. In the second step, deionized water at 80 ºC was introduced into the digester and 

subsequently circulated through an external liquor heater to maintain the digester at 170ºC. The 

final prehydrolysate liquor to wood ratio was of 3:1. The key components of the prehydrolysate 

are given in Table 4.2. The pentoses (xylose and arabinose) and hexoses (glucose, galactose and 

mannose) are mainly in oligomeric form with only about 15 % as monomers. The prehydrolysate 

had a total solid content of 3.4%. The pH and conductivity of the prehydrolysate solution were 

3.52 and 1620 µS/cm respectively. 

Table 4.2: Composition of hemicelluloses prehydrolysate generated for use in the experiments 

Components Concentration (g/L) 

Total Sugars* 20.3 

Total monomeric pentose 2.55 

Total monomeric hexose 0.74 

Acetic Acid 3.8 

Furfural 0.7 

HMF 0.09 

Phenolics 4.7 

Lipides 0.2 

Na 0.02 

Ca 0.15 

K 0.04 

*Ratio of pentose to hexose is 4:1  
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4.2.2 Screened Membranes 

Six commercially available spiral wound organic membrane types were used in this study. They 

represent a broad range of material and molecular weight cut off (MWCO).The names and main 

characteristics of each membrane are given in Table 4.3. All membranes had similar pH 

operating range (2-11) and maximum temperature (45˚C).  

Table 4.3: Characteristics of the reverse osmosis (RO) and nanofiltration (NF) membranes 

provided by suppliers 

  TW30 NF90 NF270 XN45 TS40 SB90 

Manufacturer Dow Dow Dow Trisep Trisep Trisep 

Polymer Polyamide Polyamide Polyamide 
Polypipera-

zine amide 

Polypipera-

zine amide 

Cellulose 

acetate blend 

Max. Pressure (kPa) 4100 4100 4100 4100A 4100B 4100C 

Max. temperature (˚C) 45 45 45 45 45 45 

pH operating range 2 – 11 2 – 11 2 – 11 2 – 11 2 – 11 2 – 11 

MWCO ~100 ~200 - 400 ~200 - 400 500 200 150 

Nacl Rejection (%) 99.5 >97 >97 10 - 30 40 - 60 85 

Classification RO NF NF NF NF NF 

A, B, C Recommended applied pressures (kPa), A: 275-1380; B: 275-1380; C: 275-1380 kPa; 

Each membrane element was cut lengthwise and opened up. It was then soaked in a solution of 

1% wt/vol of sodium metabisulfite to enable the pores to loosen up and prevent the growth of 

microorganisms. Prior to use, flat sheets were cut from the membrane roll and placed in distilled 

water for at least three days to remove the sodium metabisulfite and condition them for use. 

4.2.3 Membrane Setup 

The filtration experiments were carried out using a lab-scale cross-flow flat-sheet membrane test 

unit (SEPA CF II, GE Osmonics). It had a rectangular filtration channel with dimensions 14.5 cm 

x 9.6 cm x 1.0 mm for accommodating various kinds of flat-sheet membrane. The feed pressure 

to the unit was varied using a hydraulic hand pump (SPX maximum pressure 70,000 kPa). 



68 

 

SEPA CF II MODULE

PI
TI

PERMEATE

RETENTATE

FEED TANK

 

Figure 4–2: Schematic membrane screening setup in closed loop mode 

The stainless steel feed tank had a capacity of 4 Litres and a hollow wall in which glycol is 

circulated to control the feed temperature. To screen the membranes in a continuous filtration 

mode, the permeate stream is directed back into the feed tank. Continuous filtration eliminates 

the effect of concentration on component separation during screening of the membranes. 

Concentration of the prehydrolysate was carried out in a batch mode during which the permeate 

stream is directed to a permeate cylinder. 

4.2.4 Filtration Procedure 

Prior to concentration experiments, the six membranes were screened under similar conditions. A 

fresh membrane sheet was used for each experimental run. Prehydrolysate (1L) was supplied into 

the feed tank and continuously filtered in a close loop run during the screening experimental runs, 

samples of about 10 mL were collected from the permeate and retentate streams over 90 minutes 

at 15 minutes intervals. The flow rate of the permeate stream was also measured at same 

intervals. During the concentration trials (batch mode), 2.5 L of prehydrolysate was introduced 

into the feed tank and a total of 2 L of permeate was withdrawn in a graduated cylinder to reach a 

volumetric concentration factor of 5. About 10 mL of permeate sample was taken after each 200 

mL of withdrawn permeate. Samples of the retentate were taken from the feed tank before and 

after concentration. The amounts of sugars, organic acids, furfural and phenols in the collected 

samples were analyzed. In order to determine the degree of membrane fouling, the permeate 

volume flow (L/min) at specific pressures was measured before and after filtration of the 

prehydrolysate, using distilled water at a constant cross flow velocity of 0.4 m/s.  
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4.2.5 Analytical Methods 

Initial monomeric sugars concentration was measured using a Dionex DX600 ion chromatograph 

equipped with a pulsed amperometric detector and Carbopac PA1 column [8]. The total 

solubilized sugars were determined by hydrolyzing the sugars with 2.5 % wt/vol of sulphuric acid 

for 20 minutes in an autoclave followed by sugar analysis. Organic acids were characterized by 

HPLC (Agilent Technologies, Germany) equipped with 210 nm diode array detector (DAD) and 

an Inertsil ODS-3 (150 X 4.6 mm) column. The mobile phase was a mixture of 50 mM potassium 

phosphate that was adjusted to a pH of 2.8 with phosphoric acid (H3PO4) and acetonitrile 

(KH2PO4 99% - CH3CN 1%) that was fed at 1.25 L/min into the column at 40°C. Furfural and 

hydroxymethylfurfural were analyzed with the same HPLC but equipped with a 280 nm diode 

array detector (DAD) and a Nucleosil C18 column. The eluent used was a mixture of acetonitrile, 

water and acetic acid (CH3CN 15%, H2O 84% and C2H4O2 1%). The flow rate of the mobile 

phase was 1 mL/min and the column temperature was 25°C. Phenols quantification was 

determined using Folin–Ciocalteau reagent colorimetric analysis, a method adapted from 

Singleton and Rossi [9]. After the membrane experimental runs, the dinitrosalycilic acid (DNS) 

colorimetric method [10] was used to determine the total reducing sugars in the feed, permeate 

and concentrate. The metal ions were quantified with an Optima 4300 DV Inductively coupled 

plasma atomic emission spectroscopy (PerkinElmer Inc., USA). 

4.2.6 Experimental design and data analysis 

Two design of experiments (DOE) methods were used in this study. The first was a (2)2 factorial 

parametric study to determine the effect of pressure and cross flow velocity on separation 

characteristics of a selected membrane at a constant temperature. Response surface methodology 

(RSM), a DOE approach for developing a mathematical correlation between the operating 

conditions and observed responses of a process, was used to design the subsequent set of 

experiments. RSM can be applied to the development, improvement or optimization of processes. 

The main advantages of RSM are that it can be used to study the effect of multiple variables 

without neglecting the interaction effects using a small number of experiments [11]. Central 

composite design (CCD) and Box-Behnken design (BBD) are the two main RSM experiment 

designs [12]. RSM-BBD requires a lower number of experiments than CCD and was therefore 
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selected for this study. Each measured response from the experiments (permeate flux and flux 

decline) was correlated with a second degree polynomial equation (1).  

𝑌𝑖 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 +  ∑ 𝑏𝑖𝑖𝑥𝑖

2𝑛
𝑖=1 + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                      ( 8 ) 

In the equation, Yi is the predicted response, b0 the intercept term, bi the linear coefficients, bii the 

2nd order polynomial coefficient, bij the interaction term and xi, xj the coded values for the 

variables. In general a model with fewer terms which allows for good fit with the experimental 

data is selected while the terms that are not considered to be significant are neglected. 

STATISTICA 10 (StatSoft software, Inc.), was used for design of the experiments, data analysis 

and model building. 

4.2.7 Measures of membrane performance 

The volumetric concentration factor (CF) achieved during concentration with a given membrane 

can be defined in terms of the volume (V) of the prehydrolysate fed into the tank as given in 

equation (2).  

CF=Vinitial/Vfinal      ( 9 ) 

In a closed loop run with no concentration such as the membrane screening experiments, Vinitial = 

Vfinal and the concentration factor is 1.The equivalent permeate flux J for the experimental runs, 

was estimated from a simplified relationship between the measured volume flow (Q) per unit 

membrane surface area (A) as shown in equation (3). 

J= Q/A.     ( 10 ) 

To assess the separation performance of the membranes when subjected to different operating 

conditions (temperature, pressure and cross velocity), the percentage retention of the main 

organic compounds in the prehydrolysate were determined using equation (4). 

   % 𝑅𝑖 = (1 −
𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑓𝑒𝑒𝑑
)

𝑖

× 100   ( 11 ) 

Where Cpermeate represents the concentration of the ith component in the permeate stream and Cfeed, 

the concentration in the feed solution. The recovery of the ith component can be calculated using 

mass balance relationship shown in equation (5). 

CfeedVfeed= CpermeateVpermeate + CconcentrateVconcentrate  ( 12 ) 
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4.2.8 Membrane flux and flux decline mechanisms 

A permeate flux decline occurs during concentration with a nanofiltration membrane. This can be 

attributed to increased osmotic pressure, fouling of the membrane, concentration polarization or 

compaction of the membrane. An increase in solute concentration results in an osmotic pressure 

increase. Consequently, it is necessary to supply a higher trans-membrane pressure to maintain 

the permeate flux as shown in equation (6), where ∆P is the trans-membrane pressure and ∆π the 

osmotic pressure difference between the feed and permeate side. 

Jv= Aw (∆P-∆π)    ( 13) 

A detailed overview of the mechanisms has been given in previously reported studies [13-15]. 

The ratio of the pure water flux observed with the membrane prior to concentration to the flux 

after prehydrolysate concentration was used as a measure of flux decline. The contribution of 

each of the prehydrolysate components to the flux decline mechanism has been shown in an 

earlier study [7]. The fouling tendency of a membrane is due to the combined effect of the 

pollutants in the solution, the membrane surface and pore characteristics and the operating 

conditions. Fouling is inevitable, although it can be reversible in some cases, it cannot be 

completely eliminated but only reduced [16]. A consequence of fouling is an increase of 

operation and maintenance (O&M) costs [17, 18] 

4.3 Results and Discussion 

4.3.1 Membrane screening  

A comparison of the six membranes shown in Table 4.3 was carried out to determine the most 

suitable for concentrating the prehydrolysate solution. The criteria for selecting a suitable 

membrane were the energy requirement for concentration, fouling potential and the retention of 

desired components (sugars, acetic acid and furfural). Component retention is the most important 

criteria because it indicates which of the membranes should be used for recovering the sugars in 

the prehydrolysate. The energy requirement and fouling potential are secondary criteria for 

selecting between membranes with similar component retention. In addition the fouling extent 

indicates the durability of the membranes. 
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4.3.1.1 Membrane power consumption  

The power consumption of a nanofiltration membrane system can be attributed mainly to the high 

pressure pump. The power consumption (W) of the pump is a function of the feed flow rate (Qf), 

feed pressure (Pf), and efficiency of the pump (η). The design feed pressure is a sum of the 

driving pressure, pressure on the permeate side, pressure drop in the system and osmotic pressure 

of the solution. The pump efficiency comprises the electrical motor efficiency and the impeller 

efficiency.  

     𝑊 =
𝑄𝑓𝑃𝑓

𝜂
    ( 14 ) 

The operating pressure versus permeate flow curves was plotted for each of the membranes as 

shown in Figure 4–3. An equivalent pure water permeate flow rate (30 mL/min) that lies within 

the operating pressure range for all the membranes was used to determine the operating pressures 

for the screening experiments. 

 

Figure 4–3: Pure water permeate flux and equivalent pressures for component retention screening 

The permeate flow for the Trisep SB90 and Dow TW30 membranes overlap. Their power 

requirement is proportional to the operating pressure and lowest for the XN45 membrane. The 

determined order of their power requirements are TW30~SB90 > TS40 > NF270 > NF90 > 

XN45. The membrane polymers have different structure but this trend could be explained by the 

looseness of the membranes, which is indicated by their Molecular Weight Cut Off (MWCO). 
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The determined pressure corresponding to a permeate flow rate of 30 mL/min was used for the 

filtration runs to determine component retention. 

4.3.1.2 Component retention 

The second screening criterion was the component retention. Closed loop filtration runs to 

determine the retentions of the main prehydrolysate components (sugars, acetic acid, furfural and 

phenols) were carried out at the predetermined equivalent pressures for each membrane to enable 

comparison at the same permeate flow rate. Analysis of the permeate and concentrate streams 

gave the percentage retentions of each component and the results are given in  

Figure 4–4. 

  

Figure 4–4: Retentions of the main components by each membrane from highest to lowest 

High sugar retentions were exhibited by the TW30 (99%), NF90 (99%), SB90 (98%) and TS40 

(97%) membranes respectively. In addition, the TW30 and the NF90 also produced the highest 

acetic acid and furfural retentions. A high retention of acetic acid is important because it 

produces a low pH that catalyzes sugar conversion into furfural. A membrane with high furfural 

retention will increase the recovery of furfural present in the prehydrolysate. The retention 

exhibited by a membrane is due to the interaction between three set of factors [19]: 1. The 

membrane characteristics (molecular weight cut off. electrostatic charge and hydrophobicity) 2. 

The characteristics of the prehydrolysate solution (size, electrostatic charge, geometry and 

hydrophobicity of the solute molecules as well as the ionic strength and pH of the solution) 3. 

Operating conditions and parameters (cross flow velocity, transmembrane pressure, flow channel 
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configuration). However, the mechanisms that govern the retention of the organic compounds are 

considered to be complex and limited knowledge is available [20]. Therefore, data on retention 

for organic compounds are derived mainly from experimental observation in industrial process 

applications [21].This applies to the prehydrolysate solution due to the constituent numerous 

organic compounds. 

4.3.1.3 Flux decline 

The feasibility of membrane filtration application depends on the ability to operate the system 

over long periods at acceptable permeate flux levels. However, a permeate flux decline is always 

observed. It is caused by compaction of the membrane under pressure, membrane fouling 

(deposition of organic or inorganic materials on the membrane surface) or increased osmotic 

pressure of the feed solution. The flux reduction observed after continuous operation of the 

membrane system over 6 hours were classified as either physically reversible or chemically 

reversible for each membrane as shown in Figure 4–5. Physically reversible flux decline refers to 

the relative pure water permeate flux before use to the flux after it has been used for 

concentration and subsequently cleaned with distilled water only. Chemical reversible decline is 

the relative pure water permeate flux after use and subsequent cleaning with a NaOH solution at a 

pH of 11. 

Figure 4–5: Relative pure water flux after concentration followed by physical and chemical 

cleaning of membranes (indexed to virgin membrane) 

It was observed that the relative flux after chemical cleaning was lower for the polyamide 

membranes (TW30, NF90 and NF 270) than for the cellulose acetate (SB90) and polypiperazine 

0

20

40

60

80

100

SB90 TS40 XN45 TW30 NF90 NF270

 Physically Reversible Chemically Reversible



75 

 

amide (TS40 and XN45) membranes. It is therefore important to determine if the irreversibility is 

due to fouling, compaction of the membrane for a membrane to be used for concentration. The 

results, which show that compaction can explain this observation, is discussed in section 4.3.2. 

4.3.2 Membrane selection 

On the basis of total sugars rejection, only the XN45 membrane was eliminated because its 

component retention was inferior to 95%. The highest acetic acid and furfural retention were 

observed for the TW30 and NF90 membranes respectively, both membranes also exhibited a 

similar degree of fouling. The NF90 was more suitable for concentration from an energy 

standpoint because the sugar retention is comparable to that of the TW30 but the power 

requirement is only about 1/3 that of the TW30 membrane. The NF90 membrane was judged to 

be the most suitable membrane based on the results from the three screening criteria (component 

retention, flux decline and power consumption). 

To determine whether the flux decline exhibited by the NF90 despite chemical cleaning can be 

attributed to compaction of the membrane, confirmatory tests were carried out. The tests required 

continuous operation of the membrane filtration over a period of 4.5 hours. Distilled water was 

filtered to ensure that the effect of the other flux decline mechanisms (fouling, concentration 

polarization and osmotic pressure increase) were eliminated while the feed conditions were 

similar to that of the prehydrolysate screening runs. It was observed that the flux recovery in all 

cases were in the same range as shown in Figure 4–5. Hence, it can be concluded that compaction 

plays an important role in the flux decline after membrane use but the decline can be 

compensated for by using a larger membrane surface area during the design phase of the 

membrane concentration system.  

4.3.3 Prehydrolysate concentration  

The selected membrane (NF90) was used in all the subsequent experiments. The experimental 

design shown in was used to investigate the effect of varied operating pressure and cross 

velocities at a constant temperature on the component retention and permeate flux decline.  
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Table 4.4. Test conditions to determine the influence of operating conditions on component 

separation 

 

 

 

 

 

The observed components retention are shown in Figure 4–6. The sugars retention was 99% in all 

4 experiments. The total phenolics retention also exhibited the same tendency in all 4 

experiments.  

 

Figure 4–6: Comparison of component retentions for the four experiments (%) 

On the other hand, the furfural and acetic acid retentions were similar for all experiments except 

experiment #1, where they were slightly higher. This could be due to the high cross velocity at 

the low pressure range of the experiments. The observed permeate flux trend for the 4 test 

conditions are shown in Figure 4–7. Although the initial permeate flow in experiment #2 was 

higher than for the other experiments (10 vs ~6 ml/min), they all tend to converge at a 

concentration factor of 5. The total duration of the concentration runs were #1 (8 hours), #2 (7 

hours), #3 (10 hours) and #4 (12 hours). The experiments at a high cross velocity (#1 and #2) 

required a shorter time to reach a concentration factor of 5. It was also observed that the viscosity 

increase of the feed is more pronounced at a concentration factor of 5. Hence, only concentrating 

to a factor of about 4 can be useful in reducing the fouling of the membrane. Furthermore, the 
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observed equivalent permeate flux of about 12 L/m2h at this concentration factor, can be 

considered acceptable for a pilot scale system.  

 

Figure 4–7: Permeate fluxes as a function of concentration factor for Exp. 1-4 

The results confirm that it is technically feasible to concentrate the prehydrolysate solution up to 

a volumetric concentration factor (VCF) of 5. Sugars retention of 99% can be achieved while 

average acetic acid retention of 50% was observed. In all cases the pH of the prehydrolysate 

dropped from 3.7 to about 2.9 after concentration, this is in the range expected for acetic acid 

retentions approaching 100%. Hemicellulosic sugars concentration is technically feasible but the 

economic feasibility will depend on the possibility to obtain a sufficiently high permeate flux and 

to minimize the flux decline during prehydrolysate concentration. A permeate flow that is higher 

than 3mL/min (12 L/m2h) would be suitable at an industrial scale. The frequency of cleaning for 

an industrial membrane system could range between 7 to 180 days while the life of the membrane 

element could be between 1 to 5 years. A low flux decline will prevent the need for frequent 

cleaning and replacement of the membrane elements. 

4.3.4 Response surface optimization of membrane life and operating 

conditions 

To determine the most suitable operating conditions for prehydrolysate concentration, it is 

necessary to establish the relationships between the initial permeate flux and the operating 

conditions, and the operating conditions that would result in a low flux decline. This was 

achieved using the response surface model Box–Behnken experimental design (RSM-BBD) 
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described in section 4.2.6. The RSM-BBD consisted of 15 experiments with 3 levels for pressure, 

cross velocity and temperature with their coded values shown in Table 4.5. The coding notations 

are: -1 (minimum), 0 (central) and 1 (maximum). 

Table 4.5. Coded variables levels for the Box-Behnken design (BBD) 

Controlling Factors 
Coded Levels 

Units 
-1 0 1 

X1 (Pressure) 1050 1500 2050 kPa 

X2 ( Cross Velocity) 0.45 0.56 0.66 m/s 

X3 (Temperature) 22 30 40 C 

The design matrix and the measured results for the 15 experimental runs are shown in Table 4.6.  

Table 4.6. RSM-BBD design matrix and experimental results 

Exp. Nr. 
Input Variables Response 

X1 X2 X3 Y1 Y2 

1 1 0 -1 9.5 1.9 

2 0 1 1 10.0 2.8 

3 1 -1 0 10.5 2.1 

4 0 0 0 8.0 2.1 

5 -1 0 -1 5.0 1.9 

6 0 0 0 7.6 2.0 

7 1 0 1 10.5 2.4 

8 0 -1 1 7.0 2.3 

9 0 -1 -1 7.0 1.9 

10 0 1 -1 7.5 1.9 

11 0 0 0 7.6 2.1 

12 -1 1 0 5.5 1.8 

13 -1 0 1 5.5 2.5 

14 -1 -1 0 5.0 2.1 

15 1 1 0 11.0 1.9 

Y1: Initial permeate flow;  

Y2: Initial  permeate flow / final permeate flow 
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4.3.4.1 Permeate flux  

Analysis of Variance (ANOVA) was used to determine the significance of the parameters (linear 

or quadratic) and the corresponding interaction terms to be used for fitting the response surface 

model in equation (8). The ANOVA results table shown in Table 4.7 consists of several statistical 

terms: the sum of squares (SS), the variance (MS), degree of freedom (DF), F-ratio and p-value 

(p). The F-ratio (F) is the ratio of the variance by each parameter to the residual variance (error), 

it gives the magnitude of the effect of each parameter. The p value is the test for significance that 

shows the probability of obtaining the calculated values of F-ratio. The p value is considered 

significant for any term when p<0.05 and it is to be included in the response model while it is 

considered as marginally significant for p<0.1 and could still be included in the response model 

depending on the fit. R2 indicates the fraction of the variance that can be accounted for by the 

model; a high R2value indicates a good fit between the model and the data [22].  A modified 

version of the R2 to compensate for the number of predictors in the model is known as the 

Adjusted R2. 

Table 4.7: ANOVA table for the model of initial permeate flux  

 
Coeff. SS DF MS F p Remarks 

X1 5.14 52.39 1 52.4 221.4 2E-05 Significant 

X1
2 0.16 0.10 1 0.1 0.4 0.55 Insignificant 

X2 1.20 2.83 1 2.8 12.0 0.02 Significant 

X2
2 -0.29 0.30 1 0.3 1.3 0.31 Insignificant 

X3 0.98 1.90 1 1.9 8.0 0.04 Significant 

X3
2 0.17 0.11 1 0.1 0.5 0.53 Insignificant 

X1* X2 -0.05 3E-03 1 3E-03 1E-02 0.91 Insignificant 

X1* X3 0.19 0.04 1 4E-02 0.2 0.71 Insignificant 

X2* X3 1.30 1.70 1 1.7 7.2 0.04 Significant 

Intercept 7.90 
    

3E-08 Significant 

Residue  1.18 5 0.2 
  

 

Total SS  60.30 14 
   

 

R2= 0.98, Adjusted  R2=0.95 

SS: sum of squares; DF: Degree of freedom; MS: Mean sum of square; 

F: F-value ; p: p-value and Coeff: Coefficient estimates 
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Based on the results, it was found that the relationship between the initial permeate flux and the 

three input parameters, feed pressure (X1), cross velocity(X2) and temperature (X3) in terms of 

the coded values can be fitted to a simple first order equation with the  corresponding significant 

coefficient estimates shown in Table 4.7: 

Y1= 7.90 + 5.14 X1 + 1.20 X2 +0.97 X3 +1.30 X2*X3    ( 15) 

The predicted values of initial permeate flux were compared to the experimental value from 

equation 8 and showed to be in agreement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4–8: Observed initial permeate flux versus the values predicted by equation 8 

The retained terms in the equation suggests that the pressure followed by the cross velocity and 

temperature had a linear effect on the initial flux. This is confirmed in Figure 4–9, that shows the 

change in permeate flux corresponding to the pressure, cross velocity and temperature. The 

interaction between the cross velocity and pressure at a temperature of 30˚C is illustrated in 

Figure 4–9A. As expected, the pressure has the dominant effect on the initial permeate flow 

because the permeate flux is pressure driven. The same trend is shown in Figure 4–9B, in which 

the effect of the feed pressure was superior to that of the temperature.  
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The significance of the pressure effect shows that it is important to start concentration at feed 

pressures less than 1050 kPa so that the flux decline can be compensated by increasing the 

pressure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4–9: Response surface of the combined effects of A) Cross velocity and pressure B) Feed 

temperature and pressure on initial permeate flow 
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4.3.4.2 Permeate flux decline during concentration 

Given that the prehydrolysate from a Kraft dissolving pulp mill will be available to a furfural 

biorefinery at a temperature of 80˚C or higher, it must be cooled down prior to concentration 

because the maximum temperature that can be tolerated by the organic membranes is 45˚C. 

Although it must be cooled to less than 45˚C, the cooling must be minimized because the 

prehydrolysate must be again reheated after concentration to a temperature of about 200˚C for the 

conversion of the pentose sugars into furfural. In addition, it was also observed during handling 

of the prehydrolysate that cooling resulted in increased precipitation that became pronounced at 

temperatures lower than 20˚C. The response surface model could be used in this case to 

determine the maximum tolerable prehydrolysate temperature that will minimize the decline of 

permeate flux during concentration. Analysis of Variance (ANOVA) was also used to determine 

the fitness of the model, the parameters (linear or quadratic) from equation (1) and their 

corresponding interaction terms to be used for fitting the response surface model in equation (9). 

The ANOVA results are illustrated in Figure 4–10. The pareto chart shows magnitude and the 

importance of the effect each term that can be included in the response surface model. Only the 

first three terms with acceptable p-values (p≤ 0.1) were included in the response surface model. 

They were the temperature linear term (X3), temperature quadratic term (X3
2) and the interaction 

between the temperature and cross velocity (X2*X3).  

p=.05

X2

X1* X2

X1

X2
2

X1* X3

X1
2

X2* X3

X3
2

X3

p=0.1p=max p=min
 

Figure 4–10: Pareto chart of standardized effects for permeate flux decline 

The temperature had the highest impact on the flux decline and thus the useful life of the 

membrane within the range of feed conditions considered for the prehydrolysate. It was found 
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that the relationship between the initial permeate flux and the three input parameters, feed 

pressure (X1), cross velocity(X2) and temperature (X3) can be fitted to the second order 

polynomial equation (9): 

Y2= 2.14 + 0.58 X3 -0.147 X3
2 + 0.275 X2*X3    (16) 

The response model had an R2 value of 0.91 and an adjusted R2 of 0.74. The Adjusted R2 value 

was considered a sufficient measure of fit because there are other factors related to the 

prehydrolysate that could also contribute to flux decline, such as increased osmotic pressure, 

fouling and concentration polarization. 
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Figure 4–11: Observed initial permeate flux versus the values predicted by equation 9 

The response surfaces in Figure 4–12 showing the flux decline variation with the feed 

temperature, pressure and cross velocity is based on equation 9. The nonlinear effect of pressure 

on the flux decline is seen in the contour lines in Figure 4–12A while a linear effect was observed 

for cross velocity in Figure 4–12B.  
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Figure 4–12: Response surface of flux decline, the combined effects of A) feed pressure and 

temperature B) cross velocity and temperature 
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Obviously, Figure 4–12A and Figure 4–12B show that the temperature plays the dominant role in 

the flux decline. It can also be seen that the flux decline at a temperature of 32˚C is only about 10 

% higher than the flux decline at 20˚C. The maximum recommended temperature for limiting the 

flux decline due to the operating conditions in both response surfaces are in agreement. The 

effect of temperature was confirmed by two pure water filtrations tests conducted at a cross 

velocity of 0.45 m/s and a feed pressure of 3450 kPa. The feed temperature was kept at 22˚C 

during the first test and at 40˚C for the second test. It was observed that despite the high feed 

pressure applied over 4.5 hours, the flux decline was less than 12% for the filtration run at 22˚C 

whereas it was as high as 36% when the temperature was raised to 40˚C. It can thus be concluded 

that high temperature could result in flux decline through irreversible membrane compaction. The 

effect of temperature could be further compounded when the membrane is subjected to high 

pressure. 

The selected nanofiltration membrane (NF90) produced high sugars retention (99 %) and a 

suitable permeate flux (12 L/m2h) during the concentration of the prehydrolysate solution by a 

factor of 5. The total sugars concentrations increased from 21 to 103 g/L. Operating the 

membrane system at a pressure inferior to 1050 kPa allows for compensation of flux reduction 

during concentration. 

4.4 Conclusions 

Six organic membranes that differ in MWCO and polymer material were evaluated for their 

ability to concentrate hemicellulosic sugars, organic acids and furfural in a prehydrolysate 

solution from a Kraft dissolving pulp mill. The experiments provided strong indications that 

nanofiltration can be applied to a wide range of hemicellulose prehydrolysate solutions in the 

forest biorefinery context. The membrane selection results can provide data for similar 

biorefinery processes involving a chemical conversion of the sugars. Results from this study also 

clearly demonstrate that RSM is an effective method for optimizing membrane filtration systems. 

It was used to determine the feed conditions that will lead to a long membrane life and at the 

same time reduce the energy required to reheat the prehydrolysate after concentration. Future 

research should include pilot scale experiments to enable a detailed economic analysis of the 

membrane system in a biorefinery process. 
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ABSTRACT 

Hemicellulosic sugars from a Kraft dissolving pulp mill can be valorized through the integration 

of a biorefinery for furfural production. Furfural is a multipurpose platform chemical, with 

derivatives that can replace many organic compounds currently produced from fossil resources. A 

novel process for furfural production from biomass, with a Kraft mill prehydrolysate stream used 

as feedstock is proposed. A simulation model for the process has been developed. The furfural 

biorefinery consists of three steps, prehydrolysate concentration, sugars conversion and product 

purification, and has a production capacity of 47 t/d. To reduce the energy consumption of the 

biorefinery, an optimized heat exchanger network and an absorption heat pump for 

implementation were designed. The energy and material integration of the biorefinery is feasible 

and the utility demands can be supplied by the receptor mill. A techno-economic evaluation of 

the developed process showed that it is economically feasible and a return on capital employed 

(ROCE) as high as 36 % can be obtained. 

METHODOLOGY 

 A novel process for furfural production from hemicellulose prehydrolysate is proposed 

 The process is energy efficient and its energy demand is lower than for existing furfural 

processes 

 The integration of the process with a Kraft dissolving pulp mill was demonstrated 

 The process is economically feasible and can be implemented 
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5.1 Introduction  

The integration of biorefining technologies into Kraft pulp mills has been the focus of several 

reported studies. An integrated forest biorefinery (IFBR) utilizes woody biomass, for the 

production of Kraft pulp and co-products such as biofuels or biochemicals. This is advantageous 

because woody biomass is one of the most abundant non edible biomass resource globally [1] 

and does not compete with arable land for food and animal feed production [2]. It is also a 

sustainable feedstock that can contribute to the lowering of greenhouse gases emission [3]. 

Woody biomass comprises four main classes of components: cellulose, hemicellulose, lignin and 

extractives. An important characteristic of an IFBR is that the Kraft pulp is the main product 

despite the production of co-products [4]. The hemicelluloses can be extracted prior to chemical 

delignification of the wood chips with a prehydrolysis step [5, 6] while the lignin can be 

extracted from the black liquor in the chemical recovery loop of the Kraft pulp mill after pulping 

[7, 8]. Hemicellulose extraction via a prehydrolysis step is practiced in some Kraft pulp mills for 

dissolving pulp production but the extracted hemicelluloses are typically combusted for energy 

together with the black liquor that contains the lignin fraction. Modifications can be made to such 

mills to redirect the hemicelluloses stream (prehydrolysate) to a biorefinery as the extraction 

process is well developed. The energy production capacity of the mill will not be significantly 

affected if the prehydrolysate stream containing the hemicelluloses is diverted to a biorefinery for 

conversion into value added products because its heating value is only about half that of lignin 

[5]. Furthermore, it is also beneficial for liberating pulp production capacity (debottlenecking the 

recovery boiler) in mills that have their production capacity limited by the recovery boiler. 

Furfural is a bioproduct that can be produced via a chemical conversion pathway from the C5 

hemicellulose sugars. It is a platform chemical that can be used directly as nematocide, industrial 

solvents or precursor for resins and polymers or further converted into biofuels [9]. Currently, the 

established processes for its production are standalone processes that utilize agricultural residue 

such as corncobs or bagasse [10]. The processes are characterized by high energy intensity and 

their integration other existing processes where hemicellulose sugars are already produced has 
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been proposed as a potential means of lowering the production cost [11, 12]. An integrated 

biorefinery process with Kraft pulp mill as a receptor thus offers an opportunity for lowering the 

cost of furfural production and increasing the revenue for the receptor mill. Such a biorefinery 

process must not only have a minimum impact on the energy balance of the mill but the material 

and energy integration with the receptor mill must be technologically and economically feasible. 

It is also important that the pulp yield and quality not be deteriorated after integration of the 

biorefinery. To the author’s knowledge, no process for producing furfural in an integrated forest 

biorefinery has been reported in scientific literature although it is well known that C5 sugars can 

be converted into furfural. This paper aims at achieving the following objectives:  

 Develop and propose an innovative furfural process for an IFBR 

 Optimize the energy consumption of the biorefinery 

 Assess the potential of integration in a receptor mill 

 Carry out a techno-economic evaluation of the process.  

5.2 Kraft pulping process as a receptor mill of an IFBR 

5.2.1 Kraft pulping process 

Pulping is the separation of cellulose fibres that are fixed in wood or plant matrices from 

the other components (mainly hemicelluloses and lignin). It entails the rupture of bonds that exist 

within the wood structure. The existing pulping methods could be broadly classified as thermal, 

mechanical, chemical driven. Some pulping methods are a combination of the different 

classification. Kraft pulping, a full chemical process, is the predominant pulping method in use 

globally [13]. Its advantages include, (i) the pulp produced has a high quality (stronger than from 

other methods), (ii) most of the chemicals consumed in the process can be recovered efficiently 

and economically and (iii) substantial amounts of energy is produced in the recovery boiler. Two 

kinds of pulp can be produced using the Kraft process, paper and dissolving pulps. Dissolving 

pulp has a higher cellulose purity (≥ 96 % ) than Kraft paper pulp (<90 %) and the higher 

cellulose purity is achieved through a prehydrolysis step to extract hemicelluloses prior to 

pulping [6]. Dissolving pulp is a precursor for consumer products such as rayon textiles, 

packaging materials and retardant agents. A dissolving pulp mill process is illustrated in  



92 

 

Figure 5–1. Examples of prehydrolysis methods that can be used for extracting hemicellulosic 

sugars from lignocelluloses include hot water, steam, sodium hydroxide, organic solvents, sulfite 

pre-treatment, ammonia-fiber expansion and acid catalyzed treatment [14]. The methods all have 

different costs, level of technological maturity, and amount of sugars extracted and feasibility of 

integration with a Kraft dissolving pulp mill. A main constraint on the choice of the prehydrolysis 

method in an IFBR is that a selected method must not lead to the deterioration of the pulp quality 

or lower the pulp yield. A combination of steam and hot water has been shown to be suitable for 

an IFBR [15], it also has the advantage of not requiring the addition of chemical agents. 
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Figure 5–1: Simplified block diagram of Kraft dissolving pulp mill with A) prehydrolysate sent 

for combustion in the recovery boiler B) prehydrolysate diverted to a biorefinery unit 

After hemicellulose extraction by hot water and steam in the prehydrolysis step, the 

prehydrolysate stream containing the extracted hemicellulosic sugars can be withdrawn and sent 

to a biorefinery unit. The pretreated wood chips is sent for chemical delignification using white 

liquor, a mixture of sodium sulfide and sodium hydroxide, to separate the lignin and the residual 

hemicellulose from the cellulosic fibres (pulp). The pulp is then washed, bleached and dried. 

Black liquor, the spent liquor from delignification is separated from the pulp in the washing step, 

concentrated and sent to the recovery boiler where it is combusted to produce steam for the Kraft 

mill and for electricity generation. The inorganic chemicals are recovered from the recovery 

boiler as a smelt and sent to the recausticizer where white liquor is regenerated using lime 

produced in the lime kiln. Several modern Kraft mills produce about 70% of their total energy 

demand onsite and in most cases using renewable resources such as biomass residue or bark [16] 
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5.3 Furfural feedstock, production processes and derivatives  

5.3.1 Furfural feedstock 

Furfural is a reddish brown liquid with a solubility of 8.3 % wt in water at 25ºC. It forms an 

azeotrope with water at 35% weight. It is typically produced from pentosan rich feedstock of 

agricultural origin. The pentosan compositions for several potential feedstocks are shown in 

Figure 5–2. 

.  

Figure 5–2: Pentosan content of plants and agricultural residues for furfural production [17] 

Two subsequent reactions occur during furfural production. First, the hydrolysis of the penstosan 

into pentoses takes place in the presence of an acid catalyst. 

(C5H8O4)n +  nH2O → nC5H10O5 ( 17 ) 

     C5H10O5 → C5H4O2+ 3H2O    ( 18 ) 

In the second reaction, the pentoses are dehydrated through the liberation of three molecules of 

water from a pentose molecule to form furfural. The stoichiometric yield is 73g of furfural per 

100 g of the pentosan. Low yields can be caused by two types of loss reactions, the reaction of 
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furfural with itself resulting in a polymer (furfural resinfication) and a reaction with an 

intermediate (furfural condensation) [18].  

5.3.2 Furfural production processes 

Several existing and recently proposed furfural production schemes have been discussed in the 

published scientific literature [11, 18-21]. An overview of some production processes is given in 

Table 5.1. The furfural production processes can be classified as industrial, pilot or laboratory 

scale. The processes at the laboratory level are characterized by attempts to improve the furfural 

yield, reduce the energy consumption. The use of solid catalysts to lower costs, organic acids to 

reduce mineral acid consumption or use of biphasic systems with organic solvents to enhance 

furfural purification have also been investigated at laboratory scale. Based on the residence time 

for the conversion reaction is shortened by high temperatures (170 - 220 ºC) and pressures of 

(1800 - 2200 kPa). Carrying out the reactions at high temperatures can also be used to minimize 

the furfural losses because the loss reactions are slower than furfural formation [22]. 

Table 5.1: Selected furfural production processes and main characteristics 

 

 

 

 
Feedstock 

T  

( ºC) 

P 

(kPa) 

t  

(mins) 
Catalyst 

Yield 

(% ) 
Status 

Batch Process Corn curbs 140 - 180  607 300 H2SO4 35-50  Industry 

Biofine (2 steps) Paper Sludge and 

MSW 

210-220, 

190-200 

2533,  

1420 

0.2 ,  

20  
H2SO4 70 Pilot  

Quaker Oats air dry oat hulls - ~1013 60 H2SO4 ~ 55  Industry 

Supratherm ® Chopped Bagasse 200-240 2026- 3039 - H2SO4 ~70 Pilot  

Verdenikov Foliage wood 188 - - H2SO4 ~ 75  Pilot  

MTC Straw  180 1000 25  H2SO4 86  Pilot  

Current case Study Prehydrolysate 170-220 1820 - 2230 < 5 H2SO4 ~ 75  Concept 
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The industrial furfural processes were developed mainly for the production of furfural from solid 

biomass and the use of mineral acids as catalysts is predominant. In view of the fact that the 

feedstock available in the integrated forest biorefinery is aqueous hemicelluose prehydrolysate, a 

novel energy efficient process is required to make the biorefinery technically and economically 

feasible. 

5.3.3 Furfural derivatives and applications 

Furfural is valued as a chemical due to its versatile use; it can be used in direct applications or 

converted into derivatives. A list of some of the potential derivatives and direct applications is 

given in Figure 5–3. About 60% of the furfural produced worldwide is converted into furfural 

alcohol for further transformation into foundry resins, this makes it the most important derivative 

of furfural [4]. It is produced by the hydrogenation of furfural using copper chromium as catalyst. 

Furans can be produced by the decarboxylation of furfural and can be further converted into other 

important bioproducts. Furoic acid is used in the pharmaceutical and agricultural industry and it 

can be produced either through the oxidation of furfural or a canizzaro reaction. Furfurylamines 

used in the automotive, pharmaceuticals, industrial chemicals and can be produced via reductive 

amination of furfural. 
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Figure 5–3: Family tree showing some potential furfural direct applications and derivatives  

An emerging application of furfural is via the methyl furans derivatives route. 2-methylfuran and 

methyltetrahydrofuran are considered as fuel precursors, they are promising components of 

gasoline that have already been tried in extensive road tests [12]. 
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5.4 Methodology for process design and economic analysis 

The methodology for the development of an integrated forest biorefinery for furfural production 

is illustrated in Figure 5–4. Input data for the development of the biorefinery were obtained from 

literature, previously published reports and the simulation software database (Aspen Plus®). Data 

was also generated from experiments for process steps with no previously reported data.  
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Figure 5–4: Overview of methodology for the furfural biorefinery development 

The developed biorefinery model is flexible and can be adjusted to different prehydrolysate 

composition, and flow rates. A simulation of the furfural process on Aspen Plus® V7.2 simulator 

was used to compute detailed mass and energy balances. The data were subsequently used for 

assessing the hot and cold utility requirements and to optimize the heat exchangers network 

(HEN) using Aspen Energy Analyzer. Energy upgrading through absorption heat pump (AHP) 

was evaluated as an alternative for improving the energy of the process. The degree of integration 

between the furfural plant and the receptor mill was determined. The dimensions and cost of the 

process equipments were estimated. The cost of the standard process equipments such as heat 

exchangers, pumps and distillation columns were obtained from literature, updated by means of 

cost indices and scaled up where necessary using the six-tenths factor rule [23]. Estimates of the 

costs required for the modification of the receptor mill were obtained from a published report 

[24].  
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5.5 Proposed biorefinery configuration for furfural production 

5.5.1 Identification of alternatives, selection and design of process steps 

The feedstock in the proposed biorefinery is hemicelluose prehydrolysate extracted from a 

receptor Kraft dissolving pulp mill. The prehydrolysate composition was obtained from pilot 

plant experiments at FPinnovations (Canada) using steam and hot water hydrolysis at 170ºC /800 

kPa and dry wood chips to water weight ratio of 1:4 and [25]. The composition of the 

prehydrolysate considered is shown in Table 5.2 

Table 5.2: Composition of hemicelluloses prehydrolysate 

Components Mass Flow (t/d) 

Water 4800 

Acetic Acid 17 

Furfural 3 

Lignin 15 

Pentose 83 

Hexose 17 

 

The prehydrolysate had a low sugar concentration (<2 % wt), to reduce the energy requirement 

and size of the downstream biorefinery process units (hemicelluloses conversion and furfural 

purification), the implementation of a concentration step is essential. A concentration method that 

retains the acetic acid fraction is also a means for lowering the pH and thus reducing the organic 

acid requirement.  

Different state of the art alternatives were identified for the following biorefinery process steps: 

 prehydrolysate concentration,  

 sugars conversion  

 furfural purification  
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Alternatives that would lead to an energy efficient and environmentally friendly process were 

selected. 

5.5.1.1 Prehydrolysate concentration 

Two alternatives for prehydrolysate concentration were compared: the use of nanofiltration 

membranes or multi effect evaporators. The feasibility of concentration with membranes has been 

reported in an earlier publication [9]. It was shown that a reduction in permeate flux during 

concentration can be compensated for by increasing the pressure. Furthermore, a permeate flux of 

12 L/m2h which is feasible at an industrial scale can be obtained during a volumetric 

concentration by a factor of 5. The energy demand of the membrane system comes mainly from 

pumping to supply the pressure gradient between the feed and permeate sides and can be 

calculated by equation 3. 

     𝑊 =
𝑄𝑓𝑃𝑓

(𝜂−𝐿)
    ( 19 ) 

The power consumption (W) of the pump is related to the feed volumetric flow rate (Qf), feed 

pressure (Pf), efficiency of the pump (η) and pressure loss adjustment (L). The power requirement 

for the pump is 300 kW at the design conditions, a prehydrolysate volumetric flow rate of 0.06 

m3/s, feed pressure of 3500 kPa, total pump efficiency of 80% and pressure losses of 10%.  

Another well-known alternative for concentrating the prehydrolysate is the use of multi-effect 

evaporators. The amount of water to be evaporated to reach a volumetric concentration factor of 

5 can be calculated from equation 4. 

𝑚̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑 =𝑚̇𝑓𝑒𝑒𝑑 (1 −
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑢𝑔𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑓𝑖𝑛𝑎𝑙 𝑠𝑢𝑔𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
) ( 20 ) 

The amount of water that must be evaporated (45 kg/s) can be further used in equation 5 to 

calculate the minimum amount of energy (Qevap)  that must be supplied to a multi-effect 

evaporator with the number of effects Nt,eff. of 4. The latent heat of evaporation (λ ) of water is 

2,270 kJ/kg. 

  𝑄𝑒𝑣𝑎𝑝 =  
 .𝑚̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑 

𝑁𝑡,𝑒𝑓𝑓
    ( 21 ) 
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A comparison of both alternatives was made given that the membrane cleaning frequency is 7 

days with a lifetime of 2 years while the price of steam is 3.3 $/ ton. The results are shown in 

Table 5.3. 

Table 5.3: Comparison of nanofiltration membranes and multi-effect evaporators 

 
Membrane 

System 

Multi-effect 

Evaporator 

Purchased Equipment Cost (M$) 0.42 0.67 

Installed Equipment Cost (M$) 3.3 0.94 

Energy requirement * (MW) 0.3 26  

Yearly Operating cost (M$/a)  0.8 2.7 

* Electricity for membranes system and steam for evaporator 

A detailed economic analysis of the membrane filtration system and the sensitivity of the 

concentration costs to the membrane cleaning frequency and useful life are presented in section 

5.5.5.  

5.5.1.2 Sugars conversion 

Existing furfural production processes generally require the fractionation of the biomass 

feedstock before furfural production. An overview of some furfural processes (pilot or 

commercial scale) is given in Table 5.1. Although the processes are not directly comparable due 

to the difference in feedstock, operating conditions and substrate concentration, it can be 

concluded that the conversion of the pentoses in the prehydrolysate into furfural will require a 

shorter resident time because the sugars have been broken down into a mixture of oligomers and 

monomers, during the prehydrolysis step. Furthermore, the kinetics of oligomeric sugar 

conversion into monomers is much faster than the transformation of the monomers into furfural. 

For the conceptual design in this case study, it was taken that temperatures between 170 – 210 °C 

and a pressure of 1800 – 2250 kPa would be sufficient to obtain conversion as high as 75 % of 

the theoretical yield and a short residence time which would minimize the furfural loss reactions. 

Upon concentration of the prehydrolysate, the pH is reduced from 3.5 to 2.9 due to the acetic acid 
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concentration but additional acid catalyst is required to further reduce the pH in the reactor from 

2.9 to ~1.5. Sulphuric acid was selected as the catalyst because its use and efficiency have been 

validated in several publications. The conditions used for the design in this case study are 170°C, 

2100 kPa and sulfuric acid concentration of 1.8% wt. 

5.5.1.3 Furfural purification 

The product stream from the sugars conversion step will contain less than 6% wt of furfural. This 

is in the same range as all known conversion processes [18]. It must be purified to obtain high 

quality furfural. The use of a simple distillation for the recovery of furfural is however impossible 

because furfural forms an azeotrope with water at 35 % wt. The azeotrope formed is a positive 

azeotrope with its boiling point (97.8ºC) lower than that of water (100ºC) and furfural (126 ºC). 

A common practice in existing furfural processes is to make use of two distillation columns with 

a decantation step between the two columns as shown in Figure 5–5A. Furfural is recovered at 

just below its azeotropic point at the top of the first column and then fed into a decanter where the 

mixture spontaneously splits into furfural rich and furfural lean phases. The furfural rich phase is 

withdrawn and sent to the secondary distillation column where furfural at 99% purity can be 

recovered from the bottom of the column. An alternative method for the purification of 

azeotropic mixtures is extractive distillation shown in Figure 5–5B. It requires the introduction of 

a solvent which can alter the relative volatility of the furfural-water mixture. Water and the acid 

from the product stream can be recovered from the first column while furfural is recovered with 

the second column and the solvent recycled for use in the first column.  
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Figure 5–5. Process diagrams illustrating A) conventional furfural distillation B) extractive 

distillation 
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Aspen Plus® V7.2 azeotrope search function was used to evaluate the possibility of utilizing 

several entrainer solvents available in published literature for extractive distillation [26]. It was 

discovered that most of the solvents are not suitable; they all result in the formation of other 

azeotropes (in addition to water – furfural) except for trichlorobenzene. 

 Table 5.4. Entrainer solvents evaluated for the extractive distillation of furfural 

Entrainer Solvent BP (ºC) Azeotropes*  

Trichloroethane 73.9 1 

Diethylbenzene 180.9 3 

Dipropylbenzene 210.5 3 

N-Butylbenzene 182.9 2 

Tetraline 207.6 2 

Isophorone 215.2 2 

Dichlorobenzene 173.1 2 

Dibromobenzene 218.0 1 

Trichlorobenzene 213.0 0 

Carbon-Tetrachloride 76.6 1 

Ethyl-Acetate 77.1 1 

N-Octyl-Acetate 211.3 1 

* Azeotropes formed other than water - furfural 

 

It was determined that the energy requirement for furfural distillation can be reduced by as much 

as 30% with the use of trichlorobenzene. However, it is not a sustainable entrainer from an 

environmental standpoint since trichlorobenzene is currently classified as a hazardous chemical 

with restricted use [27, 28]. The design of the furfural purification step in this work was based on 

Figure 5–5A.  

5.5.2 Proposed biorefinery process 

The selected receptor Kraft mill produces about 670 odt/d (odt = oven dried tons) of dissolving 

pulp from hardwood in eastern Canada. The mill employs a series of batch digesters for the 
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removal of the hemicelluloses from the wood chips. Steam is used in the prehydrolysis step and 

the wood chips are neutralized with alkali liquor prior to pulping. The mill produces high 

pressure (HP) steam using a recovery boiler and a bark-bunker oil power boiler. Electricity, 

medium pressure steam (MP) and low pressure (LP) steam are produced from the HP steam in 

the cogeneration system. A detailed analysis of the receptor mill using an innovative optimization 

methodology for the energy and water consumption of the mill was previously done [29].  

It was shown that steam consumption (250 MW), water consumption (2480 m3/h) could be 

reduced by 27 and 38 % respectively. In its current state, the neutralization liquor that is used to 

neutralize the chips after prehydrolysis degrades the sugars. Modification to the mill is required 

to recover and redirect the prehydrolysate stream from the recovery loop to the biorefinery. 

Subsequently, dilute prehydrolysate from the receptor mill will be supplied to the furfural plant at 

80 ºC. A process flow diagram for the proposed biorefinery for the production of furfural from 

prehydrolysate is shown in Figure 5–6. The process was simulated using Aspen Plus® V7.2, to 

obtain the energy and mass balances. The biorefinery process contained several chemical 

compounds that are not available in the software database. The properties of these compounds 

were obtained from the National Renewable Energy Laboratory (NREL) physical property 

database for biofuels components [30] and imbedded into Aspen Plus®.  

The composition of the feedstock the retention and flux characteristics of the membrane system 

and the compositions of stream 1 to stream 6 were obtained from experimental data [9]. The 

membrane system allows increases the total hemicellulosic sugars concentration from 21 g/L up 

to 103 g/L. It was modeled as a split separator in the Aspen Plus® module. The concentrated 

prehydrolysate stream is subsequently sent to the conversion reactor. The reactor was modeled as 

a stoichiometric reactor in Aspen plus. 
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Figure 5–6. Process flow diagram of the furfural biorefinery 

A pentose conversion of 100% is achieved with 75 % into furfural and 25 % into other 

degradation products that remain in the aqueous phase. The azeotrope distillation train is then 

used to purify the furfural to 99 % wt of furfural. The distillation sequence was modeled using a 

rigorous distillation Aspen Plus® module. The preliminary values for the specification of the 

columns were determined graphically with the Mcaabe-Thiele diagram. Extensive sensitivity 

analysis simulations were performed to determine the number of stages, the feed stage, reflux 

ratio and distillate to feed ratios.  

Recovery of the spent acid is proposed as a part of the biorefinery process. Pressure losses were 

considered to be negligible in the heat exchangers and columns. The properties for the main 

process stream are given in Table 5.5. The base case simulation is designed to process 4940 t/d of 

hemicellulose prehydrolysate from the receptor mill with a furfural production of 47 t/d.  
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Table 5.5. Data for key process streams 

  Streams 

  1 6 7 9 11 17 19 20 21 

T (ºC)  80 31 170 97 100 20 98 97 131 

P (kPa)  100 2100 2100 100 100 100 150 100 100 

Total flow (t/d)  4940 616 618 154 569 105 52 5 47 

 Water (t/d) 4818 494 508 103 504 99 3 3 1 

Total C5 sugars (t/d) 82.4 82.4 23.0 - 23.0 - - - - 

Total  C6 Sugars (t/d) 16.7 16.7 17.4 - 17.4 - - - - 

Furfural (t/d) 3.3 3.3 47.5 50.7 - 3.2 48.5 1.8 46.8 

 

5.5.3 Energy requirement minimization and upgrading 

The total heating requirement (14.2 MW) for the biorefinery stems mainly from the furfural 

purification step (70 %) while the conversion of the pentoses into furfural constitutes only 30% 

of the total requirement. The total cooling requirement (25.6 MW) is evenly split between the 

cooling of the prehydrolysate and the furfural purification step. Approaches that have been used 

for the energy optimization of integrated forest biorefineries based on pulp and paper mills can be 

categorized in 2 groups:  

 Independent energy optimization of the receptor mill and the biorefinery with the 

objective to liberate enough energy from the receptor mill for an optimized biorefinery 

process [29] 

 Site wide optimization which simultaneously optimizes the energy requirement of the 

receptor mill and the biorefinery process [31]. 

This work favours an independent optimization of the receptor mill and biorefinery 

process because the product mass flow of the biorefinery is 1% of the prehydrolysate mass flow 

into the biorefinery process. Furthermore, in terms of output mass flows, the furfural production 

rate is less than 7% of the pulp production. It is therefore not likely to require extensive 

modifications to the energy and water network of the receptor mill in order to host a biorefinery 

process that constitutes only a small fraction of the total site energy requirement. Independent 

optimization is supported by a previous case study of the same receptor mill which showed that 
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total steam savings as high as 27% can be achieved [29]. This savings can be obtained by 

implementing a small number of low risk and low cost energy saving projects. 

5.5.3.1 Heat exchanger network optimization 

The heat exchanger network optimization of the furfural process was carried out with the pinch 

analysis technique in the software Aspen Energy Analyzer. Pinch analysis is a well-established 

method to set energy savings target and design heat exchanger networks in industrial processes 

[32]. As a first step, all the hot and cold process streams were identified followed by data 

extraction from the simulated model for the process heating and cooling duties, mass flows and 

temperature gradient. The data were then used to plot composite curves of hot and cold process 

streams on a single T-H diagram in order to determine the minimum heating and cooling 

requirements. A temperature difference (∆Tmin) of 10˚C between the hot and cold sides of the 

process was selected. The pinch point was found to be 105˚C, the minimum cooling requirement 

21.6 MW and the minimum heating requirement 10.2 MW as shown in Figure 5–7.  

 

Figure 5–7: Thermal composite curve for the furfural biorefinery 

An optimized heat exchanger network was developed to reduce the heating and cooling 

requirements of the process. Two heat exchangers were added to recover heat from the exchanger 

after the furfural conversion reactor (HX-02) and the condenser of the main distillation column 

(COND-01) in Figure 5–6. The liberated heat was used to preheat the input stream (6) for the 

conversion reactor. This led to an increase of the total heat exchanger surface area by 23%. 

Nevertheless, the heating and cooling requirement were reduced down to 11.0MW (-22%) and 

23.4 MW (-9 %) respectively. 
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5.5.3.2 Energy upgrade 

The furfural biorefinery is a small capacity unit with limited energy optimization potential by 

heat exchanger network design. However, the availability of low temperature heat was an 

opportunity to improve the thermal energy efficiency of the process by implementation of an 

absorption heat pump. An AHP is a heat driven device for upgrading heat liberated from a 

process at a low temperature to a higher temperature. The steps used for implementing the 

absorption heat pump can be summarized as:  

 Identification of available heat sources for upgrade after the development of an optimized 

heat exchanger network (HEN)  

 Selection of the AHP working fluid (H2O/LiBr), and specification of the AHP on the 

H2O/LiBr phase diagram 

 Simulation of the AHP and integration with the biorefinery process on Aspen Plus 

The AHP implementation in the main distillation column of the furfural biorefinery is illustrated 

in Figure 5–8. Heat is supplied to the AHP evaporator (E) and generator (G) from the condenser 

of the distillation column at 97˚C and liberated at a higher temperature (145˚C) by the absorber 

(A) and at a lower temperature (30˚C) by the condenser (C). 

 

 

Figure 5–8: Positioning of absorption heat pump illustrated in A) the composite curve B) 

distillation column 

The coefficient of performance (COP), which is the ratio of heat supplied to heat upgraded, for 

the AHP is taken to be 42 %. After HEN optimization and AHP integration, the heating 
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requirement for the biorefinery is reduced to 7.4 MW (48 %) and the cooling requirement is 

reduced to 19.7 MW (23 %), as shown in Table 5.6. The reductions would facilitate the 

implementation of the biorefinery unit into a Kraft pulping mill without the need for additional 

steam and hot water production capacity. 

Table 5.6: Energy requirement minimization after HEN design and AHP implementation 

 

 

 

 

The introduction of an absorption heat pump could make the process control system for the 

distillation column more complex and challenging to implement but nevertheless, the significant 

energy savings justifies its use. 

5.5.4 Integration with the receptor mill 

The potential mass and energy integration between the biorefinery unit and the receptor Kraft 

pulp mill is illustrated in Figure 5–9. The biorefinery process has a heat demand of 7.4 MW, 

which constitutes only 11 % of the potential steam savings that can be obtained at the receptor 

mill (67.5 MW) through the application of steam and water efficiency enhancements projects 

[29]. The steam required by the biorefinery can be supplied by the receptor mill. The cooling 

requirement can be met using fresh water available from the utility system. The water recovered 

by the membrane system could also be redirected to the hot water tank of the mill. The sulfuric 

acid required to lower the pH of the concentrated prehydrolysate can be supplied by the spent 

acid from the mill chemical preparation department after recovery and purification with 

established technologies such as the Generator Acid Purification (GAP™) system developed by 

FPInnovations [33, 34]. The same method can be subsequently applied for the regeneration of the 

used acid from the furfural process.  

  

BASE 

CASE 

OPTIMIZED 

HEN 

OPT. HEN + 

AHP 

SAVINGS 

(%) 

Heating Requirement (MW) 14.2 11.0 7.4 48 

Cooling Requirement (MW) 25.6 23.4 19.7 23 



108 

 

MILL

Wood

Chips

(1,900 odt/d)

Concentration Conversion Purification

Pulp

(670 odt/d)

Cooling

 (2670 t/d)

Water 

(6,950 t/d)

Heat 

(6.5 MW)

LPPrehydrolysate 

(4,900 t/d)

Heat (3.2 MW)

H2SO4 

(2.0 t/d)

Furfural

(47 t/d)

Prehydrolysis Hot Water Tank
Fresh Water 

Tank

Steam Plant 

(LP & MP)

Heat 

(0.9 MW)

MP

 

Figure 5–9: Process scheme for biorefinery integration with receptor mill 

Specifically, the potential integration considers the following aspects: 

 Energy Integration: The biorefinery plant will require 0.9 MW of medium pressure steam 

for the sugar conversion reactor. About 6.3 MW of the total low pressure steam demand 

(6.5 MW) would be used to drive the reboiler of the main distillation column. The cooling 

requirement is met by using 2670 t/d fresh water to cool down hot streams at the 

condensers of the distillation columns and AHP and the prehydrolysate prior to membrane 

concentration.  

 Water: The furfural plant has no direct water consumption. However, 6950 t/d of water 

comprising 4280 t/d recovered with the use of membrane filtration and 2670 t/d cooling 

water will be sent back to the hot water tank of the Kraft process. 

 Chemicals: About 2 t/d of sulfuric acid would be required to start up the biorefinery; this 

can be either purchased or recovered from the spent acid in the Kraft process. The acid 

would be subsequently recycled to reduce the sulfuric acid consumption. Only make up 

acid from the Kraft process will be required by the biorefinery after furfural production 

has started.  

The energy and material integration of the furfural process with the receptor Kraft pulp 

mill is feasible for the designed process.  
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5.5.5 Economic analysis 

A detailed economic analysis of the process was carried out to evaluate the economic profitability 

of the process, The cost of conventional equipments were based on cost engineering models 

available in literature [23], the cost of the membrane filtration unit under different scenarios was 

estimated using the online GE RO tool™ [35] the installed cost for the absorption heat pump is 

based on a previous study [36]. The cost of modifying the mill to divert the prehydrolysate to a 

biorefinery unit instead of combusting it and the global plant operating costs were obtained from 

a published report [24]. The costs were scaled using the six-tenths factor rule where necessary 

and the original costs were updated to the reference year (2014) values by means of cost indices. 

All costs are given in US $. It was necessary to treat the economic implications of the membrane 

system in detail because it is a novel membrane technique on which there are only limited 

published data. 

A minimum total membrane surface area of 15200 m2 is necessary to recover 182000 L/hr of 

permeate at a flux of 12 L/m2h. The required number of membrane elements (NE) can be 

calculated using equation 6.a A membrane element with a surface area of 37 m2 can be 

purchased. 

     𝑵𝑬 =
𝑸𝒑

𝑺𝑬𝒇
    ( 22 ) 

Thirty extra membrane elements were taken into account for the periodic cleaning and 

replacement of some elements. The preliminary economic evaluation for the membrane filtration 

system is based on the data given in Table 5.7. The total investment cost for the membrane 

filtration systems is 3.3 M$.  
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Table 5.7: Parameters and values used for economic evaluation of the membranes 

Investment cost ($/m2 membrane area) 200 

Membrane bare element area (m2) 37 

Total Number of elements required 440 

Number of pressure vessels (8 elements / vessel) 50 

Membrane bare element cost ($/m2) 26 

Membrane element life time (years) 1 – 5  

Cleaning frequency (days) 7-180 

Electricity price ($/kWh) 0.07 

Pump efficiency (%) 0.7 

The total annual cost (Ct) of the membrane system consists of components given shown in 

equation 7. Ca indicates the amortization cost over the useful life, Ce the electricity cost and Cop 

the operating cost for cleaning and replacing the membrane elements. 

Ct =  𝐶𝑎 + 𝐶𝑒 + 𝐶𝑜𝑝    ( 23 ) 

A straight line amortization over a useful life of 20 years is assumed in this case and gives a Ca of 

163 k$/y. The electricity cost (Ce) was calculated to be 168 K$/y for 8000 hour of operation per 

year and consumes 300kW of electricity at a unit price of 0.07 $/kWh. The operating costs for the 

membrane filtration system were estimated using the online GE RO tool™ [35]. Key input data 

for the program include the number of hour of operation and the manpower requirement, cost of 

utilities, cost of chemicals and cleaning agents, size of the cleaning tank and the membrane 

replacement and cleaning frequency. The sensitivity of the operating cost to the cleaning 

frequency and the lifetime of the membrane element were determined and is shown in Figure 5–

10. 
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Figure 5–10: Sensitivity of annual operating cost (k$) to membrane replacement and cleaning 

frequency 

The operating cost (Cop) was estimated to be 438 k$/y, for a replacement interval of 2 years and 

weekly cleaning of the system, which was considered to be realistic for the prehydrolysate 

concentration (personal communication). The total annual cost of the membrane filtration system 

(Ct) is thus 769 k$/y. This corresponds to 23$/t of sugars and 45 $/t of furfural. The costs 

associated with the other equipments were estimated by using process data from Aspen Plus, cost 

functions and the material selection was based on previous study [11]. The calculated purchased 

equipment costs are shown in Table 5.8.  
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Table 5.8: Overview of the installed equipment costs excluding the membrane system 

 

 

 

 

 

 

 

 

 

 

The installed equipments costs were used to scale the total fixed investment costs as shown in 

Table 5.9. The membrane system constitutes 34 % of the estimated cost. This cost fraction is 

however justified by the consequent savings in energy requirement and process equipment 

dimensions. 

 

 

 

 

 

 

 

 

EQUIPMENT DESCRIPTION MATERIAL 
COST 

(k$) 

Reactor System Jacketed reactor, steam injection, V = 4 m3 SS316 350 

Heat Exchangers 12 Exchangers (Reb. & Cond. Incl) A = 160 m2 SS304 254 

Tower 1 h= 13 m, d= 1.8 m, 14 trays SS304 378 

Tower 2 h= 5.5 m, d= 0.5 m, 4 trays SS304 45 

Decanter h= 1 m, d= 1 m, V= 3m3 CS 10 

Heat Pump 356 $/kW of upgraded heat  890 

Total cost for installed equipment 1,927 
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Table 5.9: Estimated fixed capital investment for furfural plant 

Components 
Cost 

(k$) 

% of 

FCI 

Direct costs excl. membrane system 

Installed Equipment 1927 21 

Piping  771 9 

Instrumentation and Control 385 4 

Electrical 193 2 

Buildings 128 1 

Yard Improvement 128 1 

Service Facilities 257 3 

Total direct costs 3790 42 

Indirect costs excl. membrane system 

Engineering and Supervision 835 9 

Construction and fee 642 7 

Contingency and fee 450 5 

Total indirect costs 1927 21 

Membrane system installed cost 3300 37 

Total Fixed Capital Investment (FCI) 9017 100 

 

Modifications to the receptor mill will be required to recover the sugars instead of the typical 

practice of using a neutralization liquor that damages the sugars prior to combustion in the 

recovery cycle. The cost for modifying the prehdyrolysis method in order to recover and redirect 

the hemicellulosic sugars to the furfural process is estimated at 10.7 M$. The fixed capital 

investment for the furfural plant is estimated at 9.0 M$ and the working capital 3.0 M$. The 

working capital is the provision required for the daily operation of the biorefinery and it was set 

at 15% of the fixed capital investment for the modification and for the furfural plant. The total 
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capital expenditure for the biorefinery is estimated to be 22.7 M$. The economic feasibility of the 

biorefinery was evaluated using the return on capital employed (ROCE).  

Two case studies were compared in the economic analysis. Case 1 is the potential integration 

previously mentioned and illustrated in Figure 5–9. For Case 2, it was estimated that there would 

be a reduction in the steam production in the recovery boiler (~10%) of the receptor mill due to 

the lower mass flow of black liquor after to hemicelluloses recovery and transformation in the 

furfural process. This debottlenecking effect could be used to increase the pulp production 

capacity by 10 %. The wood chip consumption at the mill would consequently increase to about 

2100 odt/d, while the evaporator load and energy production by the recovery boiler would be 

kept at its full capacity (same as without any hemicelluloses extraction). The furfural production 

capacity would also increase to 52 t/d. The energy and material integration of the biorefinery with 

the Kraft dissolving pulp mill is feasible in both cases 

The variables for calculation include.  

 Unit price of furfural: $1200 /t 

 Interest on capital: 10% 

 Margin on increase pulp production: $100/t 

 Tax rate: 30 % 

 Useful life: 20 years 

 Number of hours of operation : 8000 h 

The ROCE for Case 1and Case 2 is shown in Table 5.10.  
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Table 5.10: Economic analysis of the furfural biorefinery 

 

CASE 1 

(k$) 

CASE 2 

(k$) 

Total capital expenditure 22,700 24,036 

Revenue for sale of furfural 20,736 22,810 

Revenue for increased pulp production - 2,484 

Net Revenue 20,736 25,294 

Operating cost 8,590 9,096 

EBIDTA 12,146 16,198 

Depreciation 1,135 1,202 

EBIT 11,011 14,996 

Tax rate 3,303 4,499 

Interest 1,135 1,202 

Net Income 6,572 9,295 

Other costs* 2,908 3,079 

ROCE 26% 34% 

* includes costs for maintenance, receivables and inventory 

 

The ROCE indicates that the biorefinery is economically feasible and the production of additional 

pulp can increase the profitability by 8 % for case 1. To better understand the range of economic 

feasibility of the biorefinery, the sensitivity of the ROCE to the price of furfural, the margin on 

increased pulp production, and the amount of additional pulp were estimated and shown in Figure 

5–11. At low furfural prices the IFBR would still be profitable with a ROCE of 20%. The net 

gains from the production of additional dissolving pulp could also contribute significantly to the 

profitability of the IFBR, especially at high dissolving pulp prices. The investment cost for the 

membrane filtration systems had a minor effect compared to the other variables within the 

studied range. The IFBR for furfural production is profitable and can successfully increase the 

revenue stream for the receptor Kraft dissolving pulp mill. 
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Figure 5–11: Sensitivity of return on capital employed (ROCE) for the biorefinery 

5.6 Conclusion 

A novel integrated biorefinery process configuration for the production of furfural has been 

proposed. It comprises prehydrolysate concentration using nanofiltration membranes prior to 

sugars conversion and furfural purification. A simulation model for the process was developed 

and applied to a heat exchanger network design and the implementation of an absorption heat 

pump for energy upgrade. The minimization of the heating and cooling requirements led to a 

highly energy efficient process. The integration of the biorefinery in an operating Canadian 

receptor pulp mill was evaluated and it was demonstrated that the energy, water and chemicals 

requirement of the furfural process can be supplied by the mill. Economic analysis confirmed that 

the feasibility of the biorefinery is enhanced by the low thermal energy consumption for the 

added furfural process, which is 13.4 GJ/ton, and represents only 31% of the energy requirement 

in existing processes for furfural production. Also, concentration of the prehydrolysate prior to 

conversion makes it possible to reduce the dimensions of the process units; this also translates 

into cost saving for the biorefinery. It was shown that the biorefinery is economically feasible 

even at low furfural prices. Such a biorefinery can be a first step towards the production of 

sustainable biochemicals and increased revenues for dissolving pulp mills. 
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Abstract 

The prehydrolysate stream from a Kraft dissolving pulp mill can be valorized by fermentation of 

the hemicellulosic sugars into biofuels or bioproducts such as ethanol or butanol, instead of the 

typical practice of combustion to produce energy. A precondition to ensure the survival of the 

fermentation microorganisms and to have high fermentation yields is to remove the inhibitors 

present in the prehydrolysate such as organic acids, furans and phenolic compounds. 

Concentration of the prehydrolysate is also necessary to reduce the size of the processing 

equipments and lower energy cost. The purpose of this study was to develop a strategy for the 

concentration and detoxification of hemicelluloses prehydrolysate to lower the production costs 

of biofuels. Laboratory experiments were conducted to screen and select suitable organic 

membranes among 7 samples of reverse osmosis, nanofiltration and ultrafiltration membranes. 

Three membranes (Dow NF270, Trisep TS40 and Trisep XN45) produced the highest sugar 
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retentions relative to inhibitors removal. They were however not efficient for the removal of the 

phenolic compounds It was also observed that flocculation with ferric sulfate as coagulant could 

be utilized as a secondary detoxification step that can be combined with nanofiltration. The 

optimization of the flocculation step with a jar test showed that the highest phenolics removal 

(≈80%) can be obtained when the ratio of ferric ions to phenols is 1g/g, and the pH is between 6.5 

and 7.5. A process concept for the detoxification and concentration has been developed based on 

these experimental results. 

Keywords 

Membrane filtration, Prehydrolysate detoxification, Concentration, Inhibitors removal 

6.1 Introduction  

Lignocellulosic biofuels have gained wide attention in recent times because they can be 

manufactured from a broad range of non-food feedstock such as agricultural residue, forest 

residue and municipal solid wastes. Furthermore, they are sustainable and provide an avenue for 

reducing greenhouse gas emissions. A forest by-product that can be converted into biofuels is the 

prehydrolysate from a dissolving Kraft pulp mill that is normally concentrated and combusted to 

produce energy [1, 2]. It is a dilute stream comprising hemicellulosic sugars that can be 

fermented into ethanol or butanol. In addition to the sugars, the prehydrolysate also contains 

lesser quantities of organic acids, phenolic compounds and furans that can inhibit fermentation. A 

pulp mill with an added process for biofuels production on its site with which it exchanges 

materials and energy streams constitutes an integrated forest biorefinery [3]; it could lead to 

increased revenue for existing pulp and paper mills. The production cost of the biofuels in the 

IFBR should be cost competitive with biofuels made sugar cane or starch crops. Two important 

steps to enhance the economic feasibility of the integrated forest biorefinery based on the 

integrated forest biorefinery are:  

 Concentration of the dilute prehydrolysates to reduce the process equipments size and 

energy cost  

 Removal of the toxic compounds that can inhibit the growth of the fermentation 

microorganisms and lead to low sugar conversion yields 
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The inhibitory compounds are degradation products of the different classes of wood components 

(cellulose, hemicellulose and lignin) that are formed during the extraction of the hemicelluose 

sugars from wood chips in the Kraft process. The amount of inhibitors formed depends on the 

severity of the prehydrolysis (pH, pressure and temperature), type of biomass, presence of 

catalysts and duration of the reaction. The pathways for the formation of the main inhibitory 

compounds are shown in Figure 6–1. 

Lignocellulosic Biomass

Hydroxymethylfurfural

Cellulose Hemicellulose

Hexoses

Galactose

Mannose

Glucose

Lignin

Hexoses

Glucose

Pentoses

Xylose

Arabinose

Furfural PhenolicsAcetic Acid
 

Figure 6–1: Sources of the main inhibitory compounds produced during prehydrolysis 

Methods that have been used for the detoxification of hydrolysate solutions include alkali 

treatment with ammonium hydroxide or by over liming [4], with activated carbon [5], ion 

exchange resins [6], nanofiltration membranes [2] and evaporation [7]. Only membrane filtration 

and evaporation are capable of concentrating the prehydrolysate amongst the methods listed. 

Although evaporation is efficient for removing the volatile inhibitors, its use is ineffective to 

remove the non-volatile lignin degradation products [8]. It also requires a high amount of energy 

for the evaporation of water. To avoid these drawbacks, the use of membranes is recommended. 

The reported studies showed that neutralization with an alkali is efficient for acetic acid removal 

but less efficient for furfural and phenolic compounds, while activated carbon is efficient for 

phenols removal only. Evaporation and membrane filtration are efficient for furfural and acetic 

acid removal. A detoxification strategy for conditioning hemicelluloses prehydrolysate from a 

Kraft dissolving pulp mill can be developed by combining two or more methods to attain the 

following objectives:  

 Simultaneous detoxification and concentration of the prehydrolysate, 

 Minimal loss of hemicellulosic sugars, 
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 Limited wastes generation, 

 Low energy requirement,  

 short residence times, 

 No production of residual metal salts that can also inhibit fermentation. 

The phenolic compounds are more difficult to eliminate so a detoxification strategy should 

comprise of two different steps. 

A comparison of different detoxification methods has been reported [9]. The application of 

published results to this case study is however not feasible because the reported detoxification 

tests were carried out on solutions generated using different lignocellulosic biomass and a wide 

variety of hydrolysis methods and conditions. Our objective has thus been to:  

1 Identify and select a commercially available membrane for inhibitors removal and 

concentration 

2 Screen different methods and select the most suitable to complement  membrane filtration 

3 Optimize the operating conditions  to ensure high inhibitors removal 

4 Propose a strategy for concentration and detoxification of hemicelluloses prehydrolysates 

Several commercially available organic membranes with Molecular Cut Off Weights (MWCO) 

between 100 and 3500 Da were tested using prehydrolysate generated in a pilot plant from a 

wood furnish similar to that of an eastern Canadian dissolving pulp mill. The Dow NF270, Trisep 

TS40 and Trisep XN45 were identified as the most promising for concentration and 

detoxification depending on the sugar monomer fraction of the prehydrolysate. It was however 

discovered that a secondary detoxification step is required to remove the phenolic compounds. 

The method appropriate for this step was identified by comparing activated carbon adsorption 

and flocculation with ferric sulfate, alum and chitin. It was shown that the use of ferric sulfate 

provided the highest phenolic compounds removal relative to sugar losses. The optimum 

conditions for flocculation were determined and the results have been used to design and propose 

a detoxification strategy that could be applied to biorefineries. 
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6.2 Materials and Methods 

6.2.1 Materials 

The two sets of prehydrolysate solutions used in the experiments were generated in a pilot 

digester. The first solution was prepared with steam at 700 kPa, 170 ºC for 110 minutes followed 

by hot water treatment for 15 minutes [10]. A mixture of aspen (60%) and maple (40%) wood 

chips was used for the prehydrolysate solution. The second solution was prepared by using hot 

water only. Water was added to the digester and it was heated indirectly with steam to 170 °C in 

50 minutes. The digester was maintained at 170 °C for an additional 65 minutes. The 

compositions of the generated prehydrolysate solutions are given in Table 6.1.  

Table 6.1: Composition of prehydrolysate used for the experiments 

 

Concentration (g/L) 

Component Solution 1 Solution 2 

Total sugars 21,8 39.0 

Total phenols 4.7 4.6 

Acetic Acid 3.8 6.3 

Sugar monomers 3.1 6.5 

Total solids 3.4 4.5 

Furfural 0.7 0.7 

Hydroxymethylfurfural 0.1 0.1 

K 0.04 - 

Na 0.02 0.01 

Ca 0.15 0.16 

Fe 0.00 0.00 

Solution 1 was used in the preliminary experiments while solution 2 was used to validate the 

efficiency of the strategy with a different solution. 

Activated carbon was purchased from Jacobi Carbons Ltd, alum powder from Bulk Barn Ltd, 

Canada and ferric sulfate from Mallinckrodt analytical reagents. The Folin & Ciocalteu’s phenol 

reagent and 3,5-Dinitrosalicylic acid were purchased from Sigma Aldrich. Potassium sodium 

tartrate (Rochelle salt) came from MP Biomedicals and sodium hydroxide from Laboratoire 
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MAT. Sulfuric acid was purchased from Caledon Laboratories Ltd and Chitin originated from 

ABK-Gaspésie Inc. All materials were used as received without further purification. 

6.2.2 Membranes and filtration procedure 

The SEPA  CF II, cross-flow flat-sheet membrane from GE OSmonics that was used in this study 

has been described in a previous publication [11]. The membrane test unit can accommodate 

various flat sheet membranes. A fresh membrane sheet was used in each experiments. As 

illustrated in Figure 6–2 A), the prehydrolysate in the tank was fed to the membrane unit at a 

predetermined volumetric flow rate and pressure. Samples of the permeate and concentrate 

streams were taken for analysis at regular intervals after the flows reached steady state. The same 

procedure was repeated in all the membranes screening experiment. 
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Figure 6–2: Schematic of membrane system for A) membrane selection B) prehydrolysate 

concentration 

The observed retention (rejection) of the main components was used as a measure of 

detoxification efficiency and was determined using equation (1), where Cf represents the 

concentration of the component in the feed and Cp the concentration in the permeate. 

R = 100 * (Cf - Cp)/Cf    ( 24 ) 

Concentration trials with the selected membranes were performed by discharging the permeate 

stream to a reservoir as shown in Figure 2B). The volumetric concentration factor (VCF) 

obtained can be calculated by equation (2). 

VCF=Vi/Vf      ( 25 ) 
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In this equation, Vi is the initial feed volume and Vf the final feed volume. The VCF is 1 during 

the membrane selection run when no concentration is performed. The characteristics of seven 

commercial organic membranes were evaluated. The retention and flux characteristics for six of 

the membranes with molecular weight cut off (MWCO) between 100 and 500 have been 

previously reported [10]. The seventh membrane, an ultrafiltration membrane with a MWCO of 

3500 was compared in order to broaden the experimental range. 

6.2.3 Activated Carbon (AC) adsorption 

Two types of adsorption tests were carried using activated carbon. The first was a batch series of 

experiments in which 5g, 10g and 15 g of activated carbon was mixed with 150 mL of 

prehydrolysate at room temperature in a magnetically stirred flask. A treated sample (1 mL) was 

taken for analysis after 45 minutes and the stirring was continued for another 45 minutes before 

the final sample was taken. The treated prehydrolysate was collected and filtered through a 0.45 

µm membrane. The second test was a continuous experiment run in which activated carbon was 

introduced into a 4 cm diameter burette. Prehydrolysate was then fed into the burette and allowed 

to pass through the activated carbon layer. Treated prehydrolysate was collected in a graduated 

cylinder and passed through a 0.45 µm filter before analysis. 

6.2.4 Flocculation 

Preliminary flocculation tests were carried out in beakers. Calculated doses of the flocculants 

(chitin, ferric sulfate - Fe2(SO4)3.6H2O, and Alum - KAl(SO4)2.12H20) were added to 500 mL of 

the prehydrolysate solution, this was followed by the addition of sodium hydroxide to bring the 

pH to 6. The beakers were stirred using a magnetic stirrer for 30 minutes and left to settle. 

Treated prehydrolysate were analyzed with and without passing the samples through a 0.45 µm 

filter. After a flocculant had been selected, optimization experiments for the coagulant dosage, 

pH, and choice of alkali for pH adjustment were carried out with a jar test apparatus. The jar was 

agitated for 15 minutes upon addition of the flocculant at a speed of 150 rpm. The speed was then 

reduced to 50 rpm after adjustment of the pH for another 30 minutes. 
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6.3 Analyses 

6.3.1 Sugars analysis 

Sugar monomers composition in the prehydrolysate was measured using a Dionex DX600 ion 

chromatograph equipped with a pulsed amperometric detector and Carbopac PA1 column [12]. 

The oligomeric sugars content was determined by hydrolysis using 2.5 % wt/vol of sulphuric acid 

for 120 minutes in an autoclave prior to analysis. The dinitrosalycilic acid (DNS) colorimetric 

method [13] was adapted for determining the total reducing sugars before and after filtration and 

flocculation experiments.  

6.3.2 Furans analysis 

Furfural and hydroxymethylfurfural composition were measured by HPLC (Agilent 

Technologies, Germany) using a 280 nm diode array detector (DAD) and a Nucleosil C18 

column. The eluent used was a mixture of acetonitrile, water and acetic acid [11]. 

6.3.3 Phenols analysis 

The total phenols composition was measured by a UV-Visible colorimetric method using a 

Folin–Ciocalteau reagent method adapted from Singleton and Rossi [9]. A volume of 500 µL of 

diluted samples, a blank sample and standard solution were pipetted in separate tubes, 3800 µL of 

water and 200 µL of Folin-Ciocalteu reagent were added. After 3 minutes, 500µL of  NaOH  6% 

(wt/vol) was added, the tubes were vortexed and the samples were placed in the dark to stabilize. 

The absorbance was measured at 725 nm and the total phenol content was calculated as gallic 

acid equivalents. A HPLC analysis method that is capable of measuring gallic acid, catechol, 

vanillin and syringaldehyde was developed. The previously described HPLC was equipped with a 

280 nm DAD for gallic acid and catechol detection and a 313nm DAD detector for vanillin and 

syringaldehyde. In both cases, a Nucleosil C18 column (150 x 4.6 mm) was used. The eluent 

used was a mixture of acetonitrile and 0.1% wt/wt of phosphoric acid solution (CH3CN 15%, 

phosphoric acid solution 85%) and it was fed to the column at 17000 kPa and 25ºC at a flow rate 

of 0.8 mL/min. 
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6.3.4 Organic acids analysis 

Organic acids concentrations were measured using the same HPLC. It was however equipped 

with A 210 nm diode array detector (DAD) and an Inertsil ODS-3 (150 X 4.6 mm) column. The 

method was adapted to determine the concentrations of acetic, lactic, propanoic and butyric acids. 

6.3.5 Physico-chemical characteristics 

The metal ions were measured with an Optima 4300 DV Inductively coupled plasma atomic 

emission spectroscope (PerkinElmer Inc., USA). An Accumet AB250 pH/ISE Meter (Fisher 

Scientific, USA) and an Orion 3-Star Benchtop Conductivity Meter (Thermo Scientific, Canada) 

were used to measure the pH and conductivity respectively. 

6.4 Results and discussion  

6.4.1 Membrane selection 

The measured retention of sugars and phenolic compounds was in the same range for all the 

membranes. The objective of the detoxification step is to identify a membrane that displays a 

wide gap between the retention of sugars and inhibitors (phenolic compounds included). The 

sugars and phenolics retentions decreased with increasing membrane MWCO and the highest 

retention was produced by a reverse osmosis membrane (TW30) with a MWCO of ~150 Da, 

while the lowest sugars and phenolic compounds retention was obtained with the UA60 

membrane, a tight ultrafiltration membrane with a MWCO of 1000 – 3500 Da. The other 

inhibitors did not follow a similar trend and this implies that the factor governing the retention is 

not only the size of the molecules in the prehydrolysate. Electrostatic repulsion could also play a 

role as each membrane has different charge characteristics. The seven membranes that were 

compared and their degree of relative retention of components are shown in Figure 6–3. 

Membranes TW30 and NF90 retained most of the inhibitors and were excluded from the list of 

potential detoxification alternatives. The other membranes with various degrees of inhibitors 

removal were retained as possible concentration alternatives except for the UA60, which 

produced the highest sugar losses. A final choice of membrane can be made based on the fraction 

of sugar monomers present in the prehydrolysate. Another criterion can be employed if the 

membranes exhibit similar sugar retention and inhibitor removal is the energy requirement. The 
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energy implications of the membranes have already been reported by Ajao et al [10]. In cases 

where membranes exhibit comparable component retentions, the membrane that requires a lower 

pressure (power requirement) for an equivalent pure water flux rate should be chosen. The XN45 

and NF270 membrane were selected as alternatives for all further detoxification experiments in 

this case study. 

 

Figure 6–3: Membranes and observed retentions, in order of increasing MWCO (L-R) 

6.4.2 Effect of operating conditions on membrane flux and retention 

characteristics 

The XN45 membrane was subjected to compaction to evaluate whether the sugar losses can be 

reduced. Compaction is a physical compression of membranes which can alter the flux and 

retention characteristics of a membrane [14]. It increases with increasing temperature and 

pressure. A significant reduction in the permeate flux was observed at the beginning of 

concentration as shown in Figure 6–4. 
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Figure 6–4: Permeate flux decline during concentration 

At a concentration factor of 5, changing the feed pressure and cross flow velocity did not result in 

a change of permeate flow. An industrial feasible permeate flow of 3.5 mL/min (permeate flux of 

14 L/m2h) can be produced during concentration as long as the concentration factor does not 

exceed 3.6. It is also necessary to have concentration conditions that minimize the rapid flux 

decline at the beginning of concentration. Increasing the feed pressure, cross flow velocity and 

temperature, from 550 kPa / 0.4 m/s/ 30ºC to 2100 kPa / 0.5 m/s/ 40ºC to favour compaction 

revealed that the sugar retention increased from 84 % to 92 % and acetic acid retention was less 

than 1 % as shown in Figure 6–5 A). An undesired effect was observed, the retention of phenolic 

compounds also increased in similar manner to the sugars. The combined effect of compaction 

and pH on the retention of phenolic compounds and sugars was also investigated and the results 

are shown in Figure 6–5B. Compaction of the membrane was performed prior to filtration using 

distilled water at two pressure values, 2100 kPa and 3100 kPa. The pressure values that were 

selected exceeded manufacturer recommended upper pressure limit of the XN45 membrane 

(1380 kPa). After the compaction, 4 prehydrolysate filtration tests at 750 kPa / 0.4 m/s/ 30ºC 

were performed. The pH was adjusted from 3.5 to 2.8 using hydrochloric acid for two of the four 

experiments. 
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Figure 6–5: Component retentions after A) compaction B) compaction before pH adjustment and 

filtration 

It was observed that the effect of the pressure at which compaction with distilled water was 

carried is negligible. No significant difference resulted from compaction of the membrane at 

3100 kPa instead of 2100kPa, the sugars and phenolics retention remain unchanged. A lower pH 

increases the sugars retention in both cases but does not lead to lower phenolic compounds 

retention. This could be due to the presence of lignin-carbohydrate complexes (LCCs), which 

exist as a result of chemical bonds between lignin and carbohydrates (sugars). Fractionating the 

complexes posed a challenge in finding a complementary detoxification method that would 

enable improved sugar retention and at the same time reduce the retention of the phenolic 

compounds, this is discussed below. 

6.4.3 Secondary detoxification method selection 

6.4.3.1 Screening and identification 

Several methods were evaluated to identify a secondary detoxification method with high phenolic 

compounds removal and high retention of the hemicellulosic sugars. They include treatment with 

activated carbon and with common flocculants (ferric sulfate, alum and chitin) as illustrated in 

Figure 6–6. Activated charcoal is used industrially as an efficient adsorbent. Flocculation, a 

process for agglomeration of colloids, is widely used for the treatment of drinking water. The 
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effect of passing the prehydrolysate through a 0.45 µm filter was also evaluated, because samples 

from flocculation with ferric sulfate, alum and chitin must be passed through a filter before 

analysis, but it was shown to be negligible. Activated carbon treatment using a column and 

flocculation with ferric sulfate showed the highest degree of phenolic compounds removal. 

Activated carbon treatment however had a side effect which was the adsorption of sugars 

together with the phenolic compounds. It could be concluded that the selectivity exhibited by 

activated carbon is not suitable because it is not specific enough to target only the phenolic 

molecules. The higher the phenolics removal the higher was the associated sugar losses, this 

observation is confirmed by another study on the use of activated carbon to treat spent liquor 

from a sulfite pulping process [15]. The sugar loss with the use of this method makes it infeasible 

as a detoxification method on a large scale for biofuels production. In addition, saturation of the 

activated carbon might pose a challenge as the detoxification will not be effective after a certain 

period. The highest phenolics removal relative to the retention of sugars was observed when the 

ferric sulfate supernatant was passed through a 0.45 µm filter. 

 

Figure 6–6: Comparison of alternatives for secondary detoxification of prehydrolysate 

The use of ferric sulfate was retained as a secondary detoxification step and further experiments 

to optimize the selectivity during flocculation were performed. 
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6.4.4 Flocculation with ferric sulfate 

6.4.4.1 Optimum flocculant dosage 

Iron (III) ions form complexes with various phenolic compounds by a chelation mechanism in 

which a molecule forms several bonds with a single metal ion [16, 17]. The degree of chelation is 

a function of pH, the structure of the compounds present and of the quantity of metal ions [18]. 

Series of experiments were designed to determine the optimum ratio of Iron to phenols 

[Fe]/[Phenols] and pH for flocculation. The prehydrolysate used in the preliminary tests was 

diluted by a factor of 4 to obtain phenolics concentration of 1 g/L. The coagulant, used for the 

experiments was a 200 g/L solution of hydrated ferric sulfate Fe3(SO4)2.6H2O with a Iron (Fe3+) 

ions concentration of 43.97 g/L. A sensitivity study with six different doses of the covering a 

wide range of Iron to phenols [Fe]/[Phenols] ratios between 0.25 and 2 as illustrated in Figure 6–

7. The tests were performed at room temperature with the solution stirred at 150 rpm for 15 

minutes. The pH was subsequently adjusted to 6 (+/- 2%) in all jars using a 5M NaOH solution 

and the rotation speed was reduced to 50 rpm and stirring continued for 30 minutes. Flocculation 

requires a lower mixing speed to promote the agglomeration of the colloids and prevent the 

break-down of the flocs that are formed.  

E-1 E-2 E-3 E-4 E-5 E-6

AGITATION

[Fer]/ [phénols] 

ratio (g/g)

Phenols 

Elimination (%)

Sugars

Recovery (%)

0,25 0,5 0,75 1 1,5 2

7 40 59 61 63 80

74 66 69 81 64 60

 

Figure 6–7: Effect of coagulant dosage on the sugars recovery and phenols elimination 

It was observed that the highest sugars recovery (81%) can be obtained when the [Fe]/[Phenols] 

ratio is 1. Exceeding this does lead to an increased chemical consumption without any benefit to 

the recovery of sugars. This dosage also represents a good compromise between sugar recovery 
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and phenols elimination. Validatory tests were made to confirm the [Fe]/[Phenols] ratio using 

non diluted prehydrolysate and the same results were obtained. 

6.4.4.2 Optimum pH for flocculation 

The most favourable pH for flocculation was determined by carrying out flocculation studies at 

the optimum dosage identified earlier ([Fe]/[Phenols]=1) but with the pH in the jars varying 

between 4 and 9. The mechanism of flocculation with the use of ferric sulfate is a reduction of 

electric charge. Positively charged ions (Fe3+) which have an opposite charge to the phenol ions 

(OH-) were introduced to the prehydrolysate. The flocculation was further improved and the 

sedimentation velocity increased by raising the alkalinity of the solution. NaOH was used to 

adjust the pH. As shown in Figure 6–8, the phenolics retained in the supernatant were at the 

lowest when the pH was between 6.5 and 7.3. This indicates that the near neutral pH is most 

favourable for flocculation of the prehydrolysate.  

  

Figure 6–8: Relative amount of sugars and phenols in the supernatant after flocculation 

Metal ions in the prehydrolysate could be toxic to microorganisms. The presence of sodium ions 

has been shown to be a potential cause of fermentation inhibition [19], An analysis of the 

supernatant by inductively coupled plasma (ICP) was therefore carried out quantify the metal 

ions after flocculation. The results showed that the amount of residual iron at a pH between 6.5 

(24 ppm) and 8.5 (0 ppm) was low so that there is no likelihood of inhibition effects from iron. A 

different observation was made for the residual sodium in the supernatant, the measured 

concentration was about 6 g/L, and high.  

0%

20%

40%

60%

80%

100%

4.06 4.99 6.5 7.3 8.53 9.58
Sugars recovered Residual Phenols



136 

 

Further jar tests in which the pH adjustment was carried out with Ca(OH)2 instead of NaOH were 

performed to resolve this problem. The results obtained showed that residual calcium ions 

concentration was 1/3 that of sodium ion. Furthermore, no reported inhibition effect due to Ca+ 

ions was found. The use of lime did not result in any observed change to the sugar recovery and 

elimination of phenols. It was concluded that the pH rather than the nature of the alkali used 

plays a more important role. Ultimately, the use of Ca(OH)2 for pH adjustment is more suitable to 

prevent the formation of salts which are soluble and can inhibit the growth of microorganisms.  

6.4.4.3 Effect of hydrolysis before flocculation on sugars recovery and phenols removal 

All previous experiments were carried out using an untreated prehydrolysate solution that 

contained about 80% oligomeric sugars. However, to determine if the presence of sugar 

monomers would improve the sugar recovery relative to phenols removal a set of experiments 

was carried out. Since monomers have a lower molecular weight and higher solubility than the 

oligomers [20], it was expected that they would be less prone to formation of complexes with 

iron. Hydrolysis was performed by adding 1.5% wt/wt of sulfuric acid to the prehydrolysate and 

heating the mixture in an autoclave at 121°C for 1 hour. The optimal coagulant dosage and pH 

were determined. It was observed that the sugar recovery with the hydrolysate solution was about 

10 % higher than with the prehydrolysate at pH between 4 and 9.5. The removal of phenolic 

compounds was lower between pH of 4 to 6, but slightly higher at pH between 7.3 and 8.5. A 

higher amount of alkali is required to adjust the pH for the hydrolysate because of the sulfuric 

acid introduced. This also led to an increase of residual sodium in the supernatant which was 3 

times as high as for the prehydrolysate. In contrast to the prehydrolysate where no changes were 

observed, adjusting the pH during flocculation of the hydrolysate with Ca(OH)2 instead of NaOH 

resulted in higher sugars recovery (94% vs 78%) while the phenolics removal remained 

unchanged (~60%). The removal of phenolics from the hydrolysate solution can be attributed to 3 

factors, flocculation with ferric sulfate, neutralization with lime and oxidation of some phenols 

during acid hydrolysis. Flocculation plays the most important role. The sugars recovery and 

residual phenolic compounds in the prehydrolysate and hydrolysate are shown in Figure 6–9. 



137 

 

 

Figure 6–9: Sugars recovery and residual phenolics in the prehydrolysate and hydrolysate after 

flocculation 

The standard Folin-Ciocalteau reagent method cannot be used to quantify the different phenolic 

compounds present in the prehydrolysate. To determine the selectivity of flocculation to 

individual phenolic compounds, a HPLC was used to analyze the quantity of the key phenolic 

compounds (vanillin and syringaldehyde), which are known to have an impact on fermentation. 

The fractions removed for both compounds were 26 % in the prehydrolysate, 30 and 26% of the 

vanillin and syringaldehyde were removed from the hydrolysate respectively. 

6.4.4.4 Effect of flocculation on other inhibitors 

In addition to the elimination of about 70% of the phenolic compounds that has been 

demonstrated, flocculation also led to the removal of other inhibitors in both the prehydrolysate 

and hydrolysate solutions. More than 54% of the acetic acid was removed while the removal of 

furfural and hydroxymethylfurfural was about 15-20%. The fraction of inhibitors removal from 

the hydrolysate due solely to the alkali pH adjustment was determined for Ca(OH)2. It was 

concluded that pH adjustment alone led to about 15 % of the total removed inhibitors for all 

compounds (acetic acid, furfural and hydroxymethylfurfural).  
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6.4.5 Strategies for sugars recovery and detoxification, and future 

perspectives 

Membrane filtration can be used for the removal of some of the inhibitors (acetic acid, 

hydroxymethylfurfural and furfural) present in the prehydrolysate. As shown in Figure 6–3, the 

removal of the phenolic compounds by membrane filtration alone is not feasible while 

concentrating the hemicellulosic sugars up to a factor of 3.5. A additional detoxification step is 

therefore necessary. Flocculation using ferric sulfate has been shown to be capable of removing 

up to 70% of the phenolic compounds and recovering more than 75% and 90% of the sugars in 

the prehydrolysate and hydroylsate respectively. The 3 alternative process configurations that 

were proposed and evaluated for prehydrolysate concentration and detoxification based on 

experimental results are illustrated in Figure 6–10. Process comparisons were made using criteria 

such as minimum sugar losses, amount of inhibitors removed and pH adjustment. The concepts 

were applied to a prehydrolysate solution with compositions of sugars (39 g/L), phenol (4.6 g/L), 

acetic acid (6.3 g/L), furfural (0.7 g/L) and hydroxymethylfurfural (0.1 g/L) 
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prehydrolysate
HYDROLYSIS FLOCCULATION

MEMBRANE 

FILTRATTION

Conc. & detoxified  

hydrolysate

MEMBRANE 

FILTRATION
HYDROLYSIS FLOCCULATION
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Conc. & detoxified  
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Conc. & detoxified  

hydrolysate
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prehydrolysate

Dilute 

prehydrolysate

 

Figure 6–10: Alternative process configurations (A-C) for concentration and detoxification of 

hemicellulose prehydrolysate 

6.4.5.1 Configuration A (Hydrolysis –Flocculation – Membrane filtration) 

A hydrolysate solution that had been flocculated was filtered using the XN45 membrane that was 

shown to have the highest inhibitors removal after hydrolysis. The sugar losses were elevated 

because the oligmoeric sugars had been broken down into simple sugars, which are not easily 

retained by the membrane. The higher the amount of recovered sugars, the higher the amount of 

phenols retained in the prehydrolysate. Lowering the pH from 6.2 to 3.0 confirmed that even 
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though the sugar losses can be reduced from 75% down to 66%, the use of this configuration is 

not suitable for a biorefinery process. 

6.4.5.2 Configuration B (Flocculation – Membrane filtration – Hydrolysis) 

Prehydrolysate that had been flocculated was filtered using the XN45 membrane at a cross 

velocity of 0.45m/s, a temperature of 30°C and a transmembrane pressure of 2100 kPa. Although 

the sugars had not been broken down into simple sugars, the sugar losses were as high as 40 %. 

Adjusting the pH from 7 to 3 did not improve the sugars retention. The lower retention of the 

sugars could be due to a change in the composition of the prehydrolysate induced by the 

flocculation step. Many compounds and ions form complexes and are decanted. In addition, a 10 

% decrease in the total solid content was observed after flocculation. It could be concluded that 

the composition of the prehydrolysate solution plays an important role in the retention of sugars 

and phenols that can be achieved. The filtration system was operated at a cross velocity of 

0.45m/s, a temperature of 30°C and a transmembrane pressure of 2100 kPa. 

6.4.5.3 Configuration C (Membrane filtration – Hydrolysis –Flocculation) 

The retention characteristics observed for all the membranes in Figure 6–3 showed that the 

membrane with the highest degree of inhibitors removal is XN45 and compaction can be used to 

limit sugar losses. These results are valid for prehydrolysate solutions where the sugar monomers 

constituted less than 10% of the total sugars in the prehydrolysate. In cases where the sugar 

monomers make up a larger fraction of the oligomers, a different membrane such as the NF270 or 

TS40 would be a good compromise between minimum sugar losses and maximum inhibitors 

removal. This was taken into account during the process configuration evaluation step. A NF270 

membrane was also investigated. The prehydrolysate was concentrated by a factor of 3 before 

being subjected to acid hydrolysis. A diminution of the phenol content (42%) was observed after 

hydrolysis. Flocculation after hydrolysis was carried out with a dosage ratio of 

[Fe]/[phenols]=1g/g. This resulted in a reduction of the phenols content down to 26% of the 

original value as shown in Figure 6–11. 
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Figure 6–11: Sugar recovery and residual phenolic compounds evolution with configuration C 

The increased reducing sugar concentration after hydrolysis can be explained by the increase in 

number of aldehyde groups that occurs when the sugar oligomers are broken down into 

monomers. Flocculation however resulted in about 24% loss of the sugars in the hydrolysate. At 

the same time, the amount of phenols removed during the flocculation and concentration is about 

74 %. The final amount of phenolic compounds in the concentrated prehydrolysate was reduced 

from 15.9 g/L down to 4.1 g/L  

6.4.5.4 Proposed Strategy 

The objective of the proposed strategy is to concentrate and detoxify the prehydrolysate from a 

receptor Kraft pulp mill for biofuels production. It has been shown that the use of nanofiltration 

membranes allows for the simultaneous concentration and partial detoxification of hemicelluloses 

prehydrolysate. Secondary detoxification by flocculation can be performed after hydrolysis of the 

concentrated prehydrolysate. As shown in Table 6.2, the use of dilute acid to convert the 

concentrated prehydrolysate into concentrated hydrolsate decreased the concentration of phenolic 

compounds but led to an increase of the acetic acid, furfural and hydroxymethylfurfural. 

Table 6.2: Evolution of prehydrolysate composition during detoxification (Membrane filtration – 

Hydrolysis –Flocculation)  
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Compounds Prehdyrolysate 
Concentrated 

Prehydrolysate 

Concentrated 

Hydrolysate 

Flocculated 

Hydrolysate 

Total sugars (g/L) 39 118 155 129 

Phenolic compounds  (g/L) 4.51 15.59 8.97 4.06 

Acetic Acid  (g/L) 6.33 12.40 29.90 5.85 

Furfural  (g/L) 0.66 1.08 1.67 1.17 

Hydroxymethylfurfural (g/L) 0.09 0.18 0.29 0.21 

Our hypothesis is that the increase in the concentration of inhibitors as a result of acid hydrolysis 

can be minimized successfully by the use of enzymatic hydrolysis. The use of a compacted XN45 

membrane instead of the NF270 membrane could also be used to remove a higher fraction of 

inhibitors prior to hydrolysis and flocculation. The integration of the proposed conceptual process 

with a Kraft dissolving pulp mill is illustrated in Figure 6–12.  
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Figure 6–12: Schematic flow sheet of the proposed concept for the concentration and 

detoxification  

The selected sequence of operations (membrane filtration – hydrolysis – flocculation) leads to 

high sugar recovery and the elimination of a significant fraction of the phenolics.  
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6.5 Conclusions 

A combined concept of nanofiltration and flocculation has been applied to the detoxification and 

concentration of prehydrolysate from a Kraft dissolving pulp mill. Screening of several 

commercial organic membranes with molecular cut of weights between 150 Da and 3500 Da 

showed that the Trisep TS40, Trisep XN45 and Dow NF270 membranes can be successfully 

applied to concentrate and detoxify hemicelluloses prehydrolysate solutions. The membranes 

produced high removal of fermentation inhibitors except for the phenolic compounds. The XN45 

had the highest degree of phenols removal. Flocculation with ferric sulfate was proven to be an 

interesting secondary detoxification method for the removal of phenolic compounds. A strategy 

for concentration and detoxification for integration with a Kraft dissolving pulp mill has been 

proposed; it is based on laboratory experiments. Pilot scale experiments are mandatory for 

detailed technical feasibly studies and economic assessment. Some of the envisaged variations to 

the process include the use of enzymatic hydrolysis instead of acid hydrolysis, identification of 

other flocculants and regeneration of the flocculant. 
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CHAPTER 7. FEASIBILITY OF INTEGRATING AN ETHANOL 

PROCESS WITH A DISSOLVING PULP MILL  

7.1 Introduction 

The cellulose fraction of woody biomass can be purified with a pulping processes to obtain rayon 

or specialty grade dissolving pulp. Rayon grade dissolving pulp can be further transformed into 

products such as textiles and flexible packaging material while specialty grade dissolving pulp 

can be transformed into microcrytstalline cellulose (MCC), pharmaceuticals, sausage casings, 

cigarette filters, transportation hoses and belts [46]. The predominant pulping process worldwide 

is the Kraft pulping process [1]. The main advantages of the Kraft process are (i) the pulp 

obtained has a higher strength than other pulping methods (ii) the chemicals used in the process 

can be recovered [4, 35] A state of the art Kraft dissolving pulping process is the VisCBC 

technology; its main advantages include a low energy demand, homogenous pulp and short 

residence time [158]. A disadvantage of this technology is that the steam prehydrolysis of wood 

chips is followed by a neutralization step that degrades the hemicellulosic sugars and renders 

them irrecoverable [2]. Usually, the degraded sugars are combusted for energy production. The 

process can be modified to recover the sugars by carrying a hot water displacement after the 

regular steam prehydrolysis [159]. Extracting the hemicelluloses would not result in a significant 

energy deficit for the mill because the heating value of the hemicelluloses is 50% lower than that 

of lignin, the other combusted wood fraction [5]. One of the proposed alternative uses of the 

hemicelluloses sugars is for the production of ethanol [132]. 

Ethanol production is one of the most studied processes in the past decade. The global ethanol 

production increased from 39 billion litres in 2006 and is expected to exceed 90 billion litres in 

2014 [156]. In recent times, the use of forest biomass for biofuels production has gained interest 

because it is not edible and does not compete for arable land.  

A biorefinery process that is implemented on the site of a pulp and paper mill, exchanges 

material, energy and chemicals with the receptor mill is known as an integrated forest biorefinery 

(IFBR). The IFBR could lead to the diversification of products and increases the revenues of the 

pulp mill. In addition, the investment cost is lower due to the existence of facilities on the pulp 

mill site and an established wood supply chain. Moreover, the pulp production capacity can be 
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increased if it is limited by the calorific capacity of the recovery boiler where the hemicelluloses 

is typically combusted.  

7.2 Context 

The case study reference mill is an eastern Canadian dissolving pulp mill with a production 

capacity of 670 odt/d (odt = oven dried tons). A batch digester is used for prehydrolysis, followed 

by pulping. The hypothesis in this study is that hot water displacement is used to recover the 

hemicellulosic sugars instead of neutralization with alkali liquor prior to pulping. High pressure 

(HP) steam is produced in the recovery boiler and a power boiler that is fired by wood bark and 

bunker oil. Steam at high and low pressure as well as electricity is generated in the co-generation 

system of the mill. The current steam consumption of the mill is about 250 MW and the water 

consumption is 2480 m3/h. A previous study on the development of a novel methodology for 

reducing steam and water consumption showed that up to 67.5 MW and 940 m3/h can be saved at 

the mill [160]. The ethanol process consists of concentration and detoxification, hydrolysis, 

conversion and purification steps. Opportunities for integration of the ethanol process with a 

receptor dissolving Kraft pulp mill is shown in Figure 7–1. 
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Figure 7–1 Simplified scheme of an integrated forest biorefinery for ethanol production 
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The composition and mass flow of the prehydrolysate stream was calculated based on results 

from pilot scale prehydrolysis experiment [80]. A wood furnish similar to that of the receptor mill 

was used in the experiment. About 80 % of the total sugars are oligomers and the remaining 20% 

monomers. 

Table 7.1: Composition of the ethanol process feed stream 

Components Mass Flow (t/d) 

Furfural 3 

Lignin 15 

Acetic Acid 17 

C6 sugars 17 

C5 sugars 83 

Water 4800 

 

7.3 Methodology 

The methodology used for developing the ethanol IFBR is illustrated in Figure 7–2. The 

real prehydrolysate solution was used to determine the amount of fermentation inhibitors to be 

removed from the hemicelluloses prehydrolysate. The prehydrolysate solution had a low sugar 

composition, concentration is therefore necessary for reducing the size of the process equipments 

and energy cost. A concentration and detoxification strategy was developed for hemicelluloses 

prehydrolysate [161]. Input data for the fermentation and purification steps of the biorefinery 

were obtained from published references and the Aspen Plus® (simulation software) database.  
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Figure 7–2: Overview of methodology for the ethanol biorefinery development 

7.4 Process overview 

The process diagram for the ethanol process is illustrated in Figure 7–3. The main steps of the 

biorefinery can be classified as concentration and detoxification (nanofiltration and flocculation), 

sugar conversion (hydrolysis and fermentation) and product purification (flash separators, 

scrubbers, distillation columns and molecular sieves). 
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Figure 7–3: Process diagram for ethanol production 

The screening of membranes with molecular weight cut offs (MWCO) between 100 and 500 Da 

to identify the most suitable for simultaneous concentration and detoxification has been reported 

[80]. 

Most of the inhibitors could be removed using a membrane except the phenolic compounds. It 

was necessary to identify a complementary detoxification method. Flocculation with ferric sulfate 

as coagulant was selected as a suitable method [13].  

Enzymatic hydrolysis was used to convert the oligomers into fermentable monomers. It has the 

following advantages over acid [133, 162, 163]: 

 High yield of sugar monomers  

 It generates less effluents that must be treated  

 It produces less inhibitors  
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 It can be carried out at mild condition and  

 Reduced cost of equipment 

The sequence (nanofiltration – enzymatic hydrolysis – flocculation) was used in the proposed 

process. The development of the detoxification strategy is presented in chapter 6. 

Fermentation of sugars can be carried out with several microorganisms such as E. Coli, C. 

Glutamicum, S. Cerevisiae, P. Stipitis, T. Reesei, and A. Niger [112]. As shown in Table 7.1, the 

extracted hemicelluloses fraction contains about 80 % of pentose sugars. The lack of organisms 

that can ferment pentoses with a high yield has been identified as one of the main obstacles for 

the conversion of hemicelluloses into ethanol or other biofuels [164-166]. The fermentation 

yields in this case study was based on a proprietary pentose fermenting yeast (personal 

communication with an ethanol production company). The flash separator, the scrubber and the 

first distillation column are used to remove carbon dioxide from the ethanol stream. The second 

distillation column is to purify ethanol up to its azeotropic point (80% weight) before dehydration 

with molecular sieves. 

7.5 Process Simulation 

Aspen Plus® V7.2 was used to simulate the process and generate the mass and energy balances. 

Property data for several compounds that were not present in the physical property database of 

Aspen Plus® were obtained from a published report and embedded into the software [167]. 

The nanofiltration membrane system, flocculation step and the final product dehydration with 

molecular sieves were modeled as split separators in Apen. The enzymatic hydrolysis reactor was 

represented as a stoichiometric reactor with 95 % conversion of the oligomers into monomers at 

101 kPa and 50ºC. The fermentation reactor was also modeled as a stoichiometric reactor with 

90% conversion of the hexose monomers and 70 % conversion of the pentose monomers into 

ethanol respectively. A two outlet flash module was used to represent the flash separator while 

the scrubber and the distillation columns were modeled as rigorous fractionating columns. 

Estimates for the starting values of the columns were determined with the McCabe-Thiele 

graphical method. The stream data for the ethanol process are summarized in Table 7.2. 

Table 7.2: Data for key process streams 
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Streams 

 

1 2 3 4 5 6 7 8 9 

T (ºC) 80 30 50 30 28 137 120 20 76 

P (kPa) 101 327 101 102 91 327 205 327 174 

Total flow (t/d) 4940 4775 954 954 55 804 76 804 57 

Water (t/d) 4797 4746 794 794 1 754 75 754 1 

Total C5 sugars (t/d) 82 0 135 43 0 43 0 43 0 

Total  C6 Sugars (t/d) 17 0 25 7 0 7 0 7 0 

Total monomer (t/d) 14 0 156 46 0 46 0 46 0 

CO2 (t/d) 0 0 0 54 54 0 0 0 0 

Ethanol (t/d) 0 0 0 56 0 0 1 0 55 

 

7.6 Energy requirement minimization and site integration 

The heating and cooling demands for the ethanol process are 8.41 MW and 20.6 MW 

respectively. Pinch analysis is a well known method for minimizing the heating and cooling 

demand in chemical processes [24, 39] and it was used to reduce the heating and cooling 

demands. The analysis was performed by means of the software, Aspen Energy Analyzer. Data 

for the hot and cold process streams were extracted and used to plot a T-H diagram as shown in 

Figure 7–4. 

 

Figure 7–4: Thermal composite curve for the ethanol biorefinery  
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The principles of the pinch analysis have been explained in details in chapter 5. The pinch point 

was found to be 136.5˚C, the minimum cooling requirement 16.1 MW and the minimum heating 

requirement 4.3 MW. To reduce the heating and cooling requirements of the process by internal 

heat recovery, two additional heat exchangers were implemented. Heat can be recovered from the 

prehydrolysate feed to the biorefinery (HX-01) and used to heat the reactor for enzymatic 

hydrolysis (R-01). Heat can also be recovered from the recycled stream (HX-03) and used to 

preheat the feed stream to the first distillation column (HX-02). The HEN design reduced the 

heating and cooling requirements to 4.6 MW (-45%) and 16.8 MW respectively (-19%) 

To further increase the thermal efficiency of the ethanol process, an AHP was implemented. The 

AHP principles of operation and stepwise methodology for installation have been described in 

details in chapter 5. Heat can be upgraded from the condenser of the second distillation column 

(COND-02) and used to drive the reboiler of the first column (REB-01). Heat is also available 

from the AHP to preheat water in the Kraft process. 

The total energy reduction that can be obtained by designing a heat exchanger network and 

implementing the heat pump is shown in Table 7.3. 

 

Table 7.3: Energy requirement minimization after HEN design and AHP implementation 

 

 

 

 

Considering the fact that up to 67.5 MW of steam and 940 m3/h of fresh water consumption can 

be saved at mill, the total heating requirement of the optimized biorefinery (3.31 MW) can be 

supplied by the receptor mill. The cooling requirement can also be met as only 185 m3/h of fresh 

water will be required to cool process streams in the biorefinery. The water can be returned at 

about 50ºC for direct use at the mill. An additional 201 m3/h of water from the membrane 

detoxification step can be reused in the receptor mill. 

 

BASE 

CASE 

OPTIMIZED 

HEN 

OPT.  HEN 

+ AHP 

SAVINGS 

(%) 

Heating Requirement (MW) 8.41 4.58 3.31 60 % 

Cooling Requirement (MW) 20.6 16.78 15.5 25 % 
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7.7 Conclusions 

An ethanol process for integration into a Kraft dissolving pulp mill is proposed. The integration 

has been shown to be technically feasible. The utility demands of the ethanol plant can be 

supplied by the mill. In comparison to the production of furfural, the ethanol plant has a lower 

heating requirement but a higher cooling requirement than the furfural process developed in 

chapter 5. The fermentation of pentoses still requires technological and scientific developments in 

the areas of prehydrolysate detoxification and fermentation. This makes it difficult to determine 

the production cost of ethanol production in the integrated forest biorefinery. A more promising 

alternative could be the production of butanol or other higher value chemicals from the 

prehydrolysate stream 
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CHAPTER 8. HEMICELLULOSES BASED INTEGRATED FOREST 

BIOREFINERIES: IMPLEMENTATION STRATEGIES 

 

8.1 Introduction  

The biorefinery concept is widely accepted as a cost competitive means of lowering greenhouse 

gas emissions, reducing reliance on fossil fuels and transitioning towards a biobased economy. A 

Biorefinery can be defined as a process or combination of processes for converting renewable 

biomass into a wide spectrum of products such as biochemicals, biofuels or biomaterials [46]. 

Lignocellulosic biomass is one of the most abundant feedstock for biorefineries globally [7] and 

it is made up of three main classes of polymers: cellulose, hemicelluloses and lignin. The 

breakdown of the polymers into their constituent monomer before conversion into other value 

added chemicals is a key step in biorefineries. Each of the polymers has different degrees of 

recalcitrance to fractionating methods and also different potential end products. Fractionating 

costs constitute a significant portion of the production cost for biofuels or bioproducts [57, 168]. 

Integrating a new biorefinery process with an established process where the fractionating of 

biomass is already practiced could therefore lead to significant cost reductions for biorefineries 

[132].  

A potential receptor process is the Kraft dissolving pulp mill in which the hemicelluloses are 

separated with a prehydrolysis step prior to pulping. The cellulose fraction is subsequently 

purified by chemical delignification to obtain pulp while the lignin fraction is mixed with the pre-

extracted hemicelluose and combusted to produce energy for the process. The hemicelluloses 

from the prehydrolysis step can be diverted and used as a feedstock for the biorefinery. The 

implementation of a biorefinery plant into an existing receptor pulp mill for the manufacture of 

additional non pulp products (biochemical, biomaterials or biofuels), is known as the Integrated 

Forest Biorefinery (IFBR). An IFBR would lead to an increase in the onsite energy demand [5] 

but this can be addressed through intensive energy optimization of the receptor Kraft process 

[160]. The IFBR is also a means for pulp and paper mills to diversify and increase their revenues 

in the face of declining pulp and paper commodities demand, intense global competition and high 

energy prices. In this paper, the concept of hemicelluloses based integrated forest biorefineries 
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and strategies that can be successfully implemented are presented. It includes an analysis of 

proposed processes and challenges for their implementation. A list of criteria to guide product 

selection and biorefinery development has been developed. The valorization of other wood 

components (lignin and cellulose) is outside the scope of this study and not treated. 

8.2 Pulping processes and modifications required for IFBR implementation 

Pulping is the separation of fibres that are fixed in wood or plant matrix and it entails the rupture 

of bonds within the wood structure. The existing pulp making processes can be broadly classified 

as mechanical, chemi-mechanical, semi-chemical, and chemical pulping [9]. The classifications 

are in the order of decreasing dependence on mechanical energy and increasing dependence on 

the use of chemicals to facilitate fibre separation. Although mechanical pulping is very energy 

intensive, it comes with the advantage that a pulp yield of up to 95% of the dry weight of wood 

can be obtained [4].  

Chemical pulping on the other hand has a lower yield but the strength of the produced pulp is 

higher and it is possible to recover the chemicals used. Kraft pulping, a chemical process, is the 

predominant pulping method in use worldwide [169] and about 90% of the global pulp 

production is via the Kraft process [1]. A brief overview of conventional Kraft pulping and its 

variant, prehydrolysis-Kraft pulping for the production of dissolving pulp, is given in sections 

8.2.1and 8.2.2. 

8.2.1 Kraft paper pulp 

A simplified representation of the Kraft process is illustrated in Figure 8–1. Wood chips undergo 

chemical delignification, the dissolution of hemicelluloses and lignin from the cellulose. 

Delignification is carried out in a digester in the presence of white liquor, a mixture of sodium 

hydroxide (NaOH) and sodium sulphide (Na2S). After delignification, the cellulose fibres (pulp) 

are washed, bleached and dried. The black liquor, which contains the dissolved wood 

components and the bulk of the inorganic elements used for digesting, is concentrated by multi-

effect evaporators.  

The concentrated black liquor is subsequently burnt in the recovery boiler to produce a smelt that 

is dissolved in water to form green liquor (mainly CaCO3 and Na2S). This is followed by 
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recausticizing, the reaction of the green liquor with lime to regenerate the active chemicals used 

in the digesting step. This sequence makes up the chemical recovery cycle.  

 

 

Figure 8–1: Simplified diagram of the Kraft process with a prehydrolysis step for hemicelluloses 

extraction 

8.2.2 Dissolving pulp 

Dissolving pulp is a type of pulp that has a high cellulose content (≥96%) compared to paper pulp 

with 72-79% typically [170]. It is used for the production of rayon, cellophane and cellulose 

nitrates [16]. The higher cellulose purity is obtained by introducing a prehydrolysis step in a 

Kraft process to remove hemicelluloses prior to delignification. This leads to a lower pulp yield 

but the higher price of dissolving pulp in comparison to Kraft pulp compensates for this 

reduction. In addition, an advantage of the prehydrolysis step in dissolving pulp mills is that the 

extracted hemicelluloses could be used for the production of sugar based chemicals or fuels thus 

generating additional revenue. A dissolving pulp mill is attractive when the price of wood is low 

compared to other feedstock for the production of textile or when the dissolving pulp price is 

high [18]. High dissolving pulp prices have spurred the conversion of several Canadian paper 

pulp mills into dissolving pulp mills in recent years [2].  
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8.2.3 Hemicelluloses: composition and extraction 

Hemicelluloses rank behinds cellulose as the second most abundant natural polymer and are the 

most complex components in the cell wall of lignocellulosic biomass [54]. Hemicelluloses are 

heterogeneous polysaccharides comprising of hexoses (galactose, mannose, glucose) and 

pentoses (xylose, arabinose).  They form bonds with other classes of wood components (cellulose 

and lignin). They have a degree of polymerization (DP) of 80 – 200, compared with cellulose at 

about 10,000 [55, 56]. As a result of their lower DP, they also exhibit lower chemical and thermal 

stability and are consequently more soluble and susceptible to hydrolysis than celluloses. Their 

composition varies with types of feedstock. A comparison of typical compositions of hardwoods 

and softwoods is given in Table 8.1.  

Table 8.1: Typical variation of wood chemical composition (percent) [59] 

 Hardwoods Softwoods 

Celluloses 30 -43 40 - 48 

Hemicelluloses   

Hexoses 2 - 5 12 -15 

Pentoses 17 - 25 7-10 

Lignin 20-25 26 - 31 

Extractives 1-5 3-8 

Ash 0.4-0.8 0.2-0.5 

A major difference between hardwoods and softwoods is the distribution of the hemicelluloses 

fraction between hexoses and pentoses. Hardwood hemicelluloses are principally made up of 

pentoses while softwood hemicelluloses are made up of hexoses. The bonds between the pentoses 

are hydrolyzed more rapidly than that of the hexoses and require less severe hydrolysis 

conditions than the hexoses polymers [1, 57]. Hemicelluloses gives strength to paper pulp and 

also increases the process yield but are undesired in dissolving pulp which requires a higher 

degree of purity of the cellulose [146]. A higher amount of hemicelluloses can be extracted in a 

dissolving pulp process (40%) than in a conventional Kraft pulping process (15 %). The 

hemicellulose extraction method must be adapted for each process. Extraction methods can be 

classified as chemical or physical methods. Physical methods include steam explosion, hot water 

and microwave pre-treatment while acid, alkali, Ammonium Fibre Explosion (AFEX), Ionic 
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Liquids and ozonolysis pre-treatment are chemical methods. Not all these methods can be utilized 

in an IFBR, the chemical methods are the most promising. 

8.2.4 Receptor Kraft pulp mill modifications  

Modifications have to be made to a receptor Kraft pulp mill to transform it into an integrated 

forest biorefinery. The extent of modifications required depends on the type of mill, intended 

final products and the current state of the mill. The three following scenarios for modification are 

envisaged: 

 Modifications to an existing Kraft pulp mill with pulp production unchanged 

 Modifications to a Kraft pulp mill and conversion into a dissolving pulp mill 

 Modifications to an Kraft dissolving pulp mill 

In all the scenarios, an optimization of the energy and water network would be necessary to lower 

emissions and production costs. 

8.2.4.1 Existing Kraft pulp mill with no change to pulp production 

In the case of an existing mill where the production of Kraft pulp would be maintained, 

hemicellulose extraction from the wood chips prior to cooking would not be economically 

feasible because the amount of hemicelluloses that can be extracted without reducing the pulp 

yield and degrading the fiber would be too low. In addition, the energy requirement for the 

prehydrolysis step would be high and unjustifiable. On site co-location of a biorefinery process 

that is only energetically integrated with the receptor mill could be feasible as illustrated in 

Figure 8–2A. Energy optimization of Kraft pulp mills has been shown to result in steam savings 

of 25 % or higher [160]. This represents a huge amount of energy that can be liberated to drive a 

biorefinery plant. The feedstock for the biorefinery would however have to be agricultural 

residue or other lignocellulosic biomass. Another alternative for the production of bioproducts 

could be to repurpose the mill so that a small fraction of the cellulose fibers would be diverted for 

upgrading into a niche product.  
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Figure 8–2: Process diagrams for a biorefinery plant integrated with a Kraft A) pulp mill B) 

Dissolving pulp mill 

8.2.4.2 Kraft pulp mill to be converted into a dissolving pulp mill 

Kraft pulp mills are prime candidates for conversion into dissolving pulp mills. The major 

modification required is the addition of a prehydrolysis step for hemicelluloses extraction before 

the chemical delignification of the wood chips. The choice of extraction method is critical. A 

suitable method would not reduce the pulp yield and deteriorate its quality. It should also produce 

a high sugar yield with minimal energy requirement and low cost [65]. The formation of 

inhibitors (hemicelluloses degradation products) must be at a minimum if the sugars are further 

transformed by enzymatic hydrolysis and/or fermentation. This should be achieved by 

optimization of the extraction condition [64]. Each method presents different challenges and 

opportunities, the amount of sugars extracted and the form in which they will be made available 

(monomers or oligomers) are different. The most suitable method is receptor mill specific and 

should be determined by a thorough study. A comparison of some extraction methods is 

illustrated in Table 8.2. 
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Table 8.2: Feasibility of integrating some hemicellulose extraction methods with a receptor Kraft 

pulp mill 

Method Cost Maturity Final PH 
Sugar 

Quantity 

Integration 

Potential 

State of  

development 

Hot Water Low Yes Yes High Yes Industrially level 

Steam Medium Yes Yes Medium Yes Industrially level 

Acid Based Medium * Yes* Yes High Yes Proven method 

Alkali Based High No No Low Yes Proven method 

Organic Solvents High No - High- Yes Potential  

Enzymes Medium Yes - - No Not for primary extraction  

Acids: HNO3, H3PO4, H2SO4, HCl, H3PO4, SO2, CO2, Alkali: NH3, NaOH, Ca(OH)2, Solvents: Organosolv, Ionic 

liquid, Ozonolysis  

*H2SO4 

It is important that the potential end product be taken into consideration prior to modifying the 

mill configuration. The nature and duration of the prehydrolysis step would have an impact on 

the residence time for delignification (digester capacity), amount of cooking chemicals required 

in the receptor mill and type of digester, pulp yield and bleaching sequence [2]. Consequently, 

these would determine the energy and water utility savings targets that can be achieved for the 

mill. The second stage of modification that should be considered is the material, energy and water 

integration of the biorefinery plant with the receptor mill. 

8.2.4.3 Existing Kraft dissolving pulp mill 

In a mill that already produces dissolving pulp; the modifications required would depend on 

whether steam or hot water is used for prehydrolysis. A state of the art process that uses steam 

prehydrolysis such as the VisCBC ® has several advantages which include a shorter 

delignification time, low energy requirements and high pulp quality [171] but it employs an 

alkaline solution for neutralization prior to pulping. The neutralization liquor degrades the sugars 

and renders them irrecoverable so they can only be sent to the recovery boiler for combustion to 

produce energy. Proposed modification to such processes includes a multifunctional alkaline 

cooking after hemicellulose pre-extraction by using hot water [158]. Displacement with hot water 
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after steam hydrolysis has also been shown to be effective for hemicelluloses extraction [70]. 

Obstacles to the industrial application of hot water prehydrolysis include high investment and 

energy cost, formation of sticky prehydrolysate [172]. In cases where alterations of the mill 

configuration is not envisaged due to high capital cost, an alternative could be the diversion of a 

minor fraction of the dissolving pulp for the production of high value biomaterials. 

8.3 Energy optimization, upgrade and introduction of renewable energy 

sources 

The optimization of the energy and water consumption of a mill can be carried out using two 

different approaches.  

 Concurrent energy and water optimization of the entire IFBR site, proposed by Rafione et 

al. [28] 

 Independent energy and water optimization of the receptor mill and the biorefinery plant, 

the energy savings in the receptor mill will be sufficient to supply the requirements of the  

biorefinery unit, proposed by Keshtkar [160] 

A previous study has shown that about 4800 t/d of prehydrolysate solution can be diverted from a 

mill that produces about 670 odt/d of dissolving pulp from 1900 t/d of hardwood chips by steam 

and hot water hydrolysis [173]. The total sugars concentration of the prehydrolysate was about 

2% wt/wt while total furfural production capacity was 47 t/d. The biorefinery plant production 

capacity was inferior to 10 % of the receptor mill pulp production capacity. Concurrent energy 

optimization of the entire IFBR site would be rigorous and disproportionate to the production 

scale for cases where the biorefinery plant would not be implemented at the same time with the 

mill modification. A better approach would be the implementation of energy and water savings 

projects that can be identified through independent optimization approaches. Furthermore, the 

projects can be carried out in stages. Tools for energy optimization include pinch analysis 

technique, simultaneous energy and water optimization and mathematical modeling approach. 

The Kraft process is water based process in which the steam and water systems are 

interconnected. A reduction of the energy consumption would lead to water consumption 

reduction and vice versa. The steps for an innovative steam and water combined analysis, 
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integration and efficiency enhancement in Kraft pulping mills that has been proposed is 

illustrated in Figure 8–3. The methodology was successfully applied to three case study mills.  

 

Figure 8–3: Stepwise methodology for innovative steam and water optimization [160] 

Concurrent energy optimization is more adapted to the IFBR if the startup of the biorefinery will 

be at the same time as the mill modification. 

Energy available at a low temperature can be upgraded to a higher temperature by using an 

absorption heat pump (AHP). The use of other renewable energy sources such as solar, 

geothermal and wind energy should also be explored where applicable. 

8.4 Products from hemicelluloses / Applications 

Hemicelluloses derived sugars can be used directly, converted into other biofuels, organic acids, 

sugar alcohols or furans. Some of the direct uses of hemicellulosic sugars include yeast 

cultivation, enzymes production and polymer films for packaging. The conversion of the sugars 

can be either through a biochemical (fermentation) or chemical pathway. Some potential 

derivatives are illustrated in Figure 8–4.  

Step 1: Data Base Development

Step 2: Utility system characterization, benchmarking & diagnosis

Step 3: Thermal energy & water management & recovery

Step 4: Energy upgrading & conversion

Step 5: Implementation strategy & post-benchmarking
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 Fumaric (C5,C6)
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 Itaconic acid (C6)

 Levulinic acid (C5,C6)

 Lactic acid (C5,C6)

 Citric acid (C6)

Furans

 Furfural (C5)

 HMF (C6)

Sugar Alcohols 

 Xylitol /Arabitol (C5)

 Sorbitol (C6)

 Mannitol (C6)

 Glycerol (C5,C6)

DERIVATIVE (SUGARS USED)

 

Figure 8–4: Potential applications and products from hemicelluloses prehydrolysates 

Most of the listed biochemicals are among the 30 top chemicals that were identified in the 

National Renewable Energy Laboratory (NREL) list of top valued added chemical from biomass 

[174]. The list based on strategic criteria has been useful for narrowing down alternative products 

such as: 

 Feasibility of directly replacing existing products, 

 Products that can open new market opportunities and, 

 Building block intermediates that can be further transformed into a wide spectrum of 

chemicals.  
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It is advantageous to select a chemical that can be produced from both pentoses and hexoses to 

obtain maximum value from the hemicelluloses.  

Most of the potential chemicals that can be bio-derived require the development of commercially 

viable production processes. The profitability of biobased chemicals that can be used as substitute 

to petroleum based chemicals will depend on oil prices and on the desire for sustainable products 

by end users. The hemicellulose extraction method also plays a role in the choice of process for 

the transformation of the sugars. For instance, an extraction method that is capable to partition all 

oligomers into sugar monomers will require no further finishing hydrolysis with acid or enzymes. 

The choice of bioproduct in an IFBR is a complex decision that should include not only the 

technical feasibility but also the market assessment and socio-economic impact. 

8.4.1 Product selection strategy 

Ideally, the selection of bioproducts for an IFBR should be known prior to making modifications 

to a receptor mill but preliminary knowledge of the conversion pathway (biochemical or 

chemical) may be sufficient. Current typical practice is to select bioproducts based on the 

prehydrolysate composition, and available conversion processes at the industrial or exploratory 

stage (supply side product selection). The higher the price of the biochemical, the lower is the 

market size as illustrated in Figure 8–5. The simplest form of product that a biorefinery can 

export is sugar. This option requires the least amount of capital investment as new process 

equipments for a biorefinery plant would not be installed. Hardwood derived sugars such as 

Xylan or its monomer ( Xylose) can be used in several applications. There is rising interest in the 

use of biobased feedstock (sugars) in the chemicals industry due a desire for sustainable 

chemicals by end users [175]. The downside of sugars production is its low value. Depending on 

the intended application of the sugars by the user, it could be necessary to achieve a high degree 

of purity and homogeneity (monomers or oligomers only). 



164 

 

Market Volume

Value

Biofuels

Commodity 

Bioproducts

Biomaterials

Specialty 

Chemical

Sugars

 

Figure 8–5: Value versus market volume for different bioproducts in an IFBR 

Production of biofuel from hemicelluloses has gained wide interest due to the success of first 

generation biofuels and an established market, the production cost of biofuels from 

lignocelluloses is however higher than for first generation sources The value of biofuels is only a 

fraction of pulp or dissolving pulp, so it would not lead to maximization of revenues for a 

receptor mill. A better alternative would be to produce other chemicals with a market value that it 

at least in the same range with pulp or higher. On the other hand, selection of a product with a 

high but lower market volume also carries the risk that the market could be easily saturated with 

the production capacity of a few mills and this could lead to a price decline. Other challenges for 

producing specialty chemicals include the requirement for registration and approval especially if 

the product is of food or pharmaceutical grade. This could be outside the core competence of a 

mill and carry a high level of risk. The objective of the products selection step should thus be to 

identify a unique product for a receptor mill that would offer a good margin between the market 

value and production cost over a long term. A low volume product must not necessarily be 

excluded on the basis of market saturation alone. A platform chemical that can be further 

transformed is an incentive for other users to participate in products development. A competitive 

product strategy should encompass the demand of the chemical industry. Some companies are 

interested in the use of sustainable chemicals and an IFBR take advantage of this by producing 

chemicals in high demand (demand side product selection).  
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The demand for biobased chemicals has increased over the past years and this is evidenced by the 

increased number of plants that are being constructed globally. Production of biochemicals that 

are unique and not substitute for petroleum or natural gas based products should stimulate the 

growth of biochemicals. However, this is constrained because the chemical industry expects 

substitute, biobased feedstock or drop in chemicals at a competitive price. The shale gas boom in 

North America has led to the preference for ethane feedstock in place of naphtha in hydrocarbon 

cracking plants and consequently the scarcity of C3 to C8 based compounds [176]. Biochemical 

producers should focus on filling the gap for the scarce chemicals and this probably explains why 

the chemicals with the highest industrial activity at present (commissioned plants, proposed 

plants, number of companies involved) have C3 or higher. The top building blocks chemicals are 

classified based on the level of industrial interest as shown in Table 8.3  

Table 8.3: Classification of the top 12 building block chemicals as hot, warm and cold, based on 

the level of industrial interest [177]. 

TOP 12 BUILDING BLOCK CHEMICALS 

Hot Warm Cold 

 1,4 succinic, fumaric & 

malic acids 

 2,5 furan dicarboxylic acid 

 3 hydroxy propionic acid 

 Levulinic acid 

 Glycerol- 

 Glucaric acid 

 Aspartic acid 

 Glutamic acid 

 Itaconic acid 

 3-hydroxybutyrolactone 

 Sorbitol 

 Xylitol/arabinitol 

From the standpoint of industrial demand, the biochemical of highest interest are currently 1,4 

succinic acid its derivative 1,4 Butanediol, Butanol, Hydroxypropanoic acid  and its derivative 

acrylic acid, Maleic acid and tetrahydrofuran (THF). These chemical are essentially drop in 

chemical that can replace fossil derived chemicals and their profitable production is hinged on the 

availability of low cost sugars. An IFBR that can successfully develop supply chain partnership 

with the chemical industry will benefit from these increasing demands. Other IFBRs can still 

focus on other speciality product segment with projected increase in demand at about 46% 

between 2014 and 2017 [178].  
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In summary, a product selection strategy must be developed for each mill and must take into 

account the market analysis in addition to the technical challenges of productions. IFBR’s should 

produce widely varying products based on their individual business case and the product should 

be profitable in the absence of subsidies or carbon credits on the long run. It is also important to 

select a product that is derived from both the hexose and pentose fraction in order to derive 

maximum value from the hemicelluloses stream. It should be taken into consideration that the co-

products could become the main product of the IFBR and cellulose derived products would be 

needed in the event of pulp production demand decline, 

8.5 Biorefinery Clusters 

The development of integrated biorefinery would involve capital investment and risks because 

the biorefining processes are not typical for a pulp and paper mill. The risks and capital 

investment could be lowered by means of clusters. An industrial cluster refers to the geographical 

concentration of industries that cooperate with each other to boost growth, competitiveness and 

performance advantages as a result of their co-location [179].  

Some of the benefits of a cluster could include the availability of skilled workers, proximity to 

training institutions, power and heat generation, market accessibility for final products and 

established feedstock supply chains. Examples of clusters in the forest sector include the 

establishment of sawmills close to sites of lumbering activities and cellulosic crop biorefineries 

in proximity to farms where agricultural residues can be obtained. Some of the potential clusters 

for the valorization of hemicelluloses prehydrolysate that can be developed can be classified into 

3 groups:  

 Development of clusters with other pulp mills 

 Integration with chemical plants 

 Integration with local communities 

 

8.5.1 Development of clusters with other pulp mills 

An integrated biorefinery is easier to develop than a standalone biorefinery because it can share 

resources that are already available on site and this can lead to significant cost reduction. 
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Nevertheless, some challenges still exist for the development of an IFBR. Specifically, new 

process operations which are not typical for the pulp and paper industry will have to be installed 

and operated while capital investment must also be sourced. In the Canadian context, the current 

scarcity of capital has been identified as a key obstacle for the development of biorefineries by 

Näyhäet al. [180]. A cluster concept involving several pulp mills is a means to facilitate sourcing 

for capital investment, lower the risk exposure and to benefit from a larger production scale. A 

cluster will consist of 2 or more mills having a prehydrolysis stage for the extraction of 

hemicelluloses. A centralised mill will serve as the base of the cluster where concentrated 

hemicelluloses prehydrolysate from the satellite mills will be treated and transformed into value 

added products as shown in Figure 8–6.  
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Figure 8–6: Schematic of a biorefinery cluster 

Several conditions must be met in order to establish a profitable biorefinery cluster with 

hemicelluloses extraction and conversion. A cost effective concentration of the prehydrolysate 

streams at the satellite mills must be achieved. The satellite mills must be energy sufficient and in 

addition, the cluster base must be able to supply energy for the transformation process. The 

transportation cost must also be as low as possible. The maximum tolerable distance between the 

mills must be determined. A previous study showed that for a prehydrolysate with a volume 

reduction of 80% prior to transportation, the recommended maximum distance between a satellite 

mill and a receptor mill should be less than 150 km at a transportation cost of 0.2 $/km when 
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furfural with a selling price of about 1650 $/t is produced [181]. The choice of product for a 

cluster must be mutually acceptable to cluster participants as the ratio of pentoses to hexoses 

might vary for the mills involved. The proposed cluster concept is based on the premise that pulp 

mills in proximity to other mills will be willing to collaborate. Another study however 

recommended that the cluster should be owned by a sole company to avoid extensive 

negotiations, have a simple supply chain logistics and lower investor risks [182, 183].  

8.5.2 Integration with chemical complexes 

The production and utilization of drop in chemicals will require the integration of biorefineries 

with chemical plants or industrial complexes for further processing. Considering the Canadian 

context, there is great variability in the geographical distribution of chemical companies. As 

shown in Figure 8–7, most of the manufacturing and production of formulated products, 

pharmaceuticals and specialty are located in Ontario and Quebec while the production of oil and 

gas, agricultural chemicals and bulk chemicals is concentrated in Alberta. The main large 

chemical plant complexes in Canada are the Sarnia chemical valley in Ontario, the Lacombe 

County and Fort Saskatchewan complexes both in Alberta. This knowledge should guide 

hemicelluloses IFBR product selection. Producing biobased chemicals as substitutes for 

established petroleum based products in the Alberta region could be challenging due to the 

abundance low cost petrochemical feedstock. Product selection strategies should therefore focus 

on chemicals that are scarce, not easily derived from fossil resources, niche products or those for 

which there is a proven shift of demand by the consumers for bio derived alternatives. The 

production of biochemicals in the other regions could be more flexible in locations with less 

access to low priced petrochemical feedstock. 
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Figure 8–7: Regional distributions of A) Chemical products plants B) petrochemical plants [184] 

The transportation of biobased chemicals is also an important factor for integration. Pipelines are 

existing infrastructure for transportation of large volumes and they can be also used for the 

transportation of biochemicals, biofuels or other bioproducts. Most of the natural gas and crude 

oil produced in Canada are currently distributed by pipelines within Canada and to the United 

States. It could be necessary to utilize pipelines for transportation over long distances due to the 

size of Canada during the transition to a bioeconomy in which a wide spectrum of products 

including biofuels would be derived from biomass. The density of existing pipelines however 
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varies by region in Canada as shown in Table 8.4. This should be taken into consideration 

because about 50% of the total pipeline infrastructure (115,000 km) is situated in Alberta [185] 

whereas other provinces like Quebec have less than 1% (912 km of pipeline for natural gas 

transport and 354 km for liquids). 

 

Table 8.4: Pipeline length in kilometers for some provinces in Canada [185] 

 

Provinces 

Pipelines Distances (km) 

Natural Gas Liquids Total 

British Columbia 6,485 2,917 9,402 

Alberta 34,997 20,746 55,743 

Saskatchewan 19,043 7,753 26,796 

Manitoba 2,472 2,787 5,259 

Ontario 12,821 2,080 14,901 

Quebec 912 354 1,266 

New Brunswick 597  597 

Nova Scotia 422  422 

Northwest Territories  751 751 

Total 77,749 37,388 115,137 

Ultimately, transitioning towards a bioeconomy would require safe, reliable and cost effective 

means for distributing bioproducts, biochemicals and/or biofuels across cities, terminals or for 

local distribution. Construction of pipelines could be necessary in the future if existing 

infrastructure cannot be utilized or if biorefineries are situated at locations without access to 

existing pipelines. 

8.5.3 Integration with local communities / development of eco-industrial 

complexes 

Collaboration between pulping mills and host communities can help to maintain employments 

and create new jobs. An eco-industrial park can be defined as “a community of businesses that 
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collaborate with each other and with the local community to efficiently share resources 

(information, materials, water, energy, infrastructure and natural habitat), leading to economic 

gains, environmental sustainability and equitable enhancement of human resources for the 

businesses and the  local community” [186]. Pulp and paper mills are typically located in rural 

communities. The development of biorefineries in rural communities could be a means of 

revitalizing the local economy: It could lead to jobs creation, reduce emigration and create 

economic activity [187]. All stakeholders (the receptor Kraft mill, municipal and provincial 

governments, concerned citizens and educational institutions) in the locality should be involved 

from the conceptual phase of the cluster development. Biorefinery development strategy must be 

defined jointly by stakeholders as a function of infrastructure requirements, transportation modes, 

market opportunities, skilled manpower requirements and synergy with other businesses must be 

identified. The product selection criteria should be based on local demand, feedstock composition 

and the socio-economic benefits for the community. The environmental benefits can be 

maximized by developing a flexible process for transforming various feedstock that are available 

locally into a wide spectrum of products that can be supplied locally, distributed and sold. Such 

community based projects can bring government support and the growth of local research clusters 

that could evolve into centres for innovation.  

8.6 Practical guidelines for implementation of an IFBR 

The implementation of integrated forest biorefineries is a challenging task that requires a 

multidisciplinary approach. In most cases, new innovative processes must be developed or 

adapted. These should lead to products for which a market exist or is emerging and should be 

economically viable and lead to sustainable social and environmental benefits as illustrated in 

Figure 8–8. To develop a technical and economically feasible hemicelluloses IFBR, it is 

important to fulfill the following requirements: determine a prehydrolysis method that produces a 

recoverable hemicelluloses sugars stream, ensure that the modifications to the receptor pulp mill 

does not reduce the pulp yield or quality, identify bioproducts or biochemicals that will be most 

profitable, develop strategies for reducing the energy requirement for the IFBR complex and 

implement biorefinery clusters where applicable. 
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Figure 8–8: Requirement for a successful IFBR implementation 

Practical strategies for a successful implementation of IFBRs inspired by the previous studies, 

past and ongoing research, proposed processes and authors experience include: 

1 Receptor Kraft pulp mills should proactively pursue diversification by biorefinery 

implementation 

2 The context must be well defined and reflect the strengths and weaknesses of the receptor 

mill 

3 Target products or at least the conversion pathways (bio or chemical) must be identified at 

an early stage 

4 Value of new products must be equal or greater than that of pulp  

5 Practice reverse engineering, let target product influence required modifications to the 

receptor mill 

6 High energy efficiency must be achieved through optimization, upgrade and use of other 

renewable sources 

7 The potential for energy, material and chemicals integration with the receptor mill must 

be determined and feasible for any developed process 

8 Biorefinery clusters should be created where applicable and partnerships should be 

facilitated 

9 A phased transition should be used where necessary to lower the risks 
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10 Social, economic and environmental sustainability must be determined 

11 Continuous research must be carried out on all aspects of the value chain (feedstock to 

utilization) 

12 Development efforts should promote short gestation period between laboratory research 

and commercialization 

8.7 Conclusions and implications 

Hemicelluloses from Kraft pulp mills are promising feedstock for the production of value added 

bioproducts, biofuels or biochemicals and the diversification of revenues for Kraft pulp mills. 

However, knowledge on the commercialization of integrated biorefineries is presently limited. 

Successful development of hemicelluloses based biorefineries requires that a significant 

proportion of current research lead to scientific and technological breakthroughs. Furthermore, 

product selection, potential market assessment and the socio-economic aspects must be 

considered at an early stage. An analysis of the modifications required to potential receptor Kraft 

mills, product selection and collaborations to lower cost and enhance sustainability was carried 

out and the results have been used to develop practical guidelines for the implementation of 

integrated forest biorefineries for the transformation of hemicelluloses. 
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CHAPTER 9. GENERAL DISCUSSION 

A discussion of the main results of this thesis and their application has been presented as an 

article entitled “Hemicelluloses based integrated forest biorefineries: implementation strategies” 

in chapter 8.  

This chapter covers the aspects that were not discussed in chapter 8 but are pertinent to synthesis 

of the results and knowledge generated in this thesis. Two conversion pathways were studied, a 

chemical pathway for furfural production and a biochemical pathway for ethanol production.  

Preliminary tests using model prehydrolysate solutions with different amounts of sugars, furfural, 

acetic acid and syringaldehyde were used to establish the feasibility of applying reverse osmosis 

membrane filtration in hemicellulosic biorefineries. It was demonstrated that the composition of 

the prehydrolysate and the cross flow velocity had less effect on the permeate flux than the feed 

temperature and pressure, a flux decline was observed in all cases. The mechanisms that led to 

flux decline were identified to be osmotic pressure increase due to the sugars, concentration 

polarization by syringaldehyde and fouling by furfural. Cleaning of fouled membranes using 

sodium hydroxide was shown to be effective. Based on these results, it was concluded that the 

use of organic membranes is technically feasible for concentrating hemicelluloses prehydrolysate. 

It also led to the conclusion that despite the high sugar recovery observed, the permeate flux 

produced by a reverse osmosis would be too low and lead to an economically infeasible 

membrane application. The use of nanofiltration membranes was proposed to redress this 

drawback. 

In the second phase, prehydrolysate solutions generated from a wood furnish similar to a 

reference mill were used in experiments. The main components of the solution were sugars (21 

g/L), phenol (4.7 g/L), acetic acid (3.8 g/L), furfural (0.7 g/L) and hydroxymethylfurfural (0.09 

g/L). A comparison of six organic membranes with molecular cut off weights between 100 and 

500 Da was made and a membrane suitable for concentration of prehydrolysate in a furfural 

biorefinery process was selected. The selection criteria were high sugar retention and 

requirements for industrial application (low energy consumption and degree of fouling). It was 

shown that increasing the total sugars concentration from 21 to 103 g/L was possible and 99% of 

the sugars could be recovered. A response surface modeling approach was developed and used to 

determine the operating conditions that would minimize flux decline during concentration. The 
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results and modeling approach can be applied to other biorefinery processes with a chemical 

conversion of the sugars.  

The membrane screening step in the second phase also led to the identification of membranes that 

could be used for the removal of fermentation inhibitors from the prehydrolysate solution. Most 

of the inhibitors (furfural, hydroxymethylfurfural, acetic acid), except the phenolic compounds, 

can be removed by nanofiltration. To identify a complementary detoxification step for the 

elimination of the phenolics, the use of activated carbon and flocculation with ferric sulfate, 

chitin or alum as coagulant were evaluated experimentally. Ferric sulfate was shown to have the 

highest ratio of phenol removal relative to sugar recovery. The optimum coagulant dosage and 

pH for flocculation were determined using a jar test apparatus. A novel detoxification strategy 

was developed by combining nanofiltration and flocculation.   

The prehydrolysate composition, capacity of the receptor mill and data from the experiments 

were used as the basis for computer based simulations. Process models were developed for the 

production of furfural and ethanol. The energy consumption of the processes was minimized by 

the design of optimized heat exchanger networks and the implementation of an absorption heat 

pump in the distillation columns. The thermal energy requirement of the furfural process is 

higher than that of ethanol process. In both cases, the energy and material integration of the 

biorefinery processes can be supplied by the receptor mil. The implementation of the furfural 

process is feasible within a short term while further research could be necessary to enhance the 

feasibility of the ethanol process. 

In the last phase, an analysis of possible modifications that can be made to conventional Kraft 

and dissolving pulp mills was made. The merits of two alternative approaches for product 

selection were examined. In addition, the potential influence of the receptor mill location on the 

product choice was identified. The development of biorefinery clusters as a means of lowering 

risks and investment capital requirement was investigated. The results have been used to propose 

practical guidelines that can be utilized for hemicelluloses biorefinery development. 

 

 

.
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CHAPTER 10. CONCLUSIONS, CONTRIBUTIONS AND 

RECOMMENDATIONS 

10.1 Conclusions 

The main objective of this thesis was achieved. Novel hemicelluloses biorefinery processes for 

furfural and ethanol production have been developed and integrated into an existing Kraft 

dissolving pulp mills.  

The use of nanofiltration membranes was experimentally established as a feasible method for 

prehydrolysate concentration in the novel furfural biorefinery; the results suggest that it can be 

successfully scaled up. The use of membrane filtration resulted in a reduction of the energy 

requirement and the size of subsequent process equipments. The furfural process has a thermal 

energy requirement that is 69 % lower than that of existing furfural production processes. The 

energy, material and chemical requirements of the biorefinery can be supplied by the receptor 

mill. The process is also economically feasible at a low furfural selling price. 

In the case of the ethanol biorefinery, membrane concentration has been tested for concentration 

and partial detoxification. It was successfully used to remove most of the fermentation inhibitors, 

except the phenolic compounds. To eliminate the phenolic compounds, the use of flocculation 

with ferric sulfate as a coagulant was shown to be a suitable secondary detoxification method. A 

detoxification strategy was developed by combining nanofiltration with flocculation. The method 

can be applied to biorefineries involving a biochemical conversion of sugars. The integration of 

the ethanol process with the receptor mill is feasible. 

Guideline for the implementation of hemicelluloses biorefineries into Kraft pulp mills have been 

proposed based on the results.  

10.2 Original contributions 

The main findings of this thesis are summarized as follows: 

 A stepwise approach was developed to identify the flux decline mechanisms caused by 

the main compounds present in a prehydrolysate solution. The presence of furfural leads 

to membrane fouling while the presence of syringaldehyde leads to concentration 



177 

 

polarization. The approach can be used to determine the causes of deteriorating 

performance for other solutions or membrane systems. 

 A response surface model correlating the membrane operating condition and flux decline 

during prehydrolysate concentration was developed and successfully applied to minimize 

the decline. 

 A novel prehydrolysate detoxification strategy that combines nanofiltration membranes 

and flocculation with ferric sulfate was developed. It can be successfully applied to 

biochemical conversion pathways such as ethanol fermentation.  

 A novel furfural process that achieves high thermal energy efficiency by means of an 

optimized heat exchanger network design and the implementation of absorption heat 

pumps was developed.  

 Practical guidelines that would lead to technologically and economically feasible 

hemicelluloses biorefineries have been developed. 

10.3 Recommendations 

This thesis left many topics open, it is recommended that future research covers: 

1 Development of prehydrolysis methods that would be compatible with the receptor mill 

and not lead to the formation of inhibitors  

2 Identification of the main mechanisms that govern the retention of each prehydrolysate 

component during concentration 

3 The identification and development of solid catalysts for furfural formation  

4 Fermentation tests to validate the limits of the developed detoxification strategy with 

different microorganisms 

5 The use of biological methods (enzymes) for the removal of inhibitors present in the 

prehydrolysate 

6 Development of a product selection methodology that takes the demands of the chemical 

industry into consideration 
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