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v

forward four years later, I have completed six marathons and looking forward to run my seventh

one this fall. No, I am not particularly talented in distance running but running has always been my

main source of inspiration and a form of meditation when I get stuck in research. I like the words

of a renown coach in distance running, Dr. Jack Daniel, whom I will paraphrase,

There are five key ingredients for success - in life - and they are talent, motivation, opportunity,

direction and a bit of luck.

In many ways, I find many similarities between distance running and research. In running, one

trains consistently and ideally peak for a goal race. In research, one goes through the ebb and flow

of discovery and hopefully culminates to a new idea. While I don’t think I am particularly talented

in research either, I would like to thank a number of people that have motivated me, given me op-

portunities and have influenced me in the past four years.

First, it’s difficult to say how much I am indebted to my supervisor, Dr. Marc Laforest, for his gui-

dance and patience. I thank him for encouraging me to develop my independent thinking and being

understanding during difficult times.

Second, I am also indebted to my co-supervisor, Dr. Frédéric Sirois, for his support and motivation.

I thank him for giving me the opportunity to go to more than my fair share of conferences as a

student.

I thank Dr. Steven Dufour at Polytechnique de Montréal for his lectures on the implementation side
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I thank Le Fonds de recherche du Québec - Nature et technologies and MITACS Accelerate pro-

gram for their funding support that I have received.

My special thanks to all the colleagues that have come and gone by my office over the years.

Though we differed in faculty, their presences on many occasion has kept me from feeling comple-

tely isolated.

Last but not least, I wish to thank my parents, brother, sister, grandmother, uncles, aunts, niece,

nephew and girlfriend for their unconditional love and continuing support in Vancouver and Hong

Kong.



vii

RÉSUMÉ

Cette thèse porte sur le développement d’une méthode d’éléments finis adaptative pour discrétiser

un modèle électromagnétique issu du domaine de la supraconductivité à haute température critique.

Dans les faits, ce modèle consiste en une version non-linéaire du problème de courants de Foucault

classique en électromagnétisme, dans lequel la non-linéarité engendre un état mixte de régions su-

praconductrices et de régions normales. La méthode développée dans cette thèse peut être appliquée

directement à la conception et à l’optimisation de dispositifs supraconducteurs à haute température

critique, sans s’y limiter.

Le problème mathématique correspondant à ce modèle, que l’on appelle p-rotationnel (�p-curl�en

anglais), est une équation différentielle aux dérivées partielles de type évolutionnaire monotone

dont les solutions de la forme faible appartiennent à un espace fonctionnel de Sobolev de type Lp.

Étant donnée la présence de singularités dans les solutions, les méthodes numériques développées à

ce jour pour résoudre ce probléme se généralisent mal aux domaines 2D et 3D. La principale diffi-

culté provient de l’absence d’estimateur d’erreur qui permettrait un contrôle adaptatif de la finesse

du maillage et du pas de temps.

Cette thèse présente deux contributions principales. Premièrement, nous avons développé et implé-

menté une méthode d’éléments finis adaptative basée sur une formulation espace-temps. Afin de

faciliter l’adaptivité, nous avons conçu une structure arborescente espace-temps, qui se construit

de façon récursive en fonction du raffinement tout en préservant l’irrégularité de premier niveau

(�1-irregularity�) du maillage espace-temps. De plus, nous avons développé un opérateur d’inter-

polation qui permet de préserver la continuité des degrés de liberté sur les arêtes “sans voisins”

(�hanging edges�). La seconde contribution principale de la thèse est le développement d’un esti-

mateur d’erreur a posteriori basé sur le résidu, et nous avons prouvé mathématiquement sa fiabilité

dans le cas semi-discret. Un élément clé de cette preuve fut d’utiliser une nouvelle version de la

décomposition d’Helmholtz pour l’espace W p
0 (curl; Ω), requis pour démonter une variante de l’or-

thogonalité de Galerkin. La fiabilité d’une grandeur physique d’intérêt, appelée �pertes AC �, a

aussi été démontrée. Des résultats numériques en 1D et 2D sont aussi présentés dans les cas uni-

formes et adaptatifs.
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En bref, cette recherche se distingue des travaux précédents sur le p-rotationnel parce qu’elle se

base sur une analyse mathématique théorique rigoureuse pour guider le développement et l’analyse

des nouvelles techniques proposées.



ix

ABSTRACT

This thesis is on the development of an adaptive finite element method to discretize a model from

high temperature superconductivity. In essence, this model is a nonlinear version of the classical

eddy current problem from electromagnetics, where the nonlinear resistivity gives rise to the beha-

viour of mixed states between normal and superconducting regions. An application for this method

is in the design optimization of high temperature superconducting devices.

This mathematical problem, which we called the p-curl problem, is an evolutionary monotone-type

partial differential equation with weak solutions belonging to a Lp-type Sobolev function space.

Due to singularities which arise in the solutions, numerical methods developed for this problem so

far have been inefficient to general 2D or 3D domains. The main difficulty has been the lack of

error estimator in order to adaptively control the mesh refinement and time-stepping schemes.

The primary contributions of this work are two-fold. First, we develop and implement the adap-

tive finite element method based on a continuous space-time formulation. To facilitate adaptivity,

we introduce the space-time simplex tree structure, a recursive refinement procedure to preserve

1-irregularity of the space-time mesh and a local interpolation operator for preserving the conti-

nuity of degrees of freedom on hanging edges. Second, we derived residual-based a posteriori error

estimators and showed its reliability in the semi-discretization setting. A key ingredient in proving

reliability was a new version of the Helmholtz decomposition for W p
0 (curl; Ω) necessary in sho-

wing a variant of the Galerkin orthogonality. Reliability for a quantity of interest, AC loss, was also

proved. Numerical results are shown for the uniform and adaptive discretization in 1D/2D.

This research distinguishes itself from previous numerical studies of the p-curl problem because it

relies on rigorous mathematical theory to guide the development and analysis of these new tech-

niques.
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INTRODUCTION

Superconductors, first discovered by Onnes (1911), have the unique property of zero electrical re-

sistance when carrying direct currents below a critical temperature. The specific solid state physics

for these low temperature superconductors were first explained by Ginzburg and Landau (1950).

Using their theory, Abrikosov (1957) predicted the existence of a second type of superconductors,

which includes high temperature superconductors (HTS) first experimentally discovered by Bed-

norz and Müller (1986). With the advent of HTS research in the last quarter of the century, one of

the most promising applications is in power systems especially for densely populated cities (Oester-

gaard et al., 2001) in order to meet the growing world demands in energy (DOE, 2010). Since the

recent manufacturing of large scale HTS-based prototypes (Varley, 2008; Hanyu and et al., 2011),

there is now a need for numerical tools to help optimize the designs of HTS devices for a vari-

ety of applications, such as magnetic energy storage devices (Nagaya et al., 2001), HTS magnetic

resonance imaging (Lee et al., 2005), power transmission (Maguire et al., 2007) and fault-current

limiting transformers (Hayakawa et al., 2011).

For power applications, one important design parameter is to minimize the energy loss when the

superconducting material is subject to a time-varying current. To characterize such energy loss,

one needs to resolve accurately the evolution of the electromagnetic fields inside the HTS devices.

However, this is currently a computationally expensive task, especially in 3D, because numerical

experiments revealed singularities in the solution, such as sharp cusps and moving fronts (Sirois and

Grilli, 2008). In particular, numerical methods using standard global time-stepping schemes over

the entire spatial domain (Bossavit, 1994; Brandt, 1996; Amemiya et al., 1997; Prigozhin, 1997;

Nibbio et al., 2001; Stavrev et al., 2002a; Pecher et al., 2003; Grilli et al., 2005; Hong et al., 2006;

Brambilla et al., 2007, 2008; Lousberg et al., 2009; Stenvall and Tarhasaari, 2010b) can only resolve

these moving fronts by taking prohibitively small time steps. This severe limitation on global time

stepping has confined computations of the energy loss of HTS to only special geometries, such

as strips, slabs and axial-symmetric configurations, and has so far yielded impractical simulation

times for more complex domains.
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Within the field of HTS numerical modelling, there is a growing community of engineers work-

ing to improve the efficiency of finite element (FE) methods by symmetry reduction (Brambilla

et al., 2007), homogenization (Rodriguez-Zermeno et al., 2011), or approximations based on semi-

analytical methods (Sirois and Roy, 2007). Often, engineers make use of commercial numerical

software to solve for the electromagnetic fields of their HTS devices. While the simulation re-

sults thus far have been experimentally verified to agree with measurements for their HTS devices,

numerical simulation is the only viable route for the rapid prototyping of new HTS devices and

numerical results will require their own independent verification procedures. Furthermore, there is

an inherent danger of relying on results without a rigorous analysis of the underlying mathematical

problem or without knowledge of the assumptions made by commercial software. For instance,

in solving the Maxwell’s time-harmonic problems on non-convex polyhedral domains, Costabel

and Dauge (1997); Costabel et al. (2003) have shown that the solution cannot be approximated by

numerical solutions using the standard Galerkin FE method with nodal elements. Another example

provided by Arnold et al. (2010) is one can get erroneous solutions using the standard Galerkin

FE approach with nodal elements when solving the vector Laplacian on non-simply connected do-

mains. It is a non-trivial result that these FE methods fail because of the choice of finite element

spaces that lack certain properties within their Hilbert complexes (Arnold et al., 2006, 2010). What

is unsettling with these examples isn’t that the standard Galerkin FE methods fail to converge as the

mesh sizes are refined. They in fact do converge but they converge to an incorrect solution, which

may go unnoticed for unsophisticated users of commercial software.

To devise efficient and accurate numerical methods to aid the design of HTS devices beyond simple

geometries, one needs to be able to estimate the error between the numerical solution and the

unknown solution of the underlying nonlinear Maxwell’s problem, referred to as the p-curl problem.

Though a priori error estimation (Brenner and Scott, 2007) for the p-curl problem is an interesting

topic on its own right, our primary goal is to devise a new FE method capable of mesh adaptivity in

both space and time. Hence, a posteriori error estimation (Babuska and Rheinboldt, 1978; Nochetto

and Veeser, 2012) is necessary for controlling mesh adaptively as it provides local error estimates

that are computable entirely from the approximate solution.

There are three specific objectives of this thesis.
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I Develop FE formulation with adaptivity in space-time for the p-curl problem

II Derive a posteriori error estimators for space-time adaptivity

III Implement and benchmark the adaptive space-time method to published and established

schemes

For I, we propose a FE discretization based on space-time methods (Aziz and Monk, 1989; Eriks-

son and Johnson, 1991; French and Peterson, 1996; Karakashian and Makridakis, 1999). This new

formulation for the p-curl problem will serve as a basis for adaptivity in conjunction with local

error estimators derived from II. Moreover for II, by adapting residual-based error estimators of

Schöberl (2008) for the stationary Maxwell’s equations and techniques involved in non-conforming

a posteriori error estimation (Carstensen and Hu, 2007), we are able to derive new residual-based

error estimators for the p-curl problem and show their reliability. Finally for III, we have imple-

mented the adaptive space-time FE method in MATLAB and compared its results to existing FE

methods on HTS problems.

This thesis is divided into six chapters, where chapters 3-5 describe our original contributions to

the adaptive space-time FE method for the p-curl problem.

Chapter 1 starts with a brief introductory background on physical models used in HTS. Coupled

with Maxwell’s equations, the p-curl problem is proposed. This is then followed by a summary on

Lp-type vector functional spaces and trace theorems. Following an introduction on monotone op-

erators, a well-posedness theorem is reviewed for the p-curl problem with homogeneous boundary

conditions. An overview of vector finite element spaces and their interpolation properties is then

presented. Finally, a priori and a posteriori error estimations are briefly discussed.

Chapter 2 is a review of the literature on numerical methods for the p-curl problem. First, a sur-

vey of various finite element formulations from the engineering literature is given. Second, finite

element results from applied mathematics literature are summarized.

Chapter 3 introduces the continuous space-time Galerkin method for the p-curl problem. The

algorithmic aspects of the adaptive space-time Galerkin method are then detailed.

Chapter 4 consists of the derivation of residual-based error estimators for the semi-discretization of
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the p-curl problem. Due to the non-conforming nature of Nédélec (Nédélec, 1980) edge element

functions with respect to the solution space, a new version of the Helmholtz-Weyl decomposition is

established for W p
0 (curl) space. This result was necessary in order to derive a variant of Galerkin’s

orthogonality, from which the reliability of error estimators are shown. As a result, the reliability

of a goal oriented quantity known as “AC losses” is also established and further extension to the

space-time discretization is also discussed.

Chapter 5 presents numerical results of the uniform and adaptive space-time method. With the

knowledge of an analytical solution in 1D, comparison of error versus number of degrees of free-

dom are made between the non-adaptive and adaptive space-time method. For the uniform space-

time method in 2D, an optimal convergence rate was observed for an analytical solution in the

linear case. A moving front solution in a nonlinear case is also compared against a solution ob-

tained from a commercial software package where a non-optimal convergence rate was observed.

For the adaptive space-time method in 2D, effectivity indices of the error estimators are discussed

and a modified marking strategy is proposed. Finally, a comparison of error versus number of

degrees of freedom are made between the non-adaptive and adaptive space-time method in 2D.

Chapter 6 concludes this thesis and proposes various directions for future work.
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CHAPTER 1

MATHEMATICAL BACKGROUND FOR THE P -CURL PROBLEM

1.1 Background on high temperature superconductivity models

In high temperature superconductivity, the evolution of electromagnetic fields is governed by Max-

well’s equations coupled with a phenomenological macroscopic model for the electrical resistivity.

The two models often used are the critical state model (Bean, 1962, 1964) and the power-law model

(Vinokur et al., 1991; Rhyner, 1993; Brandt, 1996). These models can be viewed as certain asymp-

totic limits of the mesoscopic Ginzburg-Laudau model for superconductivity (Chapman, 2000).

The critical state model, also called the Bean model, is a macroscopic model for the electrical

resistivity which relates the current density J and electric field E. In this model, the electric field

E is assumed to be parallel to J and satisfy a multi-valued relation defined for |J(x)| ≤ Jc,

E(x) =

 0, |J(x)| < Jc,

[0,∞), |J(x)| = Jc,

where Jc is a scalar parameter for the critical current. Prigozhin (1996) showed well-posedness for

the critical state model coupled with Maxwell’s equation by showing equivalence to a well-posed

variational inequality. Generalization to the critical state model such as dependence on the mag-

netic induction B for Jc have been posed by Kim et al. (1962). Also, instead of sharp transitions

inherent in the critical state model, a piecewise linear resistivity relation has also been proposed by

Sokolovsky et al. (1993) and Yamafuji et al. (1997).

In contrast to the critical state model, the power law model is a constitutive relation for the electrical

resistivity given by

E(x) = Ec

∣∣∣∣J(x)

Jc

∣∣∣∣p−2
J(x)

Jc
, (1.1)

where Ec is defined to be the electric field stength at the critical current Jc and p is the exponent
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parameter which in general depends on the HTS material, the magnetic induction and the temper-

ature (Anderson, 1962; Kim et al., 1963). The reason for defining the exponent p− 2 this way has

to do with its mathematical connection, to be made clear later. It suffices for now to mention the

parameter p that has been experimentally shown to be much greater than 2 (Paul et al., 1991).

There are several reasons why the power law model is more attractive to use in modelling HTS

than the critical-state model and its generalization. Firstly, it has been showed that the power-law

model is mathematically equivalent to the Bean model as the exponent in the power law p → ∞

in 2D (Barrett and Prigozhin, 2000) and in 3D (Yin et al., 2002). Secondly, experiments showed

that HTS materials exhibit smooth transition for its electrical resistance (Paul et al., 1991; Sheahan,

1994) as opposed to the discrete nature of the Bean model. Moreover, extensions to the power law

model which take into account anisotropy have also been proposed (Stavrev et al., 2002b). Thirdly,

from a practical point of view, the use of the power law model is straightforward to implement for

researchers who have familiarity with the FE methods. For these reasons, in this work, we will only

be considering the power law model for modelling HTS problem.

1.2 Maxwell’s Equations for HTS

The classical Maxwell’s equations are a system of partial differential equations (PDE) which relate

the evolution of the electromagnetic fields: electric fieldE, electric displacement fieldD, magnetic

field H and magnetic induction field B; with the electromagnetic sources: current density J and

free charge density ρf . The following equations are collectively referred to as Maxwell’s equations:

∇×E = −∂B
∂t

, (Faraday’s Law)

∇×H = J +
∂D

∂t
, (Ampere’s Law)

∇ ·D = ρf , (Gauss’s Law)

∇ ·B = 0.
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To completely describe the electromagnetic fields with Maxwell’s equations, additional constitutive

laws are needed and are given by,

D = εE,

B = µH ,

E = ρJ , (Ohm’s Law)

where ε is the electric permittivity, µ is the magnetic permeability and ρ is the electric resistivity.

For linear isotropic materials, ε, µ and ρ are strictly positive constant scalars. However for HTS

materials, ρ will be a nonlinear scalar function of |J |, which can be deduced from the power law

(1.1) to be,

ρ(|J |) =
Ec
Jc

∣∣∣∣JJc
∣∣∣∣p−2

.

For low frequency applications or high current applications such as those involving HTS devices,

the displacement current ∂D
∂t

becomes negligible when compared to the current density J . The

magneto-quasistatic condition is obtained by neglecting the displacement current in Ampere’s law

when
∣∣∂D
∂t

∣∣� |J | (Bossavit, 1997, Chapter 8). We will henceforth assume the magneto-quasistatic

condition and consider Maxwell’s equations forE,H andB with the relevant constitutive relations

µ and ρ. In particular, we arrive at the following coupled first-order system:

∇×E = −∂B
∂t

, (1.2a)

∇×H = J , (1.2b)

∇ ·B = 0, (1.2c)

B = µH , (1.2d)

E = ρJ . (1.2e)

Physically, this system can be viewed as a nonlinear eddy current problem. From Faraday’s law,

eddy currents in a conductor are generated by the electric field induced by time-varying magnetic

inductions. In a normal conductor, the electric fields and current density are related by Ohm’s law

with a constant resistivity. For HTS, the resistivity is instead replaced by a nonlinear function which
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depends on the current density.

Of particular interest also is the energy dissipation within HTS. For a classical conductor, a charge

distribution ρC moving at an average velocity v experiences a Lorentz force density fC ,

fC := ρC (E + v ×B) ,

when electromagnetic fields E and B are present. Thus, the dissipated power density PC for

moving the charge distribution ρC is,

PC = f · v = ρC (E + v ×B) · v = ρCE · v = E · J ,

where the current density is defined to be J = ρCv.

Instead of moving electric charges, energy dissipation in HTS is due to magnetic flux vortices

moving in the presence of a superconducting current J . In the case of HTS, the Lorentz force

density experienced by vortex distribution Φ is given by,

fHTS := J ×Φ.

Thus, if the vortices move at an average velocity of v, then, by Faraday’s law of induction, an

electric field E = Φ× v is induced. The dissipated power density PHTS is then,

PHTS = fHTS · v = (J ×Φ) · v = (Φ× v) · J = E · J .

In other words, over a time period T , the energy loss Q for a HTS on the domain Ω is,

Q :=

∫ T

0

∫
Ω

E · JdV dt.

Substituting the power law resistivity (1.2e) and using (1.2b), the energy loss Q is equivalent to,

Q =

∫ T

0

∫
Ω

ρ(|J |)J · JdV dt = c

∫ T

0

∫
Ω

|∇ ×H|p, (1.3)
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where c = EcJ
1−p
c In applied superconductivity, the quantity Q/T is usually called AC loss, which

measures the energy loss over one power frequency cycle T . Calculating the quantity Q is one of

the main objectives in applied superconductivity.

In this thesis work, we assume that ε and µ are at most piecewise positive constant over the domain

of our problem. We will also assume ρ is constant for non-conducting regions. Now we can state

two problems relevant to HTS applications.

1.2.1 p-curl problem

The first type of problem is the case where the entire domain is superconducting. Mathematically,

this can be stated as follows. Let Ω ⊂ R3 be an open bounded domain representing the supercon-

ducting region. Denote the boundary as ∂Ω = ΓD
⋃

ΓN with ΓD
⋂

ΓN = ∅, where ΓD,ΓN denote

the open part of the boundary with Dirichlet- and Neumann-like conditions, respectively, and for

now we suppress the smoothness requirement for ∂Ω. By substituting (1.2d) for B and (1.2e) for

E into (1.2a), the p-curl problem is to findH ,J on Ω× [0, T ] such that,

∇× (ρ(|J |)J) = − ∂

∂t
µH , in Ω× [0, T ] (1.4a)

∇×H = J , in Ω× [0, T ] (1.4b)

∇ · µH = 0, in Ω× [0, T ] (1.4c)

H(x, 0) = H0(x) in Ω (1.4d)

J(x, 0) = J0(x) in Ω (1.4e)

n×H = gD, on ΓD (1.4f)

n× ρ(|J |)J = gN , on ΓN (1.4g)

For compatibility, we assume ∇ × H0 = J0 in Ω. This first-order system is called the mixed

formulation of the p-curl problem, where the emphasis is placed on solving both the current density

J and the magnetic fieldH simultaneously.

The p-curl problem can also be stated as a second-order system by substituting (1.4b) for J into
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(1.4a). As a second-order system, the p-curl problem is to findH on Ω× [0, T ] such that,

∇× (ρ(|∇ ×H|)∇×H) = − ∂

∂t
µH , in Ω× [0, T ] (1.5a)

∇ · µH = 0, in Ω× [0, T ] (1.5b)

H(x, 0) = H0(x), in Ω (1.5c)

n×H = gD, on ΓD (1.5d)

n× ρ(|∇ ×H|)∇×H = gN . on ΓN (1.5e)

This second-order system is also called the H formulation, where the emphasis is placed on first

solving the magnetic fieldH . By using (1.2b), we then have J = ∇×H . We note the similarity of

the second order system (1.5a)-(1.5e) to the parabolic p-Laplacian problem (Ladyzhenskaya, 1967;

Lions, 1969; Martinson and Pavlov, 1971; Kamin and Vázquez, 1988).

There is also a third formulation called the E formulation where it is based on solving the primary

variable J (Janikova and Slodicka, 2008; Slodicka, 2008; Slodicka and Janikova, 2008; Janikova

and Slodicka, 2010). We omit their details here as we shall be primarily focusing on theH formu-

lation.

1.2.2 p-curl problem with integral constraints

The second type of problem we will consider is when there are multiple superconducting regions

with additional integral constraints. For example, this type of problem occurs when there is an

insulating region encasing multiple superconducting regions, such as a cross-section of a bulk wire

filled with superconducting wires (see Figure 1.1).

Mathematically in R2, we can state this as follows. Consider Ω ⊂ R2 a bounded domain which

represents the insulating region encasing multiple superconducting regions. Let {Ωi ⊂ Ω}1≤i≤N

be a collection of disjoint sub-domains representing the superconducting regions each satisfying an

integral constraint (current) Ii. Then the p-curl problem with integral constraints is to find H on
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Figure 1.1 Typical geometry of multiple superconducting sub-domains (blue) inside a non-
conducting region (white) in R2

the superconducting domains
⋃
i Ωi× [0, T ] andHext on the external domain (Ω−

⋃
i Ωi)× [0, T ],

∇× (ρ(|∇ ×H|)∇×H) = −∂µiH
∂t

, in each Ωi × [0, T ] (1.6a)

∇ · µiH = 0, in each Ωi (1.6b)

H(x, 0) = H0,i(x), in each Ωi (1.6c)

n×H = n×Hext, on each ∂Ωi (1.6d)

∇× (ρext∇×Hext) = −∂µextHext

∂t
, in

(
Ω−

⋃
i

Ωi

)
× [0, T ] (1.6e)

∇ · µextHext = 0, in Ω−
⋃
i

Ωi (1.6f)

Hext(x, 0) = H0,ext(x), in Ω−
⋃
i

Ωi (1.6g)∫
Ωi

∇×H · dA = Ii(t), for all [0, T ]. (1.6h)

Physically, the magnetic fieldsH andHext are related by the boundary constraint (1.6d) that their

tangential fields must be continuous across each ∂Ωi, and the total current flowing through each Ωi

is constrained by Ii, (1.6h).
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1.3 Sobolev spaces

In this section, we review some natural function spaces and their trace theorems necessary for the

discussion of the well-posedness of the p-curl problem (1.5a)-(1.5e). The treatment material for

W s,p(Ω) is entirely classical for which we refer to Adams and Fournier (2003) and Evans (2010) for

details. For the W p(div; Ω) and W p(curl; Ω) spaces, we refer to results from Dauge (1998); Ciarlet

and Sonnendrucker (1997); Amrouche et al. (1998); Mitrea and Mitrea (2002); Mitrea (2004);

Laforest (2010); Amrouche and Seloula (2011).

To motivate the discussion of function spaces for the p-curl problem, we begin with an informal

discussion of the weak formulation of the p-curl problem. Assuming homogeneous boundary con-

ditions (1.5d) in the second-order formulation of the single conductor, we multiply (1.5a) by a

suitably smooth test function G and integrate over Ω. By using “Green’s identity” 1, we see that

the weak formulation of the p-curl problem for a single conductor takes the form:

FindH in some appropriate space X with∇ ·H = 0 on Ω such that for allG ∈ X ,

∫
Ω

(
H t ·G+ |∇ ×H|p−2∇×H · ∇ ×G

)
dV = 0. (1.7)

In particular, substituting G = H , we see the left-hand side of (1.7) requires an evaluation of∫
Ω
|∇ ×H|pdV . In particular, we need

∫
Ω
|∇ ×H|pdV < ∞ for the weak formulation to make

sense. Also physically, this is a necessary condition for the energy loss (1.3) to be well-defined.

Thus, this naturally leads us to look for solutions in X with the property “∇ ×H ∈ Lp(Ω)” and

∇ ·H = 0. Moreover, we also need to make sense of the “Green’s identity” that we used earlier.

These ideas motivate our discussion of vector function spaces in Lp(Ω).

1.3.1 W s,p(Ω) space and its trace

Let Ω be a bounded domain in Rn and for our purpose n = 1, 2, 3 will be sufficient. In all sub-

sequent discussions, we assume all our vector spaces are over the real numbers. Let 1 ≤ p < ∞

1. For example, see Monk (2003), Corollary 3.20.4.
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and q be the Hölder conjugate exponent of p. For α = (α1, . . . , αn) ∈ Nn a multi-index with

|α| =
∑n

i=1 αi, recall the following standard scalar function spaces,

Ck(Ω) = {f : Ω→ R : ∂αf is continuous over Ω, |α| ≤ k},

C∞(Ω) = {f : Ω→ R : infinitely differentiable in Ω},

C∞0 (Ω) = {f ∈ C∞(Ω) : f with compact support in Ω},

Lp(Ω) = {f : Ω→ R : f Lebesgue measureable, ‖f‖Lp(Ω) :=

(∫
Ω

|f |pdV
)1/p

<∞},

Lploc(Ω) = {f : Ω→ R : f ∈ Lp(U) for any compact subset U ⊂ Ω},

Definition 1.1. If u, v ∈ L1
loc(Ω) and α is a multi-index, then v is the αth weak partial derivative of

u, denoted as v = Dαu, provided for all functions φ ∈ C∞0 (Ω),

∫
Ω

u∂αφdV = (−1)|α|
∫

Ω

vφdV. (1.8)

Definition 1.2. For k ∈ N and 1 ≤ p <∞, the Sobolev space is defined as,

W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ k}. (1.9)

The spaces (1.9) are Banach spaces with the associated norm,

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

. (1.10)

We can extend Sobolev spaces to non-negative real s also. To do this, we first define for s ≥ 0, the

norm,

‖u‖W s,p(Ω) :=

‖u‖pWm,p(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

Dαu(x)−Dαu(y)

|x− y|m+σp
dV (x)dV (y)

1/p

, (1.11)

where σ ∈ [0, 1) and m is the integer part of s satisfying s = m+ σ.



14

Definition 1.3. For 0 ≤ s and 1 ≤ p <∞, the Sobolev space W s,p(Ω) is defined as the completion

of C∞(Ω) functions with respect to the norm ‖·‖W s,p(Ω).

The spaces W s,p(Ω) are a Banach spaces (Adams and Fournier, 2003). In particular, they are

Hilbert spaces if and only if p = 2. For sufficiently smooth boundaries, it can be shown the

Hilbert space W s,2(Ω) is equivalent to Hs(Ω) defined through the Bessel potential. To rule out

wild geometries along the ∂Ω, we need some hypothesis on the domain Ω.

Definition 1.4. A bounded domain Ω ⊂ Rn is Lipschitz if at each point x ∈ ∂Ω, there is a

neighbourhood B(x, r) ⊂ Rn and a Lipschitz function γ : Rn−1 → R such that,

Ω
⋂

B(x, r) = {x ∈ B(x, r) : xn > γ(x1, · · · , xn−1)}, (1.12)

∂Ω
⋂

B(x, r) = {x ∈ B(x, r) : xn = γ(x1, · · · , xn−1)}. (1.13)

In this case, the boundary ∂Ω can be locally represented by a Lipschitz function given by (1.13).

Similarly, we can also define a Ck bounded domain this way.

While it is standard to show that a function u ∈ W k,p(Ω) can be approximated by functions in

C∞(Ω) (Adams and Fournier, 2003; Evans, 2010), an additional smoothness assumption on ∂Ω is

necessary if u is to be approximated by C∞(Ω) functions.

Theorem 1.5 (Approximation of W s,p(Ω) by C∞(Ω) functions). Let Ω be a bounded Lipschitz

domain and suppose u ∈ W s,p(Ω) for 0 ≤ s and 1 ≤ p < ∞, then there exists function um ∈

C∞(Ω) such that um → u in W s,p(Ω).

This limiting process also suggests we can define a subspace of W s,p(Ω) with ”zero values” along

∂Ω by C∞0 (Ω) functions.

Definition 1.6. For 0 ≤ s and 1 ≤ p < ∞, W s,p
0 (Ω) is defined as the completion of C∞0 (Ω)

functions with respect to the norm ‖·‖W s,p(Ω)

Since Lp(Ω) functions are defined up to a set of measure zero, the precise meaning of zero values

along the boundary will be given later in the trace section. Finally, we defineW s,p(Ω) with negative

s.
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First, let us recall some standard definitions and facts.

Definition 1.7. Let X, Y be Banach spaces. If F : X → Y be a linear map, then we say F is

bounded if the operator norm ‖F‖L(X,Y ) <∞ where,

‖F‖L(X,Y ) := sup
x∈X
‖x‖X≤1

‖F (x)‖Y .

The symbol L(X, Y ) denotes the set of all bounded linear map from X to Y .

It can be shown that L(X, Y ) is also a Banach space with the operator norm ‖·‖L(X,Y ). Also, it is

known that F : X → Y is a bounded linear map if and only if F is continuous. In the special case

when Y = R, X∗ := L(X,R) is called the continuous dual space.

Definition 1.8. Let X be a Banach space. The continuous dual space X∗ is the set of continuous

linear functionals, l : X → R, which is also a Banach space with the operator norm,

‖l‖X∗ := sup
x∈X
‖x‖X≤1

|〈l, x〉|,

where the pairing notation 〈·, ·〉 : X∗ ×X → R denotes 〈l, x〉 = l(x) for x ∈ X , l ∈ X∗.

Definition 1.9. For s < 0, 1 ≤ p ≤ ∞ , W s,p(Ω) := W−s,q
0 (Ω)∗, where 1 = 1

p
+ 1

q
.

It can be shown that W s,p(Ω) is both reflexive and separable.

We finish this section with a brief discussion on the boundary space of W s,p(Ω), i.e. its trace

space. In the case of Hilbert space H1(Ω), it is well-known that its trace space is H1/2(∂Ω). Or

colloquially speaking, restricting functions from H1(Ω) along the boundary ∂Ω amounts to “losing

half a derivative”. However, the trace space for the general Sobolev space W 1,p(Ω) does not map

surjectively to another Sobolev space but rather onto a more general Banach spaceBs
p,p′(∂Ω), called

the Besov space. Since we will not need to work with Bs
p,p′(∂Ω) explicitly, we omit their precise

definition (see (Adams and Fournier, 2003) for more details). By the following theorem, we suggest

that the casual reader think of Bs−1/p
p,p (∂Ω) as a trace space, with the knowledge that there exists

such intrinsic characterization on ∂Ω.
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Theorem 1.10 (Boundary trace theorem for W s,p(Ω) with 1
p
≤ s ≤ 1). Let Ω be a bounded

Lipschitz domain. Then for 1 < p < ∞, 1
p
≤ s ≤ 1, there is a continuous linear surjective

map γ0 : W s,p(Ω) → B
s−1/p
p,p (∂Ω). Moreover, the boundary trace operator γ0 coincides with the

restriction to the boundary, γ0(u) = u|∂Ω, when u ∈ C0(Ω).

As expected from the trace operator γ0, we also have the following equivalent definition forW 1,p
0 (Ω).

Theorem 1.11. For a bounded Lipschitz domain Ω,

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) : γ0(u) = 0}.

1.3.2 W p(div; Ω) and W p(curl; Ω) spaces and their traces

Having defined weak derivatives of functions in Lp in the previous section, it is now our goal

to formalize functions whose curl, ∇ × u, and divergence ∇ · u is in Lp(Ω). While these are

usually defined in the L2 context for electromagnetic problems (Monk, 2003), our emphasis will

be on their Lp analogues. We do not claim originality of these results as much of the work in this

section is adapted from a survey compiled by Laforest (2010), which is a Lp adaptation of function

spaces from Monk (2003). We refer details to previous work and generalizations by Amrouche et al.

(1998); Mitrea and Mitrea (2002); Mitrea (2004); Amrouche and Seloula (2011). In our experience,

many of these results seem to belong to a part of the “lore” in the theory of electromagnetics and

a complete account of the results has been hard to find as they are quite dispersed in the literature.

See also Mitrea (2004); Farwig et al. (2005) for accounts of Helmholtz decomposition in Lp.

We say a vector function u = (u1, u2, . . . , un) ∈ {Lp(Ω)}n if each of its component is a Lp(Ω)

function. Often we just denote its norm by ‖u‖Lp(Ω) =
(∑n

i=1 ‖ui‖
p
Lp(Ω)

)1/p

. Next, we define

what divergence and curl mean in the weak sense.

Definition 1.12. If u,v ∈ {L1
loc(Ω)}3, then v is the weak curl of u, denoted as v = ∇ × u,

provided for all functions φ ∈ {C∞0 (Ω)}3,

∫
Ω

u · ∇ × φdV =

∫
Ω

v · φdV. (1.14)
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And if w ∈ L1
loc(Ω), then w is the weak divergence of u, denoted as w = ∇ · u, provided for all

functions φ ∈ C∞0 (Ω), ∫
Ω

u · ∇φdV = −
∫

Ω

wφdV. (1.15)

Definition 1.13. Let 1 < p <∞.

W p(div; Ω) = {u ∈ {Lp(Ω)}3 : ∇ · u ∈ Lp(Ω)}, (1.16a)

W p(curl; Ω) = {u ∈ {Lp(Ω)}3 : ∇× u ∈ {Lp(Ω)}3}. (1.16b)

Since Lp(Ω) is complete, it follows that these are Banach spaces with the respective norms:

‖u‖W p(div;Ω) :=
(
‖u‖pLp(Ω) + ‖∇ · u‖pLp(Ω)

)1/p

(1.17a)

‖u‖W p(curl;Ω) :=
(
‖u‖pLp(Ω) + ‖∇ × u‖pLp(Ω)

)1/p

(1.17b)

On occasion, we also denote the Hilbert spaces H(div; Ω) := W 2(div; Ω) and H(curl; Ω) :=

W 2(curl; Ω).

From the definition of ‖·‖W 1,p(Ω) and the above two norms, W 1,p(Ω)3 continuously injects into

W p(div; Ω) and W p(curl; Ω) but are not surjective (Amrouche et al., 1998). Similarly to the case

for Sobolev spaces, we can define the following spaces with ”zero values” along the boundary,

where the precise meaning of boundary values for these spaces will be made clear shortly.

Definition 1.14. For 1 ≤ p < ∞, W p
0 (div; Ω) and W p

0 (curl; Ω) are defined as the completions of

C∞0 (Ω) functions with the respective norms ‖·‖W p(div;Ω) and ‖·‖W p(curl;Ω).

Analogous to the case for W s,p(Ω), we can approximate functions in W p(div; Ω) or W p(curl; Ω)

by C∞(Ω) functions.

Theorem 1.15 (Density theorem for W p(div; Ω)). Suppose Ω is a bounded Lipschitz domain and

u ∈ W p(div; Ω) for 1 < p < ∞, then there exists functions um ∈ C∞(Ω)3 such that um → u in

W p(div; Ω).

Theorem 1.16 (Density theorem for W p(curl; Ω)). Suppose Ω is a bounded Lipschitz domain and
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u ∈ W p(curl; Ω) for 1 < p < ∞, then there exists functions um ∈ C∞(Ω)3 such that um → u in

W p(curl; Ω).

It can be shown that W p(div; Ω) and W p(curl; Ω) are each isometric to a closed subspace of a

reflexive space and hence are also reflexive Banach spaces.

Unlike scalar functions from W s,p(Ω), the trace operator γ0 from Theorem 1.10 is not well-defined

for all functions in W p(div; Ω) or W p(curl; Ω). Instead, only boundary values along respectively

the normal or tangential directions will make sense. Moreover, as it will be discussed in the well-

posedness section for the p-curl problem, we are mainly interested in p ≥ 2.

Theorem 1.17 (Normal trace theorem for W p(div; Ω)). Suppose Ω is a bounded C1 domain with

unit outward normal n. Then for 1 < p <∞ and q satisfying 1
q

+ 1
p

= 1, there exists a continuous

linear surjective map γn : W p(div; Ω) → B
1−1/q
q,q (∂Ω)∗. Moreover, the normal trace operator

γn coincide with the normal component at the boundary, γn(u) = n · u|∂Ω = n · γ0(u) , when

u ∈ {C0(Ω)}3. Also, the following Green’s identity holds for u ∈ W p(div; Ω) and φ ∈ W 1,q(Ω):

∫
Ω

u · ∇φdV +

∫
Ω

∇ · uφdV = 〈γn(u), γ0(φ)〉 (1.18)

Theorem 1.18 (1st tangential trace theorem for W p(curl; Ω)). Suppose Ω is a bounded C1 domain

with unit outward normal n. Then for 1 < p < ∞ and q satisfying 1
q

+ 1
p

= 1, there exists

a continuous linear map γt : W p(curl; Ω) → {B1−1/q
q,q (∂Ω)∗}3. Moreover, the tangential trace

operator γt coincide with the tangential component at the boundary, γt(u) = n×u|∂Ω = n×γ0(u)

, when u ∈ {C0(Ω)}3. Also, the following Green’s identity holds for u ∈ W p(curl; Ω) and

φ ∈ {W 1,q(Ω)}3:

∫
Ω

u · ∇ × φdV −
∫

Ω

∇× u · φdV = 〈γt(u), γ0(φ)〉 (1.19)

Note that unlike the surjectivity of γn, γt is not surjective onto {B1−1/q
q,q (∂Ω)∗}3. As a remedy for

this, we define the image space Y p(∂Ω) = γt(W
p(curl; Ω)) equipped with the norm,

‖v‖Y p(∂Ω) = inf{‖u‖W p(curl;Ω) : u ∈ W p(curl; Ω), γt(u) = v}. (1.20)
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It can be shown that Y p(∂Ω) is a Banach space for which we can define another tangential trace

operator γT on W p(curl; Ω).

Theorem 1.19 (2nd tangential trace theorem forW p(curl; Ω)). Suppose Ω is a bounded C1 domain

with unit outward normal n. Then for 1 < p < ∞, there exists a continuous linear map γT :

W p(curl; Ω)→ Y p(∂Ω)∗. Moreover, the tangential trace operator γT coincide with the tangential

component at the boundary, γT (u) = (n× u|∂Ω)× n = (n× γ0(u))× n , when u ∈ {C0(Ω)}3.

Also, the following identity holds for u,φ ∈ W p(curl; Ω):

∫
Ω

u · ∇ × φdV −
∫

Ω

∇× u · φdV = 〈γT (φ), γt(u)〉 (1.21)

Analogous to the trace property of γ0, we have the following equivalent characterization of

W p
0 (div; Ω) and W p

0 (curl; Ω).

Theorem 1.20. For a bounded C1 domain Ω,

W p
0 (div; Ω) = {u ∈ W p(div; Ω) : γn(u) = 0}.

Theorem 1.21. For a bounded C1 domain Ω,

W p
0 (curl; Ω) = {u ∈ W p(curl; Ω) : γt(u) = 0}.

In conclusion, when attempting to study (1.7) subject to homogeneous boundary conditions with

∂Ω = ΓD, then the minimum requirement will be forH ∈ W p
0 (curl; Ω).

1.4 Monotone operator

In order to discuss the well-posedness for the p-curl problem, we need to give some background on

monotone operators. The motivation for the use of monotone operators in the p-curl problem is the

following. If we view the weak formulation (1.7) as an equation in the continuous dual space X∗

of the solution space X (which is some Banach space), then (1.7) is equivalent to the problem:
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FindH ∈ X so that for F ∈ X∗,

H t + A(H) = F , (1.22)

where we define the nonlinear operator A : X → X∗ by,

〈A(H),G〉 =

∫
Ω

(
|∇ ×H|p−2∇×H · ∇ ×G

)
dV for anyH ,G ∈ X. (1.23)

Roughly speaking, it will turn out that we can solve the time-dependent problem (1.22) if A is a

monotone operator over the “right” space X .

1.4.1 Monotone operator on Banach space

Generalizing the existence results for monotone functions in finite dimensions leads to the well-

known Browder-Minty theorem for Banach spaces. But unlike in the finite dimensional case, we

do not have access to an inner product in a Banach space X . So instead, we make use of the pairing

〈·, ·〉 between X and X∗ in place of inner products.

Let X be a Banach space and let A : X → X∗. Then for any f ∈ X∗, we are interested in finding

u ∈ X such that,

A(u) = f (1.24)

The reason for posing the problem onX∗ as opposed toX will become clear with these definitions.

Definition 1.22. Let A : X → X∗ and denote ‖ · ‖X as the norm in X and ‖ · ‖X∗ as the operator

norm in X∗.A is coercive if
〈A(u), u〉
‖u‖X

→∞ as ‖u‖X →∞. (1.25)

A is monotone if for any u, v ∈ X ,

0 ≤ 〈A(u)− A(v), u− v〉. (1.26)
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A is strictly monotone if for any u, v ∈ X , such that u 6= v,

0 < 〈A(u)− A(v), u− v〉. (1.27)

Moreover, A is bounded if for any bounded set S in X , A(S) is a bounded set in X∗.

Note this is needed because A may be nonlinear for which boundedness is not equivalent to conti-

nuity.

Lemma 1.23. Let A : X → X∗ be continuous and monotone. Then u is a solution to (1.24) if and

only if u satisfies the inequality 〈A(u)− f, u− v〉 ≥ 0 for any v ∈ X .

Lemma 1.24. If A : X → X∗ is continuous and monotone, then the set K of solutions to equation

(1.24) is closed and convex.

Unlike the finite-dimensional case, we will need some extra hypothesis to have an analogous exis-

tence theorem for X .

Theorem 1.25 (Browder-Minty). Let X be a reflexive, separable Banach space and A : X → X∗

be bounded, continuous, coercive and monotone. Then for any f ∈ X∗, there exists a solution

u ∈ X which solves A(u) = f .

It is perhaps worth mentioning, the boundedness and separability are needed in order to extract a

bounded Galerkin-type approximation. Then using reflexivity, a weakly converging subsequence

is extracted from the Galerkin approximation. We refer to Showalter (1997), Theorem 2.2, for

details of the proof. Suppose u, u′ ∈ X and u 6= u′ such that A(u) = f = A(u′), then 0 =

〈A(u) − A(u′), u − u′〉. Thus, uniqueness of Theorem 1.25 can be established if A is strictly

monotone.

Corollary 1.26. Let X be a reflexive, separable Banach space and A be bounded, continuous,

coercive and strictly monotone. Then for any f ∈ X∗, there exists a unique solution u ∈ X which

solves A(u) = f .
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1.4.2 Monotone operator on Banach space-valued function spaces

Browder-Minty Theorem can be used to solve stationary monotone-type PDEs. Our eventual goal

is to show existence and uniqueness for our p-curl problem, which is an evolutionary equation. So,

we need to extend Corollary 1.26 to Banach space-valued functions u : [0, T ] → X , i.e. functions

which has its values u(t) ∈ X for all t ∈ [0, T ]. The basic idea will be to solve an ordinary

differential equation u′(t) + A(u(t)) = f(t) with u(0) = u0 which takes values in the infinite

dimensional space X setting. In order to make sense of u′ weakly, we will need to be able to

integrate functions with values in a Banach space, i.e.
∫ T

0
u(t)dt ∈ X . (See details in (Folland,

1999, p.156).) First, we need some definitions.

Define the norm for 1 ≤ p <∞, define

‖u‖Lp([0,T ];X) :=

(∫ T

0

‖u(t)‖pXdt
)1/p

. (1.28)

Theorem 1.27 (Evans 2010, Appendix E.5). Let X be a Banach space. If u : [0, T ] → X is

strongly measureable, then
∫ T

0
u(t)dt ∈ X is well-defined if ‖u‖L1([0,T ];X) <∞. Moreover,

∥∥∥∥∫ T

0

u(t)dt

∥∥∥∥
X

≤
∫ T

0

‖u(t)‖Xdt, (1.29a)〈
v,

∫ T

0

u(t)dt

〉
=

∫ T

0

〈v, u(t)〉dt, for any v ∈ X∗. (1.29b)

For all 1 ≤ p <∞, define the following Banach space-valued function space,

Lp([0, T ];X) := {u : [0, T ]→ X : u strongly measurable, ‖u‖Lp([0,T ];X) <∞},

C([0, T ];X) := {u : [0, T ]→ X continuous : ‖u‖C([0,T ];X) := max
t∈[0,T ]

‖u(t)‖X <∞}.

Definition 1.28. If u, v ∈ L1([0, T ];X), then v is the weak derivative of u, denoted as v = u′,

provided for all functions φ ∈ C∞0 ([0, T ]),

∫ T

0

u(t)φ′(t)dt = −
∫ T

0

v(t)φ(t)dt in X (1.30)
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Now, we can state an evolutionary problem for Banach space-valued functions and discuss its

solvability. Let X be a Banach space and let A : X → X∗. Suppose X ⊂ H is dense and consider

the problem: for any f ∈ Lq([0, T ];X∗), find u ∈ Lp([0, T ];X) so that,

u′(t) + A(u(t)) = f(t) in Lq([0, T ];X∗), (1.31)

u(0) = u0 in H.

Analogous to the Browder-Minty theorem, we have the following existence and uniqueness theo-

rem for equation (1.31).

Theorem 1.29 (Showalter 1997, Theorem 4.1). Let X be a reflexive, separable Banach space and

H be a Hilbert space where X ↪→ H = H∗ ↪→ X∗ embeds continuously. Let 1 < p, q < ∞ such

that 1
p

+ 1
q

= 1. Suppose A : X → X∗ is bounded, continuous, monotone such that 〈A(u), u〉 ≥

C ‖u‖pX (i.e. coercive for p > 1). Then for any f ∈ Lq([0, T ];X∗), there exists a unique solution

u ∈ Lp([0, T ];X)
⋂
C([0, T ];X) with u′ ∈ Lq([0, T ];X∗) which solves (1.31).

1.5 Well-posedness for the p-curl problem with homogeneous boundary conditions

In this section, we outline a proof of well-posedness for the p-curl problem of a single conductor

with only homogeneous boundary conditions. The idea will be to identify the appropriate function

spaces and show existence and uniqueness using Theorem 1.29. The proof is based on the work

by Yin et al. (2002) where they also showed regularity results for the weak solution and the limit

solution as p → ∞. The stationary case with homogeneous boundary conditions was recently

treated in (Laforest, 2010). The case with Neumann boundary condition has also been discussed by

Miranda and Santos (2012) and the generalization of the p-curl problem inside a non-conducting

domain was investigated by Jochmann (2011).

To the best of our knowledge, we are not aware of previous work on the well-posedness for the

mixed Dirichlet and Neumann boundary conditions for the single conductor nor on the p-curl prob-

lem with integral constraints. For the purpose of modelling HTS, we are only interested in the cases
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when parameter p is large. In particular, we will only be interested in the range p ≥ 2.

First, we restate the p-curl problem with homogeneous boundary conditions (with constant µ = 1

after scaling). Without much difficulties in the analysis, we can include a divergence-free term

F (x, t). Let Ω be a bounded C1 simply-connected domain. We wish to findH(x, t) satisfying

H t +∇× (|∇ ×H|p−2∇×H) = F , in Ω× [0, T ] (1.32a)

∇ ·H = 0, in Ω× [0, T ] (1.32b)

n×H = 0, on ∂Ω× [0, T ] (1.32c)

H(x, 0) = H0(x), in Ω (1.32d)

As discussed in the section on vector function spaces, u ∈ W p(curl; Ω) has a well-defined tangen-

tial trace γt(u) which coincides with γt(u) = n× γ0(u) if u is also in C0(Ω). Moreover, we also

need u ∈ W p(div; Ω) for (1.32b) to be defined. This motivates us to look for a solution in the space

W p
0 (curl, div0; Ω) where we define,

W p(curl, div; Ω) = W p(curl; Ω)
⋂

W p(div; Ω), (1.33)

W p
0 (curl, div; Ω) = {u ∈ W p(curl, div; Ω) : γt(u) = 0}, (1.34)

W p
0 (curl, div0; Ω) = {u ∈ W p

0 (curl, div; Ω) : ∇ · u = 0}. (1.35)

The following inequalities play a crucial role in all of the analysis, and in particular for well-

posedness. We cite them from Barrett and Liu 1994, which contains a proof, but these inequalities

have been known previously, see for example Chow (1989).

Lemma 1.30 (Barrett and Liu 1994). For 1 < p < ∞ and 0 ≤ ε, there exist positive constants

C1(p, n), C2(p, n) so that for any x,y ∈ Rn,

∣∣|x|p−2x− |y|p−2y
∣∣ ≤ C1|x− y|1−ε(|x|+ |y|)p−2+ε, (1.36)

|x− y|2+ε(|x|+ |y|)p−2−ε ≤ C2

(
|x|p−2x− |y|p−2y

)
· (x− y). (1.37)

Now by using Green’s identities (1.19) for W p(curl; Ω), we arrive at the following weak form of
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the p-curl problem:

Definition 1.31. Let p ≥ 2, H0 ∈ W p
0 (curl, div0; Ω) and F ∈ L2([0, T ];W p

0 (curl, div0; Ω)∗).

H ∈ L2([0, T ];W p
0 (curl, div0; Ω)) is a weak solution of problem (1.32a)-(1.32d), if for all G ∈

W p
0 (curl, div0; Ω),

〈H t,G〉+

∫
Ω

(
|∇ ×H|p−2∇×H · ∇ ×G

)
dV = 〈F ,G〉 (1.38)

andH(x, t)→H0(x) in L2(Ω) as t→ 0+.

The limit in the L2(Ω) sense is needed because, a priori, we do not know if H(x, 0) makes sense.

It will turn out this technical part will not matter in the end, since H(t) is continuous in t by the

next theorem.

Theorem 1.32 (Well-posedness of the p-curl problem).

There exists a unique H ∈ C([0, T ];W p
0 (curl, div0; Ω)) satisfying (1.38) with H(x, 0) = H0(x)

and H t ∈ L2([0, T ];W p
0 (curl, div0; Ω)∗). In addition, there exists C1, C2 positive constants inde-

pendent of p such that,

sup
t∈[0,T ]

‖H(·, t)‖2
L2(Ω) + ‖∇ ×H‖pLp([0,T ];Lp(Ω))

≤ C1

(
‖H0‖2

L2(Ω) + ‖F ‖2
L2([0,T ];L2(Ω))

)
, (1.39a)

‖H t‖2
L2([0,T ];L2(Ω)) +

1

p
sup
t∈[0,T ]

‖∇ ×H(·, t)‖pLp(Ω)

≤ C2

(
1

p
‖∇ ×H0‖pLp(Ω) + ‖F ‖2

L2([0,T ];L2(Ω))

)
. (1.39b)

Proof: For the moment, suppose such a solutionH exists. Take the inner product in time over [0, t]

with H . By an application of Gronwall’s inequality and Cauchy-Schwarz’s inequality, taking the

supremum over all t ∈ [0, T ] yields (1.39a). Similarly, (1.39b) follows by taking the inner product

in time with H t ∈ L2([0, T ];W p
0 (curl, div0; Ω)∗). Now to show existence and uniqueness for the

p-curl problem (1.38), we verify the hypothesis of Theorem 1.29.
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Let X = W p
0 (curl, div0; Ω) which continuously embeds into the Hilbert space W 2

0 (curl, div0; Ω).

From (Yin et al., 2002, Theorem 2.1), Y = W p
0 (curl, div; Ω) is a Banach space with the norm

‖G‖Y =
(∫

Ω
|∇ ×G|p + |∇ ·G|p

)1/p. Moreover from (Yin et al., 2002, Theorem 2.2), Y is a

closed subspace of W 1,p(Ω) which is reflexive and separable. Since X is also a closed subspace of

Y , X is reflexive and separable. Define the nonlinear operator A : X → X∗ by,

〈A(H),G〉 =

∫
Ω

(
|∇ ×H|p−2∇×H · ∇ ×G

)
dV for anyH ,G ∈ X.

It remains to verify the remaining hypothesis of Theorem 1.29 for the operator A. We refer to

Laforest (2010) for the details of the verification. It suffices to say that continuity follows from

Hölder’s inequality and using the fact that ‖H‖Y =
(∫

Ω
|∇ ×H|p

)1/p for anyH ∈ X . Moreover,

boundedness, monotonicity and coercivity follows from inequalities from Lemma 1.30.

1.6 Finite element theory

We now change gears and present some background on finite elements which will be relevant for

our finite element methods in the p-curl problem. In particular, we will not only discuss the standard

nodal finite elements but we also discuss the “edge”, “face” and “volume” elements widely used in

computational electromagnetics. The edge elements will be used exclusively in the finite element

methods of the p-curl problem discussed in this thesis. The main advantage of edge elements

is that tangential continuity across elements are preserved while allowing discontinuities in the

normal direction. Moreover, it is natural to impose tangential boundary conditions at the discrete

level using edge elements. In other words, edge elements reflects the natural physical boundary

conditions in electromagnetics.

Our discussion of finite elements follows (Monk, 2003, Chapter 5). We will begin with a short

introduction to finite elements which will be followed by a discussion of relevant polynomial spaces

and their transformation properties. We then present the nodal, edge, face and volume element

spaces and their associated “conforming” spaces. Finally, we discuss the interpolation properties

which will be relevant for error estimation for the p-curl problem.
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1.6.1 Finite elements on polyhedron

Following the classical work of Ciarlet (1978), a finite element is a triple (K,PK ,ΣK),

•K ∈ Rn is an open polyhedron, called an element,

• PK is a finite dimensional vector space of functions defined on K,

• ΣK is a set of linear functionals, called degrees of freedom, on PK .

K can be defined to be more general geometric domain but polyhedron will suffice for our discus-

sion. Typical choices for K include triangles or rectangles in R2 and tetrahedron or hexahedron in

R3. For ease of implementation and integration purposes, PK is usually chosen to be polynomials.

In order for numerical solutions constructed from finite elements to be well-defined, the degrees of

freedom of a finite element should be chosen so that a function in PK is uniquely determined when

values are assigned to all the degrees of freedom.

Definition 1.33. A finite element (K,PK ,ΣK) is said to be unisolvent if assigning a value to each

degree of freedom in ΣK uniquely determines a function in PK .

It follows that (K,PK ,ΣK) is unisolvent if and only if dim(ΣK) = m = dim(PK). Moreover, we

can define the basis functions, also called shape functions, to be the unique functions {φj ∈ PK}mj=1

such that for all Li ∈ ΣK ,

Li(φj) = δij =

 1, if i = j,

0, otherwise
. (1.40)

I.e. any p ∈ PK can be expanded as p(x) =
m∑
i=1

Li(p)φi(x).

In order to construct finite element spaces defined on a fixed domain Ω, we first define finite element

meshes associated with Ω.

Definition 1.34. Let Ω ⊂ Rn be bounded Lipschitz polyhedron domain. A finite element mesh of Ω
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is a finite collection Th = {K ⊂ Rn} satisfying,

• each K ∈ Th is an open polyhedron,

• Ω =
⋃
K∈Th

K,

For any two distinct K1, K2 ∈ Th

• K1

⋂
K2 = ∅,

• if K1

⋂
K2 is a common point x, then x must also be a vertex of K1 and K2

• if K1

⋂
K2 is an common edge e, then the endpoints of e must also be vertices of

K1 and K2,

• if K1

⋂
K2 is a common face f , then the vertices of f must also be vertices of

K1 and K2,

where h = max
K∈Th

hK and hK is the diameter of the largest sphere containing K.

For the purpose of convergence theory of finite element methods, we often imagine a family of finite

element meshes {Th : h > 0} with the parameter h going to zero. To rule out meshes that become

too ”skinny” as h → 0+, we define the following ratio. For a fixed Th and a fixed K ∈ Th, denote

ρK as the diameter of the largest sphere contained in K and define the ratio σh = max
K∈Th

hK/ρK .

Definition 1.35. A family of finite element meshes {Th : h > 0} is called regular if there are

positive constants σmin, h0 such that σmin ≤ σh for all 0 < h ≤ h0.

Given a mesh Th and a collection of finite elements {(K,PK ,ΣK)}K∈Th , we can define a function

xh defined almost everywhere on Ω which is composed of the shape functions on eachK and define

its associated finite element space Xh. It is important to note that xh ∈ Xh, in general, is not a

continuous function. Even if xh|K is smooth on eachK, the function xh defined almost everywhere

on Ω can have discontinuities between neighbouring K’s. However, if somehow through a “clever”

choice of global degrees of freedom
⋃
K∈Th ΣK that can guarantee inter-element continuity, then

we say the finite element space Xh “conforms” to C0(Ω). More generally, we define the following.
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Definition 1.36. Given a function space X defined on Ω, the collection of finite elements

{(K,PK ,ΣK)}K∈Th is said to be X conforming if the associated finite element space Xh is a

subspace of X .

Thus to construct conforming finite elements, it seems natural to look for degrees of freedom which

are defined on regions that are shared between neighbouring elements, i.e. node, edge and face.

This will be discussed thoroughly in a later section.

1.6.2 Polynomial spaces and their transformations

So far, we have been discussing finite elements (K,PK ,ΣK) without specifying the family of

function spaces PK . For practical reasons, PK is often a vector space of polynomials. Next, we

introduce polynomial spaces that will be often used later.

Given a multi-index α = (α1, α2, α3), we write xα = xα1
1 x

α2
2 x

α3
3 . Denoting |α| = α1 + α2 + α3,

the space of k-th order polynomials and homogeneous polynomials are,

Pk := {p(x) =
∑
|α|≤k

cαx
α : cα ∈ R}, (1.41)

P̃k := {p(x) =
∑
|α|=k

cαx
α : cα ∈ R}. (1.42)

In Rn, it can be shown that,

dim(Pk) =

(
n+ k

k

)
, (1.43)

dim(P̃k) =

(
n+ k − 1

k

)
. (1.44)

We sometimes also use Pk(S) to denote the polynomial space on a subset S of polyhedron. For

example, Pk(e) and Pk(f) denote polynomial space defined on an edge e and face f , respectively.
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Naturally, we also define the vector polynomial spaces,

(Pk)n := {(p1(x), . . . , pn(x))T : p1, . . . , pn ∈ Pk},

(P̃k)n := {(p1(x), . . . , pn(x))T : p1, . . . , pn ∈ P̃k},

with dim((Pk)n) = n dim(Pk) and dim((P̃k)n) = n dim(P̃k). We also consider the following

vector polynomial spaces in R3, which will be important for defining specific vector finite element

spaces to be discussed later.

Dk := (Pk−1)3 ⊕ P̃k−1x

= {p(x) + q(x)x : p ∈ (Pk−1)3, q ∈ P̃k−1},

Sk := {p(x) ∈ (P̃k)3 : x · p = 0},

Rk := (Pk−1)3 ⊕ Sk

= {p(x) + q(x) : p ∈ (Pk−1)3, q ∈ Sk}.

The reason for these choices of polynomial spaces will be made clear shortly but for the moment,

it suffices to say that these polynomial spaces will be shown to be invariant under certain transfor-

mations involving the divergence and the curl. Note that, it follows from (1.43)-(1.44) that,

dim(Dk) = 3 dim(Pk−1) + dim(P̃k−1) =
k

2
(k + 1)(k + 3). (1.45)

Since P̃k = (P̃k−1)3 · x, it also follows that,

dim(Sk) = 3 dim(P̃k−1)− dim(P̃k) = k(k + 2), (1.46)

dim(Rk) = 3 dim(Pk−1) + dim(Sk) =
k

2
(k + 2)(k + 3). (1.47)

Analogous definitions of Dk,Sk,Rk and similar results hold on R2.

Often, one would like to map a general element K to a reference element K̂. There are two main

reasons for working with the reference element. First from a practical point of view, it is more

efficient to perform computations on the same reference element. Second from a theoretical point
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of view, “interpolation” estimates are often derived using mappings from the reference element, as

we will discuss in the next section.

Let FK : K̂ → K be a continuously, differentiable and bijective vector-valued function. For

example, we often choose the bijective affine map,

x = FK(x̂) := BKx̂+ b, (1.48)

where BK is an invertible n × n matrix and b is a constant vector in Rn. For example in R2, the

reference triangle K̂ with nodes â1, â2, â3 is given by â1 = (0, 0)T , â2 = (1, 0)T , â3 = (0, 1)T .

Then the affine map withBK = (a3−a1 a2−a1) and b = a1 maps K̂ to a triangle K̂ with nodes

{a1,a2,a3}, see Figure 1.2. Similar expression can be obtained for the reference tetrahedron with

nodes {â1, â2, â3}.

Figure 1.2 Scalar function under mapping from the reference element to an arbitrary element in R2

Now we discuss how scalar, vector, curl, and divergence behave under FK . For any scalar function

u : K → R, we can define its pullback, û : K̂ → R, by,

û(x̂) := (u ◦ FK)(x̂) = u(FK(x̂)) = u(x). (1.49)
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If u is continuously differentiable, then the chain rule shows,

∇u(x) = (∇u ◦ FK)(x̂) = dF−TK ∇̂û(x̂), (1.50)

where ∇̂ is the gradient with respect to x̂ and dF−TK is the inverse transpose of the Jacobian dFK

of FK , i.e. dF−TK pushforwards gradients to gradients.

However, the transformations for vector fields and their curls and divergences are more delicate 2.

Let u : K → R3 continuously differentiable. Since the gradient of scalar functions are also vector

functions, then the associated û should also transform under (1.50),

u(x) = (u ◦ FK)(x̂) = dF−TK û(x̂), (1.51)

Using such transformation (1.51) for vector functions, it can be shown (Monk, 2003, Corollary

3.58) that the transform rule for curls is given by,

(∇× u)(x) =

(
1

det(dFK)
dFK∇̂ × û

)
(x̂). (1.52)

To preserve divergences, it can also be shown (Monk, 2003, Lemma 3.59) that, by defining a

modified transformation,

u(x) = (u ◦ FK)(x̂) =
1

det(dFK)
dFKû(x̂), (1.53)

an analogous transformation rule for divergences is given by,

(∇ · u)(x) =

(
1

det(dFK)
∇̂ · û

)
(x̂), (1.54)

The next theorem hopes to illuminate the definitions of Dk andRk.

Theorem 1.37 (Monk 2003, Lemma 5.17, 5.32). Let FK : K̂ → K be the affine map given

by (1.48). Then Dk is invariant under the transformation (1.53) and Rk is invariant under the

2. The reason is that although ∇ × u and ∇ · u appear to be respectively vector and scalar functions, they are in
fact elements of dual spaces, i.e. differential forms, and thus do not transform as gradients do.
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transformation (1.51). In other words, if p(x̂) ∈ Dk(K̂), then p(x) ∈ Dk(K) under (1.53). And

also, if q(x̂) ∈ Rk(K̂), then q(x) ∈ Rk(K) under (1.51).

This motivates one to think of Dk as the polynomial space which preserves divergences and Rk as

the polynomial space which preserve curls under affine transformations. Furthermore, they have a

discrete analogue of the Helmholtz decomposition.

Theorem 1.38 (Monk (2003), Lemma 5.27, 5.28). The following algebraic decomposition holds,

(Pk)3 = Rk ⊕∇P̃k+1.

And if p ∈ Rk satisfies∇× p = 0, then p = ∇q for some q ∈ Pk.

Remark 1.39. Note that unlike what one might expect for the discrete Helmholtz decomposition,

∇ · Rk 6= 0 in general. It can be seen that∇ · Rk = 0 if and only if k = 1.

It can be shown (Girault and Raviart, 1986, Page 265) that the tangent vectors and normal vectors

should also transform in a specific manner. Let τ̂ , ν̂ be a tangent and normal vector on ∂K̂. The

corresponding tangent vector and normal vector on K is given by,

τ(x) =

(
dFK τ̂

|dFK τ̂ |

)
(x̂) (1.55)

ν(x) =

(
dF−TK ν̂

|dF−TK ν̂|

)
(x̂) (1.56)

We summarize some useful relations for line, surface, volume integrals on polyhedrons that will be

used later. Assume throughout that FK is an affine transformation of (1.48) with dFK = BK .

Theorem 1.40 (Monk 2003, Lemma 5.18, 5.34). Suppose det(BK) > 0. Let tangent vectors τ , τ̂

be related via (1.55) and normal vectors ν, ν̂ be related via (1.56). Also let u, û be related by

(1.49), p, p̂ be related by (1.51), q, q̂ be related by (1.53) and r = BK r̂. Then the following
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identities hold on edges e, faces f and volume of K.

∫
e

p · τuds =

∫
ê

p̂ · τ̂ ûds (1.57)∫
f

q · νudA =

∫
f̂

q̂ · ν̂ûdÂ (1.58)∫
f

p · rdA =

∫
f̂

p̂ · r̂dÂ (1.59)∫
K

p · qdV =

∫
K̂

p̂ · q̂dV̂ (1.60)

1.6.3 Finite element spaces on tetrahedron and their interpolation properties

In this section, we introduce the nodal, edge, face and volume finite elements, based on the pre-

sentation in (Monk, 2003, Chapter 5). They are referred this way because their lowest order finite

elements have their degrees of freedom defined as weighted averages on either the nodes, edges,

faces or volume of a polyhedron. The “face element” in 2D was first proposed by (Raviart and

Thomas, 1977) and later extended to 3D by (Nédélec, 1980). The “edge element” was first de-

veloped by (Nédélec, 1980) in the context of finite elements, while they were discovered much

earlier by (Whitney, 1957) in the context of cohomology theory. Subsequently, edge elements

were popularized in computational electromagnetics and engineering by (Kotiuga, 1984; Bossavit,

1988; Webb, 1993; Bossavit, 1997). Recently, they have been generalized in an abstract theory

of Hilbert complexes by (Arnold et al., 2006, 2010) constructed to analyze the stability of various

finite element methods.

We only discuss the L2-type conforming and interpolation properties. This is because of two rea-

sons. First, the L2-type results are already well established (Monk, 2003, Chapter 5) and secondly

we are not aware of literature with equivalent Lp-type results. We assume in this section that K is

a tetrahedron unless otherwise stated. Similar results can be established for triangles.
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1.6.3.1 Nodal elements / H1(Ω) conforming elements

Nodal elements, also called Lagrange elements, are the most familiar type of finite elements when

one first encounters finite element methods. As we will see, the nodal element space conforms to

H1(Ω). For the lowest order k = 1, their degrees of freedom are defined with respect to the vertices

of the tetrahedron.

Definition 1.41 (Nodal element on the reference tetrahedron). Let k ≥ 1. The nodal element on

the reference tetrahedron is the triple (K̂,Pk(K̂),ΣNode
K̂

) with

ΣNode
K̂

= Ln(K̂)
⋃
Le(K̂)

⋃
Lf (K̂)

⋃
Lv(K̂), where the associated nodal, edge, face and volume

degrees of freedom are given by,

Ln(K̂) = {p̂ 7→ p̂(âi) : âi nodes of K̂}

Le(K̂) =

{
p̂ 7→ 1

|ê|

∫
ê

p̂q̂dŝ : q̂ ∈ Pk−2(ê), ê edges of K̂
}

Lf (K̂) =

{
p̂ 7→ 1

|f̂ |

∫
f̂

p̂q̂dÂ : q̂ ∈ Pk−3(f̂), f̂ faces of K̂

}

Lv(K̂) =

{
p̂ 7→ 1

|K̂|

∫
K̂

p̂q̂dV̂ : q̂ ∈ Pk−4(K̂)

}

Similarly, the nodal element on a general tetrahedron K can be defined as (K,Pk(K),ΣNode
K ).

Moreover, it is equivalent to (FK(K̂),Pk(FK(K̂)),ΣNode
FK(K̂)

) for any affine map FK .

Theorem 1.42 (Brenner and Scott 2007, Proposition 3.4.3). (K̂,Pk(K̂),ΣNode
K̂

) is equivalent to

(K,Pk(K),ΣNode
K ) under affine transformations (1.48) and is unisolvent.

To construct a finite element space for (K,Pk(K),ΣNode
K ), we need the following lemma.

Lemma 1.43 (Monk 2003, Lemma 5.3.1). Let K1, K2 be two nonoverlapping elements with a

common face or edge K1,2 = K1

⋂
K2. If u1 ∈ H1(K1), u2 ∈ H1(K2) such that u1 = u2 on K1,2,

then u ∈ H1(K1

⋃
K2

⋃
K1,2) where,

u =

u1 on K1,

u2 on K2.
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Using Lemma 1.43, it can be shown that the global finite element space for (K,Pk(K),ΣNode
K )

defined on a mesh Th is a subspace of the Hilbert space H1(Ω).

Theorem 1.44 (Monk 2003, Lemma 5.47). Given a mesh Th, the nodal element space Uk,h associ-

ated with the finite elements {(K,Pk(K),ΣNode
K )}K∈Th is H1(Ω) conforming and Uk,h can be given

by,

Uk,h = {uh ∈ H1(Ω) : uh|K ∈ Pk(K), K ∈ Th}. (1.61)

In particular, they are continuous functions.

For example, using (1.40), the explicit expression for first order nodal basis functions {Φi}3
i=1 on a

general triangle K with nodes ai = (xi, yi) can be found to be (Jin, 2002, Page 96),

Φi(x) =
ai + bix+ ciy

2|K|
, (1.62a)

with coefficients,

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2, (1.62b)

a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3, (1.62c)

a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1. (1.62d)

See Figure 1.3 for an illustration. Similar explicit expression for first order nodal basis functions in

3-D can also be obtained (Jin, 2002, Page 168).

Figure 1.3 First order nodal basis function y = Φ1(x1, x2) for the triangle K.
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1.6.3.2 Edge elements / H(curl; Ω) conforming elements

Edge elements, also called Nédélec or Whitney elements, are used ubiquitously in computational

electromagnetics. This is because they have the unique property of preserving tangential continuity

across elements which naturally reflects physical boundary conditions in electromagnetics. More-

over, their finite element space is H(curl; Ω) conforming. For the lowest order k = 1, their degrees

of freedom are defined on the edges of the tetrahedron. We will be using edge elements explicitly

in subsequent chapters.

Definition 1.45 (Edge element on the reference tetrahedron). Let k ≥ 1. The edge element on the

reference tetrahedron is the triple (K̂,Rk(K̂),ΣEdge
K̂

) with

ΣEdge
K̂

= Me(K̂)
⋃
Mf (K̂)

⋃
Mv(K̂), where the associated edge, face and volume degrees of free-

dom are given by,

Me(K̂) =

{
p̂ 7→

∫
ê

p̂ · τ̂ q̂dŝ : q̂ ∈ Pk−1(ê), ê edges of K̂
}

Mf (K̂) =

{
p̂ 7→ 1

|f̂ |

∫
f̂

p̂ · q̂dÂ : q̂ ∈ (Pk−2(f̂))3, q̂ · ν̂ = 0, f̂ faces of K̂

}

Mv(K̂) =

{
p̂ 7→

∫
K̂

p̂ · q̂dV̂ : q̂ ∈ (Pk−3(K̂))3

}

Unlike nodal elements, compatible transformations (1.51), (1.53), (1.55) and (1.56) are used so that

edge elements on a general tetrahedron K are equivalent to (K̂,Rk(K̂),ΣEdge
K̂

).

Definition 1.46 (Edge element on a tetrahedron). Let k ≥ 1 and FK : K̂ → K is an affine

transformation given by (1.48) with the Jacobian BK . Suppose the tangent vectors τ , τ̂ are related

by (1.55) and the normal vectors ν, ν̂ are related by (1.56). Then, the edge element on a tetrahedron

is the triple (K,Rk(K),ΣEdge
K ) with ΣEdge

K = Me(K)
⋃
Mf (K)

⋃
Mv(K), where the associated



38

edge, face and volume degrees of freedom are given by,

Me(K) =

{
p 7→

∫
e

p · τ qds : q ∈ Pk−1(e), e edges of K
}

Mf (K) =

{
p 7→ 1

|f |

∫
f

p · qdA : q = BK q̂, q̂ ∈ (Pk−2(f̂))3, q̂ · ν̂ = 0, f faces of K
}

Mv(K) =

{
p 7→

∫
K

p · qdV : q, q̂ are related by (1.53) where q̂ ∈ (Pk−3(K̂))3

}

Theorem 1.47 (Monk 2003, Lemma 5.34, 5.36). If det(BK) > 0, (K̂,Rk(K̂),ΣEdge
K̂

) is equivalent

to (K,Rk(K),ΣEdge
K ) under the transformations (1.51) and is unisolvent.

We note that it is important for implementation of edge elements to ensure the affine map on each

element to have det(BK) > 0 in order to preserve orientation (Ainsworth and Coyle, 2003). To

construct the finite element space for (K̂,Rk(K̂),ΣEdge
K̂

), we need the following lemma.

Lemma 1.48 (Monk 2003, Lemma 5.3.2). Let K1, K2 be two nonoverlapping elements with a

common face or edge K1,2 = K1

⋂
K2. If v1 ∈ H(curl;K1), v2 ∈ H(curl;K2) such that γt(v1) =

γt(v2) on K1,2, then v ∈ H(curl;K1

⋃
K2

⋃
K1,2) where,

v =

v1 on K1,

v2 on K2.

Using Lemma 1.48, it can be shown the global finite element space for (K,Rk(K),ΣEdge
K ) defined

on a mesh Th will be a subspace of the Hilbert space H(curl; Ω).

Theorem 1.49 (Monk 2003, Theorem 5.37). Given a mesh Th, the edge element space Vk,h associ-

ated with the finite elements {(K,Rk(K),ΣEdge
K )}K∈Th is H(curl; Ω) conforming and Vk,h can be

given by,

Vk,h = {vh ∈ H(curl; Ω) : vh|K ∈ Rk(K), K ∈ Th}. (1.63)

Again using (1.40), the explicit expression for first order edge basis functions {Ψe}3
e=1 on a general
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triangle K with nodes ai can be found to be (Monk, 2003, Page 139),

Ψe(x) = Φi(x)∇Φj(x)− Φj(x)∇Φi(x), (1.64)

where Φi is the nodal basis function given by (1.62a) and e is the directed edge from node ai to

node aj . See Figure 1.4 for a illustration. The expression for first order edge basis function in 3-D

is similar with Φi replaced with its 3-D equivalent.

Figure 1.4 First-order edge basis function Ψe for the triangle K.

Remark 1.50. On any triangle K with u =
∑

e edges ofK

ueΨe, it can be shown that

(∇× u) · n̂ = 1
|K|

∮
∂K
u · dr, where n̂ is the positively oriented normal to the boundary ∂K, i.e.

(∇× u) · n̂ agrees with the curl interpretation at the discrete level.

1.6.3.3 Face elements / H(div; Ω) conforming elements

In contrast to edge elements, face elements, also called Raviart-Thomas elements, have the unique

property of preserving normal continuity across elements. Moreover, their finite element space is

H(div; Ω) conforming. For the lowest order k = 1, their degrees of freedom are defined over the

faces of the tetrahedron.

Definition 1.51 (Face element on the reference tetrahedron). Let k ≥ 1. The face element on the

reference tetrahedron is the triple (K̂,Dk(K̂),ΣFace
K̂

) with ΣFace
K̂

= Nf (K̂)
⋃
Nv(K̂), where the
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associated face and volume degrees of freedom are given by,

Nf (K̂) =

{
p̂ 7→

∫
f̂

p̂ · ν̂ q̂dÂ : q̂ ∈ Pk−1(f̂), f̂ faces of K̂
}

Nv(K̂) =

{
p̂ 7→

∫
K̂

p̂ · q̂dV̂ : q̂ ∈ (Pk−2(K̂))3

}

Similar edges elements, compatible transformations (1.53) and (1.56) are used so that face elements

on a general tetrahedron K to be equivalent to (K̂,Dk(K̂),ΣFace
K̂

).

Definition 1.52 (Face element on a tetrahedron). Let k ≥ 1 and FK : K̂ → K is an affine

transformation given by (1.48) with the Jacobian BK . Suppose the normal vector ν, ν̂ is related

by (1.56). Then, the face element on a tetrahedron is the triple (K,Dk(K),ΣFace
K ) with ΣFace

K =

Nf (K)
⋃
Nv(K), where the associated face and volume degrees of freedom are given by,

Nf (K) =

{
p 7→

∫
f

p · νqdA : q ∈ Pk−1(f), f faces of K
}

Nv(K) =

{
p 7→

∫
K

p · qdV : q, q̂ are related by (1.51) where q̂ ∈ (Pk−2(K̂))3

}

Theorem 1.53 (Monk 2003, Lemma 5.18, 5.21). If det(BK) > 0, (K̂,Dk(K̂),ΣFace
K̂

) is equivalent

(K,Dk(K),ΣFace
K ) under the transformations (1.53) and is unisolvent.

We need the following lemma to construct the finite element space for (K̂,Dk(K̂),ΣFace
K̂

).

Lemma 1.54 (Monk 2003, Lemma 5.3.3). Let K1, K2 be two nonoverlapping elements with a

common face or edgeK1,2 = K1

⋂
K2. Ifw1 ∈ H(div;K1),w2 ∈ H(div;K2) such that γn(w1) =

γn(w2) on K1,2, then w ∈ H(div;K1

⋃
K2

⋃
K1,2) where,

w =

w1 on K1,

w2 on K2.

Using Lemma 1.54, it can be shown the global finite element space for (K,Dk(K),ΣFace
K ) defined

on a mesh Th is a subspace of the Hilbert space H(div; Ω).
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Theorem 1.55 (Monk 2003, Theorem 5.23). Given a mesh Th, the face element spaceWk,h asso-

ciated with the finite elements {(K,Dk(K),ΣFace
K )}K∈Th is H(div; Ω) conforming andWk,h can be

given by,

Wk,h = {wh ∈ H(div; Ω) : wh|K ∈ Dk(K), K ∈ Th}. (1.65)

The explicit expression for first order face basis functions {Λi}3
i=1 on a general tetrahedron K with

nodes ai can be shown to be (Monk, 2003, Page 126),

Λf (x) =
x− ai
3|K|

, (1.66)

where f is the face opposite to the node ai, see Figure 1.5.

Figure 1.5 First order face basis function Λf for the tetrahedron K.

1.6.3.4 Volume elements / L2(Ω) conforming elements

Lastly, we briefly mention volume elements for completeness. One can start from defining the

triple (K̂,Pk(K̂),ΣVolume
K̂

) and show unisolvence and affine equivalence onto (K,Pk(K),ΣVolume
K ).

The end result is we have the volume element space equivalent to,

Zk,h = {zh ∈ L2(Ω) : zh|K ∈ Pk−1(Ω), K ∈ Th}. (1.67)
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Hence, Zk,h is L2(Ω) conforming and its lowest order element can be seen to have degrees of

freedom defined over the volume of a tetrahedron. See (Monk, 2003, Page 149).

1.6.4 L2-type classical interpolation operators and quasi-interpolation operators

We conclude this section with a summary of approximation properties of the finite element spaces

with respect to their conforming function spaces.

Given some function space X , i.e. a Sobolev space. Suppose Xh is a X-conforming finite element

space defined on a mesh Th with unisolvent finite elements (K,PK ,ΣK). Let f ∈ X . Since the

finite element defined on each K is unisolvent, we can define the unique function fh|K ∈ PK

by evaluating each degree of freedom of ΣK on f |K , provided the linear functionals ΣK are well-

defined. By piecing together allK ∈ Th, we can define the unique global function fh ∈ Xh. Hence,

we can define the linear interpolation operator Π : X → Xh given by Π(f) = fh for any f ∈ X .

The main hypothesis is that ΣK must be well-defined over X for the evaluation of f on each degree

of freedom to make sense. In general, the interpolation operator is only defined on a subspace of

X .

The first interpolation result is for the H1(Ω)-conforming nodal element space Uk,h from (1.61).

Since the degrees of freedom for Uk,h require point-wise evaluations at each node, an operation

which make sense only for functions in C0(Ω), we are forced to define interpolation operator on a

subspace U ofH1(Ω), which according to the Sobolev embedding theorem 3, where U := H
n
2

+δ(Ω)

for any δ > 0. Hence we have the following classical nodal interpolation theorem.

Theorem 1.56 (Monk 2003, Theorem 5.48). Let {Th : h > 0} be a family of regular meshes and

Uk,h be the k-th order nodal element space with the linear interpolation operator πh : U → Uk,h.

Then there exists a constant C independent of h such that if u ∈ Hm(Ω) for 2 ≤ m ≤ k + 1, then

‖u− πh(u)‖H1(Ω) ≤ Chm−1 ‖u‖Hm(Ω) . (1.68)

3. The Sobolev embedding theorem tells us that functions belonging to H
n
2 +δ(Ω) can be identified with functions

from C0(Ω) and that the choice of exponent n2 + δ is optimal.
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A similar interpolation result can be derived for the H(curl; Ω)-conforming edge element space

Vk,h from (1.63). Since the degrees of freedom for Vk,h require tangential and boundary traces

along each edge or face to make sense, we are again forced to define interpolation operator on a

subspace V of H(curl; Ω), defined by V := {v ∈ H 1
2

+δ(Ω) : ∇× v ∈ L2+ε(∂Ω)} for any δ, ε > 0.

Theorem 1.57 (Monk 2003, Theorem 5.41). Let {Th : h > 0} be a family of regular meshes and

Vk,h be the k-th order edge element space with the linear interpolation operator rh : V → Vk,h.

Then there exists a constantC independent of h such that ifu ∈ (Hm(Ω))3 with∇×u ∈ (Hm(Ω))3

for 1
2
< m ≤ k, then

‖u− rh(u)‖H(curl;Ω) ≤ Chm
(
‖u‖Hm(Ω) + ‖∇ × u‖Hm(Ω)

)
. (1.69)

For the case ofH(div; Ω)-conforming face element spaceWk,h from (1.65), the degrees of freedom

for Wk,h require normal traces along each face to make sense. So, we are also forced to define

interpolation operator on a subspaceW of H(div; Ω), defined byW := H
1
2

+δ(Ω) for any δ > 0.

Theorem 1.58 (Monk 2003, Theorem 5.25). Let {Th : h > 0} be a family of regular meshes and

Wk,h be the k-th order face element space with the linear interpolation operatorwh :W →Wk,h.

Then there exists a constant C independent of h such that if u ∈ (Hm(Ω))3 with ∇ · u ∈ Hm(Ω)

for 1
2
< m ≤ k, then

‖u−wh(u)‖H(div;Ω) ≤ Chm
(
‖u‖Hm(Ω) + ‖∇ · u‖Hm(Ω)

)
. (1.70)

For the L2(Ω)-conforming volume element space Zk,h defined in (1.67), we have an interpolation

result for the so-called Clément’s interpolation ΠClem of (Clément, 1975).

Theorem 1.59. Let {Th : h > 0} be a family of regular meshes and Zk,h be the k-th order volume

element space with the linear interpolation operator ΠClem : L2(Ω) → Zk,h. Then there exists a

constant C independent of h such that if u ∈ Hm(Ω) for 0 ≤ m ≤ k, then

‖u− ΠClem(u)‖L2(Ω) ≤ Chm ‖u‖Hm(Ω) . (1.71)
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In addition, the four finite element spaces also satisfy certain “commutation” properties.

Theorem 1.60 (Monk 2003, Page 135, 145, 149). Let Uk,h,Vk,h,Wk,h and Zk,h be as defined

respectively in Theorem 1.56, 1.57, 1.58 and 1.59. Then, the following inclusions hold,

∇Uk,h ⊂ Vk−1,h,

∇× Vk,h ⊂ Wk−1,h,

∇ ·Wk,h ⊂ Zk−1,h.

Moreover, if u ∈ U ,v ∈ V ,w ∈ W , the following commutation properties hold,

∇(πhu) = rh(∇u),

∇× (rhv) = wh(∇× v),

∇ · (whw) = ΠClem(∇ ·w).

A convenient way to summarize the commuting properties of Theorem 1.60 is through the L2(Ω)

“de Rham diagram”,

H1(Ω) ∇ // H(curl; Ω)
∇× // H(div; Ω) ∇· // L2(Ω)⋃ ⋃ ⋃

U
πh ��

V
rh��

W
wh�� ΠClem��

Uh ∇ // Vh
∇× //Wh

∇· // Zh

We complete the discussion with the quasi-interpolation operator ΠScho of (Schöberl, 2008) which

is an analog of the classical interpolation rh. In essence, quasi-interpolation ΠScho is defined over

the entire function space H(curl; Ω) while giving similar interpolation error estimates as before.

This is achieved by local averaging of the degrees of freedom which would otherwise not be well-

defined over H(curl; Ω) in general. The resultant quasi-interpolation operators may not necessarily

be projections onto finite element spaces, though extension of ΠScho which is a projection have

recently been constructed (Zhong et al., 2011).
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Theorem 1.61. There exists a quasi-interpolation operator ΠScho : H(curl; Ω) → Vk,h with the

property: for any v ∈ H(curl; Ω), there exists φ ∈ H1
0 (Ω) and w ∈ H1

0 (Ω)3 such that,

v − Πv = ∇φ+w, (1.72)

and on eachK ∈ T , there exists a union of triangles ωK coveringK and constantC > 0 depending

only on shape-regularity of ωK such that φ,w satisfy,

h−1
K ‖φ‖L2(K) + ‖∇φ‖L2(K) ≤ C ‖v‖L2(ωK) , (1.73)

h−1
K ‖w‖L2(K) + ‖∇w‖L2(K) ≤ C ‖∇ × v‖L2(ωK) . (1.74)

For completeness, we also mention that the quasi-interpolant of Schöberl extends πh and wh with

similar commutativity properties.

1.7 Error estimation for finite element methods

In this section, we give an informal discussion to error estimation for finite element methods. The

application we have in mind is to estimate the error between the numerical solution obtained from

finite element methods and the actual unknown solution to the p-curl problem. For simplicity, we

introduce the key concepts in error estimation in the linear setting.

Let X be a function space and consider the linear stationary problem:

Find u ∈ X so that for any f ∈ X∗,

a(u, v) = 〈f, v〉, for all v ∈ X, (1.75)

where a : X × X → R is a continuous bilinear form (i.e. |a(u, v)| ≤ C ‖u‖X ‖v‖X for any

u ∈ X, v ∈ X). For problem (1.75), we can define the bounded linear operator A : X → X∗

given by 〈A(u), v〉 = a(u, v). Discretizing (1.75), i.e. using Galerkin’s method, consider solving
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the associated discrete linear stationary problem:

Find uh ∈ Xh so that for any fh ∈ X∗h,

a(uh, vh) = 〈fh, vh〉, for all vh ∈ Xh, (1.76)

whereXh is aX-conforming finite element space with the interpolation π : X → Xh. Analogously

to A, we can define the associated linear operator Ah : Xh → X∗h. Now suppose (1.75) and (1.76)

are both well-posed (i.e. A−1 and A−1
h is well-defined and bounded), then we can, in general,

estimate the error between the actual unknown solution u and the finite element solution uh in two

different ways.

1.7.1 A-priori error estimates

First, we estimate the error ‖u− uh‖X using “a priori” information about the solution u of (1.75).

By the triangle inequality,

‖u− uh‖X ≤ ‖u− πu‖X + ‖πu− uh‖X (since πu− uh ∈ Xh ⊂ X)

= ‖u− πuh‖X +
∥∥A−1

h Ah(πu− uh)
∥∥
X

≤ ‖u− πu‖X +
∥∥A−1

h

∥∥
L(X∗h,Xh)

‖Ah(πu− uh)‖X∗h , (1.77)

where the consistency error (also called truncation error) ‖Ah(πu− uh)‖X∗h can be bounded by the

interpolation error ‖πu− u‖X as follows. For all vh ∈ Xh, we have

〈Ah(πu− uh), vh〉 = a(πu, vh)− 〈fh, vh〉 = a(πu, vh)− 〈f, vh〉 = a(πu− u, vh).

So by continuity of a,

‖Ah(πu− uh)‖X∗h := sup
vh∈Xh
‖vh‖X≤1

|〈Ah(πu− uh), vh〉| ≤ sup
v∈X
‖v‖X≤1

|a(πu− u, v)|

≤ C ‖πu− u‖X . (1.78)
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So combining (1.77) and (1.78), we have so-called Céa’s Lemma,

‖u− uh‖X ≤
(

1 + C
∥∥A−1

h

∥∥
L(X∗h,Xh)

)
‖πu− u‖X . (1.79)

From interpolation theorems (such as Theorem 1.56-Theorem 1.59), we see that if u ∈ Y for some

suitable smoother subspace Y ⊂ X , then the interpolation error ‖πu− u‖X ≤ Chm ‖u‖Y where

m > 0 and h is the maximum diameter of elements K in mesh Th. Thus, if Ah is stable (i.e. the

constants
∥∥A−1

h

∥∥
L(X∗h,Xh)

is uniformly bounded in h), then it follows from (1.79) and interpolation

error estimates that ‖u− uh‖X → 0 as h → 0. I.e. “stability+consistency+(regularity)” implies

convergence for this finite element method.

This is basically the standard way to show convergence of a finite element method using a priori

error estimates. There are two main drawbacks with a priori error estimation. First is that one

needs to know “a priori” about the regularity of the unknown solution u. Especially for nonlinear

problems, such regularity results may be difficult to obtain. Secondly, one needs to “choose”

a finite element space Xh which satisfies the stability condition. Moreover, one can show that∥∥A−1
h

∥∥
L(X∗h,Xh)

= γ−1
h where γh satisfies the inf-sup condition 4,

γh := inf
‖uh‖Xh

≤1
sup

‖vh‖Xh
≤1

a(uh, vh) (1.80)

In general, even computing γh for a givenXh is difficult, let alone showing γh is uniformly bounded

below away from zero. The one special case where γh can be computed explicitly is when a satisfies

a(u, u) ≥ α ‖u‖2
X (i.e. a is coercive). In that case, it can be seen from (1.80) that γh ≥ α > 0. I.e.

the finite element method is automatically stable when the bilinear form a is coercive.

1.7.2 Residual-based A posteriori error estimates and adaptivity

In contrast to “a priori” error estimates, we can still obtain error estimates without knowledge

(such as regularity results) on the unknown solution u of (1.75). This is the main idea for “a poste-

riori” error estimates where we try to estimate the error based on information which are explicitly

4. Also called Ladyzhenskaya-Babuška-Brezzi or LBB condition, see Brezzi and Fortin (1991).
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computable such as solving for uh from the discrete problem (1.76). In this thesis, we focus on

explicit residual-based a posteriori estimation. We cite Ainsworth and Oden (2000); Bangerth and

Rannacher (2003) for other types of a posteriori error estimation.

In general, an a posteriori error estimate η(uh) is called reliable if ‖u− uh‖X ≤ Cη(uh) and

efficient if η(uh) ≤ C(‖u− uh‖X + osc(f)) where osc(f) denotes oscillation term associated

with how well the finite element space approximate f . The concept of efficiency of a posteriori

error estimate is an important investigation in its own right and for the proof of convergence of

adaptive finite element methods (Verfürth, 2013). In this work, we will only establish reliability of

error estimators for the p-curl problem and leave the efficiency and convergence results for future

investigations.

The idea of residual-based a posteriori estimation follows from the following estimate,

‖u− uh‖X =
∥∥A−1A(u− uh)

∥∥
X
≤
∥∥A−1

∥∥
L(X∗,X)

‖f − A(uh)‖X∗ . (1.81)

Note the similarity of (1.81) to a priori estimate (1.79). The expression R(uh) = f − A(uh) ∈ X∗

is called the residual of uh and does not depend on any a-priori information about u. Since R(uh)

is measured in the dual norm which is difficult to compute in general, it is typically estimated by

integrating by parts locally on each element. A quasi-interpolation operator is then used to relate

the local contributions to global quantities.

The main application for a posteriori error estimates is to locate where the dominant error occurs

in space or sometimes even in time. For example, in R2, the residual of uh typically has the form

(Ainsworth and Oden, 2000; Verfürth, 2013), for some constant C > 0,

‖R(uh)‖X∗ ≤ C

∑
K∈Th

η2
K +

∑
E∈E(Th)

η2
E

1/2

,

where ηK is called the interior error indicator associated with the element K and ηE is the edge

error indicator associated with the edge E. Typically for some positive constant C independent of
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properties of K, the local error indicators will be of the form

ηK ≤ ChrKRK(uh)

ηE ≤ ChsERE(uh)

for some r, s > 0, where hK is the diameter of the element K, hE is the length of the edge and

the local residuals RK(uh), RE(uh) are explicitly computable. Thus, in principle, a given error

tolerance can be reached by successive refining marked elements K of mesh Th based on some

marking strategy and solving the problem on the refined mesh. This approach of using a posteriori

error estimates and actively refining the mesh Th is called the adaptive finite element method, see

Figure 1.6.

Figure 1.6 General algorithm of the adaptive FE method for time-dependent problems.
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CHAPTER 2

NUMERICAL METHODS AND RESULTS IN THE LITERATURE

In this chapter, we review numerical methods used to solve the p-curl problem, as they are found in

the engineering community and the applied mathematics community. In contrast to the large body

of numerical works in engineering publications (Bossavit, 1994; Brandt, 1996; Amemiya et al.,

1997; Prigozhin, 1997; Stavrev et al., 2002a; Pecher et al., 2003; Grilli et al., 2005; Brambilla

et al., 2007, 2008; Lousberg et al., 2009; Stenvall and Tarhasaari, 2010b), the numerical aspects of

the p-curl problem have only recently began to gain interest among numerical analysts (Wei and

Yin, 2005; Elliott and Kashima, 2007; Janikova and Slodicka, 2008; Slodicka, 2008; Slodicka and

Janikova, 2008; Janikova and Slodicka, 2010; Barrett and Prigozhin, 2010).

We first present various discretizations of the p-curl problem from the engineering literature. Gen-

erally, error estimates for these formulations are not discussed in a rigorous context. Instead, the

resulting numerical results often are considered sufficient for engineering purposes provided they

agree reasonably with experimental measurements. As the number of techniques to solve these

problems has increased, it has become necessary to compare these methods in terms of accuracy,

stability and computational cost. Unfortunately, the engineering community does not have the tools

to discern accuracy and stability and is still in the process of defining a catalogue of benchmark

problems to aide in the comparison of different techniques. In summary, although presentation of

results from the engineering literature will be less formal, it is the desire of the engineering com-

munity to make them more so, with the help of tools from the applied mathematics community.

2.1 Numerical methods from engineering

Within the engineering literature, there are two common numerical approaches to solving the p-curl

problem: variational inequality methods and finite element methods. We note that works based on

the finite difference method had been pursued by (Sykulski et al., 1997) and the Green’s function
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approach proposed by (Brandt, 1996). They had been popular in the past due to their simplicity,

though limited in applicability for general domains. In all cases, a global time-stepping scheme is

used over the entire mesh.

The variational inequality approach was first introduced by (Bossavit, 1994) for the Bean model

using edge elements. Since then, this approach has been expanded to include the power law model

and other generalizations by (Prigozhin, 1997; Rubinacci et al., 2000). The finite element method

for the “T − ϕ formulation” of the p-curl problem appeared in (Vinot et al., 2000) and in (Stenvall

and Tarhasaari, 2010b) using edge elements. Subsequently, finite element methods have also been

proposed for the “A− V formulation” by (Amemiya et al., 1997; Nibbio et al., 2001) using nodal

elements and (Lousberg et al., 2009) using edge elements. Similarly, the finite element approach for

the “H formulation” has also been used in (Pecher et al., 2003; Brambilla et al., 2007) with edge

elements. The list of formulations given above is not in any way exhaustive as these formulations

are usually borrowed from formulations of the classical eddy current problem. For a good survey,

see (Biro and Preis, 1989; Biro, 1999).

We discuss the most common numerical methods to solving the p-curl problem in the engineering

literature and highlight some of their numerical advantages and disadvantages. In this section, we

assume Ω is simply connected and the classical Helmholtz decomposition holds for the solution

H . See (Farwig et al., 2005) for a rigorous treatment in the Lp setting or (Monk, 2003, Theorem

3.45) in the L2 context with non-simply connected Ω.

2.1.1 A− V Formulation

TheA−V formulation, also called the magnetic vector potential formulation, of the p-curl problem

(Amemiya et al., 1997; Nibbio et al., 2001; Stavrev et al., 2002a; Lousberg et al., 2009; Stenvall

and Tarhasaari, 2010a) is obtained from (1.2a)-(1.2e) by first expressing B = ∇×A, where A is

the magnetic vector potential of B. The existence of A follows from Helmholtz decomposition of

B and the divergence-free condition (1.2c). Hence, substituting the magnetic vector potential for
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B in (1.2a) and interchanging the order of ∂
∂t

and ∇× leads to,

∇×
(
E +

∂

∂t
A

)
= 0.

Again by employing Helmholtz decomposition, then there exists a scalar function V such that,

E +
∂

∂t
A = −∇V. (2.1)

By using (1.2d) to expressH in terms ofA, it follows from (1.2b) that,

∇× 1

µ
∇×A = J . (2.2)

Employing the nonlinear conductance relation, i.e. the inverse of the nonlinear resistance, and that

E depends onA and V through (2.1), we see that (2.2) is equivalent to,

∇× 1

µ
∇×A+ σ(A, V )

(
∂

∂t
A+∇V

)
= 0. (2.3)

Now taking the divergence of (2.3) yields,

∇ ·
(
σ(A, V )

(
∂

∂t
A+∇V

))
= 0. (2.4)

Equations (2.3) and (2.4) are the A − V formulation of the p-curl problem. Since ∇ × A and

∇V appear in the formulation, it is natural to use the finite element spaces Vh and Uh, respectively.

Upon multiplying both (2.3) and (2.4) by test functions Φh ∈ Vh,Ψh ∈ Uh and integrating by parts,

the finite element discretization of theA− V formulation is to solve the following problem,

FindAh ∈ Vk,h and Vh ∈ Uk,h so that for all Φh ∈ Vk,h,Ψh ∈ Uk,h,

∫
Ω

1

µ
∇×Ah · ∇ ×Φh + σ(Ah, Vh)

(
∂

∂t
Ah +∇Vh

)
·ΦhdV

+

∫
∂Ω

1

µ
(∇×Ah)×Φh · n̂dS = 0,∫

Ω

σ(Ah, Vh)

(
∂

∂t
Ah +∇Vh

)
· ∇ΨhdV =

∫
∂Ω

σ(Ah, Vh)

(
∂

∂t
Ah +∇Vh

)
· n̂ΨhdS.
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Expanding Ah(x, t) =
∑

edges e

ae(t)Ψe(x) and Vh(x, t) =
∑

nodes i

vi(t)Φi(x), where Ψe are edge

element basis functions and Φi are nodal element basis functions, we obtain a nonlinear system of

ordinary differential equations for the coefficients ae(t) and vi(t), which can be further discretized

using the standard implicit time-stepping schemes (Isaacson and Keller, 1994). Moreover, to ensure

uniqueness of A, either the “Coulomb gauge”, ∇ · A = 0 is additionally enforced, or a gauging

method based on a tree-cotree decomposition is used (Albanese and Rubinacci, 1990).

The main appeal to the A − V formulation is that the divergence-free condition of magnetic field

H is, by construction, built in from the vector potentials. However, this also comes with additional

computational cost because the finite elements for Ah will need to be of k + 1-th order for Hh

to be k-th order accurate. Grilli et al. (2005) notes that the A − V formulation is in general more

memory-efficient on 2D problems than the T − ϕ formulation, to be discussed in the next section.

However, they observed convergence problems in the Newton-Raphson iterations due to the product

of the time derivative ∂A
∂t

and the nonlinear conductance σ(A, V ) appearing in the discretization

of (2.3). Moreover, there can be problems with the A − V formulation in dealing with boundary

conditions. By the boundary condition forH (1.4f), we have n̂×µ∇×Ah = gD on ΓD. However,

boundary condition (1.4g) does not lead to a natural choice of boundary condition for V . For the

classical eddy current problem, where the conductance σ is constant, V can be eliminated by using

a gauge transformation forA (Song and Ida, 1991). However, for the p-curl problem, such a gauge

transform cannot be used since the conductance σ depends nonlinearly onA, V . Some authors have

avoided such problems by imposing artificial boundary conditions or external physical conditions

for V (Stavrev, 2002; Lousberg et al., 2009).

2.1.2 T − ϕ Formulation

The T − ϕ formulation, also called the current vector potential formulation, of the p-curl problem

is a potential formulation for the magnetic field H (Vinot et al., 2000; Stenvall and Tarhasaari,

2010b). By first taking the divergence on both sides of (1.2b), we obtain that∇ ·J = 0. Hence, by
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Helmholtz decomposition, there exists a vector field T such that,

∇× T = J . (2.5)

Substituting (2.5) into (1.2b) leads to,

∇× (H − T ) = 0. (2.6)

So by the Helmholtz decomposition again, there exists a scalar function ϕ such that,

H − T = ∇ϕ. (2.7)

Using the nonlinear Ohm’s law (1.2e), (1.2d), (2.6) and (2.7), we can rewrite (1.2a) as,

∇× (ρ(|∇ × T |)∇× T ) = − ∂

∂t
µ (T +∇ϕ) . (2.8)

From (1.2d) and (2.7), we also see that (1.2c) is equivalent to,

∇ · µ (T +∇ϕ) = 0. (2.9)

Equations (2.8) and (2.9) are the T − ϕ formulation of the p-curl problem. Similar to the A − V

formulation, the natural finite element spaces to use for T and ϕ are Vk,h and Uk,h, respectively.

Then, the finite element discretization of the T − ϕ formulation is to solve the following problem,

Find T h ∈ Vk,h and ϕh ∈ Uk,h such that for all Φh ∈ Vk,h,Ψh ∈ Uk,h,

∫
Ω

ρ(|∇ × T h|)∇× T h · ∇ ×ΦhdV +

∫
∂Ω

(ρ(|∇ × T h|)∇× T h)×Φh · n̂dS

+

∫
Ω

µ
∂

∂t
(T h +∇ϕh) ·ΦhdV = 0,∫

Ω

µ (T h +∇ϕh) · ΦhdV =

∫
∂Ω

µ (T h +∇ϕh) · n̂ΦhdS.

Similarly, upon expanding T h(x, t) =
∑

edges e

τe(t)Ψe(x) and ϕh(x, t) =
∑

nodes i

ϕi(t)Φi(x), where
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Ψe are edge element basis functions and Φi are nodal element basis functions, we are left to solve

a nonlinear system of ordinary differential equations with coefficients τe(t) and ϕi(t).

The T −ϕ formulation has the advantage that the order of approximation is the same forHh as the

approximation T h. (Grilli et al., 2005) observed better convergence results in the Newton-Raphson

iterations for the T − ϕ formulation than the A − V formulation. This is to be expected since

the time derivative ∂T
∂t

and the nonlinear resistivity ρ(|∇ × T |) appears as separate terms in the

discretization of (2.8). By the boundary conditions (1.4f) and (1.4g), we have n̂ ×∇×Ah = gD

on ΓD and n̂× ρ(|∇ × T h|)∇× T h = gN on ΓN .

2.1.3 H Formulation

The finite element discretization of theH formulation (Pecher et al., 2003; Brambilla et al., 2007)

is formulated directly with (1.5a)-(1.5e). Its main advantages are that the discretized magnetic

field Hh will have the same order of approximation as the finite element basis functions. Also, in

constrast to the previous potential formulations, there is no ambiguity of boundary conditions for

the H Formulation. The main disadvantage of this formulation is at imposing the divergence-free

condition (1.5b). Indeed, if the lowest order edge elements are used,Hh is divergence-free locally

on each element K by Remark 1.39. However by Lemma 1.54, unless the normal trace γn(Hh) is

continuous across every common face or edge of the mesh Th,Hh will not in general be a function

of H(div; Ω) and, hence, is not divergence-free in Ω. This has been mistakenly claimed to be true

in (Brambilla et al., 2007; Grilli, 2011) and appears to have caused some confusion within the

engineering community (Rodriguez-Zermeno, 2011).

Using edge elements for Hh, the finite element discretization for the H formulation has the fol-

lowing weak formulation,

FindHh ∈ Vk,h with γt(Hh) = gD on ΓD such that for all Φh ∈ Vk,h,

∫
Ω

ρ(|∇ ×Hh|)∇×Hh · ∇ × ΦhdV +

∫
ΓN

gN · ΦhdS +

∫
Ω

µ
∂Hh

∂t
· Φh = 0.
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Expanding Hh(x, t) =
∑

edges e

he(t)Ψe(x) in edge element basis, leads to a nonlinear system of

ordinary differential equations for the unknown coefficients he(t). As we have discussed, there

are no guarantees that the divergence-free condition (1.5b) be satisfied with using edge elements

alone. The divergence-free condition can be enforced through the use of a penalty method using

Lagrange multipliers (Jin, 2002, Page 199). Another approach is to combine the system of ordi-

nary differential equations and the divergence constraint and solve them as a differential-algebraic

system (Kunkel and Mehrmann, 2006). It is this formulation that this thesis will utilize, for both

the mathematical and practical reasons given above.

2.1.4 Variational inequality formulation

In contrast to the finite element discretization of the p-curl problem, the variational inequality for-

mulation (Bossavit, 1994; Prigozhin, 1997) is based on discretization of a variational inequality

related to the p-curl problem. The topic of variational inequality is beyond the scope of this thesis,

see (Kinderlehrer and Stampacchia, 2000) for an introduction. We give only the minimal back-

ground in order to introduce this formulation.

Consider the convex functional I : W p(curl; Ω)→ R defined by,

I(H) =
1

p

∫
Ω

|∇ ×H|pdV. (2.10)

Then, we can define the “subdifferential” of I atH as the set,

∂I[H ] = {F ∈ W p(curl; Ω)∗ : 〈F ,G−H〉 ≤ I(G)− I(H), for allG ∈ W p(curl; Ω)}.

Roughly speaking, the subdifferential is the set of all “slopes” of hyperplanes that lies below the

graph of the function I(H) atH .

In general for a convex functional I , it can be shown that if its Gâteaux derivative, A(H), exists at

H , then ∂I[H ] is a singleton set and is given by ∂I[H ] = {A(H)}.
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For the convex functional (2.10), its Gâteaux derivative exists and at H ∈ W p(curl; Ω) in the

directionG ∈ W p(curl; Ω) is given by,

d

dτ
I(H + τG)

∣∣∣∣
τ=0

= 〈A(H),G〉,

where 〈A(H),G〉 =
∫

Ω
|∇ ×H|p−2∇ ×H · ∇ × GdV . In particular, the Gâteaux derivative

A is the same monotone operator introduced earlier in (1.23) for the well-posedness of the p-curl

problem.

From the definition of subdifferential, we can conclude that,

〈A(H),G−H〉 ≤ I(G)− I(H), for allG ∈ W p(curl; Ω). (2.11)

The inequality (2.11) is intimately connected with the p-curl problem through the monotone opera-

tor A. Since by the weak form of the p-curl problem (1.38), A(H) = F −H t. Then using (2.11),

we can formulate the p-curl problem as a variational inequality problem,

FindH ∈ W p
0 (curl, div0; Ω) ⊂ W p(curl; Ω) such that for allG ∈ W p

0 (curl, div0; Ω),

〈F −H t,G−H〉 ≤ I(G)− I(H). (2.12)

Using (2.12), a discretization based on convex optimization with finite elements in space and a finite

difference scheme in time can be constructed (Prigozhin, 1997). We note that the variational in-

equality approach can also be used to solve the Bean model and other generalizations of the critical

state models (Prigozhin, 1997). Moreover, the use of convex optimization is well-suited to handle

additional constraints by the use of Lagrange multipliers, such as at imposing the divergence-free

condition or integral constraints posed for the p-curl problem with multiple conductors.

2.2 Numerical results from applied mathematics

We now turn our attention to the relevant numerical works in the applied mathematics literature on

the p-curl problem. Similar to the engineering literature, numerical studies have been performed
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on both variational inequality methods and finite element methods.

2.2.1 Variational inequality results

Rigorous analysis on the variational inequality formulation for the Bean model and the p-curl

problem were studied by (Barrett and Prigozhin, 2006; Elliott and Kashima, 2007; Barrett and

Prigozhin, 2010).

In (Barrett and Prigozhin, 2006), they studied a variational inequality formulation for the Bean

model and established stability bounds and convergence for the discrete solution involving face el-

ements. (Barrett and Prigozhin, 2010) extended these results to generalizations of the Bean model

on star-shaped domains using a “quasi-variational inequality” formulation. However, rate of con-

vergence was not discussed.

Also for the Bean model, (Elliott et al., 2004) showed stability and convergence of their variational

inequality formulation using nodal elements in 2D and derived the a priori error estimate of order

h1/2 in the L2 norm for their discretization. Subsequently, (Elliott and Kashima, 2007) general-

ized these results to include the power law model and established convergence of their variational

inequality formulation for edge elements by using the discrete compactness property (Monk and

Demkowicz, 2000). While a priori error estimates were not given in that case, their numerical

results suggest also a similar rate of convergence of order h1/2 in the L2 norm.

We believe it is worthwhile to mention a “Duhamel’s principle” for the H formulation introduced

by (Elliott and Kashima, 2007). Often in solving linear problems using finite element methods, one

can use a simple lifting to reduce the problem with homogeneous boundary conditions. In general,

this is not possible with nonlinear problems, since such a translation does not preserve the structure

of the nonlinearities. Fortunately, it turns out one can still reduce the p-curl problem (1.5a)-(1.5d)

with non-homogeneous boundary condition n×H = gD on ∂Ω = ΓD to the p-curl problem with

only homogeneous boundary condition on ∂Ω with an additional source term F . To do this, we
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define a (fictitious) magnetic field sourceHs which satisfies the linear problem,

∇×Hs = 0, in Ω× [0, T ] (2.13)

∇ ·Hs = 0, in Ω× [0, T ] (2.14)

n×Hs = gD, on ΓD × [0, T ]. (2.15)

Such a Hs exists for example if the boundary ∂Ω is of class C2, see (Auchmuty and Alexander,

2005). Defining the translationG := H −Hs, it can be seen that ifH satisfies (1.5a)-(1.5d), then

G satisfies

µ
∂

∂t
G+∇× (ρ(|∇ ×G|)∇×G) = F , in Ω× [0, T ] (2.16a)

∇ · µG = 0 in Ω× [0, T ] (2.16b)

n×G = 0, on ∂Ω× [0, T ] (2.16c)

G(x, 0) = H0(x)−Hs(x, 0), in Ω (2.16d)

where F = −µ ∂
∂t
Hs. According to Theorem Theorem 1.32, this problem is also well-posed. This

Duhamel’s principle for the p-curl problem can be used in finite element methods to deal with the

case with non-homogeneous boundary condition.

2.2.2 Finite element results

We now briefly summarize the literature on finite element formulations of the p-curl problem.

In (Wei and Yin, 2005), the authors reduced the H formulation of a certain class of 2D con-

figurations to the p-Laplacian problem and showed stability. Using techniques from contractive

semi-group, the authors proved convergence results for their finite element method using nodal el-

ements. However, the rate of convergence with respect to mesh refinement was not discussed and

no numerical results were presented.

The finite element discretization of theE formulation on the p-curl problem was studied in a series
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of numerical papers by (Janikova and Slodicka, 2008; Slodicka, 2008; Slodicka and Janikova, 2008;

Janikova and Slodicka, 2010). Before giving their details, we feel that the E formulation has two

major disadvantages when compared to the H formulation. On applications where determining

H is of primary interest, such as in magnetization problems, the E formulation requires solving

an additional first order system in order to recover H . Moreover, since the conductance σ(|E|)

blows up as E vanishes, special conditioning or regularization is necessary to avoid instability in

the finite element computations.

In (Slodicka, 2008), the author studied a modified version of the E formulation, where it was

assumed that the nonlinear conductance σ(|E|) was artificially bounded below away from zero.

Utilizing this extra assumption on the E formulation, the author proves stability of a discretization

with uniform time step τ based on the backward Euler method. A convergence result was only given

for a subsequence (Slodicka, 2008, Theorem 3.1) and a priori error estimate in theL2([0, T ];L2(Ω))

norm of linear order τ was given, (Slodicka, 2008, Theorem 3.1). No numerical examples were

provided for such a discretization.

In a follow-up paper (Janikova and Slodicka, 2008), the authors proposed an iterative method for

solving the stationary problem, assuming discretization in time had been applied. Based on a

regularization of the conductance σ, it was shown that their iterative scheme is stable by using a

Banach fix point argument, (Janikova and Slodicka, 2008, Lemma 3). Moreover it was shown that

the iterative method converges in the L2 norm at a rate or order k−α, where k is the number of

iterations and α is a positive constant depending on the regularization constants of σ. The authors

admittedly noted that in their numerical example, singularity problems arose with their iterative

method as E approaches zero.

Subsequently, for the E formulation (Slodicka and Janikova, 2008) analyzed the case without reg-

ularization of conductance. From the weak formulation, the authors chose the function space for

E to be V = {v ∈ {L2−1/p(Ω)} : ∇ × v ∈ {L2(Ω)} and proposed a discretization in time using

the backward Euler method with uniform time step τ . Upon establishing stability bounds using a

monotonicity argument, a subsequence convergence result was reported for their method (Slodicka

and Janikova, 2008, Theorem 2). Subsequently, a priori error estimate of linear order τ was also
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shown, (Slodicka and Janikova, 2008, Theorem 3). No numerical examples were provided for this

method.

While we have not fully investigated all their claims, we are aware of some loose ends that we felt

warrant attention. First since H(curl; Ω) ⊂ V , their claim of tangential trace γt being well-defined

for their weaker function space V requires more justification. Secondly, we are unsure of their use

of inequality (12) in the uniqueness theorem (Slodicka and Janikova, 2008, Theorem 2), due to its

application in a subsequent inequality with an opposite sign. Thirdly, in the comment after their

proof of the subsequence convergence result (Slodicka and Janikova, 2008, Theorem 3), we feel the

authors overstated their claim in convergence of the entire approximation sequence. Lastly, noting

the construction of Duhamel principle from (2.13)-(2.15) for the H formulation, we also have a

difference in opinion on the authors’ remark that the non-homogeneous boundary conditions in

(Slodicka and Janikova, 2008, Equation 5) can be treated by a simple translation.

Most recently, (Janikova and Slodicka, 2010) studied the full discretization in time by using the

backward Euler method and in space by using edge elements. Again in order to avoid blowing-up

when E vanishes, a regularization was applied to the conductance in computing the discrete solu-

tion. Assuming H2(Ω) regularity for E, they then showed convergence for their full discretization

scheme and discussed the different convergence rates depending on the regularity of the solution,

(Janikova and Slodicka, 2010, Theorem 2). It was also reported that their numerical solution con-

verges at a higher order than their a priori error estimates indicate.

In conclusion, although Janikova and Slodicka appear to have the most comprehensive discussion

of the mathematical theory surrounding the finite element solution for the p-curl problem, in our

opinion, there are several unsatisfactory aspects to their analysis.

The work presented in this thesis deals with a different formulation and a different scheme than

the work of Janikova and Slodicka. In particular, our approach focuses on an adaptive space-time

method with residual-based error estimators and is therefore complementary to their work.
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CHAPTER 3

ADAPTIVE FINITE ELEMENT METHOD FOR THE P -CURL PROBLEM

This chapter consists of three original contributions. The first section introduces the continuous

space-time formulation for the p-curl problem. The second section details the algorithmic aspect of

the adaptive space-time method. In particular, the space-time simplex tree structure is introduced as

well as a recursive refinement procedure to preserve 1-irregularity of the space-time mesh. A local

interpolation operator is derived for preserving the continuity of degrees of freedom on “hanging

edges” across coarse and fine elements. Also, a novel way to identify the different types of degrees

of freedom in successive refinement is introduced.

3.1 Continuous space-time Galerkin method

The continuous space-time Galerkin method was first introduced for the heat equation by (Aziz

and Monk, 1989). Subsequently, this method was generalized to linear and nonlinear parabolic

problems by (Eriksson and Johnson, 1991, 1995) as a discontinuous space-time method, the wave

equation by (French and Peterson, 1996) and the nonlinear Schrödinger’s equation by (Karakashian

and Makridakis, 1999). In a few words, the continuous space-time Galerkin method allows for

simultaneous variable time steps and spatial mesh size when discretizing an evolutionary PDE.

Combined with a posteriori error estimators (to be discussed in Chapter 4), this will form the basis

for an adaptive finite element method in both space and time for the p-curl problem.

The finite element discretization for a time-dependent problem requires local polynomial approx-

imation in space and time over simplices (or prisms) in the space-time domain. In our specific

case, the simplices are products K × (tn−1, tn] where K is some simplex in the triangulation of the

domain Ω ⊂ Rd and (tn−1, tn] is a time interval over which we solve. The emphasis in this section

will initially be on the approximation spaces over a non-adapted discretization. So far, implemen-

tation has only been done in 1D and 2D, and we leave the implementation of 3D for future studies.
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The presentation will therefore be restricted to 2D.

We begin by recalling the definitions of a triangulation Th of a domain Ω described in Section 1.6.1.

The orientation in Ω induces an orientation on each simplex K ∈ Th. Assume that the set of nodes

in the mesh are given a numbering and define Eh to be the set of all edges with the orientation

induced by the numbering of the edges. For each edge e ∈ Eh, let τe be the unit tangent vector

along the edge e in the direction of the orientation of e. Also assume that the time interval (0, T ] is

subdivided into M subintervals In := (tn−1, tn] of size ∆tn, where

0 = t0 < t1 < · · · < tM = T. (3.1)

For every simplex K ∈ Th and time interval I , we call K × I a space-time simplex (STS). Our

assumptions therefore imply that that the set of all K × I form a subdivision of Ω × I . The final

step is to associate to each spatial mesh Th, a uniform space-time mesh over Ω× In and Ω× [0, T ],

Sn :=
{
K × In

∣∣K ∈ Th}, S = ∪Mn=1Sn.

We require discrete finite element spaces in space and time, and so we will extend the notation

introduced for nodal elements Uk,h and edge elements Vk,h, introduced respectively in Theorems

1.44 and 1.55. The spaces defined below form the basis for the weak finite element formulation

with elements in space and time K × I ⊂ Ω× [0, T ],

R1,0(K × I) := R1(K)⊗ P0(I),

R1,1(K × I) := R1(K)⊗ P1(I).

These local spaces can be used to form global spaces of functions over Ω × I if consistency con-

ditions are imposed at the intersections of space-time simplices (STS). We propose to enforce only
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tangential continuity and therefore define, for a space-time mesh Sn over Ω× In and i = 0, 1,

Λ1,i(Sn) :=
{
H
∣∣∣H|K×In ∈ R1,i(K × In), ∀K × In ∈ Sn,

n× (H+ −H−)|e = 0, ∀ interior edges e
}
.

For the approximations that are globally piecewise linear in time, we require that approximations

be continuous in time from one slab to the next, hence

Λ1,1(S) :=
{
H ∈ C ([0, T ],W p(curl; Ω))

∣∣∣H|Ω×In ∈ Λ1,1(Sn), n = 1, . . . ,M
}
, while

Λ1,0(S) :=
{
H ∈ L2 ([0, T ],W p(curl; Ω))

∣∣∣H|Ω×In ∈ Λ1,0(Sn), n = 1, . . . ,M
}
.

Again, for a triangulation Th of space Ω, purely spatial approximations will belong to

Λ1(T ) :=
{
H ∈ W p(curl; Ω)

∣∣∣ H|K ∈ R1(K),∀K ∈ Th, and

n× (H+ −H−)|e = 0, ∀ interior edges e
}
,

whereH± are tangentially continuous across the edge.

We begin by presenting an appropriate weak formulation for the strong problem (1.5a) over a single

slab Ω×In with boundary conditions over ∂Ω×In and initial conditions at time t = tn−1. Suppose

that the boundary conditions are (1.5d)-(1.5e) and consider test functions in

C1
0(Ω× In) :=

{
φ ∈ C1(Ω× In)

∣∣∣n× φ∣∣
ΓD
≡ 0
}
.

Without assuming continuity at time tn−1, the equations for the weak formulation of (1.5a) are

0 =

∫
Ω×In

φ ·H t dxdt+

∫
Ω×In

φ · α∇×
(∣∣∇×H∣∣p−2∇×H

)
dxdt. (3.2)
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Now, apply Gauss’ theorem to deduce

0 =

∫
Ω×In

φ ·H t dxdt+

∫
Ω×In

∇× φ · α
∣∣∇×H∣∣p−2∇×H dxdt

+

∫
∂Ω×In

(n× φ)× n · α
(
n×

∣∣∇×H∣∣p−2∇×H
)
dsdt.

Given condition (1.5e), we can simplify the boundary term and write

0 =

∫
Ω×In

φ ·H t dxdt+

∫
Ω×In

∇× φ · α
∣∣∇×H∣∣p−2∇×H dxdt

+

∫
ΓN×In

(n× φ)× n · gN dsdt. (3.3)

Note that the combination (n × φ) × n is equivalent to the tangential component of φ along the

edge.

Recall that Theorem 1.32 insures the existence of a solution H belonging to, at each fixed time,

the space

Xp
0 := W p

0 (curl, div0; Ω),

of vector fields with curls in Lp, weakly vanishing divergences, and vanishing tangential traces

along ΓD. We can account for the non-homogeneous boundary conditions on ΓD by introducing

an auxiliary homogeneous variable by results similar to Auchmuty and Alexander (2005) in the L2

setting.

Theorem 3.1.1. Let Ω be a C1,1 bounded simply-connected domain in R3 and 1 < p < ∞. For

f ∈ γt(W
p(curl; Ω)), there exists uf ∈ W p(curl0, div0; Ω) such that γt(uf ) = f . That is uf is

weakly divergence-free and curl-free with non-homogeneous tangential trace of f .

We defer the proof of this theorem until Chapter 4. See Section 4.2.

Thus rather than to solve for H ∈ W p(curl, div0; Ω) with γt(H) = f on ΓD, we seek H0 ∈

W p
0 (curl, div0; Ω) such that

H = H0 + F ,

where F = uf the lifting of f from Theorem 3.1.1. Note that ∇ ·H = ∇ · (H0 + F ) = 0, and
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γt(H) = γt(H0 + F ) = f . Moreover, define the nonlinear pairing P ,

〈Pu,φ〉 :=

∫
Ω

∣∣∇× u
∣∣p−2∇× u ·∇× φ dx,

and observe that since F is curl-free, 〈P(H0 + F ),φ〉 = 〈PH0,φ〉. We have therefore shown

that the solution H to (1.5a) satisfies the following identity written in terms of H0 : for all φ ∈

C1
0(Ω× In),H0 satisfies

An(H0,φ) + α

∫
In

〈PH0,φ〉dt = Rn(φ)− An(F ,φ), (3.4)

where An and Rn are linear with respect to both of their arguments and given by

An(u,φ) :=

∫
Ω×In

φ · ut dxdt,

Rn(φ) :=−
∫

ΓN×In
(n× φ)× n · g(s, t) dsdt.

The weak formulation of the continuous problem is to seekH0 ∈ Xp
0 such that

An(H0,φ) + α

∫
In

〈PH0,φ〉dt = Rn(φ)− An(F ,φ), ∀n,∀φ ∈ Xp
0 . (3.5)

One should consider the weak form as the expression that relates the solution at time tn−1 to the so-

lution at time tn. By adapting the argument of Yin et al. (2002) for a method of lines discretization,

it is possible to show that this formulation possesses a unique solutionH0 ∈ Xp
0 .

Continuous Galerkin FE formulations require test functions that are different from their trial func-

tions, a technique that is called Petrov-Galerkin approximations. It is possible to justify this by

looking at the problem only in time. For a continuous piecewise linear approximation over In, say

at some fixed point in space, the initial conditions provide the value at time tn−1 and so there is

only one unknown parameter at time t = tn. The space of test functions must therefore have only

one degree of freedom, which in this case means the test functions must be constant in time. Using

this observation on the weak form (3.4) for the discrete space Λ1,1(S), leads to the following FE

problem : Find h0 ∈ Λ1,1(S)
⋂
{h |n× h = 0, on ΓD } = {w ∈ Λ1,1(S) |n×w ≡ 0, over ΓD}
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such that for all n and all ψh ∈ Λ1,0(Sn),

An(h0,ψh) + α

∫
In

〈Ph0,ψh〉dt = Rn(ψh)− An(F ,ψh), (3.6)

where we have chosen to write ψh to emphasize the dependence on the mesh size h.

Finally, we observe that the FE formulation is non-conforming since Λ1,1(S) * Xp
0 . This is a

significant issue that will need to be addressed during error estimation.

3.2 Adaptive space-time Galerkin method

The purpose of this section is to describe the construction of the system of nonlinear equations over

a space-time mesh from a sequence of refinements in space and time. In particular, we will discuss

how STSs are refined and stored, how ”hanging edges” are handled, how degrees of freedom are

identified, and finally how the assembly process is implemented.

We first introduce some notations and terminologies. For simplicity, we shall only look at a fixed

time slab Ω × In with Ω in 2D. Denote a sequence of adaptive space-time mesh as {M(m)}m≥1

with the coarsest mesh,

M(1) := {K × In
∣∣K ∈ T }.

Subsequent finer space-time mesh M(m) are generated in a recursive manner as follows. Let

N (m) ⊂ M(m) be a collection of STSs marked for refinement in the refinement sequence. Define

R as the set refinement operation on a STS K × I by firstly subdividing its triangular component

K into four subtriangles Ki by connecting the midpoints of the edges (also called red-refinement),

and by secondly subdividing the time interval I into two equal halves Ij ,

R(K × I) :=
⋃

i=1,...4
j=1,2

Ki × Ij.

This particular process has the benefit of maintaining the shape-regularity of the underlying spatial

mesh T , though it can lead to “hanging edges” to be discussed in detail later. The m + 1−th
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space-time mesh is then defined recursively by

M(m+1) :=
(
M(m)\N (m)

)⋃
R
(
N (m)

)
,

where R(N (m)) is the union of all refined STSs in N (m). By induction, it follows that the closure

ofM(m) is a covering for Ω× In.

Given a STS K × I ∈ M(m), we define the level of K × I to be lvl(K × I) := k, where

k − 1 is the number of times K × I was refined from a STS of the coarsest space-time mesh,

i.e. K × I ∈ Rk−1(K ′ × In) for some K ′ × In ∈ M(1). Similarly, we define the level of lower

dimensional objects of K× I such as level of edge e and level of face f to be lvl(e) = lvl(f) =

lvl(K × I). In general,M(m) contains an aggregate of different levels of STS and we define the

level of the space-time meshM(m) to be lvl(M(m)) := maxK×I∈M(m) lvl(K × I).

The refinement process described so far does not depend on the levels of the neighbouring STSs

and can lead to regions of highly localized refinement appearing next to very coarse regions. Such

a mesh may introduce artificial mesh effects into the solution, and so we have chosen to impose

that the space-time mesh remain 1-irregular at all times, that is to say any two neighbouring STS

(i.e. adjacent horizontally in space, vertically in time or diagonally in space-time) can differ by at

most one level, as illustrated in Figure 3.1.

In practice, we need to manage the relationships between space-time simplices at different levels

for the assembly of the global system of nonlinear equations over the adaptive mesh. Clearly, we

need at least the same data already available in standard FEM codes for electromagnetism, namely

a list of all oriented triangles at level k, T (k) with T (1) = T and a list of all oriented edges at the

k-th level, E (k) with E (1) = E(T ). However, in contrast to non-adaptive discretizations, we will

also require a tree structure where each node of the tree contain information about a STS and the

branches of the tree denote a parent-child relationship established by the refinement operation R.

Thus, we propose the following definition:

A STS Tree S is a set of nodes, each containing information in Table 3.1 associated to a unique
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STS from
⋃m
i=1M(i). We denote,

S(k) :=

{
K × I ∈

m⋃
i=1

M(i)
∣∣lvl(K × I) = k

}
,

and we use the notation S(k)
i for a generic element of S(k) indexed by the subscript i. We will use

the convention that the coarsest meshM(1) is represented in S by one node for each STS inM(1).

Table 3.1 Definition of a node in the STS Tree
Field Value Comments
level k ∈ N
tStep j ∈ {1, . . . , 2k−1} Fractional time step index, t ∈ tn−1 +

τn
2k−1 (j − 1, j]

triangle K ∈ T (k) Index of triangle at level k
parent p ∈ S(k−1) 0 for coarsest level elements
sSibling (ns1, n

s
2, n

s
3) ∈ {S(k)}3 Siblings in space at the same level, 0 oth-

erwise
tSibling (nt1, n

t
2) ∈ {S(k)}2 Siblings in time at the same level, 0 oth-

erwise
children1 (c1, c2, c3, c4) ∈ {S(k)}4 t ∈ tn−1 + τn

2k−1 (j − 1, j − 1/2],0 if not
refined

children2 (c5, c6, c7, c8) ∈ {S(k)}4 t ∈ tn−1+ τn
2k−1 (j−1/2, j],0 if not refined

The nodes in the STS Tree S store all the necessary information of the adaptive space-time mesh

M(m), where by construction the nodes will have the following properties:

(i) Every STS at level k > 1 has a unique parent and its parent has that STS as a child.

(ii) A STS has either no children, or exactly 8.

(iii) The leaves of the tree, i.e. the STSs without children, form a covering of Ω× In.

To make the construction more concrete, we illustrate the different stages of the STS Tree for the

refinement sequence as depicted in Figure 3.1. Initially, the STS Tree S will contain only two nodes

for the coarsest mesh M(1), depicted in Figure 3.2. Let us now describe the information for the

S
(1)
2 node stored in the STS Tree. Since S(1)

2 is level 1, its parent will be 0. As S(1)
2 is not refined

at this stage, its children will be 0. Moreover, S(1)
2 has spatial neighbours of (0, 0, S

(1)
1 ) (ordered

according to the edge ordering of the triangle) and temporal neighbours of (0, 0). Its triangle will

be K(1)
2 corresponding to a triangle at level 1 and its fractional time step index will be j = 1, as

S
(1)
2 extends over the first time interval at level 1.
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}
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S
(3)
2

S
(3)
4

S
(3)
3

S
(3)
1

S
(3)
6

S
(3)
8

S
(3)
7

S
(3)
5

R(    )S
(1)
2

R(    )S
(2)
1

R(    )S
(1)
1

Figure 3.1 An example sequence of adaptive space-time meshes: Initially, the coarsest meshM(1)

consists of two STSs. First, suppose S(1)
2 is to be refined, resulting inM(2). Next, assume S(2)

1 is to
be refined inM(2). Since S(1)

1 is adjacent to level 3 STSs (S(3)
1 , S

(3)
3 , S

(3)
5 and S(3)

7 ), S(1)
1 must also

be refined in order to maintain 1-irregularity of ST mesh.

Next, refining S(1)
2 results in addition of eight level 2 STSs to S for M(2), as depicted in Figure

3.4. This implies the node corresponding to S(1)
2 will be updated with respective information on its

children (S
(2)
1 , . . . , S

(2)
4 ) and (S

(2)
5 , . . . , S

(2)
8 ) in the first and second fractional time step at level 2.

At this stage, refining S(2)
1 yields eight STSs at level 3 and an additional eight STSs at level 2, due

to the refinement of S(1)
1 required to preserve 1-irregularity. Let us now describe the details of the

S
(2)
1 node. Since S(2)

1 was refined from S
(1)
2 , its parent will be S(1)

2 and it will contain respective
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S
(1)
1 S

(1)
2

Figure 3.2 STS Tree S ofM(1) in Figure 3.1.

Field Value
level 1
tStep 1

triangle K
(1)
2

parent 0

sSibling (0, 0, S
(1)
1 )

tSibling (0, 0)
children1 (0, 0, 0, 0)
children2 (0, 0, 0, 0)

Figure 3.3 S(1)
2 node in Figure

3.2.

S
(1)
1 S

(1)
2

S
(2)
1

S
(2)
8

. . .

Figure 3.4 STS Tree S ofM(2) in Figure 3.1.

Field Value
level 1
tStep 1

triangle K
(1)
2

parent 0

sSibling (0, 0, S
(1)
1 )

tSibling (0, 0)

children1 (S
(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 )

children2 (S
(2)
5 , S

(2)
6 , S

(2)
7 , S

(2)
8 )

Figure 3.5 S(1)
2 node in Figure

3.4.

information on its children (S
(3)
1 , . . . , S

(3)
4 ) and (S

(3)
5 , . . . , S

(3)
8 ) in the first and second fractional

time step at level 3. Moreover, S(2)
1 has spatial neighbours of (0, S

(2)
4 , S

(2)
10 ) and temporal neighbours

of (0, S
(2)
5 ). Its triangle will be K(2)

1 corresponding to a triangle at level 2 and its fractional time

step index will be j = 1 since S(2)
1 extends over the first time interval at level 2.

To enforce 1-irregularity, we need to potentially recursively refine neighbouring STS each time a

STS is refined. Thus, we propose the following recursive algorithm for refining STSs on the STS

Tree.

refineSTS( S ) :

If( lvl(S)>1 ) {
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S
(1)
2

S
(2)
1

S
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8
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(3)
1 S

(3)
8

. . .

. . .

S
(1)
1

S
(2)
9

S
(2)
16

. . .

Figure 3.6 STS Tree S ofM(3) in Figure 3.1.

Field Value
level 2
tStep 1

triangle K
(2)
1

parent S
(1)
2

sSibling (0, S
(2)
4 , S

(2)
10 )

tSibling (0, S
(2)
5 )

children1 (S
(3)
1 , S

(3)
2 , S

(3)
3 , S

(3)
4 )

children2 (S
(3)
5 , S

(3)
6 , S

(3)
7 , S

(3)
8 )

Figure 3.7 S(2)
1 node in Figure

3.6.

For each neighbour N of S in space or time with lvl(N)=lvl(S)-1 {

If( N has no children ) refineSTS( N )

}

Add 8 child STS C1, . . . ,C8 to STS tree with parent S

Update children information on S

For each neighbour N of S in space or time with lvl(N)=lvl(S)+1 {

Update sibling information of N corresponding to one of C1, . . . ,C8

}

}

We now describe how ”hanging edges” can be handled over 1-irregular space-time meshes. The

main idea is to preserve tangential continuity in space over Ω and continuity in time In by interpo-

lating at the hanging edges, i.e. edges belonging to a STS adjacent to a neighbouring coarser STS.

In general, such interpolations are of two types: either in space or in time.

As illustrated in Figure 3.8, time interpolation is only required for hanging edges at odd fractional
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Figure 3.8 In general, edge values along the boundary or at tn−1 are assumed to be known from the
previous time step or from the boundary/initial data and thus they do not need to be interpolated. For
M(2), hanging edge values are interpolated in space along edges e(2)

3 , e
(2)
4 at time tn and interpolated

in time along edges e(2)
3 , e

(2)
4 at time tn−1/2. ForM(3), hanging edge values are interpolated in space

along edges e(3)
1 , . . . , e

(3)
9 at time tn−1/2 and interpolated in time along edges e(3)

3 , e
(3)
4 , e

(3)
5 , e

(3)
6 at

time tn−1/4.

time step indices j = 1, 3, . . . , 2k−1 − 1 where the fine edge values at j = 2l − 1 are interpolated

from edge values j = 2(l − 1) and 2l.

At the even fractional time step indices j = 2, 4, . . . , 2k−1, spatial interpolation is required for hang-

ing edges, where the 9 finer edge values of a refined STS are interpolated from the 3 coarser edge

values of the parent STS. Specifically, given a level k STSK×I with edges E(K) = {E1, E2, E3},

denote the 9 fine edges of the 8 refined child STSs Ki × Ij as {e1, . . . , e9}. Then for a fixed time t,
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the local representation of h on K × {t},

h|K×{t} =
3∑
i=1

hi|Ei|VEi
,

has well-defined edge values over the sub-triangles Ki, according to Lemma 4.7 from Amrouche

et al. (1998). In particular, it is an exercise to show that the representations over both basis

[h]E :=

[
1

|Ei|

∫
Ei

h · τEi
ds

]
i

, [h]e :=

[
1

|ej|

∫
ej

h · τ ej ds

]
j

,

are related by

[H ]e =

[
|E|
|e|

∫
e

V · τe ds
]

[H ]E.

Note that up to reordering of edges, the 9 × 3 matrix injecting the coarse representation into the

finer STSs has a particularly simple form with two identity matrices occupying the first 6 rows.

Given this procedure to interpolate values along hanging edges, we further need a systematic way to

identify which variables along the edges are in fact degrees of freedom in the global system, or sim-

ply auxiliary variables to be interpolated from degrees of freedom. The novel idea introduced here

is to store the variable’s information at level k on global sparse matrices, called ST Variable Table

V(k), with values depending on its variable type. Each V(k) is a sparse matrix of size (2k−1 + 1)×

N
(k)
e , where N (k)

e is the number of edges at level k when the spacetime mesh is projected onto Ω.

The 2k−1 + 1 rows correspond to the different timesteps tn−1, tn−1 + 1/2k−1, . . . , tn−1 + 2k−1/2k−1

and the columns correspond to all possible edges in space, i.e. not spacetime. In general, the vari-

able types along each edge are either ”null” for a nonexistent edge, ”interpolated” for interpolation

in space or time, ”free” for degrees of freedom, or ”data” for known values such as boundary or

initial data. Because of special STS configurations which can arise from 1-irregular ST meshes, it

is necessary to include two additional interpolated variable types. Therefore in total, we have six

types of variable types: a null type ∅, three interpolated types I1, I2, I3, a free type F and a data

type D.

When a STS K × I of level k − 1 is refined, a local 3 × 9 matrix VK×I is ”added” to the global
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Table 3.2 Binary operation ⊕ for different variable types.

⊕ ∅ I1 I2 I3 F D
∅ ∅ I1 I2 I3 F D
I1 I1 I2 I3 F F D
I2 I2 I3 F F F D
I3 I3 F F F F D
F F F F F F D
D D D D D D D

ST Variable Table V(k) via a binary operation ⊕ based on its variable types defined in Table 3.2.

This local matrix VK×I takes values in variable types and its components are ordered in columns

by the 9 fine edges {e1, . . . , e9} of K and in rows chronologically by the 3 intermediate time steps

belonging to the refined STSs. Supposing the last three columns of VK×I correspond to the 3

interior fine edges, then

VK×I :=


I1 I1 I1 I1 I1 I1 I2 I2 I2

I2 I2 I2 I2 I2 I2 F F F

I1 I1 I1 I1 I1 I1 I2 I2 I2

 . (3.7)

Additional modification is needed if K × I is adjacent to tn−1 or tn. In particular, if K × I is

adjacent to tn−1, the first row of VK×I is modified to be a row consisting of only D, since data

values are known from the previous time step. If K × I is adjacent to tn, the last row of VK×I

is modified to be (I2 . . . I2 F F F). Roughly speaking, the local matrix VK×I is designed so that

interpolated variables can be “upgraded” to a “free” variable if there are sufficiently many refined

STSs in proximity to each other.

To illustrate these ideas, let us briefly look at how the ST Variable Table V(k) is updated by the ⊕

operation in order to identify the variable types for the example in Figure 3.1 and 3.8. Initially,

the five edges of level 1 at time steps tn−1, tn of the coarsest meshM(1) are assigned with the ST

Variable Table V(1) given by Table 3.3.

After S(1)
2 is refined, the local matrix V

S
(1)
2

is added, via ⊕, to a sparse matrix V(2) consisting with

only data variable types along boundary edges and edges at tn−1. The resultant V(2) is given in
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Table 3.3 ST Variable Table V(1) ofM(1)

V (1) e
(1)
1 e

(1)
2 e

(1)
3 e

(1)
4 e

(1)
5

tn−1 D D D D D
tn D F D D D

Table 3.4.

Table 3.4 ST Variable Table V(2) ofM(2)

V (2) e
(2)
1 e

(2)
2 e

(2)
3 e

(2)
4 e

(2)
5 e

(2)
6 e

(2)
7 e

(2)
8 e

(2)
9

tn−1 D D D D D D D D D
tn−1/2 D D I2 I2 D D F F F
tn D D I2 I2 D D F F F

After S(1)
1 is refined, the local matrix V

S
(1)
1

is added to V(2) resulting in Table 3.5. Note that the

interpolated variables of type I2 along edges e(2)
3 , e

(2)
4 at tn−1/2, tn have now become free variables

by the addition of V
S

(1)
1

in accordance to the⊕ operation. Finally, the global system of equations can

Table 3.5 ST Variable Table V(2) ofM(3)

V (2) e
(2)
1 e

(2)
2 e

(2)
3 e

(2)
4 e

(2)
5 e

(2)
6 e

(2)
7 e

(2)
8 e

(2)
9 e

(2)
10 e

(2)
11 e

(2)
12 e

(2)
13 e

(2)
14 e

(2)
15 e

(2)
16

tn−1 D D D D D D D D D D D D D D D D
tn−1/2 D D F F D D F F F D D D D F F F
tn D D F F D D F F F D D D D F F F

now be constructed by first traversing the leaves of the STS Tree S and secondly, by assembling the

local set of equations to the global system. Specifically, for each STSK×I belonging to the leaves

of S, the local equations are constructed by testing with test functions belonging toR1,0(K×I) and

the six trial functions along the spatial edges of E(K) at the two end times of I . Combining with the

variable type identification provided by V(k), the global equations can be assembled consisting of

local equations obtained from the edges of free variables and of constraints from temporal/spatial

interpolation along hanging edges. The global equations are then successively solved using the

adaptive finite element algorithm as depicted in Figure 1.6.
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CHAPTER 4

A POSTERIORI ERROR ESTIMATION FOR FINITE ELEMENT METHODS FOR THE

P -CURL PROBLEM

This chapter consists of five original contributions. First, a Helmholtz decomposition for the space

W p
0 (curl; Ω) is derived for C1 bounded domains using an existence result of Helmholtz decompo-

sition in Lp by Simader and Sohr (1992, 1996). Second, a lifting theorem is presented to include

non-homogeneous boundary cases. Third, a posteriori error estimators are proposed for the p-curl

problem in the semi-discretization setting. Due to non-conformity of our choice of finite element

space, the derived Helmholtz decomposition was necessary to decompose the error into a solenoidal

and irrotational part in order to show a variant of Galerkin orthogonality. Subsequently, the derived

estimators are shown reliable in a similar manner as error estimators of the Maxwell’s equation by

Schöberl (2008). We proposed an extension of the derived error estimators by a heuristic argument

and based on the space-time estimators for the Maxwell equation by Creusé et al. (2013). Fourthly,

the error estimators in the vectorial case are adapted to the 1D case. Finally, the error estimators

are shown to be reliable for the quantity of AC loss.

4.1 Helmholtz decomposition for W p
0 (curl; Ω)

In deriving a posteriori error estimators, a key tool we will use is the Helmholtz-Weyl decomposi-

tion for W p
0 (curl; Ω):

Given v ∈ Lp(Ω)d, there exists φ ∈ W 1,p(Ω)/R and z ∈ Lpσ(Ω) such that v = z +∇φ.

‖z‖Lp + ‖∇φ‖Lp ≤ C ‖v‖Lp , C = C(Ω, p, d) > 0. (4.1)

Here Lpσ(Ω) := closure of {v ∈ C∞0 (Ω) : ∇ · v = 0} with respect to Lp norm. Also, we will be

interested in a Helmholtz-Weyl decomposition with zero boundary trace:
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Given v ∈ Lp(Ω)d, there exists φ ∈ W 1,p
0 (Ω) and z ∈ W p(div0; Ω) such that v = z +∇φ.

‖z‖Lp + ‖∇φ‖Lp ≤ C ‖v‖Lp , C = C(Ω, p, d) > 0. (4.2)

While the case p = 2 can be answered readily by a standard application of Lax-Milgram theorem,

the case for general p turns out to be quite subtle. It has been observed (Galdi, 2011, Lemma III

1.2) that the existence of Helmholtz-Weyl decomposition of (4.1) is equivalent to the solvability of

the Neumann problem:

Given v ∈ Lp(Ω)d, find φ ∈ W 1,p(Ω)/R such that for all ψ ∈ W 1,q(Ω)/R,

(∇φ,∇ψ)Ω = (v,∇ψ)Ω.

Similarly, the existence of Helmholtz-Weyl decomposition of (4.2) is equivalent to the solvability

of the Dirichlet problem:

Given v ∈ Lp(Ω)d, find φ ∈ W 1,p
0 (Ω) such that for all ψ ∈ W 1,q

0 (Ω),

(∇φ,∇ψ)Ω = (v,∇ψ)Ω.

In particular, if Ω ⊂ Rd is a bounded Lipschitz domain, it was shown in Fabes et al. (1998) that the

above Neumann problem has a solution in a sharp region near p ∈ (3/2− ε, 3 + ε) where ε(Ω) > 0

depending the Lipschitz constant of Ω. Similarly, Jerison and Kenig (1995) showed that the above

Dirichlet problem has a solution in a sharp region near p ∈ (2/(1 + ε), 2/(1 − ε)). This implies

the Helmholtz-Weyl decomposition does not hold in general for bounded Lipschitz domains, which

is unfortunate since such domains do arise in engineering applications of superconductors. Thus,

we are forced to restrict to bounded C1,1 domains, which is consistent with the regularity of the

boundary required for the well-posedness of the p-curl problem given by Yin et al. (2002).

The Helmholtz-Weyl decomposition for L2 was first demonstrated by Weyl (1940) and for Lp

by Fujiwara and Morimoto (1977) for smooth bounded domains. To our best knowledge, results
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concerning minimal regularity requirement on the boundary are known for bounded C1 domains

(Simader and Sohr, 1992, 1996) and more recently for bounded convex domains (Geng and Shen,

2010).

Theorem 4.1.1. (Simader and Sohr, 1996, Theorem II.1.1) Let Ω ⊂ Rd be bounded C1 domain

and let 1 < p <∞. Then the Helmholtz-Weyl decomposition (4.2) holds.

Theorem 4.1.2. (Geng and Shen, 2010, Theorem 1.3) Let Ω ⊂ Rd be bounded convex domain and

let 1 < p <∞. Then the Helmholtz-Weyl decomposition (4.1) holds.

We also mention that Amrouche and Seloula (2013) have derived an Lp version of the Helmholtz

decomposition for non-simply connected domains with C1,1 boundary. To save writing, we denote

the space Xp := W p
0 (curl, div0; Ω) already introduced in (1.35). We now use Theorem 4.1.1 to

derive a new Helmholtz-Weyl decomposition for W p
0 (curl; Ω).

Lemma 4.1. Let Ω ⊂ R3 be a bounded C1 domain and let 1 < p < ∞. Then the following direct

sum holds,

W p
0 (curl; Ω) = Xp ⊕∇W 1,p

0 (Ω).

In other words, for any v ∈ W p
0 (curl; Ω), there exist unique φ ∈ W 1,p

0 (Ω) and z ∈ Xp such that

v = z +∇φ satisfying,

‖z‖Lp + ‖∇φ‖Lp ≤ C ‖v‖Lp , C = C(Ω, p, d) > 0. (4.3)

Proof: Let v ∈ W p
0 (curl; Ω) ⊂ Lp(Ω)d. Then by Theorem 4.1.1, v = ∇φ + z for some φ ∈

W 1,p
0 (Ω) and z ∈ W p(div0; Ω). Since ∇W 1,p

0 (Ω) ⊂ W p(curl; Ω), γt(∇φ) is well defined. Let

{φk ∈ C∞0 (Ω)} converging to φ in W 1,p
0 (Ω). Since γ0(∇φk) = 0 and so γt(∇φk) = 0, then by

continuity of the tangential trace operator γt(∇φ) = 0 and so z = v − ∇φ ∈ W p
0 (curl; Ω), i.e.

z ∈ Xp.
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To show the sum is direct, suppose v ∈ Xp
⋂
∇W 1,p

0 (Ω). Then v = ∇φ for some φ ∈ W 1,p
0 (Ω).

Since v ∈ Xp, for all ψ ∈ W 1,q
0 (Ω),

0 = (v,∇ψ)Ω = (∇φ,∇ψ)Ω (4.4)

As p ≥ 2 ≥ q > 1, φ ∈ W 1,2
0 (Ω) ⊂ W 1,q

0 (Ω). Setting ψ = φ in (4.4) implies ‖∇φ‖L2(Ω) = 0 and

hence φ = 0 a.e. by Friedrichs’ inequality, i.e. v = ∇φ = 0.

4.2 Non-homogeneous boundary condition

Having discussed Helmholtz decomposition for various Lp spaces, we can now complete the proof

for the lifting theorem (Theorem 3.1.1) from the previous chapter.

Proof: Given a f ∈ γt(W p(curl; Ω)), we construct uf ∈ W p(curl0, div0; Ω) in 3 steps.

First, let wf ∈ W p(curl; Ω) be such that γt(wf ) = f . Such wf exists by the surjectivity of the

image space γt(W p(curl; Ω)).

Second, let v ∈ W 1,p
0 (Ω) be the solution to the problem:

〈∇v,∇ψ〉 = 〈wf ,∇ψ〉,∀ψ ∈ W 1,q
0 (Ω). (4.5)

Such a v exists if the following inf-sup condition holds,

inf
φ∈W 1,p

0 (Ω)
sup

ψ∈W 1,q
0 (Ω)

〈∇φ,∇ψ〉
‖φ‖W 1,p

0 (Ω) ‖ψ‖W 1,q
0 (Ω)

> 0. (4.6)

From the Helmholtz decomposition of Lp functions (Theorem 4.1.1), for Φ ∈ W 1,p
0 (Ω)d, there

exists z ∈ Xq and φ ∈ W 1,q
0 (Ω) such that Φ = z + ∇ψ with ‖z‖Lq + ‖∇ψ‖Lq ≤ C ‖Φ‖Lq for

some C > 0. In particular, 〈∇v,z〉 = 0 implies:

‖φ‖W 1,p
0 (Ω) = sup

Φ∈Lq(Ω)

〈∇φ,Φ〉
‖Φ‖Lq(Ω)

= sup
Φ∈Lq(Ω)

〈∇φ, z +∇ψ〉
‖Φ‖Lq(Ω)

≤ C sup
ψ∈W 1,q

0 (Ω)

〈∇φ,∇ψ〉
‖∇ψ‖Lq(Ω)
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Since the norm ‖∇ψ‖Lq(Ω) is equivalent to ‖ψ‖W 1,q
0 (Ω) for ψ ∈ W 1,q

0 (Ω), taking the infimum over

φ ∈ W 1,p
0 (Ω) above shows the inf-sup condition (4.6) is satisfied. Hence a solution v to (4.5) exists.

Third, let w ∈ Xp be the solution to the problem:

〈∇ ×w,∇×ψ〉 = 〈−∇×wf ,∇×ψ〉,∀ψ ∈ Xq. (4.7)

Such a w exists if the following inf-sup condition holds,

inf
φ∈Xp

sup
ψ∈Xq

〈∇ × φ,∇×ψ〉
‖φ‖Xp ‖ψ‖Xq

> 0. (4.8)

By Lemma 5.1 of Amrouche and Seloula (2013), the inf-sup condition (4.8) is satisfied and hence

such a solution w exists.

Combining these three functions, we define uf := w + wf − ∇v. Since w ∈ Xp, ∇ · uf =

∇ · (wf − ∇v) = 0 by construction and so uf ∈ W p(curl, div0; Ω). Moreover, ∇ × uf =

∇ × (w +wf ) = 0 also by construction and γt(uf ) = γt(w) + γt(wf ) − γt(∇v) = 0 + f + 0.

Thus, uf ∈ W p(curl0, div0; Ω) and satisfies γt(uf ) = f .

4.3 Error estimation for semi-discretizations

Recall the weak formulation of the p-curl problem :

Given u0 ∈ W p(div0; Ω) and f ∈ L2(I;W q(div0; Ω)), find u ∈ L2(I;Xp)
⋂
H1(I;Lq(Ω)) with

u(0, ·) = u0(·) such that for all v ∈ L2(I;Xp),

(∂tu,v)Ω + 〈A(u),v〉 = (f ,v)Ω . (4.9)

This leads us to the non-conforming semi-discrete formulation of the p-curl problem:
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Given u0,h ∈ Vh and f ∈ L2(I;W q(div0; Ω)), find uh ∈ L2(I;Vh)
⋂
H1(I;Lq(Ω)) with uh(0, ·) =

u0,h(·) such that for all vh ∈ L2(I;Vh),

(∂tuh,vh)Ω + 〈A(uh),vh〉 = (f ,vh)Ω (4.10)

By Yin et al. (2002), the weak formulation (4.9) has a unique solution for Ω with C1,1 boundary.

Moreover, it is shown that Xp has the equivalent semi-norm ‖u‖Xp ≡ ‖∇× u‖Lp(Ω) and there is a

stability constant M so that supt∈I ‖u(·, t)‖Xp ≤M where M depends only on appropriate norms

of u0 and f .

We show the reliability of a proposed set of a posteriori error estimators in two steps. First we will

show the residual is bounded by local a posteriori error estimators in Theorem 4.3.1. We will then

show the proposed error estimators are reliable in Theorem 4.3.2.

Theorem 4.3.1. Let u be the weak solution to (4.9) and uh be the finite element solution to (4.10).

If f ∈ H(div0; Ω), then there exists C > 0 depending on shape regularity of Th such that for all

v ∈ W p
0 (curl; Ω),

(∂t(u− uh),v)Ω + 〈A(u)− A(uh),v〉 ≤ C
(
ηn ‖v‖L2(Ω) + (ηi + ηt) ‖∇ × v‖L2(Ω)

)
. (4.11)

where the local error estimators are defined as,

η2
i :=

∑
K∈Th

h2
K ‖f − ∂tuh −∇× (ρ(∇× uh)∇× uh)‖2

L2(K)

η2
t :=

∑
E∈E(Th)

hE ‖[[γt(ρ(∇× uh)∇× uh]]‖2
L2(E)

η2
n :=

∑
E∈E(Th)

hE ‖[[γn(∂tuh)]]‖2
L2(E)

Before we show Theorem 4.3.1, we first recall some results and state some lemmas.

Lemma 4.2. Let Ω be a bounded Lipschitz domain. If v ∈ W 1,p(Ω), then the boundary trace
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operator γ0 : W 1,p(K) → Lp(∂K) is a continuous linear operator, i.e. there exists a constant

C > 0 such that,

‖γ0(v)‖Lp(∂K) ≤ C ‖v‖W 1,p(K) . (4.12)

The following Lemma is obtained by Lemma 4.2 and standard scaling argument.

Lemma 4.3. Let K ∈ T and E be any edge of K. If v ∈ W 1,p(K), then there exists constant

C > 0 such that,

h1−p
E ‖γ0(v)‖pLp(E) ≤ C(h−pE ‖v‖

p
Lp(K) + ‖∇v‖pLp(K)), (4.13)

where hE is the length of E.

The next lemma will play an important role for us in dealing with nonconformity in our FE space.

Lemma 4.4. Letu be the weak solution to (4.9) and f ∈ W q(div0; Ω) then for all v ∈ W p
0 (curl; Ω),

(∂tu,v)Ω + 〈A(u),v〉 = (f ,v)Ω . (4.14)

Proof: Let v ∈ W p
0 (curl; Ω). By Lemma 4.1, v = z +∇φ for some φ ∈ W 1,p

0 (Ω) and z ∈ Xp.

Sinceu ∈ Xp ⊂ W p(div0; Ω), f ∈ W q(div0; Ω) and∇×∇φ = 0 is well-defined for φ ∈ W 1,p
0 (Ω),

(∂tu,v)Ω + 〈A(u),v〉Ω =
[

(∂tu, z)Ω + 〈A(u), z〉
]

+ (∂tu,∇φ)Ω + 〈A(u),∇φ〉Ω

= (f , z)Ω +
d

dt
(u,∇φ)Ω︸ ︷︷ ︸

=0

+(ρ(∇× u)∇× u,∇×∇φ︸ ︷︷ ︸
=0

)Ω

= (f , z)Ω + (f ,∇φ)Ω︸ ︷︷ ︸
=0

= (f ,v)Ω .
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Proof: [Proof of Theorem 4.3.1] Now we are in a position to demonstrate the local error estimator

for the p-curl problem. Let u satisfy (4.9) and uh satisfy (4.10). For any v ∈ W p
0 (curl; Ω) and

vh ∈ Vh ⊂ W p
0 (curl; Ω),

(∂t(u− uh),v)Ω + 〈A(u)− A(uh),v〉

=
[

(∂tu,v − vh)Ω + 〈A(u),v − vh〉
]

︸ ︷︷ ︸
=(f ,v−vh)Ω by Lemma 4.4

−
[

(∂tuh,v − vh)Ω + 〈A(uh),v − vh〉
]

+
[

(∂tu,vh)Ω + 〈A(u),vh〉
]

︸ ︷︷ ︸
=(f ,vh)Ω by Lemma 4.4

−
[

(∂tuh,vh)Ω + 〈A(uh),vh〉
]

︸ ︷︷ ︸
=(f ,vh)Ω since uh satisfies (4.10)

= (f − ∂tuh,v − vh)Ω − 〈A(uh),v − vh〉

=
∑
K∈T

(f − ∂tuh,v − vh)K − (ρ(∇× uh)∇× uh,∇× (v − vh))K (4.15)

Now choose vh = ΠSchov as introduced in Theorem 1.61. Then v − Πv = ∇φ + w for some

φ ∈ H1
0 (Ω) and w ∈ H1

0 (Ω)3 satisfying (1.73) and (1.74). Thus, using Green’s formula (1.18) and

(1.19), (4.15) becomes,

=
∑
K∈Th

(f − ∂tuh,∇φ+w)K − (ρ(∇× uh)∇× uh,∇× (∇φ+w))K

=
∑
K∈Th

(f − ∂tuh,w)K − (∇ · (f − ∂tuh), φ)K + (γn(f − ∂tuh), γ0(φ))∂K

− (∇× (ρ(∇× uh)∇× uh),w)K − (γt(ρ(∇× uh)∇× uh), γ0(w))∂K

=
∑
K∈Th

(f − ∂tuh −∇× (ρ(∇× uh)∇× uh),w)K − (∇ · (f − ∂tuh), φ)K

+
∑

E∈E(Th)

(
[[γn(f)]], γ0(φ)

)
E︸ ︷︷ ︸

=0, since f∈H(div;Ω)

+
(

[[γn(−∂tuh)]], γ0(φ)
)
E

+
(

[[γt(ρ(∇× uh)∇× uh)]], γ0(w)
)
E

=
∑
K∈Th

RK
i (uh;w) +RK

d (uh;φ) +
∑

E∈E(Th)

RE
n (uh;φ) +RE

t (uh;w). (4.16)
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Here the residuals are defined as,

RK
i (uh;w) := (f − ∂tuh −∇× (ρ(∇× uh)∇× uh) w)K ,

RK
d (uh;φ) := − (∇ · (f − ∂tuh), φ)K ,

RE
n (uh; γ0(φ)) := ([[γn(−∂tuh)]], γ0(φ))E

RE
t (uh; γ0(w)) := ([[γt(ρ(∇× uh)∇× uh)]], γ0(w))E .

Indeed, RK
i is the standard interior local residual term, RE

n and RE
t measure respectively the nor-

mal and tangential discontinuity of γn(−∂tuh) and γt(ρ(∇ × uh)∇ × uh)) across neighbouring

elements. Moreover, RK
d is in fact zero, since f ∈ H(div0; Ω) and ∇ · uh|K = 0,

∑
K∈Th

RK
d (uh;φ) = − (∇ · f , φ)Ω︸ ︷︷ ︸

=0

+
∑
K∈Th

(∇ · ∂tuh, φ)K =
∑
K∈Th

d

dt
(∇ · uh, φ)K︸ ︷︷ ︸

=0

= 0. (4.17)

Next, we proceed to estimate each term in the sum of (4.16) by using Cauchy-Schwarz’s inequality,

(1.73), and (1.74). We use the convention that the constant C may change from one line to the next

and only depends on the shape-regularity of Th.

∑
K∈Th

RK
i (uh;w)

≤
∑
K∈Th

‖f − ∂tuh −∇× (ρ(∇× uh)∇× uh)‖L2(K) ‖w‖L2(K)

≤ C
∑
K∈Th

hK ‖f − ∂tuh −∇× (ρ(∇× uh)∇× uh)‖L2(K) ‖∇ × v‖L2(ωK)

≤ C

(∑
K∈Th

h2
K ‖f − ∂tuh −∇× (ρ(∇× uh)∇× uh)‖2

L2(K)

)1/2

‖∇ × v‖L2(Ω) , (4.18)

Using (4.13) and hE ' hK for shape-regular Th,

‖γ0(w)‖L2(E) ≤ C
(
h−1
E ‖w‖

2
L2(K) + hE ‖∇w‖pLp(K)

)1/p

≤ C
(
h−1
E h2

K ‖∇ × v‖
p
L2(ωK) + hE ‖∇ × v‖2

L2(ωK)

)1/2

≤ Ch
1/2
E ‖∇ × v‖L2(ωK) .
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So RE
t (uh; γ0(w)) becomes,

∑
E∈E(Th)

RE
t (uh; γ0(w))

≤
∑

E∈E(Th)

‖[[γt(ρ(∇× uh)∇× uh)]]‖L2(E) ‖γ0(w)‖L2(E)

≤ C
∑

E∈E(Th)

h
1/2
E ‖[[γt(ρ(∇× uh)∇× uh)]]‖L2(E) ‖∇ × v‖L2(ωK)

≤ C

 ∑
E∈E(Th)

hE ‖[[γt(ρ(∇× uh)∇× uh)]]‖2
L2(E)

1/2

‖∇ × v‖L2(Ω) . (4.19)

Similarly, by (4.13) and the shape-regularity of Th,

‖γ0(φ)‖L2(E) ≤ Ch
1/2
E ‖v‖L2(ωK) .

So we have for the RE
n (uh; γ0(φ)) terms,

∑
E∈E(Th)

RE
n (uh; γ0(φ)) ≤

∑
E∈E(Th)

‖[[γn(∂tuh)]]‖L2(E) ‖γ0(φ)‖L2(E)

≤ C
∑

E∈E(Th)

h
1/2
E ‖[[γn(∂tuh)]]‖L2(E) ‖v‖L2(ωK)

≤ C

 ∑
E∈E(Th)

hE ‖[[γn(∂tuh)]]‖2
L2(E)

1/2

‖v‖L2(Ω) . (4.20)

Thus, combining (4.15)-(4.19), we have shown the desired result.

Now we show the a posteriori error estimators in Theorem 4.3.1 are reliable in the following sense.

Theorem 4.3.2. Let u, uh and f as stated in Theorem 4.3.1 and denote the error as e := u− uh
and e0 = e|t=0, then for some constants C ′ > 0

sup
s∈[0,T ]

‖e(s)‖2
L2(Ω) +

∫ T

0

‖∇ × e(s)‖pLp(Ω) ds

≤ C ′
(
‖e0‖2

L2(Ω) +

∫ T

0

η2
n(s) + ηqi (s) + ηqt (s)ds

)
.
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Proof: Let v = e ∈ W p
0 (curl; Ω) in (4.11). Note that there exists Cp > 0,

Cp ‖∇ × e‖pLp(Ω) ≤ 〈A(u)− A(uh), e〉Ω (4.21)

The coercivity result (4.21) follows from setting x = ∇ × u,y = ∇ × uh and integrating the

inequality of (1.37), where it was shown there exists Cp > 0 such that for any x,y ∈ Rd,

Cp|x− y|p ≤ (|x|p−2x− |y|p−2y) · (x− y).

Since both u,uh ∈ Lp(Ω) ⊂ L2(Ω), combining equation (4.11) with (4.21) and Young’s inequality

with ε gives,

d

dt

1

2
‖e‖2

L2(Ω) + Cp ‖∇ × e‖pLp(Ω)

≤ C

(
1

2
(η2
n + ‖e‖2

L2(Ω)) +

[
1

qεq
(ηqt + ηqi ) +

2εp

p
‖∇ × e‖pLp(Ω)

]
|Ω|

1
2
− 1

p

)
. (4.22)

For sufficiently small ε, inequality (4.22) implies for C1 := 2

(
Cp −

2C|Ω|
1
2
− 1

p εp

p

)
> 0 and

a := C max

{
1, 2|Ω|

1
2−

1
p

qεq

}
,

d

dt
‖e‖2

L2(Ω) + C1 ‖∇ × e‖pLp(Ω) ≤ a
(
‖e‖2

L2(Ω) + η2
n + ηqi + ηqt

)
.

So by Gronwall’s inequality,

‖e‖2
L2(Ω) (t) + C1

∫ t

0

ea(t−s) ‖∇ × e‖pLp(Ω) (s)ds

≤ a

(
eat ‖e0‖2

L2(Ω) +

∫ t

0

ea(t−s)(η2
n(s) + ηqi (s) + ηqt (s))ds

)
⇒ ‖e‖2

L2(Ω) (t) + C1

∫ t

0

‖∇ × e‖pLp(Ω) (s)ds

≤ aeaT
(
‖e0‖2

L2(Ω) +

∫ T

0

η2
n(s) + ηqi (s) + ηqt (s)ds

)
, (4.23)
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since 1 ≤ ea(t−s) ≤ eaT for 0 ≤ s ≤ t ≤ T . Taking the supremum over all t ∈ [0, T ] of equation

(4.23) gives the desired result with C ′ = aeaT/min(1, C1).

4.4 Extension to space-time finite element discretizations

This section describes the a posteriori error estimators used for the continuous space-time dis-

cretizations. The approach developed here is heuristic since it proceeds by adapting the error es-

timators of Theorem 4.3.1 with the help of dimensional analysis. The resulting error estimators

are also compared with the error estimators of two sources Creusé et al. (2013); Verfürth (2003).

We have focused on schemes with an explicit time dependence. The estimators of Creusé et al.

(2013) were developed for Maxwell’s equations hence give us a good idea of the form of the resid-

uals and of the order of the terms. The estimators from Verfürth (2003) were developed from a

Crank-Nicolson scheme for the linear heat equation.

Although the approach is informal, it has the benefit of providing a procedure other researchers can

follow to adapt the error estimators of Theorem 4.3.1 to their schemes. This should be possible

to do for most other FE schemes. Informal calculations obtained by different methods have also

resulted in the same a posteriori error estimators, but that work will not be presented here.

The local error estimators we seek will need to be defined over space-time elements in (2 + 1)D

or faces and edges of these, where by a face we mean an edge crossed with a time interval. In

contrast to the error estimators for the method of lines discretization of the previous section, the

error estimators we seek will also account for time-discretization errors of the order of powers of

the time step ∆t.

Local error estimators are obtained by applying integration by parts and Hölder-type inequalities

to the weak form of the continuous and FE formulations. Moreover, terms at the boundaries of

space-time elements appearing after integration by parts, possess contributions from both space-

time elements at the boundary, which therefore lead to differences along those boundaries. Starting

from the p-curl problem over the interior of a space-time element, the set of possible terms that can
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be obtained are summarized below

‖ht + α∇× |∇ × h|p−2∇× h‖K×In ,

‖∇ · ht‖K×In ,

‖n× [α|∇ × h|p−2∇× h]‖∂K×In ,

‖n · [ht]‖∂K×In ,

and typically named the interior p-curl residuals, the interior divergence residuals, the tangential

boundary residuals, and the normal boundary residuals. The normal boundary residuals are less

obvious to derive, since it essentially comes from the non-conformity of the FE discretization and

Lemma 4.4.

The error in the previous section, as well as the error in the two references Creusé et al. (2013);

Verfürth (2003), are measured with respect to both of the following norms

‖H − h‖L∞(0,T ;L2(Ω)) and ‖∇ × (H − h)‖L2(0,T ;L2(Ω));

see Theorem 4.9 of Creusé et al. (2013) and Theorem 1.1 of Verfürth (2003). When bounding

the sum of the errors in L∞(0, T ;L2(Ω)) and L2(0, T ;H(curl; Ω)), then the error estimators we

proposed, based on the estimators for method of lines discretization, are proportional to

ηKi := hK‖ht + α∇× |∇ × h|p−2∇× h‖L2(In;Lq(K)), (4.24)

ηKd := hK‖∇ · ht‖L2(In;Lq(K)), (4.25)

ηet :=
√
he‖n× [α|∇ × h|p−2∇× h]‖L2(In;Lq(e)), (4.26)

ηen :=
√
he‖n · [ht]‖L2(In;L2(e)). (4.27)

The work of Creusé et al. (2013) produced error estimators for the A − V formulation that can

be readily identified to the terms (4.24)-(4.27). Adapting their notation and exploiting the formal
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analogy betweenA andH , their error estimators are dimensionally equivalent to

ηKi,CNT :=
√

∆tnhK‖ht + α∇×∇× h‖L2(K), (4.28)

ηKd,CNT :=
√

∆tnhK‖∇ · ht‖L2(K), (4.29)

ηet,CNT :=
√

∆tnhe‖n× [α∇× h]‖L2(e), (4.30)

ηen,CNT :=
√

∆tnhe‖n · [ht]‖L2(e). (4.31)

It is straightforward to verify that, with respect to the time step and the mesh size, these local

quantities are dimensionally equivalent to the four estimators (4.24)-(4.27).

The error estimators of Verfürth for the linear heat equation Verfürth (2003) are

ηKi,V L :=
√

∆tnhK‖ut − α∆u‖L2(K), (4.32)

ηKd,V L :=
√

∆tn‖∇(∆tnut)‖L2(K), (4.33)

ηet,V L :=
√

∆tnhe‖n · [∇u]‖L2(e), (4.34)

where the analog of the tangential jump, ηet is the boundary term one would obtain after applying

integration by parts to the Laplace operator, namely ηet,V L. The dimensional analysis of terms (4.32)

and (4.34) is straightforward and shows that they are equivalent to their analogs in space-time. On

the other hand, the term (4.33) must be rewritten as

ηKd,V L =
∆tn
hK

√
∆tnhK‖∇ut‖L2(K),

which is only dimensionally equivalent to (4.25) when the ratio ∆tn/hK remains constant under

refinement, which is the case.

In conclusion, a comparison has shown that the error estimators we proposed (4.24)-(4.27) in-

dicates that the terms adapted from the semi-discretization will be appropriate for a space-time

discretization.
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4.5 Adaption of error estimators to 1D

In this section, we adapt the error estimators developed in Theorem 4.3.2 to 1D. While the appli-

cation for this is limited, we include the following brief analysis for the sake of completeness. The

main ideas are similar to that of the vectorial case presented in Theorem 4.3.2.

Our objective is to study the magnetic field H on a 1D problem, that is to say the p-curl problem

where H depends on only one spatial variable, say x, in the y-component. This implies that we

need to examine a vector field of the form,

H(x, t) = u(x, t)ŷ,

where the current density will be given by,

J(x, t) =∇×H(x, t) = −∂u
∂x

(x, t)ẑ.

We also assume that the source term F is of the form

F (x, t) = f(x, t)ŷ

For simplicity, we will set α = 1 in subsequent analysis. Thus, the strong form of the homogeneous

p-curl problem reduces to the parabolic p-Laplacian,

ut −
(
|ux|p−2 ux

)
x

= f(x, t),

with u|∂Ω = 0. In 1D, our domain of interest is the closed interval Ω = [a, b]. Analogous to the

weak form of the p-curl problem in the vectorial case, the weak formulation in 1D is

Given p ≥ 2 and f ∈ Lq(Ω), find u ∈ H1([0, T ];W 1,p
0 (Ω)) such that for all φ ∈ L2([0, T ];W 1,p

0 (Ω)),

〈ut, φ〉Ω + 〈|ux|p−2 ux, φx〉Ω = 〈f, φ〉Ω. (4.35)



92

Let Th be a subdivision of Ω into subintervals with the largest interval length of h. Similar to the

vectorial case, we can define the semi-discrete formulation as

Given p ≥ 2 and f ∈ Lq(Ω), find uh ∈ H1([0, T ];Uh
0 ) such that for all φh ∈ L2([0, T ];Uh

0 ),

〈uht , φh〉Ω + 〈
∣∣uhx∣∣p−2

uhx, φ
h
x〉Ω = 〈f, φh〉Ω, (4.36)

where Uh
0 is the nodal element space on the Th with homogeneous boundary condition.

The key difference from the vectorial case is that the FE space is actually conforming, i.e. Uh
0 ⊂

W 1,p
0 (Ω). In particular, we can immediately subtract (4.35) with (4.36) to obtain the Galerkin

orthogonality:

For all φh ∈ Uh
0 ,

〈(u− uh)t, φh〉Ω + 〈|ux|p−2 ux −
∣∣uhx∣∣p−2

uhx, φ
h
x〉Ω = 0, (4.37)

Recall Clément’s interpolation ΠClem introduced in Theorem 1.59. Thus, combining (4.37) and

integration by parts on each K ∈ Th as in the vectorial case, we have that for all φ ∈ W 1,p
0 (Ω) with

φh = ΠClemφ,

〈(u− uh)t, φ〉Ω + 〈|ux|p−2 ux −
∣∣uhx∣∣p−2

uhx, φx〉Ω

= 〈(u− uh)t, φ− φh〉Ω + 〈|ux|p−2 ux −
∣∣uhx∣∣p−2

uhx, (φ− φh)x〉Ω

≤ C (ηI + ηJ) ‖φ‖W 1,2
0 (Ω) (4.38)

where C is a constant independent of h and ηI , ηJ are interior and jump residuals defined by

η2
I =

∑
K∈Th

h2
K

∥∥f − uht + (|uhx|p−2uhx)x
∥∥2

L2(K)
, (4.39)

η2
J =

∑
interior node xi

∣∣[|uhx|p−2uhx]xi
∣∣2 . (4.40)

Thus setting φ = u − uh in (4.38) and applying a similar coercivity condition and Gronwall’s
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inequality, we have the reliability of error estimate for 1D:

For some C > 0 independent of h,

sup
s∈[0,T ]

∥∥(u− uh)(s)
∥∥2

L2(Ω
+

∫ T

0

∥∥(u− uh)x(s)
∥∥p
Lp(Ω)

ds

≤ C

(∥∥(u− uh)(0)
∥∥2

L2(Ω
+

∫ T

0

η2
I (s) + η2

J(s)ds

)
. (4.41)

4.6 A posteriori error estimate for AC loss

For AC loss computation, the quantity of interest is Q(u) := 1
T

∫ T
0
‖∇ × u‖pLp(Ω). In particular,

we wish to derive a posteriori error estimates for |Q(u) − Q(uh)|. To do this, we first derive

the following elementary estimate and subsequently use it to show the error for Q is related to a

posteriori error estimates derived previously.

Lemma 4.5. Let 1 ≤ p. For any positive bounded functions x : [0, T ] → R, y : [0, T ] → R (i.e.

0 ≤ x(t), y(t) ≤M for all 0 ≤ t ≤ T ), we have that,

∫ T

0

|x(t)p − y(t)p|dt ≤ pT 1− 1
pMp−1

(∫ T

0

|x(t)− y(t)|p
)1/p

Proof: For any t ∈ [0, T ], the mean value theorem implies there exists ξ(t) ∈ [0,M ],

|x(t)p − y(t)p| = |x(t)− y(t)| · pξ(t)p−1 ≤ pMp−1|x(t)− y(t)|

Thus, integrating over [0, T ] gives,

∫ T

0

|x(t)p − y(t)p|dt ≤ pMp−1

∫ T

0

|x(t)− y(t)|dt

≤ pT 1− 1
pMp−1

(∫ T

0

|x(t)− y(t)|p
)1/p
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Theorem 4.6.1. Let u, uh as stated in Theorem 4.3.1 and denote the error as e := u − uh and

e0 = e|t=0. Let M be stability bound for the weak formulation (4.9) and (4.10), then we have,

|Q(u)−Q(uh)| ≤ pT−
1
pMp−1

(∫ T

0

‖∇ × e‖pLp(Ω) (s)ds

)1/p

≤ C2

C1

pT−
1
pMp−1

(
‖e0‖2

L2(Ω) +

∫ T

0

η2
n(s) + ηqi (s) + ηqt (s)ds

)1/p

Proof: Let x(t) := ‖∇ × u‖Lp(Ω) and y(t) := ‖∇ × uh‖Lp(Ω). Since 0 ≤ ‖∇× u‖Lp(Ω) ≤ M ,

0 ≤ ‖∇× uh‖Lp(Ω) ≤M for 0 ≤ t ≤ T , Lemma (4.5) implies,

|Q(u)−Q(uh)| =
1

T

∣∣∣∣∫ T

0

(x(t)p − y(t)p)dt

∣∣∣∣ ≤ 1

T

∫ T

0

|x(t)p − y(t)p| dt

≤ pT−
1
pMp−1

(∫ T

0

|x(t)− y(t)|pdt
)1/p

(4.42)

Since |x(t)− y(t)| =
∣∣∣‖∇ × u‖Lp(Ω) − ‖∇× uh‖Lp(Ω)

∣∣∣ ≤ ‖∇× e‖Lp(Ω) then by monotonicity of

f(z) = zp, we have |x(t)− y(t)|p ≤ ‖∇× e‖pLp(Ω). Thus, again by monotonicity of f(z) = z1/p,

(∫ T

0

|x(t)− y(t)|pdt
)1/p

≤
(∫ T

0

‖∇ × e‖pLp(Ω) dt

)1/p

(4.43)

Combining inequalities (4.42), (4.43) and Theorem 4.3.2 yield the desired result.
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CHAPTER 5

NUMERICAL RESULTS

This chapter discusses the numerical results for the uniform and adaptive continuous space-time

method. The first section compares the efficiency in terms of error versus degrees of freedom of

the uniform and adaptive space-time method in 1D for a moving front analytical solution. The

second section shows numerical results for the uniform space-time method in 2D. In particular,

optimal convergence rate in space was observed for an analytical solution in the linear case and

sub-optimal convergence rate in space was observed for a moving front solution in the nonlinear

case. These results are also validated with a commerical software package. The third section

discusses effectivity index of the error estimators and a modified version of Dörfler’s marking

strategy. Numerical results in 2D for the adaptive space-time method are also presented.

Both the uniform and adaptive space-time method was implemented by the author in MATLAB

as detailed in Section 3.2. We employed the DistMesh package by Persson and Strang (2004) for

generating the coarsest mesh in 2D. The numerical result from COMSOL was generated with the

help of Professor Fédéric Sirois.

5.1 Adaptive discretization in 1D

Given the simplicity of the 1D case, we present only one numerical experiment. Note that in this

case, the p-curl problem is identical to the p-Laplacian. Numerical methods and results for the

p-Laplacian are widely available Barrett and Liu (1994); Ju (2000).

The continuous space-time Galerkin method for the p-curl problem was first implemented in 1D

by (Laforest and Foy, 2010). Employing nodal elements, convergence studies and comparisons

to other codes were performed with satisfactory results in those cases (Wan et al., 2011). Neither

numerical cost, nor adaptivity, was examined in those studies.
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To study the performance of the adaptive space-time method, we choose a problem which models

a strong magnetic front permeating into a superconductor. In particular, this problem possesses

an analytic solution, first computed by (Mayergoyz, 1998), and so presents an excellent test case.

Consider a semi-infinite domain Ω = [0,∞) × R2 with vanishing H initially. A monotonically

increasing field is then applied at x = 0 in the y component of H . Due the symmetry of the

problem, the magnetic field takes the form H = [0, H(x, t), 0]T for all (x, t) ∈ Ω × [0, T ]. It

therefore suffices to consider only the scalar function H . If the increasing field at the boundary

is of the form H(0, t) = Ct
p−1
p−2 with 2 < p < ∞, then the p-curl problem exhibit the following

moving front solution:

H(x, t) =


Ct

p−1
p−2

(
1− εx

ξ0t

) p−1
p−2

, 0 ≤ x ≤ xf (t),

0, x > xf (t),

(5.1)

where ξ0 =
(
p−1
p−2

)1− 1
p
, ε = C

2
p
−1α−

1
p , α = Ec

µ0J
p−1
c

with the front function xf (t) = ξ0
ε
t. This exact

solution was first found by (Mayergoyz, 1998) in the context of flux diffusion in superconductors.

Derivation of equation 5.1 in the current form was recently presented by the author in Mikitik et al.

(2013).

Choosing p = 8 for this 1D problem, the numerical solution of the magnetic field was computed

using continuous piecewise linear functions with the spacetime scheme (3.6) with different limits

on the levels of maximum refinement. The initial spatial mesh was formed of 10 uniform elements

of width 1, and and 200 time steps were taken to reach a final solution at time t = 0.8738. At each

time step, the nonlinear problem was solved using MATLAB’s generic function fsolve with a

sparsity Jacobian pattern with default tolerance values.

At the time of writing, the numerical experiments had only been performed using the exact error as

a marker for refinement. The results are therefore only an indication of the adaptive algorithm, and

not of the quality of the 1D error estimators in Section 4.5. The error computed using the 1D error

estimators will subsequently be presented in a forthcoming paper.

Figure 5.1 presents the analytic solution, as a continuous line and several adaptive solutions with
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different levels of maximum refinement. As is expected, the magnetic field penetration is of finite

depth, with a near discontinuity in the derivative of H travelling towards the inside of the super-

conducting domain. The numerical solution of the current density is piecewise constant since it can

be computed using ∇×H = −∂H
∂x
ẑ. From the plot of the current density, an essential quantity of

engineering interest, we can see that the adaptivity allows an improved resolution of the position

of the front and of the variation in that neighborhood. In fact, Figure 5.2 shows the exact error of

the various approximations, and one notes that the size of the error is diminished by the additional

local refinement. The picture on the bottom of Figure 5.2 presents the adapted space-time mesh

constructed at t = 0.48.

Finally, we present the error as a function of N , the number of degrees of freedom used, for both

the uniform space-time discretization and the several adapted meshes. These degrees of freedom

are computed in the space-time sense, that is for the uniform discretization:

N = (number of unknowns in space)× (number of time steps), (5.2)

and for the adaptive discretization,

N =
n∑
i=1

number of unknowns in space-time slab of [ti−1, ti). (5.3)

One observes in Figure 5.3 that for a fixed number of degrees of freedom, the adapted mesh can de-

liver almost one order of magnitude better accuracy than the uniformly refined mesh. This is a good

sign that adapted meshes in higher dimensions will be effective, though the practical advantage is

limited in one space dimension.

5.2 Uniform discretization in 2D

Next we discuss results of the continuous space-time Galerkin method. In all cases, the assem-

bled nonlinear system was solved using MATLAB’s generic function fsolve with an analytical

Jacobian with tolerance values TolX =1e-8 and TolFun =1e-10. In particular, we assume the
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Figure 5.1 The graph illustrates the solutions obtained at time t = 0.48 for different values of the
maximum level of refinement permissible. The exact solution is also included.
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Figure 5.2 The graph illustrates the errors obtained at time t = 0.48 for different values of the
maximum level of refinement permissible. The error is evaluated by point-wise comparison with
the analytic solution. The graph below shows the associated spacetime mesh one obtains over a
single time step Ω× [tn, tn + ∆t] immediately before t = 0.48. In that picture, x is the horizontal
axis and t is the vertical axis.
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Figure 5.3 The graph indicates the error as a function of the number of degrees of freedom. Data is
presented for both uniform and adaptive refinement and indicates that even in the 1D case, adaptive
strategies can offer almost the same error for an order of magnitude less degrees of freedom.

magnetic field is of the form

H(x, t) = (Hx(x, y, t), Hy(x, y, t), 0)T

and so ∇ ×H has only z-components. To verify our code, we have set µ0, Ec, Jc to be 1 on the

unit disk Ω = {x ∈ R2| ‖x‖ < 1}. We have so far restricted to two cases where the exact solutions

are known.

5.2.1 Constant curl case

The first case is a radially symmetric steady state solution. Specifically, the magnetic field is given

by H(ρ, φ, z, t) = ρφ̂ and so the current density takes the constant value J(ρ, φ, z, t) = 2ẑ. The

goal of this test case is to validate the 2D space-time method as well as looking at time-transient

behaviour for p > 2. A uniform mesh with 961 degrees of freedom and 20 uniform time steps are

used for this test. The final time T is taken to be 1.0.
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Figure 5.4 The plots illustrate the radial profiles of magnetic field and current density. The dots
show the space-time solution evaluated at the center of each element and the solid line depicts the
exact solution.
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Figure 5.5 These color plots show the variation of magnetic field and current density in space.

Figure 5.4(a)-5.5(b) were obtained for the case p = 20 and it was observed the error to be negligible

(to machine zero precision) in this steady state case. This is expected since the exact solution

H = ρφ̂ = (−y, x)T can be expressed exactly by first-order edge element basis functions of V1,h

from (1.64).
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5.2.2 Bessel case

The second case is the radially symmetric time transient solution,

H(ρ, φ, z, t) = J1(λρ) exp(−λ2t)φ̂,

where J1 is the Bessel function of the first kind of order 1 and λ ≈ 3.8317 was chosen to be the

second smallest positive root of J1. The current density is given by,

J(ρ, φ, z, t) = λJ0(λρ) exp(−λ2t)ẑ,

where J0 is the Bessel function of the first kind of order 0. Although this is restricted to the linear

case of p = 2, the system of equations were assembled and solved using MATLAB’s fsolve in

the same manner as the nonlinear cases. The purpose of this test case was to validate the method

for a time varying solution and to look at the convergence rate of the space-time methods. In the

following, we have used 16222 degrees of freedom and 160 time steps.

Figure 5.6(a)-Figure 5.7(b) show the radial profiles and local field intensity of H and J , which is

in agreement with the exact solution.

Figure 5.8(a) and Figure 5.8(b) depict the local error as colour intensity. Note in Figure 5.8(a),

there is a slight variation in θ where the error is more pronounced at θ = π
6
, π

2
, 5π

6
, 7π

6
, 3π

2
, 11π

6
. We

believe this is due to mesh effects being more pronounced at the corners of the equilateral triangle

of the mesh.

Table 5.1 L2 errors of H and J for various meshes. Here we fixed the number of time steps to be
80 and evaluated the error at t = 0.01.

Space DOF L2 error ofH L2 error of J
303 0.088679202777943 0.328581997038537
531 0.066871948594813 0.250570718944396
961 0.048996441177781 0.185752121137605
2034 0.033909940476491 0.128239794810957
4095 0.023755788724752 0.090692209596700
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Figure 5.6 These plots show the radial profile of H and J , where the dots indicate the space-time
solution evaluated at the center of each element and the solid line depicts the analytical solution.
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Figure 5.7 The color plots depict the spatial variation ofH and J .

The log-log plots of Figure 5.9(a), 5.9(b) reveals slopes of -0.505 and -0.495 for the L2 error of

the magnetic field and current density, respectively. Since for shape-regular and uniform meshes,

h ∼ N−1/d whereN is the number of degrees of freedom and d dimension, these slopes correspond

to the convergence rates in R2 of O(h1.1) for the error in H and O(h0.99) for the error in J . Since

the Bessel solution is infinitely smooth and hence H ∈ H1(Ω) and J ∈ H1(Ω), the observed

convergence rate of O(h) is in excellent agreement with the interpolation error estimates for first-

order edge element from Theorem 1.57.
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Figure 5.8 These color plot depicts the local L2 error of magnetic field and current density.
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Figure 5.9 Log-log plot of DOF versus L2 error ofH and J . Here we varied the number of degrees
of freedom while fixing the number of time steps to 80.

5.2.3 Smooth moving front case

Next, we discuss numerical results for a manufactured stationary front solution for the p-curl prob-

lem with a manufactured source term. The manufactured solution is the following radially sym-

metric functionH(ρ, t) = Ψ(ρ, t)φ̂, where

Ψ(ρ, t) =


exp

[
1− 1− f(t)

ρ− f(t)

]
, if f(t) < ρ ≤ 1

0, if 0 ≤ ρ ≤ f(t)
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Note that Ψ is a smooth front function in space with a cut-off function f(t), where 0 ≤ f(t) ≤ 1.

The corresponding source term F on the right hand side of the p-curl problem is,

F (ρ, t) =

(
−(p− 1)Ψ(ρ, t)p−1

(
1− f(t)

(ρ− f(t))2
+

1

ρ

)p−2 [
(1− f(t))2

(ρ− f(t))4
− 2(1− f(t))

(ρ− f(t))3

+
1− f(t)

ρ(ρ− f(t))2
− 1

ρ2

]
+ Ψ(ρ, t)

(ρ− 1)f ′(t)

(ρ− f(t))2

)
φ̂

In the following, we have used f(t) = 0.75− t at the moving front function.

As Figure 5.10(a)-Figure 5.11(b) shows, the uniform space-time method is able to capture the

smooth moving front quite adequately.
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(a) Radial profile ofH in φ̂ direction
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(b) Radial profile of J in ẑ direction

Figure 5.10 These plots show the radial profile ofH and J , where the dots indicate the space-time
solution at the center of each element and the solid line depicts the smooth moving front solution.

However, as we shall see in the next example, the uniform space-time method have difficulties

handling moving front solutions with lower regularity.

5.2.4 Linear ramping moving front case

We now discuss in detail numerical results for a representative moving front problem of the nonlin-

ear p-curl problem, which is an analog of the 1D moving front from Section 5.1. Again we assume

µ0, Ec, Jc to be 1 on the unit disk Ω = {x ∈ R2| ‖x‖ < 1}. Initially, the magnetic field is set to be
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(a) Radial profile ofH in φ̂ direction

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

x

y

J
z
 at t=0.5

0

0.5

1

1.5

2

2.5

3

(b) Radial profile of J in ẑ direction

Figure 5.11 The color plots depict the spatial variation of H and J for the smooth moving front
case. The space-time solution was computed with 2034 degrees of freedom and 100 time steps.

H(x, 0) = 0 and a linear ramping is applied at the boundaryH(x, t) = −tφ̂ on |x| = 1. Although

the exact solution is not known for general values of p, the limiting case as p → ∞ corresponds

to the so-called Bean model solution. In particular, the Bean model solution exhibits a magnetic

field profile which is increasing (almost) linearly inside the domain and a current density profile

which is a step function moving inside the domain. As shown by Barrett and Prigozhin (2000), the

limit solution of the p-curl problem with p = ∞ is the Bean model solution and hence we expect

similar profiles for the magnetic field and current density for high values of p, though the speed of

their fronts can differ. Unless stated otherwise, the results presented below are for the p = 20 case.

Though higher values of p can be used, we observed similar behaviours as in the p = 20 case. For

example, in Figure 5.12(b), we see that the p = 50 solution resembles closer to the limit solution

than the p = 20 case.

As can be seen from Figure 5.12(a), the magnetic field exhibits a linear ramping front similar

to the Bean model solution. From Figure 5.13(a), the current density indeed has a front profile

moving into the domain but with large oscillations in regions beyond the front. We believe these

are numerical oscillation, as we will present results without these large oscillation obtained using a

different solver.

Moreover, due to the singularity of the solution for this case, we cannot expect first-order edge

elements to have good interpolation behaviour. In fact from Theorem 1.57, the convergence rate
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(a) Radial profile ofH in φ̂ direction for p = 20
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(b) Radial profile ofH in φ̂ direction for p = 50

Figure 5.12 These plots show the radial profile of H for p = 20, 50, where the dots indicate the
space-time solution evaluated at the center of each element and the solid line depicts the Bean
model solution corresponding to the limit solution of p =∞.
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(a) Radial profile of J in ẑ direction for p = 20
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(b) Radial profile of J in ẑ direction for p = 50

Figure 5.13 These plots show the radial profile of J for the case of p = 20, 50. Note the numerical
oscillations for both values of p.

of O(h) holds if H ∈ H1(Ω) and J = ∇ × H ∈ H1(Ω). Although we do not know the

exact regularity of the solution for this test case, we conjecture that J 6∈ H1(Ω), as evident from

the radial profile of J of the Bean model solution. Interestingly, similar to Figure 5.8(a) in the

Bessel case, we also observed oscillations in Figure 5.14(b) and Figure 5.15(b) near the front at

θ = π
6
, π

2
, 5π

6
, 7π

6
, 3π

2
, 11π

6
. Again, we believe this is due to mesh effects being more pronounced at

the corners of the equilateral triangle of the mesh.

One possibility for the oscillations occurring in J may be due to numerical instability with the con-
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(a) Color plot ofH in φ̂ direction
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(b) Color plot of J in ẑ direction

Figure 5.14 The color plots depict the spatial variation of H and J . The space-time solution was
computed with 8046 degrees of freedom and 80 time steps.
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(a) Color plot of the local L2 error ofH
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(b) Color plot of the local L2 error of J

Figure 5.15 These color plot depicts the local L2 error of magnetic field and current density. Note
the local errors in J highlight the apparent moving front region.

tinuous Galerkin formulation being unable to capture the discontinuity in the derived variable J . A

remedy at reducing these oscillations may be to use a Streamline Upwind Petrov-Galerkin (SUPG)

scheme, as is often used in fluid dynamics Brooks and Hughes (1982). However, this has not yet

been explored for the p-curl problem. A similar treatment for a stabilized SUPG formulations for

Maxwell’s equations in the time domain has recently been analyzed by Rajamohan (2014). How-

ever, to the best knowledge of the author, the SUPG approach for Maxwell’s equations in the time

domain is otherwise largely unexplored in the literature.
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Using the same initial and boundary data, we performed convergence analysis for varying mesh

sizes and number of time steps. To compute the error, we compute the quadrature for the error

between the space-time solution and a numerical solution computed with the COMSOL commercial

software package. The COMSOL solution was computed using a fine mesh (≈ 25000 spatial DOFs)

and small time steps (≈ 2000 time steps).

Figure 5.16 These color plot depicts the spatial variation of the current density using COMSOL for
6532, 11464, 24980 spatial DOFs.
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Figure 5.17 These plots are the radial profile of the current density obtained from COMSOL using
6532, 11464, 24980 spatial DOFs. Note the presence of small oscillations ahead of the moving front
region.

To see that COMSOL provide reasonable solutions for validation, we present numerical results for

various mesh sizes in Figure 5.16-Figure 5.17. We note that the presence of small oscillations in the

COMSOL results as well but they appear to diminish as the mesh sizes are decreased. This indicates

the oscillations observed in Figure 5.13(a) and Figure 5.14(b) are indeed numerical oscillations and

not physical oscillations. The COMSOL program uses a differential algebraic system solver with
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its own internal mechanism for global time step adaptivity. We have used a tolerance of 1e-3 and

backward differentiation of order one.

Table 5.2L2 errors ofH for various meshes and time steps. The error is compared with COMSOL’s
solution at t = 0.375. Here, NC means MATLAB’s fsolve did “not converge” in those cases.

L2 error ofH
Space DOF 10 time steps 20 time steps 40 time steps 80 time steps

303 0.0289928390 0.0283601065 0.0281647959 0.0281063281
531 0.0231441080 0.0222209037 0.0218821601 0.0217490480
961 0.0189041819 0.0176980486 0.0171864587 0.0169551473

2034 0.0154629512 0.0140656417 0.0133860873 0.0130730348
4095 NC 0.0120170863 0.0112034569 0.0108248730

Table 5.3 L2 errors of J for various meshes and time steps. The error is compared with COMSOL’s
solution at t = 0.375. Again, NC means MATLAB’s fsolve did “not converge” in those cases.

L2 error of J
Space DOF 10 time steps 20 time steps 40 time steps 80 time steps

303 0.2906884999 0.2962253745 0.303472303 0.3083822235
531 0.2499686404 0.2582009839 0.2679645893 0.2740821733
961 0.2506173655 0.2409476730 0.2371213225 0.2360521626

2034 0.2303810348 0.2116887490 0.2046027145 0.2017992952
4095 NC 0.1912856269 0.1835900397 0.1843608952

As Table 5.2-5.3 shows, the space-time method is quite stable over large time steps. This is ex-

pected as the continuous space-time methods are inherently implicit. Also, in our implementation,

we assemble the analytical Jacobian which aids in accelerating the convergence of MATLAB’s

nonlinear solver fsolve.

Fixing the number of degrees of freedom while varying the number of time steps, the temporal error

appears to be negligible compared to the spatial error. This dominance of the spatial error can be

explained as follows: According to Theorem 1.57, first-order edge elements can at best be of order

O(h) in spatial error. In contrast, it can be shown that the space-time method for the linear problem

of p = 2 is equivalent to discretizing in space with first-order edge elements and discretizating

in time with the Crank-Nicholson scheme and a time averaged source term. Since we expect the

Crank-Nicholson scheme to be of order O(τ 2) in temporal error, this supports the dominance of
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spatial errors.

The corresponding log-log plots of Figure 5.18(a), 5.18(b) reveal slopes of -0.367 and -0.202 for

the error of the magnetic field and current density, respectively. As explained in previous section,

these slopes correspond to a convergence rate in R2 of O(h0.73) for the error in H and O(h0.40)

for the error in J . And as mentioned earlier, we conjecture that the moving front solution does not

possess J 6∈ H1(Ω). These non-optimal convergence rates further support the conjecture that the

solution fails to satisfy the regularity requirement of Theorem 1.57 in order to achieveO(h) spatial

error.
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Figure 5.18 Log-log plot of DOF versus L2 error ofH and J . Here we have used the data obtained
from using 80 time steps.

5.3 Adaptive discretization in 2D

We now discuss results for the adaptive space-time method. In all cases, the nonlinear system was

assembled using the STS Tree as described in Section 3.2 and the resultant system was solved

using MATLAB’s generic function fsolve with an analytical Jacobian with tolerance values

TolX =1e-8 and TolFun =1e-10. To compare with the uniform discretization, we focused on

the same linear ramping test case from 5.2.4 on the unit disk Ω = {x ∈ R2| ‖x‖ < 1}. Again we

set µ0, Ec, Jc to be 1, p = 20 and vanishing initial magnetic field with a linear ramping is applied

at the boundary.
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5.3.1 Error analysis of smooth moving front

We briefly discuss qualitatively on how the error estimators compare to the exact error for the case

of smooth moving front.
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(a) Color plot of the exact L2 error ofH
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(b) Color plot of the exact L2 error of J

Figure 5.19 These color plot depicts the exact L2 error of magnetic field and current density for the
smooth moving front case.
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(a) Color plot of ηi
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(b) Color plot of ηt
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Figure 5.20 These color plot depicts the three types of error estimators (ηi, ηt, ηn) for the smooth
moving front case.

As Figure 5.19(a)-Figure 5.20(c) depict, the three types of error estimators agree on similar regions

on where the current density has larger error. This indicate qualitatively the error estimators derived

in Theorem 4.3.2 can be use to reliably identify elements used for refinement, at least in this smooth

moving front case.
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5.3.2 Error analysis of linear ramping moving front

We now look in detail for the case of linear ramping moving front.

As the constant in front of the residual error estimators from Section 4.4 is generally unknown,

this poses a problem when verifying the error tolerance criterion of the adaptive FE algorithm, as

depicted in Figure 1.6. In general, if one has a way to compute the exact error (either through an

exact solution or numerically validated solution), the constant can be estimated by looking at the

ratio between the error estimator and the exact error as the mesh is refined. This is the so-called

effectivity index κh. In particular, given a global a posteriori error estimator η(uh, Th) on the entire

mesh Th and the exact error ‖u− uh‖ computed in the appropriate norm, the effectivity index can

be defined as:

κh :=
η(uh, Th)
‖u− uh‖

As h → 0, if the error estimator η is reliable (i.e. upper bound of the error), then lim inf
h→0

κh > 0.

Similarly, if the error estimator η is efficient (i.e. lower bound of the error and oscillations), then

lim sup
h→0

κh < ∞. In practice, it is desirable for κh to be constant as h → 0. In particular, if

‖e‖ ≤ Cη, then the unknown constant satisfy κ−1
h ≤ C.

In the case of the error estimators for the p-curl problem from Section 4.4, the effectivity index can

be defined as,

κ :=

( ∫ T
0
η2
n(s) + ηqi (s) + ηqt (s)ds

‖e(T )‖2
L2(Ω) +

∫ T
0
‖∇ × e(s)‖pLp(Ω) ds

)1/2

where ηi, ηt, ηn are given as in Theorem 4.3.1.

It can be observed from Table 5.4-5.5 that as the number of degrees of freedom are increased by a

factor of 2, the errors are decreasing by a factor of ∼
√

2. This is consistent with our observation

of non-optimal convergence rate for the nonlinear moving front example in Section 5.2.4. Interest-

ingly, while the interior residual and tangential jump error estimators also decrease by a factor of

∼
√

2, the normal jump error estimators decreases by a factor of ∼ 2. This is perhaps surprising

since we did not expect first-order edge elements being able to approximate well the discontinuities
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Table 5.4 Errors for various meshes for 40 time steps.

Space DOF ‖e(T )‖2
L2(Ω)

∫ T
0
‖∇ × e(s)‖pLp(Ω) ds

303 7.932557299e-04 3.707838988e+03
531 4.788289345e-04 3.623543068e+03
961 2.953743633e-04 2.009443227e+03
2034 1.791873346e-04 2.269601989e+03
4095 1.255174478e-04 8.610410024e+02
8095 9.982612471e-05 7.175166256e+02

Table 5.5 Residual error estimators for various meshes for 40 time steps.

Space DOF
∫ T

0
ηqi (s)ds

∫ T
0
ηqt (s)ds

∫ T
0
η2
n(s)ds

303 1.149442814e-01 6.307454573e-02 5.782023083e+02
531 8.463561434e-02 4.906813833e-02 3.158614390e+02
961 6.141550514e-02 3.687269103e-02 1.596820136e+02

2034 4.118164244e-02 2.565562226e-02 7.365614241e+01
4095 2.830615671e-02 1.816298210e-02 3.542735813e+01
8095 1.979217257e-02 1.292722354e-02 1.759677838e+01

in normal components. Since
∫ T

0
η2
n(s)ds decreases faster than all other terms appearing in the

effectivity index, we see that as h→ 0,

κ→ κ∗ :=

( ∫ T
0
ηqi (s) + ηqt (s)ds

‖e(T )‖2
L2(Ω) +

∫ T
0
‖∇ × e(s)‖pLp(Ω) ds

)1/2

,

where κ∗ is the asymptotic effectivity index. Using Table 5.4-5.5, the asymptotic effectivity index

is computed to be approximately 6.6× 10−3 or (κ∗)−1 ≈ 151, as can be observed in Figure 5.21.

The relatively low effectivity index is inherently due to the unknown constant in front of the a pos-

teriori error estimate. In particular, in the course of proving Theorem 4.3.2, the unknown constant

arise from: ε of Young’s inequality, coercivity constant associated with the p-curl operator, shape

regularity constants associated with Schöberl’s quasi-interpolation operator and the eaT factor orig-

inated from Gronwall’s inequality where aT can be much greater than one.
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Figure 5.21 The plots shows the asymptotic effectivity index as the number of degrees of freedom
are increased.

5.3.3 Marking strategy

We have employed a modified version of the Dörfler marking strategy. Given a set of local error

estimators {ηK×I}K×I∈M on the space-time mesh M, recall that the Dörfler marking strategy

(Dörfler, 1996) with the parameter θ (0 < θ < 1) is to choose a minimal sub-collection N ⊂ M

such that, ( ∑
K×I∈N

η2
K×I

)1/2

≥ θ

( ∑
K×I∈M

η2
K×I

)1/2

.

Also, we recall the maximum marking strategy with a parameter θ is to identify the sub-collection

N ⊂M such that for all K × I ∈ N ,

ηK×I ≥ θ max
K′×I′∈M

ηK′×I′ .

Instead, our proposed modified marking strategy is in a vague sense a combination of these two

strategies. Specifically, our strategy is to choose a sub-collection N ⊂ M such that |N | = θ|M|
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(where | · | denotes cardinality) and any other sub-collection N ′ ⊂M with |N ′| = θ|M| satisfies,

( ∑
K×I∈N

η2
K×I

)1/2

≥

( ∑
K×I∈N ′

η2
K×I

)1/2

.

In practice, this means we mark bθ|M|c elements with the largest local error estimators.

The reason of employing this modified marking strategy is the following. Through numerical

experimentation, we observed that using the Dörfler or the maximum marking strategy, the number

of elements marked between successive finer mesh was often very small, even though the global

error might be large. In particular, if the numbers of degree of freedom between successive solve

does not vary much, this can lead to inefficiency in terms of the total numbers of degree of freedom

used at each global time step. The modified marking strategy guarantees a fraction of the total

number of elements are marked and hence avoids this “stalling” problem. It was observed this

strategy typically leads to a fixed ratio depending on θ for the numbers of degrees of freedom

between successive refined meshes and hence the number of degrees of freedom of the finest mesh

is proportional to the total numbers of degree of freedom used at each global time step. However,

we do not know if this marking strategy leads to optimal efficiency in terms of the numbers of

degree of freedom versus error.

5.3.4 Adaptive results for linear ramping moving front

The results in Figure 5.23(a)-Figure 5.23(b) were generated using the adaptive finite element

method as discussed in Section 3.2. We have done some test runs with different values for θ

and found that θ ≈ 0.2 generally yields best results in terms of error versus number of degrees of

freedom used. Figure 5.22 depicts a snapshot of the space-time mesh used in the adaptive finite

element method.

Unfortunately, even with this fine tuning, we did not observe improvements, in fact worse off then,

we were hoping with the adaptive space-time method versus the uniform space-time method, as

shown in Table 5.6-5.7. We believe this unfortunate result is because of the following two reasons:
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Figure 5.22 Space-time mesh for In = [0.350, 0.375) with 3 mesh levels.

(a) Color plot ofH in φ̂ direction
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Figure 5.23 The color plots depict the spatial variation of H and J . The adaptive space-time
solution was computed with a coarsest mesh with 531 degrees of freedom and a maximum of 3
mesh levels.
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(a) Color plot of the local L2 error ofH
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Figure 5.24 The color plots show the spatial variation of error inH and J .

First, we observed that most of the spatial error can be attributed to the oscillations in the regions

ahead of the moving front. We conjecture that the residual error estimators derived so far have not

efficiently captured those errors.

Second, recall that the spatial error is dominant in this moving front problem. This means the

additional degrees of freedom used at the fractional time steps in the adaptive space-time algorithm

would not yield much gain in reduction of the total error. In fact, as we discussed in Section 5.2.4,

the temporal error is believed to be of orderO(τ 2) while the spatial error is of at bestO(h). Hence,

as the space-time mesh gets more refined, the error will fundamentally be dominated by the spatial

error and any additional degrees of freedom employed at the fractional time steps will be inefficient.

For this reason, we conjecture that an adaptive space method with a standard time-stepping scheme

may be better overall. Moreover, if the adaptive space-time method is to be used, it would be

necessary to refine by a factor of 4 in space for a refinement factor of 2 in time. However, none of

these modifications have been explored so far.
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Table 5.6 Space-time DOF versus errors of the uniform space-time method computed on 20 global
time steps. The space-time DOF is computed using equation 5.2.

Uniform space-time
Space-time DOF L2 error ofH L2 error of J

40680 0.01407 0.2117
81920 0.01201 0.1913

160900 0.01081 0.1806

Table 5.7 Space-time DOF versus errors of the adaptive space-time method computed on 15 global
time steps with a maximum of 3 mesh levels. The space-time DOF is computed using equation 5.3.

Adaptive space-time
Space-time DOF L2 error ofH L2 error of J

55197 0.01844 0.2420
102028 0.01656 0.2312
202443 0.01451 0.1994
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CHAPTER 6

CONCLUSION

In this dissertation, we developed the first adaptive space-time finite element method for the nonlin-

ear eddy current problem from high temperature superconductivity, known as the p-curl problem.

The two main contributions which culminates this work are the continuous space-time formulation

and reliable a posteriori error estimators for the nonlinear p-curl problem.

In chapter 3, the continuous space-time formulation was introduced. To facilitate adaptivity, al-

gorithmic structure such as the space-time simplex tree and a novel way of identifying degrees of

freedom were devised. Due to the choice of non-conformal geometric refinement, local interpo-

lation operations were introduced in order to preserve continuity conditions at hanging edges in

space-time. We believe these new algorithmic techniques can be applied more generally to other

evolutionary problems for which adaptivity in space-time may be useful.

In chapter 4, a reliable set of residual-based a posteriori error estimators for the nonlinear p-curl

problem was established for the first time in the setting of semi-discretization. It turned out a key in-

gredient in showing reliability was a new version of the Helmholtz decomposition for W p
0 (curl; Ω)

which makes it possible to decompose the error into a solenoidal part and an irrotational part. Reli-

ability was then proved by combining with a variant of Galerkin orthogonality and the interpolation

estimates of the H(curl; Ω) quasi-interpolation operator of Schöeberl. The proposed error estima-

tors were also adapted to 1D case. Moreover, reliability for the quantity of interest of AC loss was

also established for the first time.

In chapter 5, numerical results were presented in 1D for the adaptive space-time discretization and

in 2D for both the uniform and adaptive space-time discretization. While optimal convergence

rate in space was observed for solutions with sufficient regularity, sub-optimal convergence rate

was observed for a moving front solution due to the singularity that develops in the nonlinear p-

curl problem. For the case of smooth moving front, the derived error estimators identified regions
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which were in agreement with regions of the largest error in the current density. Unfortunately, for

the case of moving front with low regularity, we observed large oscillations for both the uniform

and adaptive space-time method. These numerical oscillations may be due to inherent instabil-

ity associated with the continuous Galerkin formulation for low regularity solutions of the p-curl

problem. One possible resolution for the instability is to instead use a SUPG-type formulation for

the p-curl problem. While we were unable to demonstrate efficiency gains of the adaptive space-

time method versus the uniform space-time method, our results show that the uniform space-time

method, and more specifically implicit methods, merits a closer look by the engineering community

due to its inherent stability in time. Moreover, we believe adaptive FE methods can still yield effi-

ciency gains provided the convergence rate are of the same order for both space and time. This can

be accomplished for example by an adaptive space-time method using first-order edge elements

which refines in space by a factor of 4 in space and a factor of 2 in time. Though, for practical

purposes, we believe an adaptive space FE method using first-order edge elements with first-order

time-stepping schemes can readily lead to the improvement gains in efficiency using the proposed

a posteriori error estimators for semi-discretization.

We would like to mention a few research directions for future work:

First and most immediately, one can readily implement an adaptive space FE method using first-

order edge elements with first-order time-stepping schemes to test the efficiency gains using the

proposed a posteriori error estimators for semi-discretization.

Secondly, we believe one can extend the proposed a posteriori error estimators from the semi-

discretization setting to the space-time setting by adapting the work of Verfürth (2003) on space-

time a posteriori error estimator for the linear heat equation and the work of Creusé et al. (2013) on

space-time a posteriori error estimator for theA− V formulation of the Maxwell’s equations.

A third direction is to look at deriving space-time error estimators using the adjoint-based estima-

tion method of Bangerth and Rannacher (2003). There are two advantages to this method: first is

at eliminating unknown constants which often appear in residual-based estimation, and second is

the error estimators can be tailored specifically to a quantity of interest, such as the AC loss.
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Fourthly, the most computationally expensive step in the adaptive method is at solving the p-curl

problem in successive refined meshes. We have not taken advantage of the fact that these solutions

are closely related. It would be of practical interest to look into a multi-grid approach to accelerate

solving the p-curl problem.

Lastly, it would be very interesting to extend the use of quasi-norms by Liu and Yan (2001); Liu

et al. (2006) on a posteriori error estimators of the p-Laplacian to the p-curl problem. The advantage

of their approach is at showing both upper and lower bound for the error measured in quasi-norm.

Combining the work of Veeser (2002); Diening and Kreuzer (2008) on the convergence of adaptive

finite element method for the p-Laplacian, one could then explore the development of optimal error

estimators and show convergence for adaptive finite element method of the p-curl problem. This

would not only be of theoretical interest but also has practical value for the engineering community

as well.
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