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RÉSUMÉ

Parmi les défis des systèmes d’édition collaborative figure la cohérence des objets partagés.

Dans la perspective d’une édition cohérente, le système doit garantir la convergence. Pour

assurer la cohérence des objets partagés, la littérature propose plusieurs solutions. Les dif-

férentes approches majeures proposées sont : l’approche des types de données commutatives

répliquées (CRDT) et l’approche de la transformée opérationnelle (OT). L’approche CRDT

considère des opérations commutatives qui peuvent être exécutées dans un ordre différent.

L’une des difficultés auxquelles CRDT se bute réside en la commutativité des opérations.

Toutes les opérations d’édition doivent être commutatives afin d’être exécutées dans un ordre

quelconque. L’approche de la transformée opérationnelle quant à elle propose une transfor-

mation des opérations distantes reçues par rapport aux opérations qui lui sont concurrentes ;

même si elles sont déjà exécutées. Pour effectuer les transformations, l’approche OT utilise

un algorithme de transformation inclusive (IT). Dans la littérature, plusieurs travaux ont

prouvé que les principaux algorithmes de transformation inclusive proposés ne satisfont pas

le critère de convergence.

Outre la cohérence, la sécurisation des interactions est un autre défi des systèmes d’édition

collaborative. Le contrôle d’accès est l’un des modèles de politiques de sécurité applicable dans

ce cadre. Il s’agit d’autoriser ou d’interdire l’édition à certains utilisateurs. Le contrôle d’accès

doit être uniformément déployé pour éviter de compromettre la cohérence des opérations

d’édition. Une opération d’édition valide sur un site doit l’être partout. Une opération refusée

sur un site doit être refusée partout. Dans le contexte étudié, le protocole de sécurité est fiable

s’il préserve la cohérence du système. Fournir cette preuve de fiabilité est une tâche ardue.

Le nombre de cas à examiner est infini. De plus, pour une vérification automatique, le défaut

de ressources survient si des techniques appropriées ne sont pas exploitées.

Dans cette thèse, nous nous intéressons aux défis que constituent la convergence et le

contrôle d’accès dans les systèmes d’édition collaborative répartis. Nous considérons un ob-

jet textuel à structure linéaire qui est massivement édité dans une architecture répartie.

L’approche de gestion de cohérence utilisée est la transformée opérationnelle. Ainsi, chaque

utilisateur a sa copie locale du document partagé. Les opérations générées sur un site sont

aussitôt diffusées aux autres utilisateurs. Elles peuvent être exécutées dans un ordre quel-

conque. Les types d’opérations d’édition sont : l’insertion d’un caractère et la suppression

de caractère. Nous intégrons également un protocole de contrôle d’accès à l’édition collabo-

rative. Notre thèse se présente sous la forme de trois articles scientifiques, chacun traitant

d’une problématique bien spécifique.
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Dans le premier article, nous abordons la problématique de la convergence. Nous avons

adopté une démarche en plusieurs étapes. Une exploration a été initialement faite afin de

vérifier s’il est possible d’avoir une fonction IT convergente. En utilisant la méthode de la

synthèse de contrôleur et les automates de jeu, nos investigations ont révélé qu’aucune IT

basée uniquement sur le caractère et la position ne peut garantir une convergence. L’identifi-

cation des causes de divergence a permis d’amorcer la résolution du « problème de synthèse

de contrôleur ». Ainsi, un troisième paramètre a été ajouté aux opérations d’insertion. Il per-

met de manipuler le nombre de caractères supprimés avant la position d’insertion indiquée.

Une fonction de détermination de la valeur de ce paramètre a été proposée. Une fonction IT

a été par la suite proposée, en tenant compte des propositions précédentes. En utilisant la

vérification sur modèle (model-checking), la preuve a été apportée que notre IT garantit bien

la convergence.

Le deuxième article propose l’intégration d’un protocole de sécurité optimiste. L’article

aborde la problématique de la fiabilité du protocole dans un espace d’états infini. Il est

déployé au dessus de protocole de synchronisation du système d’édition collaborative. Nous

faisons l’hypothèse que le système vérifie la propriété de cohérence en l’absence du contrôle

d’accès. Pour affronter les difficultés relatives à la preuve de fiabilité, l’approche du model-

checking symbolique a été préférée. Le model-checking borné a été utilisé avec l’outil Alloy.

L’exploration faite pour des instances dont la taille maximale est de treize « signatures », a

permis de conclure la préservation de la cohérence par le protocole de contrôle d’accès. Notons

que ces instances ne sont pas massives mais la combinatoire résultante n’est pas négligeable.

Le troisième article aborde la problématique de réduction de système. Des investigations

ont été menées afin d’avoir un modèle fini équivalent au système d’édition collaborative, au

regard de la propriété de cohérence. Le modèle abstrait proposé comporte trois sites coopé-

ratifs, dont l’un est administrateur. Ce modèle à espace d’états fini étant prouvé équivalent

par rapport à la propriété de cohérence, au système à espace d’états infini, il a servi de

cadre pour la vérification automatique. En utilisant l’outil Uppaal et le formalisme d’auto-

mate, nous avons prouvé par model-checking que le modèle abstrait préserve la cohérence.

Par conséquent, le protocole de contrôle d’accès préserve la cohérence de système d’édition

collaborative.

Nos travaux comportent quelques limitations liées à leur portée. Nous avons manipulé

des objets textuels à structure linéaire sur lesquels ne sont appliquées que des opérations

d’insertion et de suppression de caractères. De plus, la gestion des droits d’accès est basée sur

un modèle mono-administrateur. La performance du protocole de contrôle d’accès n’a pas non

plus été prise en compte. Les travaux auraient sans doute plus d’envergure s’ils couvraient

plusieurs types d’objets, plusieurs types d’opérations d’édition, plusieurs administrateurs et
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une étude de performance. Nos futures travaux pourraient être consacrés à l’élargissement de

la portée de la présente thèse.
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ABSTRACT

The consistency of the shared documents is one of the most important challenges in colla–

borative editing systems. To achieve consistency, a solution must ensure the convergence

criteria. Several solutions are proposed in litterature to achieve consistency of the shared

documents. The major approaches are: commutative replicated data type (CRDT) and

operational transformation (OT). CRDT considers some commutative operations which could

be executed in different order. The main difficulty of CRDT is to compute commutative

operations. OT approach proposes to transform remote operations against their concurrent

operations, even if they are already executed. An inclusive transformation function is used to

compute the transformations. In the litterature, several works show that the main inclusive

transformation (IT) functions proposed do not ensure convergence.

Besides consistency, security of the edition is another challenge in distributed collaborative

systems. Access control is a model of security policy that could be used. It consists of

granting or revoking editing authorizations for users. Access control must be uniformly

deployed to not compromise the consistency of the system. A valid editing operation at

one site must be valid at all other sites. As the same time, an invalid operation at one

site, must be invalid everywhere. In the current context, the security protocol is reliable

if it preserves the consistency of the system. Produce the proof of reliability is difficult.

It requires examining infinite number of cases. In addition, with automatic verification,

ressources become insufficient if appropriate techniques are not used.

This thesis is interested in consistency and access control challenges in distributed collab-

orative editing systems. It considers a textual object with a linear structure that is massively

edited in a distributed architecture. OT is used to manage consistency. Each user has a local

copy of the shared document. Locally-generated operations are immediately broadcast to

other users. Operations could be executed in any order. Their types are inserting and delet-

ing characters. To ensure security, collaborative edition is combined with an access control

protocol. The thesis consists of three scientific articles. Each of them deals with a specific

problem.

In the first article, we adress the problem of consistency and proceed in several steps.

Initially, we explore the existence of convergent IT functions of OT, which ensure data con-

sistency. Using the controller synthesis approach and game automata, we conclude that there

is no IT function, based only on character and position as parameters of insert and delete

operations, which ensure data consistency. The investigation of the causes of divergence led

to solve the controller synthesis problem. Thus, a new parameter is added to the insert op-
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eration signature. It handles the number of characters deleted before the inserting position.

The function needed to compute the value of this parameter is provided. Finally, based on

these contributions, we propose an IT function and show that it ensures convergence. The

proof is achieved by a symbolic model-checking emulated using the tool Uppaal.

The second article adresses the reliability of security protocol in an infinite state space. An

optimist access control protocol is considered to be deployed over any correct synchronization

protocol. The symbolic model-checking approach is choosen to deal with the proof of reliabi–

lity. For this purpose, bounded model-checking is used with the tool Alloy. Exploration

made with instances whose maximum size is thirteen allow to conclude the preservation of

consistency by the access control protocol. These instances are not massive but the resulting

combinatorial is important.

The third article adresses the problem of system reduction. In this article, we investi-

gate a finite model equivalent to a distributed collaborative editing system, with regard to

consistency. The abstract model proposed consists of three cooperative sites including the

administrator. This finite state model is proved by model-checking to preserve consistency.

Consequently, the access control protocol preserves consistency of any correct distributed

collaborative editing system. The model-checking techniques exploits Uppaal tool and au-

tomata.

Our work has several limitations. We consider textual objects with linear structure. These

objects are edited by applying some operations which are inserting and deleting characters.

In addition, the management of access rights is based on one-administrator model. The

performance study of the access control protocol is not done. The work would probably

be more extensive if it covered several types of objects, several types of editing operations,

many administrators and the performance study. Our future work could be devoted to the

widening of the scope of this thesis.
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DTD Définition de Type de Document (Document Type Definition)

ET Transformation exclusive (exclusion transformation)

FACT Fact

FUN Function

GST-RBAC Generalized Spatio-Temporal Role Based Access Control

IEEE Institut des Ingénieurs électriciens et électroniciens
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CHAPITRE 1

INTRODUCTION

Le développement des outils et réseaux de communication accrôıt les interactions entre

les êtres humains, équipements et logiciels. Il est donc possible d’interagir avec quelqu’un

ou un objet comme s’il se trouve à portée de main ou de voix. L’impression sensorielle est

quasi-réelle. Un outil de collaboration, identifié aussi par système collaboratif, est un exemple

de cadre d’interactions. C’est un logiciel qui permet à un groupe d’utilisateurs de collaborer

dans le cadre d’un projet, afin de répondre à un besoin. Ces utilisateurs partagent un objet

commun que chacun manipule en fonction de ses prérogatives. Il peut s’agir par exemple de

groupes de chercheurs qui rédigent ensemble un article scientifique. On peut observer la même

situation auprès des graphistes qui modifient des illustrations ou des productions visuelles.

Peuvent également faire usage de cet outil des ingénieurs du son qui réalisent du mixage de

son.

Un éditeur collaboratif est un exemple de système collaboratif. Il permet de manipuler un

document textuel selon plusieurs granularités telles les caractères, lignes, paragraphes. Ainsi,

des actions comme la lecture, l’écriture, la suppression, l’insertion, la modification sont exé-

cutées par les utilisateurs. GoogleDrive 1, Etherpad 2, Framapad 3, XWiki 4 sont des éditeurs

collaboratifs. Dans sa forme la plus simple, la collaboration est synonyme de travail coopéra-

tif. Plus précisément, chaque utilisateur doit s’occuper d’une tâche distincte. Le travail final

est l’assemblage des travaux réalisés individuellement par chaque utilisateur. Par exemple,

chaque membre d’une équipe de projet rédige séparément un ou plusieurs chapitres d’un rap-

port de projet. Chaque utilisateur peut également être affecté à une fonction distincte tout

en manipulant une même partie de l’objet partagé avec d’autres utilisateurs. à l’instar d’un

utilisateur qui écrit la version initiale d’un texte tandis qu’il reviendra à un autre utilisateur

de la corriger ou de la relire. Les utilisateurs font de la pure collaboration quand chacun peut

accéder à n’importe quelle partie de l’objet partagé et l’éditer, c’est-à-dire lire, supprimer

des extraits, en modifier ou en rajouter. En plus de leur permettre de conjuguer leurs efforts,

les systèmes collaboratifs dispensent les utilisateurs d’un regroupement dans un même lieu

physique pendant leurs interactions. Un réseau informatique sert de cadre à ces interactions.

Néanmoins, en dépit de leur performance et la variété de leurs usages, ces systèmes sont

1. https://drive.google.com
2. http://etherpad.org/
3. http://framapad.org
4. http://www.xwiki.com/

https://drive.google.com
http://etherpad.org/
http://framapad.org
http://www.xwiki.com/
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soumis à plusieurs contraintes. La réactivité locale en est un exemple. En effet, même si

le système autorise des interactions simultanées, chaque utilisateur doit avoir l’impression

d’être seul à l’exploiter. Cette contrainte est déterminante pour la convivialité du système.

L’autonomie des utilisateurs est également l’une des contraintes à satisfaire. Dans ce cas, les

utilisateurs doivent être en mesure de manipuler indépendamment les objets partagés. L’au-

tonomie induit une exigence de disponibilité des objets partagés. Pour certains systèmes,

le nombre d’utilisateurs pouvant faire les manipulations représente une contrainte impor-

tante. Quant à la cohérence, elle incarne l’une des contraintes fondamentales. Le système

doit garantir que tous les utilisateurs ont une vue commune des objets partagés. Par ailleurs,

il est primordial que le système soit sécuritaire afin de ne laisser collaborer seulement des

utilisateurs autorisés, mais aussi que chaque utilisateur agisse dans la limite des rôles qui

lui sont dévolus. Une attention particulière doit être accordée à toutes ces contraintes pen-

dant la conception d’un tel système. Les systèmes existant étudiés ne satisfont pas toutes les

contraintes. Nous nous proposons donc d’axer nos recherches sur la conception d’un système

d’édition collaborative. Ce système doit admettre la simultanéité des interactions, l’autono-

mie et la collaboration à grande échelle. également, le système doit offrir minimalement une

édition cohérente et sécurisée.

Ainsi, dans le présent chapitre, nous commençons par une brève explication de quelques

concepts de base que nous estimons nécessaires à la compréhension de cette thèse. Ensuite,

nous exposons le cadre théorique en abordant successivement les éléments de la probléma-

tique, les objectifs de recherche et la méthodologie adoptée. Par la suite, nous présentons nos

principales contributions ainsi que leur originalité. Enfin, nous terminons le chapitre avec un

plan de notre thèse.

1.1 Définitions et concepts de base

Dans cette section, nous introduisons quelques concepts liés à une édition collaborative

répartie sécurisée et aux preuves formelles. Ces concepts déterminent le socle et sont utilisés

tout au long de la thèse. à cet effet, nous commençons par clarifier la notion de synchronisme.

Par la suite, nous abordons les concepts de réplication, de système réparti, de causalité et

de convergence. Nous définissons aussi la sécurité d’accès dans un système d’édition colla-

borative. Enfin, nous examinons la vérification sur modèle et l’approche de la synthèse de

contrôleur.
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1.1.1 Édition collaborative

Édition asynchrone et synchrone

Le modèle d’interaction dans une édition collaborative peut être asynchrone ou synchrone.

Il fait référence à la simultanéité des interactions entre les utilisateurs du système. Si les

utilisateurs peuvent collaborer en éditant au même moment des objets partagés ; il s’agit

dans ce cas d’une collaboration synchrone. Si par conte, les objets doivent être édités à

des moments différents, la collaboration est dite asynchrone. Dans ce cas, il n’existe aucun

mécanisme qui oblige les utilisateurs à éditer les objets au même moment. Cependant, il faut

noter que certains systèmes de collaboration asynchrone tolèrent la collaboration synchrone.

Ainsi, bien que les moments d’édition puissent être différents, le fait qu’ils cöıncident n’est

pas exclu.

Notion de réplication

Les éditeurs collaboratifs constituent une classe de systèmes distribués dans laquelle les

utilisateurs sont géographiquement répartis et interagissent en manipulant des objets partagés

tels que textes, images, graphiques, etc. [Imine (2010)]. Un réseau informatique est potentiel-

lement exploité lors des manipulations. Dans un système d’édition centralisée, l’objet édité

est hébergé sur un serveur central. Une telle édition nécessite une connexion permanente au

serveur central. La vulnérabilité aux pannes de l’architecture centralisée peut avoir un impact

sur la collaboration. Par exemple, une panne du serveur central ou un problème d’accès à

celui-ci rend indisponible l’objet pour son édition.

Pour améliorer la disponibilité des données dans le système, chaque site peut détenir une

copie de l’objet partagé. Il s’agit d’une réplication de l’objet partagé. Les copies locales de

l’objet partagé sont aussi appelées « répliques ». Cette réplication est surtout mise en œuvre

au début d’une collaboration ou dès qu’un nouvel utilisateur rejoint un groupe existant. Le

but est de permettre au groupe d’utilisateurs ou de sites répartis dans l’espace géographique,

de manipuler parallèlement des répliques. La manipulation d’une réplique se réfère précisé-

ment à sa lecture ou aux opérations d’écriture, de suppression ou de modification effectuées

par le site concerné. Chaque réplique doit refléter les opérations générées sur tous les sites

composant le système. En d’autres termes, une mise à jour réalisée localement par l’une des

répliques du fait de la génération d’une opération par l’utilisateur doit être reproduite chez les

autres utilisateurs. Pour ce faire, la mise à jour est propagée aux autres sites. Le mécanisme

de distribution d’opérations localement générées aux sites distants est appelé « réplication

d’opérations ». Dans la pratique, il existe deux scénarii de réplication d’opérations : pessimiste

et optimiste.
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La réplication pessimiste suppose bien sûr l’utilisation de plusieurs copies mais donne

l’illusion aux utilisateurs de l’existence d’une copie unique [Bernstein et al. (1987)]. Les lec-

tures sont faites sur les copies de manière indépendante tandis qu’une opération d’écriture

doit être exécutée sur toutes les copies de manière atomique [Imine (2006)]. L’écriture est faite

sur toutes les copies simultanément, sans être interrompue jusqu’à son terme. Ceci nécessite

la mise en œuvre des techniques de synchronisation par un site central et une connexion

permanente à ce site central.

Dans le cas de la réplication optimiste, chaque site a sa copie mais dispose d’une autonomie

[Saito et Shapiro (2005)]. En vertu de cette autonomie, il peut la manipuler (lecture, écriture)

à volonté indépendamment des autres sites. Les opérations générées et exécutées sur un site

doivent également être envoyées aux autres sites pour être exécutées. Cet état des choses

induit l’indépendance des mises à jour car les opérations ne peuvent être ni exécutées dans

le même ordre, ni sur les mêmes copies [Imine (2010)].

Système réparti, exécution répartie, causalité et concurrence

Un système réparti s’appelle aussi système distribué. Il constitue un ensemble de proces-

sus (ou machines, ordinateurs, tablettes, sites) autonomes et distants qui œuvrent dans un

but commun, en s’échangeant des données à travers un réseau informatique. L’autonomie des

processus dans un système réparti vient du fait qu’ils ne partagent ni mémoire ni horloge

commune. Il est important ici de faire le lien entre un système réparti et un système parallèle.

Un système parallèle encore appelé machine parallèle est composé de machines qui permettent

le traitement de plusieurs opérations ou tâches en parallèle. Il met en œuvre principalement

deux modes de communication : le passage de messages et la mémoire partagée. Un sys-

tème réparti est donc un système parallèle à la différence que les machines qui le composent

sont autonomes, les distances entre elles sont plus importantes et elles nécessitent l’utili-

sation d’un réseau informatique pour les échanges. Dans un système réparti, les processus

sont caractérisés par une exécution en concurrence et une interaction par passage de mes-

sages. D’après Lamport [Lamport (1978)], (i) l’envoi d’un message m produit un événement

d’émission send(m) ; (ii) la réception d’un message m produit un événement de réception

receive(m) ; et enfin, (iii) un événement interne est produit par l’exécution d’instructions

n’induisant ni envoi ni réception de message. Faisons une analogie avec un système réparti

d’édition collaborative. Il utilise un modèle de communication par messages. Chaque site qui

participe à la collaboration est considéré comme un processus. La génération d’une opération

et l’exécution locale d’une opération générée ou reçue sont des événements internes. L’envoi

et la réception d’une opération d’édition sont considérés comme événements d’émission et de

réception, respectivement.
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L’histoire locale d’un processus est définie comme la séquence de tous les événements

qu’il a produits. L’union de toutes les histoires locales, munie d’une relation d’ordre (voir

Annexe A.) particulière sur les événements constitue une exécution répartie. Dans un mo-

dèle à communication par messages, une exécution répartie se caractérise par la production

d’événements par les divers processus. La relation d’ordre implicite sur les événements d’une

exécution répartie est la préséance causale. Elle permet de définir une relation de type «

e1 est arrivé avant e2 » sans avoir recours à la synchronisation d’horloges, e1 et e2 étant

deux événements. Elle est notée e1 → e2 et se lit « e1 précède e2 ». Formellement, la pré-

séance causale se définit par trois relations : Program order (Expression 1.1), Receive-from

(Expression 1.2) et transitivité (Expression 1.3).

– La relation Program order indique que deux événements ei1 et ei2 produits par un même

processus Pi sont totalement ordonnés. Ainsi donc, soit « ei1 précède ei2 », soit « ei2

précède ei1 ». En considérant l’opérateur logique ⊕ qui permet d’exprimer l’alternative

(ou exclusif), nous avons :

∀ei1, ei2 ∈ Pi, (ei1 → ei2)⊕ (ei2 → ei1) (1.1)

– La relation Receive-from indique que l’envoi d’un message send(m) précède la réception

du message receive(m).

send(m) → receive(m) (1.2)

– La relation de transitivité exprime le fait que si l’événement e1 précède l’événement e2

et que l’événement e2 précède l’événement e3, alors e1 précède e3.

((e1 → e2) ∧ (e2 → e3)) ⇒ (e1 → e3) (1.3)

Quand la préséance causale ne peut être établie entre deux événements e1 et e2, c’est-à-dire

que l’un ne précède causalement l’autre et vice-versa, on dit qu’il y a indépendance causale

entre ces deux événements. Ils sont alors dits concurrents et notés e1 || e2. Formellement la

notion de concurrence entre ces deux événements se définit tel qu’indiqué dans l’expression

mathématique (1.4).

(e1 || e2) ⇔ (¬(e1 → e2) ∧ ¬(e2 → e1)) (1.4)
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État stable et notion de convergence

Lors d’une édition, au fil de l’écoulement du temps donc de l’évolution de l’horloge locale,

le système d’édition collaborative connâıt une succession d’événements de génération, d’envoi,

de réception et d’exécution d’opérations d’édition. La réalisation de ces événements a pour

effet de modifier localement non seulement l’histoire et le document partagé, mais aussi toutes

autres structures de données (queues, files d’attente, variables, etc.) que manipule le système.

Il est donc dans une dynamique de changement que nous qualifions de changement d’états.

Un changement d’état survient dès lors qu’un événement se produit. Le système d’édition

collaborative est dit dans un état stable, quand toutes les opérations générées sur les différents

sites sont exécutées sur tous les sites. Dans un tel état, il est possible d’évaluer la qualité des

différentes répliques qui existent sur les sites grâce à la notion de convergence. Ainsi, lorsque

le système est dans un état stable, les copies du document partagé convergent si et seulement

si elles sont identiques sur tous les sites. La notion de convergence suppose donc que l’état

du système dépend de l’ensemble des opérations exécutées et non de la séquence d’exécution

distincte sur chaque site [Ressel et al. (1996)].

1.1.2 Politique de sécurité et contrôle d’accès

Parmi les états d’un système, certains sont désirables tandis que d’autres sont potentielle-

ment non désirables. Les états désirables sont également appelés états autorisés. La définition

des états autorisés d’un système constitue ses objectifs de sécurité. La manière de satisfaire

les objectifs est la stratégie de sécurité. Les solutions techniques utilisées pour satisfaire ces

objectifs sont les mécanismes de sécurité. Une politique de sécurité se définit alors comme une

description simple des objectifs de sécurité d’un système, appuyée d’une stratégie de haut

niveau pour les satisfaire. Un modèle de politiques de sécurité est une définition abstraite de

la façon de définir une politique. Parmi les modèles de politiques de sécurité, nous avons le

contrôle d’accès. Il vise à permettre à une entité autorisée d’avoir accès à une certaine res-

source et interdire l’accès à une autre, conformément aux objectifs de sécurité. Il permet de

déterminer les droits et privilèges courants d’une entité. En général, ceux-ci sont déterminés

à partir de l’identité de l’entité et de la politique de sécurité. Pour une édition collaborative

répartie, il s’agit d’autoriser ou non des utilisateurs ou des sites à exécuter des opérations

d’édition sur un document partagé.

1.1.3 Vérification sur modèle et synthèse de contrôleur

La conception d’un système requiert des preuves de fiabilité. Pour cette raison, la valida-

tion du bon fonctionnement par des tests et techniques formelles sont nécessaires. Alors que
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les tests explorent juste des états jugées critiques du système, la vérification formelle couvre

tous ses états possibles. L’approche classique de vérification des systèmes est la vérification

par modèle (model-checking). Celle-ci considère un système complet, évoluant sans influence

extérieure et prenant en compte l’environnement à contrôler et son contrôleur. Pour vérifier

formellement le système, il faut le modéliser ainsi que les propriétés qu’il doit satisfaire. Par la

suite, il faut apporter la preuve que le système modélisé possède bien les propriétés attendues

en procédant à une vérification effective. Pour toute propriété non vérifiée par le système,

un contre-exemple est généré et sert à corriger le système. Ce processus est itératif. Il est

répété jusqu’à l’obtention d’un système répondant aux propriétés attendues. L’approche de

la synthèse de contrôleur introduite par Wonham et Ramadge (1988) évite les itérations. Elle

propose de modéliser le système à contrôler et de calculer ou de synthétiser un contrôleur

s’il en existe, de sorte que la propriété à vérifier (appelée objectif de contrôle) soit satisfaite.

On part donc d’un système ouvert qu’on essaie de fermer en lui ajoutant en parallèle un

contrôleur afin que le système complet satisfasse la propriété voulue. De façon pratique, le

comportement du système à contrôler est forcé de manière à ce qu’il satisfasse la propriété in-

diquée. Pour y parvenir, la démarche consiste à résoudre le « problème de contrôle » (Control

Problem, CP ) puis en cas de succès, résoudre le « problème de la synthèse de contrôleur »

(Controller Synthesis Problem, CSP ). Le problème de contrôle pour un système ouvert S se

définit formellement comme suit : étant donné un système S, et une propriété ϕ, existe-t-il

un contrôleur C tel que, le système fermé obtenu en mettant en parallèle S et C satisfait la

propriété ϕ ? Elle peut être formellement réécrite comme ci-après.

CP : S ||C |= ϕ? (1.5)

Le problème de synthèse de contrôleur, est posé après le CP. Il se formule comme suit : Si la

réponse au problème de contrôle est oui, peut-on construire un tel contrôleur C ? Elle peut

être réécrite comme ci-après.

CSP : CP, peut− on construire C tel que S ||C |= ϕ? (1.6)

Pour répondre au CP, il est nécessaire de restreindre la classe des modèles dans laquelle le

contrôleur est recherché. Cette restriction est faite en choisissant un formalisme tel que auto-

mates finis, automates temporisés, réseaux de pétri. L’approche de la synthèse de contrôleur

a pour but de restreindre le comportement du système à un comportement admis par le

contrôleur, afin d’assurer les objectifs de contrôle. Cette restriction se réalise par le biais du

contrôleur. Celui-ci observe le système et lui interdit certaines évolutions. Il force ainsi le sys-

tème à rester dans l’ensemble des comportements prescrits pour atteindre un objectif donné.
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Généralement, le défi consiste à construire un contrôleur à moindre coût et assez permissif.

Après avoir défini ces quelques concepts de base, nous nous intéressons aux problèmes

relatifs à une édition collaborative sécurisée dans la quelle la convergence des répliques doit

être assurée.

1.2 Éléments de la problématique

Les systèmes d’édition collaborative répartis se caractérisent par des échanges d’opéra-

tions entre sites, une forte concurrence et une coordination décentralisée. Dans ce contexte,

ils doivent garantir la réactivité locale, le passage à l’échelle et la cohérence [Imine (2008)].

Les échanges d’opérations entre sites constituent une caractéristique fondamentale pour une

collaboration en temps réel [Ahmed et Shirmohammadi (2006)]. Cependant l’exécution des

opérations dans un ordre différent, sur des copies différentes a pour conséquence une diver-

gence de ces copies [Tlili et al. (2008),Tlili et al. (2010)].

La contrainte de convergence est plus forte selon le contexte applicatif considéré. Par

exemple, un système collaboratif d’édition d’images dont les opérations sont réduites à celles

qui modifient les valeurs des pixels, présente une exigence de convergence moindre qu’un

système collaboratif d’édition textuelle. En effet, pour deux valeurs différentes d’un même

pixel, si ces deux valeurs sont relativement proches l’une de l’autre ou de celles des pixels du

voisinage, il est difficile pour l’oeil humain de faire la différence entre elles. Il y a une perception

de convergence qui résulte de l’imperfection de la vision. La contrainte de convergence n’est

pas si forte car il n’est point besoin d’avoir des valeurs égales de pixels, mais un taux, seuil ou

marge de convergence acceptable par l’oeil humain. Il n’en est pas ainsi pour un document

textuel. Le fait d’avoir un mot ou un caractère à la place d’un autre peut produire un

autre effet et soulever des problèmes de sémantique. Pour un objet textuel édité de manière

collaborative, la sémantique des phrases ou des mots ajoute donc une complexité.

L’approche de la transformée opérationnelle (OT) [Ellis et Gibbs (1989)] représente le

principal cadre proposé pour résoudre la divergence [Molli et al. (2003a),Tlili et al. (2010)].

Dans ce cadre, chaque opération exécutée localement est aussitôt diffusée aux autres sites

pour être exécutée [Saito et Shapiro (2005),Oster et al. (2006b)]. Les répliques sont alors tem-

porairement divergentes, jusqu’à l’exécution des opérations concernées. En pratique, chaque

site procède à la transformation des opérations reçues des autres sites par rapport aux opé-

rations locales avant de les exécuter [Li et Li (2004), Imine (2010)]. Les propriétés séman-

tiques des opérations sont exploitées pour réaliser ces transformations d’opérations [Molli

et al. (2003a), Sun et Ellis (1998),Li et Li (2008b)]. Les transformations ont pour finalité la

construction de l’histoire de chaque copie de l’objet partagé. Il ne s’agit pas d’obtenir des
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histoires identiques pour chaque site mais des histoires équivalentes (voir Annexe A) condui-

sant à un même état final. Pour prendre en compte une opération distante o, l’histoire locale

h est réorganisée en deux sous-histoires hh et hc, représentant respectivement la séquence

des opérations qui précèdent causalement o et les opérations concurrentes à o. En considé-

rant la sémantique de l’objet partagé, l’opération o est transformée par rapport à hc puis

exécutée [Imine (2006)]. Les traitements relatifs aux opérations sont réalisés par deux compo-

sants [Boucheneb et Imine (2009)]. Le premier, dénommé algorithme d’intégration, s’occupe

de la diffusion, la réception et l’exécution des opérations. Il a également pour rôle, de déter-

miner les opérations concurrentes déjà exécutées (hc), qui doivent être considérées lors d’une

transformation ; ainsi que l’ordre d’application des transformations. Le deuxième composant

fait la transformation d’une opération reçue par rapport à une opération concurrente déjà

exécutée. Il s’agit de l’algorithme de transformation inclusive (IT). Les opérations reçues

étant transformées vis-à-vis des opérations concurrentes déjà exécutées, avant d’être exécu-

tées à leur tour, il n’est plus nécessaire de respecter l’ordre dans lequel les opérations sont

exécutées sur leurs sites d’origine. Il suffit juste de détecter et gérer la concurrence des opé-

rations. Le défi pour l’algorithme d’intégration est donc celui de l’utilisation d’un mécanisme

approprié de détection de la concurrence, tandis que celui de l’algorithme de transformation

inclusive est une transformation cohérente. La cohérence suppose le respect du principe de

causalité et la convergence. Les ITs recensés dans la littérature modifient les paramètres des

opérations en guise de transformation mais aussi afin de les rendre exécutables dans un ordre

quelconque [Preguiça et al. (2009)].

Pour respecter le principe de la causalité, la plupart des algorithmes basés sur une ap-

proche OT utilisent les méthodes d’ordonnancement classiques : estampille, vecteur d’horloge

et vecteur d’état. Les algorithmes qui utilisent les vecteurs d’horloge, ou leurs variantes pour

résoudre la concurrence, associent à chaque site un vecteur d’horloge dont la taille varie en

fonction du nombre de sites. L’utilisation du vecteur d’horloge impose la connaissance préa-

lable du nombre de sites, qui ne peut ni être réduit, ni crôıtre indéfiniment dans le temps.

Dans un contexte de passage à l’échelle, le nombre de sites connectés change continuellement

au rythme des connexions et déconnexions. Il est difficile de maintenir un vecteur d’horloge

dans ces conditions. De plus, à grande échelle, la difficulté de la représentation de l’horloge

peut constituer un handicap. En somme, les algorithmes basés sur l’approche de la transfor-

mée opérationnelle utilisant les vecteurs d’horloge souffrent de faiblesses liées à l’autonomie

des sites, la topologie variable et la grande échelle [Tlili et al. (2008), Bakhshi et Gurov

(2007),Tlili et al. (2010),Akbarinia et al. (2007)].

Dans l’approche OT, l’édition collaborative est convergente si l’algorithme de transfor-

mation inclusive utilisé satisfait deux propriétés TP1 et TP2 [Ressel et al. (1996)]. On parle
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de respect du critère de convergence. La propriété TP1 stipule que pour deux opérations

concurrentes o1 et o2 définies sur le même état, l’histoire obtenue en considérant o1, suivi de

la transformation de o2 par rapport à o1 est équivalente à l’histoire obtenue en considérant

o2, suivi de la transformation de o1 par rapport à o2. En d’autres termes, l’exécution de o1

suivie de celle de o2 conduit au même état que l’exécution de o2 suivi de l’exécution de o1.

La propriété TP2 quant à elle indique que la transformation par rapport à une séquence

d’opérations concurrentes déjà transformées du résultat de la transformation d’une opération

par rapport à toute opération concurrente considérée dans ladite séquence ne dépend pas de

l’ordre dans lequel ces opérations concurrentes ont été transformées dans la séquence.

TP1 : [o1; IT (o2, o1)] ≡ [o2; IT (o1, o2)] (1.7)

TP2 : IT ∗(o3, [o1; IT (o2, o1)]) = IT ∗(o3, [o2; IT (o1, o2)]), (1.8)

avec IT ∗ l’extension de IT telle que définie à l’annexe A.

L’analyse des deux propriétés montre que la propriété TP1 définit une identité d’état alors

que la propriété TP2 définit une identité d’opérations. L’identité d’état peut être satisfaite

conceptuellement. Il s’agit d’ailleurs la seule propriété à vérifier dans une édition centralisée

car elle permet de préserver les intentions des utilisateurs.

Cependant, sur le plan conceptuel, il n’est pas évident de trouver un algorithme de

transformation satisfaisant l’identité d’opérations [Imine (2006)], encore moins dans un

contexte asynchrone. D’ailleurs, les algorithmes traditionnels de réplication optimiste [Molli

et al. (2003a), Sun et al. (1998), Ressel et al. (1996), Suleiman et al. (1997), Ellis et Gibbs

(1989),Imine et al. (2003),Suleiman et al. (1998),Sun et Ellis (1998),Vidot et al. (2000)] sont

pour la plupart des algorithmes synchrones. Leur utilisation dans un contexte asynchrone

leur impose la satisfaction de la propriété TP2. La littérature a révélé qu’aucun de ces algo-

rithmes n’a pu satisfaire la propriété TP2 avec les objets ayant une structure linéaire [Imine

(2006),Boucheneb et Imine (2009)].

Par ailleurs, la sécurité des données partagées est d’une importance capitale dans un

système collaboratif. Cette dernière peut être intégrée dans le processus de conception de

système collaboratif temps-réel ou être étudiée séparément. Dans tous les cas, les exigences

de sécurité doivent s’aligner sur les enjeux du système d’édition considéré. à cet effet, le défi

de sécurisation d’une édition collaborative est de concilier les deux objectifs de convergence

et de sécurité. Ceci requiert inéluctablement un équilibre entre les contraintes de collabora-

tion et le contrôle d’accès. L’édition collaborative vise à rendre disponibles les documents

partagés à tous les membres participants alors que le contrôle d’accès vise à restreindre cette

disponibilité à certains membres. La gestion de ces deux objectifs contradictoires fait face à
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des exigences structurelles et opérationnelles non négligeables. La topologie de la collabora-

tion étant variable car les membres peuvent joindre ou quitter le groupe collaboratif à leur

guise, il faut permettre une gestion dynamique des changements de droits d’accès, d’où une

généricité et une flexibilité du modèle de contrôle d’accès.

Cependant, le contrôle d’accès avec des changements dynamiques des droits d’accès ne doit

pas nuire à la réactivité locale, au temps de réponse et à la gestion des répliques. Cet impact

signifierait une dégradation des performances du système. De plus, la création paradoxale de

trous de sécurité est un risque patent selon le modèle de contrôle d’accès retenu. Il pourrait

s’agir de la non application uniforme de la politique de contrôle d’accès sur tous les sites ;

avec en prime, l’autorisation de certaines opérations qui ne devraient pas l’être. Ou encore,

du refus de certaines opérations qui devraient être autorisées sur certains sites. Une telle

situation serait également source de divergence des répliques de documents partagés.

à l’origine, la politique de sécurité doit donc être formulée de sorte que les stratégies à

mettre en place soient facilement applicables et les mécanismes faciles d’utilisation. Mais

au delà de la généricité, la flexibilité, l’aspect dynamique, le maintien des indicateurs de

performance à des seuils acceptables, la conception d’un modèle de contrôle d’accès qui

tient compte des spécificités d’une édition collaborative répartie doit offrir une spécification

de haut niveau des droits d’accès [Tolone et al. (2005)]. En plus, le modèle de contrôle

d’accès doit également être strictement examiné en vue de fournir la preuve de sa fiabilité.

Fournir une preuve de fiabilité pour un modèle de sécurité est une tâche difficile [Imine et al.

(2009), Jayaraman et al. (2013)]. Le contexte complexe de l’édition collaborative répartie en

fait tout un défi dont témoigne le nombre de cas à observer. Un système d’édition collaborative

massivement réparti a un espace d’états potentiellement infini. Il serait pratique de trouver

un système qui lui est équivalent en termes de fiabilité, mais dont l’espace d’états est fini. La

preuve de fiabilité sera alors apportée en considérant le modèle fini.

De tout ce qui précède, nous convenons que dans un contexte d’édition collaborative

répartie qui considère un document à structure linéaire, la poursuite des objectifs de conver-

gence forte dans une approche OT et de contrôle d’accès est un défi multidimensionnel. Aux

préoccupations de détection et de gestion de la concurrence s’ajoutent celles d’un algorithme

de transformation inclusive qui doit garantir la cohérence, de l’atteinte d’un équilibre entre

la disponibilité du document partagé et la gestion des droits d’accès, sans compromettre la

cohérence de l’édition. La preuve de la fiabilité du contrôle d’accès doit couvrir aussi bien

l’application uniforme de la politique que la préservation de cette cohérence. Cette thèse est

une tentative de résolution de certaines dimensions de ce défi.
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1.3 Objectifs de recherche

L’objectif général de cette thèse est de proposer des mécanismes de réplication sécurisés

pour les systèmes d’édition collaborative massivement répartis. Ils sont basés sur une ap-

proche OT. Le but est, d’une part, d’améliorer l’« expérience utilisateur » dans le cadre du

travail collaboratif et, d’autre part, de faciliter le développement de nouveaux environnements

collaboratifs et de nouvelles applications intéressantes qui prennent en compte l’autonomie,

le facteur d’échelle et l’instabilité topologique. Plus précisément, il s’agit :

1. D’investiguer l’existence de mécanismes de réplication optimiste convergents ;

2. De concevoir un algorithme de transformation inclusive (IT) devant garantir la conver-

gence dans un contexte réparti de réplication optimiste ;

3. De prouver formellement que l’algorithme de transformation inclusive proposé conduit

bien à une édition convergente ;

4. D’intégrer un modèle de contrôle d’accès adapté aux spécificités du contexte d’édition

collaborative considéré ;

5. De prouver formellement que le modèle de contrôle d’accès préserve la cohérence d’un

système d’édition collaborative réparti à grande échelle, si ce dernier garantit initiale-

ment la cohérence.

Nous nous intéressons en particulier aux systèmes d’édition collaborative répartis qui

manipulent un objet textuel à structure linéaire.

1.4 Esquisse méthodologique

Pour atteindre les objectifs de recherche, nous utilisons dans un premier temps l’approche

du problème de contrôle pour investiguer formellement l’existence de mécanismes de réplica-

tion optimiste convergents. à cet effet, le mécanisme de réplication basé sur la transformée

opérationnelle est assimilé à un contrôleur. Nous nous basons sur la théorie des jeux et les

automates de jeux pour concevoir des modèles décrivant les comportements attendus d’un

système d’édition collaborative. Ensuite la propriété de convergence est spécifiée en tant

qu’objectif de contrôle. Nous procédons à la vérification effective, en prenant en compte les

questions de sûreté et d’accessibilité.

Une fois le problème du contrôleur résolu, nous essayons de résoudre celui de la synthèse de

contrôleur. Nous cherchons donc à synthétiser des stratégies gagnantes. Il s’agit ensuite d’ex-

ploiter ces stratégies pour formuler les spécifications auxquelles doit répondre le contrôleur

recherché afin que l’objectif de convergence soit atteint. Partant des spécifications, un algo-
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rithme de transformation inclusive est conçu. Nous nous assurons ensuite que le contrôleur

ainsi obtenu (IT) réponde aux besoins en faisant une vérification formelle.

En considérant un protocole de synchronisation qui assure initialement la convergence,

nous lui intégrons sous la forme d’une couche supérieure, un protocole de contrôle d’accès.

Dans un premier temps, ce protocole est spécifié grâce à un formalisme de description de

comportements. Sa préservation de la convergence est vérifiée de façon bornée en exploitant

un formalisme de description des requis. Par la suite, nous investiguons un modèle abstrait

d’espace d’états fini qui nous permet de prouver la préservation de la propriété de convergence

quelle que soit la taille du système.

1.5 Principales contributions de la thèse et leur originalité

Les principales contributions de cette thèse portent sur deux volets : (i) la proposition

d’une approche de transformées opérationnelles qui assure la cohérence dans les éditeurs

collaboratifs répartis et (ii) l’intégration d’un protocole de contrôle d’accès qui préserve la

cohérence d’un système d’édition collaborative répartie. Ces deux principales contributions

facilitent la résolution de deux problématiques que sont : la convergence et la sécurité dans

les systèmes d’édition collaborative répartis. Elles favorisent ainsi l’amélioration du travail

collaboratif, en général, et de l’édition collaborative à grande échelle, en particulier. Les

contributions peuvent être détaillées de la manière suivante :

1. La preuve par model-checking que les approches OT basées sur les signatures

classiques des opérations d’édition ne peuvent pas assurer la convergence.

Plusieurs travaux [Boucheneb et al. (2010), Boucheneb et Imine (2009), Imine et al.

(2006), Imine (2006)] ont démontré que les approches OT proposées dans la littérature

n’assurent pas la convergence dans les éditeurs collaboratifs répartis. Partant de ce

constat, nous nous sommes posés la question de savoir s’il est possible de concevoir

des systèmes d’édition collaborative répartis, basés sur la réplication optimiste et qui

assurent la convergence des documents édités. En considérant l’édition d’un document

textuel à structure linéaire pour laquelle les seuls types d’opérations autorisés sont l’in-

sertion et la suppression de caractères, nous avons alors apporté la preuve formelle

qu’aucune approche OT basée sur les signatures classiques de ces deux types d’opé-

rations ne peut assurer la convergence. Ce résultat très important car toute piste de

recherche basée uniquement sur les signatures classiques est désormais prouvée vouée

à l’échec. Outre l’impact de cette contribution, son originalité vient également de l’ap-

proche utilisée. En effet, le questionnement sur l’existence de solution au verrou de la

convergence a été transformé en un problème de contrôle dont le but est de rechercher
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l’existence ou non d’un contrôleur qui pourrait gouverner un système spécifique. Nous

n’avons trouvé dans la littérature, aucun travail appliquant le problème de contrôle aux

éditeurs collaboratifs répartis.

2. La conception d’une approche OT en utilisant la technique de synthèse de

contrôleur. Nous avons proposé une fonction de transformation des répliques d’opé-

rations. La fonction admet un paramètre supplémentaire pour l’insertion, en plus des

paramètres classiques que sont le caractère à insérer et la position dans laquelle il sera

inséré. Le nouveau paramètre permet de spécifier le nombre de caractères supprimés

avant la position d’insertion indiquée dans la signature. Cette contribution est appuyée

par la proposition d’un mécanisme de détermination automatique de la valeur du nou-

veau paramètre. L’originalité de cette contribution réside également dans l’approche de

résolution utilisée pour aborder l’étude de la convergence. Il s’agit de l’approche de la

synthèse de contrôleur. En effet, à la suite de la résolution du problème de contrôle,

qui a révélé l’inexistence de fonction de transformation pour les signatures classiques de

l’insertion et de la suppression, la synthèse de contrôleur a été utilisée pour identifier les

causes de la divergence, d’une part, et proposer la fonction de transformation, d’autre

part. L’identification des causes de la divergence a permis d’avoir les balises nécessaires

à la formulation des spécifications qui ont conduit à la conception d’un mécanisme qui

assure la convergence. De surcrôıt, à notre connaissance, une telle approche n’a pas été

exploitée jusqu’alors dans le cadre des éditeurs collaboratifs, sauf dans notre cas.

3. Preuve par model-checking que l’approche proposée assure la convergence.

Pour consolider l’approche OT proposée pour la convergence des répliques, nous avons

formellement prouvé son exactitude. La vérification symbolique sur modèle basée sur

la technique des matrices de bornes (DBM, Difference Bound Matrices) a été utilisée,

en combinaison avec un modèle d’automate. L’utilisation des matrices de bornes pour

exprimer les contraintes sur les positions des caractères et traduire les transformations

des répliques d’opérations est très originale dans la démarche de preuve. Elle permet de

manipuler symboliquement les paramètres, à domaines infinis, des opérations d’édition.

4. Intégration d’une politique de contrôle d’accès aux systèmes d’édition colla-

borative et preuve par model-checking de la préservation de la convergence.

Dans le but de sécuriser une édition collaborative répartie, un protocole de contrôle

d’accès a été proposé [Imine et al. (2009)]. Nous avons dans un premier temps élaboré

une première spécification du protocole. Elle se base sur la logique de premier ordre

et la théorie des ensembles. Nous avons utilisé une analyse bornée pour prouver que

jusqu’à concurrence d’un certain seuil, le protocole préserve la cohérence du protocole

de synchronisation au dessus duquel il est déployé. Traitant d’un système à espace
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d’états infini, du fait du nombre arbitraire d’utilisateurs, d’opérations coopératives par

utilisateur et d’opérations administratives, l’outil d’analyse n’a pas permis de couvrir

tout l’espace d’états. Pour y remédier nous avons proposé un modèle abstrait à espace

d’états fini et prouvé que ce dernier préserve, sur tout l’espace d’états, la cohérence

du protocole de synchronisation. Nous en avons déduit que le modèle abstrait est équi-

valent au système à espace d’états infini. Ce résultat est très important car il permet

de manipuler un modèle fini dans lequel un nombre réduit d’utilisateurs sera utilisé.

Ainsi n’importe quel outil pourrait être utilisé pour vérifier le protocole. De plus la dé-

marche utilisée pour obtenir le modèle abstrait à espace d’états fini peut servir de cadre

d’analyse à d’autres problèmes partageant des problématiques similaires de réduction.

1.6 Plan de la thèse

Le reste de cette thèse est organisé comme suit. Le chapitre 2 expose une revue de

littérature sur les approches de gestion de la cohérence dans les éditeurs collaboratifs et les

protocoles de contrôle d’accès proposés pour les éditeurs collaboratifs.

Les trois chapitres suivants sont des articles qui traitent aussi bien de la cohérence d’une

édition collaborative répartie, que de la préservation de cette propriété de cohérence par un

protocole de contrôle d’accès.

Le premier article, dont le titre est On Synthesizing a Consistent Operational Transfor-

mation Approach, étudie dans un premier temps la possibilité d’avoir une édition cohérente à

partir des signatures classiques des opérations de suppression et d’insertion. Par la suite, en se

basant sur l’approche de la synthèse de contrôleur, il propose une fonction de transformation

des opérations d’édition avec une nouvelle signature pour l’opération d’insertion, puis prouve

formellement que son utilisation assure une édition concurrente cohérente. Cet article a été

accepté pour publication dans la revue IEEE Transactions on Computer et fait l’objet du

chapitre 3.

Le chapitre 4 intitulé Specification and Verification using Alloy of Optimistic Access

Control for Distributed Collaborative Editor est un article publié dans Formal Methods for

Industrial Critical Systems, Lecture Notes in Compture Science (LNCS). Il propose une spé-

cification d’un protocole flexible de contrôle d’accès pour les éditeurs collaboratifs. L’analyse

de cette spécification a été faite dans le but de s’assurer que le protocole préserve la cohérence

de tout protocole de synchronisation au-dessus duquel il serait déployé, si ce dernier garantit

indépendamment la cohérence. La vérification faite lors de l’analyse est bornée.

Le système collaboratif étant à espace d’états infini, la vérification doit se baser sur un

modèle fini qui est équivalent au système collaboratif, par rapport à la propriété de cohérence.
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Cette préoccupation a été abordée par le chapitre 5 dans l’article intitulé On Consistency

Preservation with Optimistic Access Control for Distributed Collaborative Editors. Ce dernier

est soumis à la revue ACM Transactions on Information and System Security. Il propose un

modèle abstrait à espace d’états fini qui est utilisé pour analyser la préservation de la propriété

de cohérence par le protocole de contrôle d’accès.

Dans le chapitre 6, nous présentons une discussion générale sur les aspects méthodolo-

giques et les résultats obtenus lors des travaux présentés dans cette thèse. Pour finir, une

conclusion est proposée au chapitre 7. Elle présente une synthèse des travaux qui ont été ef-

fectués. En outre, la conclusion expose les limitations des travaux et une esquisse des travaux

de recherche futurs.
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CHAPITRE 2

REVUE DE LITTÉRATURE

Dans ce chapitre, nous passons en revue les travaux majeurs qui ont été réalisés dans le

cadre d’une édition collaborative. Plus précisément, la gestion de la cohérence et le contrôle

de l’accès seront couverts.

2.1 Analyse sommaire du problème

Un système d’édition collaborative se rapporte à un groupe d’utilisateurs. Outre les états

correspondant à la création ou à la suppression d’un tel groupe, le système évolue de manière

dynamique. Cette dynamique se traduit aussi bien en taille (nombre d’utilisateurs), qu’en

volume (nombre d’opérations d’édition exécutées). En effet, une fois que le groupe collabo-

ratif existe, les opérations qu’un utilisateur peut exécuter par rapport à ce groupe sont les

suivantes : (i) joindre le groupe ; (ii) partciper à l’animation du groupe, (iii) quitter le groupe.

Dès lors que l’utilisateur joint le groupe, il récupère une copie du document (celle d’un uti-

lisateur avec son état). Cette action finalise son processus d’admission. Une telle copie du

document partagé est une réplication tel qu’expliqué dans la section 1.1.1. La disposition

de cette copie marque également le début de la collaboration. En effet, l’utilisateur peut

désormais participer à l’animation du groupe en générant des opérations d’édition, en les

exécutant localement et en les répliquant au profit des autres participants. En outre, il parti-

cipe à l’animation du groupe en exploitant les opérations reçues des autres participants. Les

répliques d’opérations coopératives s’appliquent donc sur des répliques d’objets partagés, ce

qui maintient et développe le système. Il évolue au rythme de la génération et de l’exécution

des opérations.

Au-delà de la performance et de la disponibilité des répliques d’objets partagés, l’un des

principaux objectifs poursuivis pour un système d’édition collaboratif, est celui de la cohé-

rence des répliques, quand le système est dans un état stable. Il serait aisé d’observer cette

propriété du système, s’il était possible d’établir un ordre total (voir Annexe A) sur l’en-

semble des opérations générées dans le système. Malheureusement, dans un environnement

réparti, l’ordre total sur les événements est difficilement concevable. En effet, les nœuds qui

composent un système réparti ne partagent ni mémoire, ni horloge commune (caractéristiques

fondamentales de ces systèmes). Il est possible d’avoir lors d’une collaboration, des opérations

concurrentes (voir Section 1.1.1) et des conflits, ce qui augmente le niveau de complexité pour
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avoir un système cohérent. De surcrôıt, il existe une incertitude liée au délai de transit des

messages dans un système réparti. Les défis de la réplication dans un système distribué sont

non seulement la propagation efficace des répliques d’opérations (n’est pas étudiée dans cette

thèse) mais aussi l’ordonnancement des opérations, la détection et la résolution des conflits et

l’élimination de la divergence des répliques [Saito et Shapiro (2005)]. Dans les systèmes dis-

tribués, il est possible de synchroniser les horloges et les processus des différents nœuds avec

une précision adaptée au contexte d’application (synchronisation temporelle et événemen-

tielle) afin de définir un ordonnancement. Une telle approche n’est pas adaptée aux systèmes

d’édition collaborative. En effet, de tels systèmes doivent être réactifs — l’utilisateur doit

avoir l’impression qu’il est seul à travailler — tout en brassant un nombre élevé d’opérations

coopératives. En somme, le “pseudo-ordonnancement” (l’ordre total est difficile à obtenir) qui

pourrait être défini sur les opérations coopératives n’élimine pas les conflits qui pourraient

survenir du fait de la concurrence des opérations. Il parâıt donc utile d’étudier les différentes

solutions proposées dans la littérature pour affronter le défi de la cohérence engendré par les

opérations concurrentes.

Une fois que la frontière des approches de gestion des cohérences est bien délimitée, il s’en

suit la nécessité de jeter un regard sur les tentatives de sécurisation des systèmes d’édition

collaborative. En effet, l’approche de gestion des aspects de sécurité a, sans aucun doute, une

incidence sur la collaboration. Les mécanismes qui gèrent la collaboration sur chaque site sont

sensés brasser les mêmes opérations. Or, une mesure de sécurité non adaptée pourrait causer

l’acceptation de certaines opérations par certains sites alors que d’autres sites se verraient

refuser les mêmes opérations. En conséquence, des opérations valides seraient refusées par

certains sites et réciproquement, des opérations non valides pourraient être exécutées sur

d’autres sites. Une telle situation conduirait inéluctablement à une divergence de copie, d’où

une incohérence. Nous examinons les solutions proposées dans la littérature au sujet de la

gestion de la sécurité dans un système comme celui en étude.

2.2 Approches de gestion de la cohérence dans les éditeurs collaboratifs

Dans la littérature, la nature des objets répliqués considérés dans les différents travaux

sont : système de fichiers, fichiers textes avec ou sans image, fichiers XML, etc. En fonction

de la nature des objets, plusieurs niveaux de granularité sont ciblés : caractère, ligne, châıne

de caractères, atomes, etc. Plusieurs techniques ont alors été élaborées comme support à la

gestion de la cohérence. Ces techniques sont pour la plupart des techniques de contrôle de

concurrence dont le but principal est d’éviter la divergence ; la convergence étant considérée

comme une cohérence partielle. Elles peuvent être réparties en deux groupes : les techniques
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pessimistes et les techniques optimistes [Imine (2006)]. Les techniques pessimistes évitent

l’apparition de la divergence en utilisant des verrous. Par contre les techniques optimistes

permettent l’apparition de la divergence et ensuite la résolvent à l’aide de procédures. La

technique de synchronisation est un exemple de technique optimiste. Elle se définit comme

un processus qui prend en entrée deux répliques divergentes et les modifie afin qu’elles soient

identiques en sortie [Molli et al. (2003a)]. Le but est donc de faire converger grâce au syn-

chroniseur (ou outil de fusion selon le contexte) deux copies initialement divergentes. Les

approches proposées afin de garantir la cohérence sont essentiellement : « multi-versions »

(MV) [Bernstein et Goodman (1983)], « sérialisation / résolution de conflits » (SRC) [Ellis

et Gibbs (1989)], transformée opérationnelle (OT) [Ellis et Gibbs (1989)] et celle des types

de données commutatives répliquées (Commutative Replicated Data Type, CRDT) [Preguiça

et al. (2009)].

2.2.1 Approche multi-versions

Cette approche [Bernstein et Goodman (1983)] se base sur le paradigme «Co-

pier–Modifier–Fusionner». Chaque utilisateur a sa copie locale de l’objet, la modifie à sa

guise et décide du moment de la fusion. Les opérations locales ne sont donc pas automati-

quement diffusées aux autres utilisateurs. La fusion a pour effet de rendre l’ancienne version

obsolète et de considérer la version courante fusionnée comme dernière version [Bernstein et

Goodman (1983)]. Il existe de ce fait, plusieurs versions d’un même objet. En effet, outre

la nouvelle version, les anciennes sont également sauvegardées. Chaque copie se fait à par-

tir de la dernière version disponible. Toutes ces versions sont stockées sur un site central.

L’architecture utilisée est de type client / serveur. C’est le site central qui détermine l’ordre

dans lequel deux événements (génération d’opérations) se sont produits. Pour assurer la co-

hérence, le site central gère des estampilles matérialisées par un vecteur d’horloge qui sert à

décompter les opérations. Ainsi, pour chaque opération générée en local (événement interne),

le site central génére une estampille. La fusion est faite opération par opération. Une fusion

n’est applicable pour une opération que si l’estampille correspondante est attribuée plus tôt

que celle de toute autre opération en instance de demande de fusion [Bernstein et Goodman

(1981)]. Dans le cas contraire, un conflit est détecté. Un conflit est également détecté si deux

opérations concernent le même élément (caractère, ligne, etc., selon la granularité), même si

l’une des opérations est déjà fusionnée. En l’absence de conflit, la fusion est effective. Une

nouvelle version est ainsi créée. à la suite de la fusion, la nouvelle version pourra être visible

par les utilisateurs. Cette approche est utilisée dans Concurrent Version System 1 (CVS),

1. http://www.cvshome.org/

http://www.cvshome.org/
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Subversion 2 (SVN) et les produits de la suite Rational ClearCase 3 qui permettent de gérer

le cycle de vie d’applications logicielles.

Dans CVS, toutes les copies stockées sur le site central sont gérées grâce à une structure

appelée «dépôt» (repository). Le dépôt contient l’historique des versions du document partagé

ainsi que des métadonnées. Elles sont par exemple, l’horodatage de l’opération et l’identifiant

de l’utilisateur. Chaque utilisateur a localement un espace de travail qui contient une copie du

dépôt située sur le site central. Lors de la fusion, si un conflit est détecté au niveau du système

de fichier, CVS a recours à l’utilisateur pour sa résolution [Molli et al. (2003b)]. Si par contre

le conflit concerne le contenu d’un fichier texte (l’élément définissant la granularité), la fusion

est faite automatiquement par le système. Toutefois, l’utilisateur peut corriger d’éventuelles

mauvaises décisions prises par le système lors de la synchronisation. Les anciennes versions

qui ont été sauvegardées peuvent être restaurées à cet effet. SVN est une amélioration de CVS.

L’un des apports concerne le volume d’informations échangées entre le client et le serveur.

En effet, les échanges sont différentiels. Seules les opérations engendrant des modifications

effectives sur les objets sont envoyées au serveur lors de la fusion. Cette pratique est contraire

à celle de CVS. Ce dernier prend systématiquement en compte toutes les opérations. SVN

apporte donc un gain en terme de bande passante. Cependant, le principe de gestion reste

le même. Les principes de SVN sont ǵalement ceux utilisés dans Rational Clear Case multi-

sites 4.

L’approche multi-versions présente une faiblesse liée au coût de stockage des diverses ver-

sions. à cela s’ajoute la décision de fusion qui est dépendante du bon vouloir de l’utilisateur. Il

serait intéressant qu’il soit débarrassé de cette tâche afin qu’une vue plus réaliste du document

partagé soit visible par chaque utilisateur assez rapidement. De plus, le modèle de contrôle de

concurrence centralisé utilisé, et son recours aux estampilles pour gérer la cohérence, rendent

cette approche incompatible avec un environnement où le nombre d’utilisateurs est massif.

Dans un tel environnement, il ne saurait exister un serveur central et une estampille à large

échelle serait difficile à gérer.

2.2.2 Approche sérialisation / Résolution de conflits

Dans l’approche SRC [Ellis et Gibbs (1989)], un site de référence est désigné au lancement

du système. Pour obtenir la cohérence, chaque site est tenu d’exécuter la même séquence

d’opérations, c’est-à-dire que les opérations doivent être dans le même ordre. L’approche

SRC vise donc à établir un ordre total sur les opérations avant de les exécuter. Le mécanisme

2. http://subversion.apache.org/
3. http://www-03.ibm.com/software/products/fr/category/SW860, accès : 15 mai 2014
4. http://www-03.ibm.com/software/products/fr/ccmulticoll, accès : 15 mai 2014

http://subversion.apache.org/
http://www-03.ibm.com/software/products/fr/category/SW860
http://www-03.ibm.com/software/products/fr/ccmulticoll
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de détermination de cet ordre total sur les opérations est appelé «sérialisation». L’ordre est

défini par le site désigné au début de la collaboration. Dès qu’il y a un nouvel ordre défini,

chaque site doit annuler toutes les exécutions précédemment faites (qui ne correspondent pas

à l’ordre établi). Les opérations doivent être réexécutées suivant le résultat de la nouvelle

sérialisation. Ce processus itératif est très coûteux car il faut continuellement faire et défaire

les exécutions selon le rythme de la génération de nouvelles opérations dans le système.

Aussi, le délai pour réaliser la sérialisation à chaque nouvelle opération constitue un coût

supplémentaire. En outre, le site désigné pour sérialiser les opérations fonctionne comme

un nœud central. Au vue de ces faiblesses, la définition d’un ordre total des opérations

sur un serveur avant l’exécution et l’obligation faite aux sites d’exécuter la même séquence

d’opérations n’est ni adaptée aux éditeurs collaboratifs ni à un contexte de grande échelle.

Toutefois, cette approche est associée à d’autres techniques pour résoudre la divergence. Tel

est le cas dans MOT2 [Cart et Ferrié (2007)] et SOCT2 [Suleiman et al. (1997)].

Dans SOCT2, Suleiman et al. sérialisent les opérations concurrentes en ayant pour cri-

tère le respect des intentions des utilisateurs. Dans un environnement réparti, ils proposent

l’adjonction de méthodes complémentaires pour le respect de la causalité entre deux opéra-

tions. En fait, les auteurs proposent une transformation de la deuxième opération afin de

tenir compte de l’effet produit par la première et ainsi satisfaire les intentions des utilisa-

teurs. Ce faisant un ordre partiel (voir Annexe A) est défini sur les opérations. C’est un ordre

local équivalent qui est construit dès lors qu’il y a des opérations concurrentes. Cet ordre

tient compte aussi bien des opérations natives que des transformations d’opérations natives.

L’histoire et la sémantique des opérations ont été utilisées à cette fin.

2.2.3 Approche des types de données commutatives répliquées

La classe émergente des algorithmes de réplication est celle des types de données commu-

tatives répliquées (CRDT) [Preguiça et al. (2009)]. Shapiro et Preguiça ont formalisé cette

approche en utilisant pour fondement la thèse selon laquelle, sous de simples et standards

hypothèses, les répliques convergent vers une valeur correcte, quels que soient leurs types

de données, si les opérations concurrentes sont commutatives [Shapiro et Preguiça (2007)].

Ainsi, il ne sera pas nécessaire de détecter la concurrence entre les opérations afin d’assurer

la cohérence [Weiss et al. (2010)]. De plus, les algorithmes conçus dans cette approche n’ont

point besoin de satisfaire la condition TP2 (expression 1.8, page 10). En pratique, ces al-

gorithmes s’appuient sur des opérations nativement commutatives (voir Annexe A), définies

sur des types de données abstraites, tels que des listes, des arbres ordonnés, etc. Les opéra-

tions, une fois générées sur un site, sont diffusées vers les autres sites pour être réexécutées

sans quelque mécanisme complexe de fusion ou d’intégration. Il n’y a pas d’ordre total sur
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les opérations, ce qui permet à des opérations présumées concurrentes d’être exécutées dans

n’importe quel ordre. De plus, les précurseurs de cette approche ont montré que de tels types

de données supportent les transactions à très faible coût. Dans [Shapiro et Preguiça (2007)],

en partant du principe selon lequel toutes les opérations concurrentes doivent commuter, il

a été prouvé que tout type de CRDT converge si les opérations se réfèrent à des identifiants

uniques différents. Le défi revient donc à concevoir les types de données et les mécanismes

appropriés pour garantir la commutativité des opérations. Les questions sous-jascentes sont

celles de l’identification unique des atomes et de la performance. Pour ce qui est de la gestion

de l’identifiant unique, le choix du domaine de valeurs de l’identifiant doit être fait de sorte

qu’il soit compact. Ainsi, entre deux identifiants donnés, il doit toujours être possible de gé-

nérer un nouvel identifiant. Pour ce qui est de la performance, si par exemple une structure

de données arborescente est utilisée, il faut veiller à mettre en place des mécanismes pour

équilibrer l’arbre à moindre coût. Ces mécanismes ne doivent pas compromettre la gestion de

l’identification unique des atomes. De plus, ils doivent être conçus pour faciliter les recherches

et les faire aussi à moindre coût.

Quelques approches et techniques ont été identifiées pour assurer la commutativité. En

termes d’approches, il s’agit de la coalescence des opérations et de la préséance. La coalescence

suppose que, pour deux opérations concurrentes, l’exécution de l’une préserve les effets de

l’autre et vice-versa. Selon Shapiro et Preguiça, bien que la coalescence soit la meilleure

approche, elle n’est pas toujours possible. La préséance (ordre implicite sur les opérations),

par contre, serait beaucoup plus facile à réaliser que la coalescence. En ce qui concerne les

techniques, le concept de mises à jour non destructives a été couplé avec une identification

invariante. De plus, si le consensus est nécessaire, il est réalisé en arrière-plan, mais juste

pour des opérations non essentielles. Il est interrompu si elles rentrent en conflit avec une

opération essentielle. Parmi les algorithmes de CRDT nous distinguons : WOOT [Oster et al.

(2006b)], Logoot [Weiss et al. (2009)], Logoot-Undo [Weiss et al. (2010)], TreeDoc [Preguiça

et al. (2009)]. Nous présentons ci-après chacun de ces algorithmes.

Algorithme WOOT

WOOT est une méthode de réplication asynchrone qui exploite un tampon de caractères

répliqués de type CRDT. Les objets répliqués sont considérés avoir une structure linéaire et

la définition des opérations est basée sur les caractères (éléments) et non leur position. à cet

effet, un identifiant est géré pour chaque caractère utilisé dans le système. La relation d’ordre

induite par une opération relative à un caractère est maintenue localement et lui est associée

lors de la diffusion. Les opérations sont supposées commutatives car les mises à jour sont non

destructives et l’identifiant d’un caractère ne change pas avec les modifications concurrentes.
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WOOT n’utilise pas un vecteur d’horloge et ne dépend pas du nombre de sites, permettant

ainsi son utilisation à grande échelle. Cependant, l’usage de la méthode dite des «pierres

tombales» (tombstones) pour enregistrer les caractères supprimés a pour conséquence une

consommation de ressource (espace mémoire). De surcrôıt, aucun mécanisme de vidange des

plus anciens caractères supprimés, qui ne va pas compromettre la cohérence, n’est défini. Il

est à noter également que WOOT ne supporte pas les opérations groupées comme le «copier-

coller».

Algorithmes Logoot et Logoot-Undo

Logoot [Weiss et al. (2009)] est un CRDT qui considère que les objets répliqués ont une

structure linéaire. L’élément de granularité considéré ici est la ligne, en plus d’un contenu. La

ligne est caractérisée par un identificateur unique de position. Les identificateurs de position

sont gérés grâce à une liste ordonnée dans l’ordre lexicographique. Logoot utilise un arbre

n-aire comme structure de données. N’utilisant pas de «pierres tombales», il n’a pas besoin

d’un outil de vidange. Il n’implémente pas le concept d’«annulation n’importe où n’importe

quand» et peut supporter la grande échelle. Logoot-Undo est une version améliorée de Logoot

pour supporter l’« annulation n’importe où n’importe quand ». En termes d’améliorations, on

note une table d’identificateurs ajoutée au modèle, une structure de données «cimetière» qui

permet de gérer le degré de visibilité de la ligne, un tampon historique par site afin de stocker

les rustines. La surcharge générée par la prise en compte de la propriété d’«annulation»

pourrait être dommageable au système à grande échelle.

TreeDoc

La conception de TreeDoc [Preguiça et al. (2009)] repose sur le fait que les documents

partagés consistent en une séquence linéaire d’«atomes». Un atome représente un caractère

ou tout autre élément non éditable comme des figures insérées dans l’objet. Deux opérations

d’édition sont possibles sur les atomes : l’insertion et la suppression. L’insertion prend trois

paramètres à savoir la position d’insertion, l’atome à insérer et l’identifiant du site générateur

de l’opération. La suppression prend deux paramètres dont le premier indique la position

à laquelle l’atome sera supprimé et le second, l’identifiant du site ayant initié l’opération.

Malgré la suppression de l’atome, elle est maintenue dans la structure de données sous-jacente

mais n’est plus visible par l’utilisateur. La commutativité des opérations est assurée par

coalescence. TreeDoc utilise un tampon d’atomes dans lequel chaque position a un identifiant

unique qui ne change pas pendant toute la durée de vie du document. Un ordre total est défini

sur les identificateurs de positions. Toutefois, il est toujours possible de générer un nouvel
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identifiant unique entre deux identifiants existants. Une structure d’arbre binaire étendu est

utilisée pour les identifiants. Chaque nœud de l’arbre contient ou non un atome. L’identifiant

de position associé à l’atome est le chemin dans l’arbre pour arriver à ce nœud. Pour construire

le chemin, on considère que le « fils gauche » correspond à 0 et le « fils droit » à 1, le nœud

« racine » correspondant à une châıne vide représentée par le caractère ǫ. Deux stratégies

sont alors proposées pour gérer les identifiants. La première est compacte mais utilise une «

pierre tombale » pour garder la trace des suppressions. De ce fait, il n’est pas adaptable à un

P2P car gourmant en espace mémoire, bien qu’une procédure soit proposée pour la vidange.

La seconde ne garde pas trace des suppressions. Pour équilibrer l’arbre et ainsi éviter la

surcharge, un mécanisme d’optimisation a été proposé.

Autres applications de l’approche CRDT

Bien que WOOT, TreeDoc, Logoot et Logoot-Undo considèrent un document XML

comme ayant une structure linéaire et donc pris en charge par ces derniers, Martin et al.

lui accordent une attention particulière dans [Martin et al. (2010)]. Cette attention est due à

l’importante place qu’occupe de plus en plus le format XML dans les systèmes informatiques

pour ce qui est du stockage, de la possibilité de faire des requêtes et des échanges de données.

Le document XML n’a pas été assimilé à un document textuel linéaire, comme le faisaient les

algorithmes cités ci-dessus ; mais il est réellement considéré par les auteurs comme un docu-

ment semi-structuré avec une arborescence. à cet effet, pour un nœud de l’arborescence, ses

attributs éventuels, ses nœuds éléments (fils) ainsi que leurs attributs respectifs sont consi-

dérés dans la conception. L’arborescence XML est considérée comme un ensemble d’arcs,

chacun défini par un identifiant unique, un ensemble d’arcs fils et un ensemble d’attributs.

Trois types d’opérations sont supportées par cette arborescence : l’ajout d’un arc vide avec

en paramètre l’identifiant de l’arc à ajouter et celui sous lequel il sera ajouté ; la suppres-

sion d’un arc dont l’identifiant est indiqué en paramètre ; et l’affectation d’attribut à un arc.

L’identifiant, l’attribut, sa valeur ainsi que l’estampille de l’opération sont les paramètres

de la fonction réalisant l’affectation. La suppression d’un attribut revient à lui affecter une

valeur nulle. L’estampille est utilisée afin de gérer la commutativité des opérations mais en

réalité un ordre total est défini sur ces estampilles. Martin et al. prennent en compte les

annulations afin de mieux gérer les erreurs et les conflits d’édition. à cet effet, les auteurs

ont utilisé les « pierres tombales » pour garder la trace de toutes les opérations exécutées

sur le document. Cependant, ils se limitent aux dernières opérations car un mécanisme a été

prévu pour la vidange des vieilles opérations en se basant sur les estampilles. Bien qu’offrant

une gestion compacte qui facilite l’ordonnancement des « nœuds éléments » et malgré la

prise en compte d’une procédure pour la vidange, la proposition de Martin et al. n’est pas
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très adaptée à cause de la grande échelle et sa consommation d’espace. De plus, ces travaux

considèrent seulement un document XML bien formé mais pas un document XML valide.

Le document peut être vérifié avec un parseur non validant (analyse de la syntaxe concrète

seulement). Il n’est pas vérifiable avec un parseur validant (offre un support comme la DTD,

une grammaire qui permet de vérifier la conformité du document XML). Le modèle décrit

par les auteurs inclut les « pierres tombales » et les opérations. Ces dernières ne doivent

pas être visibles pour les applications donc il y a nécessité d’un traitement particulier par les

parseurs validant.

Wu et al. ont proposé un modèle de cohérence basé sur l’approche CRDT [Wu et Pui

(2009),Wu et al. (2010)]. Il est composé de deux propriétés : la convergence et la préservation

de la préséance de la dépendance des données (Data-dependency Precedence Preservation,

DDP). La propriété DDP considère une restriction de la préservation de la préséance cau-

sale présentée à la Section 2.2.4. Elle exploite une structure de données appelée séquences

partiellement persistantes (partial persistent sequences , PPS) que nous présentons à la Sec-

tion 3.4.5.

2.2.4 Approche de la transformée opérationnelle

L’approche de la transformée opérationnelle a été proposée par la communauté des édi-

teurs collaboratifs synchrone pour résoudre la divergence causée par la présence d’opérations

concurrentes. Elle considère plusieurs sites, chacun ayant sa copie de l’objet partagé. Les opé-

rations générées localement sont envoyées aux autres sites pour leur prise en compte. Chaque

copie est modifiée localement par l’exécution d’une opération générée localement ou reçue

d’un site distant. Les sites procèdent à la transformation des opérations reçues des autres

sites par rapport aux opérations locales avant de les exécuter. L’édition est possible grâce

aux deux composants que sont l’algorithme d’intégration et l’algorithme de transformation

inclusive (IT). Cette dernière s’occupe de la transformation des opérations reçues par rap-

port aux opérations concurrentes déjà exécutées. Nous présentons ici une revue des requis

que doivent satisfaire les IT pour l’obtention d’une édition cohérente et les principales IT

proposées dans la littérature.

Condition de cohérence

D’après Sun et al., la cohérence d’un système d’édition collaborative n’est obtenue que

si les critères de préservation de la causalité (préséance causale ou critère de causalité), de

convergence et de préservation de l’intention sont respectés [Sun et al. (1998)]. Ces critères

sont appelés CCI. Il y a préservation de la préséance causale, si pour deux opérations o1 et
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o2 tel que o1 a préséance sur o2, leur exécution dans n’importe quel ordre conserve l’effet

de o1 mais pas nécesairement celui de o2. Ces opérations doivent être ordonnées suivant la

relation de préséance au sens de Lamport (voir Section 1.1.1, page 4). Cette propriété peut

être également formulée comme indiquée dans l’expression 2.1.

∀o1, o2 ∈ O, o1 → o2 ⇒ ∀s ∈ S, execution(o1) → execution(o2) (2.1)

Avec

– O : l’ensemble des opérations générées dans le système ;

– S : l’ensemble des sites participant à la collaboration ;

– → : la relation de préséance ;

– execution(oi) qui signifie « exécution de l’opération oi ».

Le critère de convergence est respecté lorsque tous les sites exécutent le même ensemble

d’opérations dans un ordre quelconque et que les copies du document partagé sont identiques.

L’intention d’une opération o est l’effet qu’aurait produit son exécution sur la copie locale

du document, au moment de sa génération [Sun et al. (1998)]. Il y a donc préservation de

l’intention quand son exécution produit sur tous les sites, le même effet que celui qui est

produit sur le site où elle a été générée, et ceci, au moment de sa génération. Li et Li ont

indiqué que la préservation de l’effet des opérations implique le respect de la convergence [Li

et Li (2004)]. La preuve a été apportée dans [Li et Li (2008a)]. Autrement dit, la préservation

de l’intention est suffisante pour conduire à la convergence. Pour qu’un système d’édition

collaborative soit cohérent, il suffit juste que les critères de causalité et celui de préservation

d’intention soient réalisés. Ils définissent un nouveau concept de relation d’effet pour les

opérations. Ce concept de relation d’effet est en fait une reformulation de la préservation

d’intention. Ils proposent alors un nouveau modèle de cohérence appellé CSM (Causality,

single-operation effect, and multi-operation effects relation preservation) qui pourrait être

traduite littéralement par « préservation de la causalité, préservation de l’effet d’une opération

et préservation des effets de plusieurs opérations ». La préservation de l’effet d’une opération

stipule que l’effet de l’exécution de toute opération sur n’importe quel état d’exécution,

produit le même effet que dans son état de génération. Par exemple, un caractère supprimé

(dans l’état de génération de la suppression), doit l’être dans tous les états du système

postérieur à la génération. Pour une opération d’insertion, l’ordre total doit être maintenu

pour deux caractères quelconques quels que soient les états du système (états postérieurs à

l’état de génération de l’insertion). La préservation de l’effet de multiples opérations stipule

quant à lui que, pour tout état, la relation d’effet entre deux opérations quelconques doit être

maintenue après leur exécution.
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Dans l’approche OT, le critère de convergence est respecté si l’algorithme de transfor-

mation (IT) utilisé satisfait les propriétés TP1 et TP2 [Ressel et al. (1996)] définies à la

Section 1.2 (expressions 1.7 et 1.8, page 10). à l’analyse de ces propriétés, on peut retenir que

la TP1 peut être satisfaite conceptuellement, alors que la TP2 n’est pas triviale. Nos travaux

dans le chapitre 3 en donne d’ailleurs les preuves.

Plusieurs algorithmes ont été recensés dans la littérature. Un inventaire et une comparai-

son de quleques uns de ces algorithmes est disponible dans [Kumawat et Khunteta (2010)].

Les principaux algorithmes basés sur OT sont : algorithme de Ellis [Ellis et Gibbs (1989)],

algorithme de Ressel [Ressel et al. (1996)], algorithme de Sun [Sun et al. (1998)], algorithme

de Suleiman [Suleiman et al. (1998)], algorithme d’Imine [Imine et al. (2003)] et SO6 [Molli

et al. (2003b)].

Algorithme de Ellis

L’algorithme de Ellis [Ellis et Gibbs (1989)] (voir Annexe B.1.) considère un objet textuel,

donc à structure linéaire, pour lequel seul deux fonctions peuvent être utilisées : insertion et

suppression d’un caractère. L’insertion prend trois paramètres : la position p dans laquelle

l’insertion sera faite, le caractère c à insérer et une priorité pr qui est utilisée pour résoudre le

conflit né de deux opérations concurrentes d’insertion de caractères différents à la même po-

sition. La priorité est déterminée sur chaque site et il ne saurait avoir collision (même valeur

de priorité sur deux sites différents). La suppression quant à elle, prend deux paramètres :

la position p à laquelle il faut supprimer un caractère et la priorité pr définie comme précé-

demment. L’analyse de l’algorithme de Ellis montre qu’il exploite la propriété sémantique des

opérations. Selon Suleiman et al., il existerait bien des situations d’incohérence, de non préser-

vation de l’intention et d’annulation suivie de réexécution de certaines opérations [Suleiman

et al. (1998)]. Boucheneb et Imine ont entériné cette thèse en prouvant que l’algorithme de

Ellis ne respecte pas la propriété de convergence et par conséquent n’assure pas la cohérence

des données [Boucheneb et Imine (2009)]. Selon Ressel [Ressel et al. (1996)], l’algorithme de

Ellis entrâıne une incohérence quand un site exécute plus d’une opération concurrente par

rapport à une opération générée sur un autre site. Il propose alors une amélioration de celui

de Ellis.

Algorithme de Ressel

L’algorithme de Ressel (voir Annexe B.2.) est utilisé actuellement dans bien de systèmes

centralisés d’édition collaborative populaires tel que XWiki 4. Outre les différences réperto-

4. http://www.xwiki.com/

http://www.xwiki.com/
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riées à la section 3.2.3, l’approche de Ressel pour gérer la cohérence diffère de celle de Ellis

par l’introduction d’un modèle d’interactions multi-dimensionnelles pour garder la trace des

transformations valides. Le nombre de dimensions est égal au nombre de sites participant à

la collaboration. Son approche prend en compte les «annulations groupées». L’algorithme de

Ressel ne satisfait pas la propriété TP2. Imine le prouve dans [Imine (2006)] en exhibant

un contre-exemple. La preuve qu’il ne permet pas la convergence a été également faite par

Boucheneb et Imine en utilisant le model-checking [Boucheneb et Imine (2009)]. Des contre-

exemples prouvant que l’algorithme de Ellis ne respecte pas la TP1 et que celui de Ressel

ne respecte pas la TP2 sont présentés à la figure 3.6 (page 46) et à la figure 3.9 (page 47),

respectivement.

Algorithme de Sun

Sun et al. ont proposé un algorithme de transformation inclusive qui se base sur une châıne

de caractères comme élément de granulatité. Les opérations acceptées sont : (i) l’insertion

d’une châıne de caractères d’une certaine longueur dans une position donnée et (ii) la sup-

pression d’une châıne de caractères d’une longueur donnée à partir d’une position donnée.

Dans le cas de l’insertion, la position dans laquelle l’insertion doit être faite, la châıne de

caractère à insérer et sa longueur sont les paramètres. Pour une suppression, seule la position

et la longueur sont les paramètres (voir Annexe B.3.). L’algorithme de Sun et al. ne satisfait

ni la TP1 ni la TP2 [Boucheneb et al. (2010)].

Algorithme de Suleiman

L’algorithme de Suleiman [Suleiman et al. (1998)] considère des objets textuels sur les-

quels les utilisateurs agissent en insérant ou en supprimant des caractères. En cherchant à

assurer la satisfaction de la TP2, Suleiman et al. proposent une méthode synchrone qui ex-

ploite aussi les propriétés sémantiques des opérations (voir Annexe B.4.). Leur approche bâtit

l’historique associé à un objet de manière incrémentale sans prendre en compte l’annulation

et la réexécution de certaines opérations. La fonction de suppression ne prend en paramètre

que la position p du caractère à supprimer. La fonction d’insertion quant à elle prend quatre

paramètres qui sont respectivement : la position p à laquelle l’insertion sera faite, le caractère

c à insérer, un paramètre av qui contient les opérations de suppression qui ont eu pour effet

d’enlever un caractère en avant de la position d’insertion et un paramètre ap qui contient les

opérations qui ont effacé un caractère en arrière de la position d’insertion. Comparativement

aux précédents algorithmes présentés, celui de Suleiman et al. n’utilise pour l’insertion ni de

paramètre de priorité ni d’identifiant de site mais, en lieu et place, deux paramètres servant
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à mémoriser l’ensemble des opérations de suppression concurrentes à l’opération d’insertion.

De plus la suppression ne requiert que la position comme seul paramètre. La solution de

Suleiman et al. a permis de résoudre bien des cas que les précédents algorithmes n’ont pas

pu résoudre. Cependant, il existe des cas où l’algorithme ne conduit pas à la satisfaction de

la condition TP2. Cette preuve a été apportée dans [Imine (2006)] par contre-exemple. Bou-

cheneb et Imine [Boucheneb et Imine (2009)] en utilisant le model-checking ont également

établit que l’algorithme de Suleiman et al. ne respecte pas la propriété de convergence. Des

contre-exemples qui témoignent du non respect des propriétés TP1 et TP2 par l’algorithme

de Suleiman sont exhibés à la figure 3.8 (page 47) et à la figure 2.1.
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Figure 2.1 Violation de la propriété TP2 par l’algorithme de Suleiman.

Le contre-exemple de la figure 2.1 considère trois sites : site1, site2 et site3. Les copies

du document partagé sont initialement identiques sur les sites et contiennent le texte “ade”.

Les sites génèrent chacun une opération d’insertion en position 2, qui est en concurrence avec

chacune des autres opérations. Sur les trois sites, l’historique associée à l’insertion contient

comme paramètres av et ap : (∅, ∅), (∅, {del(2)}), ({del(2)}, ∅), respectivement. Ainsi, site1

produit une insertion sans historique. Sur site2, l’historique n’indique que la suppression en

position 2 après la position courante. Quant à site3, son insertion n’indique que la suppression

en position 2 avant la position courante. Il est à remarquer que la position courante d’in-

sertion et les positions indiquées dans l’historique sont égales. L’application des différentes

transformations suggérées par Suleiman et al. donne comme résultats sur les site2 et site3 les

textes “abcde” et “abcbde”, respectivement.

Algorithme d’Imine

Imine et al. ont essayé d’apporter une amélioration à l’algorithme de Suleiman [Suleiman

et al. (1998)] en associant à chaque caractère sa position initiale [Imine et al. (2003)]. Cette

position reste inchangée même si la transformation de l’opération afférente affecte la posi-
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tion courante du caractère. Dans leur algorithme (voir Annexe B.5.), la fonction d’insertion

comporte trois paramètres : la position courante d’insertion p, la position initiale d’insertion

définie à la génération de l’opération o et le caractère c à insérer. à la génération, p et o sont de

valeurs égales. La fonction de suppression ne prend que le paramètre indiquant la position du

caractère à supprimer. Imine et al., en faisant l’hypothèse que les opérations d’insertion consi-

dérées n’auraient pas subi de transformation auparavant, avaient conclu que leur algorithme

satisfaisait TP2. Cependant, il n’est pas réaliste de considérer que o et p sont de valeurs égales

avant toute vérification de TP2. En faisant fi de cette hypothèse, leur algorithme ne conduit

pas à la convergence. Imine en exhibe d’ailleurs lui-même un contre-exemple dans [Imine

(2006)]. Ce constat a été renforcé par les travaux de Boucheneb [Boucheneb et Imine (2009)].

Un exemple de la violation du TP2 par l’algorithme d’Imine est proposé à la figure 3.10

(page 47).

Algorithme SO6

SO6 [Molli et al. (2003b)] est une méthode de réplication asynchrone basée sur la trans-

formée opérationnelle. Il implémente un synchroniseur de système de fichier qui s’appuie sur

un séquenceur pour faire l’ordonnancement des opérations concurrentes. Ces opérations sont

relatives à plusieurs niveaux de granularité : système de fichier, fichier texte, fichier XML,

texte, etc. SO6 allie l’approche «copier-modifier-fusionner» et l’approche de la transformée

opérationnelle. Le séquenceur définit un ordre total sur les opérations en les estampillant. Ce

mécanisme est déployé par une machine centrale. La propagation des opérations se fait en

se basant sur le mécanisme de diffusion différée proposé dans SOCT4 [Vidot et al. (2000)].

Cette méthode ne peut pas être utilisée à grande échelle du fait de l’usage d’un séquenceur.

La variabilité de la topologie rend aussi inutilisable le séquenceur.

Algorithme MOT2

MOT2 [Cart et Ferrié (2007)] est un algorithme de réconciliation asynchrone basée sur la

transformée opérationnelle. Inspiré de MOT1 [Bernstein et Goodman (1981)], qui considère

une copie de référence, MOT2 suppose plutôt une relation d’ordre entre les sites ou entre

les copies dès leur création. La relation entre les sites peut dériver des noms de ces sites

si leur unicité est garantie. Celle entre les copies peut également dériver de leur nom en

utilisant un schéma d’identification hiérarchique. Cette relation d’ordre est utilisée à des fins

de sérialisation en conduisant à la définition d’un ordre total unique entre les opérations.

Cette stratégie dispense MOT2 d’un serveur central, de vecteurs d’états, d’estampilles ou

de séquenceur. Il procède par appariement des copies (deux à deux) et ne privilégie aucune
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copie au cours du processus. La propagation est faite librement dès que deux sites décident

de réconcilier leurs copies. Il serait intéressant d’affranchir les sites de cette décision. De plus,

l’absence d’un serveur central et de vecteurs rendent certes MOT2 compatible au facteur

échelle en architecture répartie, mais appliquer une stratégie d’appariement à cette échelle

entrâınera la dégradation des performances en termes de temps nécessaire pour que le système

soit stable.

Algorithmes SDT et SDTO

à l’appui de leur nouveau modèle de cohérence (CSM) qui prend en compte les critères de

préservation de causalité et de préservation d’intention, Li et Li proposent, afin de satisfaire

la condition TP2, le concept de «transformation par différences d’états» (state difference

transformation, SDT). L’algorithme SDT [Li et Li (2004), Li et Li (2008a)] a été proposé

sur la base de ce concept. Selon les auteurs, l’algorithme SDT (voir Annexe B.6.) assure la

convergence dans une architecture «pure Pair-à-Pair». Dans SDT, les auteurs ont recours à

deux fonctions. La première est une fonction de transformation inverse de la transformation

IT. Elle est notée ET (exclusion transformation) et permet d’exclure l’effet d’une opération

par rapport à une autre. La deuxième fonction, notée β, permet d’obtenir pour toute opéra-

tion, la position qu’elle aurait pu avoir sur un état précédent de convergence. Cette dernière

est utilisée avec une fonction δ qui détermine les opérations ayant les mêmes valeurs de retour

pour β [Li et Li (2008a)]. Cette solution a été proposée dans le seul but de résoudre la TP2

et ne tient pas compte des questions de performance. Pour pallier ce problème, le SDTO

[Li et Li (2008b)] a été élaboré et constitue une optimisation du SDT. Cette optimisation a

permis de réduire considérablement la complexité (en temps et en espace) de ce dernier. Il a

également été étendu par l’ajout d’une troisième primitive outre l’insertion et la suppression.

Cette primitive ajoute une fonctionnalité de mise à jour et permet de traiter les documents

formatés en complément aux documents textuels que prenait en charge SDT. La vérification

de l’algorithme de Li et Li réalisée par Imine [Imine (2006)] a montré un contre-exemple et

permet de conclure que cet algorithme ne conduit pas à la convergence. Un exemple de cas

de violation de la TP2 est fourni à la figure 2.2.

Le contre-exemple de la figure 2.2 considère trois sites : site1, site2 et site3. Les copies

du document partagé sont initialement identiques sur les sites et contiennent le texte “adf”.

Une opération d’insertion du caractère b en position 2 est générée par site1. Sur site2, une

opération d’insertion est également générée. Il s’agit d’ajouter le caractère e en position 3.

Enfin, site3 produit une opératoion de suppression en position 2. Les trois opérations sont

concurrentes. Leurs exécutions locales donnent respectivement : “abdf”, “adef” et “af”. La

transformation selon SDT, de l’opération reçue de site3 par site2, suivie de la transformation
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Figure 2.2 Violation de la propriété TP2 par SDT.

de celle reçue de site1 par site2, conduit à une insertion en position 2. Par contre, site3

obtient une insertion en position 3, après avoir transformé les opérations reçues de site2 et

site1, prises dans cet ordre. En comparant les résultats des transformations de l’opération

reçue de site1 par chacun des deux autres sites, il est aisé de conclure que les deux sites n’ont

pas le même résultat. Ce qui montre que la TP2 n’est pas vérifiée.

Fonctions TTF

Pour assurer la cohérence des documents textuels, Oster et al. ont proposé un ensemble de

fonctions dénommé TTF (Tombstone Transformation functions) [Oster et al. (2006a)]. Leur

solution considère le caractère comme élément de granularité manipulé lors d’une édition.

La suite de fonctions est composée d’une fonction de recherche de position d’un caractère et

d’une fonction de transformation inclusive. Le TTF s’appuie sur deux modèles représentant le

document édité : la vue et le modèle de données. La vue est le document auquel l’utilisateur

a accès tandis que le modèle de données est transparent pour lui. Le lien entre les deux

modèles est assuré par le principe de la pierre tombale (tombstone) et l’usage de la fonction

de transformation. En effet, lorsque l’utilisateur insère un caractère dans la vue, il est aussitôt

aussi inséré dans le modèle de données. Quand il supprime un caractère dans la vue, celui est

effectivement supprimé de la vue, le rendant ainsi invisible, mais simplement déclaré masqué

dans le modèle de données sous-jascent, qui est de ce fait un modèle persistant. C’est le

fait de masquer un caractère dans le modèle persistant qui lui fait valoir l’attribut de pierre

tombale. La fonction de transformation sert alors à faire le lien entre une position de la vue

et la position correspondante dans le modèle persistant, en prenant en compte en plus des

caractères visibles, tous les caractères supprimés (masqués) avant cette position. De façon

pratique, quand l’utilisateur insère un caractère dans la vue, la fonction de recherche de

position est utilisée pour trouver la position dans laquelle le caractère doit être inséré de
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manière cohérente dans le modèle persistant. De la même manière, quand il supprime un

caractère de la vue, la fonction permet de trouver ce caractère dans le modèle persistant

en retournant la position de ce dernier. La nouvelle position déterminée est celle qui est

envoyée aux autres utilisateurs lors de la réplication de l’opération. Ainsi, lorsqu’une opération

distante est reçue, elle est transformée sur la base du modèle persistant. Il faut noter que

la fonction de recherche de position est bien comparable à la fonction β de SDT ou SDTO

(Section 2.2.4), qui permet d’obtenir pour toute opération, la position qu’elle aurait pu avoir

sur un état précédent de convergence. En termes de ressources, la proposition de Oster et al.

manipule deux structures de données en plus de l’histoire des opérations, ce qui nécessite des

dispositions particulières pour leur gestion et une quantité de mémoire supplémentaire. De

plus, toute mise à jour sollicitée par l’utilisateur implique une opération de mise à jour sur

chacune des deux structures de données et un calcul de position. En outre, la sémantique de la

suppression de caractère est redéfinie par l’usage de la pierre tombale avec pour conséquence

la persistance du caractère et une croissance de la taille du modèle de données. La complexité

de TTF est consignée dans le tableau 3.4 (page 61).

2.3 Contrôle d’accès dans les systèmes collaboratifs

Les principaux modèles de contrôle d’accès dédiés aux systèmes collaboratifs sont pour

la plupart répertoriés dans [Tolone et al. (2005)]. Il s’agit de : la matrice d’accès (Access

Matrix Model, AMM) [Sandhu et Samarati (1994)], le contrôle d’accès basé sur les rôles (Role

Based Access Control, RBAC) [Sandhu et al. (1996)], le contrôle d’accès basé sur les tâches

(Task Based Access Control, TBAC) [Thomas et Sandhu (1997),Thomas et Sandhu (1994)], le

contrôle d’accès basé sur les équipes (Team Based Access Control, TMAC) [Thomas (1997)],

le contrôle d’accès basé conjointement sur les informations de contexte et les équipes (Context

Based Team-Based Access Control, C-TMAC) [Georgiadis et al. (2001)], le contrôle d’accès

spatial (Spatial Access Control, SAC) [Bullock et Benford (1999)] et le contrôle d’accès sen-

sible au contexte (Context Aware Access Control) [Covington et al. (2001)]. En se basant

sur l’idée selon laquelle la conception d’un modèle de contrôle d’accès qui tient compte des

spécificités d’une édition collaborative répartie est sujette aux exigences telles que la spéci-

fication de haut niveau des droits d’accès, la généricité et la flexibilité du modèle, l’aspect

dynamique du modèle, le maintien des indicateurs de performance à des seuils acceptables,

Tolone et al. ont déterminé des critères qui leur ont permis de faire une étude comparative

sur ces modèles de contrôle d’accès. Les auteurs ont mis en lumière les forces et les faiblesses

de chacun d’eux au regard du contexte complexe de l’édition collaborative répartie. De cette

étude, nous pouvons retenir que le TMAC est le plus adapté, en ce qui concerne une édition
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collaborative sécurisée. Cependant, TMAC a un niveau d’applicabilité assez moyen. L’une

des faiblesses de TMAC est qu’il ne permet pas d’ajouter de nouveaux droits d’accès aux

membres d’un groupe, autres que ceux découlant directement des droits fonctionnnels du

groupe. C’est l’une des raisons pour lesquelles il a été étendu dans TMAC04 [Alotaiby et

Chen (2004)] pour tenir compte des contextes et des organisations ayant un grand nombre de

groupes d’utilisateurs qui doivent interagir entre eux. C-TMAC est une variante de TMAC

qui tire partie des rôles, des équipes et des informations de contexte, dans un modèle flexible

de contrôle d’accès. Cette démarche a été également suivie dans le modèle STRAC [Kawagoe

et Kasai (2011)] consacré au milieu médical. STRAC est en fait une variante de C-TMAC

qui considère la situation médicale comme contexte déterminant le modèle. Pour gérer les

accès, RBAC utilise pour chaque utilisateur la notion de session. Bien qu’il ait permis de

résoudre certains problèmes liés à la gestion dynamique des droits d’accès, RBAC ne rend

pas aussitôt effectif le changement du rôle d’un utilisateur. Ce dernier doit se déconnecter

et se reconnecter afin d’être authentifié à nouveau sous son nouveau rôle, sans quoi il serait

dans l’illégalité. Cette faiblesse a été comblée avec SAC, mais il reste aussi non adapté au

contexte en étude à cause du mécanisme de verrou à deux phases qu’il utilise et qui est plus

adapté pour un contexte de base de données. Dans [Imine et al. (2009)], un modèle flexible

de contrôle d’accès a été proposé (FACMDCE). Il est basé sur la réplication du document

partagé ainsi que ses autorisations d’accès dans la mémoire locale de chaque utilisateur. Pour

faire face à la latence et au changement dynamique des droits d’accès, une technique optimiste

a été utilisée et consiste à appliquer de manière rétroactive les autorisations d’accès.

Malheureusement, nous n’avons pas trouvé d’étude consacrée à la vérification de la pré-

servation de la propriété de cohérence pour les modèles cités précédemment. Cependant, il

existe plusieurs études telles que [Abdunabi et al. (2013),Jayaraman et al. (2013),Toahchoo-

dee et al. (2009),Hu et Ahn (2008),Samuel et al. (2007)], relatives à la satisfaction de certaines

propriétés par RBAC et quelques unes de ses variantes, dans des cadres spécifiques.

2.4 Conclusion

Plusieurs approches ont été proposées dans la littérature pour gérer la cohérence des do-

cuments lors d’une édition collaborative. Celles qui sont plus adaptées à un contexte réparti

sont l’approche des types de données commutatives répliquées et l’approche de la transfor-

mée opérationnelle. Dans l’approche CRDT, il n’est pas nécéssaire de détecter la concurrence

entre les opérations afin d’assurer la cohérence et les opérations peuvent être exécutées dans

un ordre quelconque. De plus, cette approche permet de contourner le défi que représente la

satisfaction de la propriété TP2. Les répliques peuvent converger vers une valeur correcte,
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quels que soient leurs types de données, mais à condition que les opérations soient native-

ment commutatives. Cependant, obtenir des opérations commutatives est tout un autre défi.

L’autre défi réside dans la définition de la structure de données abstraite qu’il faut pour gé-

rer les atomes ou éléments de granularité considérés. Elle nécessite une identification unique

de ces atomes mais également un domaine d’identification compact qui puisse toujours per-

mettre la génération d’un nouvel identifiant entre deux identifiants quelconques. L’approche

CRDT a été utilisée dans plusieurs solutions ; parmi celles-ci figurent TreeDoc, qui gère la

commutativité par coalescence, WOOT, Logoot, Logoot-Undo qui se basent sur la préséance

causale.

L’approche de la transformée opérationnelle présente aussi plusieurs avantages. Elle ac-

corde aux sites de modifier librement leurs copies et d’échanger leurs modifications dans

n’importe quel ordre. Les opérations transformées peuvent également être exécutées dans un

ordre différent sur chaque site. Ceci est possible grâce à l’équivalence établie entre les histoires.

L’approche OT ne définit donc pas un ordre total sur les opérations. De plus, elle produit

un état de convergence sans perte de mise à jour. Elle offre également l’avantage de résoudre

les conflits au fur et à mesure de l’exécution des opérations. Cependant, l’utilisation d’un

mécanisme appropriée de détection de la concurrence et d’une fonction de transformation

correcte qui doit satisfaire les propriétés TP1 et TP2 sont des défis. L’approche de la trans-

formée opérationnelle a été utilisée par la plupart des méthodes synchrones [Ellis et Gibbs

(1989)], [Ressel et al. (1996)], [Suleiman et al. (1998)], [Li et Li (2004),Li et Li (2008a)], [Li

et Li (2008b)], [Imine et al. (2003)], mais aussi par des algorithmes asynchrones [Molli et al.

(2003b)], [Cart et Ferrié (2007)], [Oster et al. (2006a)]. Parmi les ITs proposées dans la litté-

rature, certaines se heurtent à la satisfaction de la condition TP2 en considérant le modèle

CCI [Ellis et Gibbs (1989)], [Ressel et al. (1996)], [Suleiman et al. (1998)], [Sun et al. (1998)],

[Imine et al. (2003)], ou à la préservation de l’intention des opérations, en considérant le

modèle CSM [Li et Li (2004),Li et Li (2008a)], [Li et Li (2008b)]. Il en existe qui ne satisfont

pas la TP1 [Ellis et Gibbs (1989)], [Suleiman et al. (1998)], [Sun et al. (1998)]. La solution

TTF quant à elle considère une sémantique différente pour l’opération de suppression. Sa

fonction de transformation inclusive est dite correcte par les auteurs mais aucune étude n’a

prouvé son exactitude par rapport aux propriétés TP1 et TP2.

Plusieurs modèles ont également été proposés dans la littérature pour gérer le contrôle

d’accès dans les systèmes collaboratifs. Parmi eux, très peu répondent convenablement aux

spécificités d’une édition massivement répartie (TMAC, FACMDCE). Nous notons à l’état

actuelle de nos connaissances, l’absence d’une étude qui montre que ces modèles préservent

la cohérence d’un système d’édition collaborative réparti.
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CHAPITRE 3

ARTICLE 1 : On Synthesizing a Consistent Operational Transformation

Approach

Aurel Randolph ∗ , Hanifa Boucheneb ∗, Abdessamad Imine †, and Alejandro Quintero∗

Abstract

The Operational Transformation (OT) approach, used in many collaborative editors, al-

lows a group of users to concurrently update replicas of a shared object and exchange their

updates in any order. The basic idea is to transform any received update operation before its

execution on a replica of the object. Concretely, OT consists of a centralized / decentralized

integration procedure and a transformation function. In the context of decentralized inte-

gration, designing transformation functions for achieving convergence of object replicas is a

critical and challenging issue. Indeed, the transformation functions proposed in the literature

are all revealed inefficient.

In this paper, we investigate the existence of transformation functions. From the theoreti-

cal point of view, two properties, named TP1 and TP2, are necessary and sufficient to ensure

convergence. Using controller synthesis technique, we show that there are some transforma-

tion functions, which satisfy TP1 for the basic signatures of insert and delete operations.

But, there is no transformation function, which satisfies both TP1 and TP2. Consequently, a

transformation function which satisfies both TP1 and TP2 must necessarily have additional

parameters in the signatures of some update operations.

We propose, in this paper, a new transformation function and show formally that it

ensures convergence.
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3.1 Introduction

Collaborative editing systems (CESs for short) constitute a class of distributed systems

where dispersed users interact by manipulating some shared objects like texts, images, graph-

ics, XML documents, etc. To improve data availability, these systems are based on data

replication. Each user has a local private copy of the shared object that he can access and

update. The update operations executed locally are propagated to other users. The execu-

tion of these operations in different orders may lead to a divergence (object replicas are not

identical). As an example, suppose two users u1 and u2 working on their own copies of a

text containing the word “efecte”, starting at position 0. User u1 inserts ‘f ′ at position 1, to

change the word into “effecte”. Concurrently, user u2 deletes element at position 5 (i.e., the

last ′e′), to change the word into “efect”. Each user will receive an update operation that was

applied on a different version of the text. Applying naively the received update operations

will lead to divergent replicas (“effece” for user u1 and “effect” for user u2, see Figure 3.1).

Moreover, users may generate concurrently conflicting or identical operations. The challenge

in such situations is to ensure convergence of replicated data whilst preserving the intention

of users.

Several approaches are proposed in the literature, to deal with the convergence of repli-

cated data: Multi-Version (MV) [Bernstein et Goodman (1983)], Serialization-Resolution

of Conflicts (SRC) [Ellis et Gibbs (1989)], Commutative Replicated Data Type (CRDT)

[Preguiça et al. (2009),Weiss et al. (2010)], Operational Transformation (OT) [Ellis et Gibbs

(1989)], etc.

The multi-version approach, used in CVS, Subversion and ClearCase, is based on the

paradigm “Copy-Modify-Merge”. In this approach, update operations made by a user are

not automatically propagated to the others. They will be propagated only when the user

explicitly calls the merge function. It would be interesting to propagate automatically, to all

others, each update operation performed by a user. This is the basic idea of SRC.

To achieve convergence, SRC imposes to execute the operations in the same order at

every site. Therefore, sites may have to undo and execute again operations, as they receive

the final execution order of update operations. This order is determined by a central server

fixed when the system is launched. For the previous example, this approach requires that

sites of both users execute the two operations in the same order. However, even if we obtain

an identical result in both sites, the execution order imposed by the central server may not

correspond to the original intention of some user. For instance, executing, in both sites, the

operation of u1 followed by the one of u2 results in the text “effece”, which is inconsistent

with the intention of u2.
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The Commutative Replicated Data Type (CRDT) is a data type where all concurrent

operations commute with each other [Preguiça et al. (2009),Weiss et al. (2010)]. In such

a case, to ensure convergence of replicas it suffices to respect the causality principle (i.e.,

whenever an operation o′ is generated after executing another operation o, o is executed

before o′ at every site). The main challenge of CRDT is designing commutative operations

for the data type. The commonly used idea consists in associating a unique identifier with

the position of each symbol, line or atom of the shared document and when an operation

is generated, a unique identifier is also associated with the inserting/deleting position. The

position identifiers do not change and are totally ordered with regard to <. Symbols, lines

or atoms of the document appear in increasing order with regard to their identifiers. Let

us apply this paradigm to the previous example. A unique identifier is associated with each

symbol of the initial text: “(e,3) (f,6) (e, 8) (c,9) (t,9.5) (e,10)”. A unique identifier between

3 and 6 is affected to position 1 of the operation of u1. Let 4.5 be the selected identifier.

The identifier affected to position 5 of the delete operation of u2 is 10. Both execution orders

of operations of u1 and u2 lead to the text “(e,3) (f,4.5) (f,6) (e, 8) (c,9) (t,9.5)”. CESs

like TreeDoc [Preguiça et al. (2009)], Logoot [Weiss et al. (2009)], Logoot-Undo [Weiss

et al. (2010)] and WOOT [Oster et al. (2006b)] are based on CRDT paradigm. Managing

position identifiers is a very important issue in this approach as the correctness is based

on the uniqueness of position identifiers. Ensuring uniqueness may induce space and time

overheads. Moreover, the identifier space increases regardless of the size of the document.

Unlike CRDT, in OT approach, proposed by Ellis et al. [Ellis et Gibbs (1989)], there

is no need to associate a unique identifier with each symbol and the generated concurrent

operations are not necessarily commutative. Their commutativity is forced by transforma-

tion of operations before their execution. More precisely, when a site receives an update

operation, it is first transformed with regard to concurrent operations already executed on

the site. The transformed operation is then executed on the local copy. This transformation

aims at ensuring the convergence of copies even if users execute the same set of operations

in different orders but with regard to causality principle. Concretely, OT consists of a cen-

tralized / decentralized integration procedure and a transformation function, called Inclusive

Transformation (IT).

The integration procedure is in charge of executing update operations, broadcasting local up-

date operations to other sites, receiving update operations from other sites, and determining

transformations to be performed on a received operation before its execution. Several inte-

gration procedures have been proposed in the groupware research area, such as dOPT [Ellis

et Gibbs (1989)], adOPTed [Ressel et al. (1996)], SOCT2,4 [Suleiman et al. (1998), Vidot

et al. (2000)], GOTO [Sun et Ellis (1998)] and COT [Sun et Sun (2009)]. There are two
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kinds of integration procedures: centralized and decentralized. In the centralized integration

procedures such as SOCT4 and COT, there is a central node which ensures that all concur-

rent operations are executed in the same order at all sites. In the decentralized integration

procedures such as adOPTed, SOCT2 and GOTO, there is no central node and the opera-

tions may be executed in different orders by different sites. We focus, in the following, on

the decentralized integration procedures as they do not need any central server and then are

more appropriate to P2P systems.

The IT function transforms an update operation with regard to another one. For the pre-

vious example, when u1 receives the operation of u2, it is first transformed with regard to

the local operation as follows: IT (Del(5), Ins(1, f )) = Del(6). The deletion position is in-

cremented because u1 has inserted a character at position 1, which is before the character

deleted by u2. Next, the transformed operation is executed on the local copy of u1. In

a similar way, when u2 receives the operation of u1, it is transformed as follows before its

execution on the local copy of u2: IT (Ins(1, f ), Del(5)) = Ins(1, f ) (see Figure 3.2). We

can find, in the literature, several IT functions: Ellis ’s algorithm [Ellis et Gibbs (1989)],

Ressel ’s algorithm [Ressel et al. (1996)], Sun’s algorithm [Sun et al. (1998)], Suleiman’s

algorithm [Suleiman et al. (1997)] and Imine’s algorithm [Imine et al. (2003)]. However, all

these functions fail to ensure convergence [Imine et al. (2006), Imine (2006), Boucheneb et

Imine (2009), Boucheneb et al. (2010)]. More precisely, from the theoretical point of view,

to ensure data convergence, the IT function has to satisfy two properties named TP1 and

TP2 [Ressel et al. (1996)]. Intuitively, IT satisfies TP1 means that IT forces commutativity

of any pair of update operations executed in different order, on the same state. IT satisfies

TP2 means that an update operation is transformed in the same manner with regard to two

different but equivalent sequences of update operations. Some IT functions, proposed in the

literature, satisfy TP1 but there is no IT function which satisfies TP2. To overcome this

problem, some solutions impose a total ordering on the integration of operations, fixed in

general by a central site. In this context, property TP1 is used to preserve the user intentions.

For instance, in Figure 3.4 both update operations are executed in the same order in both

sites but the intention of u2 is not preserved. The transformation of the update operation

of u2 with regards of the operation of u1: IT (o2, o1) = Del(6) will preserve the intention of

u2. Such solutions are used in some tools such as Git 1, Joint Emacs [Ressel et al. (1996)],

CoWord [Sun et al. (2006)], CoPowerPoint [Sun et al. (2006)] and Google Wave 2. However,

an IT function which satisfies both TP1 and TP2 will be of great interest and value for

developing interesting distributed applications in the context of P2P architectures.

1. git.smc.com
2. http://www.waveprotocol.org/whitepapers/operational-transform.
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In this paper, we first investigate the existence of IT functions, based on the classical

signatures of update operations, which satisfy TP1 and TP2. Then, we propose a new IT

function and show formally that it ensures convergence.

Section 3.2 is devoted to OT and IT functions proposed in the literature. For each IT

function, we provide a counterexample for the convergence property. In Section 3.3, we show,

using a controller synthesis technique, that for the classical signatures of update operations,

there are some IT functions, which satisfy TP1 but there is no IT function, which satisfies

both TP1 and TP2. Exploring the reasons of this failure identifies two problematic scenarios,

which need two different transformation functions to ensure convergence. Consequently, a

transformation function which satisfies TP1 and TP2 must have additional parameters in the

operation signatures. Finding the appropriate parameters to be added to the signatures of the

update operations, so as to ensure convergence with low overhead, is very challenging. Indeed,

almost all IT functions, proposed in the literature, are based on extending the signature of the

insert operation by one or two parameters but fail to ensure data convergence. We propose, in

Section 3.4, to extend the signature of the insertion with the number of symbols deleted before

the inserting position and establish a new transformation algorithm. We end, this section, by

proving formally, using a symbolic model checking technique, that our IT function satisfies

both TP1 and TP2 and then ensures convergence. Conclusion goes in Section 3.5.
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Figure 3.2 Integration with transformation.

3.2 Operational Transformation Approach

3.2.1 Background

OT considers n sites, where each site has a copy of the shared object which is a finite

sequence of elements from a data type A. It is assumed here that the shared object can only

be modified by the following primitive operations:

O = {Ins(p, c)|c ∈ A and p ∈ N} ∪ {Del(p)|p ∈ N} ∪ {Nop()}
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Figure 3.3 MV approach Figure 3.4 SRC approach Figure 3.5 CRDT approach

where Ins(p, c) inserts the element c at position p; Del(p) deletes the element at position p,

and Nop() is the idle operation that has null effect on the object.

Each site can concurrently update its copy of the shared object. Its local updates are then

propagated to other sites. When a site receives an update operation, it is first transformed

before its execution. Since the shared object is replicated, each site will own a local state

l that is altered only by operations executed locally. The initial state of the shared object,

denoted l0, is the same for all sites. Let L be the set of states. The function Do : O×L → L,

computes the state Do(o, l) resulting from applying operation o to state l. We denote by

S = [o1; o2; . . . ; om] an operation sequence and S = S1 • S2 a sequence obtained by concate-

nating sequences S1 and S2. Applying an operation sequence to a state l is defined as follows:

(i) Do∗([], l) = l, where [] is the empty sequence and (ii) Do∗(S • [o], l) = Do(o,Do∗(S, l)), S

being a sequence of operations.

Two sequences of operations S1 and S2 are equivalent, denoted S1 ≡ S2, iff Do∗(S1, l) =

Do∗(S2, l) for every state l.

OT consists of the integration procedure and the transformation function (IT function).

The integration procedure is in charge of executing update operations, broadcasting local up-

date operations to other sites, receiving update operations from other sites, and determining

transformations to be performed on a received operation before its execution. The transfor-

mation function transforms an update operation o with regard to another update operation

o′ (IT (o, o′)). Let S = [o1; o2; . . . ; om] be a sequence of operations. Transforming any update

operation o with regard to S, denoted IT ∗(o, S), is recursively defined by:

IT ∗(o, []) = o and

IT ∗(o, [o1; o2; . . . ; om]) = IT ∗(IT (o, o1), [o2; . . . ; om]).
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By definition: IT (Nop(), o) = Nop() and IT (o,Nop()) = o for every operation o.

3.2.2 Decentralized integration procedures

The integration procedure is based on two notions: concurrency and dependency of op-

erations. Let o1 and o2 be operations generated at sites i and j, respectively. Operation o2

is said to causally dependent on o1, denoted o1 → o2, iff: (i) i = j and o1 was generated

before o2; or, (ii) i 6= j and the execution of o1 at site j happened before the generation of

o2. Operations o1 and o2 are said to be concurrent, denoted o1 ‖ o2, iff neither o1 → o2 nor

o2 → o1.

As a long established convention in OT-based collaborative editors [Ellis et Gibbs

(1989), Sun et Ellis (1998)], the timestamp vectors are used to determine the causality and

concurrency relations between operations. A timestamp vector is associated with each site

and each generated operation. Every timestamp is a vector of integers with a number of

entries equal to the number of sites. For a site j, each entry Vj[i] returns the number of

operations generated at site i that have been already executed on site j. When an operation

o is generated at site i, a copy Wo of Vi is associated with o before its broadcast to other

sites. The entry Vi[i] is then incremented by 1. Once o is received at site j, if the local

vector Vj “dominates”3 Wo, then o is ready to be executed on site j. In this case, Vj[i] will

be incremented by 1 after the execution of o. Otherwise, o’s execution is delayed until the

causality condition holds. Let Wo1 and Wo2 be timestamp vectors of o1 and o2, respectively.

Using these timestamp vectors, the causality and concurrency relations are defined as follows:

(i) o1 → o2 iff Wo2 dominates Wo1 and Wo1 6= Wo2 .

(ii) o1 ‖ o2 iff neither Wo1 dominates Wo2 nor Wo2 dominates Wo1 .

In the decentralized integration procedures, every site generates operations sequentially

and stores these operations in a stack also called a history. When a site receives a remote

operation o, the integration procedure executes the following steps:

1. From the local history S, it determines the equivalent sequence S ′ that is the con-

catenation of two sequences Sh and Sc where (i) Sh contains all operations happened

before o (according to the causality relation), and (ii) Sc consists of operations that are

concurrent to o.

2. It calls the transformation component in order to get operation o′ that is the transfor-

mation of o according to Sc (i.e. o
′ = IT ∗(o, Sc)).

3. It executes o′ on the current state and then adds o′ to local history S.

3. Let V1 and V2 be two timestamp vectors. We say that V1 dominates V2 iff for each site i, V1[i] ≥ V2[i].



43

The integration procedure allows history of executed operations to be built on every site,

provided that the causality relation is preserved. When all sites have executed the same set of

operations (stable states), their histories are not necessarily identical because the concurrent

operations may be executed in different orders. Nevertheless, they must be equivalent in the

sense that they must lead to the same final state.

3.2.3 Inclusive transformation functions

We can find, in the literature, several IT functions: Ellis ’s algorithm [Ellis et Gibbs

(1989)], Ressel ’s algorithm [Ressel et al. (1996)], Sun’s algorithm [Sun et al. (1998)],

Suleiman’s algorithm [Suleiman et al. (1997)] and Imine’s algorithm [Imine et al. (2003)].

They differ in the manner that conflict situations are managed. A conflict situation occurs

when two concurrent operations insert, at the same position, different characters. To deal

with such conflicts, all these algorithms, except the one proposed by Sun et al., add some

extra parameters to the insert operation signature.

Ellis’s algorithm

Ellis and Gibbs [Ellis et Gibbs (1989)] are the pioneers of OT approach. They extend

operation Ins with another parameter pr representing its priority. Always, concurrent oper-

ations have different priorities. The four transformation cases for Ins and Del proposed by

Ellis and Gibbs are illustrated in the appendix.

Ressel’s algorithm

Ressel et al. [Ressel et al. (1996)] proposed an algorithm that provides two modifications

to Ellis’s algorithm. The first modification consists in replacing priority parameter pr by

another parameter u, which is simply the identifier of the issuer site. Similarly, u is used

for tie-breaking when a conflict occurs between two concurrent insert operations. As for the

second modification, it concerns how a pair of insert operations is transformed. When two

concurrent insert operations add at the same position two (identical or different) elements,

only the insertion position of operation having a higher identifier is incremented. In other

words, both elements are inserted even if they are identical. This is the opposite to the

solution proposed by Ellis and Gibbs, which keeps only one element in case of identical

concurrent insertions. Apart from these modifications, the other cases remain similar to those

of Ellis and Gibb. The transformation cases given by the algorithm of Ressel et al. [Ressel

et al. (1996)] can be found in the appendix.
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Sun’s algorithm

Sun et al. [Sun et al. (1998)] have designed another IT algorithm, which is slightly different

in the sense that it is defined for stringwise operations. Indeed, the following operations are

used: Ins(p, s, l) (insert string s of length l at position p) and Del(p, l) (delete string of

length l from position p). To compare with other IT algorithms, we suppose that l = 1 for

all update operations. The IT function in this case is reported in the appendix .

Suleiman’s algorithm

Suleiman et al. [Suleiman et al. (1997)] proposed another solution that modifies the

signature of insert operation by adding two parameters av and ap. For an insert operation

Ins(p, c, av, ap), av contains operations that have deleted a character before the insertion

position p. The set ap contains operations that have removed a character after or at position

p. When an insert operation is generated, the parameters av and ap are empty. They will

be filled during transformation steps. The IT function of Suleiman and al. is given in the

appendix. To resolve the conflict between two concurrent insert operations Ins(p, c1, av1, ap1)

and Ins(p, c2, av2, ap2), three cases are possible:

1) (av1 ∩ ap2) 6= ∅: character c2 is inserted before character c1,

2) (ap1 ∩ av2) 6= ∅: character c2 is inserted after character c1,

3) (av1 ∩ ap2) = (ap1 ∩ av2) = ∅: in this case, characters c1 and c2 are compared (for

instance according to the lexicographic order) to choose the one to be added before the

other. Like the site identifiers and priorities, parameters av, ap, comparison of characters are

used to tie-break conflict situations. Note that when two concurrent operations insert the

same character (e.g. c1 = c2) at the same position, only one is executed. The other one is

ignored by returning the idle operation Nop(). In other words, like the solution of Ellis and

Gibb [Ellis et Gibbs (1989)], only one character is kept.

Imine’s algorithm

In [Imine et al. (2003)], Imine and al. proposed another IT algorithm which again enriches

the signature of insert operation with parameter ip which is the initial (or the original)

insertion position given at the generation stage. Thus, when transforming a pair of insert

operations having the same current position, they compare first their initial positions in order

to recover the position relation at the generation phase. If the initial positions are identical,

then like Suleiman and al. [Suleiman et al. (1997)] they compare symbols to tie-break an

eventual conflict. The IT function of Imine can be found in the appendix.
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3.2.4 Consistency criteria

An OT-based collaborative editor is consistent iff it satisfies the following properties:

1. Causality preservation: if o1 → o2 then o1 is executed before o2 at all sites.

2. Convergence: when all sites have performed the same set of updates, the copies of the

shared document are identical.

To preserve the causal dependency between update operations, timestamp vectors are

used. In [Ressel et al. (1996)], the authors have established two properties TP1 and TP2

that are necessary and sufficient to ensure data convergence for any number of operations

executed in arbitrary order on copies of the same object: For all o1, o2 and o3 pairwise

concurrent operations defined on the same state (initial state or state reached from the

initial state by executing equivalent sequences):

– TP1: [o1 ; IT (o2, o1)] ≡ [o2 ; IT (o1, o2)].

– TP2: IT ∗(o3, [o1 ; IT (o2, o1)]) = IT ∗(o3, [o2 ; IT (o1, o2)]).

Property TP1 defines a state identity and ensures that if o1 and o2 are concurrent, the

effect of executing o1 before o2 is the same as executing o2 before o1. Property TP2 ensures

that transforming o3 along equivalent and different operation sequences will give the same

operation. By abuse of language, an IT function satisfying properties TP1 and TP2 is said

to be consistent.

Accordingly, by these properties, it is not necessary to enforce a global total order be-

tween concurrent operations because data divergence can always be repaired by operational

transformation. However, finding an IT function that satisfies TP1 and TP2 is considered

to be a hard task, because this proof is often unmanageably complicated.

All IT functions proposed, in the literature, do not ensure data converge [Imine et al.

(2006),Boucheneb et Imine (2009),Boucheneb et al. (2010)]. We report, in the following, a

counterexample for each IT function.

IT functions of Ellis and Sun do not satisfy the property TP1 (see Figure 3.6 and

Figure 3.7) [Imine et al. (2003)]. The pairs of concurrent operations violating TP1 are

(o1 = Ins(1, f, pr1), o2 = Del(1)) and (o1 = Ins(1, f), o2 = Ins(1, e)), respectively.

Suleiman’s IT satisfies neither TP1 nor TP2 [Imine et al. (2003),Boucheneb et al. (2010)].

The counterexample for TP1 is given by the pair of operations (o′1 = Ins(2, f, {o3}, {o5}), o
′
2 =

Ins(2, c, {o5}, {o3})). The corresponding scenario, reported at Figure 3.8, consists of 4 users

u1, u2, u3 and u4 on different sites. Users u1, u2 and u3 have generated and executed locally

sequences S1 = [o1 = Ins(3, f, ∅, ∅)], S2 = [o2 = Ins(2, c, ∅, ∅)] and S3 = [o3 = Del(2); o4 =

Ins(2, e, ∅, ∅); o5 = Del(2)], respectively. Then, user u3 receives successively operations o1

and o2. User u4 receives consecutively operations of S3, o2 and o1. The IT function of
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Suleiman fails to ensure convergence. Property TP1 is violated for o′1 = IT ∗(o1, S3) =

Ins(3, f, {o3}, {o5}) and o′2 = IT ∗(o2, S3) = Ins(2, c, {o5}, {o3}).

Ressel’s IT does not satisfy TP2 but satisfies TP1 [Imine et al. (2003),Boucheneb et al.

(2010)]. In Figure 3.9, we report a scenario violating property TP2 for the triplet of concurrent

operations (o1 = Del(1), o2 = Ins(2, c2, u2), o3 = Ins(1, c3, u3)).

Imine’s IT function satisfies TP1 but does not satisfy TP2. In Figure 3.10, we report a

scenario violating TP2. In this scenario, there are 4 users u1, u2, u3 and u4 on different sites.

Users u1, u2 and u3 have generated sequences S1 = [o1 = Del(2)], S2 = [o0 = Del(2); o2 =

Ins(2, c, 2)] and S3 = [o3 = Ins(2, e, 2)], respectively. User u2 executes operations o0 and o2

then it receives successively operations o1 and o3. User u4 receives successively operations o0,

o1, o2 and o3. For this scenario, the IT function of Imine fails to ensure convergence for copies

of users u2 and u4. The property TP2 is violated for o′1 = IT (o1, o0), o2 and o′3 = IT (o3, o0)

(see Figure 3.10).

3.2.5 Avoiding Property TP2

The violation of property TP2 gave birth to several works that have tried to avoid this

problem, often at the expense of genericity and efficiency. These works may be categorized

in two approaches.

The first approach falls in the category of works, such as GOT [Sun et al. (1998)],

SOCT4 [Vidot et al. (2000)] and COT [Sun et Sun (2009)], which enforce a total order on

operations in order to maintain the same transformation path at all sites. Although these

algorithms ensure data convergence, they do not allow a high concurrency degree because of

the global order of execution. In the second approach, some works build a particular class

of transformation paths. For instance, OPTIC [Imine (2006), Imine (2009)] and ABT [Li et

Li (2010)] integrate by transformation remote operations on logs organized in such a way

that insertion operations are always before deletion operations. Building these transforma-
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tions needs, unfortunately, to devise new integration algorithms. Other works are based on

changing the semantics of the delete operation [Oster et al. (2006a)]. The delete operation

does not remove symbols but make them invisible (see Section 3.4.5 for comparison with the

approach proposed here).

3.3 Controller synthesis of consistent IT function

In [Imine et al. (2006),Boucheneb et Imine (2009),Boucheneb et al. (2010)], the authors

used a theorem proving or a model checking technique to verify whether or not a given IT

is consistent. They showed that all IT functions, proposed in the literature, do not ensure

consistency and a counterexample is provided for each IT function. From this fact, a question

arises concerning the existence of consistent IT functions. Model checking and theorem

proving are useful to prove whether or not a given system satisfies some properties but not

appropriate to verify whether or not there exist a system, which satisfies some properties.

The controller synthesis techniques solve a more general problem than the model checking

and theorem proving techniques, since they verify whether or not the system can be modified

(forced) so as to meet the properties of interest. In such a framework, the system consists,

in general, of controllable and uncontrollable transitions. The control objective is to find, if

it exists, a strategy to force the properties of interest, by choosing appropriately controllable

actions to be executed, no matter what uncontrollable transitions are executed.

We are interested in applying the principle of controller synthesis to design an IT function

which satisfies properties TP1 and TP2. The idea is to look for consistent IT in the set of

allowed functions. There are four allowed transformations for each operation o: 1) increment

its position, 2) decrement its position, 3) transform it into an idle operation (Nop()), and 4)

leave it unchanged. We first investigate whether or not there exist in such a set, some IT

functions which satisfy property TP1. If it is the case, we investigate whether or not there

exist some IT functions, among those satisfying TP1, which also satisfy TP2.

For these investigations, we use the game automata formalism ‘à la UPPAAL’ [Cassez

et al. (2005)]. A game automaton is an automaton with two kinds of transitions: controllable

and uncontrollable. Each transition has a source location, a destination location and is

annotated with selections, guards and blocks of actions. Selections bind non-deterministically

a given identifier to every value in a given range. The other labels of a transition are within

the scope of this binding. A state is defined by the current location and the current values of

all variables. A transition is enabled in a state iff the current location is the source location of

the transition and its guard evaluates to true. The firing of the transition consists in reaching

its destination location and executing atomically its block of actions. The side effect of this
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block changes the state of the system. To force some properties, the enabled transitions that

are controllable can be delayed or simply ignored. However, the uncontrollable transitions

can neither be delayed nor ignored.

o1.op=op1, o1.p=p1, o1.c=c1,
o2.op=op2, o2.p=p2, o2.c=c2

IT1(o1,o2,o12,isNop,ip1),
IT1(o2,o1,o21,isNop, ip2),
VerifyTP1()

(op1==Del imply c1==vide) &&
(op2==Del imply c2==vide)

s1

s2

op1: opr_t, p1: p_t, c1: symb_t,
op2: opr_t, p2:p_t, c2: symb_t

s0

isNop:Bool,
ip1:int[−1,1], ip2:int[−1,1]

Figure 3.11 Synthesize an IT for TP1

getChosenIT(chooseIT)

o1.op=op1, o1.p=p1, o1.c=c1,
o2.op=op2, o2.p=p2, o2.c=c2,
o3.op=op3, o3.p=p3, o3.c=c3,
IT2(o1,o2,o12), IT2(o2,o1,o21),
IT2(o3,o1,o31), IT2(o3,o2,o32),
IT2(o31,o21,o3121), IT2(o32,o12,o3212),
VerifyTP2()

(op1==Del imply c1==vide) &&
(op2==Del imply c2==vide) &&
(op3==Del imply c3==vide)
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s2
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op1: opr_t, p1: p_t, c1: symb_t,
op2: opr_t, p2: p_t, c2: symb_t,
op3: opr_t, p3: p_t, c3: symb_t

Figure 3.12 Synthesize a consistent IT

3.3.1 Do there exist IT functions which satisfy TP1?

An IT function satisfies property TP1 iff for any pair of concurrent operations o1 and o2

defined on the same state, it holds that [o1; IT (o2; o1)] ≡ [o2; IT (o1, o2)]. To verify whether or

not there are some IT functions which satisfy property TP1, we have represented in the game

automaton, depicted at Figure 3.11, the generation of operations o1 and o2, the computation

of IT (o1; o2) and IT (o2, o1), and the verification of [o1; IT (o2; o1)] ≡ [o2; IT (o1, o2)]. The

generation of operations is specified by the uncontrollable transition (s0, s1), since we have

no control on the kinds of operations generated by users. The operational transformations

and the verification of TP1 are represented by the controllable transition (s1, s2). The model

starts by selecting two operations o1 and o2. The domain of operations is fixed so as to

cover all cases of transformations. Afterwards, the model chooses two transformations to

apply to o1 with regard to o2 and o2 with regard to o1 and applies them by invoking function

IT1. Function IT1(o1, o2, o12, IsNop, ip1) returns in o12 the result of transformation of o1

with regard to o2. If IsNop = true then o12 = Nop(), otherwise the transformation of o1

consists in updating the parameter position (o12.p = o1.p+ ip1). It means that 4 possibilities
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are offered for transforming an operation o1 with regard to another operation o2: Nop(),

decrementing, maintaining, or incrementing the position of o1. Finally, the model verifies

whether or not the property TP1 is satisfied. No matter what operations o1 and o2 generated

by the uncontrollable transition, the controller synthesis aims to force property TP1 by

choosing appropriately the operational transformations.

We have used the tool Uppaal-Tiga [Cassez et al. (2005)] to verify whether or not there

exist some IT functions, which satisfy TP1. The safety control objective for TP1 is AG TP1,

where TP1 is defined in the model as a boolean variable whose value is true while the

property TP1 is satisfied. The boolean variable TP1 is set to false by the function VerifyTP1

if [o1; IT (o2, o1)] 6≡ [o2; IT (o1, o2)]. Uppaal-Tiga concludes that the property is satisfied,

which means that there is, at least, a strategy to force property TP1. We report in Table 3.1

the different IT functions (satisfying TP1) extracted from the output file of the tool verifytga

of Uppaal-Tiga.

Note that even if some operational transformations satisfy TP1, they are unaccept-

able from the semantic point of view. For instance, if p1 = p2, the operational trans-

formations IT (Del(p1), Del(p2)) = Del(p1 − 1), IT (Del(p1), Del(p2)) = Del(p1) and

IT (Del(p1), Del(p2)) = Del(p1 + 1) mean that if two users generate concurrently the same

delete operation, two symbols will be deleted in each site, which is unacceptable from the

semantic point of view. The only operational transformation which makes sense for this

case is IT (Del(p1), Del(p2)) = Nop(). It means that only the symbol at position p1 is

deleted in each site. After eliminating these incoherent operational transformations, there

remain 2 possibilities for IT (Ins(p1, c1), Ins(p2, c2)), p1 = p2, c1 6= c2, and 3 possibilities for

IT (Ins(p1, c1), Ins(p2, c2)), p1 = p2, c1 = c2. Therefore, we can extract 6 IT functions which

satisfy TP1. These IT functions differ in the way that conflicting operations are managed.

3.3.2 Do there exist IT functions which satisfy TP1 and TP2?

An IT function satisfies property TP2 iff for any triplet of pairwise concurrent oper-

ations o1, o2 and o3 defined on the same state, it holds that IT (IT (o3, o1), IT (o2, o1)) =

IT (IT (o3, o2), IT (o1, o2)). To verify whether or not there are some IT functions which sat-

isfy properties TP1 and TP2, we have used the game automaton depicted at Figure 3.12.

This model starts by selecting an IT function, which satisfies property TP1 (the range of

chooseIT corresponds to the 6 IT functions satisfying TP1). Afterwards, it selects three

operations o1, o2 and o3, and performs the transformations needed to verify TP2. Function

IT2(o1, o2, o12) applies the selected IT function to o1 with regard to o2 and returns the result

of this transformation in o12. Finally, the model calls function VerifyTP2. The control aims

to force to choose the appropriate IT function so as to satisfy property TP2. The control
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Table 3.1 IT functions supplied by Uppaal-Tiga for TP1 and classical signatures of update
operations

o1 o2 Cnd(p1, p2, c1, c2) IT (o1, o2) IT (o2, o1)

Ins(p1, c1) Ins(p2, c2) p1 < p2 Ins(p1, c1) Ins(p2 + 1, c2)
Ins(p1, c1) Ins(p2, c2) p1 = p2 ∧ c1 < c2 Ins(p1 + 1, c1) Ins(p2, c2)
Ins(p1, c1) Ins(p2, c2) p1 = p2 ∧ c1 < c2 Ins(p1, c1) Ins(p2 + 1, c2)
Ins(p1, c1) Ins(p2, c2) p1 = p2 ∧ c1 = c2 Ins(p1 + 1, c1) Ins(p2 + 1, c2)
Ins(p1, c1) Ins(p2, c2) p1 = p2 ∧ c1 = c2 Ins(p1, c1) Ins(p2, c2)
Ins(p1, c1) Ins(p2, c2) p1 = p2 ∧ c1 = c2 Nop() Nop()

Del(p1) Del(p2) p1 < p2 Del(p1) Del(p2 − 1)
Del(p1) Del(p2) p1 = p2 Del(p1 − 1) Del(p2 − 1)
Del(p1) Del(p2) p1 = p2 Del(p1 + 1) Del(p2 + 1)
Del(p1) Del(p2) p1 = p2 Del(p1) Del(p2)
Del(p1) Del(p2) p1 = p2 Nop() Nop()

Ins(p1, c1) Del(p2) p1 < p2 Ins(p1, c1) Del(p2 + 1)
Ins(p1, c1) Del(p2) p1 = p2 Ins(p1, c1) Del(p2 + 1)

Del(p1) Ins(p2, c2) p1 < p2 Del(p1) Ins(p2 − 1, c2)
Del(p1) Ins(p2, c2) p1 = p2 Del(p2 + 1) Ins(p1, c1)

objective is specified by the CTL formula AG TP2, where TP2 is a boolean variable whose

value is true while the property TP2 is satisfied. This variable is set to false by the function

VerifyTP2 if IT (IT (o3, o1), IT (o2, o1)) 6= IT (IT (o3, o2), IT (o1, o2)).

Uppaal-Tiga concludes that the property AG TP2 cannot be forced, which means that

there is no strategy to force property TP2. In other words, there is no IT function, based

on classical parameters of delete and insert operations, which satisfies both TP1 and TP2.

We investigated why a consistent IT function does not exist for the basic parameters of

delete and insert operations. This investigation led to the identification of two symbolic

pairwise scenarios which prevent a consistent IT function from being obtained. We report

in Figure 3.13 and Figure 3.14 these two pairwise sequences named scenario 1 and scenario

2, respectively. For scenario 1, to verify TP2, the performed transformations are:

o21 = IT (o2, o1) = IT (Ins(p1, c2), o1) = Ins(p1, c2),

o12 = IT (o1, o2) = IT (Del(p1), Ins(p1, c2)) = Del(p1 + 1),

o31 = IT (o3, o1) = Ins(p1, c3),

o32 = IT (o3, o2) = Ins(p1 + 2, c3),

IT (o32, o12) = IT (Ins(p1 + 2, c3), Del(p1 + 1)) = Ins(p1 + 1, c3) and IT (o31, o21) =

IT (Ins(p1, c3), Ins(p1, c2)).

For the last transformation, we have different possibilities (see Table 3.1). To satisfy TP2,

we must choose IT (Ins(p1, c3), Ins(p1, c2)) = Ins(p1 + 1, c3).

For scenario 2, the performed transformations are:

o21 = IT (o2, o1) = Ins(p1, c2),
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o12 = IT (o1, o2) = Del(p1),

o31 = IT (o3, o1) = Ins(p1, c3),

o32 = IT (o3, o2) = Ins(p1, c3),

IT (o32, o12) = IT (Ins(p1, c3), Del(p1)) = Ins(p1, c3) and IT (o31, o21) =

IT (Ins(p1, c3), Ins(p1, c2)).

To satisfy TP2, for the last operational transformation, we must use

IT (Ins(p1, c3), Ins(p1, c2)) = Ins(p1, c3).

Consequently, a consistent IT function, if it exists, must have additional parameters in

its operation signatures. We have seen, in the previous section, different IT functions based

on extending the insert signature with priority, issuer site, initial position or sets of delete

operations before and after the inserting position. We have provided for each IT function

a divergent scenario violating either TP1 or TP2. It means that the suggested additional

parameters are insufficient or inappropriate to ensure convergence. Indeed, adding priority

(as in Ellis’s IT) or owner identifier (as in Ressel’s IT) to the insert signature fails to ensure

convergence for scenarios 1 and 2. Scenario 1 violates TP1 for Ellis’s IT (see Figure 3.6).

Scenario 2 violates TP2 for Ressel’s IT (see Figure 3.9). For Suleiman’s IT and Imine’s IT,

scenarios 1 and 2 satisfy TP1 and TP2 but the added parameters introduce other cases of

divergence (see Figure 3.8 and Figure 3.10). All these failed tentatives show that designing

a consistent IT function is a hard task.

The main difference between both scenarios resides in the position of the deleted symbol

relatively to the symbols inserted by o2 and o3 (see Figure 3.13 and Figure 3.14). In scenario

1, the deleted symbol is before the inserting position of o3, whereas, in scenario 2, it is before

the inserting position of o2. Extending the signature of the insert operation with the number

of symbols deleted before its position allows the definition of appropriate transformations so

as both scenarios 1 and 2 satisfy TP1 and TP2 (see Figure 3.15 and Figure 3.16). Indeed,

in scenario 1, the symbol of o31 = IT (o3, o1) = Ins(p1, c3, 1) should precede the one of o21 =

Ins(p1, c2, 0), as o31 has the biggest number of symbols deleted before its position (1 > 0).

In scenario 2, o21 = IT (o2, o1) = Ins(p1, c2, 1) has the greatest number of symbols deleted

before its position. Its symbol should be inserted after the one of o31 = Ins(p1, c3, 0). The

idea of our IT function is to use this extra parameter to deal with conflicting operations. In

the following, we propose based on this idea an IT function and show formally its consistency.
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Figure 3.14 Scenario 2
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Figure 3.15 Applying our IT to scenario 1
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Figure 3.16 Applying our IT to scenario 2
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3.4 A consistent IT function

3.4.1 Extending the insert signature with an extra parameter

We propose to add a new parameter, named nd, to the insert operation signature. This

extra parameter is filled with the number of symbols deleted before the inserting position.

When an insert operation o is generated, its parameter nd is set appropriately to the number

of symbols deleted before the position of o. Afterwards, this parameter is incremented

whenever it is transformed with regard to a delete operation whose position is before its

inserting position.

Définition 3.1 Let S be a sequence of operations executed on the shared document before

generating an insert operation o. Let p be the inserting position of o, we denote ND(S, p)

the number of symbols deleted before p by the sequence S. The parameter nd of o set to

ND(S, p) is inductively defined as follows:

ND(S, p) =



















































0 if S = []

ND(S ′, p) if S = S ′ • [o′] ∧ p < p′

nd′ if S = S ′ • [Ins(p′, c′, nd′)] ∧ p = p′

ND(S ′, p− 1) if S = S ′ • [Ins(p′, c′, nd′)] ∧ p > p′

ND(S ′, p+ 1) + 1 if S = S ′ • [Del(p′)] ∧ p ≥ p′

where o′ ∈ {Ins(p′, c′, nd′), Del(p′)}

Intuitively, if S is empty, it is trivial that there is no symbol deleted by S. Then,

ND([], p) = 0. For S = S ′ • [Ins(p′, c′, nd′)], the symbol of Ins(p′, c′, nd′) is inserted at

position p′. If p < p′, the execution of Ins(p′, c′, nd′) does not affect the part before position

p′ (i.e., ND(S, p) = ND(S ′, p)). If p = p′, the symbol c is inserted at position p = p′, shifts

c′ to position p+1 but does not affect the number of symbols deleted before position p′ (i.e.,

ND(S, p) = nd′). If p > p′, the symbol at position p− 1 before executing Ins(p′, c′, nd′) will

be shifted to position p (i.e., ND(S, p) = ND(S ′, p−1)). Similarly, for S = S ′ • [Del(p′)], the

execution of Del(p′) will delete the symbol at position p′. If p < p′, the execution of Del(p′)

does not affect the part before position p′ (i.e., ND(S, p) = ND(S ′, p)). Otherwise, symbols

deleted before p by S are symbols deleted before p+ 1 by S ′ plus the one deleted by Del(p′)

(i.e., ND(S, p) = ND(S ′, p+ 1) + 1).

As an example, let us compute the number of symbols deleted before position 2, by

the sequence [Del(2); Ins(2, a); Ins(1, b)] (i.e., ND([Del(2); Ins(2, a); Ins(1, b)], 2)). This
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number is equal to the number of deleted symbols by [Del(2); Ins(2, a)] before posi-

tion 1, because Ins(1, b) will shift the symbol at position 1 to position 2. Therefore,

ND([Del(2); Ins(2, a); Ins(1, b)], 2) = ND([Del(2); Ins(2, a)], 1). The number of deleted

symbols by [Del(2); Ins(2, a)] before position 1 is equal to ND([Del(2)], 1) as Ins(2, a) does

not affect symbols before position 2. Finally, since 1 < 2, it follows that ND([Del(2)], 1) =

ND([], 1) = 0. Therefore, there is no symbol deleted by [Del(2); Ins(2, a); Ins(1, b)] before

position 2. Consider now the sequence [Ins(2, a);Del(3); Ins(1, b)], which is equivalent to

the previous one. Let us compute ND([Ins(2, a);Del(3); Ins(1, b)], 2), using Definition 3.1:

ND([Ins(2, a);Del(3); Ins(1, b)], 2) = ND([Ins(2, a);Del(3)], 1) =

ND([Ins(2, a)], 1) = ND([], 1) = 0. Note that, the number of deleted symbols before position 2 is

the same for the two equivalent sequences.

Since in OT, operations are, in general, executed after integration in different orders,

to ensure consistency, our computation procedure of ND should give the same result for

all equivalent sequences and any position p (i.e., ND(S, p) = ND(S ′, p), for any pair of

equivalent sequences S and S ′). We first define our IT function then we establish some nice

properties of ND which will be useful to show consistency of our IT function.

3.4.2 Our IT function

IT(Ins(p1, c1, nd1), Ins(p2, c2, nd2)) =



























Ins(p1, c1, nd1) if p1 < p2 ∨ (p1 = p2 ∧ nd1 < nd2)

∨(p1 = p2 ∧ nd1 = nd2 ∧ c1 ≤ c2)

Ins(p1 + 1, c1, nd1) if p1 > p2 ∨ (p1 = p2 ∧ nd1 > nd2)

∨ (p1 = p2 ∧ nd1 = nd2 ∧ c1 > c2)

IT(Ins(p1, c1, nd1), Del(p2))=







Ins(p1, c1, nd1) if p1 ≤ p2

Ins(p1 − 1, c1, nd1 + 1) otherwise

IT(Del(p1), Ins(p2, c2, nd2)) =







Del(p1) if p1 < p2

Del(p1 + 1) otherwise
IT(Del(p1), Del(p2)) =



















Del(p1) if p1 < p2

Del(p1 − 1) if p1 > p2

Nop() otherwise

Figure 3.17 The proposed IT function

In our IT function, the signatures of the insert and delete operations are Ins(p, c, nd) and

Del(p), respectively, where p is a position, c is a symbol and nd is the number of symbols

deleted before position p. The conflicting situations between two concurrent insert operations

are handled using their extra parameters nd, in a similar way as in other IT functions. More

precisely, when transforming a pair of insert operations having the same current position, their

parameters nd are first compared in order to recover the position relation at the generation



56

phase. If their parameters nd are equal, then their symbols are compared to tie-break an

eventual conflict. The IT function proposed here is reported at Figure 3.17.

3.4.3 Relationships between positions and the extra parameters

We establish, in Lemma 1 and Theorem 1, some relationships between positions of in-

sert operations generated on the same state and their parameters nd. We first suppose, in

Lemma 1, that the operations are generated after executing the same sequence of operations.

Then, we consider, in Theorem 1, the case where the operations are generated after execut-

ing different but equivalent sequences (i.e., they consist of the same set of original operations

executed, after integration, in different orders). Intuitively, these relationships mean that for

any pair of insert operations generated on the same state, the order relation of their positions

is the same as the order relation of their extra parameters nd.

Lemma 1 Let o1 = Ins(p1, c1, nd1) and o2 = Ins(p2, c2, nd2) be two insert operations gen-

erated on the same state, just after executing the same sequence of operations S. Then:

p1 < p2 ⇒ nd1 ≤ nd2.

Proof 1 By definition, nd1 = ND(S, p1) and nd2 = ND(S, p2). We show by induction

on the length of S that p1 < p2 ⇒ ND(S, P1) ≤ ND(S, P1). For S = [], by definition,

ND(S, p1) = ND(S, p2). For S = S ′ • [o′], assume that p1 < p2 ⇒ ND(S ′, p1) ≤ ND(S ′, p2)

and let us show that ND(S, p1) ≤ ND(S, p2). Let p′ be the position of o′. We consider 9

cases:

1) p1 < p2 < p′: By definition, ND(S, p1) = ND(S ′, p1), ND(S, p2) = ND(S ′, p2). By

assumption, ND(S ′, p1) ≤ ND(S ′, p2). Then ND(S, p1) ≤ ND(S, p2).

2) p1 < p2 = p′ and o′ = Ins(p′, c′, nd′): ND(S, p1) = ND(S ′, p1) and ND(S, p2) = nd′.

Since p1 < p′, it follows that ND(S ′, p1) ≤ nd′ and then ND(S, p1) ≤ ND(S, p2).

3) p1 < p2 = p′ and o′ = Del(p′): ND(S, p1) = ND(S ′, p1) and

ND(S, p2) = ND(S ′, p2 + 1) + 1. Then ND(S, p1) ≤ ND(S, p2).

4) p1 < p′ < p2 and o′ = Ins(p′, c′, nd′): ND(S, p1) = ND(S ′, p1) and ND(S, p2) =

ND(S ′, p2 − 1). Then ND(S, p1) ≤ ND(S, p2).

5) p1 < p′ < p2 and o′ = Del(p′): ND(S, p1) = ND(S ′, p1) and

ND(S, p2) = ND(S ′, p2 + 1) + 1. Then ND(S, p1) ≤ ND(S, p2).

6) p1 = p′ < p2 and o′ = Ins(p′, c′, nd′): ND(S, p1) = nd′ and ND(S, p2) = ND(S ′, p2 − 1).

Since p′ ≤ p2 − 1, it follows that nd′ ≤ ND(S ′, p2 − 1) and then ND(S, p1) ≤ ND(S, p2).

7) p1 = p′ < p2 and o′ = Del(p′): ND(S, p1) = ND(S ′, p1 + 1) + 1 and ND(S, p2) =

ND(S ′, p2 + 1) + 1. It follows that ND(S, p1) ≤ ND(S, p2).

8) p′ < p1 < p2 and o′ = Ins(p′, c′, nd′): ND(S, p1) = ND(S ′, p1 − 1) and ND(S, p2) =



57

ND(S ′, p2 − 1). Then ND(S, p1) ≤ ND(S, p2).

9) p′ < p1 < p2 and o′ = Del(p′): ND(S, p1) = ND(S ′, p1 + 1) + 1 and ND(S, p2) =

ND(S ′, p2 + 1) + 1. Then ND(S, p1) ≤ ND(S, p2).

Theorem 1 Let o1 = Ins(p1, c1, nd1) and o2 = Ins(p2, c2, nd2) be two insert operations

generated on the same state after executing two different but equivalent sequences of operations

S1 and S2. Then: 1) p1 = p2 ⇒ nd1 = nd2 and 2) p1 < p2 ⇒ nd1 ≤ nd2.

Proof 2 By definition nd1 = ND(S1, p) and nd2 = ND(S2, p).

1) By assumption, sequences S1 and S2 consist of the same set of original operations executed,

after integration, in two different orders. The different execution orders can be obtained by

successive pairwise permutations of concurrent operations. If one permutation of concurrent

operations preserves the value given for the number of deletes, then any sequence of such

swaps preserve also this value. As a result, it is sufficient to consider only the case of one

permutation: S1 = S • [o1; o21] • S ′ and S2 = S • [o2; o12] • S ′, where o21 = IT (o2, o1)

and o12 = IT (o1, o2). So, to show that ND(S1, p) = ND(S2, p), it suffices to show that

ND(S • [o1; o21], p) = ND(S • [o2; o12], p). Table 3.3 reports values of ND(S • [o1; o21], p) and

ND(S • [o2; o12], p) for every transformation case (see Table 3.2). They are equal for each

transformation case.

2) According to Lemma 1, if p1 < p2 then ND(S1, p1) ≤ ND(S1, p2). Part 1) of Theorem

1 states that ND(S1, p1) = ND(S2, p1) and ND(S1, p2) = ND(S2, p2). It follows that:

p1 < p2 ⇒ ND(S1, p1) ≤ ND(S2, p2).

Concretely, these nice relationships established above ensure some consistency to the

computation procedure of ND given in Definition 3.1. Indeed, all insert operations with the

same position, generated on the same state at different sites, will have the same parameter nd,

even if this state has been reached by different but equivalent sequences. Furthermore, if the

inserting position p1 of an operation o1 is on the left of the inserting position p2 of another

operation o2, generated on the same state, then the number of symbols deleted before p1

is less or equal to the number of symbols deleted before p2 (i.e., nd1 ≤ nd2). Note that

nd1 = nd2 in case there is no deleted symbol between p1 and p2, including position p1. This

extra parameter seems then to be appropriate to handle conflicting operations.

Note that the above theorem is very important in the sense that it enables us to avoid

recomputing the parameter nd of an insert operation in the remote sites. It suffices to

compute this parameter when the insert operation is generated and then include it in the

operation sent to all other sites.
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Table 3.2 Transformation cases for IT (o1, o2) and IT (o2, o1)

k IT cases for IT (o1, o2) and IT (o2, o1)

0 p1 < p2
1 p1 > p2
2 o1 = Ins(p1, c1, nd1) ∧ o2 = Ins(p2, c2, nd2) ∧ p1 = p2 ∧ nd1 = nd2 ∧ c1 < c2
3 o1 = Ins(p1, c1, nd1) ∧ o2 = Ins(p2, c2, nd2) ∧ p1 = p2 ∧ nd1 = nd2 ∧ c1 > c2
4 o1 = Ins(p1, c1, nd1) ∧ o2 = Ins(p2, c2, nd2) ∧ p1 = p2 ∧ nd1 < nd2
5 o1 = Ins(p1, c1, nd1) ∧ o2 = Ins(p2, c2, nd2) ∧ p1 = p2 ∧ nd1 > nd2
6 o1 = Ins(p1, c1, nd1, s1) ∧ o2 = Ins(p2, c2, nd2, s2) ∧ p1 = p2 ∧ nd1 = nd2 ∧ c1 = c2
7 (o1 = Del(p1) ∨ o2 = Del(p2)) ∧ p1 = p2

Table 3.3 Computing ND(S • [o1; o21], p) and ND(S • [o2; o12], p)

Transformation cases ND(S • [o1; o21], p) ND(S • [o2; o12], p)

Ins, Ins, k ∈ {0, 2, 4, 6}, nd12 = nd1, nd21 = nd2







































ND(S, p) if p < p1

nd1 if p = p1

ND(S, p− 1) if p1 < p ≤ p2

nd21 if p = p21

ND(S, p− 2) if p > p21







































ND(S, p) if p < p1

nd12 if p = p1

ND(S, p− 1) if p1 < p ≤ p2

nd2 if p = p21

ND(S, p− 2) if p > p21

Ins, Ins, k ∈ {1, 3, 5}, nd12 = nd1, nd21 = nd2







































ND(S, p) if p < p2

nd21 if p = p2

ND(S, p− 1) if p2 < p ≤ p1

nd1 if p = p12

ND(S, p− 2) if p > p12







































ND(S, p) if p < p2

nd2 if p = p2

ND(S, p− 1) if p2 < p ≤ p1

nd12 if p = p12

ND(S, p− 2) if p > p12

Del, Del, k = 0



















ND(S, p) if p < p1

ND(S, p+ 1) + 1 if p1 ≤ p < p21

ND(S, p+ 2) + 2 if p ≥ p21



















ND(S, p) if p < p1

ND(S, p+ 1) + 1 if p1 ≤ p < p21

ND(S, p+ 2) + 2 if p ≥ p21

Del, Del, k = 1



















ND(S, p) if p < p2

ND(S, p+ 1) + 1 if p2 ≤ p < p12

ND(S, p+ 2) + 2 if p ≥ p12



















ND(S, p) if p < p2

ND(S, p+ 1) + 1 if p2 ≤ p < p12

ND(S, p+ 2) + 2 if p ≥ p12

Del, Del, k = 7 ND(S • [o1], p) ND(S • [o2], p)

Ins, Del, k ∈ {0, 7}



























ND(S, p) if p < p1

nd1 if p = p1

ND(S, p− 1) if p1 < p ≤ p2

ND(S, p) + 1 if p ≥ p12



























ND(S, p) if p < p1

nd12 if p = p1

ND(S, p− 1) if p1 < p ≤ p2

ND(S, p) + 1 if p ≥ p12

Ins, Del, k = 1



























ND(S, p) if p < p2

ND(S, p+ 1) + 1 if p2 ≤ p < p1

nd1 + 1 if p = p12

ND(S, p) + 1 if p ≥ p1



























ND(S, p) if p < p2

ND(S, p+ 1) + 1 if p2 ≤ p < p1

nd12 if p = p12

ND(S, p) + 1 if p ≥ p1
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3.4.4 Proof of consistency

To prove consistency, it suffices to show that our IT satisfies both properties TP1 and

TP2. In [Imine et al. (2006)], the authors proposed a formal framework for modelling and

verifying IT functions with algebraic specifications. For checking the properties TP1 and

TP2, they used an automatic theorem proving. However, this theorem proving approach

has some shortcomings: (i) the model of the system is sound but not complete w.r.t. TP1

and TP2 (i.e., it does not guarantee that the violation of property TP1 or TP2 is really

feasible); (ii) there is no guidance to understand the counterexamples (when the properties

are not verified); (iii) it requires some interaction (by injecting new lemmas) to complete

the verification. In [Boucheneb et al. (2010)], the authors addressed these drawbacks and

proposed a symbolic model-checking technique based on difference bound matrices (DBMs)

to verify whether an IT function satisfies properties TP1 and TP2. The verification of these

properties is performed automatically and symbolically without carrying out different copies

of the shared object and executing explicitly the updates. Moreover, unlike the approach

proposed in [Imine et al. (2006)], the approach proposed in [Boucheneb et al. (2010)] provides

faisable and complete symbolic counterexamples. As in [Boucheneb et al. (2010)], we use a

symbolic model-checking technique, where the shared objects are abstracted and their update

operations are handled symbolically using difference bound matrices (DBMs). In our context,

DBMs are used to encode sets of constraints of the form pi − pj ≤ c, where pi, pj are integer

variables and c is an integer constant. From the practical point of view, a DBM is a square

matrix P indexed by variables. Each entry Pij represents the atomic constraint pi−pj ≤ Pij .

If there is no upper bound on pi − pj with i 6= j, Pij is set to ∞. Entry Pii is set to 0.

Constraints pi− pj = c and pi− pj ≥ c are considered as abbreviations of atomic constraints.

In the following, we use invariantly atomic constraints or their abbreviations.

A set of constraints is consistent iff they represent a non empty domain. Although the

same non empty domain may be encoded by different DBMs, they have a canonical form.

The canonical form of a DBM is the representation with tightest bounds on all differences

between variables, computed by propagating the effect of each entry through the DBM.

Canonical forms are much more useful to verify consistency and test of equivalence.

Two sets of atomic constraints are equivalent iff the canonical forms of their DBMs are

identical. To verify the consistency of a DBM (i.e., a set of atomic constraints), it suffices

to apply a shortest-path algorithm and to stop the algorithm as soon as a negative cycle

is detected. The presence of negative cycles means that the set of atomic constraints is

inconsistent.

The model depicted at Figure 3.18 is used to verify whether or not our IT function satisfies

properties TP1 and TP2. The model starts by selecting types of the 3 update operations o1, o2
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InitState(op1,op2,op3)

FixCase(o31,o21,k), 
IT(k,o31,o21,o3121)

FixCase(o1,o2,k),
kk=SymCase(k), 
IT(k,o1,o2,o12), 
IT(kk,o2,o1,o21),
VerifyTP1() FixCase(o3,o2,k),

IT(k,o3,o2,o32)
FixCase(o3,o1,k),
IT(k,o3,o1,o31)

FixCase(o32,o12,k),
IT(k,o32,o12,o3212),
VerifyTP2()

k:int[0,7]
k:int[0,7]

k:int[0,7]

k:int[0,7]

k:int[0,7]
op1 : op_t, 
op2 : op_t, 
op3 :op_t

SelectCase(o3,o2,k)SelectCase(o3,o1,k)

SelectCase(o1, o2, k)

SelectCase(o31,o21,k)

SelectCase(o32,o12,k)s0

s2

s1
s6

s5

s3 s4

Figure 3.18 Automaton used to verify TP1 and TP2

and o3 and initializing the DBMs of their parameters (initial DBMs are free from constraints).

This is the role of the edge (s0, s1). Afterwards, the model successively selects for each oper-

ational transformation, a feasible transformation case among the 8 cases shown at Table 3.2,

fixes and applies the transformation case, and verifies TP1 or TP2 as soon as the needed

transformations are computed. For instance, the edge (s1, s2) selects a transformation case

k for o1 with regard to o2 (SelectCase(o1, o2, k)), fixes the selected case (FixCase(o1, o2, k))

and applies it to transform o1 with regard to o2. The symmetrical case kk = SymCase(k)

is used to transform o2 with regard to o1. After these transformations (IT (k, o1, o2, o12) and

IT (kk, o2, o1, o21)), the property TP1 is verified. Concretely, function FixCase(oi, oj, k) adds

to the DBMs the constraints corresponding to the transformation case k to be applied to oi

with regard to oj. Function IT (k, oi, oj , oij) applies the transformation case k to transform

oi with regard to oj and returns the transformation result in oij . Functions verifyTP1() and

verifyTP2() set in boolean variables TP1 and TP2 the results of verification of properties

TP1 and TP2, respectively. Function verifyTP1() verifies whether or not the domain of

P satisfies one of the conditions of equivalence given in Table 3.4 4 accordingly to the types

of operations o12 and o21. For instance, if o12 and o21 are insert operations, TP1 is satis-

fied iff P = P ∪ {p12 = p1 ≤ p2 = p21 − 1} or P = P ∪ {p21 = p2 ≤ p1 = p12 − 1} or

([o1] ≡ [o2] ∧ [o12] ≡ [o21]).

Function verifyTP2() verifies whether or not operations o3121 and o3212 are identical, i.e.,

they are of the same type and have the same parameters. In case o3121 and o3212 are not of

type Nop, then they have identical position parameter iff P = P ∪ {p3121 = p3212}, which

means that p3121 = p3212 holds in the whole domain of P .

For example, suppose that 3 insert operations are selected by the edge (s0, s1). In this

case, 3 DBMs P , Nd and C over {p1, p2, p3}, {nd1, nd2, nd3} and {c1, c2, c3} are created. The

initial domain of each DBM is N
3, N being the set of non negative integers. Suppose now

that for the operational transformation of o1 with regard to o2, the selected k is 2. The

4. We suppose that if o12 (resp. o21) is an insert operation then c12 = c1 (resp. c21 = c2).
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operational transformation case of o2 with regard to o1 is then kk = SymCase(2) = 3. In

this case, FixCase(o1, o2, k) adds sets of constraints {p1 = p2}, {nd1 = nd2} and {c1 < c2}

to P , Nd and C, respectively (see Table 3.2). The operational transformations of o1 with

regard to o2 and o2 with regard to o1 (i.e., IT (k, o1, o2, o12), IT (kk, o2, o1, o21)) create two

insert operations o12 and o21, add to P , Nd and C sets of constraints {p12 = p1, p21 = p2+1},

{nd12 = nd1, nd21 = nd2} and {c12 = c1, c21 = c2}, respectively. Finally, verifyTP1() states

that the property TP1 is satisfied. Afterwards, the same procedure is repeated for computing

the operational transformations needed to verify TP2 (i.e., o3121 = o3212).

We have used the tool UPPAAL [Larsen et al. (1997)] to verify whether or not our model

satisfies the safety properties AG TP1 and AG TP2. UPPAAL states that the first property

is satisfied (i.e., the proposed IT satisfies TP1). It concludes however that the second property

is not satisfied. The only counterexamples provided are scenarios where there are at least

two insert operations o1 = Ins(p1, c1, nd1) and o2 = Ins(p2, c2, nd2) generated at the same

state s.t. p1 ≤ p2∧nd1 > nd2 or p1 ≥ p2∧nd1 < nd2. According to Lemma 1 and Theorem 1

such scenarios are infeasible. When we exclude such infeasible scenarios, UPPAAL concludes

that property TP2 is satisfied. Therefore, the proposed IT satisfies TP1 and TP2.

Table 3.4 Condition of equivalence of [o1; o21] and [o2; o12]

Type of o12 Type of o21 [o1; o21] ≡ [o2; o12] Type of o12 Type of o21 [o1; o21] ≡ [o2; o12]

Ins Ins / Del p12 = p1 ≤ p2 = p21 − 1 Ins / Del Ins p21 = p2 ≤ p1 = p12 − 1
Del Ins / Del p12 = p1 < p2 = p21 + 1 Ins / Del Del p21 = p2 < p1 = p12 + 1
- - [o1] ≡ [o2] ∧ [o21] ≡ [o12]

3.4.5 Comparison

In this section, we give comparison between our IT function and the function given in [Os-

ter et al. (2006a)]. It is well known that the main issue for satisfying TP2 is due to the

semantics of the delete operation. Recall that this operation removes an element at a given

position and decreases the length of the shared document. That is why, in [Oster et al.

(2006a)], the authors tackled the TP2 problem by changing the semantics of the deletion

operation. Indeed, operation Del(p) does not remove the element at position p but makes

it invisible. This new semantics leads the authors to manage two distinct states, called view

and data models. The view model is seen by the user and contains only visible characters

while the data model contains all characters: characters displayed in the view model and the

hidden characters (called tombstones) resulting from delete operations. Any generated up-

date operation involves two updates from view and data models, respectively. As illustrated

in Figure 3.19, consider the operation Ins(3, y) related to the view model. The corresponding
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position in the data model is processed by finding out the location of the 3-th visible charac-

ter, after skipping each possible hidden character encountered. The search process relies on 3

visible characters. Hence, the corresponding operation related to the data model is Ins(5, y).

The hidden characters h and n located at position 1 and 4, respectively in the data model,

are skipped.

V iew a b y

  ❆
❆❆

❆❆
❆❆

❆❆
❆ c Ins(3, y)

��

ww

Model 6 h a b 6 n y c Ins(5, y)bb

Figure 3.19 View and Model states (Figure taken from [Oster et al. (2006a)]).

Table 3.5 Complexity comparison.

Operation TTF’s solution [Oster et al. (2006a)] Our solution

O(m) where m is the length of the data model. O(n) where n is the length of the local history
Insert The size of the data model will never decrease
Delete O(m) where m is the length of the data model O(1)

Although the authors presented a correct set of transformation functions, the length of

the sequence is always increased (but never decreased), as the new semantics of deletion

operation has no effect on the document length. In addition, their solution needs some extra

procedures to manage two distinct states due to the hidden characters, namely: the view

(the state seen by the user) and the model (the persistent state). Unlike this situation,

our proposed transformation function considers the natural semantics of deletion operation

as suggested by Ellis et al. in [Ellis et Gibbs (1989)] and our deletion operation removes

physically the character and reduces the document length.

Our transformation function is based on the parameter nd filled with the number of

deleted symbols to maintain consistency without any particular data model besides. As for

complexities at generation time, a comparison is given in Table 3.5. Even though, the overall

complexity is linear for both approaches. Unlike TTF [Oster et al. (2006a)], it should be

noted that for our approach, the complexity of delete operation is always constant. Note also

that the parameter nd is computed at the generation step thanks to Theorem 1, there is no

need to recompute it when it is received by a remote site.

In Wu et al. [Wu et Pui (2009)], the authors have combined CRDT [Preguiça et al.

(2009),Weiss et al. (2010)] with TTF [Oster et al. (2006a)]. Their approach is based on

a data structure called Partial Persistent Sequences (PPS), where each item of the shared

object has a unique position identifier, i.e., a rational number, called position stamp. It is
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then always possible to allocate a new position stamp to any item to be inserted into the

object. As in TTF [Oster et al. (2006a)], when an item is removed from the object, it is

hidden and its position stamp is mapped to an empty item. To prevent situations where

different users compute the same position concurrently, Wu et al. have proposed in [Wu

et al. (2010)] to allocate in advance, to each user, sub-ranges of position identifiers. The

range between two position identifiers is partitioned into sub-ranges, dividing the distance by

the number of users. Between two given position stamps, a unique sub-range is assigned to

each user. Even if the management of the position identifiers is improved, it remained non-

optimal due to waste of the identifier space such as some ranges could be reserved but never

used. In addition, the identifier space will increase rapidly. To deal with the rebalancing

issue, Wu et al. have proposed in [Wu et al. (2010)] to remove the position identifiers of

deleted items followed by a computation of new position stamps values for the non-removed

items. As any CRDT, this approach does not need to satisfy the property TP2, however,

its correctness depends on the uniqueness of position identifiers. The authors do not show

clearly how to achieve the uniqueness of position identifiers.

3.5 Conclusion

In this paper, we have investigated, using the controller synthesis technique, whether

or not there exist IT functions which ensure data convergence, based on the operational

transformation framework. In this framework, an IT function ensures convergence iff it

satisfies two properties TP1 and TP2. We have shown that there are some IT functions

for the basic signatures of insert and delete operations, which satisfy TP1 but there is no

IT function, which satisfies TP2. We have then identified two pairwise scenarios, which

prevent to get a consistent function IT (with no one-to-many relation). These scenarios

were useful to find an appropriate extra parameter for the insert operation and to define,

based on this extra parameter, a new IT. The role of the extra parameter is to record the

number of deleted symbols before the inserting position. This parameter is computed when

the operation is generated and then updated whenever it is transformed against a delete

operation with smaller position.

The consistency of our IT function is formally proved by means of a symbolic model

checking technique, where all parameters of the update operations are handled symbolically

using difference bound matrices. Initially, the verification of properties TP1 and TP2 is

performed without imposing any relationship between parameters of the update operations

(i.e., an over-approximation of the effective model). It concludes that TP1 is satisfied but TP2

is not satisfied. The counterexamples provided for property TP2 are scenarios where there
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are at least two insert operations o1 = Ins(p1, c1, nd1) and o2 = Ins(p2, c2, nd2) generated

at the same state s.t. p1 ≤ p2 ∧ nd1 > nd2 or p1 ≥ p2 ∧ nd1 < nd2. According to Lemma

1 and Theorem 1 such scenarios are infeasible. When we exclude such infeasible scenarios,

the verification process concludes that property TP2 is satisfied. Therefore, the proposed IT

satisfies both TP1 and TP2.

In the near future, we will apply our IT to a specific system as peer-to-peer collaborative

editors and study performance issue. We also plan to investigate the existence of consistent

IT functions, in case of shared object with non linear structure, using the controller synthesis

and model checking techniques.

english



65

CHAPITRE 4

ARTICLE 2 : Specification and Verification using Alloy of Optimistic Access

Control for Distributed Collaborative Editors

Aurel Randolph § , Abdessamad Imine ¶, Hanifa Boucheneb§, and Alejandro Quintero§

otherlanguageenglish

Abstract

Distributed Collaborative Editors are interactive systems

where several and dispersed users edit concurrently shared documents. Generally, these

systems rely on data replication and use safe coordination protocol which ensures data

consistency even though the users’s updates are executed in any order on different copies.

Controlling access in such systems is a challenging problem, as they need dynamic access

changes and low latency access to shared documents. In [Imine et al. (2009)], a flexible

access control protocol is proposed ; it is based on replicating the shared document and

its authorization policy at the local memory of each user. To deal with latency and

dynamic access changes, an optimistic access control technique is used where enforcement of

authorizations is retroactive. However, verifying whether the combination of access control

and coordination protocols preserves the data consistency is a hard task since it requires

examining a large number of situations. In this paper, we specify this access control protocol

in the first-order relational logic with Alloy, and we verify that it preserves the correctness

of the system on which it is deployed in such a way that the access control policy is enforced

identically at all participating user sites and, accordingly, the data consistency remains still

maintained.

Keywords Access control policies, distributed collaborative editors, data consistency, for-

mal specification, formal verification, Alloy.
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4.1 Introduction

Distributed Collaborative Editors (DCE) enable several and dispersed users to form a

group for editing simultaneously shared documents, such as articles, wiki pages and program

source code (e.g. Google Docs). To achieve data availability, each user owns a local copy

of the shared documents. Thus, the collaboration is performed as follows : each user site’s

updates are locally executed in a non blocking manner and then are propagated to the other

sites in order to be executed on remote copies. Although being distributed applications, DCE

are specific in the sense they must consider human factors. Moreover, they are characterized

by the following features : (i) High local responsiveness : the system has to be as responsive

as its single-user editors [Ellis et Gibbs (1989),Sun et al. (1998),Sun et al. (2006)] ; (ii) High

concurrency : the users must be able to concurrently and freely modify any part of the shared

document at any time [Ellis et Gibbs (1989),Sun et al. (1998)] ; (iii) Consistency : the users

must eventually see a converged view of all copies [Ellis et Gibbs (1989), Sun et al. (1998)] ;

(iv) Scalability : a group must be dynamic in the sense that users may join or leave the

group at any time. Due to data replication and arbitrary exchange of updates, consistency

preservation is one of the most critical properties in DCE. Accordingly, each DCE is endowed

with Coordination Protocol (CP) to maintain globally consistent state.

Balancing the computing goals of collaboration and access control to shared information

is a challenging problem in DCE [Tolone et al. (2005)]. Indeed, interaction in collaborative

editors is aimed at making shared document available to all who need it, whereas access

control seeks to ensure this availability only to users with proper authorization. To preserve

the above cited DCE’s features and avoid a central authority, a flexible Access Control Protocol

(ACP) is proposed in [Imine et al. (2009)] where all updates will be checked at each user site

without resorting to a central authority. In this model, a user will own two copies : the

shared document and its authorization policies. This replication allows for high availability

since when users want to read or update the shared document, this manipulation will be

granted or denied by controlling only the local copy of the authorization policies. Due to

the out-of-order execution of the shared document’s updates and the authorization policy’s

updates, an optimistic approach is used that tolerates momentary violation of access rights

but then ensures the copies to be restored in valid states (by undoing invalid document’s

updates) w.r.t the stabilized access control policy.

To ensure a safe access control in DCE (i.e. permitting legal updates and rejecting illegal

updates on the shared document), a protocol stack is built by integrating an ACP on the

top of any CP based on data replication and update logging [Imine et al. (2009)]. If we

combine a correct CP (i.e. satisfying separately the consistency property) with an ACP : can
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we verify that the consistency property is preserved by the new protocol ? This verification

turns out a hard task and unmanageably complicated. Indeed, it requires examining a large

number of situations since the updates are performed in different orders on different copies

of the shared document and the authorization policy. Consequently, the verification of the

combination correctness must be assisted by an automatic checker tool.

Contributions. We propose here a model which specifies concisely the ACP and verify

the consistency property of any DCE integrating an ACP on the top of a consistent CP.

We use the first-order logic ”̀a la Alloy” to describe symbolically ACP and its environment.

This choice is motivated by the possibility to handle symbolically bounded and unbounded

variables such as queues of messages, logs, number of sites, number of operations generated

by each site, etc. The consistency property is also specified in Alloy language and verified by

Alloy analyzer, using a SAT-based bounded model checking. This technique is established as

a good alternative to the classical symbolic model checking using binary decision diagrams

(BDDs), as it can often handle much larger systems, by searching for counterexamples of

bounded length.

Outline. This paper is organized as follows : Section 4.2 presents the flexible access control

protocol. Section 4.3 is devoted to the formal specification of ACP and its environment.

Section 4.4 discusses related work. Finally, the conclusion is presented in Section 4.5.

4.2 Optimistic Access Control Protocol for DCE

Shared documents are objects whose state can be altered by a set of cooperative operations

generated by sites. For instance, a shared text document is modified by operations such as

inserting a new section, deleting an existing paragraph and replacing an old line by new one.

In [Imine et al. (2009)], an access policy is described as an indexed list of authorization rules,

where each rule is a quadruple 〈S,O,R, ω〉 with (i) S is set of subjects (sites or users), (ii) O

is a set of objects (e.g. paragraphs or chapters), (iii) is R a set of access rights (e.g. deleting

or updating paragraphs) and (iv) ω ∈ {−,+}. The sign “+” represents a right attribution

and the sign “−” represents a right revocation.

The state of the policy object can be altered by a set of administrative operations such

as adding and removing authorizations. Administrative operations are generated by the ad-

ministrator, at any time, and aimed to manage dynamically the right access to the shared

documents. These operations are next broadcast to other sites, in order to modify their local

copies of the policy object. Thus, on each site, cooperative operations are granted or denied

by using the local copy of the policy and applying the first-match semantics : when an opera-

tion o is generated, the system checks o against its authorizations one by one, starting from
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the first authorization and stopping when it reaches the first authorization l that matches o.

If no matching authorizations are found, o is rejected. Note that every local policy copy main-

tains a monotonically increasing version counter that is incremented by every administrative

operation performed on this copy.

The collaboration happens in optimistic approach and modifications could be applied in

different orders at different sites. The messages are assumed to be exchanged via secure and

reliable communication network : each message sent is received by each others without alte-

ration. The flow of messages exchanged during the collaboration is illustrated in Figure 4.1.

4.2.1 Generation of Local Cooperative Requests

Locally, each site can generate some cooperative operations. Each generated cooperative

operation is first checked against the local policy. If the operation is revoked then it is said

to be invalid and its execution is aborted. When the operation is granted, it is set to valid

status in the case of administrator site and to tentative status otherwise. The operation is then

performed immediately on the local copy of the shared document. A resulting cooperative

request is generated and attached with the number version of the policy copy on which the

operation is granted. This cooperative request is finally broadcast to other sites.

4.2.2 Reception of Remote Cooperative Requests

When a remote cooperative request is received, it is first stored in a dedicated queue

before being extracted. The request is extracted if it is causally-ready, when its attached

version number of policy is less or equal than the current version of the local policy and its

precedent cooperative request have been already integrated to the local copy of the shared

Figure 4.1 Flow of collaboration messages
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document. This mechanism is setup to ensure that the access control protocol preserves

the causality dependency with respect to precedent administrative requests and precedent

cooperative requests.

After its extraction, the remote cooperative request is checked against the local adminis-

trative log to verify whether or not it is granted. If the request is granted, its status is set to

valid, if the receiver is the administrator, otherwise, its status is tentative. If the receiver is

the administrator then the policy version is incremented and a validation request is generated

in order to broadcast it to other sites. The new version number is attached to the validation

request before its broadcasting. Once, the cooperative operation is performed on the shared

document with regard to the collaborative editor’s procedures.

4.2.3 Generation of Administrative Operations

To manage the access control, the administrator produces some access rules called ad-

ministrative operations. When an administrative operation is generated, the version number

is incremented for the administrator’s local policy, which is immediately updated by perfor-

ming on, the generated administrative operation. Once, an administrative request with the

corresponding new version number is generated and broadcast to other sites to enforce their

own policy.

4.2.4 Reception of Remote Administrative Requests

There exists two kinds of remote administrative request : validation request and access

rule based request. Each received remote administrative request is first stored in a dedicated

queue then, extracted when it is causally-ready. The administrative request is said to be

causally-ready if the value of its attached policy version number is the next value of the

version number of the local policy (the difference is one) and in case of validation request,

the corresponding cooperative operation is already executed on this site. Each extracted

access rule based request, is performed on the local policy. Thereafter, if the access rule is

restrictive, then all tentative cooperative operations, locally generated or received, which are

concerned by the rule with regard to the rights, are undone. For the extracted validation

request, the status of the corresponding cooperative operation is updated from tentative to

valid. At the end of the treatment of the administrative request, the version number of the

local policy is incremented.
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4.2.5 Verification Issues

The DCE consists of several sites. Each of them maintains the shared objects and its access

right policy, by generating, exchanging and performing some cooperative and administrative

operations. As the numbers of sites, cooperatives operations and administrative operations are

arbitrary, the queues of cooperative requests and administrative requests are unbounded. The

system is then infinite and parameterisable by the number of sites, the number of cooperative

operations to be generated by each site, and the number of administrative operations to be

generated by the administrator. On each site, the shared objects are modified with respect

to the local access right policy. Meanwhile, the local policy is enforced by taking into account

the administrative operations generated and broadcast by the administrator. Thus, if the

policy is not enforced identically at all sites, it can result in the security hole on the shared

objects by permitting illegal modifications or rejecting legal modifications. In addition, this

situation can lead to data inconsistency for the collaborative edition such as the document

can diverge at the end of the collaboration.
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Figure 4.2 Divergence caused by introducing administrative operations

For instance, consider a group composed of an administrator adm and two sites S1 and

S2. Initially, the three sites have the same shared document “abc” and the same policy object

where S1 is authorized to insert characters (see Figure 4.2). Suppose that adm revokes the

insertion right of S1 and sends this administrative operation to S1 and S2 so that enforce

their local policy copies. Concurrently S1 executes a cooperative operation Ins(1, x) to derive

the state “xabc” as it is granted by its local policy. When adm receives the S1’s operation,

it will be ignored (as it is not granted by the adm’s local policy) and then the final state

still remain “abc”. As S2 receives the S1’s insert operation before its revocation, he gets the



71

state “xabc” that will be unchanged even after having executed the revocation operation. We

are in presence of data inconsistency (the state of adm is different from the state of S1 and

S2) even though the policy object is same in all sites. In fact, the new policy object is not

uniformly enforced among all sites because of the out-of-order execution of administrative

and cooperative operations. Thus, security holes may be created. For instance some sites can

accept cooperative operations that are illegal with respect to the new policy (e.g. sites S1

and S2).

To solve this problem, the ACP applies the principles of optimistic security [Povey (2000)]

in such a way that the enforcement of the new policy may be retroactive with respect to

concurrent cooperative operations. In this case, only illegal operations are undone. For ins-

tance, Ins(1, x) as shown at 4.2 should be undone at S1 and S2 after the execution of the

revocation.

It appears important to verify that the ACP preserves the correctness of the collaborative

editing system on which it is deployed with regards to the security issues and data consistency.

For this purpose, the sets of legal (valid) cooperative operations must be identical at all sites,

when all generated and received cooperative and administrative operations are performed on

each site (stable state). Performing such a verification is tricky and hard to do manually. So,

the system must be automatically checked using formal methods.

4.3 Specification and Verification

Several model checking techniques have been proposed in the literature. These techniques

can be classified into explicit state model checker and Symbolic model checker. In explicit state

model checker [Holzmann (2004)], states, sets and relations are explicitly represented, whe-

reas, in symbolic model checker, they are implicitly represented using boolean logic formulas.

The category of symbolic model checker can be subdivided into BDD-based model checkers

[Cimatti et al. (2000)] and SAT-based bounded model checkers [Schaeffer-Filho et al. (2009)].

BDD-based model checking allows to prove by considering the whole state space of the mo-

del that some property is satisfied but it does not scale well in practice. SAT-based bounded

model checking is considered as a good alternative to BDD-based model checking. It is more

appropriate to find bugs in infinite systems. Its basic idea is to search for a counterexample in

traces whose length is bounded by some integer k [Frappier et al. (2010)]. If no bug is found

then k is increased until either a bug is found or the computer resource limits are reached.

We propose to use a SAT-based bounded model checker of the tool suite of Alloy 1, to verify

that ACP preserves consistency of DCE.

1. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models, [Online]. Available :
http://alloy.mit.edu/alloy/, (Accessed : 5 May 2013)

http://alloy.mit.edu/alloy/
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4.3.1 Alloy

Alloy 1 , is a SAT-based bounded model-checker whose specification language and analyzer

are inspired by Z notation [Woodcock et Davies (1996)] and SMV (Symbolic Model Verifier) 2.

The Alloy model consists of signatures, facts, functions and predicates denoted sig, fact, fun

and pred, respectively. Signatures describe the sets and relations used to specify the system

to be verified. Facts represent the constraints of the system that are always assumed to

hold. The expected properties of the system are expressed as assertions (constraints) denoted

assert. The Alloy analyzer is an automatic constraint solver which operates as an instance

finder for the specified model that form counterexamples to the assertions. To find such

an instance, Alloy proceeds by an exhaustive search over restricted scopes defined by the

user [Schaeffer-Filho et al. (2009)]. The scope means the maximum number of occurrences

assigned to each object of the model, but also means the maximum length of the execution

traces. The principle of searching instance is based on the small scope hypothesis which

states that an invalid assertion should have a small counterexample [Jackson (2006)]. The

instance found is reported as counterexample and is guaranteed to be valid. Unfortunately,

the failure of finding an instance should not be confused with its absence. Alloy is then useful

to specify infinite models and find bugs. The use of signatures and fields like object-oriented

programming classes increase its expressiveness [Pai et al. (2011)]. Moreover, Alloy analyzer

allows to use several SAT-solvers like SAT4J [Le Berre et Parrain (2010)], zChaff 3, MiniSAT 4,

Kodkod [Torlak et Dennis (2006)].

4.3.2 Formal Specification of ACP

The underlying access control model of ACP considers a set of subjects defined as users

(or sites) including the administrator, a set of objects denoting a part of or the whole shared

document, and a set of access rights. A policy is defined as a function that maps a set of

subjects and a set of objects to a set of access rights. On each site, the policy is indexed

with a version number which is incremented during the collaboration. In addition to that

fundamental components of the model, we have some operations generated and exchanged

in the system. There are cooperative operations with three kinds of status (tentative, valid,

invalid), access rules and validation requests as administrative requests. For simplification

1. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models,
Available : http://alloy.mit.edu/alloy/, (Accessed : 5 May 2013)

2. Canergie Mellon University, The SMV System,
Available : http://www.cs.cmu.edu/~modelcheck/smv.html, (Accessed : 5 May 2013)

3. Boolean Satis ?ability Research Group at Princeton, zChaff,
Available : http://www.princeton.edu/~chaff/zchaff.html, (Accessed : 5 May 2013)

4. Eén,Niklas and Sörensson, Niklas, The SMV System,
Available : http://minisat.se/, (Accessed : 5 May 2013)

http://alloy.mit.edu/alloy/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.princeton.edu/~chaff/zchaff.html
http://minisat.se/
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purpose, we consider that the set of objects represents the whole document. Then, it is not

necessarily to model the document. Our specification of the fundamental components of the

model is shown at Snippet 1. From line 1 to 3, we represent the subject. We declare an

abstract signature to represent the generic subject. It is extended to have cooperative site,

which is also extended to represent an administrative site. To manage the number of policy,

we create the signature SiteVersion.

The allowed cooperative operations performed on the shared document could be inserting,

deleting, updating, etc. This set of operation types is described with the signature oper t at

Snippet 2. At the same snippet, cooperative operations are represented from line 2 to 10.

Some constraints assumed always to hold are added from line 7. They express that the sender

of the operation must not receive it back, the operation has one type and is attached to a

version number of policy. To undo an operation we consider a new linked operation. It is

specified in our model with the signature UndoneOp. The status of cooperative operation is

represented by OpStatus with the three declinations.

1 abstract sig Site {}
2 sig CoopSite extends Site {}
3 one sig AdmSite extends Site {}

4 sig SiteVersion{}

Snippet 1: Specification of subjects

1 sig oper t{}//identify a type of operation : insert, delete, etc.
2 sig Coop {
3 from : lone Site, // Site that generates and sends the cooperative operation
4 to : set Site, // Intended recipient(s) of a cooperative operation
5 type :lone oper t,//Type of operation
6 vers : lone SiteVersion // Version of local policy which granted the operation
7 }{(from !=none) implies {
8 no from & to and to=Site-from and type !=none and vers !=none and
9 # to > 1 //Allow to have at least 2 sites in the system

10 } }
11 sig UndoneOp{
12 owner : lone Site,
13 linkedOp : lone Coop
14 } abstract sig OpStatus {}

15 one sig tentative, invalid, valid extends OpStatus {}

Snippet 2: Specification of cooperative operations

To deal with authorizations, we define a signature Authorization extended to have Plus for

right attribution and Minus for right revocation. The object representing the administrative

request is abstracted and called AdReq. It is extended in validation request and access rule,

denoted Val and Rule, respectively. In the relation Rule, rights are of the same type of
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cooperative operations (oper t). For instance we could have the right of inserting. Rights and

authorization (field signe) are mapped to the subject field to describe an access rule as shown

at Snippet 3.

1 abstract sig Authorization {}
2 one sig Plus, Minus extends Authorization {}
3 abstract sig AdReq
4 source : lone AdmSite, // Intended recipient(s) of an administrative request
5 dest : set Site, //Version of policy when generating the administrative request
6 vers : lone SiteVersion
7 }{(source !=none) implies{
8 no source&dest and dest=Site-source and vers !=none and
9 #dest>1 //Allow to have at least 2 receivers (sites) in the system

10 }}
11 sig Rule extends AdReq{
12 subject : some Site,
13 right : some oper t,
14 signe : one Authorization

15 } sig Val extends AdReq{op : lone Coop}{ op.from != source }

Snippet 3: Specification of administrative requests

In addition to these core elements of the model, we define a global state of the system which

consists of the state of each site. We called it SiteState. The state of each site is represented

by the last number version of its policy, the sending and receiving cooperative operations,

the sending and receiving administrative operations (only effective for the administrator), the

snapshot view of some queues, administrative and cooperative operations which are causally-

ready at the state. The corresponding signature is described as shown at Snippet 4. For the

transition system, we create a linear ordering over states by using the Alloy ordering utility

module (open util/ordering[SiteState] as sitesstates). This module is also used to manage the

version number of policy (open util/ordering[SiteVersion] as versOrder).

The dynamics of the system is specified using facts. Snippet 5 descibes the generation

of cooperative and administrative requests and their reception. We assume that when an

operation is sent by a site, it is received by others at the next state of the system. When the

cooperative and administrative requests are received, they are stored in appropriate queue

and are extracted when there are causally-ready. To define the causally-ready expressions we

use functions FcausallySeq andQcausallySeq for cooperative and administrative requests, res–

pectively. These functions are presented at Snippet 6. Once extracted, there are processed.

Snippets 7 and 8 present the processing of the causally-ready cooperative operation

and administrative request by a non-administrative site, respectively. The processing of a

causally-ready cooperative request by the administrative site is shown at snippet 9.

Several complementary constraints are defined to control the dynamics of the system.
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1 sig SiteState {
2 versions : Site − > one SiteVersion, // Version
3 CoopStatus : Site − > Coop− > OpStatus, //Status of all cooperative operations
4 sentCoop : Site − > lone Coop, // Cooperative operations sent in this state.
5 sentAdReq : AdmSite − > lone AdReq, // Administrative requests sent.
6 ReceivedCoop : Site − > set Coop,// Cooperative operations received.
7 ReceivedAdReq : Site − > set AdReq, // Administrative requests received.
8 F : Site − > (seq Coop),// Received cooperative operation’s queue.
9 Q : Site − > (seq AdReq),// Received administrative request’s queue.

10 H : (Site − > set Coop)+(Site − > set UndoneOp), //Cooperative log
11 L : Site − > (seq Rule), // Administrative log.
12 Vr : Site − > (seq Val), // Validation request log.
13 CoopCausallyReady : Site − > lone Coop, // Operations which are causally-ready.
14 AdCausallyReady : Site − > lone AdReq //Causally-ready administrative requests.

15 }

Snippet 4: Specification of the state of the system

1 fact GenerateCooperativeRequest{
2 all pre : SiteState-sitesstates/last, S :Site, o :pre.sentCoop[S] |
3 let post = sitesstates/next[pre] | {
4 o.vers = pre.versions[S] //Set the site version to the operation
5 o in post.H[S] //Add the operation to the owner’s H
6 {(S in CoopSite) and (o in tentative[post.CoopStatus[S]])} or
7 {(S in AdmSite) and (o in valid[post.CoopStatus[S]])} //Set the status
8 all Sj :Site-S| o in post.ReceivedCoop[Sj] //Broadcast
9 }}

10

11 fact GenerateAdministrativeRequest{
12 all pre : SiteState-sitesstates/last, S :AdmSite, a :pre.sentAdReq[S]|
13 let post=sitesstates/next[pre], v=pre.versions[S], vv=versOrder/next[v]|{
14 vv in post.versions[S] //Incrementation of the version for the next

SiteState
15 a.vers = vv
16 {(a in Rule) and (post.L[S]= add[pre.L[S], a])} or //Update the policy
17 {(a in Val) and (post.Vr[S]= add[pre.Vr[S], a])}
18 all Sj :Site-S| a in post.ReceivedAdReq[Sj] //Broadcast
19 }}
20

21 fact RequestReception{
22 all post : SiteState-sitesstates/first| let pre = sitesstates/prev[post]|{
23 all S :Site, o :post.ReceivedCoop[S]|{
24 o not in elems[pre.F[S]] and o in elems[post.F[S]]
25 all oj :

elems[pre.F[S]]|lastIdxOf[pre.F[S],oj]<lastIdxOf[post.F[S],o]}
26 all S :Site, a :post.ReceivedAdReq[S]|{
27 a not in elems[pre.Q[S]] and a in elems[post.Q[S]]
28 all aj :

elems[pre.Q[S]]|lastIdxOf[pre.Q[S],aj]<lastIdxOf[post.Q[S],a]}}

}

Snippet 5: Specification of the generation and reception of requests
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1 fun FcausallySeq[st : SiteState, S : Site] : lone Coop {
2 { o : (elems[st.F[S]]- OpStatus[st.CoopStatus[S]])| {
3 versOrder/lte [o.vers, st.versions[S]]
4 all oj : (elems[st.F[S]]- OpStatus[st.CoopStatus[S]]-o)| {
5 versOrder/lte [oj.vers, st.versions[S]] implies

6 lastIdxOf [st.F[S],oj]>lastIdxOf [st.F[S],o] }} }
7 }
8

9 fun QcausallySeq[st : SiteState, S : Site] : lone AdReq {
10 { ad : (elems[st.Q[S]] -elems[st.L[S]]-elems[st.Vr[S]])| {
11 ad.vers= versOrder/next [st.versions[S]]
12 all adj : (elems[st.Q[S]] -elems[st.L[S]]-elems[st.Vr[S]]-ad)| {
13 (adj.vers= versOrder/next [st.versions[S]]) implies

14 lastIdxOf [st.Q[S],adj] > lastIdxOf [st.Q[S],ad] }}}

15 }

Snippet 6: Specification of causally-ready expressions

These constraints are not explicitly expressed in the protocol but are necessary from our

point of view to prevent unacceptable instances or counterexamples. For instance, at the

beginning of the collaboration considered as the initial state, all queues are empty at each

site. The complete specification is given in https ://sites.google.com/site/laboratoireverifom.

1 fact ReceiveAdminRequest{
2 all st : SiteState-sitesstates/first-sitesstates/last,
3 S :st.AdCausallyReady.AdReq, ad :st.AdCausallyReady[S]|
4 let post=sitesstates/next[st]|{ ad in Val implies {
5 ad.op in valid[post.CoopStatus[S]]
6 post.Vr[S]= add[st.Vr[S], ad]}
7 else {
8 post.L[S]= add[st.L[S], ad] //Add to the policy
9 ((ad.signe in Minus) and (S in CoopSite)) implies {

10 all oi :st.H[S]&
11 (tentative[st.CoopStatus[S]]-invalid[st.CoopStatus[S]]-
12 valid[st.CoopStatus[S]])|{(oi.type in ad.right and
13 oi.from in ad.subject) implies{
14 oi in invalid[post.CoopStatus[S]]
15 let uo=UndoneOp|{ uo.linkedOp=oi and
16 uo.owner=S and uo in post.H[S]} }}}}
17 S->(versOrder/next[ st.versions[S]]) in post.versions }

18 }

Snippet 7: Processing of causally-ready administrative request by a site

4.3.3 Specification of Consistency Property

We deal with an access control model for DCE. Hence, property considered is related to

safe and consistent collaboration. Firstly we consider the fundamental concept of stable state

of the system. We define it as follows in definition 4.1.
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1 fact ReceiveCoopRequestOrdSite{
2 all st : (SiteState - sitesstates/first - sitesstates/last),
3 o : st.CoopCausallyReady[CoopSite], S :(st.CoopCausallyReady.o)&CoopSite|
4 let post= sitesstates/next[st]|{ (o.from in AdmSite) implies {
5 o in valid[post.CoopStatus[S]] and o in post.H[S]}
6 else{ o.from in CoopSite and
7 ((some r : elems[st.L[S]] | {
8 versOrder/lt[o.vers, r.vers] and o.from in r.subject and
9 r.signe in Minus and o.type in r.right and

10 all rj : (elems[st.L[S]]-r) |{{versOrder/lt[o.vers, rj.vers] and
11 o.from in r.subject and o.type in rj.right} implies

12 lastIdxOf [st.L[S],rj] < lastIdxOf [st.L[S],r] }})
13 or (no r : elems[st.L[S]] | {
14 versOrder/lt[o.vers, r.vers] and o.from in r.subject and
15 r.signe in Minus and o.type in r.right }))
16 implies o in invalid[post.CoopStatus[S]]
17 else {o in tentative[post.CoopStatus[S]] and o in post.H[S]}}}

18 }

Snippet 8: Processing of causally-ready cooperative request by a site

1 fact fact ReceiveCoopRequestAdm{
2 all st : (SiteState - sitesstates/first - sitesstates/last),
3 o : st.CoopCausallyReady[AdmSite], S : st.CoopCausallyReady.o&AdmSite|
4 let post= sitesstates/next[st]|{(o.from in AdmSite) implies {
5 o in valid[post.CoopStatus[S]] and o in post.H[S] }
6 else{((some r : elems[st.L[S]] | {
7 versOrder/lt[o.vers, r.vers] and o.from in r.subject and
8 r.signe in Minus and o.type in r.right and
9 all rj : (elems[st.L[S]]-r) |{{versOrder/lt[o.vers, rj.vers] and

10 o.from in r.subject and o.type in rj.right}
11

12 implies lastIdxOf [st.L[S],rj] < lastIdxOf [st.L[S],r]}})
13 or (no r : elems[st.L[S]] | {
14

15 versOrder/lt[o.vers, r.vers] and o.from in r.subject and
16 r.signe in Minus and o.type in r.right }))
17 implies o in invalid[post.CoopStatus[S]]
18 else {
19 o in valid[post.CoopStatus[S]]
20 let vad=Val |{
21 vad.op =o and vad.source=S and
22 vad.vers=versOrder/next[ st.versions[S]] and
23 (versOrder/next[st.versions[S]]) in post.versions[S]
24 and vad in st.sentAdReq[S]}
25 o in post.H[S]}}}

26 }

Snippet 9: Processing of causally-ready cooperative request by the administrator

Définition 4.1 (Stable state) The system is said to be in a stable state iff each site com-

pletes the processing of all generated and received operations.
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Note that, according to the definition 4.1, it is possible to have several stable states during the

collaboration. The consequence of the definition 4.1 is that at each stable state of the system,

all sites have the same number version of policy. Recall that when an operation is generated,

it is immediately sent to others. The broadcasting is considered as part of the generation

process unless the operation is denied. Also we have assumed that the communication is

message lossless and when an operation is sent by a site, it is received by others at the next

state of the system.

Once the stable state is reached by the system, it is possible to verify if the protocol

preserves its correctness. The property of interest relies on data consistency. The data consis-

tency property allows to know if the protocol is enforced identically at all sites in context

of dynamic changes of access rules. The goal is to prevent any security hole with regards to

the granted and denied operations and the convergence of the shared document. The data

consistency property is satisfied by the model iff for all stable state of the system, for all

two disjoint sites, the sets of valid cooperative operations are the same. The data consistency

property is specified using assertion (see Snippet 10).

As explained in Section 4.3.1, the scope indicates the maximal number of occurrences

of each signature used during the searching, but also the maximal length of the execution

trace. In our context, the scope denotes the maximum number of states (SiteState), sites,

cooperative operations, administrative operations, etc. Considering that the collaboration

held with concurrency, at each state, each site could do an action according to an operation

(generate, send, received, process). To analyze the data consistency property, several checking

scenarios are used by specifying different scopes. The results state ”No counterexample found.

Assertion may be valid”. Note that the SAT-solver used is SAT4J.

1 assert ValidPreservation1{
2 all st :Stable[ ]|{ all disj Si, Sj :Site|{
3 valid[st.CoopStatus[Si]] in valid[st.CoopStatus[Sj]]
4 valid[st.CoopStatus[Sj]] in valid[st.CoopStatus[Si]]}}

5 }

Snippet 10: Data Consistency property

4.4 Related Work

Several access control models have been proposed in the literature for collaborative en-

vironment. An overview of access control models, including their principles, advantages and

potential shortcomings, is available in [Tolone et al. (2005)]. Among these models there are

Role-Based Access Control (RBAC) [Sandhu et al. (1996)] and its variants [Joshi et al.
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(2004),Piromruen et Joshi (2005),Lee et Luedemann (2007)], which deal with a decentralized

authorization. Their drawback is that they do not allow dynamic reassignment of roles. There

is very little recent contributions on replicating authorization policies in the literature [Sa-

marati et al. (1996),Xin et Ray (2007)]. These contributions deal with database systems and

are not so flexible to support dynamic changes of authorization policies. For instance, Xin T.

et al. used in [Xin et Ray (2007)], an extension of two-phase locking protocol as concurrency

control technique to update policies. This technique is not suitable in the context of DCE.

Alloy has been used in several case study applications in security, access control and

security policies domains with regards to model, framework or protocol. In [Hu et Ahn (2008)],

Hu H. et al. presented a case study on verification for the NIST/ANSI standard model for

Role Based Access Control (RBAC). The authors verified only one property related to the

role deleting. The Alloy analyzer allowed them to conclude that the functional definition of

DeleteRole function proposed by the NIST/ANSI standard for hierarchical RBAC misses a

step for removing inheritance. In [Pai et al. (2011)], authors confirmed the known security

vulnerability in oAuth, an open authentication protocol for the Web, using Alloy. Samuel

A. et al. [Samuel et al. (2007)] specified the Generalized Spatio-Temporal Role Based Access

Control (GST-RBAC) model using Alloy. The detection of some conflicts by the analyzer

helped them to refine their proposed framework. Similarly, in [Toahchoodee et al. (2009)],

the authors applied Alloy to specify and verify a spatio-temporal access control correctness.

The analyzer showed possible conflict permissions assignment to the same role.

4.5 Conclusion

In this paper, we have presented a case study on formal specification and verification of

a flexible access control protocol running on the top of a DCE. The purpose is to verify that

data consistency of the DCE is preserved by the protocol. Proving data consistency of such

systems is very challenging as they are infinite with a high degree of concurrency. To deal with

these limitations, we have proposed an abstract model and used Alloy, a SAT-based bounded

model-checker. We have shown that ACP preserves the correctness for several scopes. Alloy

specification language, based on the first-order relational logic, is very appropriate to describe

infinite systems. However, bounded model-checker techniques are known to be useful to find

bugs but less appropriate to prove the absence of bugs. In the future, we plan to investigate

the existence of a finite abstract model, which preserves data consistency. english
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CHAPITRE 5

ARTICLE 3 : On Consistency Preservation with Optimistic Access Control for

Distributed Collaborative Editors

Aurel Randolph ∗∗ , Hanifa Boucheneb∗∗, Abdessamad Imine ††, and Alejandro Quintero∗∗

Abstract

Distributed Collaborative Editors are interactive systems where several and dispersed

users edit concurrently some shared documents. Generally, these systems rely on data repli-

cation and use safe coordination protocol which ensures data consistency even though the

users’s updates are executed in any order on different copies. Controlling access in such

systems is a challenging problem, as they need dynamic access changes and low latency ac-

cess to shared documents. To cope with this situation, a flexible access control protocol is

proposed in [Imine et al. (2009)], based on replicating the shared document and its autho-

rization policy at the local memory of each user. To deal with latency and dynamic access

changes, an optimistic access control technique is used, allowing retroactive enforcement of

authorizations. However, verifying whether the setup of access control over coordination

protocols preserves the data consistency is a hard task, since it requires examining an un-

bounded number of situations, arising from the infinite nature of the system. In this paper,

we propose a finite abstract model and show that it preserves the consistency. We use a

symbolic model-checking tool Uppaal, to specify with automata, the behavior of the abstract

model and the consistency requirement. Finally, we verify if it preserves the consistency of

the system on which it is deployed in such a way that the access control policy is enforced

identically at all participating user sites and, accordingly, the data consistency remains still

maintained.

∗∗. A. Randolph, H. Boucheneb and A. Quintero are with the Department of Computer and Software En-
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5.1 Introduction

Distributed Collaborative Editors (DCE) enable several and dispersed users to form a

group for editing simultaneously shared documents, such as articles, wiki pages and program

source code. Google Drive is an example of such a system but in a centralized architecture.

To achieve data availability, each user has a local copy of the shared document. Updates

generated by each user are locally executed in a non blocking manner and then broadcast to

the other sites in order to be executed on their copies. Although being distributed applica-

tions, DCE are specific in the sense they must consider human factors. Moreover, they are

characterized by the following features: (i) High local responsiveness: the system has to be as

responsive as its single-user editors [Ellis et Gibbs (1989),Sun et al. (1998),Sun et al. (2006)];

(ii) High concurrency: the users must be able to concurrently and freely modify any part of

the shared document at any time [Ellis et Gibbs (1989), Sun et al. (1998)]; (iii) Scalability:

a group must be dynamic in the sense that users may join or leave the group at any time;

(iv) Consistency: the users must eventually see a converged view of all copies [Ellis et Gibbs

(1989), Sun et al. (1998)]. Consistency preservation is one of the most critical properties

in DCE. It stems on data replication and arbitrary exchange of updates. Accordingly, each

DCE is endowed with Coordination Protocol (CP) to maintain globally consistent state.

Balancing the computing goals of collaboration and access control to shared information

is a challenging problem in DCE [Tolone et al. (2005)]. Indeed, interaction in collaborative

editors is aimed at making shared document available to all who need it, whereas access

control seeks to ensure this availability only to users with proper authorization. To preserve

the above cited DCE’s features and avoid a central authority, a flexible Access Control Protocol

(ACP) is proposed in [Imine et al. (2009)] where all updates will be checked at each user site

without resorting to a central authority. In this model, a user will own two copies: the shared

document and its authorization policies. This replication allows for high availability since

when users want to read or update the shared document, this manipulation will be granted or

denied by controlling only the local copy of the authorization policies. The execution order

of updates on the shared document or authorization policy are arbitrary. An optimistic

approach is used to tolerate momentary violation of access rights and afterwards, ensure

the copies to be restored in valid states (by invalidating denied updates) w.r.t the stabilized

access control policy.
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To ensure a safe access control in DCE (i.e. permitting legal updates and rejecting illegal

updates on the shared document), a protocol stack is built by integrating an ACP on the top

of any CP based on data replication and update logging [Imine et al. (2009)]. If we combine

a correct CP (i.e. satisfying separately the consistency property) with an ACP, can we verify

that the consistency property is preserved by the new protocol ? This verification turns out a

hard task and unmanageably complicated. Indeed, it requires examining an infinite number

of situations since the updates are performed in different orders on different copies (arbitrary

number) of the shared document and the authorization policy. Consequently, the verification

of the combination correctness must be assisted by an automatic checker tool.

Contributions. We propose here a finite abstract model which is equivalent with regard to

the requirement, to a collaborative system which uses ACP. We specify the abstract model

with model-checking technique in order to verify the preservation of consistency property

of any DCE integrating an ACP on the top of a consistent CP. For this purpose, we use a

symbolic model-checking tool Uppaal 1, to specify the behavior of the abstract model and the

consistency requirement. This choice is motivated by the possibility to handle symbolically

queues of messages, logs, variables such as number of sites, number of operations generated

by each site, etc. The consistency property is specified in CTL language and verified by

Uppaal model-checker.

Outline. This paper is organized as follows: the flexible access control protocol is presented

in Section 5.2 and formalized in Section 5.3. Section 5.4 is devoted to the investigation

of a finite abstract model preserving the consistency property. Section 5.5 deals with the

formal specification and verification of ACP. Section 5.6 discusses related work. Finally, the

conclusion is presented in Section 5.7.

5.2 Optimistic Access Control Protocol for DCE

Shared documents are objects whose state can be altered by a set of cooperative operations

generated by sites. For instance, a shared text document is modified by operations such as

inserting a new section, deleting an existing paragraph and replacing an old line by a new one.

In [Imine et al. (2009)], an access policy is described as an indexed list of authorization rules,

where each rule is a quadruple 〈S,O,R, ω〉 with (i) S is set of subjects (sites or users), (ii) O

is a set of objects (e.g. paragraphs or chapters), (iii) R is a set of access rights (e.g. deleting

or updating paragraphs) and (iv) ω ∈ {−,+}. The sign “+” represents a right attribution

and the sign “−” represents a right revocation.

Each site consists of two layers: coordination layer and security layer. The coordination

1. http://www.uppaal.com
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layer is in charge of editing the shared document. The role of the security layer is to manage

the access control policy. To achieve this objective, the security layer edits a local copy of a

shared policy by producing some administrative operations with regards to the access control

policy. Then, the state of the shared policy object is altered by a set of administrative oper-

ations such as adding and removing authorizations. Administrative operations are generated

by the administrator, at any time, and aimed to manage dynamically the right access to the

shared documents. These operations are next broadcast to other sites, in order to modify

their local copies of the policy object. Thus, on each site, the cooperative operations are

granted or denied by using the local copy of the policy and applying the first-match seman-

tics: when an operation o is generated, the system checks o against its authorizations one by

one, starting from the last authorization and stopping when it reaches the first authorization

l that matches o. If no matching authorizations are found, o is rejected. Note that every

local policy copy maintains a monotonically increasing version counter that is incremented

by every administrative operation performed on this copy.

The collaboration happens in optimistic approach and modifications could be applied in

different orders at different sites. The messages are assumed to be exchanged via secure and

reliable communication network: each message sent is received by each others without alter-

ation. The flow of messages exchanged during the collaboration is illustrated in Figure 5.1.

5.2.1 Generation of Local Cooperative Requests

Locally, each site generates some cooperative operations. The processing of the generated

cooperative operation is shown at Figure 5.2. Each generated cooperative operation is firstly

checked against the local policy. If the operation is not compliant with the local policy,

it is said to be invalid and its execution is aborted. At the administrator site, when the

operation is granted, its status is set to valid. At a non-administrator site, the status is

set to tentative if it is granted. The operation is then performed immediately on the local

Figure 5.1 Flow of collaboration messages
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copy of the shared document. A resulting cooperative request is generated and attached with

the number version of the policy copy on which the operation is granted. This cooperative

request is finally broadcast to other sites.

5.2.2 Reception of Remote Cooperative Requests

When a remote cooperative request is received, it is firstly stored in a dedicated queue

before being extracted. The request is extracted if it is causally-ready. Thus, its attached

version number of policy is less or equal than the current version of the local policy and its

precedent cooperative request have been already integrated to the local copy of the shared

document. This mechanism is setup to ensure that the access control protocol preserves the

causality dependency with respect to the precedent administrative requests and precedent

cooperative requests.

After its extraction, the remote cooperative request is checked against the local adminis-

trative log, to verify whether or not it is granted. When the remote cooperative request is

granted, its status is set to valid if the receiver is administrator and to tentative, otherwise. If

the receiver is administrator, the number version of its policy is incremented and a validation

request is generated. The new version number is attached to the validation request which is

broadcast to other sites. Afterwards, the corresponding cooperative operation is performed

locally on the administrator’s copy with regard to the collaborative editor’s procedures. The

processing of a remote cooperative operation is presented at Figure 5.3.

5.2.3 Generation of Administrative Operations

To manage and control the access, the administrator produces some access rules called ad-

ministrative operations. When an administrative operation is generated, the version number

of the administrator’s local policy is incremented. Then, the policy is updated by performing

on, the generated administrative operation. A corresponding administrative request with the

latest version number of the policy is generated and broadcast to other sites to enforce their

policy.

5.2.4 Reception of Remote Administrative Requests

There exist two kinds of remote administrative requests: validation request and access

rule based request. Each received remote administrative request is first stored in a dedicated

queue then, extracted when it is causally-ready. The administrative request is said to be

causally-ready if the value of its attached policy version number is the next value of the

version number of the local policy (the difference is one) and in case of a validation request,
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Figure 5.2 Processing of a cooperative operation at generation time.

Figure 5.3 Processing of a received cooperative operation.
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the corresponding cooperative operation is already executed on this site. Each extracted

access rule based request, is performed on the local policy. Thereafter, if the access rule is

restrictive, then all tentative cooperative operations, locally generated or received, which are

concerned by the rule with regard to the rights, are undone. For the extracted validation

request, the status of the corresponding cooperative operation is updated from tentative to

valid. At the end of the treatment of the administrative request, the version number of the

local policy is incremented. The processing of administrative request is shown at Figure 5.4.

5.2.5 Verification Issues

A Distributed Collaborative Editor consists of several sites. Each of them maintains the

shared objects and its access right policy, by generating, exchanging and performing some

cooperative and administrative operations. As the numbers of sites, cooperatives operations

and administrative operations are arbitrary, the queues of cooperative requests and admin-

istrative requests are unbounded. The system is then infinite and parameterisable by the

number of sites, the number of cooperative operations to be generated by each site, and the

number of administrative operations to be generated by the administrator. On each site,

the shared objects are modified with respect to the local access right policy. Meanwhile, the

local policy is enforced by taking into account the administrative operations generated and

broadcast by the administrator. Thus, if the policy is not enforced identically at all sites, it

can result in the security hole on the shared objects by permitting illegal modifications or

rejecting legal modifications. In addition, this situation can lead to data inconsistency for

the collaborative edition such as the document can diverge at the end of the collaboration.

For instance, consider a group composed of an administrator adm and two sites S1 and

S2. Initially, the three sites have the same shared document containing the text bcd and the

same policy object where S1 is authorized to insert characters (see Figure 5.5). Suppose that

adm revokes the insertion right of S1 and sends this administrative operation to S1 and S2 to

enforce their local policy copies. Concurrently S1 executes a cooperative operation Ins(1, a)

to derive the state “abcd” as it is granted by its local policy. When adm receives the S1’s

operation, it will be ignored (as it is not granted by the adm’s local policy) and then the final

state still remain bcd. As S2 receives the S1’s insert operation before its revocation, he gets

the state abcd that will be unchanged even after having executed the revocation operation.

We are in presence of data inconsistency (the state of adm is different from the state of S1

and S2) even though the policy object is the same in all sites. In fact, the new policy object is

not uniformly enforced among all sites because of the out-of-order execution of administrative

and cooperative operations. Thus, security holes may be created. For instance some sites
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Figure 5.4 Processing of received administrative request.
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can accept cooperative operations that are illegal with respect to the new policy (e.g. sites

S1 and S2).

To solve this problem, the ACP applies the principles of optimistic security [Povey (2000)]

in such a way that the enforcement of the new policy may be retroactive with respect to

concurrent cooperative operations. In this case, only illegal operations are undone. For

instance, Ins(1, a) as shown at Figure 5.5 should be undone at S1 and S2 after the execution

of the revocation.

It appears important to verify that the ACP preserves the correctness of the collaborative

editing system on which it is deployed with regards to the security issues and data consistency.

For this purpose, the sets of legal (valid) cooperative operations must be identical at all sites,

when all generated and received cooperative and administrative operations are performed on

each site (stable state). Performing such a verification is tricky and hard to do manually. So,

the system must be automatically checked using formal methods. However, the automatic

checking tools could lead to severe state explosion, time consumption, result in a lack of

memory and finally aborted, or could not cover all the state space needed for verification.

For instance, previously, we experiment the verification issue with explicit model checking

technique under Uppaal. The exploration does not scale over 4 sites. It results in a lack of

memory and finally aborted. In addition, in [Randolph et al. (2013)], Alloy 2 is used to verify

whether or not ACP preserves the correctness of DCE. Alloy Analyzer works by reduction to

SAT, which technique is suitable for infinite systems. However, the analysis does not either

cover the space state of the system. For this purpose, we investigate the existence of a finite

abstract model which is equivalent to our infinite system with regards to the consistency

property.

5.3 Definitions

In this section we give several formal definitions related to the collaboration and ACP.

We are particularly interested in the evolution of the status of cooperative operations at each

a site. Let us denote :

– O, the set of cooperative operations.

– A, the set of administrative operations.

– POLICY , the set of policies.

– SITE, the set of sites.

2. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models. Retrieved April 4,
2014 from http://alloy.mit.edu/alloy/

http://alloy.mit.edu/alloy/
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Définition 5.1 [Model of the System]. The system consists of an arbitrary number

n of cooperative sites including one administrator. It is defined by a model M〈n,1〉 =

(SITE,O,A, ACP ) with ACP the access control protocol.

Each site Si ∈ SITE has a local copy of the shared policy denoted Pi, with Pi ⊆

POLICY . The version number attached to the local copy of the shared policy is denoted

vi. Its value increases during the collaboration process. Pi is empty at the beginning of the

collaboration such as vi is initialized to 0. The administrator is denoted S1.

During the collaboration, the system evolves as operations are processed at each site.

These changes are traduced by different states which succeed each other.

Définition 5.2 [Local and Global State of the system]. The local state of the system

at site Si ∈ SITE is defined by its current number version of the policy, the administrative

log and the set of cooperative operations available (generated and received) at this site. We

denote STATEi, the set of local states of the system at Si.

We define a relation < over STATEi such as for all stαi, stβi in STATEi, stαi < stβi

if and only if stβi could be reached from stαi, after the execution of a sequence of actions of

site Si. stβi is the successor of stαi if it could be reached from stαi, after the execution of a

single action.

The global state of the system is a tuple of local states of all sites. We denote STATE,

the set of global states of the system.

STATE = {st, st = (st1..., sti, ..., stn) with sti ∈ STATEi, n = |SITE|} (5.1)

We define a relation < over STATE such as for all stα, stβ in STATE, stα < stβ if and

only if there exists at least one site Si such as the component stβi of stβ could be reached

from the component stαi of stα, after the execution of a sequence of actions of site Si, with

stαi ∈ STATEi and stβi ∈ STATEi.

When the system evolves, each cooperative operation gets different status at each site.

The changes of status are the result of applying ACP to the collaboration process.

Définition 5.3 [Status of a coopreative operation]. At any site, a cooperative operation

could have (i) a tentative status iff the operation is not validated yet, (ii) an invalid status

iff it is denied or unauthorized, (iii) a valid status iff it is validated.
We denote STATUS, the set of status of a cooperative operation.

STATUS = {tentative, invalid, valid} (5.2)
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Définition 5.4 [Transition Relationships]. The transition relationships δ between local
states of the system at site Si ∈ SITE is a relation from the cartesian product STATEi×Act

to STATEi, where Act is the set of actions related to the execution process of the protocol at
Si.

δ : STATEi ×Act → STATEi (5.3)

We associate the operator with the transition relation δ to indicate the change of status
of an operation as defined in the statement 5.4.

∀stαi, stβi ∈ STATEi, stαi  stβi ⇐⇒ stαi < stβi ∧ ∃a ∈ Act, δ(stαi, a) = stβi (5.4)

Définition 5.5 [Causality]. The causality relationship between operations is expressed by
the Causally-ready function (denoted cReady). It maps a received cooperative operation or
a received administrative request, a site Si and a state of the system, to a boolean value
which is true if the received cooperative operation or the received administrative request is
causally-ready at Si in the state st and false otherwise.

cReady : (O ∪A)× SITE × STATE → {true, false} (5.5)

Recall that a received cooperative operation is causally-ready iff its attached version number

of policy is less or equal than the current version number of the local policy and its precedent

cooperative operation have been already integrated to the local copy of the shared document.

The received administrative request is causally-ready if the value of its attached version

number of policy is one unit greater than the current version number of the local policy and

in case of validation request, the corresponding cooperative operation is already executed on

the site.

The causally-ready notion is applied to remote cooperative and administrative requests.

According to the access control protocol, when a cooperative request is causally-ready, the

remote-checking process is executed. The objective of this process is to verify if the received

operation is compliant with the local administrative log. To deel with the result of this stage,

we use a boolean function as presented in Definition 5.6.

Définition 5.6 [Remote-Checking]. The remote-checking against administrative log de-
noted checkR() is a function that maps a cooperative operation, a site and a state of the
system, to a boolean value which is the result of checking the considered operation against the
administrative log. The function returns true iff the operation is not denied by the remote-
checking process, and false otherwise.

checkR : O × SITE × STATE → {true, false} (5.6)
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For instance, with the cooperative operation o at the site Si, when the system is in the state

st, checkR(o, Si, st) = truemeans that the operation is granted and checkR(o, Si, st) = false

states that the operation is denied.

Similarly to a remote cooperative operation, a remote administrative operation based on

rule is used in a checking process. Thus the administrative operation is used to verify whether

or not some cooperative operations with the tentative status are compliant with the related

access rule. The role of the function checkT is to return the result of this processing, as

indicated in Definition 5.7.

Définition 5.7 [Checking of Tentative Operation]. The checking at a site Si (denoted
checkT ) of a restrictive received administrative request against a cooperative operation which
is in the status tentative, is a function that maps a cooperative operation, a site, an ad-
ministrative operation (request) and a state of the system, to a boolean value which is the
result of checking the operation against the restrictive received administrative request. The
function returns true iff the operation is not denied by the access rule corresponding to the
administrative request, and false otherwise.

checkT : O × SITE ×A× STATE → {true, false} (5.7)

A remote administrative operation which is not based on rule, is related to the validation

of a cooperative operation. According to the protocol, when this administrative operation is

causally-ready, it is performed in order to change the status of the related cooperative oper-

ation. To know whether or not the validation request is already performed for an operation

at a site, we define a function denoted perfV as stated at Definition 5.8.

Définition 5.8 [Validation Request Performed]. Let us consider a cooperative opera-
tion o, a site Si and a global state st of the system. The function perfV maps a cooperative
operation, a site and a global state of the system, to a boolean value. It returns true iff the
validation request related to the cooperative operation o is already performed at Si when the
system is in the state st and false otherwise.

perfV : O × SITE × STATE → {true, false} (5.8)

As we are interested in the evolution of the status of cooperative operation at each site,

it appears necessary to have the information about the status. This task is completed by a

function denoted val (see Definition 5.9).

Définition 5.9 [Operation Valuation]. The operation valuation denoted val is a function
that maps a cooperative operation, a site and a global state of the system to the status of the
operation at this site when the system is in the considered state. It returns the status of the
operation for the parameters indicated.

val : O × SITE × STATE → STATUS (5.9)
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Définition 5.10 [Stable State]. The system is said to be in a stable state iff each site

completes the processing of all generated and received operations. The subset of the stable

states of the system is denoted STABLE. We have : STABLE ⊂ STATE.

Définition 5.11 [Satisfiability of the Data Consistency Property]. The data con-
sistency property ϕ is satisfied at a stable state st of the system iff the valuation of each
processed cooperative operation is the same at each site.

∀st ∈ STABLE, st |= ϕ ⇔ ∀o ∈ O, ∀Si, Sj ∈ SITE, val(o, Si, st) = val(o, Sj , st) (5.10)

5.4 A finite abstract model preserving consistency property of ACP

As the consistency property means that the decision taken for an operation is the same

at each site, we will focus on a model based on the status of operations. According to ACP,

the status of an operation can change as expressed in Property 1.

Property 1 The possible evolutions of the status of a cooperative operation at any site are
:

tentative invalid | valid (5.11)

This property states that at any site, the status tentative of any cooperative operation (local

or remote) could be changed in invalid or valid. The status valid and invalid are final as

they are maintained and do not change.

5.4.1 Generation and Reception of a Cooperative Operation

The cooperative operations which are denied locally at generation time are not considered

as they are not known by other users and consequently have no impact on the consistency

property. So, we consider only the cooperative operations locally granted at generation time

and broadcast to other sites. The properties related to an operation at the generation or the

reception time are as follows.

Property 2 At any non administrator site, the status of any cooperative operation locally

granted, at generation time, is tentative at this site.

Property 3 At the administrator site, the status of any cooperative operation locally granted,

at generation time, is valid at this site.

Property 4 The status of any remote cooperative operation at reception time is the same as

at its generation time.
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The properties 2 and 3 infer that initially, any cooperative operation locally generated

holds either tentative or valid status. The property 4 states that the initial status of any

remote cooperative operation does not change during the message sending process.

5.4.2 Execution Process

To investigate a finite abstract model preserving consistency property of ACP, we propose

to examine the execution process cases and their resulting status for any considered cooper-

ative operation. Let o be any cooperative operation and Si be a site. According to the ACP,

the different processing scenarios of the cooperative operation o at site Si are:

1. Scenario 1 : o is a local operation at Si (the owner is Si) and Si is the administrator.

2. Scenario 2 : o is a local operation at Si (the owner is Si) and Si is not the administrator.

3. Scenario 3 : o is received by Si and Si is the administrator. The owner of o is not the

administrator.

4. Scenario 4 : o is received by Si. Si is not the administrator but the administrator is

the owner of o.

5. Scenario 5 : o is received by Si. Si is not the administrator and the administrator is

not the owner of o.

Based on these five scenarios, we point out several properties.

Property 5 Let o be a local cooperative operation at the administrator site S1, stα be a global
state of the system at the generation time of o.

∀stβ ∈ STATE − {stα}, stβ > stα ∧ val(o, S1, stβ) = valid (5.12)

This property follows from the properties 1 and 3. Indeed, the status of any cooperative

operation granted at generation time by the administrator site is valid which is a final

status. Then for any state the status of this kind of operation is maintained to valid at the

administrator site.

Property 6 Let o be a local cooperative operation at Si which is not the administrator (i 6=
1), stα be the global state of the system when o is granted and broadcast by Si, ar be an access
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rule based administrative request, vr(o) a validation request related to the operation o.

val(o, Si, stα) = tentative (5.13)

∀stβ , stγ ∈ STATE, stβ < stγ ∧ val(o, Si, stβ) = tentative ∧ checkT (o, Si, ar, stβ) = false ⇒

val(o, Si, stγ) = invalid (5.14)

∀stβ , stγ ∈ STATE, stβ < stγ ∧ val(o, Si, stβ) = tentative ∧ checkT (o, Si, ar, stβ) = true ⇒

val(o, Si, stγ) = tentative (5.15)

∀stβ , stγ ∈ STATE, stβ < stγ ∧ val(o, Si, stβ) = tentative ∧ perfV (o, Si, stβ) = true ⇒

val(o, Si, stγ) = valid (5.16)

The statement (5.13) follows from the Property 2. When broadcast by the local site, the

status of the cooperative operation is tentative. The statement (5.14) states that any local

cooperative operation with the status tentative is invalidated by any administrative request

which denies the execution of this cooperative operation. It involves a new status for the

operation such as invalid. The statement (5.15) states that any local cooperative operation

with the status tentative maintains this status if any administrative request does not deny

its execution. The statement (5.16) states that any local cooperative operation with the

status tentative which validation request is processed locally is set to be valid. It involves a

new status for the operation such as valid.

Property 7 Let o be any remote cooperative operation at site S1 which is the administrator.

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, S1, stα) = tentative ∧ checkR(o, S1, stα) = true ⇒

val(o, S1, stβ) = valid (5.17)

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, S1, stα) = tentative ∧ checkR(o, S1, stα) = false ⇒

val(o, S1, stβ) = invalid (5.18)

The property states that any remote cooperative operation which is granted at adminis-

trator site using the check-remote function is said to be valid. The operation is said to be

invalid if it is pointed out as denied by the check-remote function.

Property 8 Let o be a remote operation at site Si (i 6= 1) such as the owner is the admin-
istrator.

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = valid ∧ cReady(o, Si, stα) = true ⇒

val(o, Si, stβ) = valid (5.19)

The property states that when any remote cooperative operation which owner is the

administrator is processed, its status is set to valid. With regards to the protocol, if o is
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causally-ready at Si, it is not checked against the administrative log before being processed

as its owner is the administrator. Then, it maintains its valid status.

Property 9 Let o be a remote operation at a non-administrator site Si such as its owner is
not the administrator, ar be an access rule based administrative request, vr(o) a validation
request related to the operation o.

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = tentative ∧ checkR(o, Si, stα) = false ⇒

val(o, Si, stβ) = invalid (5.20)

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = tentative ∧ checkR(o, Si, stα) = true ⇒

val(o, Si, stβ) = tentative (5.21)

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = tentative ∧ checkT (o, Si, ar, stα) = false ⇒

val(o, Si, stβ) = invalid (5.22)

∀stα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = tentative ∧ checkT (o, Si, ar, stα) = true ⇒

val(o, Si, stβ) = tentative (5.23)

∀stiα, stβ ∈ STATE, stα < stβ ∧ val(o, Si, stα) = tentative ∧ perfV (o, Si, stα) = true ⇒

val(o, Si, stβ) = valid (5.24)

The statement (5.20) indicates that any remote cooperative operation checked against

the administrative log and revealed to be denied is said to be invalid. On the contrary when

revealed to be not denied, the operation hold the status tentative as pointed out by the

statement (5.21). The statement (5.22) states that any remote cooperative operation with

the status tentative is invalidated by any administrative request which denies the execution

of this cooperative operation. It involves a new status for the operation such as invalid.

The statement (5.23) states that any remote cooperative operation with the status tentative

maintains this status if any administrative request does not deny its execution. The statement

(5.24) states that when the validation request of any remote cooperative operation with the

status tentative is processed locally, this operation is set to be valid. It involves a new status

for the operation such as valid.

Lemma 2 At each stable state of the system, at each site, the status of any cooperative

operation (local or remote) is invalid or valid.

Proof 3 In a stable state, all operations are processed (see Definition 5.10). As, no pro-

cessing is pending, no operation has a tentative status, the operations hold one of the status

invalid or valid. According to the property 1, invalid and valid are final.
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5.4.3 Analyzis of the Execution Process

The behaviour of each site consists of the execution of several functions devoted to :

verify whether or not some requests are causally-ready (cReady), check remote cooperative

operations (checkR), and check tentative operations using received administrative requests

(checkT ), respectively. This list of functions does not take into account the collaboration

tasks such as generate and execute cooperative operation which are done by the Coordination

Layer. However this list could be completed with the performing of validation requests when

they are causally-ready and the undoing of cooperative operation requests. The execution

of these functions has the effect to change the status of the operation as pointed out with

the properties 5, 6, 7, 8 and 9 and Lemma 2. The diagram shown at Figure 5.6 presents the

evolution of the status of the cooperative operation at any site with regards to its features :

administrator or not, owner or not.

Let us consider a cooperative operation owned by the administrator. This case is imple-

mented by the scenario 1 of the execution process. Examining the list of scenarios presented

at Section 5.4.2 and the diagram shown at Figure 5.6, the scenario 1 must be associated with

the scenario 4. Indeed, when the owner of the operation is the administrator, the operation

is remote at other sites.

Lemma 3 In a stable state, any operation owned by the administrator has the same status

at all other sites.

Proof 4 Let us consider a collaborative system with an arbitrary number of sites with one

administrator. Let us also consider one operation and assume that its owner is the admin-

istrator. The operation is remote at other sites. Based on the properties 5 and 8 illustrated

by the edges labelled scenario 1 and scenario 4 at Figure 5.6, the only one final status for the

remote cooperative operation is valid as soon as its processing is completed. Thus, from the

state following the processing of the remote cooperative operation, to the end the collaboration,

it holds the status valid as at the owner’s (administrator) site. Particularly, in any followed

stable state of the system, the remote operation has a valid status as at the owner’s site.

Lemma 4 Let us consider a collaborative system with an arbitrary number n of sites includ-

ing one administrator. The number of sites needed to cover the execution process when the

cooperative operation is generated by the administrator is two.

Proof 5 According to Lemma 3, non-administrator sites have similar behavior with regards

to any operation generated by the administrator. Thus, the received operation holds a valid

status after being processed. To cover the Scenario 1 in which the operation o is generated by
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the administrator, one non-administrator site will be sufficient. Thus, we have a system of

two sites.

init tentative

tentative

valid

valid

tentative

valid

valid

invalid

valid

invalid

invalid

scenario 4

scenario 3

scenario 2

scenario 1

scenario 5

cReady() = true

checkR() = true

checkR() = false

checkT () = true

perfV () = true

perfV () = false

checkR() = true

checkR() = false

Figure 5.6 Execution process at any site.

Let us consider now a cooperative operation generated by a non-administrator. This case

is implemented by the scenario 2 of the execution process. Examining the list of scenarios

presented at Section 5.4.2 and the diagram shown at Figure 5.6, the scenario 2 must be

associated with the scenarios 3 and 5. Indeed, when the owner of the operation is not

administrator, the operation is remote at other sites including at administrator site.

Lemma 5 Let us consider a cooperative operation generated by a non-administrative site.

The number of sites needed to cover the execution process when the operation is not generated
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by the administrator is three.

Proof 6 Let us consider a system which consists of an arbitrary number n of sites, and

assume that a cooperative operation is generated by a non-administrative site. The system

could be split in three (03) subsets : the owner of the operation as a non-administrator, the

administrator, and the other (n − 2) non-administrator sites. These 3 subsets implement

the scenario 2, scenario 3 and scenario 5 of the execution process, respectively. One site is

sufficient to represent all the (n − 2) sites of the third subset as they have similar behavior

with regards to any received operation (Property 9). Then to cover this scenario three sites

will be sufficient.

Theorem 2 Let us consider a collaborative system with an arbitrary number n of sites. To

cover all the execution process cases, the system could be sufficiently abstracted to a new

system of three sites including the administrator.

Proof 7 (i) With the Lemma 4, two sites are sufficient to cover the execution process when

the administrator generates a cooperative operation (scenario 1 and scenario 4). (ii) With the

Lemma 5, three sites are sufficent to cover the execution process when a non-administrator

generates a cooperative operation (scenarios 2, 4 and 5). This latter case (ii) can be considered

as extension of the former case (i) such as it contains the administrator and at least one non-

administrator. Then to cover the five scenarios considered at Section 5.4.2, we consider the

maximum number figured out (between 2 and 3).

We establish in Theorem 2 that the system could be sufficiently abstracted to a new

system of three sites including the administrator. It appears now important to establish that

the infinite system and the abstract model are equivalent with regards to the consistsency

property. This is done with the Theorem 3 and its proof.

Theorem 3 Let M〈n,1〉 be a model of a collaborative system which uses ACP and consists

of an arbitrary number n of sites including one administrator, M ′
〈3,1〉 be the corresponding

abstract model which consists of 3 sites including the administrator and ϕ be the consistency

property. The abstract model M ′
〈3,1〉 satisfies the consistency property iff the collaborative

model M〈n,1〉 satisfies the consistency property.

M ′
〈3,1〉 |= ϕ ⇔ M〈n,1〉 = (SITE,O,A, ACP ) |= ϕ (5.25)

Proof 8 Assume that SITE = {S1, S2, S3, ..., Sn} with S1 the administrator and let M ′
〈3,1〉

consists of {S1, Si, Sj}with i 6= j.
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M〈n,1〉 |= ϕ ⇒ M ′
〈3,1〉 |= ϕ is trivial when setting n = 3 and considering that M〈3,1〉 |= ϕ ⇒

M ′
〈3,1〉 |= ϕ. Assume that M ′

〈3,1〉 |= ϕ. The system 〈S1, S2, S3〉 |= ϕ like any system 〈S1, Si, Sj〉

with i 6= j, i ≥ 4and j ≥ 4. While adding S4 to the system 〈S1, S2, S3〉, S4 could be associated

with S2 (respectively S3) such as, when S2 (respectively S3) owned an operation, the behavior

of S3 (respectively S2) and S4 is similar with regards to the status of the operation. Also,

when S4 owned an operation, the behavior of S2 and S3 is similar with regards to the status of

the operation. Then 〈S1, S2, S3〉 |= ϕ ⇒ 〈S1, S2, S3, S4〉 |= ϕ. Iteratively, the site Sn could be

added to 〈S1, S2, S3, ..., Sn−1〉 such as 〈S1, S2, S3, ..., Sn−1〉 |= ϕ ⇒ 〈S1, S2, S3, ..., Sn−1, Sn〉 |=

ϕ, from which M ′
〈3,1〉 |= ϕ ⇒ M〈n,1〉 |= ϕ.

5.5 Model Checking of the Abstract Model

Several model checking techniques have been proposed in the literature. These techniques

can be classified into explicit state model checker and Symbolic model checker. In explicit

state model checker [Holzmann (2004)], states, sets and relations are explicitly represented,

whereas, in symbolic model checker, they are implicitly represented using boolean logic for-

mulas. The category of symbolic model checker can be subdivided into SAT-based bounded

model checkers [Schaeffer-Filho et al. (2009)] and BDD-based model checkers [Cimatti et al.

(2000)]. In SAT-based bounded model checking, the basic idea is to search for a counterex-

ample in traces whose length is bounded by some integer k [Frappier et al. (2010)]. If no

bug is found then k is increased until either a bug is found or the computer resource limits

are reached. BDD-based model checking allows to prove by considering the whole state space

of the model that some property is satisfied but it does not scale well in practice. However,

when the state space is not too big, the BDD-based approach could be appropriate. The

Collaborative System of n arbitrary number of sites using ACP over the CP is reduced previ-

ously to an equivalent system of 4 sites. This reduced system allows significant gain in both

space and time for verification. A BDD-based model checker is then the most suitable to

verify the ACP. We propose to use the tool suite of Uppaal 1 to verify that ACP preserves

consistency of DCE.

5.5.1 Uppaal

UPPAAL is a tool suite for symbolic model-checking generally used for validation and

verification of real-time systems but also used for non real-time systems. In addition to its

symbolic model-checker, Uppaal offers a graphical editor for system descriptions and a graph-

ical simulator. The description model is a set of timed automata [Alur et Dill (1994)] (or

1. http://www.uppaal.com
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simple automata) extended with binary channels, broadcast channels, C-like types, variables

and functions. The simulator allows in addition, to get and replay, step by step, counterex-

amples obtained by its symbolic modelchecker. The model-checker is based on a forward

on-the-fly method, allows to compute over 5 millions of states.

5.5.2 Description of the system

To formally describe the system using the UPPAAL tool, three models are defined. The

first model specifies the behavior of a cooperative operation at each site. The second model

represents an administrative request (rule-based or validation request). The third model

defines the behavior of ACP . The system described does not take into account CP as well as

it performs operations allowed by ACP. Thus, only the final status of operations are required

for analysis. The sites are represented by their identifers.

In a distributed collaborative editing system, sites (users) communicate via a network.

The network is abstracted and not explicitly represented. This is done by setting global vari-

ables which store informations related to cooperative operations and administrative requests,

instead of using and managing queues of messages.

Sites

The sites are represented by their identifers. The number of sites is declared as in state-

ment 5.26 and the type of the identifiers of sites is declared as established in statement 5.27.

const int NbSites = 3; (5.26)

typedef int [0, NbSites− 1] id site; (5.27)

Evolution of Cooperative Operation

The Uppaal process called Op traduces the evolution of the operation, pointing out the

succession of its status and different events which occured during ACP processing. The

process behavior of cooperative operation is depicted by the automaton shown in Figure 5.7.

As the operation is executed at each site, the parameter of the process is the site identifier

named id. The site identifier is attributed as indicated in statement 5.28. Then, an operation

op is represented at any site by op[id].

const id site id (5.28)
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Initial

Valid

RemoteChecking

Tentative

CausallyReady Invalid

Received

id==owner &&  id==Adm && start
send!

op[id].owner=owner, op[id].st=V

id==owner &&  id!=Adm && start
send!

op[id].owner=owner, op[id].st=T

id!=owner && start
send?

op[id].owner=owner

VStatus[id]?
op[id].st=V

TStatus[id]?
op[id].st=T

VStatus[id]?

op[id].st=V

IStatus[id]?
op[id].st=I

IStatus[id]?

op[id].st=I

op[id].owner!=Adm

checkRemote[id]!

op[id].owner==Adm

op[id].st=V

op[id].ov<=Versions[id]

Figure 5.7 The model of cooperative operation.

In the model of the operation, starting by the location named Initial, a broadcast channel

(called send) is used to broadcast the operation from the sender to other sites. The next

location is Valid, if the owner is the administrator and the status of the operation is set

to valid (indicated by op[id].st=V ). When the owner is not the administrator, the next

location is called Tentative as well as the operation’s status is set to tentative (indicated by

op[id].st=T ). Otherwise, the next location is Received and the status is maintained tentative.

When the operation is causally-ready at the remote site, the automaton move to the location

CausallyReady. From this location the operation could access to Valid location with valid

status if its owner is administrator or start-off the remote-checking procedure. In case of

success, the result of the execution of this procedure is to set the status either to valid

or tentative by moving to location Valid or Tentative, respectively, according to whether

the remote site is administrator or not. When the remote-checking procedure denies the

operation, the next location is Invalid and the corresponding status is invalid (indicated by

op[id].st=I ). Binary channels VStatus, IStatus, and TStatus are used jointly with ACP to

synchronise status changes and corresponding location.
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Evolution of Adminstrative Request

The process model devoted to administrative request is called AdReq and shown at Fig-

ure 5.8. This model depicted just the evolution of administrative request at non-administrator

site. Indeed, there is no particular evolution at administrator site for administrative request

except the starting-off of policy update by rule-based administrative request. A global vari-

able reprensenting administrative request is then used by administrator.

The process has two parameters : the remote site identifier (id) and administrative request

identifier (r id). To show that the request is available at remote site, it firstly stays in the

location Received. When it is causally-ready in the model, the request moves to the location

CausallyReady. With regards to the protocol, the behavior of an administrative request after

being causall-ready, depends on its type. Indeed, a rule-based administrative request is used

to check cooperative operation with tentative status and the policy is updated locally. Also,

validation-based administrative request triggers the update of the status of the corresponding

cooperative operation, from tentative to valid. To execute such procedures, the administrative

request sets up a synchronization with ACP using binary channel (TentativeChecking[id]! or

UpdateOperation[id]!, respectively). The final location is then Applied to indicate that the

administrative request is peformed completly.

AppliedCausallyReadyReceived

ar[r_id].isRule==false
UpdateOperation[id]!

ar[r_id].isRule==true

TentativeChecking[id]!
currentRule[id]=r_id

ar[r_id].rv==Versions[id]+1 && 
(ar[r_id].rid>=0 ||(ar[r_id].io>=0 && op[id].st==T))

Figure 5.8 The model of administrative request.

ACP

The main process of the system is called ACP and depicted by the automaton in Fig-

ure 5.9. This process is executed by each site (administrator or non-administrator). The only

one parameter of the process is the site identifier named id. According to the protocol, ACP

is responsible to generate and broadcast administrative requests (only by administrator),

receive and perform administrative request (only by non-administrator) and check received
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cooperative operation against policy (or administrative log) .

From the Initial location, to generate a rule-based adminsitrative request, the model

uses the function RuleReq(). The generation of the request is completed by the increasing

of the number version of the policy (Versions[id]++) and its update by adding the new

rule (function updatePolicy()). To perform a rule-based administrative request at a remote

site (non-administrator), the model calls the function checkAgainstRule() which results on

checking all cooperative operations with tentative status at the current site. The execution

of this function starts as soon as the automaton receives the binary synchronized message

TentativeChecking[id]? from AdReq automaton, with the update of the number version of

the policy, followed by adding the corresponding rule to the policy.

To generate a validation-based adminsitrative request, the model uses the function valida-

tionReq(), preceded by the increasing of the number version of the policy (Versions[id]++).

To perform a validation-based adminsitrative request at remote site, the binary synchronized

channel UpdateOperation is used. Note that the broadcast of a new validation-based admin-

istrative request is abstract by setting a global variable as for a new rule-based administrative

request.

To check received cooperative operations against policy (or administrative log), the binary

channel checkRemote[id] is used followed by the execution of the function checkAgainstPol-

icy().

5.5.3 Consistency Property and Verification of the system

To make arbitrary the choice of site as owner of cooperative operation, we add an automa-

ton as shown in Figure 5.10. In addition, this automaton helps to indicate, if the executions

of the cooperative operations are performed by ACP at each site. In this case, the process

stays in the location Final.

system Supervisor, Op, AdReq, ACP ; (5.29)

Using UPPAAL, the definition of the system is given by the declaration shown at state-

ment 5.29. This declaration means that the system consists of Supuervisor, Cooperative

operations, Administrative requests and ACP.

We consider (i) three sites including one administrator with regards to the abstract model

established in Section 5.4, (ii) one cooperative operation owned by a site choosen arbitrarily

between the three sites, (iii) two access rules related to the cooperative operation such as

the first is a positive rule and the second a restrictive rule. The first rule is considered to be

positive because in our scope, we are interested in cooperative operation iniatially granted
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Initial

ari<(NbSites-1) && id==Adm

Versions[id]++,
RuleReq(id, ari),
updatePolicy(ari),
ari++

(decision==true) && (id==Adm)
VStatus[id]!
Versions[id]++,
validationReq(id)

op[id].st!=T

decision==true

decision==false IStatus[id]!

decision==false
IStatus[id]!

decision==true && id!=Adm

TStatus[id]!

checkRemote[id] ?
decision=checkAgainstPolicy(op[id].ov)

VStatus[id]!

id!=Adm
UpdateOperation[id]?

Versions[id]++

id!=Adm
TentativeChecking[id]?

Versions[id]++,
updatePolicy(currentRule[id])

op[id].st==T
decision=checkAgainstRule(currentRule[id])

Figure 5.9 The model of ACP.

at generation time.

Final

initial forall (i:int [0,NbSites-1]) (op[i].st ==V||op[i].st ==I)&& start

ow: id_site

!start
owner=ow,
start=true

Figure 5.10 Automaton devoted to choose the owner of the cooperative operation.

To verify the consistency requirement, we are interested in checking the final status of

every cooperative operation when the system is in a stable state (see Definition 5.10). The

consistency requirement is specified by the CTL formula shown at staement 5.30. The formula

means that if the cooperative operations and all administrative requests are processed at

each site by ACP, the cooperative operations at remote sites have the same status as at

the administrator site. After the verification, the Uppaal model-checker states : Property is
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satisfied. Note that before verifying the main property, we check the absence of deadlocks

(A[]notDeadlock). A state s of a model is in deadlock if and only if there is no action enabled

in s nor in states reachable from s by time progression.

(Supervisor.F inal &&forall(i : int[0, 1])forall(j : int[1, 2])

AdReq(i, j).Applied)−− > forall(i : int[0, 1])(op[i].st == op[Adm].st) (5.30)

5.6 Related Work

It is well known that analyze security properties of communication protocols in general, is

a tricky task [Malik et al. (2013),Khan et al. (2005)]. Access control models and protocols

[Jayaraman et al. (2013),Lee et Luedemann (2007),Tolone et al. (2005),Piromruen et Joshi

(2005), Joshi et al. (2004), Sandhu et al. (1996)] do not escape this challenge, which is

worsened in our particular distributed context, by the approach of replicating authorization

policies [Samarati et al. (1996),Xin et Ray (2007)]. The main complexity relies on the infinite

state of systems. Often, the analysis refers to formal methods, such as using automatic

checking tools, [Randolph et al. (2013),Hu et Ahn (2008),Malik et al. (2013),Khan et al.

(2005)] are examples. In [Randolph et al. (2013)], Alloy 2, a SAT-based bounded model-

checker, is used to specify and verify if the data consistency of the DCE is preserved by the

flexible Access Control Protocol [Imine et al. (2009)]. The verification has shown that

ACP preserves the correctness. Although Alloy specification language, based on the first-

order relational logic, is very appropriate to describe infinite systems, bounded model-checker

techniques are known to be useful to find bugs but less appropriate to prove the absence of

bugs. Thus, the study has covered just several restricted scopes, which does not allow to

assert for large scopes. [Jayaraman et al. (2013)] presents the access control policy analysis

tool Mohawk 3. This tool uses techniques for abstraction refinement and bound estimation

for bounded model checker. It is suitable to find bugs in access control policy based on

Administrative Role-Based Access Control (ARBAC). These bugs are related to consistency

or correctness of enterprise access-control policy systems. The Mohawk tool could not be

used to verify the consistency preservation in DCE but the consistency of the access control

policy. Khan et al. [Khan et al. (2005)] proposed a generic approach to verifying security

protocols in the explicit state model-checker SPIN [Holzmann (2004)]. They used Promela

modelling based on logic programming to deal with the potentially infinite agents. However,

2. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models. Retrieved April 4,
2014 from http://alloy.mit.edu/alloy/

3. Mohawk: A tool for verifying access-control policies. Retrieved June 7, 2014 from
http://code.google.com/p/mohawk/

http://alloy.mit.edu/alloy/
http://code.google.com/p/mohawk/
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the number of instances examined is restricted. In [Hu et Ahn (2008)], Hu H. et al. have

used Alloy to verify the NIST/ANSI standard model for Role Based Access Control (RBAC),

w.r.t the role deleting property. The Alloy analyzer allowed them to conclude that the

functional definition of DeleteRole function proposed for hierarchical RBAC misses a step

for removing inheritance. This work did not take into account all functional properties of

RBAC model. In [Malik et al. (2013)], UPPAAL tool is used to verify the Inter Control

Center Communications Protocol (ICCP), which is the protocol used among control centers

for data exchange and control. In addition, to secure ICCP without modifying the protocol

itself, the authors enable a communication checker, devoted to detect and create alerts on

potential vulnerability exploitations in ICCP. The analyze of the communication checker by

the Uppaal model-checker helped the authors to refine iteratively the design of the checking

mechanisms.

5.7 Conclusion

In this paper, we have investigated the existence of a finite abstract model which is

equivalent w.r.t. the consistency property, to an infinite collaborative system layered with

ACP. The goal was to prove with the automatic checking using formal methods, that the

system obtained by deploying the ACP over any consistent CP preserves the consistency

property. The finite abstract model obtained consists of three cooperative sites including one

administrator. For the verification, we have formally defined, using tool UPPAAL, a symbolic

model, which take into account, the behavior and the consistency requirement of the system.

The Uppaal model-checker concludes on the satisfaction of the consistency property and allow

us to conclude that the flexible access control protocol preserves the consistency of a DCE on

the top of which it runs. It is important to note that the symbolic model allows a significant

gain in both space and time, as the state explosion problem is avoided. In the future, we

plan to work on ACP with multpile administrators.

english
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CHAPITRE 6

DISCUSSION GÉNÉRALE

Ce chapitre fait une syntèse de nos travaux et contributions. Il présente également une

discussion sur la méthodologie suivie, ainsi qu’une analyse de nos résultats.

6.1 Synthèse des travaux

Les travaux présentés dans cette thèse ont débuté par une revue de littérature. Elle a été

consacrée à la cohérence et au contrôle d’accès dans les systèmes d’édition collaborative. Une

attention particulière a été portée aux spécificités d’une édition massivement répartie. Ainsi, le

Chapitre 2 nous a permis d’explorer les différentes approches, modèles et algorithmes proposés

pour assurer la cohérence dans les systèmes d’édition collaborative. Plusieurs modèles de

contrôle d’accès conçus pour de pareils systèmes ont été également passés en revue. En

étudiant ces divers travaux, nous avons tenté de délimiter la frontière des connaissances dans

le domaine. Ainsi, les avancées réalisées avec les travaux existants ainsi que leurs limites ont

été étudiées grâce à une revue détaillée de la littérature. Sur cette base, nos recherches ont

donné lieu à des propositions consignées dans cinq articles dont trois font l’objet de chapitres

de cette thèse.

Dans un premier volet, les recherches ont porté sur la synthèse d’un algorithme de trans-

formation inclusive qui assure la convergence. La motivation vient du fait que la littérature

a revélé la problématique de la cohérence. Nous avons commencé par explorer l’existence de

mécanismes de réplication optimiste convergents. Les investigations ont été poussées plus loin

pour découvrir les causes de divergence. L’identification des causes a inspiré la conception

d’une nouvelle fonction de transformation inclusive. La preuve formelle a été apportée qu’elle

garantit la convergence des documents. Ce volet a donné lieu à deux articles dont l’un est

consigné dans la présente thèse, au Chapitre 3.

Le deuxième volet porte sur l’intégration d’un modèle de contrôle d’accès, aux systèmes

d’édition collaborative massivement répartis. Nous considérons que le mécanisme de coordina-

tion (gestion de la concurrence et de la transformation des opérations) utilisé par le système,

assure nativement la cohérence, à lui seul. D’un point de vue conceptuel, le protocole flexible

de contrôle d’accès proposé pour les éditeurs collaboratifs répartis a été déployé en surcouche

au protocole de synchronisation utilisé par le mécanisme de coordination. L’exercice a été

de prouver que cette combinaison de protocoles ne compromet pas la cohérence. Cette véri-
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fication est bornée et n’a permis que de garantir la préservation de la propriété jusqu’à une

certaine borne. L’espace d’états du système n’a donc pas été totalement couvert. Ces travaux

ont servi à l’écriture de deux articles dont l’un constitue le Chapitre 4 de la thèse.

Le troisème volet s’inscrit dans la poursuite des travaux du deuxième volet, en terme de

preuve formelle. En effet, pour régler définitivement le problème de la vérification et aller au

delà de la borne atteinte avec l’analyseur Alloy, la question s’est posée de savoir comment

couvrir l’espace d’états de ce système infini. Il est connu que vérifier un système infini se

heurte souvent à des problèmes d’explosion combinatoire et de défaut de ressources mémoire.

Les réflexions ont alors été orientées dans le sens de la recherche d’un modèle fini sur lequel la

propriété sera vérifiée. L’investigation d’une réduction qui préserve les propriétés du modèle

de base, nous a conduit à proposer un modèle abstrait ayant un espace d’état fini. La preuve

a ensuite été apportée formellement que ce dernier préserve effectivement les propriétés du

système initial, au regard du traitement des opérations coopératives. Par la suite, il a été

prouvé que le modèle fini préserve la cohérence. Ce volet a également servi à produire l’article

présenté au Chapitre 5 de cette thèse.

6.2 Méthodologie

Dans le système considéré, la coordination est décentralisée. Chaque site a sa réplique de

l’objet partagé. Un document textuel à structure linéaire est considéré comme l’objet partagé

édité. Le système n’admet que deux opérations : insertion d’un caractère à une position

donnée et suppression d’un caractère situé à une position donnée. Les opérations générées

sur un site sont propagées aux autres sites pour être prises en compte. Nous ne considérons pas

le mécanisme de dissémination à travers le réseau de communication exploité, des opérations

générées localement sur un site. Nous ne faisons pas non plus une hypothèse sur le temps

de propagation de ces opérations dans le réseau. Ainsi, toute opération envoyée à travers le

réseau de communication est supposée toujours parvenir à destination, sans altération.

Pour mener à bien les investigations, la question de l’existence ou non de mécanismes de

réplication optimiste convergents à été traduite en un problème de contrôle. Le formalisme

des automates de jeu a été utilisé pour décrire le système. L’outil Uppaal-Tiga a permis de

représenter le système et de vérifier la satisfaction de la propriété TP1. La vérification de

la TP1 se traduit par la question : existe-t-il une stratégie gagnante pour la TP1 ? Uppaal-

Tiga a conclu que la propriété est satisfaite, c’est-a-dire qu’il existe des ITs qui satisfont

la TP1. Ces différents ITs ont été extraits grâce à l’outil verifytga de Uppaal-Tiga. Par la

suite, ces ITs identifiés ont servi à formuler le problème de contrôle pour la TP2, grâce

aux automates de jeu. Il peut être libellé comme suit : parmi les ITs qui satisfont la TP1,



109

existe-t-il au moins un qui satisfait la TP2 ? Uppaal-Tiga a conclu qu’aucun de ces ITs ne

satisfait la TP2. Sur la base de ces résultats, la résolution du problème de contrôle a consisté

à faire dans un premier temps les investigations pour déceler les cas de transformation qui

posent problème. Ensuite l’analyse de ces cas a inspiré le choix d’une signature pour les

opérations d’insertion. La nouvelle signature est obtenue en ajoutant un troisième paramètre

à l’opération d’insertion. La sémantique associée au paramètre est le nombre de caractères

supprimés avant la position indiquée. Nous avons établi et prouvé formellement, un lien entre

ce nouveau paramètre et la position d’insertion. Un algorithme de détermination des valeurs

du nouveau paramètre a été proposé puis prouvé exact. Il s’en suit la synthèse d’une nouvelle

fonction de transformation inclusive. La preuve que l’IT proposé satisfait les propriétés TP1

et TP2 a été faite en utilisant la preuve symbolique. En effet, la technique de model-checking

basée sur les matrices de bornes a été combinée avec le formalisme d’automate. L’outil Uppaal

a servi de cadre pour la preuve. Une évaluation comparative portant sur la complexité a été

faite par rapport à une solution proposée dans la littérature.

Pour ces travaux, le nombre de sites est un paramètre du système. Il est supposé constant.

Ce choix vient du fait que la vérification de la TP1 nécessite deux opérations concurrentes

générées par deux sites différents. Celle de la TP2 nécessite trois opérations concurrentes

générées par trois sites différents. Le nombre de sites considéré comme paramètre du système

est trois. Pour ce qui concerne les opérations concurrentes, chaque site a la possibilité de

générer soit une opération d’insertion, soit une opération de suppression. La transformation

d’une insertion ne peut pas donner une suppression. La transformation d’une suppression

ne peut pas donner une insertion. Cependant, la transformation d’une opération concurrente

par rapport à une autre, peut donnner lieu à une nouvelle opération dénommée NoOp. Elle

signifie qu’aucune opération ne résulte de la transformation de l’opération considérée. Elle

ne donne lieu à aucune exécution d’opération sur l’état courant. Il n’y a pas de changement

d’état. Les propriétés TP1 et TP2 sont exprimées en langage CTL, sous la forme de propriétés

de sûreté.

Pour sécuriser l’édition, l’option a été faite de combiner le mécanisme de coordination sup-

posé nativement cohérent, avec un protocole de contrôle d’accès. La propriété de cohérence

doit être préservée. Pour ce faire il faut choisir le protocole parmi ceux qui sont proposés dans

la littérature, ou en concevoir un. Il faut par la suite prouver que le protocole convient. La

conception d’un nouveau protocole n’est nécessaire que si tous les protocoles proposés dans la

littérature sont prouvés inutilisables dans le contexte complexe des systèmes d’édition collabo-

rative massivement répartis. Ou encore, si une nouvelle méthode intéressante pour des raisons

de performance ou de facilité d’implémentation. Nous avons opté pour un protocole que nous

jugeons adéquat pour atteindre nos objectifs. En effet, le protocole flexible de contrôle d’accès
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proposé pour les éditeurs collaboratifs répartis permet de déployer une sécurité optimiste. Il

autorise une rétroaction dans l’application des règles d’accès. De surcrôıt, son déploiement se

fait par réplication au même titre que les opérations coopératives qui permettent d’éditer le

document à sécuriser. à ces fonctionnalités s’ajoute la gestion de la préséance causale entre

les opérations administratives et les opérations coopératives. Ce protocole a alors été déployé

au dessus du protocole de synchronisation du mécanisme de coordination. Il faille dès lors,

prouver que cette combinaison de protocoles ne compromet pas la cohérence. Pour ce faire, le

système doit une fois encore être modélisé pour être formellement vérifié. La modélisation a

été faite en utilisant l’outil Alloy. La propriété attendue a également été spécifiée puis vérifiée

par l’analyseur Alloy, en association avec un solveur SAT. Cette vérification est faite pour un

nombre maximal de treize sites. Notons que cette borne est importante du point de vue de la

combinatoire engendrée car elle nécessite des ressources de calcul et de mémoire importantes.

Cependant, l’espace d’états du système n’a pas été totalement couvert. La vérification faite

avec Alloy permet de conclure une absence de divergence sur le domaine délimité par la

borne, mais pas sur l’ensemble de l’espace d’états. L’analyseur Alloy est bien adapté pour

la spécification des systèmes infinis. Il permet de passer de la spécification du système, qui

est basée sur la logique de premier ordre et la théorie des ensembles, à une formulation sous

la forme normale conjonctive. Une fois traduit sous cette forme, le système peut alors être

résolu avec n’importe quel solveur SAT, mais seulement dans une approche de model-checking

borné.

Pour affronter le problème de la vérification de la préservation de la cohérence, nous avons

cherché un système fini équivalent. Nous avons dans un premier temps défini formellement

toutes les proporiétés qui découlent de la description du protocole. Cette formalisation a

débouché sur le recensement des différents scénarii d’exécution d’opérations d’édition de

document. La trace d’exécution de ces scénarii, rapporté aux statuts finaux des opérations a

servi à avoir un modèle abstrait du processus d’exécution. Ce dernier a inspiré la proposition

du modèle abstrait représentant le système en étude. Enfin, pour vérifier si le nouveau modèle

abstrait préserve la cohérence, le formalisme d’automate a encore été utilisé avec Uppaal.

6.3 Analyse des résultats

Pour conforter les travaux relatifs à la proposition d’un nouvel IT, nous avons procédé

à une analyse comparative. Notre IT a été comparée en terme de complexité, à la solution

TTF. Les comparaisons ont porté sur les opérations d’insertion et de suppression, au moment

de leur génération. Les résultats sont satisfaisants pour les deux types d’opérations. Dans le

cas d’une suppression la complexité est constante pour notre IT alors qu’elle est linéaire pour
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la solution TTF. Pour une insertion, les complexités sont linéaires dans les deux cas.

Après avoir discuté de nos approches et résultats, nous concluons cette thèse.



112

CHAPITRE 7

CONCLUSION

Un système d’édition collaborative est un logiciel qui permet à un groupe d’utilisateurs

d’éditer conjointement des objets partagés. Lorsque deux utilisateurs interagissent dans un

contexte réparti, il n’est pas toujours possible d’établir un ordre (au sens de Lamport [Lam-

port (1978)]) entre leurs opérations respectives. Il résulte de cette situation de concurrence

entre opérations, des défis majeurs. Il s’agit de l’obtention de documents cohérents et la

gestion des accès. La grande taille du système et sa dynamique constituent des contraintes

supplémentaires au contexte. Dans cette thèse, nous avons essayé d’aborder ces différents

défis en les analysant, en proposant des solutions et finalement en prouvant que ces solutions

sont satisfaisantes. Dans ce chapitre, nous présentons le sommaire des contributions appor-

tées, suivi d’une critique de nos travaux à travers leurs limitations. Pour finir, nous énonçons

les avenues sur lesquelles seront axés nos futurs travaux.

7.1 Sommaire des contributions de la thèse

Nos recherches ont donné lieu à plusieurs contributions entrant dans le cadre d’une édition

collaborative cohérente et sécurisée. Elles nous ont permis d’atteindre nos objectifs et se

résument comme suit.

– Existence de mécanismes de réplication optimiste convergents. L’approche de gestion

de cohérence considéré est la transformée opérationnelle. Les objets manipulés sont

les documents textuels linéaires. Nous avons prouvé que la position dans laquelle un

caractère doit être supprimé est suffisante comme paramètre pour une opération de

suppression. La preuve a été aussi donnée que le caractère et la position correspondante

ne sont pas suffisantes comme paramètres pour une opération d’insertion. Grâce à nos

travaux, nous avons conforté la possibilité d’avoir une édition cohérente. En effet, elle

est possible, à condition d’isoler certaines transformations ou de trouver une bonne

façon de les faire.

– Conception d’un algorithme de transformation inclusive devant garantir la convergence

dans un contexte réparti de réplication optimiste. Cet objectif est atteint grâce à (i)

la définition d’une nouvelle signature pour l’insertion, (ii) la précision d’un algorithme

pour déterminer les valeurs du nouveau paramètre impliqué et (iii) la synthèse d’un

nouvel IT. L’IT permet de réaliser la suppression avec une complexité constante. L’opé-



113

ration d’insertion est réalisée avec une complexité linéaire. La preuve a été apportée

que l’IT satisfait les propriétés TP1 et TP2. En conséquence, l’IT proposé garantit la

convergence. Deux avancées notables sont ainsi conjointement réalisées : obtention d’un

IT convergent à moindre coût.

– Intégration du contrôle d’accès et préservation de la cohérence des systèmes d’édition

collaborative. L’objectif de sécurisation d’une édition collaborative par le contrôle d’ac-

cès est réalisé par le déploiement d’un modèle flexible qui procède par réplication avec

effet rétroactif. Les critères que sont la spécification de haut niveau des droits d’accès,

la généricité et la flexibilité du modèle, l’aspect dynamique du modèle, le maintien des

indicateurs de performance à des seuils acceptables. Ils justifient la préférence pour un

contrôle d’accès optimiste qui maintient une relation de causalité entre les opérations

administratives mais aussi entre les opérations administratives et les opérations coopé-

ratives. Des efforts de spécification du système ont été faits dans un premier temps

dans une approche de model-checking bornée. Ceci a permis d’avoir une première idée

de la préservation de la propriété de cohérence par le protocole, pour des instances non

massives. Par la suite, une avancée a consisté à trouver un modèle fini équivalent au

système en étude, au regard de la cohérence. La démarche formelle ébauche un cadre de

réduction du système applicable pour de futures études sur un tel système ou un sys-

tème similaire. Le modèle abstrait qui en découle a servi à prouver la préservation de la

propriété de cohérence. Le protocole de contrôle d’accès est ainsi formellement prouvé

fiable pour les systèmes d’édition collaborative répartis, même avec une contrainte im-

pliquant un grand nombre d’utilisateurs.

7.2 Limitations des travaux

Nos travaux présentent quelques limitations. Elles concernent essentiellement la portée

des travaux et des aspects de flexibilité.

– Dans le chapitre 3, la première limitation est relative au type des objets considérés.

En effet, nous n’avons manipulé que des objets textuels ayant une structure linéaire.

L’élargissement de la portée en prenant en compte d’autres d’objets bonifierait les

travaux. Par exemple, vu l’accroissement de l’utilisation des documents au format XML,

l’étude des documents semis-structurés permettrait de couvrir cette nature d’objets. La

prise en compte de plusieurs natures d’objets amène à considérer plusieurs sémantiques,

ce qui ajoute une complexité non négligeable. Les réflexions pourraient être orientées

dans le sens d’une généricité ou dans celui de la paramétrisation de la cohérence en lui

associant un seuil ou un degré. Par exemple, l’édition d’une image pourrait réquérir un
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paramètre de cohérence de valeur plus faible que l’édition de texte. Le paramètre sera

donc fixé, en se basant sur la sensibilité du contexte d’application.

– La deuxième limitation de ce travail est qu’il ne couvre que des opérations d’insertion

et de suppression de caractères. Il est vrai que le niveau de granularité le plus bas

pour un texte est le caractère. Il est également vrai que certaines opérations peuvent

être composées à partir des deux opérations que sont l’insertion et la suppression. Par

exemple, un remplacement de caractère peut être vu comme la composition d’une sup-

pression par une insertion de caractère. Cependant une opération d’annulation nécessite

une plus grande précaution. Elle ne doit pas simplement être vue comme une opéra-

tion inverse. Elle appellerait des transformations que certains auteurs ont dénommé «

transformations inverses ». La prise en compte de cette nature d’opération dans notre

travail augmenterait son champ d’action.

– La limitation commune aux chapitres 4 et 5 relève du fonctionnemnt du système

étudié. Le fait de ne pas considérer plusieurs administrateurs limite l’architecture du

système et celle du protocole. La présence de plusieurs adminsitrateurs engendrerait

des opérations administratives concurrentes. Dans ce cas, on aurait un «système de

pleine concurrence». Il serait question de traiter de la concurrence (i) entre opérations

coopératives et (ii) entre opérations coopératives et opérations administratives mais

aussi (iii) entre opérations administratives. La complexité qui découle de la concur-

rence entre opérations administratives s’expliquerait par la possibilité d’avoir des règles

d’accès contradictoires. Par exemple, supposons que le système contient deux admi-

nistrateurs. L’un d’eux émet une règle d’accès qui autorise une opération coopérative

pour un utilisateur donné. Si concurremment, le second émet une règle d’accès qui in-

terdit la même opération à l’utilisateur, un conflit s’en suivra. Une piste pour mieux

aborder cette limitation serait de redéfinir une nouvelle sémantique pour les opérations

adminstratives. On pourra alors s’inspirer des travaux du chapitre 3 pour étudier dans

un premier temps la cohérence des politiques locales de sécurité. Ensuite, les présents

travaux des chapitres 4 et 5 seront exploités pour parachever l’étude.

7.3 Indication des travaux futurs

Les travaux futurs seront en partie consacrés à surmonter les limitations de cette thèse :

– à court terme, certaines natures d’objets, pourraient être isolément étudiées au regard

de la problématique de cohérence. L’approche OT serait considérée avec une sémantique

adaptée à chaque nature d’objets. Par la suite, le contrôle d’accès serait étudié dans

une perspective multi-administrateurs.
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– à moyen terme, la cohérence des politiques de contrôle d’accès ferait l’objet de nos

recherches.

– à long terme, dans une perspective de généralisation, les travaux seront étendus pour

traiter des objets génériques. Puis, la cohérence globale du système retiendrait notre

attention. Elle couvrirait des objets de natures génériques, un contrôle d’accès multi-

administrateurs basé sur des politiques cohérentes.

Au delà des limitations de la thèse, en mettant à profit la réalisation des avenues ci-dessus

énumérées, nos futurs travaux seront consacrés aux pistes ci-après.

– élaboration d’un cadre général de réduction des systèmes d’édition collaborative, quelle

que soit la sémantique de l’objet considéré. Ce cadre pourra inspirer d’autres recherches

de réduction de systèmes infinis, autre que les systèmes collaboratifs.

– L’étude et l’amélioration des performances du protocole de contrôle d’accès. Il en sera

ainsi pour l’algorithme de transformation inclusive proposée. Il est actuellement de

complexité linéaire pour l’opération d’insertion. Nous n’excluons pas la possibilité de

rechercher une nouvelle fonction d’IT dont la complexité serait constante ou tout au

moins sub-linéaire, pour l’insertion.
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for Industrial Critical Systems, Springer Berlin Heidelberg, vol. 8187 de Lecture Notes

in Computer Science. 184–198.



121

[Ressel et al. (1996)] RESSEL, M., NITSCHE-RUHLAND, D. et GUNZENHAUSER, R.

(1996). An integrating, transformation-oriented approach to concurrency control and

undo in group editors. ACM CSCW’96. Boston, USA, 288–297.

[Saito et Shapiro (2005)] SAITO, Y. et SHAPIRO, M. (2005). Optimistic replication. ACM

Comput. Surv., 37, 42–81.

[Samarati et al. (1996)] SAMARATI, P., AMMANN, P. et JAJODIA, S. (1996). Maintai-

ning Replicated Authorizations in Distributed Database Systems. Data & knowledge

engineering, 18, 55–84.

[Samuel et al. (2007)] SAMUEL, A., GHAFOOR, A. et BERTINO, E. (2007). A framework

for specification and verification of generalized spatio-temporal role based access control

model. Rapport technique, Purdue University.

[Sandhu et al. (1996)] SANDHU, R., COYNE, E., FEINSTEIN, H. et YOUMAN, C. (1996).

Role-Based Access Control Models. Computer, 29, 38–47.

[Sandhu et Samarati (1994)] SANDHU, R. et SAMARATI, P. (1994). Access control : prin-

ciple and practice. Communications Magazine, IEEE, 32, 40–48.

[Schaeffer-Filho et al. (2009)] SCHAEFFER-FILHO, A., LUPU, E., SLOMAN, M. et EI-

SENBACH, S. (2009). Verification of Policy-Based Self-Managed Cell Interactions Using

Alloy. Policies for Distributed Systems and Networks, 2009. POLICY 2009. IEEE In-

ternational Symposium on. 37–40.

[Shapiro et Preguiça (2007)] SHAPIRO, M. et PREGUIÇA, N. (2007). Designing a commu-
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ANNEXE A : DÉFINITIONS COMPLÉMENTAIRES

Définition .1 (Relation réflexive) . Une relation R définie dans un ensemble E est ré-

flexive si et seulement si, pour tout élément e appartenant à E, le couple (e, e) appartient à

R.

∀e ∈ E, eRe est vrai (1)

Définition .2 (Relation antisymétrique) .. Une relation R définie dans un ensemble E

est antisymétrique si et seulement si, pour tout élément e1, e2 appartenant à R, lorsque les

couples (e1, e2) et (e2, e1) appartiennent à R, alors e1 et e2 sont égaux.

∀e1, e2 ∈ R, (e1Re2) ∧ (e2Re1) ⇒ (e1 = e3) (2)

Définition .3 (Relation transitive) . Une relation R définie dans un ensemble E est tran-

sitive si et seulement si, pour tout élément e1, e2, e3 appartenant à R, lorsque les couples

(e1, e2) et (e2, e3) appartiennent à R, alors le couple (e1, e3) appartient à R.

∀e1, e2, e3 ∈ R, (e1Re2) ∧ (e2Re3) ⇒ (e1Re3) (3)

Définition .4 (Relation d’ordre) . Une relation R dans un ensemble E est appelé une

relation d’ordre partiel ou de préordre si et seulement si elle est réflexive, antisymétrique

et transitive.

Un ensemble E combiné à une relation d’ordre partiel R est appelé un ensemble partiellement

ordonné et est noté (S,R).

Définition .5 (éléments comparables) . Les éléments e1 et e2 d’un ensemble partielle-

ment ordonné (S,R) sont dits comparables si et seulement si, l’un des couples (e1, e2) ou

(e2, e3) appartient à R.

Définition .6 (Ordre total) . Si (S,R) est un ensemble partiellement ordonné et que tous

les éléments de S sont deux à deux comparables, alors S est appelé ensemble totalement

ordonné et R est un ordre total.

Définition .7 (Histoire légale) . Une histoire (séquence d’opérations) h est dite légale sur

un état st si la précondition de chaque opération de h est satisfaite.
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Définition .8 (équivalence des histoires) . Deux histoires h1 et h2 sont équivalentes

pour tout état st (noté h1 ≡st h2 ), si et seulement si, h1 et h2 sont légales sur st, de

même longueur et leurs exécutions sur l’état st conduisent à un même état.

(i) h1 et h2 sont légales sur st

(ii) |h1| = |h2|

(iii) Do∗(h1, st) = Do∗(h2, st) (4)

avec Do∗ la fonction qui retourne l’état obtenu en exécutant une séquence ou une histoire sur

un état donné.

Définition .9 (Extension de IT) . Nous définissons une extension à la fonction de

transformation IT comme suit :

IT ∗ : H×H → H

IT ∗(h, []) = h (5)

IT ∗([], h)] = [] (6)

IT ∗(h1, [h2;h3]) = IT ∗(IT ∗(h1, h2), h3) (7)

IT ∗([h1;h2], h3) = [IT ∗(h1, h3); IT
∗(h2, IT

∗(h3, h1))] (8)

IT ∗([o1], [o2]) = [IT (o1, o2)] (9)

avec [] l’histoire vide, h, h1, h2, h3 toutes histoires légales et o1 et o2 toutes opérations.

IT ∗ sert à transformer une histoire légale par rapport à une autre histoire légale. Ainsi,

IT ∗(h1, h2) est l’histoire légale obtenue en transformant l’histoire légale h1 par rapport à

l’histoire légale h2.

L’expression (5) signifie quela transformation d’une histoire légale h par rapport à une his-

toire légale vide produit h. L’expression (6) signifie que la transformation d’une histoire légale

vide par rapport à une histoire légale h donne l’histoire légale vide. L’expression (7) signifie

que la transformation d’une histoire légale h1 par rapport à la séquence d’opérations obte-

nue en exécutant l’histoire légale h3 après l’histoire légale h2 se fait en deux étapes. h1 est

transformée par rapport à h2 puis le résultat IT ∗(h1, h2) est ensuite transformé par rapport

à h3. L’expression (8) indique que la transformation de la séquence d’opérations obtenue en

exécutant l’histoire légale h2 après l’histoire légale h1 par rapport à l’histoire légale h3 donne

une séquence composée de la transformation de h1 par rapport à h3 et de la transformation

de h2 par rapport IT ∗(h3, h1) qui est la transformation de h3 par rapport à h1. L’expression

(9) définit que la transformation d’une séquence d’opération contenant la seule opération o1
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par rapport à une séquence d’opération contenant la seule opération o2 donne une séquence

contenant la seule opération IT (o1, o2) qui est le résultat de la transformation de l’opération

o1 par rapport à o2 en utilisant la fonction de transformation IT . Cette dernière expression

indique le lien entre IT et IT ∗.

Définition .10 (Opérations commutatives) . Deux opérations o1 et o2 commutent si et

seulement si, pour tout état st, les séquences d’exécution [o1; o2] et [o2; o1] conduisent toutes

deux à des états corrects et sont équivalentes. Elles sont également dites commutatives.
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ANNEXE B : ALGORITHMES DE TRANSFORMATIONS INCLUSIVES

B.1. Algorithme dOPT [Ellis et Gibbs (1989)]

[1] IT (Ins(p1, c1, pr1), Ins(p2, c2, pr2)) =
[2] if (p1 < p2) then return Ins(p1, c1, pr1)
[3] else if (p1 > p2) then return Ins(p1 + 1, c1, pr1)
[4] else if (c1 == c2) then return Nop()
[5] else if (pr1 > pr2) then return Ins(p1 + 1, c1, pr1)
[6] else return Ins(p1, c1, pr1)
[7] end if
[8] IT (Ins(p1, c1, pr1),Del(p2, pr2)) =
[9] if (p1 < p2) then return Ins(p1, c1, pr1)
[10] else return Ins(p1 - 1, c1, pr1)
[11] end if
[12] IT (Del(p1, pr1), Ins(p2, c2, pr2)) =
[13] if (p1 < p2) then return Del(p1, pr1)
[14] else return Del(p1 + 1, pr1)
[15] end if
[16] IT (Del(p1, pr1),Del(p2, pr2)) =
[17] if (p1 < p2) then return Del(p1, pr1)
[18] else if (p1 > p2) then return Del(p1 - 1, pr1)
[19] else return Nop()
[20] end if

B.2. Algorithme adOPTed [Ressel et al. (1996)]

[1] IT (Ins(p1, c1, u1), Ins(p2, c2, u2)) =
[2] if (p1 < p2 or (p1 = p2 and u1 < u2)) then return Ins(p1, c1, u1)
[3] else return Ins(p1 + 1, c1, u1)
[4] end if
[5] IT (Ins(p1, c1, u1),Del(p2, u2)) =
[6] if (p1 ≤ p2) then return Ins(p1, c1, u1)
[7] else return Ins(p1 - 1, c1, u1)
[8] end if
[9] IT (Del(p1, u1), Ins(p2, c2, u2)) =
[10] if (p1 < p2) then return Del(p1, u1)
[11] else return Del(p1 + 1, u1)
[12] end if
[13] IT (Del(p1, u1),Del(p2, u2)) =
[14] if (p1 < p2) then return Del(p1, u1)
[15] else if (p1 > p2) then return Del(p1 - 1, u1)
[16] else return Nop()
[17] end if
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B.3. Algorithme de Sun [Sun et al. (1998)]

[1] IT (Ins(p1, s1, l1), Ins(p2, s2, l2)) =
[2] if (p1 < p2) then return Ins(p1, s1, l1)
[3] else return Ins(p1 + l2, s1, l1)
[4] end if
[5] IT (Ins(p1, s1, l1), Del(p2, l2)) =
[6] if (p1 ≤ p2) then return Ins(p1, s1, l1)
[7] else if (p1 > p2 + l2) then return Ins(p1 - l2, s1, l1)
[8] else return Ins(p2, s1, l1)
[9] end if
[10] IT (Del(p1, l1),Ins(p2, s2, l2)) =
[11] if (p2 ≥ p1 + l1) then return Del(p1, l1)
[12] else if (p1 ≥ p2) then return Del(p1 + l2, l1)
[13] else return [Del(p1, p2 - p1) ; Del(p2 + l2, l1 - (p2 - p1))]
[14] end if
[15] IT (Del(p1, l1),Del(p2, l2)) =
[16] if (p2 ≥ p1 + l1) then return Del(p1, l1)
[17] else if (p1 ≥ p2 + l2) then return Del(p1 - l2, l1)
[18] else if (p2 ≤ p1 and p1 + l1 ≤ p2 + l2) then return Del(p1, 0)
[19] else if (p2 ≤ p1 and p1 + l1 > p2 + l2) then return Del(p2, (p1 + l1) - (p2 + l2))
[20] else if (p2 > p1 and p2 + l2 ≥ p1 + l1) then return Del(p1, p2 - p1)
[21] else return Del(p1, l1 - l2)
[22] end if
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B.4. Algorithme SOCT2 [Suleiman et al. (1998)]

[1] IT (Ins(p1, c1, av1, ap1), Ins(p2, c2, av2, ap2)) =
[2] if (p1 < p2) then return Ins(p1, c1, av1, ap1)
[3] else if (p1 > p2) then return Ins(p1 + 1, c1, av1, ap1)
[4] else if (av1 ∩ ap2 6= ∅) then return Ins(p1 + 1, c1, av1, ap1)
[5] else if (ap1 ∩ av2 6= ∅) then return Ins(p1, c1, av1, ap1)
[6] else if (code(c1) > code(c2)) then return Ins(p1, c1, av1, ap1)
[7] else if (code(c1) < code(c2)) then return Ins(p1 + 1, c1, av1, ap1)
[8] else return Nop()
[9] end if
[10] IT (Ins(p1, c1, av1, ap1),Del(p2)) =
[11] if (p1 ≤ p2) then return Ins(p1, c1, av1, ap1∪ {Del(p2)})
[12] else return Ins(p1 - 1, c1, av1∪ {Del(p2)}, ap1)
[13] end if
[14] IT (Del(p1), Ins(p2, c2, av2, ap2)) =
[15] if (p1 < p2) then return Del(p1)
[16] else return Del(p1 + 1)
[17] end if
[18] IT (Del(p1),Del(p2)) =
[19] if (p1 < p2) then return Del(p1)
[20] else if (p1 > p2) then return Del(p1 -1)
[21] else return Nop()
[22] end if
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B.5. Algorithme d’Imine [Imine et al. (2003)]

[1] IT (Ins(p1, o1, c1), Ins(p2, o2, c2)) =
[2] if (p1 < p2) then return Ins(p1, o1, c1)
[3] else if (p1 > p2) then return Ins(p1 + 1, o1, c1)
[4] else if (o1 < o2) then return Ins(p1, o1, c1)
[5] else if (o1 > o2) then return Ins(p1 + 1, o1, c1)
[6] else if (code(c1) < code(c2)) then return Ins(p1, o1, c1)
[7] else if (code(c1) > code(c2)) then return Ins(p1 + 1, o1, c1)
[8] else return Nop()
[9] end if
[10] IT (Ins(p1, o1, c1),Del(p2)) =
[11] if (p1 ≤ p2) then return Ins(p1, o1, c1)
[12] else return Ins(p1-1, o1, c1)
[13] end if
[14] IT (Del(p1), Ins(p2, o2, c2)) =
[15] if (p1 < p2) then return Del(p1)
[16] else return Del(p1 + 1)
[17] end if
[18] IT (Del(p1),Del(p2)) =
[19] if (p1 < p2) then return Del(p1)
[20] else if (p1 > p2) then return Del(p1-1)
[21] else return Nop()
[22] end if
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B.6. Algorithme SDT [Li et Li (2004),Li et Li (2008a)]

[1] Soient op1 = Ins(p1, c1, u1) et op2 = Ins(p2, c2, u2)
[2] IT(op1, op2) =
[3] si β(op1) < β(op2) alors retourner Ins(p1, c1, u1)
[4] sinon si β(op1) > β(op2) alors etourner Ins(p1 + 1, c1, u1)
[5] sinon si p1 < p2 alors retourner Ins(p1, c1, u1)
[6] sinon si p1 > p2 alors retourner Ins(p1 + 1, c1, u1)
[7] sinon si u1 < u2 alors retourner Ins(p1, c1, u1)
[8] sinon retourner Ins(p1 + 1, c1, u1)
[9] fin si
[10] IT(Ins(p1, c1, u1),Del(p2, u2)) =
[11] si (p1 ≤ p2) alors retourner Ins(p1, c1, u1)
[12] sinon retourner Ins(p1-1, c1, u1)
[13] fin si
[14] IT(Del(p1, u1), Ins(p2, c2, u2)) =
[15] si (p1 < p2) alors retourner Del(p1, u1)
[16] sinon retourner Del(p1 + 1, u1)
[17] fin si
[18] IT(Del(p1, u1),Del(p2, u2)) =
[19] si (p1 < p2) alors retourner Del(p1, u1)
[20] sinon si (p1 > p2) alors retourner Del(p1-1, u1)
[21] sinon retourner Nop()
[22] fin si
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