POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Convergence et sécurité d'acces dans les systemes d'édition
collaborative massivement répartis

Aurel Josias Oboubé Randolph
2014

Mémoire ou these / Dissertation or Thesis

Randolph, A. J. 0. (2014). Convergence et sécurité d'acces dans les systemes
d'édition collaborative massivement répartis [Thése de doctorat, Ecole

Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/1542/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) -
PolyPublie URL: https://publications.polymtl.ca/1542/

Directeurs de
recherche: Hanifa Boucheneb, & Alejandro Quintero

Programme

Advisors:

' Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/1542/
https://publications.polymtl.ca/1542/

UNIVERSITE DE MONTREAL

CONVERGENCE ET SECURITE D’ACCES DANS LES SYSTEMES D’EDITION
COLLABORATIVE MASSIVEMENT REPARTIS

AUREL JOSIAS OBOUBE RANDOLPH
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L’OBTENTION
DU DIPLOME DE PHILOSOPHIZE DOCTOR
(GENIE INFORMATIQUE)

AOUT 2014

(© Aurel Josias Oboubé Randolph, 2014.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette theése intitulée :

CONVERGENCE ET SECURITE D’ACCES DANS LES SYSTEMES D’EDITION
COLLABORATIVE MASSIVEMENT REPARTIS

présentée par : RANDOLPH Aurel Josias Oboubé

en vue de 'obtention du diplome de : Philosophise Doctor

a été dument acceptée par le jury d’examen constitué de :

M. CHAMBERLAND Steven, Ph.D., président

Mme BOUCHENEB Hanifa, Doctorat, membre et directrice de recherche
M. QUINTERO Alejandro, Doct., membre et directeur de recherche

M. GUEHENEUC Yann-Gaél, Doct., membre

M. VILLEMAIRE Roger, Ph.D., membre

11

A ma famille.

A toutes celles et tous ceux qui m’ont fortifié d’une parcelle de leurs con-

naissances et savoirs : éducateurs, enseignants et formateurs de tous ordres.

v

REMERCIEMENTS

De I'idée jusqu’a cette étape d’impétration, j’ai eu I'insigne honneur et le privilege d’étre
soutenu, accompagné, encouragé et conseillé par plusieurs personnes. Je saisis la présente
occasion pour témoigner a toutes et a tous, ma gratitude pour leurs bons offices.

Je tiens a remercier Hanifa Boucheneb et Alejandro Quintéro. Au-dela du role de géniteurs
dans la lignée scientifique, ils n’'ont ménagé aucun effort sur les plans humain et financier.
Je prends acte de l'incommensurable dette de reconnaissance contractée envers eux, pour
I’encadrement, I’assistance, ’aide et la confiance dont j’ai bénéficié.

J’exprime également toute ma reconnaissance a Abdessamad Imine pour sa collaboration.
Nos discussions ne font que m’édifier a chaque fois. Je lui renouvelle mes remerciements, ainsi
qu’a Michael Rusinowitch, pour leur accueil lors de mon séjour scientifique a 'INRIA Nancy
Grand-Est (FRANCE).

Je remercie les membres de jury pour 'attention particuliere accordée a mes travaux.

Je manifeste ma profonde gratitude a ma famille, dans toutes ses dimensions. L’apport
quotidien dont je suis gratifié est indicible. Je ne dirai jamais assez merci. Je décerne une men-
tion spéciale a Annick, M.-Gracia, Josias, A.-Yanis, Rita, Floris, William, Claudia, Joanita
et Isidore RANDOLPH.

Je sais gré a Eugene ézin, Rock Glitho et Fabien Houéto, sans qui, je n’aurais pas com-
mencé cette these. Un merci spécial a Eugene ézin pour son soutien indéfectible et tout ce
qu’il fait pour moi, des lors que nous nous sommes connus.

Je remercie les Professeurs Samuel Pierre, Steven Chamberland, Ronald Beaubrun et
Chamseddine Talhi pour leurs encouragements durant tout mon parcours doctoral.

Je ne passe pas sous silence, la convivialité et I'entraide qui ont prévalu dans les labo-
ratoires VeriForm et LARIM. Je remercie plus particulierement : Moustapha Bandé, Luis
Cobo-Campos, Grégory Charlot, Marieme Diallo, éric Fafolahan, Reza Gholami, Valérie-D.
Justafort, Adjarath Lémamou, Moussa Ouédraogo, Ronald Jean-Julien, Germine Séide.

J’apprécie grandement le diligent concours et les encouragements de Francklin éyélom. Je
le remercie infiniment, ainsi que les collegues de I’Académie Moan, en leurs grades et qualités.

Je remercie tres sincement toutes les personnes non distinctement indiquées, dont j’ai

bénéficié du soutien durant cette aventure scientifique et humaine.

RESUME

Parmi les défis des systemes d’édition collaborative figure la cohérence des objets partagés.
Dans la perspective d'une édition cohérente, le systeme doit garantir la convergence. Pour
assurer la cohérence des objets partagés, la littérature propose plusieurs solutions. Les dif-
férentes approches majeures proposées sont : I'approche des types de données commutatives
répliquées (CRDT) et 'approche de la transformée opérationnelle (OT). L’approche CRDT
considere des opérations commutatives qui peuvent étre exécutées dans un ordre différent.
L’une des difficultés auxquelles CRDT se bute réside en la commutativité des opérations.
Toutes les opérations d’édition doivent étre commutatives afin d’étre exécutées dans un ordre
quelconque. L’approche de la transformée opérationnelle quant a elle propose une transfor-
mation des opérations distantes recues par rapport aux opérations qui lui sont concurrentes ;
meéme si elles sont déja exécutées. Pour effectuer les transformations, I’approche OT utilise
un algorithme de transformation inclusive (IT). Dans la littérature, plusieurs travaux ont
prouvé que les principaux algorithmes de transformation inclusive proposés ne satisfont pas
le critere de convergence.

Outre la cohérence, la sécurisation des interactions est un autre défi des systemes d’édition
collaborative. Le controle d’acces est I'un des modeles de politiques de sécurité applicable dans
ce cadre. Il s’agit d’autoriser ou d’interdire I’édition a certains utilisateurs. Le controle d’acces
doit étre uniformément déployé pour éviter de compromettre la cohérence des opérations
d’édition. Une opération d’édition valide sur un site doit I’étre partout. Une opération refusée
sur un site doit étre refusée partout. Dans le contexte étudié, le protocole de sécurité est fiable
s’il préserve la cohérence du systeme. Fournir cette preuve de fiabilité est une tache ardue.
Le nombre de cas a examiner est infini. De plus, pour une vérification automatique, le défaut
de ressources survient si des techniques appropriées ne sont pas exploitées.

Dans cette these, nous nous intéressons aux défis que constituent la convergence et le
controle d’acces dans les systemes d’édition collaborative répartis. Nous considérons un ob-
jet textuel a structure linéaire qui est massivement édité dans une architecture répartie.
L’approche de gestion de cohérence utilisée est la transformée opérationnelle. Ainsi, chaque
utilisateur a sa copie locale du document partagé. Les opérations générées sur un site sont
aussitot diffusées aux autres utilisateurs. Elles peuvent étre exécutées dans un ordre quel-
conque. Les types d’opérations d’édition sont : l'insertion d’un caractere et la suppression
de caractere. Nous intégrons également un protocole de controle d’acces a 1’édition collabo-
rative. Notre these se présente sous la forme de trois articles scientifiques, chacun traitant

d’une problématique bien spécifique.

vi

Dans le premier article, nous abordons la problématique de la convergence. Nous avons
adopté une démarche en plusieurs étapes. Une exploration a été initialement faite afin de
vérifier s’il est possible d’avoir une fonction IT convergente. En utilisant la méthode de la
synthese de controleur et les automates de jeu, nos investigations ont révélé qu’aucune IT
basée uniquement sur le caractere et la position ne peut garantir une convergence. L’identifi-
cation des causes de divergence a permis d’amorcer la résolution du « probleme de synthese
de controleur ». Ainsi, un troisieme parametre a été ajouté aux opérations d’insertion. Il per-
met de manipuler le nombre de caracteres supprimés avant la position d’insertion indiquée.
Une fonction de détermination de la valeur de ce parametre a été proposée. Une fonction I'T
a été par la suite proposée, en tenant compte des propositions précédentes. En utilisant la
vérification sur modele (model-checking), la preuve a été apportée que notre I'T garantit bien
la convergence.

Le deuxieme article propose l'intégration d’un protocole de sécurité optimiste. L’article
aborde la problématique de la fiabilité du protocole dans un espace d’états infini. Il est
déployé au dessus de protocole de synchronisation du systeme d’édition collaborative. Nous
faisons I'hypothese que le systeme vérifie la propriété de cohérence en ’absence du controle
d’acces. Pour affronter les difficultés relatives a la preuve de fiabilité, ’approche du model-
checking symbolique a été préférée. Le model-checking borné a été utilisé avec I'outil Alloy.
L’exploration faite pour des instances dont la taille maximale est de treize « signatures », a
permis de conclure la préservation de la cohérence par le protocole de controle d’acces. Notons
que ces instances ne sont pas massives mais la combinatoire résultante n’est pas négligeable.

Le troisieme article aborde la problématique de réduction de systeme. Des investigations
ont été menées afin d’avoir un modele fini équivalent au systeme d’édition collaborative, au
regard de la propriété de cohérence. Le modele abstrait proposé comporte trois sites coopé-
ratifs, dont I'un est administrateur. Ce modele a espace d’états fini étant prouvé équivalent
par rapport a la propriété de cohérence, au systeme a espace d’états infini, il a servi de
cadre pour la vérification automatique. En utilisant I'outil Uppaal et le formalisme d’auto-
mate, nous avons prouvé par model-checking que le modele abstrait préserve la cohérence.
Par conséquent, le protocole de controle d’acces préserve la cohérence de systeme d’édition
collaborative.

Nos travaux comportent quelques limitations liées a leur portée. Nous avons manipulé
des objets textuels a structure linéaire sur lesquels ne sont appliquées que des opérations
d’insertion et de suppression de caracteres. De plus, la gestion des droits d’acces est basée sur
un modele mono-administrateur. La performance du protocole de controle d’acces n’a pas non
plus été prise en compte. Les travaux auraient sans doute plus d’envergure s’ils couvraient

plusieurs types d’objets, plusieurs types d’opérations d’édition, plusieurs administrateurs et

Vil

une étude de performance. Nos futures travaux pourraient étre consacrés a ’élargissement de

la portée de la présente these.

viil

ABSTRACT

The consistency of the shared documents is one of the most important challenges in colla—
borative editing systems. To achieve consistency, a solution must ensure the convergence
criteria. Several solutions are proposed in litterature to achieve consistency of the shared
documents. The major approaches are: commutative replicated data type (CRDT) and
operational transformation (OT). CRDT considers some commutative operations which could
be executed in different order. The main difficulty of CRDT is to compute commutative
operations. OT approach proposes to transform remote operations against their concurrent
operations, even if they are already executed. An inclusive transformation function is used to
compute the transformations. In the litterature, several works show that the main inclusive
transformation (IT) functions proposed do not ensure convergence.

Besides consistency, security of the edition is another challenge in distributed collaborative
systems. Access control is a model of security policy that could be used. It consists of
granting or revoking editing authorizations for users. Access control must be uniformly
deployed to not compromise the consistency of the system. A valid editing operation at
one site must be valid at all other sites. As the same time, an invalid operation at one
site, must be invalid everywhere. In the current context, the security protocol is reliable
if it preserves the consistency of the system. Produce the proof of reliability is difficult.
It requires examining infinite number of cases. In addition, with automatic verification,
ressources become insufficient if appropriate techniques are not used.

This thesis is interested in consistency and access control challenges in distributed collab-
orative editing systems. It considers a textual object with a linear structure that is massively
edited in a distributed architecture. OT is used to manage consistency. Each user has a local
copy of the shared document. Locally-generated operations are immediately broadcast to
other users. Operations could be executed in any order. Their types are inserting and delet-
ing characters. To ensure security, collaborative edition is combined with an access control
protocol. The thesis consists of three scientific articles. Each of them deals with a specific
problem.

In the first article, we adress the problem of consistency and proceed in several steps.
Initially, we explore the existence of convergent I'T functions of OT, which ensure data con-
sistency. Using the controller synthesis approach and game automata, we conclude that there
is no IT function, based only on character and position as parameters of insert and delete
operations, which ensure data consistency. The investigation of the causes of divergence led

to solve the controller synthesis problem. Thus, a new parameter is added to the insert op-

1X

eration signature. It handles the number of characters deleted before the inserting position.
The function needed to compute the value of this parameter is provided. Finally, based on
these contributions, we propose an IT function and show that it ensures convergence. The
proof is achieved by a symbolic model-checking emulated using the tool Uppaal.

The second article adresses the reliability of security protocol in an infinite state space. An
optimist access control protocol is considered to be deployed over any correct synchronization
protocol. The symbolic model-checking approach is choosen to deal with the proof of reliabi—
lity. For this purpose, bounded model-checking is used with the tool Alloy. Exploration
made with instances whose maximum size is thirteen allow to conclude the preservation of
consistency by the access control protocol. These instances are not massive but the resulting
combinatorial is important.

The third article adresses the problem of system reduction. In this article, we investi-
gate a finite model equivalent to a distributed collaborative editing system, with regard to
consistency. The abstract model proposed consists of three cooperative sites including the
administrator. This finite state model is proved by model-checking to preserve consistency.
Consequently, the access control protocol preserves consistency of any correct distributed
collaborative editing system. The model-checking techniques exploits Uppaal tool and au-
tomata.

Our work has several limitations. We consider textual objects with linear structure. These
objects are edited by applying some operations which are inserting and deleting characters.
In addition, the management of access rights is based on one-administrator model. The
performance study of the access control protocol is not done. The work would probably
be more extensive if it covered several types of objects, several types of editing operations,
many administrators and the performance study. Our future work could be devoted to the

widening of the scope of this thesis.

TABLE DES MATIERES

CHAPITRE[L INTRODUCTIONo

|1 1 Définitions et concepts de basg

|1 1.1 Edition collaborativd

Notion de réplicationl

1.4 FEsquisse méthodologiqud
(L5 Principales cont WMWM
1.6 Plandelathesd
CHAPITRElz REVUE DE LITTER TUREJ

|2J_A_na.lvse sommaire du problémd L

’ p .
O Ao A olla
d d [a s
/
ONETENCH« « v v v v v e e e e e e e e e e e e

memmﬂ 31
|5.; ;i;;ll;ll;;l;;“

CHAPITRE 3 ARTICLE 1 : On Synthesizing a Consistent Operational Transformation

Approach
3.1 Introduction

X1l

Extendin

5.4.1

3.4.4 Proof of consistencyl Q
3.4.5 Comparison a

CHAPITRE 4 ARTICLE 2 : Specification and Verification using Alloy of Optimistic

Access Control for Distributed Collaborative Editors %
|4 2 Optimistic Access Control Protocol for DCH a

4.3 1 ALOV . . . ﬂ
4.3.2 Formal Specification of ACP ﬂ
[4.3.3 Specification of Consistency Proper‘rgJ %
44 Related Work
4.5 Conclusion E

CHAPITRE 5 ARTICLE 3 : On Consistency Preservation with Optimistic Access
Control for Distributed Collaborative Editors

&
B Introduction . . . oot 8]

5.2.3 Generation of Administrative Operationd %

wm&mmmmm

5.2.5 Verification Issued %
5.3 Definitiond o

H.4.2 Execution Processo a
5.4.3 Analvzis of the Execution Processl Q

5.7 Conclusio

CHAPITRE 6 DISCUSSION GENERALH« o o ooooeee o) 107
6.1 Synthese des travauxlo hﬂj

6.2 Méthodologido @
sultatd . . 11
CHAPITRE[Z CONCLUSION o o 114

7.1 Somma,imjemnﬂiblﬂjgnsjﬂ_a_ﬂ]éssl E

LISTE DES TABLEAUX

Table 3.1 IT functions supplied by Uppaal-Tiga for TP1 and classical signatures

of update operations
(Table 3.2 Transformation cases for IT(0y.00) and IT(0s.00)

Table 3.3 Computing ND(S e [01;091],p) and ND(S e [09; 015 ,p)l
|§Ii|§ 5?_2-4 g}gmg]lum “ gg]mgg gl !’ Of [01'001] and [01)'010

Table 3.5 Complexity comparison)o

Xiv

XV

LISTE DES FIGURES

Figure 2.2 Violation de la propriété TP2 par SDTJ.
igure 3.1 Intewgmj E
igure ntecration with transformation). E
igure 3.3 MV approach H
icure 3.4 SRC annroag;h' H
igure 3.5 CRDT am)roa.dJ H
jigure 3.6 iolation of TP1 fo s ITS . . . E

Figure 3.7 Violation of TP1 for Sun’s I'T B
icure 3.8 Violation of TP1 for Suleiman’s IT ﬂ

i i ’ (in_case o 7/&] B

Figure 3.10 Violation of TP2 for Imine’s IT) E

joure 3.11

Svnthesize an IT for TP],l

icure 3.12 ___ Svnthesize a consistent IT| E

oure enario
joure 3.14

:. C 0 __'_I_ Ou
ioure 3.17 The proposed IT function o o i v s a
lgure 8 Automaton used to veri Pl and TP2 Q

Figure 3.19

|
View and Model states (Figure taken from [Oster et al. (2006a)])]. . . a

Figure 4.1

Flow of collaboration messages

olre 4 Divergence caused by introduc;

joure ow of collaboration messaged Q
igure 5.2 Processing of a cooperative operation at, mﬁmm_m_mg] a
igure 5.3 Processing of a received cooperative operation). g
igure 5.4 Processing of received administrative request] a
joure Divergence caused by introducing administrative operationsd ﬁ
igure 5.6 [xecution process at any sitel 0oL a
igure he model of cooperative operation) lD_]J

The model of ACPS @I

LISTE DES ANNEXES

XVl

1217

ACP
ADM
AMM
ANSI
ASSERT
BDD
C-TMAC

CAC

CCI

CES
CP

CP
CRDT

CSM

CSp
CTL
CVS
DBM
DCE
DEL
DDP
DTD
ET
FACT
FUN
GST-RBAC
IEEE

Xvil

LISTE DES SIGLES ET ABREVIATIONS

Access Control Protocol

Administrator

Modele de Matrice d’Acces (Access Matriz Model)

American National Standards Institute

Assertion

Binary Decision Diagram

Modele de controle d’acces basé conjointement sur les informations de
contexte et les équipes (Contezt-Based Team-Based Access Control)
Modele de controle d’acces sensible au contexte

(Context-Aware Access Control)

Critere de cohérence regroupant la préservation de la causalité, la
convergence et la préservation de 'intention

(Causality preservation, Convergence and Intention preservation)
Collaborative Editing System

Coordination Protocol

Probleme de contréle, Control Problem

Type de données commutatitives répliquées

(Commutative Replicated Data Type)

Causality, single-operation effect, and multi-operation effects relation
preservation

Probleme de la synthese de controleurs, Controller Synthesis Problem
Computational Tree Logic

Concurrent Version System

Difference Bound Matrice

Distributed Collaborative Editors

Deleting Operation

Data-dependency Precedence Preservation

Définition de Type de Document (Document Type Definition)
Transformation exclusive (exclusion transformation)

Fact

Function

Generalized Spatio-Temporal Role Based Access Control

Institut des Ingénieurs électriciens et électroniciens

INS
IT
LNCS
MV
NIST
NOP
oT
PPS
PRED
RBAC

SAC
SAT
SDT

SDTO

SIG
SMV
SRC
SVN
TBAC

TMAC

TTF
XML

XVviil

Inserting Operation

Transformation Inclusive Inclusive Transformation
Lecture Notes in Compture Science

Multi-Versions

National Institute of Standards and Technology

No Operation

Transformée Opérationelle (Operational Transformation)
Sequences Partiellement Persistantes (Partial Persistent Sequences)
Predicates

Modele de controle d’acces basé sur les roles
(Role-Based Access Control)

Modele de controle d’acces spatial (Spatial Access Control)
Satisfaibility

Transformation par différences d’états

(State Difference Transformation)

Transformation optimisée par différences d’états

(State Difference Transformation Optimized)

Signature

Symbolic Model Verifier

Serialization-Resolution of Conflicts

Subversion

Modele de controle d’acces basé sur les taches
(Task-Based Access Control)

Modele de controle d’acces basé sur les équipes
(Team-Based Access Control)

Tombstone Transformation Functions

eXtensible Markup Language

CHAPITRE 1

INTRODUCTION

Le développement des outils et réseaux de communication accroit les interactions entre
les étres humains, équipements et logiciels. Il est donc possible d’interagir avec quelqu’un
ou un objet comme g’il se trouve a portée de main ou de voix. L’impression sensorielle est
quasi-réelle. Un outil de collaboration, identifié aussi par systéeme collaboratif, est un exemple
de cadre d’interactions. C’est un logiciel qui permet a un groupe d’utilisateurs de collaborer
dans le cadre d’un projet, afin de répondre a un besoin. Ces utilisateurs partagent un objet
commun que chacun manipule en fonction de ses prérogatives. Il peut s’agir par exemple de
groupes de chercheurs qui rédigent ensemble un article scientifique. On peut observer la méme
situation aupres des graphistes qui modifient des illustrations ou des productions visuelles.
Peuvent également faire usage de cet outil des ingénieurs du son qui réalisent du mixage de
SOT.

Un éditeur collaboratif est un exemple de systeme collaboratif. Il permet de manipuler un
document textuel selon plusieurs granularités telles les caracteres, lignes, paragraphes. Ainsi,
la suppression, l'insertion, la modification sont exé-
cutées par les utilisateurs. GoogleDrive, Etherpad, FramapadH, XWikiH sont des éditeurs

collaboratifs. Dans sa forme la plus simple, la collaboration est synonyme de travail coopéra-

des actions comme la lecture, ’écriture

tif. Plus précisément, chaque utilisateur doit s’occuper d’une tache distincte. Le travail final
est I'assemblage des travaux réalisés individuellement par chaque utilisateur. Par exemple,
chaque membre d’une équipe de projet rédige séparément un ou plusieurs chapitres d’un rap-
port de projet. Chaque utilisateur peut également étre affecté a une fonction distincte tout
en manipulant une méme partie de l'objet partagé avec d’autres utilisateurs. a l'instar d’un
utilisateur qui écrit la version initiale d’'un texte tandis qu’il reviendra a un autre utilisateur
de la corriger ou de la relire. Les utilisateurs font de la pure collaboration quand chacun peut
accéder a n'importe quelle partie de 'objet partagé et I'éditer, c’est-a-dire lire, supprimer
des extraits, en modifier ou en rajouter. En plus de leur permettre de conjuguer leurs efforts,
les systemes collaboratifs dispensent les utilisateurs d’un regroupement dans un méme lieu
physique pendant leurs interactions. Un réseau informatique sert de cadre a ces interactions.

Néanmoins, en dépit de leur performance et la variété de leurs usages, ces systemes sont

1. https://drive.google.com
2. http://etherpad.org/

3. http://framapad.org

4. http://www.xwiki.com/

https://drive.google.com
http://etherpad.org/
http://framapad.org
http://www.xwiki.com/

soumis a plusieurs contraintes. La réactivité locale en est un exemple. En effet, méme si
le systeme autorise des interactions simultanées, chaque utilisateur doit avoir I'impression
d’étre seul a 'exploiter. Cette contrainte est déterminante pour la convivialité du systeme.
L’autonomie des utilisateurs est également I'une des contraintes a satisfaire. Dans ce cas, les
utilisateurs doivent étre en mesure de manipuler indépendamment les objets partagés. L’au-
tonomie induit une exigence de disponibilité des objets partagés. Pour certains systemes,
le nombre d’utilisateurs pouvant faire les manipulations représente une contrainte impor-
tante. Quant a la cohérence, elle incarne 'une des contraintes fondamentales. Le systeme
doit garantir que tous les utilisateurs ont une vue commune des objets partagés. Par ailleurs,
il est primordial que le systeme soit sécuritaire afin de ne laisser collaborer seulement des
utilisateurs autorisés, mais aussi que chaque utilisateur agisse dans la limite des roles qui
lui sont dévolus. Une attention particuliere doit étre accordée a toutes ces contraintes pen-
dant la conception d’un tel systeme. Les systemes existant étudiés ne satisfont pas toutes les
contraintes. Nous nous proposons donc d’axer nos recherches sur la conception d’un systeme
d’édition collaborative. Ce systeme doit admettre la simultanéité des interactions, l'autono-
mie et la collaboration a grande échelle. également, le systéeme doit offrir minimalement une
édition cohérente et sécurisée.

Ainsi, dans le présent chapitre, nous commencons par une breve explication de quelques
concepts de base que nous estimons nécessaires a la compréhension de cette these. Ensuite,
nous exposons le cadre théorique en abordant successivement les éléments de la probléma-
tique, les objectifs de recherche et la méthodologie adoptée. Par la suite, nous présentons nos
principales contributions ainsi que leur originalité. Enfin, nous terminons le chapitre avec un

plan de notre these.

1.1 Définitions et concepts de base

Dans cette section, nous introduisons quelques concepts liés a une édition collaborative
répartie sécurisée et aux preuves formelles. Ces concepts déterminent le socle et sont utilisés
tout au long de la these. a cet effet, nous commencons par clarifier la notion de synchronisme.
Par la suite, nous abordons les concepts de réplication, de systeme réparti, de causalité et
de convergence. Nous définissons aussi la sécurité d’acces dans un systeme d’édition colla-
borative. Enfin, nous examinons la vérification sur modele et I’approche de la synthese de

controleur.

1.1.1 Edition collaborative
Edition asynchrone et synchrone

Le modele d’interaction dans une édition collaborative peut étre asynchrone ou synchrone.
Il fait référence a la simultanéité des interactions entre les utilisateurs du systeme. Si les
utilisateurs peuvent collaborer en éditant au méme moment des objets partagés; il s’agit
dans ce cas d'une collaboration synchrone. Si par conte, les objets doivent étre édités a
des moments différents, la collaboration est dite asynchrone. Dans ce cas, il n’existe aucun
mécanisme qui oblige les utilisateurs a éditer les objets au méme moment. Cependant, il faut
noter que certains systemes de collaboration asynchrone tolerent la collaboration synchrone.
Ainsi, bien que les moments d’édition puissent étre différents, le fait qu’ils coincident n’est

pas exclu.

Notion de réplication

Les éditeurs collaboratifs constituent une classe de systemes distribués dans laquelle les
utilisateurs sont géographiquement répartis et interagissent en manipulant des objets partagés
tels que textes, images, graphiques, etc. [Imine (2010)]. Un réseau informatique est potentiel-
lement exploité lors des manipulations. Dans un systeme d’édition centralisée, I'objet édité
est hébergé sur un serveur central. Une telle édition nécessite une connexion permanente au
serveur central. La vulnérabilité aux pannes de ’architecture centralisée peut avoir un impact
sur la collaboration. Par exemple, une panne du serveur central ou un probleme d’acces a
celui-ci rend indisponible 1'objet pour son édition.

Pour améliorer la disponibilité des données dans le systeme, chaque site peut détenir une
copie de 'objet partagé. Il s’agit d’une réplication de 1'objet partagé. Les copies locales de
I’objet partagé sont aussi appelées « répliques ». Cette réplication est surtout mise en ceuvre
au début d’une collaboration ou des qu'un nouvel utilisateur rejoint un groupe existant. Le
but est de permettre au groupe d’utilisateurs ou de sites répartis dans ’espace géographique,
de manipuler parallelement des répliques. La manipulation d’une réplique se réfere précisé-
ment a sa lecture ou aux opérations d’écriture, de suppression ou de modification effectuées
par le site concerné. Chaque réplique doit refléter les opérations générées sur tous les sites
composant le systeme. En d’autres termes, une mise a jour réalisée localement par I'une des
répliques du fait de la génération d’une opération par I'utilisateur doit étre reproduite chez les
autres utilisateurs. Pour ce faire, la mise a jour est propagée aux autres sites. Le mécanisme
de distribution d’opérations localement générées aux sites distants est appelé « réplication
d’opérations ». Dans la pratique, il existe deux scénarii de réplication d’opérations : pessimiste

et optimiste.

La réplication pessimiste suppose bien sur 'utilisation de plusieurs copies mais donne
l'illusion aux utilisateurs de I’existence d’une copie unique [Bernstein et al. (1987)[. Les lec-
tures sont faites sur les copies de maniere indépendante tandis qu'une opération d’écriture
doit étre exécutée sur toutes les copies de maniere atomique [Imine (2006)]. L’écriture est faite
sur toutes les copies simultanément, sans étre interrompue jusqu’a son terme. Ceci nécessite
la mise en ceuvre des techniques de synchronisation par un site central et une connexion
permanente a ce site central.

Dans le cas de la réplication optimiste, chaque site a sa copie mais dispose d’une autonomie
[Saito et Shapiro (2005)[. En vertu de cette autonomie, il peut la manipuler (lecture, écriture)
a volonté indépendamment des autres sites. Les opérations générées et exécutées sur un site
doivent également étre envoyées aux autres sites pour étre exécutées. Cet état des choses
induit I'indépendance des mises a jour car les opérations ne peuvent étre ni exécutées dans

le méme ordre, ni sur les mémes copies [Imine (2010)].

Systeme réparti, exécution répartie, causalité et concurrence

Un systeme réparti s’appelle aussi systeme distribué. Il constitue un ensemble de proces-
sus (ou machines, ordinateurs, tablettes, sites) autonomes et distants qui ceuvrent dans un
but commun, en s’échangeant des données a travers un réseau informatique. L’autonomie des
processus dans un systeme réparti vient du fait qu’ils ne partagent ni mémoire ni horloge
commune. Il est important ici de faire le lien entre un systeme réparti et un systeme parallele.
Un systeme parallele encore appelé machine parallele est composé de machines qui permettent
le traitement de plusieurs opérations ou taches en parallele. Il met en ceuvre principalement
deux modes de communication : le passage de messages et la mémoire partagée. Un sys-
teme réparti est donc un systeme parallele a la différence que les machines qui le composent
sont autonomes, les distances entre elles sont plus importantes et elles nécessitent 1'utili-
sation d'un réseau informatique pour les échanges. Dans un systeme réparti, les processus
sont caractérisés par une exécution en concurrence et une interaction par passage de mes-
sages. D’apres Lamport [Lamport (1978)], (i) 'envoi d’un message m produit un événement
d’émission send(m); (ii) la réception d’un message m produit un événement de réception
receive(m); et enfin, (iii) un événement interne est produit par I'exécution d’instructions
n’induisant ni envoi ni réception de message. Faisons une analogie avec un systeme réparti
d’édition collaborative. Il utilise un modele de communication par messages. Chaque site qui
participe a la collaboration est considéré comme un processus. La génération d’une opération
et I'exécution locale d'une opération générée ou recue sont des événements internes. L’envoi
et la réception d’une opération d’édition sont considérés comme événements d’émission et de

réception, respectivement.

L’histoire locale d'un processus est définie comme la séquence de tous les événements
qu’il a produits. L'union de toutes les histoires locales, munie d’une relation d’ordre (voir
Annexe A.) particuliere sur les événements constitue une exécution répartie. Dans un mo-
dele & communication par messages, une exécution répartie se caractérise par la production
d’événements par les divers processus. La relation d’ordre implicite sur les événements d’une
exécution répartie est la préséance causale. Elle permet de définir une relation de type «
e est arrivé avant e; » sans avoir recours a la synchronisation d’horloges, e; et ey étant
deux événements. Elle est notée e; — €5 et se lit « e; précede e; ». Formellement, la pré-
séance causale se définit par trois relations : Program order (Expression [[1l), Receive-from
(Expression [L.2)) et transitivité (Expression [L3]).

— Larelation Program order indique que deux événements e;1 et e;5 produits par un méme

processus P; sont totalement ordonnés. Ainsi donc, soit « e;; précede e;5 », Soit « €;9
précede e;; ». En considérant 'opérateur logique @ qui permet d’exprimer I'alternative

(ou exclusif), nous avons :
Ve, ein € Py, (€51 — €i2) ® (€12 — €:1) (1.1)

— La relation Receive-from indique que I'envoi d’un message send(m) précede la réception

du message receive(m).
send(m) — receive(m) (1.2)

— La relation de transitivité exprime le fait que si ’événement e; précede I’événement eq

et que I’événement ey précede I'événement es, alors e; précede es.
((61 — 62) N (62 — €3)) = (61 — 63) (13)

Quand la préséance causale ne peut étre établie entre deux événements e; et ey, c’est-a-dire
que 1'un ne précede causalement l'autre et vice-versa, on dit qu’il y a indépendance causale
entre ces deux événements. Ils sont alors dits concurrents et notés e; || e2. Formellement la
notion de concurrence entre ces deux événements se définit tel qu’indiqué dans I’expression
mathématique (L4)).

(61 || 62) = (_'(61 — 62) A\ _\(62 — 61)) (14)

Etat stable et notion de convergence

Lors d’une édition, au fil de I’écoulement du temps donc de I’évolution de 1'horloge locale,
le systeme d’édition collaborative connait une succession d’événements de génération, d’envoi,
de réception et d’exécution d’opérations d’édition. La réalisation de ces événements a pour
effet de modifier localement non seulement I’histoire et le document partagé, mais aussi toutes
autres structures de données (queues, files d’attente, variables, etc.) que manipule le systeme.
Il est donc dans une dynamique de changement que nous qualifions de changement d’états.
Un changement d’état survient des lors qu’un événement se produit. Le systeme d’édition
collaborative est dit dans un état stable, quand toutes les opérations générées sur les différents
sites sont exécutées sur tous les sites. Dans un tel état, il est possible d’évaluer la qualité des
différentes répliques qui existent sur les sites grace a la notion de convergence. Ainsi, lorsque
le systeme est dans un état stable, les copies du document partagé convergent si et seulement
si elles sont identiques sur tous les sites. La notion de convergence suppose donc que 'état
du systeme dépend de I'ensemble des opérations exécutées et non de la séquence d’exécution
distincte sur chaque site [Ressel et al. (1996)].

1.1.2 Politique de sécurité et contrdle d’acces

Parmi les états d’un systeme, certains sont désirables tandis que d’autres sont potentielle-
ment non désirables. Les états désirables sont également appelés états autorisés. La définition
des états autorisés d’un systeme constitue ses objectifs de sécurité. La maniere de satisfaire
les objectifs est la stratégie de sécurité. Les solutions techniques utilisées pour satisfaire ces
objectifs sont les mécanismes de sécurité. Une politique de sécurité se définit alors comme une
description simple des objectifs de sécurité d’un systeme, appuyée d'une stratégie de haut
niveau pour les satisfaire. Un modele de politiques de sécurité est une définition abstraite de
la fagon de définir une politique. Parmi les modeles de politiques de sécurité, nous avons le
controle d’acces. Il vise a permettre a une entité autorisée d’avoir acces a une certaine res-
source et interdire 'acces a une autre, conformément aux objectifs de sécurité. Il permet de
déterminer les droits et privileges courants d’une entité. En général, ceux-ci sont déterminés
a partir de I'identité de I'entité et de la politique de sécurité. Pour une édition collaborative
répartie, il s’agit d’autoriser ou non des utilisateurs ou des sites a exécuter des opérations

d’édition sur un document partagé.

1.1.3 Vérification sur modele et synthese de controleur

La conception d'un systeme requiert des preuves de fiabilité. Pour cette raison, la valida-

tion du bon fonctionnement par des tests et techniques formelles sont nécessaires. Alors que

les tests explorent juste des états jugées critiques du systeme, la vérification formelle couvre
tous ses états possibles. L’approche classique de vérification des systemes est la vérification
par modele (model-checking). Celle-ci considere un systéme complet, évoluant sans influence
extérieure et prenant en compte ’environnement a controler et son controleur. Pour vérifier
formellement le systeme, il faut le modéliser ainsi que les propriétés qu’il doit satisfaire. Par la
suite, il faut apporter la preuve que le systeme modélisé possede bien les propriétés attendues
en procédant a une vérification effective. Pour toute propriété non vérifiée par le systeme,
un contre-exemple est généré et sert a corriger le systeme. Ce processus est itératif. Il est
répété jusqu’a 'obtention d'un systeme répondant aux propriétés attendues. L’approche de
la synthese de controleur introduite par Wonham et Ramadge (1988) évite les itérations. Elle
propose de modéliser le systeme a controler et de calculer ou de synthétiser un controleur
s’il en existe, de sorte que la propriété a vérifier (appelée objectif de controle) soit satisfaite.
On part donc d’un systeme ouvert qu’on essaie de fermer en lui ajoutant en parallele un
controleur afin que le systeme complet satisfasse la propriété voulue. De facon pratique, le
comportement du systeme a controler est forcé de maniere a ce qu’il satisfasse la propriété in-
diquée. Pour y parvenir, la démarche consiste a résoudre le « probleme de controle » (Control
Problem, C'P) puis en cas de succes, résoudre le « probleme de la synthese de controleur »
(Controller Synthesis Problem, C'SP). Le probleme de controle pour un systeme ouvert S se
définit formellement comme suit : étant donné un systéme S, et une propriété ¢, exviste-t-il
un controleur C' tel que, le systéme fermé obtenu en mettant en parallele S et C' satisfait la

propriété 7 Elle peut étre formellement réécrite comme ci-apres.
CP:S||CE? (1.5)

Le probleme de synthese de controleur, est posé apres le CP. Il se formule comme suit : Si la
réponse au probleme de controle est owi, peut-on construire un tel controleur C'?7 Elle peut

étre réécrite comme ci-apres.
CSP : CP, peut — on construire C tel que S ||C = ¢? (1.6)

Pour répondre au CP, il est nécessaire de restreindre la classe des modeles dans laquelle le
controleur est recherché. Cette restriction est faite en choisissant un formalisme tel que auto-
mates finis, automates temporisés, réseaux de pétri. L’approche de la synthese de controleur
a pour but de restreindre le comportement du systéme a un comportement admis par le
controleur, afin d’assurer les objectifs de controle. Cette restriction se réalise par le biais du
controleur. Celui-ci observe le systeme et lui interdit certaines évolutions. Il force ainsi le sys-

teme a rester dans ’ensemble des comportements prescrits pour atteindre un objectif donné.

Généralement, le défi consiste a construire un controleur a moindre cott et assez permissif.
Apres avoir défini ces quelques concepts de base, nous nous intéressons aux problemes
relatifs a une édition collaborative sécurisée dans la quelle la convergence des répliques doit

étre assurée.

1.2 Eléments de la problématique

Les systemes d’édition collaborative répartis se caractérisent par des échanges d’opéra-
tions entre sites, une forte concurrence et une coordination décentralisée. Dans ce contexte,
ils doivent garantir la réactivité locale, le passage a ’échelle et la cohérence [Imine (2008)].
Les échanges d’opérations entre sites constituent une caractéristique fondamentale pour une
collaboration en temps réel [Ahmed et Shirmohammadi (2006)]. Cependant ’exécution des
opérations dans un ordre différent, sur des copies différentes a pour conséquence une diver-
gence de ces copies [Tili et al. (2008), Tlili et al. (2010)].

La contrainte de convergence est plus forte selon le contexte applicatif considéré. Par
exemple, un systeme collaboratif d’édition d’images dont les opérations sont réduites a celles
qui modifient les valeurs des pixels, présente une exigence de convergence moindre qu’un
systeme collaboratif d’édition textuelle. En effet, pour deux valeurs différentes d’'un méme
pixel, si ces deux valeurs sont relativement proches I'une de I'autre ou de celles des pixels du
voisinage, il est difficile pour ’oeil humain de faire la différence entre elles. Il y a une perception
de convergence qui résulte de I'imperfection de la vision. La contrainte de convergence n’est
pas si forte car il n’est point besoin d’avoir des valeurs égales de pixels, mais un taux, seuil ou
marge de convergence acceptable par l'oeil humain. Il n’en est pas ainsi pour un document
textuel. Le fait d’avoir un mot ou un caractere a la place d’'un autre peut produire un
autre effet et soulever des problemes de sémantique. Pour un objet textuel édité de maniere
collaborative, la sémantique des phrases ou des mots ajoute donc une complexité.

L’approche de la transformée opérationnelle (OT) [Ellis et Gibbs (1989)] représente le
principal cadre proposé pour résoudre la divergence [Molli et al. (2003a),|Tlili et al. (2010)].
Dans ce cadre, chaque opération exécutée localement est aussitot diffusée aux autres sites
pour étre exécutée [Saito et Shapiro (2005),Oster et al. (2006b)|. Les répliques sont alors tem-
porairement divergentes, jusqu’a l'exécution des opérations concernées. En pratique, chaque
site procede a la transformation des opérations regues des autres sites par rapport aux opé-
rations locales avant de les exécuter [Li et Li (2004),Imine (2010)]. Les propriétés séman-
tiques des opérations sont exploitées pour réaliser ces transformations d’opérations [Molli
et al. (2003a),[Sun et Ellis (1998),|Li et Li (2008b)]. Les transformations ont pour finalité la

construction de I'histoire de chaque copie de l'objet partagé. Il ne s’agit pas d’obtenir des

histoires identiques pour chaque site mais des histoires équivalentes (voir Annexe A) condui-
sant a un méme état final. Pour prendre en compte une opération distante o, I’histoire locale
h est réorganisée en deux sous-histoires hh et hc, représentant respectivement la séquence
des opérations qui précedent causalement o et les opérations concurrentes a o. En considé-
rant la sémantique de 1'objet partagé, I'opération o est transformée par rapport a hc puis
exécutée [Imine (2006)[. Les traitements relatifs aux opérations sont réalisés par deux compo-
sants [Boucheneb et Imine (2009)]. Le premier, dénommé algorithme d’intégration, s’occupe
de la diffusion, la réception et I'exécution des opérations. Il a également pour role, de déter-
miner les opérations concurrentes déja exécutées (he), qui doivent étre considérées lors d’une
transformation ; ainsi que 'ordre d’application des transformations. Le deuxieme composant
fait la transformation d’une opération recue par rapport a une opération concurrente déja
exécutée. Il s’agit de lalgorithme de transformation inclusive (IT). Les opérations regues
étant transformées vis-a-vis des opérations concurrentes déja exécutées, avant d’étre exécu-
tées a leur tour, il n’est plus nécessaire de respecter I'ordre dans lequel les opérations sont
exécutées sur leurs sites d’origine. Il suffit juste de détecter et gérer la concurrence des opé-
rations. Le défi pour 'algorithme d’intégration est donc celui de 'utilisation d’un mécanisme
approprié de détection de la concurrence, tandis que celui de 'algorithme de transformation
inclusive est une transformation cohérente. La cohérence suppose le respect du principe de
causalité et la convergence. Les I'Ts recensés dans la littérature modifient les parametres des
opérations en guise de transformation mais aussi afin de les rendre exécutables dans un ordre
quelconque [Preguica et al. (2009)].

Pour respecter le principe de la causalité, la plupart des algorithmes basés sur une ap-
proche OT utilisent les méthodes d’ordonnancement classiques : estampille, vecteur d’horloge
et vecteur d’état. Les algorithmes qui utilisent les vecteurs d’horloge, ou leurs variantes pour
résoudre la concurrence, associent a chaque site un vecteur d’horloge dont la taille varie en
fonction du nombre de sites. L’utilisation du vecteur d’horloge impose la connaissance préa-
lable du nombre de sites, qui ne peut ni étre réduit, ni croitre indéfiniment dans le temps.
Dans un contexte de passage a 1’échelle, le nombre de sites connectés change continuellement
au rythme des connexions et déconnexions. Il est difficile de maintenir un vecteur d’horloge
dans ces conditions. De plus, a grande échelle, la difficulté de la représentation de I’horloge
peut constituer un handicap. En somme, les algorithmes basés sur I’approche de la transfor-
mée opérationnelle utilisant les vecteurs d’horloge souffrent de faiblesses liées a I'autonomie
des sites, la topologie variable et la grande échelle [Tlili et al. (2008), Bakhshi et Gurov
(2007),[T1ili et al. (2010),/Akbarinia et al. (2007)].

Dans I'approche OT, l’édition collaborative est convergente si l’algorithme de transfor-

mation inclusive utilisé satisfait deux propriétés TP1 et TP2 [Ressel et al. (1996)]. On parle

10

de respect du critere de convergence. La propriété TP1 stipule que pour deux opérations
concurrentes o1 et 0, définies sur le méme état, ’histoire obtenue en considérant o, suivi de
la transformation de o0, par rapport a o; est équivalente a I’histoire obtenue en considérant
09, suivi de la transformation de o, par rapport a 0,. En d’autres termes, ’exécution de oy
suivie de celle de oy conduit au méme état que 'exécution de o0, suivi de 'exécution de o.
La propriété TP2 quant a elle indique que la transformation par rapport a une séquence
d’opérations concurrentes déja transformées du résultat de la transformation d’une opération
par rapport a toute opération concurrente considérée dans ladite séquence ne dépend pas de

I'ordre dans lequel ces opérations concurrentes ont été transformées dans la séquence.

TP1: [01;1T(02,01)] = [02; IT (01, 02)] (1.7)
TP2:IT*(03,[01; 1T (02,01)]) = 1T (03, [02; [T (01, 02)]), (1.8)

avec IT* I'extension de IT telle que définie a ’annexe A.

L’analyse des deux propriétés montre que la propriété TP1 définit une identité d’état alors
que la propriété TP2 définit une identité d’opérations. L’identité d’état peut étre satisfaite
conceptuellement. Il s’agit d’ailleurs la seule propriété a vérifier dans une édition centralisée
car elle permet de préserver les intentions des utilisateurs.

Cependant, sur le plan conceptuel, il n’est pas évident de trouver un algorithme de
transformation satisfaisant l'identité d’opérations [Imine (2006)], encore moins dans un
contexte asynchrone. D’ailleurs, les algorithmes traditionnels de réplication optimiste [Molli
et al. (2003a),[Sun et al. (1998),Ressel et al. (1996),[Suleiman et al. (1997), Ellis et Gibbs
(1989),Imine et al. (2003)[Suleiman et al. (1998),|Sun et Ellis (1998)[Vidot et al. (2000)] sont
pour la plupart des algorithmes synchrones. Leur utilisation dans un contexte asynchrone
leur impose la satisfaction de la propriété TP2. La littérature a révélé qu’aucun de ces algo-
rithmes n’a pu satisfaire la propriété TP2 avec les objets ayant une structure linéaire [Imine
(2006),/Boucheneb et Imine (2009)].

Par ailleurs, la sécurité des données partagées est d’une importance capitale dans un
systeme collaboratif. Cette derniere peut étre intégrée dans le processus de conception de
systeme collaboratif temps-réel ou étre étudiée séparément. Dans tous les cas, les exigences
de sécurité doivent s’aligner sur les enjeux du systeme d’édition considéré. a cet effet, le défi
de sécurisation d’une édition collaborative est de concilier les deux objectifs de convergence
et de sécurité. Ceci requiert inéluctablement un équilibre entre les contraintes de collabora-
tion et le controle d’acces. L’édition collaborative vise a rendre disponibles les documents
partagés a tous les membres participants alors que le controle d’acces vise a restreindre cette

disponibilité a certains membres. La gestion de ces deux objectifs contradictoires fait face a

11

des exigences structurelles et opérationnelles non négligeables. La topologie de la collabora-
tion étant variable car les membres peuvent joindre ou quitter le groupe collaboratif a leur
guise, il faut permettre une gestion dynamique des changements de droits d’acces, d’ou une
généricité et une flexibilité du modele de controle d’acces.

Cependant, le controle d’acces avec des changements dynamiques des droits d’acces ne doit
pas nuire a la réactivité locale, au temps de réponse et a la gestion des répliques. Cet impact
signifierait une dégradation des performances du systeme. De plus, la création paradoxale de
trous de sécurité est un risque patent selon le modele de controle d’acces retenu. Il pourrait
s’agir de la non application uniforme de la politique de controle d’acces sur tous les sites;
avec en prime, I'autorisation de certaines opérations qui ne devraient pas 1’étre. Ou encore,
du refus de certaines opérations qui devraient étre autorisées sur certains sites. Une telle
situation serait également source de divergence des répliques de documents partagés.

a l'origine, la politique de sécurité doit donc étre formulée de sorte que les stratégies a
mettre en place soient facilement applicables et les mécanismes faciles d’utilisation. Mais
au dela de la généricité, la flexibilité, 1’aspect dynamique, le maintien des indicateurs de
performance a des seuils acceptables, la conception d’'un modele de controle d’acces qui
tient compte des spécificités d’une édition collaborative répartie doit offrir une spécification
de haut niveau des droits d’acces [Tolone et al. (2005)]. En plus, le modele de controle
d’acces doit également étre strictement examiné en vue de fournir la preuve de sa fiabilité.
Fournir une preuve de fiabilité pour un modele de sécurité est une tache difficile [Imine et al.
(2009),/Jayaraman et al. (2013)]. Le contexte complexe de 1’édition collaborative répartie en
fait tout un défi dont témoigne le nombre de cas a observer. Un systeme d’édition collaborative
massivement réparti a un espace d’états potentiellement infini. Il serait pratique de trouver
un systeme qui lui est équivalent en termes de fiabilité, mais dont I'espace d’états est fini. La
preuve de fiabilité sera alors apportée en considérant le modele fini.

De tout ce qui précede, nous convenons que dans un contexte d’édition collaborative
répartie qui considere un document a structure linéaire, la poursuite des objectifs de conver-
gence forte dans une approche OT et de controle d’acces est un défi multidimensionnel. Aux
préoccupations de détection et de gestion de la concurrence s’ajoutent celles d'un algorithme
de transformation inclusive qui doit garantir la cohérence, de I'atteinte d’un équilibre entre
la disponibilité du document partagé et la gestion des droits d’acces, sans compromettre la
cohérence de I'édition. La preuve de la fiabilité du controle d’acces doit couvrir aussi bien
I’application uniforme de la politique que la préservation de cette cohérence. Cette these est

une tentative de résolution de certaines dimensions de ce défi.

12

1.3 Objectifs de recherche

L’objectif général de cette these est de proposer des mécanismes de réplication sécurisés
pour les systemes d’édition collaborative massivement répartis. Ils sont basés sur une ap-
proche OT. Le but est, d’'une part, d’améliorer I’« expérience utilisateur » dans le cadre du
travail collaboratif et, d’autre part, de faciliter le développement de nouveaux environnements
collaboratifs et de nouvelles applications intéressantes qui prennent en compte I'autonomie,

le facteur d’échelle et I'instabilité topologique. Plus précisément, il s’agit :

1. D’investiguer I'existence de mécanismes de réplication optimiste convergents ;

2. De concevoir un algorithme de transformation inclusive (IT) devant garantir la conver-

gence dans un contexte réparti de réplication optimiste ;

3. De prouver formellement que 'algorithme de transformation inclusive proposé conduit

bien a une édition convergente ;

4. D’intégrer un modele de controle d’acces adapté aux spécificités du contexte d’édition

collaborative considéré ;

5. De prouver formellement que le modele de controle d’acces préserve la cohérence d’'un
systeme d’édition collaborative réparti a grande échelle, si ce dernier garantit initiale-

ment la cohérence.

Nous nous intéressons en particulier aux systemes d’édition collaborative répartis qui

manipulent un objet textuel a structure linéaire.

1.4 Esquisse méthodologique

Pour atteindre les objectifs de recherche, nous utilisons dans un premier temps I’approche
du probleme de controle pour investiguer formellement I'existence de mécanismes de réplica-
tion optimiste convergents. a cet effet, le mécanisme de réplication basé sur la transformée
opérationnelle est assimilé a un controleur. Nous nous basons sur la théorie des jeux et les
automates de jeux pour concevoir des modeles décrivant les comportements attendus d’un
systeme d’édition collaborative. Ensuite la propriété de convergence est spécifiée en tant
qu’objectif de controle. Nous procédons a la vérification effective, en prenant en compte les
questions de streté et d’accessibilité.

Une fois le probleme du controleur résolu, nous essayons de résoudre celui de la synthese de
controleur. Nous cherchons donc a synthétiser des stratégies gagnantes. 11 s’agit ensuite d’ex-
ploiter ces stratégies pour formuler les spécifications auxquelles doit répondre le controleur

recherché afin que 'objectif de convergence soit atteint. Partant des spécifications, un algo-

13

rithme de transformation inclusive est con¢u. Nous nous assurons ensuite que le controleur
ainsi obtenu (IT) réponde aux besoins en faisant une vérification formelle.

En considérant un protocole de synchronisation qui assure initialement la convergence,
nous lui intégrons sous la forme d’une couche supérieure, un protocole de controle d’acces.
Dans un premier temps, ce protocole est spécifié grace a un formalisme de description de
comportements. Sa préservation de la convergence est vérifiée de facon bornée en exploitant
un formalisme de description des requis. Par la suite, nous investiguons un modele abstrait
d’espace d’états fini qui nous permet de prouver la préservation de la propriété de convergence

quelle que soit la taille du systeme.

1.5 Principales contributions de la thése et leur originalité

Les principales contributions de cette theése portent sur deux volets : (i) la proposition
d’une approche de transformées opérationnelles qui assure la cohérence dans les éditeurs
collaboratifs répartis et (ii) I'intégration d’un protocole de controle d’acces qui préserve la
cohérence d’'un systeme d’édition collaborative répartie. Ces deux principales contributions
facilitent la résolution de deux problématiques que sont : la convergence et la sécurité dans
les systemes d’édition collaborative répartis. Elles favorisent ainsi ’amélioration du travail
collaboratif, en général, et de I’édition collaborative a grande échelle, en particulier. Les

contributions peuvent étre détaillées de la maniere suivante :

1. La preuve par model-checking que les approches OT basées sur les signatures
classiques des opérations d’édition ne peuvent pas assurer la convergence.
Plusieurs travaux [Boucheneb et al. (2010), Boucheneb et Imine (2009), Imine et al.
(2006),[Imine (2006)| ont démontré que les approches OT proposées dans la littérature
n’assurent pas la convergence dans les éditeurs collaboratifs répartis. Partant de ce
constat, nous nous sommes posés la question de savoir s’il est possible de concevoir
des systemes d’édition collaborative répartis, basés sur la réplication optimiste et qui
assurent la convergence des documents édités. En considérant 1’édition d'un document
textuel a structure linéaire pour laquelle les seuls types d’opérations autorisés sont 'in-
sertion et la suppression de caracteres, nous avons alors apporté la preuve formelle
qu’aucune approche OT basée sur les signatures classiques de ces deux types d’opé-
rations ne peut assurer la convergence. Ce résultat tres important car toute piste de
recherche basée uniquement sur les signatures classiques est désormais prouvée vouée
a I’échec. Outre I'impact de cette contribution, son originalité vient également de I'ap-
proche utilisée. En effet, le questionnement sur I'existence de solution au verrou de la

convergence a été transformé en un probleme de controle dont le but est de rechercher

14

I’existence ou non d’un controleur qui pourrait gouverner un systeme spécifique. Nous
n’avons trouvé dans la littérature, aucun travail appliquant le probleme de controle aux

éditeurs collaboratifs répartis.

. La conception d’une approche OT en utilisant la technique de synthéese de
controleur. Nous avons proposé une fonction de transformation des répliques d’opé-
rations. La fonction admet un parametre supplémentaire pour l'insertion, en plus des
parametres classiques que sont le caractere a insérer et la position dans laquelle il sera
inséré. Le nouveau parametre permet de spécifier le nombre de caracteres supprimés
avant la position d’insertion indiquée dans la signature. Cette contribution est appuyée
par la proposition d’'un mécanisme de détermination automatique de la valeur du nou-
veau parametre. L’originalité de cette contribution réside également dans I'approche de
résolution utilisée pour aborder 1’étude de la convergence. Il s’agit de I'approche de la
synthese de controleur. En effet, a la suite de la résolution du probléeme de controle,
qui a révélé I'inexistence de fonction de transformation pour les signatures classiques de
Iinsertion et de la suppression, la synthese de controleur a été utilisée pour identifier les
causes de la divergence, d’une part, et proposer la fonction de transformation, d’autre
part. L’identification des causes de la divergence a permis d’avoir les balises nécessaires
a la formulation des spécifications qui ont conduit a la conception d’un mécanisme qui
assure la convergence. De surcroit, a notre connaissance, une telle approche n’a pas été

exploitée jusqu’alors dans le cadre des éditeurs collaboratifs, sauf dans notre cas.

. Preuve par model-checking que ’approche proposée assure la convergence.
Pour consolider I'approche OT proposée pour la convergence des répliques, nous avons
formellement prouvé son exactitude. La vérification symbolique sur modele basée sur
la technique des matrices de bornes (DBM, Difference Bound Matrices) a été utilisée,
en combinaison avec un modele d’automate. L’utilisation des matrices de bornes pour
exprimer les contraintes sur les positions des caracteres et traduire les transformations
des répliques d’opérations est tres originale dans la démarche de preuve. Elle permet de

manipuler symboliquement les parametres, a domaines infinis, des opérations d’édition.

. Intégration d’une politique de controle d’acces aux systemes d’édition colla-
borative et preuve par model-checking de la préservation de la convergence.
Dans le but de sécuriser une édition collaborative répartie, un protocole de controle
d’acces a été proposé [Imine et al. (2009)]. Nous avons dans un premier temps élaboré
une premiere spécification du protocole. Elle se base sur la logique de premier ordre
et la théorie des ensembles. Nous avons utilisé une analyse bornée pour prouver que
jusqu’a concurrence d'un certain seuil, le protocole préserve la cohérence du protocole

de synchronisation au dessus duquel il est déployé. Traitant d’un systeme a espace

15

d’états infini, du fait du nombre arbitraire d’utilisateurs, d’opérations coopératives par
utilisateur et d’opérations administratives, I'outil d’analyse n’a pas permis de couvrir
tout 'espace d’états. Pour y remédier nous avons proposé un modele abstrait a espace
d’états fini et prouvé que ce dernier préserve, sur tout I'espace d’états, la cohérence
du protocole de synchronisation. Nous en avons déduit que le modele abstrait est équi-
valent au systeme a espace d’états infini. Ce résultat est tres important car il permet
de manipuler un modele fini dans lequel un nombre réduit d’utilisateurs sera utilisé.
Ainsi n’importe quel outil pourrait étre utilisé pour vérifier le protocole. De plus la dé-
marche utilisée pour obtenir le modele abstrait a espace d’états fini peut servir de cadre

d’analyse a d’autres problemes partageant des problématiques similaires de réduction.

1.6 Plan de la these

Le reste de cette these est organisé comme suit. Le chapitre expose une revue de
littérature sur les approches de gestion de la cohérence dans les éditeurs collaboratifs et les
protocoles de controle d’acces proposés pour les éditeurs collaboratifs.

Les trois chapitres suivants sont des articles qui traitent aussi bien de la cohérence d’une
édition collaborative répartie, que de la préservation de cette propriété de cohérence par un
protocole de controle d’acces.

Le premier article, dont le titre est On Synthesizing a Consistent Operational Transfor-
mation Approach, étudie dans un premier temps la possibilité d’avoir une édition cohérente a
partir des signatures classiques des opérations de suppression et d’insertion. Par la suite, en se
basant sur I’approche de la synthese de controleur, il propose une fonction de transformation
des opérations d’édition avec une nouvelle signature pour l'opération d’insertion, puis prouve
formellement que son utilisation assure une édition concurrente cohérente. Cet article a été
accepté pour publication dans la revue IEFEE Transactions on Computer et fait 'objet du
chapitre 3

Le chapitre M intitulé Specification and Verification using Alloy of Optimistic Access
Control for Distributed Collaborative Editor est un article publié dans Formal Methods for
Industrial Critical Systems, Lecture Notes in Compture Science (LNCS). Il propose une spé-
cification d’un protocole flexible de controle d’acces pour les éditeurs collaboratifs. L’analyse
de cette spécification a été faite dans le but de s’assurer que le protocole préserve la cohérence
de tout protocole de synchronisation au-dessus duquel il serait déployé, si ce dernier garantit
indépendamment la cohérence. La vérification faite lors de I'analyse est bornée.

Le systeme collaboratif étant a espace d’états infini, la vérification doit se baser sur un

modele fini qui est équivalent au systeme collaboratif, par rapport a la propriété de cohérence.

16

Cette préoccupation a été abordée par le chapitre B dans I'article intitulé On Consistency
Preservation with Optimistic Access Control for Distributed Collaborative Editors. Ce dernier
est soumis a la revue ACM Transactions on Information and System Security. 11 propose un
modele abstrait a espace d’états fini qui est utilisé pour analyser la préservation de la propriété
de cohérence par le protocole de controle d’acces.

Dans le chapitre [6] nous présentons une discussion générale sur les aspects méthodolo-
giques et les résultats obtenus lors des travaux présentés dans cette these. Pour finir, une
conclusion est proposée au chapitre [[l Elle présente une synthese des travaux qui ont été ef-
fectués. En outre, la conclusion expose les limitations des travaux et une esquisse des travaux

de recherche futurs.

17

CHAPITRE 2

REVUE DE LITTERATURE

Dans ce chapitre, nous passons en revue les travaux majeurs qui ont été réalisés dans le
cadre d'une édition collaborative. Plus précisément, la gestion de la cohérence et le controle

de acces seront couverts.

2.1 Analyse sommaire du probleme

Un systeme d’édition collaborative se rapporte a un groupe d’utilisateurs. Outre les états
correspondant a la création ou a la suppression d’un tel groupe, le systeme évolue de maniere
dynamique. Cette dynamique se traduit aussi bien en taille (nombre d’utilisateurs), qu’en
volume (nombre d’opérations d’édition exécutées). En effet, une fois que le groupe collabo-
ratif existe, les opérations qu’un utilisateur peut exécuter par rapport a ce groupe sont les
suivantes : (i) joindre le groupe; (ii) partciper a ’animation du groupe, (iii) quitter le groupe.
Des lors que l'utilisateur joint le groupe, il récupere une copie du document (celle d’un uti-
lisateur avec son état). Cette action finalise son processus d’admission. Une telle copie du
document partagé est une réplication tel qu’expliqué dans la section [ILI.Jl La disposition
de cette copie marque également le début de la collaboration. En effet, I'utilisateur peut
désormais participer a l'animation du groupe en générant des opérations d’édition, en les
exécutant localement et en les répliquant au profit des autres participants. En outre, il parti-
cipe a 'animation du groupe en exploitant les opérations regues des autres participants. Les
répliques d’opérations coopératives s’appliquent donc sur des répliques d’objets partagés, ce
qui maintient et développe le systeme. Il évolue au rythme de la génération et de 'exécution
des opérations.

Au-dela de la performance et de la disponibilité des répliques d’objets partagés, I'un des
principaux objectifs poursuivis pour un systeme d’édition collaboratif, est celui de la cohé-
rence des répliques, quand le systeme est dans un état stable. Il serait aisé d’observer cette
propriété du systeme, s’il était possible d’établir un ordre total (voir Annexe A) sur 'en-
semble des opérations générées dans le systeme. Malheureusement, dans un environnement
réparti, 'ordre total sur les événements est difficilement concevable. En effet, les nceuds qui
composent un systeéme réparti ne partagent ni mémoire, ni horloge commune (caractéristiques
fondamentales de ces systemes). Il est possible d’avoir lors d’une collaboration, des opérations

concurrentes (voir Section [[LT.T]) et des conflits, ce qui augmente le niveau de complexité pour

18

avoir un systeme cohérent. De surcroit, il existe une incertitude liée au délai de transit des
messages dans un systeme réparti. Les défis de la réplication dans un systeme distribué sont
non seulement la propagation efficace des répliques d’opérations (n’est pas étudiée dans cette
these) mais aussi 'ordonnancement des opérations, la détection et la résolution des conflits et
I’élimination de la divergence des répliques [Saito et Shapiro (2005)]. Dans les systemes dis-
tribués, il est possible de synchroniser les horloges et les processus des différents nocuds avec
une précision adaptée au contexte d’application (synchronisation temporelle et événemen-
tielle) afin de définir un ordonnancement. Une telle approche n’est pas adaptée aux systéemes
d’édition collaborative. En effet, de tels systemes doivent étre réactifs — 1'utilisateur doit
avoir 'impression qu’il est seul a travailler — tout en brassant un nombre élevé d’opérations
coopératives. En somme, le “pseudo-ordonnancement” (I'ordre total est difficile a obtenir) qui
pourrait etre défini sur les opérations coopératives n’élimine pas les conflits qui pourraient
survenir du fait de la concurrence des opérations. Il parait donc utile d’étudier les différentes
solutions proposées dans la littérature pour affronter le défi de la cohérence engendré par les
opérations concurrentes.

Une fois que la frontiere des approches de gestion des cohérences est bien délimitée, il s’en
suit la nécessité de jeter un regard sur les tentatives de sécurisation des systemes d’édition
collaborative. En effet, 'approche de gestion des aspects de sécurité a, sans aucun doute, une
incidence sur la collaboration. Les mécanismes qui gerent la collaboration sur chaque site sont
sensés brasser les mémes opérations. Or, une mesure de sécurité non adaptée pourrait causer
I’acceptation de certaines opérations par certains sites alors que d’autres sites se verraient
refuser les mémes opérations. En conséquence, des opérations valides seraient refusées par
certains sites et réciproquement, des opérations non valides pourraient étre exécutées sur
d’autres sites. Une telle situation conduirait inéluctablement a une divergence de copie, d’ou
une incohérence. Nous examinons les solutions proposées dans la littérature au sujet de la

gestion de la sécurité dans un systeme comme celui en étude.

2.2 Approches de gestion de la cohérence dans les éditeurs collaboratifs

Dans la littérature, la nature des objets répliqués considérés dans les différents travaux
sont : systeme de fichiers, fichiers textes avec ou sans image, fichiers XML, etc. En fonction
de la nature des objets, plusieurs niveaux de granularité sont ciblés : caractere, ligne, chaine
de caracteres, atomes, etc. Plusieurs techniques ont alors été élaborées comme support a la
gestion de la cohérence. Ces techniques sont pour la plupart des techniques de controle de
concurrence dont le but principal est d’éviter la divergence; la convergence étant considérée

comme une cohérence partielle. Elles peuvent étre réparties en deux groupes : les techniques

19

pessimistes et les techniques optimistes [Imine (2006)]. Les techniques pessimistes évitent
I’apparition de la divergence en utilisant des verrous. Par contre les techniques optimistes
permettent 'apparition de la divergence et ensuite la résolvent a l'aide de procédures. La
technique de synchronisation est un exemple de technique optimiste. Elle se définit comme
un processus qui prend en entrée deux répliques divergentes et les modifie afin qu’elles soient
identiques en sortie |Molli et al. (2003a)]. Le but est donc de faire converger grace au syn-
chroniseur (ou outil de fusion selon le contexte) deux copies initialement divergentes. Les
approches proposées afin de garantir la cohérence sont essentiellement : « multi-versions »
(MV) [Bernstein et Goodman (1983)], « sérialisation / résolution de conflits » (SRC) [Ellis
et Gibbs (1989)], transformée opérationnelle (OT) [Ellis et Gibbs (1989)] et celle des types
de données commutatives répliquées (Commutative Replicated Data Type, CRDT) [Preguica
et al. (2009)].

2.2.1 Approche multi-versions

Cette approche [Bernstein et Goodman (1983)] se base sur le paradigme «Co-
pier—-Modifier—Fusionner». Chaque utilisateur a sa copie locale de l'objet, la modifie a sa
guise et décide du moment de la fusion. Les opérations locales ne sont donc pas automati-
quement diffusées aux autres utilisateurs. La fusion a pour effet de rendre I’ancienne version
obsolete et de considérer la version courante fusionnée comme derniére version [Bernstein et
Goodman (1983)]. 11 existe de ce fait, plusieurs versions d’'un méme objet. En effet, outre
la nouvelle version, les anciennes sont également sauvegardées. Chaque copie se fait a par-
tir de la derniere version disponible. Toutes ces versions sont stockées sur un site central.
L’architecture utilisée est de type client / serveur. C’est le site central qui détermine 1'ordre
dans lequel deux événements (génération d’opérations) se sont produits. Pour assurer la co-
hérence, le site central gere des estampilles matérialisées par un vecteur d’horloge qui sert a
décompter les opérations. Ainsi, pour chaque opération générée en local (événement interne),
le site central génére une estampille. La fusion est faite opération par opération. Une fusion
n’est applicable pour une opération que si 'estampille correspondante est attribuée plus tot
que celle de toute autre opération en instance de demande de fusion [Bernstein et Goodman
(1981)]. Dans le cas contraire, un conflit est détecté. Un conflit est également détecté si deux
opérations concernent le méme élément (caractere, ligne, etc., selon la granularité), méme si
I'une des opérations est déja fusionnée. En 'absence de conflit, la fusion est effective. Une
nouvelle version est ainsi créée. a la suite de la fusion, la nouvelle version pourra étre visible

par les utilisateurs. Cette approche est utilisée dans Concurrent Version System (CVS),

1. http://www.cvshome.org/

http://www.cvshome.org/

20

SubversionH (SVN) et les produits de la suite Rational ClearCaseH qui permettent de gérer
le cycle de vie d’applications logicielles.

Dans CVS, toutes les copies stockées sur le site central sont gérées grace a une structure
appelée «dépot» (repository). Le dépot contient 1'historique des versions du document partagé
ainsi que des métadonnées. Elles sont par exemple, ’horodatage de 'opération et I'identifiant
de I'utilisateur. Chaque utilisateur a localement un espace de travail qui contient une copie du
dépot située sur le site central. Lors de la fusion, si un conflit est détecté au niveau du systeme
de fichier, CVS a recours a l'utilisateur pour sa résolution [Molli et al. (2003b)|. Si par contre
le conflit concerne le contenu d’un fichier texte (I’élément définissant la granularité), la fusion
est faite automatiquement par le systeme. Toutefois, 'utilisateur peut corriger d’éventuelles
mauvaises décisions prises par le systeme lors de la synchronisation. Les anciennes versions
qui ont été sauvegardées peuvent étre restaurées a cet effet. SVN est une amélioration de CVS.
L’un des apports concerne le volume d’informations échangées entre le client et le serveur.
En effet, les échanges sont différentiels. Seules les opérations engendrant des modifications
effectives sur les objets sont envoyées au serveur lors de la fusion. Cette pratique est contraire
a celle de CVS. Ce dernier prend systématiquement en compte toutes les opérations. SVN
apporte donc un gain en terme de bande passante. Cependant, le principe de gestion reste
le méme. Les principes de SVN sont galement ceux utilisés dans Rational Clear Case multi-
sitesl.

L’approche multi-versions présente une faiblesse liée au cott de stockage des diverses ver-
sions. a cela s’ajoute la décision de fusion qui est dépendante du bon vouloir de I'utilisateur. Il
serait intéressant qu’il soit débarrassé de cette tache afin qu’une vue plus réaliste du document
partagé soit visible par chaque utilisateur assez rapidement. De plus, le modele de controle de
concurrence centralisé utilisé, et son recours aux estampilles pour gérer la cohérence, rendent
cette approche incompatible avec un environnement ou le nombre d’utilisateurs est massif.
Dans un tel environnement, il ne saurait exister un serveur central et une estampille a large

échelle serait difficile a gérer.

2.2.2 Approche sérialisation / Résolution de conflits

Dans 'approche SRC [Ellis et Gibbs (1989)], un site de référence est désigné au lancement
du systeme. Pour obtenir la cohérence, chaque site est tenu d’exécuter la méme séquence
d’opérations, c’est-a-dire que les opérations doivent étre dans le méme ordre. L’approche

SRC vise donc a établir un ordre total sur les opérations avant de les exécuter. Le mécanisme

2. http://subversion.apache.org/
3. http://wwuw-03.1ibm.com/software/products/fr/category/Sw860, acces : 15 mai 2014
4. http://www-03.ibm.com/software/products/fr/ccmulticoll) acces : 15 mai 2014

http://subversion.apache.org/
http://www-03.ibm.com/software/products/fr/category/SW860
http://www-03.ibm.com/software/products/fr/ccmulticoll

21

de détermination de cet ordre total sur les opérations est appelé «sérialisation». L’ordre est
défini par le site désigné au début de la collaboration. Des qu’il y a un nouvel ordre défini,
chaque site doit annuler toutes les exécutions précédemment faites (qui ne correspondent pas
a l'ordre établi). Les opérations doivent étre réexécutées suivant le résultat de la nouvelle
sérialisation. Ce processus itératif est tres cotiteux car il faut continuellement faire et défaire
les exécutions selon le rythme de la génération de nouvelles opérations dans le systeme.
Aussi, le délai pour réaliser la sérialisation a chaque nouvelle opération constitue un cout
supplémentaire. En outre, le site désigné pour sérialiser les opérations fonctionne comme
un noeud central. Au vue de ces faiblesses, la définition d'un ordre total des opérations
sur un serveur avant ’exécution et ’obligation faite aux sites d’exécuter la méme séquence
d’opérations n’est ni adaptée aux éditeurs collaboratifs ni a un contexte de grande échelle.
Toutefois, cette approche est associée a d’autres techniques pour résoudre la divergence. Tel
est le cas dans MOT2 [Cart et Ferrié (2007)] et SOCT2 [Suleiman et al. (1997)].

Dans SOCT?2, Suleiman et al. sérialisent les opérations concurrentes en ayant pour cri-
tere le respect des intentions des utilisateurs. Dans un environnement réparti, ils proposent
I’adjonction de méthodes complémentaires pour le respect de la causalité entre deux opéra-
tions. En fait, les auteurs proposent une transformation de la deuxieme opération afin de
tenir compte de l'effet produit par la premiere et ainsi satisfaire les intentions des utilisa-
teurs. Ce faisant un ordre partiel (voir Annexe A) est défini sur les opérations. C’est un ordre
local équivalent qui est construit des lors qu’il y a des opérations concurrentes. Cet ordre
tient compte aussi bien des opérations natives que des transformations d’opérations natives.

L’histoire et la sémantique des opérations ont été utilisées a cette fin.

2.2.3 Approche des types de données commutatives répliquées

La classe émergente des algorithmes de réplication est celle des types de données commu-
tatives répliquées (CRDT) [Preguica et al. (2009)]. Shapiro et Preguica ont formalisé cette
approche en utilisant pour fondement la these selon laquelle, sous de simples et standards
hypotheses, les répliques convergent vers une valeur correcte, quels que soient leurs types
de données, si les opérations concurrentes sont commutatives [Shapiro et Preguiga (2007)].
Ainsi, il ne sera pas nécessaire de détecter la concurrence entre les opérations afin d’assurer
la cohérence [Weiss et al. (2010)]. De plus, les algorithmes congus dans cette approche n’ont
point besoin de satisfaire la condition TP2 (expression [[.§ page [[0). En pratique, ces al-
gorithmes s’appuient sur des opérations nativement commutatives (voir Annexe A), définies
sur des types de données abstraites, tels que des listes, des arbres ordonnés, etc. Les opéra-
tions, une fois générées sur un site, sont diffusées vers les autres sites pour étre réexécutées

sans quelque mécanisme complexe de fusion ou d’intégration. Il n’y a pas d’ordre total sur

22

les opérations, ce qui permet a des opérations présumées concurrentes d’étre exécutées dans
n’importe quel ordre. De plus, les précurseurs de cette approche ont montré que de tels types
de données supportent les transactions a tres faible cott. Dans [Shapiro et Preguica (2007)],
en partant du principe selon lequel toutes les opérations concurrentes doivent commuter, il
a été prouvé que tout type de CRDT converge si les opérations se réferent a des identifiants
uniques différents. Le défi revient donc a concevoir les types de données et les mécanismes
appropriés pour garantir la commutativité des opérations. Les questions sous-jascentes sont
celles de I'identification unique des atomes et de la performance. Pour ce qui est de la gestion
de l'identifiant unique, le choix du domaine de valeurs de I'identifiant doit étre fait de sorte
qu’il soit compact. Ainsi, entre deux identifiants donnés, il doit toujours étre possible de gé-
nérer un nouvel identifiant. Pour ce qui est de la performance, si par exemple une structure
de données arborescente est utilisée, il faut veiller a mettre en place des mécanismes pour
équilibrer ’arbre a moindre cout. Ces mécanismes ne doivent pas compromettre la gestion de
Iidentification unique des atomes. De plus, ils doivent étre congus pour faciliter les recherches
et les faire aussi a moindre cotit.

Quelques approches et techniques ont été identifiées pour assurer la commutativité. En
termes d’approches; il s’agit de la coalescence des opérations et de la préséance. La coalescence
suppose que, pour deux opérations concurrentes, I’exécution de 'une préserve les effets de
I'autre et vice-versa. Selon Shapiro et Preguica, bien que la coalescence soit la meilleure
approche, elle n’est pas toujours possible. La préséance (ordre implicite sur les opérations),
par contre, serait beaucoup plus facile a réaliser que la coalescence. En ce qui concerne les
techniques, le concept de mises a jour non destructives a été couplé avec une identification
invariante. De plus, si le consensus est nécessaire, il est réalisé en arriere-plan, mais juste
pour des opérations non essentielles. Il est interrompu si elles rentrent en conflit avec une
opération essentielle. Parmi les algorithmes de CRDT nous distinguons : WOOT [Oster et al.
(2006b)], Logoot [Weiss et al. (2009)], Logoot-Undo [Weiss et al. (2010)], TreeDoc [Preguica

et al. (2009)]. Nous présentons ci-apres chacun de ces algorithmes.

Algorithme WOOT

WOOT est une méthode de réplication asynchrone qui exploite un tampon de caracteres
répliqués de type CRDT. Les objets répliqués sont considérés avoir une structure linéaire et
la définition des opérations est basée sur les caracteres (éléments) et non leur position. a cet
effet, un identifiant est géré pour chaque caractere utilisé dans le systeme. La relation d’ordre
induite par une opération relative a un caractere est maintenue localement et lui est associée
lors de la diffusion. Les opérations sont supposées commutatives car les mises a jour sont non

destructives et I'identifiant d’un caractere ne change pas avec les modifications concurrentes.

23

WOOT n’utilise pas un vecteur d’horloge et ne dépend pas du nombre de sites, permettant
ainsi son utilisation a grande échelle. Cependant, 1'usage de la méthode dite des «pierres
tombales» (tombstones) pour enregistrer les caractéres supprimés a pour conséquence une
consommation de ressource (espace mémoire). De surcroit, aucun mécanisme de vidange des
plus anciens caracteres supprimés, qui ne va pas compromettre la cohérence, n’est défini. Il
est a noter également que WOOT ne supporte pas les opérations groupées comme le «copier-

coller>.

Algorithmes Logoot et Logoot-Undo

Logoot [Weiss et al. (2009)] est un CRDT qui considere que les objets répliqués ont une
structure linéaire. [’élément de granularité considéré ici est la ligne, en plus d’un contenu. La
ligne est caractérisée par un identificateur unique de position. Les identificateurs de position
sont gérés grace a une liste ordonnée dans l'ordre lexicographique. Logoot utilise un arbre
n-aire comme structure de données. N'utilisant pas de «pierres tombales», il n’a pas besoin
d’un outil de vidange. Il n'implémente pas le concept d’«annulation n’importe ot n’importe
quand» et peut supporter la grande échelle. Logoot-Undo est une version améliorée de Logoot
pour supporter I’« annulation n’importe ou n'importe quand ». En termes d’améliorations, on
note une table d’identificateurs ajoutée au modele, une structure de données «cimetiere» qui
permet de gérer le degré de visibilité de la ligne, un tampon historique par site afin de stocker
les rustines. La surcharge générée par la prise en compte de la propriété d’«annulations

pourrait étre dommageable au systeme a grande échelle.

TreeDoc

La conception de TreeDoc [Preguiga et al. (2009)] repose sur le fait que les documents
partagés consistent en une séquence linéaire d’«atomes». Un atome représente un caractere
ou tout autre élément non éditable comme des figures insérées dans 1’objet. Deux opérations
d’édition sont possibles sur les atomes : I'insertion et la suppression. L’insertion prend trois
parametres a savoir la position d’insertion, ’atome a insérer et 'identifiant du site générateur
de l'opération. La suppression prend deux parametres dont le premier indique la position
a laquelle 'atome sera supprimé et le second, I'identifiant du site ayant initié 'opération.
Malgré la suppression de I’atome, elle est maintenue dans la structure de données sous-jacente
mais n’est plus visible par l'utilisateur. La commutativité des opérations est assurée par
coalescence. TreeDoc utilise un tampon d’atomes dans lequel chaque position a un identifiant
unique qui ne change pas pendant toute la durée de vie du document. Un ordre total est défini

sur les identificateurs de positions. Toutefois, il est toujours possible de générer un nouvel

24

identifiant unique entre deux identifiants existants. Une structure d’arbre binaire étendu est
utilisée pour les identifiants. Chaque noeud de I'arbre contient ou non un atome. L’identifiant
de position associé a I’atome est le chemin dans ’arbre pour arriver a ce nceud. Pour construire
le chemin, on considere que le « fils gauche » correspond a 0 et le « fils droit » a 1, le noeud
« racine » correspondant a une chaine vide représentée par le caractere e. Deux stratégies
sont alors proposées pour gérer les identifiants. La premiere est compacte mais utilise une «
pierre tombale » pour garder la trace des suppressions. De ce fait, il n’est pas adaptable a un
P2P car gourmant en espace mémoire, bien qu’'une procédure soit proposée pour la vidange.
La seconde ne garde pas trace des suppressions. Pour équilibrer 'arbre et ainsi éviter la

surcharge, un mécanisme d’optimisation a été proposé.

Autres applications de ’approche CRDT

Bien que WOOT, TreeDoc, Logoot et Logoot-Undo considerent un document XML
comme ayant une structure linéaire et donc pris en charge par ces derniers, Martin et al.
lui accordent une attention particuliere dans [Martin et al. (2010)]. Cette attention est due a
I'importante place qu’occupe de plus en plus le format XML dans les systemes informatiques
pour ce qui est du stockage, de la possibilité de faire des requétes et des échanges de données.
Le document XML n’a pas été assimilé a un document textuel linéaire, comme le faisaient les
algorithmes cités ci-dessus; mais il est réellement considéré par les auteurs comme un docu-
ment semi-structuré avec une arborescence. a cet effet, pour un noeud de I’arborescence, ses
attributs éventuels, ses nceuds éléments (fils) ainsi que leurs attributs respectifs sont consi-
dérés dans la conception. L’arborescence XML est considérée comme un ensemble d’arcs,
chacun défini par un identifiant unique, un ensemble d’arcs fils et un ensemble d’attributs.
Trois types d’opérations sont supportées par cette arborescence : I'ajout d’un arc vide avec
en parametre 'identifiant de I'arc a ajouter et celui sous lequel il sera ajouté; la suppres-
sion d'un arc dont 'identifiant est indiqué en parametre ; et I'affectation d’attribut a un arc.
L’identifiant, Iattribut, sa valeur ainsi que l'estampille de 'opération sont les parametres
de la fonction réalisant ’affectation. La suppression d’un attribut revient a lui affecter une
valeur nulle. L’estampille est utilisée afin de gérer la commutativité des opérations mais en
réalité un ordre total est défini sur ces estampilles. Martin et al. prennent en compte les
annulations afin de mieux gérer les erreurs et les conflits d’édition. a cet effet, les auteurs
ont utilisé les « pierres tombales » pour garder la trace de toutes les opérations exécutées
sur le document. Cependant, ils se limitent aux dernieres opérations car un mécanisme a été
prévu pour la vidange des vieilles opérations en se basant sur les estampilles. Bien qu’offrant
une gestion compacte qui facilite 'ordonnancement des « noeuds éléments » et malgré la

prise en compte d'une procédure pour la vidange, la proposition de Martin et al. n’est pas

25

tres adaptée a cause de la grande échelle et sa consommation d’espace. De plus, ces travaux
considerent seulement un document XML bien formé mais pas un document XML valide.
Le document peut étre vérifié avec un parseur non validant (analyse de la syntaxe concrete
seulement). Il n’est pas vérifiable avec un parseur validant (offre un support comme la DTD,
une grammaire qui permet de vérifier la conformité du document XML). Le modele décrit
par les auteurs inclut les « pierres tombales » et les opérations. Ces dernieres ne doivent
pas étre visibles pour les applications donc il y a nécessité d'un traitement particulier par les
parseurs validant.

Wu et al. ont proposé un modele de cohérence basé sur 'approche CRDT [Wu et Pui
(2009),Wu et al. (2010)]. Il est composé de deux propriétés : la convergence et la préservation
de la préséance de la dépendance des données (Data-dependency Precedence Preservation,
DDP). La propriété DDP considére une restriction de la préservation de la préséance cau-
sale présentée a la Section 2.2.4l Elle exploite une structure de données appelée séquences
partiellement persistantes (partial persistent sequences , PPS) que nous présentons a la Sec-
tion B.4.0

2.2.4 Approche de la transformée opérationnelle

L’approche de la transformée opérationnelle a été proposée par la communauté des édi-
teurs collaboratifs synchrone pour résoudre la divergence causée par la présence d’opérations
concurrentes. Elle considere plusieurs sites, chacun ayant sa copie de 'objet partagé. Les opé-
rations générées localement sont envoyées aux autres sites pour leur prise en compte. Chaque
copie est modifiée localement par l'exécution d’une opération générée localement ou recue
d’un site distant. Les sites procedent a la transformation des opérations recues des autres
sites par rapport aux opérations locales avant de les exécuter. L’édition est possible grace
aux deux composants que sont 'algorithme d’intégration et ’algorithme de transformation
inclusive (IT). Cette derniere s’occupe de la transformation des opérations regues par rap-
port aux opérations concurrentes déja exécutées. Nous présentons ici une revue des requis
que doivent satisfaire les I'T pour I'obtention d’une édition cohérente et les principales IT

proposées dans la littérature.

Condition de cohérence

D’apres Sun et al., la cohérence d'un systeme d’édition collaborative n’est obtenue que
si les criteres de préservation de la causalité (préséance causale ou critere de causalité), de
convergence et de préservation de 'intention sont respectés [Sun et al. (1998)]. Ces criteres

sont appelés CCI. Il y a préservation de la préséance causale, si pour deux opérations o; et

26

0o tel que 07 a préséance sur o,, leur exécution dans n’importe quel ordre conserve 'effet
de 07 mais pas nécesairement celui de oy. Ces opérations doivent étre ordonnées suivant la
relation de préséance au sens de Lamport (voir Section [LT.1], page Ml). Cette propriété peut

étre également formulée comme indiquée dans I'expression 2,11
Vo1,09 € 0,01 — 09 = Vs € S, execution(o,) — execution(oy) (2.1)

Avec

— O : I'ensemble des opérations générées dans le systeme;

— & : 'ensemble des sites participant a la collaboration ;

— — : la relation de préséance ;

— execution(o;) qui signifie « exécution de 'opération o; ».
Le critere de convergence est respecté lorsque tous les sites exécutent le méme ensemble
d’opérations dans un ordre quelconque et que les copies du document partagé sont identiques.
L’intention d’une opération o est l'effet qu’aurait produit son exécution sur la copie locale
du document, au moment de sa génération [Sun et al. (1998)]. Il y a donc préservation de
Iintention quand son exécution produit sur tous les sites, le méme effet que celui qui est
produit sur le site ou elle a été générée, et ceci, au moment de sa génération. Li et Li ont
indiqué que la préservation de l'effet des opérations implique le respect de la convergence [Li
et Li (2004)]. La preuve a été apportée dans [Li et Li (2008a)]. Autrement dit, la préservation
de l'intention est suffisante pour conduire a la convergence. Pour qu'un systeme d’édition
collaborative soit cohérent, il suffit juste que les criteres de causalité et celui de préservation
d’intention soient réalisés. Ils définissent un nouveau concept de relation d’effet pour les
opérations. Ce concept de relation d’effet est en fait une reformulation de la préservation
d’intention. Ils proposent alors un nouveau modele de cohérence appellé CSM (Causality,
single-operation effect, and multi-operation effects relation preservation) qui pourrait étre
traduite littéralement par « préservation de la causalité, préservation de I'effet d’une opération
et préservation des effets de plusieurs opérations ». La préservation de I'effet d’une opération
stipule que leffet de l'exécution de toute opération sur n’importe quel état d’exécution,
produit le méme effet que dans son état de génération. Par exemple, un caractere supprimé
(dans I'état de génération de la suppression), doit 'étre dans tous les états du systeme
postérieur a la génération. Pour une opération d’insertion, I'ordre total doit étre maintenu
pour deux caracteres quelconques quels que soient les états du systeme (états postérieurs a
I'état de génération de l'insertion). La préservation de 'effet de multiples opérations stipule
quant a lui que, pour tout état, la relation d’effet entre deux opérations quelconques doit étre

maintenue apres leur exécution.

27

Dans l'approche OT, le critere de convergence est respecté si ’algorithme de transfor-
mation (IT) utilisé satisfait les propriétés TP1 et TP2 [Ressel et al. (1996)] définies a la
Section [[.2] (expressions [T et [L8] page[I0]). a 'analyse de ces propriétés, on peut retenir que
la TP1 peut étre satisfaite conceptuellement, alors que la TP2 n’est pas triviale. Nos travaux
dans le chapitre [3] en donne d’ailleurs les preuves.

Plusieurs algorithmes ont été recensés dans la littérature. Un inventaire et une comparai-
son de quleques uns de ces algorithmes est disponible dans [Kumawat et Khunteta (2010)].
Les principaux algorithmes basés sur OT sont : algorithme de Ellis [Ellis et Gibbs (1989)],
algorithme de Ressel [Ressel et al. (1996)], algorithme de Sun [Sun et al. (1998)], algorithme
de Suleiman [Suleiman et al. (1998)], algorithme d’Imine [Imine et al. (2003)] et SO6 [Molli
et al. (2003b)].

Algorithme de Ellis

L’algorithme de Ellis [Ellis et Gibbs (1989)] (voir Annexe [B.1) considére un objet textuel,
donc a structure linéaire, pour lequel seul deux fonctions peuvent étre utilisées : insertion et
suppression d’un caractere. L’insertion prend trois parametres : la position p dans laquelle
Iinsertion sera faite, le caractére ¢ a insérer et une priorité pr qui est utilisée pour résoudre le
conflit né de deux opérations concurrentes d’insertion de caracteres différents a la méme po-
sition. La priorité est déterminée sur chaque site et il ne saurait avoir collision (méme valeur
de priorité sur deux sites différents). La suppression quant a elle, prend deux parameétres :
la position p a laquelle il faut supprimer un caractere et la priorité pr définie comme précé-
demment. L’analyse de 'algorithme de Ellis montre qu’il exploite la propriété sémantique des
opérations. Selon Suleiman et al., il existerait bien des situations d’incohérence, de non préser-
vation de I'intention et d’annulation suivie de réexécution de certaines opérations [Suleiman
et al. (1998)]. Boucheneb et Imine ont entériné cette these en prouvant que I'algorithme de
Ellis ne respecte pas la propriété de convergence et par conséquent n’assure pas la cohérence
des données |[Boucheneb et Imine (2009)]. Selon Ressel |[Ressel et al. (1996)], I'algorithme de
Ellis entraine une incohérence quand un site exécute plus d’une opération concurrente par
rapport a une opération générée sur un autre site. Il propose alors une amélioration de celui
de Ellis.

Algorithme de Ressel

L’algorithme de Ressel (voir Annexe [B.2)) est utilisé actuellement dans bien de systemes

centralisés d’édition collaborative populaires tel que XWikiH. Outre les différences réperto-

4. http://www.xwiki.com/

http://www.xwiki.com/

28

rides a la section B.2.3] I'approche de Ressel pour gérer la cohérence differe de celle de Ellis
par l'introduction d’un modele d’interactions multi-dimensionnelles pour garder la trace des
transformations valides. Le nombre de dimensions est égal au nombre de sites participant a
la collaboration. Son approche prend en compte les «annulations groupées». L’algorithme de
Ressel ne satisfait pas la propriété TP2. Imine le prouve dans [Imine (2006)] en exhibant
un contre-exemple. La preuve qu’il ne permet pas la convergence a été également faite par
Boucheneb et Imine en utilisant le model-checking [Boucheneb et Imine (2009)]. Des contre-
exemples prouvant que ’algorithme de Ellis ne respecte pas la TP1 et que celui de Ressel
ne respecte pas la TP2 sont présentés a la figure (page M0)) et a la figure (page (A1),

respectivement.

Algorithme de Sun

Sun et al. ont proposé un algorithme de transformation inclusive qui se base sur une chaine
de caracteres comme élément de granulatité. Les opérations acceptées sont : (i) l'insertion
d’une chaine de caractéres d’une certaine longueur dans une position donnée et (ii) la sup-
pression d’une chaine de caracteres d'une longueur donnée a partir d'une position donnée.
Dans le cas de l'insertion, la position dans laquelle I'insertion doit étre faite, la chaine de
caractere a insérer et sa longueur sont les parametres. Pour une suppression, seule la position
et la longueur sont les parametres (voir Annexe [B.3]). L’algorithme de Sun et al. ne satisfait
ni la TP1 ni la TP2 [Boucheneb et al. (2010)].

Algorithme de Suleiman

L’algorithme de Suleiman [Suleiman et al. (1998)] considére des objets textuels sur les-
quels les utilisateurs agissent en insérant ou en supprimant des caracteres. En cherchant a
assurer la satisfaction de la TP2, Suleiman et al. proposent une méthode synchrone qui ex-
ploite aussi les propriétés sémantiques des opérations (voir Annexe[B.4l). Leur approche batit
I’historique associé a un objet de maniere incrémentale sans prendre en compte I'annulation
et la réexécution de certaines opérations. La fonction de suppression ne prend en parametre
que la position p du caractere a supprimer. La fonction d’insertion quant a elle prend quatre
parametres qui sont respectivement : la position p a laquelle I'insertion sera faite, le caractere
¢ a insérer, un parametre av qui contient les opérations de suppression qui ont eu pour effet
d’enlever un caractere en avant de la position d’insertion et un parametre ap qui contient les
opérations qui ont effacé un caractere en arriere de la position d’insertion. Comparativement
aux précédents algorithmes présentés, celui de Suleiman et al. n’utilise pour I'insertion ni de

parametre de priorité ni d’identifiant de site mais, en lieu et place, deux parametres servant

29

a mémoriser I’ensemble des opérations de suppression concurrentes a 1’opération d’insertion.
De plus la suppression ne requiert que la position comme seul parametre. La solution de
Suleiman et al. a permis de résoudre bien des cas que les précédents algorithmes n’ont pas
pu résoudre. Cependant, il existe des cas ou l'algorithme ne conduit pas a la satisfaction de
la condition TP2. Cette preuve a été apportée dans [Imine (2006)] par contre-exemple. Bou-
cheneb et Imine [Boucheneb et Imine (2009)] en utilisant le model-checking ont également
établit que 'algorithme de Suleiman et al. ne respecte pas la propriété de convergence. Des
contre-exemples qui témoignent du non respect des propriétés TP1 et TP2 par 'algorithme
de Suleiman sont exhibés a la figure B.8 (page [7) et a la figure 2.11

siteq sites sites
Liade” “ade” “adeﬂ

01 = Insk2, b,0,0) o2 = Ins(2, b7 0,{del(2)}) o3 =Ins(2, c7 {del(2)}, D)

T e e

ccablden‘
| ~del(2)}) Ins(2,b, {del(2)},0)

Nop() Ins(4,b,0,0)
“abcbde”|

Figure 2.1 Violation de la propriété TP2 par l'algorithme de Suleiman.

Le contre-exemple de la figure 2.1] considere trois sites : sitey, sites et sites. Les copies
du document partagé sont initialement identiques sur les sites et contiennent le texte “ade”.
Les sites génerent chacun une opération d’insertion en position 2, qui est en concurrence avec
chacune des autres opérations. Sur les trois sites, 'historique associée a l'insertion contient
comme parametres av et ap : (0,0), (0,{del(2)}), ({del(2)},0), respectivement. Ainsi, site;
produit une insertion sans historique. Sur sitey, I'historique n’indique que la suppression en
position 2 apres la position courante. Quant a sites, son insertion n’indique que la suppression
en position 2 avant la position courante. Il est a remarquer que la position courante d’in-
sertion et les positions indiquées dans 'historique sont égales. L’application des différentes
transformations suggérées par Suleiman et al. donne comme résultats sur les sites et sites les

textes “abcde” et “abcebde”, respectivement.

Algorithme d’Imine

Imine et al. ont essayé d’apporter une amélioration a l’algorithme de Suleiman [Suleiman
et al. (1998)] en associant a chaque caractere sa position initiale [Imine et al. (2003)]. Cette

position reste inchangée méme si la transformation de l'opération afférente affecte la posi-

30

tion courante du caractére. Dans leur algorithme (voir Annexe [B.5)), la fonction d’insertion
comporte trois parametres : la position courante d’insertion p, la position initiale d’insertion
définie a la génération de 'opération o et le caractere ¢ a insérer. a la génération, p et o sont de
valeurs égales. La fonction de suppression ne prend que le parametre indiquant la position du
caractere a supprimer. Imine et al., en faisant I’hypothese que les opérations d’insertion consi-
dérées n’auraient pas subi de transformation auparavant, avaient conclu que leur algorithme
satisfaisait TP2. Cependant, il n’est pas réaliste de considérer que o et p sont de valeurs égales
avant toute vérification de TP2. En faisant fi de cette hypothese, leur algorithme ne conduit
pas a la convergence. Imine en exhibe d’ailleurs lui-méme un contre-exemple dans [Imine
(2006)]. Ce constat a été renforcé par les travaux de Boucheneb |Boucheneb et Tmine (2009)].

Un exemple de la violation du TP2 par l'algorithme d’Imine est proposé a la figure B.10]

(page B1).

Algorithme SO6

SO6 [Molli et al. (2003b)] est une méthode de réplication asynchrone basée sur la trans-
formée opérationnelle. Il implémente un synchroniseur de systeme de fichier qui s’appuie sur
un séquenceur pour faire 'ordonnancement des opérations concurrentes. Ces opérations sont
relatives a plusieurs niveaux de granularité : systeme de fichier, fichier texte, fichier XML,
texte, etc. SO6 allie I’approche «copier-modifier-fusionner» et 'approche de la transformée
opérationnelle. Le séquenceur définit un ordre total sur les opérations en les estampillant. Ce
mécanisme est déployé par une machine centrale. La propagation des opérations se fait en
se basant sur le mécanisme de diffusion différée proposé dans SOCT4 [Vidot et al. (2000)].
Cette méthode ne peut pas étre utilisée a grande échelle du fait de I'usage d’un séquenceur.

La variabilité de la topologie rend aussi inutilisable le séquenceur.

Algorithme MOT2

MOT2 [Cart et Ferrié¢ (2007)] est un algorithme de réconciliation asynchrone basée sur la
transformée opérationnelle. Inspiré de MOT1 [Bernstein et Goodman (1981)], qui considere
une copie de référence, MOT2 suppose plutot une relation d’ordre entre les sites ou entre
les copies des leur création. La relation entre les sites peut dériver des noms de ces sites
si leur unicité est garantie. Celle entre les copies peut également dériver de leur nom en
utilisant un schéma d’identification hiérarchique. Cette relation d’ordre est utilisée a des fins
de sérialisation en conduisant a la définition d’un ordre total unique entre les opérations.
Cette stratégie dispense MOT2 d’un serveur central, de vecteurs d’états, d’estampilles ou

de séquenceur. Il procede par appariement des copies (deux a deux) et ne privilégie aucune

31

copie au cours du processus. La propagation est faite librement des que deux sites décident
de réconcilier leurs copies. Il serait intéressant d’affranchir les sites de cette décision. De plus,
I’absence d’'un serveur central et de vecteurs rendent certes MOT2 compatible au facteur
échelle en architecture répartie, mais appliquer une stratégie d’appariement a cette échelle
entrainera la dégradation des performances en termes de temps nécessaire pour que le systeme

soit stable.

Algorithmes SDT et SDTO

a l’appui de leur nouveau modele de cohérence (CSM) qui prend en compte les critéres de
préservation de causalité et de préservation d’intention, Li et Li proposent, afin de satisfaire
la condition TP2, le concept de «transformation par différences d’états» (state difference
transformation, SDT). L’algorithme SDT [Li et Li (2004),[Li et Li (2008a)] a été proposé
sur la base de ce concept. Selon les auteurs, 'algorithme SDT (voir Annexe [B.6)) assure la
convergence dans une architecture «pure Pair-a-Pair». Dans SDT, les auteurs ont recours a
deux fonctions. La premiere est une fonction de transformation inverse de la transformation
IT. Elle est notée ET (exclusion transformation) et permet d’exclure I'effet d’une opération
par rapport a une autre. La deuxieme fonction, notée 3, permet d’obtenir pour toute opéra-
tion, la position qu’elle aurait pu avoir sur un état précédent de convergence. Cette derniere
est utilisée avec une fonction ¢ qui détermine les opérations ayant les mémes valeurs de retour
pour 8 |Li et Li (2008a)]. Cette solution a été proposée dans le seul but de résoudre la TP2
et ne tient pas compte des questions de performance. Pour pallier ce probleme, le SDTO
[Li et Li (2008b)] a été élaboré et constitue une optimisation du SDT. Cette optimisation a
permis de réduire considérablement la complexité (en temps et en espace) de ce dernier. Il a
également été étendu par ’ajout d’une troisieme primitive outre 'insertion et la suppression.
Cette primitive ajoute une fonctionnalité de mise a jour et permet de traiter les documents
formatés en complément aux documents textuels que prenait en charge SDT. La vérification
de l'algorithme de Li et Li réalisée par Imine [Imine (2006)] a montré un contre-exemple et
permet de conclure que cet algorithme ne conduit pas a la convergence. Un exemple de cas
de violation de la TP2 est fourni a la figure

Le contre-exemple de la figure considere trois sites : sitey, sites et sites. Les copies
du document partagé sont initialement identiques sur les sites et contiennent le texte “adf”.
Une opération d’insertion du caractere b en position 2 est générée par site;. Sur sites, une
opération d’insertion est également générée. Il s’agit d’ajouter le caractere e en position 3.
Enfin, sites produit une opératoion de suppression en position 2. Les trois opérations sont
concurrentes. Leurs exécutions locales donnent respectivement : “abdf”, “adef” et “af”. La

transformation selon SDT, de 'opération regue de sites par sites, suivie de la transformation

32

siteq sitea sites
Giadf77 Ha,df” “adfﬂ

01 = Ihs(2,b) 02 = Ihs(3,e)

o

o1 =Ins(2,b) o1 =Ins(3,b)

“abef”| “acbf”|
Figure 2.2 Violation de la propriété TP2 par SDT.

de celle reque de site; par sites, conduit a une insertion en position 2. Par contre, sites
obtient une insertion en position 3, apres avoir transformé les opérations regues de sites et
sitey, prises dans cet ordre. En comparant les résultats des transformations de 'opération
reque de site; par chacun des deux autres sites, il est aisé de conclure que les deux sites n’ont

pas le méme résultat. Ce qui montre que la TP2 n’est pas vérifiée.

Fonctions TTF

Pour assurer la cohérence des documents textuels, Oster et al. ont proposé un ensemble de
fonctions dénommé TTF (Tombstone Transformation functions) |Oster et al. (2006a)]. Leur
solution considere le caractere comme élément de granularité manipulé lors d'une édition.
La suite de fonctions est composée d’une fonction de recherche de position d’un caractere et
d’une fonction de transformation inclusive. Le TTF s’appuie sur deux modeles représentant le
document édité : la vue et le modele de données. La vue est le document auquel 1'utilisateur
a acces tandis que le modele de données est transparent pour lui. Le lien entre les deux
modeles est assuré par le principe de la pierre tombale (tombstone) et I'usage de la fonction
de transformation. En effet, lorsque 'utilisateur insere un caractere dans la vue, il est aussitot
aussi inséré dans le modele de données. Quand il supprime un caractere dans la vue, celui est
effectivement supprimé de la vue, le rendant ainsi invisible, mais simplement déclaré masqué
dans le modele de données sous-jascent, qui est de ce fait un modele persistant. C’est le
fait de masquer un caractere dans le modele persistant qui lui fait valoir 'attribut de pierre
tombale. La fonction de transformation sert alors a faire le lien entre une position de la vue
et la position correspondante dans le modele persistant, en prenant en compte en plus des
caracteres visibles, tous les caracteres supprimés (masqués) avant cette position. De fagon
pratique, quand l'utilisateur insere un caractere dans la vue, la fonction de recherche de

position est utilisée pour trouver la position dans laquelle le caractere doit étre inséré de

33

maniere cohérente dans le modele persistant. De la méme maniere, quand il supprime un
caractere de la vue, la fonction permet de trouver ce caractere dans le modele persistant
en retournant la position de ce dernier. La nouvelle position déterminée est celle qui est
envoyée aux autres utilisateurs lors de la réplication de I'opération. Ainsi, lorsqu'une opération
distante est regue, elle est transformée sur la base du modele persistant. Il faut noter que
la fonction de recherche de position est bien comparable a la fonction 8 de SDT ou SDTO
(Section 2.2.4]), qui permet d’obtenir pour toute opération, la position qu’elle aurait pu avoir
sur un état précédent de convergence. En termes de ressources, la proposition de Oster et al.
manipule deux structures de données en plus de I'histoire des opérations, ce qui nécessite des
dispositions particulieres pour leur gestion et une quantité de mémoire supplémentaire. De
plus, toute mise a jour sollicitée par 'utilisateur implique une opération de mise a jour sur
chacune des deux structures de données et un calcul de position. En outre, la sémantique de la
suppression de caractere est redéfinie par l'usage de la pierre tombale avec pour conséquence
la persistance du caractere et une croissance de la taille du modele de données. La complexité
de TTF est consignée dans le tableau [3.4] (page [G1).

2.3 Controle d’acces dans les systemes collaboratifs

Les principaux modeles de controle d’acces dédiés aux systemes collaboratifs sont pour
la plupart répertoriés dans [Tolone et al. (2005)]. 11 s’agit de : la matrice d’acces (Access
Matriz Model, AMM) |[Sandhu et Samarati (1994)], le controle d’acces basé sur les roles (Role
Based Access Control, RBAC) [Sandhu et al. (1996)], le controle d’acces basé sur les taches
(Task Based Access Control, TBAC) [Thomas et Sandhu (1997)Thomas et Sandhu (1994)], le
controle d’acces basé sur les équipes (Team Based Access Control, TMAC) [Thomas (1997)],
le controle d’acces basé conjointement sur les informations de contexte et les équipes (Context
Based Team-Based Access Control, C-TMAC) |Georgiadis et al. (2001)], le controle d’acces
spatial (Spatial Access Control, SAC) |[Bullock et Benford (1999)] et le controle d’acces sen-
sible au contexte (Context Aware Access Control) |[Covington et al. (2001)]. En se basant
sur 'idée selon laquelle la conception d’'un modele de controle d’acces qui tient compte des
spécificités d’une édition collaborative répartie est sujette aux exigences telles que la spéci-
fication de haut niveau des droits d’acces, la généricité et la flexibilité du modele, 'aspect
dynamique du modele, le maintien des indicateurs de performance a des seuils acceptables,
Tolone et al. ont déterminé des criteres qui leur ont permis de faire une étude comparative
sur ces modeles de controle d’acces. Les auteurs ont mis en lumiere les forces et les faiblesses
de chacun d’eux au regard du contexte complexe de I’édition collaborative répartie. De cette

étude, nous pouvons retenir que le TMAC est le plus adapté, en ce qui concerne une édition

34

collaborative sécurisée. Cependant, TMAC a un niveau d’applicabilité assez moyen. L’une
des faiblesses de TMAC est qu’il ne permet pas d’ajouter de nouveaux droits d’acces aux
membres d'un groupe, autres que ceux découlant directement des droits fonctionnnels du
groupe. C’est 1'une des raisons pour lesquelles il a été étendu dans TMACO04 [Alotaiby et
Chen (2004)] pour tenir compte des contextes et des organisations ayant un grand nombre de
groupes d’utilisateurs qui doivent interagir entre eux. C-TMAC est une variante de TMAC
qui tire partie des roles, des équipes et des informations de contexte, dans un modele flexible
de controle d’acces. Cette démarche a été également suivie dans le modele STRAC [Kawagoe
et Kasai (2011)] consacré au milieu médical. STRAC est en fait une variante de C-TMAC
qui considere la situation médicale comme contexte déterminant le modele. Pour gérer les
acces, RBAC utilise pour chaque utilisateur la notion de session. Bien qu’il ait permis de
résoudre certains problemes liés a la gestion dynamique des droits d’acces, RBAC ne rend
pas aussitot effectif le changement du role d'un utilisateur. Ce dernier doit se déconnecter
et se reconnecter afin d’étre authentifié a nouveau sous son nouveau role, sans quoi il serait
dans l'illégalité. Cette faiblesse a été comblée avec SAC, mais il reste aussi non adapté au
contexte en étude a cause du mécanisme de verrou a deux phases qu’il utilise et qui est plus
adapté pour un contexte de base de données. Dans [Imine et al. (2009)], un modele flexible
de controle d’acces a été proposé (FACMDCE). 11 est basé sur la réplication du document
partagé ainsi que ses autorisations d’acces dans la mémoire locale de chaque utilisateur. Pour
faire face a la latence et au changement dynamique des droits d’acces, une technique optimiste
a été utilisée et consiste a appliquer de maniere rétroactive les autorisations d’acces.
Malheureusement, nous n’avons pas trouvé d’étude consacrée a la vérification de la pré-
servation de la propriété de cohérence pour les modeles cités précédemment. Cependant, il
existe plusieurs études telles que [Abdunabi et al. (2013)| Jayaraman et al. (2013), Toahchoo-
dee et al. (2009),Hu et Ahn (2008),Samuel et al. (2007)], relatives a la satisfaction de certaines

propriétés par RBAC et quelques unes de ses variantes, dans des cadres spécifiques.

2.4 Conclusion

Plusieurs approches ont été proposées dans la littérature pour gérer la cohérence des do-
cuments lors d'une édition collaborative. Celles qui sont plus adaptées a un contexte réparti
sont 'approche des types de données commutatives répliquées et I'approche de la transfor-
mée opérationnelle. Dans I'approche CRDT, il n’est pas nécéssaire de détecter la concurrence
entre les opérations afin d’assurer la cohérence et les opérations peuvent étre exécutées dans
un ordre quelconque. De plus, cette approche permet de contourner le défi que représente la

satisfaction de la propriété TP2. Les répliques peuvent converger vers une valeur correcte,

35

quels que soient leurs types de données, mais a condition que les opérations soient native-
ment commutatives. Cependant, obtenir des opérations commutatives est tout un autre défi.
L’autre défi réside dans la définition de la structure de données abstraite qu’il faut pour gé-
rer les atomes ou éléments de granularité considérés. Elle nécessite une identification unique
de ces atomes mais également un domaine d’identification compact qui puisse toujours per-
mettre la génération d’'un nouvel identifiant entre deux identifiants quelconques. L’approche
CRDT a été utilisée dans plusieurs solutions; parmi celles-ci figurent TreeDoc, qui gere la
commutativité par coalescence, WOOT, Logoot, Logoot-Undo qui se basent sur la préséance
causale.

L’approche de la transformée opérationnelle présente aussi plusieurs avantages. Elle ac-
corde aux sites de modifier librement leurs copies et d’échanger leurs modifications dans
n’importe quel ordre. Les opérations transformées peuvent également étre exécutées dans un
ordre différent sur chaque site. Ceci est possible grace a I’équivalence établie entre les histoires.
L’approche OT ne définit donc pas un ordre total sur les opérations. De plus, elle produit
un état de convergence sans perte de mise a jour. Elle offre également ’avantage de résoudre
les conflits au fur et & mesure de 'exécution des opérations. Cependant, 'utilisation d’un
mécanisme appropriée de détection de la concurrence et d'une fonction de transformation
correcte qui doit satisfaire les propriétés TP1 et TP2 sont des défis. L’approche de la trans-
formée opérationnelle a été utilisée par la plupart des méthodes synchrones [Ellis et Gibbs
(1989)], [Ressel et al. (1996)], |Suleiman et al. (1998)], [Li et Li (2004),[Li et Li (2008a)|, [Li
et Li (2008b)], [Imine et al. (2003)], mais aussi par des algorithmes asynchrones [Molli et al.
(2003b)], [Cart et Ferrié (2007)], [Oster et al. (2006a)]. Parmi les ITs proposées dans la litté-
rature, certaines se heurtent a la satisfaction de la condition TP2 en considérant le modele
CCI [Ellis et Gibbs (1989)], [Ressel et al. (1996)], [Suleiman et al. (1998)], [Sun et al. (1998)],
[Imine et al. (2003), ou a la préservation de l'intention des opérations, en considérant le
modele CSM [Li et Li (2004),/Li et Li (2008a)], |Li et Li (2008b)]. Il en existe qui ne satisfont
pas la TP1 [Ellis et Gibbs (1989)], [Suleiman et al. (1998)], |Sun et al. (1998)]. La solution
TTF quant a elle considere une sémantique différente pour l'opération de suppression. Sa
fonction de transformation inclusive est dite correcte par les auteurs mais aucune étude n’a
prouvé son exactitude par rapport aux propriétés TP1 et TP2.

Plusieurs modeles ont également été proposés dans la littérature pour gérer le controle
d’acces dans les systemes collaboratifs. Parmi eux, tres peu répondent convenablement aux
spécificités d’'une édition massivement répartie (TMAC, FACMDCE). Nous notons a ’état
actuelle de nos connaissances, I’absence d’une étude qui montre que ces modeles préservent

la cohérence d'un systeme d’édition collaborative réparti.

36
CHAPITRE 3

ARTICLE 1 : On Synthesizing a Consistent Operational Transformation
Approach

Aurel Randolph , Hanifa Boucheneb *, Abdessamad ImineH, and Alejandro Quintero*

Abstract

The Operational Transformation (OT) approach, used in many collaborative editors, al-
lows a group of users to concurrently update replicas of a shared object and exchange their
updates in any order. The basic idea is to transform any received update operation before its
execution on a replica of the object. Concretely, OT consists of a centralized / decentralized
integration procedure and a transformation function. In the context of decentralized inte-
gration, designing transformation functions for achieving convergence of object replicas is a
critical and challenging issue. Indeed, the transformation functions proposed in the literature
are all revealed inefficient.

In this paper, we investigate the existence of transformation functions. From the theoreti-
cal point of view, two properties, named TP1 and TP2, are necessary and sufficient to ensure
convergence. Using controller synthesis technique, we show that there are some transforma-
tion functions, which satisfy TP1 for the basic signatures of insert and delete operations.
But, there is no transformation function, which satisfies both TP1 and TP2. Consequently, a
transformation function which satisfies both TP1 and TP2 must necessarily have additional
parameters in the signatures of some update operations.

We propose, in this paper, a new transformation function and show formally that it

ensures convergence.

Keywords Collaborative editors, operational transformation, proof of convergence, sym-

bolic model checking, controller synthesis.

*. A. Randolph, H. Boucheneb and A. Quintero are with the Department of Computer and Software En-
gineering, Ecole Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Québec, Canada,
H3C 3A7. E-mail : {aurel.randolph, hanifa.boucheneb, alejandro.quintero}@polymtl.ca

t. A. Imine is with Lorraine University and INRIA Nancy-Grand-Est, France. E-mail : abdessa-
mad.imine@inria.fr

37

3.1 Introduction

Collaborative editing systems (CESs for short) constitute a class of distributed systems
where dispersed users interact by manipulating some shared objects like texts, images, graph-
ics, XML documents, etc. To improve data availability, these systems are based on data
replication. Each user has a local private copy of the shared object that he can access and
update. The update operations executed locally are propagated to other users. The execu-
tion of these operations in different orders may lead to a divergence (object replicas are not
identical). As an example, suppose two users u; and us working on their own copies of a
text containing the word “efecte”, starting at position 0. User u; inserts ‘f’ at position 1, to
change the word into “effecte”. Concurrently, user uy deletes element at position 5 (i.e., the
last 'e’), to change the word into “efect”. Each user will receive an update operation that was
applied on a different version of the text. Applying naively the received update operations
will lead to divergent replicas (“effece” for user u; and “effect” for user uy, see Figure B.1).
Moreover, users may generate concurrently conflicting or identical operations. The challenge
in such situations is to ensure convergence of replicated data whilst preserving the intention
of users.

Several approaches are proposed in the literature, to deal with the convergence of repli-
cated data: Multi-Version (MV) [Bernstein et Goodman (1983)], Serialization-Resolution
of Conflicts (SRC) [Ellis et Gibbs (1989)], Commutative Replicated Data Type (CRDT)
[Preguica et al. (2009),Weiss et al. (2010)], Operational Transformation (OT) [Ellis et Gibbs
(1989)], etc.

The multi-version approach, used in CVS, Subversion and ClearCase, is based on the
paradigm “Copy-Modify-Merge”. In this approach, update operations made by a user are
not automatically propagated to the others. They will be propagated only when the user
explicitly calls the merge function. It would be interesting to propagate automatically, to all
others, each update operation performed by a user. This is the basic idea of SRC.

To achieve convergence, SRC imposes to execute the operations in the same order at
every site. Therefore, sites may have to undo and execute again operations, as they receive
the final execution order of update operations. This order is determined by a central server
fixed when the system is launched. For the previous example, this approach requires that
sites of both users execute the two operations in the same order. However, even if we obtain
an identical result in both sites, the execution order imposed by the central server may not
correspond to the original intention of some user. For instance, executing, in both sites, the
operation of u; followed by the one of us results in the text “effece”, which is inconsistent

with the intention of us.

38

The Commutative Replicated Data Type (CRDT) is a data type where all concurrent
operations commute with each other [Preguica et al. (2009), Weiss et al. (2010)]. In such
a case, to ensure convergence of replicas it suffices to respect the causality principle (i.e.,
whenever an operation o' is generated after executing another operation o, o is executed
before o at every site). The main challenge of CRDT is designing commutative operations
for the data type. The commonly used idea consists in associating a unique identifier with
the position of each symbol, line or atom of the shared document and when an operation
is generated, a unique identifier is also associated with the inserting/deleting position. The
position identifiers do not change and are totally ordered with regard to <. Symbols, lines
or atoms of the document appear in increasing order with regard to their identifiers. Let
us apply this paradigm to the previous example. A unique identifier is associated with each
symbol of the initial text: “(e,3) (f,6) (e, 8) (¢,9) (1,9.5) (e,10)”. A unique identifier between
3 and 6 is affected to position 1 of the operation of u;. Let 4.5 be the selected identifier.
The identifier affected to position 5 of the delete operation of uy is 10. Both execution orders
of operations of u; and wuy lead to the text “(e,3) (f.4.5) (f,6) (e, 8) (¢,9) (t,9.5)”. CESs
like TreeDoc [Preguiga et al. (2009)], Logoot [Weiss et al. (2009)], Logoot-Undo [Weiss
et al. (2010)] and WOOT |Oster et al. (2006b)] are based on CRDT paradigm. Managing
position identifiers is a very important issue in this approach as the correctness is based
on the uniqueness of position identifiers. Ensuring uniqueness may induce space and time
overheads. Moreover, the identifier space increases regardless of the size of the document.

Unlike CRDT, in OT approach, proposed by Ellis et al. [Ellis et Gibbs (1989)], there
is no need to associate a unique identifier with each symbol and the generated concurrent
operations are not necessarily commutative. Their commutativity is forced by transforma-
tion of operations before their execution. More precisely, when a site receives an update
operation, it is first transformed with regard to concurrent operations already executed on
the site. The transformed operation is then executed on the local copy. This transformation
aims at ensuring the convergence of copies even if users execute the same set of operations
in different orders but with regard to causality principle. Concretely, OT consists of a cen-
tralized / decentralized integration procedure and a transformation function, called Inclusive
Transformation (IT).

The integration procedure is in charge of executing update operations, broadcasting local up-
date operations to other sites, receiving update operations from other sites, and determining
transformations to be performed on a received operation before its execution. Several inte-
gration procedures have been proposed in the groupware research area, such as dOPT [Ellis
et Gibbs (1989)], adOPTed [Ressel et al. (1996)], SOCT2,4 [Suleiman et al. (1998) Vidot
et al. (2000)], GOTO [Sun et Ellis (1998)] and COT [Sun et Sun (2009)]. There are two

39

kinds of integration procedures: centralized and decentralized. In the centralized integration
procedures such as SOCT4 and COT, there is a central node which ensures that all concur-
rent operations are executed in the same order at all sites. In the decentralized integration
procedures such as adOPTed, SOCT2 and GOTO, there is no central node and the opera-
tions may be executed in different orders by different sites. We focus, in the following, on
the decentralized integration procedures as they do not need any central server and then are
more appropriate to P2P systems.

The IT function transforms an update operation with regard to another one. For the pre-
vious example, when wu; receives the operation of us, it is first transformed with regard to
the local operation as follows: IT(Del(5),Ins(1,f)) = Del(6). The deletion position is in-
cremented because u; has inserted a character at position 1, which is before the character
deleted by wus. Next, the transformed operation is executed on the local copy of u;. In
a similar way, when wuy receives the operation of uq, it is transformed as follows before its
execution on the local copy of us: IT(Ins(1,f), Del(5)) = Ins(1,f) (see Figure B.2)). We
can find, in the literature, several IT functions: Ellis’s algorithm [Ellis et Gibbs (1989)],
Ressel’s algorithm [Ressel et al. (1996)], Sun’s algorithm [Sun et al. (1998)], Suleiman’s
algorithm [Suleiman et al. (1997)] and Imine’s algorithm [Imine et al. (2003)]. However, all
these functions fail to ensure convergence [lmine et al. (2006),Imine (2006), Boucheneb et
Imine (2009), Boucheneb et al. (2010)]. More precisely, from the theoretical point of view,
to ensure data convergence, the IT function has to satisfy two properties named TP1 and
TP2 [Ressel et al. (1996)|. Intuitively, IT satisfies TP1 means that I'T forces commutativity
of any pair of update operations executed in different order, on the same state. I'T satisfies
TP2 means that an update operation is transformed in the same manner with regard to two
different but equivalent sequences of update operations. Some IT functions, proposed in the
literature, satisfy TP1 but there is no I'T function which satisfies TP2. To overcome this
problem, some solutions impose a total ordering on the integration of operations, fixed in
general by a central site. In this context, property TP1 is used to preserve the user intentions.
For instance, in Figure 3.4 both update operations are executed in the same order in both
sites but the intention of us is not preserved. The transformation of the update operation
of uy with regards of the operation of u;: IT(02,01) = Del(6) will preserve the intention of
ug. Such solutions are used in some tools such as Gitll, Joint Emacs [Ressel et al. (1996)],
CoWord [Sun et al. (2006)], CoPowerPoint [Sun et al. (2006)] and Google Wave. However,
an IT function which satisfies both TP1 and TP2 will be of great interest and value for

developing interesting distributed applications in the context of P2P architectures.

1. git.smc.com
2. http://www.waveprotocol.org/whitepapers/operational-transform.

40

In this paper, we first investigate the existence of I'T functions, based on the classical
signatures of update operations, which satisfy TP1 and TP2. Then, we propose a new IT
function and show formally that it ensures convergence.

Section is devoted to OT and IT functions proposed in the literature. For each IT
function, we provide a counterexample for the convergence property. In Section B.3], we show,
using a controller synthesis technique, that for the classical signatures of update operations,
there are some IT functions, which satisfy TP1 but there is no IT function, which satisfies
both TP1 and TP2. Exploring the reasons of this failure identifies two problematic scenarios,
which need two different transformation functions to ensure convergence. Consequently, a
transformation function which satisfies TP1 and TP2 must have additional parameters in the
operation signatures. Finding the appropriate parameters to be added to the signatures of the
update operations, so as to ensure convergence with low overhead, is very challenging. Indeed,
almost all IT functions, proposed in the literature, are based on extending the signature of the
insert operation by one or two parameters but fail to ensure data convergence. We propose, in
Section[3.4] to extend the signature of the insertion with the number of symbols deleted before
the inserting position and establish a new transformation algorithm. We end, this section, by
proving formally, using a symbolic model checking technique, that our I'T function satisfies

both TP1 and TP2 and then ensures convergence. Conclusion goes in Section B.5

user uq user us
‘l‘lSGI‘ U}7 ‘l‘lSeI‘ U% “ofecte” “ofecte”
efecte efecte : :

o1 =1Ins(1,f) o2 = Del(5)[l]; [dd] o1 = Ins(1, f) 0/2D61(5)[l]; [dd]
i / i “effécte”\ :
|@t¢3”/‘ “efect” i / ‘
Dez(5) Ins(:l, f) IT (o2, 01)§ = Del(6) IT(01,02) : Ins(1, f)
[Feffece’] [effect”]

Figure 3.1 Integration without transformation. Figure 3.2 Integration with transformation.

3.2 Operational Transformation Approach

3.2.1 Background

OT considers n sites, where each site has a copy of the shared object which is a finite
sequence of elements from a data type A. It is assumed here that the shared object can only

be modified by the following primitive operations:
O = {Ins(p,c)|c € Aand p € N} U{Del(p)|p € N} U{Nop()}

41

The copy on the central server

user u, user u,
« efecte » « efecte »

ﬁ user u, user u;
L3 '\ﬁ « (8,3)(1.6)(e,8)(c,9)(1,9.5)(e, 10) »
[\

W\
01=ins(1) Q\Q{wf(s} ;‘E

Central

Server
02 =Del(s) © / 7

undo 02

O1=Ins(1,f,4.5) 02 = Del(5,10)

o1 02 = Del(5,10) O1=Ins(1,f,4.5)

02

|

The copy on the central server « effece » « effece » « (e,3)(f,4.5)(f,6)e,8)(c,9)(1,9.5) »

Figure 3.3 MV approach Figure 3.4 SRC approach Figure 3.5 CRDT approach

where Ins(p,) inserts the element ¢ at position p; Del(p) deletes the element at position p,
and Nop() is the idle operation that has null effect on the object.

Each site can concurrently update its copy of the shared object. Its local updates are then
propagated to other sites. When a site receives an update operation, it is first transformed
before its execution. Since the shared object is replicated, each site will own a local state
[that is altered only by operations executed locally. The initial state of the shared object,
denoted [y, is the same for all sites. Let £ be the set of states. The function Do : O x L — L,
computes the state Do(o,[) resulting from applying operation o to state [. We denote by
S = [01;09;...; 0, an operation sequence and S = S; @ Sy a sequence obtained by concate-
nating sequences S; and S5. Applying an operation sequence to a state [is defined as follows:
(i) Do*([],1) = l, where [] is the empty sequence and (ii) Do*(S e [0],1) = Do(o, Do*(S,1)), S
being a sequence of operations.

Two sequences of operations S; and Sy are equivalent, denoted S; = Sy, iff Do*(54,1) =
Do*(S,,1) for every state .

OT consists of the integration procedure and the transformation function (IT function).
The integration procedure is in charge of executing update operations, broadcasting local up-
date operations to other sites, receiving update operations from other sites, and determining
transformations to be performed on a received operation before its execution. The transfor-
mation function transforms an update operation o with regard to another update operation
o (IT(0,0")). Let S = [01;09;...;0m] be a sequence of operations. Transforming any update
operation o with regard to S, denoted IT*(o,.S), is recursively defined by:

IT*(o,[]) = 0 and
IT*(0,[01;09;...;0m]) = IT*(IT(0,01), [02; .. .;0m])-

42

By definition: IT'(Nop(),0) = Nop() and IT(o, Nop()) = o for every operation o.

3.2.2 Decentralized integration procedures

The integration procedure is based on two notions: concurrency and dependency of op-
erations. Let o; and oy be operations generated at sites ¢ and 7, respectively. Operation oy
is said to causally dependent on o, denoted o1 — o9, iff: (i) i = j and 0; was generated
before 0y; or, (ii) i # j and the execution of 0; at site j happened before the generation of
09. Operations o; and o are said to be concurrent, denoted o1 || 0, iff neither 0; — 05 nor
09 — 01.

As a long established convention in OT-based collaborative editors [Ellis et Gibbs
(1989),/Sun et Ellis (1998)], the timestamp vectors are used to determine the causality and
concurrency relations between operations. A timestamp vector is associated with each site
and each generated operation. Every timestamp is a vector of integers with a number of
entries equal to the number of sites. For a site j, each entry Vj[i] returns the number of
operations generated at site ¢ that have been already executed on site 5. When an operation
o is generated at site 7, a copy W, of V; is associated with o before its broadcast to other
sites. The entry V;[i] is then incremented by 1. Once o is received at site j, if the local
vector V; “dominates”H W, then o is ready to be executed on site j. In this case, V;[i] will
be incremented by 1 after the execution of 0. Otherwise, o’s execution is delayed until the
causality condition holds. Let W, and W,, be timestamp vectors of 0, and o9, respectively.
Using these timestamp vectors, the causality and concurrency relations are defined as follows:
(i) 01 — oq iff W, dominates W,, and W,, # W,,.

(ii) o1 || o9 iff neither W, dominates W,, nor W,, dominates W,,.

In the decentralized integration procedures, every site generates operations sequentially

and stores these operations in a stack also called a history. When a site receives a remote

operation o, the integration procedure executes the following steps:

1. From the local history S, it determines the equivalent sequence S’ that is the con-
catenation of two sequences Sj, and S. where (i) S, contains all operations happened
before o (according to the causality relation), and (ii) S. consists of operations that are

concurrent to o.

2. It calls the transformation component in order to get operation o’ that is the transfor-

mation of o according to S, (i.e. o' = IT*(0,5,)).

3. It executes o' on the current state and then adds o’ to local history S.

3. Let V; and V3 be two timestamp vectors. We say that V; dominates Vs iff for each site 4, V4 [i] > Vald].

43

The integration procedure allows history of executed operations to be built on every site,
provided that the causality relation is preserved. When all sites have executed the same set of
operations (stable states), their histories are not necessarily identical because the concurrent
operations may be executed in different orders. Nevertheless, they must be equivalent in the

sense that they must lead to the same final state.

3.2.3 Inclusive transformation functions

We can find, in the literature, several IT functions: FEllis’s algorithm [Ellis et Gibbs
(1989)], Ressel’s algorithm [Ressel et al. (1996)], Sun’s algorithm [Sun et al. (1998)],
Suleiman’s algorithm [Suleiman et al. (1997)] and Imine’s algorithm [Imine et al. (2003)].
They differ in the manner that conflict situations are managed. A conflict situation occurs
when two concurrent operations insert, at the same position, different characters. To deal
with such conflicts, all these algorithms, except the one proposed by Sun et al., add some

extra parameters to the insert operation signature.

Ellis’s algorithm

Ellis and Gibbs [Ellis et Gibbs (1989)| are the pioneers of OT approach. They extend
operation Ins with another parameter pr representing its priority. Always, concurrent oper-
ations have different priorities. The four transformation cases for Ins and Del proposed by

Ellis and Gibbs are illustrated in the appendix.

Ressel’s algorithm

Ressel et al. [Ressel et al. (1996)] proposed an algorithm that provides two modifications
to Ellis’s algorithm. The first modification consists in replacing priority parameter pr by
another parameter u, which is simply the identifier of the issuer site. Similarly, u is used
for tie-breaking when a conflict occurs between two concurrent insert operations. As for the
second modification, it concerns how a pair of insert operations is transformed. When two
concurrent insert operations add at the same position two (identical or different) elements,
only the insertion position of operation having a higher identifier is incremented. In other
words, both elements are inserted even if they are identical. This is the opposite to the
solution proposed by Ellis and Gibbs, which keeps only one element in case of identical
concurrent insertions. Apart from these modifications, the other cases remain similar to those
of Ellis and Gibb. The transformation cases given by the algorithm of Ressel et al. [Ressel
et al. (1996)] can be found in the appendix.

44

Sun’s algorithm

Sun et al. [Sun et al. (1998)] have designed another I'T algorithm, which is slightly different
in the sense that it is defined for stringwise operations. Indeed, the following operations are
used: Ins(p,s,l) (insert string s of length [at position p) and Del(p,l) (delete string of
length [from position p). To compare with other IT algorithms, we suppose that [= 1 for

all update operations. The IT function in this case is reported in the appendix .

Suleiman’s algorithm

Suleiman et al. [Suleiman et al. (1997)] proposed another solution that modifies the
signature of insert operation by adding two parameters av and ap. For an insert operation
Ins(p,c,av,ap), av contains operations that have deleted a character before the insertion
position p. The set ap contains operations that have removed a character after or at position
p. When an insert operation is generated, the parameters av and ap are empty. They will
be filled during transformation steps. The I'T" function of Suleiman and al. is given in the
appendix. To resolve the conflict between two concurrent insert operations Ins(p, c1, avy, ap;)
and Ins(p, ¢y, avy, aps), three cases are possible:

1) (avy Napy) # 0: character ¢y is inserted before character ¢y,

2) (ap; Navy) # 0: character ¢, is inserted after character ¢y,

3) (avy Naps) = (ap1 Navy) = 0: in this case, characters ¢; and ¢y are compared (for
instance according to the lexicographic order) to choose the one to be added before the
other. Like the site identifiers and priorities, parameters av, ap, comparison of characters are
used to tie-break conflict situations. Note that when two concurrent operations insert the
same character (e.g. ¢; = c3) at the same position, only one is executed. The other one is
ignored by returning the idle operation Nop(). In other words, like the solution of Ellis and
Gibb [Ellis et Gibbs (1989)], only one character is kept.

Imine’s algorithm

In [Imine et al. (2003)], Imine and al. proposed another IT algorithm which again enriches
the signature of insert operation with parameter ¢p which is the initial (or the original)
insertion position given at the generation stage. Thus, when transforming a pair of insert
operations having the same current position, they compare first their initial positions in order
to recover the position relation at the generation phase. If the initial positions are identical,
then like Suleiman and al. [Suleiman et al. (1997)] they compare symbols to tie-break an

eventual conflict. The I'T function of Imine can be found in the appendix.

45

3.2.4 Consistency criteria

An OT-based collaborative editor is consistent iff it satisfies the following properties:
1. Causality preservation: if o, — 09 then oy is executed before o, at all sites.

2. Convergence: when all sites have performed the same set of updates, the copies of the

shared document are identical.

To preserve the causal dependency between update operations, timestamp vectors are
used. In [Ressel et al. (1996)], the authors have established two properties TP1 and T P2
that are necessary and sufficient to ensure data convergence for any number of operations
executed in arbitrary order on copies of the same object: For all o1, 0o and o3 pairwise
concurrent operations defined on the same state (initial state or state reached from the
initial state by executing equivalent sequences):

— TP1: [01;IT(09,01)] = [02;1T(01,09)].

— TP2: IT*(03,[01;IT(02,01)]) = I1T*(03,[02; 1T (01,02)]).

Property T'P1 defines a state identity and ensures that if 0o, and o, are concurrent, the
effect of executing 0, before o0y is the same as executing oy before 0;. Property T'P2 ensures
that transforming o3 along equivalent and different operation sequences will give the same
operation. By abuse of language, an I'T function satisfying properties TP1 and TP2 is said
to be consistent.

Accordingly, by these properties, it is not necessary to enforce a global total order be-
tween concurrent operations because data divergence can always be repaired by operational
transformation. However, finding an I'T function that satisfies T P1 and T'P2 is considered
to be a hard task, because this proof is often unmanageably complicated.

All IT functions proposed, in the literature, do not ensure data converge [Imine et al.
(2006), Boucheneb et Imine (2009), Boucheneb et al. (2010)]. We report, in the following, a
counterexample for each I'T function.

IT functions of Ellis and Sun do not satisfy the property TP1 (see Figure and
Figure B7) [Imine et al. (2003)]. The pairs of concurrent operations violating TP1 are
(o1 = Ins(1, f,pr1),02 = Del(1)) and (0; = Ins(1, f), 0, = Ins(1,e)), respectively.

Suleiman’s IT satisfies neither TP1 nor TP2 [Imine et al. (2003),Boucheneb et al. (2010)].
The counterexample for TP1 is given by the pair of operations (o] = Ins(2, f, {03}, {05}), 05 =
Ins(2,¢,{os},{0s})). The corresponding scenario, reported at Figure B.8 consists of 4 users
Uy, ug, uz and uy on different sites. Users uy, us and uz have generated and executed locally
sequences S1 = [0y = Ins(3, f,0,0)], So = [0s = Ins(2,¢,0,0)] and S3 = [o3 = Del(2);04 =
Ins(2,e,0,0);05 = Del(2)], respectively. Then, user us receives successively operations o

and og. User uy receives consecutively operations of S3, 0o and 0;. The IT function of

46

Suleiman fails to ensure convergence. Property TP1 is violated for of = IT*(01,S3) =
Ins(3, f,{os},{o05}) and oy = IT*(0q, S3) = Ins(2,c, {05}, {03}).

Ressel’s IT does not satisfy TP2 but satisfies TP1 [Imine et al. (2003), Boucheneb et al.
(2010)]. In Figure[3.9] we report a scenario violating property TP2 for the triplet of concurrent
operations (01 = Del(1), 00 = Ins(2,co,usz), 03 = Ins(1, c3,u3)).

Imine’s IT function satisfies TP1 but does not satisfy TP2. In Figure B.10, we report a
scenario violating TP2. In this scenario, there are 4 users uy, us, us and uy on different sites.
Users uy, us and ug have generated sequences Sy = [0y = Del(2)], So = [0g = Del(2);09 =
Ins(2,¢,2)] and S = [o3 = Ins(2, e, 2)], respectively. User uy executes operations oy and oy
then it receives successively operations o, and o3. User uy receives successively operations oy,
01, 02 and o3. For this scenario, the I'T function of Imine fails to ensure convergence for copies

of users uy and uy. The property T P2 is violated for o} = IT(01,0¢), 02 and oy = IT (03, 0)

(see Figure B.10).

3.2.5 Avoiding Property T P2

The violation of property T'P2 gave birth to several works that have tried to avoid this
problem, often at the expense of genericity and efficiency. These works may be categorized
in two approaches.

The first approach falls in the category of works, such as GOT [Sun et al. (1998)],
SOCT4 [Vidot et al. (2000)] and COT [Sun et Sun (2009)], which enforce a total order on
operations in order to maintain the same transformation path at all sites. Although these
algorithms ensure data convergence, they do not allow a high concurrency degree because of
the global order of execution. In the second approach, some works build a particular class
of transformation paths. For instance, OPTIC |[Imine (2006),Imine (2009)] and ABT [Li et
Li (2010)] integrate by transformation remote operations on logs organized in such a way

that insertion operations are always before deletion operations. Building these transforma-

site 1 site 2
site 1 site 2 “efct” “efct”
“efecte” “efecte” 3 :
‘ ‘ o1 = Ins(L, f) 02 = Ins(1, e)[l]; [dd]

o1=Ins(L,fypr1) o2 = Del(1)[); [dd]

: / : « ﬂ‘ +7 4
“eﬁecte”>\ “eegte”‘ : ic ‘//

‘ IT(02,01) = Ins(2,e) IT(o1,02) : Ins(2, f)

“eefct”

IT(02,01) = Del(2) IT(01,02) = Ins(0, f,pr1)

“efel:te” | “fee;:te”
Figure 3.6 Violation of TP1 for Ellis’s IT.

Figure 3.7 Violation of TP1 for Sun’s IT.

site of u1 site of ug site of ug site of ug

“ef‘pte” “ef‘c‘te77 “eftte” “ef@te”
01 = Ins:(3,f7 0,0) o2 = Insk2,c, 0,0) 03 = bel(2) 03 = bel(2)
: : 04 = Insk2, e,0,0) 04 =]nst, e, 0,0)
05 = bem) 05 = bel(z)
o) =]T*(o1i, [03504; 05]) ofy =]T*(Ogi [03504; 05])
o1 2\[ns(2, f, {03} {os}) 0y = Ins(2,c, {05} {os H{I]; [dd]
\< “efcte”‘

2 =IT* (02,[03,04,05] 1 =IT* (017[03704705])
IT(0,07) = Ins(3,c,{o5},{0s}) IT(o},05) = Ins(3, f,{os},{05})

“efcfte”|
Figure 3.8 Violation of TP1 for Suleiman’s IT.

site 1 I

01 = Del(l) 02 = Ins(2,§, u2)[1]; [dd]
5 , o

021 = IT(02,01) = Ins(1, c,u2) 012 = IT(01,02) = Del(1)
IT(IT(03,01),02‘1) = Ins(2,e,u3) IT(IT(03,02),01§) = Ins(1,e,u3)

Figure 3.9 Violation of TP2 for Ressel’s IT (in case ug < us).

site of u1 site of ug site of ug site of usg
“eeﬁ‘ ” (ﬂeeﬁ' ” Neeﬁ‘ ” “eeﬁ' ”
01 = Del 0o = Del 0o = Del(l) 03 = In‘s(2,e7 2)
\ “eff 77‘
oy =1IT 01,00) Del(1) 02 = Ins(Q,.c7 2)[1); [dd]
] A et

oh =IT(02,0}) = Ins(1,¢,2) oY =1IT(0},02) = Del

“ecft”? “ocft”

IT*(IT(03,00), [0’1‘; oh]) = Ins(2,e,2) IT*(IT(03,00), [02‘; of]) = Ins(1,e,2)

Figure 3.10 Violation of TP2 for Imine’s IT.

48

tions needs, unfortunately, to devise new integration algorithms. Other works are based on
changing the semantics of the delete operation [Oster et al. (2006a)]. The delete operation
does not remove symbols but make them invisible (see Section B.4.5 for comparison with the

approach proposed here).

3.3 Controller synthesis of consistent IT function

In [Imine et al. (2006),Boucheneb et Imine (2009),Boucheneb et al. (2010)], the authors
used a theorem proving or a model checking technique to verify whether or not a given IT
is consistent. They showed that all IT functions, proposed in the literature, do not ensure
consistency and a counterexample is provided for each I'T function. From this fact, a question
arises concerning the existence of consistent I'T functions. Model checking and theorem
proving are useful to prove whether or not a given system satisfies some properties but not
appropriate to verify whether or not there exist a system, which satisfies some properties.
The controller synthesis techniques solve a more general problem than the model checking
and theorem proving techniques, since they verify whether or not the system can be modified
(forced) so as to meet the properties of interest. In such a framework, the system consists,
in general, of controllable and uncontrollable transitions. The control objective is to find, if
it exists, a strategy to force the properties of interest, by choosing appropriately controllable
actions to be executed, no matter what uncontrollable transitions are executed.

We are interested in applying the principle of controller synthesis to design an I'T function
which satisfies properties TP1 and TP2. The idea is to look for consistent I'T in the set of
allowed functions. There are four allowed transformations for each operation o: 1) increment
its position, 2) decrement its position, 3) transform it into an idle operation (Nop()), and 4)
leave it unchanged. We first investigate whether or not there exist in such a set, some IT
functions which satisfy property TP1. If it is the case, we investigate whether or not there
exist some IT functions, among those satisfying TP1, which also satisfy TP2.

For these investigations, we use the game automata formalism ‘4 la UPPAAL’ [Cassez
et al. (2005)]. A game automaton is an automaton with two kinds of transitions: controllable
and uncontrollable. Each transition has a source location, a destination location and is
annotated with selections, guards and blocks of actions. Selections bind non-deterministically
a given identifier to every value in a given range. The other labels of a transition are within
the scope of this binding. A state is defined by the current location and the current values of
all variables. A transition is enabled in a state iff the current location is the source location of
the transition and its guard evaluates to true. The firing of the transition consists in reaching

its destination location and executing atomically its block of actions. The side effect of this

49

block changes the state of the system. To force some properties, the enabled transitions that
are controllable can be delayed or simply ignored. However, the uncontrollable transitions

can neither be delayed nor ignored.

sl sO

getChosenlIT(chooselT)
© ©

|
|
|
l
(opl==Del imply c1==vide) && | _ _
(op2==Del imply c2==vide) i (opl==Del imply cl==vide) &&
1 ©Olop=opl, ol.p=pl, ol.c=cl, 0 | (op2==Del imply c2==vide) &&
S_ 02.0p=0p2, 02.p=p2, 02.c=C2 3 , (op3==Del imply c3==vide)
@< ““““““““““ ! 0l.op=o0pl, ol.p=pl, ol.c=cl,
I 02.0p=0p2, 02.p=p2, 02.Cc=C2,
! 03.0p=0p3, 03.p=p3, 03.c=C3,
1 1T2(01,02,012), IT2(02,01,021),
| IT2(03,01,031), 1T2(03,02,032),
|
|

IT1(01,02,012,isNop,ipl),
(pipl) IT2(031,021,03121), IT2(032,012,03212),

IT1(02,01,021,isNop, ip2),

Verify TP1() VerifyTP2()
o2)
s2
Figure 3.11 Synthesize an I'T for TP1 Figure 3.12 Synthesize a consistent I'T

3.3.1 Do there exist IT functions which satisfy TP1?

An IT function satisfies property T'P1 iff for any pair of concurrent operations o; and o,
defined on the same state, it holds that [o1; [T (09; 01)] = [02; IT (01, 02)]. To verify whether or
not there are some IT functions which satisfy property TP1, we have represented in the game
automaton, depicted at Figure B.11] the generation of operations 0; and 0o, the computation
of IT(01;02) and IT(02,01), and the verification of [01;IT(09;01)] = [02;IT(01,02)]. The
generation of operations is specified by the uncontrollable transition (sg, $1), since we have
no control on the kinds of operations generated by users. The operational transformations
and the verification of TP1 are represented by the controllable transition (si, s2). The model
starts by selecting two operations o; and 0,. The domain of operations is fixed so as to
cover all cases of transformations. Afterwards, the model chooses two transformations to
apply to o, with regard to o, and 0, with regard to o, and applies them by invoking function
IT1. Function IT1(01, 09,012, IsNop,ip;) returns in o012 the result of transformation of o,
with regard to os. If IsNop = true then 015 = Nop(), otherwise the transformation of o;

consists in updating the parameter position (012.p = 01.p+1ip;). It means that 4 possibilities

20

are offered for transforming an operation o; with regard to another operation oy: Nop(),
decrementing, maintaining, or incrementing the position of o;. Finally, the model verifies
whether or not the property TP1 is satisfied. No matter what operations 0, and 0, generated
by the uncontrollable transition, the controller synthesis aims to force property TP1 by
choosing appropriately the operational transformations.

We have used the tool Uppaal-Tiga [Cassez et al. (2005)] to verify whether or not there
exist some IT functions, which satisfy TP1. The safety control objective for TP1 is AG T'P1,
where T'P1 is defined in the model as a boolean variable whose value is true while the
property TP1 is satisfied. The boolean variable TP1 is set to false by the function VerifyTP1
if [01;IT(02,01)] # [09;1T(01,02)]. Uppaal-Tiga concludes that the property is satisfied,
which means that there is, at least, a strategy to force property TP1. We report in Table B.1]
the different IT functions (satisfying TP1) extracted from the output file of the tool verifytga
of Uppaal-Tiga.

Note that even if some operational transformations satisfy TP1, they are unaccept-
able from the semantic point of view. For instance, if p; = py, the operational trans-
formations IT(Del(py), Del(p:)) = Del(py — 1), IT(Del(p1), Del(ps)) = Del(p;) and
IT(Del(py), Del(ps)) = Del(p; + 1) mean that if two users generate concurrently the same
delete operation, two symbols will be deleted in each site, which is unacceptable from the
semantic point of view. The only operational transformation which makes sense for this
case is IT(Del(py), Del(ps)) = Nop(). It means that only the symbol at position p; is
deleted in each site. After eliminating these incoherent operational transformations, there
remain 2 possibilities for IT(Ins(p1,c1), Ins(pe, €2)),p1 = p2, 1 # o, and 3 possibilities for
IT(Ins(py,c1), Ins(pe, c2)), p1 = pa, 1 = co. Therefore, we can extract 6 I'T functions which

satisfy TP1. These IT functions differ in the way that conflicting operations are managed.

3.3.2 Do there exist IT functions which satisfy TP1 and TP2?

An IT function satisfies property T'P2 iff for any triplet of pairwise concurrent oper-
ations 01, 0y and o3 defined on the same state, it holds that IT(IT(03,01),IT(02,01)) =
IT(IT(03,02),IT(01,07)). To verify whether or not there are some IT functions which sat-
isfy properties TP1 and TP2, we have used the game automaton depicted at Figure B.12l
This model starts by selecting an IT function, which satisfies property TP1 (the range of
chooselT corresponds to the 6 IT functions satisfying TP1). Afterwards, it selects three
operations o1, 0o and o3, and performs the transformations needed to verify TP2. Function
IT2(01, 09, 012) applies the selected IT function to o; with regard to oo and returns the result
of this transformation in o015. Finally, the model calls function VerifyTP2. The control aims

to force to choose the appropriate I'T function so as to satisfy property TP2. The control

51

Table 3.1 IT functions supplied by Uppaal-Tiga for TP1 and classical signatures of update

operations
] 01 \ 09 | Cnd(p1,p2.c1,c2) | IT(o1,02) | IT(0o3,01) |
Ins(pi,c1) | Ins(pz,c2) p1 < p2 Ins(p1,c1) Ins(ps +1,¢c3)
Ins(pi,c1) | Ins(pa,co) || pr=peAc1 <co || Ins(pr +1,¢1) Ins(pa,co)
Ins(p1,c1) | Ins(pa,ca) || pr=p2Ac1 < ca Ins(p1,c1) Ins(ps + 1, ¢2)
Ins(pi,c1) | Ins(pa,c2) || pr=paAci =co || Ins(pr 4+ 1,¢1) | Ins(pe +1,c2)
Ins(pi,c1) | Ins(pa,c2) || pr=p2ANc1 =cy Ins(pi,cy) Ins(pa, ca2)
Ins(pi,c1) | Ins(pa,c2) || pr=p2Aci =co Nop() Nop()
Del(p1) Del(p2) p1 < P2 Del(p1) Del(pz — 1)
Del(p1) Del(p2) p1 = P2 Del(p; — 1) Del(p2 — 1)
Del(py) Del(ps) P1 = Po Del(p1 +1) Del(py + 1)
Del(p1) Del(p2) p1 = P2 Del(p1) Del(p2)
Del(p1) Del(ps) P1=p2 Nop() Nop()
Ins(p1,c1) Del(p2) p1 < D2 Ins(py,c1) Del(p2 + 1)
Ins(p1,c1) Del(p2) p1 = P2 Ins(pi,c1) Del(pz +1)
Del(p1) Ins(pa,c2) p1 < D2 Del(p1) Ins(ps — 1, ¢2)
Del(p1) Ins(pa,co) p1 = Do Del(ps + 1) Ins(p1,c1)

objective is specified by the CTL formula AG T P2, where T' P2 is a boolean variable whose
value is true while the property TP2 is satisfied. This variable is set to false by the function
VerifyTP2 if IT(IT(03,01), [T (02,01)) # IT(IT(03,09), [T (01,02)).

Uppaal-Tiga concludes that the property AG T P2 cannot be forced, which means that
there is no strategy to force property TP2. In other words, there is no I'T function, based
on classical parameters of delete and insert operations, which satisfies both TP1 and TP2.
We investigated why a consistent I'T function does not exist for the basic parameters of
delete and insert operations. This investigation led to the identification of two symbolic
pairwise scenarios which prevent a consistent IT function from being obtained. We report
in Figure and Figure 3.14] these two pairwise sequences named scenario 1 and scenario
2, respectively. For scenario 1, to verify TP2, the performed transformations are:

091 = IT(09,01) = IT(Ins(p1, c2),01) = Ins(py, ca2),

012 = IT(01,09) = IT(Del(p1), Ins(p1,c2)) = Del(p; + 1),

031 = IT(03,01) = Ins(p1, c3),

032 = IT(03,02) = Ins(p1 + 2, c3),

IT(032,012) = IT(Ins(pr + 2,c¢3), Del(pr +
IT(Ins(p1,c3), Ins(pi, c2)).

For the last transformation, we have different possibilities (see Table B.1l). To satisfy TP2,
we must choose IT(Ins(py,cs), Ins(pi,c2)) = Ins(pr + 1, ¢3).

1)) = Ins(pr + 1,¢3) and IT(031,091) =

For scenario 2, the performed transformations are:

0921 = IT(OQ,Ol) = Ins(pl,CQ),

52

012 = IT(01,09) = Del(py),
031 = IT(03,01) = Ins(py, c3),
032 = IT(03,02) = Ins(py, c3),
IT (032, 012) = IT(Ins(py,c3), Del(pr)) = Ins(pi,c3) and IT(031,091) =
IT(Ins(p1,c3), Ins(py, ca)).
To satisty TP2, for the last operational transformation, we must use
IT(Ins(py,c3), Ins(p1, c2)) = Ins(py, c3).
Consequently, a consistent I'T function, if it exists, must have additional parameters in

its operation signatures. We have seen, in the previous section, different I'T functions based
on extending the insert signature with priority, issuer site, initial position or sets of delete
operations before and after the inserting position. We have provided for each IT function
a divergent scenario violating either TP1 or TP2. It means that the suggested additional
parameters are insufficient or inappropriate to ensure convergence. Indeed, adding priority
(as in Ellis’s IT) or owner identifier (as in Ressel’s IT) to the insert signature fails to ensure
convergence for scenarios 1 and 2. Scenario 1 violates TP1 for Ellis’s IT (see Figure B.6]).
Scenario 2 violates TP2 for Ressel’s IT (see Figure B.9). For Suleiman’s IT and Imine’s IT,
scenarios 1 and 2 satisfy TP1 and TP2 but the added parameters introduce other cases of
divergence (see Figure B.8 and Figure BI0). All these failed tentatives show that designing
a consistent I'T function is a hard task.

The main difference between both scenarios resides in the position of the deleted symbol
relatively to the symbols inserted by oy and o3 (see Figure and Figure B.I4]). In scenario
1, the deleted symbol is before the inserting position of 03, whereas, in scenario 2, it is before
the inserting position of 0;. Extending the signature of the insert operation with the number
of symbols deleted before its position allows the definition of appropriate transformations so
as both scenarios 1 and 2 satisfy TP1 and TP2 (see Figure and Figure B.10). Indeed,
in scenario 1, the symbol of 031 = IT(03,01) = Ins(p1, c3, 1) should precede the one of 09y =
Ins(pi, c2,0), as o3 has the biggest number of symbols deleted before its position (1 > 0).
In scenario 2, 0y1 = IT(02,01) = Ins(pi, 2, 1) has the greatest number of symbols deleted
before its position. Its symbol should be inserted after the one of 03; = Ins(py, c3,0). The
idea of our IT function is to use this extra parameter to deal with conflicting operations. In

the following, we propose based on this idea an IT function and show formally its consistency.

93

site 1| site 2| site 1| site 2|
o1=Del(pr) 03 =Ins(pi,c2)[l; [dd] o1 = Del(p) 02 = Ins(p1 + 1,)l]

09 = In:s(pl,t:g) 01 = pel(p1) 09 = Ins(Pl +1,¢2) 01 = l?el(pl)
03 :Ins(}71+1,03) 03 :Ins(;)l +1,¢3) 03 :]n;(p1,03) 03 :In;(p1,03)
Figure 3.13 Scenario 1 Figure 3.14 Scenario 2
on = Del(p) 02 = Ins(p e2,0)[);]
091 = IT(02,015 = Ins(p1,c2,0) 012 = IT(01702j = Del(p1 + 1)
03121 =]T(ITi(og;,ol),ogl) = 03212 = IT(If(og,oz),olz) =

IT(Ins(p1,c3,1),Ins(p1,c2,0)) = Ins(p1 + 1,¢3,1) IT(Ins(p1 + 2,¢3,0), Del(p1 + 1)) = Ins(p1 + 1,¢3,1)

Figure 3.15 Applying our IT to scenario 1
site 1| site 2|

o1 = Del(pn) 02 = Ins(py + 1,2)[);]
-
091 = IT(oz,ol); = Ins(p1,c2,1) 012 = IT(01:;02) = Del(p1)
03121 = IT(If(03,01),021) = 03212 = IT(IT3(03702):012) =
IT(Ins(p1,cs3,0), Ins(p1,c2,1)) = Ins(p1,c3,0) IT(Ins(p1,cs3,0), Del(p1)) = Ins(p1,c3,0)

Figure 3.16 Applying our IT to scenario 2

o4

3.4 A consistent IT function

3.4.1 Extending the insert signature with an extra parameter

We propose to add a new parameter, named nd, to the insert operation signature. This
extra parameter is filled with the number of symbols deleted before the inserting position.
When an insert operation o is generated, its parameter nd is set appropriately to the number
of symbols deleted before the position of o. Afterwards, this parameter is incremented
whenever it is transformed with regard to a delete operation whose position is before its

inserting position.

Définition 3.1 Let S be a sequence of operations executed on the shared document before
generating an insert operation o. Let p be the inserting position of o, we denote ND(S,p)
the number of symbols deleted before p by the sequence S. The parameter nd of o set to
ND(S,p) is inductively defined as follows:

.

0 if S=1]
ND(S,p) if S=S"e[d]Ap<yp

ND(S,p) = 4 nd if S =9 o [Ins(p, ¢, nd)| A p=1p/
ND(S",p—1) if S=S5"e[Ins(p',d,nd)] N p>yp
(ND(S.p+1)+1 i S=5"e[Del(p)] A p2y

where o' € {Ins(p’,d,nd'), Del(p')}

Intuitively, if S is empty, it is trivial that there is no symbol deleted by S. Then,
ND([l,p) = 0. For S = 5" e [Ins(p/,d,nd)], the symbol of Ins(p',c,nd’) is inserted at
position p’. If p < p/, the execution of Ins(p’, ¢, nd’) does not affect the part before position
p (i.e., ND(S,p) = ND(S,p)). If p = p/, the symbol ¢ is inserted at position p = p/, shifts
¢’ to position p+ 1 but does not affect the number of symbols deleted before position p’ (i.e.,
ND(S,p) =nd). If p> p/, the symbol at position p — 1 before executing Ins(p’,d,nd') will
be shifted to position p (i.e., ND(S,p) = ND(S’,p—1)). Similarly, for S = S"e[Del(p’)], the
execution of Del(p’) will delete the symbol at position p'. If p < p/, the execution of Del(p’)
does not affect the part before position p’ (i.e., ND(S,p) = ND(S’,p)). Otherwise, symbols
deleted before p by S are symbols deleted before p+ 1 by S” plus the one deleted by Del(p’)
(Le., ND(S,p) = ND(S',p + 1) + 1).

As an example, let us compute the number of symbols deleted before position 2, by
the sequence [Del(2);Ins(2,a); Ins(1,b)] (i.e., ND([Del(2);Ins(2,a); Ins(1,b)],2)). This

95

number is equal to the number of deleted symbols by [Del(2);Ins(2,a)] before posi-
tion 1, because Ins(1,b) will shift the symbol at position 1 to position 2. Therefore,
ND([Del(2); Ins(2,a); Ins(1,b)],2) = ND([Del(2);Ins(2,a)],1). The number of deleted
symbols by [Del(2); Ins(2,a)] before position 1 is equal to ND([Del(2)],1) as Ins(2,a) does
not affect symbols before position 2. Finally, since 1 < 2, it follows that ND([Del(2)],1) =
ND([],1) = 0. Therefore, there is no symbol deleted by [Del(2); Ins(2,a); Ins(1,b)] before
position 2. Consider now the sequence [Ins(2,a); Del(3); Ins(1,b)], which is equivalent to
the previous one. Let us compute ND([Ins(2,a); Del(3); Ins(1,b)],2), using Definition B.1k
ND([Ins(2,a); Del(3); Ins(1,b)],2) = ND([Ins(2,a); Del(3)],1) =

ND([Ins(2,a)],1) = ND([],1) = 0. Note that, the number of deleted symbols before position 2 is
the same for the two equivalent sequences.

Since in OT, operations are, in general, executed after integration in different orders,
to ensure consistency, our computation procedure of ND should give the same result for
all equivalent sequences and any position p (i.e., ND(S,p) = ND(S’,p), for any pair of
equivalent sequences S and S”). We first define our IT function then we establish some nice

properties of N D which will be useful to show consistency of our I'T function.

3.4.2 Our IT function

Ins(p1,c1,ndr) if p1 <p2V (p1 =p2And; <nds)
V(p1 = p2 Andy =ndz Ay < c2)
IT(Ins(p1,c1,nd1), Ins(p2, c2,nd2)) = Ins(py +1,¢1,ndy) if p1 > p2 V (p1 = p2 And; > nds)
V (p1 = p2 Andi = ndz2 Aci > c2)
Ins(p1,c1,nd1) if p1 < p2

IT(I dy1), Del =
(Ins(py, e1,ndy), Del(pz)) {Ins(pl —1,c1,nd1 +1) otherwise

Dei(pr) o < Del(p1) if p1 < p2
el(p1 I p1 b2 .
IT(Del(p1), Ins(p2, c2,ndz)) = . IT(Del(p1), Del(p2)) = < Del(p1 —1) if p1 > p2
Del(p1 +1) otherwise Nop())
op otherwise

Figure 3.17 The proposed IT function

In our IT function, the signatures of the insert and delete operations are Ins(p, ¢, nd) and
Del(p), respectively, where p is a position, ¢ is a symbol and nd is the number of symbols
deleted before position p. The conflicting situations between two concurrent insert operations
are handled using their extra parameters nd, in a similar way as in other I'T functions. More
precisely, when transforming a pair of insert operations having the same current position, their

parameters nd are first compared in order to recover the position relation at the generation

o6

phase. If their parameters nd are equal, then their symbols are compared to tie-break an

eventual conflict. The IT function proposed here is reported at Figure B.17

3.4.3 Relationships between positions and the extra parameters

We establish, in Lemma [I and Theorem [II, some relationships between positions of in-
sert operations generated on the same state and their parameters nd. We first suppose, in
Lemma [I], that the operations are generated after executing the same sequence of operations.
Then, we consider, in Theorem [T, the case where the operations are generated after execut-
ing different but equivalent sequences (i.e., they consist of the same set of original operations
executed, after integration, in different orders). Intuitively, these relationships mean that for
any pair of insert operations generated on the same state, the order relation of their positions

is the same as the order relation of their extra parameters nd.

Lemma 1 Let 0, = Ins(py,c1,ndy) and 0oy = Ins(pa, ca,ndy) be two insert operations gen-
erated on the same state, just after executing the same sequence of operations S. Then:
p1 < p2 = ndy < nds.

Proof 1 By definition, ndy, = ND(S,p1) and ndy = ND(S,ps). We show by induction
on the length of S that py < ps = ND(S,P;) < ND(S,P,). For S =[], by definition,
ND(S,p1) = ND(S,ps). For S =5"e[d], assume that py < po = ND(S',p1) < ND(S', ps)
and let us show that ND(S,p1) < ND(S,p2). Let p’ be the position of o'. We consider 9
cases:

1) p1 < pa < p': By definition, ND(S,p;) = ND(S',p1), ND(S,ps) = ND(S',p;). By
assumption, ND(S",p1) < ND(S',p3). Then ND(S,p1) < ND(S,ps).

2)p1 < pe=1p and o = Ins(p/,d,nd"): ND(S,p1) = ND(S',p1) and ND(S,ps) = nd'.
Since py < p', it follows that ND(S",p;) < nd" and then ND(S,p1) < ND(S,p2).

3) m < p = p and o = Dellp)): ND(S,p) = ND(S p) and
ND(S,ps) = ND(S",ps + 1)+ 1. Then ND(S,p1) < ND(S, pa).

4) pr < p < peoand o = Ins(p',d,nd): ND(S,p1) = ND(S',p1) and ND(S,py) =
ND(S",ps —1). Then ND(S,p1) < ND(S,p2).

5) m < p < py oand o = Del(p)): ND(S,p1) = ND(S,p) and
ND(S,p2) = ND(S",p2 + 1)+ 1. Then ND(S,p1) < ND(S,p2).

6) p1 =p' < ps and o = Ins(p',c,nd): ND(S,p1) =nd and ND(S,py) = ND(S",ps — 1).
Since p' < py — 1, it follows that nd’ < ND(S',py — 1) and then ND(S,p;) < ND(S, ps).

7) p1 = p < py and o = Del(p'): ND(S,p1) = ND(S',p1 + 1)+ 1 and ND(S,p2) =
ND(S',ps + 1)+ 1. It follows that ND(S,p;) < ND(S, ps).

8)p < p1 < pyand o = Ins(p',d,nd"): ND(S,p1) = ND(S',p1 — 1) and ND(S,ps) =

o7

ND(S",ps —1). Then ND(S,p1) < ND(S,p2).
9) P < p1 < py and o = Del(p'): ND(S,p1) = ND(S",py +1) +1 and ND(S,p,) =
ND(S",ps+ 1)+ 1. Then ND(S,p1) < ND(S, pa).

Theorem 1 Let 0, = Ins(py,ci,ndy) and oo = Ins(ps,ce,ndy) be two insert operations
generated on the same state after executing two different but equivalent sequences of operations

S1 and Sy. Then: 1) p1 = ps = nd; = ndy and 2) p1 < py = nd; < nds.

Proof 2 By definition ndy = ND(S1,p) and ndy = ND(Ss,p).

1) By assumption, sequences Sy and Sy consist of the same set of original operations executed,
after integration, in two different orders. The different execution orders can be obtained by
successive pairwise permutations of concurrent operations. If one permutation of concurrent
operations preserves the value given for the number of deletes, then any sequence of such
swaps preserve also this value. As a result, it is sufficient to consider only the case of one
permutation: S; = S @ [01;01] @ S and Sy = S e [03;012] ® S', where 09y = IT(09,01)
and 013 = 1T(01,02). So, to show that ND(Sy,p) = ND(Sy,p), it suffices to show that
ND(S e[01;091],p) = ND(S e[09; 012],p). Table reports values of ND(S e [o1;001],p) and
ND(S o [09;012],p) for every transformation case (see Table[3.2). They are equal for each
transformation case.

2) According to Lemma [, if p1 < pa then ND(S1,p1) < ND(Sy,p2). Part 1) of Theorem
[states that ND(Sy,p1) = ND(Sa,p1) and ND(Si,p2) = ND(Ss,p2). It follows that:
p1 <p2 = ND(S1,p1) < ND(S2,p2).

Concretely, these nice relationships established above ensure some consistency to the
computation procedure of ND given in Definition 3.1l Indeed, all insert operations with the
same position, generated on the same state at different sites, will have the same parameter nd,
even if this state has been reached by different but equivalent sequences. Furthermore, if the
inserting position p; of an operation o, is on the left of the inserting position p, of another
operation o0, generated on the same state, then the number of symbols deleted before p;
is less or equal to the number of symbols deleted before py (i.e., nd; < nds). Note that
nd, = ndsy in case there is no deleted symbol between p; and ps, including position p;. This
extra parameter seems then to be appropriate to handle conflicting operations.

Note that the above theorem is very important in the sense that it enables us to avoid
recomputing the parameter nd of an insert operation in the remote sites. It suffices to
compute this parameter when the insert operation is generated and then include it in the

operation sent to all other sites.

Table 3.2 Transformation cases for IT (o, 02) and IT (04, 01)

IT cases for IT(o1,02) and IT(02,01)

N O UL WN = O

p1 < p2
p1 > p2

01 = Ins(p1,c1,nd1) A o2 = Ins(pz,ca,nd2) Ap1 =p2 Andi =ndz Aep < ¢
01 = Ins(p1,c1,nd1) A o2 = Ins(p2, ca,nd2) Ap1 =p2 Andi =nda Aer > ¢
01 = Ins(p1,c1,nd1) Aoz = Ins(pz, ca,nd2) Ap1 = p2 Andy < ndz
01 = Ins(p1,c1,nd1) A oz = Ins(pz, ca,nd2) A p1 = p2 Andy > ndz
01 = Ins(p1,c1,ndi, s1) A oz = Ins(pz,c2,nd2, s2) Ap1t =p2 Andi =nda A = ca
(01 = Del(p1) V o2 = Del(p2)) Ap1 = p2

Table 3.3 Computing ND(S e [01;091],p) and ND(S e [0s; 012], p)

o8

Transformation cases

I ND(S e [o1;021],p)

[ND(S e [02;012],p)

ND(S,p) if p<p1 ND(S,p) if p<p1
ndy ifp=p1 ndi2 ifp=p1
Ins, Ins, k € {0,2,4,6}, ndi2 = nd1,nd21 = nds ND(S,p—1) ifpi <p<p2 ND(S,p—1) ifp1 <p<po2
nda1 if p=pa1 nds if p=rp2a
ND(S,p—2) ifp>po1 ND(S,p—2) ifp>po
ND(S,p) if p <po ND(S,p) if p < p2
ndg1 ifp=p2 nds if p=rp2
Ins, Ins, k € {1,3,5}, ndis = nd1, ndey = ndz ND(S,p—1) ifp2<p<pi ND(S,p—1) ifp2<p<pi
ndy if p=p12 ndi2 if p=p12
ND(S,p—2) ifp>pi2 ND(S,p—2) ifp>pi2
ND(S,p) if p<ps ND(S,p) if p <p1
Del, Del, k=0 ND(S,p+1)+1 ifpy <p< pa ND(S,p+1)+1 ifpy <p<pa
ND(S;p+2)+2 ifp>pa ND(S,p+2)+2 ifp>pa
ND(S,p) if p < p2 ND(S,p) if p < p2
Del, Del, k=1 ND(S,p+1)+1 ifps <p< pi2 ND(S,p+1)+1 ifps <p<pie
ND(S,;p+2)+2 ifp>pi2 ND(S,p+2)+2 ifp>pi2
Del, Del, k=17 ND(S e o1],p) ND(S e [02],p)
ND(S,p) if p<p1 ND(S,p) if p<p
Ins, Del, k € {0,7T} n ?f e nh2 :1f e
ND(S,p—1) ifp1 <p<p2 ND(S,p—1) ifpr <p<p2
ND(S,p)+1 ifp>pi2 ND(S,p)+1 ifp>pi2
ND(S,p) if p<po ND(S,p) if p<p2
ND(S,p+1)+1 ifpa<p<pi ND(S,p+1)+1 ifps <p<p1
Ins, Del, k=1 . .
ndy +1 if p=pi12 ndi2 if p=pi12
ND(S,p)+1 ifp>p1 ND(S,p)+1 if p>p1

99

3.4.4 Proof of consistency

To prove consistency, it suffices to show that our IT satisfies both properties TP1 and
TP2. In [Imine et al. (2006)], the authors proposed a formal framework for modelling and
verifying I'T functions with algebraic specifications. For checking the properties TP1 and
TP2, they used an automatic theorem proving. However, this theorem proving approach
has some shortcomings: (i) the model of the system is sound but not complete w.r.t. TP1
and TP2 (i.e., it does not guarantee that the violation of property TP1 or TP2 is really
feasible); (ii) there is no guidance to understand the counterexamples (when the properties
are not verified); (iii) it requires some interaction (by injecting new lemmas) to complete
the verification. In [Boucheneb et al. (2010)], the authors addressed these drawbacks and
proposed a symbolic model-checking technique based on difference bound matrices (DBMs)
to verify whether an I'T function satisfies properties TP1 and TP2. The verification of these
properties is performed automatically and symbolically without carrying out different copies
of the shared object and executing explicitly the updates. Moreover, unlike the approach
proposed in [Imine et al. (2006)], the approach proposed in [Boucheneb et al. (2010)] provides
faisable and complete symbolic counterexamples. As in |[Boucheneb et al. (2010)], we use a
symbolic model-checking technique, where the shared objects are abstracted and their update
operations are handled symbolically using difference bound matrices (DBMs). In our context,
DBMs are used to encode sets of constraints of the form p; — p; < ¢, where p;, p; are integer
variables and c is an integer constant. From the practical point of view, a DBM is a square
matrix P indexed by variables. Each entry F;; represents the atomic constraint p, —p; < Pj;.
If there is no upper bound on p; — p; with ¢ # j, P; is set to co. Entry P; is set to 0.
Constraints p; —p; = ¢ and p; —p; > c are considered as abbreviations of atomic constraints.
In the following, we use invariantly atomic constraints or their abbreviations.

A set of constraints is consistent iff they represent a non empty domain. Although the
same non empty domain may be encoded by different DBMs, they have a canonical form.
The canonical form of a DBM is the representation with tightest bounds on all differences
between variables, computed by propagating the effect of each entry through the DBM.
Canonical forms are much more useful to verify consistency and test of equivalence.

Two sets of atomic constraints are equivalent iff the canonical forms of their DBMs are
identical. To verify the consistency of a DBM (i.e., a set of atomic constraints), it suffices
to apply a shortest-path algorithm and to stop the algorithm as soon as a negative cycle
is detected. The presence of negative cycles means that the set of atomic constraints is
inconsistent.

The model depicted at Figure[3.18is used to verify whether or not our I'T function satisfies
properties TP1 and TP2. The model starts by selecting types of the 3 update operations o1, 0y

60

SelectCase(032,012,k)
FixCase(032,012 k),
IT(k,032,012,03212),
VerifyTP2()

s |nitstate(opl,op2,0p3) SO

SelectCase(o1, 02, k)

FixCase(01,02,k),
kk=SymCase(k),
IT(k,01,02,012),
IT(kk,02,01,021),
VerifyTP1()

s5

SelectCase(031,021,k)
FixCase(031,021,k),
IT(k,031,021,03121)

SelectCase(03,01,k) SelectCase(03,02,k)
FixCase(03,01 k), FixCase(03,02 k),
IT(k,03,01,031) ~ IT(k,03,02,032)

O/
s3

s2 s4

Figure 3.18 Automaton used to verify TP1 and TP2

and o3 and initializing the DBMs of their parameters (initial DBMs are free from constraints).
This is the role of the edge (so, s1). Afterwards, the model successively selects for each oper-
ational transformation, a feasible transformation case among the 8 cases shown at Table [3.2]
fixes and applies the transformation case, and verifies TP1 or TP2 as soon as the needed
transformations are computed. For instance, the edge (s1,$2) selects a transformation case
k for o, with regard to oy (SelectCase(01, 09, k)), fixes the selected case (FizCase(oy, 09, k))
and applies it to transform o; with regard to 0. The symmetrical case kk = SymCase(k)
is used to transform o, with regard to o,. After these transformations (IT(k, 01, 09, 012) and
IT(kk, 09,01,091)), the property TP1 is verified. Concretely, function FizCase(o;, 05, k) adds
to the DBMs the constraints corresponding to the transformation case k to be applied to o;
with regard to o;. Function IT(k,0;,0,,0;;) applies the transformation case k to transform
o; with regard to o; and returns the transformation result in o;;. Functions verifyT P1() and
veri fyT P2() set in boolean variables TP1 and T' P2 the results of verification of properties
TP1 and TP2, respectively. Function verifyT P1() verifies whether or not the domain of
P satisfies one of the conditions of equivalence given in Table 341 accordingly to the types
of operations 015 and 09;. For instance, if 015 and o9; are insert operations, T P1 is satis-
fied iff P = PU{pis =p1 <p2=pu—1} or P=PU{py =ps < p1 = pia— 1} or
([oa] = [o2] A [o12] = [021]).
Function verifyT P2() verifies whether or not operations 03191 and 03912 are identical, i.e.,
they are of the same type and have the same parameters. In case 031917 and 03212 are not of
type Nop, then they have identical position parameter iff P = P U {ps121 = ps212}, which
means that ps3121 = p3212 holds in the whole domain of P.

For example, suppose that 3 insert operations are selected by the edge (sg,s1). In this
case, 3 DBMs P, Nd and C over {p1, ps, p3}, {ndi, nds,nds} and {cy, co, c3} are created. The
initial domain of each DBM is N?, N being the set of non negative integers. Suppose now

that for the operational transformation of o; with regard to o,, the selected k is 2. The

4. We suppose that if 015 (resp. 021) is an insert operation then c19 = ¢ (resp. ca1 = c2).

61

operational transformation case of 0y with regard to oy is then kk = SymCase(2) = 3. In
this case, FizCase(o1,09, k) adds sets of constraints {p; = pa}, {nd; = nds} and {c; < ¢}
to P, Nd and C, respectively (see Table B.2)). The operational transformations of o; with
regard to o, and oy with regard to oy (i.e., IT(k,o01,02,012), [T(kk,02,01,091)) create two
insert operations 012 and 0y1, add to P, Nd and C sets of constraints {pi;2 = p1,po1 = pa+1},
{ndis = ndy,nds; = ndy} and {c12 = ¢4, ¢a1 = 2}, respectively. Finally, verifyT P1() states
that the property TP1 is satisfied. Afterwards, the same procedure is repeated for computing
the operational transformations needed to verify TP2 (i.e., 03121 = 03212)-

We have used the tool UPPAAL [Larsen et al. (1997)| to verify whether or not our model
satisfies the safety properties AG T'P1 and AG T P2. UPPAAL states that the first property
is satisfied (i.e., the proposed IT satisfies TP1). It concludes however that the second property
is not satisfied. The only counterexamples provided are scenarios where there are at least
two insert operations o; = Ins(py,ci,ndy) and oy = Ins(ps, ca,ndy) generated at the same
state s.t. p1 < pa Andy; > ndy or p1 > ps Andy < ndy. According to Lemma [Il and Theorem [I]
such scenarios are infeasible. When we exclude such infeasible scenarios, UPPAAL concludes
that property TP2 is satisfied. Therefore, the proposed IT satisfies TP1 and TP2.

Table 3.4 Condition of equivalence of [01;091] and [02; 012]

[Type of 012 | Type of 021 || [o1;021] = [02; 012] | Type of 012 | Type of 021 || [o1;021] = [02; 012]]
Ins Ins / Del pi2 =p1 <p2=po1 — 1 Ins / Del Ins p21 =p2 < p1 =pi2—1
Del Ins / Del p12 =p1 <p2=p21+1 Ins / Del Del p21 =p2 < p1 =pi2+1
- - [01] = [o02] Ao21] = [o012]

3.4.5 Comparison

In this section, we give comparison between our IT function and the function given in [Os-
ter et al. (2006a)]. It is well known that the main issue for satisfying TP2 is due to the
semantics of the delete operation. Recall that this operation removes an element at a given
position and decreases the length of the shared document. That is why, in [Oster et al.
(2006a)], the authors tackled the TP2 problem by changing the semantics of the deletion
operation. Indeed, operation Del(p) does not remove the element at position p but makes
it invisible. This new semantics leads the authors to manage two distinct states, called view
and data models. The view model is seen by the user and contains only visible characters
while the data model contains all characters: characters displayed in the view model and the
hidden characters (called tombstones) resulting from delete operations. Any generated up-
date operation involves two updates from view and data models, respectively. As illustrated

in Figure[3.19, consider the operation Ins(3,y) related to the view model. The corresponding

62

position in the data model is processed by finding out the location of the 3-th visible charac-
ter, after skipping each possible hidden character encountered. The search process relies on 3
visible characters. Hence, the corresponding operation related to the data model is Ins(5,y).
The hidden characters A and n located at position 1 and 4, respectively in the data model,

are skipped.

——
View [E\ E‘ y{ Ins(3,y)

Model E‘ E‘ E‘ @‘ y@ﬂ/lns(&y)

Figure 3.19 View and Model states (Figure taken from [Oster et al. (2006a)|).

Table 3.5 Complexity comparison.

[Operation | TTEF’s solution |Oster et al. (2006a)| [Our solution |
O(m) where m is the length of the data model. | O(n) where n is the length of the local history
Insert The size of the data model will never decrease
Delete O(m) where m is the length of the data model O(1)

Although the authors presented a correct set of transformation functions, the length of
the sequence is always increased (but never decreased), as the new semantics of deletion
operation has no effect on the document length. In addition, their solution needs some extra
procedures to manage two distinct states due to the hidden characters, namely: the view
(the state seen by the user) and the model (the persistent state). Unlike this situation,
our proposed transformation function considers the natural semantics of deletion operation
as suggested by Ellis et al. in [Ellis et Gibbs (1989)] and our deletion operation removes
physically the character and reduces the document length.

Our transformation function is based on the parameter nd filled with the number of
deleted symbols to maintain consistency without any particular data model besides. As for
complexities at generation time, a comparison is given in Table 3.5l Even though, the overall
complexity is linear for both approaches. Unlike TTF |Oster et al. (2006a)|, it should be
noted that for our approach, the complexity of delete operation is always constant. Note also
that the parameter nd is computed at the generation step thanks to Theorem [there is no
need to recompute it when it is received by a remote site.

In Wu et al. [Wu et Pui (2009)], the authors have combined CRDT [Preguiga et al.
(2009),|Weiss et al. (2010)] with TTF [Oster et al. (2006a)|. Their approach is based on
a data structure called Partial Persistent Sequences (PPS), where each item of the shared

object has a unique position identifier, i.e., a rational number, called position stamp. It is

63

then always possible to allocate a new position stamp to any item to be inserted into the
object. As in TTF |Oster et al. (2006a)], when an item is removed from the object, it is
hidden and its position stamp is mapped to an empty item. To prevent situations where
different users compute the same position concurrently, Wu et al. have proposed in [Wu
et al. (2010)] to allocate in advance, to each user, sub-ranges of position identifiers. The
range between two position identifiers is partitioned into sub-ranges, dividing the distance by
the number of users. Between two given position stamps, a unique sub-range is assigned to
each user. Even if the management of the position identifiers is improved, it remained non-
optimal due to waste of the identifier space such as some ranges could be reserved but never
used. In addition, the identifier space will increase rapidly. To deal with the rebalancing
issue, Wu et al. have proposed in [Wu et al. (2010)] to remove the position identifiers of
deleted items followed by a computation of new position stamps values for the non-removed
items. As any CRDT, this approach does not need to satisfy the property TP2, however,
its correctness depends on the uniqueness of position identifiers. The authors do not show

clearly how to achieve the uniqueness of position identifiers.

3.5 Conclusion

In this paper, we have investigated, using the controller synthesis technique, whether
or not there exist IT functions which ensure data convergence, based on the operational
transformation framework. In this framework, an IT function ensures convergence iff it
satisfies two properties TP1 and TP2. We have shown that there are some IT functions
for the basic signatures of insert and delete operations, which satisfy TP1 but there is no
IT function, which satisfies TP2. We have then identified two pairwise scenarios, which
prevent to get a consistent function IT (with no one-to-many relation). These scenarios
were useful to find an appropriate extra parameter for the insert operation and to define,
based on this extra parameter, a new IT. The role of the extra parameter is to record the
number of deleted symbols before the inserting position. This parameter is computed when
the operation is generated and then updated whenever it is transformed against a delete
operation with smaller position.

The consistency of our IT function is formally proved by means of a symbolic model
checking technique, where all parameters of the update operations are handled symbolically
using difference bound matrices. Initially, the verification of properties TP1 and TP2 is
performed without imposing any relationship between parameters of the update operations
(i.e., an over-approximation of the effective model). It concludes that TP1 is satisfied but TP2

is not satisfied. The counterexamples provided for property TP2 are scenarios where there

64

are at least two insert operations o; = Ins(pi,ci,ndy) and oo = Ins(ps, c2,nds) generated
at the same state s.t. p; < ps A ndy > ndy or py > py A nd; < nds. According to Lemma
[and Theorem [such scenarios are infeasible. When we exclude such infeasible scenarios,
the verification process concludes that property TP2 is satisfied. Therefore, the proposed IT
satisfies both TP1 and TP2.

In the near future, we will apply our IT to a specific system as peer-to-peer collaborative
editors and study performance issue. We also plan to investigate the existence of consistent
IT functions, in case of shared object with non linear structure, using the controller synthesis
and model checking techniques.

english

65
CHAPITRE 4

ARTICLE 2 : Specification and Verification using Alloy of Optimistic Access
Control for Distributed Collaborative Editors

Aurel Randolph , Abdessamad ImineH, Hanifa Boucheneb®, and Alejandro Quintero®

otherlanguageenglish

Abstract

Distributed Collaborative Editors are interactive systems
where several and dispersed users edit concurrently shared documents. Generally, these
systems rely on data replication and use safe coordination protocol which ensures data
consistency even though the users’s updates are executed in any order on different copies.
Controlling access in such systems is a challenging problem, as they need dynamic access
changes and low latency access to shared documents. In [Imine et al. (2009)], a flexible
access control protocol is proposed; it is based on replicating the shared document and
its authorization policy at the local memory of each user. To deal with latency and
dynamic access changes, an optimistic access control technique is used where enforcement of
authorizations is retroactive. However, verifying whether the combination of access control
and coordination protocols preserves the data consistency is a hard task since it requires
examining a large number of situations. In this paper, we specify this access control protocol
in the first-order relational logic with Alloy, and we verify that it preserves the correctness
of the system on which it is deployed in such a way that the access control policy is enforced
identically at all participating user sites and, accordingly, the data consistency remains still

maintained.

Keywords Access control policies, distributed collaborative editors, data consistency, for-

mal specification, formal verification, Alloy.

This work is supported by grant number 138732 awarded by the Fonds de Recherche du Québec - Nature
et Technologies (FQRNT —E‘quipe).
§. Ecole Polytechnique de Montréal, Montréal, Canada. Email : {aurel.randolph, hanifa.boucheneb, ale-
jandro.quintero}@polymtl.ca
§. Lorraine University and INRIA Nancy-Grand-Est, France. Email : abdessamad.imine@loria.fr

66

4.1 Introduction

Distributed Collaborative Editors (DCE) enable several and dispersed users to form a
group for editing simultaneously shared documents, such as articles, wiki pages and program
source code (e.g. Google Docs). To achieve data availability, each user owns a local copy
of the shared documents. Thus, the collaboration is performed as follows : each user site’s
updates are locally executed in a non blocking manner and then are propagated to the other
sites in order to be executed on remote copies. Although being distributed applications, DCE
are specific in the sense they must consider human factors. Moreover, they are characterized
by the following features : (i) High local responsiveness : the system has to be as responsive
as its single-user editors [Ellis et Gibbs (1989),Sun et al. (1998),Sun et al. (2006)] ; (ii) High
concurrency : the users must be able to concurrently and freely modify any part of the shared
document at any time [Ellis et Gibbs (1989),Sun et al. (1998)]; (iii) Consistency : the users
must eventually see a converged view of all copies [Ellis et Gibbs (1989),/Sun et al. (1998)] ;
(iv) Scalability : a group must be dynamic in the sense that users may join or leave the
group at any time. Due to data replication and arbitrary exchange of updates, consistency
preservation is one of the most critical properties in DCE. Accordingly, each DCE is endowed
with Coordination Protocol (CP) to maintain globally consistent state.

Balancing the computing goals of collaboration and access control to shared information
is a challenging problem in DCE [Tolone et al. (2005)]. Indeed, interaction in collaborative
editors is aimed at making shared document available to all who need it, whereas access
control seeks to ensure this availability only to users with proper authorization. To preserve
the above cited DCE’s features and avoid a central authority, a flexible Access Control Protocol
(ACP) is proposed in [Imine et al. (2009)] where all updates will be checked at each user site
without resorting to a central authority. In this model, a user will own two copies : the
shared document and its authorization policies. This replication allows for high availability
since when users want to read or update the shared document, this manipulation will be
granted or denied by controlling only the local copy of the authorization policies. Due to
the out-of-order execution of the shared document’s updates and the authorization policy’s
updates, an optimistic approach is used that tolerates momentary violation of access rights
but then ensures the copies to be restored in valid states (by undoing invalid document’s
updates) w.r.t the stabilized access control policy.

To ensure a safe access control in DCE (i.e. permitting legal updates and rejecting illegal
updates on the shared document), a protocol stack is built by integrating an ACP on the
top of any CP based on data replication and update logging [Imine et al. (2009)]. If we

combine a correct CP (i.e. satisfying separately the consistency property) with an ACP : can

67

we verify that the consistency property is preserved by the new protocol ? This verification
turns out a hard task and unmanageably complicated. Indeed, it requires examining a large
number of situations since the updates are performed in different orders on different copies
of the shared document and the authorization policy. Consequently, the verification of the
combination correctness must be assisted by an automatic checker tool.

Contributions. We propose here a model which specifies concisely the ACP and verify
the consistency property of any DCE integrating an ACP on the top of a consistent CP.
We use the first-order logic "a la Alloy” to describe symbolically ACP and its environment.
This choice is motivated by the possibility to handle symbolically bounded and unbounded
variables such as queues of messages, logs, number of sites, number of operations generated
by each site, etc. The consistency property is also specified in Alloy language and verified by
Alloy analyzer, using a SAT-based bounded model checking. This technique is established as
a good alternative to the classical symbolic model checking using binary decision diagrams
(BDDs), as it can often handle much larger systems, by searching for counterexamples of
bounded length.

Outline. This paper is organized as follows : Section presents the flexible access control
protocol. Section is devoted to the formal specification of ACP and its environment.

Section [4.4] discusses related work. Finally, the conclusion is presented in Section (4.5

4.2 Optimistic Access Control Protocol for DCE

Shared documents are objects whose state can be altered by a set of cooperative operations
generated by sites. For instance, a shared text document is modified by operations such as
inserting a new section, deleting an existing paragraph and replacing an old line by new one.
In [Imine et al. (2009)], an access policy is described as an indexed list of authorization rules,
where each rule is a quadruple (S, O, R, w) with (i) S is set of subjects (sites or users), (ii) O
is a set of objects (e.g. paragraphs or chapters), (iii) is R a set of access rights (e.g. deleting
or updating paragraphs) and (iv) w € {—,+}. The sign “+” represents a right attribution
and the sign “—" represents a right revocation.

The state of the policy object can be altered by a set of administrative operations such
as adding and removing authorizations. Administrative operations are generated by the ad-
ministrator, at any time, and aimed to manage dynamically the right access to the shared
documents. These operations are next broadcast to other sites, in order to modify their local
copies of the policy object. Thus, on each site, cooperative operations are granted or denied
by using the local copy of the policy and applying the first-match semantics : when an opera-

tion o is generated, the system checks o against its authorizations one by one, starting from

68

the first authorization and stopping when it reaches the first authorization [that matches o.
If no matching authorizations are found, o is rejected. Note that every local policy copy main-
tains a monotonically increasing version counter that is incremented by every administrative
operation performed on this copy.

The collaboration happens in optimistic approach and modifications could be applied in
different orders at different sites. The messages are assumed to be exchanged via secure and
reliable communication network : each message sent is received by each others without alte-

ration. The flow of messages exchanged during the collaboration is illustrated in Figure 4.1l

4.2.1 Generation of Local Cooperative Requests

Locally, each site can generate some cooperative operations. Each generated cooperative
operation is first checked against the local policy. If the operation is revoked then it is said
to be invalid and its execution is aborted. When the operation is granted, it is set to valid
status in the case of administrator site and to tentative status otherwise. The operation is then
performed immediately on the local copy of the shared document. A resulting cooperative
request is generated and attached with the number version of the policy copy on which the

operation is granted. This cooperative request is finally broadcast to other sites.

4.2.2 Reception of Remote Cooperative Requests

When a remote cooperative request is received, it is first stored in a dedicated queue
before being extracted. The request is extracted if it is causally-ready, when its attached
version number of policy is less or equal than the current version of the local policy and its

precedent cooperative request have been already integrated to the local copy of the shared

Security Layer Security Layer
Local copy Access 31 Access Local copy
of s hared - B control 4'1 control - b of s hared
Policy : Policy
A
1.2 12
2.2 22
3.2 ; Messages
3.3 1.1 : Cooperative operation generated locally
— . 1.2 : Local cooperative operation granted
Coordination Layer ;: 1.1 Coordination Layer| | 4 5. Cooperative request generated by site S
Y & A4 91'3 2.1: Cooperative request generated by site Adm
Local copy of P 2.1 Local copy of 29 R " "
shared - + shared .2 : Remote cooperative operation granted
document Coordination »| | Coordination document 3.1: Administrative request (validation)
1.3 3.2 : Feedback from validation request
3.3 : Cooperative operation to be invalidated
Cooperative Site (3) Cooperative Administrator Site (Adm) 4.1: Administrative request (access rule)

Figure 4.1 Flow of collaboration messages

69

document. This mechanism is setup to ensure that the access control protocol preserves
the causality dependency with respect to precedent administrative requests and precedent
cooperative requests.

After its extraction, the remote cooperative request is checked against the local adminis-
trative log to verify whether or not it is granted. If the request is granted, its status is set to
valid, if the receiver is the administrator, otherwise, its status is tentative. If the receiver is
the administrator then the policy version is incremented and a validation request is generated
in order to broadcast it to other sites. The new version number is attached to the validation
request before its broadcasting. Once, the cooperative operation is performed on the shared

document with regard to the collaborative editor’s procedures.

4.2.3 Generation of Administrative Operations

To manage the access control, the administrator produces some access rules called ad-
ministrative operations. When an administrative operation is generated, the version number
is incremented for the administrator’s local policy, which is immediately updated by perfor-
ming on, the generated administrative operation. Once, an administrative request with the
corresponding new version number is generated and broadcast to other sites to enforce their

own policy.

4.2.4 Reception of Remote Administrative Requests

There exists two kinds of remote administrative request : validation request and access
rule based request. Each received remote administrative request is first stored in a dedicated
queue then, extracted when it is causally-ready. The administrative request is said to be
causally-ready if the value of its attached policy version number is the next value of the
version number of the local policy (the difference is one) and in case of validation request,
the corresponding cooperative operation is already executed on this site. Each extracted
access rule based request, is performed on the local policy. Thereafter, if the access rule is
restrictive, then all tentative cooperative operations, locally generated or received, which are
concerned by the rule with regard to the rights, are undone. For the extracted validation
request, the status of the corresponding cooperative operation is updated from tentative to
valid. At the end of the treatment of the administrative request, the version number of the

local policy is incremented.

70

4.2.5 Verification Issues

The DCE consists of several sites. Each of them maintains the shared objects and its access
right policy, by generating, exchanging and performing some cooperative and administrative
operations. As the numbers of sites, cooperatives operations and administrative operations are
arbitrary, the queues of cooperative requests and administrative requests are unbounded. The
system is then infinite and parameterisable by the number of sites, the number of cooperative
operations to be generated by each site, and the number of administrative operations to be
generated by the administrator. On each site, the shared objects are modified with respect
to the local access right policy. Meanwhile, the local policy is enforced by taking into account
the administrative operations generated and broadcast by the administrator. Thus, if the
policy is not enforced identically at all sites, it can result in the security hole on the shared
objects by permitting illegal modifications or rejecting legal modifications. In addition, this
situation can lead to data inconsistency for the collaborative edition such as the document

can diverge at the end of the collaboration.

adm S1 S9
“abc” “abc” “abc”
revoke insertion In 5(51 z)
: Sl

right to s1

Accépted

“XabC”

revoke insertion revoke insertion
rightito s1 rightito s1

“abcﬂ “XabC” “XabC”

Figure 4.2 Divergence caused by introducing administrative operations

Ignbred

For instance, consider a group composed of an administrator adm and two sites S; and
S. Initially, the three sites have the same shared document “abc” and the same policy object
where S is authorized to insert characters (see Figure .2)). Suppose that adm revokes the
insertion right of S; and sends this administrative operation to S; and S, so that enforce
their local policy copies. Concurrently Sy executes a cooperative operation Ins(1,z) to derive
the state “xabc” as it is granted by its local policy. When adm receives the S;’s operation,
it will be ignored (as it is not granted by the adm’s local policy) and then the final state

still remain “abc”. As S5 receives the Sp’s insert operation before its revocation, he gets the

71

state “xabc” that will be unchanged even after having executed the revocation operation. We
are in presence of data inconsistency (the state of adm is different from the state of S; and
Ss) even though the policy object is same in all sites. In fact, the new policy object is not
uniformly enforced among all sites because of the out-of-order execution of administrative
and cooperative operations. Thus, security holes may be created. For instance some sites can
accept cooperative operations that are illegal with respect to the new policy (e.g. sites S)
and Sy).

To solve this problem, the ACP applies the principles of optimistic security [Povey (2000)]
in such a way that the enforcement of the new policy may be retroactive with respect to
concurrent cooperative operations. In this case, only illegal operations are undone. For ins-
tance, Ins(1,z) as shown at should be undone at S; and Sy after the execution of the
revocation.

It appears important to verify that the ACP preserves the correctness of the collaborative
editing system on which it is deployed with regards to the security issues and data consistency.
For this purpose, the sets of legal (valid) cooperative operations must be identical at all sites,
when all generated and received cooperative and administrative operations are performed on
each site (stable state). Performing such a verification is tricky and hard to do manually. So,

the system must be automatically checked using formal methods.

4.3 Specification and Verification

Several model checking techniques have been proposed in the literature. These techniques
can be classified into explicit state model checker and Symbolic model checker. In explicit state
model checker [Holzmann (2004)[, states, sets and relations are explicitly represented, whe-
reas, in symbolic model checker, they are implicitly represented using boolean logic formulas.
The category of symbolic model checker can be subdivided into BDD-based model checkers
[Cimatti et al. (2000)] and SAT-based bounded model checkers [Schaeffer-Filho et al. (2009)].
BDD-based model checking allows to prove by considering the whole state space of the mo-
del that some property is satisfied but it does not scale well in practice. SAT-based bounded
model checking is considered as a good alternative to BDD-based model checking. It is more
appropriate to find bugs in infinite systems. Its basic idea is to search for a counterexample in
traces whose length is bounded by some integer k£ [Frappier et al. (2010)]. If no bug is found
then k is increased until either a bug is found or the computer resource limits are reached.
We propose to use a SAT-based bounded model checker of the tool suite of Alloy, to verify
that ACP preserves consistency of DCE.

1. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models, [Online]. Available :
http://alloy.mit.edu/alloy/, (Accessed : 5 May 2013)

http://alloy.mit.edu/alloy/

72

4.3.1 Alloy

Alloy , is a SAT-based bounded model-checker whose specification language and analyzer
are inspired by Z notation [Woodcock et Davies (1996)] and SMV (Symbolic Model Veriﬁer).
The Alloy model consists of signatures, facts, functions and predicates denoted sig, fact, fun
and pred, respectively. Signatures describe the sets and relations used to specify the system
to be verified. Facts represent the constraints of the system that are always assumed to
hold. The expected properties of the system are expressed as assertions (constraints) denoted
assert. The Alloy analyzer is an automatic constraint solver which operates as an instance
finder for the specified model that form counterexamples to the assertions. To find such
an instance, Alloy proceeds by an exhaustive search over restricted scopes defined by the
user [Schaeffer-Filho et al. (2009)]. The scope means the maximum number of occurrences
assigned to each object of the model, but also means the maximum length of the execution
traces. The principle of searching instance is based on the small scope hypothesis which
states that an invalid assertion should have a small counterexample [Jackson (2006)]. The
instance found is reported as counterexample and is guaranteed to be valid. Unfortunately,
the failure of finding an instance should not be confused with its absence. Alloy is then useful
to specify infinite models and find bugs. The use of signatures and fields like object-oriented
programming classes increase its expressiveness |Pai et al. (2011)]. Moreover, Alloy analyzer
allows to use several SAT-solvers like SAT4J [Le Berre et Parrain (2010)], ZChaffH, MiniSATH,
Kodkod [Torlak et Dennis (2006)].

4.3.2 Formal Specification of ACP

The underlying access control model of ACP considers a set of subjects defined as users
(or sites) including the administrator, a set of objects denoting a part of or the whole shared
document, and a set of access rights. A policy is defined as a function that maps a set of
subjects and a set of objects to a set of access rights. On each site, the policy is indexed
with a version number which is incremented during the collaboration. In addition to that
fundamental components of the model, we have some operations generated and exchanged
in the system. There are cooperative operations with three kinds of status (tentative, valid,

invalid), access rules and validation requests as administrative requests. For simplification

1. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models,
Available : http://alloy.mit.edu/alloy/, (Accessed : 5 May 2013)
2. Canergie Mellon University, The SMV System,
Available : http://www.cs.cmu.edu/ modelcheck/smv.html, (Accessed : 5 May 2013)
3. Boolean Satis 7ability Research Group at Princeton, zChaff,
Available : http://www.princeton.edu/~chaff/zchaff.html, (Accessed : 5 May 2013)
4. Eén,Niklas and Sorensson, Niklas, The SMV System,
Available : http://minisat.se/, (Accessed : 5 May 2013)

http://alloy.mit.edu/alloy/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.princeton.edu/~chaff/zchaff.html
http://minisat.se/

73

purpose, we consider that the set of objects represents the whole document. Then, it is not
necessarily to model the document. Our specification of the fundamental components of the
model is shown at Snippet [Il From line [to B, we represent the subject. We declare an
abstract signature to represent the generic subject. It is extended to have cooperative site,
which is also extended to represent an administrative site. To manage the number of policy,
we create the signature Site Version.

The allowed cooperative operations performed on the shared document could be inserting,
deleting, updating, etc. This set of operation types is described with the signature oper_t at
Snippet 2l At the same snippet, cooperative operations are represented from line [2 to [I0
Some constraints assumed always to hold are added from line[7l They express that the sender
of the operation must not receive it back, the operation has one type and is attached to a
version number of policy. To undo an operation we consider a new linked operation. It is
specified in our model with the signature UndoneOp. The status of cooperative operation is

represented by OpStatus with the three declinations.

1 abstract sig Site {}
2 sig CoopSite extends Site {}
3 one sig AdmSite extends Site {}
4 sig SiteVersion{}
Snippet 1: Specification of subjects
1 sig oper_t{}//identify a type of operation : insert, delete, etc.
2 sig Coop {
3 from : lone Site, // Site that generates and sends the cooperative operation
a to : set Site, // Intended recipient(s) of a cooperative operation
5 type :lone oper_t,//Type of operation
6 vers : lone SiteVersion // Version of local policy which granted the operation
7 }{(from !=none) implies {
8 no from & to and to=Site-from and type!=none and vers!=none and
9 # to > 1 //Allow to have at least 2 sites in the system

e
= O

sig UndoneOp{
owner : lone Site,
linkedOp : lone Coop

} abstract sig OpStatus {}

one sig tentative, invalid, valid extends OpStatus {}

e
B W N

=
o

Snippet 2: Specification of cooperative operations

To deal with authorizations, we define a signature Authorization extended to have Plus for
right attribution and Minus for right revocation. The object representing the administrative
request is abstracted and called AdReq. It is extended in validation request and access rule,

denoted Val and Rule, respectively. In the relation Rule, rights are of the same type of

74

cooperative operations (oper_t). For instance we could have the right of inserting. Rights and
authorization (field signe) are mapped to the subject field to describe an access rule as shown

at Snippet Bl

abstract sig Authorization {}

one sig Plus, Minus extends Authorization {}

abstract sig AdReq
source : lone AdmSite, // Intended recipient(s) of an administrative request
dest : set Site, //Version of policy when generating the administrative request
vers : lone SiteVersion

H (source l=none) implies{
no source&dest and dest==Site-source and vers!=none and
#dest>1 //Allow to have at least 2 receivers (sites) in the system

© 0 N O oA~ W N

=
o

13
sig Rule extends AdReq{

subject : some Site,
right : some oper_t,
signe : one Authorization

e el
AW N

o
(9]

} sig Val extends AdReq{op : lone Coop}{ op.from != source }

Snippet 3: Specification of administrative requests

In addition to these core elements of the model, we define a global state of the system which
consists of the state of each site. We called it SiteState. The state of each site is represented
by the last number version of its policy, the sending and receiving cooperative operations,
the sending and receiving administrative operations (only effective for the administrator), the
snapshot view of some queues, administrative and cooperative operations which are causally-
ready at the state. The corresponding signature is described as shown at Snippet 4l For the
transition system, we create a linear ordering over states by using the Alloy ordering utility
module (open util/ordering[SiteState] as sitesstates). This module is also used to manage the
version number of policy (open util/ordering[Site Version] as versOrder).

The dynamics of the system is specified using facts. Snippet Bl descibes the generation
of cooperative and administrative requests and their reception. We assume that when an
operation is sent by a site, it is received by others at the next state of the system. When the
cooperative and administrative requests are received, they are stored in appropriate queue
and are extracted when there are causally-ready. To define the causally-ready expressions we
use functions FcausallySeq and QcausallySeq for cooperative and administrative requests, res—
pectively. These functions are presented at Snippet [0l Once extracted, there are processed.

Snippets [0 and [§ present the processing of the causally-ready cooperative operation
and administrative request by a non-administrative site, respectively. The processing of a
causally-ready cooperative request by the administrative site is shown at snippet

Several complementary constraints are defined to control the dynamics of the system.

75

1 sig SiteState {

2 versions : Site — > one SiteVersion, // Version

3 CoopStatus : Site — > Coop— > OpStatus, //Status of all cooperative operations

4 sentCoop : Site — > lone Coop, // Cooperative operations sent in this state.

5 sentAdReq : AdmSite — > lone AdReq, // Administrative requests sent.

6 ReceivedCoop : Site — > set Coop,// Cooperative operations received.

7 ReceivedAdReq : Site — > set AdReq, // Administrative requests received.

8 F : Site — > (seq Coop),// Received cooperative operation’s queue.

9 Q : Site — > (seq AdReq),// Received administrative request’s queue.

10 H : (Site — > set Coop)+(Site — > set UndoneOp), //Cooperative log

11 L : Site — > (seq Rule), // Administrative log.

12 Vr : Site — > (seq Val), // Validation request log.
13 CoopCausallyReady : Site — > lone Coop, // Operations which are causally-ready.
14 AdCausallyReady : Site — > lone AdReq //Causally-ready administrative requests.
15 }

Snippet 4: Specification of the state of the system

1 fact GenerateCooperativeRequest{

2 all pre : SiteState-sitesstates/last, S :Site, o :pre.sentCoop[S] |

3 let post = sitesstates/next[pre] | {

4 o.vers = pre.versions[S] //Set the site version to the operation

5 o in post.H[S] //Add the operation to the owner’s H

6 {(S in CoopSite) and (o in tentative[post.CoopStatus[S]])} or

7 {(S in AdmSite) and (o in valid[post.CoopStatus[S]])} //Set the status

8 all Sj :Site-S| o in post.ReceivedCooplSj] //Broadcast

o }}
10
11 fact GenerateAdministrativeRequest{
12 all pre : SiteState-sitesstates/last, S :AdmSite, a :pre.sentAdReq[S]|
13 let post=sitesstates/next[pre|, v=pre.versions[S], vv=versOrder/next[v]|{
14 vv in post.versions[S] //Incrementation of the version for the next

SiteState
15 a.vers = vv
16 {(a in Rule) and (post.L[S]= add[pre.L[S], a])} or //Update the policy
17 {(a in Val) and (post.Vr[S]= add[pre.Vr[S], a])}
18 all Sj :Site-S| a in post.Received AdReq[Sj] //Broadcast
19 1
20
21 fact RequestReception{
22 all post : SiteState-sitesstates/first| let pre = sitesstates/prev(post]|{
23 all S :Site, o :post.ReceivedCoop[S]||{
24 o not in elems[pre.F[S]] and o in elems[post.F[S]]
25 all oj :
elems[pre.F[S]]|lastIdxOf[pre.F[S],0j] <lastIdxOf[post.F[S],0] }

26 all S :Site, a :post.Received AdReq[S]|{
27 a not in elems[pre.Q[S]] and a in elems[post.QI[S]]
28 all aj :

}

elems[pre.Q[S]]|lastIdxOf[pre.Q[S],aj] <lastIdxOf[post.Q[S],a] } }

Snippet 5: Specification of the generation and reception of requests

76

1 fun FcausallySeq[st : SiteState, S : Site] : lone Coop {

2 { o : (elems[st.F[S]]- OpStatus[st.CoopStatus[S]])| {

3 versOrder /lte [o.vers, st.versions[S]]

4 all 0] : (elems[st.F[S]]- OpStatus[st.CoopStatus[S]]-0)| {
5 versOrder/lte [oj.vers, st.versions[S]] implies

6 lastIdxOf [st.F[S],0j]>1astIdxOf [st.F[S],0] }} }
7}

8
9

fun QcausallySeq|st : SiteState, S : Site] : lone AdReq {
10 { ad : (elems]st.Q[S]] -elems][st.L[S]]-elems]st. Vr[S]])| {

11 ad.vers= versOrder/next [st.versions|[S]]

12 all adj : (elems(st.Q[S]] -elems][st.L[S]]-elems[st. Vr[S]]-ad)| {
13 (adj.vers= versOrder /next [st.versions[S]]) implies

14 lastIdxOf [st.Q[S],adj] > lastIdxOf [st.Q[S],ad] }}}
15 }

Snippet 6: Specification of causally-ready expressions

These constraints are not explicitly expressed in the protocol but are necessary from our
point of view to prevent unacceptable instances or counterexamples. For instance, at the
beginning of the collaboration considered as the initial state, all queues are empty at each

site. The complete specification is given in https ://sites.google.com/site/laboratoireverifom.

1 fact ReceiveAdminRequest{

2 all st : SiteState-sitesstates/first-sitesstates/last,

3 S :st.AdCausallyReady.AdReq, ad :st.AdCausallyReady][S]|

4 let post=sitesstates/next[st]|{ ad in Val implies {

5 ad.op in valid[post.CoopStatus|S]]

6 post. Vr[S]= add[st.Vr[S], ad]}

7 else {

8 post.L[S]= add([st.L[S], ad] //Add to the policy

9 ((ad.signe in Minus) and (S in CoopSite)) implies {
10 all oi :st.H[S]&
11 (tentative[st.CoopStatus[S]]-invalid[st.CoopStatus[S]]-
12 valid[st.CoopStatus[S]])|{(oi.type in ad.right and
13 oi.from in ad.subject) implies{
14 oi in invalid|[post.CoopStatus|S]]
15 let uo=UndoneOp|{ uo.linkedOp=oi and
16 uo.owner=S and uo in post.H[S]} }}}}
17 S->(versOrder/next[st.versions[S]]) in post.versions }
18 }

Snippet 7: Processing of causally-ready administrative request by a site

4.3.3 Specification of Consistency Property

We deal with an access control model for DCE. Hence, property considered is related to
safe and consistent collaboration. Firstly we consider the fundamental concept of stable state
of the system. We define it as follows in definition (4.1l

7

© 0 N O oA~ W N

[S S S R ST Ot
N 0 bk W N = O

=
o

}

fact ReceiveCoopRequestOrdSite{

all st : (SiteState - sitesstates/first - sitesstates/last),
o : st.CoopCausallyReady[CoopSite], S :(st.CoopCausallyReady.o)&CoopSite|
let post= sitesstates/next[st]|{ (o.from in AdmSite) implies {
o in valid[post.CoopStatus[S]] and o in post.H[S]|}
else{ o.from in CoopSite and
((some 1 : elems[st.L[S]] | {
versOrder/lt[o.vers, r.vers|] and o.from in r.subject and
r.signe in Minus and o.type in r.right and
all rj : (elems[st.L[S]]-r) [{{versOrder/lt[o.vers, rj.vers| and
o.from in r.subject and o.type in rj.right} implies
lastIdxOf [st.L[S],rj] < lastldxOf [st.L[S],r] }})
or (nor : elems[st.L[S]] | {
versOrder/lt[o.vers, r.vers] and o.from in r.subject and
r.signe in Minus and o.type in r.right }))
implies o in invalid[post.CoopStatus[S]]
else {o in tentative[post.CoopStatus[S]] and o in post.H[S]}}}

Snippet 8: Processing of causally-ready cooperative request by a site

© 0 N O oA~ W N

NN NNNDDNDNHRRBR S5 S5 5B 5 < [H (<
GO b W N = O © 0 0 G b W N = O

26 }

fact fact ReceiveCoopRequestAdm{

all st : (SiteState - sitesstates/first - sitesstates/last),
o : st.CoopCausallyReady[AdmSite], S : st.CoopCausallyReady.o&AdmSite|
let post= sitesstates/next[st]|{(o.from in AdmSite) implies {
o in valid[post.CoopStatus[S]] and o in post.H[S] }
else{((some r : elems[st.L[S]] | {
versOrder/lt[o.vers, r.vers] and o.from in r.subject and
r.signe in Minus and o.type in r.right and
all rj : (elems[st.L[S]]-r) |{{versOrder/lt[o.vers, rj.vers] and
o.from in r.subject and o.type in rj.right}

implies lastIdxOf [st.L[S],rj] < lastIdxOf [st.L[S],r]}})
or (no r : elems[st.L[S]] | {

versOrder/lt[o.vers, r.vers| and o.from in r.subject and
r.signe in Minus and o.type in r.right }))
implies o in invalid[post.CoopStatus|S]]
else {
o in valid[post.CoopStatus|S]]
let vad=Val |{
vad.op =o and vad.source=S and
vad.vers=versOrder/next| st.versions[S]] and
(versOrder/next[st.versions[S]]) in post.versions[S]
and vad in st.sentAdReq[S]}
o in post.H[S]}}}

Snippet 9: Processing of causally-ready cooperative request by the administrator

Définition 4.1 (Stable state) The system is said to be in a stable state iff each site com-

pletes the processing of all generated and received operations.

78

Note that, according to the definition[4.] it is possible to have several stable states during the
collaboration. The consequence of the definition [4.1]is that at each stable state of the system,
all sites have the same number version of policy. Recall that when an operation is generated,
it is immediately sent to others. The broadcasting is considered as part of the generation
process unless the operation is denied. Also we have assumed that the communication is
message lossless and when an operation is sent by a site, it is received by others at the next
state of the system.

Once the stable state is reached by the system, it is possible to verify if the protocol
preserves its correctness. The property of interest relies on data consistency. The data consis-
tency property allows to know if the protocol is enforced identically at all sites in context
of dynamic changes of access rules. The goal is to prevent any security hole with regards to
the granted and denied operations and the convergence of the shared document. The data
consistency property is satisfied by the model iff for all stable state of the system, for all
two disjoint sites, the sets of valid cooperative operations are the same. The data consistency
property is specified using assertion (see Snippet [10).

As explained in Section [4.3.1l the scope indicates the maximal number of occurrences
of each signature used during the searching, but also the maximal length of the execution
trace. In our context, the scope denotes the maximum number of states (SiteState), sites,
cooperative operations, administrative operations, etc. Considering that the collaboration
held with concurrency, at each state, each site could do an action according to an operation
(generate, send, received, process). To analyze the data consistency property, several checking
scenarios are used by specifying different scopes. The results state ”No counterexample found.
Assertion may be valid”. Note that the SAT-solver used is SAT4J.

1 assert ValidPreservationl{

2 all st :Stable[]|{ all disj Si, Sj :Site|{
valid[st.CoopStatus[Si]] in valid[st.CoopStatus[Sj]]
valid[st.CoopStatus[Sj]] in valid[st.CoopStatus[Si]]}}

(5L B

Snippet 10: Data Consistency property

4.4 Related Work

Several access control models have been proposed in the literature for collaborative en-
vironment. An overview of access control models, including their principles, advantages and
potential shortcomings, is available in [Tolone et al. (2005)]. Among these models there are
Role-Based Access Control (RBAC) [Sandhu et al. (1996)] and its variants [Joshi et al.

79

(2004),Piromruen et Joshi (2005),Lee et Luedemann (2007)|, which deal with a decentralized
authorization. Their drawback is that they do not allow dynamic reassignment of roles. There
is very little recent contributions on replicating authorization policies in the literature [Sa-
marati et al. (1996),Xin et Ray (2007)]. These contributions deal with database systems and
are not so flexible to support dynamic changes of authorization policies. For instance, Xin T.
et al. used in [Xin et Ray (2007)], an extension of two-phase locking protocol as concurrency
control technique to update policies. This technique is not suitable in the context of DCE.
Alloy has been used in several case study applications in security, access control and
security policies domains with regards to model, framework or protocol. In [Hu et Ahn (2008)],
Hu H. et al. presented a case study on verification for the NIST/ANSI standard model for
Role Based Access Control (RBAC). The authors verified only one property related to the
role deleting. The Alloy analyzer allowed them to conclude that the functional definition of
DeleteRole function proposed by the NIST/ANSI standard for hierarchical RBAC misses a
step for removing inheritance. In [Pai et al. (2011)], authors confirmed the known security
vulnerability in oAuth, an open authentication protocol for the Web, using Alloy. Samuel
A. et al. [Samuel et al. (2007)] specified the Generalized Spatio-Temporal Role Based Access
Control (GST-RBAC) model using Alloy. The detection of some conflicts by the analyzer
helped them to refine their proposed framework. Similarly, in |[Toahchoodee et al. (2009)],
the authors applied Alloy to specify and verify a spatio-temporal access control correctness.

The analyzer showed possible conflict permissions assignment to the same role.

4.5 Conclusion

In this paper, we have presented a case study on formal specification and verification of
a flexible access control protocol running on the top of a DCE. The purpose is to verify that
data consistency of the DCE is preserved by the protocol. Proving data consistency of such
systems is very challenging as they are infinite with a high degree of concurrency. To deal with
these limitations, we have proposed an abstract model and used Alloy, a SAT-based bounded
model-checker. We have shown that ACP preserves the correctness for several scopes. Alloy
specification language, based on the first-order relational logic, is very appropriate to describe
infinite systems. However, bounded model-checker techniques are known to be useful to find
bugs but less appropriate to prove the absence of bugs. In the future, we plan to investigate

the existence of a finite abstract model, which preserves data consistency. english

80
CHAPITRE 5

ARTICLE 3 : On Consistency Preservation with Optimistic Access Control for
Distributed Collaborative Editors

Aurel Randolph , Hanifa Boucheneb™, Abdessamad Imine, and Alejandro Quintero**

Abstract

Distributed Collaborative Editors are interactive systems where several and dispersed
users edit concurrently some shared documents. Generally, these systems rely on data repli-
cation and use safe coordination protocol which ensures data consistency even though the
users’s updates are executed in any order on different copies. Controlling access in such
systems is a challenging problem, as they need dynamic access changes and low latency ac-
cess to shared documents. To cope with this situation, a flexible access control protocol is
proposed in [Imine et al. (2009)], based on replicating the shared document and its autho-
rization policy at the local memory of each user. To deal with latency and dynamic access
changes, an optimistic access control technique is used, allowing retroactive enforcement of
authorizations. However, verifying whether the setup of access control over coordination
protocols preserves the data consistency is a hard task, since it requires examining an un-
bounded number of situations, arising from the infinite nature of the system. In this paper,
we propose a finite abstract model and show that it preserves the consistency. We use a
symbolic model-checking tool Uppaal, to specify with automata, the behavior of the abstract
model and the consistency requirement. Finally, we verify if it preserves the consistency of
the system on which it is deployed in such a way that the access control policy is enforced
identically at all participating user sites and, accordingly, the data consistency remains still

maintained.

x%. A. Randolph, H. Boucheneb and A. Quintero are with the Department of Computer and Software En-
gineering, Ecole Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Québec, Canada,
H3C 3A7. Email : {aurel.randolph, hanifa.boucheneb, alejandro.quintero}@polymtl.ca

1T. A. Imine is with INRIA Grand-Est and Nancy-Université, France. Email : abdessamad.imine@loria.fr

81

Keywords Access control policies, distributed collaborative editors, Formal methods,
Model checking, infinite system, data consistency, Correctness proofs, Symbolic execution,

Uppaal.

5.1 Introduction

Distributed Collaborative Editors (DCE) enable several and dispersed users to form a
group for editing simultaneously shared documents, such as articles, wiki pages and program
source code. Google Drive is an example of such a system but in a centralized architecture.
To achieve data availability, each user has a local copy of the shared document. Updates
generated by each user are locally executed in a non blocking manner and then broadcast to
the other sites in order to be executed on their copies. Although being distributed applica-
tions, DCE are specific in the sense they must consider human factors. Moreover, they are
characterized by the following features: (i) High local responsiveness: the system has to be as
responsive as its single-user editors [Ellis et Gibbs (1989),Sun et al. (1998),Sun et al. (2006)];
(ii) High concurrency: the users must be able to concurrently and freely modify any part of
the shared document at any time |Ellis et Gibbs (1989),[Sun et al. (1998)]; (iii) Scalability:
a group must be dynamic in the sense that users may join or leave the group at any time;
(iv) Consistency: the users must eventually see a converged view of all copies [Ellis et Gibbs
(1989),Sun et al. (1998)]. Consistency preservation is one of the most critical properties
in DCE. It stems on data replication and arbitrary exchange of updates. Accordingly, each
DCE is endowed with Coordination Protocol (CP) to maintain globally consistent state.

Balancing the computing goals of collaboration and access control to shared information
is a challenging problem in DCE [Tolone et al. (2005)]. Indeed, interaction in collaborative
editors is aimed at making shared document available to all who need it, whereas access
control seeks to ensure this availability only to users with proper authorization. To preserve
the above cited DCE’s features and avoid a central authority, a flexible Access Control Protocol
(ACP) is proposed in [Imine et al. (2009)] where all updates will be checked at each user site
without resorting to a central authority. In this model, a user will own two copies: the shared
document and its authorization policies. This replication allows for high availability since
when users want to read or update the shared document, this manipulation will be granted or
denied by controlling only the local copy of the authorization policies. The execution order
of updates on the shared document or authorization policy are arbitrary. An optimistic
approach is used to tolerate momentary violation of access rights and afterwards, ensure
the copies to be restored in valid states (by invalidating denied updates) w.r.t the stabilized

access control policy.

82

To ensure a safe access control in DCE (i.e. permitting legal updates and rejecting illegal
updates on the shared document), a protocol stack is built by integrating an ACP on the top
of any CP based on data replication and update logging [Imine et al. (2009)]. If we combine
a correct CP (i.e. satisfying separately the consistency property) with an ACP, can we verify
that the consistency property is preserved by the new protocol ? This verification turns out a
hard task and unmanageably complicated. Indeed, it requires examining an infinite number
of situations since the updates are performed in different orders on different copies (arbitrary
number) of the shared document and the authorization policy. Consequently, the verification
of the combination correctness must be assisted by an automatic checker tool.
Contributions. We propose here a finite abstract model which is equivalent with regard to
the requirement, to a collaborative system which uses ACP. We specify the abstract model
with model-checking technique in order to verify the preservation of consistency property
of any DCE integrating an ACP on the top of a consistent CP. For this purpose, we use a
symbolic model-checking tool UppaalH, to specify the behavior of the abstract model and the
consistency requirement. This choice is motivated by the possibility to handle symbolically
queues of messages, logs, variables such as number of sites, number of operations generated
by each site, etc. The consistency property is specified in CTL language and verified by
Uppaal model-checker.

Outline. This paper is organized as follows: the flexible access control protocol is presented
in Section and formalized in Section (.3l Section (.4 is devoted to the investigation
of a finite abstract model preserving the consistency property. Section deals with the
formal specification and verification of ACP. Section discusses related work. Finally, the

conclusion is presented in Section 5.7

5.2 Optimistic Access Control Protocol for DCE

Shared documents are objects whose state can be altered by a set of cooperative operations
generated by sites. For instance, a shared text document is modified by operations such as
inserting a new section, deleting an existing paragraph and replacing an old line by a new one.
In [Imine et al. (2009)], an access policy is described as an indexed list of authorization rules,
where each rule is a quadruple (S, O, R, w) with (i) S is set of subjects (sites or users), (ii) O
is a set of objects (e.g. paragraphs or chapters), (iii) R is a set of access rights (e.g. deleting
or updating paragraphs) and (iv) w € {—,+}. The sign “+” represents a right attribution
and the sign “—” represents a right revocation.

Each site consists of two layers: coordination layer and security layer. The coordination

1. http://www.uppaal.com

83

layer is in charge of editing the shared document. The role of the security layer is to manage
the access control policy. To achieve this objective, the security layer edits a local copy of a
shared policy by producing some administrative operations with regards to the access control
policy. Then, the state of the shared policy object is altered by a set of administrative oper-
ations such as adding and removing authorizations. Administrative operations are generated
by the administrator, at any time, and aimed to manage dynamically the right access to the
shared documents. These operations are next broadcast to other sites, in order to modify
their local copies of the policy object. Thus, on each site, the cooperative operations are
granted or denied by using the local copy of the policy and applying the first-match seman-
tics: when an operation o is generated, the system checks o against its authorizations one by
one, starting from the last authorization and stopping when it reaches the first authorization
[that matches o. If no matching authorizations are found, o is rejected. Note that every
local policy copy maintains a monotonically increasing version counter that is incremented
by every administrative operation performed on this copy.

The collaboration happens in optimistic approach and modifications could be applied in
different orders at different sites. The messages are assumed to be exchanged via secure and
reliable communication network: each message sent is received by each others without alter-

ation. The flow of messages exchanged during the collaboration is illustrated in Figure b1l

5.2.1 Generation of Local Cooperative Requests

Locally, each site generates some cooperative operations. The processing of the generated
cooperative operation is shown at Figure 5.2 Each generated cooperative operation is firstly
checked against the local policy. If the operation is not compliant with the local policy,
it is said to be invalid and its execution is aborted. At the administrator site, when the
operation is granted, its status is set to valid. At a non-administrator site, the status is

set to tentative if it is granted. The operation is then performed immediately on the local

Security Layer Security Layer
Local copy Access 31 Access Local copy
fshared |at— control) control < | ofshared
Policy . Policy
1.2
b 12
3.2 -
3.3 11:C i b locally
P——Y — 1.2 Local cooperative operation granted
Coordination Layer ;: 1 Coordination Layer 1.3 : Cooperative request generated by site §
. 21 v 13 21:C ive request generated by site Adm
- Local copy of 2.2 : Remote cooperati i d
shared .2 perative operation grante
Coordination Coordination 3.1: Administrative request (validati
1.3 3.2: Feedback from validation request
33:¢C i ion to be i i
Cooperative Site (S) Cooperative Administrator Site (Adm) 4.1 : Administrative request (access rule)

Figure 5.1 Flow of collaboration messages

84

copy of the shared document. A resulting cooperative request is generated and attached with
the number version of the policy copy on which the operation is granted. This cooperative

request is finally broadcast to other sites.

5.2.2 Reception of Remote Cooperative Requests

When a remote cooperative request is received, it is firstly stored in a dedicated queue
before being extracted. The request is extracted if it is causally-ready. Thus, its attached
version number of policy is less or equal than the current version of the local policy and its
precedent cooperative request have been already integrated to the local copy of the shared
document. This mechanism is setup to ensure that the access control protocol preserves the
causality dependency with respect to the precedent administrative requests and precedent
cooperative requests.

After its extraction, the remote cooperative request is checked against the local adminis-
trative log, to verify whether or not it is granted. When the remote cooperative request is
granted, its status is set to valid if the receiver is administrator and to tentative, otherwise. If
the receiver is administrator, the number version of its policy is incremented and a validation
request is generated. The new version number is attached to the validation request which is
broadcast to other sites. Afterwards, the corresponding cooperative operation is performed
locally on the administrator’s copy with regard to the collaborative editor’s procedures. The

processing of a remote cooperative operation is presented at Figure 5.3

5.2.3 Generation of Administrative Operations

To manage and control the access, the administrator produces some access rules called ad-
ministrative operations. When an administrative operation is generated, the version number
of the administrator’s local policy is incremented. Then, the policy is updated by performing
on, the generated administrative operation. A corresponding administrative request with the
latest version number of the policy is generated and broadcast to other sites to enforce their

policy.

5.2.4 Reception of Remote Administrative Requests

There exist two kinds of remote administrative requests: validation request and access
rule based request. Each received remote administrative request is first stored in a dedicated
queue then, extracted when it is causally-ready. The administrative request is said to be
causally-ready if the value of its attached policy version number is the next value of the

version number of the local policy (the difference is one) and in case of a validation request,

Local copy of
shared policy

@ -
ol Is administrator 7 Y es—» Sex D_peratlon -
© to valid status
-

Y
)
£ Check again Set operation
5 local as|]i No—————— »| | to tentative
g i status
/2] A Invalidate

operation | [—"CERD)

5 «
% Seiin Local copy of .
I shared document < Execution <
c O
o Generate local
£ cooperative | —
= e -4—‘E' Broada:;.:t - Generate
iz Eepesa tve Y cooperative
a ki v request
o
o

Figure 5.2 Processing of a cooperative operation at generation time.

Local copy of
shared policy

Is administrator ?

Set operation
to valid status

!

Yes ™

> Check again " Incr.emenllrt;:
j r. local policy Yes f Verﬁolft)sorllil.lcr: T
>
'E Setoperationto ||
E tentative status
8 h 4
w 2 Generate and
S.P't Dgem‘“)" Lo broadcast valid ation
invalid status request
End
g Begin .
= Local copy of
T3 shared document ¢—— | | Execution | |¢—!
E = Receive
o8 cooperative | —
§ request -

Figure 5.3 Processing of a received cooperative operation.

85

86

the corresponding cooperative operation is already executed on this site. Fach extracted
access rule based request, is performed on the local policy. Thereafter, if the access rule is
restrictive, then all tentative cooperative operations, locally generated or received, which are
concerned by the rule with regard to the rights, are undone. For the extracted validation
request, the status of the corresponding cooperative operation is updated from tentative to
valid. At the end of the treatment of the administrative request, the version number of the

local policy is incremented. The processing of administrative request is shown at Figure 5.4

5.2.5 Verification Issues

A Distributed Collaborative Editor consists of several sites. Each of them maintains the
shared objects and its access right policy, by generating, exchanging and performing some
cooperative and administrative operations. As the numbers of sites, cooperatives operations
and administrative operations are arbitrary, the queues of cooperative requests and admin-
istrative requests are unbounded. The system is then infinite and parameterisable by the
number of sites, the number of cooperative operations to be generated by each site, and the
number of administrative operations to be generated by the administrator. On each site,
the shared objects are modified with respect to the local access right policy. Meanwhile, the
local policy is enforced by taking into account the administrative operations generated and
broadcast by the administrator. Thus, if the policy is not enforced identically at all sites, it
can result in the security hole on the shared objects by permitting illegal modifications or
rejecting legal modifications. In addition, this situation can lead to data inconsistency for
the collaborative edition such as the document can diverge at the end of the collaboration.

For instance, consider a group composed of an administrator adm and two sites S; and
Sy. Initially, the three sites have the same shared document containing the text bcd and the
same policy object where S; is authorized to insert characters (see Figure [5.5]). Suppose that
adm revokes the insertion right of S7 and sends this administrative operation to S; and S to
enforce their local policy copies. Concurrently S; executes a cooperative operation Ins(1,a)
to derive the state “abcd” as it is granted by its local policy. When adm receives the S;’s
operation, it will be ignored (as it is not granted by the adm’s local policy) and then the final
state still remain bcd. As S, receives the S;’s insert operation before its revocation, he gets
the state abed that will be unchanged even after having executed the revocation operation.
We are in presence of data inconsistency (the state of adm is different from the state of S}
and S5) even though the policy object is the same in all sites. In fact, the new policy object is
not uniformly enforced among all sites because of the out-of-order execution of administrative

and cooperative operations. Thus, security holes may be created. For instance some sites

Begin
Local copy of
shared policy
Receive
ad ministrative

= request Update local i

@ licy noncompliant

% P operations

.|

g.. Yes

3 Increment the

@ version b

Is access rule ? kg
n of policy
No!
End

=
(=]
= Local copy of i
= s shared document Invalu:!ate -+
£ = operations
T ®
8 . |
S End
L8]

Figure 5.4 Processing of received administrative request.

adm 51 52
“bdc” “bed” “bed”
revoke ihsertion I ns(l, a)
right to s \
“abed” ‘ Accepted
I gnjm“ed I@

revoke insertion revoke insertion
rightito s1 rightito s1

Figure 5.5 Divergence caused by introducing administrative operations

88

can accept cooperative operations that are illegal with respect to the new policy (e.g. sites
S1 and Sy).

To solve this problem, the ACP applies the principles of optimistic security [Povey (2000)]
in such a way that the enforcement of the new policy may be retroactive with respect to
concurrent cooperative operations. In this case, only illegal operations are undone. For
instance, Ins(1,a) as shown at Figure 5.5 should be undone at S} and Sy after the execution
of the revocation.

It appears important to verify that the ACP preserves the correctness of the collaborative
editing system on which it is deployed with regards to the security issues and data consistency.
For this purpose, the sets of legal (valid) cooperative operations must be identical at all sites,
when all generated and received cooperative and administrative operations are performed on
each site (stable state). Performing such a verification is tricky and hard to do manually. So,
the system must be automatically checked using formal methods. However, the automatic
checking tools could lead to severe state explosion, time consumption, result in a lack of
memory and finally aborted, or could not cover all the state space needed for verification.
For instance, previously, we experiment the verification issue with explicit model checking
technique under Uppaal. The exploration does not scale over 4 sites. It results in a lack of
memory and finally aborted. In addition, in |Randolph et al. (2013)], AlloyH is used to verify
whether or not ACP preserves the correctness of DCE. Alloy Analyzer works by reduction to
SAT, which technique is suitable for infinite systems. However, the analysis does not either
cover the space state of the system. For this purpose, we investigate the existence of a finite

abstract model which is equivalent to our infinite system with regards to the consistency

property.

5.3 Definitions

In this section we give several formal definitions related to the collaboration and ACP.
We are particularly interested in the evolution of the status of cooperative operations at each
a site. Let us denote :

— O, the set of cooperative operations.

— A, the set of administrative operations.

— POLICY , the set of policies.

— SITE, the set of sites.

2. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models. Retrieved April 4,
2014 from http://alloy.mit.edu/alloy/

http://alloy.mit.edu/alloy/

89

Définition 5.1 /[Model of the System/]. The system consists of an arbitrary number

n of cooperative sites including one administrator. It is defined by a model My, =

(SITE, O, A, ACP) with ACP the access control protocol.

Each site S; € SITE has a local copy of the shared policy denoted P;, with P, C
POLICY . The version number attached to the local copy of the shared policy is denoted
v;. Its value increases during the collaboration process. P; is empty at the beginning of the
collaboration such as v; is initialized to 0. The administrator is denoted S;.

During the collaboration, the system evolves as operations are processed at each site.

These changes are traduced by different states which succeed each other.

Définition 5.2 [Local and Global State of the system/]. The local state of the system
at site S; € SITE is defined by its current number version of the policy, the administrative
log and the set of cooperative operations available (generated and received) at this site. We
denote STATE;, the set of local states of the system at \S;.

We define a relation < over STATE; such as for all stn;, stg; in STATE;, sty < stg;
if and only if stg; could be reached from st.;, after the execution of a sequence of actions of
site S;. stg; is the successor of st if it could be reached from st,;, after the execution of a
single action.

The global state of the system is a tuple of local states of all sites. We denote STATFE,
the set of global states of the system.

STATE = {st, st = (sti..., st;, ..., st,,) with st; € STATE;,n = |SITE|} (5.1)

We define a relation < over STATE such as for all st,, stz in STATE, st, < stg if and
only if there exists at least one site S; such as the component stg; of stz could be reached

from the component st,; of st,, after the execution of a sequence of actions of site S;, with
stai € STATE; and stg; € STATE;.

When the system evolves, each cooperative operation gets different status at each site.

The changes of status are the result of applying ACP to the collaboration process.

Définition 5.3 [Status of a coopreative operation]. At any site, a cooperative operation
could have (i) a tentative status iff the operation is not validated yet, (ii) an invalid status

iff it is denied or unauthorized, (iii) a valid status iff it is validated.
We denote STATUS, the set of status of a cooperative operation.

STATUS = {tentative,invalid, valid} (5.2)

90

Définition 5.4 [Transition Relationships|. The transition relationships § between local
states of the system at site S; € SITFE is a relation from the cartesian product ST AT FE; x Act

to STATFE;, where Act is the set of actions related to the execution process of the protocol at
Si.

§: STATE; x Act — STATE; (5.3)

We associate the operator ~» with the transition relation ¢ to indicate the change of status
of an operation as defined in the statement [5.4

Vstas, stgi € STATE;, stai ~» stg; <= Sta; < stg; AJa € Act, d(stqi,a) = stg; (5.4)

Définition 5.5 [Causality]. The causality relationship between operations is expressed by
the Causally-ready function (denoted cReady). It maps a received cooperative operation or
a receiwed administrative request, a site S; and a state of the system, to a boolean value
which is true if the received cooperative operation or the received administrative request is
causally-ready at S; in the state st and false otherwise.

cReady : (OU A) x SITE x STATE — {true, false} (5.5)

Recall that a received cooperative operation is causally-ready iff its attached version number
of policy is less or equal than the current version number of the local policy and its precedent
cooperative operation have been already integrated to the local copy of the shared document.
The received administrative request is causally-ready if the value of its attached version
number of policy is one unit greater than the current version number of the local policy and
in case of validation request, the corresponding cooperative operation is already executed on
the site.

The causally-ready notion is applied to remote cooperative and administrative requests.
According to the access control protocol, when a cooperative request is causally-ready, the
remote-checking process is executed. The objective of this process is to verify if the received
operation is compliant with the local administrative log. To deel with the result of this stage,

we use a boolean function as presented in Definition (.0l

Définition 5.6 [Remote-Checking]. The remote-checking against administrative log de-
noted checkR() is a function that maps a cooperative operation, a site and a state of the
system, to a boolean value which is the result of checking the considered operation against the
administrative log. The function returns true iff the operation is not denied by the remote-
checking process, and false otherwise.

checkR : O x SITE x STATE — {true, false} (5.6)

91

For instance, with the cooperative operation o at the site .S;, when the system is in the state
st, checkR(o, S;, st) = true means that the operation is granted and checkR(o, S;, st) = false
states that the operation is denied.

Similarly to a remote cooperative operation, a remote administrative operation based on
rule is used in a checking process. Thus the administrative operation is used to verify whether
or not some cooperative operations with the tentative status are compliant with the related
access rule. The role of the function checkT is to return the result of this processing, as
indicated in Definition (.7

Définition 5.7 [Checking of Tentative Operation]. The checking at a site S; (denoted
checkT) of a restrictive received administrative request against a cooperative operation which
1s in the status tentative, is a function that maps a cooperative operation, a site, an ad-
ministrative operation (request) and a state of the system, to a boolean value which is the
result of checking the operation against the restrictive received administrative request. The
function returns true iff the operation is not denied by the access rule corresponding to the
administrative request, and false otherwise.

checkT : O x SITE x Ax STATE — {true, false} (5.7)

A remote administrative operation which is not based on rule, is related to the validation
of a cooperative operation. According to the protocol, when this administrative operation is
causally-ready, it is performed in order to change the status of the related cooperative oper-
ation. To know whether or not the validation request is already performed for an operation

at a site, we define a function denoted per fV as stated at Definition 5.8

Définition 5.8 [Validation Request Performed]. Let us consider a cooperative opera-
tion o, a site S; and a global state st of the system. The function per fV maps a cooperative
operation, a site and a global state of the system, to a boolean value. It returns true iff the
validation request related to the cooperative operation o is already performed at S; when the
system is in the state st and false otherwise.

perfV : O x SITE x STATE — {true, false} (5.8)

As we are interested in the evolution of the status of cooperative operation at each site,
it appears necessary to have the information about the status. This task is completed by a
function denoted val (see Definition [£.9]).

Définition 5.9 [Operation Valuation]. The operation valuation denoted val is a function
that maps a cooperative operation, a site and a global state of the system to the status of the
operation at this site when the system is in the considered state. It returns the status of the
operation for the parameters indicated.

val : O x SITE x STATE — STATUS (5.9)

92

Définition 5.10 [Stable State]. The system is said to be in a stable state iff each site
completes the processing of all generated and received operations. The subset of the stable

states of the system is denoted STABLE. We have : STABLE C STATE.

Définition 5.11 [Satisfiability of the Data Consistency Property]. The data con-
sistency property @ is satisfied at a stable state st of the system iff the valuation of each
processed cooperative operation is the same at each site.

Vst € STABLE, st = < Yoe 0,VS;,S; € SITE,val(o,S;, st) = val(o, S;, st) (5.10)

5.4 A finite abstract model preserving consistency property of ACP

As the consistency property means that the decision taken for an operation is the same
at each site, we will focus on a model based on the status of operations. According to ACP,

the status of an operation can change as expressed in Property [Il
Property 1 The possible evolutions of the status of a cooperative operation at any site are

tentative ~ invalid | valid (5.11)

This property states that at any site, the status tentative of any cooperative operation (local
or remote) could be changed in invalid or valid. The status valid and invalid are final as

they are maintained and do not change.

5.4.1 Generation and Reception of a Cooperative Operation

The cooperative operations which are denied locally at generation time are not considered
as they are not known by other users and consequently have no impact on the consistency
property. So, we consider only the cooperative operations locally granted at generation time
and broadcast to other sites. The properties related to an operation at the generation or the

reception time are as follows.

Property 2 At any non administrator site, the status of any cooperative operation locally

granted, at generation time, 1s tentative at this site.

Property 3 At the administrator site, the status of any cooperative operation locally granted,

at generation time, is valid at this site.

Property 4 The status of any remote cooperative operation at reception time is the same as

at its generation time.

93

The properties 2] and B infer that initially, any cooperative operation locally generated
holds either tentative or valid status. The property [states that the initial status of any

remote cooperative operation does not change during the message sending process.

5.4.2 Execution Process

To investigate a finite abstract model preserving consistency property of ACP, we propose
to examine the execution process cases and their resulting status for any considered cooper-
ative operation. Let o be any cooperative operation and S; be a site. According to the ACP,

the different processing scenarios of the cooperative operation o at site .S; are:
1. Scenario 1 : o is a local operation at S; (the owner is S;) and S; is the administrator.
2. Scenario 2 : o is a local operation at S; (the owner is S;) and S; is not the administrator.

3. Scenario 3 : o is received by S; and S; is the administrator. The owner of o is not the

administrator.

4. Scenario 4 : o is received by S;. S; is not the administrator but the administrator is

the owner of o.

5. Scenario 5 : o is received by 5;. S; is not the administrator and the administrator is

not the owner of o.

Based on these five scenarios, we point out several properties.

Property 5 Let o be a local cooperative operation at the administrator site Sy, sty be a global
state of the system at the generation time of o.

Vstg € STATE — {sto}, stg > sty Aval(o,S1, stg) = valid (5.12)

This property follows from the properties [Il and Bl Indeed, the status of any cooperative
operation granted at generation time by the administrator site is valid which is a final
status. Then for any state the status of this kind of operation is maintained to valid at the

administrator site.

Property 6 Let o be a local cooperative operation at S; which is not the administrator (i #
1), sty be the global state of the system when o is granted and broadcast by S;, ar be an access

94

rule based administrative request, vr(o) a validation request related to the operation o.

val(o, S;, sto) = tentative (5.13)

Vstg, st, € STATE, stz < sty Aval(o, S;, stg) = tentative A checkT (o, S;, ar, stg) = false =
val(o, S;, sty) = invalid (5.14)

Vstg,st, € STATE, stg < st, Aval(o,S;, stg) = tentative A checkT (o0, S;, ar, stg) = true =
val(o, S;, st) = tentative (5.15)

Vstg, st, € STATE, stg < sty Aval(o, S;, stg) = tentative A per fV (o, S;, stg) = true =
val(o, S, sty) = valid (5.16)

The statement (B.13]) follows from the Property 2l When broadcast by the local site, the
status of the cooperative operation is tentative. The statement (5.14) states that any local
cooperative operation with the status tentative is invalidated by any administrative request
which denies the execution of this cooperative operation. It involves a new status for the
operation such as invalid. The statement (5.15]) states that any local cooperative operation
with the status tentative maintains this status if any administrative request does not deny
its execution. The statement (5.10) states that any local cooperative operation with the
status tentative which validation request is processed locally is set to be valid. It involves a

new status for the operation such as valid.

Property 7 Let o be any remote cooperative operation at site Sy which is the administrator.

Vsta,stg € STATE, sty < stg Aval(o, S1, sta) = tentative A checkR(o, S, sto) = true =

val(o, S1, stg) = valid (5.17)
Vstq,stg € STATE, st < stg Aval(o, S1, sto) = tentative A checkR(o, S1, sto) = false =
val(o, S1, stg) = invalid (5.18)

The property states that any remote cooperative operation which is granted at adminis-
trator site using the check-remote function is said to be valid. The operation is said to be

invalid if it is pointed out as denied by the check-remote function.

Property 8 Let o be a remote operation at site S; (i # 1) such as the owner is the admin-
strator.

Vstq,stg € STATE, st, < stz Aval(o, S;, sto) = valid A cReady(o, S;, sto) = true =
val(o, S;, stg) = valid (5.19)

The property states that when any remote cooperative operation which owner is the

administrator is processed, its status is set to valid. With regards to the protocol, if o is

95

causally-ready at S;, it is not checked against the administrative log before being processed

as its owner is the administrator. Then, it maintains its valid status.

Property 9 Let o be a remote operation at a non-administrator site S; such as its owner is
not the administrator, ar be an access rule based administrative request, vr(o) a validation
request related to the operation o.

Vsta,stg € STATE, sty < stz Aval(o,S;, sto) = tentative A checkR(o0, S;, sto) = false =

val(o, Sy, stg) = invalid (5.20)

Vstq,stg € STATE, sty < stg Aval(o, S;, sto) = tentative A checkR(o, S;, sto) = true =
val(o, S;, stg) = tentative (5.21)

Vsta,stg € STATE, sty < stg Aval(o, S;, sty) = tentative A checkT (o, S;, ar, st,) = false =
val(o, S;, stg) = invalid (5.22)

Vsta,stg € STATE, sty < stg Aval(o, S, sta) = tentative A checkT (o, S;, ar, sto) = true =
val(o, S;, stg) = tentative (5.23)

Vsti, stg € STATE, sty < stg Aval(o, Sy, sto) = tentative A per fV (0, S;, sto) = true =
val(o, S;, stg) = valid (5.24)

The statement (5.20) indicates that any remote cooperative operation checked against
the administrative log and revealed to be denied is said to be invalid. On the contrary when
revealed to be not denied, the operation hold the status tentative as pointed out by the
statement (5.21]). The statement (5.22]) states that any remote cooperative operation with
the status tentative is invalidated by any administrative request which denies the execution
of this cooperative operation. It involves a new status for the operation such as invalid.
The statement (5.23]) states that any remote cooperative operation with the status tentative
maintains this status if any administrative request does not deny its execution. The statement
(5:24)) states that when the validation request of any remote cooperative operation with the
status tentative is processed locally, this operation is set to be valid. It involves a new status

for the operation such as valid.

Lemma 2 At each stable state of the system, at each site, the status of any cooperative

operation (local or remote) is invalid or valid.

Proof 3 In a stable state, all operations are processed (see Definition [5.10). As, no pro-
cessing 1s pending, no operation has a tentative status, the operations hold one of the status

invalid or valid. According to the property [, invalid and valid are final.

96

5.4.3 Analyzis of the Execution Process

The behaviour of each site consists of the execution of several functions devoted to :
verify whether or not some requests are causally-ready (cReady), check remote cooperative
operations (checkR), and check tentative operations using received administrative requests
(checkT), respectively. This list of functions does not take into account the collaboration
tasks such as generate and execute cooperative operation which are done by the Coordination
Layer. However this list could be completed with the performing of validation requests when
they are causally-ready and the undoing of cooperative operation requests. The execution
of these functions has the effect to change the status of the operation as pointed out with
the properties Bl [6, [7, 8 and [@ and Lemma 2l The diagram shown at Figure presents the
evolution of the status of the cooperative operation at any site with regards to its features :
administrator or not, owner or not.

Let us consider a cooperative operation owned by the administrator. This case is imple-
mented by the scenario 1 of the execution process. Examining the list of scenarios presented
at Section and the diagram shown at Figure 5.6l the scenario 1 must be associated with
the scenario 4. Indeed, when the owner of the operation is the administrator, the operation

is remote at other sites.

Lemma 3 In a stable state, any operation owned by the administrator has the same status

at all other sites.

Proof 4 Let us consider a collaborative system with an arbitrary number of sites with one
administrator. Let us also consider one operation and assume that its owner is the admin-
istrator. The operation is remote at other sites. Based on the properties[d and[§ illustrated
by the edges labelled scenario 1 and scenario 4 at Figurel5.0, the only one final status for the
remote cooperative operation is valid as soon as its processing is completed. Thus, from the
state following the processing of the remote cooperative operation, to the end the collaboration,
it holds the status valid as at the owner’s (administrator) site. Particularly, in any followed

stable state of the system, the remote operation has a valid status as at the owner’s site.

Lemma 4 Let us consider a collaborative system with an arbitrary number n of sites includ-
ing one administrator. The number of sites needed to cover the execution process when the

cooperative operation is generated by the administrator is two.

Proof 5 According to Lemmal3, non-administrator sites have similar behavior with regards
to any operation generated by the administrator. Thus, the received operation holds a valid

status after being processed. To cover the Scenario 1 in which the operation o is generated by

97

the administrator, one non-administrator site will be sufficient. Thus, we have a system of

two sites.

scenario 4

scenarto 1

Figure 5.6 Execution process at any site.

Let us consider now a cooperative operation generated by a non-administrator. This case
is implemented by the scenario 2 of the execution process. Examining the list of scenarios
presented at Section and the diagram shown at Figure [0.6] the scenario 2 must be
associated with the scenarios 3 and 5. Indeed, when the owner of the operation is not

administrator, the operation is remote at other sites including at administrator site.

Lemma 5 Let us consider a cooperative operation generated by a non-administrative site.

The number of sites needed to cover the execution process when the operation is not generated

98

by the administrator is three.

Proof 6 Let us consider a system which consists of an arbitrary number n of sites, and
assume that a cooperative operation is generated by a non-administrative site. The system
could be split in three (03) subsets : the owner of the operation as a non-administrator, the
administrator, and the other (n — 2) non-administrator sites. These 3 subsets implement
the scenario 2, scenario 8 and scenario 5 of the execution process, respectively. One site is
sufficient to represent all the (n — 2) sites of the third subset as they have similar behavior
with regards to any received operation (Property[d). Then to cover this scenario three sites
will be sufficient.

Theorem 2 Let us consider a collaborative system with an arbitrary number n of sites. To
cover all the execution process cases, the system could be sufficiently abstracted to a new

system of three sites including the administrator.

Proof 7 (i) With the Lemmal[j, two sites are sufficient to cover the execution process when
the administrator generates a cooperative operation (scenario 1 and scenario 4). (ii) With the
Lemma[3, three sites are sufficent to cover the execution process when a non-administrator
generates a cooperative operation (scenarios 2, 4 and 5). This latter case (i) can be considered
as extension of the former case (i) such as it contains the administrator and at least one non-
administrator. Then to cover the five scenarios considered at Section[5.].2, we consider the

mazimum number figured out (between 2 and 3).

We establish in Theorem [2 that the system could be sufficiently abstracted to a new
system of three sites including the administrator. It appears now important to establish that
the infinite system and the abstract model are equivalent with regards to the consistsency

property. This is done with the Theorem Bl and its proof.

Theorem 3 Let M,y be a model of a collaborative system which uses ACP and consists
of an arbitrary number n of sites including one administrator,]\423,1> be the corresponding
abstract model which consists of 3 sites including the administrator and ¢ be the consistency
property. The abstract model M<’371> satisfies the consistency property iff the collaborative

model M, 1y satisfies the consistency property.
M e © My = (SITE,0,A ACP) = ¢ (5.25)

Proof 8 Assume that SITE = {S1,S55,S5, ..., S,} with Sy the administrator and let M<,3,1
consists of {S1,S;, S;ywith i # j.

)

99

My b= @ = My, = ¢ is trivial when setting n = 3 and considering that M1y | ¢ =
My, | . Assume that Mis ., |= . The system (S1, Sz, 53) [= ¢ like any system (51, S;, Sj)
with i # j, 1> 4and j > 4. While adding Sy to the system (Sy, Sa,S3), Sy could be associated
with Sy (respectively Ss) such as, when Sy (respectively Ss) owned an operation, the behavior
of Sz (respectively Ss) and Sy is similar with regards to the status of the operation. Also,
when Sy owned an operation, the behavior of Sy and Ss is similar with regards to the status of
the operation. Then (Si,Ss2,S3) = ¢ = (S1, 59, 53, 54) | . Iteratively, the site S,, could be
added to (Sy,S2, 53, ..., Sn—1) such as (S1,52,53,..., 5n-1) = ¢ = (51,592,553, ..., Sn_1,5,) E

@, from which Mj; 1y |= o = M1y | ¢

5.5 Model Checking of the Abstract Model

Several model checking techniques have been proposed in the literature. These techniques
can be classified into explicit state model checker and Symbolic model checker. In explicit
state model checker [Holzmann (2004)|, states, sets and relations are explicitly represented,
whereas, in symbolic model checker, they are implicitly represented using boolean logic for-
mulas. The category of symbolic model checker can be subdivided into SAT-based bounded
model checkers [Schaeffer-Filho et al. (2009)] and BDD-based model checkers [Cimatti et al.
(2000)]. In SAT-based bounded model checking, the basic idea is to search for a counterex-
ample in traces whose length is bounded by some integer k£ [Frappier et al. (2010)]. If no
bug is found then k is increased until either a bug is found or the computer resource limits
are reached. BDD-based model checking allows to prove by considering the whole state space
of the model that some property is satisfied but it does not scale well in practice. However,
when the state space is not too big, the BDD-based approach could be appropriate. The
Collaborative System of n arbitrary number of sites using ACP over the CP is reduced previ-
ously to an equivalent system of 4 sites. This reduced system allows significant gain in both
space and time for verification. A BDD-based model checker is then the most suitable to
verify the ACP. We propose to use the tool suite of Uppaal to verify that ACP preserves
consistency of DCE.

5.5.1 Uppaal

UPPAAL is a tool suite for symbolic model-checking generally used for validation and
verification of real-time systems but also used for non real-time systems. In addition to its
symbolic model-checker, Uppaal offers a graphical editor for system descriptions and a graph-

ical simulator. The description model is a set of timed automata [Alur et Dill (1994)] (or

1. http://www.uppaal.com

100

simple automata) extended with binary channels, broadcast channels, C-like types, variables
and functions. The simulator allows in addition, to get and replay, step by step, counterex-
amples obtained by its symbolic modelchecker. The model-checker is based on a forward

on-the-fly method, allows to compute over 5 millions of states.

5.5.2 Description of the system

To formally describe the system using the UPPAAL tool, three models are defined. The
first model specifies the behavior of a cooperative operation at each site. The second model
represents an administrative request (rule-based or validation request). The third model
defines the behavior of ACP . The system described does not take into account CP as well as
it performs operations allowed by ACP. Thus, only the final status of operations are required
for analysis. The sites are represented by their identifers.

In a distributed collaborative editing system, sites (users) communicate via a network.
The network is abstracted and not explicitly represented. This is done by setting global vari-
ables which store informations related to cooperative operations and administrative requests,

instead of using and managing queues of messages.

Sites

The sites are represented by their identifers. The number of sites is declared as in state-
ment [5.26] and the type of the identifiers of sites is declared as established in statement [5.27]

const int NbSites = 3; (5.26)
typedef int [0, NbSites — 1] id_site; (5.27)

Evolution of Cooperative Operation

The Uppaal process called Op traduces the evolution of the operation, pointing out the
succession of its status and different events which occured during ACP processing. The
process behavior of cooperative operation is depicted by the automaton shown in Figure 5.7
As the operation is executed at each site, the parameter of the process is the site identifier
named id. The site identifier is attributed as indicated in statement (.28 Then, an operation
op is represented at any site by opfid].

const id_site id (5.28)

101

Initial

send?
id'=owner && start
op[id].owner=owner

send!
id==owner && id!=Adm && start
op[id].owner=owner, op[id].st=T

id==owner &g& id==Adm && start
op[id].ownersowner, op[id].st=y

VStatus[id]?

Recdived oplid].st=V op[id].st=V Tentative
opl[id].owney£=Adm IStatusl[id]?
opl[id].st=l

op[id].ov<sVersions]id]

VStatuslid]?
opl[id].st=\{

&

IStatusl[id]?

op[id].owner!'=Adm ~

Causa”%aqcheckRemote[id]! kC/ oplid].st=I Y
y / RemoteChecking Invalid

Figure 5.7 The model of cooperative operation.

In the model of the operation, starting by the location named Initial, a broadcast channel
(called send) is used to broadcast the operation from the sender to other sites. The next
location is Valid, if the owner is the administrator and the status of the operation is set
to wvalid (indicated by opfid].st=V). When the owner is not the administrator, the next
location is called Tentative as well as the operation’s status is set to tentative (indicated by
opfid].st=T'). Otherwise, the next location is Received and the status is maintained tentative.
When the operation is causally-ready at the remote site, the automaton move to the location
CausallyReady. From this location the operation could access to Valid location with wvalid
status if its owner is administrator or start-off the remote-checking procedure. In case of
success, the result of the execution of this procedure is to set the status either to wvalid
or tentative by moving to location Valid or Tentative, respectively, according to whether
the remote site is administrator or not. When the remote-checking procedure denies the
operation, the next location is Invalid and the corresponding status is invalid (indicated by
oplid].st=I). Binary channels VStatus, [Status, and TStatus are used jointly with ACP to

synchronise status changes and corresponding location.

102

Evolution of Adminstrative Request

The process model devoted to administrative request is called AdReq and shown at Fig-
ure[5.8 This model depicted just the evolution of administrative request at non-administrator
site. Indeed, there is no particular evolution at administrator site for administrative request
except the starting-off of policy update by rule-based administrative request. A global vari-
able reprensenting administrative request is then used by administrator.

The process has two parameters : the remote site identifier (id) and administrative request
identifier (r_id). To show that the request is available at remote site, it firstly stays in the
location Received. When it is causally-ready in the model, the request moves to the location
CausallyReady. With regards to the protocol, the behavior of an administrative request after
being causall-ready, depends on its type. Indeed, a rule-based administrative request is used
to check cooperative operation with tentative status and the policy is updated locally. Also,
validation-based administrative request triggers the update of the status of the corresponding
cooperative operation, from tentative to valid. To execute such procedures, the administrative
request sets up a synchronization with ACP using binary channel (TentativeCheckingfid]! or
UpdateOperation[id]!, respectively). The final location is then Applied to indicate that the

administrative request is peformed completly.

ar[r_id].isRule==true
TentativeChecking[id]!
currentRule[id]=r_id

ar[r_id].rv==Versions[id]+1 &&
(ar[r_id].rid>=0 ||(ar[r_id].io>=0 && op][id].st==T))

0 O 0
CausallyReady pplie

Received UpdateOperation[id]!
ar[r_id].isRule==false

Figure 5.8 The model of administrative request.

ACP

The main process of the system is called ACP and depicted by the automaton in Fig-
ure[5.90 This process is executed by each site (administrator or non-administrator). The only
one parameter of the process is the site identifier named id. According to the protocol, ACP
is responsible to generate and broadcast administrative requests (only by administrator),

receive and perform administrative request (only by non-administrator) and check received

103

cooperative operation against policy (or administrative log) .

From the Initial location, to generate a rule-based adminsitrative request, the model
uses the function RuleReq(). The generation of the request is completed by the increasing
of the number version of the policy (Versionsfid/++) and its update by adding the new
rule (function updatePolicy()). To perform a rule-based administrative request at a remote
site (non-administrator), the model calls the function checkAgainstRule() which results on
checking all cooperative operations with tentative status at the current site. The execution
of this function starts as soon as the automaton receives the binary synchronized message
Tentative Checking[id]? from AdReq automaton, with the update of the number version of
the policy, followed by adding the corresponding rule to the policy.

To generate a validation-based adminsitrative request, the model uses the function valida-
tionReq(), preceded by the increasing of the number version of the policy (Versionsfid/++).
To perform a validation-based adminsitrative request at remote site, the binary synchronized
channel UpdateOperation is used. Note that the broadcast of a new validation-based admin-
istrative request is abstract by setting a global variable as for a new rule-based administrative
request.

To check received cooperative operations against policy (or administrative log), the binary

channel checkRemote[id] is used followed by the execution of the function checkAgainstPol-

icy().

5.5.3 Consistency Property and Verification of the system

To make arbitrary the choice of site as owner of cooperative operation, we add an automa-
ton as shown in Figure [5.10. In addition, this automaton helps to indicate, if the executions
of the cooperative operations are performed by ACP at each site. In this case, the process

stays in the location Final.
system Supervisor, Op, AdReq, ACP; (5.29)

Using UPPAAL, the definition of the system is given by the declaration shown at state-
ment This declaration means that the system consists of Supuervisor, Cooperative
operations, Administrative requests and ACP.

We consider (i) three sites including one administrator with regards to the abstract model
established in Section [5.4] (ii) one cooperative operation owned by a site choosen arbitrarily
between the three sites, (iii) two access rules related to the cooperative operation such as
the first is a positive rule and the second a restrictive rule. The first rule is considered to be

positive because in our scope, we are interested in cooperative operation iniatially granted

104

Versions[id]++,
RuleReq(id, ari),
updatePolicy(ari),

ari++ op[id].st!=T
[ari<(NbSites-1) && id==Adn)
—_ : C
decision==false VStatus[id]!
[Status[id]! UpdateQOperation[id]?
id!=Adm MersionsJ[id]++
checkRemotel[id] ? . Y I,
decision=¢heckAgainstPolicy(op[id].ov) T_eniatweCheckm (id]?
S id!=Adm
CD Inmal@ /C
iz = Versions[id]++,
datePoli tRule[id
(decision==true) && (id==Adm updatePolicy(currentRulefid]) il st==
VStatusid]! y . plid].st==T
; decision=checkAgainstRule(currientRule[id])

Versions[id]++,
validationReq(id)

decision==false IStatus[id]!

decision==true && id!=Adm
TStatus[id]! decision==true

.

Figure 5.9 The model of ACP.

at generation time.
ow: id_site

Istart

owner=ow,
start=true

Fin

©

initial forall (i:int [0,NbSites-1]) (op[i].st ==V||op][i].st ==1)&& start

Figure 5.10 Automaton devoted to choose the owner of the cooperative operation.

To verify the consistency requirement, we are interested in checking the final status of
every cooperative operation when the system is in a stable state (see Definition 5.10). The
consistency requirement is specified by the CTL formula shown at staement[5.30. The formula
means that if the cooperative operations and all administrative requests are processed at
each site by ACP, the cooperative operations at remote sites have the same status as at

the administrator site. After the verification, the Uppaal model-checker states : Property is

105

satisfied. Note that before verifying the main property, we check the absence of deadlocks
(A[JnotDeadlock). A state s of a model is in deadlock if and only if there is no action enabled

in s nor in states reachable from s by time progression.

(Supervisor.Final & & forall(i : int|0, 1]) forall(j : int[1,2])
AdReq(i, j).Applied) — — > forall(i : int[0, 1])(op[i].st == op[Adm)].st) (5.30)

5.6 Related Work

It is well known that analyze security properties of communication protocols in general, is
a tricky task [Malik et al. (2013),Khan et al. (2005)]. Access control models and protocols
[Jayaraman et al. (2013),Lee et Luedemann (2007) Tolone et al. (2005), Piromruen et Joshi
(2005),|Joshi et al. (2004), Sandhu et al. (1996)] do not escape this challenge, which is
worsened in our particular distributed context, by the approach of replicating authorization
policies [Samarati et al. (1996), Xin et Ray (2007)]. The main complexity relies on the infinite
state of systems. Often, the analysis refers to formal methods, such as using automatic
checking tools, [Randolph et al. (2013),Hu et Ahn (2008),/Malik et al. (2013), Khan et al.
(2005)] are examples. In [Randolph et al. (2013)], Alloyg, a SAT-based bounded model-
checker, is used to specify and verify if the data consistency of the DCE is preserved by the
flexible Access Control Protocol [Imine et al. (2009)]. The verification has shown that
ACP preserves the correctness. Although Alloy specification language, based on the first-
order relational logic, is very appropriate to describe infinite systems, bounded model-checker
techniques are known to be useful to find bugs but less appropriate to prove the absence of
bugs. Thus, the study has covered just several restricted scopes, which does not allow to
assert for large scopes. [Jayaraman et al. (2013)] presents the access control policy analysis
tool Mohawk[J. This tool uses techniques for abstraction refinement and bound estimation
for bounded model checker. It is suitable to find bugs in access control policy based on
Administrative Role-Based Access Control (ARBAC). These bugs are related to consistency
or correctness of enterprise access-control policy systems. The Mohawk tool could not be
used to verify the consistency preservation in DCE but the consistency of the access control
policy. Khan et al. [Khan et al. (2005)] proposed a generic approach to verifying security
protocols in the explicit state model-checker SPIN [Holzmann (2004)]. They used Promela

modelling based on logic programming to deal with the potentially infinite agents. However,

2. MIT Sofware Design Group, Alloy : A language and Tool for Relational Models. Retrieved April 4,
2014 from http://alloy.mit.edu/alloy/

3. Mohawk: A tool for wverifying access-control policies. Retrieved June 7, 2014 from
http://code.google.com/p/mohawk/

http://alloy.mit.edu/alloy/
http://code.google.com/p/mohawk/

106

the number of instances examined is restricted. In [Hu et Ahn (2008)], Hu H. et al. have
used Alloy to verify the NIST /ANSI standard model for Role Based Access Control (RBAC),
w.r.t the role deleting property. The Alloy analyzer allowed them to conclude that the
functional definition of DeleteRole function proposed for hierarchical RBAC misses a step
for removing inheritance. This work did not take into account all functional properties of
RBAC model. In [Malik et al. (2013)], UPPAAL tool is used to verify the Inter Control
Center Communications Protocol (ICCP), which is the protocol used among control centers
for data exchange and control. In addition, to secure ICCP without modifying the protocol
itself, the authors enable a communication checker, devoted to detect and create alerts on
potential vulnerability exploitations in ICCP. The analyze of the communication checker by
the Uppaal model-checker helped the authors to refine iteratively the design of the checking

mechanisms.

5.7 Conclusion

In this paper, we have investigated the existence of a finite abstract model which is
equivalent w.r.t. the consistency property, to an infinite collaborative system layered with
ACP. The goal was to prove with the automatic checking using formal methods, that the
system obtained by deploying the ACP over any consistent CP preserves the consistency
property. The finite abstract model obtained consists of three cooperative sites including one
administrator. For the verification, we have formally defined, using tool UPPAAL, a symbolic
model, which take into account, the behavior and the consistency requirement of the system.
The Uppaal model-checker concludes on the satisfaction of the consistency property and allow
us to conclude that the flexible access control protocol preserves the consistency of a DCE on
the top of which it runs. It is important to note that the symbolic model allows a significant
gain in both space and time, as the state explosion problem is avoided. In the future, we
plan to work on ACP with multpile administrators.

english

107

CHAPITRE 6

DISCUSSION GENERALE

Ce chapitre fait une syntese de nos travaux et contributions. Il présente également une

discussion sur la méthodologie suivie, ainsi qu’une analyse de nos résultats.

6.1 Syntheése des travaux

Les travaux présentés dans cette these ont débuté par une revue de littérature. Elle a été
consacrée a la cohérence et au controle d’acces dans les systemes d’édition collaborative. Une
attention particuliere a été portée aux spécificités d’une édition massivement répartie. Ainsi, le
Chapitre2nous a permis d’explorer les différentes approches, modeles et algorithmes proposés
pour assurer la cohérence dans les systemes d’édition collaborative. Plusieurs modeles de
controle d’acces concus pour de pareils systemes ont été également passés en revue. En
étudiant ces divers travaux, nous avons tenté de délimiter la frontiere des connaissances dans
le domaine. Ainsi, les avancées réalisées avec les travaux existants ainsi que leurs limites ont
été étudiées grace a une revue détaillée de la littérature. Sur cette base, nos recherches ont
donné lieu a des propositions consignées dans cing articles dont trois font I’objet de chapitres
de cette these.

Dans un premier volet, les recherches ont porté sur la synthese d’'un algorithme de trans-
formation inclusive qui assure la convergence. La motivation vient du fait que la littérature
a revélé la problématique de la cohérence. Nous avons commencé par explorer I'existence de
mécanismes de réplication optimiste convergents. Les investigations ont été poussées plus loin
pour découvrir les causes de divergence. L’identification des causes a inspiré la conception
d’une nouvelle fonction de transformation inclusive. La preuve formelle a été apportée qu’elle
garantit la convergence des documents. Ce volet a donné lieu a deux articles dont 1'un est
consigné dans la présente these, au Chapitre [Bl

Le deuxieme volet porte sur 'intégration d’un modele de controle d’acces, aux systemes
d’édition collaborative massivement répartis. Nous considérons que le mécanisme de coordina-
tion (gestion de la concurrence et de la transformation des opérations) utilisé par le systeme,
assure nativement la cohérence, a lui seul. D’un point de vue conceptuel, le protocole flexible
de controle d’acces proposé pour les éditeurs collaboratifs répartis a été déployé en surcouche
au protocole de synchronisation utilisé par le mécanisme de coordination. L’exercice a été

de prouver que cette combinaison de protocoles ne compromet pas la cohérence. Cette véri-

108

fication est bornée et n’a permis que de garantir la préservation de la propriété jusqu’a une
certaine borne. L’espace d’états du systeme n’a donc pas été totalement couvert. Ces travaux
ont servi a l'écriture de deux articles dont I'un constitue le Chapitre 4 de la these.

Le troiseme volet s’inscrit dans la poursuite des travaux du deuxieme volet, en terme de
preuve formelle. En effet, pour régler définitivement le probleme de la vérification et aller au
dela de la borne atteinte avec I'analyseur Alloy, la question s’est posée de savoir comment
couvrir 'espace d’états de ce systeme infini. Il est connu que vérifier un systeme infini se
heurte souvent a des problemes d’explosion combinatoire et de défaut de ressources mémoire.
Les réflexions ont alors été orientées dans le sens de la recherche d’'un modele fini sur lequel la
propriété sera vérifiée. L’investigation d’une réduction qui préserve les propriétés du modele
de base, nous a conduit a proposer un modele abstrait ayant un espace d’état fini. La preuve
a ensuite été apportée formellement que ce dernier préserve effectivement les propriétés du
systeme initial, au regard du traitement des opérations coopératives. Par la suite, il a été
prouvé que le modele fini préserve la cohérence. Ce volet a également servi a produire 'article

présenté au Chapitre Bl de cette these.

6.2 Meéthodologie

Dans le systeme considéré, la coordination est décentralisée. Chaque site a sa réplique de
I’objet partagé. Un document textuel a structure linéaire est considéré comme 1'objet partagé
édité. Le systeme n’admet que deux opérations : insertion d'un caracteére a une position
donnée et suppression d'un caractere situé a une position donnée. Les opérations générées
sur un site sont propagées aux autres sites pour étre prises en compte. Nous ne considérons pas
le mécanisme de dissémination a travers le réseau de communication exploité, des opérations
générées localement sur un site. Nous ne faisons pas non plus une hypothese sur le temps
de propagation de ces opérations dans le réseau. Ainsi, toute opération envoyée a travers le
réseau de communication est supposée toujours parvenir a destination, sans altération.

Pour mener a bien les investigations, la question de I'existence ou non de mécanismes de
réplication optimiste convergents a été traduite en un probleme de controle. Le formalisme
des automates de jeu a été utilisé pour décrire le systeme. L’outil Uppaal-Tiga a permis de
représenter le systeme et de vérifier la satisfaction de la propriété TP1. La vérification de
la TP1 se traduit par la question : existe-t-il une stratégie gagnante pour la TP17? Uppaal-
Tiga a conclu que la propriété est satisfaite, c’est-a-dire qu’il existe des I'Ts qui satisfont
la TP1. Ces différents ITs ont été extraits grace a l'outil verifytga de Uppaal-Tiga. Par la
suite, ces ITs identifiés ont servi a formuler le probleme de controle pour la TP2, grace

aux automates de jeu. Il peut étre libellé comme suit : parmi les ITs qui satisfont la TP1,

109

existe-t-il au moins un qui satisfait la TP2? Uppaal-Tiga a conclu qu’aucun de ces ITs ne
satisfait la TP2. Sur la base de ces résultats, la résolution du probleme de controle a consisté
a faire dans un premier temps les investigations pour déceler les cas de transformation qui
posent probleme. Ensuite 'analyse de ces cas a inspiré le choix d’une signature pour les
opérations d’insertion. La nouvelle signature est obtenue en ajoutant un troisieme parametre
a l'opération d’insertion. La sémantique associée au parametre est le nombre de caracteres
supprimés avant la position indiquée. Nous avons établi et prouvé formellement, un lien entre
ce nouveau parametre et la position d’insertion. Un algorithme de détermination des valeurs
du nouveau parametre a été proposé puis prouvé exact. Il s’en suit la synthese d’une nouvelle
fonction de transformation inclusive. La preuve que I'I'T proposé satisfait les propriétés TP1
et TP2 a été faite en utilisant la preuve symbolique. En effet, la technique de model-checking
basée sur les matrices de bornes a été combinée avec le formalisme d’automate. L’outil Uppaal
a servi de cadre pour la preuve. Une évaluation comparative portant sur la complexité a été
faite par rapport a une solution proposée dans la littérature.

Pour ces travaux, le nombre de sites est un parametre du systeme. Il est supposé constant.
Ce choix vient du fait que la vérification de la TP1 nécessite deux opérations concurrentes
générées par deux sites différents. Celle de la TP2 nécessite trois opérations concurrentes
générées par trois sites différents. Le nombre de sites considéré comme parametre du systeme
est trois. Pour ce qui concerne les opérations concurrentes, chaque site a la possibilité de
générer soit une opération d’insertion, soit une opération de suppression. La transformation
d’une insertion ne peut pas donner une suppression. La transformation d’une suppression
ne peut pas donner une insertion. Cependant, la transformation d’une opération concurrente
par rapport a une autre, peut donnner lieu a une nouvelle opération dénommée NoOp. Elle
signifie qu’aucune opération ne résulte de la transformation de l'opération considérée. Elle
ne donne lieu a aucune exécution d’opération sur I’état courant. Il n’y a pas de changement
d’état. Les propriétés TP1 et TP2 sont exprimées en langage CTL, sous la forme de propriétés
de sureté.

Pour sécuriser 1’édition, 'option a été faite de combiner le mécanisme de coordination sup-
posé nativement cohérent, avec un protocole de controle d’acces. La propriété de cohérence
doit étre préservée. Pour ce faire il faut choisir le protocole parmi ceux qui sont proposés dans
la littérature, ou en concevoir un. Il faut par la suite prouver que le protocole convient. La
conception d'un nouveau protocole n’est nécessaire que si tous les protocoles proposés dans la
littérature sont prouvés inutilisables dans le contexte complexe des systemes d’édition collabo-
rative massivement répartis. Ou encore, si une nouvelle méthode intéressante pour des raisons
de performance ou de facilité d’implémentation. Nous avons opté pour un protocole que nous

jugeons adéquat pour atteindre nos objectifs. En effet, le protocole flexible de controle d’acces

110

proposé pour les éditeurs collaboratifs répartis permet de déployer une sécurité optimiste. Il
autorise une rétroaction dans ’application des regles d’acces. De surcroit, son déploiement se
fait par réplication au méme titre que les opérations coopératives qui permettent d’éditer le
document a sécuriser. a ces fonctionnalités s’ajoute la gestion de la préséance causale entre
les opérations administratives et les opérations coopératives. Ce protocole a alors été déployé
au dessus du protocole de synchronisation du mécanisme de coordination. Il faille des lors,
prouver que cette combinaison de protocoles ne compromet pas la cohérence. Pour ce faire, le
systeme doit une fois encore étre modélisé pour étre formellement vérifié. La modélisation a
été faite en utilisant I'outil Alloy. La propriété attendue a également été spécifiée puis vérifiée
par I'analyseur Alloy, en association avec un solveur SAT. Cette vérification est faite pour un
nombre maximal de treize sites. Notons que cette borne est importante du point de vue de la
combinatoire engendrée car elle nécessite des ressources de calcul et de mémoire importantes.
Cependant, 'espace d’états du systeme n’a pas été totalement couvert. La vérification faite
avec Alloy permet de conclure une absence de divergence sur le domaine délimité par la
borne, mais pas sur ’ensemble de 'espace d’états. L’analyseur Alloy est bien adapté pour
la spécification des systemes infinis. Il permet de passer de la spécification du systeme, qui
est basée sur la logique de premier ordre et la théorie des ensembles, a une formulation sous
la forme normale conjonctive. Une fois traduit sous cette forme, le systeme peut alors étre
résolu avec n’importe quel solveur SAT, mais seulement dans une approche de model-checking
borné.

Pour affronter le probleme de la vérification de la préservation de la cohérence, nous avons
cherché un systeme fini équivalent. Nous avons dans un premier temps défini formellement
toutes les proporiétés qui découlent de la description du protocole. Cette formalisation a
débouché sur le recensement des différents scénarii d’exécution d’opérations d’édition de
document. La trace d’exécution de ces scénarii, rapporté aux statuts finaux des opérations a
servi a avoir un modele abstrait du processus d’exécution. Ce dernier a inspiré la proposition
du modele abstrait représentant le systeme en étude. Enfin, pour vérifier si le nouveau modele

abstrait préserve la cohérence, le formalisme d’automate a encore été utilisé avec Uppaal.

6.3 Analyse des résultats

Pour conforter les travaux relatifs a la proposition d’'un nouvel IT, nous avons procédé
a une analyse comparative. Notre I'T a été comparée en terme de complexité, a la solution
TTEF. Les comparaisons ont porté sur les opérations d’insertion et de suppression, au moment
de leur génération. Les résultats sont satisfaisants pour les deux types d’opérations. Dans le

cas d’une suppression la complexité est constante pour notre I'T alors qu’elle est linéaire pour

111

la solution TTF. Pour une insertion, les complexités sont linéaires dans les deux cas.

Apres avoir discuté de nos approches et résultats, nous concluons cette these.

112

CHAPITRE 7

CONCLUSION

Un systeme d’édition collaborative est un logiciel qui permet a un groupe d’utilisateurs
d’éditer conjointement des objets partagés. Lorsque deux utilisateurs interagissent dans un
contexte réparti, il n’est pas toujours possible d’établir un ordre (au sens de Lamport [Lam-
port (1978)]) entre leurs opérations respectives. Il résulte de cette situation de concurrence
entre opérations, des défis majeurs. Il s’agit de I'obtention de documents cohérents et la
gestion des acces. La grande taille du systeme et sa dynamique constituent des contraintes
supplémentaires au contexte. Dans cette these, nous avons essayé d’aborder ces différents
défis en les analysant, en proposant des solutions et finalement en prouvant que ces solutions
sont satisfaisantes. Dans ce chapitre, nous présentons le sommaire des contributions appor-
tées, suivi d'une critique de nos travaux a travers leurs limitations. Pour finir, nous énongons

les avenues sur lesquelles seront axés nos futurs travaux.

7.1 Sommaire des contributions de la thése

Nos recherches ont donné lieu a plusieurs contributions entrant dans le cadre d’une édition
collaborative cohérente et sécurisée. Elles nous ont permis d’atteindre nos objectifs et se
résument comme suit.

— Existence de mécanismes de réplication optimiste convergents. L’approche de gestion
de cohérence considéré est la transformée opérationnelle. Les objets manipulés sont
les documents textuels linéaires. Nous avons prouvé que la position dans laquelle un
caractere doit étre supprimé est suffisante comme parametre pour une opération de
suppression. La preuve a été aussi donnée que le caractere et la position correspondante
ne sont pas suffisantes comme parametres pour une opération d’insertion. Grace a nos
travaux, nous avons conforté la possibilité d’avoir une édition cohérente. En effet, elle
est possible, a condition d’isoler certaines transformations ou de trouver une bonne
facon de les faire.

— Conception d’un algorithme de transformation inclusive devant garantir la convergence
dans un contexte réparti de réplication optimiste. Cet objectif est atteint grace a (i)
la définition d’une nouvelle signature pour Iinsertion, (ii) la précision d’un algorithme
pour déterminer les valeurs du nouveau parametre impliqué et (iii) la synthese d'un

nouvel IT. L’IT permet de réaliser la suppression avec une complexité constante. L’opé-

113

ration d’insertion est réalisée avec une complexité linéaire. La preuve a été apportée
que I'I'T satisfait les propriétés TP1 et TP2. En conséquence, I'I'T proposé garantit la
convergence. Deux avancées notables sont ainsi conjointement réalisées : obtention d’'un
IT convergent a moindre cofit.

— Intégration du controle d’acces et préservation de la cohérence des systemes d’édition
collaborative. L’objectif de sécurisation d’une édition collaborative par le controle d’ac-
ces est réalisé par le déploiement d’'un modele flexible qui procede par réplication avec
effet rétroactif. Les criteres que sont la spécification de haut niveau des droits d’acces,
la généricité et la flexibilité du modele, ’aspect dynamique du modele, le maintien des
indicateurs de performance a des seuils acceptables. Ils justifient la préférence pour un
controle d’acces optimiste qui maintient une relation de causalité entre les opérations
administratives mais aussi entre les opérations administratives et les opérations coopé-
ratives. Des efforts de spécification du systeme ont été faits dans un premier temps
dans une approche de model-checking bornée. Ceci a permis d’avoir une premiere idée
de la préservation de la propriété de cohérence par le protocole, pour des instances non
massives. Par la suite, une avancée a consisté a trouver un modele fini équivalent au
systeme en étude, au regard de la cohérence. La démarche formelle ébauche un cadre de
réduction du systeme applicable pour de futures études sur un tel systeme ou un sys-
teme similaire. Le modele abstrait qui en découle a servi a prouver la préservation de la
propriété de cohérence. Le protocole de controle d’acces est ainsi formellement prouvé
fiable pour les systemes d’édition collaborative répartis, méme avec une contrainte im-

pliquant un grand nombre d’utilisateurs.

7.2 Limitations des travaux

Nos travaux présentent quelques limitations. Elles concernent essentiellement la portée

des travaux et des aspects de flexibilité.

— Dans le chapitre [3 la premiere limitation est relative au type des objets considérés.
En effet, nous n’avons manipulé que des objets textuels ayant une structure linéaire.
L’élargissement de la portée en prenant en compte d’autres d’objets bonifierait les
travaux. Par exemple, vu I’accroissement de I'utilisation des documents au format XML,
I’étude des documents semis-structurés permettrait de couvrir cette nature d’objets. La
prise en compte de plusieurs natures d’objets amene a considérer plusieurs sémantiques,
ce qui ajoute une complexité non négligeable. Les réflexions pourraient étre orientées
dans le sens d'une généricité ou dans celui de la paramétrisation de la cohérence en lui

associant un seuil ou un degré. Par exemple, I’édition d'une image pourrait réquérir un

114

parametre de cohérence de valeur plus faible que 1’édition de texte. Le parameétre sera
donc fixé, en se basant sur la sensibilité du contexte d’application.

— La deuxieme limitation de ce travail est qu’il ne couvre que des opérations d’insertion
et de suppression de caracteres. Il est vrai que le niveau de granularité le plus bas
pour un texte est le caractere. Il est également vrai que certaines opérations peuvent
étre composées a partir des deux opérations que sont l'insertion et la suppression. Par
exemple, un remplacement de caractere peut étre vu comme la composition d'une sup-
pression par une insertion de caractere. Cependant une opération d’annulation nécessite
une plus grande précaution. Elle ne doit pas simplement étre vue comme une opéra-
tion inverse. Elle appellerait des transformations que certains auteurs ont dénommé «
transformations inverses ». La prise en compte de cette nature d’opération dans notre
travail augmenterait son champ d’action.

— La limitation commune aux chapitres (4l et releve du fonctionnemnt du systeme
étudié. Le fait de ne pas considérer plusieurs administrateurs limite ’architecture du
systeme et celle du protocole. La présence de plusieurs adminsitrateurs engendrerait
des opérations administratives concurrentes. Dans ce cas, on aurait un «systeéme de
pleine concurrence». Il serait question de traiter de la concurrence (i) entre opérations
coopératives et (ii) entre opérations coopératives et opérations administratives mais
aussi (iii) entre opérations administratives. La complexité qui découle de la concur-
rence entre opérations administratives s’expliquerait par la possibilité d’avoir des regles
d’acces contradictoires. Par exemple, supposons que le systeme contient deux admi-
nistrateurs. L'un d’eux émet une regle d’acces qui autorise une opération coopérative
pour un utilisateur donné. Si concurremment, le second émet une regle d’acces qui in-
terdit la méme opération a l'utilisateur, un conflit s’en suivra. Une piste pour mieux
aborder cette limitation serait de redéfinir une nouvelle sémantique pour les opérations
adminstratives. On pourra alors s’inspirer des travaux du chapitre [l pour étudier dans
un premier temps la cohérence des politiques locales de sécurité. Ensuite, les présents

travaux des chapitres M et [seront exploités pour parachever ’étude.

7.3 Indication des travaux futurs

Les travaux futurs seront en partie consacrés a surmonter les limitations de cette these :
— a court terme, certaines natures d’objets, pourraient étre isolément étudiées au regard
de la problématique de cohérence. L’approche OT serait considérée avec une sémantique
adaptée a chaque nature d’objets. Par la suite, le controle d’acces serait étudié dans

une perspective multi-administrateurs.

115

— a moyen terme, la cohérence des politiques de controle d’acces ferait I'objet de nos
recherches.

— a long terme, dans une perspective de généralisation, les travaux seront étendus pour
traiter des objets génériques. Puis, la cohérence globale du systéeme retiendrait notre
attention. Elle couvrirait des objets de natures génériques, un controle d’acces multi-
administrateurs basé sur des politiques cohérentes.

Au dela des limitations de la these, en mettant a profit la réalisation des avenues ci-dessus

énumérées, nos futurs travaux seront consacrés aux pistes ci-apres.

— ¢élaboration d’un cadre général de réduction des systemes d’édition collaborative, quelle
que soit la sémantique de I'objet considéré. Ce cadre pourra inspirer d’autres recherches
de réduction de systemes infinis, autre que les systemes collaboratifs.

— L’étude et 'amélioration des performances du protocole de controle d’acces. Il en sera
ainsi pour l'algorithme de transformation inclusive proposée. Il est actuellement de
complexité linéaire pour 'opération d’insertion. Nous n’excluons pas la possibilité de
rechercher une nouvelle fonction d’IT dont la complexité serait constante ou tout au

moins sub-linéaire, pour 'insertion.

116

REFERENCES

[Abdunabi et al. (2013)] ABDUNABI, R., RAY, I. et FRANCE, R. (2013). Specification and
analysis of access control policies for mobile applications. Proceedings of the 18th ACM
Symposium on Access Control Models and Technologies. ACM, New York, NY, USA,
SACMAT ’13, 173-184.

[Ahmed et Shirmohammadi (2006)] AHMED, D. T. et SHIRMOHAMMADI, S. (2006). A
hybrid p2p protocol for real-time collaboration. Enabling Technologies : Infrastructure
for Collaborative Enterprises, 2006. WETICE’06. 15th IEEE International Workshops
on. IEEE, 73-78.

[Akbarinia et al. (2007)] AKBARINIA, R., PACITTI, E. et VALDURIEZ, P. (2007). Data
currency in replicated dhts. Proceedings of the 2007 ACM SIGMOD International Confe-
rence on Management of Data. ACM, New York, NY, USA, SIGMOD 07, 211-222.

[Alotaiby et Chen (2004)] ALOTAIBY, F. T. et CHEN, J. (2004). A model for team-based
access control (tmac 2004). Information Technology : Coding and Computing, Interna-
tional Conference on. IEEE Computer Society, vol. 1, 450-450.

[Alur et Dill (1994)] ALUR, R. et DILL, D. L. (1994). A theory of timed automata. Theo-
retical Computer Science, 126, 183-235.

[Bakhshi et Gurov (2007)] BAKHSHI, R. et GUROV, D. (2007). Verification of peer-to-peer
algorithms : A case study. Electronic Notes in Theoretical Computer Science, 181, 35 —
47. Combined Proceedings of the Second International Workshop on Coordination and
Organization (CoOrg 2006) and the Second International Workshop on Methods and
Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2006).

[Bernstein et Goodman (1981)] BERNSTEIN, P. A. et GOODMAN;, N. (1981). Concurrency
control in distributed database systems. ACM Computing Surveys (CSUR), 13, 185-221.

[Bernstein et Goodman (1983)] BERNSTEIN, P. A. et GOODMAN;, N. (1983). Multiversion
concurrency control : theory and algorithms. ACM Trans. Database Syst., 8, 465—483.

[Bernstein et al. (1987)] BERNSTEIN, P. A., HADZILACOS, V. et GOODMAN, N. (1987).
Concurrency Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[Boucheneb et Imine (2009)] BOUCHENEB, H. et IMINE, A. (2009). On model-checking
optimistic replication algorithms. FMOODS/FORTE. 73-89.

[Boucheneb et al. (2010)] BOUCHENEB, H., IMINE, A. et NAJEM, M. (2010). Symbolic
model-checking of optimistic replication algorithms. IFM. 89-104.

117

[Bullock et Benford (1999)] BULLOCK, A. et BENFORD, S. (1999). An access control
framework for multi-user collaborative environments. Proceedings of the International
ACM SIGGROUP Conference on Supporting Group Work. ACM, New York, NY, USA,
GROUP 99, 140-149.

[Cart et Ferrié (2007)] CART, M. et FERRIE, J. (2007). Asynchronous reconciliation ba-
sed on operational transformation for p2p collaborative environments. Collaborative
Computing : Networking, Applications and Worksharing, 2007. CollaborateCom 2007.

International Conference on. 127-138.

[Cassez et al. (2005)] CASSEZ, F., DAVID, A., FLEURY, E., LARSEN, K. G. et LIMEL D.
(2005). Efficient on-the-fly algorithms for the analysis of timed games. CONCUR-LNCS,
3653, 60-80.

[Cimatti et al. (2000)] CIMATTI, A., CLARKE, E., GIUNCHIGLIA, F. et ROVERI, M.
(2000). NUSMV : A New Symbolic Model Checker. International Journal on Software
Tools for Technology Transfer, 2, 410-425.

[Covington et al. (2001)] COVINGTON, M. J., LONG, W., SRINIVASAN, S., DEV, A. K.,
AHAMAD, M. et ABOWD, G. D. (2001). Securing context-aware applications using

environment roles. Proceedings of the sixth ACM symposium on Access control models

and technologies. ACM, 10-20.

[Ellis et Gibbs (1989)] ELLIS, C. A. et GIBBS, S. J. (1989). Concurrency control in group-
ware systems. SIGMOD Conference. vol. 18, 399-407.

[Frappier et al. (2010)] FRAPPIER, M., FRAIKIN, B., CHOSSART, R., CHANE-YACK-
FA, R. et OUENZAR, M. (2010). Comparison of Model Checking Tools for Information
Systems. Proceedings of the 12th international conference on Formal engineering methods
and software engineering. Springer-Verlag, Berlin, Heidelberg, ICFEM’10, 581-596.

[Georgiadis et al. (2001)] GEORGIADIS, C. K., MAVRIDIS, 1., PANGALOS, G. et THO-
MAS, R. K. (2001). Flexible team-based access control using contexts. Proceedings of the
Sizth ACM Symposium on Access Control Models and Technologies. ACM, New York,
NY, USA, SACMAT ’01, 21-27.

[Holzmann (2004)] HOLZMANN, G. J. (2004). The Spin Model Checker : Primer and Re-
ference Manual. Addison-Wesley.

[Hu et Ahn (2008)] HU, H. et AHN, G. (2008). Enabling Verification and Conformance
Testing for Access Control Model. Proceedings of the 15th ACM symposium on Access
control models and technologies. ACM, New York, NY, USA, SACMAT ’08, 195-204.

118

[Imine (2006)] IMINE, A. (2006). Conception formelle d’algorithmes de réplication optimiste.
Vers ’édition Collaborative dans les réseauz Pair-a-Pair. Phd thesis, University of Henri

Poincaré, Nancy, France.

[Imine (2008)] IMINE, A. (2008). Decentralized concurrency control for real-time collabo-
rative editors. A. O. Djamal Benslimane, éditeur, 8th international conference on New
technologies in distributed systems - NOTERE’2008. ACM New York, NY, USA, Lyon,
France, 313-321. ISBN : 978-1-59593-937-1.

[Imine (2009)] IMINE, A. (2009). Coordination model for real-time collaborative editors.
COORDINATION. 225-246.

[Imine (2010)] IMINE, A. (2010). On Coordinating Collaborative Objects. M. R. Mousavi
et G. Salaiin, éditeurs, 9th International Workshop on the Foundations of Coordination
Languages and Software Architectures (FOCLASA). Open Publishing Association, Paris,

France, vol. 30 de Electronic Proceedings in Theoretical Computer Science, 78-92.

[Imine et al. (2009)] IMINE, A., CHERIF, A. et RUSINOWITCH, M. (2009). A Flexible
Access Control Model for Distributed Collaborative Editors. W. Jonker et M. Petkovic,
éditeurs, Secure Data Management, Springer Berlin / Heidelberg, vol. 5776 de Lecture
Notes in Computer Science. 89-106.

[Imine et al. (2003)] IMINE, A., MOLLI, P., OSTER, G. et RUSINOWITCH, M. (2003).
Proving correctness of transformation functions in real-time groupware. Proceedings
of the Eighth Conference on Furopean Conference on Computer Supported Cooperative

Work. Kluwer Academic Publishers, Norwell, MA, USA, ECSCW’03, 277-293.
[Imine et al. (2006)] IMINE, A., RUSINOWITCH, M., OSTER, G. et MOLLI, P. (2006).

Formal design and verification of operational transformation algorithms for copies

convergence. Theoretical Computer Science, 351, 167-183.

[Jackson (2006)] JACKSON, D. (2006). Software Abstractions : Logic, Language, and Ana-
lysis. The MIT Press.

[Jayaraman et al. (2013)] JAYARAMAN, K., TRIPUNITARA, M., GANESH, V., RINARD,
M. et CHAPIN, S. (2013). Mohawk : Abstraction-refinement and bound-estimation for
verifying access control policies. ACM Trans. Inf. Syst. Secur., 15, 18 :1-18 :28.

[Joshi et al. (2004)] JOSHI, J. B. D., BHATTI, R., BERTINO, E. et GHAFOOR, A. (2004).
Access-Control Language for Multidomain Environments. IEEFE Internet Computing, 8,
40-50.

[Kawagoe et Kasai (2011)] KAWAGOE, K. et KASAI, K. (2011). Situation, team and role

based access control. Journal of Computer Science, 7.

119

[Khan et al. (2005)] KHAN, A., MUKUND, M. et SURESH, S. (2005). Generic verification
of security protocols. P. Godefroid, éditeur, Model Checking Software, Springer Berlin
Heidelberg, vol. 3639 de Lecture Notes in Computer Science. 221-235.

[Kumawat et Khunteta (2010)] KUMAWAT, S. et KHUNTETA, A. (2010). A survey on ope-
rational transformation algorithms : Challenges, issues and achievements. International

Journal of Computer Applications, 3, 30-38.

[Lamport (1978)] LAMPORT, L. (1978). Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21, 558-565.

[Larsen et al. (1997)] LARSEN, K., PETTERSSON, P. et YI, W. (1997). Uppaal in a nut-
shell. Journal of Software Tools for Technology Transfer, 1, 134-152.

[Le Berre et Parrain (2010)] LE BERRE, D. et PARRAIN, A. (2010). The Sat4j Library,
Release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7, 59-64.

System description.

[Lee et Luedemann (2007)] LEE, H. K. et LUEDEMANN, H. (2007). lightweight Decen-
tralized Authorization Model for Inter-Domain Collaborations. Proceedings of the 2007
ACM workshop on Secure web services. ACM, New York, NY, USA, SWS ’07, 83-89.

[Li et Li (2004)] LI, D. et LI, R. (2004). Preserving operation effects relation in group editors.
ACM conference on Computer supported cooperative work. ACM, New York, NY, USA,
CSCW 04, 457-466.

[Li et Li (2008a)] LI, D. et LI, R. (2008a). An approach to ensuring consistency in peer-to-
peer real-time group editors. Comput. Supported Coop. Work, 17, 553-611.

[Li et Li (2008b)] LI, D. et LI, R. (2008b). An operational transformation algorithm and
performance evaluation. Computer Supported Cooperative Work (CSCW), 17, 469-508.

[Li et Li (2010)] LI, D. et LI, R. (2010). An admissibility-based operational transformation
framework for collaborative editing systems. Computer Supported Cooperative Work, 19,
1-43.

[Malik et al. (2013)] MALIK, S., BERTHIER, R., BOBBA, R. B., CAMPBELL, R. H. et
SANDERS, W. H. (2013). Formal design of communication checkers for iccp using up-
paal. Smart Grid Communications (SmartGridComm), 2018 IEEE International Confe-
rence on. 486—491.

[Martin et al. (2010)] MARTIN, S., URSO, P. et WEISS, S. (2010). Scalable xml collabora-
tive editing with undo. R. Meersman, T. Dillon et P. Herrero, éditeurs, On the Move
to Meaningful Internet Systems : OTM 2010, Springer Berlin / Heidelberg, vol. 6426 de
Lecture Notes in Computer Science. 507-514. 10.1007/978-3-642-16934-2_37.

120

[Molli et al. (2003a)] MOLLI, P., OSTER, G., SKAF-MOLLI, H. et IMINE, A. (2003a).
Using the transformational approach to build a safe and generic data synchronizer. Pro-
ceedings of the 2003 international ACM SIGGROUP conference on Supporting group
work. ACM Press, 212-220.

[Molli et al. (2003b)] MOLLI, P., OSTER, G., SKAF-MOLLI, H. et IMINE, A. (2003b).
Using the transformational approach to build a safe and generic data synchronizer. Pro-
ceedings of the 2003 International ACM SIGGROUP Conference on Supporting Group
Work. ACM, New York, NY, USA, GROUP ’03, 212-220.

[Oster et al. (2006a)] OSTER, G., MOLLI, P., URSO, P. et IMINE, A. (2006a). Tombs-
tone transformation functions for ensuring consistency in collaborative editing systems.
International Conference on Collaborative Computing : Networking, Applications and
Worksharing (CollaborateCom). 1 —10.

[Oster et al. (2006b)] OSTER, G., URSO, P., MOLLI, P. et IMINE, A. (2006b). Data consis-
tency for p2p collaborative editing. 20th Conference on Computer Supported Cooperative
Work. ACM, New York, NY, USA, 259-268.

[Pai et al. (2011)] PAI S., SHARMA, Y., KUMAR, S., PAL R. et SINGH, S. (2011). Formal
Verification of OAuth 2.0 Using Alloy Framework. Communication Systems and Network
Technologies (CSNT), 2011 International Conference on. 655-659.

[Piromruen et Joshi (2005)] PIROMRUEN, S. et JOSHI, J. B. D. (2005). An RBAC Fra-
mework for Time Constrained Secure Interoperation in Multi-Domain Environments.
Object-Oriented Real-Time Dependable Systems, 2005. WORDS 2005. 10th IEEE Inter-
national Workshop on. 36-45.

[Povey (2000)] POVEY, D. (2000). Optimistic security : a new access control paradigm.
Proceedings of the 1999 workshop on New security paradigms. ACM, New York, NY,
USA, NSPW "99, 40-45.

[Preguica et al. (2009)] PREGUICA, N., MARQUES, J., SHAPIRO, M. et LETIA, M.
(2009). A commutative replicated data type for cooperative editing. 29th IEEE In-
ternational Conference on Distributed Computing Systems. 395-403.

[Randolph et al. (2013)] RANDOLPH, A., IMINE, A., BOUCHENEB, H. et QUINTERO,
A. (2013). Specification and verification using alloy of optimistic access control for
distributed collaborative editors. C. Pecheur et M. Dierkes, éditeurs, Formal Methods
for Industrial Critical Systems, Springer Berlin Heidelberg, vol. 8187 de Lecture Notes
in Computer Science. 184—198.

121

[Ressel et al. (1996)] RESSEL, M., NITSCHE-RUHLAND, D. et GUNZENHAUSER, R.
(1996). An integrating, transformation-oriented approach to concurrency control and

undo in group editors. ACM CSCW’96. Boston, USA, 288-297.

[Saito et Shapiro (2005)] SAITO, Y. et SHAPIRO, M. (2005). Optimistic replication. ACM
Comput. Surv., 37, 42-81.

[Samarati et al. (1996)] SAMARATI, P., AMMANN, P. et JAJODIA, S. (1996). Maintai-
ning Replicated Authorizations in Distributed Database Systems. Data € knowledge
engineering, 18, 55-84.

[Samuel et al. (2007)] SAMUEL, A., GHAFOOR, A. et BERTINO, E. (2007). A framework
for specification and verification of generalized spatio-temporal role based access control

model. Rapport technique, Purdue University.

[Sandhu et al. (1996)] SANDHU, R., COYNE, E., FEINSTEIN, H. et YOUMAN, C. (1996).
Role-Based Access Control Models. Computer, 29, 38-47.

[Sandhu et Samarati (1994)] SANDHU, R. et SAMARATTI, P. (1994). Access control : prin-
ciple and practice. Communications Magazine, IEEFE, 32, 40—48.

[Schaeffer-Filho et al. (2009)] SCHAEFFER-FILHO, A., LUPU, E., SLOMAN, M. et EI-
SENBACH, S. (2009). Verification of Policy-Based Self-Managed Cell Interactions Using
Alloy. Policies for Distributed Systems and Networks, 2009. POLICY 2009. IEEFE In-

ternational Symposium on. 37—-40.

[Shapiro et Preguiga (2007)] SHAPIRO, M. et PREGUICA, N. (2007). Designing a commu-
tative replicated data type. Rapport technique Report RR-6320, Institut National de la
Recherche en Informatique et Automatique (INRIA).

[Suleiman et al. (1997)] SULEIMAN, M., CART, M. et FERRIE, J. (1997). Serialization
of concurrent operations in a distributed collaborative environment. ACM GROUP’97.
435-445.

[Suleiman et al. (1998)] SULEIMAN, M., CART, M. et FERRIE, J. (1998). Concurrent
operations in a distributed and mobile collaborative environment. [EFEE ICDE’98. 36—
45.

[Sun et Ellis (1998)] SUN, C. et ELLIS, C. (1998). Operational transformation in real-time
group editors : issues, algorithms, and achievements. ACM CSCW’98. 59-68.
[Sun et al. (1998)] SUN, C., JIA, X., ZHANG, Y., YANG, Y. et CHEN, D. (1998). Achieving

convergence, causality-preservation and intention-preservation in real-time cooperative
editing systems. ACM Trans. Comput.-Hum. Interact., 5, 63-108.

122

[Sun et al. (2006)] SUN, C., XIA, S., SUN, D., CHEN, D., SHEN, H. et CAI, W. (2006).
Transparent adaptation of single-user applications for multi-user real-time collaboration.
ACM Trans. Comput.-Hum. Interact., 13, 531-582.

[Sun et Sun (2009)] SUN, D. et SUN, C. (2009). Context-based operational transformation
for distributed collaborative editing systems. IEEFE Trans. on Parallel and Distributed
Systems, 20, 1454-1470.

[Thomas et Sandhu (1994)] THOMAS, R. et SANDHU, R. (1994). Conceptual foundations
for a model of task-based authorizations. Computer Security Foundations Workshop
VII, 1994. CSFW 7. Proceedings. 66-79.

[Thomas (1997)] THOMAS, R. K. (1997). Team-based access control (tmac) : A primitive
for applying role-based access controls in collaborative environments. Proceedings of
the Second ACM Workshop on Role-based Access Control. ACM, New York, NY, USA,
RBAC 97, 13-19.

[Thomas et Sandhu (1997)] THOMAS, R. K. et SANDHU, R. S. (1997). Task-based autho-
rization controls (tbac) : A family of models for active and enterprise-oriented autho-
rization management. Proceedings of the IFIP TC11 WG11.3 FEleventh International
Conference on Database Securty XI : Status and Prospects. Citeseer, vol. 113, 166-181.

[Tlili et al. (2010)] TLILI, M., AKBARINIA, R., PACITTI, E. et VALDURIEZ, P. (2010).
Scalable p2p reconciliation infrastructure for collaborative text editing. Proceedings of
the 2010 Second International Conference on Advances in Databases, Knowledge, and
Data Applications. IEEE Computer Society, Washington, DC, USA, DBKDA ’10, 155—
164.

[Tlili et al. (2008)] TLILI, M., DEDZOE, W. K., PACITTIL, E., VALDURIEZ, P., AKBA-
RINIA, R., DUBOST, L., DUMITRIU, S., LAURIERE, S., CANALS, G., MOLLI, P.
et MAIRE, J. (2008). P2P logging and timestamping for xwiki. Proceedings of the 8th
International Conference on New Technologies in Distributed Systems. ACM, New York,
NY, USA, NOTERE 08, 25 :1-25 :4.

[Toahchoodee et al. (2009)] TOAHCHOODEE, M., RAY, 1., ANASTASAKIS, K., GEORG,
G. et BORDBAR, B. (2009). Ensuring Spatio-temporal Access Control for Real-world

Applications. Proceedings of the 14th ACM symposium on Access control models and
technologies. ACM, New York, NY, USA, SACMAT ’09, 13-22.

[Tolone et al. (2005)] TOLONE, W., AHN, G.-J., PAI, T. et HONG, S.-P. (2005). Access
Control in Collaborative Systems. ACM Comput. Surv., 37, 29-41.

[Torlak et Dennis (2006)] TORLAK, E. et DENNIS, G. (2006). Kodkod for Alloy users.

123

[Vidot et al. (2000)] VIDOT, N., CART, M., FERRIE, J. et SULEIMAN, M. (2000). Copies
Convergence in a Distributed Real-time Collaborative Environment. Proceedings of the
2000 ACM Conference on Computer Supported Cooperative Work. ACM, New York,
NY, USA, CSCW ’00, 171-180.

[Weiss et al. (2009)] WEISS, S., URSO, P. et MOLLI, P. (2009). Logoot : A scalable op-
timistic replication algorithm for collaborative editing on p2p networks. 29th IEEE
International Conference on Distributed Computing Systems. 404 —412.

[Weiss et al. (2010)] WEISS, S., URSO, P. et MOLLI, P. (2010). Logoot-undo : Distribu-
ted collaborative editing system on p2p networks. IEEFE Transactions on Parallel and
Distributed Systems, 21, 1162 —1174.

[Woodcock et Davies (1996)] WOODCOCK, J. et DAVIES, J. (1996). Using Z : Specifica-

tion, Refinement, and Proof. Prentice Hall.

[Wu et Pui (2009)] WU, Q. et PUI, C. (2009). Consistency in real-time collaborative editing
systems based on partial persistent sequences. Rapport technique, Georgia Institute of

Technology.
[Wu et al. (2010)] WU, Q., PUI, C. et FERREIRA, J. A. E. F. (2010). A partial persistent

data structure to support consistency in real-time collaborative editing. Data Enginee-
ring (ICDE), 2010 IEEE 26th International Conference on. 776-779.

[Xin et Ray (2007)] XIN, T. et RAY, I. (2007). A Lattice-Based Approach for Updating
Access Control Policies in Real-time. Inf. Syst., 32, 755-772.

124

ANNEXE A : DEFINITIONS COMPLEMENTAIRES

Définition .1 (Relation réflexive) . Une relation R définie dans un ensemble E est ré-

flexive si et seulement si, pour tout élément e appartenant a F, le couple (e,e) appartient a

R.
Ve € E, eRe est vrai (1)

Définition .2 (Relation antisymétrique) .. Une relation R définie dans un ensemble E
est antisymétrique si et seulement si, pour tout élément ey, ey appartenant a R, lorsque les

couples (e1,ez) et (eg,e1) appartiennent a R, alors e; et ey sont égaur.
Vel, €y € R, (€1R€2) A (€2R€1) = (61 = 63) (2)

Définition .3 (Relation transitive) . Une relation R définie dans un ensemble E est tran-
sitive si et seulement si, pour tout élément ey, ey, ez appartenant a R, lorsque les couples

(e1,e2) et (ea,e3) appartiennent a R, alors le couple (e1,e3) appartient a R.
\V/el, €9,€3 € R, (61R€2) A (62R€3) = (€1R63) (3)

Définition .4 (Relation d’ordre) . Une relation R dans un ensemble E est appelé une
relation d’ordre partiel ou de préordre si et seulement si elle est réflexive, antisymétrique
et transitive.

Un ensemble E combiné a une relation d’ordre partiel R est appelé un ensemble partiellement
ordonné et est noté (S, R).

Définition .5 (éléments comparables) . Les éléments ey et ey d’un ensemble partielle-
ment ordonné (S,R) sont dits comparables si et seulement si, ['un des couples (e1,es2) ou

(€2, e3) appartient a R.

Définition .6 (Ordre total) . Si (S, R) est un ensemble partiellement ordonné et que tous
les éléments de S sont deux a deuxr comparables, alors S est appelé ensemble totalement

ordonné et R est un ordre total.

Définition .7 (Histoire 1égale) . Une histoire (séquence d’opérations) h est dite légale sur

un état st si la précondition de chaque opération de h est satisfaite.

125

Définition .8 (équivalence des histoires) . Deux histoires hy et hy sont équivalentes
pour tout état st (moté hy =g hy), si et seulement si, hy et hy sont légales sur st, de

meéme longueur et leurs exécutions sur l’état st conduisent a un méme état.

(i) hy et hy sont légales sur st
(i) || = |hs|
(ti1) Do*(hy, st) = Do*(hg, st) (4)

avec Do* la fonction qui retourne [’état obtenu en exécutant une séquence ou une histoire sur

un état donné.

Définition .9 (Extension de IT) . Nous définissons une extension a la fonction de

transformation I'T comme suit :

IT" - HxH — H
h

(. []) = ()
({,m =1 (6)
IT*(ha, [hos hs]) = IT*(IT"(h1, ha), h3) (7)
IT*([hy; hol,hg) = [IT*(hy, hs); IT*(he, IT*(hg, h1))] (8)
IT*(loa], [02]) = [T(01,0,)] (9)

avec [| Uhistoire vide, h, hy, ha, hy toutes histoires légales et 0 et oy toutes opérations.

IT* sert a transformer une histoire légale par rapport a une autre histoire légale. Ainsi,
IT*(hy, he) est Uhistoire légale obtenue en transformant Uhistoire légale hy par rapport a
I’histoire légale hs.

L’expression (3) signifie quela transformation d’une histoire légale h par rapport d une his-
toire légale vide produit h. L’expression (6) signifie que la transformation d’une histoire légale
vide par rapport & une histoire légale h donne Uhistoire légale vide. L’expression (7) signifie
que la transformation d’une histoire légale hy par rapport a la séquence d’opérations obte-
nue en exécutant [’histoire légale hs apres [’histoire légale hy se fait en deux étapes. hy est
transformée par rapport a hy puis le résultat IT*(hy, hy) est ensuite transformé par rapport
a hs. L’expression (8) indique que la transformation de la séquence d’opérations obtenue en
exécutant ’histoire légale hy apres ['histoire légale hy par rapport a l'histoire légale hs donne
une séquence composée de la transformation de hy par rapport a hs et de la transformation
de hy par rapport IT*(hs, hy) qui est la transformation de hg par rapport a hy. L’expression

(9) définit que la transformation d’une séquence d’opération contenant la seule opération o,

126

par rapport a une séquence d’opération contenant la seule opération oo donne une séquence
contenant la seule opération 1T (o1, 09) qui est le résultat de la transformation de l’opération

01 par rapport a oy en utilisant la fonction de transformation IT. Cette derniére expression

mdique le lien entre I'T et IT™*.

Définition .10 (Opérations commutatives) . Deux opérations o, et oo commutent si et
seulement si, pour tout état st, les séquences d’exécution [01;09] et [09;01] conduisent toutes

deux a des états corrects et sont équivalentes. Elles sont également dites commutatives.

127

ANNEXE B : ALGORITHMES DE TRANSFORMATIONS INCLUSIVES

B.1. Algorithme dOPT [Ellis et Gibbs (1989)]

111 IT (Ins(pi, ¢1, pr1), Ins(pe, co, pra)) =

[2] if (p1 < p2) then return Ins(py, c1, pri)

(3] else if (p1 > p2) then return Ins(p; + 1, ¢1, pri)
[41 else if (¢; == ¢2) then return Nop()

[5] else if (prqy > pra) then return Ins(p; + 1, ¢1, pri)
[6] else return Ins(py, ¢1, pri)

[7] end if

te1 IT (Ins(pi, c1, pr1),Del(ps, pra)) =

[9] if (p1 < p2) then return Ins(py, c1, pri)

(10 else return Ins(p; - 1, ¢1, pri)

[11] end if

1121 IT (Del(p1, pr1), Ins(pe, ca, pra)) =
[13] if (p1 < p2) then return Del(py, pri)
[14] else return Del(p; + 1, prq)

[15] end if

161 IT (Del(py, pr1),Del(pg, pro)) =

[17] if (p1 < p2) then return Del(py, pri)

[18] else if (p; > p2) then return Del(p; - 1, pry)
[19] else return Nop()

[20] end if

B.2. Algorithme adOPTed [Ressel et al. (1996)]

111 IT (Ins(pi, c1, 1), Ins(pa, ca, uz)) =

[2] if (p1 < pa or (p1 = p2 and u; < uz)) then return Ins(py, 1, uy)
[3] else return Ins(p; + 1, ¢, u1)

[4] end if

51 IT (Ins(pi, c1, u1),Del(pe, uz)) =

(6] if (p1 < p2) then return Ins(py, c1, uq)

[7 else return Ins(p; - 1, ¢1, uy)

(8] end if

o1 IT (Del(p1, u1), Ins(pa, c2, uz)) =

[10] if (p1 < p2) then return Del(p1, uy)

[11] else return Del(p; + 1, uy)

[12] end if

1131 IT (Del(py, uq1),Del(ps, us)) =

[14] if (p1 < p2) then return Del(p1, u1)

[15] else if (p1 > p2) then return Del(p; - 1, uq)
[16] else return Nop()

[17] end if

128

B.3. Algorithme de Sun [Sun et al. (1998)]

a1 IT (Ins(pl, S1, ll), Ins(pg, S92, lg)) =

[2] if (p1 < p2) then return Ins(py, s1, 11)

[31 else return Ins(py + lo, s1, (1)

[4] end if

51 IT (Ins(pl, S1, ll), Del(pg, 52)) =

(6] if (p1 < p2) then return Ins(py, s1, 1)

[7] else if (p1 > p2 + l2) then return Ins(py - lo, s1, 11)

(8] else return Ins(ps, s1, {1)

[ol end if

101 IT (Del(py, 11),Ins(pa, s2, l2)) =

[11] if (p2 > p1 + 1) then return Del(py, 11)

[12] else if (p; > po) then return Del(py + o, 11)

[13] else return [Del(p1, pa - p1); Del(pe + o, U1 - (p2 - p1))]
[14] end if

151 IT (Del(p1, 11),Del(pa, I2)) =

[16] if (p2 > p1 + 1) then return Del(py, 11)

[171 else if (p; > pa + l2) then return Del(p; - Iz, I1)

[18] else if (p2 < py and p; + 13 < py + l3) then return Del(p, 0)

)
[19] else if (p2 < p1 and p; +I; > po + lz) then return Del(pa, (p1 + 1) - (p2 + 12))
[20] else if (p2 > p1 and ps + ls > p1 + 11) then return Del(p1, p2 - p1)

[21] else return Del(py, Iy - I2)

[22] end if

129

B.4. Algorithme SOCT2 [Suleiman et al. (1998)]

(11 IT (Ins(py, ¢1, avy, apy), Ins(ps, co, ave, aps)) =

[2]
[31
[4]
[5]
[6]
[7]
[81
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

if (p1 < p2) then return Ins(py, c1, avy, apy)

else if (p; > p2) then return Ins(p; + 1, ¢1, avy, apy)

else if (av; Napy # 0) then return Ins(p; + 1, ¢1, avy, apy)

else if (ap1 Navy #) then return Ins(py, ¢1, avy, apy)

else if (code(cy) > code(cg)) then return Ins(py, ¢, avy, apr)
else if (code(cy) < code(cq)) then return Ins(py + 1, ¢1, avy, apy)
else return Nop()

end if

IT (Ins(p1, c1, avy, ap1),Del(pa)) =

if (p1 < p2) then return Ins(p1, 1, avi, ap1U {Del(p2)})
else return Ins(p; - 1, ¢1, av1U {Del(p2)}, ap1)
end if

IT (Del(p1), Ins(pz, c2, ava, aps)) =

)
if (p1 < p2) then return Del(p;
else return Del(p; + 1)
end if

IT (Del(p1),Del(p2)) =

if (p1 < p2) then return Del(p;)

else if (p1 > p2) then return Del(p; -1)
else return Nop()

end if

B.5. Algorithme d’Imine [Imine et al. (2003)]

130

111 IT (Ins(py, 01, ¢1), Ins(pa, 02, ¢2)) =

[2] if (p1 < p2) then return Ins(py, o1, ¢1)

(3] else if (p; > p2) then return Ins(p; + 1, 01, ¢1)

[al else if (01 < 02) then return Ins(p1, 01, ¢1)

(5] else if (01 > o09) then return Ins(p; + 1, o1, ¢1)

[61 else if (code(c;) < code(eg)) then return Ins(py, 01, ¢1)
(71 else if (code(cy) > code(cg)) then return Ins(p; + 1, 01, ¢1)
(8 else return Nop()

[ol end if

101 IT (Ins(py, o1, ¢1),Del(ps)) =

[11] if (p1 < p2) then return Ins(py, o1, ¢1)

[12] else return Ins(pi-1, o1, ¢1)

[13] end if

141 IT (Del(py), Ins(pa, 02, ¢2)) =

[15] if (p1 < p2) then return Del(p;)

[16] else return Del(p; + 1)

[17] end if

rie1 IT (Del(py),Del(p2)) =

[19] if (p1 < p2) then return Del(p;)

[20] else if (p1 > p2) then return Del(p;-1)
[21] else return Nop()

[22] end if

131

B.6. Algorithme SDT |Li et Li (2004),Li et Li (2008a)]

11 Soient op; = Ins(p1, c1, u1) et opa = Ins(pe, ¢, u2)

21 IT(op1, op2) =

[31 si B(op1) < B(opz) alors retourner Ins(py, c1, uq)
[41 sinon si B(op1) > B(opz) alors etourner Ins(p; + 1, ¢1, u1)
[5] sinon si p; < po alors retourner Ins(py, c1, u1)

[6] sinon si p; > ps alors retourner Ins(py + 1, ¢1, uy)
(71 sinon si u; < wug alors retourner Ins(p1, ¢1, u1)

(sl sinon retourner Ins(p; + 1, ¢1, u1)

[9] fin si

101 IT(Ins(py, ¢1, up),Del(pa, uz)) =

[11] si (p1 < p2) alors retourner Ins(py, ¢1, up)

[12] sinon retourner Ins(p;-1, ¢1, uq)

[13] fin si

(141 IT(Del(p1, u1), Ins(pa, c2, u2)) =

[15] si (p1 < p2) alors retourner Del(py, uq)

[16] sinon retourner Del(p; + 1, uq)

[17] fin si

rie1 IT(Del(py, u1),Del(pa, uz)) =

[19] si (p1 < p2) alors retourner Del(py, u1)

[20] sinon si (p; > p2) alors retourner Del(p;-1, u1)

[21] sinon retourner Nop()

[22] fin si

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES ANNEXES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Définitions et concepts de base
	1.1.1 Édition collaborative
	Édition asynchrone et synchrone
	Notion de réplication
	Système réparti, exécution répartie, causalité et concurrence
	État stable et notion de convergence

	1.1.2 Politique de sécurité et contrôle d'accès
	1.1.3 Vérification sur modèle et synthèse de contrôleur

	1.2 Éléments de la problématique
	1.3 Objectifs de recherche
	1.4 Esquisse méthodologique
	1.5 Principales contributions de la thèse et leur originalité
	1.6 Plan de la thèse

	2 REVUE DE LITTÉRATURE
	2.1 Analyse sommaire du problème
	2.2 Approches de gestion de la cohérence dans les éditeurs collaboratifs
	2.2.1 Approche multi-versions
	2.2.2 Approche sérialisation / Résolution de conflits
	2.2.3 Approche des types de données commutatives répliquées
	Algorithme WOOT
	Algorithmes Logoot et Logoot-Undo
	TreeDoc
	Autres applications de l'approche CRDT

	2.2.4 Approche de la transformée opérationnelle
	Condition de cohérence
	Algorithme de Ellis
	Algorithme de Ressel
	Algorithme de Sun
	Algorithme de Suleiman
	Algorithme d'Imine
	Algorithme SO6
	Algorithme MOT2
	Algorithmes SDT et SDTO
	Fonctions TTF

	2.3 Contrôle d'accès dans les systèmes collaboratifs
	2.4 Conclusion

	3 ARTICLE 1 : On Synthesizing a Consistent Operational Transformation Approach
	3.1 Introduction
	3.2 Operational Transformation Approach
	3.2.1 Background
	3.2.2 Decentralized integration procedures
	3.2.3 Inclusive transformation functions
	Ellis's algorithm
	Ressel's algorithm
	Sun's algorithm
	Suleiman's algorithm
	Imine's algorithm

	3.2.4 Consistency criteria
	3.2.5 Avoiding Property TP2

	3.3 Controller synthesis of consistent IT function
	3.3.1 Do there exist IT functions which satisfy TP1?
	3.3.2 Do there exist IT functions which satisfy TP1 and TP2?

	3.4 A consistent IT function
	3.4.1 Extending the insert signature with an extra parameter
	3.4.2 Our IT function
	3.4.3 Relationships between positions and the extra parameters
	3.4.4 Proof of consistency
	3.4.5 Comparison

	3.5 Conclusion

	4 ARTICLE 2 : Specification and Verification using Alloy of Optimistic Access Control for Distributed Collaborative Editors
	4.1 Introduction
	4.2 Optimistic Access Control Protocol for DCE
	4.2.1 Generation of Local Cooperative Requests
	4.2.2 Reception of Remote Cooperative Requests
	4.2.3 Generation of Administrative Operations
	4.2.4 Reception of Remote Administrative Requests
	4.2.5 Verification Issues

	4.3 Specification and Verification
	4.3.1 Alloy
	4.3.2 Formal Specification of ACP
	4.3.3 Specification of Consistency Property

	4.4 Related Work
	4.5 Conclusion

	5 ARTICLE 3 : On Consistency Preservation with Optimistic Access Control for Distributed Collaborative Editors
	5.1 Introduction
	5.2 Optimistic Access Control Protocol for DCE
	5.2.1 Generation of Local Cooperative Requests
	5.2.2 Reception of Remote Cooperative Requests
	5.2.3 Generation of Administrative Operations
	5.2.4 Reception of Remote Administrative Requests
	5.2.5 Verification Issues

	5.3 Definitions
	5.4 A finite abstract model preserving consistency property of ACP
	5.4.1 Generation and Reception of a Cooperative Operation
	5.4.2 Execution Process
	5.4.3 Analyzis of the Execution Process

	5.5 Model Checking of the Abstract Model
	5.5.1 Uppaal
	5.5.2 Description of the system
	Sites
	Evolution of Cooperative Operation
	Evolution of Adminstrative Request
	ACP

	5.5.3 Consistency Property and Verification of the system

	5.6 Related Work
	5.7 Conclusion

	6 DISCUSSION GÉNÉRALE
	6.1 Synthèse des travaux
	6.2 Méthodologie
	6.3 Analyse des résultats

	7 CONCLUSION
	7.1 Sommaire des contributions de la thèse
	7.2 Limitations des travaux
	7.3 Indication des travaux futurs

	RÉFÉRENCES
	ANNEXES

