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RÉSUMÉ 

Le poste de pilotage d‘un avion de ligne du XXI
e
 siècle ne ressemble pas à celui que les frères 

Wright ont occupé lors de leur premier vol. En effet, la croissance accélérée de l‘aviation civile a 

entrainé une augmentation et une complexification des instruments de vol du poste de pilotage 

afin de compléter le vol en toute sécurité et dans les temps prévus. Or, présenter au pilote une 

abondance d‘information visuelle par l‘entremise d‘instruments de vol visuellement encombrés 

risque de diminuer sa performance de vol. 

La thématique de l‘encombrement visuel des écrans a reçu un intérêt croissant de la communauté 

aéronautique qui cherche à connaître les effets de la densité et de la surcharge d‘information sur 

le travail des pilotes. La réglementation aérienne demande de minimiser l‘encombrement visuel 

des écrans du poste de pilotage. Les études précédentes sur le sujet ont trouvé un effet mixte de 

l‘encombrement visuel de l‘écran primaire de vol sur la performance technique de vol des pilotes. 

D‘autres recherches s‘avéraient donc nécessaire pour mieux comprendre ce phénomène. 

Dans cette thèse, nous avons réalisé une étude expérimentale dans un simulateur de vol afin 

d‘étudier les effets de l‘encombrement visuel de l‘écran primaire de vol sur la performance du 

pilote, sa charge mentale de travail et son parcours visuel. Tout d‘abord, nous avons identifié une 

lacune dans les définitions existantes de l‘encombrement visuel d‘un affichage et nous avons 

proposé une nouvelle définition pertinente pour le milieu aéronautique qui tient compte du 

contexte d‘utilisation de l‘affichage. Ensuite, nous avons montré que les études précédentes sur 

l‘effet de l‘encombrement visuel de l‘écran primaire de vol sur la performance des pilotes ont mal 

isolé la variable d‘encombrement visuel en manipulant celle-ci en même temps que la fonction de 

guidage de l‘appareil. L‘utilisation d‘une fonction de guidage différente entre les affichages peut 

avoir masquée l‘effet de l‘encombrement visuel sur la performance du pilote. Pour résoudre ce 

problème, nous avons proposé trois exigences que tous les affichages à l‘étude doivent satisfaire 

afin d‘assurer que seule la variable d‘encombrement visuelle est manipulée durant l‘étude en 

laissant intouchées les autres variables. 

Ensuite, nous avons conçu trois écrans primaires de vol ayant un niveau d‘encombrement visuel 

différent (faible, modéré, élevé) mais la même fonction de guidage, en respectant les exigences 

mentionnées ci-dessus. Douze pilotes, comptant chacun en moyenne plus de 4000 heures de vol, 

ont complété une approche aux instruments dans un simulateur de vol en utilisant chacun des 
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écrans pour un total de neuf répétitions. Les principaux résultats montrent que les pilotes ont 

rapporté un niveau de charge mentale de travail inférieure et ont obtenu une meilleure précision 

latérale durant l‘approche en utilisant l‘écran ayant un niveau modéré d‘encombrement visuel 

comparativement aux écrans ayant un niveau faible et un niveau élevé d‘encombrement visuel. 

Les pilotes ont aussi jugé que l‘écran modérément encombré a été le plus utile pour la tâche de 

vol comparativement aux deux autres écrans. Les résultats d‘oculométrie montrent que 

l‘efficience du parcours visuel du pilote a diminué pour l‘écran ayant un encombrement élevé 

comparativement aux écrans ayant un encombrement faible et un encombrement modéré. 

Globalement, ces nouveaux résultats expérimentaux révèlent la pertinence d‘optimiser 

l‘encombrement visuel des affichages de vol, car il affecte la performance objective et subjective 

de pilotes expérimentés dans la tâche de vol. La thèse se conclut avec des recommandations 

pratiques visant à permettre aux concepteurs d‘optimiser l‘encombrement visuel des écrans dans 

les interfaces humain-machine. 
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ABSTRACT 

Flight deck of 21
st
 century commercial aircrafts does not look like the one the Wright brothers 

used for their first flight. The rapid growth of civilian aviation resulted in an increase in the 

number of flight deck instruments and of their complexity, in order to complete a safe and on-

time flight. However, presenting an abundance of visual information using visually cluttered 

flight instruments might reduce the pilot‘s flight performance. 

Visual clutter has received an increased interest by the aerospace community to understand the 

effects of visual density and information overload on pilots‘ performance. Aerospace regulations 

demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of 

visual clutter of the primary flight display on pilots‘ technical flight performance. More research 

is needed to better understand this subject. 

In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter 

of the primary flight display on the pilot‘s technical flight performance, mental workload and 

gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a 

new definition relevant to the aerospace community that takes into account the context of use of 

the display. Then, we showed that past research on the effects of visual clutter of the primary 

flight display on pilots‘ performance did not manipulate the variable of visual clutter in a similar 

manner. Past research changed visual clutter at the same time than the flight guidance function. 

Using a different flight guidance function between displays might have masked the effect of 

visual clutter on pilots‘ performance. To solve this issue, we proposed three requirements that all 

tested displays must satisfy to assure that only the variable of visual clutter is changed during 

study while leaving other variables unaffected. 

Then, we designed three primary flight displays with a different visual clutter level (low, 

medium, high) but with the same flight guidance function, by respecting the previous 

requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed 

an instrument landing in a flight simulator using all three displays for a total of nine repetitions. 

Our results showed that pilots reported lower workload level and had better lateral precision 

during the approach using the medium-clutter display compared to the low- and high-clutter 

displays. Also, pilots reported that the medium-clutter display was the most useful for the flight 
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task compared to the two other displays. Eye tracker results showed that pilots‘ gaze pattern was 

less efficient for the high-clutter display compared to the low- and medium-clutter displays. 

Overall, these new experimental results emphasize the importance of optimizing visual clutter of 

flight displays as it affects both objective and subjective performance of experienced pilots in 

their flying task. This thesis ends with practical recommendations to help designers optimize 

visual clutter of displays used for man-machine interface. 
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INTRODUCTION 

Le matin du 17 décembre 1903, par un jour de grand vent à Kitty Hawk dans l‘état de la Caroline 

du Nord, Orwille Wright réalisa le premier vol contrôlé à bord d‘un avion motorisé. L‘avion 

parcourra la distance de 150 mètres et le vol ne dura que 12 secondes. Plus tard durant la même 

journée, son frère Achille Wright s‘envola à son tour à bord de l‘appareil et franchit 850 mètres 

en 59 secondes. L‘avion des frères Wright n‘était équipé d‘aucun instrument de vol; l‘unique 

pièce électromécanique à bord était le magnéto nécessaire pour le fonctionnement du moteur. Les 

frères Wright, conscients de la prouesse technique qu‘ils venaient d‘accomplir, ne pouvaient se 

douter de la croissance marquée de l‘industrie aéronautique dans le siècle suivant. En 2012, 

l‘aviation civile a réalisé plus de 30 millions de vols et a transporté près de 3 milliards de 

passagers (OACI, 2013). La croissance de l‘aviation civile s‘accélèrera dans les prochaines 

années. L‘Organisation de l‘aviation civile internationale (OACI) prévoit que le nombre de vols 

doublera d‘ici 2030 pour atteindre 60 millions par année, une croissance tirée par les marchés 

émergents (OACI, 2013). Cette croissance accéléré de l‘aviation civile entraine une 

complexification des instruments de vol et de la tâche du pilote afin de compléter le vol en sûreté 

et dans les temps prescrits. Dans ce contexte, optimiser l‘ergonomie des instruments de vol se 

révèle donc un sujet de recherche pertinent et d‘actualité. 

L‘émergence de l‘étude des facteurs humains comme discipline scientifique s‘est faite de manière 

parallèle à la croissance de l‘aviation (Edwards, 1988). D‘abord considérée comme une discipline 

visant à « corriger » les caractéristiques du poste de pilotage pour qu‘elles respectent les 

limitations humaines (Koonce & Debons, 2010), l‘étude des facteurs humains fait maintenant 

partie intégrante du processus de conception de l‘avion afin que le poste de pilotage, ses contrôles 

et ses instruments de vol facilitent la tâche du pilote. La définition qu‘offre (Koonce, 1979) des 

facteurs humains en aviation reflète l‘apport de la discipline dans la conception de l‘avion : 

« Human factors in aviation are involved in the study of human’s capabilities, limitations, 

and behaviours, as well as the integration of that knowledge into the systems that we 

design for them to enhance safety, performance, and general well-being of the operators 

of the systems. » 

Aujourd‘hui, l‘objet d‘étude des facteurs humains en aviation a dépassé celui du poste de pilotage 

et ses commandes pour intégrer la collaboration entre les membres d‘équipage, la charge mentale 
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de travail, la conscience de la situation, l‘automatisation des systèmes et la gestion de l‘espace 

aérien (Koonce & Debons, 2010). 

Une problématique qui fait l‘objet de recherche active en facteurs humains depuis le début de 

l‘aviation civile jusqu‘à nos jours est l‘affichage des instruments de vol et leur intégration à la 

tâche du pilote (Curtis, Jentsch, & Wise, 2010). Cette problématique prend tout son sens lorsque 

l‘on considère l‘arrivée au tournant du XXIe siècle de la nouvelle génération de système 

d‘affichage – glass-cockpit, en anglais – qui a remplacé le tableau de bord composé d‘indicateurs 

électromécaniques par des écrans numériques. Cette avancée technologique offre la possibilité 

d‘afficher au pilote plus d‘information de vol que les systèmes précédents. Toutefois, un tel écran 

serait visuellement chargé – il serait décrit comme ayant un niveau d‘encombrement visuel élevé 

– et le pilote devrait continuellement filtrer l‘information dont il a besoin. 

Cette thèse de doctorat porte sur l‘optimisation de l‘encombrement visuel de l‘affichage primaire 

de vol
1
 présenté au pilote dans le poste de pilotage. Plus particulièrement, cette thèse étudie 

l‘effet d‘un accroissement de l‘encombrement visuel de l‘affichage de vol sur la performance du 

pilote. L‘hypothèse de recherche est qu‘un écran ayant un niveau d‘encombrement modéré offre 

une meilleure performance au pilote qu‘un écran ayant un niveau d‘encombrement faible ou 

élevé. 

La recherche a été réalisée en partenariat avec le groupe de facteurs humains de Bombardier 

Aéronautique à Montréal. Le partenariat avec Bombardier Aéronautique offre une opportunité 

unique pour permettre une étude sur le terrain de la conception d‘affichages complexes pour le 

poste de pilotage, en plus de permettre l‘accès à des pilotes experts afin de réaliser des tests de 

performance en simulateur de vol. C‘est le souhait de l‘auteur de ce travail que les connaissances 

sur l‘encombrement visuel tirées de cette thèse serviront dans le travail de l‘équipe des facteurs 

humains durant la conception d‘affichages afin de faciliter leur compréhension par le pilote, et 

ainsi offrir une meilleure performance en vol. Cette recherche contribue aussi à l‘avancement des 

connaissances en énonçant formellement les exigences que doivent respecter les affichages testés 

durant une expérience sur l‘encombrement visuel. 

                                                 

1
 Se référer au chapitre 1.2 pour une définition de l‘affichage primaire de vol et des instruments de vol du poste de 

pilotage. 
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Optimiser l‘encombrement visuel des écrans du poste de pilotage est une problématique 

stimulante qui se démarque des études précédentes de l‘encombrement visuel des affichages-

écrans réalisées en interaction humain-machine, et ce, pour quatre raisons. Premièrement, la tâche 

de pilotage de l‘avion est une tâche réelle, complexe, et réalisée dans un contexte où la sureté des 

opérations est un facteur critique de performance. Deuxièmement, les pilotes – la population 

d‘utilisateurs étudiée – sont des experts dans leur domaine. Ils ont reçu une formation étendue et 

comptent plusieurs années d‘expérience. Cela n‘est pas sans conséquence sur l‘utilisation qu‘un 

pilote fait de l‘information sur un écran : contrairement à un utilisateur novice, l‘expert sait où 

regarder pour extraire l‘information pertinente et s‘attend à une modalité connue de présentation 

de l‘information. Troisièmement, la conception des affichages dans le milieu de l‘aviation est 

règlementée par les autorités compétentes en transport, qui exigent de minimiser l‘encombrement 

visuel présenté au pilote. Ces exigences contraignent l‘espace-solution pour la conception d‘écran 

et limitent le nombre de solutions disponibles pour optimiser l‘encombrement. Quatrièmement, 

cette étude est une étude de terrain réalisée au sein de l‘équipe de facteurs humains de 

Bombardier Aéronautique. Cette opportunité offre une vision privilégiée sur le cycle de 

conception et de validation des écrans dans un environnement de travail réel, soumis à des 

contraintes de temps, de ressources et de règlementations. 

La thèse est structurée comme suit : le premier chapitre présente les besoins du milieu de pratique 

dans lequel la recherche a été réalisée, les affichages du poste de pilotage et les règlements des 

autorités de transport concernant la conception des instruments de vol et plus particulièrement 

l‘encombrement visuel des écrans. Le deuxième chapitre présente une revue des connaissances 

sur l‘encombrement visuel des écrans dans la conception d‘interfaces humain-machine, avec une 

revue systématique des définitions de l‘encombrement, une comparaison critique des métriques 

existantes pour évaluer l‘encombrement d‘un écran et une revue des effets de l‘encombrement sur 

la performance humaine. Le chapitre se termine en énonçant les trois exigences que doivent 

respecter les affichages durant l‘étude de l‘encombrement visuel. Le troisième chapitre présente 

la problématique, les objectifs et les hypothèses de recherche retenues pour cette thèse. Le 

quatrième chapitre présente la méthode de conception de trois nouveaux affichages avec un 

niveau d‘encombrement visuel différent. Ce chapitre met en application les éléments contribuant 

à l‘encombrement visuel identifiés durant la revue de littérature. Ces affichages sont utilisés dans 

l‘étude expérimentale de cette thèse. Le cinquième chapitre présente la méthodologie employée 
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pour réaliser l‘étude en simulateur de vol complétée durant cette thèse, en détaillant la méthode 

d‘analyse de données employée. Le sixième chapitre présente les résultats de l‘expérience et leur 

analyse, de même que les recommandations pour l‘optimisation de l‘encombrement visuel dans la 

conception d‘interfaces qui découlent des résultats expérimentaux. Le septième chapitre présente 

les conclusions de ce travail, en mettant en évidence les contributions originales réalisées durant 

cette thèse, les principaux résultats obtenus en expérience, et les pistes de recherche pour les 

prochains travaux. 
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CHAPITRE 1 BESOINS DU MILIEU DE PRATIQUE, PRINCIPAUX 

INSTRUMENTS DE VOL ET RÉGLEMENTATION AÉRIENNE 

Ce chapitre décrit les besoins du milieu de pratique concernant l‘analyse de l‘encombrement 

visuel des affichages de vol. Ensuite, il présente de façon détaillée les affichages et les 

instruments de vol du poste de pilotage, car il s‘agit de l‘objet de cette étude. Finalement, il 

montre les extraits des règlements aériens pertinents sur l‘optimisation de l‘encombrement visuel 

des affichages de vol. Ce dernier point met en évidence la pertinence de l‘étude de 

l‘encombrement visuel. 

1.1 Besoins du milieu de pratique 

Cette recherche s‘est réalisée en partenariat avec l‘équipe de facteurs humains de Bombardier 

Aéronautique, ci-après référée comme le milieu de pratique. Les ergonomes du milieu de pratique 

ont formulé trois besoins nécessitant plus de recherche au sujet de l‘encombrement visuel des 

affichages de vol. Le premier besoin est de développer une meilleure compréhension des effets de 

l‘encombrement visuel sur la performance du pilote. On sait que l‘encombrement visuel diminue 

la performance humaine pour une tâche de prospection visuelle, mais est-ce que la diminution de 

performance est similaire pour toutes les tâches? Au Chapitre 2, nous montrons que l‘effet de 

l‘encombrement visuel sur la performance dépend de la tâche réalisée. 

Le second besoin exprimé par le milieu de pratique est d‘avoir accès à une méthode d‘évaluation 

quantifiée et reproductible de l‘encombrement visuel. Une telle méthode offre trois intérêts pour 

les professionnels du milieu de pratique. Premièrement, il serait possible d‘évaluer rapidement 

l‘encombrement d‘un même écran à plusieurs reprises durant la phase de conception, ou encore 

de comparer ses écrans avec les références du marché. Deuxièmement, une telle méthode 

permettrait d‘évaluer de façon cohérente le même ensemble d‘attributs entre différents écrans. 

Troisièmement, l‘évaluation quantifiée offre une source d‘objectivité dans la discussion entre les 

parties prenantes (concepteur, pilote, ingénieur, fournisseur, etc.) sur les mérites d‘un écran et les 

compromis réalisables pour optimiser son encombrement. La section 2.3 présente une revue des 

métriques d‘évaluation de l‘encombrement des écrans et les applique aux affichages du poste de 

pilotage. 
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Le besoin d‘une méthode d‘évaluation est pertinent pour le milieu de pratique, car les organismes 

réglementaires en aéronautique exigent que l‘écran présente un encombrement visuel minimal 

pour que celui-ci soit certifié apte au vol
2
. C‘est d‘ailleurs pour cette raison que l‘équipe de 

facteurs humains s‘est montrée intéressée par notre recherche.  

Le troisième besoin exprimé par le milieu de pratique est de proposer des lignes directrices pour 

réduire l‘encombrement visuel des affichages. Ce besoin a un impact concret sur le travail de 

conception des affichages. En effet, les organismes réglementaires exigent de minimiser 

l‘encombrement visuel des affichages. Or, quels éléments ou groupes d‘éléments contribuent à 

charger un écran? Au Chapitre 4, nous proposons une grille de manipulation de l‘encombrement 

visuel et au Chapitre 6, nous formulons trois recommandations pour réduire l‘encombrement 

d‘un affichage basé sur les résultats expérimentaux obtenus en simulateur de vol. 

La prochaine section présente les principaux instruments de vol du poste de pilotage utilisés par 

le pilote pour contrôler l‘appareil. Cette présentation est importante car le sujet de cette étude est 

l‘optimisation de l‘encombrement de l‘écran primaire de vol. 

1.2 Affichage des instruments de vol 

Les premiers pionniers de l‘aviation pilotaient leur appareil en visuel, c‘est-à-dire en se fiant à 

des indices de l‘environnement extérieur pour estimer la trajectoire de l‘avion, sa vitesse et son 

altitude. Ces vols étaient aussi de courte durée, survolant un territoire connu du pilote. Or, le 

besoin s‘est rapidement fait sentir pour des instruments de vol à bord du poste de pilotage lors de 

vols de plus longue distance ou lorsque les conditions météorologiques étaient défavorables. 

La lecture des instruments de vol dans le poste de pilotage est la source d‘information primaire 

du pilote pour connaître l‘état actuel et futur de l‘appareil, de même que sa trajectoire (du Puy de 

Goyne, Plays, Lepourry, & Besse, 2010). Du Puy de Goyne et ses collègues (2010) recensent 

trois grandes familles d‘instruments de vol : les instruments de conduite qui permettent le 

pilotage de l‘appareil; les instruments de contrôle du moteur et des systèmes; et les instruments 

                                                 

2
 La réglementation est expliquée en détails à la section 1.3. 
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de navigation et de communication radio. Dans ce travail, nous étudions principalement les 

instruments de conduite à cause de leur rôle primordial dans la gestion de la trajectoire. 

L‘affichage des instruments de vol a connu une transformation technologique majeure depuis le 

début de l‘aéronautique, passant de l‘ère des appareils électromécaniques où chaque paramètre 

est indiqué par son instrument dédié, à l‘ère des appareils électro-optiques utilisant de larges 

écrans d‘ordinateur dont l‘information affichée est reconfigurable par le pilote (Liggett, 2010). Le 

passage aux affichages numériques est aussi associé à une augmentation de la quantité 

d‘information que l‘on peut présenter au pilote, reflétant une augmentation de la complexité des 

systèmes. À l‘ère des appareils électromécaniques, l‘espace disponible sur le tableau de bord est 

devenu le facteur limitatif du nombre d‘instruments de vol visibles au pilote; certains postes de 

pilotages comptaient jusqu‘à 100 cadrans et les concepteurs ont dû réduire la taille des nouveaux 

instruments afin de les loger sur le tableau de bord (Liggett, 2010). Au contraire, un affichage 

numérique permet au pilote de sélectionner différentes sources d‘information qu‘il est possible 

d‘afficher successivement sur un seul écran. Le changement de technologie d‘affichage a aussi 

produit un changement radical dans les modes de présentation de l‘information de vol : l‘arrivée 

de l‘écran primaire de vol (Primary flight display – PFD) intègre sur un seul affichage 

l‘information de vol autrefois présentée sur six cadrans séparés (Curtis et al., 2010). L‘intégration 

des sources d‘informations et leur présentation sur l‘écran primaire de vol font l‘objet de 

recherche active en aéronautique afin de présenter au pilote une information pertinente pour la 

tâche de vol. Ce doctorat s‘ajoute à ce lot de recherche en étudiant l‘encombrement visuel de 

l‘écran primaire de vol. 

Le reste de cette section présente les instruments de vol du poste de pilotage, afin de bien 

comprendre la problématique de l‘encombrement visuel de l‘écran primaire de vol. Elle débute 

en présentant les instruments hérités de l‘ère électromécanique qui sont à l‘origine de l‘écran 

primaire de vol, avant de présenter en détails le PFD. La présentation des fonctions de guidage 

suit. 

1.2.1 Les instruments de base: le Basic-T 

En 1937, l‘armée de l‘air britannique a identifié les six instruments de vol de base nécessaires 

pour réaliser un vol sécuritaire en conditions météorologiques (IMC), c‘est-à-dire sans visibilité à 

l‘extérieur de la cabine (Williamson, 1937). Il s‘agit de l‘horizon artificiel, l‘indicateur de vitesse, 
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d‘altitude, de virage, de montée (variomètre) et de cap. La Figure 1.1 présente ces six instruments 

de base dans leur disposition standard que l‘on retrouve encore aujourd‘hui à bord des appareils 

motorisés légers. 

L‘horizon artificiel occupe le centre du tableau de bord à cause de son rôle primordial dans le 

contrôle de l‘assiette de l‘avion, soit le contrôle de l‘orientation de l‘appareil par rapport au sol. 

L‘horizon artificiel est une sphère roulante représentant la terre en brun et le ciel en bleu, 

l‘interface entre les deux éléments étant la ligne d‘horizon. La position des ailes de l‘avion est 

fixe sur l‘instrument; l‘avion est donc le référentiel fixe alors que l‘horizon se déplace (Wickens, 

1986). L‘instrument indique l‘angle de tangage et de roulis, tous les deux en degrés, qui sont 

respectivement l‘inclinaison autour de l‘axe transversal et longitudinal de l‘appareil (du Puy de 

Goyne et al., 2010). 

L‘indicateur de vitesse, à gauche de l‘horizon artificiel, donne la vitesse indiquée en nœud
3
. Le 

pilote utilise l‘indicateur de vitesse à toutes les phases de vol, de la vitesse de rotation au 

décollage jusqu‘à la vitesse d‘approche pour l‘atterrissage. Les différents régimes de vitesse sont 

délimités par un code de couleur sur le cadran (voir Figure 1.1). 

L‘indicateur d‘altitude, à droite de l‘horizon artificiel, donne la lecture d‘altitude en pied. Cette 

valeur est obtenue par une mesure de la pression atmosphérique statique à l‘extérieur de 

l‘appareil. Le pilote ajuste la pression de référence, par exemple la pression à l‘aéroport, à l‘aide 

du bouton de calage à côté du cadran
4
.  

                                                 

3
 La vitesse indiquée est la vitesse à laquelle se déplace l‘avion par rapport au vent. Elle ne tient pas compte de la 

correction pour la vitesse du vent (vitesse du sol), ni de la correction en fonction de l‘altitude (vitesse propre) (du 

Puy de Goyne, Plays, Lepourry, & Besse, 2010). 

4
 En ajustant le calage altimétrique sur la pression atmosphérique à l‘aéroport, l‘altimètre indique la hauteur de 

l‘avion. En l‘ajustant sur la pression au niveau de la mer, l‘altimètre donne l‘altitude de l‘avion. Pour se conformer 

aux règles de circulation aériennes, à partir d‘une certaine altitude tous les avions utilisent la pression d‘atmosphère 

standard de 29,92 pouces de mercure (Macdonald, 1991). 
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Figure 1.1 Les six instruments de vol de base. En commençant en haut à gauche : l‘indicateur de 

vitesse, l‘horizon artificiel, l‘indicateur d‘altitude, l‘indicateur de virage, de cap, et l‘indicateur de 

vitesse de montée (variomètre). Les quatre principaux instruments de vol (indicateur de vitesse, 

d‘altitude, horizon artificiel et cap) ont une disposition en forme de T pour faciliter le parcours 

visuel dans la boucle de contrôle. Image libre de droit. 

L‘indicateur de cap, situé sous l‘horizon artificiel, donne la valeur de cap en degrés prise par 

l‘avion. Comme pour l‘horizon artificiel, l‘avion est le référentiel fixe sous lequel se déplace la 

rose. 

Ces quatre instruments offrent l‘information minimale pour le maintien de l‘avion en vol, le 

variomètre et l‘indicateur de virage offrant une information optionnelle de tendance. La 

disposition de ces quatre instruments est en forme de T, c‘est pourquoi l‘on réfère à ces 

instruments comme le T de base (basic-T, en anglais). Cette disposition facilite la lecture des 

cadrans, avec l‘information primaire de l‘horizon artificiel au centre et les autres instruments en 

périphérie (Emeyriat, 1997). La disposition en T a fait l‘objet de plusieurs raffinements dans le 

développement de l‘ergonomie des instruments de vol et s‘est fixée après une étude extensive 
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menée par l‘armée de l‘air américaine (Liggett, 2010). La disposition en T est désormais 

standardisée et à la base de la conception de l‘affichage primaire de vol. 

1.2.2 Affichage primaire de vol 

L‘affichage primaire de vol (primary flight display, PFD) a remplacé le panneau d‘instruments de 

vol et les différents affichages du basic-T par un seul écran numérique. Le PFD a permis de 

faciliter la tâche de pilotage, le pilote n‘ayant plus qu‘à observer un écran pour obtenir toute 

l‘information sur la conduite de l‘appareil plutôt que devoir surveiller six cadrans individuels. 

La disposition du PFD reproduit celle du T de base (voir Figure 1.2). L‘horizon artificiel est 

affiché au centre de l‘écran et présente une échelle de l‘angle de tangage et de roulis semblable à 

son équivalent mécanique, en plus d‘afficher l‘angle de lacet (rotation autour de l‘axe verticale). 

L‘indicateur de vitesse, à gauche, et l‘altimètre, à droite, encadrent l‘horizon artificiel. Ces 

affichages sont désormais en forme de ruban vertical avec une fenêtre de lecture de la valeur 

(digital readout). Ce nouvel affichage facilite la lecture de valeur. En effet, la lecture de 

l‘altimètre à trois aiguilles nécessite 3,9 secondes et comportait un taux d‘erreur de 20%, alors 

que la lecture de l‘altimètre numérique ne requiert que 1,3 secondes et a un taux d‘erreur nul 

(voir (Emeyriat, 1997)). L‘indicateur de cap est sous l‘horizon artificiel et fonctionne comme un 

indicateur de cap magnétique. Il peut toutefois afficher des informations supplémentaires de 

direction fournies par le système de gestion de plan de vol (Flight management system – FMS).  
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Figure 1.2 Écran primaire de vol (PFD) avec l‘horizon artificiel (au centre), les rubans de vitesse 

(à gauche), d‘altitude et de vitesse de montée (à droite) en plus de l‘indicateur de cap (en bas). 

Image libre de droit. 

Contrairement aux instruments à cadrans, le PFD affiche une information dynamique fournie par 

les ordinateurs de vol, ce qui lui offre plusieurs avantages. Le PFD affiche les marqueurs de 

vitesse mis à jour en fonction de la configuration de l‘avion, comme par exemple le marqueur de 

vitesse pour l‘ouverture des volets ou la vitesse de décrochage. Le PFD offre aussi différents 

modes de communication pour avertir l‘équipage de l‘état inhabituel de l‘appareil : changer la 

couleur de la valeur si elle est hors norme (p. ex. le ruban de vitesse devient rouge s‘il approche 

de la vitesse de décrochage), afficher un message d‘avertissement à l‘écran (p. ex. « STALL » 

lorsque l‘avion décroche), et offrir des alertes auditives pour attirer l‘attention de l‘équipage. 

Toutefois, le principal intérêt du PFD est sa capacité d‘afficher les fonctions de guidage de vol 

(flight guidance) superposées sur l‘horizon artificiel, facilitant d‘autant le contrôle précis de 

l‘appareil par le pilote et le respect du plan de vol. 

1.2.3 Fonctions de guidage de vol 

La fonction de guidage de vol indique au pilote le chemin qu‘il doit emprunter pour suivre avec 

précision son plan de vol. On distingue deux familles de fonctions de guidage. Les commandes 

de correction affichent l‘écart entre la position actuelle de l‘avion et la trajectoire qu‘il doit 
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emprunter. En ce sens, cette famille de commandes agit comme un système en boucle fermée de 

minimisation de l‘erreur offrant peu d‘information pour anticiper la réaction de l‘appareil aux 

commandes. Les systèmes de directeur de vol (Flight director – FD) et de vol aux instruments 

(Glideslope – Localizer) appartiennent à cette famille. Les commandes d‘anticipation affichent le 

parcours que doit suivre l‘avion dans l‘espace. Cette famille de commandes offre une meilleure 

conscience de la situation au pilote en lui permettant de se représenter spatialement son 

environnement et d‘anticiper les prochaines commandes de vol. Le système de tunnel (Tunnel-in-

the-sky) appartient à cette famille. 

Cette section présente les affichages des commandes de guidage de vol pour le système 

d‘atterrissage aux instruments (Glideslope – Localizer), le vecteur de trajectoire et le directeur de 

vol (Flight path vector – Flight director), et le système de tunnel. Elle est importante pour le 

reste du travail pour deux raisons: afin de bien comprendre les limites des études précédentes sur 

l‘encombrement visuel du PFD, et parce que dans l‘expérience présentée au Chapitre 5 les pilotes 

utiliseront un système d‘atterrissage aux instruments. 

1.2.3.1 Système d’atterrissage aux instruments 

Le système d‘atterrissage aux instruments (Instrument landing system – ILS) est utilisé en phase 

d‘approche afin que l‘avion soit en ligne avec la piste d‘atterrissage. Il consiste en deux systèmes, 

le premier offrant un guidage latéral de la piste (Localizer) et le second offrant un guidage 

vertical (Glideslope). Le guidage vertical permet une approche en douceur de l‘avion avec un 

angle de descente de 3°. 

L‘utilisation de ce système requiert que la piste soit équipée d‘antennes d‘émission de guidage 

latéral et vertical qui émettent chacune un faisceau de guidage précis (voir Figure 1.3). 

L‘intersection de ces deux faisceaux est la trajectoire que doit suivre l‘avion pour se poser de 

manière sécuritaire sur la piste. 
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Figure 1.3 Faisceaux de guidage latéral (localizer, en haut) et vertical (glideslope, en bas) émis 

par les antennes de la piste équipée du système ILS. L‘intersection des deux faisceaux est la 

trajectoire précise que doit suivre l‘avion pour se poser de manière sécuritaire sur la piste. Image 

libre de droit. 

L‘information de guidage latéral et vertical est affichée sur deux échelles, l‘une horizontale et 

l‘autre verticale, respectivement situées de part et d‘autre de l‘horizon artificiel (voir Figure 1.4). 

Ces échelles sont composées d‘un pointeur en losange qui glisse le long de l‘échelle. Le pointeur 

est au centre de l‘échelle lorsque l‘appareil suit le faisceau de guidage. L‘échelle affiche une 

déviation maximale de deux points au-dessus et deux points au-dessous du faisceau de guidage. 

Selon les standards de tests de la FAA, un avion ne devrait pas excéder une déviation d‘un point 

pour le guidage latéral ou vertical en phase d‘approche (Flight Standards Service, 2008) 
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Figure 1.4 L‘affichage de guidage latéral et vertical est indiqué par un pointeur en losange qui 

glisse le long de l‘échelle, jusqu‘à une déviation maximale de deux points autour du chemin 

prescrit. 

1.2.3.2 Vecteur de trajectoire et directeur de vol 

Le vecteur de trajectoire (Flight path vector – FPV) indique la trajectoire latérale et verticale de 

l‘avion résultant de la somme de toutes les forces s‘exerçant sur l‘avion. Sa valeur est calculée 

par les ordinateurs de vol à bord de l‘appareil. Le FPV est présenté sur le PFD sous la forme d‘un 

petit symbole représentant l‘avion vu de dos (voir Figure 1.5). Par exemple, un avion avec une 

altitude stable a son symbole FPV sur la ligne d‘horizon du PFD, même s‘il a un angle de 

tangage positif. 

 

Figure 1.5 Symbole du FPV (en vert) 
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Le FPV est souvent utilisé avec le directeur de vol (Flight director – FD). Ce dernier donne les 

indications de guidage latéral et vertical obtenu par le gestionnaire de plan de vol et le pilote 

automatique. Le pilote doit réaliser les commandes de tangage et de roulis nécessaires afin que le 

symbole de FPV se superpose au symbole de FD à l‘écran. En tel cas, l‘avion suit le parcours 

prescrit du plan de vol avec précision. Le symbole conventionnel du FD est semblable à celui du 

FPV mais avec des ailes allongées, de telle façon que lorsque les deux indicateurs se superposent, 

il ne forme plus qu‘un symbole à l‘écran (voir Figure 1.6). 

 

Figure 1.6 Le FPV suit la trajectoire prescrite par le directeur de vol. 

Les deux systèmes de guidage présentés précédemment ont pour avantage de donner une 

indication précise de l‘écart entre la position actuelle de l‘avion par rapport à son trajet prescrit; 

dans le premier cas cet écart est donné par la déviation du losange de la ligne centrale et dans le 

second par l‘écart du FPV du FD. Toutefois, ces systèmes offrent peu d‘information pour 

anticiper les prochaines commandes, par exemple durant un virage courbe, ou pour projeter l‘état 

futur de l‘appareil suivant une commande. C‘est à cette lacune que s‘adresse la seconde famille 

de commandes de guidage, et plus particulièrement le système de tunnel. 

1.2.3.3 Tunnel (Tunnel-in-the-sky) 

L‘affichage de tunnel (tunnel-in-the-sky) superposé à l‘écran primaire de vol présente une vue 

spatiale de la trajectoire à suivre par une série de rectangles délimitant le corridor de vol (voir 

Figure 1.7). Le pilote contrôle l‘avion afin que le symbole de vecteur de trajectoire soit toujours à 
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l‘intérieur de ce corridor. Contrairement aux affichages de correction présentés précédemment, 

l‘affichage de tunnel présente le déplacement de l‘avion dans son environnement avec une vue 

3D. Il permet aussi au pilote d’anticiper la séquence d‘actions à venir en projetant dans l‘espace 

le parcours prédit de l‘avion, une information absente des affichages de correction (Mulder, van 

Paassen, & Mulder, 2004). De tels affichages améliorent la conscience de la situation (Dorighi, 

Ellis, & Grunwald, 1991; Parrish, Busquets, Williams, & Nold, 1994) et permettent de suivre la 

trajectoire de vol en contrôle manuel avec une grande précision (Grunwald, Robertson, & 

Hatfield, 1980; Grunwald, 1984). Plusieurs études ont montré que l‘affichage de tunnel est un 

facteur majeur dans le gain de performance du pilote, particulièrement dans la précision du 

contrôle du vol (Bailey, Kramer, & Prinzel III, 2006; Prinzel III, Arthur III, Kramer, & Bailey, 

2004; Prinzel, Kramer, Arthur, Bailey, & Comstock, 2004). 

 

Figure 1.7 Affichage tunnel superposé à l‘écran primaire de vol (détails). Le vecteur de 

trajectoire suit le parcours prescrit par le corridor. Image libre de droit. 

1.2.4 Synthèse 

Cette section a présenté les principaux instruments de vol du poste de pilotage et leurs affichages. 

Elle a aussi présenté l‘évolution des affichages, de l‘ère des cadrans à celle des écrans 

numériques et de l‘affichage de tunnel. Ces connaissances seront utilisées dans le Chapitre 2 sur 

la revue de littérature des expériences passées de l‘encombrement visuel des affichages de vol. 
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Nous montrerons que certaines études ont mal isolé la variable d‘encombrement visuel en 

manipulant à la fois l‘encombrement et la fonction de guidage. 

La conception de l‘affichage des instruments de vol présentés dans cette section est soumise à des 

règles et des exigences de la part des autorités règlementaires. La prochaine section en dresse la 

liste. 

1.3 Organismes réglementaires 

La sécurité des opérations aériennes est centrale dans la conception et la certification des avions. 

L‘affichage des instruments de vol ne fait pas exception à cette règle, et plusieurs documents 

rédigés par les autorités réglementaires compétentes en transport aérien énoncent les exigences 

que tous les affichages doivent respecter. Ces exigences réduisent l‘espace-solution pour 

l‘optimisation de l‘encombrement visuel de l‘écran primaire de vol, car elles définissent 

l‘information nécessaire à la tâche que doit présenter l‘écran. Cette section liste les documents 

pertinents pour la conception de l‘écran primaire de vol, puis présente les exigences en matière 

d‘encombrement visuel. 

1.3.1 Écran primaire de vol 

Le Tableau 1.1 liste les documents pertinents pour la conception des informations de vol du PFD. 

Ces documents définissent autant les fonctions qui doivent être présentes à l‘écran que la taille 

des caractères à utiliser
5
. 

                                                 

5
 Le lecteur intéressé est invité à consulter les documents pertinents pour recenser les règles de conception. 
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Tableau 1.1 Documents de référence pour la conception de l‘écran primaire de vol. 

Titre (numéro) Description 

Advisory circular on 

electronic flightdeck 

displays (AC 25-11A) 

Offre des consignes de conception pour démontrer la conformité 

de certaines exigences du code fédéral de régulation, chapitre 25, 

pour la conception, l‘installation, l‘intégration et l‘approbation 

des affichages numériques du poste de pilotage. 

Aerospace recommended 

pratice on electronic 

displays (ARP4102-7) 

Recommande des symboles et des implémentations alternatives 

pour les affichages numériques du poste de pilotage. 

Military interface standard, 

aircraft display symbology, 

(MIL-STD1787B). 

Document déclassifié. 

Définit la symbologie employée sur les affichages d‘avions 

militaires et l‘information nécessaire à l‘écran primaire de vol. 

Ne décrit pas la symbologie militaire classifiée. 

Aerospace recommended 

pratice on human factor 

considerations in the design 

of multifunction display 

systems for civil aircraft 

(ARP5364) 

Établit les recommandations opérationnelles pour les 

considérations de facteurs humains dans la conception d‘écrans 

multifonctions de l‘avion. Ce document présente plusieurs 

informations et enseignements tirés des constructeurs d‘avions. 

Numeral, letter and symbol 

dimensions for aircraft 

instrument displays (SAE-

AIR1093) 

Recommande les dimensions minimales des caractères et 

symboles utilisées dans les affichages et le panneau 

d‘instruments de l‘avion. 

 

Les recommandations et exigences énoncées dans ces documents de référence seront prises en 

compte au moment de concevoir l‘écran primaire de vol pour notre expérience sur l‘effet de 

l‘encombrement visuel. 

La minimisation de l‘encombrement à l‘écran est une exigence qui revient fréquemment dans les 

documents consultés. La prochaine section dresse les exigences des autorités réglementaires sur 

l‘encombrement visuel des affichages de vol. 

1.3.2 Exigences relatives à l’encombrement visuel 

La revue des documents de référence pour la conception de l‘écran primaire de vol pour les 

exigences relatives à l‘encombrement visuel a permis d‘identifier qu‘ils demandent de formater 
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l‘écran de façon à ce que l‘encombrement visuel soit minimal. Pour ce faire, les documents 

formulent deux exigences: premièrement, réduire le nombre de symboles, de traits et de couleurs 

affichés à l‘écran. Deuxièmement, offrir une fonction au pilote pour désencombrer l‘écran (de-

clutter) afin que celui-ci ne présente que l‘information suffisante pour la phase de vol en cours. 

La FAA, dans sa circulaire AC-25-11A sur les affichages électroniques du poste de pilotage, 

affirme qu‘un « écran encombré présente un nombre excessif ou une variété de symboles, de 

couleurs, ou d’autres informations inutiles
6
 » (FAA, 2007, p. 49). Le document identifie trois 

effets négatifs de l‘encombrement d‘un écran, soit l‘interférence avec la tâche de vol en cours, 

l‘augmentation du temps de traitement pour interpréter l‘information et la distraction à l‘égard de 

l‘information nécessaire pour piloter l‘avion. Pour ces raisons, le document conclut que 

« l’information devrait être affichée pour que l’encombrement soit minimisé. » 

La circulaire recommande d‘implanter une fonction pour désencombrer l‘écran. Le pilote peut 

l‘activer afin de retirer l‘information jugée superflue pour une phase de vol. Cette fonction 

devrait être activée automatiquement dans le cas où l‘avion atteint des conditions d‘opération 

inhabituelles. On considère que retirer l‘information superflue devrait aider le pilote à ramener 

l‘avion dans son enveloppe d‘opération normale. 

Minimiser l‘encombrement à l‘écran est aussi une exigence pour les avions militaires. Le 

standard MIL-STD-1787B (Military Interface Standard, 1996) a été rédigé par le département de 

la défense américain. Il définit la symbologie standard à utiliser pour l‘affichage d‘un avion à 

usage militaire et l‘information pertinente à afficher. Bien que le document concerne les 

affichages militaires, les concepteurs d‘interfaces du domaine civil s‘y réfèrent aussi, car le 

document offre des consignes de conception quantifiée. La première exigence du document 

demande que l‘information soit présentée de façon à réduire la perception d‘encombrement de 

l‘écran. 

« Displays shall present information needed for all instrument flight maneuvers to include 

takeoff, navigation, and landing. Symbols and symbol formats shall be integrated with 

emphasis on enhancing the pilot’s spatial orientation and situational awareness while 

                                                 

6
 « A cluttered display presents an excessive number or variety of symbols, colors, and/or other unnecessary 

information and, depending on the situation, may interfere with the flight task or operation. » 
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minimizing display clutter, particularly when visibility is poor. » (Military Interface 

Standard, 1996, p. 7) (Emphase ajoutée.) 

Ce document recommande aussi de fournir au pilote une fonction pour désencombrer l‘écran afin 

de ne présenter que l‘information nécessaire pour assurer le pilotage sécuritaire de l‘avion. Le 

document précise d‘ailleurs une liste d‘éléments, jugés secondaires, à retirer de l‘écran en 

fonction de la phase de vol – décollage, croisière, pilotage automatique, approche (Military 

Interface Standard, 1996). Ce dernier point suggère que l‘encombrement d‘un écran doit être 

évalué en fonction du contexte d‘opération et de la tâche à compléter – dans ce cas en fonction de 

la phase de vol et de ses tâches associées. 

Bombardier Aéronautique fait aussi référence à la réduction de l‘encombrement des écrans dans 

son guide de styles détaillant la philosophie et les règles de conception du poste de pilotage de 

ses avions. Le chapitre détaillant les spécifications des affichages écrans stipule que pour 

« réduire l’effet de l’encombrement [...] la densité d’information devrait être limitée à 60% » 

(Bombardier Aéronautique, 2011, p. 34). Ce dernier point se traduit donc en une exigence pour la 

présentation de l‘information à l‘écran. Le document précise aussi des techniques de réduction de 

l‘encombrement, soit limiter le nombre de groupes d‘information et le nombre de couleurs, 

limiter le nombre d‘alignements, regrouper l‘information appropriée, ajouter de l‘espace vide 

(blank space, en anglais) entre les groupes et utiliser une taille appropriée pour afficher les 

éléments. 

Le standard MIL-STD-1472F détaillant les critères de design ergonomique du département de la 

défense américain stipule deux exigences pour l‘information affichée à l‘écran. Premièrement 

que la « densité d’information devrait être minimisée pour des écrans utilisés pour une tâche 

critique », et deuxièmement que « lorsqu’un écran contient trop de données sur une seule vue, 

les données devraient êtres partitionnées sur plusieurs pages » (Military Interface Standard, 

1999, p. 179). Ces deux exigences font ressortir le besoin de conserver une limite supérieure à la 

quantité d‘information affichée à l‘écran. 

Trois points ressortent de l‘analyse des exigences des autorités réglementaires en aviation. 

Premièrement, que l‘encombrement d‘un écran provient de l‘abondance d‘information affichée et 

de l‘information jugée comme non-pertinente pour la tâche en cours. Deuxièmement, que 

l‘encombrement de l‘écran doit être minimisé. Troisièmement, que les exigences ne proposent 
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pas de mesures ou de métriques pour vérifier le niveau d‘encombrement de l‘écran. Certains 

documents utilisent la notion de densité d‘information à l‘écran pour évaluer l‘encombrement, 

mais comme le montrera le Chapitre 2, cette mesure ne capture qu‘une seule des trois dimensions 

contribuant à l‘encombrement. On comprend dès lors le besoin exprimé par le milieu de pratique 

pour l‘établissement de lignes directrices et de méthodes d‘évaluation de l‘encombrement afin 

qu‘il puisse démontrer qu‘il respecte les exigences des autorités réglementaires. 
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CHAPITRE 2 REVUE DE LITTÉRATURE SUR L’ENCOMBREMENT 

VISUEL DES ÉCRANS 

Le chapitre précédent a présenté les affichages et les instruments de vol du poste de pilotage, en 

plus d‘énoncer les grandes lignes de la problématique de l‘encombrement visuel des affichages 

dans le contexte de l‘aéronautique. Le chapitre actuel présente une revue de la littérature 

scientifique sur l‘encombrement visuel des écrans. Cette revue porte sur les domaines de 

l‘interaction humain-ordinateur, de l‘aérospatial et de la vision humaine. 

Premièrement, le chapitre présente une revue des définitions de l‘encombrement visuel. Nous 

montrerons qu‘il existe plusieurs définitions de l‘encombrement visuel, mais que la plupart 

d‘entre elles ont pour point commun d‘identifier deux dimensions à l‘encombrement, soit 

l‘abondance de symboles à l‘écran et la présence d‘information jugée comme inutile pour la 

tâche. Nous proposons une nouvelle définition qui ajoute une troisième dimension, soit le 

contexte dans lequel la tâche est réalisée. Deuxièmement, nous présentons les éléments qui 

contribuent à augmenter l‘encombrement visuel d‘un affichage pour chacune de ces trois 

dimensions. Troisièmement, nous comparons les métriques pour mesurer le niveau 

d‘encombrement d‘un affichage. Quatrièmement, nous montrons que l‘effet de l‘encombrement 

visuel sur la performance de l‘utilisateur dépend de la tâche réalisée en passant en revue les 

études passées pour deux tâches : la prospection visuelle et le pilotage d‘avion. Cinquièmement, 

nous montrons que les études passées sur la tâche de pilotage d‘avion n‘ont pas contrôlé la 

variable d‘encombrement visuel de l‘affichage de manière similaire. Pour ce faire, nous 

proposons trois exigences que tous les affichages utilisés pour une expérience sur 

l‘encombrement visuel devraient respecter. 

2.1 Revue des définitions de l’encombrement visuel 

Il existe plusieurs définitions de l‘encombrement visuel d‘un affichage. La caractéristique de 

l‘encombrement visuel mise en évidence par chaque définition varie selon le sujet de l‘étude; 

certains auteurs mettent de l‘avant la quantité de symboles affichés alors que d‘autres mettent 
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l‘accent sur la présence d‘information inutile
7
 pour la tâche. Il y a aussi une opposition entre les 

groupes de définitions pour définir l‘encombrement visuel comme une propriété de l‘écran, c‘est-

à-dire en fonction des éléments affichés à l‘écran, ou comme une relation entre la tâche de 

l‘utilisateur et l‘écran. 

Dans cette section, nous passons en revue les définitions existantes dans la littérature de 

l‘encombrement visuel. Nous avons regroupé les différentes définitions en quatre catégories, afin 

de comparer leurs caractéristiques. Chaque catégorie est présentée et comparée. À l‘issue de la 

section, nous proposons une nouvelle définition qui met en évidence la dépendance de 

l‘encombrement visuel au contexte de la tâche, une caractéristique absente des définitions 

existantes. 

2.1.1 Nombre d’éléments 

Une majorité d‘études ont défini l‘encombrement visuel en fonction du nombre de symboles et 

d‘éléments affichés à l‘écran, que ce soit dans le domaine de la psychologie perceptuelle 

(Baldassi, Megna, & Burr, 2006; Bravo & Farid, 2004, 2006, 2008; Wolfe, 2007), de l‘étude de 

l‘affichage de cartes de navigation (Lohrenz, Trafton, Beck, & Gendron, 2009; Phillips & Noyes, 

1982; Wickens, Alexander, Ambinder, & Martens, 2004), ou des affichages d‘aviation 

(McCrobie, 2000; Wickens, 2003). 

Ce groupe de définitions tire ses origines des expériences de psychologie de la perception et de 

prospection visuelle où le temps de recherche d‘une cible est proportionnelle au nombre de 

symboles à l‘écran (Eckstein, 2011; Treisman & Gelade, 1980). Le nombre de symboles à l‘écran 

diminue l‘efficacité de la recherche car l‘observateur doit y allouer son attention de manière 

sérielle (Wolfe, 2007). Par exemple, Baldassi et ses collègues (2006) utilisent le nombre de 

symboles affichés (set size, en anglais) comme l‘indication du niveau d‘encombrement de 

l‘affichage. Bravo et Farid proposent que l‘encombrement soit le nombre de parties visibles d‘un 

objet sur la scène (Bravo & Farid, 2004, 2006, 2008). 

De manière similaire, Phillips et Noyes (1982) défendent l‘idée que l‘encombrement visuel d‘une 

carte dépend de son nombre de symboles, de lignes et de marques. Dans une série d‘études 

                                                 

7
 Pour simplifier, ce document utilise information au singulier (usage emprunté de l‘anglais). 
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évaluant la facilité de recherche sur une carte de terrain, Wickens et ses collègues ont varié 

l‘encombrement de la carte en ajoutant des symboles à l‘écran (rivière, lac, montagne, etc.) sans 

toutefois offrir une définition formelle de l‘encombrement dans leurs articles (Kroft & Wickens, 

2002; Wickens, Alexander, Ambinder, et al., 2004). Toutefois, Wickens (2003) offre une 

définition formelle de l‘encombrement visuel comme le nombre de marques ou de régions 

visuellement contrastées présentées à l‘écran. En accord avec les définitions précédentes, on en 

déduit que le nombre de symboles et la densité d‘information à l‘écran sont les propriétés 

distinctives de l‘encombrement visuel. 

La littérature des IHM n‘emploie pas fréquemment le terme d‘encombrement visuel. Les auteurs 

décrivent plutôt un écran en termes de densité d‘information (Danchak, 1985; Tullis, 1981, 1997) 

d‘espace vide (Watzman, 2003; Weller, 2004) et de nombre de groupes à l‘écran (Mayhew, 1992; 

Parush, Shwarts, Shtub, & Chandra, 2005; Tullis, 1981). Ces termes sont équivalents puisqu‘un 

écran encombré affiche une densité d‘information élevée, peu d‘espace vide et plusieurs groupes 

d‘information. 

Les définitions précédentes présentent l‘encombrement comme une propriété de l‘écran, ce qui 

signifie que l‘encombrement dépend uniquement des éléments affichés à l‘écran. Ces définitions 

font abstraction de la nature de la tâche réalisée par l‘utilisateur ou du niveau d‘expertise de ce 

dernier. Définir l‘encombrement visuel comme la densité de symboles à l‘écran ne reflète pas non 

plus l‘organisation et le regroupement de l‘information, ni la pertinence de l‘information affichée 

pour la tâche de l‘opérateur. Un affichage dense mais avec une organisation de l‘information 

adéquate pour la tâche peut s‘avérer bénéfique pour l‘opérateur (Mayhew, 1992; Tullis, 1988) 

2.1.2 Interférence avec la vue extérieure 

Un second groupe d‘auteurs intéressés à l‘étude des affichages tête haute (Head up display HUD, 

en anglais) définissent l‘encombrement visuel comme l‘interférence ou le masquage des 

symboles du HUD avec la vue extérieure (Horrey & Wickens, 2004; Yeh, Merlo, Wickens, & 

Brandenburg, 2003; Yeh, Wickens, & Seagull, 1999). Dans ce cas, le HUD encombre le champ 

de vision
8
 en se superposant au champ de vision extérieure alors que l‘affichage tête basse (Head 

                                                 

8
 Notez l‘usage du verbe dans la définition. 



  25 

 

down display HDD, en anglais) n‘est pas encombré, peu importe la symbologie affichée. Yeh et 

ses collègues étudient l‘avantage de l‘affichage tête haute comme un compromis entre, d‘une 

part, la réduction du parcours visuel de l‘écran à la vue extérieure et, d‘autre part, l‘accroissement 

de l‘encombrement visuel dû à l‘interférence des symboles (Yeh et al., 2003, 1999). Horrey et 

Wickens (2004) défendent une définition semblable de l‘encombrement. L‘affichage avec un 

encombrement élevé est celui qui superpose l‘information sur le champ de vision avant de 

l‘opérateur alors que l‘affichage tête basse, présentant la même information, est décrit comme 

non-encombré (uncluttered, en anglais). 

L‘interférence des symboles de l‘affichage tête haute avec la vue extérieure est une préoccupation 

dans le domaine aérospatial et fait l‘objet de recommandations par un comité d‘experts (SAE 

International, 1998). Toutefois, l‘objet d‘application de cette famille de définitions –l‘étude de 

l‘affichage tête haute– n‘est pas pertinent dans le cadre de cette thèse. 

2.1.3 Définition opérationnelle 

Un troisième groupe de définitions emploient une définition opérationnelle de l‘encombrement, 

c‘est-à-dire une définition du phénomène selon ses conséquences observables. Rosenholtz et ses 

collègues, dans leur article considéré comme le plus influent sur l‘étude de l‘encombrement 

visuel (van den Berg, Cornelissen, & Roerdink, 2009), proposent une définition en fonction de la 

diminution de performance dans une tâche de prospection visuelle : « L’excès d’items, ou leur 

représentation ou organisation conduit à une dégradation de la performance à certaines 

tâches »
9
 (Rosenholtz, Li, & Nakano, 2007, p. 3). Pareillement, Regal et Knapp définissent 

l‘encombrement comme une surabondance d‘informations détériorant la capacité de l‘utilisateur 

à analyser l‘information pertinente (Regal & Knapp, 1984). 

Lloyd (2006), dans son mémoire de maîtrise sur les métriques d‘encombrement visuel pour les 

affichages aériens, formule aussi une définition de l‘encombrement en fonction de ses effets, soit 

un état de confusion qui dégrade la précision et la facilité d‘interprétation de l‘information 

                                                 

9
 «Excess items, or their representation or organization, lead to a degradation of performance at some task.» 
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affichée
10

. Cette dernière définition, contrairement à celles de (Regal & Knapp, 1984; Rosenholtz 

et al., 2007), ne fait pas mention au nombre de symboles à l‘écran ou à la surabondance 

d‘information. 

La limitation d‘une définition opérationnelle de l‘encombrement est de postuler une diminution 

de la performance de l‘opérateur avec une hausse du niveau d‘encombrement de l‘affichage. Or, 

comme nous le présenterons à la section 2.4, l‘effet de l‘encombrement sur la performance 

dépend de la tâche réalisée. Il est donc avisé de décrire le phénomène par d‘autres artéfacts, 

comme les propriétés de l‘affichage ou la présence d‘information superflue pour la tâche de 

l‘opérateur plutôt que par son effet sur la performance. 

2.1.4 Information inappropriée 

Alors que la définition de l‘encombrement visuel comme l‘abondance de symboles à l‘écran fait 

abstraction de la tâche supportée par l‘affichage, un quatrième groupe de définitions précise 

qu‘un écran est perçu comme encombré s‘il présente des symboles ou de l‘information 

inappropriée pour la tâche de l‘opérateur. Lohrenz et ses collègues définissent l‘encombrement de 

cartes géographiques comme une surabondance d‘information pertinente (Barbu, Lohrenz, & 

Layne, 2006; Lohrenz & Hansman, 2004; Lohrenz et al., 2009). Ververs et Wickens (1996, 1998) 

n‘offrent pas une définition formelle de l‘encombrement, mais font varier l‘encombrement du 

PFD en ajoutant de l‘information de vol redondante en périphérie de l‘écran. L‘information est 

dite redondante car elle est répète une valeur déjà affichée, par exemple afficher la vitesse à deux 

endroits à l‘écran. Bolton et Braun (1996) font de même en ajoutant des libellés redondants sur la 

position de l‘appareil et sa vitesse. 

Cette famille de définitions fait ressortir une nouvelle caractéristique de l‘encombrement visuel : 

afficher une fonction ou un libellé d‘information qui n‘est pas utile pour la tâche courante de 

l‘opérateur contribue à encombrer l‘affichage. L‘encombrement visuel est ici présenté comme 

l‘inadéquation entre les buts courants de l‘opérateur et ce qui se trouve à l‘écran. 

                                                 

10
 « Clutter is a state of confusion that degrades both the accuracy and ease of interpretation of information 

displays. » (p. 14) 
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En effet, il est compréhensible qu‘un concepteur d‘interfaces –ou de cartes géographiques dans 

ce cas– désire présenter à l‘utilisateur toute l‘information à laquelle son application a accès. 

Comme nous l‘avons expliqué au Chapitre 1, une situation semblable s‘est produite en aviation 

lors de la transition des instruments de vol mécaniques aux affichages numériques dans le poste 

de pilotage. Le concepteur peut afficher de l‘information provenant de plusieurs sources sur un 

seul écran. Or c‘est cette surabondance d‘information, pertinente ou non pour la tâche courante, 

qui contribue à l‘encombrement de l‘affichage. La définition retenue dans cette thèse doit 

reconnaitre la contribution de la pertinence de l‘information à l‘encombrement visuel. 

2.1.5 Pertinence au domaine de l’aviation 

Les définitions de l‘encombrement visuel retenues par les organismes de règlementation 

aériennes reflètent les deux principaux facteurs identifiés dans la revue de littérature. La 

circulaire AC 25-11A de la FAA sur les affichages électroniques du poste de pilotage définit 

l‘encombrement visuel à l‘écran comme (1) un nombre excessif de symboles ou de couleurs, ou 

comme (2) la présence d‘information inutile pouvant nuire à la tâche de vol (FAA, 2007, p. 49)
11

. 

Pareillement, le comité SAE International sur les problématiques de facteurs humains en aviation 

(SAE International, 1998) a formulé cinq concepts pour décrire l‘encombrement visuel d‘un 

affichage tête haute, soit: 

1. l‘interférence de symboles 

2. l‘occlusion des éléments extérieurs (ex., trafic) 

3. une symbologie inappropriée pour la phase de vol 

4. une symbologie excessive pour la phase de vol 

5. la priorité d‘affichage des symboles. 

On constate que le groupe de facteurs proposé par SAE International pour décrire 

l‘encombrement visuel recoupe l‘ensemble des définitions précédentes. Cela suggère que 

                                                 

11
 « A cluttered display presents an excessive number or variety of symbols, colors, and/or other unnecessary 

information and, depending on the situation, may interfere with the flight task or operation. » 
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l‘encombrement visuel des affichages d‘avions est un objet à plusieurs dimensions et qu‘il faille 

tenir compte de ces différents facteurs afin de comprendre la nature du problème. 

Les pilotes d‘avions perçoivent l‘encombrement visuel comme un phénomène multidimensionnel 

(Alexander, Stelzer, Kim, & Kaber, 2008; Kaber et al., 2008). Alexander et ses collègues ont 

interrogé quatre pilotes experts sur les facteurs contribuant à l‘encombrement d‘un affichage tête 

haute (Alexander et al., 2008). Ils ont trouvé que les propriétés de l‘écran (densité visuelle, 

nombre de symboles, etc.) et la pertinence de l‘information pour la tâche contribuent à la 

perception d‘encombrement d‘un écran. Les auteurs ont décrit la première dimension comme la 

densité visuelle et la seconde comme la densité d‘information. Bien que l‘ajout de symboles à 

l‘écran offre une information de vol accrue, les pilotes considèrent que l‘écran est encombré 

lorsque la densité visuelle excède la densité d‘information requise pour la tâche. 

Kaber et ses collègues (2008) ont validé ce modèle à deux dimensions de l‘encombrement 

(densité visuelle vs. densité d‘information) en identifiant cinq pairs de descripteurs expliquant le 

mieux la perception d‘encombrement : redondant/orthogonal, monochromatique/coloré, non 

saillant/saillant, non sécuritaire/sécuritaire et épars/dense. Notez que ces couples de descripteurs 

proviennent tant de la densité visuelle (coloré, saillant, dense) que de la densité d‘information 

(redondant, sécuritaire). 

2.1.6 Dépendance au contexte 

La revue des définitions a permis de montrer que l‘encombrement est défini selon plusieurs 

dimensions, les deux principales étant la densité visuelle, soit le nombre de symboles à l‘écran, et 

la densité d‘information, soit la présence d‘information non pertinente pour la tâche. Le contraste 

entre ces deux dimensions fait ressortir l‘opposition pour la définition d‘un phénomène par une 

approche ascendante (bottom-up approach), soit selon les propriétés de l‘affichage comme le 

nombre de traits et de symboles, et suivre une approche descendante (top-down approach), soit 

en fonction des connaissances de l‘opérateur sur l‘organisation de l‘information à l‘écran. Cette 

revue de littérature a permis de montrer que les deux facteurs (densité visuelle et densité 

d‘information) contribuent à la perception d‘encombrement de l‘écran et doivent donc être 

présents dans la définition du phénomène. 
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Dans un effort pour rejoindre les deux visions contrastées de la surcharge d‘information 

(information overload) comme tirant sa source soit des propriétés de l‘écran ou de la pertinence 

de l‘information pour l‘opérateur, Woods et ses collègues ont mis de l‘avant le rôle clé que joue 

la relation entre l’affichage et son utilisateur (Woods, Patterson, & Roth, 2002). Ce qui donne la 

pertinence à un élément d‘information à l‘écran, expliquent Woods et ses collègues, dépend du 

contexte de la tâche, de l‘affichage et des attentes, intentions et intérêts de l‘utilisateur. 

Illustrons ce propos avec le système d‘alarmes de l‘équipage (Crew alerting system, CAS) présent 

à bord de l‘avion (voir Figure 2.1). Si un message d‘alarme apparaît en vol indiquant une faille 

des pompes hydrauliques, cela peut signifier que les pompes sont effectivement inopérantes; qu‘il 

y a un problème avec le détecteur des pompes si le même message apparaît à nouveau malgré que 

l‘on ait suivi la bonne procédure de résolution du problème; ou une situation plus dangereuse si le 

même message apparaît simultanément avec d‘autres messages d‘alarmes. Le message d‘alarme a 

une signification radicalement différente en fonction du contexte dans lequel il apparaît. 

 

Figure 2.1 Le même message prend une signification radicalement différente s'il (a) apparaît seul 

ou (b) simultanément avec d‘autres messages d‘alarmes. 

En ce sens, l‘encombrement visuel n‘est pas seulement une propriété de l‘écran, mais plutôt le 

résultat d‘une conception qui empêche l‘utilisateur de concentrer son attention sur les groupes 

d‘informations pertinents en fonction du contexte particulier (Woods et al., 2002). Toujours selon 
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Woods et ses collègues, diminuer l‘encombrement en réduisant le nombre de symboles à l‘écran 

ou en présentant moins d‘information à l‘utilisateur fait fi de la dépendance au contexte. La 

théorie de la Gestalt nous apprend que plus de symboles à l‘écran, si ceux-ci sont bien intégrés et 

présentent une forme unie plutôt qu‘un agrégat de traits, permet de diminuer la perception 

d‘encombrement (Wertheimer, 1938). Cet aspect est absent des théories limitant le champ 

d‘étude de l‘encombrement à celui de la densité visuelle.  

La dépendance au contexte est absente des définitions précédentes de l‘encombrement mettant 

l‘importance sur le nombre de symboles à l‘écran. Clairement, elle doit être mentionnée dans la 

définition de l‘encombrement. 

2.1.7 Synthèse 

Cette revue de littérature a permis de montrer qu‘il existe plusieurs définitions de 

l‘encombrement visuel d‘un affichage. La densité visuelle et la densité d‘information sont les 

deux principaux contributeurs de l‘encombrement identifiés par les études précédentes 

(Alexander et al., 2008; Kaber et al., 2008). Nous avons aussi montré que la dépendance au 

contexte est absente des définitions existantes.  

Il est pertinent de faire un choix stratégique dans la définition pour retenir les éléments pertinents 

à notre sujet d‘étude. Comme le soulignent avec justesse Kim et ses collègues, à défaut d‘avoir 

une définition suffisamment restreignante, tous les symboles qui ne sont pas satisfaisants à l‘œil 

du pilote pourront être décrits comme ajoutant à l‘encombrement (Kim et al., 2011). Cette thèse 

étudie l‘encombrement visuel d‘un affichage PFD tête basse. À ce titre, la définition de la 

circulaire AC 25-11A, présentée à la section 2.1.5, est la plus pertinente à ce travail. Toutefois, la 

définition gagnerait à faire référence à l‘organisation de l‘écran et au contexte de la tâche. 

Deux autres observations sont de mise avant d‘énoncer une nouvelle définition. Premièrement, le 

mot « encombrement » a une connotation négative dans le langage courant. Il en est de même 

avec son équivalent anglais clutter. D‘un point de vue scientifique, il serait préférable d‘utiliser 

un mot neutre pour décrire une interface. On pourrait lui privilégier les termes densité visuelle, 

densité d‘information, poids visuel ou charge visuelle. Toutefois, le terme anglais visual clutter 

est désormais largement utilisé dans la communauté des facteurs humains et particulièrement en 

aérospatial; la circulaire AC 25-11A et le standard militaire MIL-STD 1787B l‘utilisent tous 
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deux. C‘est pourquoi nous utiliserons aussi le mot encombrement, non sans avoir énoncé cette 

précaution. 

Deuxièmement, nous privilégions étudier l‘encombrement comme une propriété de l‘affichage et 

comme la relation entre l‘utilisateur et l‘affichage. Cela permet de décrire l‘état d‘encombrement 

d‘un affichage, par exemple en quantifiant la densité de symboles ou la variété de couleurs à 

l‘écran, sans faire abstraction du fait que l‘affichage est conçu pour réaliser une ou plusieurs 

tâches par son utilisateur. Cette perspective se veut un compromis entre les visions de 

l‘encombrement basées exclusivement sur le format de l‘écran et celles basées sur les 

connaissances de l‘utilisateur. 

Nous proposons donc la définition suivante pour l‘encombrement visuel : 

L‘encombrement visuel est l‘état d‘un affichage présentant au moins l‘une des trois 

conditions suivantes : (1) une abondance ou une variété de symboles ou de couleurs, (2) 

une information jugée comme non pertinente pour la tâche et le contexte, (3) un manque 

d‘organisation et de structure. L‘évaluation de l‘encombrement visuel doit tenir compte 

du contexte d‘utilisation et de la tâche de l‘opérateur. 

2.2 Contributeurs à l’encombrement 

Les études précédentes ont identifié plusieurs éléments graphiques contribuant à augmenter la 

perception d‘encombrement de l‘affichage. Le modèle à trois dimensions de l‘encombrement que 

nous proposons (densité visuelle, densité d‘information, et organisation) offre un cadre 

conceptuel pour étudier ces éléments contributeurs. Cette section présente les principaux 

éléments graphiques identifiés par les études passées comme augmentant ou diminuant 

l‘encombrement visuel. Suite à cette revue, un concepteur d‘interface peut modifier les éléments 

graphiques identifiés afin de diminuer la perception d‘encombrement de son application. 

Les résultats sont présentés pour chacune des trois dimensions de l‘encombrement. Les 

contributeurs identifiés pour la dimension de densité visuelle sont les attributs visuels et la qualité 

esthétique de l‘interface. Le contributeur identifié pour la dimension de densité d‘information est 

la pertinence à la tâche. Le contributeur identifié pour la dimension d‘organisation est le 

regroupement. 
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2.2.1 Densité visuelle 

Nous avons identifié deux catégories de contributeurs à l‘encombrement visuel pour la densité 

visuelle : les attributs visuels et la qualité esthétique de l‘interface. 

2.2.1.1 Attributs visuels 

Les attributs visuels (visual features, en anglais) sont les propriétés observables et quantifiables 

de l‘interface comme la couleur, le contraste à l‘écran ou la police de caractère. Cette catégorie 

est celle contenant le plus d‘éléments et le plus d‘études pour les supporter dans la revue de 

littérature. L‘étude des attributs visuels de l‘écran a l‘avantage de traiter de propriétés objectives, 

quantifiables et manipulables, ce qui explique la popularité du sujet dans la littérature. 

Le Tableau 2.1 présente les attributs visuels contributeurs de l‘encombrement. On remarque que 

les principales conclusions des études présentées sont en accord avec les consignes de conception 

d‘interfaces, soit de faire preuve d‘économie dans le choix des couleurs et des symboles à l‘écran 

(Mayhew, 1992; Smith & Mosier, 1986), et de distinguer l‘information prioritaire par sa taille ou 

sa luminosité (Tullis, 1997). 
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Tableau 2.1 Attributs visuels contributeurs de l‘encombrement 

Attributs Étude A trouvé que 

Couleur (Lohrenz et al., 2009; 

Rosenholtz et al., 2007) 

Le nombre et la variété de couleurs du 

stimulus augmentent l‘encombrement. 

 (Shive & Francis, 2012) Une distinction en couleur d‘un symbole 

prioritaire réduit le temps d‘identification sur 

un affichage encombré. 

Nombre de 

symboles 

(Alexander et al., 2008) La perception d‘encombrement est 

proportionnelle au nombre de fonctions 

affichées. 

Densité des 

symboles 

(Tullis, 1984, 1988) 

(Weller, 2004)  

Un écran avec une densité de symboles 

élevée ralentit la recherche d‘information. 

 (Muthard & Wickens, 2005) La diminution de la performance de détection 

en fonction de l‘encombrement est plus 

importante pour un écran de petite taille. 

Alignement (Noble & Constantine, 1996; 

Parush, Nadir, & Shtub, 1998) 

Uniformiser l‘alignement des objets sur une 

grille réduit la complexité visuelle. 

Police de 

caractère 

(Reimer, Mehler, & Coughlin, 

2012) 

Une police de caractère avec empattement 

diminue la performance d‘utilisation d‘un 

système de navigation automobile. 

Luminance et 

contraste 

(Ververs & Wickens, 1998) La luminosité de l‘information secondaire est 

diminuée pour réduire la perception 

d‘encombrement. 

Taille (Ewing, Woodruff, & Vickers, 

2006) 

Les symboles de même taille que la cible 

d‘intérêt contribuent à l‘encombrement. 

Similitude 

des symboles 

(Zuschlag, 2004) La similitude des attributs visuels entre la 

cible d‘intérêt et son entourage diminue sa 

visibilité. 

Texture (Aviram & Rotman, 2000; 

Rotman, Tidhar, & Kowalcyk, 

1994) 

Une abondance de textures différentes pour 

distinguer les objets contribue à 

l‘encombrement. 

L‘abondance de couleurs du stimulus contribue à la perception d‘encombrement chez les 

observateurs (Lohrenz et al., 2009; Rosenholtz et al., 2007). La vision fovéale humaine, 

impliquée dans les tâches nécessitant une haute acuité visuelle comme la lecture, est 
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particulièrement sensible à la couleur. Des résultats récents indiquent que la couleur est une 

modalité d‘encodage plus distinctive que la taille ou l‘orientation des symboles (van den Berg, 

Cornelissen, & Roerdink, 2008). La couleur devrait donc être utilisée judicieusement dans la 

conception d‘interfaces afin d‘attirer l‘attention vers les groupes d‘information pertinents sans 

encombrer l‘affichage. Shive et Francis (2012) ont développé un modèle prédictif du temps de 

recherche d‘un symbole sur une carte en fonction de sa couleur et de son excentricité du centre de 

la carte. Ils ont obtenu un gain de 10% dans le temps d‘identification des cibles prioritaires ayant 

leur couleur optimisée comparativement à la carte originale. Toutefois, la distinction par la 

couleur demeure efficace pour un nombre limité de couleurs. Mayhew (1992) recommande de 

limiter le codage couleur à huit couleurs différentes afin de ne pas surcharger l‘affichage. 

Le nombre d‘objets à l‘écran est une propriété distinctive de l‘encombrement. Alexander et 

collègues ont montré que la perception d‘encombrement visuel du HUD par des pilotes est 

proportionnelle aux nombres de fonctions affichées (Alexander et al., 2008). Réduire le nombre 

de symboles à l‘écran afin de ne conserver que l‘information essentielle pour la tâche est un 

premier pas pour réduire la perception d‘encombrement. 

Tandis que le nombre de symboles considère la quantité d‘objets, la densité considère leur 

distribution à l‘écran. La densité des symboles indique combien l‘information est densément 

distribuée. La densité globale mesure la densité moyenne de l‘information pour tout l‘écran, alors 

que la densité locale mesure la densité à proximité d‘un objet d‘intérêt, par exemple le libellé 

d‘un menu. Durant son doctorat, Tullis (1984) a conçu 520 affichages variant selon six 

dimensions : densité globale, densité locale, nombre de groupes, taille des groupes, nombre 

d‘alignements et nombre d‘éléments
12

 (voir le chapitre de (Tullis, 1988) pour un résumé de ses 

travaux). Il a mesuré le temps de diagnostic d‘une panne d‘un système électrique par huit 

techniciens et leur appréciation subjective de l‘affichage. Les meilleurs prédicteurs du temps de 

diagnostic sont la densité globale, la densité locale, le nombre de groupes et leur taille, expliquant 

49% de la variance. Les meilleurs temps de diagnostic sont obtenus avec un affichage ayant une 

faible densité. Les deux prédicteurs les plus significatifs de la perception subjective de l‘affichage 

                                                 

12
 L‘outil d‘évaluation automatique de la qualité d‘une interface développé par (Tullis, 1984) est présentée plus en 

détails dans la section des métriques d‘encombrement. 
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sont l‘alignement et la densité locale, les affichages recevant la meilleure perception ont un 

nombre d‘alignement et une densité locale réduite. Bien sûr, la densité globale de l‘écran n‘est 

qu‘un facteur. Tullis (1984) a montré que pour la même densité d‘information, la performance 

d‘un écran a été améliorée de 50% en regroupant les éléments et en présentant un meilleur 

formatage de l‘interface. 

Weller (2004) a obtenu des résultats similaires avec une page web, où la meilleure performance 

de recherche d‘information a été obtenue pour l‘affichage ayant une densité globale faible 

(p < .01). 90% des participants ont jugé la page ayant une densité globale élevée comme étant 

celle qu‘ils ont le moins appréciée. Weller n‘a observé aucun effet significatif pour la densité 

locale. 

Muthard et Wickens (2005) ont manipulé la taille physique d‘un écran de trafic aérien et son 

niveau d‘encombrement en augmentant le nombre d‘avions à proximité. Les pilotes devaient 

détecter une collision possible entre leur appareil et ceux à proximité. Les auteurs ont trouvé une 

interaction significative entre la taille de l‘écran et le niveau d‘encombrement (p < .001) 

indiquant que lorsque le niveau d‘encombrement augmente, la performance de surveillance 

diminue de 30% uniquement pour l‘écran le plus petit. Ces résultats montent qu‘une densité 

visuelle élevée avec un écran de petite taille et une densité de symboles importante diminue la 

performance de détection d‘évènements. 

Uniformiser la disposition des objets à l‘écran en minimisant le nombre d‘alignements verticaux 

offre une interface visuellement plus agréable et plus facile d‘utilisation. Parush et ses collègues 

ont amélioré de 20% le temps de recherche pour trouver un champ interactif pour les interfaces 

minimisant le nombre d‘alignements comparativement aux interfaces sans grille pour 

l‘alignement (Parush et al., 1998). Les participants jugent plus favorablement l‘interface 

minimisant le nombre d‘alignements. Pour Noble et Constantine (1996) la qualité visuelle d‘une 

interface est inversement proportionnelle à son nombre d‘alignements uniques. 

La police de caractère employée influence aussi l‘encombrement visuel de l‘application. Reimer 

et ses collègues ont comparé l‘utilisabilité d‘un appareil de navigation automobile en employant 

une police sans empattement, dite humaniste, versus une police avec empattement, dite 
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grotesque
13

 (Reimer et al., 2012). Ils ont trouvé que l‘interaction de l‘utilisateur avec la police 

humaniste réduit de 10.6% le temps d‘observation de l‘écran, et donc hors de la route, et réduit de 

3.1% le nombre d‘erreurs de sélection. Employer une police de caractère sans empattement (sans 

serif) est une méthode permettant d‘améliorer la qualité de l‘affichage et réduire la charge 

visuelle consacrée à l‘interface (Bringhurst, 2002; Watzman, 2003). 

La mise en évidence de l‘information primaire de vol en augmentant son contraste par rapport à 

l‘information secondaire permet de réduire la charge visuelle de l‘écran (Ververs & Wickens, 

1998). De même, un contraste élevé entre l‘information interactive et l‘arrière-plan facilite la 

lecture et le repérage de l‘information (Ling & van Schaik, 2002). Le standard MIL 1472-F 

recommande un ratio de luminosité d‘au moins 3:1 entre le symbole et l‘arrière-plan pour 

faciliter la lecture. 

Ewing et collègues ont montré que les objets affichés de même taille que l‘objet d‘intérêt 

contribuent à l‘encombrement visuel (Ewing et al., 2006). La distinction des objets par 

différentes tailles facilite le regroupement perceptuel des différents groupes d‘information. 

Comme pour la taille, la similitude des objets à l‘écran réduit la visibilité du symbole d‘intérêt 

primaire. Zuschlag (2004) a montré que pour un affichage HUD, l‘utilisation à l‘écran des mêmes 

attributs visuels que le symbole primaire du FPV réduit sa saillance et augmente la perception 

d‘encombrement global de l‘écran. 

Finalement, l‘utilisation de différentes textures pour distinguer les objets à l‘écran augmente 

l‘encombrement visuel de l‘affichage (Aviram & Rotman, 2000; Rotman et al., 1994). La texture 

est définie comme un patron de couleurs répétitif sur une surface donnée (p. ex., lignes 

hachurées, fonds pointillés, etc.) Aviram et Rotman (2000) ont montré qu‘utiliser une texture 

pour l‘objet d‘intérêt distinctive de l‘arrière-plan facilite son identification, mais que l‘abondance 

de textures à l‘écran à différentes échelles spatiales accentue son encombrement visuel global. 

                                                 

13
 Une police humaniste offre des lettres distinguables par leur forme, ouverture et espace. Exemple : Lucida Grande, 

Gill Sans, Myriad, Frutiger. Une police grotesque a des lettres similaires en forme et en largeur, les rendant moins 

distinguables. Exemple : Franklin Gothic, Eurostile. Voir (Bringhurst, 2002) pour une étude détaillée de la 

typographie. 
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Globalement, ces résultats identifient une série de paramètres sous le contrôle du concepteur 

d‘interface afin de réduire la perception d‘encombrement : faire preuve d‘économie dans 

l‘utilisation de la couleur, employer une grille pour la disposition des objets à l‘écran et préférer 

une police de caractères sans empattement. Nous pouvons aussi souligner que ces résultats sont 

conformes aux recommandations des consignes de conception, privilégiant la simplicité et le 

minimalisme dans la conception d‘interfaces. 

2.2.1.2 Qualité esthétique 

La qualité esthétique d‘une interface est une propriété subjective de la représentation visuelle 

harmonieuse de l‘information à l‘écran (Moshagen & Thielsch, 2010). L‘étude de la qualité 

esthétique des interfaces a suscité de l‘intérêt dans les dernières années dans le domaine de 

l‘expérience utilisateur (Law & van Schaik, 2010; Robert, 2008) et des métriques de prédiction 

de l‘utilisabilité d‘une interface en fonction de sa qualité esthétique (Altaboli & Lin, 2011; Ngo, 

Teo, & Byrne, 2003; Wu, Chen, Li, & Hu, 2011; Yang & Klemmer, 2009). 

Il peut sembler étonnant de parler de l‘esthétique d‘une interface dans le cadre d‘un travail sur 

l‘effet de l‘encombrement visuel du PFD sur la tâche de vol. Pourtant, des résultats récents 

montrent que la qualité esthétique d‘une interface a un effet sur la performance d‘une tâche 

(Gannon, 2005, 2010; Hartmann, Sutcliffe, & Angeli, 2008; Lavie, Oron-Gilad, & Meyer, 2011). 

De plus, l‘esthétique d‘une interface dépend de sa conception graphique, tout comme 

l‘encombrement visuel. Il est donc pertinent de l‘étudier. 

L‘identification des facteurs influençant la perception de la qualité esthétique d‘une interface par 

l‘utilisateur fait toujours l‘objet de recherche. Lavie et Tractinsky (2004) ont identifié deux 

catégories pour décrire l‘esthétique d‘une interface : esthétique classique et esthétique créative. 

L‘esthétique classique est le respect des règles de simplicité, de symétrie et d‘organisation de 

l‘interface, alors que l‘esthétique créative est la rupture de ces règles pour créer un effet de 

surprise et de nouveauté. Les auteurs ont développé le questionnaire d‘Évaluation des qualités 

visuelles (Visual qualities rating sheet) pour évaluer ces deux catégories (Lavie & Tractinsky, 

2004). Pour le développement du Répertoire de la qualité visuelle du site web (Visual aesthetics 

of website inventory, VisAWI) Moshagen et Thielsch (2010) ont identifié quatre catégories de 

facteurs d‘esthétique, soit la simplicité, la diversité, l‘imagerie (colorfulness) et l‘artisanat 
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(craftsmanship). Les catégories de simplicité et diversité de (Moshagen & Thielsch, 2010) sont 

similaires à l‘esthétique classique et créative de (Lavie & Tractinsky, 2004), respectivement. 

Hartmann et ses collègues ont modifié la qualité esthétique de sites web, tout en conservant un 

contenu similaire entre les pages (Hartmann et al., 2008). Ils ont trouvé un effet d‘halo où la page 

esthétiquement plus agréable est jugée comme préférable par les utilisateurs, malgré que les 

résultats objectifs montrent une diminution de la performance, mesurée par le nombre d‘erreurs. 

D‘autres études ont montré un effet d‘halo en rapportant une corrélation positive entre la qualité 

esthétique de l‘interface et son utilisabilité perçue par l‘utilisateur (Tractinsky, Katz, & Ikar, 

2000; Tractinsky, 1997), de même qu‘avec la satisfaction de l‘utilisateur du système (Lindgaard 

& Dudek, 2003). Toutefois, Hassenzahl (2004) remet en question ce lien en montrant une 

corrélation faible ou nulle entre la qualité esthétique perçue d‘un lecteur MP3 et son utilisabilité. 

L‘étude de Lavie et ses collègues permet de faire le pont entre qualité esthétique, encombrement 

visuel et utilisabilité (Lavie et al., 2011). Les auteurs ont conçu différentes cartes géographiques 

en manipulant trois variables : quantité de données (encombrement), niveau d‘abstraction et 

palette de couleurs. Vingt-deux participants ont répondu à des questions d‘orientation spatiale 

utilisant ces cartes tout en réalisant une double tâche de poursuite, similaire à la conduite 

automobile. Les auteurs ont trouvé que la quantité de données (encombrement) affecte toutes les 

mesures de performance objectives et subjectives et la qualité esthétique perçue, mesurée par le 

questionnaire modifié de (Lavie & Tractinsky, 2004). Les cartes ayant le minimum d‘information 

sont perçues comme plus esthétiques, ayant une meilleure utilisabilité et offrant un temps de 

réponse plus rapide et moins d‘erreurs. Deux limitations de cette étude sont que les auteurs n‘ont 

pas évalué l‘effet de la réduction d‘information sur la conscience de la situation des utilisateurs 

(Leshed, Velden, Rieger, Kot, & Sengers, 2008) et que la tâche de conduite était artificielle. 

Dans sa thèse de doctorat, Gannon (2005) a manipulé la qualité esthétique de quatre PFD utilisés 

par 24 pilotes pour compléter une phase d‘approche en simulateur de vol. Les pilotes ont évalué 

la qualité esthétique de chaque PFD à l‘aide du questionnaire modifié de (Lavie & Tractinsky, 

2004). Gannon a trouvé que les pilotes utilisant le PFD esthétiquement plus agréable ont une 

charge de travail inférieure (p < 0.05) telle que mesurée par le NASA-TLX. L‘auteur n‘a observé 

aucun effet sur le contrôle de l‘avion (déviations du G/S et LOC non significatives), ni sur le 

temps de détection d‘une alarme (apparition d‘un message CAS). Ces résultats montrent 
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l‘importance d‘optimiser la représentation graphique de l‘interface dans le domaine de l‘aviation 

(Gannon, 2010). 

Globalement, les résultats présentés dans cette section indiquent que la qualité esthétique d‘une 

interface influe sur l‘utilisabilité perçue (Hartmann et al., 2008) et la performance perçue par 

l‘utilisateur (Gannon, 2005). Réduire l‘encombrement visuel en éliminant les données inutiles 

pour la tâche offre un affichage esthétiquement plus agréable et améliore la performance de 

l‘utilisateur (Lavie et al., 2011). 

2.2.2 Densité d’information 

La seconde catégorie de contributeurs à l‘encombrement visuel est la densité d‘information, 

causée par une abondance d‘information utile ou redondante. Conséquemment, nous avons 

identifié un contributeur à l‘encombrement pour cette catégorie, soit la pertinence de 

l‘information pour la tâche. Nous discutons par la suite de l‘utilité de techniques de filtrage pour 

réduire l‘encombrement à l‘écran et leurs effets sur la conscience de la situation. 

2.2.2.1 Pertinence à la tâche 

Le facteur de pertinence à la tâche fait référence à des éléments présentés à l‘écran qui ne sont 

pas nécessaires pour la tâche actuelle de l‘opérateur, ou qui sont redondants à de l‘information 

déjà présente à l‘affichage. Dans ce cas, l‘intention du concepteur d‘interface d‘offrir plus 

d‘information à l‘utilisateur peut avoir un impact négatif sur la performance de ce dernier, car il 

distrait par l‘augmentation de l‘encombrement visuel. 

Lohrenz et Hansman (2004) ont demandé à 12 pilotes de réaliser une double tâche en simulateur 

de vol, soit de suivre avec précision le plan de vol et d‘identifier un élément au sol. Les 

participants ont utilisé successivement trois affichages : une carte montrant la position de 

l‘appareil par rapport au sol mais sans le plan de vol, un affichage montrant le plan de vol mais 

sans la carte, et un affichage mixte montrant la carte et le plan de vol. Les participants ont obtenu 

la meilleure performance pour les deux tâches en utilisant l‘affichage montrant uniquement le 

plan de vol. Les auteurs en concluent que l‘encombrement visuel causé par la présence 

d‘information qui n‘est pas nécessaire à la tâche (la carte) a diminué la performance des pilotes 

sur l‘affichage mixte. 
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La présence d‘information redondante à l‘affichage contribue aussi à l‘encombrement visuel. Il 

peut s‘agir d‘une même information répétée à plusieurs endroits à l‘écran (Boston & Braun, 

1996) ou d‘un élément graphique qui n‘apporte aucune nouvelle information à l‘utilisateur 

(Alexander et al., 2008), comme par exemple afficher à l‘écran de vol le réglage barométrique 

avec trois unités de pression différentes. Alexander et ses collègues (2008) ont réalisé des 

entrevues semi-dirigées avec quatre pilotes expérimentés sur l‘encombrement visuel de 

l‘affichage de vol. Les auteurs ont trouvé que 10% des commentaires faits par les pilotes ont 

identifié le facteur de redondance de l‘information comme un contributeur de l‘encombrement 

visuel. La présence d‘information superflue à la tâche de vol en cours ou offrant peu 

d‘information pour le vol ont été identifiés comme encombrant l‘affichage. 

Ainsi, le facteur de densité d‘information se concentre sur la tâche de l‘utilisateur et le contexte 

d‘utilisation qui rende un affichage encombré tandis que le facteur de densité visuelle considère 

l‘encombrement visuel comme une propriété de l‘affichage. La présence de symboles inutiles 

pour la tâche courante contribue à accroitre l‘encombrement visuel d‘un affichage car ils 

détournent l‘attention du pilote de l‘information plus importante pour compléter la tâche. La 

pertinence de l‘information pour la tâche est un facteur essentiel de l‘encombrement visuel, car 

les éléments d‘information que le pilote peut considérer comme contribuant à l‘encombrement 

visuel pour une tâche particulière durant une phase de vol donnée peuvent être ignorés durant une 

tâche différente ou une autre phase de vol. 

2.2.2.2 Techniques de filtrage 

L‘abondance d‘information présentée à l‘utilisateur est une conséquence de l‘avancée 

technologique continuelle du domaine aérospatial, avec l‘ajout à bord du véhicule de nouveaux 

capteurs et instruments et la croissance de la puissance de calcul des ordinateurs de bord (Woods 

et al., 2002). Serait-il pertinent d‘offrir à l‘utilisateur des techniques de filtrage de données, 

interactives ou automatiques, afin de réduire la charge visuelle à l‘écran et mieux soutenir sa 

tâche? L‘utilisation de techniques de filtrage soulève de nouvelles questions liées aux facteurs 

humains auxquelles il importe de répondre avant de poursuivre dans cette voie. 

Le filtrage interactif de données est la possibilité offerte au pilote de masquer une couche 

d‘information à sa demande afin de réduire l‘encombrement visuel, par exemple en masquant la 

couche de trafic aérien sur la carte de terrain (Kroft & Wickens, 2002; Wickens, Kroft, & Yeh, 
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2000; Yeh & Wickens, 2001). Cette technique s‘avère utile lorsque l‘écran permet d‘afficher 

l‘information sur deux couches superposées physiquement distancée (Hayes, Moore, & Wong, 

2006). Toutefois, cette technique a deux désavantages. Premièrement, il y a un coût en temps et 

en performance pour interagir avec l‘application qui peut résulter en une charge de travail accrue 

(Kroft & Wickens, 2002; Yeh & Wickens, 2001). L‘interaction du pilote avec l‘écran est du 

temps passé la tête basse à une tâche autre que le pilotage. Deuxièmement, le pilote peut manquer 

un évènement ou l‘apparition d‘une nouvelle menace se déroulant sur la couche d‘information 

masquée de l‘application, et oublier de consulter ces données masquées. Ce phénomène est 

connue sous le nom de « loin des yeux, loin de la tête » (out-of-sight, out-of-mind) 

(Podczerwinski, Wickens, & Alexander, 2002). Podczerwinski et ses collègues ont observé une 

possibilité accrue de manquer un évènement se produisant sur la couche d‘information masquée 

de l‘application, une manifestation probable du phénomène de loin des yeux, loin de la tête 

(Podczerwinski et al., 2002). 

Le filtrage automatique utilise des algorithmes pour masquer les donnés superflues et ne 

présenter qu‘un sous-ensemble de toute l‘information disponible (Pfautz, Schurr, Ganberg, 

Bauer, & Scerri, 2011). Par exemple, un tel algorithme utilisé pour l‘application de trafic aérien 

(Cockpit display of traffic information, CDTI) ne montrerait sur la carte que les avions les plus 

proches et filtrerait les avions distants. Bien que cette approche montre ses bienfaits avec le 

développement d‘algorithmes et de règles de filtrages plus puissants, le filtrage automatique n‘est 

pas sans soulever des préoccupations sur la confiance en l‘automatisation et ses effets sur la 

conscience de la situation (Endsley, 1995). Est-ce que les règles de filtrage sont claires et 

compréhensibles pour le pilote? Est-ce que l‘algorithme est déterministe? Est-ce que le pilote 

demeure conscient de son environnement et capable de détecter de nouvelles menaces? Voici les 

questions posées par Endsley (1996) dans son travail faisant figure d‘autorité sur l‘automatisation 

des systèmes et qui demandent plus d‘attention afin de mieux comprendre l‘effet du filtrage 

automatique sur la conscience de la situation. 

2.2.3 Organisation d’une interface 

L‘organisation d‘une interface est le regroupement et la hiérarchisation de l‘information à l‘écran 

en accord avec la structure de la tâche de l‘utilisateur. Cette troisième catégorie peut être à la fois 
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un contributeur (p. ex. si trop de groupes encombrent l‘écran) et un réducteur de l‘encombrement 

si un écran ayant une haute densité est bien structuré. 

Burns (2000) a conçu trois écrans de contrôle de centrale nucléaire selon les principes de la 

conception écologique d‘interface (Vicente, 2002). Les résultats montrent que les participants ont 

été plus rapides à identifier une faille et à la corriger avec l‘écran visuellement chargé car il offre 

une meilleure organisation et une meilleure intégration à la tâche que les écrans moins chargés. 

Tullis (1984) a trouvé que le temps d‘identification d‘une panne par les usagers a diminué 

significativement avec l‘écran ayant une meilleure organisation de l‘information mais la même 

densité d‘information globale (encombrement visuel). Parush et ses collègues (1998) ont trouvé 

que l‘interface ayant l‘information la mieux structurée facilite l‘identification de mots-clés à 

l‘écran. Ces résultats sont reproduits pour les pages web et pour deux langues (anglais et hébreu) 

(Parush et al., 2005). 

2.2.3.1 Groupement perceptuel (Gestalt) 

La théorie de la Gestalt offre un cadre formel pour étudier l‘organisation visuelle de l‘interface 

(Johnson, 2010; Ware, 2004). Celle-ci a été développée au début du XX
e
 siècle par un groupe de 

psychologues allemands s‘intéressant à la formation de groupes d‘objets par la perception 

humaine. La théorie originale propose six principes expliquant la formation de groupes : 

proximité spatiale, similarité, relation de fermeture, symétrie, continuité et la bonne forme 

(Wertheimer, 1938). À ces principes se sont ajoutés ceux de la destinée commune (pour les objets 

en mouvement) et de l‘expérience antérieure de l‘observateur (Johnson, 2010). L‘organisation 

d‘un affichage en respectant les principes de la Gestalt a été appliquée avec succès en design 

industriel (Mullet & Sano, 1995) et en design d‘interfaces (Chang, Dooley, & Tuovinen, 2002). 

Un design ne respectant pas les principes de la Gestalt est perçu comme de pauvre qualité et 

encombré (Fitz, 1993). Récemment, un algorithme a montré son efficacité à reproduire la 

perception de groupement selon les principes de proximité spatiale, de similitude et de continuité 

(Rosenholtz, Twarog, Schinkel-Bielefeld, & Wattenberg, 2009). En somme, les principes de 

groupement perceptuels de la théorie de la Gestalt offrent les consignes de conception pour 

faciliter le regroupement d‘information à l‘écran et réduire la perception d‘encombrement. 
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2.2.4 Autres considérations 

Plusieurs contributeurs de l‘encombrement visuel identifiés dans les études précédentes sont des 

paramètres objectifs et quantifiables de l‘interface, comme la variété de couleurs et de formes. 

D‘autres sont des paramètres subjectifs, comme la qualité esthétique de l‘interface. La 

contribution subjective dans la perception de l‘encombrement est à souligner. Certains auteurs 

vont aussi loin que dire que l‘encombrement réside dans le regard de l‘utilisateur (in the eye of 

the beholder) (McCrobie, 2000; Neider & Zelinsky, 2011; Pieters, Wedel, & Batra, 2010). La 

dimension subjective de l‘encombrement suggère que l‘expérience de l‘utilisateur avec 

l‘interface influence sa perception d‘encombrement. En effet, Naylor (2010) a trouvé qu‘un 

groupe de pilotes expérimentés (plus de 15 ans d‘expérience de vol) jugent plus sévèrement le 

niveau d‘encombrement d‘un affichage tête haute qu‘un groupe de pilotes avec moins de cinq ans 

de pratique. Malgré tout, il existe un accord entre les participants sur leur perception 

d‘encombrement. Rosenholtz et ses collègues rapportent un fort accord entre les participants pour 

le classement de l‘encombrement d‘une carte géographique, avec un coefficient de concordance 

de Kendall de 0.72 (Rosenholtz, Li, Mansfield, & Jin, 2005). 

Les caractéristiques physiologiques et cognitives de l‘utilisateur influencent sa perception de 

l‘encombrement de l‘écran (Kaufmann & Kaber, 2010). Kaufmann et Kaber ont corrélé le 

jugement de l‘encombrement fait par un pilote après une tâche en simulateur de vol avec trois 

caractéristiques individuelles : sensibilité visuelle au contraste, champ de vue utile (useful field of 

view, UFOV) et dépendance à la scène (field dependance), soit la faculté d‘un individu de 

percevoir les éléments constituant une large scène
14

. Les auteurs ont montré que la sensibilité 

visuelle au contraste est la caractéristique individuelle offrant la meilleure prédiction de la 

perception d‘encombrement par le pilote. Une sensibilité accrue aux basses fréquences spatiales 

(< 1.5 cycles/deg) est associée à un jugement de l‘écran comme plus dense et moins clair. Au 

contraire, une sensibilité accrue aux hautes fréquences spatiales (> 6 cycles/deg) est associée à un 

jugement de l‘écran comme moins dense et plus clair. 

                                                 

14
 Pour utiliser une image connue, la dépendance à la scène indique si un individu perçoit d‘abord les arbres formant 

la forêt ou s‘il perçoit d‘abord la forêt avant de voir les arbres. 
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Des aspects culturels et sociaux sont aussi à prendre en compte dans la perception 

d‘encombrement d‘un affichage. La densité de l‘information dans la culture asiatique est plus 

élevée que dans les sociétés occidentales (Chu & Yang, 2010; Fraternali & Tisi, 2008; Rüdiger, 

2007). Fraternali et Tisi (2008) utilisent la densité d‘information et le nombre d‘éléments affichés 

sur une page comme un marqueur culturel entre les sites web occidentaux et chinois. Chu et Yang 

(2010) ont montré que la densité d‘information accrue d‘un site web de commerce en ligne 

chinois comparativement à sa version occidentale est associée à une moins bonne utilisabilité 

(temps de recherche d‘un objet plus long) mais que les utilisateurs le jugent comme plus digne de 

confiance car il offre plus de détails. Rüdinger (2007) avance que la densité d‘information élevée 

des sites web chinois est une caractéristique culturelle de ce pays. 

Cette section a passé en revue les caractéristiques contribuant à l‘encombrement d‘un affichage 

selon trois catégories : la densité visuelle, la densité d‘information et l‘organisation. La section 

suivante présente une revue des études passées qui ont utilisé ces propriétés afin de quantifier le 

niveau d‘encombrement d‘un affichage, et leur utilité pour la conception d‘interfaces. 

2.3 Revue des métriques de mesure de l’encombrement d’un 

affichage 

Cette section présente une revue des métriques existantes pour mesurer l‘encombrement d‘un 

affichage. Les métriques ont été identifiées par une revue de littérature sur le sujet dans les 

domaines de l‘ergonomie et de l‘aérospatial. 

Le Tableau 2.2 compare les 29 métriques pertinentes identifiées dans la littérature (Doyon-Poulin 

& Ouellette, 2011). Nous avons classé les métriques selon la méthode d‘analyse employée : 

algorithme d‘analyse d‘image, questionnaire, oculométrie (eye tracker). Cette classification est 

différente de celle proposée par (Moacdieh & Sarter, 2012) qui compare les métriques selon les 

propriétés de l‘encombrement mesurées : aspects qualitatifs, aspects quantitatifs, aspects 

qualitatifs et quantitatifs. Moacdieh et Sarter (2012) ont défini l‘aspect quantitatif comme le 

nombre de symboles à l‘écran, alors que l‘aspect qualitatif est l‘absence d‘organisation de 

l‘affichage. 

Des 29 métriques répertoriées, 13 sont dans la catégorie algorithme d‘analyse d‘image, quatre 

dans la catégorie questionnaire, et 12 dans la catégorie oculométrie. 
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Tableau 2.2 Métriques d'évaluation de l'encombrement d'un affichage 

Métrique Référence Description Attributs évalués Validé? 

Algorithme d’analyse d’image  

Feature 

congestion 

(Rosenholtz et al., 

2005, 2007) 

Mesure la variation locale de chaque attribut, puis calcule 

le résultat moyen pour tout l‘affichage. Produit une carte 

d‘encombrement de l‘affichage source. 

 Contraste 

 Couleur 

 Orientation 

Oui 

Subband 

entropy 

(Rosenholtz et al., 

2007) 

Efficacité de l‘encodage d‘une image, semblable à la 

compression JPEG. Voir complexité visuelle. 
 Contraste 

 Couleur 

 Fréquence 

spatiale 

Oui 

Edge density (Oliva, Mack, 

Shrestha, & Peeper, 

2004; Rosenholtz et 

al., 2007) 

Densité de pixels à l‘écran correspondant à la frontière 

d‘un objet. Calculé à l‘aide de l‘algorithme de 

segmentation d‘image Canny. 

 Contraste 

 Orientation 

Oui 

Color-clustering 

clutter (C3) 

(Lohrenz et al., 

2009) 

Homogénéité locale des attributs, moyennée pour tout 

l‘affichage. 
 Contraste 

 Couleur 

 

Oui 

Scale invariance (Bravo & Farid, 

2008) 

Estime le nombre d‘objets distincts à l‘affichage à l‘aide 

d‘un algorithme de segmentation d‘image. 
 Couleur Oui 

Crowding (van den Berg et 

al., 2009) 

Évalue la perte d‘information de l‘affichage causée par la 

plus faible acuité visuelle dans le champ de vision 

périphérique par une mesure d‘entropie. 

 Contraste 

 Couleur 

 Orientation 

 Taille 

Oui 
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Tableau 2.2 Métriques d'évaluation de l'encombrement d'un affichage (suite) 

Métrique Référence Description Attributs évalués Validé? 

Stabilité 

perceptuelle 

(Bennett, 2009) Mesure la résilience d‘un affichage à présenter une 

information perceptible malgré la perte d‘acuité visuelle. 
 Couleur 

 Contraste 

 Fréquence 

spatiale. 

Partiel 

Densité 

d’information 

(Tullis, 1983, 1984) Pourcentage de l‘écran affichant du texte à l‘échelle 

globale (tout l‘écran) et à l‘échelle locale (autour d‘un 

caractère). 

 Nombre de 

caractères 

Oui 

Complexité de 

présentation 

(Comber & Maltby, 

1996, 1997) 

Évalue l‘homogénéité de la présentation d‘une interface 

graphique. Résultat en pourcentage. 
 Taille 

 Alignement 

Partiel 

Complexité 

visuelle 

(Donderi & 

McFadden, 2005; 

Donderi, 2006) 

Utilise la taille du fichier JPEG d‘une image comme 

mesure de son entropie. La compression JPEG est plus 

efficace avec une image ayant peu de symboles, et vice-

versa. 

 Contraste 

 Couleur 

 Fréquence 

spatiale 

Oui 

Ratio signal-

bruit 

(Darkow & 

Marshak, 1998) 

Étant donné un symbole à identifier sur une carte, donne 

une mesure de sa distinction et sa clarté par rapport à 

l‘arrière-plan. 

 Contraste 

 Couleur 

 Fréquence 

spatiale 

Oui 

Mesure 

d’encombrement 

normalisée 

(Waldman, 

Wootton, Hobson, 

& Luetkemeyer, 

1988) 

Densité d‘objets sur un affichage similaire à l‘objet 

d‘intérêt à identifier. Applicabilité partielle pour une 

interface utilisateur. 

 Contraste 

 Orientation 

 Taille 

Oui 
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Tableau 2.2 Métriques d'évaluation de l'encombrement d'un affichage (suite) 

Métrique Référence Description Attributs évalués Validé? 

Saillance (Zuschlag, 2004) Distinction du symbole d‘intérêt (FPV) et de son entourage 

à l‘écran. Développé pour un HUD d‘avion 
 Contraste 

 Orientation 

Non 

Questionnaire 

Analyse 

conjointe 

(McCrobie, 2000) L‘utilisateur compare une série d‘écrans de vol deux à 

deux et les classe selon l‘utilité des fonctions présentes et 

le niveau d‘encombrement de l‘affichage. Le test 

statistique, dit d‘analyse conjointe, détermine quelles 

fonctions contribuent le plus à l‘encombrement. Utilisé 

avec un écran de vol PFD. 

 Encombrement 

global 

 Utilité de la 

fonction 

Oui 

Évaluation 

subjective 

(Bailey et al., 2006; 

Bolton & Bass, 

2009) 

Après avoir utilisé l‘écran PFD en simulateur de vol, le 

pilote juge le niveau d‘encombrement de l‘affichage sur 

une échelle de Likert. 

 Encombrement 

global 

 Attention 

visuelle 

 Compréhension 

Oui 

Clutter Rating 

Scale 

(Alexander, Stelzer, 

Kim, Kaber, & 

Prinzel III, 2009; 

Kaber et al., 2008) 

Semblable au NASA-TLX. L‘utilisateur compare la 

contribution à l‘encombrement d‘une paire de descripteurs, 

puis évalue la caractéristique de chaque descripteur. De 

loin la métrique la plus développée et validée. 

 Densité 

 Saillance 

 Couleur 

 Redondance 

 Variabilité 

 Dynamique 

Oui 

Questionnaire 

de complexité 

(Ling, Lopez, & 

Shehab, 2011; 

Xing, 2007) 

Évaluation subjective de trois dimensions de la complexité 

d‘un affichage (perceptuelle, cognitive, action) chacune 

décomposée en trois facteurs (quantité, variété, relation). 

Méthode développée pour les écrans de contrôleurs aériens. 

 Groupes 

 Attributs visuels 

 Encombrement 

Oui 
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Tableau 2.2 Métriques d'évaluation de l'encombrement d'un affichage (suite) 

Métrique Description Observations 

Oculométrie. Tous les résultats sont tirés de (Moacdieh & Sarter, 2012) 

Nombre de fixation Un nombre élevé de fixations indique que 

l‘utilisateur cherche activement sur l‘écran, plutôt 

que de se concentrer sur une région particulière. 

Utile pour une tâche où il faut minimiser le temps 

de recherche à l‘écran. Utilité limitée pour une 

tâche de pilotage où l‘attention est partagée entre 

plusieurs instruments. 

Temps cumulatif de 

fixations sur la cible 

Un niveau d‘encombrement local élevé demande à 

l‘utilisateur d‘observer plus longtemps la cible pour 

l‘identifier. 

Nécessite de définir une cible. Un temps cumulatif 

élevé pour une tâche de pilotage signifie aussi une 

concentration accrue sur la cible. 

Nombre ou pourcentage 

de fixations sur la cible 

Un nombre de fixations élevé sur la cible indique 

que l‘utilisateur a eu de la difficulté à la distinguer 

de son entourage. 

Nécessite de définir une cible. En aviation, il est 

préférable de maintenir le balayage visuel des 

instruments à d‘éviter la distraction par les 

symboles inutiles à la tâche. 

Nombre de regards sur la 

cible 

Similaire au nombre de fixations sur la cible, sauf 

qu‘il ajoute le nombre de saccades au-dessus de la 

cible. 

Méthode similaire au nombre de fixations sur la 

cible. 

Temps entre la première 

fixation sur la cible et son 

identification 

Pour un affichage ayant un encombrement élevé, 

identifier la cible peut prendre du temps malgré 

l‘avoir déjà observé. 

Nécessite de définir une cible. Mesure pertinente 

pour une tâche de recherche, mais s‘applique 

difficilement à la tâche de pilotage. 

Temps pour la première 

fixation sur la cible 

Un symbole sur un affichage encombré prend plus 

de temps à être identifié. 

Nécessite de définir une cible. Mesure pertinente 

pour une tâche de recherche, mais s‘applique 

difficilement à la tâche de pilotage. 
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Tableau 2.2 Métriques d'évaluation de l'encombrement d'un affichage (suite) 

Métrique Description Observations 

Temps moyen de fixation Un affichage encombré nécessite des fixations plus 

longues de l‘utilisateur pour discerner les symboles 

à l‘écran. 

Un temps moyen de fixation élevé indique aussi 

un parcours visuel moins efficace, car l‘utilisateur 

met plus de temps pour observer un symbole. 

Longueur du parcours 

visuel 

La longueur du parcours visuel est la distance totale 

parcourue par le regard entre la première et la 

dernière fixation. 

Une longueur du parcours visuel court indique que 

l‘affichage facilite le balayage visuel et réduit la 

distraction de l‘utilisateur. 

Longueur moyenne d’une 

fixation 

Une distance de fixation longue indique que 

l‘affichage facilite le parcours visuel. La distance 

sera plus courte pour un affichage encombré car 

l‘utilisateur doit fixer chaque élément.  

Un affichage d‘avion doit faciliter le parcours 

visuel du pilote. Il est préférable que la longueur 

moyenne d‘une fixation soit grande. 

Surface de l’enveloppe 

convexe 

L‘enveloppe convexe est la plus petite surface 

entourant tous les points de fixation. Une petite 

surface indique une recherche plus efficiente. 

Mesure pertinente pour la tâche de pilotage car 

indicative de la surface observée par le pilote et du 

potentiel de distraction de l‘affichage. 

Densité spatiale Divise l‘écran en une grille et calcule le nombre de 

cellules contenant au moins une fixation par le 

nombre total de cellules de la grille. Une densité 

faible indique une recherche efficiente. 

Liberté sur la définition de la taille des cellules. 

Ratio de transition Similaire à la densité spatiale, mais utilisant le 

nombre de cellules ayant au moins une transition 

(entrant ou quittant la cellule). 

Liberté sur la définition de la taille des cellules. 
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2.3.1 Algorithme d’analyse d’image 

Les métriques de la catégorie algorithme d‘analyse d‘image fonctionnent toutes selon le même 

paradigme : l‘algorithme reçoit en entrée une prise d‘écran de l‘affichage à évaluer, calcule la 

densité ou la lisibilité des objets présents et retourne en sortie un scalaire (nombre) ou une carte 

de visualisation indiquant le degré d‘encombrement de l‘affichage. Notez que la métrique 

obtenue en sortie est indépendante du domaine de travail, c‘est-à-dire que l‘algorithme ne connait 

pas le domaine d‘utilisation de l‘affichage (aviation, site web, etc.), ni son contexte d‘utilisation. 

Les sept premières métriques du Tableau 2.2 appliquent une série de filtres sur l‘affichage 

obtenue en entrée, reproduisant les processus précoces de la vision humaine. Les algorithmes 

évaluent la variété locale des attributs visuels (Lohrenz et al., 2009; Rosenholtz et al., 2005, 

2007), le nombre d‘objets à l‘écran (Bravo & Farid, 2008; Rosenholtz et al., 2007) ou la perte 

d‘information en vision périphérique (Bennett, 2009; van den Berg et al., 2009). À l‘exception de 

(Bennett, 2009), la mesure de l‘encombrement de chaque métrique a été validée 

expérimentalement et montre une corrélation fortement significative avec le temps de recherche 

d‘une cible à l‘écran. 

Rosenholtz et ses collègues ont montré l‘utilité d‘algorithmes de mesure et de visualisation de 

l‘encombrement basés sur les processus de vision humaine (Rosenholtz, Dorai, & Freeman, 

2011). Les auteurs ont donné accès à leur logiciel Feature Congestion à 40 participants travaillant 

dans 10 firmes de design. Leur étude de terrain montre des résultats surprenants. La majorité des 

participants ont exprimé un besoin évident d‘un tel outil pour les aider dans leur travail. La 

visualisation de la carte d‘encombrement est utilisée par les concepteurs d‘interfaces pour donner 

un vocabulaire commun aux différentes parties prenantes de la firme (concepteurs, gestionnaires, 

clients) pour savoir quels éléments contribuent le plus à encombrer l‘affichage. De plus, les 

participants ne perçoivent pas la métrique d‘encombrement comme un oracle devant guider leur 

travail, mais plutôt comme une étincelle pour démarrer la discussion avec les parties prenantes 

pour justifier les décisions de conception (voir aussi Altaboli & Lin, 2011). 

Les métriques d‘encombrement suivantes analysent l‘homogénéité de la disposition des éléments 

graphiques de l‘interface, p. ex., bouton, libellé, menu, dialogue, etc. Une interface homogène 

avec des objets de taille uniforme et disposés sur une grille est jugée comme moins encombrée. 

Ces métriques ont été développées expressément pour la conception d‘interface. Comber et 
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Maltby (1996, 1997) mesurent la taille et le nombre d‘alignements de tous les éléments 

graphiques, puis calculent l‘entropie de ces distributions. Cette méthode est reprise dans plusieurs 

travaux en IHM pour évaluer la complexité d‘une interface (Forsythe, 2009; Miyoshi & Murata, 

2001; Noble & Constantine, 1996; Wu, Chen, Li, & Hu, 2010; Zheng, Chakraborty, Lin, & 

Rauschenberger, 2008). Donderi utilise aussi l‘entropie de l‘interface comme une mesure de son 

désordre et de sa complexité visuelle (Donderi & McFadden, 2005; Donderi, 2006). Darkow et 

Marshak (1998) mesurent l‘apport en information de l‘ajout d‘un élément graphique avec le ratio 

signal sur bruit obtenu de l‘amplitude du signal spectral de l‘image. Tullis (1983, 1984) utilise la 

densité d‘information, soit la fraction de pixels à l‘écran utilisés pour afficher de l‘information, 

comme mesure d‘encombrement. La densité est évaluée à l‘échelle globale (tout l‘écran) et locale 

(au voisinage d‘un caractère). Ces métriques ne s‘appliquent toutefois qu‘à un affichage 

alphanumérique (texte uniquement) et ne tiennent pas compte de la signification de l‘information 

affichée. Pour une revue des critiques des métriques de Tullis, voir (Mayhew, 1992). 

Waldman et ses collègues (1988) analysent le contraste des pixels pour trouver des objets de 

taille et d‘orientation similaire à une cible. Cette métrique nécessite de définir un objet ou une 

cible qui doit être discernable malgré l‘encombrement de l‘écran. Zuschlag (2004) applique ce 

principe au HUD de l‘avion en définissant le FPV comme la cible à distinguer. La métrique 

d‘encombrement proposée mesure la similarité en couleur et en orientation entre le FPV et les 

objets à l‘extérieur de l‘avion. Toutefois, sa métrique n‘a pas été validée expérimentalement. 

2.3.2 Questionnaire 

Alors que les métriques précédentes évaluent l‘encombrement selon la quantité et la variété de 

symboles à l‘écran, les métriques de la catégorie questionnaire offrent aussi d‘évaluer 

l‘encombrement provenant d‘une information redondante ou d‘une mauvaise organisation de 

l‘écran. Dans ce cas, l‘utilisateur complète un questionnaire après avoir utilisé l‘affichage en 

situation réelle, par exemple après avoir complété une phase d‘approche en simulateur de vol. On 

remarque que ces quatre métriques sont les seules impliquant une évaluation subjective réalisée 

par l‘utilisateur de l‘affichage. 

McCrobie (2000) demande à des pilotes d‘évaluer la pertinence et l‘encombrement de deux 

écrans ayant des fonctions et une densité différente, puis répète cette évaluation pour toutes les 

combinaisons d‘écrans. La méthode statistique dite de l‘analyse conjointe permet d‘identifier la 
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fonction contribuant le plus à l‘encombrement de l‘écran. L‘évaluation subjective d‘un écran par 

des pilotes sur une échelle de Likert est une autre méthode employée dans le domaine de l‘avion. 

Bailey et ses collègues utilisent un questionnaire après une tâche de vol pour évaluer 

l‘encombrement perçu par le pilote selon quatre points : demande visuelle, ressources visuelles 

disponibles, compréhension de l‘écran et encombrement global de l‘écran (Bailey et al., 2006). 

Bolton et Bass (2009) ne posent qu‘une seule question sur le niveau d‘encombrement global de 

l‘écran. Kaber et ses collègues (Kaber et al., 2008) ont développé une échelle d‘évaluation de 

l‘encombrement (clutter rating scale), similaire au NASA-TLX pour l‘évaluation de la charge de 

travail mentale, comprenant trois descripteurs pour les caractéristiques de l‘écran (densité, 

saillance, couleur) et trois descripteurs pour la pertinence de l‘information (redondance, 

variabilité, dynamique). Le pilote compare d‘abord chaque paire de descripteurs pour identifier 

celui contribuant le plus à l‘encombrement, puis évalue chaque descripteur sur une échelle de 

Likert. La métrique d‘encombrement global est la moyenne du résultat de l‘échelle de Likert, 

pondérée par la force de chaque descripteur obtenu de la comparaison par pair. La métrique 

développée par l‘équipe du professeur Kaber a été validée expérimentalement à plusieurs reprises 

(Alexander et al., 2012, 2008; Kim et al., 2011). 

Xing (2007) a développé un questionnaire pour évaluer la complexité visuelle des terminaux des 

contrôleurs aériens (Air trafic controler, ATC), dans lequel l‘encombrement visuel est une 

dimension. Par la suite, Ling et ses collègues ont adapté le vocabulaire du questionnaire pour 

l‘utiliser avec un site web (Ling et al., 2011). Leur étude montre que le questionnaire modifié 

mesure bien la propriété de complexité visuelle des sites web testés. Bien que la portée de ce 

questionnaire dépasse la seule mesure de l‘encombrement visuel, il est intéressant de voir 

comment un questionnaire peut être adapté à un autre domaine d‘application en modifiant le 

vocabulaire. 

2.3.3 Oculométrie 

Jusqu‘à récemment, la technique d‘oculométrie a été utilisée afin de valider la métrique 

d‘encombrement (Cardaci, Di Gesù, Petrou, & Tabacchi, 2009) ou afin de quantifier l’effet de 

l‘encombrement visuel d‘un affichage sur l‘allocation de l‘attention de l‘utilisateur (Beck, 

Lohrenz, & Trafton, 2010; Henderson, Chanceaux, & Smith, 2009). Moacdieh et Sarter (2012) 

ont proposé d‘employer la technique d‘oculométrie afin de mesurer l‘encombrement. Dans leur 
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étude, les auteurs ont trouvé que les résultats de 12 des 14 métriques évaluées sont corrélés au 

niveau d‘encombrement des stimuli employés (tous les ps < 0.01). Les 12 métriques retenues sont 

présentées dans le Tableau 2.2. 

Les métriques calculant le nombre de fixations ou le temps pour fixer la cible sont difficilement 

applicables à une expérience sur les affichages de l‘avion. Dans ce cas, le pilote réalise un 

parcours visuel en boucle (Henderson, 2003) afin de vérifier et corriger la valeur des différents 

indicateurs (vitesse, altitude, direction, etc.). Les métriques mesurant la longueur du parcours 

visuel ou la surface observée par le pilote sont plus pertinentes pour notre expérience, car elles 

renseignent sur la distraction causée par l‘encombrement de l‘écran et la facilité qu‘a le pilote à 

parcourir tous les indicateurs pertinents pour le vol. 

2.3.4 Synthèse 

La majorité des métriques de la catégorie algorithme d‘analyse d‘image évaluent la dimension 

visuelle de l‘encombrement, soit la quantité et la variété d‘attributs visuels de l‘affichage. De 

celles-ci, la métrique de complexité visuelle (Donderi & McFadden, 2005) est facile d‘utilisation 

– il suffit d‘évaluer la taille du fichier JPEG de l‘interface – et la métrique Feature congestion 

(Rosenholtz et al., 2007) a été validée avec la perception subjective de l‘encombrement en plus 

d‘être disponible dans le domaine public. Pour évaluer la dimension cognitive de 

l‘encombrement, soit la pertinence de l‘information à la tâche, le clutter rating scale (Kaber et 

al., 2008) semble la métrique la plus pertinente pour ce travail car elle est multidimensionnelle, 

elle a été développée pour l‘aviation et son mode d‘emploi est expliqué dans les publications 

associées. L‘utilisation d‘une métrique d‘oculométrie serait aussi avisée, car elle renseigne sur 

l‘allocation attentionnelle de l‘utilisateur devant l‘écran. 

2.4 Effets de l’encombrement sur la performance 

L‘élaboration d‘une définition et de métriques pour mesurer l‘encombrement prend tout son sens 

lorsque l‘on étudie l‘effet de l‘encombrement visuel sur la performance de l‘utilisateur. Cette 

section présente une revue de littérature des effets de l‘encombrement visuel sur la performance 

pour deux groupes de tâches : la prospection visuelle et le pilotage d‘avion. 
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Nous montrons que les effets de l‘encombrement visuel sur la performance de l‘utilisateur 

dépendent de la tâche réalisée (Doyon-Poulin, Ouellette, & Robert, 2012). Alors que les études 

précédentes ont montré une diminution marquée de la performance pour une tâche de prospection 

visuelle, les effets de l‘encombrement visuel du PFD sur le pilotage de l‘avion sont mixtes. Nous 

expliquons cette différence par le fait que les études précédentes n‘ont pas manipulé la variable 

d‘encombrement visuel d‘une manière similaire. Pour ce faire, nous formulons trois exigences 

que devraient respecter les prochaines expériences sur l‘encombrement visuel. 

2.4.1 Prospection visuelle 

La prospection visuelle est une tâche canonique en psychologie expérimentale. Le participant doit 

indiquer, le plus rapidement possible, si une cible est présente à l‘écran; par exemple trouver à 

l‘écran la lettre ‗T‘ de couleur rouge. Le temps de réaction (Reaction time, RT) augmente en 

fonction du nombre de cibles distrayantes (distractors) présentes, c‘est-à-dire d‘objets partageant 

au moins un attribut en commun avec la cible recherchée, par exemple des ‗T‘ verts et des ‗L‘ 

rouges (Eckstein, 2011; Treisman & Gelade, 1980). 

La diminution de la performance en recherche est aussi observée pour des affichages complexes 

semblables à ceux utilisés dans le domaine de l‘aviation. Palmer et ses collègues ont développé 

un affichage, semblable à celui utilisé par les contrôleurs aériens, présentant plusieurs avions 

survolant l‘espace aérien à différentes altitudes et directions (Palmer, Clausner, & Kellman, 

2008). Les participants devaient rapporter le plus rapidement possible si une collision entre un 

avion « cible » et son environnement allait se produire. Un libellé voisin du symbole d‘avion 

indique son altitude. Les auteurs ont trouvé que le temps de décision augmente avec le nombre 

d‘avions présentés à l‘écran, une manifestation de l‘effet de l‘encombrement visuel sur la 

performance de la prospection visuelle. Les auteurs ont aussi testé l‘efficacité du codage visuel de 

l‘altitude en modifiant la taille et le contraste du symbole de l‘avion. Ils ont trouvé que le codage 

redondant de l‘altitude offre une décision plus rapide et plus précise que le symbole d‘avion avec 

le libellé seul. 

Une augmentation du temps de réaction est aussi observée pour des stimuli visuels complexes où 

il est difficile de dénombrer, voire de définir, les cibles distrayantes (Beck et al., 2010; Beck, 

Trenchard, Lamsweerde, Goldstein, & Lohrenz, 2012; Rosenholtz et al., 2007). C‘est le cas d‘une 

recherche visuelle sur une carte géographique, par exemple. En tel cas, quels symboles ou 
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groupes de symboles sont considérés comme des cibles distrayantes : le nombre de montagnes, 

de routes, de rivières (voir aussi Phillips & Noyes, 1982)? Dans ces études récentes, les auteurs 

remplacent la notion de cibles distrayantes par celle d‘encombrement visuel. 

Une illustration convaincante de cette transition entre le nombre de cibles distrayantes et le 

niveau d‘encombrement est présentée dans l‘étude de (Bravo & Farid, 2008). Les participants 

doivent trouver un objet commun (p. ex., iPod, cellulaire, trousseau de clés, etc.) sur une 

photographie naturelle contenant plusieurs objets disposés de manière disparate
15

. Le niveau 

d‘encombrement de la photographie était mesuré par une méthode de segmentation d‘image à 

différentes échelles spatiales
16

. Bravo et Farid ont trouvé que le temps de recherche augmente 

avec le niveau d‘encombrement de la photographie. Le niveau d‘encombrement visuel global de 

la photographie explique 38% de la variance dans le temps de réponse. Les auteurs soulignent 

que bien que cette relation soit significative, d‘autres facteurs que l‘encombrement peuvent 

expliquer la variation de la performance, comme l‘organisation de la scène et l‘occlusion partielle 

des objets présents. Ces autres facteurs n‘étaient pas contrôlés dans l‘étude de (Bravo & Farid, 

2008). 

L‘intérêt d‘utiliser le niveau d‘encombrement plutôt que le nombre de cibles distrayantes pour 

caractériser la performance d‘une tâche de prospection visuelle est à l‘origine de plusieurs études 

en vision. Rosenholtz et ses collègues ont trouvé que le temps de recherche d‘une cible sur une 

carte géographique est proportionnel au niveau d‘encombrement global de la carte (Rosenholtz et 

al., 2007). Les auteurs rapportent une bonne corrélation entre le temps de recherche et le niveau 

d‘encombrement (r = 0.74, p < 0.001 pour les essais avec cibles présentes). Ils ont aussi trouvé 

que les participants mettent plus de temps pour trouver la cible sur une image en couleur que 

                                                 

15
 Etonnamment, les photographies sont tirées du site web de partage de photo Flickr. Les usagers ont photographié 

le contenu de leur sac à dos ou sac à main. Il n‘y avait donc que peu de contrôle sur les objets présents et leur 

disposition. 

16
 La segmentation est contrôlée par un paramètre K qui s‘apparente à la grosseur de grain de l‘image. Bravo et Farid 

(2008) ont répété la segmentation en variant le paramètre K, ce qui a donné un nombre élevé d‘objets pour une 

granularité fine et un nombre faible d‘objets pour une granularité grossière. La mesure d‘encombrement est le 

coefficient de la meilleure régression d‘une loi de puissance entre le nombre d‘objets et la valeur du paramètre K. 
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monochrome. Ces résultats sont intéressants parce qu‘ils montrent une diminution de 

performance avec un accroissement du niveau d‘encombrement pour des images complexes. 

Beck et collègues ont contrôlé le niveau d‘encombrement global (toute l‘image) et local (à 

proximité de la cible) de cartes de navigation aérienne (Beck et al., 2010). La cible recherchée par 

les participants était un triangle simple représentant une montagne. Les auteurs ont été astucieux 

en manipulant le nombre de cibles distrayantes (un triangle double) en plus de l‘encombrement. 

Les résultats sont convaincants : les auteurs ont trouvé que le temps de recherche de la cible 

augmente en fonction du niveau d‘encombrement global de la carte. Le nombre d‘erreurs dans la 

réponse (rapporter une cible absente alors qu‘elle est présente) augmente aussi avec le niveau 

d‘encombrement global. Ces résultats sont en accord avec les études précédentes. Beck et al 

(2010) ont de plus montré que la diminution de performance associée à l‘encombrement global se 

fait particulièrement sentir pour un encombrement local élevé. L‘encombrement global explique 

53% de la variance du temps de réponse pour les essais avec un encombrement local élevé, alors 

que l‘encombrement local explique 52% de la variance pour tous les niveaux d‘encombrement 

global. Accroitre la saillance de la cible, avec une couleur et une luminosité distinctive de 

l‘arrière-plan par exemple, diminue cet effet. Le point important de l‘étude de (Beck et al., 2010) 

est que l‘impact du nombre de cibles distrayantes sur le temps de recherche n‘est pas significatif. 

Ces résultats montrent un effet clair de l‘encombrement global et local sur la performance 

humaine, et que le niveau d‘encombrement de la scène est un meilleur descripteur que le nombre 

de cibles distrayantes pour mesurer l‘effet sur la performance humaine. 

Henderson et ses collègues ont offert les premiers résultats montrant que le parcours visuel durant 

une tâche de prospection sur une scène est influencé par le degré d‘encombrement visuel 

(Henderson et al., 2009). Les participants doivent identifier la présence d‘une lettre (la cible) 

placée de façon aléatoire sur une photographie d‘une scène extérieure. Les auteurs ont utilisé la 

métrique de Feature congestion (Rosenholtz et al., 2007) pour évaluer l‘encombrement de la 

scène. Ils ont trouvé que le niveau d‘encombrement global de la scène est significativement 

corrélé avec le temps de recherche (R
2
 = 0.27, p<0.001) et le nombre d‘erreurs dans la réponse 

(R
2
 = 0.16, p<0.005). Henderson et collègues ont aussi trouvé que le temps moyen d‘une fixation 

visuelle est proportionnel au niveau d‘encombrement global (R
2
 = 0.08), mais la relation n‘est 

pas significative pour l‘encombrement local autour de la fixation (R
2
 = 0.00). Les auteurs 

rapportent aussi que les deux premières fixations visuelles du participant sont posées sur des 
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régions ayant un niveau d‘encombrement local supérieur au niveau d‘encombrement local moyen 

de la scène. Globalement, ces résultats indiquent une influence du niveau d‘encombrement sur les 

stratégies de recherche visuelle du participant, bien que le niveau de corrélation soit modéré ou 

faible. 

 Lohrenz et Beck (2010) ont montré que les participants évitent les régions d‘encombrement local 

élevé et n‘y dirigent leur regard que s‘ils ont échoué à trouver la cible dans des régions 

d‘encombrement local plus faible. Dans cette étude, les auteurs ont utilisé les mêmes cartes 

aéronautiques que dans leur étude précédente (Beck et al., 2010). Un appareil d‘oculométrie (eye 

tracker) a mesuré le parcours visuel des participants. Ce résultat complète celui de (Henderson et 

al., 2009) en montrant que le regard du participant débute dans une région ayant un 

encombrement local modéré, car cette région est susceptible de contenir plus d‘information 

qu‘une région ayant un encombrement local faible. Il se peut aussi que la saillance locale de la 

région puisse attirer le regard du participant, la saillance étant construite avec les mêmes 

paramètres que l‘encombrement local (Itti, Koch, & Niebur, 1998). 

Alors que l‘étude de (Lohrenz & Beck, 2010) a fait appel à des participants novices à la tâche, 

c‘est-à-dire n‘ayant aucune expérience dans l‘utilisation de cartes aéronautiques, l‘étude suivante 

du groupe de Beck a comparé l‘effet de l‘encombrement visuel sur les stratégies de recherche 

entre un groupe de pilotes expérimentés et un groupe d‘observateurs novices (Beck et al., 2012). 

Ces résultats reproduisent les résultats précédents où le temps de détection et le nombre d‘erreurs 

augmentent avec le niveau d‘encombrement global et local (Beck et al., 2010; Lohrenz & Beck, 

2010). Toutefois, les pilotes expérimentés dans l‘utilisation de cartes aéronautiques sont plus 

lents et plus précis que les observateurs novices dans leur réponse pour les essais avec un 

encombrement global élevé. Les pilotes consacrent aussi plus de temps à chaque fixation que les 

observateurs novices, indiquant qu‘ils consacrent plus de temps à extraire l‘information présente 

à chaque fixation. Ces résultats suggèrent que les pilotes emploient un critère de réponse plus 

conservateur que les observateurs novices afin de réduire le nombre d‘erreurs. L‘étude de (Beck 

et al., 2012) est pertinente car elle montre que les utilisateurs experts sont aussi sensibles à l‘effet 

de l‘encombrement visuel sur la performance dans une tâche de prospection visuelle. 
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2.4.1.1 Synthèse 

Le Tableau 2.3 présente les principaux résultats des études passées en revue. Ceux-ci montrent 

clairement qu‘une augmentation de niveau d‘encombrement visuel diminue la performance pour 

une tâche de prospection visuelle, autant pour le temps de détection que la validité de la réponse. 

L‘encombrement visuel influe aussi sur la stratégie de recherche des participants : le regard se 

pose d‘abord sur une région ayant un encombrement local plus élevé que sur l‘ensemble de la 

scène (Henderson et al., 2009), probablement car il s‘agit d‘une région offrant plus 

d‘informations pour commencer la recherche qu‘une région ayant un niveau d‘encombrement 

local faible. Le regard du participant se dirige sur une région ayant un encombrement local élevé 

s‘il a failli à trouver la cible dans une région ayant un encombrement modéré (Lohrenz & Beck, 

2010).  

Tableau 2.3 Effet de l'encombrement sur la performance pour une tâche de prospection visuelle 

Étude Stimuli A trouvé que 
Meilleure 

performance 

(Palmer et 

al., 2008) 

Écrans de contrôleur 

aérien 

Temps de recherche proportionnel 

au nombre d‘avions. 

Faible 

encombrement 

(Rosenholtz 

et al., 2007) 

Cartes 

météorologiques 

Temps de recherche proportionnel 

à l‘encombrement. 

Faible 

encombrement 

(Henderson 

et al., 2009) 

Scènes extérieures Temps de recherche proportionnel 

à l‘encombrement. 

Faible 

encombrement 

(Beck et al., 

2010) 

Cartes aéronautiques Temps de recherche proportionnel 

à l‘encombrement. 

Faible 

encombrement 

(Beck et al., 

2012) 

Cartes aéronautiques 

avec pilotes experts 

Temps de recherche proportionnel 

à l‘encombrement. 

Faible 

encombrement 

 

Ensemble, ces résultats indiquent un modèle granulaire de prospection visuelle (Beck et al., 

2012). La vision périphérique pré-attentive dirige d‘abord le regard vers une zone localement 

dense, car elle promet un gain en informations supérieur à une zone pauvre en symboles 

(Henderson et al., 2009). Le temps d‘une fixation visuelle est proportionnel au degré 

d‘encombrement local, il est donc avantageux de chercher en premier des zones ayant un 
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encombrement local modéré (Lohrenz & Beck, 2010). Le participant dirige son regard vers les 

zones ayant un encombrement local élevé par la suite. 

2.4.1.2 Limitations 

Les résultats des études présentées dans cette section sont soumis à certaines limitations. 

Premièrement, les études se déroulent dans un environnement contrôlé où le participant dévoue 

son attention à une seule tâche : trouver une cible à l‘écran. L‘environnement est absent de 

distractions visuelles ou sonores qui peuvent influencer le temps de réponse du participant, par 

exemple communiquer avec la tour de contrôle ou surveiller l‘apparition d‘une panne en vol. 

Deuxièmement, la cible était positionnée aléatoirement sur l‘illustration utilisée comme stimulus 

visuel, et l‘illustration n‘offrait aucun signe de guidage qui aurait pu faciliter ou influencer la 

détection de la cible par les participants. Ce constat est important, car les applications 

développées à l‘intention des pilotes sont structurées de manière à faciliter le repérage des 

groupes d‘informations pertinents pour la tâche de vol. Une telle organisation de l‘espace visuel 

est absente des études présentées. 

Troisièmement, chaque étude a utilisé plusieurs dizaines de stimuli, chacun ayant un niveau 

d‘encombrement différent. Utiliser plusieurs stimuli offre une étendue variée du niveau 

d‘encombrement et une meilleure puissance statistique pour l‘analyse des résultats. La tâche de 

prospection est rapide à compléter (généralement mois d‘une minute par essai) et chaque essai est 

indépendant des autres, ce qui explique la facilité d‘utiliser plusieurs stimuli. Ce n‘est toutefois 

pas le cas des études sur l‘effet de l‘encombrement sur la conduite de l‘avion, présentées à la 

section suivante. Dans ce cas, le participant répète les essais en utilisant de deux à quatre écrans, 

ce qui limite la possibilité d‘incrémenter finement le niveau d‘encombrement de l‘affichage. 

2.4.2 Conduite de l’avion 

L‘effet de l‘encombrement visuel du PFD sur la performance de la conduite de l‘avion a fait 

l‘objet de plusieurs études. Cette section en fait la revue. Le point commun de ces études est de 

demander à un groupe de pilotes expérimentés de réaliser une série de manœuvres de contrôle 

d‘avion – réaliser une phase d‘approche ou un virage serré – en simulateur de vol. L‘affichage du 

PFD est modifié entre les essais en chargeant ou allégeant la densité d‘information, afin de tester 

l‘effet de l‘encombrement visuel à l‘écran. L‘écran offrant la meilleure performance est celui qui 
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minimise l‘erreur technique de vol (Flight technical error, FTE), soit la déviation en position et 

en vitesse du trajet prévu dans le plan de vol. 

Nous montrerons que les résultats obtenus dans les études passées sont mixtes, c‘est-à-dire que 

certaines études obtiennent une meilleure performance avec un écran encombré, alors que 

d‘autres n‘observent pas d‘effet de l‘encombrement visuel. Nous expliquons ces différences par 

le fait que les études passées n‘ont pas manipulé la variable d‘encombrement visuel de manière 

semblable. À la lumière de cette nouvelle explication, nous formulons trois exigences que tous 

les affichages devraient respecter afin de contrôler la variable d‘encombrement visuel. 

Ververs et Wickens n‘ont observé aucun effet de l‘encombrement de l‘écran sur la qualité du 

contrôle de l‘avion (Ververs & Wickens, 1998). L‘affichage avec un encombrement faible 

présentait l‘information minimale de vol alors que l‘affichage avec un encombrement élevé avait 

des informations non pertinentes en périphérie de l‘écran (libellés additionnels, horloge, 

indicateur de vent)
17

. Les auteurs ont toutefois trouvé que l‘encombrement visuel de l‘écran du 

pilote diminue la performance pour la détection d‘évènements pour le champ de vision proche – 

coût de 0.47 seconde pour la détection d‘un changement de symbologie à l‘écran – et pour le 

champ de vision lointain – coût de 0.27 secondes pour la détection de trafic – et ce, tant pour 

l‘affichage tête haute que l‘affichage tête basse. Une condition d‘affichage intermédiaire où la 

saillance de l‘information périphérique non-pertinente était réduite en diminuant son contraste a 

significativement augmenté le temps de détection comparativement à l‘affichage minimal (coût 

de 0.41 secondes pour la détection d‘un changement de symbologie et de 0.29 secondes pour la 

détection de trafic). Ce résultat est toutefois contraire à ceux obtenus précédemment par (Ververs 

& Wickens, 1996) qui ont montré que diminuer la saillance des éléments non-pertinents de 

l‘affichage tête haute tout en conservant la saillance des éléments pertinents élevés procure une 

performance équivalente à celle de l‘écran avec l‘information minimale pour la détection 

d‘évènements dans le champ lointain. Ververs et Wickens (1998) ont toutefois observé que la 

condition intermédiaire a permis d‘améliorer la détection du trafic pour l‘affichage tête basse. Ce 

                                                 

17
 Tel que mentionné à la section 1.2.1, l‘information minimale de vol est l‘indicateur d‘attitude (tangage et roulis), 

le compas, l‘indicateur de vitesse et d‘altitude. 
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dernier résultat suggère que modifier la saillance de l‘information a permis de libérer les 

ressources attentionnelles alloués à l‘écran pour le balayage de l‘environnement extérieur. 

Wickens et ses collègues ont comparé l‘avantage de réduire le parcours visuel du pilote en 

combinant toute l‘information présente sur le PFD sur un même affichage plutôt que sur des 

affichages séparés (Wickens, Alexander, Horrey, Nunes, & Hardy, 2004). Les auteurs ont aussi 

manipulé la fonction de guidage du PFD en comparant un affichage tunnel (tunnel) à un affichage 

avec les commandes présentées sous forme textuelle (datalink). Ainsi, l‘écran ayant la plus 

grande densité d‘information est celui du tunnel avec l‘information primaire superposée, alors 

que l‘écran le moins dense est celui du datalink avec l‘information primaire séparée. Wickens et 

ses collègues ont trouvé que superposer le tunnel et l‘information primaire améliore le contrôle 

de l‘avion, avec un bénéfice de 25 m verticalement et 20 m latéralement comparativement à la 

condition du datalink séparée, bien que l‘affichage du tunnel soit plus encombré que l‘écran où la 

même information est séparée. La détection de trafic aérien a aussi bénéficié de la vue du tunnel 

superposée, diminuant de 16 à 11 secondes. 

Dans une autre étude, Alexander et ses collègues ont comparé trois modalités de présentation de 

la fonction de guidage sur un affichage tête basse: tunnel avec faible luminosité (lowlighted), 

tunnel avec forte luminosité (highlighted) et un affichage avec le couple FPV et FD (Alexander, 

Wickens, & Hardy, 2005). L‘affichage avec le FPV et FD est considéré comme le moins 

encombré car la symbologie occupe moins d‘espace à l‘écran et est composée de moins 

d‘attributs que celle du tunnel. Vingt-quatre pilotes ont réalisé une approche courbe en simulateur 

avec chaque affichage. Les auteurs ont trouvé que l‘affichage tunnel avec faible contraste offre 

un meilleur contrôle vertical de l‘avion que l‘affichage avec FPV et FD, mais n‘ont observé 

aucune différence pour le temps de détection du trafic. L‘affichage tunnel avec faible contraste 

offre aussi un meilleur contrôle latéral de l‘avion et un meilleur temps de détection du trafic que 

l‘affichage tunnel avec fort contraste (bénéfice de 4 secondes). Ces résultats, en accord avec ceux 

de (Wickens, Alexander, Horrey, et al., 2004), indiquent que la présence du tunnel à l‘écran 

permet au pilote de mieux anticiper le parcours à suivre que l‘indicateur ponctuel du FMA, bien 

que le tunnel « encombre » plus l‘écran en occupant une plus grande surface (Fadden, Ververs, & 

Wickens, 2001). 
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Les travaux récents sur l‘encombrement visuel de l‘affichage tête haute, menés par l‘équipe du 

professeur David Kaber, sont riches d‘enseignement sur l‘effet de l‘encombrement sur le contrôle 

de l‘avion. S‘inscrivant dans un programme de recherche de trois ans sur l‘encombrement des 

écrans d‘avion mené en collaboration avec la NASA, ces travaux montrent qu‘il existe un 

compromis entre l‘ajout d‘informations pertinentes à l‘écran et l‘augmentation de 

l‘encombrement visuel qui en résulte. 

Dans une première étude, Alexander et ses collègues (Alexander et al., 2012, 2009) ont défini 

trois niveaux d‘encombrement d‘un affichage tête haute (faible, modéré, élevé) en ajoutant de 

l‘information pertinente au pilote mais occupant plus d‘espace à l‘écran. Ces sources 

d‘information sont la symbologie primaire, le tunnel, la vision synthétique
18

 et la vision 

améliorée
19

. L‘écran ayant un encombrement faible n‘a que la symbologie primaire affichée, 

alors que l‘écran ayant un encombrement élevé présente toutes les fonctions (primaire, tunnel, 

synthétique et améliorée). Alexander et ses collègues ont demandé à six pilotes experts, ayant 

plus de 15 ans d‘expérience, de voler pendant une phase d‘approche dans une condition de charge 

de travail faible (sans vent) et élevée (vent de travers). Les auteurs ont trouvé un meilleur 

contrôle de la déviation verticale (glideslope, p = 0.07) et horizontale (localizer, p < 0.01) pour 

l‘affichage avec un encombrement modéré comparativement à un encombrement faible. L‘effet 

du vent sur le contrôle de l‘avion n‘est pas significatif. De plus, la charge de travail mentale des 

pilotes, mesurée avec le NASA-TLX, est plus faible pour l‘affichage avec un niveau modéré 

d‘encombrement que pour les affichages avec un encombrement faible ou élevé (p < 0.05). Les 

auteurs expliquent que l‘écran ayant un encombrement faible manque d‘informations pertinentes 

pour le contrôle et l‘anticipation du comportement de l‘avion, alors que l‘écran ayant un 

encombrement élevé présente de l‘information redondante et a une densité élevée. Ces résultats 

                                                 

18
 Le système de vision synthétique (Synthetic vision system, SVS) est une reproduction 3D à l‘écran du terrain au 

voisinage de l‘avion. Le système utilise une base de données topographiques embarquée dans l‘avion et la 

coordonnée actuelle de l‘appareil pour recréer un affichage en perspective égocentrique sur un affichage tête haute 

ou tête basse. 

19
 Le système de vision améliorée (Enhanced vision system, EVS) présente une vue instantanée à l‘extérieur de 

l‘avion, capable de percer le couvert nuageux et la faible luminosité. Le système utilise un senseur installé à l‘avant 

de l‘avion (p. ex. une caméra infrarouge). 
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sont intéressants pour trois raisons. D‘abord, ils présentent un gradient de trois niveaux 

d‘encombrement de l‘affichage, alors que les études précédentes se limitent à deux niveaux 

(encombré, non encombré). Puis, ils montrent l‘avantage pour la performance d‘un affichage 

ayant un niveau modéré d‘encombrement, soit un compromis entre l‘ajout d‘informations 

pertinentes pour le pilote et l‘augmentation du poids visuel de l‘affichage. Finalement, ces 

résultats montrent que l‘encombrement de l‘affichage affecte significativement la performance 

d‘opérateurs experts ayant plusieurs années d‘expérience de vol. Les limitations de cette étude 

sont le nombre restreint de participants et le fait de n‘avoir recruté que des pilotes experts, 

limitant la généralisation des conclusions. 

La seconde étude du groupe de recherche (Kim et al., 2011; Naylor, 2010) reproduit la même 

procédure expérimentale, mais cette fois avec 18 pilotes divisés en trois groupes selon leur 

expérience de vol (faible, moyenne, élevée). Les résultats obtenus par (Kim et al., 2011; Naylor, 

2010) sont semblables à ceux de (Alexander et al., 2012, 2009), soit que l‘écran avec un 

encombrement modéré offre un meilleur contrôle de la déviation verticale (p < 0.05) et latérale (p 

< 0.001) que les écrans avec un encombrement faible ou élevé. De plus, les pilotes rapportent une 

charge de travail mentale accrue pour les écrans avec un encombrement faible et élevé, 

comparativement à l‘écran avec un encombrement modéré (p = 0.001). Kim et ses collègues 

(2011) ont aussi trouvé que les pilotes expérimentés sont plus sensibles et cohérents dans leur 

jugement du niveau d‘encombrement d‘un écran que les pilotes avec moins d‘expérience. Ceci 

suggère que les pilotes expérimentés sont plus aptes à juger quels éléments de l‘affichage sont 

pertinents pour le scénario de vol et lesquels obstruent l‘écran. 

Globalement, les résultats expérimentaux de l‘équipe du professeur Kaber montrent qu‘il existe 

un optimum d‘encombrement visuel en terme de performance technique de vol (Alexander et al., 

2012, 2009; Kim et al., 2011; Naylor, 2010). Un écran ayant un encombrement faible manque des 

informations de contexte utilisées pour anticiper le comportement de l‘avion. Au contraire, un 

écran ayant beaucoup d‘informations est visuellement chargé et complexifie le parcours visuel du 

pilote pour la recherche des groupes d‘informations nécessaires pour la tâche. 

2.4.2.1 Synthèse 

Le Tableau 2.4 présente les principaux résultats des études revues dans cette section. Ces études 

montrent un effet mixte de l‘encombrement visuel sur la performance du contrôle de l‘avion. Une 



  64 

 

étude n‘a trouvé aucun effet significatif de l‘encombrement sur l‘erreur technique de vol (Ververs 

& Wickens, 1998). Deux études ont trouvé que l‘écran ayant un encombrement visuel élevé offre 

un meilleur contrôle de l‘avion que l‘écran ayant un encombrement faible (Alexander et al., 

2005; Wickens, Alexander, Horrey, et al., 2004). Les études du groupe de Kaber et ses collègues 

ont trouvé que l‘affichage tête haute ayant un encombrement modéré offre le meilleur contrôle de 

l‘avion et une charge de travail mentale inférieure aux écrans ayant un encombrement faible ou 

élevé (Alexander et al., 2012, 2009; Kim et al., 2011; Naylor, 2010).  
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Tableau 2.4 Effet de l‘encombrement visuel sur la performance du contrôle de l‘avion. 

Tableau adapté de (Doyon-Poulin et al., 2012) 

Étude 

Fonctions sur l’affichage avec un niveau 

d’encombrement 
Meilleure performance 

Faible Modéré Élevé Vol Détection 

(Ververs & 

Wickens, 

1996, 1998)  

- 

DTG 6.0NM

ETA 12:45

 

Non 

significatif 

Encombrement 

faible 

(Wickens, 

Alexander, 

Horrey, et 

al., 2004)  

- 

 

Encombrement 

élevé 

Encombrement 

faible 

(Alexander 

et al., 2005) 

 

- 

 

Encombrement 

élevé 

Encombrement 

faible 

(Alexander 

et al., 2012, 

2009)   
 

Encombrement 

modéré 
- 

(Kim et al., 

2011; 

Naylor, 

2010)   
 

Encombrement 

modéré 
- 

Légende  
FPV + FD 

DTG 6.0NM 

 ETA 12:45 
 

Libellé 
 

Tunnel 
 

Vision 

synthétique 

 
Vision 

améliorée 

Nous proposons quatre explications pour interpréter ces résultats et mieux comprendre l‘effet de 

l‘encombrement visuel sur la tâche de pilotage. Premièrement, le pilote utilise d‘autres indices 

pour contrôler l‘avion que simplement les symboles affichés sur le PFD. Par exemple, le pilote se 

fie aux mouvements de l‘avion, perçus par le système proprioceptif, pour sentir le comportement 

de l‘appareil; le son variable des moteurs sert aussi d‘indication d‘un changement de régime de 

l‘appareil. Ces informations ne sont pas affectées par l‘encombrement visuel de l‘affichage. 
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Deuxièmement, le pilote est un expert dans sa tâche, ayant parfois volé plusieurs milliers 

d‘heures, et qui a complété une formation extensive. En ce sens, il emploie des stratégies de 

reconnaissance de formes (pattern matching) pour réaliser son travail. Un écran qui inhibe les 

mécanismes de reconnaissance de formes peut décroître la performance de vol, bien que celui-ci 

soit moins encombré. Cette explication est reflétée dans les observations de Kim et ses collègues 

(2011) et de Naylor (2010) : les pilotes rapportent que l‘écran ayant un niveau d‘encombrement 

faible n‘offre pas les informations en périphérie nécessaires pour anticiper les manœuvres de 

l‘avion. Ceci perturbe le parcours visuel du pilote, car ce dernier doit balayer une plus grande 

portion de l‘écran pour trouver les groupes d‘informations requis pour compléter l‘atterrissage. 

Troisièmement, la performance du pilote pour la tâche de contrôle de l‘avion est moins sensible à 

l‘effet de l‘encombrement visuel que pour la tâche de prospection visuelle. Pour comprendre 

cette explication, il suffit de retourner aux deux tableaux synthèses. Les résultats regroupés dans 

le Tableau 2.3 montrent clairement que la tâche de prospection visuelle est très sensible au niveau 

d‘encombrement visuel : le temps de recherche est proportionnel au niveau d‘encombrement. 

Toutefois, les résultats pour la tâche de contrôle de l‘avion présentés au Tableau 2.4 sont mixtes. 

Le travail de Horrey et Wickens (2004) est utile pour comprendre la dépendance à la tâche de 

l‘encombrement visuel. Dans une tâche de conduite automobile, les auteurs n‘ont pas trouvé de 

différence significative dans le contrôle de la position et de la vitesse du véhicule pour 

l‘information affichée dans la condition « encombrée » et dans la condition « désencombrée » 

(Horrey & Wickens, 2004). Les auteurs ont présenté aux participants la même information – un 

numéro de téléphone – dans quatre conditions : sur le pare-brise du véhicule superposée au 

champ de vision (overlay, condition encombrée), directement au-dessus du tableau de bord du 

véhicule mais hors du champ de vision (adjacent, condition désencombrée), sur la console du 

véhicule (écran tête basse) et de manière auditive. Les auteurs expliquent leurs résultats par le fait 

que les tâches impliquant une vision ambiante – c‘est-à-dire une tâche utilisant des indices en 

vision périphérique de déplacement égocentrique dans l‘espace, comme la conduite automobile –, 

semblent insensibles à l‘encombrement du champ de vision, alors que les tâches nécessitant une 

vision focale – c‘est-à-dire une tâche utilisant la vision fovéale comme la prospection visuelle, 

l‘identification de cibles ou la lecture – voient leur performance diminuer avec l‘encombrement. 

Ce constat est important est mérite d‘être répété : l’effet de l’encombrement visuel sur la 

performance dépend de la tâche. 
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La quatrième explication que nous présentons pour expliquer ces résultats est que les études 

précédentes n‘ont pas manipulé la variable d‘encombrement visuel de façon similaire (Doyon-

Poulin et al., 2012). Dans (Ververs & Wickens, 1998) tant l‘écran ayant un encombrement faible 

que celui élevé présentent l‘information primaire pour voler. Toutefois, dans (Alexander et al., 

2005; Wickens, Alexander, Horrey, et al., 2004) les auteurs ont comparé l‘avantage de 

l‘affichage tunnel comme fonction de guidage par rapport au directeur de vol. Ces deux fonctions 

présentent une information d‘une nature différente : le tunnel présente le couloir aérien et aide le 

pilote à anticiper les prochaines commandes de vol (Fadden et al., 2001). Le directeur de vol 

manque une telle information d‘anticipation. Les études de (Alexander et al., 2012, 2009; Kim et 

al., 2011; Naylor, 2010) ont aussi modifié la fonction de guidage en présentant l‘affichage tunnel 

pour les écrans avec un niveau d‘encombrement modéré et élevé, mais qui est absent de l‘écran 

avec un niveau d‘encombrement faible. Comme il a été présenté au chapitre précédent, plusieurs 

études ont montré que l‘affichage tunnel offre une meilleure conscience de la situation (Dorighi 

et al., 1991; Parrish et al., 1994) et une meilleure performance technique de vol (Bailey et al., 

2006; Prinzel III et al., 2004; Prinzel et al., 2004). 

Ainsi, le gain en performance trouvé pour les affichages ayant un encombrement élevé peut être 

dû au bénéfice intrinsèque de la fonction de guidage tunnel plutôt qu‘à l‘encombrement visuel. 

Nous avançons que comparer le niveau d‘encombrement visuel de symbologies radicalement 

différentes, comme c‘est le cas des expériences comparant le tunnel au directeur de vol, ne tient 

pas compte du fait qu‘un affichage visuellement chargé peut offrir des fonctions utiles à 

l‘utilisateur qui sont absentes d‘un affichage désencombré. 

2.4.3 Nouvelles exigences pour la manipulation de l’encombrement 

Ce dernier constat nous renvoie à un nouveau problème pour la recherche sur l‘encombrement 

visuel : comment assurer que les expérimentateurs manipulent le niveau d‘encombrement visuel 

de manière similaire entre les affichages de leurs études? Si ce n‘est pas le cas, alors les résultats 

de ces dernières ne s‘appliquent pas uniquement à l‘effet de l‘encombrement visuel, mais à l‘effet 

d‘autres facteurs. 

Afin de s‘assurer que la variable d‘encombrement visuel soit contrôlée de façon similaire entre 

les affichages d‘une expérience, et que les affichages présentent des informations de même 
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nature, nous proposons trois exigences que tous les affichages devraient respecter (Doyon-Poulin 

et al., 2012) : 

1. Présenter l‘information minimale nécessaire pour réaliser la tâche; 

2. Présenter une structure de l‘information similaire et compatible avec la tâche; 

3. Offrir le même ensemble de fonctions à l‘utilisateur. 

Selon la première exigence, l‘affichage doit supporter la tâche pour laquelle il a été conçu, en 

présentant l‘information et les fonctions nécessaires pour réaliser la tâche. Cela signifie que 

l‘information essentielle à la tâche est présente sur tous les affichages. Autrement, l‘affichage 

ayant un encombrement faible manque l‘information pertinente pour la tâche, influençant ainsi la 

performance du pilote. Il serait alors difficile de discerner si la baisse de performance provient du 

niveau d‘encombrement de l‘écran ou de l‘absence d‘information utile. 

Selon la seconde exigence, l‘organisation de l‘information présentée doit être compatible avec la 

structure de la tâche. Cela signifie que les affichages testés doivent avoir une hiérarchie de menus 

et un groupement de fonctions similaires. Sinon, l‘expérience modifie l‘utilisabilité de 

l‘application et peut masquer les effets de la variable d‘encombrement visuel. 

Selon la troisième exigence, les affichages doivent présenter les mêmes fonctions ou groupes de 

fonctions au pilote. Autrement, l‘expérimentateur peut concevoir un affichage ayant plusieurs 

fonctions utiles à la tâche du pilote, et conclure que l‘écran visuellement chargé offre un gain en 

performance sur l‘écran avec un encombrement minimal. Toutefois, l‘utilisateur peut accéder à 

plus d‘information et compléter plus d‘actions avec le premier écran que le second. Dans cette 

situation, décrire les deux écrans comme ayant un niveau d‘encombrement différent est 

inapproprié, car ce n‘est pas tant l‘encombrement que l‘ajout de nouvelles fonctions qui améliore 

la performance. 

Ces trois exigences restreignent l‘étude de l‘encombrement visuel à des affichages ayant une 

même symbologie. Par exemple, une expérience étudiant les effets de l‘encombrement visuel 

d‘un écran SVS peut manipuler le niveau d‘encombrement en affichant le terrain avec (a) une 

grille, (b) une texture synthétique, ou (c) une texture photo-réaliste (voir Figure 2.2) (Bolton & 

Bass, 2009). Ces trois textures de terrain offrent une information de vol similaire et supporte la 

même conscience minimale de l‘environnement voisin. Toutefois, une expérience comparant un 
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SVS photo-réaliste avec un indicateur d‘horizon artificiel traditionnel explore les avantages du 

concept d‘affichage SVS. Il est peu pertinent de comparer le niveau d‘encombrement visuel des 

deux affichages car le SVS offre une information radicalement différente de celle du panneau 

d‘instruments. 

 b) Texture synthétique a) Grille  c) Texture photo-réaliste
 

Figure 2.2 Trois représentations de terrain pour un écran SVS respectant les trois exigences de 

manipulation de l‘encombrement. 

Une limitation dans l‘implémentation de ces exigences est qu‘il est difficile de savoir à l‘avance 

l‘information nécessaire à la tâche ou la structure d‘information appropriée. Il est important de 

réaliser que ces exigences n‘imposent pas de présenter toute l‘information nécessaire à la tâche, 

mais bien que tous les écrans présentent la même information de base. Ceci est pour éviter le 

problème identifié dans les études passées où la manipulation de l‘encombrement visuel altère 

aussi l‘information affichée au pilote. 

Une seconde limitation est le lien entre l‘ajout de fonctions et l‘augmentation de l‘encombrement 

visuel. Un logiciel ajoutant de nouvelles fonctions verra son interface graphique plus chargée, car 

de nouveaux boutons ou libellés doivent supporter les fonctions. Un test d‘utilisabilité des 

nouvelles fonctions entre les deux versions du logiciel risque de trouver un gain en performance 

pour la version modifiée, car celle-ci offre un accès direct à ces fonctions malgré une charge 

visuelle plus grande. Dans ce cas, c‘est la disponibilité des nouvelles fonctions et non pas 

l‘encombrement visuel qui est responsable du gain en performance. Une conception radicalement 

différente de l‘interface graphique, p. ex. un changement de l‘esthétique de l‘interface, pourrait 

réduire la complexité visuelle tout en offrant les nouvelles fonctions (Thomas & Richards, 2008). 

Ces exigences établissent une procédure pour tester l‘effet de l‘encombrement visuel. 

L‘expérimentateur doit d‘abord définir l‘ensemble minimal d‘information nécessaire pour 

compléter le scénario de vol. Cette information de base doit être présentée sur tous les affichages. 
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Puis, l‘expérimentateur augmente le niveau d‘encombrement visuel en ajoutant des groupes 

d‘informations redondants ou des symboles à l‘écran. La section sur les contributeurs de 

l‘encombrement peut aider à cette étape. La même procédure est respectée pour la structure de 

l‘information et les fonctions disponibles à l‘utilisateur. 

2.5 Synthèse 

La revue de littérature a permis de réaliser plusieurs contributions utiles pour la suite de cette 

thèse. Premièrement, nous avons proposé une nouvelle définition de l‘encombrement visuel qui 

fait la synthèse des définitions existantes en plus d‘ajouter la dimension de contexte de la tâche. 

Deuxièmement, nous avons identifié les éléments contribuant à augmenter l‘encombrement 

visuel d‘un affichage. Ces éléments seront utiles lorsque viendra le temps de concevoir les 

affichages pour notre expérience. Troisièmement, nous avons comparé les métriques 

d‘encombrement existantes dans la littérature et nous avons identifié trois métriques pertinentes 

pour ce travail : une métrique d‘analyse d‘image (feature congestion), un questionnaire (Clutter 

rating scale) et une métrique d‘oculométrie. Quatrièmement, nous avons montré que l‘effet de 

l‘encombrement visuel sur la performance de l‘utilisateur dépend de la tâche réalisée. Les études 

passées sur la tâche de pilotage d‘avion montrent un effet mixte, car la variable d‘encombrement 

visuel n‘a pas été manipulée de manière similaire entre les études. Cinquièmement, nous avons 

proposé trois exigences que tous les affichages utilisés pour une expérience sur l‘encombrement 

visuel devraient respecter afin d‘assurer que la variable d‘encombrement visuel soit manipulée de 

manière similaire. Nous respecterons ces exigences lorsque viendra le temps de concevoir les 

affichages pour notre expérience. 
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CHAPITRE 3 PROBLÉMATIQUE, OBJECTIFS ET HYPOTHÈSES 

3.1 Problématique 

Les études passées en psychologie de la perception montrent un effet clair de l‘encombrement 

visuel sur la performance de la tâche de prospection visuelle. Les études passées en aviation 

montrent un effet mixte de l‘encombrement visuel sur la performance de la tâche de vol de 

l‘avion. Nous avons expliqué cette différence par le fait que les études passées en aviation on 

manipulé la fonction de guidage en plus de changer le niveau d‘encombrement visuel de 

l‘affichage. Il existe donc un besoin pour une étude expérimentale formelle manipulant 

uniquement la variable d‘encombrement visuel de l‘écran primaire de vol afin d‘observer son 

effet sur la performance du pilote à effectuer une tâche complexe, dynamique et continue, soit le 

vol d‘avion. 

Il existe aussi un besoin pour étudier l‘effet de l‘encombrement visuel sur l‘allocation de 

l‘attention d‘un participant expert durant une tâche complexe, dynamique et continue comme le 

contrôle de l‘avion. Il existe une seule étude ayant mesuré le parcours visuel de pilotes 

(Moacdieh, Prinet, & Sarter, 2013), mais elle n‘a pas contrôlé la fonction de guidage des 

affichages. L‘analyse du parcours visuel des participants, enregistré à l‘aide d‘un oculomètre (eye 

tracker), offre de nouveaux résultats à notre étude qui la distingue des études précédentes. 

Finalement, il existe aussi un besoin d‘étudier plus de deux niveaux d‘encombrement de l‘écran 

primaire de vol afin de comprendre la relation (linéaire ou autre) entre le niveau d‘encombrement 

et la performance du participant. Ceci permettra de mieux comprendre – voire de remettre en 

question – l‘exigence des autorités règlementaire de minimiser l‘encombrement visuel à l‘écran. 

Ce point distingue cette étude des précédentes qui n‘ont testé que deux niveaux d‘encombrement 

(faible ou élevé) et permettrait d‘identifier un niveau optimal d‘encombrement visuel pour une 

tâche réelle et complexe en termes de performance de l‘opérateur. 

3.2 Objectifs 

Sur le plan théorique, l‘objectif de cette thèse est de faire avancer les connaissances en termes de 

résultats expérimentaux sur les causes de l‘encombrement visuel d‘un affichage et ses effets sur 

la performance humaine dans une tâche dynamique de pilotage. 
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Sur le plan pratique, l‘objectif de cette thèse est d‘aider les concepteurs d‘interfaces graphiques 

en leur permettant de prendre de meilleures décisions de conception sur le niveau 

d‘encombrement visuel optimal de l‘affichage à l‘aide de lignes directrices, et de présenter une 

méthode d‘évaluation de l‘encombrement visuel d‘un affichage en situation dynamique avec des 

utilisateurs experts. 

3.3 Choix stratégique 

Le choix stratégique réalisé dans cette thèse est d‘opter pour une approche expérimentale en 

simulateur de vol. Pour ce faire, nous avons développé trois écrans primaire de vol, chacun avec 

un niveau d‘encombrement visuel différent : faible, modéré, élevé. Un groupe de pilotes utilisent 

chacun des écrans afin de compléter un vol en phase d‘approche. Leur performance technique de 

vol, le parcours du regard à l‘écran, de même que leur perception subjective des écrans en termes 

d‘encombrement, d‘esthétique et de charge de travail sont enregistrés. 

L‘approche expérimentale que nous utilisons offre trois avantages pour l‘envergure de cette 

thèse. Premièrement, nous avons manipulé la variable du niveau d‘encombrement visuel des 

affichages sans modifier les autres variables (c.-à-d. information primaire, fonction, 

organisation). Nous avons montré au chapitre précédent que le contrôle de la variable 

d‘encombrement n‘a pas été fait de manière similaire dans les études passées. Dans cette 

expérience, nous avons utilisé le modèle à trois dimensions de l‘encombrement et les trois 

exigences pour la conception d‘écran, que nous avons formulées au chapitre précédent, afin de 

concevoir trois affichages expérimentaux qui respectent ces exigences. Ces nouvelles règles de 

conception des affichages offre un cadre rigoureux pour l‘étude de l‘encombrement visuel qui 

distingue cette étude des précédentes. 

Deuxièmement, la portée des résultats obtenus dans cette expérience s‘applique directement au 

domaine d‘étude de cette thèse, soit la conception d‘écran pour le poste de pilotage. La tâche 

demandée aux pilotes est une tâche réelle de vol aux instruments. Les enseignements tirés sur les 

effets de l‘encombrement sur la performance serviront les concepteurs d‘écrans et les autorités de 

réglementation aériennes. 

Troisièmement, cette expérience utilise un système d‘oculométrie (eye tracker) pour enregistrer 

le parcours visuel du pilote à l‘écran. Cette mesure permet de connaître de manière précise l‘effet 
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de l‘encombrement de l‘écran sur l‘allocation de l‘attention du pilote, une mesure absente des 

études précédentes. 

3.4 Hypothèses 

Cette étude a testé l‘impact de trois niveaux d‘encombrement visuel de l‘écran primaire de vol 

(faible, modéré et élevé) sur la performance des pilotes. Nous prévoyons que la perception des 

participants du niveau d‘encombrement visuel des écrans après leur utilisation, tel que mesuré par 

le questionnaire d‘évaluation de l‘encombrement visuel, suive le classement établi au moment de 

la conception des écrans. Il s‘agit là de notre première hypothèse. 

H1 : L‘évaluation par les participants du niveau d‘encombrement visuel de l‘écran 

correspond au niveau d‘encombrement de l‘écran que nous avons conçu. 

L‘intérêt de l‘étude de l‘encombrement visuel est qu‘il affecte la performance de l‘utilisateur. Les 

résultats des études précédentes ont montré un effet mixte de l‘encombrement visuel de l‘écran 

sur la performance technique de vol, mesurée par la déviation latérale et verticale de l‘appareil. 

En respectant les exigences de conception formulées précédemment pour l‘étude de 

l‘encombrement visuel, nous prévoyons observer un effet de l‘encombrement visuel sur la 

performance de vol, et nous prévoyons que cet effet sera négatif pour l‘écran encombré. 

H2 : La performance technique de vol diminue pour l‘écran ayant un encombrement élevé 

comparativement aux écrans ayant un encombrement faible ou modéré. 

Nous prévoyons que l‘augmentation de l‘encombrement visuel affecte aussi la performance 

subjective, soit la charge mentale de travail mesurée par le questionnaire NASA-TLX. Les 

participants utilisant l‘écran avec un niveau d‘encombrement visuel élevé doivent filtrer 

l‘instrumentation inutile afin de concentrer leur attention sur les instruments pertinents. Au 

contraire, l‘écran ayant un niveau d‘encombrement faible demande un plus grand effort de travail 

mental car le pilote doit mémoriser la valeur des paramètres à atteindre (p. ex. cap de la piste, 

vitesse d‘approche, etc.). Conséquemment, la troisième hypothèse prévoit une charge mentale de 

travail inférieure pour l‘écran avec un niveau d‘encombrement modéré. 

H3 : La charge de travail perçue diminue pour l‘écran ayant un encombrement modéré 

comparativement aux écrans ayant un encombrement faible et élevé. 
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La surabondance d‘information de l‘écran avec un niveau d‘encombrement visuel élevé risque de 

perturber le parcours visuel du pilote, nécessitant de balayer une plus grande superficie de l‘écran 

pour acquérir l‘information pertinente pour la tâche de vol. La disposition des instruments et 

l‘ergonomie des interfaces avec un niveau d‘encombrement faible et modéré étant semblables, 

nous prévoyons un parcours visuel similaire pour ces deux écrans. Par conséquent, nous 

prévoyons que l‘effet de l‘encombrement visuel sur l‘efficience du parcours visuel, tel que 

mesurée par le nombre total de fixations, la longueur moyenne d‘une fixation et le temps de 

fixation cumulatif sur les indicateurs de déviation, se fera au détriment de l‘écran ayant un niveau 

d‘encombrement élevé. 

H4 : L‘efficience du parcours visuel du pilote diminue pour l‘écran ayant un niveau 

d‘encombrement élevé comparativement aux écrans ayant un niveau d‘encombrement 

faible et modéré. 

Les variables dépendantes mesurées dans cette étude reflètent les quatre hypothèses de cette 

étude. Celles-ci sont présentées en détail au chapitre suivant sur la méthode expérimentale 

employée pour notre étude. 
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CHAPITRE 4 CONCEPTION DES AFFICHAGES 

Dans ce chapitre, nous présentons le cycle de conception des affichages de vol utilisés dans cette 

étude. Le chapitre débute en présentant les exigences d‘information que les affichages doivent 

respecter, puis présente une grille de facteurs graphiques à considérer pour varier 

l‘encombrement visuel d‘un affichage. Cette grille a été conçue à l‘aide des facteurs identifiés au 

chapitre de revue de la littérature. Ensuite, le chapitre présente une revue des affichages de vol 

existants qui a permis d‘établir l‘étendue du niveau d‘encombrement réalisable dans cette étude. 

Les affichages conçus pour cette étude y sont ensuite présentés. Le chapitre se termine par une 

analyse du niveau d‘encombrement des affichages conçus à l‘aide des métriques automatisées. 

4.1 Exigences d’information et d’organisation des affichages 

Dans le chapitre de revue de littérature, nous avons identifié que les études précédentes sur 

l‘encombrement visuel n‘ont pas manipulé la variable d‘encombrement visuel de manière 

semblable. Pour éviter que notre étude ne fasse l‘objet de cette limitation, nous avons établi des 

exigences en termes d‘encombrement visuel, de besoin d‘information et de représentation 

graphique que doivent respecter les affichages conçus pour cette étude. 

À la fin du chapitre de revue de la littérature, nous avons proposé trois critères à conserver 

constants entre les conditions pour la manipulation de l‘encombrement (Doyon-Poulin et al., 

2012) : l‘écran doit présenter au moins l‘information minimal requise pour compléter la tâche; 

l‘utilisabilité de l‘écran est la même entre les conditions; l‘écran offre le même ensemble de 

fonctions à l‘utilisateur. Dans cette expérience, nous respectons ces trois critères pour les trois 

écrans testés. 

Pour ce faire, nous avons défini l‘information minimale requise pour la tâche
20

 avec l‘aide d‘un 

pilote expert de la tâche (subject matter expert, SME). Il s‘agit des indicateurs de déviations 

verticale et latérale, de vitesse, d‘altitude, de cap et de l‘horizon artificiel. Cette information est 

présente sur tous les écrans. De même, la disposition des indicateurs est similaire entre les 

                                                 

20
 La tâche demandée aux pilotes est présentée à la section 5.3 Tâche et scénario de vol. 
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affichages et respecte la convention du T de base (p. ex., l‘indicateur de vitesse est à gauche de 

l‘horizon artificiel). 

Quant aux exigences à satisfaire pour la représentation graphique, nous avons utilisé les guides de 

conception de symboles (SAE ARP4102-7, 1999; SAE ARP5364; SAE AIR1093; FAA AC-25-

11A, 2007) et les documents de certification des écrans en aviation pour la conception des écrans. 

Ces documents indiquent les instruments nécessaires à l‘écran pour la tâche de vol, de même que 

leur représentation graphique recommandée (p. ex., taille de caractères, convention des symboles 

dans le domaine, etc.). Ce dernier point est important: la manipulation de l‘encombrement des 

écrans se fait dans les limites permises des symboles de l‘écran de vol tels que prescrits par les 

guides de conception. Ceci prévient qu‘un écran ne soit artificiellement encombré, ou qu‘un autre 

manque des éléments essentiels pour le travail du pilote. 

Nous avons aussi établi cinq exigences spécifiques à cette expérimentation, afin d‘assurer qu‘un 

écran ne soit pas artificiellement encombré : 

 Les interfaces créées doivent être suffisamment différentes les unes des autres afin de 

pouvoir mesurer un niveau d‘encombrement visuel différent; 

 La variation de l‘interface ne doit pas modifier les fonctions et l‘organisation hiérarchique 

du PFD; 

 La variation de l‘interface ne doit pas être spécifique à un manufacturier; 

 La variation de l‘interface doit être réaliste et représentée un écran qui pourrait être utilisé 

dans le cockpit; 

 La variation de l‘interface ne doit pas modifier les exigences minimales d‘information 

nécessaires pour la tâche. 

Ces règles assurent que tous les écrans conçus les exigences minimales d‘information pour la 

tâche du pilote et que les fonctions disponibles à l‘écran sont les mêmes. Elles évitent de plus la 

conception d‘un écran qui serait inutilisable pour le vol tant son organisation visuelle serait mal 

considérée. 
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4.2 Grille de manipulation de l’encombrement visuel 

À la section 2.2, nous avons identifié plusieurs facteurs contribuant à l‘encombrement visuel d‘un 

affichage et qui sont reliés à la densité visuelle, la densité d‘information et son organisation. Dans 

cette section, nous présentons ces facteurs dans un tableau d‘éléments graphiques à utiliser pour 

optimiser l‘encombrement visuel d‘une interface (voir Tableau 4.1). Nous avons utilisé ce tableau 

au moment de la conception des trois affichages de vol afin d‘obtenir une variation suffisante du 

niveau d‘encombrement entre les affichages. 

Tableau 4.1 Grille de manipulation de l‘encombrement visuel 

Facteur 
Encombrement 

Diminue  Augmente 

Densité visuelle 

Couleur 

 
Monochrome 

 
Codage de couleur 

Alignement 

 
Aligner les objets sur une grille et 

uniformiser la taille des objets 

 
Décentrer les objets et varier la 

taille des objets 

Contraste 

 
Diminuer le contraste des 

informations secondaires 

 
Augmenter le contraste de tous les 

objets, délimiter les objets avec une 

bordure 

Police de caractère 

 
Sans empattement 

 
Avec empattement 
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Tableau 4.1 Grille de manipulation de l‘encombrement visuel (suite) 

Facteur 
Encombrement 

Diminue  Augmente 

Esthétique 

Forme 

 
Forme simple et symétrique  

Forme complexe et angulaire 

Couleur 

 
Monochrome 

 
Gradient de couleur et transparence 

Densité d’information 

Instrumentation 

 
Uniquement l‘information 

minimale 

 
Instrumentation supplémentaire, 

statuts des instruments 

Résolution 

 
Résolution suffisante pour la tâche 

 
Résolution élevée, valeur 

numérique 

Organisation 

Groupes logiques 

 
Regroupement des fonctions 

similaires 

 
Réduire l‘espace entre les groupes 

pour afficher plus d‘informations 
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Tableau 4.1 Grille de manipulation de l‘encombrement visuel (suite) 

Facteur 
Encombrement 

Diminue  Augmente 

Principes de 

Gestalt 

 
Similarité en forme et en espace 

 
Formes complexes, espacement 

irrégulier 

 

Le Tableau 4.1 présente un ensemble de facteurs qu‘un concepteur peut employer pour réduire ou 

augmenter l‘encombrement visuel d‘une interface. Bien qu‘un effort ait été fait afin d‘adapter les 

exemples du tableau au domaine de l‘aéronautique, certains facteurs peuvent être difficiles à 

appliquer au moment de la conception de l‘affichage, p. ex. les principes de la Gestalt. Pour 

identifier des applications des facteurs d‘encombrement tirées du domaine de l‘aéronautique, et 

afin d‘établir l‘étendue du niveau d‘encombrement réalisable pour cette étude, nous avons réalisé 

une revue des PFD existants dans l‘industrie aéronautique. 

4.3 Revue des affichages existants et inspiration 

Cette section présente les trois affichages retenus de la revue des PFD existants dans l‘industrie 

aéronautique : l‘écran tête haute, le panneau d‘instruments analogiques et la vision synthétique. 

Ces écrans montrent une bonne étendue de densité d‘information et de méthode de présentation 

de l‘information. Cette revue a aussi servi de source d‘inspiration pour la conception originale de 

nos affichages. 
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L‘affichage ayant le moins de symboles et la plus faible densité d‘information est l‘écran tête 

haute (HUD). Cet écran projette les informations primaires de vol sur un verre optique permettant 

de superposer les symboles à la vue extérieure (voir Figure 4.1). Il présente moins d‘information 

que les autres affichages car (1) la taille de l‘écran est petite, (2) il ne faut pas que les symboles 

masquent la vision extérieure et (3) le pilote peut baisser la tête pour obtenir plus d‘informations 

sur les autres affichages. On remarque que le HUD est monochrome et met en évidence les 

indicateurs actuels de l‘appareil (peu d‘information prédictive). 

 

Figure 4.1 Écran HUD du Boeing 737-832 en approche à l‘aéroport de San Francisco. Photo de 

Brett B. Despain, utilisée avec la permission de l‘auteur (Despain, 2008). 
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Le panneau d‘instrument du Boeing 737 est plus encombré (voir Figure 4.2). On y voit plusieurs 

instruments électromécaniques, avec une échelle de gradation et le lecteur numérique à tambour, 

entourant l‘écran de l‘horizon artificiel. Chaque instrument a une partition bien définie et est 

séparé des instruments voisins par une bordure et une couleur de fond distinctive. On remarque 

aussi que l‘alignement des instruments sur le panneau n‘est pas uniforme. Finalement, l‘échelle 

de gradation est saillante et affiche plusieurs traits. Ces caractéristiques contribuent à augmenter 

l‘encombrement visuel du panneau d‘instruments. 

 

Figure 4.2 Panneau d‘instruments du Boeing 737 avec l‘horizon artificiel au centre. Image libre 

de droits par Sol Young (CC-BY-2.0). 

L‘évolution technologique au tournant des années 2000 a offert la possibilité de présenter des 

représentations graphiques plus riches et colorées, et d‘intégrer l‘information de différents 

appareils de façon harmonieuse avec la tâche du pilote. Le iPFD développé par Honeywell (voir 

Figure 4.3) offre un exemple de la qualité graphique et de l‘intégration des indicateurs à 

l‘affichage. L‘utilisation de la transparence et d‘un dégradé de couleurs permet d‘atténuer la 

séparation entre les instruments et de présenter un affichage harmonieux. 
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Figure 4.3 Le iPFD de Honeywell intègre l‘information de différentes sources à l‘écran de façon 

harmonieuse en effaçant la séparation entre les informations de vol (au premier plan) et le 

paysage (à l‘arrière plan) (Honeywell, 2007). 

4.4 Présentation des affichages 

En respectant les exigences de conception et en utilisant la grille de manipulation de 

l‘encombrement, nous avons conçu trois PFD ayant un niveau d‘encombrement visuel faible, 

modéré et élevé. Les trois écrans que nous avons conçus pour cette étude sont présentés de la 

Figure 4.4 à la Figure 4.6, et leurs principales caractéristiques sont décrites ci-après. 

La Figure 4.4 présente l‘écran ayant un encombrement faible. Le PFD a une conception simple et 

monochrome, affichant la valeur numérique actuelle des principaux indicateurs de vol. Cet 

affichage ressemble à un affichage tête haute par son économie de symboles, de couleurs et 

d‘information. Les indicateurs de déviations latérale et verticale sont les seuls instruments à 

afficher de la couleur, afin d‘augmenter leur saillance à l‘écran. 
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Figure 4.4 Écran PFD ayant un encombrement faible 

La Figure 4.5 présente l‘écran ayant un encombrement modéré. Il s‘agit d‘un horizon artificiel 

plein écran utilisant un dégradé de couleur pour le brun du sol et le bleu du ciel, de même qu‘un 

effet de transparence pour l‘arrière-plan des instruments. Comparativement à l‘écran ayant un 

encombrement faible, l‘écran ayant un encombrement modéré a un compas au bas de l‘écran, une 

échelle d‘angle de tangage avec plus de lignes, une échelle de vitesse et d‘altitude avec des 

graduations et des sélecteurs de vitesse, d‘altitude et de cap (en bleu cyan). 
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Figure 4.5 Écran PFD ayant un encombrement modéré. 

La Figure 4.6 présente l‘écran ayant un encombrement élevé. Celui-ci possède un panneau 

d‘instrumentation à fin d‘ingénierie, à gauche de l‘écran, qu‘un utilisateur expert peut utiliser afin 

d‘optimiser son approche, bien que ces instruments ne soient pas nécessaires pour réaliser la 

tâche (p. ex., angle d‘attaque, accélération verticale, etc.). Les instruments principaux ont un 

lecteur supplémentaire de leur valeur numérique (p. ex., indicateur de roulis). L‘écran a une 

faible organisation visuelle de l‘information et utilise une variété de symboles et de couleurs pour 

les instruments. Tous les instruments ont une bordure blanche saillante et une échelle avec une 

graduation marquée, et certains instruments ont une forme géométrique complexe comme le 

lecteur de vitesse. L‘écran encombré utilise une police de caractère avec empattement. 
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Figure 4.6 Écran PFD ayant un encombrement élevé. 

Il est important de noter que les trois écrans (a) présentent au moins l‘information minimale 

nécessaire pour réaliser la tâche, soit les paramètres primaires de vol, (b) utilisent des fonctions 

similaires, soit le guidage de vol à l‘aide des instruments de déviation verticale et latérale, et (c) 

sont conçus de façon à avoir une organisation de l‘information similaire et compatible avec la 

tâche, les instruments étant disposés autour de l‘horizon artificiel. 

Les trois écrans ont un encombrement visuel différent et respectent les trois exigences que nous 

avons proposées au chapitre 2 pour l‘étude de l‘encombrement visuel. Le respect de la 

méthodologie avancée au chapitre 2 procure une assurance que notre étude a manipulé le niveau 

d‘encombrement visuel des écrans en laissant inchangés les facteurs d‘information, de fonction et 

de structure. 
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4.5 Analyse des affichages 

Afin de valider les niveaux d‘encombrement visuel des trois affichages développés, nous les 

avons analysés avec l‘algorithme Feature Congestion (Rosenholtz et al., 2005, 2007). Tel que 

présenté à la section 2.3.1, cet algorithme analyse la variabilité locale des attributs de couleur, 

luminosité et orientation de l‘interface. L‘algorithme offre deux extrants, soit une métrique 

scalaire de l‘encombrement global de l‘interface et une carte de visualisation indiquant les 

régions contribuant le plus à l‘encombrement. 

Deux limitations de cet algorithme sont qu‘il utilise une unité arbitraire pour la métrique 

d‘encombrement et qu‘il n‘existe pas d‘échelle pour comparer les métriques de différents 

affichages. Comme dans les travaux de (Rosenholtz et al., 2005, 2007), nous avons décidé de 

présenter les métriques avec leur unité d‘origine et de normaliser les cartes de visualisation en 

fonction de l‘affichage le plus encombré des trois. Ces choix permettent de comparer les trois 

affichages en utilisant un dénominateur commun. 

4.5.1 Métrique d’encombrement global 

La Figure 4.7 présente la métrique d‘encombrement global mesurée par Feature Congestion pour 

les trois affichages. Le résultat obtenu par l‘algorithme suit le classement du niveau 

d‘encombrement des affichages au moment de la conception : le PFD ayant un encombrement 

faible a un résultat de 2.12, soit le plus faible des trois, suivi du PFD ayant un encombrement 

modéré avec un résultat de 3.20 et du PFD ayant un encombrement élevé avec un résultat de 

7.58. L‘amplitude du résultat du PFD ayant un encombrement élevé est importante, car elle est 

plus du double du résultat du PFD ayant un encombrement modéré. La Figure 4.7 montre 

clairement un taux de variation plus important entre les écrans ayant un encombrement modéré et 

élevé que celui entre les écrans ayant un encombrement faible et modéré. 
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Figure 4.7 Métrique d'encombrement global mesurée par Feature Congestion. 

4.5.2 Carte d’encombrement 

L‘algorithme Feature Congestion offre aussi en extrant une carte de visualisation de 

l‘encombrement global. Pour obtenir la carte d‘encombrement global, l‘algorithme utilise l‘image 

de l‘interface reçue en intrant et construit trois cartes intermédiaires d‘encombrement, soit une 

carte pour chacun des attributs visuels de couleur, contraste et orientation. Ces cartes 

intermédiaires représentent le niveau de variation locale de chacun des attributs visuels, calculé 

par l‘application de filtres gaussien passe-bas. L‘attribut de couleur décompose l‘image reçue en 

intrant selon les trois couleurs primaires rouge, vert et bleu. L‘attribut de contraste convertit 

l‘image reçue en intrant en niveaux de gris et analyse sa luminosité. L‘attribut d‘orientation filtre 

l‘image reçue en intrant pour identifier la présence de traits avec un angle de 0° (horizontal), 30°, 

45°, 60° et 90° (vertical). Ensuite, l‘algorithme normalise les trois cartes intermédiaires afin 

qu‘elles aient une pondération similaire et les additionne pour obtenir la carte de visualisation de 

l‘encombrement global. 
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L‘analyse des cartes de visualisation de l‘encombrement aide à expliquer la variation des 

métriques d‘encombrement global mesurées par l‘algorithme. La Figure 4.8 montre la carte pour 

l‘écran ayant un encombrement faible. Les régions claires sont celles contribuant le plus à 

l‘encombrement, alors que les régions foncées ou noires ne contribuent pas. On remarque que 

tous les instruments ont la même intensité sur la carte, indiquant une contribution à 

l‘encombrement similaire entre eux. Le fait que la disposition des instruments soit concentrée au 

centre de l‘écran laisse de l‘espace vide en périphérie ce qui diminue le résultat d‘encombrement 

global. L‘affichage monochrome a permis de diminuer le niveau d‘encombrement global en 

réduisant la variabilité de l‘attribut de couleur à l‘écran. 

 

Figure 4.8 Carte de visualisation de l'encombrement du PFD ayant un encombrement faible. 

La Figure 4.9 présente la carte d‘encombrement de l‘écran ayant un encombrement modéré. Le 

détail le plus marquant de cette visualisation est que l‘arrière-plan de couleur disparait de la carte 

d‘encombrement, indiquant que cet élément ne contribue pas à l‘encombrement mesuré par 
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l‘algorithme. Les traits et les bordures des instruments apparaissent très clairement sur la carte, 

indiquant qu‘ils ont contribué le plus au résultat d‘encombrement global. Particulièrement, la 

pointe en triangle des lecteurs de vitesse et d‘altitude est la région ayant un encombrement local 

le plus élevé de l‘interface. Ceci s‘explique par la contribution de l‘attribut visuel d‘orientation 

avec la présence des deux traits à 45° de la pointe du triangle au-dessus de la barre vertical, et par 

l‘attribut visuel de couleur avec le changement subit du fond noir de l‘instrument avec la couleur 

cyan du sélecteur de vitesse. 

 

Figure 4.9 Carte de visualisation de l'encombrement du PFD ayant un encombrement modéré. 

La Figure 4.10 présente la carte de l‘écran ayant un encombrement élevé. Comme pour l‘écran 

précédent, l‘arrière-plan de couleur des instruments et de l‘horizon artificiel n‘est pas visible sur 

la carte d‘encombrement. C‘est plutôt la multiplication de lignes, de traits et de bordures des 

instruments qui contribue le plus à l‘encombrement. Les formes complexes, comme les lecteurs 

de vitesse et d‘altitude, affichent l‘intensité la plus élevée de la carte, suggérant une région ayant 
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un encombrement local élevé. Le fait que toute la surface de l‘écran soit occupé par de 

l‘information laisse peu d‘espace vide, et par conséquent augmente la métrique d‘encombrement 

global. 

 

Figure 4.10 Carte de visualisation de l'encombrement du PFD ayant un encombrement élevé. 

4.6 Synthèse 

Ce chapitre a mis en application les enseignements tirés de la revue de la littérature afin de 

concevoir trois PFD avec un niveau d‘encombrement visuel différent. Nous avons d‘abord 

identifié les besoins d‘information pour la tâche et les exigences que doivent respecter les 

affichages. Puis, nous avons résumé sous forme graphique les facteurs de manipulation de 

l‘encombrement visuel identifiés durant la revue de littérature. La revue des affichages de vol 

existants a permis d‘établir l‘étendue du niveau d‘encombrement visuel présent dans le poste de 

pilotage. Ces connaissances nous ont permis de concevoir les trois PFD utilisés pour cette étude, 
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présentés à la section 4.4. L‘analyse du niveau d‘encombrement des PFD avec l‘algorithme 

Feature Congestion a validé la manipulation de l‘encombrement. 

Dans cette étude, nous avons utilisé les trois PFD en simulateur de vol afin d‘étudier l‘effet de 

l‘encombrement visuel sur la performance des pilotes. Le prochain chapitre présente la 

méthodologie employée pour l‘étude expérimentale. 
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CHAPITRE 5 MÉTHODOLOGIE 

Ce chapitre présente la méthodologie utilisée pour l‘expérience réalisée en simulateur de vol. Il 

est structuré comme suit. La section 1 présente le profil des pilotes qui ont pris part à l‘expérience 

et est suivi à la section 2 par la présentation de l‘instrumentation utilisée, soit le simulateur de 

vol, les questionnaires et l‘oculomètre. La section 3 présente la tâche demandée aux participants, 

soit de réaliser une approche aux instruments, de même que le scénario de vol et la section 4 

présente la procédure expérimentale. La section 5 présente en détails les variables indépendantes, 

soit le niveau d‘encombrement et la phase vol, alors que la section 6 présente les 19 variables 

dépendantes mesurées durant l‘étude. Le chapitre se termine en présentant la méthode d‘analyse 

des données et le plan expérimental utilisé pour l‘analyse statistique. Le processus d‘approbation 

de l‘étude par le comité d‘éthique est présenté à la fin. 

5.1 Participants 

Pour prendre part à l‘étude, un pilote devait se qualifier selon deux critères. Premièrement, il 

devait avoir au moins 100 heures d‘expérience de vol aux instruments. Ce critère limite la 

participation aux pilotes ayant déjà une bonne connaissance de l‘écran primaire de vol et des 

fonctions de guidage. Deuxièmement, le pilote devait être familier avec le poste de pilotage des 

avions Bombardier. Ce critère réduit le temps nécessaire à l‘apprentissage de la dynamique de vol 

du simulateur. 

Douze pilotes ont pris part à cette étude, dont une femme. Les pilotes étaient âgés entre 28 et 60 

ans, avec un âge moyen de 41.6 ans. Deux pilotes étaient unilingue anglophone. L‘expérience de 

vol des pilotes variait entre 300 et 12 000 heures de vol, avec une expérience moyenne de 4415 

heures de vol. La variation entre l‘expérience de vol des participants s‘explique par leur carrière 

professionnelle. Les quatre participants qui ont rapporté avoir moins de 4000 heures de vol sont 

tous ingénieurs. Bien qu‘ils ne volent pas régulièrement, ils ont une connaissance avancée des 

affichages du poste de pilotage et sont qualifiés pour commenter la qualité des écrans testés pour 

cette étude. Les trois pilotes qui ont rapporté avoir plus de 6000 heures de vol sont des pilotes de 

production qui réalisent les premiers vols d‘un avion nouvellement produit et le livrent aux 

clients. Il s‘agit de pilotes qui volent quotidiennement et possèdent une expérience approfondie 

de l‘appareil. Les cinq autres pilotes sont des instructeurs de vol. Ils réalisent la formation des 
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pilotes sur les appareils Bombardier. Bien qu‘ils volent moins régulièrement que les pilotes de 

production, les instructeurs de vol ont une connaissance avancée des systèmes du poste de 

pilotage et du simulateur de vol. Deux participants ont rapporté avoir déjà volé un avion avec un 

système de commande électrique (fly-by-wire, en anglais), et un seul participant a rapporté avoir 

été pilote dans les forces de l‘air. Les 12 pilotes représentent une bonne diversité d‘expérience de 

vol et sont en mesure de formuler des avis pertinents sur la qualité des affichages testés durant 

l‘étude. 

5.2 Appareil et instrumentation 

Cette section présente le simulateur de vol et les deux outils de mesure que nous avons utilisés 

pour l‘étude: les questionnaires subjectifs et l‘oculomètre.  

5.2.1 Simulateur de vol 

Les pilotes ont volé dans un simulateur de vol fixe, c‘est-à-dire qui ne bouge pas durant le vol, et 

contrôlé par un mini-manche latéral (side stick, en anglais). Le simulateur était situé dans les 

locaux de Bombardier Aéronautique à Montréal et est utilisé à des fins de recherche et 

développement en ingénierie. Le simulateur a utilisé un modèle de vol représentatif d‘un jet privé 

avec un système de commande électrique. 

La géométrique physique du poste de pilotage était représentative de celle d‘un avion d‘affaires 

de Bombardier, et était équipée des commandes de vol nécessaires pour compléter une approche 

aux instruments: mini-manche latéral, pédalier, manettes des moteurs, manette du train 

d‘atterrissage, manette des ailerons hypersustentateurs et manette des aérofreins (voir Figure 5.1). 

Le pilote s‘est assis dans le siège du capitaine, alors que l‘expérimentateur s‘est assis dans le 

siège du premier officier et a joué le rôle du premier officier durant le vol (c.-à-d. il a déployé les 

ailerons hypersustentateurs et le train d‘atterrissage lorsque le pilote l‘a demandé). 
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Figure 5.1 Configuration du poste de pilotage durant l‘expérimentation. 

Le PFD était présenté sur un écran de 30.5 x 22.9 cm situé à une distance de lecture de 86 cm 

(voir Figure 5.2). La résolution de l‘écran était de 1024 x 768 pixels et soutenait un angle visuel 

de 19.4 x 14.8°. La vue extérieure était projetée sur trois panneaux plats situés à 3.20 m des yeux 

du pilote, soutenant des angles visuels horizontal de 90.1° et vertical de 39.3°. 

Oculomètre 

PFD 

Mannette moteur 

Mannette volets 

Mini-manche 

Siège du pilote Siège du premier officier 

Mannette train 

Vue extérieure 
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Figure 5.2 Géométrie du poste de pilotage par rapport aux yeux du pilote. 

Durant chaque essai, le simulateur a enregistré à une fréquence de 50 Hz les données de vol 

suivantes: déviations latérale et verticale (en points), activité du mini-manche (en degrés) et 

vitesse verticale (en pieds par minute). 

Hauteur œil – plancher 

110.5 cm 

22.9 cm 

86 cm 

30.5 cm 
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5.2.2 Questionnaires 

Nous avons utilisé des questionnaires papier que les participants ont remplis avec un crayon. 

Tous les questionnaires sont en anglais, car certains participants ne parlaient pas français et tous 

parlaient anglais. La raison de ce choix est que nous ne voulions courir le risque d‘avoir des 

questions ayant des sens différents dans les versions anglaise et française des questionnaires. 

Ceux-ci sont présentés aux annexes D à G. 

5.2.2.1 Questionnaire de données démographiques 

Le questionnaire de données démographiques demandait au participant de spécifier son âge et son 

expérience de vol (nombre d‘heures de vol et nombre d‘heures de vol aux instruments). Il est 

présenté à l‘annexe D. 

5.2.2.2 Charge mentale de travail (NASA-TLX) 

Nous avons utilisé le questionnaire NASA-TLX (Hart & Staveland, 1988) pour mesurer la charge 

mentale de travail. Le NASA-TLX est un des outils les plus connus et les plus utilisés pour 

évaluer la charge mentale de travail dans la communauté aéronautique (Hart, 2006). Depuis sa 

conception, plusieurs études ont montré la validité des mesures obtenues et la robustesse de son 

diagnostic (Noyes & Bruneau, 2007; William Moroney, 1995). Toutefois, le pouvoir de 

discrimination de l‘outil est modéré pour distinguer la charge de travail entre différentes tâches 

(Matthews, Reinerman-Jones, Barber, & Abich, 2014; Rubio, Díaz, Martín, & Puente, 2004). 

Le NASA-TLX questionnaire comprend deux formulaires présentés à l‘annexe E. Le formulaire 

de classement (NASA-TLX Mental Workload Rankings) pondère la contribution de chacun des six 

facteurs de la charge mentale de travail, soit l‘exigence mentale, l‘exigence physique, l‘exigence 

temporelle, la performance, le niveau de frustration et l‘effort. Le formulaire de classement 

présente les 15 combinaisons de deux facteurs (p. ex., exigence mentale et exigence physique), et 

le participant indique lequel des deux facteurs a contribué le plus à la charge mentale de travail. 

Les participants remplissent le formulaire de classement une seule fois, après le vol de pratique. 

Le formulaire d‘évaluation (NASA-TLX Mental Workload Ratings) demande au participant 

d‘évaluer l‘intensité de la contribution de chacun des six facteurs de la charge mentale de travail. 

Une brève définition accompagne chaque facteur pour guider le participant dans son évaluation. 
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Nous avons utilisé une échelle à 20 divisions faisant 122 mm de longueur avec les descripteurs 

‗faible‘ et ‗élevé‘ à chaque extrémité pour définir la valeur de l‘échelle. Les participants 

remplissent le formulaire d‘évaluation après avoir complété chaque condition expérimentale, 

pour un total de 9 fois (voir §5.4 pour la procédure expérimentale). 

Une fois ces deux formulaires complétés, l‘indice de charge mentale de travail pour une condition 

expérimentale est calculé comme suit : pour chaque participant, compter le nombre de fois qu‘un 

facteur a été choisi sur le formulaire de classement et diviser ce chiffre par le nombre total de 

comparaisons, soit 15. Il s‘agit de la pondération de chaque facteur, avec une contribution 

maximale de 33% (5/15) et minimale de 0% (0/15). Multiplier la pondération de chaque facteur à 

sa valeur indiquée sur l‘échelle du formulaire d‘évaluation (de 1 à 20), et calculer la moyenne 

pour les six facteurs. Ce résultat est l‘indice de charge mentale de travail du participant pour cette 

condition expérimentale. 

5.2.2.3 Évaluation de l’encombrement visuel (Clutter rating scale) 

Nous avons utilisé le questionnaire d‘évaluation de l‘encombrement visuel (Clutter rating scale) 

développé par Kaber et ses collègues (2008) pour mesurer le niveau d‘encombrement visuel des 

écrans. Le questionnaire est présenté à l‘annexe F. L‘utilisation de ce questionnaire est semblable 

à celle du NASA-TLX. Il débute par une feuille de définitions des six facteurs contribuant à 

l‘encombrement visuel, remise aux participants en début de séance. Le formulaire de classement 

(Clutter Rankings) pondère la contribution de chaque facteur à l‘encombrement visuel et est 

complété de la même manière que pour le NASA-TLX. Le formulaire d‘évaluation (Clutter 

Ratings) de l‘encombrement comprend six échelles pour déterminer la valeur de chaque facteur. 

Nous avons utilisé la même échelle à 20 divisions que pour le NASA-TLX. Les descripteurs aux 

extrémités de l‘échelle changent pour chaque facteur. Le Tableau 5.1 présente les paires des 

descripteurs utilisés tirés de (Kim et al., 2011). Notez que le descripteur du niveau faible 

correspondait à un écran avec un faible encombrement et avait une valeur de 1 sur l‘échelle, alors 

que le descripteur du niveau élevé correspondait à un encombrement élevé et avait une valeur de 

20. 

L‘indice d‘encombrement visuel d‘un écran se calcule de la même manière que l‘indice de charge 

mentale de travail, soit la moyenne pondérée des échelles d‘évaluation. Le formulaire 

d‘évaluation contenait aussi une septième échelle à 20 divisions demandant au participant 
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d‘évaluer le niveau d‘encombrement global de l‘écran, avec les descripteurs ‗encombrement 

faible‘ et ‗encombrement élevé‘ à ses extrémités. Nous référons à cette échelle comme la 

perception d‘encombrement global de l‘écran. Celle-ci a été utilisée pour valider l‘indice 

d‘encombrement visuel avec la perception du niveau d‘encombrement par les participants. 

Tableau 5.1 Libellé des descripteurs présentés aux extrémités de l‘échelle d‘évaluation pour 

chaque facteur (tiré de (Kim et al., 2011)). 

Facteurs 
Descripteurs 

Niveau faible 

Descripteurs 

Niveau élevé 

Redundancy Orthogonal Redundant 

Colorfulness Monochromatic Colorful 

Salience Salient Not salient 

Dynamics Static Dynamic 

Variability Monotonous Variable 

Density Sparse Dense 

5.2.2.4 Qualités visuelles 

Nous avons utilisé le questionnaire des qualités visuelles de l‘interface (Lavie & Tractinsky, 

2004) pour évaluer la perception que les participants ont de la qualité esthétique des écrans. Le 

questionnaire évalue les deux dimensions de l‘apparence esthétique d‘une interface identifiées 

par (Lavie & Tractinsky, 2004) soit l‘esthétique classique et l‘esthétique expressive. Le 

questionnaire utilisé dans cette étude est présenté à l‘annexe G. Il présente les 10 facteurs de 

qualité visuelle avec une brève définition et le participant indique sa perception de l‘écran pour 

chacune d‘elle. Nous avons utilisé la même échelle à 20 divisions que précédemment, mais avec 

les descripteurs ‗fortement en désaccord‘ et ‗fortement en accord‘ aux extrémités. Nous avons 

donné une valeur de 1 à la première division identifiée par le descripteur ‗fortement en 

désaccord‘ qui était associée à une qualité esthétique faible, alors que nous avons donné une 

valeur de 20 à la dernière division identifiée par le descripteur ‗fortement en accord‘ et associée à 

une qualité esthétique élevée. Les 10 facteurs de qualité visuelle du questionnaire étaient : propre, 
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clair, plaisant, symétrique, esthétique, original, sophistiqué, fascinant, créatif, utilise des effets 

spéciaux. 

Pour l‘analyse des résultats de qualités visuelles, nous avons utilisé les trois mesures sommatives 

utilisées par (Gannon, 2005). Les mesures sommatives permettent d‘évaluer différentes 

propriétés de la perception esthétique des interfaces en utilisant une mesure composite de 

plusieurs sous-facteurs de qualités visuelles. Les mesures sommatives retenues sont la qualité 

visuelle classique, expressive et globale. Les deux premières mesures reflètent les deux 

dimensions identifiées par Lavie et Tractinsky (2004) alors que la qualité visuelle globale est une 

mesure composite de tous les facteurs du questionnaire. 

La mesure sommative est calculée comme la valeur moyenne des facteurs qui la composent. 

Nous avons utilisé une moyenne simple, puisqu‘aucune méthode de pondération n‘est suggérée 

dans (Lavie & Tractinsky, 2004). Gannon (2005) a validé cette méthode pour évaluer la 

perception esthétique d‘un écran de vol. Le Tableau 5.2 présente les facteurs de qualité visuelle 

utilisés pour les mesures sommatives. Nous avons aussi analysé le résultat pour l‘échelle 

‗esthétique‘, qui est un facteur unique capturant le concept de qualité esthétique d‘une interface. 

Tableau 5.2 Mesures sommatives de qualités visuelles et les facteurs de qualité esthétique utilisés 

pour les calculer (tirées de (Gannon, 2005)). 

Mesures sommatives 

de qualité visuelle 
Facteurs de qualité esthétique 

Esthétique Esthétique 

Classique Propre, clair, plaisant, symétrique, esthétique 

Expressive Original, sophistiqué, fascinant, créatif, utilise des effets spéciaux 

Globale Propre, clair, plaisant, symétrique, esthétique, original, sophistiqué, 

fascinant, créatif, utilise des effets spéciaux 

5.2.3 Oculomètre 

Nous avons utilisé un oculomètre Facelab 5.0 (© Seeing Machines) pour enregistrer le regard du 

pilote sur l‘écran du PFD à une fréquence de 60 Hz. Nous avons placé les caméras sous l‘écran, 

sur un support fixe fabriqué pour ce test, à une distance de 65 cm des yeux du pilote avec un 
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angle de 40° par rapport au sol. Durant les tests préliminaires, nous avons trouvé que cette 

position offrait les résultats les plus fiables et réduisait la surface de l‘écran masquée par les 

caméras. Les caméras ont couvert la portion inférieure de l‘écran (moins de 4 cm en hauteur). Le 

masquage de l‘écran n‘a pas causé de problème durant l‘expérimentation car aucune information 

essentielle ne se trouvait dans la zone masquée et aucun participant ne s‘est plaint du masquage. 

Nous avons calibré l‘oculomètre au début de la session de test avec chaque pilote. La calibration 

était vérifiée à nouveau après la moitié des essais. Nous avons été incapables de calibrer 

l‘oculomètre avec les cinq participants portant des lunettes. Le verre des lunettes reflétait le 

signal infrarouge utilisé par l‘oculomètre pour suivre la pupille et ne permettait pas d‘enregistrer 

la position du regard. La calibration a cependant bien fonctionné avec les participants portant des 

lentilles cornéennes. Nous avons aussi dû éliminer les résultats d‘oculométrie de deux autres 

participants (pilote 2 et 8): ceux-ci ont demandé d‘augmenter la luminosité dans le poste de 

pilotage pour faciliter la lecture de l‘écran. Toutefois, la luminosité supplémentaire des lumières 

de tête a créé un reflet sur les yeux du participant et a interféré avec le suivi de la pupille. Les 

résultats pour ces participants n‘étaient pas fiables. 

Le visionnement des enregistrements vidéo du parcours visuel de chaque participant à l‘étape de 

l‘analyse des données a révélé un problème de calibration avec le pilote 5. La position de l‘écran 

où son regard a été posé le plus longtemps devrait être au centre de l‘horizon artificiel, mais elle 

était décalée pour se trouver à gauche de l‘indicateur de déviation latérale. De plus, l‘ampleur des 

saccades de son patron visuel était trop petite pour être réaliste. Ce type de résultats indique que 

l‘oculomètre n‘a pas retenu la calibration du regard du participant. Nous avons décidé de retirer 

les résultats d‘oculométrie de ce participant afin de ne pas fausser les résultats des autres 

participants dont la calibration a bien fonctionné. 

Cela nous a laissé quatre participants avec des données valides d‘oculométrie, soit les pilotes 3, 4, 

9 et 10. Leurs résultats sont présentés au chapitre suivant. 

5.3 Tâche et scénario de vol 

La tâche demandée aux pilotes a été de compléter une approche aux instruments ILS en 

simulateur de vol à la piste 06 gauche de l‘aéroport Montréal-Pierre Elliott Trudeau (CYUL, 

Canada) dont la procédure est présentée à la Figure 5.3. Il s‘agissait d‘une approche manuelle 
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utilisant les données brutes de vol (raw data, en anglais). Les indicateurs de déviations verticale 

et latérale ont offert l‘information de guidage, de manière à ce que le pilote regarde activement le 

PFD pour obtenir les informations de vol. Il n‘y avait pas d‘assistance pour l‘approche : le pilote 

automatique, l‘auto-mannette, le directeur de vol et le vecteur de vol étaient tous inactifs afin 

d‘augmenter la charge de travail et d‘encourager le pilote à contrôler manuellement les 

manœuvres de l‘appareil et la puissance des moteurs. 

Le vol a été fait avec des conditions météorologiques de vol aux instruments (Instrument 

meteorological conditions, IMC). Le plafond nuageux était de 400 pieds avec une visibilité 

réduite de 2.0 milles terrestre américain (statute mile, en anglais) dans le brouillard. Un vent de 

travers de l‘est (90°) soufflait à 17 nœuds. Les conditions IMC ont assuré que le pilote conserve 

la tête basse et regarde le PFD durant toute l‘approche puisqu‘il ne pouvait pas utiliser les repères 

visuels de l‘environnement extérieur. 

La simulation a débuté avec l‘appareil situé à 6 milles nautiques du point de capture du 

radiophare d‘alignement de piste, identifié par le point Xulta sur la procédure d‘approche (voir 

Figure 5.3). L‘appareil avait un cap initial de 30 degrés, une altitude de 4000 pieds au-dessus du 

sol et une vitesse indiquée de 200 nœuds. Une copie de la procédure d‘approche, des conditions 

météorologiques et des conditions initiales de l‘appareil a été remise aux pilotes au début de 

l‘expérience. 

Les pilotes ont reçu la consigne de conserver le cap initial jusqu‘à la capture du signal de 

radiophare d‘alignement de piste. Ensuite, ils ont suivi l‘indicateur de déviation latérale afin de 

demeurer alignés avec la piste et ils ont capté le signal d‘alignement de descente pour commencer 

la descente. Puis ils devaient suivre les indications de déviations latérale et verticale le plus 

précisément possible durant l‘approche. Ils devaient avoir une approche stabilisée —c.-à-d. les 

volets déployés, les trains sortis et avoir atteint la vitesse finale de 123 nœuds— en croisant le 

repère d‘approche finale (Final approach fix, FAF) Birpo situé à 3.5 milles nautiques de la piste 

(voir Figure 5.3). Les pilotes n‘avaient pas à poser l‘appareil sur la piste et la simulation s‘est 

terminée lorsque l‘appareil a atteint 200 pieds. 
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Figure 5.3 Procédure d‘approche aux instruments de l‘aéroport de Montréal (CYUL, Canada) 

pour la piste 06 gauche. Le point de capture du radiophare d‘alignement de piste est Xulta et le 

repère d‘approche finale est Birpo. 
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5.4 Procédure 

La séance de test avec chaque pilote s‘est déroulée comme suit. L‘expérimentateur a accueilli le 

pilote dans le simulateur de vol et l‘a informé de la tâche demandée, soit de réaliser une approche 

aux instruments décrite à la section 5.3. Le pilote a ensuite lu et signé le formulaire d‘information 

et de consentement à la recherche, avant de compléter le questionnaire de données 

démographiques sur son expérience de vol. 

Le pilote a pris place dans le simulateur de vol en s‘asseyant sur le siège gauche du pilote et a 

ajusté sa position pour que ses yeux soient à une distance de 86 cm de l‘écran du PFD. 

L‘expérimentateur a vérifié la distance avec une règle. Le pilote a aussi ajusté la position de 

l‘appui-bras pour tenir confortablement le mini-manche. 

L‘expérimentateur a calibré l‘oculomètre avec le regard du pilote, ce qui durait environ cinq 

minutes. Ce dernier devait fixer le centre de l‘écran durant quelques secondes pour que l‘appareil 

identifie sa pupille. Puis, le pilote a fixé un point apparaissant successivement aux quatre coins de 

l‘écran afin que l‘oculomètre corrèle la position du regard avec les coordonnées à l‘écran. 

L‘oculomètre affiche la dispersion des fixations autour des coins afin de s‘assurer de la validité 

de la calibration. Si la dispersion autour d‘un point était supérieure à 2.5 degrés, nous reprenions 

la calibration. Si la dispersion des fixations était toujours inacceptable après trois reprises de la 

calibration, nous arrêtions la mesure d‘oculométrie avec ce participant car nous jugions que la 

calibration n‘était pas fiable. Cela a été le cas pour les cinq participants portant des lunettes (ref 

§5.2.3). La calibration a été vérifiée à nouveau après la moitié de la séance de test. Au début de 

chaque approche, l‘expérimentateur a démarré l‘enregistrement des données d‘oculométrie. 

Le pilote a complété une approche de pratique afin de se familiariser avec les contrôles de vol et 

la dynamique de l‘avion. La tâche de vol a été la même que celle décrite à la section 5.3, mais 

sans vent de travers et sans conditions météorologiques aux instruments. Pour cette approche de 

pratique, le pilote a utilisé le PFD conventionnel du Bombardier Global. Une fois l‘approche 

complétée, il a rempli deux formulaires, soit (1) le formulaire de classement du NASA-TLX et 

(2) le formulaire de classement de l‘encombrement visuel. Le pilote avait la possibilité de 

reprendre le vol de pratique s‘il avait encore des interrogations sur le déroulement du test ou s‘il 

ne se sentait pas prêt pour le test. Toutefois, aucun participant n‘a demandé de reprendre le vol de 

pratique durant notre étude. 
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La séance de test formelle a débuté après l‘essai de pratique. Le pilote a réalisé un total de neuf 

approches IMC (ref §5.3) divisées en trois groupes de trois répétitions. Chaque groupe 

correspond à un PFD différent, décrit à la section suivante. Le pilote a donc complété trois 

répétitions de l‘approche en utilisant un PFD, avant d‘utiliser le PFD suivant. L‘ordre de 

présentation des PFDs a été contrebalancé entre les participants dans un plan intra-sujets 

(Mackenzie, 2013) et est présenté à l‘annexe H. 

Après avoir réalisé les trois répétitions pour un écran, le pilote a complété le formulaire 

d‘évaluation de la charge de travail NASA-TLX, le formulaire d‘évaluation de l‘encombrement 

visuel et le formulaire de qualités visuelles. Le pilote a complété ces formulaires assis au 

simulateur avec le PFD visible à l‘écran. Le pilote a aussi fait des commentaires verbaux sur la 

conception de l‘écran et les éléments contribuant soit à distraire son attention ou à l‘aider dans sa 

tâche. L‘expérimentateur a noté ces observations. 

Une fois les neuf approches complétées, l‘expérimentateur a réalisé une entrevue semi-dirigée 

avec le pilote lui demandant d‘indiquer lequel des trois écrans il a trouvé le plus encombré (et 

désencombré) et quels étaient les éléments à l‘écran contribuant à l‘encombrement (et au 

désencombrement). La durée totale de la séance de test a été de 2h30. 

5.5 Variables indépendantes 

Les deux variables indépendantes de l‘étude ont été le niveau d‘encombrement du PFD et l‘étape 

de vol. Nous décrivons en détails les deux variables ci-dessous. 

5.5.1 Niveau d’encombrement visuel du PFD 

La variable indépendante principale de l‘étude est le niveau d‘encombrement visuel du PFD. 

Cette variable a pris trois valeurs : encombrement faible, encombrement modéré et 

encombrement élevé. Nous avons conçu trois PFD pour cette étude, un pour chaque niveau 

d‘encombrement. Le Chapitre 4 a présenté la méthode de conception des affichages, et les 

affichages sont présentés à la section 4.4. 
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5.5.2 Étape de vol 

Pour l‘analyse des résultats, nous avons divisé l‘approche en deux étapes de vol afin de voir si le 

comportement des pilotes a différé entre celles-ci. Nous avons nommé la première étape de vol 

« l‘approche initiale ». Elle a débuté lorsque l‘appareil a été établi sur son vecteur d‘approche et a 

franchi la distance de 7.5 milles nautique par rapport à la piste, et elle s‘est terminée lorsque 

l‘appareil croise le FAF. Durant l‘approche initiale, le pilote a déjà capté les signaux de 

l‘alignement de descente et du radiophare d‘alignement de piste. Il doit suivre le guidage des 

indicateurs de déviations latérale et verticale, tout en diminuant sa vitesse pour atteindre la vitesse 

finale d‘approche. 

Nous avons nommé la seconde étape de vol « l‘approche finale ». Elle a débuté là où s‘est 

terminée l‘approche initiale, soit lorsque l‘appareil croise le FAF et s‘est terminée lorsque 

l‘appareil perce le couvert nuageux à une altitude de 400 pieds. Nous avons choisi cette étape car 

elle est critique pour l‘atterrissage, elle exige une charge de travail élevée pour le pilote et elle 

nécessite que l‘appareil soit stabilisé à ce point. La fin de l‘étape à 400 pieds est justifiée car à 

cette altitude le pilote pouvait quitter le PFD des yeux pour regarder à l‘extérieur pour compléter 

l‘atterrissage. 

Ces deux étapes correspondent à deux objectifs de performance du point de vue du pilote. Durant 

l‘approche initiale, le pilote doit configurer l‘appareil pour stabiliser l‘approche (vitesse, taux de 

descente, déploiement des volets et du train). Durant l‘approche finale, le pilote doit minimiser la 

déviation des indicateurs de déviations latérale et verticale afin d‘aligner l‘appareil avec la piste 

et réaliser une approche en douceur. 

On s‘attend à ce que les résultats indiquent une performance technique de vol inférieure durant 

l‘étape d‘approche finale, car celle-ci impose au pilote une pression temporelle accrue et une 

charge de travail supérieure que l‘approche initiale. 

5.6 Variables dépendantes et traitement des données 

Nous avons mesuré l‘effet de l‘encombrement visuel des écrans sur un ensemble de variables 

dépendantes subjectives et objectives, soit l‘évaluation de l‘encombrement visuel, la charge 

mentale de travail, la qualité visuelle de l‘interface, la performance technique de vol, et le 
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parcours visuel. Cette section présente les variables dépendantes mesurées durant l‘étude et la 

méthode appliquée pour le traitement des données. 

5.6.1 Évaluation de l’encombrement visuel 

Les pilotes ont évalué le niveau d‘encombrement visuel des trois PFDs avec l‘échelle 

d‘évaluation de l‘encombrement présentée à la section 5.2.2.3. Cette évaluation donne un résultat 

numérique variant de 1 (encombrement faible) à 20 (encombrement élevé). Cette variable 

dépendante permet de vérifier que nous avons bien manipulé le niveau d‘encombrement des 

écrans testés et comment les pilotes ont perçu les écrans. 

5.6.2 Charge mentale de travail 

Les pilotes ont évalué le niveau de charge mentale de travail des trois PFDs avec l‘échelle du 

NASA-TLX présentée à la section 5.2.2.2. Cette évaluation donne un résultat numérique variant 

de 1 (charge faible) à 20 (charge élevée). Cette variable dépendante permet de mesurer le niveau 

d‘effort et de concentration des pilotes pour compléter l‘approche avec chacun des écrans. 

5.6.3 Qualités visuelles 

Les pilotes ont évalué la qualité esthétique des trois PFDs avec l‘échelle de qualités visuelles 

présentée à la section 5.2.2.4. Cette évaluation donne un résultat numérique variant de 1 (qualités 

visuelles faibles) à 20 (qualités visuelles élevées). Nous présentons le résultat pour quatre 

variables, soit la qualité visuelle globale, la qualité visuelle classique, la qualité visuelle 

expressive et la qualité esthétique. 

5.6.4 Performance technique de vol 

Les deux variables indiquant la précision de l‘approche sont les déviations latérale et verticale 

moyennes (en point). Une déviation de zéro point signifie que l‘avion est parfaitement aligné 

avec la piste d‘atterrissage et suit la pente de descente prescrite. Nous avons calculé la moyenne 

simple de la valeur absolue de la déviation pour chacune des deux variables. Nous avons pris la 

valeur absolue car le simulateur a enregistré une déviation latérale à gauche de la piste (et une 

déviation verticale sous la pente) comme une valeur négative, et une déviation latérale à droite de 
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la piste (et une déviation verticale au-dessus de la pente) comme une valeur positive. La moyenne 

a été calculée pour les deux étapes de vol (réf. §5.5.2). 

La valeur moyenne renseigne sur la précision globale de l‘approche, mais ne renseigne pas sur la 

stabilité de l‘approche. Pour cela, nous avons calculé l‘écart-type de la déviation durant une étape 

de vol. Nous référons à cette variable comme le contrôle de la déviation. La variable de contrôle 

est une mesure de la variation par rapport à la moyenne. Un contrôle avec une valeur nulle 

indique que l‘avion a conservé une déviation latérale (ou verticale) constante durant toute 

l‘approche, ce qui est préférable. Un contrôle avec une valeur élevée indique que l‘avion a 

zigzagué durant l‘approche, ce qui est à éviter. 

Nous avons analysé l‘activité du mini-manche sur les axes de tangage et de roulis (en degré). 

Comme précédemment, nous avons calculé la moyenne et le contrôle du mini-manche sur les 

deux axes durant les deux étapes de vol. L‘activité du mini-manche est la commande d‘angle de 

tangage et de roulis faite par le pilote sur le manche. Nous avons analysé l‘activité du mini-

manche plutôt que l‘angle de tangage et de roulis de l‘avion car un avion à commande électrique 

filtre la commande du pilote; la tenue de l‘avion peut demeurer stable même si le pilote réalise 

des commandes au manche. 

Finalement, nous avons analysé la valeur moyenne et le contrôle de la vitesse verticale (en pied 

par minute) de l‘appareil durant l‘étape finale de l‘approche. La vitesse verticale moyenne 

renseigne sur le taux de variation de l‘altitude de l‘appareil, et donc sur la douceur de l‘approche 

réalisée. Une vitesse verticale constante durant l‘approche, indiquant un taux de descente stable, 

est préférable. 

Nous avons conçu des scripts Matlab® version 2010b pour automatiser l‘extraction des données 

obtenues du simulateur de vol. Nous avons conçu une macro Excel® pour le regroupement des 

résultats cumulatifs et leur analyse dans un tableur. Nous avons réalisé l‘analyse statistique de ce 

tableur avec le logiciel Statistica® (voir §5.7). Cette approche a facilité le processus d‘analyse 

des données en automatisant les tâches répétitives et en réduisant le risque d‘erreur humaine dans 

le traitement des données. 
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5.6.5 Parcours visuel 

Nous avons retenu neuf variables dépendantes pour le parcours visuel que nous jugeons les plus 

pertinentes pour mieux comprendre l‘effet de l‘encombrement visuel. Plusieurs d‘entre elles sont 

tirées des métriques d‘encombrement visuel présentées au chapitre de revue de la littérature. 

La première variable est la carte de visualisation du regard des participants (heat map, en 

anglais). C‘est une visualisation des régions de l‘écran qui ont attiré le regard des participants. 

Celle-ci superpose une carte utilisant un gradient de couleurs (de rouge à bleu) à une image 

statique de l‘écran. La couleur rouge indique les régions de l‘écran où le participant a regardé le 

plus longtemps (les régions chaudes), alors que la couleur bleue signifie que le participant a peu 

regardé ces régions de l‘écran (les régions froides). Nous avons cumulé les coordonnées du 

regard des quatre participants et des trois répétitions durant les deux étapes de vol. Nous avons 

utilisé un filtre gaussien pour calculer la fonction de densité de probabilité
21

, puis nous avons 

superposé cette fonction sur une image du PFD pour obtenir la carte de visualisation
22

. 

Nous avons calculé les huit autres variables à partir des fixations des participants. Nous avons 

fixé le seuil d‘une fixation à 75 millisecondes et 0.5° d‘angle visuel. 

La durée d‘une fixation (milliseconde) est la moyenne de la durée de toutes les fixations réalisées 

durant l‘étape de vol. Elle renseigne sur la facilité qu‘a le participant à extraire l‘information 

pertinente de l‘écran. 

Nous avons calculé la longueur d‘une saccade (en pixel) comme la distance euclidienne moyenne 

entre les coordonnées (x,y) de deux fixations successives. 

Pour le nombre de transitions, nous avons compté le nombre de fois que deux fixations 

successives ne sont pas dans la même zone. Nous avons utilisé une grille de 14 x 10 zones 

                                                 

21
 Nous avons utilisé la bibliothèque matlab gkde2 pour cette étape. Voir (Cao, Y., 2008, Bivariant Kernel Density 

Estimation (V2.1), en ligne, http://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-

estimation-v2-1, page consultée le 30 janvier 2014). 

22
 Nous avons utilisé la bibliothèque matlab sc pour cette étape. Voir (Woodford, O., 2007, SC - powerful image 

rendering, en ligne, http://www.mathworks.com/matlabcentral/fileexchange/16233-sc-powerful-image-rendering, 

page consultée le 30 janvier 2014). 

http://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-1
http://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-1
http://www.mathworks.com/matlabcentral/fileexchange/16233-sc-powerful-image-rendering
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uniformément distribuées pour obtenir un résultat suffisamment granulaire concernant les 

transitions. Chaque zone avait une taille de 1.5 x 1.5° d‘angle visuel. Ce résultat renseigne sur la 

facilité du participant de maintenir son patron visuel de contrôle, et donc de surveiller les 

instruments de vol. 

Nous avons calculé la surface couverte par les fixations comme la plus petite surface convexe qui 

encercle toutes les fixations réalisées durant l‘étape de vol. Ce résultat renseigne sur la superficie 

de l‘écran balayée par le regard du participant et est lié à la longueur moyenne d‘une fixation. 

Nous avons construit deux régions d‘intérêt (Region of interest ROI, en anglais) autour des 

indicateurs de déviation latérale et verticale, car ces instruments offrent la fonction de guidage de 

l‘appareil. La ROI était centrée sur l‘indicateur et avait une taille de 3.0 x 1.5° pour l‘indicateur 

de déviation latérale et de 1.5 x 3.0° pour l‘indicateur de déviation verticale. La taille des ROIs 

était suffisante pour bien encadrer l‘instrument et avait assez de marge pour compter les dérives 

de l‘œil durant l‘expérimentation. Le fait que les deux ROIs occupaient la même surface facilite 

la comparaison de leurs résultats. Pour chacune des régions d‘intérêt, nous avons analysé le 

nombre total de fixations réalisées à l‘intérieur du ROI durant l‘étape de vol et le temps total des 

fixations réalisées (en seconde). 

Nous avons conçu des scripts Matlab® version 2010b pour automatiser l‘extraction des données 

d‘oculométrie et réaliser toutes les analyses décrites précédemment. Les scripts ont exporté les 

résultats cumulatifs dans un tableur Excel® pour tracer les graphiques de tendance. 

5.7 Analyse des résultats 

Nous avons analysé les résultats en utilisant la méthode factorielle complète d‘analyse de la 

variance intra-sujets (full factorial within-subjects Anova) car chaque participant a répété 

l‘expérimentation dans toutes les conditions. 

Pour toutes les analyses, nous avons fixé un seuil de signification à 95% (α = 0.95). Nous avons 

utilisé le test de Mauchly pour vérifier le respect de l‘hypothèse de sphéricité de la variance. En 

cas de non-respect, nous avons utilisé les degrés de liberté corrigés de Greenhouse-Geisser. 

Ceux-ci sont généralement considérés comme plus conservateurs que la correction de Huynh-

Feldt et réduisent le risque de commettre une erreur de type I (c.-à-d. conclure à un effet 

significatif alors qu‘il ne l‘est pas). Si un facteur a montré un effet significatif, nous avons 
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effectué le test post-hoc de Tukey HSD (Tukey honest significant difference) de ce facteur pour 

identifier les paires de conditions dont les moyennes sont significativement différentes. Nous 

avons réalisé tous les tests statistiques avec le logiciel Statistica ® version 8.0. 

5.7.1 Plan expérimental 

Nous avons utilisé un plan expérimental différent selon le type de résultats visés. Par exemple, 

les participants ont réalisé trois répétitions de l‘approche pour chaque condition, tandis qu‘ils ont 

complété les formulaires une seule fois par condition (à la fin des trois approches). Cette section 

décrit le plan expérimental utilisé pour l‘analyse des résultats. 

Pour les résultats obtenus par les formulaires, nous avons défini un plan expérimental intra-sujet 

avec un facteur, soit l‘encombrement visuel, avec trois valeurs : faible, modéré, élevé. 

Pour les résultats de performance technique de vol, nous avons défini trois facteurs dans un plan 

expérimental intra-sujet 3 x 2 x 3. Il s‘agit de l‘encombrement visuel (faible, modéré, élevé), 

l‘étape de vol (initiale, finale) et la répétition de l‘approche (trois répétitions). Toutefois, nous ne 

présentons pas l‘effet du facteur de répétition car il n‘est pas d‘intérêt pour l‘étude; nous nous 

attendons à ce que les participants soient meilleurs à la troisième répétition qu‘à la première, et 

c‘est pour cette raison que nous avons construit un plan expérimental avec trois répétitions. Cela 

nous permet de calculer la moyenne des résultats sur les trois répétitions pour augmenter la 

puissance statistique de l‘analyse pour la variable d‘intérêt, soit l‘encombrement visuel. 

Pour les résultats d‘oculométrie, la taille de l‘échantillon de participants (n=4) limite la 

pertinence des méthodes d‘analyse de la variance, car l‘intervalle de confiance est inversement 

proportionnel au nombre de sujets. En fait, tous les tests d‘analyse de la variance réalisés sur les 

résultats de parcours visuel affichent des barres d‘incertitudes représentant plus de 100% de la 

valeur de la variable dépendante étudiée et concluent, sans surprise, à l‘absence d‘effet 

significatif de l‘encombrement visuel (tous les ps > .10). C‘est pourquoi nous avons plutôt 

procédé à une analyse descriptive des résultats du parcours visuel. Pour chaque variable 

dépendante, nous présentons le graphique de la valeur moyenne en fonction du niveau 

d‘encombrement du PFD et, s‘il y a lieu, du segment de vol. Les barres d‘incertitudes sur les 

graphiques sont l‘écart-type entre les quatre participants et les trois répétitions. Nous 

commentons la tendance observée entre les niveaux d‘encombrement, tout en sachant que la 
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différence n‘a pas atteint le niveau de signification statistique à cause de la taille de l‘échantillon 

de participants. 

5.8 Approbation du comité éthique de la recherche avec des sujets 

humains 

Le comité d‘éthique de la recherche de Polytechnique Montréal a émis un certificat de conformité 

éthique de la recherche avec des sujets humains pour cette étude le 2 juin 2012. Une copie du 

certificat de conformité est présentée à l‘annexe A. 

Nous avons d‘abord sollicité les participants en décembre 2012 pour une étude pilote. La 

sollicitation s‘est faite par courriel à l‘intention des pilotes à l‘emploi de Bombardier. Le message 

de sollicitation est présenté à l‘annexe B. Huit participants ont répondu à cet appel pour prendre 

part à l‘étude pilote. Les résultats de l‘étude pilote ont servi à calibrer les stimuli expérimentaux 

et ne sont pas reportés dans cette thèse. Nous avons sollicité les participants à nouveau en octobre 

2013. Douze pilotes ont répondu à l‘appel et pris part à l‘étude du 21 octobre au 1 novembre 

2013. Les résultats de ces 12 pilotes sont analysés et présentés par la suite. Tous les participants 

ont complété le formulaire d‘information et de consentement à la recherche avant de commencer 

l‘étude. Le formulaire d‘information et de consentement à la recherche est présenté à l‘annexe C. 

Nous avions fixé comme objectif la participation de 24 pilotes à l‘étude. Toutefois, nous n‘avons 

pu obtenir autant de participants car le nombre de pilotes disponibles à Bombardier est limité, 

leur participation était volontaire et se faisait durant les heures de travail, et nous avons eu accès 

au simulateur de vol que durant les deux dernières semaines d‘octobre 2013. Ces contraintes étant 

connues, nous avons eu accès à un bassin de participants compétents pour cette étude. 
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CHAPITRE 6 RÉSULTATS ET DISCUSSION 

Ce chapitre présente les résultats et la discussion de l‘expérience réalisée en simulateur de vol. 

Elle débute avec les résultats vérifiant s‘il y a eu un effet de l‘ordre de présentation des écrans sur 

les variables dépendantes. Ensuite, cette section présente les résultats d‘intérêts d‘un effet de 

l‘encombrement visuel. L‘ordre de présentation des résultats se fait en trois groupes : d‘abord les 

résultats subjectifs obtenus par questionnaires, puis les mesures de performance technique de vol 

prises par le simulateur, et finalement les résultats d‘oculométrie. 

6.1 Ordre de présentation 

Nous avons réalisé une série d‘analyses de la variance afin de vérifier la présence d‘un effet de 

l‘ordre de présentation des écrans sur l‘ensemble des variables dépendantes étudiées. Si un effet 

d‘ordre devait être trouvé, cela limiterait la portée des résultats de cette étude car l‘ordre de 

présentation serait une variable confondante de l‘encombrement visuel. 

Le Tableau 6.1 présente les résultats des analyses de la variance pour le facteur d‘ordre de 

présentation des écrans. Aucun test n‘a atteint le niveau de signification de 95% (tous les ps > 

.10). Ce résultat montre que le plan expérimental utilisé a permis de balancer un effet d‘ordre de 

présentation entre les participants. 
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Tableau 6.1 Aucun effet significatif de l‘ordre de présentations des PFDs n‘a été observé. 

Variable 
Ordre de présentation 

des PFDs 

Niveau d‘encombrement visuel perçu ns 

Niveau d‘encombrement global ns 

Charge mentale de travail ns 

Qualités visuelles ns 

Durée de l‘étape de vol ns 

Déviation latérale moyenne ns 

Contrôle de la déviation latérale ns 

Déviation verticale moyenne ns 

Contrôle de la déviation verticale ns 

Activité moyenne du mini-manche en roulis ns 

Contrôle de l‘activité du mini-manche en roulis ns 

Activité moyenne du mini-manche en tangage ns 

Contrôle de l‘activité du mini-manche en tangage ns 

Vitesse verticale moyenne ns 

Contrôle de la vitesse verticale ns 

 

6.2 Résultats subjectifs 

Les participants ont répondu à trois questionnaires après avoir complété les trois approches pour 

chaque écran, soit le niveau d‘encombrement perçu de l‘écran, la charge mentale de travail et la 

qualité visuelle perçue de l‘écran. Cette section présente les résultats de ces questionnaires dans 

cet ordre. 
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6.2.1 Niveau d’encombrement perçu 

La Figure 6.1 présente la contribution moyenne de chaque facteur à l‘encombrement visuel. La 

contribution maximale théorique d‘un facteur est de 33%. Le facteur de densité a été celui qui a 

contribué le plus à la perception d‘encombrement visuel selon les participants, avec une 

fréquence de 24.8%. Suivent avec une contribution semblable les facteurs de redondance 

(17.6%), dynamique (17.0%), variabilité (17.0%) et salience (15.2%). Le facteur de couleur a 

contribué le moins à l‘encombrement, avec une fréquence de 8.5%. 

 

Figure 6.1 Contribution de chaque facteur à l‘encombrement visuel de l‘écran. La contribution 

maximale théorique d‘un facteur est de 33%. 

La Figure 6.2 présente la relation entre le niveau d‘encombrement du PFD tel qu‘établi durant la 

conception et le niveau d‘encombrement perçu par les participants. Sur cette figure, comme pour 

toutes les figures suivantes, les barres d‘erreurs représentent l‘intervalle de confiance de 95%. 

L‘écran ayant un encombrement faible a un niveau d‘encombrement perçu de 5.50, l‘écran ayant 

un encombrement modéré a un niveau d‘encombrement perçu de 9.97, alors que l‘écran ayant un 
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encombrement élevé a un niveau d‘encombrement perçu de 13.89. L‘effet du niveau 

d‘encombrement du PFD sur le niveau d‘encombrement perçu a été fortement significatif (F2,22 = 

42.39, p < .00000005). Le test post-hoc de Tukey HSD a montré que le niveau d‘encombrement 

perçu de chaque écran a été significativement différent de celui des autres écrans (tous les ps < 

.001). 

 

Figure 6.2 Relation entre le niveau d'encombrement de l‘écran tel qu‘établi au moment de la 

conception et le niveau d‘encombrement perçu par les participants. 

L‘échelle de niveau d‘encombrement perçu développé par (Kaber et al., 2008) a bien prédit la 

perception d‘encombrement global de l‘écran tel que jugée par les participants (β = 0.85, t(34) = 

9.41, p < .0000001). La Figure 6.3 présente l‘encombrement global de l‘écran jugée par les 

participants pour tous les PFDs en fonction du niveau d‘encombrement perçu pour cet écran avec 

l‘échelle de (Kaber et al., 2008). La figure montre une bonne prédiction entre les deux niveaux, 

avec le niveau d‘encombrement perçu expliquant 72% de la variance de la perception 

d‘encombrement global (r
2
 = 0.723, F1,34 = 88.73, p < .0000000001). 
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Figure 6.3 L‘échelle de niveau d‘encombrement perçu développée par (Kaber et al., 2008) a bien 

prédit l‘encombrement global jugée par les participants (r
2
 = 0.723). 
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6.2.2 Charge mentale de travail 

La Figure 6.4 présente le niveau de charge mentale de travail moyen mesuré par NASA-TLX en 

fonction du niveau d‘encombrement du PFD. La charge mentale ressentie avec l‘écran ayant un 

encombrement faible a été de 12.78, alors que la charge mentale ressentie avec l‘écran ayant un 

encombrement modéré a été de 10.10 et la charge mentale ressentie avec l‘écran ayant un 

encombrement élevé a été de 13.91. L‘effet du niveau d‘encombrement du PFD sur la charge 

mentale de travail a été significatif (F2,22 = 8.67, p < .005). 

Le test post-hoc de Tukey HSD a montré que la charge mentale ressentie avec le PFD ayant un 

encombrement modéré a été inférieure à celle obtenue avec l‘écran ayant un encombrement faible 

(p < .05) et à celle obtenue avec l‘écran ayant un encombrement élevé (p < .005). Il n‘y a pas eu 

de différence de charge mentale entre les écrans ayant un encombrement faible et élevé. 

 

Figure 6.4 Charge mentale de travail mesurée avec le NASA-TLX en fonction du niveau 

d'encombrement de l'écran (F2,22 = 8.67, p < .005). 
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6.2.3 Qualités visuelles 

La Figure 6.5 présente la qualité visuelle globale de l‘écran en fonction du niveau 

d‘encombrement du PFD. L‘écran ayant un encombrement faible a eu un score de qualité visuelle 

globale de 9.41, l‘écran ayant un encombrement modéré a eu un score de 12.43, et l‘écran ayant 

un encombrement élevé a eu un score de 6.58. La différence de qualité visuelle globale en 

fonction du niveau d‘encombrement du PFD a été fortement significative (F2,22 = 22.60, p < 

.00001). Le test post-hoc de Tukey HSD a montré que tous les scores de qualité visuelle globale 

sont significativement différents les uns des autres (tous les ps < .01). 

 

Figure 6.5 Qualité visuelle globale. Le PFD ayant un encombrement modéré a été perçu comme 

celui ayant la meilleure qualité visuelle (F2,22 = 22.60, p < .00001). 

Le Tableau 6.2 présente la valeur moyenne pour les autres résultats de qualité visuelle des écrans. 

Ces résultats ont montré la même tendance que la qualité visuelle globale (Figure 6.5), où le PFD 

ayant un encombrement modéré a été perçu comme esthétiquement plus agréable que les autres. 

Tous ces résultats ont été statistiquement significatifs. 
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Il est intéressant de remarquer que le PFD ayant un encombrement faible a obtenu un score 

supérieur au PFD ayant un encombrement élevé pour toutes les mesures de qualité visuelle. Le 

test post-hoc de Tukey HSD a montré que la différence entre ces deux PFDs est significative pour 

toutes les mesures (ps < .05) à l‘exception de la qualité expressive (p > .10). 

Tableau 6.2 Résultats de la qualité visuelle en fonction du niveau d'encombrement du PFD. 

Qualité 

visuelle 

Niveau d’encombrement du PFD 
Significatif? 

Faible Modéré Élevé 

Esthétique 5.50 14.00 2.50 F2,22 = 33.87, p < .00001 

Classique 12.53 15.48 6.08 F2,22 = 57.35, p < .00001 

Expressive 6.28 9.38 7.08 F2,22 = 3.89, p < .05 

Globale 9.41 12.43 6.58 F2,22 = 22.60, p < .00001 

 

6.2.4 Classement des écrans 

Une fois tous les essais en vol complétés, les participants ont indiqué lequel des trois écrans a été 

le plus utile pour la tâche de vol, a offert la meilleure précision de vol, a été le plus encombré et a 

été le moins encombré. Le Tableau 6.3 présente la distribution des réponses des 12 pilotes. Nous 

avons utilisé le test de chi-carré (X
2
) afin de comparer la distribution des réponses obtenues avec 

une distribution constante où chaque écran est choisi au hasard (c.-à-d. chaque écran a 4 

réponses). 

À la question « Lequel des écrans a été le plus utile pour la tâche de vol? », deux pilotes ont 

répondu que c‘était l‘écran ayant un encombrement faible, dix ont répondu que c‘était l‘écran 

ayant un encombrement modéré et aucun n‘a répondu que c‘était l‘écran ayant un encombrement 

élevé. Le test de chi-carré a montré qu‘une majorité de participants ont préféré l‘écran ayant un 

encombrement modéré et que ce résultat a été significatif (p < .001). Les réponses à la question 

« Lequel des écrans a offert la meilleure précision de vol? » sont plus diversifiées, avec quatre 

pilotes choisissant l‘écran ayant un encombrement faible, sept pilotes choisissant l‘écran ayant un 

encombrement modéré et un pilote choisissant l‘écran ayant un encombrement élevé. Bien que 

les résultats montrent qu‘une majorité de participants ont considéré l‘écran ayant un 
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encombrement modéré comme offrant la meilleure précision de vol, ce résultat n‘a pas été 

significativement différent d‘une distribution constante (p > .10). Sans surprise, tous les 

participants ont choisi l‘écran ayant un encombrement élevé comme étant le plus encombré et ils 

ont fait de même pour l‘écran ayant un encombrement faible comme étant le moins encombré. 

Ces deux résultats ont été fortement significatifs (p < .000001). 

Tableau 6.3 Distribution des réponses des 12 pilotes pour l‘identification des écrans. 

Lequel des écrans a... 
Niveau d’encombrement du PFD 

Significatif? 
Faible Modéré Élevé 

été le plus utile pour la 

tâche de vol 
2 10 0 X

2
(2, N=12) = 14.0, p < .001 

offert la meilleure 

précision de vol 
4 7 1 X

2
(2, N=12) = 4.5, p > .10 

été le plus encombré 0 0 12 X
2
(2, N=12) = 24.0, p < .000001 

été le moins encombré 12 0 0 X
2
(2, N=12) = 24.0, p < .000001 

 

6.3 Performance technique de vol 

Cette section présente les résultats de performance technique de vol durant l‘approche. Pour 

chaque résultat, nous présentons s‘il y a un effet de l‘encombrement visuel, de l‘étape de vol et de 

leur interaction sur la performance technique de vol. Le Tableau 6.4 présente la synthèse des tests 

statistiques pour les variables indépendantes de performance technique de vol. Le résultat de 

chaque variable indépendante est présenté en détail ci-dessous. 
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Tableau 6.4 Niveau de signification de l'effet de l'encombrement visuel, de l'étape de vol, et de 

l‘interaction entre l‘encombrement et l‘étape de vol sur la performance technique de vol. 

Variable Encombrement Étape de vol 
Encombrement 

* étape de vol 

Durée d‘une étape de vol ns p = .005 ns 

Déviation latérale moyenne p < .05 ns ns 

Contrôle de la déviation latérale p < .005 p < .005 ns 

Déviation verticale moyenne ns ns ns 

Contrôle de la déviation verticale ns p < .01 ns 

Activité moyenne du mini-manche en 

roulis 
ns p = .0005 ns 

Contrôle de l‘activité du mini-manche 

en roulis 
ns p = .001 ns 

Activité moyenne du mini-manche en 

tangage 
ns ns ns 

Contrôle de l‘activité du mini-manche 

en tangage 
ns ns ns 

Vitesse verticale moyenne ns p = .01 ns 

Contrôle de la vitesse verticale ns p < .01 ns 

 

6.3.1 Durée d’une étape de vol 

La durée moyenne pour compléter les deux étapes de vol a été similaire entre les écrans, avec un 

temps de 77.0 secondes pour l‘écran faiblement encombré, 82.4 secondes pour l‘écran 

modérément encombré et 80.9 secondes pour l‘écran encombré (F2,22 = 3.08, p > .05). Toutefois, 

un effet significatif a été observé entre les deux étapes de vol (F1,11 = 11.62, p = .005). Bien que 

la durée moyenne de chaque étape était semblable – 77.8 secondes pour l‘approche initiale et 

82.4 secondes pour l‘approche finale – l‘intervalle de confiance de l‘approche finale a été le quart 

de celui de l‘approche initiale (voir Figure 6.6). La plus grande variabilité de durée pour la 

première étape de vol s‘explique par le profil de vitesse de l‘avion : le pilote devait ralentir 
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l‘appareil afin d‘atteindre la vitesse d‘approche finale en croisant le FAF. Le taux de décélération 

était laissé à la discrétion du pilote. Ce résultat servira à interpréter les résultats d‘oculométrie 

utilisant une mesure proportionnelle au temps de la tâche. 

 

Figure 6.6 Durée moyenne pour compléter une étape de vol. 

6.3.2 Déviation latérale moyenne – Localizer 

La Figure 6.7 présente la déviation latérale moyenne, mesurée en points, pour les deux étapes de 

vol. Cette valeur est celle présentée par l‘instrument de radiophare d‘alignement de piste où une 

déviation de 0 point signifie que l‘avion est parfaitement aligné avec la piste d‘atterrissage. 

L‘écran ayant un encombrement faible a eu une déviation latérale de 0.29 point, alors que la 

déviation a été de 0.21 point pour l‘écran ayant un encombrement modéré et de 0.25 point pour 

l‘écran ayant un encombrement élevé. L‘effet de l‘encombrement visuel sur la déviation latérale 

a été significatif (F2,22 = 3.66, p < .05). Le test post-hoc de Tukey HSD a montré que l‘écran 

ayant un encombrement modéré a eu une déviation inférieure à l‘écran ayant un encombrement 

faible (p < .05). Toutes les autres comparaisons n‘ont pas été significatives (tous les ps > .10). 
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Il y a eu un effet marginalement significatif de l‘étape de vol (F1,11 = 3.65, p = .08) indiquant que 

la déviation latérale moyenne à la première étape (0.23) a été inférieure à celle de l‘étape finale 

(0.27). L‘interaction entre l‘étape de vol et l‘encombrement visuel n‘a pas été significative (F2,22 

= 0.18, ns) indiquant que la tendance observée est la même pour les deux étapes de vol. 

 

Figure 6.7 Déviation latérale moyenne en fonction du niveau d‘encombrement du PFD. 

6.3.3 Contrôle de la déviation latérale – Localizer 

La Figure 6.8 présente le contrôle de la déviation latérale, mesurée en points, pour les deux étapes 

de vol. Cette valeur est une mesure de variation autour de la moyenne. L‘écran ayant un 

encombrement faible a eu un contrôle de déviation latérale de 0.29 point, alors que le contrôle de 

la déviation latérale a été de 0.18 point pour l‘écran ayant un encombrement modéré et de 0.21 

point pour l‘écran ayant un encombrement élevé. L‘effet de l‘encombrement visuel sur la 

déviation latérale a été significatif (F2,22 = 7.84, p < .005). Le test post-hoc de Tukey HSD a 

montré que l‘écran ayant un encombrement faible a une valeur supérieure (indiquant une 
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variation supérieure de la déviation latérale) que les écrans ayant un encombrement modéré (p < 

.005) et élevé (p < .05). La comparaison entre les écrans ayant un encombrement modéré et élevé 

n‘a pas été significative (p > .10). 

Il y a eu un effet significatif de l‘étape de vol (F1,11 = 15.32, p < .005) indiquant que le contrôle 

de la déviation latérale moyenne a été meilleur lors de la première étape (0.20) que lors de l‘étape 

finale (0.26). L‘interaction entre l‘étape de vol et l‘encombrement visuel n‘a pas été significative 

(F2,22 = 0.23, ns). 

 

Figure 6.8 L‘écran ayant un encombrement modéré a permis un meilleur contrôle de la déviation 

latérale durant l‘approche que les deux autres écrans (F2,22 = 7.84, p < .005). 

6.3.4 Déviation verticale moyenne – Glideslope 

La Figure 6.9 présente la déviation verticale moyenne en fonction du niveau d‘encombrement du 

PFD. Cette valeur est celle présentée par l‘instrument d‘alignement de descente où une déviation 

de 0 point signifie que l‘avion suit parfaitement un vecteur de descente de 3° vers la piste. Tous 
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les écrans ont eu une déviation de 0.52 point. Il n‘y a eu aucun effet de l‘encombrement visuel 

sur la déviation verticale moyenne (F2,22 = 0.0, ns). La Figure 6.9 montre que les barres 

d‘incertitude sont grandes, signifiant une variation importante entre les participants pour un 

même écran. Aucun effet de l‘étape de vol n‘a été observé sur la déviation verticale (F1,11 = 0.19, 

ns). 

 

Figure 6.9 La déviation verticale moyenne est la même pour tous les niveaux d‘encombrement de 

PFD. Notez la taille des barres d‘incertitude, signifiant une variation importante entre les 

participants. 

6.3.5 Contrôle de la déviation verticale – Glideslope 

La Figure 6.10 présente le contrôle de la déviation verticale, mesurée en points, pour les deux 

étapes de vol. L‘écran ayant un encombrement faible a eu un contrôle de 0.36 point, alors que le 

contrôle a été de 0.34 point pour l‘écran ayant un encombrement modéré et de 0.33 point pour 

l‘écran ayant un encombrement élevé. Il n‘y a pas eu d‘effet du niveau d‘encombrement sur le 
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contrôle de la déviation verticale (F2,22 = 0.36, ns). Il y a eu un effet de l‘étape de vol sur le 

contrôle de la déviation latérale (F1,11 = 11.04, p < .01). La première étape a eu un meilleur 

contrôle (0.29 point) que l‘étape finale (0.39 point), indiquant que les pilotes ont réalisé plus 

d‘ajustements sur le taux de descente durant l‘étape finale du vol. L‘interaction entre le niveau 

d‘encombrement et l‘étape de vol n‘a pas été significative (F2,22 = 0.45, ns). 

 

Figure 6.10 Contrôle de la déviation verticale en fonction du niveau d‘encombrement de l‘écran. 

L‘effet de l‘encombrement n‘a pas été significatif (F2,22 = 0.36, ns) 

6.3.6 Activité du mini-manche en roulis 

Les résultats montrant un effet de l‘encombrement visuel sur la déviation latérale moyenne et le 

contrôle de la déviation latérale de l‘avion suggèrent une activité accrue du mini-manche sur 

l‘axe de roulis pour contrôler l‘approche. La Figure 6.11 présente l‘inclinaison moyenne, mesurée 

en degrés, du mini-manche sur l‘axe de roulis. Une inclinaison nulle signifie que la position du 

manche a été au neutre durant l‘approche et que le pilote n‘a réalisé aucune commande de roulis. 
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La Figure 6.11 montre une tendance où l‘écran ayant un encombrement modéré a eu une 

commande de roulis inférieure (moyenne de 0.82°) que les écrans ayant un encombrement faible 

(1.10°) et élevé (1.06°). Toutefois, cette différence n‘a pas été significative (F2,22 = 2.43, p > .10). 

Il y a eu un effet de l‘étape de vol (F1,11 = 23.22, p = .0005) indiquant que les pilotes ont réalisé 

plus de commandes durant l‘étape finale de l‘approche (moyenne de 1.12°) que durant la 

première étape (0.86°). L‘interaction entre le niveau d‘encombrement et l‘étape de vol n‘a pas été 

significative (F2,22 = 1.73, p > .10). 

 

Figure 6.11 Inclinaison moyenne du mini-manche sur l‘axe de roulis (en degrés) en fonction du 

niveau d‘encombrement de l‘écran. 

Le contrôle de l‘inclinaison en roulis a suivi la même tendance que l‘inclinaison moyenne. La 

Figure 6.12 présente le contrôle de l‘inclinaison du mini-manche sur l‘axe de roulis, mesuré en 

degré, en fonction du niveau d‘encombrement de l‘écran. Le contrôle en roulis a été de 2.00° 

pour les écrans ayant un encombrement faible et élevé, alors qu‘il a été de 1.60° pour l‘écran 

ayant un encombrement modéré. La différence observée entre les écrans n‘est pas significative 
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(F2,22 = 2.26, p > .10). La valeur du contrôle de l‘inclinaison (Figure 6.12) a été près du double de 

la valeur de l‘inclinaison moyenne (Figure 6.11), indiquant une activité notable du mini-manche 

autour de la valeur moyenne. Il y a eu un effet de l‘étape de vol sur le contrôle du l‘inclinaison du 

mini-manche sur l‘axe de roulis (F1,11 = 17.96, p = .001) indiquant que les pilotes ont réalisé plus 

de corrections sur l‘axe de roulis durant l‘étape finale de l‘approche (moyenne de 2.05°) que 

durant la première étape (1.69°). L‘interaction entre le niveau d‘encombrement et l‘étape de vol 

n‘a pas été significative (F2,22 = 2.59, p = .10). 

 

Figure 6.12 Contrôle de l‘inclinaison du mini-manche sur l‘axe de roulis (en degrés) en fonction 

du niveau d‘encombrement de l‘écran. 

6.3.7 Activité du mini-manche en tangage 

Il n‘y a eu aucun effet de l‘encombrement visuel sur l‘inclinaison moyenne du mini-manche sur 

l‘axe de tangage (F2,22 = 0.85, ns), ni sur le contrôle de l‘inclinaison sur l‘axe de tangage (F2,22 = 

1.81, p > .10). Il n‘y a eu aucun effet de l‘étape de vol sur l‘inclinaison moyenne (F1,11 = 0.43, 
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ns), ni sur le contrôle de l‘inclinaison (F1,11 = 0.0, ns). Conséquemment, ce résultat ne sera pas 

discuté plus en profondeur. 

6.3.8 Vitesse verticale moyenne 

La Figure 6.13 présente la vitesse verticale moyenne, mesurée en pieds par minute, en fonction 

du niveau d‘encombrement du PFD. La vitesse verticale a été similaire pour les trois écrans, avec 

une valeur de 658 pieds/minute pour l‘écran ayant un encombrement faible, de 620 pieds/minute 

pour l‘écran ayant un encombrement modéré et de 646 pieds*minute pour l‘écran ayant un 

encombrement élevé. La différence observée entre les niveaux d‘encombrement n‘a pas été 

significative (F2,22 = 1.20, p > .10). Le pilote contrôle le taux de descente avec la vitesse verticale 

de l‘appareil. L‘absence de différence pour ce résultat est donc consistente avec le résultat 

précédent de la déviation verticale semblable entre les écrans.Il y a eu un effet de l‘étape de vol 

sur la vitesse verticale moyenne (F1,11 = 9.25, p = .01), avec la première étape ayant une vitesse 

supérieure (679 pieds/minute) à l‘étape finale (603 pieds/minute). Ce résultat est lié au fait que 

l‘avion était encore en décélération durant la première étape de l‘approche
23

. L‘interaction entre 

le niveau d‘encombrement et l‘étape de vol n‘a pas été significative (F2,22 = 0.0, ns). 

                                                 

23
 Afin de suivre un vecteur de descente de 3°, la vitesse verticale est proportionnelle à la vitesse indiquée de l‘avion. 

Pour rappel, l‘avion devait être configuré pour l‘atterrissage, et donc avoir sa vitesse d‘approche, en croisant le point 

d‘approche final. Le point d‘approche final se situait au début de la deuxième étape de vol. 
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Figure 6.13 Vitesse verticale moyenne en fonction du niveau d‘encombrement de l‘écran. 

6.3.9 Contrôle de la vitesse verticale 

La Figure 6.14 présente le contrôle de la vitesse verticale, mesurée en pieds par minute, en 

fonction du niveau d‘encombrement de l‘écran. Le contrôle de la vitesse verticale a été similaire 

entre les écrans, avec une valeur de 221 pieds/minute pour l‘écran ayant un encombrement faible, 

244 pieds/minute pour l‘écran ayant un encombrement modéré et 234 pieds/minute pour l‘écran 

ayant un encombrement élevé. La différence observée n‘est pas significative (F2,22 = 0.63, ns). Il 

y a eu un effet significatif de l‘étape de vol (F1,11 = 10.58, p < .01), indiquant une plus grande 

variation dans le contrôle de la vitesse verticale pour la première étape de vol (264 pieds/minute) 

que pour l‘étape finale (202 pieds/minute). Comme pour la vitesse verticale moyenne, cette 

différence reflète que l‘avion avait une vitesse supérieure durant la première étape de vol et était 

en décélération. 
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Figure 6.14 Contrôle de la vitesse verticale en fonction du niveau d‘encombrement de l‘écran. 

Aucune différence significative n‘a été observée entre les écrans. 

6.4 Parcours visuel 

Cette section présente les résultats de parcours visuel obtenus à partir des données d‘oculométrie. 

Comme nous l‘avons expliqué au chapitre de méthode, nous avons conservé les résultats de 

quatre participants pour l‘analyse. 

6.4.1 Visualisation du parcours visuel 

Le Tableau 6.5 présente le nombre de couples de points (x,y) de la position du regard utilisés 

pour construire la carte de visualisation pour chaque affichage. Celui-ci représente la position du 

regard de tous les participants durant les deux étapes de vol pour les trois répétitions réalisées. La 

différence entre les conditions s‘explique par la durée plus courte pour compléter l‘approche avec 

l‘écran encombré et le fait qu‘il a manqué un fichier de données pour l‘écran faiblement 
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encombré. Notons que la carte de visualisation a été normalisée pour chaque écran, c‘est-à-dire 

que le maximum observé sur une carte ne correspond pas au même nombre d‘observations du 

maximum d‘une autre carte. 

Tableau 6.5 Nombre de couples de points utilisés pour construire la carte de visualisation du 

parcours visuel des trois PFDs. 

Niveau d’encombrement 

du PFD 
Couples de points 

Faible 113 914 

Modéré 129 103 

Élevé 122 614 

 

Les cartes de visualisation pour les trois PFDs sont présentées de la Figure 6.15 à la Figure 6.17. 

La position du regard sur les trois écrans montre le même patron en T typique de l‘observation 

des instruments de vol par les pilotes. Le centre de l‘horizon artificiel a attiré le plus de temps 

d‘observation; c‘est la position de base du regard du pilote. De là, le pilote réalise une saccade 

pour poser son regard sur les instruments de vol pertinents à son approche avant de revenir à 

nouveau sur le centre de l‘horizon artificiel. L‘écran ayant un faible encombrement (voir Figure 

6.15) montre que les participants ont dirigé leur regard de manière sélective vers les indicateurs 

de vol sans réaliser de saccade inutile à l‘extérieur des instruments. Il faut dire que la simplicité 

graphique de l‘interface a limité les possibilités de distraction à l‘extérieur des instruments. De 

plus, on remarque que les participants ont peu regardé l‘indicateur de vitesse et celui d‘altitude, 

concentrant leur attention visuelle sur les indicateurs de déviation latérale et verticale. En effet, 

ces deux instruments donnent la fonction de guidage, et donc, renseignent sur la précision de 

l‘approche. 

Le patron du regard pour l‘écran modérément encombré (voir Figure 6.16) montre que le pilote a 

élargi son parcours visuel pour réaliser des saccades sur le sélecteur de vitesse, d‘altitude et de 

cap, des instruments absents de l‘écran faiblement encombré. La majorité des saccades est 

toutefois réalisée sur les instruments de vol pertinents à l‘approche, soit les indicateurs de 

déviation latérale et verticale. 
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Le patron du regard de l‘écran encombré (voir Figure 6.17) présente un patron en T plus diffus 

que pour les deux autres écrans. La majorité du regard est concentré sur le centre de l‘horizon 

artificiel. Les indicateurs de déviation ont attiré une moins grande proportion du temps 

d‘observation que pour les deux autres affichages, comme le dénote la couleur cyan superposé à 

ces indicateurs. Si les participants ont été distraits par le panneau d‘instrumentation d‘ingénierie, 

le temps d‘observations de ce panneau a été faible proportionnellement au temps d‘observation 

de l‘horizon artificiel car la carte montre cette région d‘un bleu foncé. 

Après cette analyse qualitative du parcours visuel, nous présentons les résultats quantitatifs du 

parcours visuel enregistré par l‘oculomètre. 

 

Figure 6.15 Carte de visualisation du regard des participants utilisant l‘écran faiblement 

encombré durant les deux étapes de vol. 
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Figure 6.16 Carte de visualisation du regard des participants utilisant l‘écran modérément 

encombré durant les deux étapes de vol. 
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Figure 6.17 Carte de visualisation du regard des participants utilisant l‘écran encombré durant les 

deux étapes de vol. Le code de couleur indique que les participants ont moins observé les 

indicateurs de déviation latérale et verticale que pour les autres écrans. 

6.4.2 Durée d’une fixation 

La Figure 6.18 présente la durée moyenne d‘une fixation à l‘écran pour les deux étapes de vol, en 

fonction du niveau d‘encombrement de l‘écran. On remarque que la durée d‘une fixation a été 

semblable entre les trois écrans pour la première étape de vol (de 455 à 485ms), alors que la 

discrimination entre les écrans a augmenté durant la seconde étape de vol. Dans ce cas, la durée 

d‘une fixation a été la plus longue pour l‘écran avec un encombrement modéré, soit 555ms, alors 

qu‘elle a été respectivement de 476ms et 483ms pour les écrans ayant un encombrement faible et 

élevé. Il s‘agit d‘une différence de 15% entre les valeurs maximale et minimale. 
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Figure 6.18 Durée moyenne d‘une fixation en fonction du niveau d‘encombrement de l‘écran. On 

remarque que la différence entre les écrans a été plus importante pour la seconde étape de vol. 

6.4.3 Longueur d’une saccade 

La Figure 6.19 présente la longueur moyenne d‘une saccade en fonction du niveau 

d‘encombrement. Nous avons observé la même tendance entre les deux étapes de vol, c‘est 

pourquoi la figure présente la moyenne de la longueur d‘une saccade des deux étapes de vol. La 

longueur d‘une saccade a été la même pour l‘écran ayant un faible encombrement (147 pixels) et 

un encombrement modéré (146 pixels). Elle a été de 169 pixels pour l‘écran ayant un 

encombrement élevé, soit une différence de 15%. Les saccades plus longues pour l‘écran ayant 

un encombrement élevé indiquent que les participants ont du parcourir une plus grande distance 

du regard pour obtenir l‘information nécessaire pour leur tâche comparativement aux écrans 

moins encombrés. 
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Figure 6.19 Longueur moyenne d‘une saccade. Celle-ci a été la plus longue pour l‘écran ayant un 

encombrement élevé. Les résultats sont la moyenne des deux étapes de vol. 

6.4.4 Nombre de transitions (grille 14 x 10) 

La Figure 6.20 présente le nombre de transitions d‘une zone à l‘autre de l‘écran en utilisant une 

grille uniforme de 14 x 10 zones. Nous avons calculé le nombre de transitions en utilisant les 

fixations à l‘écran. Le niveau d‘encombrement de l‘écran n‘a pas influencé le nombre de 

transition entre les zones, celui-ci variant de moins de 1% entre les écrans. L‘étape de vol a 

montré un effet clair sur le nombre de transitions. Les participants ont réalisé 147 transitions 

durant la première étape, alors que ce nombre diminue à 105 transitions durant la seconde étape. 

Cette différence s‘explique essentiellement par la durée plus longue de la première étape de vol 

(108 ± 20 secondes) comparativement à la deuxième étape (78 ± 17 secondes) pour le sous-

échantillon de participants (voir aussi §6.3.1). Toutefois, le ratio de nombre de transitions divisé 

par la durée de l‘étape de vol a donné un résultat semblable entre les deux étapes, soit de 1.4 ± 

0.2 transition/sec pour la première étape et 1.3 ± 0.2 pour la deuxième étape. 
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Figure 6.20 Nombre de transitions des fixations d‘une zone de l‘écran à une autre en appliquant 

une grille de 14 x 10 zones. Le niveau d‘encombrement n‘a pas influencé le nombre de 

transitions. 

6.4.5 Surface convexe couverte par les fixations 

La surface convexe couverte par les fixations est une indication de la taille du foyer d‘attention 

visuel du participant et de la superficie de l‘écran que le participant a regardé. La Figure 6.21 

présente une vue de la surface convexe délimitée par un trait rouge en y superposant les points de 

fixation du participant 9. On y voit que la surface des fixations est plus grande pour l‘écran 

encombré (Figure 6.21, en bas) que pour l‘écran avec un faible encombrement (Figure 6.21, en 

haut) car le participant a posé son regard sur les instruments du panneau d‘ingénierie situé en 

périphérie de l‘écran. 



  139 

 

 

 

Figure 6.21 Vue des limites de la surface convexe (en trait rouge) couverte par les fixations 

visuelles (les croix jaunes) pour les écrans ayant un encombrement faible et un encombrement 

élevé. Les données sont celles du pilote 9 durant une répétition de l‘approche et couvrent les deux 

étapes de vol. 
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La Figure 6.22 présente la surface convexe couverte par les fixations en fonction du niveau 

d‘encombrement du PFD. Nous avons observé la même tendance entre les deux étapes de vol, 

c‘est pourquoi les résultats de la Figure 6.22 sont la moyenne des deux étapes de vol. La surface 

des écrans ayant un encombrement faible et modéré a été la même, soit 1.5 X 10
5
 pixels

2
. La 

surface de l‘écran ayant un encombrement élevé a été de 2.0 X 10
5
 pixels

2
 et la barre d‘erreur de 

cette condition a été plus grande, indiquant plus de variabilité entre les participants. 

 

Figure 6.22 Surface convexe couverte par les fixations visuelles en fonction du niveau 

d‘encombrement du PFD. Le regard des participants a couvert une plus grande surface avec 

l‘écran encombré. Les résultats sont la moyenne des deux étapes de vol. 

6.4.6 Fixations visuelles sur l’indicateur de déviation latérale 

Afin de comprendre l‘effet significatif de l‘encombrement visuel sur le contrôle latéral de 

l‘avion, nous avons analysé le parcours visuel des participants sur la région d‘intérêt de 

l‘indicateur de déviation latérale durant les deux étapes de vol. Nous présentons les résultats du 
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nombre cumulatif et du temps cumulatif de fixations visuelles sur la région d‘intérêt. Nous avons 

réalisé la même analyse pour l‘indicateur de déviation verticale à la section 6.4.7. 

6.4.6.1 Nombre cumulatif de fixations 

La Figure 6.23 présente le nombre cumulatif de fixations visuelles sur l‘indicateur de déviation 

latérale durant une étape de vol. Les résultats sont la moyenne des deux étapes de vol, car nous 

avons observé la même tendance entre les deux étapes. Les résultats montrent une diminution du 

nombre de fixations visuelles passant de 40 à 30 avec l‘augmentation du niveau d‘encombrement. 

La barre d‘incertitude est aussi la plus petite pour l‘écran ayant un encombrement élevé, 

indiquant que la diminution du nombre de fixations observée pour cet écran a été semblable entre 

les participants. 

 

Figure 6.23 Nombre cumulatif de fixations visuelles sur l‘indicateur de déviation latérale en 

fonction du niveau d‘encombrement du PFD. Les résultats sont la moyenne des deux étapes de 

vol. 
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6.4.6.2 Temps cumulatif de fixation 

La Figure 6.24 présente le temps cumulatif de fixation visuelle sur l‘indicateur de déviation 

latérale. On y observe la même tendance que pour le nombre de fixations, soit une diminution du 

temps d‘observation de 4.6 secondes en moyenne entre l‘écran ayant un faible encombrement par 

rapport à celui ayant un encombrement élevé. 

 

Figure 6.24 Temps cumulatif de fixations visuelles sur l‘indicateur de déviation latérale en 

fonction du niveau d‘encombrement du PFD. Les résultats sont la moyenne des deux étapes de 

vol. 

6.4.7 Fixations visuelles sur l’indicateur de déviation verticale 

Bien que nous n‘ayons pas observé d‘effet significatif de l‘encombrement visuel sur le contrôle 

vertical de l‘appareil, nous avons réalisé une analyse du parcours visuel de l‘indicateur de 

déviation verticale. L‘intérêt est de pouvoir comparer les résultats obtenus précédemment avec 

l‘indicateur de déviation latérale et de comprendre le parcours visuel du participant en fonction 

du niveau d‘encombrement. 
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6.4.7.1 Nombre cumulatif de fixations 

La Figure 6.25 présente le nombre cumulatif de fixations visuelles sur l‘indicateur de déviation 

verticale en fonction du niveau d‘encombrement. Les résultats sont la moyenne des deux étapes 

de vol. On observe une diminution nette du nombre de fixations visuelles avec l‘encombrement, 

passant de 25 fixations pour l‘écran ayant un faible encombrement à 10 fixations pour l‘écran 

ayant un encombrement élevé. Cette tendance est la même entre les deux étapes de vol, indiquant 

que les participants ont alloué moins d‘attention visuelle à l‘indicateur de déviation verticale 

lorsqu‘ils ont utilisé l‘écran ayant un encombrement élevé. 

 

Figure 6.25 Nombre cumulatif de fixations visuelles sur l‘indicateur de déviation verticale en 

fonction du niveau d‘encombrement du PFD. Les résultats sont la moyenne des deux étapes de 

vol. 

6.4.7.2 Temps cumulatif de fixation 

La Figure 6.26 présente le temps cumulatif de fixation visuelle sur l‘indicateur de déviation 

verticale. Les résultats sont la moyenne des deux étapes de vol. On y observe la même tendance 
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que pour le nombre de fixations, soit que les participants ont consacré moins de ressources 

visuelles à observer l‘instrument de déviation verticale lorsqu‘ils ont utilisé l‘écran encombré. 

Les résultats ont montré que les participants ont observé l‘instrument en moyenne 4.1 secondes 

durant une phase de vol lorsqu‘ils ont utilisé l‘écran encombré, alors qu‘ils ont consacré plus du 

triple du temps lorsqu‘ils ont utilisé les écrans ayant un niveau d‘encombrement faible et modéré, 

soit 11.6 et 12.1 secondes respectivement. 

 

Figure 6.26 Temps cumulatif de fixation visuelle sur l‘indicateur de déviation verticale en 

fonction du niveau d‘encombrement du PFD. Les résultats sont la moyenne des deux étapes de 

vol. 

6.5 Discussion 

Cette étude a porté sur les effets de l‘encombrement visuel sur la performance des pilotes en 

utilisant trois PFDs expérimentaux conçus pour varier le niveau d‘encombrement visuel. Nous 

avons mesuré trois groupes de variables dépendantes pour tester les effets de l‘encombrement 

visuel, soit la perception subjective, la performance technique de vol et le patron visuel. 
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Dans cette section, nous analysons les résultats obtenus et nous mettons en évidence la 

contribution à l‘avancement des connaissances de cette étude par rapport aux résultats des études 

précédentes. La section se termine en présentant les implications de nos résultats pour la 

conception d‘affichages et les limites de notre étude. 

6.5.1 Perception subjective 

Nous avons obtenu des résultats clairs et significatifs pour toutes les variables dépendantes 

subjectives étudiées. Les pilotes ont perçu les PFDs que nous avons conçus pour l‘étude comme 

ayant un niveau d‘encombrement visuel différent. Les PFDs ayant un niveau d‘encombrement 

faible, modéré et élevé ont été perçus comme tel sur l‘échelle d‘évaluation de l‘encombrement. 

Ce résultat montre que les stimuli expérimentaux utilisés pour l‘étude étaient suffisamment 

différents et que cette différence était acceptée entre les participants. Ce résultat confirme 

l‘hypothèse H1 voulant que l‘évaluation subjective du niveau d‘encombrement par les 

participants augmente en fonction du niveau d‘encombrement de l‘écran (faible, modéré et élevé) 

que nous avons établi. Finalement, ce résultat confirme la validité de l‘échelle d‘évaluation de 

l‘encombrement visuel développée par Kaber et ses collègues (Kaber et al., 2008). 

Le classement des facteurs contribuant à l‘encombrement visuel a montré que les pilotes ont 

perçu le facteur de densité comme étant le plus important contributeur. Tous les facteurs liés à la 

tâche (redondance, dynamisme, variabilité) ont été perçus comme contribuant également à 

l‘encombrement. À l‘opposé, la couleur a été perçue comme le facteur contribuant le moins à 

l‘encombrement. Durant l‘entrevue, les pilotes ont expliqué qu‘un écran visuellement dense sera 

perçu comme encombré car il est plus difficile de distinguer les symboles et les groupes 

d‘information affichés. Sept pilotes ont identifié l‘abondance de lignes et neuf pilotes ont 

identifié la présence d‘instrumentations inutiles comme les principaux contributeurs à 

l‘encombrement visuel de l‘écran ayant un encombrement élevé. Au contraire, les commentaires 

des pilotes indiquent que l‘utilisation judicieuse des couleurs a permis de distinguer les groupes 

d‘informations du PFD ayant un encombrement modéré. Retirer les couleurs d‘un affichage pour 

diminuer son niveau d‘encombrement visuel a eu un effet négatif sur la perception des groupes 

d‘informations de la part de l‘utilisateur. Sept pilotes ont dit avoir eu de la difficulté à distinguer 

les instruments de l‘écran ayant un encombrement faible, principalement à cause de l‘absence de 

couleur. 
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Nos résultats ont montré un effet clair de l‘encombrement visuel sur la charge mentale de travail. 

Les pilotes utilisant l‘écran modérément encombré ont rapporté un niveau de charge mentale de 

travail inférieur que pour les écrans avec un encombrement faible ou élevé. Ce résultat confirme 

l‘hypothèse H3 voulant que le niveau de charge mentale de travail est minimale pour l‘écran 

ayant un encombrement modéré comparativement aux écrans ayant un encombrement faible ou 

élevé. Notre résultat est aussi similaire à celui rapporté dans (Alexander et al., 2012). Il indique 

que les pilotes ont eu plus de ressources mentales disponibles durant l‘approche en utilisant 

l‘écran ayant un niveau d‘encombrement modéré. L‘absence des sélecteurs et des indicateurs de 

tendance sur l‘écran ayant un encombrement faible a exigé plus de ressources mentales de la part 

des pilotes pour mémoriser les cibles de vitesse et d‘accélération. Durant l‘entrevue, cinq pilotes 

ont identifié l‘effort de mémorisation supplémentaire requis par cet écran comme une source de 

charge mentale de travail. Pour l‘écran ayant un niveau élevé d‘encombrement, les pilotes ont 

fourni deux raisons pour expliquer la charge mentale de travail supérieure. Premièrement, cinq 

pilotes ont dit devoir filtrer l‘écran pour ignorer l‘information inutile présentée, car celle-ci les 

déconcentrait dans leur tâche. Cette observation est supportée par la longueur d‘une saccade 15% 

plus grande et une surface couverte par les fixations qui est 33% plus grande pour l‘écran 

encombré comparativement aux deux autres écrans, suggérant que le patron d‘observation des 

pilotes a été plus exigeant pour cet écran. Deuxièmement, trois pilotes ont perçu l‘écran comme 

étant trop dynamique, avec ces nombreux indicateurs. Par conséquent, les pilotes ont investi plus 

d‘effort et d‘attention pour compléter l‘approche utilisant l‘écran ayant un encombrement élevé. 

Finalement, il est important de rappeler que les pilotes ont complété un vol manuel sans 

assistance des systèmes de guidage automatisés. Il s‘agit d‘une tâche exigeante requérant une 

attention soutenue du pilote aux commandes. Cela a sans doute eu pour effet d‘augmenter le 

niveau de base de la charge mentale de travail. En effet, la charge mentale ayant l‘écran ayant un 

encombrement modéré a été de 10.1, ce qui correspond à une demande modérée. 

La qualité visuelle globale perçue par les pilotes a suivi la même tendance que la charge mentale 

de travail. Le PFD modérément encombré a été jugé comme esthétiquement plus agréable que les 

PFDs ayant un niveau d‘encombrement faible ou élevé. Ce nouveau résultat montre que 

l‘encombrement visuel et la qualité esthétique sont clairement liés pour le PFD. En entrevue, les 

pilotes ont fait référence à la qualité esthétique des écrans comme un facteur contribuant à 

l‘encombrement et à leur perception de l‘utilité de l‘affichage. Commentant l‘écran ayant un 
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niveau modéré d‘encombrement, les pilotes ont observé que l‘écran était clair (4 pilotes), 

facilitait le balayage visuel (3 pilotes) et que le choix de couleurs a aidé la distinction des 

instruments (2 pilotes). Le pilote 12 s‘est même exclamé « Oh, c‘est beau! » en voyant l‘écran 

pour la première fois
24

. Au contraire, les observations sur la qualité visuelle de l‘écran ayant un 

niveau d‘encombrement élevé ont été majoritairement négatives. Six pilotes ont eu une réaction 

émotive négative envers cet écran, en qualifiant l‘écran « d‘horrible » (4 pilotes), de « stressant et 

agressif » (1 pilote) ou disant se sentir « inconfortable et frustré » d‘utiliser ce PFD (2 pilotes). 

Cinq pilotes ont dit que l‘écran leur a donné l‘impression de voler un « vieil avion avec plein de 

cadrans ». La réaction négative – et parfois même viscérale – des pilotes par rapport à l‘écran 

ayant un encombrement élevé explique sa faible qualité visuelle perçue. 

Il est important de noter que nos résultats sur la qualité visuelle affichent la même tendance 

observée dans (Gannon, 2005) où le PFD esthétiquement plus agréable a obtenu un niveau de 

charge mentale de travail inférieur. Contrairement à (Gannon, 2005) notre étude n‘a pas manipulé 

la qualité visuelle du PFD, mais a plutôt mesuré l‘effet de l‘encombrement visuel sur la qualité 

visuelle perçue par les pilotes. Une prochaine étude pourrait s‘intéresser à étudier l‘effet de 

l‘interaction entre l‘encombrement visuel et la qualité visuelle du PFD sur la performance du 

pilote. 

6.5.2 Performance technique de vol 

Alors que l‘effet de l‘encombrement visuel sur la charge mentale de travail a été clair, son effet 

sur la performance technique de vol a été faible. Nos résultats ont montré que la déviation latérale 

moyenne et le contrôle de la déviation latérale ont été les deux seules variables, sur les 11 

variables mesurées, à être significativement différentes entre les niveaux d‘encombrement. Dans 

ces deux cas, l‘écran ayant un encombrement modéré a eu la meilleure performance. Les mesures 

d‘oculométrie fournissent une première explication de ce résultat. Les pilotes utilisant l‘écran 

ayant un encombrement élevé ont réalisé 15% moins de fixations sur l‘indicateur de déviation 

latérale et ont observé l‘indicateur 23% moins longtemps que pour l‘écran ayant un niveau 

                                                 

24
 Le PFD avec un niveau modéré d‘encombrement était le dernier écran présenté au pilote 12. Son observation sur la 

qualité visuelle de l‘écran était donc en fonction des trois PFDs testés.  
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d‘encombrement modéré. Cette indication suggère que les participants ont été capables de 

consacrer plus d‘attention à l‘indicateur de déviation latérale lorsqu‘ils ont utilisé l‘écran ayant un 

niveau modéré d‘encombrement. Toutefois, cette explication ne s‘applique pas à l‘écran ayant un 

niveau d‘encombrement faible, car il affiche des résultats d‘oculométrie similaires à l‘écran ayant 

un niveau d‘encombrement modéré. L‘absence de sélecteur de cap et l‘étroitesse de la ligne 

d‘horizon artificiel de l‘écran ayant un encombrement faible sont de meilleures explications pour 

la différence de déviation latérale moyenne (Muthard & Wickens, 2005). En effet, la Figure 6.7 

montre que la barre d‘incertitude de la déviation latérale moyenne a été la plus grande pour 

l‘écran ayant un faible encombrement, indiquant une plus grande variabilité du résultat entre les 

participants. De plus, la valeur de déviation latérale a changé le plus pour l‘écran ayant un 

encombrement faible, comme l‘indique la valeur supérieure du contrôle de la déviation latérale 

(voir Figure 6.8). Ces deux résultats indiquent que les participants ont eu plus de difficulté à 

maintenir et à corriger leur cap avec l‘écran faiblement encombré. En entrevue, les pilotes ont 

expliqué avoir une conscience limitée que le cap de l‘appareil déviait du cap prescrit durant 

l‘approche, car l‘écran faiblement encombré ne présentait pas de sélecteur de cap. De plus, la 

petite taille de l‘horizon artificiel sur l‘écran a amené les pilotes à effectuer des virages trop 

prononcés pour corriger leur cap, car il ne renseignait pas suffisamment sur l‘ampleur du virage 

réalisé. Ces deux problèmes étaient absents de l‘écran ayant un encombrement modéré; celui-ci 

affichait un sélecteur de cap et la ligne d‘horizon artificiel faisait toute la taille de l‘écran, offrant 

ainsi un indice visuel plus saillant de l‘ampleur du virage. 

Nous n‘avons observé aucun effet de l‘encombrement visuel sur les autres variables de 

performance technique de vol, soit la déviation verticale, l‘activité du mini-manche et la vitesse 

verticale. Nous expliquons l‘effet faible de l‘encombrement visuel sur ces variables par deux 

raisons. Premièrement, les pilotes qui ont participé à l‘étude sont des pilotes expérimentés, ayant 

volé plus de 4000 heures en moyenne. L‘expertise et la connaissance qu‘ont les pilotes de 

l‘appareil leur ont permis d‘anticiper le comportement de l‘avion et cet effet n‘a pas été influencé 

par l‘encombrement visuel. Deuxièmement, les résultats subjectifs montrent que les pilotes ont 

rapporté un niveau de charge mentale de travail supérieur pour les écrans ayant un niveau 

d‘encombrement faible ou élevé. Ceci suggère que les pilotes ont compensé les effets de 

l‘encombrement visuel sur la performance objective en consacrant plus d‘attention à la tâche à 
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accomplir en utilisant ces écrans afin d‘obtenir un niveau de précision similaire durant 

l‘approche. 

Globalement, ces résultats confirment partiellement l‘hypothèse H2 voulant que la performance 

technique de vol diminue pour l‘écran ayant un encombrement élevé comparativement aux écrans 

ayant un encombrement faible et modéré. Nous avons observé un effet significatif de 

l‘encombrement visuel pour deux des 11 variables indiquant une meilleure performance 

technique de vol pour l‘écran ayant un encombrement modéré comparativement aux deux autres, 

mais cet effet a été faible. Nos résultats impliquent que pour la tâche dynamique réalisée, le 

niveau d‘encombrement visuel de l‘écran a un effet faible sur la performance objective du 

participant. 

Au contraire, nous avons observé un effet plus important de l‘étape de vol sur la performance 

technique de vol, avec sept des 11 variables étudiées montrant une différence significative. Ces 

résultats montrent que les pilotes ont été plus actifs durant l‘étape finale de l‘approche afin 

d‘optimiser le parcours de l‘avion pour réussir l‘atterrissage. Il faut aussi mentionner que les 

mesures de déviation latérale et verticale sont plus sensibles au fur et à mesure que l‘appareil 

s‘approche de la piste d‘atterrissage, car la taille du faisceau de radio guidage se réduit. 

6.5.3 Parcours visuel 

Nous avons analysé le parcours visuel de quatre participants durant l‘étude. Il s‘agit de nouveaux 

résultats afin de comprendre l‘influence de l‘encombrement visuel de l‘affichage sur le patron de 

regard des pilotes. La petite taille de notre échantillon (n=4) nous a empêché de faire une analyse 

statistique des résultats; nous avons opté pour une analyse descriptive des résultats en rapportant 

la tendance observée du résultat. 

Nous avons trouvé que la longueur d‘une saccade et la surface couverte par les fixations ont été 

supérieures pour l‘écran ayant un encombrement élevé comparativement aux écrans ayant un 

niveau d‘encombrement inférieur. Ces résultats indiquent que les participants ont balayé une plus 

grande portion de l‘écran pour extraire l‘information pertinente pour la tâche de vol lorsqu‘ils ont 

utilisé l‘écran ayant un encombrement élevé, contribuant à un effort supplémentaire pour utiliser 

cet écran. Nous avons aussi trouvé que la durée moyenne d‘une fixation visuelle durant l‘étape de 

vol finale a été la plus longue pour l‘écran ayant un encombrement modéré. Ce résultat indique 
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que durant l‘étape de vol la plus exigeante, les participants ont été capables d‘allouer plus 

d‘attention durant chaque fixation en utilisant cet affichage, comparativement aux écrans ayant 

un encombrement faible ou élevé. Cela n‘a pas affecté le patron de surveillance des instruments, 

car le nombre de transitions entre les zones a été le même entre les écrans (voir Figure 6.20). 

Les résultats pour l‘observation des indicateurs de déviation latérale et verticale sont étonnants. 

Nous avons observé la même tendance pour les quatre résultats présentés, soit que les écrans 

ayant un encombrement faible ou modéré affichent la même valeur et que celle-ci diminue pour 

l‘écran ayant un encombrement élevé. De plus, cette tendance est différente de celle des résultats 

de performance technique de vol, où l‘écran ayant un encombrement modéré a obtenu une 

meilleure précision pour la déviation latérale. Les résultats du parcours visuel indiquent que les 

quatre pilotes ont alloué moins de ressources visuelles aux indicateurs de guidage latéral et 

vertical durant l‘approche pour l‘écran ayant un encombrement élevé. Toutefois, cela n‘a pas 

modifié le patron de surveillance de cet écran puisque que le nombre de transition est semblable 

pour tous les niveaux d‘encombrement et que la durée moyenne d‘une fixation est la même pour 

les écrans ayant un niveau d‘encombrement faible ou élevé. 

Nos résultats confirment l‘hypothèse H4 voulant que l‘efficience du parcours visuel du pilote 

diminue pour l‘écran ayant un encombrement élevé comparativement aux écrans ayant un 

encombrement faible et modéré. Une interprétation de ces résultats serait que la disposition de 

l‘interface avec un encombrement élevé a distrait le parcours visuel des participants en offrant 

plus d‘indicateurs et de symboles à surveiller durant l‘approche, réduisant d‘autant le temps 

d‘observations des indicateurs de déviation. Au contraire, la disposition des interfaces avec un 

encombrement faible ou modéré a permis aux participants de consacrer plus de ressources 

visuelles aux indicateurs de déviation, puisque ceux-ci étaient distincts des autres instruments que 

ces écrans avaient moins de symboles à surveiller. 

Les effets de l‘encombrement visuel sur le parcours visuel que nous avons trouvés dans notre 

étude sont comparables à ceux observés précédemment dans la littérature (Moacdieh et al., 2013; 

Moacdieh & Sarter, 2012). Moacdieh et Sarter (2012) ont identifié 12 mesures de parcours visuel 

différentes en fonction du niveau d‘encombrement visuel d‘un affichage dans une tâche de 

prospection visuelle, avec des résultats fortement significatifs. Dans notre étude, cinq des six 

mesures utilisées ont montré une différence (non statistique) en fonction du niveau 
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d‘encombrement du PFD, soit la durée d‘une fixation, la longueur moyenne d‘une saccade, la 

surface couverte par les fixations, et le nombre total et la durée moyenne de fixations visuelles 

sur l‘instrument de guidage. La différence est surtout notable pour l‘écran ayant un niveau 

d‘encombrement élevé. Il est important de noter que la différence entre les résultats fortement 

significatifs de (Moacdieh & Sarter, 2012) et les nôtres s‘explique par la nature de la tâche 

réalisée par les participants. La tâche de vol n‘est pas limitée dans le temps et montre un parcours 

visuel en circuit fermé typique d‘une activité de surveillance qui est différente d‘une tâche de 

prospection visuelle restreinte dans le temps (voir Henderson, 2003). Cette observation soulève le 

besoin de développer des métriques d‘oculométrie pertinentes pour la tâche de vol et sensibles à 

l‘encombrement visuel du PFD. 

Dans une étude en simulateur de vol, Moacdieh, Prinet et Sarter (2013) ont trouvé que le nombre 

de transitions du parcours visuel entre les zones d‘informations à l‘écran diminue avec le niveau 

d‘encombrement visuel du PFD. Dans leur étude, Moacdieh et ses collègues ont défini les 

principaux instruments du PFD comme des régions d‘intérêts (ROI). Cette méthode limite la 

comparaison des résultats entre les ROI, car ceux-ci n‘ont pas la même taille. De plus, cette 

méthode a le désavantage d‘augmenter le risque de commettre une erreur de type I (faux-positif), 

soit de conclure à un effet significatif alors qu‘il ne l‘est pas, en ne limitant pas le nombre de ROI 

et le nombre de comparaisons entre les ROI
25

. Dans notre étude, nous avons segmenté le PFD à 

l‘aide d‘une grille de 14 x 10 cellules de même taille et n‘avons observé aucune différence entre 

le nombre de transitions entre les cellules en fonction du niveau d‘encombrement visuel. 

Toutefois, nous avons observé une diminution du nombre de fixations avec le niveau 

d‘encombrement sur les ROI des indicateurs de déviation latérale et verticale, un résultat qui 

montre la même tendance que celle observée par (Moacdieh et al., 2013). 

                                                 

25
 Il est plus probable d‘obtenir une différence significative en multipliant le nombre de variables étudiées et le 

nombre de comparaison entre les variables (Simmons, Nelson, & Simonsohn, 2011). Simmons et ses collègues 

(2011) proposent une méthode pour réduire le risque de faux-positif dans les études comportementales, soit de 

définir au préalable le nombre de variables à mesurer, le type d‘analyse statistique à réaliser et le critère pour choisir 

le nombre de participants. Ces décisions doivent être rapportées comme tel dans la communication scientifique. 
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6.5.4 Comparaison avec les autres études 

Nous pouvons désormais ajouter nos résultats au Tableau 2.4 comparant l‘effet de 

l‘encombrement visuel sur la performance du contrôle de l‘avion. Le nouveau tableau mis à jour 

est présenté au Tableau 6.6 ci-dessous. Ce tableau synthèse montre que la meilleure performance 

de vol est obtenue pour un écran de vol ayant un encombrement modéré ou élevé. De plus, notre 

étude a confirmé ce résultat en manipulant avec confiance le niveau d‘encombrement visuel – et 

en ne manipulant uniquement que le niveau d‘encombrement visuel – tout en conservant 

constante la variable de fonction de guidage du PFD. 

La comparaison de l‘effet de l‘encombrement visuel sur la performance de vol de différentes 

études indique qu‘il est préférable d‘optimiser le niveau d‘encombrement visuel plutôt que de le 

minimiser. Dans les affichages ayant un encombrement minimal il manque les informations de 

tendance utiles aux pilotes pour anticiper le comportement de l‘avion. Ces informations 

prédictives facilitent la tâche du pilote en réduisant le niveau de charge mentale de travail durant 

le vol. 

Lorsque l‘on compare les résultats des trois études qui ont manipulé le niveau d‘encombrement 

visuel du PFD sans modifier la fonction de guidage, soit les étude de (Ververs & Wickens, 1996, 

1998) et notre étude, on constate que l‘effet de l‘encombrement visuel sur la performance de vol 

est faible. Notre étude ajoute comme nouveau résultat que son effet sur la perception de la 

performance, soit la charge mentale de travail, est clair et important. Ces constats impliquent que 

l‘encombrement visuel est une variable d‘optimisation. C‘est-à-dire que du point de vue de la 

performance objective de la tâche réalisée, des pilotes expérimentés seront capables de compléter 

l‘approche avec un affichage présentant les informations nécessaires au vol peu importe son 

niveau d‘encombrement. Toutefois, du point de vue de l‘utilisation de ressources cognitives et de 

la satisfaction du pilote, optimiser l‘encombrement visuel permet de faciliter la complétion de la 

tâche. Dans le contexte aérospatial marqué par des exigences de performance élevée et de fortes 

contraintes temporelles, l‘optimisation de l‘encombrement visuel des affichages est un sujet 

pertinent qui mérite toujours une attention soutenue des ergonomes. 
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Tableau 6.6 Effet de l‘encombrement visuel sur la performance du contrôle de l‘avion. 

 

Étude 

Fonctions sur l’affichage avec un niveau 

d’encombrement 
Meilleure performance 

Faible Modéré Élevé Vol Détection 

(Ververs & 

Wickens, 1996, 

1998)  

- 

DTG 6.0NM

ETA 12:45

 

Non 

significatif 

Encombre

ment 

faible 

(Wickens, 

Alexander, Horrey, 

et al., 2004) 

  

- 

 

Encombrement 

élevé 

Encombre

ment 

faible 

(Alexander et al., 

2005) 

 

- 

 

Encombrement 

élevé 

Encombre

ment 

faible 

(Alexander et al., 

2012, 2009) 
  

 

Encombrement 

modéré 
- 

(Kim et al., 2011; 

Naylor, 2010) 
  

 

Encombrement 

modéré 
- 

Notre étude 
   

Encombrement 

modéré 

(effet faible) 

- 

Légende  
FPV + FD 

DTG 6.0NM 

  ETA 12:45 
 

Libellé 

 
Tunnel 

 
Vision 

synthétique 

 
Vision 

améliorée 

  
LOC + GS 
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CHAPITRE 7 CONCLUSION 

Ce dernier chapitre regroupe l‘essentiel des nouvelles connaissances développées dans cette 

thèse, indique les implications de nos résultats pour la conception d‘affichages, présente les 

limitations de notre étude et suggère deux pistes de recherche pour de prochaines études. 

7.1 Synthèse du travail 

Cette thèse a été réalisée à un moment où l‘encombrement visuel des affichages du poste de 

pilotage croit. L‘apparition de nouvelles technologies à bord de l‘avion et la complexité 

croissante des opérations de vol exigent de présenter plus d‘informations à l‘équipage. Les 

organismes réglementaires en aviation ont rédigé des exigences demandant de minimiser 

l‘encombrement visuel des affichages de la cabine de pilotage. Or, les résultats précédents 

d‘études expérimentales en simulateur de vol, montrent un effet mixte de l‘encombrement visuel 

sur la performance technique de vol du pilote. Nous avons expliqué cet effet mixte par le fait que 

les études précédentes ont manipulé simultanément le niveau d‘encombrement et la fonction de 

guidage de l‘écran. De plus, la compréhension de ce qu‘est l‘encombrement visuel, des facteurs y 

contribuant et des méthodes pour l‘évaluer était encore à parfaire. 

Les objectifs de cette thèse ont été de faire avancer la connaissance sur les causes de 

l‘encombrement visuel des affichages et leurs effets sur la performance de l‘utilisateur dans une 

tâche dynamique, de même que d‘aider les concepteurs d‘interfaces graphiques en leur 

permettant de prendre de meilleures décisions de conception sur le niveau d‘encombrement 

visuel optimal de l‘affichage à l‘aide de lignes directrices. Ces objectifs, en tenant compte des 

limitations présentées ci-dessous, ont été atteints. 

Pour ce faire, nous avons réalisé une étude expérimentale en simulateur de vol. Nous avons conçu 

trois écrans primaires de vol ayant un niveau d‘encombrement visuel différent (faible, modéré, 

élevé) en respectant les nouvelles règles de conception proposées à la section 2.4.3 afin de 

changer le niveau d‘encombrement visuel sans modifier la fonction de guidage ou l‘organisation 

de l‘écran. 

Par la suite, 12 pilotes ayant une expérience moyenne de 4415 heures de vol ont complété une 

approche manuelle de vol aux instruments en simulateur de vol. Les deux variables 

indépendantes de l‘étude ont été le niveau d‘encombrement du PFD avec trois valeurs : 
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encombrement faible, encombrement modéré et encombrement élevé; et l‘étape de vol avec deux 

valeurs : approche initiale et approche finale. Les participants ont complété l‘approche en 

réalisant trois répétitions pour chacun des trois écrans, pour un total de neuf approches. Nous 

avons mesuré l‘effet de l‘encombrement visuel des écrans sur un ensemble de variables 

dépendantes subjectives et objectives, soit l‘évaluation de l‘encombrement visuel, la charge 

mentale de travail, la qualité visuelle de l‘interface, la performance technique de vol, et le 

parcours visuel. 

Les résultats obtenus ont montré que l‘effet de l‘encombrement visuel a été fortement significatif 

pour tous les questionnaires subjectifs, soit l‘évaluation de l‘encombrement visuel (p < .001), la 

charge mentale de travail (p < .005) et la qualité visuelle de l‘interface (p < .001). 

Les PFDs ayant un niveau d‘encombrement faible, modéré et élevé ont été perçus comme tel sur 

l‘échelle d‘évaluation de l‘encombrement. La densité de symboles à l‘écran a été le facteur 

identifié par les participants qui a le plus contribué à l‘encombrement, alors que l‘utilisation de 

couleur a été le facteur qui a le moins contribué à l‘encombrement. Les pilotes ont indiqué que 

l‘utilisation des couleurs a permis de distinguer les groupes d‘informations du PFD avec un 

encombrement modéré. 

La charge mentale de travail a été clairement affectée par le niveau d‘encombrement. L‘écran 

ayant un encombrement modéré a obtenu le plus bas niveau de charge mentale de travail telle que 

mesurée par l‘échelle du NASA-TLX. Ce résultat indique que les pilotes ont eu plus de 

ressources mentales disponibles durant la phase d‘approche en utilisant l‘écran ayant un niveau 

d‘encombrement modéré. 

Les résultats sur la qualité visuelle des PFDs ont montré que l‘encombrement visuel et la qualité 

esthétique des affichages sont liés. Bien que nous n‘ayons pas manipulé la qualité visuelle des 

affichages dans notre expérience, une prochaine étude pourrait s‘attarder à son interaction avec 

l‘encombrement visuel et leurs effets sur la performance objective et subjective dans une tâche de 

vol. Le cadre expérimental présenté dans cette thèse pourrait être adapté pour permettre une telle 

étude. 

L‘hypothèse d‘une diminution de la performance technique de vol en fonction de l‘augmentation 

du niveau d‘encombrement visuel a été partiellement validée par les résultats, montrant que 

l‘écran ayant un encombrement modéré a obtenu une meilleure précision pour la déviation 
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latérale moyenne (p < .05) et le contrôle de la déviation latérale (p < .005) comparativement aux 

écrans ayant un encombrement faible et élevé. Toutefois, il s‘agit des deux seules variables 

dépendantes sur les onze mesurées ayant montré une différence significative en fonction de 

l‘encombrement visuel. 

L‘analyse des fixations visuelles à l‘écran, enregistrées avec un oculomètre, a montré que le 

parcours visuel de l‘écran ayant un encombrement élevé a été plus exigeant que celui des deux 

autres écrans. Nos résultats ont montré que la longueur d‘une saccade et la surface couverte par 

les fixations ont été supérieures pour l‘écran ayant un encombrement élevé. Ces résultats 

indiquent que les participants ont balayé une plus grande portion de l‘écran pour extraire 

l‘information pertinente pour la tâche de vol lorsqu‘ils ont utilisé l‘écran avec un encombrement 

élevé, contribuant à un effort supplémentaire pour utiliser cet écran. 

7.2 Contributions à l’avancement des connaissances 

Nos travaux ont permis d‘apporter trois principales contributions à l‘avancement des 

connaissances sur l‘encombrement visuel et ses effets sur la performance. Premièrement, nous 

avons proposé une nouvelle définition de l‘encombrement visuel qui identifie les trois 

dimensions importantes pour l‘étude de l‘encombrement visuel : la densité visuelle, la présence 

d‘information superflue et le contexte de la tâche (voir section 2.1.7). Cette nouvelle définition 

offre un cadre conceptuel plus élaboré que les définitions précédentes afin d‘étudier 

l‘optimisation de l‘encombrement visuel d‘un affichage en fonction des besoins en information 

de la tâche et du contexte dans lequel l‘utilisateur interagit avec l‘affichage. 

Deuxièmement, nous avons apporté une contribution méthodologique en proposant une nouvelle 

méthode pour étudier l‘effet de l‘encombrement visuel sur la performance de l‘utilisateur (voir 

section 2.4.3). Cette méthode prend la forme de trois exigences que tous les affichages à l‘étude 

doivent respecter afin d‘assurer que la variable d‘encombrement visuelle est manipulée durant 

l‘étude, en laissant intouchée les autres variables. Nous avons montré que les études précédentes, 

portant sur l‘effet de l‘encombrement visuel sur la performance technique de vol du pilote, ont 

modifié simultanément la fonction de guidage de l‘appareil ce qui peut avoir masqué l‘effet de 

l‘encombrement visuel. Nous avons utilisé la nouvelle méthodologie de notre étude pour la 
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conception de trois PFDs ayant un niveau d‘encombrement visuel différent, mais offrant la même 

information de base, la même fonction de guidage et la même organisation. 

Troisièmement, nous avons trouvé de nouveaux résultats sur les effets de l‘encombrement visuel 

d‘un affichage dynamique sur la performance de l‘utilisateur durant une tâche complexe (voir 

Chapitre 6). Les résultats obtenus en simulateur de vol confirment que l‘encombrement visuel a 

un effet clair et significatif sur la charge mentale de travail. Toutefois, son effet est faible sur la 

performance objective, soit la précision de l‘appareil durant l‘approche. Ces nouveaux résultats, 

obtenus en suivant un cadre méthodologique rigoureux pour la manipulation de l‘encombrement 

visuel, confirment la pertinence de l‘étude de l‘encombrement visuel des affichages dynamiques 

car elle permet d‘améliorer la performance de l‘utilisateur à une tâche complexe. 

Finalement, bien qu‘il ne s‘agisse pas d‘une contribution à l‘avancement des connaissances, nous 

avons produit des outils durant cette étude qui serviront pour de futures recherches. Les trois 

écrans de vol conçus pour notre étude sont bien différenciés en termes de niveau 

d‘encombrement visuel. De futures recherches peuvent facilement modifier les paramètres du 

code source de même que la bibliothèque d‘objets graphiques que nous avons développés afin 

d‘étudier de nouvelles problématiques concernant l‘encombrement visuel. De même, les scripts 

conçus pour automatiser l‘extraction des données de l‘oculomètre, analyser les fixations visuelles 

et produire des tableaux et des graphiques sommatifs peuvent être adaptés à de nouveaux 

affichages et utilisés pour d‘autres études. L‘utilisation de ces scripts réduit grandement le temps 

nécessaire pour l‘analyse des données d‘oculométrie et permet de comparer les résultats des 

variables indépendantes obtenues dans notre étude avec celles d‘une prochaine étude. 

7.3 Implications pour la conception et la réglementation 

Les découvertes faites dans notre étude ont des implications pour la conception des affichages 

d‘avion et pour la réglementation. Premièrement, nous avons développé un cadre expérimental 

pour contrôler le niveau d‘encombrement visuel d‘affichages dynamiques qui offre une garantie 

que seulement la variable d‘encombrement visuel est variée entre les affichages. Dans cette 

étude, cette méthode a été appliquée aux affichages de vol du poste de pilotage, mais pourrait être 

généralisée à d‘autres domaines comme les affichages de poste de contrôle. Le cadre 
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expérimental développé dans cette étude se révèlera utile pour les concepteurs d‘interfaces en 

offrant une méthode d‘évaluation de l‘encombrement visuel des affichages. 

Deuxièmement, nous avons montré que l‘encombrement visuel a un effet clair sur la charge 

mentale de travail de pilotes expérimentés. Ce résultat justifie la pertinence de l‘optimisation de 

l‘encombrement visuel des affichages du poste de pilotage dans une perspective d‘amélioration 

de la sureté et de la performance des opérations. Notre résultat suggère aussi de limiter la quantité 

d‘information affichée au PFD et de considérer la pertinence d‘un nouvel instrument avant de 

l‘ajouter à l‘écran. Dans notre expérimentation, le panneau d‘ingénierie présent sur l‘écran ayant 

un encombrement élevé a offert des indicateurs supplémentaires pour optimiser l‘approche. 

Toutefois, les pilotes ont jugé ces instruments comme inutiles à la tâche courante, soit de 

compléter une approche stabilisée. 

Troisièmement, nos résultats ont montré que concevoir un PFD avec le juste équilibre entre 

désencombrer l‘écran et fournir de l‘information supplémentaire au pilote a été bénéfique pour la 

tâche de vol. L‘écran ayant un niveau d‘encombrement modéré a eu l‘évaluation minimale de 

charge mentale de travail et la meilleure évaluation de ses qualités visuelles. Ces résultats 

suggèrent que l‘utilisation judicieuse d‘information supplémentaire sur le PFD – par l‘ajout 

d‘indicateurs de tendance et de sélecteurs – et l‘utilisation harmonieuse des couleurs – avec un 

dégradé pour l‘horizon artificiel et la transparence pour les instruments – ont aidé les pilotes dans 

leur utilisation du PFD ayant un niveau modéré d‘encombrement. Dans notre étude, le PFD avec 

la meilleure performance et la charge mentale de travail minimale a été celui ayant un niveau 

optimisé d‘encombrement visuel plutôt que minimal. Ce constat est contraire à l‘exigence de la 

réglementation aérienne demandant de minimiser l‘encombrement visuel à l‘écran. Nos résultats 

suggère plutôt d’optimiser l‘encombrement visuel afin de réduire la charge de travail et améliorer 

la performance du pilote. 

Quatrièmement, cette étude a utilisé des mesures subjectives et objectives pour tester les effets de 

l‘encombrement visuel sur la tâche du pilote : charge mentale de travail, performance technique 

de vol et parcours visuel. Si nous avions mesuré que les données objectives de performance 

technique de vol, nous aurions observé un effet faible de l‘encombrement visuel sur la tâche de 

pilotage. Nous encourageons les autres chercheurs de la communauté aérospatiale d‘utiliser des 
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mesures subjectives et objectives dans leurs études afin de mieux comprendre les effets sur les 

pilotes des variables étudiées. 

7.4 Limites de notre recherche 

Afin de réaliser notre étude, nous avons réalisé des choix qui limitent la portée ou la 

généralisation des résultats obtenus. Cette section présente les six limitations de notre étude que 

nous jugeons les plus pertinentes à souligner. 

Premièrement, le nombre de participants à l‘étude a été limité. Douze pilotes ont complété la 

tâche de vol et nous avons pu analyser les résultats de parcours oculaire de quatre d‘entre eux. 

Bien que nous ayons mesuré des effets significatifs de l‘encombrement visuel sur la performance 

du pilote, il est attendu qu‘un plus grand nombre de participants augmente la puissance statistique 

de l‘analyse, et donc, permette d‘identifier de nouveaux effets significatifs. Il en va de même 

pour l‘analyse du parcours oculaire des participants, où un plus grand nombre de participants 

ayant des données valides permet l‘analyse statistique des résultats. Cela demande de recruter des 

participants ne portant pas de lunettes et de développer une méthode de vérification de la 

calibration de l‘oculomètre offrant une rétroaction plus rapide que celle employée dans notre 

étude. 

Deuxièmement, nous avons manipulé le niveau d‘encombrement visuel d‘un seul écran, soit le 

PFD. Une prochaine expérience pourrait étudier les effets de l‘encombrement visuel sur plusieurs 

écrans du poste de pilotage, comme la carte de navigation et les pages synoptiques. L‘utilisation 

de plusieurs applications affichées sur plusieurs écrans s‘approche du contexte d‘utilisation réel 

des systèmes du poste de pilotage par le pilote. De plus, manipuler le niveau d‘encombrement 

visuel de plusieurs écrans devrait amplifier les effets sur la performance du pilote mesurées dans 

notre étude. 

Troisièmement, les pilotes ont réalisé un vol manuel sans assistance des systèmes de guidage 

automatisés. Ce choix a permis de mesurer l‘effet de l‘encombrement visuel sur la performance 

technique de vol. Une prochaine étude pourra s‘intéresser à l‘effet de l‘encombrement visuel sur 

la surveillance et la détection de faille durant une approche avec les systèmes d‘auto-pilote et 

d‘auto-manette engagés. Contrairement à cette étude, les mesures de performance ne seront plus 
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la précision de l‘approche – qui sera contrôlée par les systèmes de guidage automatisés – mais la 

facilité de surveiller l‘état des systèmes et de détecter une faille. 

Quatrièmement, nous avons utilisé un espace aérien simplifié pour l‘approche. Il n‘y avait pas de 

trafic aérien et aucune communication avec le contrôleur aérien n‘a été réalisée. Ceci a simplifié 

la tâche des pilotes par rapport à un vol réel. 

Cinquièmement, nous n‘avons pas étudié l‘effet d‘un attribut visuel spécifique (p. ex., couleur, 

alignement, taille et distance des instruments) sur la performance ou la perception de 

l‘encombrement visuel par les pilotes (van den Berg et al., 2008). Plutôt, nous avons modifié 

plusieurs attributs visuels afin d‘augmenter le niveau d‘encombrement de l‘écran. Une prochaine 

étude pourrait caractériser la contribution à l‘encombrement visuel de différents attributs visuels. 

Sixièmement, il faut commenter les affichages utilisés dans cette étude. Nous avons conçu trois 

écrans expérimentaux afin de manipuler le niveau d‘encombrement visuel du PFD, sans en 

modifier la fonction de guidage ou l‘information primaire de vol. Cette décision est différente de 

celle prise par les études précédentes où les auteurs ont modifié la fonction de guidage, par 

exemple en ajoutant un affichage tunnel ou la vision synthétique, afin de varier l‘encombrement 

visuel. Notre décision nous a permis de varier de manière importante l‘encombrement visuel des 

trois écrans. L‘étendue du niveau d‘encombrement perçu pour nos écrans est de 5.5 à 13.9 sur 

l‘échelle de (Kaber et al., 2008) dont l‘étendue est de 1 à 20 points, alors qu‘elle est de 8.8 à 11.0 

pour (Kim et al., 2011), de 7.6 à 13.6 pour (Alexander et al., 2012) et de 8.1 à 12.3 pour 

(Moacdieh et al., 2013). Les affichages que nous avons conçus ont permis d‘augmenter les 

différences entre les niveaux d‘encombrement, et conséquemment d‘amplifier l‘effet de 

l‘encombrement sur la performance du pilote. Toutefois, il s‘agissait d‘une augmentation 

artificielle de l‘encombrement visuel, comme cela s‘est fait dans toutes les études 

comportementales qui conçoivent leurs stimuli expérimentaux. Afin de tenir compte de ce point, 

nous avons décrit la méthode que nous avons utilisée pour concevoir les écrans, présentée au 

Chapitre 4. De plus, nous limitons la portée de nos résultats à l‘étendue du niveau 

d‘encombrement obtenue dans notre étude. Finalement, comme nous l‘avons souligné à plusieurs 

reprises dans la discussion, en dépit du fait que nos écrans aient l‘étendue de niveau 

d‘encombrement la plus importante des études citées, nous avons observé un effet limité de 

l‘encombrement visuel sur la performance technique de vol des pilotes. 
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7.5 Futures recherches 

En plus des pistes de recherche identifiées précédemment lors de la revue des limitations de notre 

étude, nous suggérons dans cette section deux sujets de recherche sur l‘encombrement visuel qui 

mérite l‘attention de la communauté scientifique. 

Premièrement, une prochaine recherche pourrait s‘intéresser à l‘encombrement visuel de 

nouvelles technologies d‘affichages du poste de pilotage, soit l‘affichage tunnel, la vision 

synthétique et la vision améliorée. Ces nouvelles technologies utilisent une représentation 

graphique égocentrique différente que celle du PFD étudiée dans cette thèse et elles présentent 

plus d‘informations à l‘écran que l‘affichage primaire de vol. Ces caractéristiques d‘affichage 

posent des questions en termes de présentation de l‘information à l‘écran, de sa compréhension 

par l‘opérateur et des effets sur la performance du pilote. La méthodologie développée dans cette 

thèse pour l‘étude de l‘encombrement visuel du PFD peut être appliquée pour ces nouveaux 

affichages afin d‘isoler la variable de représentation graphique et mieux comprendre son impact 

sur la performance du pilote. Ce prochain projet de recherche est d‘autant plus pertinent étant 

donné l‘adoption croissante de ces nouvelles technologies d‘affichage à bord du poste de pilotage 

d‘avions commerciaux. 

Deuxièmement, une prochaine étude pourrait porter sur la dépendance à la tâche des effets de 

l‘encombrement visuel d‘un affichage sur la performance. Durant la revue de littérature, nous 

avons montré que l‘encombrement visuel a un effet important sur la performance de l‘utilisateur 

pour une tâche de prospection visuelle, mais un effet faible pour une tâche de pilotage d‘avion. 

Nous en avons conclu que l‘effet de l‘encombrement visuel sur la performance dépend de la 

nature de la tâche réalisée. Le but d‘une prochaine recherche serait donc de caractériser l‘effet de 

l‘encombrement visuel sur la performance de tâches de différentes natures. Ce travail permettrait 

de développer une taxonomie de tâches en fonction de leur sensibilité à l‘effet de 

l‘encombrement visuel sur la performance. Les tâches étudiées devraient être suffisamment 

génériques afin de pouvoir généraliser les résultats obtenus, comme par exemple une tâche de 

lecture, de classement, d‘ordonnancement et de prospection. 

Une difficulté qui se pose pour réaliser une telle étude est la variation similaire du niveau 

d‘encombrement visuel entre les conditions. Par exemple, comment valider que la condition 

ayant un niveau faible d‘encombrement visuel soit similaire pour toutes les tâches? Pour ce faire, 
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nous suggérons d‘utiliser l‘échelle d‘évaluation de l‘encombrement visuel que nous avons 

employée dans notre étude. Celle-ci donne une évaluation sur une échelle continue du niveau 

d‘encombrement. La comparaison du niveau d‘encombrement entre les conditions se ferait donc 

avec une échelle continue plutôt que discrète (c.-à-d. faible, modéré ou élevé). De même, les 

résultats seraient présentés sur une échelle continue plutôt que discrète. Encore une fois, la 

méthodologie développée dans cette thèse pour l‘évaluation du niveau d‘encombrement devrait 

être utilisée pour la conception des interfaces graphiques employées dans cette future recherche. 
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ANNEXE A – Certificat de conformité éthique de la recherche 

avec des sujets humains 
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ANNEXE B – Message de sollicitation à l’intention des pilotes 

Objet : Recrutement de pilotes pour une étude portant sur l‘encombrement visuel du PFD 

(Primary Flight Display) 

Bonjour,  

Je réalise présentement une étude sur les effets de l‘encombrement visuel de l‘écran PFD sur la 

performance et la satisfaction des pilotes. Pour ce faire, je sollicite la participation de 24 pilotes 

pour effectuer des tests de vol en simulateur. Le critère de sélection des participants est d‘être un 

pilote ayant au moins 100 heures d‘expérience de vol aux instruments. 

Si vous choisissez de participer, vous contribuerez à une recherche de haut niveau pour améliorer 

la qualité de l‘écran PFD et vous pourrez tester de nouveaux symboles sur l‘écran PFD. La 

session expérimentale est d‘une durée prévue de moins de 2 heures. 

Cette étude est faite en collaboration avec l‘équipe de facteurs humains de Bombardier 

Aéronautique et s‘insère dans mon projet de doctorat à l‘École Polytechnique de Montréal. 

 

Pour plus d‘informations, vous pouvez me rejoindre par téléphone ou par courriel. 

Tél : 514-855-5001poste 64007 

Bureau : K-13-80 BAN 1 Nord – 2
e
 étage 

Courriel : philippe.doyon-poulin@polymtl.ca 

 

Merci de votre intérêt, 

Philippe Doyon-Poulin 

mailto:philippe.doyon-poulin@polymtl.ca
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Subject: Pilot solicitation for a study on PFD (Primary Flight Display) visual clutter 

Greetings, 

I‘m currently doing a study on PFD visual clutter and its effects on pilots‘ performance and 

satisfaction. To this end, I solicit the participation of 24 pilots for an experimental session with a 

flight simulator. Selection criterion is to be a pilot with at least 100 hours of experience with 

instruments flight. 

If you would like to take part in this study, you will contribute to leading-edge research to 

improve the PFD and have the opportunity to try new symbols on the PFD. The session will take 

less than 2 hours of your time. 

This study is realized in partnership with the human factors team at Bombardier Aerospace and is 

part of my doctorate at École Polytechnique de Montréal. 

 

For more information, please contact me by phone or email. 

Tel : 514-855-5001 ext. 64007 

Desk: K-13-80 BAN 1 North – 2
nd

 floor 

Email: philippe.doyon-poulin@polymtl.ca 

 

Regards, 

Philippe Doyon-Poulin 

mailto:philippe.doyon-poulin@polymtl.ca
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ANNEXE C – Formulaire de consentement à la recherche 

Bombardier Aerospace / École Polytechnique de Montréal 

Consent Form for Research 

Research Title: Evaluation of Visual Clutter on Cockpit Displays 

Principal Investigator: Philippe Doyon-Poulin (514) 855-5001 #64007 

Ph. D. student, École Polytechnique de Montréal 

Department : Mathematics and Industrial Engineering, Montréal 

Supervisor at École Polytechnique de Montréal :  

Jean-Marc Robert, Professor (514) 340-4711 #4566 

Supervisor at Bombardier Aerospace:  

Benoit Ouellette, (514) 855-5001 #50557 

Research extends from May 1st 2012 to April 30th 2013. 

1. Goal of this research 

This study is about visual clutter of flight displays. Its goal is to allow us to learn more about the effects of 

visual clutter on human performance, satisfaction, and safety.  

2. Your activities 

During this session, you will be asked to do the following activities:  

(1) Complete a questionnaire on your biographic data;  

(2) Read the flight scenario and flight instructions. During practice and test trials, you will be 

given a specific scenario to follow, including aircraft status and required actions. The scenario 

will be to complete ILS approach to CYUL runway 06L using the Primary Flight Display 

(PFD).  

(3) Complete one (1) practice test trials to become familiar with the flight simulator and the flight 

scenario you are asked to follow;  

(4) After completing the practice test trials, you will be asked to rank the relative importance of 

workload factors and pairs of display clutter descriptors based on your experience during the 

practice test trials; 

(5) Complete nine (9) experimental trials. Each trial will take approximately 10 minutes to 

complete. At the end of each experimental trial, you will be asked to provide ratings of 

workload, overall subjective clutter and aesthetics perception of the display you just used 

during the experimental trial;  

(6) Once all experimental trials are completed, you will be asked to answer questions on your 

perception of clutter and your overall perception of the experiment (debriefing interview).  
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This entire procedure will occur in one session and will take less than 2 hours of your time. 

3. Selection criteria 

To take part in this study, you must have at least 100 hours of experience with instrument flight and 

knowledge of the Bombardier Global cockpit. 

4. Benefits and risks 

Your participation in this study will contribute to the advancement of knowledge on visual clutter and its 

effects on performance. Your participation also gives you the opportunity to test new display symbology. 

There are no anticipated risks associated with this study. You will take a 5-minute break at four occasions 

during the experiment, and we will remind you to take these breaks to rest and stretch your legs. Note that 

you can suspend the experiment at any time with no prejudice if you were to experience discomfort or 

visual strain from observing the simulator displays over an extended period of time. 

5. Compensation 

You will be asked to participate in this study during your regular work schedule. You will not receive 

compensation for your participation in this study. 

6. Data collection 

We will collect data on your pilot experience. This includes age, gender, logged flight hours as captain 

and first officer, and type of aircraft flown. 

Technical flight performance data will be logged by the flight simulator. This includes current time, 

altitude, airspeed, bank inclination, pitch inclination, heading. We will record the reaction time and 

accuracy of the response for the monitoring task. 

We will also collect data on your perception of visual clutter and task demand. We will ask you to 

complete three (3) short questionnaires on (a) clutter rating, (b) aesthetics perception, and (c) task 

workload. At the end of the simulation, you will be asked to fill out a questionnaire about your overall 

perception of clutter and the factors contributing most to it. We will record the debriefing interview with 

an audiotape to save your comments. These comments will be transcribed for further analysis. 

7. Confidentiality 

All the data collected during the study are confidential and only the individuals working on the project 

(identified at the beginning of this form) will have access to them. Data will be coded using participant 

number (e.g., P1) to keep your identity confidential. The study material and your signed consent form will 

be kept under locked supervision at the main researcher‘s facility. The study material and signed consent 
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forms will be destroyed ten (10) years after the study is completed. No reference will be made to you in 

oral or written reports, which could link you to the study. 

8. Freedom to withdraw 

Your participation in this study is voluntary; you may decline to participate without any prejudice. If you 

decide to participate, you may withdraw at any time without penalty and without loss of benefits to which 

you are otherwise entitled. You are free not to answer any questions or respond to experimental situations 

that you choose without penalty. You can ask for additional details or information at any time during the 

study. Your consent does not restrict your judiciary rights in the event of a research-related injury. 

9. Funding and conflict of interest 

This research project is funded by the Fonds de recherche du Québec – Nature et technologies (FRQ-NT), 

the Natural sciences and engineering research council of Canada (NSERC) and Bombardier Aerospace. 

The research members have raised no conflict of interest, potential or apparent in the course of this 

research. 

10. Additional information 

For additional information regarding this project, you can contact my supervisor at École Polytechnique, 

Mr. Jean-Marc Robert, by phone (514) 340- 4711 # 4566 or by email jean-marc.robert@polymtl.ca.  

The Research Ethics Board of École Polytechnique de Montréal approved this research project. If you 

have any questions regarding your participation in this project, if you feel you have not been treated 

according to the details provided in this form, or if your rights as a participant in a research project have 

been violated during the course of this project, you may contact the Committee chair, Mrs. Farida Cheriet, 

by phone (514) 340-4711 #4277 or by email farida.cheriet@polymtl.ca. 

11. Appreciation 

Your collaboration is essential for the progress of this project and the research team thanks you for taking 

part in it. If you would like to receive a written abstract of the principal findings of this study, please add 

your contact information at the end of this form. 

12. Consent 

I have read the Consent Form for Research and conditions of this project. I have had all my questions 

answered. I hereby acknowledge the above and give my voluntary consent: 

 

mailto:jean-marc.robert@polymtl.ca
mailto:bernard.lapierre@polymtl.ca
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Participant‘s name :      ____________________________________ 

 

Participant‘s signature :____________________________________  Date : _____________________ 

 

Investigator‘s name :     ____________________________________  

   (or his delegate) 

 

Investigator‘s signature  :___________________________________  Date : _____________________ 

    (or his delegate) 
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ANNEXE D – Questionnaire biographique 

We would like to know about you and your flight operations experience. . 

Date: ____________  Participant:                         .   

 

Age : ____________ Gender :    ☐ Male     ☐ Female 

Former Military? ☐ Yes  ☐ No      

Service: ________________________  Years of Service: __________  Rank: _______________ 

 

Total Flight Hours : ____________  Total IFR Hours : ______________    

Total Flight Hours Last 12 Months : ____________ 

 

Are you experienced with Sidestick control ?  ☐ Yes  ☐ No 

Total Aircraft Hours using sidestick : ____________    Total Simulator Hours for sidestick : ___________ 

 

Are you experienced with Fly-by-wire (FBW) aircraft?  ☐ Yes  ☐ No 

Total Aircraft Hours for FBW : ________________  Total Simulator Hours for FBW : _______________ 

 

 

 

Grade (Check those that apply) : ☐ ATP  ☐ Commercial 
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ANNEXE E – NASA-TLX 

Definition of Task Demand Factor 

Mental demand 

How much mental and perceptual activity was required (e.g., thinking, deciding, calculating, 

remembering, looking, searching, etc.)? Was the task easy or demanding, simple or complex, exacting or 

forgiving? 

Physical demand 

How much physical activity was required (e.g., pushing, pulling, turning, controlling, activating, etc.)? 

Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

Temporal demand 

How much time pressure did you feel due to the rate or pace at which the tasks or task elements occurred? 

Was the pace slow and leisurely or rapid and frantic? 

Performance 

How successful do you think you were in accomplishing the goals of the task set by the experimenter (or 

yourself)? How satisfied were you with your performance in accomplishing these goals? 

Frustration level 

How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, relaxed and 

complacent did you feel during the task? 

Effort 

How hard did you have to work (mentally and physically) to accomplish your level of performance? 
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NASA-TLX Mental Workload Rankings 

For each of the pairs listed below, circle the scale title that represents the more important contributor to 

workload in the display. 

Mental Demand or Physical Demand 

Mental Demand or Temporal Demand 

Mental Demand or Performance 

Mental Demand or Effort 

Mental Demand or Frustration 

Physical Demand or Temporal Demand 

Physical Demand or Performance 

Physical Demand or Effort 

Physical Demand or Frustration 

Temporal Demand or Performance 

Temporal Demand or Effort 

Temporal Demand or Frustration 

Performance or Effort 

Performance or Frustration 

Effort or Frustration 
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NASA-TLX Mental Workload Ratings 

Please place an ―X‖ along each scale at the point that best indicates your experience with the display. 

 

 

Mental Demand: How much mental and perceptual activity was required (e.g., thinking, deciding, 

calculating, remembering, looking, searching, etc.)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 

 
 

 

Physical demand: How much physical activity was required (e.g., pushing, pulling, turning, controlling, 

activating, etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

 
 

 

Temporal demand: How much time pressure did you feel due to the rate or pace at which the tasks or 

task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 
 

 

Performance: How successful do you think you were in accomplishing the goals of the task set by the 

experimenter (or yourself)? How satisfied were you with your performance in accomplishing these goals? 

 
 

 

Frustration level: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 
 

 

Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 

Low High 

Low High 

Low High 

Low High 

Low High 

Low High 
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ANNEXE F – Évaluation de l’encombrement visuel 

Definitions of “Clutter” Descriptor Terms 

Redundancy 

Orthogonal 

 Definition: Being mutually independent (relative to something else); composed of mutually 

exclusive elements; statistically independent. 

 Synonyms: Unique, exclusive, independent. 

Redundant 

 Definition: Exceeding what is necessary or normal; characterized by or containing an excess; 

characterized by similarity or repetition. 

 Synonyms: Repetitive, superfluous, inessential. 

 

Colorfulness 

Monochromatic 

 Definition: Having or consisting of only one color or hue; lacking variety, creativity, or 

excitement. 

 Synonyms: Colorless, neutral, plain. 

Colorful 

 Definition: Full of color; having striking colors; characterized by rich variety. 

 Synonyms: Vivid, vibrant, striking. 

 

Salience 

Salient 

 Definition: Standing out conspicuously; of notable significance beyond its surroundings. 

 Synonyms: Prominent, striking, remarkable. 

Not Salient 

 Definition: Difficult to detect; imperceptible to the senses. 

 Synonyms: Inconspicuous, unnoticeable, subtle. 
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Dynamics 

Static 

 Definition: Having no motion; showing little change. 

 Synonyms: Unmoving, stationary, fixed. 

Dynamic 

 Definition: Characterized by continuous change, activity, or progress. 

 Synonyms: Active, driving, compelling. 

 

Variability 

Monotonous 

 Definition: Repetitiously dull or lacking in variety; tediously uniform or unvarying. 

 Synonyms: Constant, boring, unvarying. 

Variable 

 Definition: Likely to vary; likely to change frequently, suddenly, or 

unexpectedly. 

 Synonyms: Unstable, fluctuating, inconstant. 

Density 

Sparse 

 Definition: Thinly scattered or distributed; occurring at widely-spaced intervals. 

 Synonyms: Thin, meager, distributed. 

Dense 

 Definition: Having component parts packed closely together. 

 Synonyms: Thick, compact, concentrated. 
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Subjective Clutter Rankings 

For each of the pairs listed below, circle the scale title that represents the more important contributor to 

clutter in the display. 

Redundancy or Colorfulness 

Redundancy or Salience 

Redundancy or Dynamics 

Redundancy or Variability 

Redundancy or Density 

Colorfulness or Salience 

Colorfulness or Dynamics 

Colorfulness or Variability 

Colorfulness or Density 

Salience or Dynamics 

Salience or Variability 

Salience or Density 

Dynamics or Variability 

Dynamics or Density 

Variability or Density 
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Subjective Clutter Ratings 

Please place an ―X‖ along each scale at the point that best indicates your experience with the display 

configuration. 

Redundancy 

 

Colorfulness 

 

Salience 

 

Dynamics 

 

Variability 

 

Density 

 

 

 

 

Please rate your overall perception of ―clutter‖ for the current display by placing an ―X‖ at the desired 

point on the scale below. 

 

 

Orthogonal Redundant 

Monochromatic Colorful 

Salient Not Salient 

Static Dynamic 

Monotonous Variable 

Sparse Dense 

Low Clutter High Clutter 
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ANNEXE G – Qualités visuelles 

 

The display interface is Clean.  Neat and tidy; free from flaws. 

 

 

 

The display interface is Clear.  Easily seen; distinct; obvious; logical;

 positive; apparent; unambiguous. 

 

 

 

The display interface is Pleasant.  Agreeable to the mind or sense; pleasing;

 having an agreeable look; enjoyable. 

 

 

 

The display interface is Symetrical.  Balance of form; correspondence of opposite;

 parts in size/shape/position. 

 

 

 

The display interface is Aesthetics.  Beautiful; sensitive to art and beauty. 

 

 

Strongly 

Disagree 

Strongly 

Agree 

Strongly 

Disagree 
Strongly 

Agree 

Strongly 

Disagree 
Strongly 

Agree 

Strongly 

Disagree 
Strongly 

Agree 

Strongly 

Disagree 

Strongly 

Agree 
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The display interface is Original.  New, novel, unique; being that from which

 copies are made. 

 

 

 

 

The display interface is Sophisticated.  Highly complex or developed in 

form;clever; refined. 

 

 

 

 

The display interface is Fascinating.  Charming or captivating; compelling. 

 

 

 

 

The display interface is Creative.  Inventive, Imaginative. 

 

 

 

The display interface Uses Special Effects.  Distinctive, unique, or exceptional, graphical 

rendering or animation techniques employed. 

 

 

 

Strongly 

Disagree 

Strongly 

Agree 

Strongly 

Disagree 

Strongly 

Agree 

Strongly 

Disagree 

Strongly 

Agree 

Strongly 

Disagree 

Strongly 

Agree 

Strongly 

Disagree Strongly 

Agree 
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ANNEXE H – Ordre de présentation des PFDs 

Le Tableau H.1 présente l‘ordre de présentation des écrans ayant un encombrement faible, 

modéré ou élevé pour chaque participant. Pour chaque écran, le pilote a réalisé trois répétitions 

du vol d‘approche. L‘écran utilisé pour le vol de pratique est le PFD conventionnel du 

Bombardier Global. Notez que le nombre total de participants doit être un multiple de trois pour 

contrebalancer l‘ordre de présentation des écrans. 

Tableau H.1 Ordre de présentation des écrans 

Participant Pratique 1
er

 écran 2
e
 écran 3

e
 écran 

1 Conventionnel Faible Modéré Élevé 

2 Conventionnel Modéré Élevé Faible 

3 Conventionnel Élevé Faible Modéré 

4 Conventionnel Faible Modéré Élevé 

5 Conventionnel Modéré Élevé Faible 

6 Conventionnel Élevé Faible Modéré 

7 Conventionnel Faible Modéré Élevé 

8 Conventionnel Modéré Élevé Faible 

9 Conventionnel Élevé Faible Modéré 

10 Conventionnel Faible Modéré Élevé 

11 Conventionnel Modéré Élevé Faible 

12 Conventionnel Élevé Faible Modéré 
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ANNEXE I – Résultats des analyses statistiques 

Cette annexe présente les tableaux des tests d‘Analyse de la variance (ANOVA) et du test de Chi-

carré, dans le même ordre qu‘au Chapitre 6 Résultats et discussion. Nous avons utilisé le logiciel 

Statistica® version 8.0 pour réaliser l‘analyse statistique. Le plan expérimental des analyses est 

présenté à la section 5.7.1 Plan expérimental. 

Résultats subjectifs 

Niveau d’encombrement perçu 

Tableau I.2 Analyse de la variance avec mesures répétées et taille des effets pour le niveau 

d‘encombrement perçu. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 3448,299 1 3448,299 276,0114 < 1.0 x 10
-9

 0,961674 

Erreur 137,427 11 12,493    

Encombrement 422,858 2 211,429 42,3961 < 5.0 x 10
-8

 0,793992 

Erreur 109,714 22 4,987    

 

Tableau I.3 Niveau de signification du test post-hoc de Tukey HSD pour le niveau 

d‘encombrement perçu. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0003 0,0001 

Modéré - 0,0009 
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Régression linéaire entre le niveau d’encombrement perçu et la 

perception d’encombrement global 

Tableau I.4 Résumé de la régression linéaire pour la variable dépendante : perception de 

l‘encombrement global en fonction du niveau d‘encombrement perçu. 

Facteur β 
Erreur 

standard de β 
B 

Erreur 

standard de B 
t(34) p 

Origine   -3,295 1,4715 -2,239 0,031798 

Niveau 

d‘encombrement 
0,8502 0,0902 1,296 0,1375 9,419 0,0000001 

Charge mentale de travail 

Tableau I.5 Analyse de la variance avec mesures répétées et taille des effets pour la charge 

mentale de travail. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 5416,960 1 5416,960 440,6421 <0,0000001 0,975644 

Erreur 135,227 11 12,293    

Encombrement 91,699 2 45,849 8,6737 0,001669 0,440877 

Erreur 116,293 22 5,286    

 

Tableau I.6 Niveau de signification du test post-hoc de Tukey HSD pour la charge mentale de 

travail. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0242 0,4648 

Modéré - 0,0016 
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Qualités visuelles 

Qualités visuelles globales 

Tableau I.7 Analyse de la variance avec mesures répétées et taille des effets pour les qualités 

visuelles globales. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 3231,923 1 3231,923 339,4633 <0,0000001 0,968613 

Erreur 104,728 11 9,521    

Encombrement 205,415 2 102,708 22,6036 0,000005 0,672654 

Erreur 99,965 22 4,544    

 

Tableau I.8 Niveau de signification du test post-hoc de Tukey HSD pour les qualités visuelles 

globales. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0059 0,0100 

Modéré - 0,0001 

Qualités visuelles expressives 

Tableau I.9 Analyse de la variance avec mesures répétées et taille des effets pour les qualités 

visuelles expressives. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 2070,250 1 2070,250 98,59898 0,000001 0,899634 

Erreur 230,963 11 20,997    

Encombrement 62,160 2 31,080 3,89681 0,035587 0,261587 

Erreur 175,467 22 7,976    
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Tableau I.10 Niveau de signification du test post-hoc de Tukey HSD pour les qualités visuelles 

expressives. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0345 0,7696 

Modéré - 0,1317 

Qualités visuelles classiques 

Tableau I.11 Analyse de la variance avec mesures répétées et taille des effets pour les qualités 

visuelles classiques. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 4651,240 1 4651,240 362,6569 <0,0000001 0,970561 

Erreur 141,080 11 12,825    

Encombrement 554,660 2 277,330 57,3534 <0,0000001 0,839072 

Erreur 106,380 22 4,835    

Tableau I.12 Niveau de signification du test post-hoc de Tukey HSD pour les qualités visuelles 

classiques. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0091 0,0001 

Modéré - 0,0001 
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Qualités visuelles esthétiques 

Tableau I.13 Analyse de la variance avec mesures répétées et taille des effets pour les qualités 

visuelles esthétiques. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 1936,000 1 1936,000 179,4607 <0,0000001 0,942245 

Erreur 118,667 11 10,788    

Encombrement 854,000 2 427,000 33,8726 <0,0000001 0,754862 

Erreur 277,333 22 12,606    

Tableau I.14 Niveau de signification du test post-hoc de Tukey HSD pour les qualités visuelles 

esthétiques. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0091 0,0001 

Modéré - 0,0001 
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Classement des écrans 

Tableau I.15 Lequel des écrans a été le plus utile pour la tâche de vol? Distribution des 

fréquences observées et attendues. 

Niveau 

d’encombrement 

Observées 

(O) 

Attendues 

(E) 
O – E (O – E)

2
 / E 

Faible 2,00 4,00 -2,00 1,00 

Modéré 10,00 4,00 6,00 9,00 

Élevé 0,00 4,00 -4,00 4,00 

Somme 12,00 12,00 0,00 14,00 

 

Tableau I.16 Lequel des écrans a offert la meilleure précision de vol? Distribution des fréquences 

observées et attendues. 

Niveau 

d’encombrement 

Observées 

(O) 

Attendues 

(E) 
O – E (O – E)

2
 / E 

Faible 4,00 4,00 0,00 0,00 

Modéré 7,00 4,00 3,00 2,25 

Élevé 1,00 4,00 -3,00 2,25 

Somme 12,00 12,00 0,00 4,50 
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Tableau I.17 Lequel des écrans a été le plus encombré? Distribution des fréquences observées et 

attendues. 

Niveau 

d’encombrement 

Observées 

(O) 

Attendues 

(E) 
O – E (O – E)

2
 / E 

Faible 0,00 4,00 -4,00 4,000 

Modéré 0,00 4,00 -4,00 4,0000 

Élevé 12,00 4,00 8,00 16,00 

Somme 12,00 12,00 0,00 24,00 

 

Tableau I.18 Lequel des écrans a été le moins encombré? Distribution des fréquences observées 

et attendues. 

Niveau 

d’encombrement 

Observées 

(O) 

Attendues 

(E) 
O – E (O – E)

2
 / E 

Faible 12,00 4,00 8,00 16,00 

Modéré 0,00 4,00 -4,00 4,0000 

Élevé 0,00 4,00 -4,00 4,0000 

Somme 12,00 12,00 0,00 24,00 
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Performance technique de vol 

Durée d’une étape de vol 

Tableau I.19 Analyse de la variance avec mesures répétées et taille des effets de la durée d‘une 

étape de vol. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 1387229 1 1387229 1733,349 0,000000 0,993694 

Erreur 8803 11 800    

Segment 1104 1 1104 11,622 0,005834 0,513747 

Erreur 1045 11 95    

Encombrement 1140 2 570 3,084 0,065946 0,218996 

Erreur 4065 22 185    

Répétition 240 2 120 0,717 0,499467 0,061160 

Erreur 3688 22 168    

Segment x 

Encombrement 
180 2 90 2,083 0,148384 0,159241 

Erreur 952 22 43    

Segment x 

Répétition 
113 2 57 2,004 0,158657 0,154109 

Erreur 621 22 28    

Encombrement 

x Répétition 
206 4 51 0,521 0,721074 0,045182 

Erreur 4350 44 99    

Segment x 

Encombrement 

x Répétition 

60 4 15 0,461 0,764142 0,040195 

Erreur 1429 44 32    
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Tableau I.20 Niveau de signification du test post-hoc de Tukey HSD de la durée d‘une étape de 

vol. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0623 0,2139 

Modéré - 0,7846 
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Déviation latérale moyenne – Localizer 

Tableau I.21 Analyse de la variance avec mesures répétées et taille des effets pour la déviation 

latérale moyenne. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 13,63986 1 13,63986 104,8954 0,000001 0,905087 

Erreur 1,43036 11 0,13003    

Segment 0,06300 1 0,06300 3,6540 0,082324 0,249353 

Erreur 0,18966 11 0,01724    

Encombrement 0,20235 2 0,10118 3,6643 0,042309 0,249880 

Erreur 0,60745 22 0,02761    

Répétition 0,31023 2 0,15511 11,6281 0,000358 0,513879 

Erreur 0,29347 22 0,01334    

Segment x 

Encombrement 
0,00970 2 0,00485 0,1886 0,829433 0,016857 

Erreur 0,56579 22 0,02572    

Segment x 

Répétition 
0,09950 2 0,04975 4,3657 0,025308 0,284118 

Erreur 0,25070 22 0,01140    

Encombrement 

x Répétition 
0,05486 4 0,01372 0,5149 0,725140 0,044712 

Erreur 1,17211 44 0,02664    

Segment x 

Encombrement 

x Répétition 

0,03665 4 0,00916 0,6139 0,654861 0,052861 

Erreur 0,65673 44 0,01493    
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Tableau I.22 Niveau de signification du test post-hoc de Tukey HSD pour la déviation latérale 

moyenne. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0333 0,4164 

Modéré - 0,3494 
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Contrôle de la déviation latérale – Localizer 

Tableau I.23 Analyse de la variance avec mesures répétées et taille des effets pour le contrôle de 

la déviation latérale. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 11,59955 1 11,59955 92,60136 0,000001 0,893824 

Erreur 1,37790 11 0,12526    

Segment 0,16895 1 0,16895 15,32164 0,002416 0,582093 

Erreur 0,12130 11 0,01103    

Encombrement 0,46172 2 0,23086 7,83945 0,002689 0,416119 

Erreur 0,64787 22 0,02945    

Répétition 0,18743 2 0,09372 4,13721 0,029841 0,273314 

Erreur 0,49834 22 0,02265    

Segment x 

Encombrement 
0,00797 2 0,00398 0,23811 0,790124 0,021187 

Erreur 0,36799 22 0,01673    

Segment x 

Répétition 
0,09927 2 0,04963 4,72976 0,019560 0,300688 

Erreur 0,23087 22 0,01049    

Encombrement 

x Répétition 
0,19135 4 0,04784 2,34540 0,069271 0,175746 

Erreur 0,89744 44 0,02040    

Segment x 

Encombrement 

x Répétition 

0,03521 4 0,00880 1,19693 0,325589 0,098134 

Erreur 0,32362 44 0,00736    
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Tableau I.24 Niveau de signification du test post-hoc de Tukey HSD pour le contrôle de la 

déviation latérale. 

Niveau 

d’encombrement 
Modéré Élevé 

Faible 0,0024 0,0341 

Modéré - 0,4853 
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Déviation verticale moyenne – Glideslope 

Tableau I.25 Analyse de la variance avec mesures répétées et taille des effets pour la déviation 

verticale moyenne. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 60,00106 1 60,00106 22,56148 0,000600 0,672243 

Erreur 29,25391 11 2,65945    

Segment 0,01293 1 0,01293 0,18982 0,671493 0,016964 

Erreur 0,74912 11 0,06810    

Encombrement 0,00194 2 0,00097 0,00617 0,993849 0,000561 

Erreur 3,46534 22 0,15752    

Répétition 1,17141 2 0,58571 1,89176 0,174536 0,146742 

Erreur 6,81141 22 0,30961    

Segment x 

Encombrement 
0,05612 2 0,02806 0,14658 0,864493 0,013150 

Erreur 4,21135 22 0,19142    

Segment x 

Répétition 
0,40799 2 0,20399 0,98401 0,389670 0,082110 

Erreur 4,56078 22 0,20731    

Encombrement 

x Répétition 
1,82993 4 0,45748 1,22712 0,313137 0,100360 

Erreur 16,40368 44 0,37281    

Segment x 

Encombrement 

x Répétition 

0,18741 4 0,04685 0,22368 0,923753 0,019929 

Erreur 9,21649 44 0,20947    
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Contrôle de la déviation verticale – Glideslope 

Tableau I.26 Analyse de la variance avec mesures répétées et taille des effets pour le contrôle de 

la déviation verticale. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 25,54132 1 25,54132 61,09398 0,000008 0,847421 

Erreur 4,59873 11 0,41807    

Segment 0,58635 1 0,58635 11,04235 0,006795 0,500961 

Erreur 0,58411 11 0,05310    

Encombrement 0,03272 2 0,01636 0,35865 0,702629 0,031575 

Erreur 1,00355 22 0,04562    

Répétition 0,00524 2 0,00262 0,05541 0,946233 0,005012 

Erreur 1,04103 22 0,04732    

Segment x 

Encombrement 
0,04566 2 0,02283 0,45971 0,637399 0,040115 

Erreur 1,09264 22 0,04967    

Segment x 

Répétition 
0,13476 2 0,06738 2,11290 0,144755 0,161131 

Erreur 0,70160 22 0,03189    

Encombrement 

x Répétition 
0,41588 4 0,10397 1,54025 0,207184 0,122824 

Erreur 2,97008 44 0,06750    

Segment x 

Encombrement 

x Répétition 

0,24236 4 0,06059 2,53911 0,053140 0,187539 

Erreur 1,04998 44 0,02386    
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Inclinaison moyenne du mini manche sur l’axe de roulis 

Tableau I.27 Analyse de la variance avec mesures répétées et taille des effets pour l‘inclinaison 

moyenne du mini manche sur l‘axe de roulis. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 214,7339 1 214,7339 58,07209 0,000010 0,840746 

Erreur 40,6748 11 3,6977    

Segment 3,5405 1 3,5405 23,22433 0,000537 0,678591 

Erreur 1,6769 11 0,1524    

Encombrement 3,3637 2 1,6818 2,43486 0,110855 0,181234 

Erreur 15,1962 22 0,6907    

Répétition 1,7390 2 0,8695 1,70432 0,205047 0,134153 

Erreur 11,2238 22 0,5102    

Segment x 

Encombrement 
0,4845 2 0,2422 1,73965 0,198878 0,136554 

Erreur 3,0633 22 0,1392    

Segment x 

Répétition 
0,6538 2 0,3269 1,44213 0,257916 0,115907 

Erreur 4,9873 22 0,2267    

Encombrement 

x Répétition 
5,6914 4 1,4229 4,18266 0,005886 0,275489 

Erreur 14,9679 44 0,3402    

Segment x 

Encombrement 

x Répétition 

0,3988 4 0,0997 0,64810 0,631218 0,055640 

Erreur 6,7683 44 0,1538    
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Contrôle de l’inclinaison du mini manche sur l’axe de roulis 

Tableau I.28 Analyse de la variance avec mesures répétées et taille des effets pour le contrôle de 

l‘inclinaison du mini manche sur l‘axe de roulis. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 756,1834 1 756,1834 69,05171 0,000005 0,862589 

Erreur 120,4607 11 10,9510    

Segment 7,1664 1 7,1664 17,96086 0,001393 0,620177 

Erreur 4,3890 11 0,3990    

Encombrement 7,7864 2 3,8932 2,26721 0,127275 0,170888 

Erreur 37,7777 22 1,7172    

Répétition 2,1935 2 1,0967 0,94995 0,402060 0,079494 

Erreur 25,3993 22 1,1545    

Segment x 

Encombrement 
1,5343 2 0,7671 2,59096 0,097626 0,190639 

Erreur 6,5137 22 0,2961    

Segment x 

Répétition 
2,2150 2 1,1075 1,86721 0,178234 0,145114 

Erreur 13,0488 22 0,5931    

Encombrement 

x Répétition 
13,6889 4 3,4222 4,49118 0,003951 0,289918 

Erreur 33,5274 44 0,7620    

Segment x 

Encombrement 

x Répétition 

0,6667 4 0,1667 0,58258 0,676851 0,050298 

Erreur 12,5886 44 0,2861    
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Inclinaison moyenne du mini manche sur l’axe de tangage 

Tableau I.29 Analyse de la variance avec mesures répétées et taille des effets pour l‘inclinaison 

moyenne du mini manche sur l‘axe de tangage. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 303,6469 1 303,6469 12,37046 0,004822 0,529320 

Erreur 270,0074 11 24,5461    

Segment 0,1721 1 0,1721 0,43357 0,523783 0,037921 

Erreur 4,3662 11 0,3969    

Encombrement 1,7387 2 0,8694 0,84950 0,441184 0,071691 

Erreur 22,5143 22 1,0234    

Répétition 2,1126 2 1,0563 1,21248 0,316575 0,099282 

Erreur 19,1666 22 0,8712    

Segment x 

Encombrement 
0,6682 2 0,3341 1,96869 0,163480 0,151803 

Erreur 3,7337 22 0,1697    

Segment x 

Répétition 
0,5057 2 0,2528 0,94684 0,403216 0,079254 

Erreur 5,8747 22 0,2670    

Encombrement 

x Répétition 
1,3263 4 0,3316 0,57832 0,679864 0,049949 

Erreur 25,2277 44 0,5734    

Segment x 

Encombrement 

x Répétition 

1,4922 4 0,3731 1,49129 0,221190 0,119386 

Erreur 11,0069 44 0,2502    
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Contrôle de l’inclinaison du mini manche sur l’axe de tangage 

Tableau I.30 Analyse de la variance avec mesures répétées et taille des effets pour le contrôle de 

l‘inclinaison du mini manche sur l‘axe de tangage. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 187,2204 1 187,2204 55,55350 0,000013 0,834719 

Erreur 37,0710 11 3,3701    

Segment 0,0095 1 0,0095 0,05611 0,817102 0,005075 

Erreur 1,8663 11 0,1697    

Encombrement 1,9845 2 0,9923 1,81582 0,186255 0,141686 

Erreur 12,0218 22 0,5464    

Répétition 0,2341 2 0,1171 0,53658 0,592207 0,046511 

Erreur 4,8001 22 0,2182    

Segment x 

Encombrement 
0,2318 2 0,1159 0,71575 0,499862 0,061093 

Erreur 3,5621 22 0,1619    

Segment x 

Répétition 
0,2512 2 0,1256 1,15859 0,332356 0,095290 

Erreur 2,3854 22 0,1084    

Encombrement 

x Répétition 
1,8639 4 0,4660 2,66959 0,044463 0,195294 

Erreur 7,6803 44 0,1746    

Segment x 

Encombrement 

x Répétition 

1,0335 4 0,2584 2,61838 0,047684 0,192268 

Erreur 4,3420 44 0,0987    
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Vitesse verticale moyenne 

Tableau I.31 Analyse de la variance avec mesures répétées et taille des effets pour la vitesse 

verticale moyenne. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 88892202 1 88892202 621,3673 0,000000 0,982605 

Erreur 1573649 11 143059    

Segment 311088 1 311088 9,2548 0,011203 0,456918 

Erreur 369752 11 33614    

Encombrement 52119 2 26060 1,2022 0,319515 0,098525 

Erreur 476878 22 21676    

Répétition 34718 2 17359 0,7825 0,469578 0,066412 

Erreur 488051 22 22184    

Segment x 

Encombrement 
2813 2 1406 0,0792 0,924106 0,007150 

Erreur 390608 22 17755    

Segment x 

Répétition 
26667 2 13333 1,3312 0,284620 0,107953 

Erreur 220353 22 10016    

Encombrement 

x Répétition 
88224 4 22056 0,8646 0,492721 0,072869 

Erreur 1122502 44 25511    

Segment x 

Encombrement 

x Répétition 

49126 4 12282 0,8646 0,492666 0,072876 

Erreur 624984 44 14204    
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Contrôle de la vitesse verticale 

Tableau I.32 Analyse de la variance avec mesures répétées et taille des effets pour le contrôle de 

la vitesse verticale moyenne. 

Facteur 
Somme 

des carrés 

Degrés de 

liberté 

Carrés 

moyens 
F p η

2
 partiel 

Origine 11776444 1 11776444 60,79040 0,000008 0,846776 

Erreur 2130943 11 193722    

Segment 205804 1 205804 10,57862 0,007701 0,490236 

Erreur 214002 11 19455    

Encombrement 18256 2 9128 0,63952 0,537074 0,054944 

Erreur 314006 22 14273    

Répétition 4789 2 2395 0,12422 0,883801 0,011167 

Erreur 424105 22 19278    

Segment x 

Encombrement 
54903 2 27452 1,75951 0,195500 0,137898 

Erreur 343242 22 15602    

Segment x 

Répétition 
55287 2 27644 2,12366 0,143455 0,161819 

Erreur 286375 22 13017    

Encombrement 

x Répétition 
119528 4 29882 1,32360 0,276136 0,107404 

Erreur 993355 44 22576    

Segment x 

Encombrement 

x Répétition 

17871 4 4468 0,42666 0,788559 0,037339 

Erreur 460747 44 10472    
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ANNEXE J – Autorisation d’utilisation des photographies 

Sujet: Re: Airliners.net photo feedback: Request to use your photograph

De: Brett Despain <jetjockdal@mac.com>

Date : Sun, 22 Jun 2014 08:13:28 -0600

Pour: Philippe Doyon-Poulin <philippe.doyon.poulin@gmail.com>

Hello Philippe,

Thank you for contacting me.  Yes, please feel free to use my image in your thesis.  I’m glad it will help your 

presentation.  Thank you for providing me with a photo credit in your work.  Good luck on you PhD studies!

Best Regards,

Brett Despain

On Jun 22, 2014, at 07:50 , Philippe Doyon-Poulin <philippe.doyon.poulin@gmail.com> wrote:

Mr. Despain,

I'm Philippe Doyon-Poulin and I'm a PhD student at Polytechnique Montréal, Canada. My research concerns visual 

clutter of flight displays, especially the primary flight display (PFD). You can view the results of my work and 

published articles on my website http://doyon-poulin.ca/

In my thesis, I present three different flight displays (HUD and PFD) to show the range of information and symbols 

displayed, from a low-density display (HUD) to a high-density display (cluttered PFD). 

I'm writing you to ask your permission to include your picture of the HUD in my thesis. I found that your picture shows 

clearly the symbology on HUD and helps explaining my research on visual clutter. I will not modify not alter the 

original picture, nor use it in any other work. The picture will have the following legend (my work is in French, so I 

translated the legend to English below):

HUD display from Boeing 737-832 in final approach to San Francisco. Picture by Brett B. Despain ©, used with 

permission of the author (Despain, 2008).

Where the reference is a link to the page on airliners.net. Concerning the distribution of the work, when my thesis will 

be accepted by the jury (in a few months from now) the work will be made available to download in PDF on a 

database of theses (ProQuest Dissertations & Theses). 

I thank you for your attention, and I'm looking forward to hearing from you.

Best regards,

Philippe Doyon-Poulin

----------------------------------------------------------

Message was sent using the mail interface on Airliners.net

http://www.airliners.net/search/photo.search?id=1465077

To uphold the good reputation of the photographer

community, please try to reply to photo usage requests.

Re: Airliners.net photo feedback: Request to use your photograph  

1 sur 1 2014-06-22 14:04
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