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Cette thèse intitulée :

A MATHEMATICAL PROGRAMMING FRAMEWORK FOR NETWORK CAPACITY

CONTROL IN CUSTOMER CHOICE-BASED REVENUE MANAGEMENT

présentée par : HOSSEINALIFAM Morad

en vue de l’obtention du diplôme de : Philosophiæ Doctor
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RÉSUMÉ

Cette thèse est basée sur l’étude de différentes approches pour répondre à la problématique

du contrôle de capacité pour les réseaux en gestion du revenu. Elle est composée de cinq

chapitres. Le premier donne une vue d’ensemble de la thèse ainsi que la méthodologie suivie

pour analyser chaque approche. Les trois chapitres suivants sont à mettre en lien avec des

articles que nous avons soumis dans des revues internationales. Ils proposent de nouveaux

modèles et algorithmes pour le contrôle de capacité en gestion du revenu. Les cinquième et

sixième chapitres contiennent la conclusion et l’ouverture de la thèse. Nous décrivons, dans

la suite, chaque chapitre plus précisément.

Dans le chapitre deux, nous proposons une approche de programmation mathématique

avec choix de clients afin d’estimer les bid prices variant dans le temps. Notre méthode

permet de prendre facilement en compte les contraintes techniques et pratiques d’un système

de réservation central contrairement aux solutions actuelles proposées dans la littérature. En

plus d’avoir développé un filtre vérifiant la disponibilité de combinaisons de produits sous

un contrôle par bid price, nous avons mis au point un algorithme de génération de colonnes

où une puissante heuristique est utilisée pour résoudre le sous-Problème fractionnel qui est

NP-difficile. Encore une fois nos résultats numériques sur des données simulées montrent que

notre solution est meilleure que les approches actuelles.

Dans le chapitre trois, nous développons une nouvelle méthode de programmation mathé-

matique pour obtenir une allocation optimale des ressources avec un modèle de demande à

choix non paramétriques. Notre méthode est alors complétement flexible et ne souffre pas des

inefficacités des modèles paramétriques actuels comme ceux de type multinomial logit. Pour

cela, nous avons modifié un algorithme de génération de colonnes afin de traiter efficacement

des problèmes réels de grande taille. Nos résultats numériques montrent que notre méthode

est meilleure que les méthodes de la littérature actuelle à la fois en qualité de la solution

qu’en temps de résolution.
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Dans le chapitre quatre, nous analysons un nouveau programme mathématique avec choix

de clients pour estimer des booking limits qui doivent respecter une hiérarchie (nesting) ainsi

que des règles commerciales imposées par le système de réservation central. De la même

manière qu’au chapitre précédent, nous identifions les combinaisons de produits respectant

ou non la hiérarchie (nesting) fixée par la politique de contrôle et nous développons une

heuristique basée sur la décomposition. En simulant le processus stochastique d’arrivée, nous

montrons encore une fois l’efficacité de notre méthode pour résoudre des problèmes complexes.
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ABSTRACT

This dissertation, composed of five chapters, studies several policies concerned with the

issue of capacity control in network revenue management. The first chapter provides an

overview of the thesis, together with the general methodology used to analyze the control

policies. In the next three chapters, each of which corresponding to a paper submitted to an

international journal, we propose new models and algorithms for addressing network revenue

management. The fifth and final chapter concludes the dissertation, opening avenues for

further investigation. We now describe the content of each article in more detail.

In Chapter 2, we propose a customer choice-based mathematical programming approach

to estimate time-dependent bid prices. In contrast with most approaches in the literature,

ours can easily accommodate technical and practical constraints imposed by central reser-

vation systems. Besides developing a filter that checks the compatibility of feasible product

combinations under bid price control, we develop a column generation algorithm where a

powerful heuristic is used to solve the NP-hard fractional subproblem. Again, our computa-

tional results show, based on simulated data, that the new approach outperforms alternative

approaches.

In Chapter 3, we develop a new mathematical programming framework to derive optimal

an optimal allocation of resources under a non-parametric choice model of demand. The

implemented model is completely flexible and removes the inefficiencies of current parametric

models, such as those of the ubiquitous multinomial logit. We develop for its solution a

modified column generation algorithm that can efficiently address large scale, real world

problems. Our computational results show that the new approach outperforms alternative

approaches from the current literature, both in the terms of the quality of the solution and

the required processing time.

In Chapter 4, we analyze a novel customer choice-based mathematical program to estimate
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booking limits that are required to be nested, while simultaneously satisfying the business

rules imposed by most central reservation system. Similar to what was accomplished in the

previous chapter, we identify product combinations that are compatible (or not) with some

nested control policy, and develop a decomposition-based heuristic algorithm. By simulat-

ing the stochastic arrival process, we again illustrate the efficiency of the method to tackle

complex problems.
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CHAPTER 1

INTRODUCTION

The origins of revenue management go back to the the late 1960’s, when airlines started

to differentiate their products and offer lower fares. At that time, the aim of the firms was to

maximize revenue by discounting otherwise unsold seats while guaranteeing that high-paying

customers would still purchase first-class tickets.

To do so, they imposed carefully designed fences (booking limits) between fares in order

to protect high-fare seats. Currently, this revenue management practice has spread and been

successfully applied to industries as diverse as rail transportation, cargo, telecoms, car rental,

tourism, entertainment, hospitality, to name only a few. In this thesis, while we use the

terminology of airlines, our analysis can be easily extended to the other revenue management

aspects (Talluri and Van Ryzin (2005)).

In the literature, researchers decompose the revenue management problem into four sub-

problems : demand forecasting, overbooking policy determination, capacity allocation (some-

times called seat inventory control) and pricing. These four related topics are the links, put

together, make the revenue optimization policy of the airline (Talluri and Van Ryzin (2005)).

Although demand forecasting is a basically statistical task, the determination of over-

booking and capacity allocation policies are mainly confronted by optimization techniques.

Indeed, these issues have been investigated by many operations researchers over the last forty

years. Major airlines have now developed and utilize computerized applications to address

the overbooking and seat control problems.

Seat inventory or capacity control in revenue management is a mechanism that only

accepts requests with the highest returns. In other words, it is a decision-making system that

accepts or reject arrivals in order to maximize expected total revenue in a context where

resource availability is limited. The main difficulty associated with capacity control in the
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airline industry arises when flights involve several legs.

Nowadays, firms use a variety of techniques to dynamically control perishable inventories,

with the aim to maximize revenue. We divide existing approaches to control the availability

of resources over a booking horizon into two main categories : bid price and nested booking.

In this thesis, we study these booking control policies and we develop efficient approaches for

their optimization.

Bid price policies set a threshold price for each leg (resource) and a request is accepted

only if its revenue exceeds the sum of bid prices of its constituent legs. Even though this

policy does not guarantee optimality, it is easy to implement and has an excellent revenue

performance (Chaneton and Vulcano (2011b)).

Alternatively, a booking limit for a specific control class on a particular resource is the

maximum number of units which can to be sold from that control class using that resource.

The main idea in assigning booking limits is to restrict using capacity of the resources by

the lower fare control classes and avoid rejecting future high willing-to-pay customers (van

Ryzin and Vulcano (2008a)).

This thesis is concerned with the computation of optimal revenue management policies

based on bid prices or booking limits. It is organized as follows. Chapter 2 presents a mathe-

matical programming framework for computing improved bid prices. Our main contributions

in this article are as follows :

– We develop a joint seat allocation and bid pricing model to obtain directly the value of

bid prices and the corresponding allocation of resources.

– We develop two filtering approaches to decrease the size of the problem and solve the

model more efficiently. These techniques can be embedded within any other capacity

control policy and allow to significantly reduce the size of the problem

– Bid prices are naturally time-dependent and can be computed by dynamic programming

techniques. In the spirit of (Chaneton et al. (2010))), we consider a column generation

framework where the NP-Hard subproblem is solved by a new and efficient heuristic.
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Chapter 3 presents a new mathematical programming formulation for network revenue

management, under a non-parametric choice model. The main contributions of this paper

are :

– The formulation of revenue management program where customer demand is based on

a nonparametric a choice model based on ordered preference lists.

– The design and implementation of a column generation algorithms where the subpro-

blem is solved by an algorithm that exploits the problem’s structure.

– An aggregation of the ordered preference list that allow a significant reduction of the

size of the problem.

Chapter 4 presents a new mathematical programming approach for computing optimal

booking limits in the network revenue management problem. The main contributions of this

paper are :

– We develop a mathematical programming formulation to compute optimal booking li-

mits under a non-parametric choice model of demand that comply with the ”nestedness”

property implemented by most airlines.

– An important feature of the model is its compliance with rules implemented by most

computer reservation systems.

– Besides the estimation of nested booking limits, the proposed approach provides the

corresponding offer sets. These data provide vital information to the analysts who

manage the revenue management system.

– We develop a fast decomposition-based heuristic approach to solve the large-scale pro-

blem, whose performance is assessed on realistic instances.

Finally, in Chapter 5, we present conclusions and discuss possible future work.
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CHAPTER 2

ARTICLE 1 : A NEW AND EFFICIENT BID PRICE APPROACH FOR

DYNAMIC RESOURCE ALLOCATION IN THE NETWORK REVENUE

MANAGEMENT PROBLEM

Chapter Information : An article based on this chapter is submitted for publication M.

Hosseinalifam, P. Marcotte, and G. Savard.

In this paper, we develop a joint seat allocation and bid pricing model that derives the

value of time-dependent bid prices and the corresponding resource allocation in the

customer choice-based revenue management framework.

ABSTRACT

Nowadays, firms that sell perishable products use a variety of techniques to maximize

revenue, including the dynamic control of their inventories. One of the most powerful and

simple approaches to address this issue consists in assigning threshold values (“bid prices”)

to each resource, and to accept requests whenever their revenue exceeds the sum of the bid

prices associated with its constituent resources. In this paper, we propose a new customer

choice-based mathematical program to estimate time-dependent bid prices. In contrast with

most approaches from the current literature, ours is characterized by its flexibility. Indeed,

it can easily embed technical and practical constraints that are observed in most central

reservation systems (CRS). To solve the model, we develop a column generation algorithm

where the NP-hard subproblem is addressed via an efficient heuristic procedure. Our

computational results show that the new approach outperforms alternative proposals.

Key words : bid price, customer choice behavior, network capacity control, revenue

management
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2.1 Introduction

Capacity control is one of the key issues in network Revenue Management (RM). It in-

volves the design of rules that specify whether specific requests for products should be accep-

ted or not, taking into account the fact that products use resources, and that resources are in

limited supply. The ultimate aim is to maximize revenue by controlling resource availability

over a booking horizon. This can be achieved by a bid price control that sets a threshold price

for each resource, and where an arriving request for a specific product is accepted only if the

product is made available and its revenue exceeds the sum of the bid prices of its constituent

resources (Talluri and Van Ryzin (2005)).

Over the years, many approaches to the optimal allocation of resources over a finite horizon

have been proposed. Recently, some have taken into account the choice behavior of rational

customers, and led to the deterministic linear programming formulation CDLP (Bront et al.

(2009)). However, due in part to the computational complexity of solving CDLPs of practical

sizes, most Central Reservation Systems (CRS in short) implement bid prices or set booking

limits 1 on the number of products that can be accessed (Meissner and Strauss (2012)).

In the airline industry, bid price controls have become the method of choice for seat

inventory control problem for other reasons as well. First, even in a real-world network setting

involving a large number of products and resources, a single value (bid price) is assigned to

each resource at each booking period. Since the number of resources is generally much less

than the number of products, the number of decision parameters is relatively small. Next,

the decision-making process can be implemented quickly and very simply. Indeed, whenever

a request arrives, one only needs to compare the revenue to the sum of the corresponding bid

prices. Finally, the concept of bid price control is intuitive and easy to understand. Even if the

approach cannot theoretically guarantee the optimal revenue, good bid prices can yet lead

to a significant revenue increase. In some cases, asymptotic optimality can even be proved

1. In the airline industry, this refers to policies that set bounds on the various fare products. Bid price
policies can be interpreted as ‘dual’ methods that achieve a similar goal.
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under weak assumptions (Talluri and Van Ryzin (2005)).

Historically, bid prices were introduced by Simpson (1989) and Williamson (1992), who

considered several approximating models for their computation. By interpreting the bid price

of a resource as the opportunity cost of one additional capacity unit, they proposed to set

bid prices to the dual variables of a suitable linear program’s capacity constraints.

Talluri and van Ryzin (1998) provided the theoretical foundations for the bid price ap-

proach. In particular, they extended the concept by specifying bid prices for each resource,

each time period, each capacity, and provided a two-period counter example that showed

that bid prices do not necessarily yield an optimal control. More recently, Topaloglu (2009)

showed how to compute bid prices that depend on residual resource capacities, through the

Lagrangian relaxation of certain capacity constraints.

In the context of choice based network revenue management, Chaneton and Vulcano

(2011b) proposed a bid price control policy for addressing a continuous capacity/demand

model. The model allows a simple calculation of the revenue function’s sample path gradient,

which is then embedded within a stochastic steepest ascent algorithm that converges towards

a stationary point of the revenue function. In the static case, Chaneton et al. (2010) developed

a framework for solving the CDLP linear program, by focusing on offer sets that are com-

patible with some bid price control policy. As we will see later, this feature is shared by our

model, where the compatibility condition explicitly enters the column generation framework.

In a recent work, Meissner and Strauss (2012) proposes a heuristic that iteratively improves

an initial guess of bid prices, that could be provided by a dynamic estimate of the capacities’

marginal values.

This paper’s main contribution is concerned with the development of a joint seat allo-

cation and bid pricing model that derives the value of time-dependent bid prices and the

corresponding resource allocation. Our approach is based on the customer choice-based de-

terministic linear programming paradigm. Its structure enables to take into account not only

the hub-and-spoke structure of the network, but also the behavior of customers, who base
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their purchase decisions upon the attributes of the products offered by the firms, as well as

their own willingness to pay. In order to solve practical real-world problems, in the spirit

of Chaneton et al. (2010), we develop a column generation algorithm that is based on an ef-

ficient heuristic procedure for solving the NP-hard subproblem. Moreover, we introduce two

filtering approaches, that are compatible with arbitrary control policies, and allow the exact

solution of small instances by off-the-shelf solvers.

The rest of the paper is organized as follows. Section 2 is devoted to the formulation of

the inventory management model, i.e., a bid price model for choice based network revenue

management. We present algorithmic approaches to the solution of the model in Section 3.

In Section 4, we provide computational results, as well as comparisons with alternative ap-

proaches from the recent literature. Finally, concluding comments and avenues for further

research are outlined in Section 5.

2.2 Problem formulation

In this section, we introduce the general definitions and notation, and provide mathema-

tical formulations of the bid price model.

2.2.1 General definitions and notation

Let us consider a set of products indexed by j ∈ J = {1, 2, . . . , |J |},

together with a revenue (fare) vector r and a capacity vector c, also of dimension |J |. The

use of resources i ∈ I = {1, 2, . . . , |I|} by the products is specified by an incidence matrix A

of dimension |I| × |J |, whose binary elements are defined as

aij =

 1, if resource i is used by product j,

0, otherwise.

In the model, customers are divided into segments indexed by l ∈ L = {1, 2, . . . , |L|},

and characterized by attributes such as time, price, or path preferences. We associate to
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each segment l a consideration set Γl, that specifies the subset of products considered by a

customer belonging to segment l. We denote by a positive number vlj the value of product j

to a customer belonging to segment l.

Time t ∈ T = {1, 2, . . . , |T |} runs forward in discrete increments, and the arrival process

of customers is governed by independent Poisson processes of respective rates λl = λpl, where

pl denotes the probability that an arriving customer belongs to segment l, and λ =
∑L

l=1 λl

is the total arrival rate.

Within each time period t, the firm must decide which subset S ⊆ N of products is

made available to customers. Accordingly, we denote by ξj(S) a binary variable that specifies

whether or not j ∈ S, by Pj(S) the probability that product j be selected by an arriving

customer, and by P0(S) = 1 −
∑

j∈S Pj(S) the residual probability associated with the no-

purchase option. Assuming that customers’ choice probabilities are based on a discrete choice

model, the probability that customer l select an available product j ∈ S is given by

Plj(S) =
vlj

vl0 +
∑

h∈Γl∩S vlh
(2.1)

=
ξj(S)vlj

vl0 +
∑

h∈J ξh(S)vlh
(2.2)

This definition is compatible with the classical multinomial logit choice model, where

the utilities are the sum of a linear combination of product j’s attributes and a Gumbel-

distributed random variable. Since the firm does not have prior knowledge of the segment

associated with an arriving customer, the probability that a product j be selected is given by

Pj(S) =
L∑
l=1

plPlj(S). (2.3)

Given an offer set S, the expected revenue is expressed as
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R(S) =
∑
j∈S

rjPj(S). (2.4)

Now, let Qi(S) denote the probability of using a unit of resource i ∈ I, regrouped into

the vector Q(S). Letting P (S) = (P1(S), . . . , Pn(S))>, we can write

Q(S) = AP (S). (2.5)

Finally, a bid price policy associates to each resource i a bid price πi. Based on the vector

π, a product j ∈ S is then offered at time t if and only if

rj ≥
∑
i∈I

aijπit. (2.6)

2.2.2 Model formulation I

For each time index t ∈ T , let us denote by ξjt the binary variable that specifies whether

product j belongs to the set S at time t, and by ξ the vector obtained by concatenation

of these variables. The choice of an optimal bid price policy can then be formulated as the

mathematical program :

BID-Ia : max
ξ,π

∑
t∈T

∑
j∈J

∑
l∈L

λplrj
ξjtvlj

vl0 +
∑

h∈J ξhvlh
, (2.7)

subject to∑
t∈T

∑
j∈J

λplaij
ξjtvlj

vl0 +
∑

h∈J ξhvlh
≤ ci ∀i ∈ I, (2.8)

rj <
∑
i∈I

aijπit ⇒ ξjt = 0 ∀t ∈ T,∀j ∈ J, (2.9)

ξjt ∈ {0, 1} ∀t ∈ T,∀j ∈ J. (2.10)
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Now, upon the introduction of variables

yjt =
ξjtvlj

vl0 +
∑

h∈J ξhvlh

and a big-M constant M1, BID-Ia can be recast as the mixed integer nonlinear program

BID-Ib : max
y,π

∑
t∈T

∑
j∈J

∑
l∈L

λplrjyjt, (2.11)

subject to∑
t∈T

∑
j∈J

λplaijyjt ≤ ci ∀i ∈ I, (2.12)

rj −
∑

j∈J aijπit

M1

≤ ξjt ≤ 1 +
rj −

∑
j∈J aijπit

M1

− ε (2.13)

∀t ∈ T,∀j ∈ J,

yjt(vl0 +
∑
h∈J

ξhtvlh) = ξjtvlj (2.14)

∀j ∈ J,∀h ∈ J,∀l ∈ L,∀t ∈ T,

ξjt ∈ {0, 1} ∀t ∈ T,∀j ∈ J. (2.15)

In the above, the constant ε is a threshold value that settles the degeneracy issue that allows

a product to be inserted into S only if revenue strictly exceeds its bid price, i.e., the sum of

the bid prices associated with its constituent resources. Next, to linearize BID-Ib, it suffices

to introduce the variables

zhjt = ξhtyjt

and, for some suitably large constant M2, the set of constraints :

zhjt ≤ yjt

zhjt ≥ yjt +M2(ξht − 1)
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zhjt ≤ ξht

for every triple (j, h, t) ∈ J × J × T .

This mixed integer linear program involves a number of binary variables that is very large,

albeit polynomial in terms of products, resources and number of periods. For this reason, we

opted for an alternative formulation whose structure is amenable to efficient algorithmic

approaches.

2.2.3 Model formulation II

The second formulation is based on the choice based models introduced by Gallego et al.

(2004) and further developed by Liu and van Ryzin (2008) and Bront et al. (2009), where

the customers’ choice sets may overlap. We let the binary variable Xt(S) denote whether or

not the set S is offered at time t, and consider the mixed integer linear program

MIP-I : max
X

∑
t∈T

∑
S⊆N

λR(S)Xt(S) (2.16)

subject to (2.17)∑
t∈T

∑
S⊆N

λQi(S)Xt(S) ≤ ci ∀i ∈ I, (2.18)

∑
S⊆N

Xt(S) ≤ 1, ∀t ∈ T, (2.19)

Xt(S) ∈ {0, 1} ∀t ∈ T,∀S ⊆ N, (2.20)

which is closely related to the model of Liu and Van Ryzin (2008) or Bront et al. (2009),

where the decision variable Xt(S) represents the fraction of the total booking horizon over

which the set S is offered. Note that our variant is more flexible, allowing the introduction of

time-related constraints and controls. Otherwise, both formulations can be easily converted

to each other (Kunnumkal and Topaloglu (2008)).
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A drawback of MIP-I is that it may involve sets that are inducible by no bid price

policy (Talluri and Van Ryzin (2005)). To sidestep this difficulty, we enforce compatibility

between choice sets and some bid price vector π. More precisely, we restrict our attention to

the offer sets that satisfy the two inequalities

rj ≥
∑
i

aijπit ∀j ∈ S, (2.21)

rj <
∑
i

aijπit ∀j 6∈ S. (2.22)

According to these constraints, a request for a product is accepted if and only if its revenue

exceeds its bid price and it will be rejected if its revenue is strictly less than its bid price. For

practical reasons, one replaces the second strict inequality by

rj ≤
∑
i

aijπit + ε ∀j 6∈ S, (2.23)

where ε is a threshold value that removes the degeneracy issue that would arise when revenue

and bid price coincide, and agrees with industry practice. We denote by Ω the set of offer

sets that are bid-price compatible. This yields

MIP-II : max
X∈Ω

∑
t∈T

∑
S⊆N

λR(S)Xt(S) (2.24)

subject to (2.25)∑
t∈T

∑
S⊆N

λQi(S)Xt(S) ≤ ci ∀i ∈ I, (2.26)

∑
S⊆N

Xt(S) ≤ 1, ∀t ∈ T, (2.27)

Xt(S) ∈ {0, 1} ∀t ∈ T,∀S ⊆ N, (2.28)
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In contrast with the BID-I formulation, MIP-II involves an exponential number of va-

riables. However, as we shall see in the next section, its structure makes it amenable to

efficient algorithms for its solution.

2.3 Solution approaches

The MIP-II model involves a number of variables that is exponential with respect to the

number |J | of products. Depending on its size, we consider two solution approaches.

2.3.1 Small and medium-sized instances

When the number of products is small, one can enumerate the sets that belong to Ω

and solve MIP-II via an off-the-shelf solver. This could simply be achieved by enumerating

all possible combinations of products, and dropping those for which there does not exist a

consistent vector π, i.e., a vector that satisfies the system of equations Ω.

It is also possible to identify, offline, sets that cannot belong to an optimal solution,

through an “efficiency” certificate that takes the form of a probability vector α(S).

Definition 2.3.1 Let α(S) be a set of probabilities over the set 2J . We say that S̄ ∈ 2J is

inefficient if the following two inequalities hold :

Q(θ) ≥
∑
S⊆N

α(S)Q(S)

R(θ) <
∑
S⊆N

α(S)R(S).

According to this definition, a set S̄ is inefficient if a randomization of sets achieves an

expected revenue that is strictly greater than the revenue of S̄, with no increase in the

conditional usage of capacity Q(S̄). It has been proved by Liu and van Ryzin (2008) that any

optimal solution of MIP-I must be efficient, i.e., not inefficient.

Finding efficient sets is computationally NP-Hard, which explains why various heuristic

approaches have been developed for this problem, most of them requiring the (implicit)
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enumeration of feasible subsets, which is computationally challenging for large scale instances.

Whenever customer segments are disjoints, a simple “nesting by fare” order yields all efficient

sets. However, in the case of overlapping segments, this approach is not valid anymore (Liu

and van Ryzin (2008)), and one might have to check efficiency through the solution of the

linear program

ES : max
α

∑
S⊂N

R(S)α(S) (2.29)

subject to∑
S

Qi(S)α(S) ≤ Qi(θ) ∀i, (2.30)

∑
S⊂N

α(S) ≤ 1, (2.31)

α(S) ≥ 0 ∀S

that involves an exponential number of variables. Whenever the objective of ES exceeds R(θ),

the corresponding set θ is inefficient and can be removed. To solve ES, one may resort to

column generation or to heuristics.

Note that the operations mentioned in this section need only be performed offline, and

thus might be envisioned if the system needs to be reoptimized on a frequent basis.

2.3.2 Large instances

For problems that are too large to be addressed directly, and taking into account that the

ultimate goal is to derive bid prices (rather than offer sets), we propose a column generation

approach for solving the linear programming relaxation of MIP-II, which involves a small

number |I|+|J | of constraints. At a generic iteration, we consider the reduced master problem
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RMP : max
X

∑
t∈T

∑
S∈Ω̄

λR(S)Xt(S) (2.32)

subject to (2.33)∑
t∈T

∑
S∈Ω̄

λQi(S)Xt(S) ≤ ci ∀i ∈ I, (2.34)

0 ≤ Xt(S) ≤ 1 ∀t ∈ T,∀S ∈ Ω̄. (2.35)

Let κi be the dual variable (multiplier) associated with the ith capacity constraint, and

σt the multiplier associated with the tth time constraint. A variable with largest positive

reduced cost, to be inserted in the set Ω̄, is then obtained by solving the column generation

subproblem

SUB : max
S∈Ω
{λR(S)− λκ>Q(S)} −

∑
t∈T

σt, (2.36)

where the last term can be removed from the maximization, since it is independent of S and

therefore has no influence on the optimal solution.

Now, let yj be a binary variable that assumes value 1 if j ∈ S, and 0 otherwise. These

are in one-to-one correspondence with subsets of J and, upon introduction of a suitably large

“big-M” constant M , the bid-price compatibility constraints can be written as

rj + (1− yj)M ≥
∑
i

aijπi + ε ∀j ∈ J, (2.37)

∑
i

aijπi ≥ rj(1− yj) ∀j ∈ J, (2.38)

and we denote by Ȳ the set of bid-price compatible binary vectors y.

Now, replacing R(S) and Q(S) by their respective expressions (2.4) and (2.5), and letting

wj = (rj − A>j κ), the subproblem takes the form
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SUB : max
y∈Ȳ

L∑
l=1

λl

∑
j∈Γl

wjvljyj∑
h∈Γl

vlhyh + vl0
. (2.39)

If the optimum of (2.39) exceeds
∑

t∈T σt, otherwise, the offer set corresponding to the binary

vector y enters Ω̄, which is reoptimized on the enriched subset. Otherwise, an optimal solution

to the relaxed MILP has been found and the algorithm halts. The crux of the method consists

in solving the fractional problem (SUB), which has been proved to be NP-hard, even in the

absence of the compatibility constraints (see Bront et al. (2009)). In the next section, we

address this issue.

2.3.3 Solving the column generation subproblem

A number of algorithms have been proposed for addressing the fractional problem pro-

blem (2.39) in the absence of compatibility constraints. A review of these approaches can be

found in Bront et al. (2009) and Hosseinalifam (2009). However, these cannot easily be adap-

ted to our subproblem, especially when the number of products becomes large. In this section,

our aim is to present a solution procedure that is efficient, both in terms of computational

complexity and solution quality.

First, let us consider the problem of maximizing the ratio of affine functions

max
x

P (x)

D(x)
=

∑m
j=1 pjxj∑m
j=1 djxj

, (2.40)

where the denominator D(x) is strictly positive. A classical algorithm, due to Dinkelbach, is

based on the solution of the parametric linear program

max
x

P (x)− ρD(x). (2.41)

Let x(ρ) be an optimal solution of the above program. It has been proved that x(ρ) is an
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optimal solution of the original fractional program if and only if P (x(ρ))−ρD(x(ρ)) = 0. The

quest for an optimal ρ can then be performed by binary search or other suitable updating

techniques. For instance, it is natural, at iteration k + 1, to set

ρk =
P (xk)

D(xk)
.

Almogy and Levin (1971) have proposed an extension of this idea to the sum of ratios problem

max
n∑
i=1

Pi(x)

Di(x)
, (2.42)

which is NP-hard (see Falk and Palocsay (1992)) specifically, their algorithm iteratively solves

the parametric linear program

max
x

n∑
i=1

Pi(x)− ρkiDi(x), (2.43)

where the parameters are updated according to the formula :

ρki =
Pi(x

k)

Di(xk)
.

The algorithm halts when the objective is (close to) zero. Although a numerical example

provided by Falk and Palocsay (1992) shows that this approach might fail to yield an optimal

solution, it has been observed that the performance of this polynomial algorithm is frequently

very good. For this reason, we decided to adapt it to our column generation subproblem :

Algorithm CGSUB

Step 1 (Initialization)

Set k = 0 and let y0 ∈ Ȳ .

Let ε be a small positive number.

Step 2 (parameter update)
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ρkl =

∑
j∈Γl

wjvljy
k
j∑

i∈Γl
vljyki + vl0

, ∀l ∈ L.

Step 3 (solution update)

yk+1 ∈ arg max
y∈Ȳ

Gk+1(ρ) =
∑
l∈L

∑
j∈Γl

wjvljyj − ρkl (
∑

j∈Cl
vljyj + vl0)∑

j∈Γl
vljykj + vl0

.

Step 4 (stopping criterion)

If |Gk+1(ρ)| ≤ ε then stop.

Step 5 (loop)

Return to Step 2.

This heuristic procedure, which iteratively solves linear programs, is very fast, and we

observed that it delivered an optimal solution in most of our experiments.

2.4 Numerical results

In this section, we compare the performance of our algorithm against alternative ap-

proaches. To this aim, we consider three benchmark examples that have been widely used

in the literature (e.g., see Chaneton and Vulcano (2011b)). The computational results have

been carried out on a 2.13 GHz twin-core computer with 4 GB of RAM. The environment

FICO Xpress-Mosel 7.2.1 has been used both to formulate and solve the master problems

that arise in our column generation algorithm.

In order to validate the quality of the bid prices, we simulated 2000 streams of customer

demand over the planning horizon, according to a Poisson process with rate λ. The conditional

probability that an arriving customer belong to the segment l is pl. Throughout, we assumed

at most one arrival within any given time period. The arriving customer will choose from

available products based on the bid price control policy, and according to the utilities of

products in his consideration set. These utilities are consistent with a multinomial logit

discrete choice model, and therefore involve a Gumbel-distributed random term. In the tables
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presenting the numerical results, revenues are averaged over the 2000 streams.

2.4.1 Parallel flight example

In this example, we consider a network with three parallel legs (morning, afternoon,

evening) with initial capacities of 30, 50 and 40, respectively, together with two fare classes,

high (H) and low (L), This induces a total of six products. Data relevant to products and

resources’ usage are displayed in the Figure (2.1) and Table (2.1) . As shown in Table (2.2),

customers are divided into four overlapping segments based on their origin, end destination,

and price sensitivity (time over price ratio).

Figure 2.1 Parallel flight example : network.

Table 2.1 Parallel flight example : products

product leg class fare

1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

The booking period is divided into τ = 300 periods and an arrival rate of λ = 0.5 leads to

an average of 150 arrivals. For each ot the four demand segments, three“no purchase”utilities
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v0 have been considered. Meanwhile, leg capacities have been weighted by a scale factor α

in order to assess the quality of the solution with respect to various congestion levels. The

total expected revenue obtained by different policies based on our bid price control policy are

shown in Table 2.3.

Table 2.2 Segment definition for the parallel flight example

# λl consideration Set preference vector description

1 0.1 {2,4,6} (5,10,1) price insensitive,
afternoon preference.

2 0.15 {1,3,5} (5,1,10) price sensitive,
evening preference.

3 0.2 {1,2,3,4,5,6} (10,8,6,4,3,1) price sensitive,
early preference.

4 0.05 {1,2,3,4,5,6} (8,10,4,6,1,3) price insensitive,
early preference.

In this Table, column “UB” represents the upper bound obtained from the model CDLP.

The next five columns represent total expected revenues obtained by different bid price control

policies taken from Chaneton and Vulcano (2011b). Column “BP-SG” denotes the revenue

obtained by the Stochastic Gradient method proposed by Chaneton and Vulcano (2011b).

The shorthand “reopt” refers to the number of reoptimization performed over the course

of the simulation, taking into account the “true” pseudo-random arrival process to adjust

the amount of resources available. In the case of Deterministic Linear Programming (DLP)

formulation and Choice-based Deterministic Linear programming formulation (CDLP), it has

been observed that, unless a large number of reoptimizations is performed, the quality of the

bid prices suffered. Note however that a large number of reoptimizations may actually induce

a reduction in total revenue, as can be observed in the table. In the last column, the header

“BP-CG” refers to our column generation method.

In most cases, BP-CG outperformed the alternative approaches. Actually, we could ob-

serve a pattern where BP-CG was only dominated by BP-SG, in the low congestion instances.

BP-CG performed well over the range of α-values, contrary to DLP and CDLP, whose perfor-
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mance diminished with an increase of that parameter. Note that BP-SG, which also performed

well, is handicapped by CPU times that do not scale well, making it impractical for real-life

applications.

Table 2.3 Expected revenues obtained by different bid price capacity control policies on
parallel flight example

# α v0 UB
BP-SG DLP bid-prices CDLP bid-prices BP-CG
4 reopt 10 reopt 20 reopt 10 reopt 20 reopt 4 reopt

1
0.6

(1,5,5,1) 56884 55964 50362 50462 55178 55144 54677
2 (1,10,5,1) 56848 55683 50533 50596 55221 55191 54512
3 (5,20,10,5) 53819 52029 48788 48642 51688 50960 51451

4
0.8

(1,5,5,1) 71936 69024 63480 63265 69034 67515 69768
5 (1,10,5,1) 71794 69337 64142 63710 68068 66918 69371
6 (5,20,10,5) 61868 59132 57329 55972 58016 55826 61724

7
1

(1,5,5,1) 79155 75073 72726 71424 71861 70034 76687
8 (1,10,5,1) 76866 74064 71693 70027 70164 67515 74916
9 (5,20,10,5) 63255 62105 59098 58800 58160 56068 62733

10
1.2

(1,5,5,1) 80371 78964 74622 72604 74148 71797 79197
11 (1,10,5,1) 78045 74582 73208 70527 71867 69630 76542
12 (5,20,10,5) 63296 62118 59511 57691 59965 58110 63108

2.4.2 Hub and Spoke example I

The second example involves a seven-leg network inducing a total number of 22 products.

The network and the product list are shown in Figure (2.2).

Figure 2.2 Hub and Spoke example I : network.
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Due to the hub-and-spoke topology, products may use more than one resource (leg).

Resources are endowed with initial capacities (100, 150, 150, 150, 150, 80, 80), respectively. The

booking horizon consists of τ = 1000 periods. The arrival rate is set to λ = 0.91, which results

in an average arrival rate of 910 customers per stream. Based on their their respective price

sensitivity and origin-destination, customers belong to one of ten overlapping segments. This

information is gathered in Table 2.5.

Table 2.4 Hub and Spoke example I : products

product leg class fare product leg class fare

1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 27 6 L 250
7 7 H 500 28 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350

The revenues shown in Table (2.6) illustrate the performance of BP-CG, with minor reve-

nue losses (with respect to BP-SG) in low congestion offset by improved results as congestion

increases.

2.4.3 Hub and Spoke example II

This network example is illustrated in the Figure (2.3). In this example we have five flight

legs and three cities inducing the total number of sixteen products. The flight legs’ initial

capacities are c := (12, 8, 8, 8, 8) illustrated in Table (2.7).

Customers are divided into nine overlapping segments. For all segments, three different

scenarios of low, medium and high level of overlapping have been considered. These infor-

mation are shown in the Table (2.8). The booking horizon is divided into τ = 80 booking
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Table 2.5 Segment definition for the network example I

# λl consideration set preference vector description
1 0.08 {1,8,9,12,19,20} (10,8,8,6,4,4) less price sensitive,

early preference.
2 0.2 {1,8,9,12,19,20} (1,2,2,8,10,10) price sensitive.
3 0.05 {2,3,13,14} (10,10,5,5) less price senitive.
4 0.2 {2,3,13,14} (2,2,10,10) price sensitive.
5 0.1 {4,5,15,16} (10,10,5,5) less price sensitive.
6 0.15 {4,5,15,16} (2,2,10,8) price sensitive,

slight early preference.
7 0.02 {6,7,17,18} (10,8,5,5) less price sensitive,

slight early preference.
8 0.05 {6,7,17,18} (2,2,10,8) price sensitive.
9 0.02 {10,11,21,22} (10,8,5,5) less price sensitive,

slight early preference.
10 0.04 {10,11,21,22} (2,2,10,10) price sensitive.

Table 2.6 Expected revenues obtained by different bid price capacity control policies on
network example I

# α v0 UB
BP-SG DLP bid-prices CDLP bid-prices BP-CG
4 reopt 10 reopt 20 reopt 10 reopt 20 reopt 4 reopt

1
0.6

(1,5) 215793 212459 172091 174913 187683 190384 210412
2 (5,10) 200515 195037 164570 166894 174372 175601 194033
3 (10,20) 170137 165638 154041 154547 158897 159685 165651

4
0.8

(1,5) 266934 238041 208185 210170 220013 224069 262445
5 (5,10) 223173 214847 197396 197947 201465 203810 218998
6 (10,20) 188574 185150 178190 178161 175395 175720 185254

7
1

(1,5) 281967 272569 237675 238923 240243 242195 278980
8 (5,10) 235284 231094 219023 219424 217070 216860 233101
9 (10,20) 192038 189349 186970 186800 188100 186438 191181
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Figure 2.3 Hub and Spoke example II :network

periods and three demand scenarios have been considered, corresponding to the arrival rate

λ multiplied by the scale factors α = 0.9, 1, and 1.1, respectively.

Table 2.7 Hub and Spoke example II : products

product leg class fare product leg class fare

1 1 L 400 9 5 L 400
2 1 H 800 10 5 H 800
3 2 L 300 11 1,4 L 500
4 2 H 600 12 1,4 H 1000
5 3 L 400 13 1,5 L 450
6 3 H 800 14 1,5 H 900
7 4 L 300 15 2,5 L 400
8 4 H 600 16 2,5 H 800

For this example, we compared the bid-price policies BP-CG and BP-SG to four capacity

control policies that attempt to solve the exact dynamic programming formulation of the

problem, without the bid-price restrictions. These policies are :

– D-CDLP : a network decomposition scheme based on the dual outcome of CDLP, and

that matches the policy DCOMP analyzed in Bront et al. (2009)) ;

– TSA (time sensitive approximation) : an affine approximation of the dynamic program-

ming value function proposed by Zhang and Adelman (2009))’

– TISA (time and inventory sensitive approximation) : a nonlinear approximation of the

dynamic programming value function proposed by Meissner and Strauss (2008)) ;

– D-TSA : a network decomposition scheme based on the outcome of TSA.
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Table 2.8 Segment definition for the Hub and Spoke example II

# λl consideration set preference vector description

1 0.07 {{{2, 4}, 1}, 3} [[[10, 5], 10], 7] price insensitive,
early preference.

2 0.05 {{{2, 4}, 3}, 1} [[[5, 10], 10], 7] price insensitive,
late preference.

3 0.15 {{{1, 3}}} [[[10, 8]]] price sensitive.
4 0.07 {{{6, 8, 10} 5} 7, 9} [[[10, 5, 1], 10], 7, 3] price insensitive,

early preference.
5 0.05 {{{6, 8, 10} 9} 7, 5} [[[1, 5, 10] 10], 7, 5] price insensitive,

late preference.
6 0.15 {{{5, 7, 9}}} [[[5, 10, 5]]] price sensitive .
7 0.07 {{{12, 14}, 11}, 13} [[[10, 5] 10], 7] price insensitive,

early preference.
8 0.05 {{{16}, 15}, 11, 12} [[[10], 10], 7, 5] price insensitive,

late preference.
9 0.15 {{{11, 13, 15}}} [[[5, 8, 10]]] price sensitive.

As expected, the revenues generated by the bid-price methods are less than those gene-

rated by the “exact” approaches, the trade-off being the very long processing times of the

latter (Meissner and Strauss (2008)), in comparison with less than 5 minutes for algorithm

BP-CG.

Table 2.9 Expected revenues obtained by different bid price capacity control policies on Hub
and Spoke example II

# α overlap D-CDLP TSA TISA D-TSA BP-SG BP-CG

1 0.9 low 21073 21425 21867 21438 20792 20895
2 0.9 medium 20156 19190 20793 20324 19393 19966
3 0.9 high 19419 19365 20326 19628 19683 19721

4 1 low 22385 21802 22904 22537 21814 21965
5 1 medium 21544 21257 22013 21710 20945 21086
6 1 high 20495 21338 21801 21207 20745 21059

7 1.1 low 22825 23021 23789 23351 22652 22285
8 1.1 medium 22367 22490 23116 22633 21725 21981
9 1.1 high 22325 22043 22986 22501 22188 22081
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2.4.4 Railroad

Our last example is based on a portion of the Thalys railroad system, which was already

considered in Hosseinalifam et al. (2014). It involves five cities and four legs, and two fare

classes, respectively low ‘L’ and high ‘H’ on each leg. Figure (2.4) illustrates this network

and its associated 10 markets. Ten trains with a common capacity of 100 passengers satisfy

the markets, which makes up a total of 200 products (see Table (2.10)).

Figure 2.4 Thalys railroad system.

Table 2.10 Market fares

market low fare high fare

PAR → BRU 200 400
PAR → RTA 300 500
PAR → SCH 350 525
PAR → AMA 350 525
BRU → RTA 150 250
BRU → SCH 175 275
BRU → AMA 200 300
RTA → SCH 50 100
RTA → AMA 175 300
SCH → AMA 50 100

Based on their price sensitivity and origin-destination preferences, customers are divided

into 20 segments detailed in Table (2.11). A comparison of different demand and capacity
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Table 2.11 Segment definition for the railroad network

# consideration set preference vector description

1 {1,...,20} {10,55,25,15,6,4,3,4,5,6, PAR-BRU (L)
15,15,20,4,3,2,1,2,2,3,8}

2 {11,...,20} {8,70,60,10,7,4,4,4,5,40,60} PAR-BRU (H)
3 {21,...,40} {15,30,20,10,3,5,20,25, PAR-RTA (L)

10,4,4,4,8,2,1,2,2,3,3,2,2}
4 {31,...,40} {7,40,25,10,4,4,5,15,20,25,45} PAR-RTA (H)
5 {41,...,60} {25,25,20,4,5,5,5,6,6,10, PAR-SCH (L)

30,5,2,2,2,3,3,3,4,4,10}
6 {51,...,60} {7,32,21,3,3,4,5,15,15,20,30,} PAR-SCH (H)
7 {61,...,80} {20,20,2,5,5,6,6,7,7, 6, PAR-AMA (L)

8,15,3,3,4,3,3,4,4,5,4,4}
8 {71,...,80} {50,25,20,3,3,4,4,8,20,28,35} PAR-AMA (H)
9 {81,...,100} {10,60,50,6,4,4,5,20,22,7, BRU-RTA (L)

32,10,4,3,2,2,2,3,4,4,15}
10 {91,...,100} {20,90,45,5,6,2,3,4,30,60,70} BRU-RTA (H)
11 {101,...,120} {5,25,10,5,5,6,6,20,20, BRU-SCH (L)

10,8,5,4,3,3,3,4,4,5,5,5}
12 {111,...,120} {10,35,7,6,4,4,5,6,7,35,40} BRU-SCH (H)
13 {121,...,140} {30,24,4,4,3,3,5,6,6,10, BRU-AMA (L)

10,3,2,2,2,2,3,4,5,5,6}
14 {131,...,140} {15,8,6,5,4,5,6,7,10,12,10} BRU-AMA (H)
15 {141,...,160} {10,25,20,4,4,3,3,4,5, RTA-SCH (L)

6,10,4,4,3,2,2,3,3,4,4,4}
16 {151,...,160} {4,34,36,3,2,2,4,4,5,25,30} RTA-SCH (H)
17 {161,...,180} {20,40,10,5,4,3,4,5,5,6, PAR-AMA (L)

25,4,2,1,2,2,2,3,4,4,5}
18 {171,...,180} {5,50,25,25,3,4,5,6,6,35,40} RTA-AMA (H)
19 {181,...,200} {30,32,20,5,4,4,4,5,6,7, SCA-AMA (L)

20,4,4,3,2,3,3,4,4,5,5}
20 {191,...,200} {15,40,20,4,4,4,5,6,6,35,60} SCA-AMA (H)

scenarios is illustrated in Table (2.12), where the first column relates to the length of the

booking horizon. The Number of column generation iterations required by the algorithm

appears in the third column, and number of different offer sets in the fourth. The last column

displays the optimal revenue that is achieved by a control policy that ignores the bid price

compatibility constraints.

Clearly, increasing the length of the booking horizon increases the number of variables and
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consequently the complexity of the problem, with a corresponding increase in processing time.

As expected, decreasing the ratio of available capacity over demand (i.e. number of booking

periods) also makes the problem more difficult. Nevertheless, computational times for the

different scenarios testify to the capability of the algorithm to address realistic problems in

a reasonable time frame, which would qualify for quasi-real time implementation.

Table 2.12 Comparision of results of railroad example

# γ # # CPU time restricted upper
periods iterations offered sets (seconds) revenue bound

T=100
0.5 3 1 18 31585 33365
1 3 1 18 31585 33365

1.5 3 1 16 31585 33365

T=500
0.5 7 4 592 146933 159797
1 4 3 218 157927 166163

1.5 3 3 68 157927 166827

T=1000
0.5 13 6 4282 263314 286224
1 5 3 611 295403 319595

1.5 4 3 398 307849 330053

2.5 Conclusion

For various technical reasons, mathematical programming approaches like CDLP, that can

provide high-quality solutions for the optimal allocation of resources in the context of revenue

management, have not been well received in practice. Most firms actually based their policy

on alternative approaches, when making sales decisions with respect to upcoming streams of

demands from different type of customers.

In order to control the availability of products over a booking horizon, a common industry

practice is that of bid prices, which are easy to understand and implement. Moreover, depute

being suboptimal, they can readily be used to control the availability of group products.

In this paper, we have proposed a mathematical programming approach to compute im-

proved bid prices in the customer choice-based network revenue management problem with
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the highest possible return. The novelty of our approach is that it is highly flexible and,

unlike existing heuristic approaches from the literature, additional technical constraints can

easily be incorporated within the mathematical framework. The efficiency of the method for

addressing practical problems lies in a column generation algorithm that iteratively generates

sets of products that enhance revenue while being compatible with a bid price control policy.

Our numerical results show that the proposed algorithm outperforms alternative bid price

control policies in most cases. Moreover, in the terms of processing times, it requires no more

than a few minutes of processing time, and thus could be used in quasi-real time, which is

more than sufficient in most applications.

While the present paper has focused on the multinomial logit model, it would be in-

teresting to consider more sophisticated discrete choice models issued from the generalized

extreme value family. From the mathematical programming point of view, another avenue for

research is to improve the algorithm for solving, heuristically or not, the NP-hard sub pro-

blem. Finally, it is worth noting that a comprehensive study of the advantages and drawbacks

of the various capacity control policies proposed in the literature has yet to be performed.
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CHAPTER 3

ARTICLE 2 : NETWORK CAPACITY CONTROL UNDER A

NONPARAMETRIC DEMAND CHOICE MODEL

Chapter Information : An article based on this chapter is submitted for publication M.

Hosseinalifam, P. Marcotte, and G. Savard.

In this paper, we propose a nonparametric model for choice-based revenue maximization

with corresponding algorithmic framework to solve practical large-scale problems.

ABSTRACT

This paper addresses a dynamic resource allocation problem which has its roots in airline

revenue management, and where customers select the available product that ranks highest

on a preset list of preferences. The problem is formulated as a flexible mathematical

program that can easily embed technical and practical constraints, as well as accommodate

hybrid (parametric-nonparametric) choice models. We propose for its solution a column

generation algorithm whose performance, both in terms of solution quality and processing

time, is assessed against that of alternative approaches.

Key words : Revenue management, customer choice behavior, mixed integer programming.
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3.1 Introduction

Dynamic resource allocation is the main element of revenue management (RM), the disci-

pline whose aim is to improve a firm’s profitability through efficient pricing and asset mana-

gement. These issues involve the design of decision rules that, over the booking horizon, allow

or deny access to products that use common resources, based on assumptions concerning the

behavior of customers facing distinct options (Talluri and Van Ryzin (2005)).

While traditional RM models assume cross-product independence, as well as independence

from both capacity control strategies and from the state of the market (Talluri and Van Ryzin

(2005)), more sophisticated discrete choice models have become increasingly popular (Talluri

and Van Ryzin (2005)). These posit that customer behavior is dictated not only by product

availability, but also by products’ attributes (price, quality, restrictions, willingness to pay,

etc.) (Talluri and Van Ryzin (2004)). In turn, alternative parametric models that obviate

some of these models’ limitations have been proposed Farias et al. (2013)).

In this paper, departing from the parametric approach, we consider a framework where

the customer population is partitioned into segments, each segment being associated with

an ordered list of product preferences that includes the ‘no purchase’ option. This demand

model is then embedded within a capacity control system. More precisely, given a stochastic

arrival process that governs each class, acceptance rules that determine the optimal set of

products offered in each time period are obtained through the solution of a deterministic

mathematical program. An important feature of the model is its flexibility with respect to

additional constraints. In particular, it can accommodate arbitrary topologies that go beyond

the traditional hub-and-spoke architecture, as well as user-specific constraints.

Our contribution is twofold. First, we propose a nonparametric model for choice-based

revenue maximization, through the specification of the optimal sets of products that are made

available at each booking period. Next, in the view that the number of variables grows expo-

nentially with the number of products, we develop an efficient column generation algorithm

that exploits the specific structure of the choice model, and has the capability of addressing
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real-life instances.

The structure of the paper is as follows. In Section 2, we review the main concepts of

choice-based demand models, contrasting the parametric and nonparametric approaches. In

Section 3, we introduce our mathematical programming framework. In Section 4, we develop

a column generation scheme for its solution ; in particular, we provide an efficient algorithm

for tackling the nonconvex subproblems. In Section 5, we illustrate through computational

experiments that our approach can address realistic instances, and provide a comparison with

alternative approaches from the RM literature. Finally, in the concluding section, we outline

the challenges that remain to be addressed.

3.2 Choice modelling

In this section, we briefly survey choice modelling issues. Indeed, a key issue in network

revenue management is that of estimating the probability Pj(S) that a product j be selec-

ted by an arriving customer, given that a set S of products is on offer. Two main classes

of models have been proposed for its solution. Parametric choice models are built upon the

Random Utility Maximization paradigm (McFadden (2000)), whereby products are assigned

attributes, and customers select the product that maximizes their own utility, expressed as

a weighted sum of the attributes’ values. Depending on the statistical model underlying the

selection process, one derives a variety of models : multinomial logit (MNL), nested logit,

mixed logit, probit, generalized extreme value, etc. For instance, in the MNL model, which

is widely used in marketing and economics (Train (1986)), customers belong to predefined

segments characterized by a weight vector v associated with products’ attributes. The pro-

bability of selecting product j is then set to the ratio of that product’s preference for the

customer over the sum of all products’ preferences.

Although random utility models are easy to understand, embed detailed information

about products’ features, and allow the accurate estimation of utilities, they yet suffer se-

rious flaws. First, the choice of an appropriate parametric structure may not be obvious and,
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once a structure is adopted, the model is not flexible with respect to perturbations in the

available information (Farias et al. (2013)). Next, specific random utility models have spe-

cific drawbacks. For example, MNL’s independence of irrelevant alternatives property yields

unrealistic substitution patterns, while the more sophisticated nested or mixed logit models

are computationally challenging, both from an estimation and assignment viewpoint.

In contrast, nonparametric choice models are driven by historical data and do not assume

specific probability distributions. They are highly flexible, dynamic, and provide more precise

estimates of customer’s choice behavior (Farias et al. (2013)). Due to the availability and

increasing accuracy of large amounts of historical data, these choice models have been gaining

in popularity and interest.

In the nonparametric choice model adopted in this paper, we assume that each demand

segment is characterized by an Ordered Preference List (OPL), whereby customers select

the available product that ranks highest on their OPL, possibly leaving the market if no

available product belongs to the list (Chaneton and Vulcano (2011a), Chen and Homem-de

Mello (2010)). The concept of OPL was first introduced by Mahajan and van Ryzin (2001),

while Farias et al. (2013) and van Ryzin and Vulcano (2011) proposed different procedures

to estimate a non-parametric choice model. Within this framework, van Ryzin and Vulcano

(2008a) and Chaneton and Vulcano (2011a) used the concept of OPL to formulate a choice

based capacity control model, and proposed for its numerical solution a stochastic gradient

algorithm. Farias et al. (2011) developed an algorithm to compute optimal assortments under

a nonparametric choice model of demand. Mahajan and van Ryzin (2001) proposed a model

to compute optimal retail assortments, in an environment where customers adapt dynami-

cally to available stocks. Chen and Homem-de Mello (2010) have proposed OPL-based linear

stochastic formulations of the revenue maximization problem which, unfortunately, become

intractable as the number of scenarios grows. Our approach shares several features with this

work, while lifting its computational limitations.
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3.3 Problem formulation

Let us consider a system where an arrival stream of customers follows a Poisson process

with rate λ. Whenever a customer shows up, she selects the available product that ranks

highest on her preference list. The aim of the model is to determine, over a finite planning

horizon, the set of products to be offered at any given ‘booking’ period, in order to maximize

total revenue. Of course, a product can only enter the offer set if the amount of resources

required does not exceed the residual amount available.

The main parameters underlying the dynamic RM model are the following :

T : ordered set of time (booking) periods indexing forward

J : set of products

rj : revenue associated with product j ∈ J

I : set of resources

ci : initial amount of resource i ∈ I

L : set of customer segments

pl : proportion of customers belonging to segment l

λl = λpl : arrival rate of segment l ∈ L

Pl = exp(−λpl) : probability of an arrival issued from segment l ∈ L

within an arbitrary time period

Ol = {jl1, jl2, . . . , jlKl
} : ordered preference list (OPL) of products

associated with customer segment l ∈ L

aij : Boolean constant indicating whether resource i is used by

product j (aij = 1) or not (aij = 0). The matrix A whose

elements are the aij’s is referred to as the product-resource

incidence matrix or, simply, the incidence matrix.

S ∈ 2J : set of products, possibly including the ‘null’ product

Ol(S) = {jl1(S), jl2(S), . . . , jlKl(S)(S)} ⊆ Ol : ordered preference list (OPL)
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of cardinality Kl(S) associated with offer set S and

customer segment l ∈ L.

Assuming that there is at most one arrival within any given time period 1, the probability of

choosing product j when set S is offered is equal to

Pj(S) =
∑

l:jl1(S)=j

Pl, (3.1)

where jl1(S) is the first available preferred product of segment l among those belonging to

the offer set S. This yields the expected revenue

R(S) =
∑
j∈S

Pj(S)rj (3.2)

and the expected capacity usage of set S

Qi(S) =
∑
j∈S

Pj(S)aij. (3.3)

The variables of the model are the indicators Xt(S), which specify whether the subset

of products S is offered or not in period t. For the sake of computational tractability, we

allow these binary variables to assume fractional values. Based upon these definitions, letting

X = (Xt(S))t,S, and denoting by |E| the cardinality of a generic set E, the model can be

expressed as the linear program

LP : max
X

λ
∑
t∈T

∑
S∈2J

R(S)Xt(S)

subject to∑
t∈T

∑
S∈2J

λQi(S)Xt(S) ≤ ci ∀i ∈ I, (3.4)

1. This assumption is reasonable if the duration of a time period is sufficiently small.
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∑
S∈2J

Xt(S) ≤ 1, ∀t ∈ T, (3.5)

0 ≤ Xt(S) ≤ 1 ∀t ∈ T, S ∈ 2J , (3.6)

where the number of decision variables 2|J | − 1 is exponential (the empty set is excluded).

Note that the above program is similar to the customer MNL-based deterministic linear

programming model (CDLP) considered by Liu and van Ryzin (2008) and Bront et al. (2009),

the main differences being the way we model customer’s choice behavior, and the way we

compute the related probabilities that lead to the values of R(S) and Qi(S). Note also that,

in contrast with Liu and van Ryzin (2008) and Bront et al. (2009), our decision variables are

related to individual time periods, thus allowing a finer control over the individual booking

periods. Finally, the use of ordered preference lists allows to overcome the drawbacks of the

MNL model, e.g., unrealistic substitution patterns resulting from the IIA property.

From the computational viewpoint, the complexity of LP is directly related to the number

of OPLs and products, which increases sharply with the number of products and with a finer

representation of the demand, i.e., the number of segments. We now show how to reduce the

number of OPLs with no impact on the solution.

Definition 3.3.1 Let O1 = {j1, j2, . . . , jk} and O2 = {j1, j2, . . . , jk, jk+1, . . . , jm}. We then

say that O1 is nested in OPL O2.

If two OPLs are nested, then they can be aggregated into a single OPL. This is achieved by

introducing transition probabilities from high rank to low rank products. Standard OPLs are

actually aggregated OPLs where those probabilities are equal to one. In practice, since many

OPLs are nested, their aggregation allows to significantly decrease the size of the problem.

The transition probabilities are defined as follows. Let P+
kl̄

denote the transition probability

from the product in rank k to the next one in rank k+ 1 in the aggregated OPL l̄, and let P z
l

denote the probability of having an arrival from segment l in which z is the least preferred

product in that segment. We have that P+
1l̄

= 1. Since P z
l must equal the probability of
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no-purchase after having considered product z in the aggregated OPL l̄, times the product

of former transition probabilities, we obtain

P+
kl̄

= 1− P
z=jlk
l∏k−1
q=1 P

+
ql̄

. (3.7)

An example of an aggregated OPL and its parameters is illustrated in Table 3.1. If the

preferred product A of customer is unavailable, she substitutes for product B with probability

0.9, or leaves the market with complementary probability 0.1. These transition probabilities

can actually be interpreted as buy-up or buy-down coefficients of the market (Chen and

Homem-de Mello (2010)).

Table 3.1 Standard VS aggregated OPL

Pl standard OPL

1
10

A X

2
10

A B X

3
10

A B C X

4
10

A B C D X

Pl̄ Aggregated OPL

1
A B C D X

X X X

9
10

7
9

4
7 1

1
10

2
9

3
7

Now, the probability PC
l of having an arrival from a segment with least preferred product

C is given by the product of all transition probabilities yielding C by the probability of

leaving system after having visited C, (1 - P+
3l̄

). Thus we obtain the equation 3/10 = (9/10×

7/9)× (1− P+
3l̄

), whose solution yields P+
3l̄

= 4/7.

Of course, when an aggregated OPL is created, Pj(S), the probability of choosing product

j when set S must be adjusted accordingly.

Let P++
kl =

∏k−1
q=1 P

+
ql denotes the total transition probability till product in rank k in
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OPL l. Then we have

Pj(S) =
∑

l:jl1(S)=j

P++
kl Pl, (3.8)

where k is the rank of the product j in the OPL l.

3.4 A column generation framework

While the number of variables in LP is exponential (2J − 1 potential offer sets), the

number of constraints (with the exception of bound constraints on the variables), is limited

to |M |+ |T |. This suggests the use of column generation techniques for addressing LP (Bront

et al. (2009)). More precisely, let us consider a feasible basic solution of LP, together with the

multiplier vectors π and σ associated with the capacity and time constraints, respectively. A

maximal reduced cost can be obtained by solving the subproblem

max
S∈2J

R(S)−
∑
i∈I

πiQi(S)−
∑
t∈T

σt, (3.9)

whose solution, whenever its objective is positive, yields an improving offer set S.

To this aim, we introduce the binary variables yjlk that are set to 1 if the product ranked

k in OPL l belongs to S, and to 0 otherwise. Only one product will be chosen from any

OPL, and after the product in rank k from OPL l has been selected, the products with ranks

higher than k should be inactive. Note that jlk represents a unique index j and that, once a

product j = jlk is active, it will be considered active in all OPLs. To enforce this property,

we introduce binary variables hlk that denote the rank of customer l’s preferred available

product. The column generation subproblem can then be formulated as the mixed integer

program

SUB : max
y,h

∑
l∈L

|Ol|∑
k=1

P++
kl Pl(rjlk −

∑
i∈I

ai,jlkπi)yjlk(1− hlk)
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subject to

yjlk ≤ hlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1}, (3.10)

hlk ≤ hlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1}, (3.11)

yjlk , h
l
k ∈ {0, 1} ∀l ∈ L, k ∈ {1, . . . , |Ol|}.

In the above program, constraints (3.11) ensure that, once the product in rank k of OPL l

is selected, hlk+1 is set to 1 for products further down the list. In the objective function, the

product yjlk(1− hlk) controls the activation state of any product in the OPL, i.e., the highest

ranked available product is selected, while the remaining ones are ignored. The definition

of the variables hlk, together with constraints (3.10) and (3.11), ensures that any arriving

customer purchases his highest ranked product within S.

The bilinear terms yjlk × h
l
k can be linearized through the introduction of variables zlk=

yjlk ×h
l
k and of the inequalities zlk ≤ yjlk , zlk ≤ hlk, z

l
k ≥ yjlk +hlk−1. This yields the equivalent

mixed integer formulation

SUB’ : max
y,h

∑
l∈L

|Ol|∑
k=1

P++
kl Pl(rjlk −

∑
i∈I

ai,jlkπi)(yjlk − z
l
k)

subject to

yjlk ≤ hlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

hlk ≤ hlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

zlk ≤ hlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

zlk ≤ yjlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

zlk ≥ yjlk + hlk − 1 ∀l ∈ L, k ∈ {1, . . . , |Ol|},

yjlk , h
l
k, z

l
k ∈ {0, 1} ∀l ∈ L, k ∈ {1, . . . , |Ol|},

which is amenable to an off-the-shelf solver, even for large scale instances, due to its compact



40

formulation in terms of decision variables. Note also that the formulation is quite flexible,

allowing the construction of arbitrary sets S compatible with the OPLs of the population’s

segments.

3.5 Numerical results

The performance of the numerical framework has been tested on two classical airline

data, involving either a ‘parallel’ or ‘hub-and-spoke’ topology, as well as a railroad problem

involving real size data. In the first two cases, our results are compared to those obtained

by (Chen and Homem-de Mello (2010)), who also proposed an OPL-based model.

To assess the quality of our resource allocation model, average revenues over 2000 random

streams of arrivals, each based on the arrival rates λl, have been computed, yielding accuracy

levels of 0.5% with 95% confidence. For the record, computational results have been carried

out on a 4-core, 2.4 GHz computer, with 8 GB of memory. Both the master problem LP and

the mixed integer subproblems SUB’ have been solved by FICO Xpress-Mosel 7.2.1.

3.5.1 Parallel flights

In this example taken from Chen and Homem-de Mello (2010), we consider a network with

three parallel flights distinguished by their departure time : morning, afternoon, or evening.

Initial capacities are set to 30, 50 and 40, respectively. A total number of six products are

induced by these resources and the two fare classes : High (H) and Low (L) . Products’

information and resource usage are shown in Figure 3.1 and Table 3.2.

The information concerning the four aggregated OPLs is displayed in Table 3.3. This

includes the preference lists, the transition probabilities, and the demand corresponding to

each segment. The booking period is divided into τ = 300 periods, and the average number

of arrivals is set to 150. To assess the robustness of our approach, we applied our control

policy to demand scenarios where the base demand is multiplied by the scale factor α. In the

‘low’ scenario, only 75% of the forecasted demand arrives. In the ‘high’ scenario, 125% of the
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Figure 3.1 Parallel flight example : network.

Table 3.2 Parallel flight example : products

product leg class fare

1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

forecasted demand is simulated.

Table 3.3 OPL setting for the parallel flights

OPL ordered itineraries transition probability demand level

1 4, 2, 6 1, 0.5, 0.2 30
2 5, 1, 3 1, 0.5, 0.2 45
3 1, 2, 3, 4, 5, 6 1, 0.8, 0.75, 0.66, 0.75, 0.33 60
4 2, 1, 4, 3, 6, 5 1, 0.8, 0.75, 0.66, 0.75, 0.33 15

The total expected revenues are displayed in Table 3.4, where the first column denotes

the scale factor, and the next four columns represent results obtained by different approaches

developed in Chen and Homem-de Mello (2010).

The column NBLP represents the optimal solution of the linear estimation of the sto-

chastic model without implementing their proposed backup heuristic. The column NBSP
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represents the optimal solution of the stochastic model without implementing their proposed

backup heuristic. The column DBLP represents the optimal solution of the linear estimation

of the stochastic model with implementing their backup heuristic and the column DBSP

represents the optimal solution of the stochastic model with implementing their backup heu-

ristic.

Table 3.4 Parallel flights : 95% confidence intervals for the revenue.

Demand NBLP NBSP DBLP DBSP CDLP OPL PI

α=0.75 65622 65651 65988 66123 65994 65766 66180
±122 ±123 ±131 ±131 ±139 ±171 ±119

α=1 78706 79252 80711 81287 79917 81446 82334
±83 ±96 ±86 ±91 ±108 ±130 ±94

α=1.25 83076 84684 83909 84866 83241 85236 87652
±34 ±44 ±13 ±15 ±52 ±194 ±21

Column CDLP represents the results obtained by CDLP model under buy up/down struc-

ture. Column OPL presents results obtained by our column generation algorithm and the last

column PI represents an upper bound to the problem. Throughout, one observes that algo-

rithm OPL outperforms alternative ones on two out of three scenarios.

3.5.2 Hub and Spoke

This example is also borrowed from Chen and Homem-de Mello (2010). Its network

(see Figure 3.2 and Table 3.5) consists of seven flight legs that induce a total number of

twenty two itineraries (products), some of which use more than one resource. Initial resource

capacities are set to c = (100, 150, 150, 150, 150, 80, 80 ).

The booking horizon consists of τ = 1000 periods, and the average number of arrivals 910

corresponds to the arrival rate λ = 0.91.

Displayed in Table (3.6) are ten aggregated OPLs with corresponding transition proba-

bilities provided in the third column. It is important to note that, in Chen and Homem-de
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Figure 3.2 Hub and Spoke example : network.

Table 3.5 Hub and Spoke example : products

product leg class fare product leg class fare

1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 27 6 L 250
7 7 H 500 28 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350
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Table 3.6 Hub and Spoke example : OPLs.

OPL ordered itineraries transition probability demand level

1 1, 8, 9, 12, 19, 20 1, 0.8, 1, 0.75, 0.66, 1 80
2 20, 19, 12, 9, 8, 1 1, 1, 0.8, 0.25, 1, 0.5 200
3 2, 3, 13, 14 1, 1, 0.5, 1 50
4 14, 13, 3, 2 1, 1, 0.2, 1 200
5 4, 5, 15, 16 1, 1, 0.5, 1 100
6 16, 15, 5, 4 1, 1, 0.2, 0.8 150
7 6, 7, 17, 18 1, 0.8, 0.625, 1 20
8 18, 17, 7, 6 1, 1, 0.2, 0.8 50
9 10, 11, 21, 22 1, 0.8, 0.625, 1 20
10 22, 21, 11, 10 1, 1, 0.2, 1 40

Mello (2010), products belong to a specific control class, and the control policy is class ba-

sed. For the sake of consistency, we generated product data consistent with their respective

class data. The total expected revenues corresponding to different algorithms are presented

in Table 3.7. Again, and yet more clearly than in the ‘parallel flights’ example, our algorithm

outperforms alternative approaches.

Table 3.7 Hub and Spoke : 95% confidence intervals for the revenue.

Demand NBLP NBSP DBLP DBSP CDLP OPL PI

α=0.75 210730 195630 211730 211760 211340 222861 227013
±165 ±213 ±177 ±168 ±213 ±191 ±145

α=1 246780 255670 248910 256950 246970 263526 268277
±79 ±163 ±73 ±159 ±215 ±189 ±147

α=1.25 254090 274050 254160 274320 255810 276292 304223
±19 ±61 ±20 ±67 ±98 ±179 ±130
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3.5.3 Railroad

Our third example involves a subset of the Thalys system, which operates high speed

trains through four countries : France, Belgium, Netherlands, and Germany. It involves five

cities and four legs, with two fare classes (low ‘L’ and high ‘H’) on each leg. The network and

its associated market are illustrated in Figure 3.3.

Figure 3.3 Thalys railroad system.

In this environment, 10 trains with a capacity of 100 passengers travel between Paris and

Amsterdam. Each train stops in Brussels, Rotterdam, Schiphol, and Amsterdam, inducing

the 10 markets shown in Figure 3.3, as well as 200 products, i.e., train-fare combinations.

Price information associated with each market is displayed in Table ??.

Based on their price sensitivity and origin-destination assignments, customers are divided

into 20 segments. Price sensitive (leisure) customers prefer low fare, but are allowed to switch

to high fare products, while price insensitive (business) customers stick to high fares. The

features of each segment of the population are shown in Table 3.9.

We solve the problem in different booking horizons. Indeed, if the capacity of legs exceeds

the corresponding demand, the problem becomes much easier to solve and the firm could offer
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Table 3.8 Market fares

market low fare high fare

PAR → BRU 200 400
PAR → RTA 300 500
PAR → SCH 350 525
PAR → AMA 350 525
BRU → RTA 150 250
BRU → SCH 175 275
BRU → AMA 200 300
RTA → SCH 50 100
RTA → AMA 175 300
SCH → AMA 50 100

almost all of its products. To better evaluate algorithms, we consider different capacities by

multiplying a scale factor γ to the capacity of legs c.

Besides altering the capacity of legs, we also perturbed the length of the booking horizon,

thus significantly increasing the number of variables. Nevertheless, even for the largest ins-

tances, the CPU was kept in check. Actually, the algorithm scaled quite well, with running

times increasing linearly with the length of the booking horizon (see Table 3.10).

3.5.4 Summary of numerical results

The simulation results have provided an unbiased account in favor of our deterministic

model. A close runner-up is the stochastic model DBSP (Chen and Homem-de Mello (2010)),

involving or not a backup heuristic, which unfortunately does not scale well with problem

size. While Chen and Homem-de Mello (2010) do not provide the CPU requested by their

method, ours consistently requires less than one minute of CPU for solving the parallel flight

examples, and less than three minutes for the larger Hub and Spoke instances. This is a good

indication that our approach is able to determine the optimal assortment of products to be

offered over the booking horizon, even for realistic problem sizes.
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Table 3.9 OPL settings for the railroad problem.

OPL ordered itineraries demand description

1 8,6,9,10,5,1,12,11,4,13,3,2,17,19,18,16,20, 20 PAR-BRU(L)
15,7,14,

2 17,16,15,18,14,13,19,20,12,11, 25 PAR-BRU(H)
3 28,23,26,22,27,21,34,40,39,36,35,33,38,37, 10 PAR-RTA(L)

24,31,30,29,25,32,
4 35,34,36,33,37,38,39,32,31,40, 20 PAR-RTA(H)
5 46,45,44,48,47,60,49,42,41,50,54,53,52,57, 30 PAR-SCH(L)

56,55,59,58,43,51,
6 54,53,55,56,58,57,59,52,60,51, 10 PAR-SCH(H)
7 64,63,66,65,68,67,69,70,61,62,75,74,72,71, 20 PAR-AMA(L)

80,79,77,76,73,78,
8 74,73,76,75,77,78,72,71,79,80, 20 PAR-AMA(H)
9 85,84,86,83,89,91,96,95,94,97,93,99,98,92, 10 BRU-RTA(L)

100,87,88,90,82,81,
10 95,96,97,93,94,98,92,99,100,91, 30 BRU-RTA(H)
11 104,103,106,105,110,109,102,108,107,101, 15 BRU-SCH(L)

115,114,113,117,116,112,120,119,118,111,
12 115,114,116,117,113,118,112,119,111,120, 30 BRU-SCH(H)
13 126,140,128,127,130,129,121,135,134,133, 20 BRU-AMA(L)

132,136,131,125,124,137,123,122,139,138,
14 134,135,133,136,132,137,131,140,138,139, 20 BRU-AMA(H)
15 147,144,143,148,149,150,142,141,155,154, 30 RTA-SCH(L)

157,156,153,146,145,160,159,158,152,151,
16 155,154,153,157,156,158,159,160,151,152, 10 RTA-SCH(H)
17 166,164,180,168,167,163,169,162,170,161, 20 PAR-AMA(L)

173,176,175,174,172,177,165,179,178,171,
18 174,175,176,178,177,173,172,179,180,171, 20 RTA-AMA(H)
19 199,187,183,188,189,190,182,181,194,196, 10 SCA-AMA(L)

195,193,198,197,192,191,186,185,184,200,
20 186,185,200,199,187,183,188,189,190,182, 30 SCA-AMA(H)
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Table 3.10 Average processing time for the railroad example (seconds)

scale factor booking horizon
T=300 T=400 T=500

γ=0.5 830 1100 1630
γ=1 440 770 950
γ=1.5 400 630 700

3.6 Conclusion and further work

It has long been recognized that any reliable revenue management system must integrate

a sound model of customer behavior. In this paper, we have adopted a nonparametric ap-

proach that mimics the choice process of individual customers, and dispenses with the costly

statistical process that consists in estimating the parameters underlying a discrete choice mo-

del. This results in a simple model that lends itself to an efficient and scalable decomposition

algorithm.

Of course, nonparametric models have drawbacks. For instance, it is a nontrivial task

to partition the population into potentially large number of segments, one per preference

list, and this segmentation might actually be highly sensible to fare variations, which we did

not consider in our model. Nevertheless, an interesting feature of the model is that it can

accommodate hybrid choice models. To do so, we need only define a simulator compatible

with the parameters of the choice model, and obtain OPLs by ranking the utilities of available

choices. This information can then be used as an input to the optimization model. Moreover,

parametric models can be used to calibrate available historical data and improve the accuracy

of OPLs.

On the algorithmic side, we note that the column-generation subproblem could be effi-

ciently addressed by an off-the-shelf solver. To deal with much larger instances, algorithms

adapted to the specific structure of the subproblems are required. This will be the topic of

further research.
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CHAPTER 4

ARTICLE 3 : COMPUTING BOOKING LIMITS UNDER A

NON-PARAMETRIC DEMAND MODEL : A MATHEMATICAL

PROGRAMMING APPROACH

Chapter Information : An article based on this chapter is submitted for publication M.

Hosseinalifam, P. Marcotte, and G. Savard.

In this paper, we develop a new customer choice-based framework for computing nested

booking limits that yield the highest possible return, within a given non-parametric

customer choice environment.

ABSTRACT

In revenue management, booking limits are commonly used to restrict access to classes

of products, and subsequently make way for more profitable ones. Frequently, this inventory

control policy assumes that products are nested in decreasing order of revenue, and that less

profitable products are denied access first. In this paper, we propose a flexible mathematical

programming framework for the computation of nested booking limits, under the assumption

that customers are characterized by ordered lists of their preferences. This yields a mixed

integer program that is amenable to an efficient and scalable column generation algorithm.

Numerical tests illustrate the improved performance of the resulting policies, which are nu-

merically tested against alternative proposals from the current literature, the latter being

admittedly scarce.

Key words : Revenue management, network capacity control, booking limits, customer

choice behavior, mathematical programming.
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4.1 Introduction

A revenue management system consists of a set of scientific tools for managing, over a

finite horizon, demand requests issued from heterogeneous customers, given that resources are

in fixed supply. Demand forecasting, pricing and structural information constitute the input

data for the inventory control system, and output is the decision of accepting or rejecting

the arriving requests, with the aim to maximize the firm’s revenue (Talluri and Van Ryzin

(2005)).

In this paper, although we adopt the vocabulary common in the airline industry, our

results easily translate to the rail, media or hospitality environments. In the airline industry,

resources are matched with actual seats on the flight legs making up an itinerary, and products

correspond to tickets on flight leg(s) associated with specific origin-destination pairs.

For any given flight, the corresponding product is associated with a control class (i.e.,

a group of products with similar features like revenue, restrictions, etc) on the legs that it

uses : first, leisure, coach, etc. Most Central Reservation Systems (CRS) adopt control policies

that fall into one of two categories : booking limits and bid prices (Chaneton and Vulcano

(2011b)), the first one being prevalent. A booking limit policy sets, for each control class,

an upper bound on the number of seats that are allocated to the control classes on the leg

that seats belong. Its aim is to control access to products, in order to avoid rejecting future

customers characterized by a high ‘willingness-to-pay’ (van Ryzin and Vulcano (2008a)).

Two main categories of booking limits have been considered : partitioned and nested as

seen in Figure 4.1 In the partitioned case (left figure), a specific amount of the resources is

allocated exclusively to each control class, i.e., distinct classes do not have access to shared

capacity. In contrast for the nested case (right figure), control classes with higher revenue

(‘parent’ classes) have access to the assigned capacity of all control classes with lower revenue

(‘child’ classes). In this paper, we consider full nesting by setting booking limits on control

classes associated to each leg.

In this example (Figure 4.1), with nested booking control policy, control class Y is a
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parent control class for classes M and K and have access to all of their seats. There are 5,

10 and 5 seats assigned for control classes Y, M and K, with booking limits 20, 15 and 5,

respectively. Moreover, 5 and 10 seats are protected for class Y and M with respect to their

child classes and no seat are protected for control class K, i.e., all parent control classes have

recursively access to the seats of their children classes.

This strategy avoids selling out lower control class products while there is still unused

capacity in the higher ones (van Ryzin and Vulcano (2008b)).

Figure 4.1 Partitioned VS nested booking limits.

The calculation of booking limits for the ‘standard’ revenue problem was initiated by Lit-

tlewood (1972), followed by Belobaba (1987) and Belobaba and Hopperstad (1999), who

developed two heuristic approaches based on expected marginal seat revenue (EMSRa and

EMSRb). These were applied to problems involving multiple products and a single resource.

More recently, Bertsimas and De Boer (2005) proposed a simulation-based approach to com-

pute booking limits over a network. As a first step, these authors used simulation to estimate

the first order gradient of the revenue function. Next, this estimation was used to improve

an initial set of booking limits via a stochastic steepest ascent algorithm. van Ryzin and

Vulcano (2008b) also proposed, based on a continuous capacity-demand model, a simulation-

based approach, which was extended to a general choice model. A drawback of this approach

is the difficulty of embedding specific constraints.
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As a ‘dual’ alternative to booking controls, bid price policies set threshold prices on each

leg (resource), and a request is accepted only if its revenue exceeds the sum of bid prices of its

constituent legs. Although it may yield suboptimal solutions, this policy frequently achieves

high revenue, and is furthermore very easy to understand and implement (Chaneton and

Vulcano (2011b)). Despite those qualities, many reservation systems still use booking limits,

which provide a direct control of the arriving requests.

Besides bid prices and booking limits, another policy has been introduced, mainly in the

academic literature. It consists in determining, over a booking horizon, the optimal allocation

of resources through the solution of a choice-based linear program (CDLP, see Liu and van

Ryzin (2008) and Bront et al. (2009)). Although it is theoretically superior to the other two

methods, CDLP has made few inroads into the industry, mainly due to its complexity and

non-intuitiveness.

In this context, the paper’s focus is to develop a new CDLP-based framework for com-

puting nested booking limits that yield the highest possible return, within a given customer

choice environment. With respect to the latter, we assume that customers rank the pro-

ducts from most to least preferred, and select the one that sits highest on this preference

list (Chaneton and Vulcano (2011b), Chen and Homem-de Mello (2010)). This nonparame-

tric approach is in contrast with extreme value models, such as the multinomial logit, which

require the estimation of several parameters.

The paper is structured as follows. In Section 2, we introduce the notation, and formu-

late a mathematical program that yields optimal resource allocation within a nonparametric

demand environment. In Section 3, we provide a detailed account of the column generation

approach used for its solution. In Section 4 we illustrate the efficiency of the method, both

from the quality and computational points of view ; this is achieved via benchmarks from the

literature, as well as through numerical simulation. Finally, the concluding section mentions

avenues for further research.
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4.2 Problem formulation

In this section, we introduce two mathematical programming formulations for computing

optimal booking limits, under the requirement that they be nested. From the modelling point

of view, the main challenge lies in enforcing the compatibility of the nestedness property

within a CDLP-based framework, while taking into account customer behavior.

4.2.1 General definitions and notations

Let us consider a system where supply of resources is limited, and where demand is

characterized by Poisson processes associated with customer classes (segments), each one

endowed with its own intensity and ordered preference list (OPL). Recall the assumption

that customers rank the products from most to least preferred, and select the one that

sits highest on this preference list. If her first preferred product was not offered, then with

a transition (buy up/down) probability, she will move to her next most preferred choice.

Decisions concerning the subset of products to offer are made at discrete time steps, and we

assume that the width of the time intervals is small enough that the probability of more than

one arrival within each interval is negligible.

The notation is based on that of the companion paper Hosseinalifam et al. (2014), where

additional information is provided. Throughout, we denote by |E| the cardinality of a generic

set E.

T : ordered set of booking periods indexing forward

C : ordered set of control classes indexed forward in decreasing

hierarchical order. e.g., class 1 is parent for class 2,

class 2 for class 3, etc.

J : set of products

rj : revenue associated with product j ∈ J

I : set of resources
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xi : initial amount of resource i ∈ I

L : set of customer segments

λ : total arrival rate

λl = λpl : arrival rate of segment l ∈ L

pl : proportion of customers belonging to segment l

Pl = exp(−λpl) : probability of an arrival issued from segment l ∈ L

within an arbitrary time period

Ol = {jl1, jl2, . . . , jlKl
} : ordered preference list (OPL) of products

associated with customer segment l ∈ L

aij : Boolean constant indicating whether resource i is used by product

j (aij = 1) or not (aij = 0). The matrix A whose elements

are the aij’s is referred to as the product-resource incidence

matrix or, simply, the incidence matrix.

acj : Boolean constant indicating whether product j belongs to control

class c (acj = 1) or not (acj = 0).

S ∈ 2J : set of products, possibly including the ‘null’ product

Ol(S) = {jl1(S), jl2(S), . . . , jlKl(S)(S)} ⊆ Ol : ordered preference list (OPL)

associated with offer set S and customer segment l ∈ L

P+
kl : transition probability from the product in rank k to the next

one in rank k + 1 in the OPL l.

P++
kl =

∏k−1
q=1 P

+
ql : total transition probability from the customer’s most

preferred product to the one in rank k in the OPL l.

The decision variables of the model, denoted Xt(S), refer to the fraction of period t in

which set S is offered. If set S is offered, the probability of choosing product j is equal to

Pj(S) =
∑

l:jl1(S)=j

P++
kl Pl, (4.1)
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where jl1(S) is the available highest ranked product of segment l belonging to set S with

actual rank of k. This yields the expected revenue

R(S) =
∑
j∈S

Pj(S)rj (4.2)

and the expected capacity usage

Qi(S) =
∑
j∈S

Pj(S)aij. (4.3)

We then obtain a generic linear programming formulation of the revenue management

problem

LP : max
X

λ
∑
t∈T

∑
S∈2J

R(S)Xt(S)

subject to∑
t∈T

∑
S∈2J

λQi(S)Xt(S) ≤ xi ∀i ∈ I, (4.4)

∑
S∈2J

Xt(S) ≤ 1, ∀t ∈ T, (4.5)

0 ≤ Xt(S) ≤ 1 ∀t ∈ T, S ∈ 2J , (4.6)

which can be adapted to any customer choice model, and has actually been considered, in an

equivalent formulation by Liu and van Ryzin (2008) and Bront et al. (2009) in the specific

multinomial logit case.

4.2.2 Embedding CRS rules

In practical applications, firms apply restrictions to the set of products offered. The fol-

lowing rules are standard :

– Each product belongs to a unique control class c on its constituent legs.
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– A product can be offered if and only if its associated control class on all of its constituent

leg(s) is open, e.g., if a product uses more than one resource, it can be offered if and

only if its associated control class be open on all its constituent legs.

– If a control class is open, all products belonging to that control class are offered.

– A lower (child) class can be open only if the higher (parent) classes on that leg are

open.

– Closed control classes cannot be re-opened.

– We may have specific upper bounds on booking limits on legs.

Clearly, the optimal solution of CDLP might violate one or several of the above constraints.

This leads to the extended models described below.

4.2.3 A disaggregate model

The constraints that are most difficult to embed are the logical constraints linking the

opening of parent and child classes. To this aim, we introduce binary variables Zc
it which

specify whether or not the control class c on leg (resource) i at time t is open or not. We

link the availability of products in the offer sets and opening or closing a control class by

constraints (4.7)–(4.9) and we call them CRS-state constraints.

aija
c
jXt(S) ≤ Zc

it ∀t ∈ T, i ∈ I, c ∈ C, S ∈ 2J , j ∈ S, (4.7)

Xt(S) ≤
∑
i∈I

aij −
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
it ∀t ∈ T, S ∈ 2J , j /∈ S, (4.8)

1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
it −

∑
i

aij ≤
∑

S∈2J |j∈S

Xt(S) ∀t ∈ T, j ∈ J, (4.9)

The set of constraints (4.7) ensures that if a product j belonging to set S is going to be

offered in a specific booking period t (i.e., aija
c
jXt(S) > 0), its corresponding control class on
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all of its constituent legs should be open (i.e., Zc
it =1), and if a control class is closed (i.e.,

Zc
it =0), all of products belonging to that control class which are using that leg can not be

offered (i.e., aija
c
jXt(S) = 0).

The set of constraints (4.8) enforces that if a set S is offered at time t (i.e., Xt(S) > 0),

for a product j that is not present in S, its corresponding control class on at least one of its

constituent legs should be closed. The difference between the number of its constituent legs

and the number of open control classes corresponding to that product on its constituent legs

should be strictly positive.

Finally, constraints (4.9) ensure that if a control class is open, all products belonging to

that control class should be offered. For a product j, if the number of its corresponding open

control classes on its constituent legs meets the number of legs which it actually uses, product

j then should be present in one or more offered sets with positive value at time t.

Next, constraints (4.10)–(4.11) implement the non-opening rules over the booking horizon,

together with the relationships between parent and child control classes.

Zc
it+1 ≤ Zc

it ∀i ∈ I, c ∈ C, t ∈ {1, ..., |T | − 1} (4.10)

Zc+1
it ≤ Zc

it ∀i ∈ I, t ∈ T, c ∈ {1, ..., |C| − 1} (4.11)

Constraints (4.10) ensure that if a control class is closed at a booking period t, it can

not be re-opened at any future booking period. We call constraints (4.10) along with state

constraints (4.7)–(4.9) as CRS-non-reopening constraints. Constraints (4.11) ensure that if a

control class is closed, all child classes with lower revenue are also closed. Similarly, we call

constraints (4.11) along with state constraints (4.7)–(4.9) the CRS-nesting-order constraints.

Now, let Qc
i(S) denote the expected usage of products of control class c on resource i

if the product set S is offered, bci denote the assignment for control class c on leg i. Note

that booking limit for each control class can be computed by summing its assignments and
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those of its child control classes. The set of profit-maximizing offer sets and booking limits

consistent with the CRS rules is then obtained by solving the following disaggregate nested

booking limit (DNBL) program :

DNBL :

max
X,b,Z

∑
t∈T

∑
S∈2J

λR(S)Xt(S) (4.12)

subject to∑
t∈T

∑
S∈2J

λQi(S)Xt(S) ≤ xi ∀i ∈ I,

∑
S∈2J

Xt(S) ≤ 1, ∀t ∈ T,

∑
t∈T

∑
S∈2J

Qc
i(S)Xt(S) ≤ bci , ∀i ∈ I, c ∈ C,

Xt(S) ≤
∑
i∈I

aij −
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
it ∀t ∈ T, S ∈ 2J , j /∈ S,

1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
it −

∑
i

aij ≤
∑

S∈2J |j∈S

Xt(S) ∀t ∈ T, j ∈ J,

aija
c
jXt(S) ≤ Zc

it ∀t ∈ T, i ∈ I, c ∈ C, S ∈ 2J ,

j ∈ S,

Zc
it+1 ≤ Zc

it ∀i ∈ I, c ∈ C,

t ∈ {1, . . . , |T | − 1},

Zc+1
it ≤ Zc

it ∀i ∈ I, t ∈ T,

c ∈ {1, . . . , |C| − 1},

0 ≤ bci ≤ µci ∀i ∈ I, c ∈ C

0 ≤ Xt(S) ≤ 1 ∀t ∈ T, S ∈ 2J ,

Zc
it ∈ {0, 1} ∀t ∈ T, i ∈ I, c ∈ C,
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Note that, besides the value of booking limits, the solution of the above mixed integer

linear program yields the exact periods when specific control classes are open, together with

the corresponding sets of products.

4.2.4 An aggregate model

The size of Program DNBL , which is proportional to the number of booking periods,

precludes its solution on anything but very small instances. In order to derive a more tractable,

we aggregate booking periods in the set of aggregated booking periods H. More specifically,

the horizon is partitioned into |H| sub-horizons. Any sub-horizon h, is an aggregation of

several consecutive booking periods and, at the end of any booking sub-horizon h, one or

more control classes are closed. Slightly abusing notation, we now let Xh(S) denote the

number of periods in which the offer set S in the booking sub-horizon h is offered. This value

will be the length of the sub-horizon h. The structure of the model is then in line, modulo

the CRS compatibility constraints, with the formulation of Bront et al. (2009). The modified

mathematical program ANBL is as follows :

ANBL :

max
X,b,Z

∑
h∈H

∑
S∈2J

λR(S)Xh(S) (4.13)

subject to∑
h∈H

∑
S∈2J

λQi(S)Xh(S) ≤ xi ∀i ∈ I,

∑
S∈2J

Xh(S) ≤ |T |, ∀h ∈ H,

∑
h∈H

∑
S∈2J

Qc
i(S)Xh(S) ≤ bci , ∀i ∈ I, c ∈ C,

Xh(S) ≤ (
∑
i∈I

aij −
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
ih)M, ∀h ∈ H,S ∈ 2J , j /∈ S,
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1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
ih −

∑
i

aij ≤
∑

S∈2J |j∈S

Xh(S), ∀h ∈ H, j ∈ J,

aija
c
jXh(S) ≤MZc

ih, ∀h ∈ H, i ∈ I, c ∈ C, S ∈ 2J ,

j ∈ S,

Zc
ih+1 ≤ Zc

ih, ∀i ∈ I, c ∈ C,

h ∈ {1, . . . , |H| − 1},

Zc+1
ih ≤ Zc

ih, ∀i ∈ I, h ∈ H,

c ∈ {1, . . . , |C| − 1},

0 ≤ bci ≤ µci , ∀i ∈ I, c ∈ C,

0 ≤ Xh(S), ∀h ∈ H,S ∈ 2J ,

Zc
ih ∈ {0, 1}, ∀h ∈ H, i ∈ I, c ∈ C,

In the above, a suitable value for the big-M constant M is simply given by max{Xh(S)},

which is unknown but less or equal to |T |. In the next section, we present a solution approach

that can be adapted to either ANBL or DNBL. The performance of both models will be

appraised in the numerical examples.

4.3 Solution approaches

Model (ANBL) has an exponential number of variables, which corresponds to the 2|J | −

1 non-empty possible combinations of products to offer. Small instances can be solved by

commercial MIP solvers. Actually, filtering techniques may help to reduce problem size by

focusing on offer sets compatible with the CRS rules. For addressing large instances, we

implement a column generation scheme.
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4.3.1 Offline filtering

As mentioned before, the solution of the model CDLP is not necessarily feasible under

CRS rules. For instance, for the 16-product problem considered in Section (4.4.2), only 242

are CRS-compatible, out of 216 − 1 = 65535 combinations. To check compatibility, let us

introduce the variables zci , which indicate whether control class c is open on leg i or not.

Then, we can ensure that if a product j is going to be included in the offer set S, the

corresponding control class on that resource should be open. Otherwise, if a control class is

closed, all products belonging to that control class that use the resource are not offered. This

constraint is mathematically expressed as :

aija
c
j ≤ zci , ∀i ∈ I, c ∈ C, j ∈ S. (4.14)

A product should not be offered in the offer set S, if its corresponding control class on

constituent resource is closed. This can be verified by the following constraint :

1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

zci −
∑
i∈I

aij ≤ 0, ∀j /∈ S. (4.15)

Finally, in the offer set S, a child class can not be open if its parent class is closed. This

is verified by the following constraint :

zc+1
i ≤ zci , ∀i ∈ I, c ∈ C (4.16)

Considering the constraints mentioned above, the feasibility of a set S under the CRS
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rules can be verified by solving the mathematical program

max
z

0 (4.17)

subject to

aija
c
j ≤ zci , ∀i ∈ I, c ∈ C, j ∈ S,

zc+1
i ≤ zci , ∀i ∈ I, c ∈ C,

1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

zci −
∑
i∈I

aij ≤ 0, ∀j /∈ S.

Note that additional constraints based on the CRS rules could easily be appended to the

model, if required.

4.3.2 Column generation-based heuristic

To obtain an exact solution of the practical (ANBL) model, which is a large-scale mixed

integer problem, we have to develop a branch-and-price algorithm. In terms of processing

time, this is very costly approach and in the practical problems, we mostly need a solution

with a good quality in an acceptable processing time. In this section, we develop a column

generation-based heuristic approach to solve model (ANBL) following with detailed steps of

the algorithm.

In the column generation algorithm, we start by solving a reduced linear problem (RLP) ;

that involves a limited number of columns. Then we construct a subproblem by using the dual

solution of RLP, to find a column with positive reduced cost. Then we add this column to

the RLP and solve it again. We continue these steps until we could not find any new column

with a positive reduced cost, then the current solution is optimal (Bront et al. (2009)).

The RLP for the model (ANBL) is presented as follows. Let Ω denote the subset of

products compatible with CRS rules. For simplicity, we consider there is no upper bound

imposed on booking limits of resources.

To solve model (ANBL) with column generation algorithm, we have to deal with both
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CRS-non-reopening and CRS-nesting-order constraints with binary variables. Since at any

step of the column generation, the sub problem generates a unique subset of products, we

can modify the subproblem to only generate subsets compatible with CRS-nesting-order

constraints. However, to consider the CRS-non-reopening constraints during the booking

horizon, we have to keep them in the master problem. So, the RLP will be as follows :

RLP :

max
X,b,Z

∑
h∈H

∑
S∈Ω

λR(S)Xh(S) (4.18)

subject to∑
h∈H

∑
S∈Ω

λQi(S)Xh(S) ≤ xi ∀i ∈ I,

∑
S∈Ω

Xh(S) ≤ |T |, ∀h ∈ H,

∑
h∈H

∑
S∈Ω

Qc
i(S)Xh(S) ≤ bci , ∀i ∈ I, c ∈ C,

Xh(S) ≤ (
∑
i∈I

aij −
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
ih)M, ∀h ∈ H,S ∈ Ω, j /∈ S,

1 +
∑

c∈C,i∈I|(aij ,acj 6=0)

Zc
ih −

∑
i

aij ≤
∑

S∈Ω|j∈S

Xh(S), ∀h ∈ H, j ∈ J,

aija
c
jXh(S) ≤MZc

ih, ∀h ∈ H, i ∈ I, c ∈ C, S ∈ Ω,

j ∈ S,

Zc
ih+1 ≤ Zc

ih, ∀i ∈ I, c ∈ C,

h ∈ {1, . . . , |H| − 1},

0 ≤ Xh(S), ∀h ∈ H,S ∈ Ω,

Zc
ih ∈ {0, 1}, ∀h ∈ H, i ∈ I, c ∈ C,

To tackle this problem, we develop the following heuristic approach :
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Algorithm CG

Step 1 (initialization)

- Let Ω be a limited subset of CRS compatible sets.

- Let ζ be the set of all binary variables.

- Let Φ be an empty set of binary variables with specified fixed values.

Step 2 (variable fixing)

Fix the binary variables in Φ to their specified values.

Step 3 (solving RLP)

Solve RLP as a linear model with given Ω and Φ, and extract the

dual variables.

Step 4 (solving subproblem)

Construct subproblem with obtained dual variables and generate

a new CRS-nesting-order compatible subset.

Step 5 (stopping criterion)

– If there is no improvement in the value of objective function,

then stop.

– If there is no new subset with positive reduced cost, then

goto Step 8.

Step 6 (updating RLP)

Add new subset to set Ω.
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Step 7 (loop)

Return to Step 2.

Step 8 (re-introducing CRS-non-reopening)

Solve RLP with all binary variables in ζ as a MIP.

Step 9 (updating Φ)

add all binary variables in ζ to Φ with their values of MIP solution.

Step 10 (loop)

Return to Step 2.

4.3.3 Subproblem formulation

Let π and σ be the dual prices of the capacity and time constraints of RLP, respectively.

Then, a column with the most positive reduced cost can be obtained by solving the following

subproblem.

max
S∈2J

R(S)−
∑
i∈I

πiQi(S)−
∑
h∈H

σh. (4.19)

The order of the products in the customer’s OPL is playing the crucial role in our choice

model. Let us introduce binary variable yjlk in the terms of the rank of the products, that

assumes value 1 if the product ranked k in OPL l belongs to S, and to 0 otherwise. Note that

jlk represents a unique index j = jlk. If a product in rank k from OPL l has been selected and

activated, the rest of products with ranks higher than k should be inactive. (For more details

see Hosseinalifam et al. (2014)).

To do so, we introduce binary variables wlk that denote the rank of the customer’s most

preferred available product. Once a product in rank k̄ of OPL l is selected, we set variable

wlk to value 1 for all k > k̄.
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Now, we can control the activation state of any product in the OPL l, by the product

yjlk(1 − wlk). i.e., the highest ranked available product is selected, while the remaining ones

are not considered any more.

The definition of the variables wlk, together with following constraints (4.20) and (4.21),

yjlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1}, (4.20)

wlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1}, (4.21)

ensures that any arriving customer purchases his highest ranked product within S.

Next, we need to check the feasibility of generated offer set under CRS-state and CRS-

nesting-order rules. This is achieved by adding the following complementary constraints to

the sub problem.

aija
c
jyj ≤ zci ∀i ∈ I, j ∈ J, c ∈ C. (4.22)

Constraints (4.22) ensures that if a product is going to be included in the offer set,

constructed by the subproblem, its corresponding control class c on leg i is open, and if a

control class is closed, all products belonging to that control class could not be offered any

more.

Constraints (4.23) ensure that if a control class is open, all products belonging to that

control class should be offered and vice versa.

1 +
∑

i∈I,c∈C

zci −
∑
i

aij ≤ yj ∀j ∈ J. (4.23)
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Finally, following constraints are to validate CRS-nesting-order rule. They ensure that if

a control class is closed, all its child control classes should be closed. And, if a control class

is open, all of its parent control classes should be open as well.

zc+1
i ≤ zci ∀i ∈ I, j ∈ J, c ∈ C. (4.24)

Recalling that P++
kl denotes the total transition probability from the customer’s most

preferred product to the one in rank k in the OPL l, and re-stating binary variable yj in

the terms of order of products in the OPLs, yjlk , the column generation subproblem can be

formulated as follows. For notation simplicity, for the indicator parameters like aij and acj we

let j = jlk be the unique index for product j located in rank k of OPL l.

SUB :

max
y,w,z

∑
l∈L

|Ol|∑
k=1

P++
kl Pl(rj −

∑
i∈I

aijπi)yjlk(1− wlk)

subject to (4.25)

yjlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

wlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

zc+1
i ≤ zci ∀i ∈ I, c ∈ {1, . . . , |C| − 1},

aija
c
jyjlk ≤ zci ∀i ∈ I,∀l ∈ L, k ∈ {1, . . . , |Ol|},

1 +
∑

i∈I,c∈C

zci −
∑
i

aij ≤ yjlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

yjlk , w
l
k, z

c
i ∈ {0, 1} ∀i ∈ I, c ∈ C, l ∈ L, k ∈ {1, . . . , |Ol|}.
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The bilinear terms yjlkw
l
k can be linearized through the introduction of variables ulk= yjlkw

l
k

and additional inequalities ulk ≤ yjlk , ulk ≤ wlk, u
l
k ≥ yjlk + wlk − 1. This yields the equivalent

mixed integer formulation :

SUB′

max
y,w,z

∑
l∈L

|Ol|∑
k=1

P++
kl Pl(rj −

∑
i∈I

aijπi)(yjlk − u
l
k)

subject to (4.26)

yjlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

wlk ≤ wlk+1, ∀l ∈ L, k ∈ {1, . . . , |Ol| − 1},

ulk ≤ wlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

ulk ≤ yjlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

zc+1
i ≤ zci ∀i ∈ I, c ∈ {1, . . . , |C| − 1},

aija
c
jyjlk ≤ zci ∀i ∈ I,∀l ∈ L, k ∈ {1, . . . , |Ol|},

ulk ≥ yjlk + wlk − 1 ∀l ∈ L, k ∈ {1, . . . , |Ol|},

1 +
∑

i∈I,c∈C

zci −
∑
i

aij ≤ yjlk ∀l ∈ L, k ∈ {1, . . . , |Ol|},

yjlk , w
l
k, z

c
i ∈ {0, 1} ∀i ∈ I, c ∈ C, l ∈ L, k ∈ {1, . . . , |Ol|}.

Model SUB’, Even for large scale instances, can be solved efficiently by an off-the-shelf

solver. This is mainly because of its compact formulation. Note also that the formulation is

quite flexible and allows to incorporate additional constraints whenever required.

4.4 Numerical results

In this section, we evaluate the performance of the proposed models and algorithm on clas-

sic “ Parallel Flights ” and two “Hub and Spoke ” networks with different sizes as benchmarks.
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Moreover, we use Bertsimas-de Boer’s simulation-based approach (Bertsimas and De Boer

(2005)) to compare the performance of proposed approaches with one other well-known exis-

ting approach in the literature.

Bertsimas-de Boer algorithm is a simulation-based approach to compute booking limits

over a network. It starts by an initial set of booking limits. Afterwards, using simulation to

estimate the first order gradient of the revenue function, they develop a stochastic steepest

ascent algorithm to improve the initial set of booking limits.

The computational results have been carried out on a computer with 2.4 GHz CPU and

4 GB of RAM and 2 cores. We have used the FICO Xpress-Mosel 7.2.1 to formulate and

obtain the results of the column generation algorithm.

We do simulation to consider stochastic nature of demand in evaluation of different ap-

proaches. We generate 2000 streams of demand in the simulation process to compute the

expected revenue obtained with the booking limits. At any booking period, we may have a

customer from a segment l based on the arrival rate for that segment λl. The arriving custo-

mer will make a choice based on the order of products in his OPL and the availability based

on the booking limits. The average of the computed results will denote the expected revenue

obtained by the given assignment of resources and choice behaviour of segmented customers.

All simulation results have a relative error of less than 0.5 % with 95% confidence.

4.4.1 Parallel flights

In this example (Chen and Homem-de Mello (2010)), we have a network with three parallel

flight legs (morning, afternoon, evening) with initial capacities of 30, 50 and 40, respectively.

A total number of six products are induced by these resources with two High (H) and Low

(L) fare classes on each flight leg. Products’ information and resource usage are shown in

Figure 4.2 and Table 4.1.

Customers’ OPL information are shown in Table 4.2. First and second columns denote

the OPLs with the ordered products in them. Third and forth columns indicate transition
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Figure 4.2 Parallel flight example : network.

Table 4.1 Parallel flight example : products

product leg class fare

1 1 L 400
2 1 H 800
3 2 L 500
4 2 H 1000
5 3 L 300
6 3 H 600

probabilities and arrival rate for each OPL, respectively. We have four types of OPLs with

corresponding transition probabilities. The booking horizon is divided into |T | = 300 periods

with an average of 150 arrivals. To have a better evaluation of algorithms, we alter the demand

level with the scale factor of α=0.75, 1 and 1.25. In this context, α=0.75 indicates that we

multiply the supposed demand to 0.75 and we only let 75 % of demand come to the network.

Table 4.2 OPL setting for the parallel flights

OPL ordered itineraries transition probability arrival rate

1 4, 2, 6 1, 0.5, 0.2 0.10
2 5, 1, 3 1, 0.5, 0.2 0.15
3 1, 2, 3, 4, 5, 6 1, 0.8, 0.75, 0.66, 0.75, 0.33 0.20
4 2, 1, 4, 3, 6, 5 1, 0.8, 0.75, 0.66, 0.75, 0.33 0.05
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The total Expected Revenue (ER), Upper Bound (UB), and processing times (sec.) are

presented in Table (4.3). Note that ER is the revenue obtained by the simulation, and UB is

the value of the objective function of the exact formulation. The third and fourth columns

show the result of the two exact formulations DNBL and ANBL, respectively. The fifth

and sixth columns are the solutions of the column generation-based heuristic on the models

DNBL and ANBL, respectively. The column “Bertsimas” indicates the obtained revenue by

simulation-based approach of Bertsimas-de Boer. We set the full capacity of the resources as

initial booking value of booking limits for each resource for the Bertsimas-de Boer algorithm.

The next column denotes the expected revenue obtained by simulation-based approach with

the solution of the heuristic approach as an initial solution. Finally, the last column indicates

the upper-bound without considering the CRS restrictions.

Table 4.3 comparison of the results of the parallel flights example

α DNBL ANBL HDNBL HANBL Bertsimas. HANBL+B. No CRS

0.75
UB 65574 65595 65574 65595 - - 65595
ER 65026 65026 65026 65026 62609 65026 -

CPU 45 < 1 18 < 1 260 41 -

1
UB 83079 83160 83079 83160 - - 83410
ER 81541 81712 81551 81587 79585 81587 -

CPU 133 < 1 87 < 1 338 38 -

1.25
UB 86558 86819 86389 86819 - - 86819
ER 86226 86360 86108 86357 86118 86302 -

CPU 342 < 1 253 < 1 522 84 -

As it can be expected, both exact approaches have better revenue performances comparing

to heuristic approaches. In the exact formulations, aggregated formulation has an slightly bet-

ter upper bound comparing to the disaggregated formulation, because of the flexible length

of booking horizons and then its finer control on state of the control classes and offering pro-

ducts. In the terms of the processing times, aggregated formulation, has better performance

comparing to all other approaches in both exact and heuristic approaches.

We also observe that Performance of the Bertsimas-de Boer algorithm, is dependent to
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its initial solution. If we start this algorithm with a good initial solution, processing time

significantly reduces to obtain an improved revenue.

4.4.2 Hub and Spoke network I

This network is based on the networks illustrated in the Figure 4.3. In this example, we

have five flight legs and three cities inducing the total number of sixteen products. The flight

legs’ initial capacities are x=(12, 8, 8, 8, 8). Customers are divided into nine overlapping

segments. For all segments, three different scenarios of low, medium and high level of overlap

have been considered. The booking horizon is divided to |T | = 80 small booking periods and

the arrival rate λ has been altered by a scale factor α = 0.9, 1, 1.1.

Figure 4.3 Hub and Spoke example I : network

Table 4.4 Hub and Spoke example I : products

product leg class fare product leg class fare

1 1 L 400 9 5 L 400
2 1 H 800 10 5 H 800
3 2 L 300 11 1,4 L 500
4 2 H 600 12 1,4 H 1000
5 3 L 400 13 1,5 L 450
6 3 H 800 14 1,5 H 900
7 4 L 300 15 2,5 L 400
8 4 H 600 16 2,5 H 800

OPL informations for the cases with low, medium and high overlap are shown in Tables

(4.5), (4.7) and (4.9) with corresponding transition probabilities and arrival rates in the third
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and fourth columns respectively. Afterwards, the following Tables (4.6), (4.8) and (4.10) de-

notes the obtained results by different approaches : low, medium and high overlap, respecti-

vely.

To obtain a good quality upper bound to evaluate the performance of the heuristic ap-

proach we implement the filtering approach. Number of the possible combinations is reduced

from 65536 to only 242 feasible subsets under CRS rules by implementing proposed filtering

approaches.

Table 4.5 OPL setting for the Hub and Spoke network I with low overlap

OPL ordered itineraries transition probability arrival rate

1 2, 4 1, 0.5 0.07
2 4, 2 1, 0.5 0.05
3 1, 3 1, 0.8 0.15
4 6, 8, 10 1, 0.5, 0.2 0.07
5 10, 8, 6 1, 0.5, 0.2 0.05
6 7, 5, 9 1, 0.5, 1 0.15
7 12, 14 1, 0.5 0.07
8 16 1 0.05
9 15, 13, 11 1, 0.8, 0.7 0.15

Table 4.6 comparison of the different results of Hub and Spoke network I (low overlap)

α DNBL ANBL HDNBL HANBL Bertsimas. HANBL+B. No CRS

0.9
UB 23958 24103 23134 23271 - - 24424
ER 20924 21018 20967 21011 20902 21024 -

CPU 3600 35 212 11 45 35 -

1
UB 25256 25302 21232 24499 - - 25360
ER 22106 22240 20723 22042 22034 22214 -

CPU 618 26 256 14 78 34 -

1.1
UB 25762 25936 22501 25936 - - 26011
ER 22970 23257 21036 23168 22971 23142 -

CPU 3600 63 211 32 147 41 -

Filtering, in moderate size problems, enables us to solve the models with exact approaches

to optimality with all possible feasible offer sets, when it is not possible to use exact ap-
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Table 4.7 OPL setting for the Hub and Spoke example I with medium overlap

OPL ordered itineraries transition probability arrival rate

1 2, 1, 4 1, 1, 0.5 0.07

2 4, 3, 2 1, 1, 0.5 0.05

3 1, 3 1, 0.8 0.15

4 6, 5, 8, 10 1, 1, 0.5, 0.2 0.07

5 10, 9, 8, 6 1, 1, 0.5, 0.2 0.05

6 7, 5, 9 1, 0.5, 1 0.15

7 12, 11, 14 1, 1, 0.5 0.07

8 16, 15 1,1 0.05

9 15, 13, 11 1, 0.8, 0.7 0.15

Table 4.8 comparison of the different results of Hub and Spoke network I (medium overlap)

α DNBL ANBL HDNBL HANBL Bertsimas. HANBL+B. No CRS

0.9
UB 23958 24103 23134 23271 - - 24424
ER 20909 21184 20987 21017 21070 21162 -

CPU 3600 34 151 7 163 103 -

1
UB 25256 25302 24470 24499 - - 25360
ER 22169 22218 22025 22095 22204 22193 -

CPU 616 26 93 8 116 35 -

1.1
UB 25762 25930 23364 25315 - - 26011
ER 23004 23218 22310 23217 23024 23204 -

CPU 1305 62 135 5 228 54 -
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Table 4.9 OPL settings for Hub and Spoke network I with high overlap

OPL ordered itineraries transition probability arrival rate

1 2, 1, 3, 4 1, 1, 0.7, 0.7 0.07

2 4, 3, 1, 2 1, 1, 0.7, 0.7 0.05

3 1, 3 1, 0.8 0.15

4 6, 5, 7, 8, 9, 10 1, 1, 0.7, 0.7, 0.6, 0.2 0.07

5 10, 9, 7, 8, 5, 6 1, 1, 0.7, 0.7, 0.6, 0.2 0.05

6 7, 5, 9 1, 0.5, 1 0.15

7 12, 11, 13, 14 1, 1, 0.7, 0.7 0.07

8 16, 15, 11, 12 1, 1, 0.7, 0.7 0.05

9 15, 13, 11 1, 0.8, 0.7 0.15

Table 4.10 comparison of the results of the Hub and Spoke network I with high overlap

α DNBL ANBL HDNBL HANBL Bertsimas. HANBL+B. No CRS

0.9
UB 23886 24103 23044 23230 - - 24424
ER 21062 21173 21006 21119 21208 21131 -

CPU 3600 32 162 7 247 47 -

1
UB 25256 25302 23367 23567 - - 25360
ER 22171 22301 21800 21911 22181 22270 -

CPU 615 16 161 10 101 36 -

1.1
UB 24318 25922 25142 25322 - - 26008
ER 23276 23385 23325 23357 23316 23360 -

CPU 3600 42 108 5 138 72 -
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proaches with considering all possible offer sets. However, even after filtering, the exact for-

mulation (DNBL) cannot finish in the one hour time limit all the time. Note that the filtering

time has not been considered in the presented processing time.

This example, more precisely shows the time and revenue performance of aggregated for-

mulation comparing to disaggregated one with a meaningful difference. It can be denoted

that the column generation-based heuristic approach has better performance in aggregated

formulation rather the disaggregated one. Like previous example, Bertsimas-de Boer algo-

rithm with results of HANBL as initial solution has a very slight improvement which denotes

high quality of HANBL’s solution.

4.4.3 Hub and Spoke network II

In this example (Chen and Homem-de Mello (2010)), we consider a network (see Figure

4.4 and Table 4.11) with 7 flight legs inducing the total number of 22 products.

Figure 4.4 Hub and Spoke example II : network.

This network has a larger hub and spoke structure compared to the previous example and

like before, we have some products using more than one resource. The resources have the

initial capacities of x :=(100, 150, 150, 150, 150, 80, 80 ), respectively. The booking horizon

consists of |T | = 1000 periods which with arrival rate λ = 0.91 we have the expected arrival

rate of 910 customers per stream.

OPL information are shown in Table (4.12). We have ten OPLs with corresponding tran-
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Table 4.11 Hub and Spoke example II : products

product leg class fare product leg class fare

1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 27 6 L 250
7 7 H 500 28 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350

Table 4.12 OPL settings for the Hub and Spoke example II.

OPL ordered itineraries transition probability arrival rate

1 1, 8, 9, 12, 19, 20 1, 0.8, 1, 0.75, 0.66, 1 0.08

2 20, 19, 12, 9, 8, 1 1, 1, 0.8, 0.25, 1, 0.5 0.20

3 2, 3, 13, 14 1, 1, 0.5, 1 0.05

4 14, 13, 3, 2 1, 1, 0.2, 1 0.20

5 4, 5, 15, 16 1, 1, 0.5, 1 0.10

6 16, 15, 5, 4 1, 1, 0.2, 0.8 0.15

7 6, 7, 17, 18 1, 0.8, 0.625, 1 0.02

8 18, 17, 7, 6 1, 1, 0.2, 0.8 0.05

9 10, 11, 21, 22 1, 0.8, 0.625, 1 0.02

10 22, 21, 11, 10 1, 1, 0.2, 1 0.04
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sition probabilities provided in the third column. We use a scale factor α to scale the arriving

demand and evaluate the algorithm. The summary of the performance of different algorithms

is shown in the Table (4.13).

This example more clearly denotes the differences between approaches. First, we should

denote that for a problem with 22 products, it is possible to have more than 4 millions

combinations of products to offer which makes it completely impossible to consider any

commercial MIP solver to directly solve the problem.

In order to be able to have a good quality upper bound to evaluate the performance of

the heuristic approach we implement the filtering approach. By implementing the filtering we

reduce the number of the possible combinations from more that 4 millions to the only 2186

subsets which are possible to be offered under CRS rules in the nested booking policy. This

filtering enables us to solve the exact formulation with all possible combinations with a time

limit of maximum one hour.

Booking limits of the exact formulation DNBL, even by using the filtered data, cannot be

computed any more. The large size of the problem does not let solver to be executed. Like

the previous examples, for the initial solution for the Bertsimas-de Boer algorithm, we put

all available capacity for the parent class. In this example, we have a meaningful increasing

in processing time of Bertsimas-de Boer algorithm. This is mainly because of increasing the

simulation time for a larger example compared to the previous ones. It can be clearly seen

that HANBL still have much better performance in the terms of processing time and quality

of the solution comparing to other approaches.

4.4.4 Summary of numerical results

The obtained results for the two exact approaches show that even though both models

have almost the same revenue, there is a big difference in the processing time between them.

This is mainly because of the aggregation of the booking periods in the model (ANBL) which

makes problem smaller and easier to solve. Results show that in some cases we are unable to
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Table 4.13 comparison of the different results of Hub and Spoke network II

α DNBL ANBL HDNBL HANBL Bertsimas. HANBL+B. No CRS

0.75
UB - 224640 197815 218631 - - 226766
ER - 216820 189914 214773 190695 216799 -

CPU - 322 3600 23 1542 280 -

1
UB - 262250 203271 245365 - - 267250
ER - 256952 192189 239526 228467 255281 -

CPU - 650 3600 29 1672 484 -

1.25
UB - 297899 265116 288529 - - 303516
ER - 265569 248096 258622 225293 260745 -

CPU - 271 3600 12 1508 502 -

execute the model (DNBL) in 1 hour time limit, or even in the Example 3, Xpress cannot

start because of the large size of the problem.

We remind that in both of the hub and spoke examples, we do preprocessing before

implementing the exact approaches. This preprocessing consists of a filtering approach to

distinguish subsets of products which can be offered under CRS rules. Regarding to the

exponential number of possible combinations of products, filtering enables us to implement

commercial solvers directly on our models.

Between two heuristic approaches also we can see a significant improvement in processing

time in aggregated formulation. Besides the improvements in processing times, we obtain

solutions with better quality in aggregated formulation.

The simulation-based approach has also a good performance ; however, since it is a local

approach ; the quality of the obtained solution and specially the processing time is mainly

dependent to the initial solution. Moreover, as it can be shown in the Hub and Spoke II

Example, for a large-scale problems, the processing time with a large number of products,

resources and booking periods the simulation-based approach by itself will take a long time to

find a local solution. However, embedding the heuristic approach with improved simulation-

based method will be a good candidate to have a good quality solution.
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4.5 Conclusion

Our main contribution in this work is to propose a new mathematical programming ap-

proach to estimate better values of nested booking limits in a customer choice-based network

revenue management problem. The proposed approach uses the strength of the model CDLP

with a completely general choice-based model of demand to consider the network effect.

With the flexibility to take into account various CRS rules, the proposed approach com-

putes the nested booking limits which generate the highest possible revenue. Besides the

estimation of nested booking limits, the proposed approach provides offer sets corresponding

to them. These data provide very useful information and has a vital rule for analyzers of the

revenue management system.

In this paper, we proposed a new mathematical programming approach to estimate nes-

ted booking limits in a customer choice-based network revenue management problem. This

approach not only provides the estimated values of nested booking limits, but also it provides

the corresponding offer set to the estimate booking limits and opening and closing time for

each control class on the different resources. This results can be widely used to implement as

business rules in most of reservation systems.

We use a very general and powerful non-parametric choice model to estimate customer’s

choice behavior. Each arriving customer chooses from available alternatives according to an

ordered preference list of products. In case of the non-availability of customer’s preferred

product, he substitutes it with a next product with a lower rank in his ordered preference

list.

To solve the proposed model for the real world practical problems, a column generation

algorithm has been developed to generate only set of products which are feasible under CRS

rules. Our numerical results show that the proposed algorithm in most of the cases dominates

other nested booking limit control policies. Moreover, in the terms of processing times, our

algorithm is quite fast and in the most of the cases and does not need more than few minutes.

An appealing further work to this research could be considering hybrid nesting structure
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instead of general serial nesting. Another works could be improving algorithms and heuristics

to aggregate a larger number of customers ordered preference lists (OPL) to increase efficiency

of algorithms. Improving a joint optimization and simulation-based approaches could be

another avenue for further researches.
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CHAPTER 5

GENERAL DISCUSSION AND CONCLUSION

In this thesis, we have investigated novel approaches for the dynamic allocation of re-

sources, in the context of network revenue management. These can be cast into two catego-

ries : bid price and booking limit control policies. In particular, we have shown how a column

generation framework can accommodate real-life features, which are key to a successful im-

plementation. Our numerical results are proof of the good performance of our algorithms,

both in terms of actual revenue and processing time.

In chapter 2, we developed a joint seat allocation and bid pricing model that derives the

value of time-dependent bid prices and the corresponding resource allocation in the customer

choice-based revenue management framework.

In chapter 3, we proposed a nonparametric model for choice-based revenue maximization

with corresponding algorithmic framework to solve practical large-scale problems. Finally,

in chapter 4, we developed a new customer choice-based framework for computing nested

booking limits that yield the highest possible return, within a given non-parametric customer

choice environment.

Further research should focus on refining the choice model, for instance by considering

hybrid, mixed logit environments. The success of our approach prompts us to include yet

more features encountered in real world applications, mostly in the transportation industry

(airlines, rail).

Finally, for the next generation of RM systems, researchers and practitioners will focus

on most challenging features of these systems : modeling, forecasting and optimization. This

involves more sophisticated systems to estimate precise customer choice behavior and imple-

ment efficient large scale optimization techniques to obtain better capacity control policies.

The presence of large amounts of detailed historical data and recent advances in big data
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analytics are also going to play a crucial role in the future of revenue management systems.
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