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NUMERICAL ANALYSIS OF A CONICAL TYPE COAXIAL OPEN-ENDED PROBE

FOR DIELECTRIC MEASUREMENT

HOMA ARAB SALMANABADI
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RÉSUMÉ

L’objectif principal de cette recherche est de trouver un modèle précis pour le calcul

de la constante diélectrique et le facteur de perte d’un matériau diélectrique homogène à

partir d’un coefficient de réflexion mesurée à l’aide d’une sonde coaxiale de type conique

dans les fréquences radio et micro-ondes. Ce type de sonde peut être facilement inséré dans

plusieurs types de tissus biologiques et dans des matériaux semi-rigides comme le caoutchouc,

certains plastiques et des matières organiques (ex.: des produits laitiers comme le beurre,

pour en mesurer la teneur en humidité). Cette caractéristique est très importante pour des

applications biologiques et industrielles. Le principe à la base de ce type de mesure est la

détection de la variation de capacité par rapport au mouvement de la masse diélectrique

dans le champ de frange électrique. L’admittance d’entrée électrique, ainsi que le coefficient

de réflexion, sont calculés à l’aide d’une analyse par éléments finis. Contrairement à de

nombreuses autres techniques de modélisation utilisées pour l’étude des sondes coaxiales

qui sont approximatives et donc limitées, le modèle par éléments finis est plus précis et

est applicable aux géométries complexes. Afin de valider le modèle numérique, une étude

expérimentale a été menée en parallèle en laboratoire, avec mêmes dimensions géométriques.

Les résultats sont comparés et une excellente correspondance est observée, ce qui démontre

que la modélisation par éléments finis est une bonne approche pour la conception optimale

de sondes coaxiales coniques. Une formulation éléments finis tridimensionnelle est utilisée

dans la région du matériau diélectrique et dans une petite région voisine de la structure

de la sonde sur laquelle elle est montée. Le coefficient du facteur de réflexion, le champ

électromagnétique à l’ouverture de la sonde et la permittivité de différents matériaux ont

été analysés pour des fréquences de 300 MHz à 3 GHz. De plus, une étude comparative de

trois modèles de sondes coniques à ouverture coaxiale (modèle capacitif, modèle d’antenne

et modèle amélioré de la ligne virtuelle) qui fait un lien entre le coefficient de réflexion à la

permittivité complexe du matériau testé est présentée. L’influence de l’angle du cône et de

la forme du câble coaxial (plat-conique-elliptique) est aussi étudiée en détail. La conception

de sondes diélectriques ainsi que leur utilisation efficace nécessite des méthodes de calcul

précises et optimales, validées de façon rigoureuse et à coûts de calculs réduits.
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ABSTRACT

The main objective of this research is to find an accurate model for computing the di-

electric constant and the loss factor of a homogeneous dielectric material from a measured

reflection coefficient by using conical-type coaxial probe in radio and microwave frequencies.

This sort of probe can be easily inserted into a wide range of biological tissue types and

semi-rigid materials like rubber, some plastics, and organic materials (e.g., dairy, butter,

etc.) for measuring moisture content. This feature is very important in biological and indus-

trial applications. The measuring principle is based on detecting capacitance change with

respect to the dielectric mass movement in the fringe electrical field. The electrical input

admittance as well as the reflection coefficient are found from the finite-element analysis. In

contrast to many other modelling techniques used for coaxial probe which are approximate

and hence limited, the finite-element model is more accurate and is applicable to complicated

geometries. To demonstrate the accuracy of the numerical model, a parallel experimental

study was carried out in the laboratory in the same geometric dimensions. The numerical

and experimental results are compared and showed an excellent agreement, demonstrating

that finite-element modelling is a good approach for optimized conical coaxial probe design.

A three-dimensional finite-element formulation is employed in the dielectric material region

and a small neighbouring region of the probe structure on which it is mounted. The reflection

coefficient factor, electromagnetic field at the probe aperture and permittivity of different ma-

terials were analyzed in the frequency range of 300 MHz to 3 GHz. Moreover, a comparative

study of three conical open-ended coaxial probe models (capacitive model, antenna model,

improved virtual line model) which relate the reflection coefficient to the complex permittiv-

ity of the Material Under Test (MUT) is presented. In addition, the effects of the cone angle

and shape of the coaxial cable (flat-conical-elliptical) are studied and evaluated in detail in

this research. It is shown that for designing an efficient and operational dielectric measure-

ment probe, an accurate and computationally efficient method with rigorous validation and

reduced computational burden is required.
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CHAPTER 1

INTRODUCTION

Measurement of dielectric properties of materials at microwave frequencies has been the

subject of many researches in the publications [1–5]. The dielectric constant is a unique and

essential property of dielectric materials to characterize the interaction between an electric

field and matter. Accurate measurements of these properties can provide scientists and engi-

neers with essential and valuable information to properly incorporate the materials into their

intended applications. For example, this information is useful in the area of aerospace, au-

tomotive, agriculture, food engineering, bioengineering, medical treatments, and electronics

applications, etc.

The interaction between the electrical and magnetic fields is described by the Maxwell

equations. Basically, there are two ways to solve this system of equations: analytical and

numerical methods. Unfortunately, analytical solutions developed and structured only for

limited class of problems involving simple two-dimensional geometries, linear media and

steady state problems. Three dimensional, non-linear and transient type problems are very

difficult to solve analytically and limited solution algorithms exist only for specific problems.

The current restrictions of complexity and accuracy in analytical methods can be overcome by

using numerical techniques in electromagnetic devices having a complex geometry along with

different material properties, especially those associated with close proximity and irregular

space distribution. Numerical and successive/iterative/recurrent methods can handle non-

uniform asymmetrical geometrical configurations, time-dependent problems and non-linear

materials, different excitations and multiple materials [6, 7].

There are several numerical methods: the finite difference method, the finite element

method, the finite-volume method, the finite integration technique, the boundary element

method, the method of moments, and so on. The finite element method (FEM) is well

adapted to deal with this class of problems, due to its flexibility for handling complex ge-

ometries. The equations are discretized using edge elements which enforces the tangential

continuity of the vector fields, but not that of the normal components. Because of this, only

the essential continuity properties of the electric field intensity are fulfilled when using edge

elements.

There are many techniques that have been developed to characterization materials like the

transmission/reflection line, open-ended coaxial probe, free space and resonator method(cavity

method)[4, 5, 8]. The open-ended coaxial probe has been widely researched over the years
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as a way to effectively and quickly characterize material properties in broad frequency bands

(200MHz to near 50GHz). It is considered a very appealing characterization method, since

the set-up time for a measurement is very short and the measurement is simple, conve-

nient and non-destructive to the material. It is the best method for liquids or semi-solid

materials[9, 10]. The open-ended coaxial probe is a cut off section of transmission line. The

material is measured by immersing the probe into a liquid or touching the surface of a semi-

solid or liquid materials. The fields at the probe end fringe into the material and change

as they come into contact with the MUT. The reflected signal (S11) can be measured and

related to εr.

Many models have been built to analyze open ended coaxial probes terminated by semi-

infinite homogeneous materials. There are three typical models (capacitive model, antenna

model, and modified virtual line model)[11–13]. The accuracy of these three models in mea-

suring lossy dielectric constant of materials are investigated. To the best of our knowledge,

there is no study available in the literature to evaluate these models for conical type type

coaxial probe. Infact, there is an undiscovered area in this field, that includes the study of

conical type open ended coaxial line which is a coaxial line ending in a conical shape ge-

ometry. The advantage of this kind of probe is the possibility of placing the probe into the

biological tissue types and semi-rigid materials which is difficult for the flat coaxial probe.

In this research, we present a comparative study of three conical type open-ended coaxial

probe models which relate the conical type coaxial probe reflection coefficient to the complex

permittivity of the material under test. Then we investigate the sensitivity and accuracy of

the models in measuring lossy dielectric for biological materials.

The contribution of this thesis are as follows:

1. Calculation of the electric field at the aperture of conical probe and consequently re-

flection coefficient by using finite element method.

2. Studying the three different conical-type open-ended coaxial probe models (capacitive-

Antenna-Virtual Line) and finding the best model to relate the coaxial line end impedance

to the complex permittivity of the material under test.

3. Considering the effect of different cone angles of conical coaxial probe on complex

dielectric measurement.

4. Comparative study of different structure of probes (Flat-Conical-Elliptical)in complex

dielectric measurement.

We believe that our present results are new and are not presently available in the literatures.

This short chapter is a brief introduction to the reader. In Chapter 2, the theoretical
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principles are being presented and Maxwell equations are reformulated in terms of potentials.

Potentials are auxiliary functions that express various physical properties in ways leading to

a more workable solution to a problem involving Partial Differential Equations (PDE). In

Chapter 3, the problems are solved by using a numerical method. The Finite Element

Method (FEM) is well adapted to deal with this class of problems, due to its flexibility for

handling complex geometries. The three-dimensional analysis by using the Comsol software

is presented in this chapter. Chapter 4 presents the methods, models and algorithms that

have been used to relate the coaxial line end impedance to the complex permittivity of

the material under test. In Chapter 5, the measurement system and experimental results are

presented. In it we study the handmade probes with different characteristics and angles. The

measurements are done for four different liquids: water, methanol, butanol, and propanol.

Moreover, the results of the measurement of the permittivity and the reflection coefficient of

the system consisting of probes placed in liquids, and comparison between these results and

those of which are obtained numerically and analytically are presented. The conclusions and

contribution of this thesis are summarized in Chapter 6, followed by some future works given

in Chapter 7.
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CHAPTER 2

THEORETICAL STUDY OF THE COAXIAL-LINE CONICAL-TYPE

PROBE

In this chapter, we briefly present a introductory theoretical method for solving wave

equation analyticaly for open ended coaxial probes.

2.1 Electromagnetic Field Equations

The problem of electromagnetic field analysis on a macroscopic level is fully described by

Maxwell equations subject to certain boundary conditions:

∇×H = J +
∂D

∂t
; (2.1)

∇× E = −∂B

∂t
; (2.2)

∇ ·D = ρ; (2.3)

∇ ·B = 0, (2.4)

where E is the electric field intensity, H is the magnetic field intensity, D is the electric

displacement or electric flux density, J is the current density, and ρ is the electric charge

density. The constitutive relations describing the macroscopic properties of the medium are

given as:

D = εE; (2.5)

B = µH; (2.6)

J = σE. (2.7)

The phasor form of equation can be derived from a time-dependent equation(replacing time

variation by jω). The complex dielectric constant ε = ε0(ε′r−jε′′r) describes the interaction of

a material with an electric field E and consists of a real part ε′r which represents the storage

of energy and an imaginary part ε′′r which represents the loss of energy (both dielectric loss

and conductivity). Here ε0 is the permittivity of vacuum (8.854× 10−12F/m) and µ0 is the
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permeability of vacuum (4π × 10−7H/m). Taking the curl of the curl equations gives:

∇× µ−1
r (∇× E)− k2

0(εr −
jσ

ωε0
)E = 0; (2.8)

∇× µ−1
r (∇×H)− k2

0(εr −
jσ

ωε0
)H = 0, (2.9)

where we defined k0 = ω
√
µ0ε0 as the squared complex wave number. In this chapter a model

of the coaxial probe is presented in Figure 2.1.

Figure 2.1: Cross-section view of the coaxial open-ended probe.

2.2 Hertz Potential

The electromagnetic field and electrostatic variables H and E can be solved directly, but

it is often facilitated by the use of scalar and vector potentials. The potential describing

decrease the solution of the Maxwell equations to the solution of different class of PDE

equation. It was shown by Hertz that an arbitrary electromagnetic field in a (source free)

homogeneous linear isotropic medium can be defined in terms of a single vector potential Π:

∇2Π + k2Π = 0, (2.10)

where we defined k = k2
0(εr + σ

ωεr
j) as the squared complex wave number. Equation 2.10

has two types of independent solutions: Πm and Πe. The zero divergence of H allows us to

write H as the curl of a vector function, which result in independent sets of E-type waves:

H = (σ + jωε)∇×Πe; (2.11)

E = k2Πe +∇(∇ ·Πe), (2.12)

and similarly the zero divergence of E leads to a solution of the H-type waves:
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E = jωµ∇×Πm; (2.13)

H = k2Πm +∇(∇ ·Πm). (2.14)

Based on the Green’s function for a dipole source the Hertzian potentials are:

Πe = Pe
e−jkr

r
; (2.15)

Πm = Pm
e−jkr

r
; (2.16)

Kdl =

∫∫
Jsmda =

∫∫
E× da; (2.17)

Pe =
−jIdl

4πωε
; Pm =

−jKdl

4πωµ
, (2.18)

where Pe is the electric polarization vector, Pm is the magnetic polarization vector, I is the

current, l is the electric dipole length vector, K is the current surface, Jsm is the magnetic

surface current, and a is the loop area vector; therefore, the electric an magnetic potential

are related to elementary electric and magnetic current by:

Πe =
−jIdl

4πωε

e−jkr

r
; (2.19)

Πm =
−jKdl

4πωµ

e−jkr

r
; (2.20)

Kdl =

∫∫
Jsmda =

∫∫
E× da, (2.21)

where the tangential electric field of the aperture is integrated over the area of the slot. The

magnetic field inside and outside the coaxial probe are related to the tangential electric field

of the aperture Er(r
′, ϕ′) by:

dH =
2j

4πωµ
Er(r

′, ϕ′)(∇2 + k2)
e−jkr

r
(jr′ × jz)r

′dr′dϕ′; (2.22)

r = [r2 + r′2 − 2rr′cos(ϕ− ϕ′) + z2]1/2. (2.23)

The electric field is taken to be the principal mode and has only r component Er(r
′, ϕ′)) and

exhibit no variations in ϕ direction. The operator ∇ = jϕ
∂
∂ϕ

equals zero, and consequently
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∇2 is zero. by substituting jr′ × jz = −jϕ, the magnetic field is related to Er(r
′, ϕ′) as:

Hϕ(r, ϕ, z) =
k2

2πjωµ

∫ b

a

Er(r
′, ϕ′)r′dr′

∫ 2π

0

ejkr

r
cos(ψ)dψ, (2.24)

where ψ = ϕ−ϕ′ and the last integration will be expressed in terms of Bessel functions [14].

2.3 Electromagnetic Fields in Cylindrical Coordinates

In cylindrical coordinates, the electric field can be decomposed into radial, azimuthal and

longitudinal components. With this separation, the Helmholtz equations can be decomposed

into separate equations for Er, Eϕ, Ez and Hr, Hϕ, Hz. However, these three components

are not completely independent. In fact, classic electromagnetic theory indicates that in

cylindrical coordinate the transversal field components Eϕ and Hr can be expressed as a

combination of longitudinal field components Er and Hϕ. This means that electromagnetic

fields can be derived from the ϕ component of magnetic field which is not independent of the

ϕ [15]. In cylindrical coordinates, the Helmholtz equation for Hϕ is:

∂2Hϕ

∂r2
+

1

r

∂Hϕ

∂r
+
∂2Hϕ

∂z2
+ k2Hϕ = 0. (2.25)

The r component of electric field is computed to be:

−jωεEr(r, ϕ, z) = (
∂

∂r
+

1

r
)Hϕ(r, ϕ, z). (2.26)

And the boundary condition at aperture port (see Figure 2.1 ) defined by:

(
∂

∂r
+

1

r
)Hϕ(r, ϕ, z) = 0 r=a,b. (2.27)

In accordance with the preceding section the general expression for ϕ component of magnetic

field is:

Hϕ(r, ϕ, z) =
A0

r
(ejkz −R0e

−jkz) + Σ∞n=1AnRn(r)e(λ2−k2)z. (2.28)

The first terms represent the incident TEM mode, the second term reflected TEM mode

and the infinite series represent the higher-order modes. All the higher-order modes are

exponentially damped with increasingly the value of z. The eigenfunctions Rn(r) are defined
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as:

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+ λ2)Rn(r) = 0; (2.29)

(
∂

∂r
+

1

r
)Rn(r) = 0 at r=a,b; (2.30)

Rn(r) = J1(λnr)Y0(λna)− J0(λna)Y1(λnr). (2.31)

where J is the Bessel functions of the first kind and Y is the Bessel functions of the second

kind [15]. The eigenvalues are roots of transcendental equation:

Y0(λna)J0(λnb) = J0(λna)Y0(λnb)], (2.32)

and the second kind of the Bessel function order n ( Yn) is defined by:

Yn =

√
2

πλn
[
J2

0 (λna)

J2
0 (λnb)

− 1]1/2. (2.33)

By applying 2.31 to 2.26 , the r component of electric field is computed as:

jωεEr(r, ϕ, z) =
∂

∂z
Hϕ(r, ϕ, z) =

ikA0

r
(ejkz − jkR0e

−jkz) + Σ∞n=1AnRn(r)(λ2 − k2)1/2e(λ2−k2)1/2z.

(2.34)

By setting z = 0 , multiplying two side by rRn(r, z) and by taking the integral over the

surface of the aperture of the probe, we have:

An =
iωεi

∫
s
Er(r, ϕ)Rn(r, ϕ)ds

(λ2 − k2)1/2
, (2.35)

and A0 is:

A0 =
ωεi
∫
s
Er(r, ϕ)Hϕ(r, ϕ)ds

k(1 +R0)
∫
s
[Hϕ(r, ϕ)]2ds

. (2.36)

The normalized admittance of coaxial probe is obtained by inserting 2.35 and 2.36 in 2.28,

and the tangential magnetic field by using 2.28 is equal expression given in 2.24

ωε(1 +R0)
∫
s
Er(r, ϕ)Hϕ(r, ϕ)ds

k(1 +R0)
∫
s
[Hϕ(r, z)]2ds

+ Σ∞n=1

iωε
∫
s
Er(r, ϕ)Rn(r, ϕ)ds

(λ2 − k2)1/2
Rn(r)e(λ2−k2)1/2z; (2.37)

=
2i

4πωµ
Er(r

′, ϕ′)(∇2 + k2)
eikr

r
(ir′ × iz)ds, (2.38)
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which results in:

Ys =
1−R0

1 +R0

=
i
∫
s
Hϕ0(r, ϕ)

∫
s1
Er1(r1, ϕ1)(∇2 + k2) e

ikr

r
cos(ψ)dψ

2π
√
εk0

∫
s
Er(r, ϕ)Hϕ0(r, ϕ)

. (2.39)

It is shown in different references [16], [17] that for any arbitrary function the first part of

integral ∇2 over the aperture of the coaxial line is equal to zero, and we have:

Ys =
i
∫
s
Hϕ0(r, ϕ)

∫
s1
Er1(r1, ϕ1) e

ikr

r
cos(ψ)dψ

2π
√
εk0

∫
s
Er(r, ϕ)Hϕ0(r, ϕ)

, (2.40)

where s1 is the aperture surface and the electric field (Er) and magnetic field (Hϕ) components

of the principal mode are related to metrical coefficient of the cylindrical coordinates (hr = 1,

hϕ = r2, and hz = 1). The derivation of this integral equation was explained in details in

[16, 18, 19] The detailed description for solving Helmholtz equation in cylindrical coordination

can be found in Appendices A.

For a conical type coaxial probe, the electric field in the aperture is not just a function

of the radius (r) and the phase ϕ, and a new variable must be defined due to the geometry

of the probe. However, in recent years, numerical methods have also been used to analyse

open-ended coaxial lines and with easy access to fast computers, the tangential electric field

of the aperture can be determined quickly and accurately. The electric and magnetic fields

calculated by numerical methods are in good agreement with experimental results which will

be discussed in next chapters.
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CHAPTER 3

NUMERICAL STUDY OF COAXIAL-LINE THE CONICAL-TYPE

COAXIAL PROBE

In this chapter, we present a numerical solution for solving the Helmholtz equation within

the volume of the conical type coaxial probe and a small neighbouring region of the sample

on which it is mounted.

3.1 Discretization of the formulation using the finite element method

Typically, a finite element solution is divided in the following steps: [20]

1. Understanding the physical problem (identifying the differential equation and its bound-

ary conditions).

2. Element idealization (characterizing the finite element dimensionality 1D, 2D and 3D

depending on the characterization of geometric beams, plate, solid, etc.)

3. Selection of the element type (in 1-D, 2-D (triangular or quadrilateral), or 3-D (tetra-

hedral, hexahedral, etc.), and may be linear or higher-order)

4. Selection of the type of analysis (weak formulation or functional minimizing)

5. Selection of the solution method ( direct method or iterative method)

6. Solving the eigenvalue matrix form problem

7. Post-processing

The two classical methods for discretizing the wave equations in a conical coaxial probe in

2D are presented in next section [21, 22].

3.2 Solution with the Ritz method

In the Ritz method, we formulate the problem in term of a functional whose minimum

corresponds to the differential equation under specific boundary conditions [21]. The variation
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formulation for wave is:

F (E) =

∫∫
µ−1(∇× E)(∇× E)dΩ−

∫∫
k2

0εE · E∗dΩ; (3.1)

n× E = 0, in boundaries Ω (3.2)

where Ω is the cross section coaxial probe which is presented in Figure 3.1.

Figure 3.1: Cross-section view of the coaxial open-ended probe.

By assuming z is the direction of propagation we will have E(x, y, z) = E(x, y)e−jkzz where

kz is the propagation constant, so equation 2.8 can be written as:

F (E) =

∫∫
µ−1(∇t × Et)(∇t × Et)dΩ− k2

0εEt · E∗tdΩ + · · ·

µ−1(∇tEz + jkzEt) · (∇tEz + jkzEt)
∗dΩ, (3.3)

where ∇t denotes the transverse del operator, Et denotes the transverse component of the

electric field, and Ez the z-component of the field. This functional can be discretized to yield

an eigenvalue system that can be solved for k2
0 for a given kz. Based on FEM method, E can

be approximated by the expansion:

E(x, y) =
n∑
j=1

N e
j (x, y)Ee

j , (3.4)

where N e
j (x, y) are the basis function defined over the entire domain, and n is the number of

nodes in the element (for first order triangular element n equals to three), and Ee
j is constant

coefficients to be determined.
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3.3 Solution with the Galerkin method

The Galerkin method is very popular for finding numerical solutions to differential equa-

tions where the solution residue is minimized, giving rise to the well-known weak formulation

of problems. The idea is to approximate the solution to a differential equation by very simple

functions. In this section the system of equations is derived by using Galerkin method. For

simplicty the residual associated with equation 2.8 in 2D is considered [21].

r =
∂

∂x
µ−1
r (

∂E

∂x
) +

∂

∂y
µ−1
r (

∂E

∂y
)− k2

0εE; (3.5)

Re(Ee) =

∫∫
Ω

N e
i rdΩ; (3.6)

Re(Ee) =

∫∫
Ω

N e
i

( ∂
∂x
µ−1
r (

∂E

∂x
) +

∂

∂y
µ−1
r (

∂E

∂y
)− k2

0εE
)
dΩ. (3.7)

Then invoking identities:

µ−1
r (

∂E

∂x
)(
∂Ni

∂x
) =

∂

∂x
(µ−1

r

∂E

∂x
Ni)− (

∂

∂x
(µ−1

r

∂E

∂x
)Ni, (3.8)

and the divergence theorem∫∫
Ω

(
∂U

∂x
+
∂V

∂y
)dΩ =

∮
Γ

(Ui+ V j).ndΓ. (3.9)

The equation 3.7 can be written:

Re(Ee) =

∫∫
Ω

µ−1
r (

∂N e
i

∂x
)(
∂E

∂x
) + µ−1

r (
∂N e

i

∂y
)(
∂E

∂y
)dΩ−

∫∫
Ω

N e
i · k2

0εEdΩ

−
∮

Γ

(µ−1
r

∂E

∂x
i+ µ−1

r

∂E

∂y
j) · ndΓ, (3.10)

where Γ denote the contour surrounding Ω and n is the outward unique vector. By substi-

tution 3.4 into the above equation obtained:

Re(Ae) =
3∑
i=1

∫∫
Ω

µ−1
r (

∂N e
i

∂x
)(
∂N e

j

∂x
) + µ−1

r (
∂N e

i

∂y
)(
∂N e

j

∂y
)dΩ− k2

0ε

∫∫
Ω

N e
i ·N e

j dΩ

−
∮

Γ

(µ−1
r

∂N e
j

∂x
i+ µ−1

r

∂N e
j

∂y
j) · ndΓ. (3.11)

We can now assemble the element equation for all M elements as

{R} = [K]{φ} − [b]− [g], (3.12)
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where matrix [K] is assembled from matrix [K]e and vector {b} is assembled from vector {b}e

[K] =
n∑
i=1

[Ke] ; [b] =
n∑
i=1

[be]. (3.13)

We used the relation between the global and local node numbers.
Ke =

∫∫
Ω

(
µ−1
r (

∂Ne
i

∂x
)(
∂Ne

j

∂x
) + µ−1

r (
∂Ne

i

∂y
)(
∂Ne

j

∂y
)
)
dΩ

be = k2
0ε
∫∫

Ω
N e
i ·N e

j dΩ

ge =
∮

Γ
(µ−1

r

∂Ne
j

∂x
i+ µ−1

r

∂Ne
j

∂y
j) · ndΓ

(3.14)

After discretization the functional and substituting nodal and edge element basic function

(The details of the description for nodal and edge elements discretization can be found in

Appendices B and C), we can obtain the generalized matrix form eigenvalue problem that

can be solved with any iterative or direct method. More detail about this part can be found

in [7, 21, 23]. The Matlab code related to this chapter can be found at the end of this

document after references. In next section, we will solve the problem by using the Comsol

Software which uses the same method.

3.4 Structure definition

The 3-dimensional electromagnetic structure of conical-type open-ended coaxial probe

shown in Figure 3.2 is considered. The global constants related to structure and material

properties are presented in Table 3.1. The probes are made by POLY-GRAMES technicians

in the past.

Table 3.1 Global constant for electromagnetic model of the coaxial probe.

Name Expression Description
a 0.455 [mm] Coax inner radius
b 1.49 [mm] Coax outer radius
c 1.79 [mm] Coax outer conductor

Lcoax 250 [mm] Length of coax core into cavity
f 300[MHz]-30[GHz] Frequency
λ0

cconst
f

Wavelength, air
hmax 0.2λ0 Maximum mesh element size
Zcoax

Z0const
2πεr

log(Rcoax
rcoax

) Analytical impedance for flat coaxial Probe
α 30 ◦ Cone Angle

For meshing, the toolbar of Comsol is used which exports the triangle vertices, triangle edges,

and triangle ordering. The results of the meshing are illustrated in Figure 3.2.
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Figure 3.2: Structure and triangular mesh of three dimensional conical-type coaxial probe
structure.

The mesh statistics are showed in the following table.

Table 3.2 Mesh statistics.

Property Value
Tetrahedral elements 30851
Triangular elements 4464

Edge elements 596
Vertex elements 32

The results computed by Comsol Multiphysic software are illustrated in Figures. 3.4 - 3.9

for different materials at the frequency of 1GHz and the temperature of 20 ◦C.
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Figure 3.3: Geometry of conical-type coaxial probe structure.

Figure 3.4: Electric field [V/m] (surface) and magnetic field [A/m](arrows) inside the coaxial
cable for the state of no reflection at aperture(scattering boundary condition at the aperture).
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Figure 3.5: Electric field [V/m] (surface) and magnetic field [A/m](arrows) inside the conical
coaxial probe for the state of no reflection at aperture (scattering boundary condition at the
aperture) for z=125 [mm].

Scattering parameters (or reflection coefficient) are complex-valued, frequency dependent

matrices describing the transmission and reflection coefficients of electromagnetic waves at

different ports of devices. They originate from transmission-line theory and are defined in

terms of transmitted and reflected electric field. To convert an electric field pattern on a port

to a scalar complex number corresponding to an eigenmode expansion of the electromagnetic

fields on the ports needs to be performed. The scattering parameters are given by

S11 =

∫∫
port1

(Ec − E1)E∗1ds1∫∫
port1

(Ec · E∗1)ds1

(3.15)

where the computed electric field Ec on the port consists of the excitation and the reflected

field and E1 is electric field at aperture port.
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Figure 3.6: Electric field [V/m] (surface) and magnetic field [A/m](arrows) of conical α = 30 ◦

coaxial probe immersed in water with ε′r = 79 and ε′′r = 11.5.

Figure 3.7: Electric field [V/m] (surface) and magnetic field [A/m](arrows) of conical α = 30 ◦

coaxial probe immersed in methanol with ε′r = 32 and ε′′r = 13.
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Figure 3.8: Electric field [V/m] (surface) and magnetic field [A/m](arrows) of conical α = 30 ◦

coaxial probe immersed in butanol with ε′r = 18 and ε′′r = 6.5.

Figure 3.9: Electric field [V/m] (surface) and magnetic field [A/m](arrows) of conical α = 30 ◦

coaxial probe immersed in propanol with ε′r = 20 and ε′′r = 8.
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Figures. 3.10 - 3.13 show the measured reflection coefficient S11 of air, water, methanol and

butanol at the temperature of 20 ◦C with conical type open ended coaxial probe by using

Comsol Multiphysic software.

Figure 3.10: Reflection coefficient for air at measurement port (S11).
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Figure 3.11: Reflection coefficient for water at measurement port (S11).

Figure 3.12: Reflection coefficient for methanol at measurement port (S11).
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Figure 3.13: Reflection coefficient for butanol at measurement port (S11).

Since this model requires a reflection coefficient value referred at the A−A′ plane, the phase

difference between the B −B′ and A−A′ planes must be considered (See Figure 3.1 for the

definition of these two planes.). The reflection coefficients relative to these two planes are

related in this way:

S11 = S11e
2jkLcoax ; (3.16)

k =
2π

λ
, (3.17)

where S11 is reflection coefficient in plan A− A′.
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Figure 3.14: Phase of S11 and S11 of open ended conical α = 30 ◦ coaxial probe in air [deg].

Figure 3.15: Phase of S11 and S11 of conical α = 30 ◦ coaxial probe immersed in water [deg].
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Figure 3.16: Phase of S11 and S11 of conical α = 30 ◦ coaxial probe immersed in methanol
[deg].

Figure 3.17: Phase of S11 and S11 of conical α = 30 ◦ coaxial probe immersed in butanol
[deg].
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Table 3.3, shows the amplitude and the phase of the reflection coefficient at measurement port

A− A′, (S11) and at aperture port B − B′, (S11), and in Table 3.4 demonstrates admittance

Y = Y0
1− S11

1 + S11

, Y0 = 0.02 for different materials under test.

Table 3.3 S11 and S11 amplitude and phase for different materials at f = 1GHz.

freq=1GHz Amp S11 Phase S11 Amp S11 Phase S11

Air 0.999 -147.955 0.999 -4.107
Water 0.898 124.132 0.898 -92.021

Methanol 0.955 171.370 0.956 -44.782
Butanol 0.9752 -173.435 0.975 -29.588

Table 3.4 Input admittance for different materials.

freq Admittance-Air Admittance-Water Admittance-Methanol Admittance-Butanol
3.0E8 8.824E-7+2.379E-4i 1.705E-4+0.006i 4.493E-5+0.0024i 2.334E-5+0.0016i
6.0E8 3.531E-6+4.535E-4i 7.068E-4+0.012i 1.822E-4+0.0049i 9.396E-5+0.003i
9.0E8 7.931E-6+6.766E-4i 0.0017+0.0182i 4.183E-4+0.0073i 2.141E-4+0.0047i
1.2E9 1.410E-5+9.199E-4i 0.003+0.025i 7.656E-4+0.01i 3.868E-4+0.0064i
1.5E9 2.207E-5+0.0012i 0.006+0.0324i 0.0012+0.0126i 6.192E-4+0.0081i
1.8E9 3.181E-5+0.0014i 0.0093+0.0407i 0.0019+0.0153i 9.169E-4+0.0097i
2.1E9 4.3294E-5+0.0016i 0.0148+0.0497i 0.0027+0.0182i 0.0012+0.01146i
2.4E9 5.671E-5+0.0018i 0.0231+0.0595i 0.0038+0.0213i 0.0017+0.0133i
2.7E9 7.2035E-5+0.0021i 0.0359+0.0695i 0.0052+0.0246i 0.0023+0.0152i
3.0E9 8.909E-5+0.0023i 0.055+0.0773i 0.0069+0.0281i 0.003+0.0171i

In Chapter 4, the input admittance and reflection coefficients calculated in this chapter for

different materials will be used for computing relative permittivity and conductivity of MUT.
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CHAPTER 4

DIFFERENT MODELS OF THE CONICAL TYPE COAXIAL PROBE

In this chapter, a comparative study of three different conical-type open-ended coaxial

probe equivalent circuit models which relate the coaxial line end impedance to the complex

permittivity of the material under test is presented. The three conical-type open-ended

coaxial probe models studied are:

1. Capacitive model;

2. Antenna model;

3. Improved virtual line model.

Using simulations, these three models are investigated for the conical type coaxial probe with

respect to measuring relative permittivity and conductivity. A certain number of studies for

these models exist for the flat coaxial probe in the literature [24–27]; however, no studies are

available in the open literature to assess these models for the conical type coaxial probes.

The main goal of this chapter is to find a robust and accurate model for the conical type

coaxial probe in order to accurately calculate the dielectric properties of the various materials

by using the reflection coefficient that was calculated in the previous chapter.

4.1 Capacitive Model

The equivalent circuit for this model consists of three capacitors connected in parallel,

which is presented in Figure 4.1. The geometrical specifications of the structure of probe

are shown in Table 4.1. The model is described in details in references [11, 28, 29]. When a

dielectric sample with complex relative permittivity is connected to the probe, the reflection

coefficient S11 at the aperture of the open-ended probe is obtained by considering the complex

admittance of the equivalent circuit, the reflection coefficient is given by:

S11 =
1− jωZ0(Ccone + Cf + εrC0)

1 + jωZ0(Ccone + Cf + εrC0)
, (4.1)

where Ccone is the capacitance of the Teflon-filled conical coaxial probe, Cf and C0 are the

capacitance of the fringe field at aperture port, ω is the angular frequency (2πf ) and Z0

is the characteristic impedance of the coaxial line. The complex relative permittivity (εr) is
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given by:

εr =
1− S11

jωZ0C0(1 + S11)
− Ccone + Cf

C0

. (4.2)

Figure 4.1: Conical-type coaxial probe geometry and equivalent circuit.

Table 4.1 The geometrical specifications of the structure.

Name Expression Description

a 0.455 [mm] Coax inner radius
b 1.49 [mm] Coax outer radius

Lcoax 250 [mm] Length of conical coax probe
f 300 [MHz]- 3 [GHz] Frequency
α 30 ◦ Cone Angle

The analytical computation of Ccone part is complicated due to the different geometrical

parameters of the structure. For this reason, we will use an approximate alternative method

to do the calculation of Ccone. The first technique being used here is comparing the reflection

coefficient at port B − B′ of two different probe types, flat and conical coaxial probes. The

difference between the admittance of both of the probes is related to the conical part of the

conical coaxial probe capacitance. The second method is dividing the aperture into many
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thin layers and each layer can be approximated by a constant radius which is an elegant way

to calculate Ccone accurately. The results of both methods are in good agreement as shown in

Figure 4.2. In Table 4.2 the results of different calculated capacities of the probe and fringe

fields (air) at different frequencies are presented.

Table 4.2 Capacitance of the cone part of the probe Ccone and fringing field Cnet = Cf + C0

[F].

freq Ccone Cnet = Cf + C0

300000000 9.96E-14 1.96E-14
600000000 9.96E-14 1.97E-14
900000000 9.96E-14 1.99E-14
1200000000 9.96E-14 2.01E-14
1500000000 9.96E-14 2.044E-14
1800000000 9.96E-14 2.07E-14
2100000000 9.96E-14 2.10E-14
2.40E+09 9.96E-14 2.13E-14
2.70E+09 9.96E-14 2.15E-14
3.00E+09 9.96E-14 2.17E-14

Figure 4.2: Capacitance of cone part for different angle of conical coaxial probe.

In Figure 4.3 C0 and Cf are illustrated separately. Numerical methods are used to calculate

values of the total fringing capacitance Cnet for both Air and Water. From this data, the
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values of C0 and Cf are obtained by solving the simultaneous linear equation Cnet = Cf+εC0.

As we can see the amount of Cf is small in comparison to C0 and it is related to the frequency.

Figure 4.3: Capacitances of the fringing field - Conical coaxial probe (α = 30 ◦) [F].

After the calculation of these parameters, we are able to calculate the complex dielectric

permittivity of a medium using equation 4.2, as the results are shown in Figure 4.4 and

Figure 4.5.
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Figure 4.4: Measured relative dielectric constant for open ended conical coaxial probe (α =
30 ◦) versus frequency.

Figure 4.5: Conductivity for open ended conical coaxial probe (α = 30 ◦) versus frequency
[S/m].

From above results, we can see that the Capacitive Model is a good approximation for relative

permittivities, but it is not so accurate for conductivities. Expected results are related to
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values of relative permittivity and conductivity we used in Comsol simulations (these values

can be found in the references).

4.2 Antenna Model

In the antenna model, the cone part of the conical probe is modelled by Ccone, while the

material under test (MUT) is modelled by a capacitor Cnet = Cf + εC0 and a conductor

G connected in parallel to the capacitor for modelling the radiation in MUT [30, 31]. The

2-dimensional electromagnetic structure of the conical-type open-ended coaxial probe shown

in Figure 4.6 is considered. The geometrical specification of the structure are presented in

Table 4.1.

Figure 4.6: Conical-type coaxial probe geometry and equivalent circuit.

The normalized admittance of this equivalent circuit at the aperture port is given by:

Y

Y0

= jωCconeZ0 + jωCnetZ0(ω, ε0) + Z0G(ω, ε0). (4.3)

For coaxial line whose dimensions are small compared to a wavelength, Cf and Ccone are

frequency independent, while C0 and G are dependent on frequency. For a coaxial probe
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immersed in a lossy medium it has been shown in [32–34] that:

Y (ω, ε) =
√
εY (
√
εω, ε0). (4.4)

Hence, equation 4.3 may be written:

Y

Y0

= jωCconeZ0 + jωCfZ0 + jωεC0Z0 + Z0Gε
5/2. (4.5)

These unknown capacitances and conductances are estimated accurately by using two mate-

rial with known properties (air and water). The results at different frequencies are shown in

Table 4.3 for conical and flat probes.

Table 4.3 Free space radiation conductance (G), the fringing field capacitance (Cnet) and
(Ccone).

Frequency
Conical Probe Flat Probe

G [s] Cnet + Ccone [F] G [s] Cnet [F]

300000000 3.25E-08 1.19E-13 9.15E-07 1.96E-14
600000000 1.44E-07 1.19E-13 4.10E-06 1.97E-14
900000000 3.89E-07 1.20E-13 1.13E-05 1.99E-14
1200000000 9.08E-07 1.20E-13 2.73E-05 2.01E-14
1500000000 2.11E-06 1.20E-13 6.71E-05 2.04E-14
1800000000 5.44E-06 1.21E-13 1.93E-04 2.07E-14
2100000000 1.88E-05 1.21E-13 8.69E-04 2.10E-14
2.40E+09 1.75E-04 1.22E-13 0.054175266 2.13E-14
2.70E+09 4.45E-04 1.22E-13 0.002792891 2.15E-14
3.00E+09 4.80E-05 1.22E-13 7.37E-04 2.17E-14

Figures 4.7 and 4.8 show relative permittivity and conductivity for three different materials

(Ethanol, Methanol, and Butanol) obtained with a conical type open-ended coaxial probe.

These permittivities are calculated from the reflection coefficient measured in Chapter 3.

The use of such model is a good approximation for large range of permittivities at radio and

microwave frequencies.
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Figure 4.7: Relative dielectric constant for open ended conical coaxial probe (cone angle 30
degree) versus frequency.

Figure 4.8: Conductivity for open ended conical coaxial probe (α = 30 ◦) versus frequency
[S/m].

The results show that open-ended conical coaxial probes can be successfully used especially

at low frequencies with the advantage of increased accuracy and sensitivity in comparison
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to the capacitive model. Moreover,the results are same in specific range of temperature

(20 ◦C − 30 ◦C). Hence, it is less affected by the unavoidable temperature variation when

compared to standard flat-plan open-circuit coaxial-probe.

4.3 Improved virtual line model

This model was studied in references [30, 35] for a flat coaxial probe. This method consists

of modelling the dielectric medium by a improved virtual open ended transmission line of

which has the same dimensions as the physical line, this is shown in Figure 4.9. According

to the conventional transmission-line theory the admittance at B −B′ plane is given by:

YBB′ = Y0BB′
YL + jY0BB′ tan(βtD)

Y0BB′ + jYL tan(βtD)
, (4.6)

for open ended probe, we have:

YBB′ = jY0BB′ tan(βtD); (4.7)

Y0BB′ =

√
εt

60 ln(Rcoax
rcoax

)
, (4.8)

where D is the virtual transmission line length, Y0BB′ is the characteristic admittance of the

virtual transmission line, εt is relative permittivity of MUT, and εr is relative permittivity

of Teflon inside the conical coaxial probe. In addition, the refereed characteristic admittance

at the input of the aperture of the conical probe is as follows:

YBB′ = Y0AA′
1− ΓAA′e

2jβPLcoax

1 + ΓAA′e2jβPLcoax
; (4.9)

Y0AA′ =

√
εr

60 ln(Rcoax
rcoax

)
. (4.10)

The admittance is defined in presence of the MUT (Figure 4.9) is:

Y = Y0AA′
1− ΓAA′e

2jβPLcoax

1 + ΓAA′e2jβPLcoax
− jY0BB′ tan(βtD) (4.11)
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Therefore, the relation between a measured reflection coefficient and the complex permittivity

can be formulated into the following equations as:

y =
√
εr

1− ΓAA′e
2jβPLcoax

1 + ΓAA′e2jβPLcoax
− j
√
εt tan(βtD); (4.12)

Y =
y

60 ln(Rcoax
rcoax

)
; (4.13)

D =
1

βt
tan−1(

−j
√
εt

(
1− ΓAA′e

2jβPLcoax

1 + ΓAA′e2jβPLcoax

√
εr − y)); (4.14)

εt = ((
1− ΓAA′e

2jβPLcoax

1 + ΓAA′e2jβPLcoax

√
εr − y) cot(βtD))2. (4.15)

Two unknown parameters, y and D are calculated accurately by using two materials with

known properties (air and water).

Figure 4.9: Geometry and equivalent improved virtual transmission-line model of an open-
ended conical type coaxial probe.

Figures 4.10 and 4.11 show the two constants y and D related to virtual line part and

Figures 4.12 and 4.13 show relative permittivity and conductivity for three different materials

(methanol, butanol, and ethanol) at a temperature of 20 ◦C with conical type open ended

coaxial probe. These permittivities are calculated from the reflection coefficient measured
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at measurement port (plane A − A′) in Figure. 4.9. The use of such model is a good

approximation for large band of permittivities at radio and microwave frequencies.

Figure 4.10: Improved virtual line model’s line (D) for conical coaxial probe [m].

Figure 4.11: Improved virtual line model’s y for conical coaxial probe.

After the calculation of these parameters, we are able to determine the complex dielectric
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permittivity of a medium using equation 4.15.

Figure 4.12: Relative dielectric constant for open ended conical coaxial probe (α = 30 ◦)
versus frequency.

Figure 4.13: Conductivity for open ended conical coaxial probe (α = 30 ◦) versus frequency
[S/m].
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Based on our study of three models, and for open ended cone probe, we can state that the

results that are obtained by the improved virtual line model and the antenna model are more

accurate in comparison to the capacitance model when compared to some reference results

[17, 18, 36, 37]. It is worth to mention that other studies had showed the improved virtual

line model is accurate for the flat probe also [30].

The obtained results by antenna model for conductivity are accurate while those obtained for

relative permittivity are acceptable but the capacitive model does not give accurate results

for low frequencies, especially for conductivity. It can be concluded that the improved virtual

line model is more accurate in comparison with the two other models.

In Chapter 5, the simulation results provided in this chapter are compared to experimental

results.
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CHAPTER 5

EXPERIMENTAL MEASUREMENT RESULTS OF DIELECTRIC

PROPERTIES OF MATERIAL

In this chapter of the thesis, the experiments where a conical type open-ended coaxial

probe was used will be presented.

5.1 The measurement procedure

Some of the experimental setup that was used during the research is shown in Figure 5.1.

It consists of three conical coaxial probes with different ending angles, 0 ◦ (flat), 30 ◦, 45 ◦,and

a 15 ◦ elliptical probe made by POLY-GRAMES technicians, and vector network analyzer

for measuring both amplitude and phase of S11. An Agilent 85033E high temperature probe

kit, with the specific range of frequency 200 MHz – 20 GHz is used for comparison with the

proposed probes. The frequency range of the measurements was 300 MHz – 3 GHz with

100 points. The experiment took place in the Advanced Research Centre in Microwaves

and Space Electronics (POLY-GRAMES) Department of Electrical Engineering of Ecole

Polytechnique of Montreal. The calibration elements were the air (open standard), the short

standard, and matched load (Agilent 85033E kit). The measurement system used here to

measure the dielectric properties of liquids consisted of two different parts. The first part is

used to measure the reflection coefficient of the liquids with the usage of probes of different

shapes. The second part aims is comparing the results obtained in chapter four of relative

permittivity and conductivity with those obtained by standard Agilent probe. Consequently,

the effects of cone angle of conical coaxial probe and different types of coaxial probes (Flat-

Conical-Elliptical) have been studied and reported. It can be concluded that the advantages

of the sharper probe are not only in its easy insertion in materials and biological tissues, but

also in the accuracy and sensitivity of this probe in the low frequency range in comparison

to flat-plan open-circuit coaxial probe.

5.1.1 Reflection coefficient

In this section, the reflection coefficient of water, methanol, butanol and propanol are mea-

sured experimentally by using the conical type coaxial probe. For the measurement of the

reflection coefficient of liquids, it was carefully noticed that the probe should not move at all

during the measurement and the position of the probe also should be the same for different
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Figure 5.1: Handmade Probes and network analyzer.

liquids. There is a little difference between the experimental and numerical results which is

due to a the problem in the calibration of the conical type coaxial probe. The calibration of

the conical type coaxial probe/network analyzer system was done in short circuit, open cir-

cuit and matched load states. For making the matched load, the standard kit of Agilent and

for short circuit an aluminium shell was used , both of these approximate solutions implies

the error in the measured reflection coefficient. Figures. 5.2,5.4,5.6,5.8 show in sequence the

amplitude of the reflection coefficient at aperture for water, methanol, butanol and propanol,

and 5.3,5.5,5.7,5.9 show respectively the phase of the reflection coefficient at aperture for

water, methanol, butanol and propanol by using conical coaxial probe.

Figure 5.2: Amplitude of reflection coefficient at aperture (S11)-water-conical coaxial probe
(α = 30 ◦).
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Figure 5.3: Phase of reflection coefficient at aperture (S11)-water-conical coaxial probe (α =
30 ◦) [deg].

Figure 5.4: Amplitude of reflection coefficient at aperture (S11)-methanol-conical coaxial
probe (α = 30 ◦).

Figure 5.5: Phase of reflection coefficient at aperture (S11)-methanol-conical coaxial probe
(α = 30 ◦)[deg].
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Figure 5.6: Amplitude of reflection coefficient at aperture (S11)-butanol-conical coaxial probe
(α = 30 ◦).

Figure 5.7: Phase of reflection coefficient at aperture (S11)-butanol-conical coaxial probe
(α = 30 ◦)[deg].

Figure 5.8: Amplitude of reflection coefficient at aperture (S11)-propanol-conical coaxial
probe (α = 30 ◦).
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Figure 5.9: Phase of reflection coefficient at aperture (S11)-propanol-conical coaxial probe
(α = 30 ◦)[deg].

5.1.2 Dielectric constant

The dielectric properties of four different liquids, water, methanol, butanol and propanol

were measured using the Agilent dielectric probe. This probe (model 85033E) measures the

dielectric properties such as complex permittivity of many materials. The calibration of

Agilent probe used a matched load, a short circuit and an open circuit states. Those results

of Agilent probe, as the only references we have, show a good match between numerical

results and measurement results. Figures. 5.10,5.11,5.12,5.13 show in sequence the relative

permittivity and conductivity of water, methanol, butanol and propanol.

Figure 5.10: Relative permittivity and conductivity [S/m] of water- Measurements done with
the 85033E Agilent probe.
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Figure 5.11: Relative permittivity and conductivity [S/m] of methanol- Measurements done
with the 85033E Agilent probe.

Figure 5.12: Relative permittivity and conductivity [S/m] of butanol- Measurements done
with the 85033E Agilent probe.
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Figure 5.13: Relative permittivity and conductivity [S/m] of Propanol.

5.2 Comparison of the numerical and experimental results

As explained in Chapter 4, the best results are obtained by the improved virtual line

model, Figures 5.14, 5.15, 5.16 compare the obtained experimental results and the simulation

results of the improved virtual line model for methanol, ethanol and butanol.

Figure 5.14: Comparison of relative permittivity and conductivity of methanol by experi-
mental results by Agilent probe(red-Line) and improved virtual line method (Blue-Line).
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Figure 5.15: Comparison of relative permittivity and conductivity of ethanol by experimental
results by Agilent probe(red-Line) and improved virtual line method (Blue-Line).

Figure 5.16: Comparison of relative permittivity and conductivity of butanol by experimental
results by Agilent probe(red-Line) and improved virtual line method (Blue-Line).

Figures 5.15 and 5.16 compare the simulation results obtained from a improved virtual

line model with the experimental results. The results assure the validity of improved virtual

line model for modelling the conical- type open-ended coaxial probe and it is accurate enough.

5.3 Comparison of different types of probes

In this section, a comparative study of three different open-ended coaxial probes (flat,

elliptic and conical type) is presented. The deduction of the permittivity of the material

from the admittance data is made by assuming that the admittance of the material interface

is described by an improved virtual line model. As discussed in chapter four, this model is
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sufficiently robust to achieve precise results for lossy materials at microwave frequencies. By

analysing the electric and magnetic field distribution at the probe aperture/material interface

and determine the complex reflection coefficient, or scattering function S11, at the connector

of the different type open-ended coaxial line, the optimal probe type and configuration was

determined as these are very important factor in both industrial and biological applications

(measurements and microwave radiation treatment).

In Fig 5.17, the phases of S11 for different probes at different frequencies are shown which

result in different impedances and then different sensitivities and accuracies. The amplitude

of S11 for different probe is approximately the same.

Figure 5.17: Phase of S11 for different probes (air).

As explained in chapter four, to calculate the dielectric constant by using improved virtual

line method, the two constant D and y must be calculated. Figures 5.18-5.23 show these two

constants for different types of probes.
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Figure 5.18: Virtual line model’s length (D) for flat coaxial probe [m].

Figure 5.19: Virtual line model’s y for flat coaxial probe.
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Figure 5.20: Virtual line model’s length (D) for elliptical coaxial probe (α = 15 ◦) [m].

Figure 5.21: Virtual line model’s y for elliptical coaxial probe (α = 15 ◦).



49

Figure 5.22: Virtual line model’s length (D) for conical coaxial probe (α = 30 ◦)[m].

Figure 5.23: Virtual line model’s y for conical coaxial probe (α = 30 ◦).

After the calculation of these parameters, we are able to determine the complex dielectric

permittivity of a medium using equation 4.15. Figures 5.24, 5.26 and 5.28 show the complex

permittivity profiles of Ethanol, Methanol and Butanol of flat, conical and elliptical coaxial
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probes respectively and Figures 5.25, 5.27 and 5.29 show the conductivity profiles of Ethanol,

Methanol and Butanol obtained with the flat, conical and elliptical coaxial probes respectively

.

Figure 5.24: Relative permittivity profiles of ethanol, methanol and butanol-flat coaxial
probe.

Figure 5.25: Conductivity profiles of ethanol, methanol and butanol-flat coaxial probe [S/m].
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Figure 5.26: Relative permittivity profiles of ethanol, methanol and butanol-conical coaxial
probe (α = 30 ◦).

Figure 5.27: Conductivity profiles of ethanol, methanol and butanol-conical coaxial probe
(α = 30 ◦) [S/m].
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Figure 5.28: Relative permittivity profiles of ethanol, methanol and butanol-elliptical poaxial
probe (α = 15 ◦).

Figure 5.29: Conductivity profiles of ethanol, methanol and butanol-elliptical (α = 15 ◦)
coaxial probe [S/m].

The results for these three different probes are approximately the same, only the sensitivity
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increased for the elliptical and conical probes. In the next section we will demonstrate that

the sharper angle for conical probe could result in better results.

5.4 Effect of cone angle of a conical type coaxial probe in dielectric measurement

In this part, the effect of using different cone angles of a conical type coaxial probe in

measuring dielectric properties of materials is studied. Reflection coefficient impedance and

dielectric permittivity of six different angles of an open ended coaxial lines are studied. Using

probes of sharper cone angles (sharper tips) allows for easier penetration into wide range of

biological tissue, which is an important feature in many biological applications. Fig. 5.30

show the sum of measured capacitance for cone part of coaxial probe body and fringing

capacitances for various cone angles, α , of coaxial sensor.

Figure 5.30: Ccone + Cnet for different angles of conical coaxial probe [F].

The results demonstrate that for sharper cone the capacitance increase and it is the

main reason for the increase of accuracy and sensitivity. Small changes in properties of

materials show more effect in sharper conical coaxial probe. Thus, open-ended conical coaxial

probes can be successfully used especially at low frequencies with the advantage of increased

accuracy and sensitivity for sharper angles. These results also allow the quantification the

upper and lower frequency limit for different angles in which the conical type coaxial probe

can be applied. Moreover, by analyzing the electric and magnetic fields distribution at

the probe aperture material interface and determine the complex reflection coefficient, or

scattering function S11, at the connector of the conical type open-ended coaxial line, the

optimal configuration for probe can be determined.
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CHAPTER 6

CONCLUSIONS AND CONTRIBUTIONS

6.1 Conclusions

In this thesis, a numerical finite element method for studying the electric field and re-

flection coefficient of penetrable material using a new type of conical type coaxial probe has

been presented. By analysing the electric field and magnetic field distributions at the probe

aperture material interface, the complex reflection coefficient and impedance at the connec-

tor of the conical type open-ended coaxial line are determined. Consequently, three different

conical-type open-ended coaxial probe models which relate the coaxial line end impedance

to the complex permittivity of the material under test is presented. At the end, the effect of

using different structures of probes with different angles in complex dielectric measurement

is studied and reported. It can be concluded that the modified virtual line model gives more

exact results in comparison to antenna and capacitance model, and that the advantages of

conical type probes (specially probes of sharper cone angles or sharper tips) are not only in

its easy insertion in material and biological applications, but also its accuracy and sensitiv-

ity improved in the low frequency range in comparison with the normal planes open ended

coaxial probe.

6.2 Contributions

Parts of the results presented in this thesis are:

1. Published Paper:

1. Arab, H and Akyel, C, “Virtual transmission line of conical type coaxial open-ended

probe for dielectric measurement”, International Journal of Advanced Technology in

Engineering and Science (IJATES), Volume No.02, Issue No. 06, pp.365-372, June

2014.

2. Accepted Paper:

2. Arab, H and Akyel, C, “FEM analysis of conical type coaxial open-ended probe for

dielectric measurement”, PIERS 2014 in Guangzhou, 25-27 August 2014.

3. Arab, H and Akyel, C, “Antenna Model of conical type coaxial open-ended probe

for dielectric measurement”, International Conference on Advanced Technology and
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Sciences (ICAT’14) in Turkey, 12-15 August 2014.

4. Arab, H and Akyel, C, “Analysing the effect of conical coaxial probe angle in dielec-

tric permittivity measurement”, 20th IMEKO TC4 International Symposium and 18th

International Workshop in Italy, 15-17 September 2014.

5. Arab, H and Akyel, C, “FEM analysis of elliptical type coaxial open-ended probe for

dielectric measurement”, COMSOL Conference in Boston, 8-10 October 2014.

6. Arab, H and Akyel, C, “Numerical measurement method of complex permittivity for

a powdered material using a conical coaxial probe”, COMSOL Conference in Boston,

8-10 October 2014.
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CHAPTER 7

FUTURE WORKS

As previously stated, the preceding work of this MSc.thesis, is only an intermediate step in

the long run of the dielectric measurements. The future more advanced research may have

the following contributions:

� Finding analytical solution for calculating electric field at aperture of conical probe.

� Finding a method to increase the accuracy and decreasing the memory storage of

eigenvalue solver.

� Further investigation is required to more precisely determine the dependence of the

error upon sample thickness and complex permittivity.

� While the coaxial open ended probe method works well for radio and microwave fre-

quencies, it is not suitable for frequency range higher than 20 GHz. To alleviate these

problems, alternative methods such as waveguide, resonator method are more attrac-

tive.

� Applying the methods used in this thesis for powdered materials or materials with

nonlinear properties.

� More experiments, more simulations and more data processing have to be done on

modelling of the probe, and to find an optimum algorithm for calculating dielectric

properties of materials from a measured reflection coefficient.
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ANNEXE A

HELMHOLTZ DIFFERENTIAL IN CYLINDRICAL COORDINATES

In Cylindrical Coordinates, the Helmholtz differential equation becomes:

1

r

∂

∂r

(
r
∂Ψ

∂r

)
+

1

r2

∂2Ψ

∂θ2
+

1

Z

∂2Ψ

∂z2
+ k2 = 0. (A.1)

We use the method of separation:

Ψ(r, θ, z) = R(r)Φ(ϕ)Z(z); (A.2)

1

rR

∂

∂r

(
r
∂R

∂r

)
+

1

r2Φ

∂2Φ

∂ϕ2
+

1

Z

∂2Z

∂z2
+ k2 = 0. (A.3)

The third term is independent of r and ϕ so it must be constant:

d2Z

dz2
= k2

zZ =⇒ Z(z) = Ane
−ikzz +Bne

ikzz; (A.4)

1

rR

∂

∂r

(
r
∂φ

∂r

)
+

1

r2Φ

∂2Φ

∂ϕ2
+

1

Z

∂2Z

∂z2
+ (k2 − k2

z) = 0. (A.5)

By defining kρ = k2 − k2
z and multiplying the resulting equation by r2 to find:

r

R

∂

∂r

(
r
∂R

∂r

)
+

1

Φ

∂2Φ

∂ϕ2
+

1

Z

∂2Z

∂z2
+ k2

ρr
2 = 0. (A.6)

The second term is independent of r and z, so we let:

∂2Φ

∂ϕ2
= −ν2Φ =⇒ Φ(ϕ) = Φm(ϕ) = Ame

iνϕ, m = 0,±1,±2, ... (A.7)

as Φ is periodic or finite so that Φ(ϕ+ 2π) = Φ(ϕ)thus m ∈ Z. We also obtain the following

expression for R component:

r
∂

∂r

(
r
∂R

∂r

)
+ (k2

ρr
2 − ν2)R = 0. (A.8)

This can be rewritten as:

r2∂
2R

∂r2
+ r

∂R

∂r
+ (k2

ρr
2 − ν2)R = 0, (A.9)
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which is Bessel’s equation. Substituting back, the general solution is given by

R(r) = BJν(kr) + CYν(kr), (A.10)

where Jν , denotes a Bessel function of the first kind and Yν(kr) denotes a Bessel functions

of the second kind order ν.

Jν(kr) =
∞∑
m=0

(−1)m

m! Γ(m+ ν + 1)

(
kr

2

)2m+ν

; (A.11)

Yν(kr) =
Jα(kr) cos(απ)− J−ν(kr)

sin(νπ)
, (A.12)

where Γ(z) is the gamma function, a shifted generalization of the factorial function to non-

integer values.

(a) Bessel functions of first kind. (b) Bessel functions of Second kind.

Figure A.1: Bessel Functions
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ANNEXE B

NODAL ELEMENTS

The domain is discretized into elements and over each element we assume a trial function

which is properly an interpolation function. If linear triangular elements are used, the un-

known function E within each element is approximated as:

Ee = ae + bex+ cey, (B.1)

where ae, be, ce must be determined, and e is the element number. For a linear triangular

Figure B.1: Triangular element with first order nodal elements

element, on the node located at the vertices of the triangle the corresponding E denoted by

Ee
1, E

e
2, E

e
3. Enforcing B.1 at the three nodes, we obtain:

Ee
1 = ae + bexe1 + ceye1; (B.2)

Ee
2 = ae + bexe2 + ceye2; (B.3)

Ee
3 = ae + bexe3 + ceye3, (B.4)

where xej and yej are the coordinate values of the Jth node. Solving for the constant coefficients

ae, be and ce in terms of Ee
j , and substituting them back into B.1 yields:

Ee(x, y) =
3∑
i=1

N e
j (x, y)Ee

j , (B.5)
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where N e
j (x, y) are the interpolation functions given by:

N e
j (x, y) =

1

∆e
(aej + bejx+ cejy); (B.6)

∆e = 1/2

1 xe1 ye1

1 xe2 ye2

1 xe3 ye3

 = 1/2(be1c
e
2 − be2ce1), (B.7)

and 
ae1 = xe2y

e
3 + ye2x

e
3 be1 = ye2 + ye3 ce1 = xe3 + xe2

ae2 = xe3y
e
1 + ye3x

e
1 be2 = ye3 + ye1 ce2 = xe1 + xe3

ae3 = xe1y
e
2 + ye1x

e
2 be3 = ye1 + ye2 ce3 = xe2 + xe1

. (B.8)

By substituting Equation B.5 in Equation 3.4:

∂F e(Ee)

∂Ee
=

3∑
i=1

Ee
z

∫∫ (
µ−1
(∂N e

i

∂x

∂N e
j

∂x
+
∂N e

i

∂y

∂N e
j

∂y

)
− k2

0εN
e
iN

e
j

)
dΩ, (B.9)

which can be written in matrix form as:

∂F e(Ee)

∂Ee
= KeEe, (B.10)

where

Ke =

∫∫
Ω

(
µ−1
r

∂N e
i

∂x

∂N e
j

∂x
+ µ−1

r

∂N e
i

∂y

∂N e
j

∂y
− k2

0εN
e
iN

e
j

)
dΩ, (B.11)

Ke is a symmetric matrix. By using the formula:∫∫
Ω

(N e
1 )l(N e

2 )m(N e
3 )ndΩ =

l!m!n!

l +m+ n+ 2
2∆e, (B.12)

equations B.9 become:

Ke =
1

4∆e
µ−1
r (bei b

e
j + cei c

e
j) +

∆e

12
k2

0ε(1 + δij) (B.13)
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ANNEXE C

EDGE ELEMENT

Triangular elements are used because they are applicable in different classes of geometry.

Refer to triangular in figure C.1 the form of basis function is:

Figure C.1: Triangular element with linear edge and first order nodal elements

W12 = N e
1∇N e

2 −N e
2∇N e

1 ; (C.1)

W13 = N e
1∇N e

3 −N e
3∇N e

1 ; (C.2)

W23 = N e
2∇N e

3 −N e
3∇N e

2 ; (C.3)

N e
j (x, y) =

1

2∆e
(aej + bejx+ cejy); (C.4)

Ee(x, y) =
3∑
i=1

Ne
j(x, y)Ee

j ; (C.5)

Ne
1 = W12l

e
1; Ne

2 = W13l
e
2; Ne

3 = W23l
e
3, (C.6)

where lei denote the length of the edge connecting two nodes, and it is not difficult to see

that:

∇ ·W12 = ∇ · (N e
1∇N e

2 )−∇ · (N e
2∇N e

1 ) = 0; (C.7)

W13 = N e
1∇N e

3 −N e
3∇N e

1 ; (C.8)

∇×W23 = ∇× (N e
2∇N e

3 )−∇× (N e
3∇N e

2 ) = 2∇N e
1 ×∇N e

2 =
lei l

e
j

∆e
, (C.9)
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where N e
j (x, y) are the interpolation functions given by:

∆e = 1/2

1 xe1 ye1

1 xe2 ye2

1 xe3 ye3

 =
1

2
(be1c

e
2 − be2ce1), (C.10)

and 
ae1 = xe2y

e
3 + ye2x

e
3 be1 = ye2 + ye3 ce1 = xe3 + xe2

ae2 = xe3y
e
1 + ye3x

e
1 be2 = ye3 + ye1 ce2 = xe1 + xe3

ae3 = xe1y
e
2 + ye1x

e
2 be3 = ye1 + ye2 ce3 = xe2 + xe1

Typical element matrix resulting form the discretization of a vector wave equation contain

integrals of the following forms:

Ee
ij =

∫∫
(∇×Ne

i )(∇×Ne
j)dΩ; (C.11)

F e
ij =

∫∫
Ne
i ·Ne

jdΩ; (C.12)

He
ij =

∫∫
Ne
i (∇×N e

j )dΩ. (C.13)

In the above equations Ne
i denote edge basis functions and N e

i denote nodal basis functions.

Hence, ∇×Ne
i = k

lei
∆e the matrix Ee

ij can be calculated very simple,

Ee
ij =

lei l
e
j

∆e
. (C.14)

For calculating F e
ij and He

ij by using the formula:∫∫
Ω

(N e
1 )l(N e

2 )m(N e
3 )ndΩ =

l!m!n!

l +m+ n+ 2
2∆e. (C.15)
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Equations C.12 become:

F e
11 =

le1l
e
1

24∆e
(f22 − f12 + f11); (C.16)

F e
12 =

le1l
e
2

48∆e
(f23 − f22 + 2f13 + f12); (C.17)

F e
13 =

le1l
e
3

48∆e
(f21 − 2f23 − f11 + f13); (C.18)

F e
22 =

le2l
e
2

24∆e
(f33 − f23 + f22); (C.19)

F e
23 =

le2l
e
3

48∆e
(f31 − 2f21 − f33 + f23); (C.20)

F e
33 =

le3l
e
3

24∆e
(f11 − f13 + f33), (C.21)

and for that part inclded nodal and edge elements in equation we obtained :

He
11 =

le1
12∆e

(f21 − f11); (C.22)

He
12 =

le1
12∆e

(f22 − f12); (C.23)

He
13 =

le1
12∆e

(f23 − f13); (C.24)

He
21 =

le1
12∆e

(f31 − f21); (C.25)

He
22 =

le1
12∆e

(f32 − f22); (C.26)

He
23 =

le1
12∆e

(f33 − f23); (C.27)

He
31 =

le1
12∆e

(f(11−f31); (C.28)

He
32 =

le1
12∆e

(f12 − f32); (C.29)

He
33 =

le1
12∆e

(f13 − f33), (C.30)

(C.31)

where fij defined as:

fij = bei b
e
j + cei c

e
j . (C.32)

.
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% --------------------------------------------------------------

% Compute element matrix for a triangle and its node basis first order

% --------------------------------------------------------------

function [A,B]= nodefirstorderFEM2D

[xy, n, noNum,ne]=unimesh01;

x=xy(1,:);

y=xy(2,:);

Ae=zeros(3);

A=zeros(noNum);

B=zeros(noNum);

del ij=eye(3);

for e=1:ne

ii=n(1,e);

jj=n(2,e);

m=n(3,e);

be(1)=y(jj)-y(m);

be(2)=y(m)-y(ii);

be(3)=y(ii)-y(jj);

ce(1)=x(m)-x(jj);

ce(2)=x(ii)-x(m);

ce(3)=x(jj)-x(ii);

Deltae=abs(0.5*(be(1)*ce(2)-be(2)*ce(1)));

for i=1:3

for j=1:3

Ae(i,j)=1/(4*Deltae)*(be(i)*be(j)+ce(i)*ce(j));

end

end

Be=Deltae*1/12*(1+del ij);

no =n(:,e);

%Compute the element matrix and add the contribution to the global matrix.

A(no,no) = A(no,no) + Ae;

B(no,no) = B(no,no) + Be;

end

% % %%

%Baundary condition

load('figdata','e');

ee1=e([1 2],:);

nbc=unique(ee1(:));

for i=1:size(nbc)

% A(nbc(i),nbc(i))=1;

% B(nbc(i),nbc(i))=1;
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for j=1:noNum

if(j~=nbc(i))
% A(nbc(i),j)=0;

A(j,nbc(i))=0;

% B(nbc(i),j)=0;

B(j,nbc(i))=0;

end

end

end

[xv,kz2,iresult]=sptarn(A,B,1,100);

kz=sqrt((kz2));

% sol=xv(:,75);

% % plot(kz,'*')

figure(2); plot(kz,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','b',...

'MarkerSize',5)

xlabel('string')

xlabel({'mode[-]';'Cut off Wave Number for Circular waveguide'})
ylabel('kz')

title('First Orde Nodal FEM')

end

function [E,F,el2ed]=edgFEM2D55

clc

clear all

close all

[p, n, ~,ne]=unimesh01;
x=p(1,:);

y=p(2,:);

%%

el2no = sort(n);

n1 = el2no([1 1 2],:);

n2 = el2no([2 3 3],:);

[~,~,el2ed] = unique([n1(:) n2(:)],'rows');

el2ed = reshape(el2ed,3,size(el2no,2));

lll=el2ed';

l=zeros(ne,3);

n=el2no';
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for e5=1:ne

l(e5,1)=sqrt((x(n(e5,2))-x(n(e5,1)))ˆ2+(y(n(e5,2))-y(n(e5,1)))ˆ2);

l(e5,2)=sqrt((x(n(e5,3))-x(n(e5,1)))ˆ2+(y(n(e5,3))-y(n(e5,1)))ˆ2);

l(e5,3)=sqrt((x(n(e5,3))-x(n(e5,2)))ˆ2+(y(n(e5,3))-y(n(e5,2)))ˆ2);

end

%%

r=max(max(el2ed));

l=l';

%%%%%%%%%%%%%%%%%%%%%%% EDGE ELEMENTS CODE %%%%%%%%%%%%%%%%%%%%%%%%%

E=zeros(r);

F=zeros(r);

Ee1=zeros(3);

Fe=zeros(3);

n=n';

for e6=1:ne

ii=n(1,e6);

jj=n(2,e6);

m=n(3,e6);

be(2)=y(m)-y(ii);

be(3)=y(jj)-y(ii);

ce(2)=x(m)-x(ii);

ce(3)=x(jj)-x(ii);

Deltae=abs(0.5*(be(2)*ce(3)-be(3)*ce(2)));

f(2,2)=be(2)*be(2)+ce(2)*ce(2);

f(2,3)=-(be(2)*be(3)+ce(2)*ce(3));

f(3,3)=be(3)*be(3)+ce(3)*ce(3);

for i=1:3

for j=1:3

Ee1(i,j)=(l(i,e6)*l(j,e6))/Deltae;

end

end

Fe(1,1)=l(1,e6)*l(1,e6)/(24*(Deltae))*(3*f(2,2)+3*f(2,3)+f(3,3));

Fe(1,2)=l(2,e6)*l(1,e6)/(24*(Deltae))*(3*f(2,3)+f(2,2)+f(3,3));

Fe(1,3)=l(3,e6)*l(1,e6)/(24*(Deltae))*(f(2,3)-f(2,2)+f(3,3));

Fe(2,2)=l(2,e6)*l(2,e6)/(24*(Deltae))*(3*f(3,3)+3*f(2,3)+f(2,2));

Fe(2,3)=l(2,e6)*l(3,e6)/(24*(Deltae))*(f(3,3)-f(2,3)-f(2,2));

Fe(3,3)=l(3,e6)*l(3,e6)/(24*(Deltae))*(f(2,2)-f(2,3)+f(3,3));

Ee=Ee1.*[1 -1 1;-1 1 -1;1 -1 1];

for xx=1:3

for yy=1:3

Fe(yy,xx)=Fe(xx,yy);
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end

end

%%assemble

no=el2ed(:,e6);

E(no,no)=E(no,no)+Ee;

F(no,no)=F(no,no)+Fe;

end

%Baundary condition

load('figdata','e');

bcedg=zeros(1,size(e,2));

el2ed3=el2ed(:)';

pp=size(el2ed3,2);

c=1;

for i=1:pp

[vv,~,~]=find(el2ed3==el2ed3(1,i));
if size(vv,2)==1

bcedg(1,c)=el2ed3(1,i);

c=c+1;

end

end

for i=1:size(bcedg,2)

% E(bcedg(i),bcedg(i))=1;

% F(bcedg(i),bcedg(i))=1;

for j=1:r

if(j~=bcedg(i))
E(bcedg(i),j)=0;

% E(j,bcedg(i))=0;

F(bcedg(i),j)=0;

% F(j,bcedg(i))=0;

end

end

end

% % %%

[xv,kz2,iresult]=sptarn(E,F,1,100);

kz=sqrt((kz2));

sol=xv(:,6);

plot(kz,'*')

figure(2); plot(kz,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','r',...

'MarkerSize',5)
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xlabel('string')

xlabel({'mode[-]';'Cut off Wave Number for Circular waveguide'})
ylabel('kz')

title('First Orde Edge FEM')

el2no = sort(el2no);

no2xy=p;

% Local coordinates for plotting

phi 1 = [4 3 2 1 0 3 2 1 0 2 1 0 1 0 0]' / 4;

phi 2 = [0 1 2 3 4 0 1 2 3 0 1 2 0 1 0]' / 4;

phi 3 = [0 0 0 0 0 1 1 1 1 2 2 2 3 3 4]' / 4;

% Gradients of the basis functions

edge1 = no2xy(:,el2no(2,:)) - no2xy(:,el2no(1,:));

edge2 = no2xy(:,el2no(3,:)) - no2xy(:,el2no(1,:));

detJ = edge1(1,:).*edge2(2,:) - edge1(2,:).*edge2(1,:);

grad phi 2x = edge2(2,:)./ detJ;

grad phi 2y = -edge2(1,:)./ detJ;

grad phi 3x = -edge1(2,:)./ detJ;

grad phi 3y = edge1(1,:)./ detJ;

grad phi 1x = 0 - grad phi 2x - grad phi 3x;

grad phi 1y = 0 - grad phi 2y - grad phi 3y;

% Solution values for 1st, 2nd, and 3rd edges in each element

sol1 = sol(el2ed(1,:)).';

sol2 = sol(el2ed(2,:)).';

sol3 = sol(el2ed(3,:)).';

% Field values

Ex=phi 1*( grad phi 2x.*sol1+grad phi 3x.*sol2) + phi 2 * (-grad phi 1x*...

sol1+grad phi 3x.*sol3)+phi 3*(-grad phi 1x.*sol2 - grad phi 2x.*sol3);

Ey=phi 1*( grad phi 2y.*sol1+grad phi 3y.*sol2) + phi 2 * (-grad phi 1y*...

sol1+grad phi 3y.*sol3)+phi 3*(-grad phi 1y.*sol2 - grad phi 2y.*sol3);

Hz=(sol1- sol2 + sol3)./detJ;

% subgrid cRATION

p1 = no2xy(:,el2no(1,:));

p2 = no2xy(:,el2no(2,:));

p3 = no2xy(:,el2no(3,:));

psub = kron(p1,phi 1') + kron(p2,phi 2') + kron(p3,phi 3');

% Initiate plotting

ih = ishold;

ax = newplot;

% Plot the curl of the field (constant within each element)

patch('faces',el2no','vertices',no2xy','facevertexcdata',Hz(:), ...

'facecolor',get(ax,'defaultsurfacefacecolor'), ...

'edgecolor',get(ax,'defaultsurfaceedgecolor'));



73

axis equal, hold on

% Plot the field itself as arrows

quiver(psub(1,:),psub(2,:),Ex(:)',Ey(:)','k');

% Plot the mesh

xy1 = no2xy(:,el2no(1,:));

xy2 = no2xy(:,el2no(2,:));

xy3 = no2xy(:,el2no(3,:));

xy = [xy1; xy2; xy3; xy1; NaN*xy1];

plot(xy(1:2:end),xy(2:2:end),'k')

% Create a new colormap

mrz = max(abs(Hz(:)));

caxis([-mrz, mrz]);

c = (0:64)'/64; d = [c c ones(size(c))];

colormap([d ;1 1 1; d(end:-1:1,end:-1:1)]);

% if ~ih, hold off,

% %

end

function H = EdgeandNode1orderFEM2D

[no2xy, el2no,noNum,ne]=unimesh01;

x=no2xy(1,:);

y=no2xy(2,:);

t=el2no;

el2no = sort(t);

n1 = el2no([1 1 2],:);

n2 = el2no([2 3 3],:);

[~,~,el2ed] = unique([n1(:) n2(:)],'rows');

el2ed = reshape(el2ed,3,size(el2no,2));

n=el2no';

l=zeros(ne,3);

for e5=1:ne

l(e5,1)=sqrt((x(n(e5,2))-x(n(e5,1)))ˆ2+(y(n(e5,2))-y(n(e5,1)))ˆ2);

l(e5,2)=sqrt((x(n(e5,3))-x(n(e5,1)))ˆ2+(y(n(e5,3))-y(n(e5,1)))ˆ2);

l(e5,3)=sqrt((x(n(e5,3))-x(n(e5,2)))ˆ2+(y(n(e5,3))-y(n(e5,2)))ˆ2);

end

r=max(max(el2ed));

nd=max(max(t));

He=zeros(3,3);

H=zeros(r,nd);

%%%%%%%%%%%%%%%%%%%%%%% EDGE ELEMENTS CODE %%%%%%%%%%%%%%%%%%%%%%%%%
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f=zeros(3,3);

for e6=1:ne

ii=t(1,e6);

jj=t(2,e6);

m=t(3,e6);

be(1)=y(jj)-y(m);

be(2)=y(m)-y(ii);

be(3)=y(ii)-y(jj);

ce(1)=x(m)-x(jj);

ce(2)=x(ii)-x(m);

ce(3)=x(jj)-x(ii);

Deltae=abs(0.5*(be(1)*ce(2)-be(2)*ce(1)));

for i=1:3

for j=1:3

f(i,j)=(be(i)*be(j)+ce(i)*ce(j));

end

end

He(1,1)=l(e6,1)/(12*Deltae)*(f(2,1)-f(1,1));

He(1,2)=l(e6,1)/(12*Deltae)*(f(2,2)-f(1,2));

He(1,3)=l(e6,1)/(12*Deltae)*(f(2,3)-f(1,3));

He(2,1)=l(e6,2)/(12*Deltae)*(f(3,1)-f(1,1));

He(2,2)=l(e6,2)/(12*Deltae)*(f(3,2)-f(1,2));

He(2,3)=l(e6,2)/(12*Deltae)*(f(3,3)-f(1,3));

He(3,1)=l(e6,3)/(12*Deltae)*(f(3,1)-f(2,1));

He(3,2)=l(e6,3)/(12*Deltae)*(f(3,2)-f(2,2));

He(3,3)=l(e6,3)/(12*Deltae)*(f(3,3)-f(2,3));

for i=1:3

for j=1:3

H(el2ed(i,e6),t(j,e6))=H(el2ed(i,e6),t(j,e6))+ He(j,i);

end

end

end

%Baundary condition

load('figdata','e');

bcedg=zeros(1,size(e,2));

el2ed3=el2ed(:)';

pp=size(el2ed3,2);

c=1;

for i=1:pp

[vv,~,~]=find(el2ed3==el2ed3(1,i));
if size(vv,2)==1
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bcedg(1,c)=el2ed3(1,i);

c=c+1;

end

end

for i=1:size(bcedg,2)

% H(bcedg(i),bcedg(i))=1;

for j=1:noNum

if(j~=bcedg(i))
H(bcedg(i),j)=0;

end

end

end

% % //node boundary condition

ee1=e([1 2],:);

nbc=unique(ee1(:));

for i=1:size(nbc)

H(nbc(i),nbc(i))=1;

for j=1:r

if(j~=nbc(i))
H(j,nbc(i))=0;

end

end

end

end

clc

clear all

close all

[A,B]= nodefirstorderFEM2D;

[M, S, el2ed] =edgFEM2D55;

H =EdgeandNode1orderFEM2D;

eps=1;

k0=1;

miur=1;

Att=1/miur*M-k0ˆ2*eps*S;

Btt=1/miur*S;
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Btz=1/miur*H;

Bzt=Btz';

Bzz=1/miur*A-k0ˆ2*eps*B;

Btt2=Btz*Bzz'*Bzt-Btt;

[xv,kz2,iresult]=sptarn(A,B,1,100);

kz=sqrt((kz2));

% sol=xv(:,75);

% % plot(kz,'*')

figure(1); plot(kz,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','g',...

'MarkerSize',5)

xlabel('string')

xlabel({'mode[-]';'Cut off Wave Number'})
ylabel('kz')

title('First Order Node and First Orde Edge FEM')
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