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RÉSUMÉ 

La conception de structures légères et efficaces est essentielle dans l’industrie aérospatiale pour 

atteindre les performances voulues. Le processus de conception classique consiste à générer un 

premier concept basé sur l’expérience et la connaissance et à l’améliorer par la suite au cours de 

plusieurs itérations. L’émergence de l’optimisation topologique change ce processus puisque 

cette méthode peut montrer la distribution optimale de la matière afin de générer un concept 

initial amélioré. Ceci peut réduire le temps du cycle de conception et améliorer la performance 

finale. 

 

L’optimisation topologique pour la conception de structures aéronautiques a été appliquée dans 

des études de cas industrielles fructueuses. Cela encourage l’exploration de cette technologie 

chez Bombardier Aéronautique afin d’évaluer ses bénéfices potentiels et de définir les meilleures 

pratiques. L’objectif de ce projet est d’explorer l’application de l’optimisation topologique pour 

la conception d’une cloison de pressurisation arrière d’avion et de développer un nouveau 

processus de conception basé sur les connaissances acquises. 

  

Une revue de littérature est d’abord conduite afin de se familiariser avec le sujet et les travaux 

existants. Cette revue met l’emphase sur la technique d’optimisation topologique (Solid Isotropic 

Material with Penalization (SIMP)) et le processus de conception l’utilisant. Cette méthode est 

sélectionnée car elle est utilisée couramment et elle est implémentée dans des logiciels 

commerciaux disponibles. Dans cette étude, l’optimisation topologique est utilisée pour 

déterminer le raidissement optimal pour supporter la peau pressurisée de la cloison plane. 

Cependant, aucune application industrielle du processus pour la conception de structures 

pressurisée n’existe à notre connaissance. Aussi, la recherche sur le raidissement optimal de 

plaque par optimisation topologique est limitée puisque des contraintes typiques de conception 

comme la contrainte du matériau et le déplacement ne sont pas considérées. De plus, les résultats 

sont comparés à une plaque d’épaisseur uniforme ce qui n’est pas représentatif d’un concept de 

panneau raidi classique. Afin de parer à ce manque de connaissances et d’explorer l’application 

de l’optimisation topologique pour le raidissement de panneaux pressurisé, l’étude de cas de la 
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cloison d’avion arrière est simplifiée à une plaque rectangulaire sous pression. L’optimisation 

topologique est utilisée pour déterminer le raidissement optimal et les résultats sont comparés 

avec un concept typique. L’expérience et les connaissances acquises durant cette étude simplifiée 

sont ensuite utilisées pour développer le nouveau processus de conception basé sur les principes 

de la conception axiomatique. La conception axiomatique est une méthode de conception mettant 

l’emphase sur la fonctionnalité permettant d’encadrer la conception d’un produit. Cette dernière 

est utilisée pour supporter le processus de conception par optimisation topologique et surmonter 

les problèmes identifiés. 

  

Les résultats du travail peuvent être divisés en deux aspects. 

Premièrement, l’étude de la plaque rectangulaire met en évidence plusieurs défis associés à la 

conception de panneaux raidis sous pression par optimisation topologique. La génération de 

raidissement n’est pas directe puisque le résultat n’est pas unique. La méthode SIMP converge 

vers des optimums locaux et les concepts obtenus sont sensibles à la mise en place de 

l’optimisation et aux conditions frontières. Aussi, l’effet de membrane non linéaire associé aux 

plaques sous pression ne peut pas être capturé par l’analyse linéaire par éléments finis  utilisée 

par le solveur ce qui peut affecter la validité du raidissement suggéré. De plus, l’interprétation du 

raidissement est difficile puisque les raidisseurs modélisés par l’espace de conception peuvent 

être soumis à un chargement complexe. La combinaison de chargement en torsion et en flexion 

rend l’utilisation efficace d’une section de poutre compliquée. Finalement, une estimation de la 

performance du concept d’optimisation topologique a montré que la masse n’était pas réduite 

significativement par rapport à un concept typique et intuitif. L’étude démontre qu’il est 

important d’explorer l’espace de conception avec plusieurs optimisations topologiques de façon à 

obtenir une compréhension globale de la fonctionnalité des caractéristiques observées avant 

d’interpréter un concept.  

Deuxièmement, le nouveau processus de conception combinant la conception axiomatique et 

l’optimisation topologique s’est avéré une approche innovante et efficace pour la génération de 

concepts. Dans ce processus, l’optimisation topologique est seulement utilisée comme un outil 

encadré par la conception axiomatique. Elle permet d’explorer l’espace de conception et 

d’obtenir de l’information concernant la distribution optimale de la matière. Cette information 
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aide à définir les requis fonctionnels (FRs - « Functional Requirements ») de la structure. Cette 

étape d’interprétation fonctionnelle force le concepteur à comprendre l’origine des 

caractéristiques observées ce qui permet d’éviter une interprétation directe du résultat de 

l’optimisation topologique.  L’interprétation physique peut ensuite être effectuée en sélectionnant 

des paramètres de conception (DPs - « Design Parameters ») qui remplissent les FRs définis 

précédemment. Le respect des deux axiomes (indépendance des fonctions et minimisation de 

l’information) évite aussi les couplages dans le concept interprété et maximise ses chances de 

succès. Finalement, la conception axiomatique assure que des contraintes comme la fabrication et 

le coût soient considérées dans l’interprétation. Le processus est appliqué avec succès à la 

conception de la cloison de pressurisation arrière d’un avion. 

 

Cette recherche contribue au domaine de la conception par optimisation topologique, car elle 

présente une des première applications complète (du concept jusqu’au dimensionnement) connue 

de cette technique pour la conception d’un panneau raidi pressurisé. La connaissance acquise est 

partagée avec la communauté scientifique par l’entremise d’un article de journal soumis à la 

revue Structural and Multidisciplinary Optimization. Cette recherche présente aussi un nouveau 

processus de conception définissant les bases d’une méthode systématique et innovante pour 

générer des concepts de structures. Il s’agit de la première combinaison connue de la conception 

axiomatique et de l’optimisation topologique étant toutes deux une approche de conception 

puissante. Le processus peut être utilisé pour n’importe quel composant structurel et il a donc un 

grand potentiel d’application. Toutefois, ce dernier n’a pas pu être testé sur un grand nombre de 

cas ce qui est nécessaire pour atteindre la maturité. 
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ABSTRACT 

The design of light and efficient structures is essential in aerospace industry to meet performance 

targets. The typical design process consists of generating a first design based on experience and 

knowledge and improving it during several iterations. The emergence of topology optimization 

changes this process since this technology can show optimal material placement in order to 

generate an improved initial concept. This can reduce design cycle time and improve the final 

performance. 

 

Topology optimization for the design of aircraft structures has been applied in successful 

industrial case studies. This encourages the exploration of this technology within Bombardier 

Aerospace in order to evaluate its potential benefit and define best practices. The objectives of 

the project are to explore the application of topology optimization for the design of an aircraft’s 

rear pressure bulkhead and to develop a design process based on the acquired knowledge.  

 

A literature review was first conducted in order to improve the knowledge on topology 

optimization. The review focussed on the topology optimization technique (Solid Isotropic 

Material with Penalization (SIMP)) and the design process using it. This method is selected 

because it is commonly used and it is implemented in available commercial softwares. In this 

study, topology optimization is used to determine the optimal stiffener layout to support the 

pressurized skin of the flat bulkhead. However, no industrial application of the process for the 

design of pressurized structures exists to our knowledge. Also, the research on optimal plate 

stiffening using topology optimization is limited as it does not consider typical design constraints 

such as stress and displacement. Moreover, the results are compared to a uniform thickness plate 

which is not representative of a typical stiffened panel design. In order to fill this knowledge gap 

and explore the application of the topology optimization for pressurized plate stiffening, the 

bulkhead design case is simplified as a flat rectangular pressurized plate. Topology optimization 

is used to determine an optimal stiffener layout and results are compared with a typical design. 

The experience and knowledge acquired with this simplified study is then used to develop the 

new design process based on axiomatic design principles. Axiomatic design is a design 
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methodology focussing on functionality that supports product design. It is used to support 

topology optimization design process and overcome the identified challenges.  

 

The results of this work can be divided into two aspects: First, the study of the rectangular plate 

highlights several challenges associated to the design of stiffened pressurized panels using 

topology optimization. The generation of a layout is not straightforward since the result is not 

unique. The SIMP method converges to local optimums and the resulting layouts are sensitive to 

optimization set-up and boundary conditions. Also, the non-linear membrane effect associated to 

pressurized plate cannot be captured by the linear finite element analysis used by the solver 

which can affect the validity of the layouts suggested. Moreover, the interpretation of the layouts 

is also challenging since the stiffeners modelled by the design space may sustain complex 

loading. The combination of torsion and bending load makes the use of efficient cross-section 

difficult. Finally, a performance estimation of the topology design showed that no significant 

weight savings are achieved compared to a typical and intuitive design. The study demonstrates 

that it is important to explore the design space with several topology optimizations in order to get 

a global understanding of the functionality of the features observed before interpreting a concept. 

Second, the new design process combining axiomatic design and topology optimization proved to 

be an innovative and efficient approach for the generation of design concepts. In this process, 

topology optimization is only used as a tool in the axiomatic design framework. It allows 

exploring the design space and obtaining information concerning optimal material placement. 

This information helps defining the functional requirements (FRs) of the structure. This 

functional interpretation step forces the designer to understand the origin of the feature observed 

and avoids a direct interpretation of the topology result. The physical interpretation can then be 

performed by selecting design parameters (DPs) that fulfill the FRs previously defined. The 

respect of the two axioms (independence and information) also avoids coupling in the concept 

and maximize its chances of success. Finally, axiomatic design ensures that constraints such as 

manufacturability and cost are considered during the interpretation. The process is successfully 

applied for the design of a rear aircraft pressure bulkhead. 
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This research contributes to the topology optimization design domain as it presents one of the 

first complete application (from concept to sizing) known of this technique for the design of 

stiffened pressurized plates. The acquired knowledge is shared to the scientific community by a 

paper submitted to the Structural and Multidisciplinary Optimization journal. This research also 

presents a new design process that sets the basis of a systematic and innovative methodology to 

generate structural design concepts. It is an original combination of axiomatic design and 

topology optimization which are two powerful design approaches. The process can be used for 

any structural component and therefore have great potential applications. However, it has not 

been tested on a large number of cases which is necessary to reach maturity. 
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INTRODUCTION 

The reduction of design cycle time and the improvement of the performance are critical aspects 

of any structural design in the aerospace industry. The typical design process starts by creating a 

first concept based on the experience and the knowledge of the designer. The design then goes 

through several iterations of validation and optimisation in order to reach performance targets 

while meeting structural requirements and constraints. This approach is rather long and the 

results obtained are not necessarily optimal because of the empirical nature of the initial design.  

 

The arrival of topology optimization in industry changes this design process. This approach is 

used to visualize optimal material placement in a design space for given loads and boundary 

conditions. The first design concept is therefore based on the result of an optimization which can 

reduce design cycle time and help acquire the desired performance. Several successful industrial 

applications encouraged the exploration of this approach for the design of a primary structural 

component at Bombardier Aerospace. The objective of this project is to investigate the 

opportunity to apply topology optimization for the design of a rear aircraft pressure bulkhead as 

well as to define a new design process with the acquired knowledge.  

 

Several challenges associated to the application of topology optimization for the design of 

pressurized plates are identified and presented in a submitted journal paper. A new design process 

combining axiomatic design and topology optimization is then developed to overcome the 

difficulties associated to the generation and the interpretation of design concepts using topology 

optimization.  

 

Chapter one presents a literature review and the background of the topology optimization design 

process. Two successful industrial case studies are summarized. It also explains the theory behind 

the most usual implementations of topology optimization (density method). The aircraft pressure 

bulkhead is also introduced and its similarity with the design of a flat pressurized stiffened plate 

is discussed. A critical review of optimal plate stiffening using topology optimization is finally 

conducted. The findings of the review are then synthetized and two research questions are posed.  
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Chapter two integrates a submitted journal paper that discusses the challenges associated to the 

use of topology optimization for the stiffening of flat pressurized plate. It presents a simplified 

design case inspired from the bulkhead that allows isolating the effect of the pressure load case 

that is specific to the problem. It compares the performance of a topology design with an intuitive 

and typical design. The knowledge gathered for this specific case highlights the difficulties 

arising when using the topology design approach which helps defining a new design process.  

 

Chapter three presents the new design process where topology optimization is used as an 

exploration tool within the axiomatic design framework. This combination of conceptual design 

approaches is an innovative proposal that allows overcoming several of the identified challenges. 

In this process, topology shows potential load path and design solution that are used to extract 

and define the functional requirements of the structure. A design concept is finally developed 

with the physical interpretation based on functionality. The application of the process is 

illustrated on a simple example and on the flat pressurized plate presented in chapter two. 

 

Chapter four discusses the application of the new design process on an aircraft pressure bulkhead. 

Each step of the process is applied and different design concepts are suggested. It proves that the 

process is efficient to explore the design space while avoiding problems associated to direct 

topology interpretation. 

 

To conclude, the results obtained in each chapter are synthetized and the contribution of this 

work to the field of topology optimization based design is discussed. Finally, a discussion 

concerning future work inspired from this research is presented.  
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CHAPTER 1 LITERATURE REVIEW 

This chapter first presents an overview of the topology optimization design process. It then 

summarizes the theoretical background of topology optimization. A review of two successful 

application of the design process in industry follows. In order to understand the case studied in 

this thesis, and introduction to aircraft pressure bulkheads is also presented. The discussion 

explains how the bulkhead can be idealized into a pressurized stiffened plate. Therefore, a critical 

review of literature concerning optimal stiffening of plate is conducted. A synthesis of the 

findings is finally presented and two research questions are developed.  

1.1 Topology optimization design process 

Figure 1.1 presents a conceptual comparison of the classic and the topology optimization based 

process for the design of structures. The difference between the two approach lies in the method 

used to generate the initial concept. This first design is typically obtained based on the experience 

and engineering judgment. This subjectivity can be removed by using topology optimization as it 

allows the visualization of optimal material placement based on mechanical criterion such as 

strength and stiffness requirements. It provides great insight of what the initial design should look 

like in the conceptual phase. Both design process are then taking the initial design as a baseline to 

perform analysis and optimization in order to meet all design requirements in the detailed phase. 

This topology design process was first suggested by Olhoff et al. (1991). 
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Figure 1.1 : Topology optimization role in the design process 

The advantage of the topology optimization process lies in the generation of the initial design, 

which can be closer to a final design and hence reduce the number of design iterations. It allows 

exploring the design space without preconceived ideas. Different configurations can be explored 

rapidly and the most promising can be selected. This tool allows acquiring great knowledge in the 

conceptual phase of the design as illustrated by Figure 1.2. This early acquisition of information 

has high value because it is where design freedom is maximal and innovation can occur at 

minimal cost. This freedom is not present in the detailed design phase and only minor 

improvements can be obtained by typical optimization methods. The quality of the initial design 

therefore plays a major role in the final performance. The exploration of the design space by 

using topology optimization in the conceptual phase also decreases the risk of having to go 

through several iterations in the design cycle and therefore reduce design cycle time.  
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Figure 1.2 : Advantage of using topology optimization in the design process 

1.2 Topology Optimization background 

This section presents and discusses the theory behind the topology optimization method used in 

this thesis. It also discusses its typical application to structural design problems in order to 

familiarize the reader with this method. 

 

Structural optimization is commonly used to optimize the size and shapes of components (Figure 

1.3). For example, the thickness of a panel and its curvature can be optimized to minimize the 

mass while respecting maximum stress and displacement constraint. These types of optimization 

are performed on an existing design and cannot modify the structure by adding holes or structural 

members for example. This is where the structural topology optimization methods can be used. It 

can be described as a method that optimizes the distribution of material in a given design space. It 

is generally used to visualize optimal load distribution in a structure and generate innovative 

design concept.  
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Figure 1.3 : Types of structural optimization (adapted from Bendsoe and Sigmund (2004)) 

Topology optimization is a broad research subject and different methods were developed to 

optimize material placement in a design space. An extensive review of the different approaches 

and their particularity can be found in the literature (Deaton and Grandhi 2013; Hans and Niels 

2001; Sigmund and Maute 2013). However, one method is currently used and accepted by most 

of the research community and is now implemented in several commercial softwares such as 

Optistruct, Tosca and Genesys: it is the Solid Isotropic Material with Penalization (SIMP) 

method, also called the density method. This thesis uses the Optistruct solver from the Altair 

Hyperworks suite to perform all topology optimization and finite element analysis. This tool was 

selected for its availability and for its previous success in industrial applications. In order to use it 

efficiently, it is important to understand the theory behind this approach.  

1.2.1 SIMP or density method 

The design space where material can take place is discretized by the finite element method 

(FEM). The problem consists of finding which elements should represent material and which 

should not. This is also called a 0-1 problem or an Isotropic-Solid or Empty topology according 

to the terminology presented by Rozvany (2001). This discrete problem results in 2
N 

possibilities 

where N is the number of elements. The evaluation of all these possibilities is computationally 

prohibitive and thus optimization techniques are used. Optimization algorithms are more efficient 

at solving continuous design variable and response because they can use a gradient method that 

can quickly converge towards the objective. For that reason, the discrete topology design problem 

is relaxed into a continuous design problem. This is done by assigning a density design variable 

Size Optimization 

Shape Optimization 

Topology Optimization 



7 

 

(ρ) to each element that can take value between zero and one where zero represents absence of 

material and one represents presence of material. The density is directly factoring the element 

stiffness matrix (K) to simulate material existence with the adjusted stiffness matrix ( ̅). 

Therefore, the finite element mesh is constant throughout the optimization and the visualization 

of the density distribution simulates optimal material placement.  

This continuous design variable can result in intermediate density which has no physical meaning 

since intermediate material does not exist. In order to force the density design variables towards 

discrete values (0 and 1), a penalization power (p) is introduced. This results into what is called 

the SIMP material interpolation scheme (Equation 1). The penalization takes value above one 

(typically between 2 and 5) which increase the cost of intermediate density on the objective 

function and naturally push the design variable towards discrete value.  

 ̅( )      

              
(1) 

The introduction of this penalization makes the optimization problem non-convex which means 

that there are several different local optimums in the solution space. It is therefore important to 

keep in mind that the result of the optimization is not necessarily the global optimum of the 

design space.  

1.2.2 Typical topology optimization setup 

Model: Design Space, loading and boundary conditions 

The first step in order to perform a topology optimization is to model the design space and define 

the loading and boundary conditions. Figure 1.4 illustrates a simple topology optimization 

model for the design of a bridge. The road and the supports of the bridge are represented by 

non-design space where elements density is not variable. The zones where structural members of 

the bridge can take place are represented by variable density elements that define the design 

space. The model is loaded by a uniformly distributed load representing the weight of the 

vehicles and constrained at two locations representing the boundary conditions of the bridge.  
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Figure 1.4 : Example of bridge model for a topology optimisation problem
1
  

1.2.2.1 Optimization problem 

The topology optimization problem is defined like any optimization problem (Equation 2). The 

values of the design variables vector (x) are optimized in order to minimize an objective 

function (f(x)) while respecting one or multiple constraints (gi(x)).   

    ( ) 

              ( )                   
(2) 

It is possible to use many optimization responses as an objective or constraints. The typical 

topology optimization problem formulations are given in Table 1.1.  

Table 1.1 : Typical topology optimization problem formulation 

Formulation Objective Constraint 

A Minimize compliance (Strain energy) Volume/Volume fraction (or Mass) 

B Minimize volume/mass Maximum Displacement 

C Minimize volume/mass Maximum Global Stress 

D Minimize volume/mass Minimum Buckling factor (1.0) 

The original and most commonly used formulation is the minimization of compliance (strain 

energy) for a constrained volume (formulation A). In other words, the stiffness of the structure is 

maximized for a fixed target volume. Multiple load cases can be handled by using a weighted 

average of the compliance associated to each load case. This formulation allows visualizing 

                                                 

1
 Adapted from Optistruct’s user guide (Altair Engineering 2011) 
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optimal material placement in the design space. The volume selected can be directly related to the 

target design volume or it can also be fixed to a fraction of the total design space volume (volume 

fraction (VF)). Volume fractions between 20% and 30% are generally used to visualize the 

optimal material placement. This optimization formulation is not directly applicable to typical 

engineering design constraint such as stress, buckling and displacement. However, the concepts 

obtained when maximizing stiffness generally perform well with these constraints once 

interpreted (Schramm et al. 2004).  

Other formulations are available in order to pose the topology optimization problem with more 

realistic engineering constraints. For example, the mass of the design can be minimized for a 

constrained maximum displacement (formulation B). This constraint can work efficiently but it 

is somewhat similar to the compliance objective as the stiffness is directly driving the 

displacement. This formulation has the advantage of not having to select a volume fraction since 

it is minimized. It is however limited when used for a pressure load case because the 

displacement of each node is important which creates a problem with a large number of variables 

and constraints. It results in convergence problem and that does not result in a discrete structure. 

The minimization of mass for a maximum stress constraint (formulation C) can also be used. 

The advantage of this formulation is that it is typical of a real engineering design problem. 

However, it is important to be aware that the stress constraint is a global value that accounts for 

the whole design space. The existence of stress is conditional to the existence of material which is 

called the singularity problem. Other problem associated to local stress concentration and 

non-linearity of the stress response also makes it challenging to implement efficiently this 

response in the SIMP method. Several different approaches exist (Le et al. 2010) and the 

technique used in Optistruct is unknown. The general nature of the global stress constraint makes 

it comparable to the volume fraction constraint since the effect of the value of the constraint is 

not straightforward.  

Topology optimization with buckling constraint (formulation D) is also feasible but is also very 

limited. The buckling factor associated to low-density zones may be very low since these zones 

have very low stiffness. It is therefore necessary to filter these zones from the buckling response 

which is challenging and only implemented for shell structures with non-zero minimum thickness 

(Zhou 2004).  
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These different approaches where tested on simplified cases representing the pressure bulkhead 

and the minimization of compliance for a constrained volume (formulation A) proved to be the 

most reliable to generate discrete topology results. Other response and objectives can be used but 

the user must be careful concerning their respective limitations for their specific problem.  

1.2.2.2 Post-Processing 

The post processing of a topology optimization consists of visualizing the element density 

distribution (Figure 1.5). This can be done by visualizing a density contour plot where high and 

low density elements are displayed in different colors. Iso-plot can also be used for 3D models to 

visualize elements above a specified density threshold. It can leave the user with the impression 

that topology removes elements from the model but it is important to remember that it is only a 

visualization.  

 

Figure 1.5 : Typical example of topology optimization post-processing  

1.2.3 Checkerboarding and mesh dependency 

The apparition of checkerboard pattern in the density result is a known problem of the density 

method (Figure 1.6). It is associated to the finite element discretization where a checkerboard 

pattern results in an artificially stiffer design. The problem can be avoided by using a density 

filter or by using quadratic element formulation.  

The density topology optimization problem is also known to be mesh sensitive since a different 

layout can be obtained for different mesh-size. This is due to the non-existence of solution of the 

density topology optimization problem. In other words,  the introduction of more holes for a 

same volume will generally decrease the objective function (Sigmund and Petersson 1998). This 

problem is generally overcome by using different types of density filters. Optistruct filters the 

Density Contour Plot  
(Red: High Density. Blue: LowDensity) 
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gradient of the density to avoid mesh dependency while controlling the minimum size of the 

members formed (Zhou et al. 2001).  

 

Figure 1.6 : Checkerboard and mesh-dependency problem
2
 

1.2.4 Manufacturing constraints 

The industrial use of topology optimization encouraged the development of manufacturing 

constraints as some concepts generated would be impossible or too costly to be manufactured. 

Optistruct offers several of them which can be used to force the topology to give more 

manufacturable results. They can be used to obtain topologies that are more manufacturable with 

typical material removal process, extrusion and casting process. Additive approaches can also be 

used to manufacture more complex topologies. 

Minimum and maximum member size control 

The minimum member size constraint (MINDIM) penalizes the formation of members smaller 

than wanted diameter (Zhou et al. 2001). The use of this parameter is highly recommended by the 

Optistruct’s user guide as it helps obtaining more discrete and manufacturable topologies. As 

discussed earlier, this filter also avoids checkerboard and mesh dependency problem. However, 

the value of this constraint is somewhat dependent of mesh size since elements are used to apply 

the constraint on diameter.  

The maximum member size constraint (MAXDIM) can be used along MINDIM in order to 

penalize the formation of members larger than a specified diameter.  

                                                 

2
 Adapted from Sigmund and Petersson (1998) 
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It is also important to mention that it is possible to obtain members that violate these constraints 

if these are important for the objective.  

Extrusion, Draw and pattern repetition constraints 

Optistruct also offers extrusion and draw constraints for 3D design space. These constraints can 

be used to force a draw direction for casting parts or force a constant cross section for extrusions. 

Finally, pattern repetition constraints allow specifying various symmetry constraints.  

1.2.5 Thickness Optimization (Free-Size) 

Continuous thickness optimization (called Free-Size in Optistruct) is an alternative to topology 

optimization for shell structures. The density design variable is replaced by the thickness of each 

elements and no penalization power is used. This gives more design freedom since intermediate 

densities are not forced towards minimum or maximum values. However, problems where shell 

sustain bending load have an implicit penalization power like for the topology problem since the 

bending stiffness is proportional to the cube of the thickness.  

The main difference between topology and free-size optimization is that topology result in 

discrete truss-like structures and free-size gives more continuous material distribution (Figure 

1.7). Both type of designs are defendable and Cervellera et al. (2005) showed in an example that 

a beam web designed with free-size optimization was lighter than one designed with topology for 

high stiffness requirements. Free-size is used extensively for the design of composite material 

since it allows optimizing ply orientation, thickness and stacking sequence. However, only 

metallic structures are considered in this thesis and free-size is only used as an alternative to 

topology optimization on shell structures. 
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Figure 1.7 : Conceptual comparison of free-size and topology optimization 
3
 

1.3 Industrial applications  

The availability of topology optimization in commercial softwares makes it usable for industrial 

application and this explains its rising popularity. Two industrial successes are briefly presented 

in this section. It shows the typical steps of the design process on real case studies and highlights 

the potential performance improvement. These studies are used as a basis to explore the use for 

topology optimization for the design of the pressure bulkhead. 

1.3.1 Wing leading edge rib for Airbus A380 

Airbus realized significant weight savings by using topology optimization for the design of the 

leading edge ribs of the A380 (Krog et al. 2002). The ribs are sustaining discrete loading coming 

from the actuators of wing slats along with aerodynamic loading. These loads are oriented in the 

plane of the 2D design domain. The optimization software Optistruct from the Altair Hyperworks 

suite was used to perform the whole design (Figure 1.8). The topology was found to be sensitive 

to loading, boundary conditions and to the formulation of the optimization problem (objective 

and constraints). The selected objective was finally to minimize compliance (maximization of 

stiffness) for a constrained volume. The topology resulted in a truss structure (discrete connected 

members). An interpretation involving engineering knowledge and experience allowed defining a 

size and shape optimization model to minimize the mass of the concept for typical stress and 

                                                 

3
 Adapted from Cervellera et al. (2005) 
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displacement constraints. The final design resulted in weight savings compared to the typical 

design approach.  

 

Figure 1.8 : Airbus A380 wing leading edge rib design 

1.3.2 Chinook helicopter floor beam redesign 

Boeing engineers also explored the application of topology optimization design process for the 

redesign of a chinook helicopter floor beam (Fitzwater et al. 2008; Hunter 2006). Once again, the 

two dimensional design space was mainly loaded in its plane. They also used Optistruct to 

perform all steps of the redesign (Figure 1.9). Topology optimization was used to visualize the 

optimal material placement. The objective was to minimize compliance for a constrained target 

mass. The author recommends doing several topology optimizations to get confident with load 

path and sensitivity. The result also consisted of a truss design concept. The interpretation along 

with a size and shape model was then defined with concerns for manufacturing. The interpreted 

design is then optimized to minimize weight for stress, displacement and buckling constraints. 

The optimized design was finally analyzed and tested for fatigue and fail-safe concerns. Weight 

savings of around 15% were achieved.  
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Figure 1.9 : Chinook helicopter floor beam redesign 

Both of the studies identified challenges associated to the generation of topology because of the 

sensitivity of the result to optimization setup, loading and boundary conditions. Also, the 

interpretation of the topology layout required engineering input but no guidelines or methodology 

were provided.  
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1.4 Introduction to aircraft pressure bulkheads 

The cabin of an aircraft needs to be pressurized as it flies at high altitude where the atmospheric 

pressure is too low to ensure normal breathing. The pressure differential between the cabin and 

the exterior is sustained by the aircraft structure. In other words, the aircraft fuselage acts as a 

pressure vessel. This pressure vessel has to be sealed by what is called pressure bulkheads. These 

pressure bulkheads are normally located in the rear fuselage, forward of the cockpit and at wing 

junctions. Figure 1.10 presents a detailed view of a typical rear pressure bulkhead along with a 

visualization of the location of these structures.  

If the aircraft interior is idealized as a pressure tank, the natural shape of the ends can take the 

form of a dome or a flat stiffened panel. The dome is a more efficient structure under pressure but 

the flat stiffened panel is generally preferred for smaller aircraft. This is because a trade-off is 

made between structural efficiency of the bulkhead and the space gained for the installation of 

systems in the aft fuselage. Small aircrafts need to have as many systems as the large carriers and 

using dome bulkhead could result in an extension of the total fuselage length which also has a 

significant impact on aircraft total weight and drag. The space acquired can also be useful to 

carry more fuel and extend the range of a high performance business aircraft. Therefore, the rear 

pressure bulkhead considered consists of a flat assembly of skin and stiffeners.  

 

Figure 1.10 : Introduction to aircraft pressure bulkheads
4
 

                                                 

4
 Image on the right adapted from Bombardier Challenger 605 maintenance manual   
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One of the main differences between this design case and the industrial case studies presented is 

that the load is perpendicular (out-of-plane) to the design space plane instead of being in its 

plane. This means that the structure is mainly loaded in bending instead of being loaded in 

tension, compression or shear. There are no industrial case study considering such loading and 

the closest application was found in papers studying optimal plate stiffening.  

The design of a flat bulkhead can be idealized as the design of the stiffening of a flat pressurized 

plate. This is typically done by adding straight and equally spaced stiffeners on the plate in order 

to provide appropriate support to the skin. It also allows controlling the dimensions of the bay 

formed between stiffeners. This stiffening solution may not be optimal and the topology 

optimization design process can be used to explore new concepts.  

1.5 Plate stiffening using topology optimization 

Application of topology optimization for the optimal stiffening of plate has been explored in 

several studies.  

Lam and Santhikumar (2003) presented a study where the thickness of a plate is optimized in a 

first step to determine stiffener placement. As a reminder, the thickness optimization is similar to 

topology optimization when the structure is mainly loaded in bending which is the case in this 

study. Standardized stiffeners are then added to the plate and a comparison is made with a plate 

of uniform thickness with an equivalent volume. The maximum displacement is used as the 

comparison criteria. This innovative process is close to the topology optimization design process 

described earlier. However, there is no sizing optimization considering typical design constraints 

such as stress and displacement. Moreover, the study considers discrete loading and boundary 

condition and its applicability to pressure load remains unknown. Finally, the uniform thickness 

plate is not an adequate comparison basis since a stiffened panel is much more efficient.   

Afonso et al. (2005) also proposed a process for the stiffening of plates using topology 

optimization to determine optimal stiffener position. Stiffeners are placed where high density 

elements are obtained. A sizing optimization is then performed on the interpeted model in order 

to obtain the optimal height of the stiffeners. The objective of the optimization is to minimize the 

compliance (strain energy) of the structure. This is once again far from typical engineering 

problems where mass is minimized for stress and displacement constraints. The examples 
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presented also does not consider pressure loading. Finally, the comparison of performance is still 

made with a uniform thickness plate.  

In summary, the application of topology optimization for pressure loading is an active research 

subject on various types of structures. However, its applicability to find the optimal stiffening of 

a flat plate under pressure has not been explored in a complete case study (from concept to 

sizing) according to the review performed. Moreover, the studies reviewed do not consider 

realistic constraints such as stress and displacement when interpreting and sizing stiffeners. 

Finally, the comparison to a uniform thickness plate is not representative of a stiffened plate 

design that could be obtained without topology optimization. Other studies were found but they 

all had similar limitations (Ansola et al. 2004; Luo and Gea 1998; Stok and Mihelic 1996).  

1.6 Synthesis 

The literature review showed that the topology design process can result in performance 

improvement as it was the case for representative industrial case studies. The studies also 

highlighted challenges associated to the generation and interpretation of topology but did not 

propose a systematic methodology to address them. Moreover, application of the topology design 

process for the optimal stiffening of a pressure bulkhead has not been explored in industry 

according to our knowledge.  

The bulkhead can be visualized as a flat pressurized stiffened panel and a review on optimal plate 

stiffening using topology optimization was also conducted. Unfortunately, the pressure load case 

was not considered in the researches and the sizing performed did not account for typical 

constraints such as stress or displacement. Moreover, the comparison of result with a uniform 

thickness plates is not representative of true performance improvement compared to a typical 

stiffened panel.  

As a reminder, the objective of the present project is to explore the use of topology optimization 

for the design of a flat pressure bulkhead and develop a design process from the acquired 

knowledge. Based on the information presented in the literature review, this objective can be 

translated into the following two research questions. 
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Research questions 

1. How does the topology optimization design process performs compared to a typical 

design for flat pressurized stiffened plates? 

2. How to address the identified challenges of the actual topology optimization design 

process? 

The hypothesis and the methodology used to address them are also considered: 

Hypothesis 

1. Topology optimization will improve product performance compared to a typical design.  

2. Combining topology optimization and axiomatic design principles can address the 

challenges associated to the generation and the interpretation of design concepts.  

Methodology 

1. Study a simplified pressurized plate and compare the results with a typical design to 

identify challenges and estimate performance improvement. (Presented in Chapter 2) 

2. Develop a design process using Axiomatic Design to support topology optimization and 

apply it to the pressure bulkhead design case for validation (Presented in Chapter 3 and 

Chapter 4) 
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CHAPTER 2 ARTICLE 1: 

CHALLENGES OF USING TOPOLOGY OPTIMIZATION FOR THE 

DESIGN OF PRESSURIZED STIFFENED PANELS  

A. Dugré, A. Vadean, J. Chaussée (2014). Submitted in the “Structural and Multidisciplinary 

Optimization” journal on July 2
nd

 2014. 

2.1 Presentation  

The bulkhead is a complex structure and it is first simplified in order to answer to the first 

research question defined after reviewing the literature. How does the topology optimization 

design process performs compared to a typical design for flat pressurized plates? 

The bulkhead is therefore simplified as a flat and simply supported pressurized rectangular plate. 

The dimensions and constraints used are inspired from the bulkhead in order to use realistic order 

of magnitude and maintain a physical sense of the values used.  

This case study allows focusing on the particularity of the out-of plane pressure loading 

associated to the bulkhead design case. It aims at filling the knowledge gap identified concerning 

optimal stiffening of pressurised plates using topology optimization. Therefore, a pressurized 

stiffened plate is studied and the performance of the topology designs is compared with a typical 

and intuitive design using design constraints such as stress and displacement. This application of 

the topology design process has never been explored before which encouraged writing the journal 

paper presented in this chapter. The paper submitted to Structural and Multidisciplinary 

Optimization aims at presenting and discussing the challenges associated to the use of density 

(SIMP) topology optimization for the stiffening of flat pressurized plates. It represents an 

important realization of this master thesis project since it is the synthesis of many findings 

concerning this type of structures.  

The knowledge acquired and the challenges identified throughout this application of the topology 

design process are used to define the improved design process presented in Chapter 3.  
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2.2 Abstract 

Topology optimization has been successfully used in several case studies in aerospace and 

automotive industries to generate innovative design concepts that lead to weight savings. This 

motivates the exploration of this new approach for the design of an aircraft flat pressure 

bulkhead. However, no studies were conducted on this type of structure. Therefore, this paper 

presents and discusses the challenges associated to the design of flat pressurized plate using 

topology optimization (SIMP (Solid Isotropic Material with Penalization) method). A simply 

supported rectangular plate is used as the design case and a typical layout is defined as a 

comparison basis. The mass of the interpreted design concepts are obtained with a simplified 

sizing approach taking into consideration stress and displacement constraints. Results show that 

the topology layout is not unique as is sensitive to optimization parameters. Moreover, the 

interpretation of the layout is challenging as they are driven by complex interactions. Finally, the 

performance of the topology design concept is at most comparable with the typical layout and no 

significant improvement is obtained. The study highlights the importance of performing an 

extensive topology study in order to better understand the behavior of the design before creating a 

concept. 

Keywords: stiffened plates, topology optimization, pressure, bulkhead 

2.3 Introduction  

Structural design process typically consists of creating an initial design based on experience and 

optimizing it to obtain the desired performance target. Relatively recent methods such as 

topology optimization implemented in commercial software can improve this process. This 

technology shows optimal material placement in a design space based on load and boundary 

conditions. It helps exploring the design space and results in innovative initial design. The 

concept is then optimized as usual and the final performance is improved compared to a typical 

design. This design process was first suggested by Olhoff et al. (1991). Since then, this approach 

was successfully applied in industries such as automotive and aerospace. Krog et al. (2002) 

presented an application of this approach for the design of aircraft leading edge rib where 

significant weight saving was obtained. Other success stories can be found such as the one 

presented by Fitzwater et al. (2008) that reduced the weight of a helicopter floor beam. These two 
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applications had the common characteristic of having a flat design space mainly loaded in its 

plane.  

Encouraged by these industrial realizations, this paper studies the application of the topology 

design process on a two-dimensional aircraft structure: a flat pressure bulkhead. This structure 

seals the pressure differential between the cabin and the atmosphere and typically consists of an 

assembly of thin skin panels supported by stiffeners (Figure 2.1). It is a complex structure mainly 

loaded out-of its plane by differential pressure but that also sustains in-plane loading coming 

from fuselage and local structural connections. As a first step towards evaluating the potential of 

topology optimization process for the design of a bulkhead, a simplified design case is explored 

in this paper. As a matter, the bulkhead is represented by a simply supported rectangular 

pressurized plate. This allows isolating the effect of out-of-plane pressure which is dominant. 

Therefore, the objective of the paper is to discuss the challenges associated to the design of flat 

pressurized stiffened panel using the topology optimization process.  

 

Figure 2.1 : Example of flat bulkhead with stiffeners
5
 

Optimal layout has been an active research subject since the beginning of numerical topology 

optimization marked by a landmark paper from Bendsoe and Kikuchi (1988). Since then, several 

                                                 

5
 Image adapted from Bombardier Challenger 605 maintenance manual 



23 

 

techniques have been developed such as the SIMP (Solid Isotropic Material with Penalization) 

method (Rozvany et al. 1992) which has become popular and that is implemented in commercial 

softwares. The reader is referred to review papers for details concerning topology optimization 

methods (Deaton and Grandhi 2013; Sigmund and Maute 2013). Stiffening of a plate with 

discrete loading has been explored by Lam and Santhikumar (2003) who used an optimal layout 

approach to determine stiffener placement. The displacement of the stiffened design was 

compared to an equivalent thickness plate, showing performance improvement. Afonso et al. 

(2005) proposed a similar process where the position of stiffening ribs is first determined using 

topology optimization. Rib dimensions are then sized in order to minimize compliance of a plate 

with discrete loading and boundary conditions. The result also showed performance 

improvements compared to a uniform thickness plate. These studies are limited as they do not 

perform a complete interpretation and sizing of the topology concept, taking into account 

practical design constraints such as manufacturing, stress and displacement. Moreover, the 

comparison with a uniform thickness plate is not representative of a typical stiffened plate design 

that could be obtained without using topology optimization. Other studies concerning optimal 

plate stiffening with similar limitations can be found (Ansola et al. 2004; Luo and Gea 1998; 

Stok and Mihelic 1996). There is therefore a clear need for a case study presenting the application 

of current topology optimization technology for the design of pressurized stiffened panel. 

This paper aims at filling this gap by presenting a complete case study using SIMP topology 

optimization available in commercial software Optistruct from the Altair Hyperworks suite. This 

software is selected because it has been used in the two successful industrial case studies 

previously mentioned and it is ready for application to large scale problems. The topology design 

process is applied on a design case and the performance of the design concepts is compared with 

a typical stiffened panel design. The results obtained highlight challenges arising throughout the 

process and can be used as a guideline for any future similar application. They can also be used 

as a reference for future work on topology optimization techniques for pressurized stiffened 

plates. 

The design case, the design process and the mass estimation approach are first defined. The 

typical layout used as a baseline for comparison is then presented. The challenges of generating 

and interpreting a stiffener layout using topology optimization follow. Finally, the performances 

of the layouts are compared. 
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2.4 Methodology 

The design case used to explore the stiffening of pressurized panels is defined in this section. The 

topology design process is then presented. Finally, the mass estimation methodology used 

throughout this paper is described. 

2.4.1 Design Case  

The aircraft pressure bulkhead is simplified as the rectangular design case presented in Figure 

2.2. The simple support conservatively approximates a design where the impacts of the 

surrounding structural elements (such as floor, intercostal, etc.) are neglected. The design space 

dimensions are inspired from those encountered in a large business aircraft. The minimum skin 

thickness is set to 1.25 mm which is a classical value for pressure bulkhead web. The objective of 

the design is to minimize its mass while respecting stress and displacement constraints. Structural 

failure is not allowed and the magnitude of the pressure is inspired from the ultimate load case. In 

this study, this criterion is simplified by ensuring stress does not exceed its maximum value and 

that the maximum displacement at stiffener location does not exceed 1 percent of the longest 

dimension (Figure 2.2).  

 

Figure 2.2 : Design case 

The simplest solution to this design problem is a uniform thickness plate. In order to capture the 

effect of membrane stiffening, a non-linear geometric analysis is used to determine the thickness 

that minimizes mass while respecting the design constraints. A thickness of 13.5mm 

corresponding to a mass of 118kg is obtained to respect the maximum displacement constraint. 
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This design is obviously not the most efficient and the mass can be significantly reduced by 

adding stiffeners on the plate while diminishing its thickness. 

2.4.2 Design Process 

This simple design case contains an infinite number of solutions. This large solution space is 

reduced by using the topology optimization design process. This process is compared to the 

typical design process in Figure 2.3. The main difference between them is how the initial design 

concept is generated when starting from the same design space.  

 

Figure 2.3 : Design process comparison 

The typical design process uses engineering knowledge and experience to explore the design 

space and obtain a design concept. This intuitive approach implicitly considers many design 

constraints at the same time and experience plays a major role in creating good designs. The 

concept is then sized to obtain a final design. The baseline design is based on that process and is 

presented in section 2.5 of this paper.  

The topology design process has a different approach to generate the design concept. The first 

step consists of exploring the design space using topology optimization. This first step can be 

challenging as it can lead to different layouts as discussed throughout section 2.6. The next step is 

the interpretation of the topology optimization results. It is somehow similar to the typical design 

process as it requires engineering knowledge and experience in order to understand the intent of 
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the topology optimization result and transform it in a feasible design as discussed in section 2.7 

of this paper. The performance of different layouts can be compared after the sizing step as 

shown in section 2.8. 

2.4.3 Sizing and mass estimation 

The sizing of a typical layout is usually done with analytical methods such as the ones available 

in Bruhn (1973) which is a reference for aerospace stress analysis. However, a finite element 

shell model is used to simplify the mass estimation and ensure coherence between design 

concepts. A geometric non-linear analysis is used to capture the membrane stiffening effect of the 

large deformation of the skin, bay between stiffeners. The sizing of the stiffeners and the skin are 

performed independently.  

2.4.3.1 Stiffener Sizing 

Depending on the magnitude and nature of the load, the type of stiffener attached to the skin 

panel can range from blade type (no free-flange) to I sections. This study considers I beam as 

they are efficient to sustain high bending load generated by the pressure on skin. Figure 2.4a 

presents a typical skin-stiffener assembly. The design studied has its stiffeners on the non-

pressurized side which ensures no local buckling can occur in the free-flange since it sustain 

tensile load. Skin has a local pad-up to ensure thickness compatibility with bottom flange to 

allow proper fastener installation. It contributes to beam second moment of inertia (I) and lowers 

its centroid which makes the top flange the critical stress location for bending load.  
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Figure 2.4 : Beam mass estimation: (a) Typical Skin-Stiffener assembly, (b) Simplified Shell 

Model 

The simplified modelling aims at representing skin-stiffener inertia using shell elements (Figure 

2.4b). The height of the beam is determined by the height of the modelized web. To account for 

the effect of skin on beam stiffness and centroid, the bottom flange shell thickness is fixed to 

twice the top flange value (1). This implies that a part of skin mass is included in the beam mass 

estimation. The thickness of the web in bending is determined to obtain an allowable buckling 

stress equal the maximum allowed stress using analytical plate buckling analysis (Bruhn 

1973)  (2). These rules simplify sizing and mass estimation of the stiffener for the layouts 

presented in this paper.  

The non-linear analysis makes the use of typical size and shape optimisation challenging. 

Therefore, the sizing is performed by varying web height and flange section area. These two 

parameters have the most impact on beam inertia and are optimized to respect maximum stress 

(in the top flange) and displacement constraint while minimising mass. Flange area is optimized 

by keeping constant width and varying its thickness. The thicknesses are limited to a minimum 

value of 1.25 mm to account for typical manufacturing limitations. Using this approach, a beam 

with high loading will reach maximum allowable height and its flange area will be increased until 
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respecting constraints. On the other hand, a lightly loaded beam will not necessarily use all 

allowable design space. In that case, its height will be maximized while using minimum thickness 

in order to respect constraints. This simplified approach does not necessarily lead to absolute 

mass minimum but it is sufficient to obtain a consistent comparison basis between designs.  

2.4.3.2 Skin Sizing 

The mass estimation of skin is independent of the stiffener sizing. Figure 2.5 presents a summary 

of the skin mass estimation approach. The maximum stress is typically located at the stiffener 

junction because of the clamping edge condition it provides to the bay (1). This stress 

concentration is typically reduced by gradually decreasing skin thickness between the pad-up 

towards the center of the bay (step). The non-linear membrane effect makes the design of this 

ramp complex and hence, it cannot be considered to estimate skin mass simply. Instead of 

estimating skin bay mass based on stress, a simple criterion limiting allowable membrane effect 

based on the aerospace structural handbook (Niu 1999)  is used. This criterion simply states that 

the maximum displacement (δ) of a bay must not exceed five times its thickness (tS) (2).  

This criterion ensures that the bay is supporting pressure load with a limited membrane stiffening 

effect which is required for typical aerospace designs. The mass estimation of bay is obtained by 

finding the thickness that respects this criterion on a simplified model where nodes are clamped 

at stiffener location (3). This provides a simple and general basis to capture and compare the 

effect of skin mass on any design concept. 
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Figure 2.5 : Skin mass estimation 

2.5 Typical design  

2.5.1 Design philosophy 

The design case presented in section 2.4.1 can be solved by using the typical design process 

where engineering knowledge and experience are used to generate an initial design concept. This 

typical layout is used as a comparison basis to evaluate the performance of the topology design 

process (Figure 2.6). The main function of the stiffeners is to support the deformation of the skin 

panel. A single stiffener is not sufficient as it results in large skin bay that still need support. This 

is why several beams are then placed at equal spacing (pitch). The constant spacing gives a 

balanced pressure redistribution that allows using the same dimensions for all beams and skin bay 

which simplifies design and manufacturing. The beams are aligned with the shortest dimension of 

the plate to have the smallest length and reduce bending load.  
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Figure 2.6 : Typical layout 

The design variable of this stiffener layout is the stiffener pitch. This parameter controls the 

dimension of the bay which affects many responses such as the skin stress, displacement and 

buckling. The selection of pitch therefore implies a trade-off between skin and beam mass. Figure 

2.7 presents the effect of varying the number of stiffeners on mass. It shows that total mass is 

reduced with more beams until reaching minimum skin thickness. According to the sizing 

methodology described in section 2.4.3, this corresponds to 9 equally spaced stiffeners for a 

minimum skin thickness of 1.25mm.  

 

Figure 2.7 : Mass vs number of stiffener 

2.5.2 Mass estimation 

A model of the typical layout with 9 equally spaced beams is used to estimate the mass. Beams 

reach their maximum height while their width is set to approximately one third of this value. The 

maximum stress in top the flange is critical and maximum displacement is respected (Figure 

2.8).This performance is used as a baseline for comparison with topology design. 
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Figure 2.8 : Typical design mass estimation  

2.6 Challenges of generating a topology layout 

This section describes how topology optimization is used to generate stiffener layout in order to 

obtain design concepts. It first presents an overview of the SIMP topology optimization method. 

The effect of available optimization parameters on the layouts obtained is then studied. Finally, 

limitations of the typical implementation of topology optimization such as linear analysis and 

local optimum are discussed. 

2.6.1 Optimization problem 

2.6.1.1 SIMP density design variable 

The commercial software Optistruct from the Altair Hyperworks suite has been used to perform 

this study. It is based on the widely accepted SIMP method also known as the density method. 

Moreover, it provides a variety of tools useful for the interpretation and sizing of the design. Its 

potential application to large scale problems and its success in several industrial case studies 

motivated its use. 

The density method is based on a homogenous material with variable stiffness achieved by the 

interpolation scheme presented in Equation 2.1. A continuous density design variable (ρ) that 

ranges between 0 and 1 is assigned to each finite element of the design space. This density is 
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directly affecting the element stiffness matrix ( ). The element therefore has an adjusted 

stiffness matrix ( ̅) where low density represents low stiffness and simulates absence of material 

and high density represents the opposite. The low-density is usually limited to a minimum value 

to avoid ill-conditioning of the stiffness matrix. To eliminate intermediate density that don’t have 

physical signification, a penalization power (p>1) is added to the density variable. This 

penalization forces the optimizer towards more extreme values (solid or void) in order to generate 

a more discrete structure.  

 ̅( )      

Equation 2.1 : SIMP material interpolation scheme 

2.6.1.2 Design space definition and modelling 

The density design variables need to be assigned to elements modelling the design space defined 

in section 2.4.1. This volume is represented by Mindlin shell elements, with a thickness 

corresponding to the maximum allowable stiffener height (125mm). A minimum thickness is 

specified based on the minimum skin thickness defined earlier (1.25mm). The optimization 

modifies the density variable assigned to each element to generate a stiffener with a rectangular 

cross section (Figure 2.9). This modelization represents a beam that is symmetric with respect to 

the skin plane which is not representative of the final design considering its attachment to the 

skin. This neglects the effect of skin on beam inertia but this limitation does not affect the search 

for optimal stiffener position. The modelization represents a beam by using very thick shell 

elements. This particular approach is necessary when using shell topology optimization. The 

behavior of such shell beam was evaluated and proved to be valid compared to beam elements. 

Finally, it is important to note that the typical layout with constant pitch is contained in this 

design space. 
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Figure 2.9 : Modelization of the design space  

2.6.1.3 Objective selection 

The typical optimization problem used for the density method is to minimize the compliance 

(maximize the stiffness) for a constrained amount of material (Bendsoe and Sigmund 2004). This 

amount of material can be represented by an absolute volume target or a volume fraction (VF) of 

the initial design space. This formulation is not representative of typical engineering design 

problems that are concerned by stress, displacement and buckling constraints. However, it can be 

efficiently used to visualize material placement and visualize optimal load path. Moreover, the 

stiff design suggested by topology using the minimize compliance objective is likely to perform 

well with constraints such as stress and displacement (Schramm et al. 2004).  

The SIMP method also allows other formulation such as minimizing the mass for a constrained 

displacement which can be directly applied for the design case. However, this approach is not 

efficient for pressurized plates since the displacement constraint needs to be applied to all nodes 

inside the design domain. It results in an optimization problem with a large number of constraints 

and variables which brings convergence issues that prevent the generation of a discrete stiffener 

layout.  
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Finally, using stress constraint while minimizing mass is not an appropriate formulation for the 

design case since this global constraint does not properly capture the stress value in the stiffeners 

like a sizing model would do for an interpreted design concept. 

In summary, the pressurized plate case poses a challenge towards using other objectives than the 

typical minimization of compliance. This problem is solved by Optistruct using a linear finite 

element analysis and a gradient based optimizer (Altair Engineering 2011).  

2.6.2 Parameter effect 

The topology optimization problem described above does not have a unique solution and the 

selection of optimization parameters affects the resulting layouts. In order to illustrate this, a 

baseline topology is first presented. The effect of volume fraction and the software capabilities in 

terms of manufacturing constraints are then presented as these parameters affect the most the 

layout obtained. The effect of other parameters such as mesh-size and minimum thickness is then 

discussed.  

2.6.2.1  Baseline Topology 

The baseline topology (Figure 2.10) has a mesh density of 100 per 200 linear plate elements 

corresponding to an element size of 12.5mm. A penalization power of 3 is used along with 

checkerboard filter to avoid the numerical issue related to linear element formulation. The 

volume fraction is set to 30% as a commonly used initial value. The contour plot shows a 

stiffening pattern that can be used to create a design concept. However, the layout can be 

significantly affected by optimization parameters.  

 

Figure 2.10 : Topology Baseline Layout  
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2.6.2.2 Effect of volume fraction 

Volume fraction (VF) is an important parameter when minimizing compliance in topology 

optimization. In some cases, it can be selected by directly targeting the final design mass. 

However, in the case studied, the typical design mass (24.8kg) is very small compared to the 

design space mass (1083kg) which results in a very low target VF of less than 3 percent. This low 

value is not typically used for density topology optimization as Rozvany (2001) clearly mentions 

that Generalized Shape Optimization (topology optimization) is intended for high VF. Moreover, 

the VF response of the topology design space is not representative of a concept (interpreted) 

design as it does not account for the use of a different stiffener cross section that can achieve 

similar functionality with much lower volume fraction. 

Instead of using a single volume fraction representing a target mass, the layout sensitivity to this 

parameter is observed for values between 5 to 50 percent (Figure 2.11). These VFs allow 

visualizing the optimal material placement, although the solution is not directly linked to 

engineering design constraints such as stress or displacement. The load path observed is then 

used to perform the interpretation step and obtain a meaningful final design.  

The figure shows that the central portion is constantly stiffened by two stiffeners in the shortest 

direction of the plate but the remaining portion is stiffened in different ways for different VF. The 

low VF layouts (<15) do not show clear and constant stiffening pattern like the higher VF (>25). 

This load path sensitivity makes it difficult to decide which layout is the best as they are all local 

optimums and their true performance and behavior remains unknown until going through the 

interpretation and sizing step. The selection of volume fraction is therefore an important 

parameter to consider when generating stiffener layout on a pressurized plate. 
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Figure 2.11 : Effect of volume fraction (VF) 

2.6.2.3 Effect of manufacturing constraints  

The solver (Optistruct) has specific manufacturing constraint capabilities that control the size of 

the members formed during the optimization which is a very interesting add-on to the method. 

Although these constraints are specific to this commercial implementation of the SIMP method, 

they can affect the topology significantly. The minimum member size (MINDIM) is a filter that 

penalizes the formation of small members by constraining their minimum diameter (Zhou et al. 

2001). The use of this parameter is recommended to obtain discrete and manufacturable design 

concepts and is required when using other manufacturing constraints such as maximum member 

size (MAXDIM). The MAXDIM constraint penalizes the formation of members larger than 

specified.  

It is important to note that both of these constraints are related to mesh size since elements are 

used to evaluate member diameter. The minimum allowable value for MINDIM is at least 2 times 

the average element size and at least two times MINDIM for MAXDIM. The baseline topology 

mesh size (12.5mm) therefore allows constraining the maximum member size to a minimum 

value of 50mm. This ensures that the stiffener generated have a width (50mm) smaller than their 

height (125mm) which is typical of a beam sustaining bending.  
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Figure 2.12 presents the effect of using these manufacturing constraints on the baseline layout. 

The MINDIM constraint has a small effect on the layout and load path as it is similar to the 

baseline. However, the MAXDIM constraint has a significant effect since large members are 

penalized and replaced by several smaller members. It shows that manufacturing constraints can 

also have a significant effect on the topology layout and load path. Finally, it is interesting to note 

that the central portion reminds us of the typical layout where stiffeners are placed in the short 

direction with a regular pitch.  

 

Figure 2.12 : Effect of member size constraints on layout 

2.6.2.4 Other potential influences 

There are other optimization parameters available when generating a topology layout. The effect 

of several of these parameters was studied but the results are not presented here because the 

layouts obtained were not significantly different from those already presented. However, 

selecting these parameters can be challenging and this is why their effects will be briefly 

discussed. 

The use of a quadratic mesh avoids checkerboarding problem but does not have an important 

effect on the layout. A linear mesh is used as it is typically used in industry and is more suited to 

large scale problems. Although the density method is known to be sensitive to mesh size 

(Sigmund and Petersson 1998), the baseline layout is not affected by this parameter since no 

significantly different primary load path are formed.  

MINDIM = 2x Mesh = 25mm 

MAXDIM = 2xMINDIM = 50mm 
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The ratio of the minimum over the maximum shell thickness of the design was also explored. 

The topology obtained for large values of this ratio (>10%) were not resulting in a discrete layout 

since large zones of intermediate density were observed. The layout is also slightly sensitive for 

values below 10%. The design case has a very thin skin compared to stiffener height and this is 

why the smaller ratio of 1% is used. 

The optimization of plate thickness (called free-size in Optistruct) was also explored as an 

alternative to using SIMP method to find optimal stiffener placement. In that case, a design 

variable is assigned to each element and no penalization is used. However, because of the 

bending nature of the problem, the thickness is naturally penalized since it has a cubic relation 

with bending stiffness. Although this methodology is not related to the SIMP approach, it can be 

used to visualize optimal thickness distribution and stiffener placement. Once again, the layouts 

obtained were similar to those presented earlier and no different load paths were suggested for 

this design case.  

In summary, topology result is not unique and is sensitive to optimization parameters. This can 

be challenging as the designer needs to create a design concept based on a topology layout but at 

this stage he does not have sufficient information to make the correct decision.  

2.6.3 Technical limitations of the commercial implementation of the SIMP 

method 

The selection of optimization parameter is not the only challenge associated to the generation of a 

topology layout. The typical commercial implementation of the SIMP method also has technical 

limitations that can affect the generation of layouts. The linear finite elements analysis cannot 

model the membrane stiffening effect of a pressurized plate and the gradient optimizer cannot 

explore the design space completely as it converges to local optimums. 

2.6.3.1 Linear Analysis 

The typical implementation of the SIMP method uses a linear finite element analysis to evaluate 

the responses as it is the case in the software used. It cannot account for the non-linear membrane 

stiffening effect of thin pressurized plate that is present in the design case. Stegmann and Lund 

(2005) show that non-linearity in density topology optimization can affect the density result 

significantly for a simply supported plate with central load. This limitation prevents from 
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evaluating the effect of the non-linear deformation on the layout obtained. However, it can be 

assumed that the deformation of low-density zones (corresponding to thin plates) is not realistic 

and this can affect the optimization as their compliance is overestimated. Moreover, the large 

deformation can introduce an overestimation of torsional load on the stiffeners formed during the 

optimization (Figure 2.13). This may wrongly create stiffeners with high torsional stiffness in the 

topology layout. However, the impact of non-linearity may be reduced by the formation of 

intermediate density stiffeners that generate smaller bay that are less affected by the membrane 

stiffening effect.  

 

Figure 2.13 : Effect of linear analysis on beam torsion  

2.6.3.2 Local Optimum 

As mentioned earlier, the SIMP method uses a gradient optimization method that converges 

towards the nearest local optimum. This means that the SIMP method cannot completely explore 

the design space provided which means that it does not necessarily result in the best layout. For 

example, the typical layout presented in section 2.5 is a solution of the design space that is not 

naturally reached by the SIMP method. 

Changing the initial value of the design variable can lead to other local optimum with a gradient 

optimizer. This would require modifying the initial density of the design variable but it is not a 

common practice. However, the effect of the starting point can be explored in a more conceptual 

fashion by locally modifying the boundary conditions of the design space. A minor discontinuity 
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of the support can affect the initial compliance distribution which changes the progress of the 

optimization and the final layout significantly as presented in the example of Figure 2.14.  

This figure shows the layout obtained when local out-of-plane support is introduced to one node 

inside the plate domain at typical design beam location. This additional support introduces a 

compliance concentration in the first iteration that changes the evolution of the optimization. 

Material is first placed near these discrete locations and these are gradually attached together to 

support the plate deformation. The result in the center portion of the plate is similar to the typical 

design (presented in section 2.5) and the layout obtained with the MAXDIM constraint. Thus, the 

result is very different from the baseline topology (Figure 2.10). This sensitivity to boundary 

conditions and the convergence to local optimums is therefore another challenging aspect when 

generating a stiffening layout using density topology optimization. The designer is exposed to 

local optimums and has no assurance that the result observed is the best that can be obtained from 

the design space provided.  

 

Figure 2.14 : Effect of local boundary conditions 

2.7 Interpretation challenges 

Interpreting the topology layout into a feasible design concept also involves challenges as this 

step is not straightforward and requires engineering judgement and knowledge. Since the 

topology optimization does not result in a unique solution, four representative layouts were 

specifically retained for the purpose of discussion as shown in Figure 2.15. 

 node fixed for out-of plane 
translation inside the design space  
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Figure 2.15 : Layout retained for interpretation discussion  

2.7.1 Stiffener positioning 

The first step towards interpreting a layout is to identify stiffener position. This is typically done 

by visualizing high density elements to isolate primary members. They appear at the beginning of 

the optimization as it can be observed in Figure 2.16 showing the density contour of layout I at 

different iterations. They can be considered as supporting the global deformation of the structure. 

The density result also defines members with lower density which can be considered as 

secondary stiffeners as they appear later in the iterations. They contribute to minimizing total 

compliance by supporting the bay formed by the primary stiffeners. They also provide support to 

primary stiffeners as the design space is fully attached together. Both high and low density 

members can be interpreted as potential beams by the designer.  

Although they are part of the topology result, keeping the low-density stiffeners for a direct 

interpretation can be discussed. Their position is sensitive to optimization parameters which 

makes it difficult to justify their individual existence. Moreover, many of these are developing 

from primary members and do not have a significant effect on load path. Finally, the bay 

dimension resulting from the position of the secondary stiffener may not be realistic as it is based 

on a linear analysis. In summary, the low density features may be less important to generate the 

initial design concept, but may be required in a subsequent step to deal with bay support. The 

following discussion on beam interpretation will thus focus on the primary stiffening suggested 

by the topology layout. 

I: VF 30% II: VF 15% 

III: Maxdim IV: Local Support 

Note: Density above 10% displayed 
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Figure 2.16 : Stiffener positioning interpretation 

2.7.2 Stiffener interpretation 

Once the position of a stiffener has been determined, the last needs to be interpreted into a beam 

to generate a design concept. Unfortunately, it cannot be done directly since the dimension and 

the cross section of the beams modelled by the topology design space are not realistic. This can 

be illustrated by interpreting the large center beams formed in layout I as shown in Figure 2.17. 

The function of this beam is obvious as it supports the bending of the plate. However, the 

dimension of the beam modelled by the high density elements is not realistic for a design 

concept, as it is not related to sizing constraints such as stress or displacement. Moreover, the full 

rectangular cross section modelled by the high density shell elements is not appropriate since an I 

cross-section is much more efficient in bending for a same section area. Therefore, the large 

beam in the center portion of layout I is interpreted into an I beam where the dimensions of the 

section are determined in a subsequent sizing step to respect the stress and displacement 

constraints. This illustrates how the cross-section and dimensions of the beam displayed on the 

density contour plot need to be interpreted by fully understanding the functionality of the beam in 

the topology layout. 
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Figure 2.17 : Interpretation of a stiffener 

2.7.3 Stiffener connectivity 

The interpretation becomes more complicated when several beams are connected together. This 

connectivity introduces various types of loading in beams such as local transverse shear, bending 

and torsion. This phenomenon is illustrated in Figure 2.18 where both beam 1 and 2 have the 

function of supporting the plate. Individually, they both sustain bending load due to the 

pressurized plate as presented in the last example. However, since they are connected, shear, 

bending and torsion can be transferred at their junction.  

 

Figure 2.18 : Load transfer at connection 
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This load transfer at the beam intersection makes the selection of cross section complex. The last 

is typically selected based on its efficiency for certain types of loads. Figure 2.19 presents an 

example comparing the bending moment of inertia (I) and the torsional constant (J) of an I and a 

rectangular section with the same section area (A). It shows that inertia of an I beam is higher 

than a rectangular section but its torsional constant is lower which makes it a better choice for 

bending than for torsion.  

 

Figure 2.19 : Effect of cross section geometry on torsion and bending properties 

Choosing a cross section is easy if the functionality of a beam is obvious but it might not be the 

case as illustrated in Figure 2.20. As shown on the left side of the figure, beam 1 is wide enough 

for its torsional stiffness (GJ) to exceed the bending stiffness (EI) of beam 2. It can therefore 

provide a clamping support to beam 2 to limit its deflection. In that case, choosing a section with 

good torsional stiffness for beam 1 is important to fulfill its support functionality for beam 2. On 

the other hand, illustration on the right shows that a thinner beam 1 that has a smaller torsional 

stiffness can be interpreted as a simple support for beam 2. Choosing a section with good 

torsional capability would not be important here as the main functionality of beam 1 would be to 

support plate bending. This example illustrates how difficult it can be to understand beam 

functionality and make an appropriate cross section selection when various connections or 

intersections are present in the layout.  
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Figure 2.20 : Understanding connected beam’s functionality 

The challenges associated to the interpretation of high density elements into beams can also be 

observed using some examples taken from layouts I and II as shown in Figure 2.21. These 

connections are subject to interpretation since the function and type of load sustained by each 

beam is not evident. 

 

Figure 2.21 : Connection situations 

In layout I, the purpose of beam 4 can be interpreted as supporting the curvature of beam 3 

therefore limiting its torsion due to transverse pressure load. Once again, this connection 

generates a combination of bending, shear and torsion in the central portion of beam 3.  

In layout II, the addition of beam 5 creates a clamping support for beam 6 as it is attached to the 

corner of the plate. This short beam has to sustain a large shear load transferred from beam 6 

which requires a thick web. In return, this connection also creates bending and torsion on beam 5.  

In summary, the overall interpretation of the beam’s connectivity can largely influence the 

designer’s choices when developing the design concept such as the type of cross section, type of 

connection, initial dimensions, etc. 
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2.7.4 Sources of interpretation complexity 

The generation of layouts that are complex to interpret are unlikely to be avoided. All the 

elements of the design space are connected together and this is why the layouts obtained can be 

hyperstatic. In other words, the stiffeners interact together and the solution is not unique. A slight 

modification on a stiffener will affect the others which makes the interpretation and sizing 

difficult as many local optimums exist.  

Moreover, the full rectangular cross section modelled by the design space has a good shear, 

torsional and bending capacity that generates layout with complex beam loading. It makes the use 

of other efficient cross section challenging which affects the final performance of the design. 

Unfortunately, it is not possible to modify the optimisation problem in order to privilege simpler 

loading. For example, it would be interesting to isolate the torsional component of the 

compliance shell elements’ compliance. This could control the type of load in the beams formed 

in the layout.  

Finally, it is interesting to note that topology optimization of shell structures with in-plane 

loading do not have this complex bending and torsional coupling in the members formed (Figure 

2.22). In that case, topology optimization has the tendency to create truss structures where 

members are mainly loaded axially by tension or compression. This axial load eliminates the 

need of choosing an efficient cross section as its stiffness is only proportional to its cross area. 

Therefore, it is easier to make a direct interpretation of a topology layout for in-plane structures 

compared to out-of plane plate structures.  
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Figure 2.22 : In-plane vs out-of-plane topology optimization  

2.7.5 Interpretation of selected layout 

The challenges associated to layout interpretation grow with the number of connections (nodes) 

between stiffeners and the sizing becomes complex as many local optimums exist when choosing 

beam sections and dimensions. Moreover, a non-conventional concept has a steep learning curve 

and an important engineering effort is required to become confident with the final design. Finally, 

the manufacturing of layouts with a high number of nodes is cumbersome as each connection 

introduces stress concentrations and weight.  

Consequently, a layout that has limited number of nodes and where beam functionality can be 

easily interpreted is selected for the performance estimation in this paper. Layout II (Figure 2.15) 

has many intermediate density stiffeners and its load paths are not clearly defined. Layout III and 

IV are similar and show clear stiffening pattern but were generated by modifying the basic 

topology optimization problem. Lastly, layout I shows a clear primary stiffening pattern that is 

simple to understand. It is the reason why it is selected to perform the initial interpretation 

(Figure 2.23).  

By examining the proposed configuration one can note that beam D is the result of a contraction 

to a single beam. This modification is made because in this case, using a single beam instead of 

two can achieve the same functionality of supporting the angle along beam B to avoid torsion. 

All beams are then mainly loaded in bending in this layout and using an I cross section is hence 
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justified. The performance estimation of this interpretation and variants of it are presented in the 

next section. 

 

Figure 2.23 : Topology design interpretation  

2.8 Performance estimation 

This section presents the mass estimation of the topology layout and compares it with the typical 

design. The assumptions concerning the sizing of beams and skin presented in section 2.4.3 are 

used. In order to minimize mass, a gradual height reduction (taper) is also allowed where primary 

stiffeners carry lighter bending load. This taper is defined by gradually reducing stiffener’s height 

to one fourth of its value along a distance of twice the original height, which is a typical practice 

in the industry. 

Three different concepts are presented. The first is directly based on the interpretation presented 

in the last section where only the primary stiffeners are considered. The second adds secondary 

stiffening to support the large bay and reduce mass. The last is a global interpretation where 

primary stiffeners are placed in order to limit bay size thus eliminating the need for secondary 

stiffeners.    

2.8.1 Primary Stiffening 

The first mass estimation is performed on the interpretation of the primary stiffeners only (Figure 

2.23,Table 2.1). The mass of beam A accounts for half of the total mass of beams. This means 
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that the beam is highly loaded and could be divided into more beams supporting the same load as 

shown in section 2.8.3. Beam D is lightly loaded and reaches its minimum thickness values. 

However, its height cannot be reduced as it needs to be connected to beam B in order to support 

it. Its mass could be reduced by reducing flange width and increasing the taper, but it would have 

a small impact on total mass and would not change the conclusions of the performance 

estimation. Finally, the height and flange width of beam C are reduced to minimize its mass as it 

is lightly loaded.  

The mass of skin shows that the large bay (2, 3 and 4) formed by the primary stiffeners have a 

significant impact on the total mass of the design. In comparison with the typical layout, the total 

mass of beams is lower (12.8 vs 15.5 kg). However, the larger skin mass (18.8 vs 9.3kg) 

penalizes the total mass and makes it heavier (31.3 vs 24.8 kg). It illustrates the importance of 

considering the need for skin support and therefore the bay’s dimensions when interpreting a 

design. It shows that the effect of adding secondary stiffeners should be considered. 

Table 2.1 : Primary stiffeners mass 

Component Mass (kg) 

Beam A 6.4 

Beam B 4.7 

Beam C 0.6 

Beam D 0.8 

Total Beams 12.5 

Skin 18.8 

Total 31.3 

2.8.2 Secondary stiffening 

The effect of considering secondary stiffeners is evaluated by adding small beams to support the 

large bays formed by the primary stiffeners. 

As discussed in section 2.7.1, it is not necessarily advisable to use the position of secondary 

stiffener suggested by the topology result. Instead, the secondary stiffeners are positioned in order 

to use the minimum skin thickness everywhere as it is the case for the typical design (Figure 

2.24). These secondary beams are not attached to the primary stiffeners web in order to minimize 

their impact and avoid new connections. The dimensions of the secondary stiffeners are 
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determined by using the same approach used for the primary stiffeners. However, the flange 

width is reduced to 20mm as those beams are lightly loaded. 

 

Figure 2.24 : Secondary stiffening placement 

The thickness of the webs is set to its minimum value of 1.25mm as the lower heights are not 

critical for local web buckling. The results obtained are shown in Table 2.2. The addition of 

secondary stiffeners is drastically reducing skin mass since the minimum thickness is used for all 

bays. Thus, the mass reduction of the skin is higher than the mass added by the secondary 

stiffeners. It results in a mass reduction for the entire layout and makes it an efficient design 

choice. 

Table 2.2 : Secondary stiffening mass 

Component Mass (kg) 

Sec bay 2 1.2 

Sec bay 3 1.9 

Sec bay 4 1.0 

C 0.8 

A,B,D 11.9 

Total Beams 16.8 

Skin 8.7 

Total 25.5 

 

The estimation suggests that this interpretation results in a similar performance compared to a 

typical layout (25.5 vs 24.8 kg). However, due to the assumptions used, the uncertainty of the 

mass estimation prevents us from demonstrating the superiority of a design. 

The addition of complexity associated to the topology layout may not add value to the final 

performance of the design in this particular case study.  
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2.8.3 Global interpretation 

The experience acquired during this extensive topology study can be used along with engineering 

reasoning to inspire the major load path philosophy and perform a global interpretation.  

This is not directly based on a specific topology layout but is directly inspired by the combination 

of layout I, III and IV. The logic of the proposed layout is to position the primary stiffeners to 

obtain minimum thickness bays without using secondary stiffeners. 

The interpretation is presented in Figure 2.25. As discussed earlier, the mass of beam A is large 

compared to the other beams and the last can be divided in more beams to share loading and 

regulate beam dimensions. This is also in accordance with layout III and IV presented in section 

2.7 where several beams are formed in the central portion of the plate. Therefore, the proposed 

layout divide the central portion of the plate by splitting beam A into beam AA and beam AB that 

are placed in order to have the same pitch as the typical design. Stiffener C is constantly present 

in layouts suggested by the topology and is kept for this interpretation. However, its length is 

increased in order to maximize the dimension of bay 1 while using minimum skin thickness. 

Beam D is split in order to fulfill its support function to beam B while creating smaller division 

for bay 2. The position of beam D and B is selected to provide uniform bay division that respects 

displacement criterion at minimum thickness.  

 

Figure 2.25 : Global interpretation 

The results of the sizing are presented in Table 2.3. The replacement of beam A into beam AA 

and beam AB almost splits mass evenly in each beam. The mass of beam AB is slightly higher as 

it is surrounded by a larger bay on one side. Their added mass is the same as the original beam A 

but their smaller pitch eliminates the need for secondary stiffeners. As it was the case for the 

large bay interpretation, the thickness variables of beam D reach their minimum value but its 
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mass cannot be reduced due to its connection to beam B constraining its height. The mass of 

beam C increases as it is longer than it was in the large bay design where its position was directly 

inspired from the density result (1.6 vs 0.64 kg). The total mass of this layout is lower than the 

two other interpretations and is competing with the typical design (23.4 vs 24.8 kg). The mass of 

the typical design can however be easily reduced by using the same taper allowed for the 

interpretation resulting in a mass of (23.4 kg). 

Table 2.3 : Global interpretation design mass 

Component Mass (kg) 

Beams AA 3.1 

Beam AB 3.3 

Beam B 3.9 

Beam C 1.6 

Beam Ds 2.0 

Total Beams 13.9 

Skin 9.4 

Total 23.4 

2.8.4 Results synthesis 

A summary of the different mass obtained is presented in Table 2.4. The results show that the 

minimum mass of the topology interpretation is similar to the performance of a typical design 

using the same assumptions.  

Table 2.4: Summary of mass estimation of layouts 

 Mass (kg) 

 Beams Skin Total 

Typical    

No Taper 15.5 9.3 24.8 

With Taper 14.0 9.3 23.4 

Topology    

Primary 12.6 18.8 31.4 

Secondary 16.8 8.7 25.5 

Global 13.9 9.4 23.3 

This result cannot be generalized as it is based on a single design case and a set of topologies and 

interpretations. Topology could perform better than a typical design for a more complex design 

space where an obvious solution is unlikely. Moreover, the performance estimation is based on 
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several simplificative assumptions and should be further developed in order to be representative 

of the performance that would be obtained at a detailed design level.  

However, this does not affect the conclusion that can be drawn from the present study. The 

performance improvement of a topology design is significant compared to a uniform thickness 

plate (23.3 vs 118 kg, 80% Improvement). However, the improvement is drastically reduced 

when compared to a typical and intuitive design for stiffened pressurized plates (23.3 vs 23.4 kg, 

<1% Improvement). Moreover, the particularity of the stiffened pressurized plate problem makes 

the generation, interpretation and sizing of a topology layout challenging. The designer needs to 

consider bay dimension independently from the topology result in order to achieve better 

performance. Considering manufacturing constraints and exploring local optimums is mandatory 

when exploring the design space. Finally, this section showed how important it is to have a global 

vision of the topology layouts along with engineering judgment when designing based on 

topology optimization. 

2.9 Conclusion 

The case study presented on optimal stiffening of a pressurized plate highlights that topology 

optimization can lead to a design with similar performance compared to a typical design but there 

is no significant improvement as it is the case when compared to a uniform thickness design. For 

this simple design case, the challenges associated to generating, interpreting and sizing a 

topology layout do not justify the use of such design as the engineering and manufacturing cost 

increases without guaranteeing a performance improvement. However, this conclusion cannot be 

generalized as topology design process could lead to better design concepts for more complex 

problem where a typical solution is less obvious. Moreover, it is likely that the layout suggested 

by the topology design process yields better performance when also considering in-plane loading 

as it was the case for other industrial case studies. It would be worth exploring in further work by 

combining in-plane and out of plane loading affecting a real bulkhead.  

This study points out how the topology optimization design process includes several challenges 

when applied to find optimal stiffening of pressurized plates in an industrial context. The out-of 

plane nature of loading and the local optimums obtained result in layouts that are sensitive to 

optimization parameters and are complex to interpret. The lesson learned is on the significance of 
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considering many different layouts when interpreting a design as the solution is not unique. 

Moreover, the designer needs to understand the functionality of the features observed in the 

layouts to reduce complexity. Using the knowledge acquired from the topology study and 

combining it to his critical thinking, the engineer can avoid local optimums and perform an 

interpretation closer to a global optimum. This advice can be generalized to any design case when 

using density topology optimization method to generate design concepts. 
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CHAPTER 3 DESIGN PROCESS COMBINING AXIOMATIC DESIGN 

AND TOPOLOGY OPTIMIZATION  

The typical design process based on topology optimization present several challenges as 

discussed throughout Chapter 2. The definition of the topology design space, its exploration and 

its interpretation into a feasible design are always key steps. This information is now used to 

propose a new design process addressing the second research question: How to address the 

identified challenges of the actual topology optimization design process? 

This chapter presents the developed design process where axiomatic design is combined to 

topology optimization. It results in an innovative and comprehensive approach to the generation 

of design concepts. Axiomatic design is an approach that focusses on product functionality that 

helps understanding the design problem and leads to innovative and efficient solutions. This 

method is appropriate to address the challenge identified concerning the importance of 

understanding the functionality of the features suggested by the topology optimization. 

Moreover, this method provides a systematic approach for design that also allows the integration 

of another method such as topology optimization into it. It can also be used to perform the 

reverse engineering of an actual design in order to capture the actual knowledge. Finally, it can 

support the development of new design concepts starting from a clean sheet by considering 

customer needs. Other design approaches could have been selected but this research only focused 

on axiomatic design.  

The principles of axiomatic design are first presented to introduce the reader to this design 

methodology. The new design process combining axiomatic design and topology optimization is 

then presented. A simple application of the process is also performed to illustrate its potential 

advantages and help its understanding. Finally, the process is also applied to the pressurized plate 

example presented in Chapter 2. 

3.1 Definition of axiomatic design  

3.1.1 Introduction to axiomatic design 

The design of complex product is a challenge faced everyday by engineers and designers.  

Experience, knowledge and intuition are often the main tools used to generate design concepts. 
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This approach is not reliable and can lead to costly iterations especially for innovative designs. 

There is no systematic methodology to explore the design space and propose different concepts in 

order to compare them and select the most efficient. Axiomatic design is a design methodology 

developed by Professor Nam P. Suh at Massachusetts Institute of Technology that can be used to 

support the design process (Suh 2001). This approach proposes a framework where the design 

problem is decomposed into functional requirements (FR) associated to design parameters (DP).  

This decomposition is made by respecting two simple axioms: the independence and the 

information axiom.  

The independence axiom states that the independence of the functional requirements has 

to be accomplished. This ensures a controllable design and avoids unintended consequences. The 

information axiom states that the information content of a design should be minimized. This 

means that a simple design will be more robust and its chances of success will be maximized. 

This framework provides a scientific basis for design and avoids subjectivity. It is a tool that 

allows productive discussion and reduces the iterations required to obtain a final design. Some 

basic principles of axiomatic design need to be defined in order to use it. These are presented in 

the following discussion. The reader is referred to Brown’s text (Brown 2014) and Suh’s book 

(Suh 2001) for more information.  
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3.1.2 Domains 

Axiomatic design framework uses a structure that is called domains. These domains 

contain different elements concerning the design problem and are required to apply the axiomatic 

principles. The domains and their relations are presented in Figure 3.1.  

 

Figure 3.1 : Axiomatic design domains and their relations
6
  

The Customer domain contains all the customer needs (CN) as it summarizes all the 

information provided by the customer. The information is translated into elements that are called 

customer needs. These customer needs cannot be directly used to create a design concept and it 

needs to be translated in the constraint and the functional domain.  

The functional domain contains the information concerning what the design should do. 

The elements of this domain are called functional requirements (FR). The functional 

requirements are statements that start with a verb and they need to be defined without thinking 

about the solution. The combination of the CN and the FR address what the design should do. 

The physical domain contains the design parameters (DP) that explain how to fulfill the 

FRs. These are expression starting with a noun as they represent a physical solution. It addresses 

how the design fulfills its purpose. 

                                                 

6
 Adapted from Brown (2014) 
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The process domain represents how the DPs will be obtained. It contains elements called 

Process Variables (PV) that represent how the DP will be manufactured or assembled for 

example. However, in most cases, the search for solution using the axiomatic approach focuses 

on the functional and the physical domain.  

The Constraint domain contains all the constraint (CON) that applies to the design. These 

constraints affect the design decisions in all other domains. Input constraints can be imposed by 

the customer need and affect the whole design such as cost and mass for example. System 

constraints appear during the selection of design parameters. The constraints can sometimes be 

mixed with FRs and it is good to remember that FRs are always associated to a single DP. 

The mapping between the FRs, DPs and PVs is a decomposition process that implies 

certain reciprocity between domains as presented next. 

3.1.3 Axiomatic decomposition process 

The core of axiomatic design method is to develop the FRs and the DPs based on the CN 

input. These need to respect the two axioms in order to obtain a good final design. This mapping 

is done by using an approach called zig-zagging. This name represents the constant switching 

between the functional and the physical domain as illustrated in Figure 3.2.  

 

Figure 3.2 : FR-DP decomposition process and Zig-Zagging
7
 

                                                 

7
 Reproduction from Brown (2014) 
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The first step is to define the top level FR (FR0) based on the CN. A first "zig" is then 

performed and its associated DP (DP0) is obtained (1). The "zag" is then used in order to define 

the first level FRs (2). These FRs needs to be independent between each other and together need 

to represent the parent as a whole. This principle is called collectively exhaustive and mutually 

exclusive (CEME) by Professor Brown and it assures the respect of the independence axiom. A 

good approach to respect this principle is to use a decomposition theme such as load or energy 

transfer for example.  The designer can ask himself: What are the functionalities of DP0? He can 

then use a decomposition theme to develop the sub FRs. For example, the sub FRs of the design 

of a car (DP) based on the motion theme could be to provide forward and backward motion 

(FR1) and to provide ability to turn (FR2). It is important to remember that the definition of the 

FRs needs to be done without considering the potential physical solution of the same level. Once 

the sub FRs have been defined, the corresponding DP can be defined using the “zig” again. For 

the car example, the solution to first level FRs could be to have engine powered wheels (DP1) 

and a directional wheels (DP2). Each FRs must have its unique DP but this does not prevent the 

physical integration of the DP as will be discussed later. The respect of the two axioms is 

checked at each level of the decomposition with the design matrix as discussed next. The zig-

zagging can be continued until the design becomes obvious.  

This FR-DP decomposition is not a straightforward process as it creates discussion and 

requires much iteration. This step is the core of axiomatic design power as it ensures that the 

focus is made on fulfilling the functional requirements with an efficient and minimal physical 

solution that respects the two axioms.  

3.1.4 Design matrix and independence axiom 

The relations between FRs and DPs can be visualized into what is called a design matrix. 

The matrix represents the relation between the FRs and the DPs. The matrix is always square 

because the number of FRs and DPs must be the same. It allows visualising if the independence 

of the FRs is respected. Figure 3.3 presents the three different types of matrix that can be 

obtained. The relation between a FR and a DP is represented by an X. The decoupled matrix 

represents a design where each DP only influences one FR. It is the best design possible because 

it is easy to adjust each DP in order to fulfill each FR. This type of design can rarely be obtained 

and thus a decoupled matrix is also acceptable according to the independence axiom. This lower 
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triangular matrix represents a design where each FR can be fulfilled by adjusting the DPs in a 

specific order. A coupled matrix is bad design according to the independence axiom because this 

will require several iterations in order to find a combination of DPs that will fulfill the FRs. It is 

therefore necessary to modify the FRs and the DPs to obtain a decoupled or uncoupled matrix.  

The design matrix is a powerful tool to visualize the interactions between the FRs and 

DPs. It allows the designer to be conscious of the impact of the modification of a DP on the FRs. 

It is also useful to check the design matrix while doing the decomposition in order to ensure that 

no undesirable coupling occurs.  

 

Figure 3.3 : Type of design matrix in axiomatic design 

3.1.5 Information axiom 

The information axiom is not affecting the decomposition as much as the independence 

axiom. It can be used to select between different potential solutions to the same FR. The simpler 

is the selected solution (contains less information), the higher are its chances to succeed. This can 

be quantified mathematically by the probability of respecting an FR. Meanwhile this exercise is 

not performed in this thesis.  

3.1.6 Physical integration 

As discussed earlier, the functional independence of the FRs and DPs must be kept 

independent in order to obtain an uncoupled or a decoupled matrix. However, this does not mean 

that a physical independence must be kept. It is possible to combine DPs into one physical 

component as long as their functionalities are not coupled. Also, incorporating several design 

parameters in a single component can help respect the information axiom by reducing the 

complexity of the design. For example, the design of a tool to allow eating liquid food (FR1) and 

solid food (FR2) can be solved by using a spoon (DP1) and a fork (DP2). It is possible to imagine 

a tool where both of these solutions are physically integrated at both end of a utensil without 

Uncoupled Decoupled Coupled 
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affecting functionality. However, the designer needs to be careful with physical integration as it 

can sometime bring coupling between DPs that were not present in the original design matrix.  

3.2 Overview of the new design process 

The design process developed combines axiomatic design and topology optimization. The main 

idea of the design process is to use topology optimization as a tool in the axiomatic 

decomposition of the structural design. Therefore, the axiomatic design principles are at the 

center of the design process in each step. The process developed is divided in two phases: The 

concept generation phase as well as in the sizing and analysis phase (Figure 3.4).  

 

Figure 3.4 : Conceptual visualization of the Design Process   

This thesis focus on the concept generation phase as it is where the novelty of the process is. A 

high level axiomatic decomposition of the design problem is first performed to capture customer 

needs and transfer it into the functional and the physical domain and obtain a clear definition of 

the design problem. Topology optimization is then used as a tool along with engineering 

knowledge to explore the design space and acquire information to develop the axiomatic 
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decomposition further and obtain a feasible design concept that fulfills the functional 

requirements while respecting constraints.  

The sizing and analysis phase is following the concept generation. It is required to converge 

towards a final feasible design that respects all constraints. This phase is not developed in detail 

in this thesis since it is performed in any design process. However, it is important to remember 

that each step is also supported by axiomatic design principles in the process suggested. 

Therefore, FR-DP decomposition can be used at a detailed level if necessary. This means that the 

axioms and domains are always present to affect design decisions. The decoupling of the 

functional requirements of component is favored and the designs that maximize the chance of 

success are selected.   

Finally, figure 3.4 illustrates a feedback loop between the sizing and the concept generation 

phase. This loop is illustrated since new information concerning the design can be learned and it 

may sometimes be necessary to go back to the concept generation phase to account for it. A good 

axiomatic decomposition along with a good design space exploration should reduce the risk of 

feedback loop as the design concept results from a systematic approach where most of the 

constraints and requirements are captured. Moreover, the axiomatic decomposition and the design 

matrix help identifying the potential impact of changes. Finally, the decoupling of the functions 

of the design concept minimizes the impacts of such design modifications.  

3.3 Design concept generation process 

3.3.1 Overview of the concept generation process 

The novelty of the process lies in the concept generation phase (Figure 3.5). In this phase, the 

customer needs are first translated in top level constraints, FRs and DPs to clearly define the 

design problem. Topology optimization is then used to explore the design space and visualize 

potential load path. In other words, it gives insight of what the design solution (DPs) could look 

like. A functional interpretation of the topology results is performed after in order to develop sub-

FRs of the design problem. This step ensures that the designer understands and defines the 

functionality of the structural feature suggested by topology optimization before jumping to the 

physical interpretation of the results. It is the core of the design process as it forces to step back 

from the topology result and it avoids potential pitfalls associated to direct interpretation. Finally, 
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the physical interpretation transforms FRs into DPs that define a design concept that respects 

axiomatic design principles while being inspired from topology optimization.  

Note that the figure presents feedback loops. These loop account for cases where new 

information learned at a lower level requires going back to previous steps to explore the design 

space further or redefine axiomatic decomposition. This should not be performed systematically 

and is only displayed to illustrate that this type of feedback can occur.  

 

Figure 3.5 : Overview of concept generation phase 
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3.3.2 First level FRs, DPs and constraints 

The main functionality of a load bearing structure is to transfer load from one point (or zone) to 

another. This functionality is directly compatible with the load transfer theme. As mentioned 

earlier, decomposition themes helps obtaining independence of FRs and a certain coherence of 

the mapping. Other themes could also be explored such as energy transfer for example but it is 

not performed in this thesis. This theme is naturally linked with topology optimization problem 

as it shows optimal material placement to transfer load. It is therefore easy to link structural 

functionality (FRs) to a topology model (DPs). The resulting general first level FR-DP 

decomposition is presented in Figure 3.6.  

 

FR0 Transfer load from one point to another  DP0 Load bearing structure 

 FR1  Capture Load   DP1  Interface with load (Non-Design) 

 FR2  Sustain load  DP2  Structure’s Design (Design Space) 

 FR3  Transfer Load to support  DP3  Interface with support (Non-Design) 

Figure 3.6: General first level FR-DP decomposition of structures based on load transfer theme 

A general top level DP (DP0) is defined using the "zig" from FR0.  DP0 can then be decomposed 

into first level FRs by using the "zag" technique. Using the load path decomposition theme, the 

functionalities of the structure (DP0) are to capture (FR1), sustain (FR2) and transfer (FR3) load. 

This set of first level FRs is collectively exhaustive and mutually exclusive with respect to their 

parent (FR0). The first level DPs are obtained by once again using the zig technique. The first 

levels FRs are therefore respectively associated to DPs concerning the interface of the structure 

with load (DP1), the structural design itself (DP2) and the interface with the structure’s supports 

(DP3). Note that the design space is located in DP2 and that DP1 and DP3 represents non-design 

space as the interface with load and boundary condition is fixed. 

 

 

FR3: Transfer load to support 
DP3: Interface with support 
(Non-Design) 
 

FR1: Capture load 
DP1: Interface with load  
(Non-Design) 

FR2: Sustain load 
DP2: Structure’s design (Design Space) 
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Other inputs from the customer need such as strength or manufacturing requirements are recorded 

in the constraint domain (CON) as they are not related to the main functionality of the structure. 

They can therefore affect the design at any step of the process.  

This first level decomposition captures the main functionality of any structural component. It is 

used to clearly define the design problem while keeping design freedom to its maximum in a 

solution-free environment. The core of the structural design is embedded into FR2 and DP2 

which is where the load is sustained. The idea is to get as much information possible on the 

potential efficient load path in order to develop FR2 further. Therefore, the design space can be 

explored by using engineer’s knowledge and experience along with topology optimization. 

3.3.3 Topology design space exploration 

Topology optimization is used to explore the design space. It is not suitable to consider a 

single topology optimization result as observed in Chapter 2. Therefore, this exploration step 

requires an exploration of the sensitivity of the topology result. The last can be related to many 

different sources as shown in Table 3.1. 

Table 3.1: Potential source of load path sensitivity 

Source Examples 

Optimization parameters 
Objective and constraints, Manufacturing 

constraints, variation range, other 

Boundary conditions 
Discrete vs uniform, location, relative stiffness, 

other 

Loading 
Relative magnitude, Location, Combined load case 

influence, other 

Design Space 
2D vs 3D, dimensions, discretization (mesh size and 

element type), other 

It is not necessary to perform an extensive evaluation of potential effects but it is strongly 

suggested to get confident with the topology result and its origin. This avoids having the narrow 

vision of a local optimum, specific to the density method, and increases the chances of 

understanding functionality of generated features.  

The exploration step also suggests looking at the evolution of the topology during the iterations. 

It provides great insights on the sources and functionality of the members generated. For 

example, topology optimization has the tendency to create members connecting stress 
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concentration points which is observable in the history of iterations. This adds to the knowledge 

acquired when exploring the design space.  

3.3.4 Functional and physical interpretation 

The functional interpretation step is used to synthetize the results obtained in the topology 

exploration phase and define sub FRs associated to it. The main idea is to consider all topology 

results and identify common features and load path. Engineering judgment must then be used to 

analyze and understand functionality of the redundant features observed. As mentioned earlier, it 

allows having a global vision of the topology intent and avoiding potential pitfalls associated to 

direct interpretation of a topology. This knowledge is finally used to develop sub FRs (FR2.X) 

and define functionality concerning how the design should sustain load (FR2).  

The physical interpretation step consists of finding DP2.Xs associated to the FR2.Xs 

developed. These DPs are then physically integrated together to form a design concept. It is 

important to note that the design concept is subject the constraints domain which helps generating 

a feasible interpretation and avoid unnecessary iterations. The design matrix can then be analyzed 

to evaluate potential coupling in the design.  
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3.3.5 Summary of the concept generation process 

This section described each steps of the concept generation process. These are summarized by 

Figure 3.7. 

 

Figure 3.7 : Summary of the concept generation process 

3.4 Simple application of the concept generation process 

The design process combining axiomatic design principles with topology optimization is applied 

to a simple beam design example in order to illustrate its capabilities. The customer needs a beam 

that will transfer a uniformly distributed load to its supports (simple support). The beam has to be 

manufactured by typical assembly or machining methods and its mass has to be minimized under 

stress and displacement constraints. Finally, the width and height of the beam cannot be higher 

than one tenth of its length.  

- Define load, boundary condition and design 
  space requirements (FRX) 
- Associate to topology model (DPX) 
- List all design constraints (CON) 

- Identify common features and load path 
- Analyze and understand functionality  
- Develop FR2.X 

Topology Design Space Exploration 

First level FRs, DPs and constraints 

- Explore sensitivity of load path  
- Explore evolution of iterations 

Functional interpretation 

Physical interpretation 

- Define DP2.X associated to FR2.X 
- Integrate constraints 
- Perform physical integration (interpretation) 
- Check for coupling 

Problem definition 

Information on loadpath 

Required functionality 

Design Concept 
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3.4.1 First level FRs, DPs and constraints 

The first step of the process is to transform the customer needs into first level FRs, DPs and 

constraints. The constraints, the first level FR-DP decomposition and the corresponding topology 

design space are shown in Figure 3.8. The FRs are defined according to the load transfer theme as 

proposed in the design process. The FRs and CON 3 are used to define the topology design space 

in order to obtain information concerning FR2. The first FR defines the non-design space and the 

load applied to the model. The second FR along with CON3 determines the design space 

dimensions. The third FR defines the boundary conditions of the model. 

FR1 Capture uniformly distributed load DP1 Non-Design Space/Loading  

FR2 Sustain load DP2 Design Space 

FR3 Transfer load to simple support DP3 Support/Boundary conditions 

 
CON1 Minimize mass 

CON2 Manufacturable 

CON3 Design space dimensions 

CON4 Maximum Stress 

CON5 Maximum Displacement 

 

Figure 3.8 : First level FRs, DPs and constraints of beam 

3.4.2 Topology design space exploration 

Topology optimization is now used to explore the design space. The compliance is minimized for 

a constrained volume fraction in order to visualize optimal material placement and load path. The 

topology result is not sensitive to mesh size, volume fraction and manufacturing constraints. It is 

sensitive to loading (FR1) and boundary conditions (FR3) but it is not presented since the 

example is clearly defined.  

CON3 

FR/DP 2 
Sustain load 

FR/DP 1 
Capture load 

FR/DP 3 
Transfer load to supports 
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The design space is explored with a 2D design space made of shell elements with topology and 

free-size (continuous variable thickness) optimization. A 3D design space is also explored with 

topology optimization. Figure 3.9 shows that similar results are obtained for all approaches. The 

material is concentrated in the top and lower portion of the design space and a truss is formed in 

between. The free-size result is not forming a truss as it is not forced to form discrete members. 

The 3D result with no extrusion constraints is also not forming a truss structure between the top 

and lower part of the design space.  

 

Figure 3.9 : Topology design space exploration of beam 

3.4.3 Functional interpretation 

The design space exploration by topology optimisation provides great insights of the functional 

requirements of a design solution. The result could be directly used to create an interpreted model 

and optimize it as it is done usually. However, the design process developed forces the designer 

to perform another step in order to understand the functionality of the features suggested by the 

topology result before jumping to the interpretation. This step ensures a deeper understanding of 

2D Topology 

3D  

Extrusion constraint 

2D Free-Size 

3D 

 Section cut view 
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the features retained and the proper definition of the required independent functions. It also 

reduces the risk of performing an inefficient interpretation. 

This simple example allows using beam theory to understand the intent of the topology result. 

The shear and bending moment diagram of the beam are presented in Figure 3.10 along with the 

2D topology result.  

Material is constantly concentrated in the top and lower portion of the design space in zone 2 and 

3 where bending moment is important. This maximizes the beam bending inertia since material 

placed far from the section centroid impacts inertia proportionally to the square of the distance 

due to the parallel axis theorem. This theorem is valid as long as the top and lower portions are 

connected together and working as an entity.  

This connectivity is ensured by the truss or the web observed in zone 1 and 2 where there is high 

transverse shear load. The functionality of this topology feature is to capture transverse shear and 

transfer it into the top and lower portion of the design space in order to maintain structural 

integrity. The feature observed is directly linked to the magnitude of the transverse shear as it is 

gradually vanishing towards zone 3 where no shear is present.  

 

Figure 3.10 : Beam shear and bending diagram 

Transverse Shear 

Bending moment 

Zone1 Zone2 Zone3 
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Now that the functionality of the features observed in the topology layout is understood, it is 

possible to define the sub levels of FR 2 (Figure 3.11). The definition of these sub-Frs may seem 

obvious for this example but doing this exercise is primordial to ensure that the interpretation 

(selection of DPs) will focus on fulfilling the FRs.   

FR2 Sustain load 

 FR2.1  Sustain bending 

 FR2.2  Sustain transverse shear  (maintain structural integrity) 

Figure 3.11 : Development of FR2.X 

3.4.4 Physical interpretation 

The DPs associated to the FRs developed are presented along with a visualisation of the design 

solution in Figure 3.12. The creation of beam flanges (DP2.1) to support bending (FR2.1) is 

suggested by the topology solution. The use of a web formed by a truss (DP2.2) is suggested by 

the topology result to sustain the transverse shear load and maintain structural integrity (FR2.2). 

The free-size and 3D result also propose using a continuous web (DP2.2) to fulfill the same 

function. Although this definition of DP might sound redundant and obvious, the designer now 

has a sound and simple interpretation of the topology result based on functionality of the features. 

This allows detaching the interpreted design from the topology result and continuing to the next 

step while respecting its philosophy.  

The principles of axiomatic design can then be used to develop the interpretation further by 

developing the subs FRs. For example, the function of the flanges is to support compressive and 

tensile load to balance the bending moment applied to them. Therefore, the FR-DP 

decomposition can illustrate that need so that the designer is aware that a stable bottom flange 

should be used to avoid its local buckling (DP2.1.2). The same thing can be done for the web or 

the truss design where the need for sustaining shear varies along beam span.  
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FR2.1 Sustain bending DP2.1 
Material placed to maximise 

inertia (top and bottom flanges) 

FR 2.1.1 Sustain tensile load DP2.1.1 Top flange cross section area 

FR 2.1.2 Sustain compressive load DP 2.1.2 
Stable bottom flange 

cross-section area 

FR2.2 
Sustain transverse shear to maintain 

structural integrity 
DP2.2 Web/Truss 

FR 2.2.1 
Sustain high shear with no bending in 

zone 1 
DP2.2.1 Web/truss taper  

FR 2.2.2 Sustain variable shear in zone 2 and 3 DP2.2.2 
Variable web/truss in zone 2 

and 3 

Figure 3.12 : Physical Interpretation  

The constraints such as manufacturing and mass minimisation (CON 1 and 2) also need to be 

considered at each step of the FR-DP decomposition. For example, the mass impact of using a 

uniform thickness web is captured along the interpretation process. These constraints can also 

affect the choice of a web or a truss design. Aspects such as assembly, commonality of parts and 

cost can be captured and can influence such important design decisions. Moreover, other 

constraints such as the ones concerning stress and displacement (CON 4 and 5) can be used 

during the sizing optimisation.  

The axiomatic approach also imposes checking the design for coupling between FRs and DPs at 

each step of the decomposition. This ensures that the interpreted design minimizes coupling and 

avoids complex issues associated to it. Finally, the respect of the second axiom also supports the 

interpretation to maximize the chances of success. 

DP 2.2.2 

DP 2.1.1 

DP 2.1.2 

DP 2.2.1 

Continuous web Truss web 

DP 3: Interface with support DP 1: Interface with load 
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In summary, this simple example illustrates how topology optimization can be used as a tool in 

the axiomatic design framework. It also shows how this design process suggested provides good 

basis to support the definition and the interpretation of a topology optimization towards a sound 

and feasible design. 

3.5 Application to pressurized plate example 

The design process developed is applied on the pressurized plate example presented in Chapter 2. 

The example showed several challenges associated to the design of stiffened pressurized plate by 

topology optimization. This section illustrates how the design process developed supports the 

concept generation phase and helps overcoming difficulties associated to topology generation and 

interpretation. The design problem consists of finding the stiffener layout on a pressurized plate 

that will minimize mass while respecting stress and displacement constraints. 

3.5.1 First level FRs, DPs and constraints 

The customer needs are first transformed into FRs, constraints and DPs in order to support the 

development of the topology optimization problem according to the load transfer theme (Figure 

3.13). The need to capture the pressure load (FR1) requires a minimum skin thickness value 

(DP1) that represents a non-design space. The load transfer requirement (FR3) defines the 

boundary condition of the model (DP3). Finally the design space (DP2) represents the potential 

solution to the load sustaining requirement (FR2).   
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FR1 Capture pressure load DP1 Minimum skin thickness (Non-Design Space) 

FR2 Sustain load DP2 Stiffener configuration (Design space)  

FR3 Transfer load to simple support DP3 Support/Boundary conditions 

 
CON1 Minimize mass 

CON2 Manufacturable 

CON3 Maximum Dimensions 

CON 4 Maximum Stress 

CON 5 Maximum Displacement 

Figure 3.13 : First level FRs, DPs and constraints of pressurized plate problem 

3.5.2 Topology design space exploration 

Topology optimization is used to explore the design space and provide information to develop 

FR2. This exploration was performed in Chapter 2 by minimising compliance for a constrained 

volume fraction (VF). The stress and displacement constraints (CON 4 and 5) were not used as 

they do not result in discrete stiffening pattern as discussed in the same chapter. The topology 

result is sensitive to parameters such as volume fraction and manufacturing constraints. The 

result is also affected when modifying the boundary conditions (DP3) of the model. Figure 3.14 

summarizes the result of the topology exploration where different layouts are obtained for the 

different parameters and boundary conditions evaluated. 

Pressure 

FR/DP1 

FR/DP2 

FR/DP3 

 

 

 

 
 

 

 

 

 



77 

 

 

Figure 3.14 : Topology design space exploration 

The central portion of the plate is stiffened by straight stiffeners along the shortest dimension of 

the plate. The corner of the plate is stiffened by a stiffener at 45 degrees. The portion between the 

corner and the center of the plate is stiffened in different ways for the different optimization 

parameters. 

3.5.3 Functional Interpretation 

The topology design space exploration is now used to develop FR2 further. Here, engineering 

knowledge is used to interpret the functionality of the features observed. The topology 

optimization suggests different forms of stiffening for the different zones of the plate and 

functional requirements are developed this way. The functionality of the features observed in the 

layouts is presented in Figure 3.15. The central region needs to be stiffened to avoid its large 

deformation (FR2.1). The corner of the plate is naturally stiffer because of its geometry and 

therefore requires different stiffening (FR2.2). The plate also needs to be supported between the 

corner and the center portion and a transition is required between the two (FR2.3). Finally, the 

bays generated by the stiffeners need to be supported adequately which calls another function of 

the layout (FR2.4).  

FR2 Sustain load 

 FR2.1  Support global plate deformation in center portion 

 FR2.2  Support global plate  deformation in corner portion 

 FR2.3  Support global plate  deformation between corner and center 

 FR2.4  Support local skin deformation 

Figure 3.15 : Development of FR2 based on topology results 

A: VF 30% B: VF 15% 

C: Maxdim D: Local Support 

Note : Density above 10% displayed 
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3.5.4 Physical interpretation 

The FRs obtained from the topology results are now used to develop the associated DPs that lead 

to an interpretation and a design concept. Figure 3.16 shows the FR-DP decomposition of the 

load sustaining functionality (FR2). As suggested by the topology results, the center portion of 

the plate (FR2.1) is stiffened by beams parallel to the shortest dimension of the plate (DP2.1). 

The corner portion is stiffened by a beam attaching both side of the plate at an angle of 45 

degrees as suggested by the topology result (DP2.2). The portion between is stiffened by a 

combination of beams (DP2.3) that create a transition between the center and corner portion of 

the plate. The last requirement concerning skin support (FR2.4) is associated to the dimensions of 

the bay created by the stiffeners (DP2.4).  

 

FR2.1 
Support global plate deformation in 

center portion 
DP2.1 

Regularly spaced beam in center 

portion of plate 

FR2.2 
Support global plate deformation in 

corner portion 
DP2.2 Beam at 45 degrees in corner 

FR2.3 
Support global plate deformation 

between corner and center 
DP2.3 Beams between center and corner 

FR2.4 Support local skin deformation DP2.4 Bay dimensions 

Figure 3.16 : Physical Interpretation of stiffened pressurized plate 

Once again, the interpretation of the topology results into FRs and then into DPs may seem 

redundant and comparable to a direct interpretation of the topology result. However, it is 

important to remember that the design is now detached from the topology result as it is supported 

by axiomatic design principles. These principles ensure that the interpretation will fulfill the 

DP2.2 

 

DP2.1 

DP2.3 

DP2.4 
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functionality defined while respecting constraints, maximising chances of success and limiting 

coupling. 

The design concept obtained has several beams that can interact with each other and the design 

matrix is a tool to unravel all these potential interactions and avoid complex coupling in the 

design (Figure 3.17). The bay dimension is determined by the position of the stiffeners and 

consequently the skin support functionality (FR2.4) is coupled with all DPs. This coupling 

influences directly the selection of stiffener position since they have to achieve two 

functionalities at the same time (global and local deformation support). This will therefore affect 

the pitch of the central stiffeners (DP2.1), the position of the corner stiffener (DP2.2) and the 

design of the transition between the central and the corner portion (DP2.3).The designer can 

create a better interpretation by being aware of this interaction. He can select beam position that 

will allow using the minimum manufacturable skin thickness (CON2) in order to minimize the 

total mass of the design (CON1). This essential information is not captured by the topology 

optimization but is accounted for in the process developed. 

 DP2.1 DP2.2 DP2.3 DP2.4 

FR2.1 x    

FR2.2  x   

FR2.3   x  

FR2.4 x x x x 

Figure 3.17 : Design matrix of concept for the stiffened pressurized plate 

The design matrix also shows that there is no coupling between the other FRs and DPs (2.1 to 

2.3). This decoupling is directly due to the definition of the FRs and their associated DPs that 

ensures independent functionality. This means that the design respects the independence axiom 

and that it will be easy to analyse and optimize. This check is important to perform as it would 

highlight coupling present in complex layouts suggested by topology optimization. It therefore 

provides a tool to evaluate the complexity associated to a layout interpretation. 

In summary, the design space was explored by topology optimization to visualize potential load 

path. Different local stiffening needs are identified and are used as a basis to define three 

different regions: the center, the transition and the corners. A design concept is obtained by 

placing beams at these locations to fulfill their individual functionality and coupling is then 
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studied and limited using the design matrix. This design process therefore allows a systematic 

approach to explore design space and develop efficient design concepts. 

This application of the design process shows that axiomatic design can successfully support the 

design by topology optimization and ensures that a sound and feasible interpretation is performed 

even in the presence of multiple challenges associated to the methodology. Moreover, the process 

developed does not exclude conventional designs since topology optimization is only used as a 

tool to explore the design space. Conventional designs are also potential solutions and their 

contribution to the development of other FR-DP decomposition also needs to be considered. This 

ensures that existing solution to simple problem will be used even if topology optimization does 

not necessarily propose it.  
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CHAPTER 4 CONCEPT GENERATION OF A PRESSURE BULKHEAD 

The concept generation process developed and presented in Figure 3.5 and Figure 3.7 is 

now applied to the flat bulkhead design case. The chapter is organized in sections corresponding 

to each steps of the process. The customer needs are first presented along with the first level 

axiomatic decomposition. Topology optimization is then used to explore the design space. After, 

the functional interpretation step analyses the origin and functionality of the main features 

observed. The functionalities are finally fulfilled in the physical interpretation step where three 

different concepts are presented. A discussion concerning the effect of surrounding structure and 

the local boundary conditions associated to it (FR/DP3) is also presented along with a 

comparison with a real pressure bulkhead design. 

4.1 Customer needs 

Figure 4.1 summarizes the customer needs for the rear pressure bulkhead design case. This 

structure needs to seal the aft fuselage and it must sustain the pressure differential between the 

cabin and the atmosphere.  

The volume required for the installation of systems in the aft fuselage limits the available design 

space for the bulkhead’s structure. Moreover, the space allocation for pressure bulkhead’s 

structure is also often affected by cables and pipes. The location of stiffeners can therefore be 

constrained by the system installation which creates some non-design space in the optimization 

set-up.  

The bulkhead considered is attached to the fuselage skin and to cabin floor. The longitudinal 

beams of the floor are therefore contributing to the support of the bulkhead’s deformation. This 

design decision is the result of a trade-off between the reduction of bulkhead weight and the 

reinforcement of floor necessary to support the load transferred by this attachment. The 

connection reduces the free bending length of the bulkhead and therefore reduces the required 

structural mass to support the deformation. However, this attachment introduces tensile load in 

the floor beams which requires more material to fulfill static and fatigue requirements. The 

loading on the floor also introduce vertical in plane loading to the bulkhead but it is negligible 

compared to the pressure load.  
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The simplified pressure bulkhead studied in this section is inspired from the flat rear pressure 

bulkhead of a business aircraft from Bombardier Aerospace. It has a radius of 2500mm and the 

maximum stiffener height allowed is 125mm (5% of diameter) as it was the case for the 

pressurized rectangular plate. It is connected to the floor that has 9 longitudinal beams and it is 

also attached to the fuselage formed by a continuous assembly of skin panels and stingers. A 

detailed description of the dimensions and the finite element model used is given in Appendix A.  

 

Figure 4.1: Aircraft flat rear pressure bulkhead design space visualization 

4.2 First level FRs, DPs and constraints 

Figure 4.2 shows the first level axiomatic decomposition and constraints based on the load 

transfer theme. At this point, it is assumed that the constraint for the allowable design space 

(CON1) already pushed the design towards a flat pressure bulkhead as mentioned earlier. The 

pressure load has to be captured (FR1) by a skin (DP1) (of minimum thickness) in order to be 

transferred as it was the case for the flat pressurized plate example. The load captured by skin has 

to be sustained and carried (FR2) by the stiffener configuration (DP2) towards the supports. The 

bulkhead finally has to integrate with the boundary (FR3) using a proper interface (DP3). 
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Constraints influencing the whole design such as mass, stress and manufacturing are recorded in 

the constraints domain. As mentioned earlier, the loading transferred from the floor to the 

bulkhead structure is not part of the functional requirements as it is small compared to the 

pressure loading. However, it could be integrated into FR/DP1easily if it was to be considered. 

 

FR1 Capture Pressure load DP1 Skin (Non-Design Space)  

FR2 Sustain and carry load  DP2 Stiffener configuration (Design Space) 

FR3 Transfer to boundary DP3 Interface with boundary 

 

CON1 Maximum Design Space 

CON2 Allow system penetration 

CON3 Minimize mass 

CON4 Manufacturability 

CON5 Minimize cost 

CON6 Minimum Strength, Static, Fatigue, Damage tolerance 

Figure 4.2 : First level FRs, DPs and constraints of bulkhead 

4.3 Topology design space exploration 

The design space (DP2) is explored using topology optimization. The compliance is minimized 

for a constrained volume fraction as it was the case for the pressurized plate example studied in 

Chapter 2. The study also highlighted the local optimality of the result and stressed the need to 

explore the design space with different topology optimisations. This section presents the effect of 

FR/DP2 

FR/DP3 
FR/DP1 
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optimisation parameter to evaluate the sensitivity of the layout. An analysis of iteration evolution 

is then performed to better understand the source of the features observed. Finally, the influence 

of discrete boundary condition on the layouts is explored. This exploration phase allows 

identifying common features between layouts which will be used in the functional interpretation 

step.  

4.3.1 Optimization parameters 

The sensitivity of the layout to optimization parameters is studied to ensure a proper exploration 

of the design space (DP2). The effect of manufacturing constraints and volume fraction are 

presented since they were identified as having the most impact on the layout on the simplified 

pressurized plate presented in Chapter 2.  

The mesh size is first explored along with manufacturing constraints such as minimum 

(MINDIM) and maximum member size control (MAXDIM). The minimum allowable value of 

MINDIM (2x average mesh size) and MAXDIM (2x MINDIM) are used to evaluate the effect of 

constraining stiffener width to be smaller than its height (125mm) which is typical for beams. 

Mesh of 5, 10 and 20 mm are explored to allow using a MAXDIM constraint of 20, 40 and 

80mm respectively. Figure 4.3 shows the layouts obtained for the different mesh and 

manufacturing constraints.  

The layout below floor is not affected by mesh size and manufacturing constraint and is therefore 

a potential candidate of redundant feature for the functional interpretation step. However, the 

layout is sensitive in the upper portion of the section above floor as the position and number of 

stiffener is not constant. Mesh size below 20mm captures the local stiffness of each stringer in 

the top portion of the fuselage which creates a transition zone between floor and top fuselage. 

This zone does not appear for mesh of 20mm which result in more discrete stiffeners.  

There is no significant difference in the layout when using penalization, MINDIM and MAXDIM 

constraint which means that penalizing thin and large stiffeners does not affect the layout in that 

case. This may be due to the discrete floor beams that forces stiffeners to pass through them. The 

mesh of 20mm with penalization gives a slightly different layout in the top portion.   

This study shows that the mesh size selected can influence the topology result as it can or cannot 

capture the effect of boundary conditions. It also showed that the features observed below floor 
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are redundant. The minimum member size constraint is used along with a mesh of 20mm for the 

next topology explorations as it gives a discrete stiffening pattern and it has a reasonable run 

time.  

 

Figure 4.3 : Effect of mesh size and member size control on topology 

The effect of volume fraction (VF) is studied for values between 5 and 30% (Figure 4.4). The 

number of stiffeners appearing in the top portion changes for values below 20%. Once again, it 

shows that the stiffener layout is sensitive above floor but redundant below floor.  
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Figure 4.4 : Effect of volume fraction on bulkhead 

Other parameters such as symmetry constraint or minimum thickness are not presented since 

they do not affect significantly the layouts obtained.  

The parameter study showed that topology is sensitive above floor where the number, orientation 

and configuration of stiffeners can vary. The stiffening below floor is relatively constant. The 

presence of floor is obviously having a major impact on the layout. 

4.3.2 Analysis of iteration evolution 

The evolution of the topology iterations provides useful information about how the load 

path is developed and how local boundary conditions (FR3) can affect the final layout. The 

evolution of topology with iterations can be visualized in Figure 4.5 for a volume fraction of 20% 

with minimum member size constraint and a mesh size of 20mm.  

The figure shows that the formation of stiffeners is performed in two steps. The first one 

consist of forming vertical stiffeners symmetrically from floor beam location as these stiff 

supports create a stress concentration that has the most significant impact on the compliance 

VF: 0.05 VF: 0.10 

VF: 0.15 VF: 0.20 

VF: 0.25 VF: 0.30 

Below floor 

Above floor 

Below floor 

Above floor 

Below floor 

Above floor 

Reduced number 
of stiffeners  



87 

 

objective. Once these stiffeners are formed, the upper portion is forming stiffeners in the shortest 

direction between the vertical stiffeners and the fuselage.  

 

 

Figure 4.5 : Evolution of iterations  

4.3.3 Effect of boundary conditions 

The evolution of iterations showed that the stress concentration at floor beam location has 

a significant impact on the generation of the layout. It affects the initial iterations of the 

optimization and forces a specific local optimum. Other local optimums can be obtained by 

modifying boundary conditions (FR/DP3) which affects the first iterations. The impact of local 

stiffness such as the one related to stiffener interface with fuselage is explored in Figure 4.6. In 

order to simulate stiffer support for nine vertical stiffeners positioned at floor beam, the out-of-
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plane translation of nodes inside the design domain is constrained near their junction with 

fuselage.  

 

Figure 4.6 : Effect of local support on fuselage at vertical position from floor beam 

This local support affects the evolution of the optimization because beams are growing 

from the top of fuselage and floor beam location. However, beams are still not forming in the 

bottom portion of the fuselage even if nodes are constrained. Moreover, the small imperfection in 

the constraints applied to node causes an asymmetric layout which highlights the sensitivity of 

the topology to boundary conditions.  

This study also illustrates how the relative stiffness of beam junction with fuselage 

influences the final layout. Instead of attaching to each stringer as it was the case on some 

layouts, the topology attaches the stiffeners to the specified stiffer supports. It is important to 

keep this in mind since a real stiffener junction will introduce a different local stiffness that will 

influence the layout. The topology is therefore sensitive to its surrounding and can be 

significantly affected by simple changes of the boundary condition (FR/DP3).  

4.4 Functional interpretation 

The results of the topology exploration step are now used to develop sub FRs for the load 

sustaining and carrying requirement (FR2). The redundant features observed in all topologies 

during the exploration step are described in Figure 4.7. As observed in the evolution of the 

topology, stiffeners are forming at floor beam location. In fact, the presence of floor has a major 

impact on the stiffeners formed. The formation of stiffeners near and below floor is relatively 

constant. However, the stiffening of the portion above floor is significantly affected by 

optimization parameters. Moreover, the stiffening above the floor has a discontinuity in its 
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stiffeners as well as an orientation change. The origin and functionality of these particular 

features needs to be understood before defining functional requirements inspired from topology 

exploration.  

 

Figure 4.7 : Topology exploration redundant features 

4.4.1 On the origin of discontinuity in stiffeners above floor 

The discontinuity of the stiffeners above floor can be explained by analyzing the impact 

of the floor attachment on the design space (Figure 4.8). The figure illustrates how the design 

space can be visualized as a continuous beam under uniformly distributed load supported at 3 

locations (top and bottom fuselage, floor). The support provided by the floor creates a 

discontinuity in the transverse shear that changes the sign of the bending moment. This change 

creates a point where there is no moment and therefore a zone with very small strain 

(deformation) in the design space. The latter is not important for the compliance objective and 

this explains why the topology is creating a division at its early iterations and creates a 

discontinuity in stiffeners. The behavior was also reproduced with the topology optimization of a 

simple beam.  
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Figure 4.8 : Effect of floor on stiffener discontinuity 

Discontinuity and local optimum 

It is important to note that this discontinuity is the result of a local optimum. For example, Figure 

4.9 illustrates how a continuous beam can be compared to the discontinuous beam suggested by 

the topology. The advantage of the continuous beam is that the right portion provides a clamping 

like boundary condition to the left portion which reduces its free length and therefore its 

deformation. The discontinuous beam suggested by topology is shorter but is simply supported 

which can result in a larger deformation. Both designs can be used but it is important to keep in 

mind that the continuous beam will never be suggested by the topology since it always converges 

towards the discontinuous beam local optimum.   
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Figure 4.9 : Continuous vs discontinuous beam deformation 

4.4.2 On the origin of stiffener orientation change 

This discontinuity explains why stiffeners are suddenly changing direction above floor as shown 

in Figure 4.10. The figure presents a visualisation of an intermediate iteration where upper 

stiffeners are still not formed. It illustrates how the formation of upper stiffeners can be 

visualized as a new optimization problem because of the discontinuity. The resulting problem 

consists of stiffening a simply supported plate which explains why stiffeners are forming to 

provide a uniform support to the upper portion which explains the orientation change.  
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Figure 4.10 : Explanation of stiffener orientation change 

Orientation change and continuity 

The interpretation of the discontinuity and the orientation change is important as it can have a 

major impact on the load path. For example, the interpretation of a curved discontinuous stiffener 

into a continuous one would create significant torsion load on the lower stiffener as bending 

moment would be transferred (Figure 4.11). This is another important aspect to consider when 

analysing the topology result since continuous and discontinuous beam do not behave the same 

way in the presence of curvature. 
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Figure 4.11 : Creation of torsion for curved continuous stiffeners  

4.4.3 Exploration of topology with disconnected design space at floor 

The effect of floor on discontinuity and orientation is due to the continuity of the design space on 

both side of the floor which creates a zone with no bending moment. In order to observe the 

behavior of a topology without this particularity, an optimization is performed where the design 

space above floor is disconnected from the design space below floor. Both design space are 

optimized to minimize compliance for a volume fraction of 20% each (Figure 4.12). This recalls 

that a return to the topology exploration phase can be necessary when new information is 

available. The new iteration is thus allowed and encouraged by the design process.  
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Figure 4.12 : Effect of disconnecting design space at floor 

As expected, the discontinuities above floor disappear since the stiffeners above and below floor 

are independent. In fact, the design problem consists of the stiffening of two independent simply 

supported pressurized plates. The similarity of the stiffening layout with the rectangular 

pressurized plate presented in Chapter 2 is highlighted in the figure. One can note that the 

stiffening layout below floor recalls the regularly spaced design and the layout above floor 

reminds the design with two large stiffeners in the center portion. This highlights the importance 

of the relative stiffness of the boundary condition since the impact of floor is important on the 

lower portion but negligible on the upper. Finally, this modification of the design space allows 

once again a better understanding of the optimal stiffening.  
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4.4.4 Development of sub FRs 

The detailed analysis of the topology result performed in this section allowed a better 

understanding of the functionality of the features observed. The stiffener discontinuity and 

orientation change are particular solution and no FRs can be directly associated to these features. 

However, the impact of floor on the layout is now well understood which allows defining the sub 

FRs inspired from the topology exploration as shown in Figure 4.13. These FRs are also the 

result of the "zag” from DP2 according to the axiomatic decomposition process described in 

section 3.1.3. Topology explorations highlighted that the stiffening need above (FR2.1) and 

below floor (FR2.2) are different which is the reason why different FRs are assigned to them. The 

addition of stiffeners also creates skin bays where local deformation has to be limited (FR2.3) 

which is a known FR for stiffened panels.  

FR2 Sustain and carry load 

 FR2.1  Support deformation above  floor 

 FR2.2  Support deformation below  floor 

 FR2.3  Support local skin deformation 

Figure 4.13 : Development of FR2.X of the bulkhead 

Although these FRs might seem obvious, it is important to remind that they are the result of a 

systematic exploration of the design space. The functional interpretation step is just efficiently 

simplifying the complex feature observed into basic functionality.  
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4.5 Physical interpretation 

The knowledge acquired from the topology exploration and functional interpretation allows 

defining DPs associated to FRs 2.X. Three different concepts inspired are presented in Figure 

4.14. 

Concept A presents the interpretation of a design where stiffeners are disconnected at floor 

location. Concept B presents the interpretation of the topology intent when stiffeners are 

discontinuous above floor. Concept C presents an engineering solution fulfilling the FRs by using 

continuous and straight stiffeners. A detailed description of each design follows. 

In all concepts, the support of the deformation below floor (FR2.2) is fulfilled by using vertical 

stiffeners placed at floor beam location (DP2.2). Vertical stiffeners are selected instead of 

allowing slight orientation change as suggested in the topology layout. This design decision is 

made in order to simplify the allocation of space of systems passing under the floor and between 

floor beams in order to respect CON2 (Allow system penetration). Note that a different solution 

could have been used to fulfill FR2.2 while respecting CON2. It is only important to remember 

that the new process will always be able to capture such constraints and consider it for the 

interpretation. Finally, the stiffeners are attached to the lower fuselage in order to adequately 

support skin bay (FR2.3) even is it not directly suggested in all topology layouts. 

The support of the portion above floor (FR2.1) is fulfilled by different stiffener layout (DP2.1) 

for each concept. However, all layouts have regularly distributed stiffeners in order to fulfill the 

local skin support functionality (FR2.3). Concept A and B are similar since the stiffeners are 

discontinuous and have variable orientation as suggested by the topology. However, Concept A is 

completely decoupled since the lower and upper stiffeners fulfill their respective functionality 

independently. Concept B benefits from a reduction of upper stiffener length but introduces 

coupling. Concept C is inspired from typical designs where the upper portion of the stiffener 

benefits from the support (close to clamping) provided by its continuity. As discussed earlier, this 

continuity requires using straight beams to avoid problems related to torsion. This design is also 

introducing coupling but benefits from a regular skin bay division which makes the fulfillment of 

FR2.3 (Support local skin deformation) easier. The design matrix highlights the coupling 

between FR2.3 (Local skin support) and all DPs. This coupling is unavoidable since stiffener will 

always affect bay dimension. The matrix also highlights how concept B and C have coupled 
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matrix because of the interaction between DP2.2 (Stiffeners below floor) and FR2.1 (Support 

above floor). 

 

FR2 Sustain and carry load DP2 Stiffener configuration 

 FR2.1  Support deformation above  floor  DP2.1  Stiffeners above floor 

 FR2.2  Support global deformation below  floor  DP2.2  Vertical Stiffeners below floor 

 FR2.3  Support local skin deformation  DP2.3  Bay dimension/Secondary stiffeners 

 
 DP2.1 DP2.2 DP2.3 

FR2.1 ABC BC
8
  

FR2.2  ABC  

FR2.3 ABC ABC ABC 

Figure 4.14: Physical interpretation and design concept of bulkhead stiffening 
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Table 4.1 illustrates a qualitative comparison of the design concepts presented. Concept A is used 

as the reference and different aspect of the design are compared. It is obvious that proper 

manufacturing and assembly of the beam discontinuity for concept A and B is more complicated 

than for concept C. The mass of the upper stiffener of layout B and C is lower than for layout A 

since they benefit from length reduction and clamping respectively. However, the coupling in 

these layouts will result in higher mass for lower stiffeners. Coupling is introducing complexity 

in the design and analysis which is seen as a negative aspect compared to concept A. Finally, the 

simple bay dimension control of concept C is advantageous compared the two other. This simple 

bay dimension control recalls the second axiom (minimisation of information and maximisation 

of the chances of success) as it can achieve the same bay support functionality (FR2.3) with less 

information. The table shows that Concept C has the best score for the aspect considered. It does 

not mean that it is the best design since a detailed sizing analysis would be required to assess 

performance. However, it highlights the conceptual advantages that concept C has over the others 

which can maximize its chances of success.  

Table 4.1 : Qualitative comparison of concepts (Baseline: Concept A, +1:Better, -1: Worse) 

 Concept B Concept C 

Manufacturing 0 +1 

Bay dimension control 0 +1 

Coupling -1 -1 

Upper stiffener mass +1 +1 

Lower stiffener mass -1 -1 

Total -1 +1 

4.6 On the other local boundary condition effect (Door Intercostal) 

The process has been properly applied to the design case and three different concepts 

were presented. The following example aims at showing how the concept obtained can be 

significantly affected when considering the surrounding environment of the bulkhead. The last 

can highlight different boundary conditions which can have a major impact on the evolution of 

the topology and converge towards other local optimums.  

The example is inspired from a real aft aircraft pressure bulkhead where local stiffness is 

introduced by the presence of a door intercostal. This intercostal reinforces the fuselage near door 

cut-outs and passes through the bulkhead skin due to its proximity with the door. It is modelled in 

the topology problem by constraining the out of plane translation of nodes inside the design 
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domain. The constraints are applied on both sides of the fuselage in order to force a symmetrical 

design. Figure 4.15 shows the resulting topology along with its functional and physical 

interpretation. The topology iterations show that the horizontal stiffener is forming from the door 

intercostal location and therefore results in another local optimum. The functional interpretation 

of the layout is affected since the location of the intercostal plays a major role in the stiffening 

configuration. Therefore, the functions of the stiffeners above floor (DP2.1) are developed by 

considering different zones based on the location of the intercostal. A potential physical 

interpretation is also presented where the functional requirements are fulfilled by using simple 

straight beams as it was the case for concept C. The addition of a horizontal stiffener in zone 1 is 

the feature added in that case.  

 

FR2 Sustain and carry load DP2 Stiffener configuration 

FR2.1 Support deformation above floor DP2.1 Stiffeners above floor 

FR2.1.1 
Support deformation in zone 1  

(Intercostal height position) 
DP2.1.1 

Horizontal stiffener in zone 1 

 

FR2.1.2 
Support deformation in zone 2 

(Between floor and intercostal position) 
DP2.1.2 Stiffeners in zone 2 

FR2.1.3 

Support deformation in zone 3 

(Between top fuse and intercostal 

position) 

DP2.1.2 Stiffeners in zone 3 

FR2.2 Support deformation below floor DP2.2 Vertical Stiffeners below floor 

FR2.3 Support local skin deformation DP2.3 
Bay dimension/Secondary 

stiffeners 

Figure 4.15 : Effect of modifying local boundary condition (FR/DP3) on design concept 

This simple interpretation may seem far from the topology result but fulfills the same 

functionality as it also benefit from the local stiffness of the intercostal. Many other physical 

interpretations could be performed but it is not the objective of this example. The objective was 
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to show how topology can be affected by local boundary condition and highlight unexpected load 

path which can result in different functional and physical interpretation.  

Figure 4.16 illustrates an actual design of stiffener layout on a pressure bulkhead with 

similar boundary conditions. Notice that a large horizontal beam is placed at the intercostal 

location. In fact, this beam challenges CON1 (constraint on allowable design space for bulkhead 

depth) since space for systems was not required at this height behind the bulkhead. This large 

beam actually provides a support to the vertical beams and its functionality is therefore coupled. 

This design solution could never be obtained by the topology optimization as it is converging to 

different local optimums and the design space does not allow such local violation of CON 1. 

However, topology proved to be efficient at highlighting stiff supports and potential load path 

which could lead to such design if functionality is well interpreted and if engineering knowledge 

is used to perform the physical interpretation. 

 

Figure 4.16 : Existing design with similar boundary conditions 

4.7 Synthesis and discussion 

The former chapter showed how the process developed is applied to the aircraft pressure 

bulkhead. Figure 4.17 summarizes each step of the process performed in this chapter. The 

definition of the customer needs and its interpretation into first level FRs, DPs and constraints 

forces the designer to understand the design problem and supports the generation of a topology 

optimization model. The topology exploration phase highlights potential load path and reduce 

risk associated to local optimums since it includes an evaluation of layout sensitivity. The 

functional interpretation investigates the origin of redundant features in order to understand 
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their functionality and define sub level FRs. In that design case, the effect of floor on the layout 

was major and a feedback loop toward the topology exploration phase was used to better 

understand the behavior observed. Finally, the physical interpretation facilitates the 

interpretation of a topology layout while considering design constraints and avoiding coupling. In 

this case, three different solutions fulfilling the defined FRs were presented. Many other solutions 

could have been proposed but they would all have aimed at fulfilling the functionality defined 

after exploring the design space. The respect of constraints and coupling will affect the selection 

of a solution over another.  
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Figure 4.17 : Synthesis of the applied design process 

The process can be generalized because it is applicable to any structural design case. The 

main steps do not change and the feedback loops can account for new information appearing 

during the development of a product. It can be efficiently used to reduce the large initial design 
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space while exploring it in an innovative way. It also supports the topology optimization tool 

which cannot handle the whole concept generation phase by itself. Following the new process 

will always lead to feasible design concepts inspired from topology optimization that respects 

constraints and fulfills the required functionality while reducing risk associated to local 

optimality. The second research hypothesis is therefore confirmed since combining topology 

optimization to axiomatic design principles resulted in a design process that addressed and 

overcame the main identified challenges.  

Finally, the objective of this application of the design process is partially achieved since a 

final design was not fully demonstrated. However, the most challenging and innovative aspect 

that consists of generating design concept was addressed. The detailed design and analysis of the 

design concept can be achieved by using standard and well established aerospace structural 

analysis methodology along with size and shape optimization technology as discussed in section 

presented in section 3.2.  
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CHAPTER 5 GENERAL DISCUSSION 

The objective of this thesis was to explore the application of topology optimization for the 

design of an aircraft’s pressure bulkhead and develop a design process based on the acquired 

knowledge.  

According to the literature reviewed, the application of topology optimization to 

determine the optimal stiffener layout on a pressurized plate on a complete case study (from 

concept to sizing) was not explored. It was therefore important for this thesis to investigate the 

application of topology optimization as it is the primary load case on a pressure bulkhead. This 

study allowed to better understand the topology optimization design process and its associated 

challenges for this type of load. The acquired knowledge can then be used to develop the new 

design process. 

A simple design case inspired from the pressure bulkhead was first defined with a realistic 

design space and engineering constraints such as maximum stress and displacement. In order to 

obtain a fair comparison basis, a typical and intuitive design was also defined. The design space 

was then explored using topology optimization to generate new design concepts. The 

performance of the concepts obtained with topology optimization was finally compared with the 

typical design.  

This study allowed identifying several challenges associated to the pressurized plate case. 

The non-linearity of the deformation of the thin skin between stiffeners due to the membrane 

stiffening effect cannot be captured by the SIMP method. Moreover, the method uses a gradient 

optimizer that cannot explore the whole design space as it converges towards the first local 

optimum. This investigation also allowed identifying challenges associated to the generation and 

interpretation of the topology. The topology result proved to be very sensitive to the different 

optimization parameters. In other words, the topology was sometimes giving completely different 

answer to a very similar problem. Also, the topology result is not directly interpretable into a 

feasible design. The formation of many stiffeners and the connectivity between them makes the 

understanding of their individual functionality in the complete layout difficult. Finally, the 

performance comparison showed that the topology design has at most a mass that is similar to the 

typical design. It raises a flag concerning the efficiency of topology optimization to generate 

optimal stiffener layout for pressurized plates. It also highlighted the importance of having a 
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more global understanding of the design problem when selecting and interpreting topology 

optimizations. The understanding of the functionality of the redundant features generated proved 

to be essential in order to perform a good interpretation and reach good performance.  

As mentioned earlier, the knowledge acquired concerning the challenges and limitations 

of topology optimization for the design of stiffened pressurized plates has been used to develop 

the new design process. The need for a better understanding of functionality encouraged the use 

of another design approach to support the topology optimization design process: Axiomatic 

Design. This methodology focusing on product functionality was well-suited to address the main 

challenge identified. The design process was then defined with the idea that topology 

optimization would only be used as a tool to explore the design space in the axiomatic design 

framework. This allowed introducing a design space exploration phase aiming at overcoming the 

local optimality of the topology result by forcing the designer to perform several different 

optimizations. In order to support the interpretation challenges, the functional interpretation phase 

was defined. This phase requires the designer to identify common feature and understand their 

main functionality. This allows stepping back from the topology results and avoids a direct 

interpretation of a local optimum. Once the functionality of the features are defined, the physical 

interpretation naturally result in a design concept that is feasible and that respects design 

constraints and axiomatic design principles.  

In summary, the paper presented has a major importance in this thesis as it allowed 

understanding the application of the topology design process and its limitation for the stiffening 

of pressurized plates. This exploration was necessary as the literature reviewed did not offer 

enough information concerning the challenges and the performance of topology optimization for 

the type of structures studied. It allowed identifying several difficulties which were finally used 

to develop and innovative design process. The design process addresses the challenges and 

suggests a new systematic approach or the design with topology optimization based on axiomatic 

design principles. 
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CONCLUSION 

The objective of the thesis was to investigate the application of topology optimization for the 

design of a rear pressure bulkhead and develop a new design process based on the knowledge 

acquired.  

The literature review highlighted the knowledge gap concerning the use of topology optimization 

for the design of flat pressurized stiffened plates which led to the first research question: how 

does the topology optimization design process performs compared to a typical design for flat 

pressurized stiffened plates? This question was addressed by simplifying the bulkhead into a 

rectangular pressurized plate. The difficulties of generating and interpreting a topology layout 

were presented. Moreover, the topology design did not result in significant weight reduction 

compared to a typical design. The study also highlighted the necessity of considering several 

topologies to account for local optimality. It showed the importance of understanding the 

functionality of features observed when interpreting the topology result into a design concept. 

The research hypothesis is infirmed since topology did not improve performance compared to a 

typical design. Finally, the findings of this study were shared with the scientific community 

through a submitted journal paper.  

The knowledge acquired on the simplified plate example was used for the second research 

question: how to address the challenges of the actual topology optimization design process? A 

new design process was developed where topology optimization is used as a tool within the 

axiomatic design framework to identify potential design solutions and develop the functional 

requirements of the structure. This functional interpretation forces the designer to understand the 

origin of the features observed and avoids a direct interpretation of the topology. The physical 

interpretation then comes naturally while integrating design constraints, limiting coupling and 

maximising the chances of success. The process was successfully applied to generate design 

concepts for the pressure bulkhead and proved to support and add value to the topology 

optimization tool. This application confirms the research hypothesis stating the combining 

topology optimization to axiomatic design can be successful to overcome the challenges of the 

topology design process. This work contributes to the improvement of topology optimization 

based design as it provides a new and systematic methodology to generate design concepts. It is 

also the first proposal of combining axiomatic design and topology optimization which are two 
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powerful conceptual design approaches. The process can be generalized to any structure and has 

therefore a large application potential.  

Future work 

The application of topology optimization for the design of flat pressurized plate allowed the 

identification of several areas for future work. Density topology optimization could be used with 

a non-linear analysis and an evolutionary optimization solver in order to capture the non-linearity 

of the pressurized plate problem and explore other local optimums more efficiently. On the other 

hand, other optimization method could be suggested to explore the design space such as sizing 

optimization of a predetermined iso-grid pattern. The effect of combining in-plane loading to the 

pressure load could also be explored in further studies where more complex loading and design 

spaces are defined.  

The new design process proved to be efficient to generate design concepts but its support of the 

detailed design phase was not shown. For now, the process suggests using typical size and shape 

optimization along with detailed analysis to bring design concepts towards final designs. 

However, the axiomatic design principles could also be used to develop the functional 

decomposition and support the detailed design phase. It would be interesting to explore this 

avenue in future work on the design process. Finally, the proposed process was not applied to a 

large number of design cases and its use on other type of structures would be required to reach 

maturity. 
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APPENDIX A – Simplified pressure bulkhead model 

Model Description 

The model represents a simplified business aircraft rear pressure bulkhead. A section of the 

fuselage surrounding the design space is modeled in order to obtain representative boundary 

condition for the topology design space. The pressure is applied to the bulkhead skin and forward 

fuselage. Local structure such as fuselage frame flange and floor beams are modeled with CROD 

element allowing only tension and compression stiffness. Fuselage stringers are modelled by 

CBEAM element with circular cross section to ensure bending stiffness under pressure load. All 

shell elements have a thickness of 2mm. All dimensions and properties are showed in Figure A.1 

and are inspired from the real pressure bulkhead presented later in this chapter. The absolute 

value of these properties is not important but the relative stiffness between them is. For example, 

the floor beam rods are stiffer than the floor skin and this can favor this load path for the support 

of stiffeners.  

 

Figure A.1 : Simplified bulkhead model dimensions 

 

0.3Diameter 

Radius=1.25m 

Equally Spaced Stringers 
34 above floor 
20 below floor 
Approximate Spacing of 150mm 
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All Shell Thickness 2mm 

Frame CROD 
(A=130mm
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Floor Beam CROD  
(A=600mm
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Aft fuselage 

Forward  fuselage 
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Boundary conditions 

Particular finite element practices are used to represent the expansion of the section of the 

fuselage. Figure A.2 describes the modeling technique used to represent load and boundary 

conditions. The forward fuselage edge nodes are constrained to simulate symmetry in the XY 

plane (Single-Point Constraint (SPC) 345). The aft edge nodes are constrained for symmetry in 

the XY plane but allow free Z translation to avoid introducing compression in fuselage skin (SPC 

45). These two symmetries are not constraining the model for XY plane translation and Z axis 

rotation. In order to do so without constraining the expansion of fuselage under pressure, the 

stringer nodes at forward fuselage section cut are linked together with an interpolation element 

(RBE3). This is a common modeling approach to link nodes together without bringing additional 

stiffness to the model. The displacement of the central node (dependent) becomes function of the 

displacement of all stringer nodes (independent). The dependent node is attached in space with a 

high stiffness spring element (CBUSH). The use of spring element with high stiffness is required 

because a dependent DOF cannot be dependent of another rigid element. The free node of this 

spring element is constrained with the missing DOF. This set of elements and constraints allows 

fuselage expansion under pressure and avoid rigid body motion of the model in space. This can 

therefore provide realistic boundary conditions to the topology design space with a simplified 

model. 

 

Figure A.2 : Simplified bulkhead finite element attachment in space 

Fwd Fuselage Contour 
SPC 345 (Symmetry) 

SPC 45  
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RBE3 Connected to all stringers 
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connected to dependent node of RBE3 
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SPC: Single-Point Constraint 
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