POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: 'Heuristiqgues de branchement basées sur le dénombrement pour la
Title: résolution de problemes d'arbres de recouvrement contraints

Auteur:
Author:

Date: 2014

Type: Mémoire ou thése / Dissertation or Thesis

Simon Brockbank

L, Brockbank, S. (2014). Heuristiques de branchement basées sur le dénombrement
Reéference: pourla résolution de problemes d'arbres de recouvrement contraints [Master's
Citation: thesis, Ecole Polytechnique de Montréal]. PolyPublie.

https://publications.polymtl.ca/1462/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/1462/

Directeurs de
recherche: Gilles Pesant, & Louis-Martin Rousseau
Advisors:

Programme

*|Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/1462/
https://publications.polymtl.ca/1462/

UNIVERSITE DE MONTREAL

HEURISTIQUES DE BRANCHEMENT BASEES SUR LE DENOMBREMENT POUR
LA RESOLUTION DE PROBLEMES D’ARBRES DE RECOUVREMENT
CONTRAINTS

SIMON BROCKBANK
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

JUIN 2014

(© Simon Brockbank, 2014.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

HEURISTIQUES DE BRANCHEMENT BASEES SUR LE DENOMBREMENT POUR
LA RESOLUTION DE PROBLEMES D’ARBRES DE RECOUVREMENT
CONTRAINTS

présenté par : BROCKBANK Simon

en vue de 'obtention du diplome de : Maitrise es sciences appliquées

a été dument accepté par le jury d’examen constitué de :

M. GAGNON Michel, Ph.D., président

M. PESANT Gilles, Ph.D., membre et directeur de recherche

M. ROUSSEAU Louis-Martin, Ph.D., membre et codirecteur de recherche
M. HERTZ Alain, Doct. es Sc., membre

111

\

A ma meére, Louise, qui a fait preuve d’un immense support, qui était toujours la, qui a
partagé avec moi les grands moments, joyeux comme difficiles, ma soeur, Sara, qui m’a
toujours encouragé, ma copine, Catherine, qui m’a poussé a donner le meilleur de

moi-meme, a me dépasser, et mes amis, qui ont toujours cru en moi . . .

v

REMERCIEMENTS

J’aimerais remercier le Fond de recherche du Québec — Nature et technologies (FQRNT)
pour sa généreuse contribution a notre recherche. J'aimerais également remercier mon direc-
teur de recherche, Gilles, qui a su me guider, me conseiller et m’encourager tout au long de
ce projet de recherche. J’aimerais aussi remercier mon co-directeur, Louis-Martin Rousseau,

pour son aide précieuse.

RESUME

Ce mémoire se concentre sur la programmation par contraintes (CP), une approche puis-
sante pour résoudre des problemes combinatoires. Notre travail tourne autour de I'un des
concepts clés de la CP : les heuristiques de branchement. Cette composante définit comment
I’espace de recherche doit étre exploré, quelles régions devraient étre visitées en premier pour
trouver une solution rapidement. Le progres sur ce sujet est important, étant donné que la
CP n’admet toujours pas d’approche générique efficace pour la recherche.

Les heuristiques de branchement basées sur le dénombrement comme maxSD se sont mon-
trées efficaces pour une variété de problemes de satisfaction de contraintes. Ces heuristiques
ont besoin d'un algorithme dédié qui calcule la densité de solution locale pour chaque paire
de variable-valeur, pour chaque contrainte, de facon semblable a ce qui a été fait pour les
algorithmes de filtrage, pour appliquer l'inférence locale. Cependant, plusieurs contraintes
n’ont toujours pas de tel algorithme.

Dans notre travail, nous dérivons un algorithme exact qui, en temps polynomial, calcule la
densité de solution pour la contrainte d’arbre de recouvrement, a partir d’'un résultat connu
sur le nombre d’arbres de recouvrement dans un graphe non orienté. Nous étendons ensuite
cet algorithme pour les graphes orientés, ce qui nous permet de calculer la densité de solution
pour une contrainte d’anti-arborescence, également en temps polynomial.

Ensuite, nous comparons empiriquement les heuristiques de branchement basées sur ces ré-
sultats avec d’autres approches génériques. Tout d’abord, nous utilisons le probleme d’arbres
de recouvrement de degré contraint, sur des graphes non orientés pour démontrer l'effica-
cité de notre approche. Ensuite, pour les graphes orientés, nous utilisons le probleme de la
k-arborescence. Les heuristiques de branchement basées sur le dénombrement se montrent
comme des approches tres efficaces, autant pour le cas non orienté que pour le cas orienté,

trouvant rapidement des solutions avec un minimum de retours en arriere.

vi

ABSTRACT

This Master’s thesis focuses on Constraint Programming (CP), a powerful approach to
solve combinational problems. Our work revolves around one of the main components of CP
: branching heuristics. This component defines how the search space must be explored, which
areas should be visited first in order to quickly find a solution to the problem. Advances on
this topic are critical, since CP lacks a generic effective search approach.

Counting-based branching heuristics such as maxSD were shown to be effective on a
variety of constraint satisfaction problems. These heuristics require that we equip each family
of constraints with a dedicated algorithm to compute the local solution density of variable
assignments, much as what has been done with filtering algorithms to apply local inference.
However, many constraints still lack such an algorithm.

In our work, we derive an exact polytime algorithm to compute solution densities for a
spanning tree constraint, starting from a known result about the number of spanning trees
in an undirected graph. We then extend the algorithm for directed graphs, which allows us
to compute solution densities for a reverse arborescence constraint, also in polytime.

We then empirically compare branching heuristics based on those results with other
generic heuristics. First, we use the degree contrained spanning tree, on undirected graphs,
to demonstrate the effectiveness of our approach. Then, for the directed graphs, we use the
k-arborescence problem. Counting-based branching heuristics prove to be very effective for

both the undirected and directed case, finding solutions quickly and without many backtracks.

Vil

TABLE DES MATIERES

iii

REMERCIEMENTS] iv
v

vi

vii

ix

LISTE DES FIGURES X
xi

CHAPITRE [I_INTRODUCTION] e, 1
CHAPITRER REVUE DE LITTERATUREl. 8
[2.1 Heuristiques de branchement|. 0. 8
[2.2 Heuristiques de branchement basées sur le dénombrement|. 14
2.3 Contraintes d’arbres de recouvrement| 0L 16
2.4 STAs Contraintsl o 17
CHAPITRE 3__ALGORITHMES DE DENOMBREMENT! 19
[3.1 Algorithme de dénombrement pour les graphes non orientés|. 19
[3.2 Algorithme de dénombrement pour les graphes orientes| 25
CHAPITREE _MISEENOEUVRElo 30
M1 Modeles et contraintes oo 30
411 Casnonorientd 30

[4.1.2 Casorienté e 33

4.1.3 Calcul de la densite de solution| 35

[4.2 Integration a la recherche arborescentel 38
[4.2.1 Mise a jour de la matrice Laplacienne, cas non orienté. 38

[4.2.2 Mise a jour des densités de solution| 40

[4.2.3 Mise a jour de la matrice Laplacienne, cas orientél 41

[4.3 Complications| 43
CHAPITRE 5 EXPERIMENTATIONS ET DISCUSSION 45
5.1 Contrainte d’arbre de recouvrement| 45

) 1 ‘anti-arborescencel L. L 50
CHAPITRE[6_CONCLUSIONI s e, 53
[6.1 Synthese des travaux| 53
[6.2 Limitations de la solution proposee| 54
6.3 Améliorations futures| e 54

LISTE DES TABLEAUX

1X

[Tableau 5.1

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un arbre de recouvrement de degré maximum égal a 2. Chaque

ligne représente une moyenne sur 10 exemplaires.|

[Tableau 5.2

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un arbre de recouvrement de degré maximum égal a 3. Chaque

ligne représente une moyenne sur 10 exemplaires.|

[Tableau 5.3

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un chemin hamiltonien dans les crossroad graphs. Chaque ligne

représente une moyenne sur 10 exemplaires.|

[Tableau 5.4

Nombre de sommets (V) et d’arétes(kE) des trois topologies réelles| . . .

[Tableau 5.5

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un arbre de recouvrement de degré maximum egal a 3./

[Tableau 5.6

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un arbre de recouvrement de degré maximum egal a 2.|

[Tableau 5.7

Nombre de sommets (V) et d’arcs(E) des trois topologies réelles|

49
ol

[Tableau 5.8

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver une 10-arborescence (k = 10) pour chaque exemplaire. Chaque

ligne représente une moyenne sur 10 exemplaires, dont les sous-ensembles

de sommets candidats sont différents. Le degré entrant maximum des

sommets est de 3.

52

[Tableau 5.9

Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver une 13-arborescence (k = 13) pour chaque exemplaire. Chaque

ligne représente une moyenne sur 10 exemplaires, dont les sous-ensembles

de sommets candidats son diftérents. Le degré maximal entrant des

sommets est de 2.1 L

LISTE DES FIGURES

[Figure 1.1 Exemple d’arbre de recouvrement| 6
[Figure 3.1 Graphe non orientel 19
[Figure 3.2 Graphe orienté]o 19
[Figure 3.3 Matrice d’adjacence pour le graphe non oriente [3.1) 20
[Figure 3.4 Matrice d’adjacence pour le graphe oriente |3.2 20
[Figure 3.5 Matrice Laplacienne pour le graphe [3.1) 21
[Figure 3.6 Arbres recouvrants (arétes en rouge) présents dans le graphe |3.1] 22
[Figure 3.7 Mise a jour de la matrice Laplacienne pourz=1et 7 =2[. 23
[Figure 3.8 txemple d’application de la formule Sherman-Morrison| 24
[Figure 3.9 Matrice M iversée| 24
[Figure 3.10 Arbres recouvrants (en rouge et vert) incluant l'aréte (1,2)(en vert) . . 24
[Figure 3.11 Graphe orienté et sa matrice Laplacienne correspondante] 26
[Figure 3.12 Lyy, pour le digraphe [3.2]o o0 26
[Figure 3.13 Anti-arborescences (arcs en rouge) présentes dans le digraphe [3.2] . . . 27
[Figure 3.14 Mise a jour de la matrice Laplacienne pourz=1et 7 =2[. 27
[Figure 3.15 Exemple d’application de la formule Sherman-Morrison| 29
[Figure 3.16 Anti-arborescences du digraphe de la figure [3.2] incluant l'arc (1,2) |
| (vert, premiere rangée) et 'arc (2,4) (jaune, deuxieme rangée)| 29
[Figure 4.1 Intertace de Countable Constraint|{. 36
[Figure 4.2 Intertace de classe héritant de Countable Constrant|. 36
[Figure 5.1 Exemple de crossroad graph| 48

IETF
O8I
CP
CSP

STA

maxSD
IBS

x1

LISTE DES SIGLES ET ABREVIATIONS

Internet Engineering Task Force

Open Systems Interconnection

Constraint Programming (Programmation par contraintes)

Constraint Satisfaction Problem (Probleme de satisfaction de
contraintes)

Spanning Tree or Arborescence (Arbre ou arborescence de recouvre-
ment)

Maximum Solution Density (densité de solution maximum)

Impact-based Search

CHAPITRE 1

INTRODUCTION

Les problemes combinatoires sont riches et variés. Ils permettent de décrire de nombreuses
problématiques présentes en industrie ainsi que dans le milieu académique. Que ce soit pour
concevoir des réseaux, des horaires ou encore pour ordonnancer des taches dans une chaine
de montage, les problemes combinatoires sont présents dans d’innombrables domaines.

Il existe plusieurs approches permettant de s’attaquer a la résolution de problemes com-
binatoires NP-difficiles. La programmation en nombres entiers (IP, "Integer Programming”)
décrit les problemes comme des problemes mathématiques d’optimisation, dans lesquels les
variables ne peuvent prendre que des valeurs entieres. Dans plusieurs cas, les contraintes et
les fonctions objectifs sont toutes linéaires. Lorsque c’est le cas, 'approche prend le nom de
programmation de nombres entiers linéaire (ILP, "Integer Linear Programming”). Une fois
que le probleme est modélisé, plusieurs algorithmes existent pour le résoudre de fagon exacte.
La résolution de probleme formulé en programmation linéaire en nombres entiers repose sur
le calcul de sa relaxation linéaire, c’est-a-dire de la méme formulation a laquelle on per-
met aux variables de prendre des valeurs fractionnaires. Afin d’obtenir une solution entiere,
deux méthodes possibles. D’abord le branchement (Branch-and-Bound), 'ajout successif de
contraintes de séparation permet d’explorer ’ensemble de ’espace de recherche. Ensuite pour
I'ajout de contraintes additionnelles (Cutting Planes) ayant la propriété de séparer la solution
courante de la relaxation linéaire des solutions entieres réalisables du probleme. La combi-
naison de ces deux approches est aussi courante (Branch-and-Cut).

Les approches de recherche locale utilisent un voisinage, qui consiste a modifier 1égere-
ment une solution de base, afin d’obtenir de meilleures solutions au fur et & mesure que la
recherche progresse. L’idée est d’explorer I'espace de recherche en utilisant différents méca-
nismes pour éviter de visiter plusieurs fois la méme solution. Deux approches tres connues
sont le recuit simulé et la recherche taboue. Le recuit simulé fait souvent des changements
améliorant directement la solution et rarement des changements moins prometteurs, en uti-
lisant les probabilités. Plus la recherche avance, plus la probabilité de faire un choix peu
prometteur diminue. La recherche taboue utilise une liste taboue afin d’interdire les change-
ments déja faits, pendant un certain temps. Pour toutes les approches, il existe des méthodes
de diversifications ou de perturbation, qui consistent a modifier grandement une solution
existante, pour aller explorer un espace de recherche plus éloigné du voisinage.

Les solveurs SAT, une autre approche couramment utilisée, décrivent les problemes sous

la forme d’expressions booléennes a satisfaire. Le probleme combinatoire devient alors un
probleme de décision, dans lequel le solveur tente de donner une valeur aux variables de
facon a satisfaire I'expression booléenne ou prouver qu’elle est insatisfaisable.

La programmation par contraintes est une autre approche qui utilise le formalisme du CSP.
Un CSP modélise un probleme combinatoire a ’aide de variables, de leur domaine ainsi qu’'un
ensemble de contraintes, qui viennent expliciter les propriétés d’une solution au probleme qui
doit étre résolu. Un CSP est défini comme un triplet < X, D, C' > ou X représente ’ensemble
des variables du probleme, D représente I’ensemble des domaines des variables,c’est-a-dire les
valeurs que les variables peuvent prendre, et C représente I’ensemble des contraintes sur les
variables, qui restreignent les valeurs qu’elles peuvent prendre. Les contraintes indiquent les
propriétés que la solution au probleme doit respecter pour étre admissible. Voici un exemple
simple de CSP :

Exemple 1.1 (Exemple de CSP)
Soit un probleme de planification d’examens finauz. Pour les 6 cours suivants (variables), les
plages horaires suivantes(domaines, numérotées de 1 a 4) sont disponibles.

- INF4705 € {1,2,3,4}

- INF8702 € {2,3}

- INF3710 € {1, 3,4}

- INF1600 € {3,4}

- INF1500 € {1,2, 3}

- INF6101 € {1, 3,4}

Les examens ayant au moins un €éléve en commun doivent avoir une période différente,
sinon il y aura conflit. Voici les contraintes représentant ces conflits potentiels :

— INF4705 # INF3710

— INF4705 # INF1600

- INF3710 # INF1600

- INF8702 # INF6101

- INF1600 # INF1500

- INF1600 # INF6101

- INF1500 # INF6101

Voici un exemple de solution a ce probleme :

(ot == implique ’affectation d’une valeur a une variable) :

— INF4705 ==

- INF8702 ==

- INF3710 ==3

- INF1600 ==

— INF1500 ==
- INF6101 ==

La CP(Constraint Programming) est une approche permettant de résoudre les CSP qui
sépare la définition du probleme de sa résolution. Une fois modélisé, le probleme est résolu au
moyen d’un solveur. Le solveur CP peut étre divisé en deux couches distinctes qui collaborent.
La premiere est la recherche de solutions, dans laquelle le solveur tente d’attribuer des valeurs
aux variables afin de respecter I’ensemble des contraintes définies sur celles-ci. De fagon plus
précise, le solveur fixe généralement une seule variable a la fois, a une seule valeur, puis fait
appel a la deuxieme couche : la couche de filtrage. Dans cette couche, le solveur filtre les
domaines des variables, un contrainte a la fois. Cela signifie qu’il retire des domaines des
variables les valeurs qui, une fois attribuées aux variables restantes, ne respecteraient plus la

contrainte. Cette étape est répétée pour I’ensemble des contraintes du probleme.

Exemple 1.2 (Exemple de Résolution d'un CSP avec la CP)
Reprenons le CSP de l’exemple[1.1]. Les contraintes binaires, pour faciliter le filtrage, peuvent
étre regroupées. La contrainte globale alldifferent(S), ot S est une ensemble, implique que
chaque élément de cet ensemble doit avoir une valeur différente. En utilisant les contraintes
binaires définies dans l'exemple[1.1], les ensembles suivants peuvent étre construits :

— ensemble A = {INFA4705,INF3710,INF1600}

— ensemble B = {INF8702, INF6101}

— ensemble C' = {IN F'1600, IN F'1500, IN F6101}

Finalement, définissons les trois contraintes alldifferent impliquant ces ensembles :

— alldifferent(A), qui implique INF4705 # INF3710 # INF1600

— alldifferent(B), qui implique INF8702 # INF6101

— alldifferent(C), qui implique INF1600 # INF1500 # INF6101

Pour résoudre ce CSP, commencons par fixer la variable INF4705 a la valeur 1. Comme
INF}705 est impliquée dans la contrainte alldifferent(A), la valeur 1 doit étre filtrée des
domaines des variables INF3710 et INF1600. Voici donc les variables et leur domaines res-
tants :

~ INF4705 ==

- INF8702 € {2,3}

- INF3710 € {3,4}

- INF1600 € {3,4}

- INF1500 € {1, 2,3}

- INF6101 € {1, 3,4}

Fizons maintenant la variable INF8702 a 2. Le filtrage devrait retirer cette valeur du

domaine de la variable INF6101, a cause de la contrainte alldifferent(B), mais elle ne s’y
trouve pas, donc son domaine demeure le méme. Voici les nouveauxr domaines :

~ INF4705 ==

- INF8702 ==

- INF3710 € {3,4}

- INF1600 € {3,4}

- INF1500 € {1, 2,3}

- INF6101 € {1, 3,4}

Fizons maintenant INF1600 a 4, ce qui impliquera le filtrage de cette valeur du domaine de
INF3710, pour la contrainte alldifferent(A), mais aussi le filtrage pour les variables INF1500
et INF6101, pour la contrainte alldifferent(C) :

~ INFA705 ==
~ INF8702 ==
- INF3710 € {3}
~ INF1600 == 4

~ INF1500 € {1,2,3}
- INF6101 € {1,3}

Ces étapes sont répétées jusqu’a ce qu’une solution soit trouvée.

De fagon plus graphique, le filtrage réduit 1’espace de recherche de solutions en retirant
les valeurs du domaine des variables dont I'affectation ne menera pas vers une solution, avant
que celle-ci soit faite.

Le filtrage peut étre plus ou moins précis pour une contrainte donnée. Evidemment, plus
il est précis, plus il est couteux. Le filtrage le plus abordable est appelé cohérence de bornes.
Lorsqu’une solution implique une certaine assignation variable-valeur, on dit que la valeur
est supportée par cette solution. La cohérence de bornes garantit que la valeur maximale
et minimale de chaque domaine a un support, mais ne garantit rien pour toutes les valeurs
réelles entre ces deux dernieres. La cohérence d’arcs, beaucoup plus précise, garantit que
chaque valeur du domaine des variables est impliquée dans une solution.

Pour résoudre un probleme, un solveur CP ne fait qu’alterner entre ses couches de re-
cherche de solution et de filtrage, jusqu’a ce qu'une solution soit trouvée. Si jamais le domaine
d’une variable devient vide suite au filtrage (aucune assignation possible), le solveur fait un
"backtrack”, qui consiste a revenir sur une décision prise préalablement et retourner a 1’état
qu’il avait lors de cette prise de décision. Une variable fixée a une certaine valeur est alors
fixée a une autre valeur, ce qui relance le filtrage et a nouveau la recherche de solution. Ce
processus est répété jusqu’a ce qu'une solution soit trouvée ou que l'espace de solutions ait

été exploré en entier.

Exemple 1.3 (Exemple de "backtrack” avec la CP)
Reprenons le CSP de l'exemple et restreignons le domaine de la variable IN FA705 aux
valeurs {3,4}

Commencons par fixer la variable INF3710 a la valeur 3. Comme INF3710 sont tmpli-
quées dans la contrainte alldifferent(A), la valeur 8 doit étre filtrée des domaines des variables
INFA4705 et INF1600. Voici donc les variables et leur domaine restants :

- INF4705 € {4}

- INF8702 € {2,3}

- INF3710 ==

- INF1600 € {4}

- INF1500 € {1,2,3}

- INF6101 € {1, 3,4}

La contraite Alldifferent(A) détecte alors une impasse puisque les variables INF4705 et
Inf1600 ne pewvent prendre que la méme valeur (4). 1l y aura alors un backtrack sur ’affec-
tation a INF3710. Une nouvelle affectation peut donc étre faite, comme INF3710 == 1 par

exemple.

Malheureusement, le nombre d’affectations possibles (donner une valeur de son domaine a
une variable) est typiquement énorme pour un CSP. Il n’est donc pas possible de tester indi-
viduellement ’ensemble des assignations. De fagon générale, les solveurs décident de donner
ou non une certaine valeur a une variable. L’ordonnancement des branchements devient donc
une partie importante de la recherche de solutions, car elle permet de 'orienter rapidement
vers les parties de I’arbre de recherche les plus prometteuses. La CP utilise donc des heuris-
tiques de branchement pour guider la recherche. Il n’existe présentement pas d’heuristique
générique et efficace qui peut étre utilisée de facon automatique par les solveurs CP. Il existe
I'heuristique de choix de variable plus-petit domaine d’abord (minsize), qui est générique et
relativement efficace ; des heuristiques plus spécialisées, plus efficaces pour certains problemes
sont nécessaires et ont été développées. Les heuristiques de branchement basées sur le dé-
nombrement de solution ont récemment été proposées et s’averent tres efficaces pour un bon
nombre de problemes. Elles nécessitent cependant un algorithme de dénombrement spécia-
lisé, pour chaque famille de contraintes. De tels algorithmes existent pour un bon nombre
de contraintes, mais il en reste certaines pour lesquels ces algorithmes n’ont pas encore été
développés. La contrainte d’arbre de recouvrement, nécessaire pour traiter de nombreux pro-
blemes de réseaux, n’a pas de tel algorithme.

Trouver un I’arbre de recouvrement dans un graphe est un probleme bien connu. Pour
le résoudre, un sous-ensemble d’arétes connexe couvrant tous les sommets, sans former de

cycle, est trouvé dans un graphe connexe et non orienté. Il est facile de le résoudre en temps

polynomial, méme dans sa version d’optimisation : 'arbre de recouvrement minimal (MST :
minimum spanning tree). A la figure 1.1} les arétes (1,2), (1,4) et (2,3) en rouge couvrent

tous les sommets sans former de cycle et constituent un arbre de recouvrement.

— —

/

3
\
4
Figure 1.1 Exemple d’arbre de recouvrement

Bien que ce probleme puisse étre résolu en temps polynomial, ajouter certaines contraintes
a I’arbre de recouvrement le rend NP-Difficile. Or, de tels problemes sont fréquents : concep-
tion de réseaux informatiques, télécommunication ou élaboration de réseaux de transport. Le
probléme d’arbre de recouvrement avec degré contraint[2§], le probleme d’arbre de recouvre-
ment hop-contraint[15] et 'arbre de recouvrement de diametre contraint[3] sont des exemples
de problemes pour lesquels un arbre de recouvrement contraint doit étre trouvé.

Ce mémoire s’attarde sur les heuristiques de branchement basées sur le dénombrement
de solutions, en particulier pour les problemes relatifs aux arbres de recouvrement, dans des
graphes non orientés. Nos contributions principales sont les suivantes :

— L’élaboration d’un algorithme permettant de dénombrer les solutions pour la contrainte

d’arbre de recouvrement non orientés, a partir de théoremes mathématiques existants.

— L’implémentation et 1'utilisation de cet algorithme dans une heuristique de branche-
ment, qui guide la recherche en fonction de la densité de solutions.

— La résolution de problemes d’arbres de recouvrement contraints avec la nouvelle heu-
ristique proposée.

— La généralisation de l'algorithme de dénombrement pour les graphes orientés, ce qui
implique une généralisation de I'heuristique de branchement qui en découle.

— L’utilisation de cet algorithme généralisé dans une heuristique de branchement, qui
guide la recherche en fonction de la densité de solutions.

— La résolution de problemes d’arborescences contraintes avec la nouvelle heuristique
proposée.

— L’élaboration et la mise en place d'une procédure de mise a jour des matrices utilisées
pour le calcul de la densité de solution, pour la contrainte d’arbre de recouvrement et
d’anti-arborescence.

— L’élaboration et la mise en place d’'un méthode permettant de calculer les densités
de solutions de fagon incrémentale, pour la contrainte d’arbre de recouvrement et la

contrainte d’anti-arborescence.

Le mémoire est organisé comme suit : le chapitre [2[résume le travail précédant ce mémoire.
Le chapitre [3|introduit nos algorithmes de dénombrement pour les arbres de recouvrements.
Le chapitre [4 présente la mise en oeuvre des algorithmes du chapitre [3] Les résultats expé-
rimentaux, issus de la comparaison des heuristiques de branchement basées sur le dénombre-
ment avec d’autres approches, sont donnés dans le chapitre [5] Finalement, la conclusion est

présentée dans le chapitre [6]

CHAPITRE 2

REVUE DE LITTERATURE

Dans ce chapitre, la recherche précédant le travail réalisé dans ce mémoire est abordée. Ce
chapitre commence par la section [2.1], qui explique différentes heuristiques de branchement.
Ensuite, la section aborde les heuristiques de branchement basées sur le dénombrement
et les algorithmes de dénombrement proposés pour plusieurs contraintes. Le travail fait sur
les contraintes d’arbre de recouvrement est expliqué a la section 2.3] Enfin, les arbres ou

arborescences contraints sont abordés a la section [2.4]

2.1 Heuristiques de branchement

Pour la CP, il n’existe pas a ce jour d’approche exacte, générique et intégrée au solveur
pour choisir dans quel ordre les variables-valeurs, appelés branchements, doivent étre choisies.
Conséquemment, la CP fait appel aux heuristiques de branchement pour explorer rapidement
les parties les plus prometteuses de ’arbre de recherche, afin de trouver efficacement des
solutions aux CSP. En se basant sur plusieurs criteres, tels la structure du probleme, la taille
des domaines ou I'impact d’une assignation sur les autres domaines, ces heuristiques indiquent
quel branchement il est préférable de faire a un endroit précis dans ’arbre de recherche. Il
existe un certain dilemme pour 'utilisation des heuristiques de recherche : les heuristiques
tres simples utilisent peu la structure du probleme, donc guident moins bien la recherche. Les
heuristiques plus complexes, guidant mieux la recherche, demandent un temps de calcul plus
important. Dans cette section, différentes heuristiques de branchement seront décrites.

Les heuristiques de branchement se divisent en trois catégories principales, impliquant
chacune un choix sur une composante particuliere du branchement. La premiere est celle se
concentrant sur le choix de la variable. Ce type d’heuristique détermine quelle variable il est
préférable de fixer en premier. La deuxieme catégorie est ’heuristique qui fait un choix de
valeur. Une fois la variable choisie, cette approche détermine quelle valeur il est préférable
de donner a la variable en premier. Enfin, la troisieme et derniere catégorie fait a la fois le
choix de variable et de valeur.

L’une des premieres stratégies de branchement introduites fut celle du "fail-first principle”,
proposée par Haralick et Elliott [16]. L’idée derriere cette approche est fort simple : il s’agit de
faire le plus restrictif, le plus difficile, des le début. Ce faisant, faire le choix qui risque de mener

vers un échec (branchement ne menant vers aucune solution) s’est montré trés bénéfique.

Haralick et Elliott ont démontré que les approches respectant ce principe permettent d’obtenir
de meilleurs résultats que les approches standards [16]. Un grand nombre d’heuristiques de
branchement simples s’inspirent de ce principe.

Une heuristique appliquant directement ce principe est I'heuristique de choix de variable
plus-petit-domaine-d’abord[16]. Cette heuristique trés simple peut étre appliquée a prati-
quement n’importe quel probleme. Le principe est le suivant : la variable dont le domaine
comporte le plus petit nombre de valeurs est beaucoup plus prompte a causer un échec dans
la recherche de solutions, étant donné que le choix de valeurs possibles pour cette variable
est plus restreint. Puisque cette variable risque de causer des échecs, il est beaucoup plus
judicieux de lui assigner une valeur des le début de la recherche et obtenir un échec presque
immédiatement, plutot qu’apres un grand nombre de branchements, ce qui reviendrait a

perdre du temps.

Exemple 2.1 (Heuristique Plus-Petit-Domaine-d’Abord)
Soit le CSP simple avec les variables et domaines suivants :

-a€{l,2,3}

-be{2,3,5}

- ce{3,4}

- de{3,4}

et la contrainte globale alldifferent<a,b,c,d>, qui implique que les 4 variables ne doivent
pas étre fizées a la méme valeur. (a ==2 et b==2 ne respecterait pas cette contrainte). Nous
supposons ici un algorithme de filtrage simple qui ne considere que les contraintes binaires.

Si Uheuristique plus-petit-domaine-d’abord est appliquée, on branchera d’abord sur la va-
riable ¢ ou d, car les deux ont un domaine de taille 2, tandis que les variables a et b ont
trois valeurs dans leur domaine. Par exemple, prenons ¢ == 3. La valeur 8 doit donc étre
éliminée des autres domaines, car autrement, a,b ou d pourrait prendre la méme valeur que
c. Ce faisant, les nouveaur domaines deviennent :

-a€e{l,2}

- be{2,5}

- de {4}
La variable d sera fizée sans branchement, car elle n’a qu’une seule valeur dans son

domaine.

Il existe aussi d’autres heuristiques de branchement qui tentent de maximiser le filtrage en
choisissant des valeurs qui auront un impact important sur le domaine des autres variables.

L’heuristique "Impact-based search”, proposée par Refalo [37] choisit la variable ayant le

10

plus grand impact dans la recherche de solution. Cette approche mesure 'impact de chaque
assignation en calculant le produit de la taille des domaines de I’ensemble des variables, de
la facon suivante :

P =|D,|x..x|D,,|

ou P représente le produit de la taille des domaines des variables x; a z,

L’impact d’une affectation peut alors étre calculé comme suit :

I(xi::a):l—%

Ou I est I'impact pour une assignation donnée. Pyant €t Papres représentent le produit de
la taille des domaines avant et apres 1’assignation, respectivement.

Plus la taille de 'espace de recherche sera diminuée, plus 'impact calculé sera grand.
Cependant, calculer I'impact pour toutes les assignations possibles a chaque branchement
s’avere couteux. Il est possible de faire une moyenne des impacts pour une variable donnée,
en sommant l'impact de chaque assignation et en divisant par le nombre d’assignations.
Cette méthode est beaucoup plus efficace. Cette stratégie globale permet de résoudre des
exemplaires de problemes qui étaient auparavant impossibles a résoudre avec des stratégies

standards, comme plus-petit-domaine-d’abord.

Exemple 2.2 (Heuristique Impact-based search)

Soit le méme CSP que celui utilisé dans 'exemple [2.1]
Calculons le produit des domaines P de base :
P = |D,| x |Dy| X |D.| X |Dg| =3 x3x2x2=36

Calculons maintenant [tmpact de chaque assignation : St a == 1 est choist, la valeur 1
doit étre retirée de tous les domaines (aucun dans ce cas-ci)
_ _ Papres 1xX3X2x2 __ 12 _ 24
Ila==1)=1-p2=1—- 2522 =1—2 =%
St a== 2 est choisi, la valeur 2 sera retirée du domaine de b.
o _ Papres 1X2X2Xx2 __ 8 __ 28
[la==2)=1-p"0=1-"57F=1—-5=15
st a==3 est choisi, la valeur 3 devra étre retiré des domaines de b,c et d
_ _ Papres I1x2x1x1 __ 2 _ 34
](CL——)_1_Pa::ant_1_ X??%x —1—%—%
Voici les Impacts pour les autres assignations :
—_9)_ 28
I(b==2) =5
9\ _ 34
I(b==23) =5
__Ey_ 2
I(b==5) =z
9y _ 32
I(c==4)= %
I(d==3)=%2
I(d==14)= %

11

Comme le rapport le plus grand est celui de I(a == 3), il sera choisi.

Une autre stratégie de branchement élaborée est 1'heuristique dom/wdeg, proposée par
Boussemart et al. [8]. Cette approche attribue un poids initial de 1 a chaque contrainte.
A chaque fois qu'une contrainte cause un échec (le filtrage causé par cette contrainte vide
le domaine d’une variable), son poids est augmenté de 1. Le degré pondéré d’une variable
correspond a la somme des poids des contraintes qui I'impliquent. Cette information, si le
“fail-first principle” est considéré, devient tres intéressante, car elle permet d’ordonner les
variables en fonction de la somme des poids des contraintes qui y sont associées. Un ratio
divisant la taille du domaine par le degré pondéré de la variable peut alors étre calculé.
L’heuristique ne fait que choisir la variable ayant le plus petit rapport, ce qui correspond a

choisir la variable qui a le plus grand potentiel de conflit d’abord.

Exemple 2.3 (Heuristique dom/wdeg)
Soit le méme CSP que celui utilisé dans l'exemple [2.1. Ajoutons la contrainte arithmétique

sutvante :
a+c>6
Les variables ont les degrés pondérés suivants initialement :
degré a = 2
degré b =1
degré ¢ = 2
degré d =1
Calculons les ratios initiaus :
ratio a = LZ—;J = %
ratio b = % = %
ratio ¢ = lli)—gcc‘ = %
ratio d = % = %

Comme la variable ¢ admet le plus petit ratio, elle sera choisie d’abord. Fixons c==3.
La contrainte alldifferent retire la valeur 3 de tous les domaines, tandis que la contrainte
arithmétique retire toutes les valeurs du domaine de a, car aucune ne permet de respecter la

contrainte. Les domaines deviennent :

- de {4}
Comme la contrainte arithmétique cause un échec, vidant le domaine de la variable a, son
poids augmente et prend la valeur 2. Ce faisant, les degrés des variables a et ¢ augmenteront

et prendront la valeur 3. Apres le backtrack, les domaines sont les suivants :

12

-a€{l,2,3}
~be{2,3,5)
- ce {4}

- de{3,4}

les ratios deviennent :

. D
ratio a = L—“' =
ega
| D]
degp
. D
ratio ¢ = 1D _

ratio b =

ratio d = =4 =

=0 Wi =N ol

La variable ¢ sera choisie ensuite, car elle a le plus petit ratio.

L’activité des variables dans le filtrage du solveur peut également étre utilisée pour guider
la recherche. L’heuristique de branchement ”Activity-based search”, inspirée des solveurs SAT
(heuristique VSID[27]), a été proposée par Michel et Van Hentenryck|26]. Elle mesure a quelle
fréquence le domaine d’une variable est modifié. L’activité d’une variable x dans ’ensemble
des variables X du CSP est calculée de la facon suivante :

Vee X — X' tq. |D(x)] >1:Ax) = A(z) - v

Vee X' A(x) = A(z) + 1

0<y<1

Ou X'’ est 'ensemble des variables affectées. Il faut évidemment que le domaine de la
variable soit plus grand que 1 pour que son activité soit considérée, autrement elle est déja
fixée. La valeur de ~, située entre 0 et 1, affecte a quelle vitesse l'activité d’une variable
diminue d’une itération a l'autre. Plus sa valeur est petite, plus l'activité d’une variable
décroit rapidement en fonction du temps. Ainsi, de facon générale, I'activité relative a une
variable diminue avec le temps, mais augmente si son domaine est régulierement affecté.

L’activité est mise a jour a chaque noeud de l'arbre de recherche. Un ratio peut alors étre
A(z)

|D()[*
est la plus active d’abord. Il est également possible d’estimer 'activité relative a ’assignation

En utilisant ce ratio, il est possible d’ordonner les variables et de choisir celle qui

calculé

d’une valeur.

Exemple 2.4 (Heuristique Activity-based search)
Soit le méme CSP que celui utilisé dans 'exemple [2.]]
Choisissons un v = 0.5 et initialisons 'activité de chaque variable a 1.
Fizons a == 2, comme premiere assignation. Les domaines des variables deviennent :
P —
- be{3,5}
- ce{3,4}

13

- de{3,4}

Le domaine de la variables b est affecté, ce qui augmente son activité :

Ab)=Ab)+1=2

La mise a jour des ratios doit également étre faite pour les variables dont les domaines
demeurent inchangés :

Ac) = A(e) x 0.5 =0.5

A(d) = A(d) x 0.5 =0.5

Calculons les ratios :

: _ AL 2 _
mtwb—m—§—1
ratio ¢ = ‘2;)):%:0.25

: _ _ 05 _
ratio d = D4l == =0.25

Comme b a le plus grand ratio, c’est la variable la plus active. Elle sera choisie.

D’autres approches tentent plutot de mesurer le bénéfice de fixer ou de ne pas fixer une
certaine valeur a une variable a un moment donné, dans un probleme d’optimisation. C’est
le cas de la stratégie du regret[33]. L’idée derriere cette stratégie est la suivante : mesurer le
bénéfice résultant de 'assignation d’une certaine valeur a une variable et ensuite mesurer la
perte résultant de faire un choix différent. Cette perte est appelée regret. L’heuristique de

branchement en découlant tente de minimiser le regret.

Exemple 2.5 (Heuristique de branchement regret)
Soit le CSP suivant, sous sa version optimisation, ou la fonction objectif attribue les bénéfices
(ici donnés arbitrairement) suivants (entre parenthéses) pour chaque valeur du domaine :

- a€{1(5),2(10),3(12)}

- b€{2(5),3(2),4(8)}

- ce{303),4(4)}

Considérations de [’heuristique

— Considérons la valeur 4, pour la variable b. Si ’assignation b==4, dont le bénéfice est
de 8 n’est pas faite, le mieux qu’il est possible de faire est b == 2, qui donne un bénéfice
de 5. Conséquemment, si l’assignation b == 4 n’est pas faite, [’heuristique estimera un
regret de 3.

— Considérons la valeur 3 pour la variable a. Le maximum possible est 12, avec a ==3.
Ensuite, si a==3 n’est pas choisi, a==2 peut [’étre, ce qui constitue un regret de 2.

— Pour la variable ¢, si c==4 est choisi, le bénéfice est de 4, tandis que ’alternative ne
permet qu’un revenu de 3, ce qui résulte en un regret de 1.

Comme Uaffectation b == 4 admet le plus grand regret, elle sera faite en premier.

14

2.2 Heuristiques de branchement basées sur le dénombrement

Récemment, des heuristiques basées sur le dénombrement ont été proposées. Ces heuris-
tiques sont tres efficaces, mais nécessitent un algorithme de dénombrement adapté a chaque
contrainte.

L’idée générale des heuristiques de dénombrement est de prendre une décision de bran-
chement en se basant sur le nombre de solutions qui la supportent et qui incluent cette
assignation particuliere. De facon plus formelle, ces heuristiques utilisent les concepts de dé-
nombrement de solutions et de densité de solution [31], 45l [34], qui sont définis de la fagon

suivante :

Définition 2.2.1 (Dénombrement de solution)
Etant donné une contrainte c(xy,...,x,) et les domaines finis respectifs D;;1 < i < n,

#c(xq, ..., xp) représente le nombre de n-tuples dans la relation correspondante.

Définition 2.2.2 (Densité de solution)
Etant donné une contrainte c(x1,...,x,) et les domaines finis respectifs D;, 1 < i < n, pour

une variable x; incluse dans la contrainte ¢ et une valeur d € D;, nous appelons

#C<x1a s 7x7§—1)d7 Lit1y .- 7*rn)

#Hc(xry, ..., xy)

o(x;,d, c) =

la densité de solution d’une paire (z;,d) dans c. La densité de solution mesure a quelle

fréquence un choiz variable-valeur fait partie d’une solution respectant la contrainte c

L’idée d’utiliser le nombre de solutions pour guider la recherche a déja été exploitée par
le passé. Kask et al. [20] ont proposé une heuristique qui approxime le nombre de solu-
tions qui étend une solution partielle. Celle-ci choisit I’assignation participant au plus grand
nombre de solutions pour la variable courante. Une heuristique basée sur la distribution des
solutions, proposée initialement par Hsu et al. [I7] et ensuite améliorée par [22], utilise le
framework "Expectation-Maximisation Belief Propagation” (EMPB). La probabilité qu'une
variable prenne une certaine valeur dans une solution est calculée, puis utilisée pour gui-
der la recherche. Les travaux utilisant la densité de solution[31, 45, 34] different des autres
approches, car le calcul est fait individuellement pour chaque contrainte.

La densité de solution peut étre calculée de fagon exacte ou approximée, pour une contrainte
donnée. Pour ce faire, un algorithme de dénombrement, adapté a une contrainte particuliere,
est nécessaire. En utilisant des informations intrinseques aux contraintes, ainsi que des pro-
priétés mathématiques, le nombre de solutions impliquant une assignation particuliere peut
étre calculé ou approximé. Par exemple, le calcul du permanent, une fonction de la ma-

trice similaire au déterminant, peut étre utilisé pour évaluer la densité de solution pour la

15

contrainte alldifferent [45], [34], en construisant la matrice représentant le graphe de valeurs
pour 'ensemble des variables de la contrainte.

Il existe cependant un compromis entre la précision de l'algorithme de dénombrement
et son efficacité dans I’heuristique de recherche. Comme le dénombrement de solutions doit
étre fait avant chaque branchement, il doit étre le plus efficace possible, sinon il serait moins
couteux de risquer un branchement moins bon et d’éventuellement atteindre une solution,
que de faire un long calcul menant directement a celle-ci. Dans cette optique, Pesant et al.
[34] bornent le permanent, ce qui est nettement plus rapide que de le calculer exactement.
Bien que I'heuristique basée sur le dénombrement de solutions perde de la précision, le fait
d’avoir un calcul plus performant permet d’opter pour une solution combinée : un calcul
moins précis, mais moins cotiteux, ce qui s’avere beaucoup plus efficace globalement.

Pesant et al. [34] décrivent des algorithmes de dénombrement pour de nombreuses autres
contraintes : alldifferent symétrique, cardinalité globale, regular et knapsack, qui permettent
de résoudre de nombreux autres problemes. Pour la version symétrique de la contrainte
alldifferent, les auteurs étendent I'algorithme développé pour la contrainte alldifferent de base.
Ils calculent une borne supérieure du permanent de fagcon un peu moins précise qu’avec la
contrainte de base. La contrainte de cardinalité globale est une généralisation de la contrainte
alldifferent, donc les auteurs utilisent une fois de plus une borne supérieure sur le permanent
pour dénombrer les solutions. Pour les contraintes regular et knapsack, Pesant et al. [34]
proposent un algorithme exact. Les auteurs décrivent également un algorithme approché
pour la contrainte knapsack.

Des algorithmes de dénombrement ont également été proposés pour d’autres contraintes
globales : element[35] et spread/deviation[32]. Pour la contrainte element, un algorithme
exact est proposé. Un algorithme exact est également décrit par I'auteur pour la contrainte
spread /deviation.

Pesant et al. [34] ont généralisé le concept d’heuristique basée sur le dénombrement de
solution sous la forme d’une heuristique générique, centrée sur la contrainte. Leur approche,
maxSD (max Solution Density), combine le choix de variable et de valeur en itérant sur chaque
variable et chaque valeur de son domaine. L’assignation ayant la densité de solution la plus
élevée est choisie. Au fur et a mesure que la recherche de solution progresse, les densités de
solutions sont recalculées ou mises a jour, ce qui permet d’utiliser cette heuristique jusqu’a
ce que le probleme soit résolu.

Bien que des algorithmes de dénombrement existent pour plusieurs contraintes, il en reste
plusieurs pour lesquels un tel algorithme n’a pas encore été développé. La contrainte arbre
de recouvrement, qui permet de modéliser plusieurs problemes de réseaux, n’admet toujours

pas d’algorithme de dénombrement. La prochaine section donne plus de détails sur ce type

16

de contrainte.

2.3 Contraintes d’arbres de recouvrement

La recherche dans la communauté CP sur les structures d’arbres imposées s’est concentrée
sur les algorithmes de filtrage et non sur les heuristiques de branchement.

Beldiceanu et al. [6] ont introduit la contrainte d’arbre, qui permet le partitionnement d’un
probleme de digraphe avec une perspective de CP. Dans leur travail, une contrainte utilisant
une variable de type ensemble pour représenter une anti-arborescence est proposée. Ce type
de variable regroupe tous les sommets faisant partie de I'anti-arborescence dans un ensemble
et ceux n’en faisant pas partie dans I'autre. Avec leur contrainte, les auteurs obtiennent une
cohérence de domaine en O(nm), ou n est le nombre de sommets du graphe, tandis que m
est le nombre d’arétes. Le filtrage de leur contrainte repose sur l'identification des points
d’articulation du graphe, ainsi que sur ses racines et ses puits. Ces informations sont utilisées
pour évaluer le nombre minimum et le maximum d’arbres nécessaires pour partitionner le
graphe.

Dooms et Katriel [9] ont introduit la contrainte MST, qui requiert une variable arbre
pour représenter ’arbre de recouvrement minimum du graphe sur lequel la contrainte est
définie. Plusieurs variantes du probleme de 'arbre de recouvrement minimum, comme le
"minimum k-spanning tree” et le "Steiner tree” sont connus pour étre NP-difficiles, bien que la
version de base du probleme puisse étre résolue en temps polynomial. Ces problemes peuvent
étre modélisés en combinant la contrainte d’arbre de recouvrement minimum et d’autres
contraintes. Les auteurs ont proposé un algorithme de filtrage qui maintient la cohérence de
borne en temps polynomial, pour plusieurs restrictions de cette contrainte. Leur algorithme
divise les arétes en trois ensembles : obligatoires, possibles et interdites. Par la suite, Dooms
et Katriel [I0] ont proposé une version de la contrainte avec un poids (weighted spanning tree
contraint), dans laquelle 'arbre de recouvrement et le poids des arétes sont des variables. Ils
considerent plusieurs algorithmes de filtrage. Dans leur travail, une variable d’ensemble est
utilisée, indiquant quelles arétes font partie de I’arbre de recouvrement.

Le filtrage proposé par Dooms et Katriel [10] a par la suite été simplifié et amélioré par
Régin [38], qui a proposé un algorithme de filtrage incrémental, qui maintient plusieurs com-
posantes connexes et représente les opérations de fusion des arbres disjoints dans 1’algorithme
de Kruskal. Conséquemment, la cohérence de domaine a été atteinte pour cette contrainte,

en O(m+nlogn). Subséquemment, Régin et al. [39] ont amélioré la complexité de ce filtrage.

17

2.4 STAs Contraints

Bien que le probleme de larbre de recouvrement minimal puisse se résoudre en O(n?)
avec les algorithmes de Prim et Kruskal, ajouter certaines contraintes sur celui-ci le rend NP-
difficile. Plutot que de trouver un arbre de recouvrement minimum, il peut étre intéressant
d’énumérer tous les arbres recouvrants possibles dans un graphe. Comme nous considérerons
a la fois les graphes orientés et non orientés dans notre travail, nous utiliserons STA (Spanning
tree or Arborescence) pour référer aux arbres (non orientés) ou arborescences (orientées) de
recouvrement.

Beaucoup de recherche a été faite sur I'’énumération des STAs dans les graphes. Gabow
et Myers [I3] ont d’abord introduit un algorithme qui trouve tous les STAs dans les graphes
orientés ou non orientés. Leur approche utilise le "backtracking” et la recherche en profondeur,
énumérant tous les STAs en O(V + E + EN), ou V, E et N représentent le nombre de
sommets, arétes et STAs, respectivement. Kapoor et Ramesh [I8] ont présenté un algorithme
pour trouver les STAs dans les graphes non orientés avec des arétes avec ou sans poids. En
construisant d’abord un arbre et en utilisant une approche pour parcourir celui-ci, les auteurs
sont capables de représenter les STAs en décrivant uniquement les changements relatifs d’un
STA al’autre, plutot qu’en les décrivant entierement . Ils améliorent ensuite la performance de
leur approche pour les graphes orientés[19], en présentant un nouvel algorithme, qui énumere
tous les STAs en O(NV +V?3). Leur approche implique I’échange d’arcs faisant partie ou non
du premier STA décrit, ce qui permet de les énumérer tous. Uno [42] a également proposé
une approche pour énumérer tous les STAs dans un graphe orienté, en O(E + ND(V, E)), ou
D(V, E) est la complexité de la structure de données nécessaire pour mettre a jour le STA,
dans un graphe non orienté de V' sommets et F arétes.

Les approches énumérées dans le paragraphe précédent énumerent les STAs en appliquant
principalement des changements locaux. Notre travail se distingue de cette recherche par son
objectif principal : utiliser I'information locale sur les arétes (densité de solution) comme
heuristique de branchement, pour construire un STA. Nous utilisons le filtrage de la contrainte
d’arbre de recouvrement pour calculer le nombre de solutions impliquant une certaine arete.
Au fur et & mesure que la recherche de solution progresse, 'information sur les arétes est
mise a jour, jusqu’a ce qu'un STA complet soit construit. Notre travail peut donc étre utilisé
pour énumérer les STAs, mais notre intérét se situe plutot au niveau des STAs contraints.

Il existe de nombreux probléemes impliquant une contrainte de degré sur le STA. Lok-
shtanov et al. [23] considerent le ”degree preserving spanning tree problem”. Ils considérent
explicitement deux problemes en particulier[24]. Le premier est le "full degree spanning tree

problem” qui, étant donné un graphe connexe et non orienté, détermine si le graphe G contient

18

un STA T dans lequel au moins k£ sommets ont le méme degré dans GG que dans 7. Les au-
teurs généralisent ce probleme aux graphes orientés. Ils considerent également le probleme
inverse, le "reduced degree spanning tree”, dans lequel au moins £ sommets doivent avoir un
degré différent dans G et T'. L’intérét d’un tel probleme se situe au niveau de la conception
de réseaux de distribution d’eau, ot un nombre minimal d’appareils mesurant le débit devait
étre installés[30].

Un exemple de probléme plus général est le "minimum degree spanning tree problem”[12],
qui consiste a trouver le STA ayant le plus petit degré maximum dans le graphe. Les auteurs
proposent un algorithme approximatif pour résoudre ce probleme, dont la généralisation
permet également de résoudre le "minimum degree steiner tree problem”. Ce dernier probleme
implique la construction d’un sous-graphe de recouvrement dont certaines composantes ne
sont pas connexes.

Il existe également des contraintes qui ne sont pas reliées aux degrés des sommets du STA.
Par exemple, Alon et al. [4] décrivent le "directed maximum leaf out branching problem”; qui
consiste a trouver le STA ayant le plus grand nombre de feuilles. Ce probleme NP-difficile
admet également une version non orientée, qui est également NP-difficile[14]. L’intérét de
ces problemes se situe au niveau de la conception de protocoles de routage, ou les nombres
d’entrées et de sorties des routeurs est limité.

Beaucoup de travail a également été fait sur les STAs contraints dont les arétes ont des
poids, ce qui en fait des problemes d’optimisation. Khandekar et al. [21] décrivent un algo-
rithme approximatif pour résoudre le "minimum-cost degree constrained 2-node connected
subgraph problem”. Résoudre ce probleme implique la recherche d’'un MST dont tous les som-
mets ont un degré inférieur a une certaine valeur. Ce MST doit également étre 2-sommets
connecté, ce qui signifie que le retrait de n’importe quel sommet n’affecte pas la connexité du
sous-graphe. Nutov [29] donne un algorithme approximatif pour résoudre le "directed weigh-
ted degree constrained network”, probleme qui implique la recherche d’un sous-graphe de cotit
minimum f-connecté (le retrait de f sommets ne déconnecte pas le sous-graphe) qui satisfait
également des contraintes de degré. Un autre probleme est le "minimum crossing spanning
tree problem”; considéré par [5]. Ce probleme est résolu en trouvant un MST qui contient au
moins b arétes faisant partie d’'un sous-ensemble d’arétes e € E. Les auteurs proposent une
amélioration a la garantie d’approximation de I'algorithme existant, en plus d’'une extension
a la technique de résolution pour le cas orienté.

Notre travail se situe au niveau de la résolution des problemes de satisfaction, pour les
graphes orientés et non orientés. Nous ne considérons donc pas les problemes d’optimisation
impliquant un poids sur les arétes, mais uniquement les problemes ot un STA respectant

certaines contraintes doit étre trouvé.

19
CHAPITRE 3

ALGORITHMES DE DENOMBREMENT

Dans ce chapitre, les algorithmes de dénombrement proposés pour la contrainte d’arbre de
recouvrement et d’anti-arborescence sont détaillés. A la section , I’algorithme de dénom-
brement est démontré et expliqué pour les graphes non orientés. A la section , I’algorithme

est étendu pour les graphes orientés.

3.1 Algorithme de dénombrement pour les graphes non orientés

Un graphe est défini comme G = (V| FE) ou V est un ensemble de sommets et E est un
ensemble d’arétes, couplant les sommets de V. Un graphe non orienté a un ensemble d’arétes
qui couple les sommets de fagon non ordonnée. Un graphe orienté, ou digraphe, a plutot un
ensemble d’arcs, qui couple les sommets de facon ordonnée. Les arcs ont une information de
plus que les arétes : un sens.

Lo
W
1 — 4

Figure 3.1 Graphe non orienté

= DN

\

=~ — W

Figure 3.2 Graphe orienté

En comptant le nombre d’arétes reliées a un sommet d’un graphe non orienté, le degré
deg(v) d’'un sommet v est obtenu. Pour un graphe, il est possible de calculer le degré sortant
et entrant du sommet. Le degré entrant, noté deg™(s), correspond au nombre d’arcs orientés
vers le sommet, tandis que le degré sortant, noté deg™(s), correspond au nombre d’arcs dont
I'origine est le sommet.

Un graphe G’ = (V', E') est défini comme un sous-graphe induit de G = (V, E) si V! C V|
E' C E et si E' est 'ensemble des arétes de E dont les deux sommets font partie de V'. G’

20

est un graphe connexe si pour chaque paire de sommets u,v € V' il existe au moins un chemin
entre u et v. Un arbre est un graphe non orienté acyclique connexe.

Continuons avec une définition plus formelle d’un arbre de recouvrement :

Définition 3.1.1 (Arbre de recouvrement (Spanning tree)[I1])
Un arbre de recouvrement T d’un graphe G est un arbre T(V, E') ou E' C E.

Les graphes peuvent étre représentés en mémoire de plusieurs fagons. La plus commune est
la matrice d’adjacence, une matrice carrée n X n qui indique si une aréte entre les sommets
i et j est présente, pour l'ensemble des arétes possibles. La figure [3.3] est un exemple de
matrice d’adjacence, pour le graphe non orienté de la figure tandis que la figure
'est pour le graphe orienté de la figure [3.2]

0111
1010
A= 1101
1010

Figure 3.3 Matrice d’adjacence pour le graphe non orienté [3.1]

o O OO
o O O
S O = O
O = ==

Figure 3.4 Matrice d’adjacence pour le graphe orienté

Pour un graphe non orienté, la matrice d’adjacence est toujours symétrique, ce qui im-
plique que les matrices triangulaires supérieures et inférieures partage la méme information.
Ce n’est pas le cas pour la matrice d’adjacence du graphe orienté.

La matrice Laplacienne L(G) d’un graphe non orienté G est formée en soustrayant la
matrice d’adjacence de G de la matrice diagonale ou I'entrée ¢ correspond au degré du sommet

1 dans G. Plus formellement :
L(G) =D — A(G)

ou D est la matrice diagonale dont I'entrée i correspond a deg(v;) et A est la matrice d’ad-

jacence de G.

21

Par convention, nous ferons référence a cette matrice simplement par L. La figure [3.5 est

un exemple de matrice Laplacienne pour le graphe non orienté [3.1|

3 -1 -1 -1

-1 2 -1 0

L= -1 -1 3 -1
-1 0 -1 2

Figure 3.5 Matrice Laplacienne pour le graphe

Tout comme la matrice d’adjacence, la matrice Laplacienne est symétrique pour les

graphes non orientés. Le mineur-(i,j) d’'une matrice carrée M, noté M;;, est le détermi-

R
nant de la sous-matrice obtenue en retirant la ¢ rangée et la j¢ colonne de M. La matrice
Laplacienne a une propriété fort intéressante : son mineur-(4, j), pour n’importe quelles rangée

¢ et colonne j, est égal au nombre d’arbres de recouvrement du graphe correspondant.

Theoreme 3.1.1 (Kirchhoff’s Matrix-Tree [41])
Dénotons par 7(G) le nombre d’arbres de recouvrement du graphe G de n sommets et par L;;

le mineur-(i,j) de la matrice Laplacienne de G, pour 1 <i,j < n quelconques. Alors
7(G) = |Ly].

Conséquemment, le nombre de solutions pour la contrainte arbre de recouvrement peut
étre calculé comme le déterminant d’une matrice carrée (n — 1) x (n — 1), en O(n?).

Cependant, la matrice Laplacienne est une M-matrice[25], ce qui lui donne une propriété
particuliere : ses mineurs principaux sont toujours positifs[30]. Une M-matrice est définie de
la facon suivante :

A —sI — B ou B = (b;) avec b;; > 0, pour tous 1 <4,j < n, et s > p(B), le maximum
du moduli des vecteurs propres de B.

Un mineur principal est le déterminant d’une sous-matrice formée par le retrait de la
rangée et colonne correspondante (autrement dit, i = j). Par conséquent, si la rangée et

colonne retirées de la matrice Laplacienne sont les mémes, nous avons :

Corollaire 3.1.1
Dénotons par 7(G) le nombre d’arbres de recouvrement du graphe G de n sommets et par Ly

le mineur-(i,1) de la matrice Laplacienne de G, pour 1 <1i < n quelconque. Alors

7(G) = Lj;.

22

Dans notre cas, les colonnes et rangées retirées pour le calcul du mineur-(, j) seront
toujours correspondantes (i = 7). Si nous retirons la premiere rangée et colonne de la matrice
Laplacienne de la figure [3.5] le mineur résultant est Li; = 2 x (3 x2—(—1) x (=1)) — (=1) x
(=1 x 2 —(=1) x 0) = 8, comme illustré & la figure [.6] ou les 8 arbres de recouvrement

possibles sont illustrés.

2 -3 2 -3 2 -3 2 -3
| L W L
1 -4 1 —4 1 -4 1 -4
2 -3 2 -3 2 -3 2 -3
L /] L /] /] L /1
1 -4 1 -4 1 — 4 1 — 4

Figure 3.6 Arbres recouvrants (arétes en rouge) présents dans le graphe

Nous sommes plut6t intéressés a calculer la densité de solution pour une aréte (i,5) € E.
Pour ce faire, il est possible de compter le nombre d’arbres de recouvrement qui n’utilisent
pas cette aréte, 7(G \ {(4,)}), et ensuite, diviser cette quantité par le nombre total d’arbres
de recouvrement existants dans le graphe. Le résultat est la densité de solution correspondant

a laffectation de la valeur 0 a la variable associée a I'aréte retirée (i.e. (i,5) ¢ T) :

TG\ {(0)})
(R

o((4,7),0,arbre de recouvrement(G,T)) =

Soit L' = L(G'\ {(i,7)}). Comment L' differe de L? Ces deux matrices sont identiques,
sauf pour les cellules ¢;;, ¢;;, {;;, et {;;. En effet, comme nous pouvons choisir le retrait de
n’importe quelles rangées et colonnes pour calculer le mineur, nous retirons la rangée et la
colonne ¢. Cela nous évite de devoir modifier les cellules ¢;;, ¢;;, et £;;. Conséquemment, il
ne reste qu’a modifier une seule cellule, de la facon suivante : £}, = £;; — 1. Donc, la valeur
présente dans cette cellule est la seule différence entre les matrices L' et L. La mise a jour
est illustrée sur la figure [3.7, ot i = 1 et j = 2. Sans les premiéres rangée et colonne, une
seule mise a jour est réellement nécessaire.

La formule Sherman-Morrison[40] stipule que si une matrice M’ est obtenue a partir

d’une matrice M en remplagant sa j¢ colonne, (M);, par un vecteur colonne u alors
det(M') = (1+ e/ M~ (u— (M);))det(M).

Dans notre cas, (v — (M),) = —e;, donc 'expression de droite de I’équation précédente

23

3 -1 -1 -1

1 2 1 0 . DT
LG — — — o 0 1 -1 0
() -1 -1 3 —1 L(G—(%J)): -1 -1 3 —1
-1 0 —1 2 -1 0 —1 2

Figure 3.7 Mise a jour de la matrice Laplacienne pour i =1 et j = 2

se simplifie : (1 — e/ M~'e;)det(M) = (1 — mj_jl)det(M).
Finalement, nous avons
L, (1- m;H) Ly .

i3 =1—-m

o((i,7),0,arbre de recouvrement(G,T)) = 7 7 = i

et évidemment

o((i,j),1,arbre de recouvrement(G,T))=m, .

Calculer les densités de solutions s’avere donc tres simple : pour chaque aréte (i, j) adja-
cente a un sommet ¢, de fagon a ce que j < i (respectivement j > i), la valeur correspondante
est la j¢ (respectivement (5 — 1)¢, car la colonne et rangée ¢ sont retirées) cellule sur la
diagonale de la matrice inverse de M, la sous-matrice de la matrice Laplacienne L obtenue
en enlevant la ¢ rangée et colonne. Répéter ces opérations pour chaque sommet d'un en-
semble recouvrant de sommets (vertex cover) permet d’obtenir la densité de solution relative
a chaque aréte. Cet ensemble a une taille d’au plus n (car il y a n sommets dans le graphe),
donc I'ensemble de la procédure peut étre fait en O(yn?), oit gamma est dans Uordre de O(n).

Une couverture de sommets peut étre définie de la fagon suivante :

Définition 3.1.2 (Couverture de sommets [11])

Dans un graphe, un sommet couvre une aréte si celle-ci lui est adjacente. Une couverture de
sommet est un sous-ensemble de sommets qui couvre toutes les arétes du graphe. La couverture
de sommet minimum est celle dont le nombre de sommets en faisant partie est le plus petit.

Trouver une telle couverture est NP-difficile.

Afin de pouvoir calculer la densité de solutions pour toutes les arétes, il est nécessaire de
répéter le calcul pour au moins chaque sommet faisant partie de la couverture de sommets
minimum. Comme calculer cette couverture est difficile et coliteux, une couverture incluant
un plus grand nombre de sommets est utilisée, ce qui est quand méme plus rapide en pratique
que de répéter le calcul pour I'ensemble des sommets du graphe.

La figure illustre I'application de la formule de Sherman-Morrison. La valeur a la

position (2,2) de la matrice Laplacienne originale (et (1,1) dans la sous-matrice M, dont la

24

rangée et la colonne 1 a été retirées) est mise a jour. Le vecteur colonne u, qui est identique
a la colonne (M);, sauf pour la valeur a la position 1, vient remplacer la colonne (M);. Ce
faisant, seule la valeur & la position (1,1) change dans la nouvelle sous-matrice M’; ce qui

correspond a ce que la formule Sherman-Morrison énonce.

2 -1 0

1
M= -1 3 -1
u= | —1
0 -1 2
I -1 0
M= -1 3 -1
0 -1 2

Figure 3.8 Exemple d’application de la formule Sherman-Morrison

Soit M~! la sous-matrice inversée de L, obtenue en retirant la premiere rangée et la
premiere colonne, comme illustré a la figure (3.9 En inversant cette matrice, les densités
de solutions pour les arétes adjacentes au sommet 1 sont obtenues sur la diagonale. Si nous
portons attention a l'aréte (1,2), on remarque qu’il y a bel et bien 5 arbres recouvrants qui

incluent cette aréte (en vert), comme illustré a la figure m
5/8 2/8 1/8

M7t=|2/8 4/8 2/8
/8 2/8 5/8

Figure 3.9 Matrice M inversée

2 — 3 2 -3 20-& 2 — 3
e ya W ya
1 — 4 1 — 4 1 — 4 1 — 4
2 — 3 2 -3 2 -3 2 -3
ya L /] /] ya
1 — 4 1 — 4 1 — 4 1 — 4

Figure 3.10 Arbres recouvrants (en rouge et vert) incluant l'aréte (1,2)(en vert)

25

3.2 Algorithme de dénombrement pour les graphes orientés

L’extension naturelle d’un arbre de recouvrement pour un graphe orienté est une arbo-

rescence. Une arborescence implique habituellement une racine, qui est définie comme suit :

Définition 3.2.1 (Racine [11])
Une racine est un sommet a partir duquel il existe au moins un chemin vers tous les autres

sommets du graphe.
Un graphe orienté peut également admettre un ou plusieurs puits.

Définition 3.2.2 (Puits [L1])
Un puits est exactement ['inverse d’une racine. Pour chaque sommet, il existe au moins un

chemin les reliant au puits.

Définition 3.2.3 (Arborescence [11])
Une arborescence est un graphe orienté qui est un arbre (sans l'orientation des arcs) et qui

a une racine.

Dans nos travaux, nous considérerons les anti-arborescences, qui sont définies de la facon

suivante :

Définition 3.2.4 (Anti-arborescence [11])
Une anti-arborescence est un graphe orienté qui est un arbre (sans 'orientation des arcs) et

qui a un puits.

Nos algorithmes de dénombrement pour les graphes orientés ont été congus pour un type

de graphe particulier : les "sink-rooted graphs” :

Définition 3.2.5 (Sink-rooted graph [I1])
Soit G = (V, E) un graphe orienté. Il peut étre appelé un sink-rooted graph s’il y a un puits

s € V auquel tous les autres sommets sont connectés.

Dans notre cas, le puits s aura également une boucle sur lui-méme (self-loop), ce qui
implique deg™ (s) = 1. Le graphe illustré a la figure est bel et bien un "sink-rooted graph”,
étant donné que le sommet 4, le puits, n’admet aucune aréte sortante (outre la boucle) et
que chaque autre sommet a un chemin le reliant au puits.

La matrice Laplacienne est également définie pour les graphes orientés. Comme pour les
graphes non orientés, elle est formée par la soustraction de la matrice d’adjacence de G a la
matrice diagonale de degré. Pour le cas orienté, la matrice diagonale de degré ne considere que

le degré sortant des sommets. Donc, dans cette matrice, la valeur de la ¢ cellule correspond

26

2 - 3 2 -1 0 -1
D¢ p=lo 0 1o
0O 0 0 1

Figure 3.11 Graphe orienté et sa matrice Laplacienne correspondante

au degré sortant (deg,) du sommet i dans G. La figure illustre un graphe orienté et sa
matrice Laplacienne correspondante.

Le mineur — (i,7) d’'une matrice carrée M, dénoté M;; est le déterminant de la sous-
matrice obtenue en retirant la ¢ rangée et j¢ colonne de M. La matrice Laplacienne a la
propriété suivante : son mineur-(s, s), pour la rangée et la colonne s correspondant au puits

s du graphe orienté, est égal au nombre d’anti-arborescences du graphe correspondant.

Theoreme 3.2.1 (Kirchhoft’s Matrix-Tree [41])
Soit A(G) le nombre d’anti-arborescences du graphe G ayant n sommets, dont s est un puits.

Donec,
A(G) = Lys.

Donc, le nombre de solutions respectant la contrainte anti-arborescence peut aussi étre
calculé comme le déterminant d’une matrice carrée (n — 1) x (n — 1) , en O(n?).

Si nous retirons les dernieéres rangée et colonne (correspondant aux colonne et rangée du
puits) de la matrice Laplacienne a la figure [3.11] le mineur résultant est 2 x (2 x 1 — (—1) x
(0)) = (—1) x (0x 1 — (—1) x 0) = 4. Les 4 anti-arborescences sont illustrées & la figure [3.13

2 -1 0
Ly={(0 2 -1
0 0 1

Figure 3.12 Ly4, pour le digraphe

Nous sommes intéressés par le calcul de la densité de solution pour un arc (i,7) € E.
Comme pour le cas non orienté, une facon de calculer la densité de solution est de compter
le nombre d’anti-arborescences n’utilisant pas cet arc, A(G'\ {(¢,7)}), et ensuite diviser ce

nombre par le nombre total d’anti-arborescences. Le résultat est la densité de solution de la

27

2 > 3 2 = 3 2 - 3 2 - 3
N\ ¥ O\ ¢ 1N\ 4 T\ +
1 - 4 1 - 4 1 > 4 1 - 4

Figure 3.13 Anti-arborescences (arcs en rouge) présentes dans le digraphe

variable correspondante a laquelle une valeur de 0 (i.e. (i,j) ¢ A) est affectée :

AG\{(.9)})

o((i,7),0,Anti-arborescence(G, A)) = A0

Nous pouvons donc dériver la densité de solution pour le cas orienté. Soit L' = L(G \
{(,7)}). Pour le cas orienté, L et L' sont identiques sauf pour les celllules ¢;; et ¢;;. Les
changements sont donc localisés sur une seule rangée, tel qu’illustré par la figure [3.14] ou
i=1letj=2

-1 0 -1

g > 10 0 -1

L(G) = S o 02 —1 -1
@=10 0o 1 -1 LG—{igh=| 4 o 1 i
0 0 O 1 00 0 1

Figure 3.14 Mise a jour de la matrice Laplacienne pour i =1 et j =2

Comme tous les changements sont localisés dans une seule rangée de M, nous transposons
la matrice (son déterminant reste invariant apres une transposition) et appliquons la formule

Sherman-Morrison comme auparavant :

det(M") = (1 +e¢] (M) (u— (M);))det(M").

Il y a deux cas possibles. Dans le premier, la destination de I’arc est un sommet quelconque.
Dans le deuxieme, la destination du sommet est le puits.
Dans le premier cas, (u — (M);)" = e; — e; donc 'expression de droite de I'équation

précédente se simplifie a

(14 e (M) (ej — e))det(M)

et ensuite

28

(1+e (MT)7Hey) + (1+ e (MT)7)(—e;))det(M)

En simplifiant, nous obtenons :

(1+ (miTj)_l — (my;) " Hdet(M) = (1 + mj_z-l —m;; ")det(M)

Donc finalement, nous avons

L, _ (1+m;" —my') Ly

o((,7),0,Anti-Arborescence(G, A)) = 7 7

et évidemment

o((i,7), 1, Anti-asrborescence(G, A)) = m;;' — mj_il.

Dans le deuxieme cas, (u— (M);)" = —e; donc I'expression de droite de 1’équation précé-
dente se simplifie a
(14+e (MT)" (—e;))det(M)

et ensuite

(1+e (M7)™ (—e;))det(M)

En simplifiant, nous obtenons :

(1= (m])™")det(M) = (1 — mj;")det(M)

Donc finalement, nous avons

L 1—m;")Ly
o((4,7),0,Anti-arborescence(G, A)) = L—SS = (+Z> =1-m;,
et évidemment
-1

o((i,7), 1, Anti-arborescence(G, A)) =m

Voici un exemple d’application de la formule Sherman-Morrison, pour le cas orienté, a la

29

figure [3.15]

Supposons j = 2

2 -1 0
M=[o0 2 -1
0 0 1 u= (10 0)
10 0
M=102 -1
00 1

Figure 3.15 Exemple d’application de la formule Sherman-Morrison

Calculer la densité de solution pour la contrainte d’anti-arborescence s’avere aussi simple

que pour la contrainte d’arbre de recouvrement.

Exemple 3.1

Soit M la sous-matrice de L obtenue en retirant la derniére colonne et rangée, comme a la
figure [3.13. Alors
1/2 1/4 1/4
M= 0o 1/2 1/2
0 0 1

Et la densité pour larc (1,2) est simplement : my}' — my = % - 0= % Pour un arc dirigé

: ’ . -1 _ 1
vers le puits, l'arc (2,4), nous avons : mayy = 3.

La figure illustre quelles anti-arborescences incluent Uarc (1,2) (en vert, premiere

rangée) et 'arc (2,4) (en jaune, deuxieme rangée).

2 > 3 2 -3 2 >3 2 -3

N Y \ 4 TN\ Y TN\ 4
1 - 4 1 - 4 1 > 4 1 » 4
2 > 3 29 2 » 3 2098
N\ 4 3 1N\ 4 T3
1 - 4 1 - 4 1 » 4 1 > 4

Figure 3.16 Anti-arborescences du digraphe de la figure , incluant l'arc (1,2) (vert, pre-
miere rangée) et arc (2,4) (jaune, deuxiéme rangée)

30

CHAPITRE 4

MISE EN OEUVRE

Dans ce chapitre, les détails nécessaires a la mise en oeuvre des heuristiques de branche-
ment basées sur le dénombrement sont abordés. Dans la section [4.1] les modeles et contraintes
nécessaires a la recherche de STAs contraints sont détaillés. Dans la section [£.2] 'intégration
des algorithmes de dénombrement a la recherche est expliquée. Enfin, dans la section [4.3]

quelques problemes reliés a I'implémentation et leur solution sont donnés.

4.1 Modeles et contraintes

Dans cette section, les détails relatifs a la modélisation des STAs sont donnés. Pour tous
nos modeles, nos structures de données sont réversibles, afin qu’elles puissent étre restaurées
lors d’un backtrack. La librairie Ilog[1], utilisée pour modéliser les STAs, propose des variables
de type IlcRev, qui conservent en mémoire toutes les valeurs prises par les éléments de la
structure. Lorsquun backtrack est nécessaire, les structures retrouvent automatiquement
I’état qu’elles avaient au moment ou la décision de branchement est revue. Donc, aucun
calcul n’est nécessaire pour restaurer les structures de données a 1’état approprié.

Dans la sous-section les modeles utilisés pour décrire les arbres de recouvrement
contraints sont abordés. Dans la sous-section les modeles pour résoudre les problemes

d’anti-arborescence sont décrits.

4.1.1 Cas non orienté

De fagon générale, un arbre de recouvrement est représenté par ’ensemble des arétes qui
le constitue. Nous utilisons donc un vecteur de variables binaires, ou chaque aréte possible
est représentée. Conséquemment, notre vecteur a une taille de n?, ol n est le nombre de
sommets du graphe. Conséquemment, ce vecteur est symétrique, car pour chaque aréte, il
y a deux cellules dédiées, étant donné que chaque aréte est représentée comme adjacente
aux deux sommets qu’elle relient. Nous indiquons qu'une variable est requise par I'arbre de
recouvrement par la valeur 1, tandis qu’une aréte inexistante ou interdite est représentée par
la valeur 0. Le tableau de variables est initialisé en fonction du graphe dans lequel un arbre
de recouvrement est recherché.

Une solution au probleme correspond au choix de n — 1 arétes parmi celles disponibles,

sans qu'un cycle soit créé dans le graphe. Cela correspond a notre premiere contrainte :

31

arbre de recouvrement (Spanning Tree). Cette contrainte borne d’abord le nombre d’arétes
pouvant étre choisies et garantit qu’aucun cycle ne sera formé, étant donné que le graphe
reste connexe. Pour borner le nombre d’arétes, il suffit d’'une contrainte arithmétique, qui

somme le nombre de 1 dans le tableau de variables et la compare a la borne souhaitée : n-1.

Définition 4.1.1 (Contrainte arbre de recouvrement)
Soit un graphe non orienté de n sommets. Le tableau de variables var est une matrice de

variables binaires de taille n?. La contrainte d’arbre de recouvrement prend la forme suivante :

sum(var) ==n —1

Cela signifie qu’il y aura un choix de n-1 arétes exactement dans le graphe, ce qui forme

l’arbre de recouvrement, a condition qu’aucun cycle ne soit formé.

Prévenir la formation de cycles dans le graphe s’avere un peu plus complexe, car une
contrainte ne peut pas étre utilisée directement. C’est par le filtrage que cette garantie prend
forme. Pour ce faire, les composantes connexes formées par le choix des arétes sont conservées
en mémoire et mises a jour apres chaque choix d’aréte. Lorsqu’'une aréte est choisie, cela
implique que les deux sommets qu’elle relie entrent dans la méme composante connexe.
Prévenir la formation d’un cycle revient a interdire le choix d’une aréte reliant deux sommets
qui font partie de la méme composante connexe. Donc, initialement, chaque sommet forme
sa propre composante connexe, dont il est I'unique représentant. Lorsqu’une aréte est choisie,
les deux sommets entrent dans la méme composante connexe, soit celle du plus petit sommet
(par convention). Pour joindre deux sommets dans la méme composante connexe, il suffit de
parcourir le tableau de composantes connexes et de remplacer les valeurs égale a celle du plus
grand sommet par celle du plus petit sommet. Ensuite, le tableau des variables est parcouru
pour retirer les arétes reliant deux sommets figurant dans la méme composante connexe. Cela
correspond a retirer la valeur 1 du domaine de ces variables, comme illustré dans I’exemple
M1} Le retrait des arétes incohérentes est également fait dans la matrice Laplacienne. Le

détail de ces mises & jour est donné dans la section

Exemple 4.1 (Modele pour I'arbre de recouvrement)

Soit le graphe suivant :
28—
e
1 - 4

Voici la matrice de variables de branchement y étant associée :

32

{0} {0,1} {0,1} {0,1}
{0,13 {0}y {0,1} {0}
{013 {0,1} {0} {0,1}
{0,13 {0}y {0,1} {0}

Etant donné qu’tl y a 4 sommets, la matrice contient 16 variables binaires. Comme toutes
les arétes excluant les “self-loop” ((1,1), (2,2), (3,3), (4,4)), et (2,4), puis sa symétrique

(4,2), font partie du graphe, la matrice admet les valeurs 0 et 1 pour toutes les autres cellules.

Voici le tableau qui donne la composante connexe de chaque sommet :

Ccz(l 2 3 4)

Si Uaréte (1,2) est choisie, la matrice de variables de branchement sera mise a jour (cases

(1,2) et (2,1) et le tableau de composante conneze le sera également.

{oy {1} {01} {0,1}
{1ty {0} {0,1} {0}
{0,13 {0,1} {0} {0,1}
{0,13 {0}y {0,1} {0}

cc:(l 13 4)

Si ensuite l'aréte (2, 3) est choisie, l'aréte (1,3) doit étre retirée du graphe, car autrement,

var =

les sommets 1 et 3 pourraient étre directement reliés, ce qui formerait un cycle :

- 3
\

~N =

Conséquemment, les structures sont mises a jour de la facon suivante :

{0y {13 {0} {0,1}
{1y {0y {1} {0}
{0y {1} {0} {0,1}
{0,13 {0} {0,1} {0}

cc:<1 1 1 4)

var =

33

4.1.2 Cas orienté

De fagon générale, tout comme pour un arbre de recouvrement, une anti-arborescence
est représentée par l'ensemble des arcs qui la constitue. Nous utilisons donc une matrice
de variables binaires, ol chaque arc possible est représenté, de taille n?. Contrairement a la
matrice pour le cas non orienté, celle pour le cas orienté n’est pas symétrique, donc chaque arc
possible n’est représenté qu’une seule fois. Sa numérotation est en fonction de sa source, vers
sa destination. Comme pour le cas non orienté, nous indiquons qu'une variable est requise
par Parborescence par la valeur 1, tandis qu'un arc inexistant ou interdit est représenté par
la valeur 0. Le tableau de variables est également initialisé en fonction du graphe dans lequel
I’anti-arborescence est recherchée.

La construction d’une anti-arborescence correspond au choix de n — 1 arcs parmi ceux
disponibles, sans quun cycle soit créé dans le graphe. Cela correspond a notre premiere
contrainte : anti-arborescence. Tout comme la contrainte d’arbre de recouvrement, cette
contrainte borne d’abord le nombre d’arcs pouvant étre choisis et garantit qu’aucun cycle
ne sera formé. Pour borner le nombre d’arcs, il suffit d’'une contrainte arithmétique, qui
somme le nombre de 1 dans la matrice de variables de branchement et qui compare cette
somme a la borne souhaitée.

Limiter le nombre d’arcs choisis est insuffisant pour garantir la formation d’une anti-
arborescence. Il faut également garantir qu’il n’existe qu’un seul chemin, a partir de chaque
sommet, qui atteint le puits. Une autre facon de voir cette contrainte est de limiter le degré
sortant de chaque sommet & 1. Si le degré sortant de chaque sommet est égal a 1 (sauf le puits,
qui, évidemment, n’admet aucun arc sortant), il est impossible que plusieurs chemins menent
un sommet vers le puit, car il faut au minimum n — 1 arcs pour que chaque sommet puisse
étre connecté au puit. Conséquemment, lorsqu’un arc est choisi, tous les arcs sortant de son
sommet source sont retirés la matrice de variables. Pour ce faire, il suffit de le parcourir et de
retirer 1 du domaine de tous les arcs dont le sommet source correspond a celui du sommet
choisi. Le degré sortant d’un sommet est calculé en sommant la valeur prise par tous les arcs
ayant ce sommet comme source. Comme seules les variables correspondantes aux arcs pris ont
la valeur 1, la somme des valeurs de toutes les variables partageant le méme sommet source
revient a calculer le degré sortant. Pour empeécher les cycles, il faut faire appel au filtrage,
comme dans le cas non orienté. En combinant le filtrage, le degré sortant limité a un et le
nombre d’arcs choisis a n — 1, il n’y a pas de cycles ni de multiples chemins dans la solution,

ce qui en fait une anti-arborescence correcte.

Définition 4.1.2 (Contrainte anti-arborescence)

Soit un graphe orienté de n sommets. La matrice de variables binaires var est de taille n* La

34

contrainte d’anti-arborescence prend la forme suivante :

sum(var) ==n —1

Cela signifie qu’il y aura un choix de n-1 arcs exactement dans le graphe. Chaque sommet

v (excluant le puit) admet également la contrainte suivante :

deg(v) ==1 Vv #s
Cela signifie qu’un seul arc peut prendre le sommet v comme source.

Le filtrage d’arcs pouvant former des cycles est fait de facon presque identique a celui
pour le cas non orienté. Tout comme pour le cas non orienté, les composantes connexes for-
mées par le choix des arcs sont conservées en mémoire et mises a jour apres chaque choix
d’arc. Initialement, chaque sommet forme sa propre composante connexe, dont il est 'unique
représentant. Lorsqu'un arc est choisi, les deux sommets entrent dans la méme composante
connexe, soit celle du plus grand sommet (par convention). Comme pour le cas non orienté, il
suffit de parcourir le vecteur de composantes connexes et de remplacer les valeurs correspon-
dant a I'un ou 'autre des sommets reliés par I’arc par celle du sommet le plus grand. Ensuite,
le tableau des variables est parcouru pour retirer les arcs dont la source et la destination
figurent dans la méme composante connexe. Cela correspond a retirer la valeur 1 du domaine
de ces variables, comme illustré dans I’exemple La matrice Laplacienne doit également
étre cohérente. Les mises & jour nécessaires sont décrites dans la sous-section [4.2.3] Le retrait
des arétes incohérentes est également fait dans la matrice Laplacienne, dont le détail est

donné dans la sous-section [4.2.3]

Exemple 4.2 (Modele pour 'anti-arborescence)

Soit le graphe suivant :

~ =

X

B« o

Voici le tableau de variables y étant associé :

{0} {0,1} {0} {01}
{oy {0} {0,1} {0,1}
{013 {0y {0} {0,1}
{0y {0}y {0} {0}

var =

35

Le tableau n’étant pas symétrique, seuls les arcs présents apparaissent, par exemple 'arc
(0,1), a la cellule (0,1). Evidemment, les arcs qui seraient des “self-loop” sont absents.

Voici le tableau qui donne la composante connexe de chaque sommet :

w:<12 34)

Si Uaréte (1,2) est choisie, les variables seront mises a jour (cellule (1,2) dans le tableau.

Le tableau de composante connexe le sera également.

{oy {1} {0y {0}
{0y {0} {0,1} {0,1}
{0,13 {0} {0} {0,1}
{0y {0y {0} {0}

cc:<2 2 3 4)

Si ensuite l'aréte (2, 3) est choisie, l'aréte (3,1) doit étre retirée du graphe, car autrement,

les sommets 3 et 1 pourraient étre directement reliés, ce qui formerait un cycle :

-
N
N
N

~ 2D
SN

Conséquemment, les structures sont mises a jour de la facon suivante :

{oy {1} {0y {0}
{0y {0y {1} {0}
{0} {0y {0} {0,1}
{0y {0} {0y {0}

var =

cc=(3 3 3 4)

4.1.3 Calcul de la densité de solution

Pour mettre en place le calcul de densité de solution, il est nécessaire d’'implémenter les
contraintes d’arbre de recouvrement et d’anti-arborescence. En utilisant la structure ("frame-
work”) présente dans le laboratoire, nous avons implémenté un type de contrainte particulier,
que nous avons nous-méme défini, qui inclut les méthodes nécessaires au calcul de la densité

de solutions. Dans ce framework, une contrainte prend la forme d’une classe C++. Donc, la

36

contrainte particuliere, Countable Constraint, est une classe abstraite de laquelle toutes les

contrainte de dénombrement héritent, qui a l'interface définie a la figure [4.1]

class CountableConstraint

{
CountableConstraint ()
recount () ;
getDensity () ;

}

Figure 4.1 Interface de Countable Constraint

Une contrainte de base admet un constructeur, une méthode post, qui indique quand la
propagation est appelée ainsi qu'une méthode propagate, qui effectue le filtrage approprié.
Notre type de contrainte particulier ajoute a celles-ci les méthodes recount, qui fait le dé-
nombrement de solutions puis le calcul des densités et getDensity, qui retourne la densité de
solution pour une paire variable-valeur. La figure donne l'interface d’une contrainte qui

hérite de Countable Constraint.

class NewConstraint : CountableConstraint

{
NewConstraint ()
post () ;
propagate() ;
recount () ;
getDensity();

}

Figure 4.2 Interface de classe héritant de Countable Constraint

Pour la contrainte d’arbre de recouvrement, les fonctions remplissent les taches indiquées
a la définition 4.1.3 :

Définition 4.1.3 (Fonctions de la contrainte arbre de recouvrement)
Voici les fonctions et leurs taches respectives :
— constructeur
— Initialise la matrice Laplacienne
— Calcule la couverture de sommets, qui est indispensable pour calculer la densité de

solution de chaque aréte.

37

— Ajoute au modéle la contrainte sur le tableau de variables, indiquant que seules n — 1
arétes peuvent étre choisies.
— post
— Indique quand la propagation doit avoir lieu, soit a chaque fois que le domaine d’une
variable est modifié. En effet, puisqu’il s’agit de variables binaires, le retrait d’une
valeur dans le domaine implique que cette variable est fixée, donc que l’aréte corres-
pondante est requise ou interdite dans [’arbre.
— propagate
— Filtre des arétes incohérentes pour €viter les cycles.
— Met a jour la matrice Laplacienne
— recount
— Calcule la densité de solution, au complet ou de fagon incrémentale.
— getDensity
— Retourne la densité de solution pour une paire variable-valeur. Evite d’avoir & recal-

culer la densité a chaque fois qu’elle est requise.

La structure de la contrainte d’anti-arborescence est pratiquement identique a celle de

I’arbre de recouvrement. Pour cette contrainte, les fonctions remplissent les taches données

par la définition :

Définition 4.1.4 (Fonctions de la contrainte anto-arborescence)
Voici les fonctions et leurs taches respectives :
— constructeur
— Initialise la matrice Laplacienne
— Ajoute au modeéle la contrainte sur le tableau de variables, indiquant que seules n — 1
arétes peuvent étre choisies.
— post
— Indique quand la propagation doit avoir lieu, soit a chaque fois que le domaine d’une
variable est modifié.
— propagate
— Filtre des arcs incohérents pour éviter les cycles.
— Met a jour la matrice Laplacienne
— recount
— Clalcule la densité de solution, au complet ou de facon incrémentale.
— getDensity

— Retourne la densité de solution pour une paire variable-valeur.

Comme la densité de solution doit étre connue pour chaque paire variable-valeur, il est plus

38

judicieux de la conserver en mémoire que de la calculer a chaque fois qu’elle est nécessaire.
Pour cette raison, une structure réversible est utilisée pour conserver la densité de solution,
sous la forme d’un tableau de nombres en points flottants.

Que cela soit pour le cas orienté ou le cas non orienté, le calcul de la densité de solution
implique une inversion de la matrice Laplacienne, comme décrit au chapitre [} Comme la
densité de solution doit étre calculée a nouveau apres chaque branchement, il est impératif
que ce calcul soit le plus performant possible. Dans cette optique, nous avons utilisé la
librairie ALGLIB[7], qui gere entierement l'inversion de matrice. Cette librairie utilise la
décomposition LU, qui est beaucoup plus rapide que l'inversion directe. Il suffit d’utiliser
les variables du format de la librairie, ce qui amene un léger surcott, puis de faire appel a
la méthode rmatrizinverse, qui retourne la matrice inversée. Ensuite, il suffit d’'utiliser les
cellules de cette matrice inversée pour obtenir les densités de solutions désirées (diagonale
pour le cas non orienté et diagonale - terme pour le cas orienté).

Pour le cas non orienté, il faut au plus n inversions de la sous-matrice Laplacienne, soit
une par sommet, afin que la rangée et la colonne y correspondant soient retirées de la La-
placienne avant 'inversion. Il est possible de réduire le nombre d’inversions en utilisant une
couverture de sommets (“vertex cover”). Il peut s’avérer colteux de calculer la couverture
de sommets. Nous utilisons une approche heuristique qui calcule une couverture raisonnable,
mais pas nécessairement minimum, ce qui nous permet de réduire significativement le nombre
d’inversions nécessaires. Il faut également maintenir la couverture de sommets tout au long de
la recherche de solutions, car plusieurs sommets seront contractés, ce qui sera expliqué ulté-
rieurement. Une fagon de faire est d’ajouter un des deux sommets contractés a la couverture
de sommets, s’il n’y est pas déja présent. Pour le cas orienté, il suffit d'une seule inversion
de matrice par branchement, car seules les rangée et colonne correspondant au puits doivent

étre retirées de la matrice Laplacienne.

4.2 Intégration a la recherche arborescente

Dans cette section, nous décrivons quelques détails d’implémentation et les problemes
reliés a celle-ci. Au fur et & mesure que les décisions de branchement sont prises et que le
filtrage de domaine est appliqué, certaines arétes de GG seront requises dans 7', tandis que

d’autres seront interdites. Ces changements doivent se refléter dans nos structures de données.

4.2.1 Mise a jour de la matrice Laplacienne, cas non orienté

Si laréte (7, 7) est interdite, elle est simplement retirée du graphe. Pour refléter ce chan-

gement dans la matrice Laplacienne, nous ajoutons un aux cellules £;; et £};, qui représentent

i

39

la méme aréte, étant donné que la matrice est symétrique. Le degré des deux sommets aux
extrémités de cette aréte doit également étre mis a jour, en soustrayant un aux cellules ¢;; et
{;;. Cette procédure est illustrée dans I'exemple

Exemple 4.3 (Retrait d'une aréte de la matrice Laplacienne, cas non orienté)

Supposons que laréte (1,2) est maintenant interdite pour l’arbre de recouvrement :

3 -1 -1 -1 2 0 -1 -1
—1 2 —1 0 0 1 -1 0
L: L:

-1 -1 3 -1 —1 —1 3 —1
—1 0 —1 2 -1 0 —1 2

2 — 3 —

e /\

1 - 4 - 4

Si l’aréte (i, j) est requise, nous contractons les deux sommets qu’elle relie dans le graphe
de fagon a ce que (,j) fasse implicitement partie de I'arbre de recouvrement. Contracter
deux sommets dans le graphe revient a imposer implicitement 'aréte les reliant dans I'arbre
de recouvrement. Nous remplacons les deux sommets par un seul nouveau sommet, qui sera
relié a toutes les arétes adjacentes a I'un ou l'autre des sommets contractés. Evidemment,
I’aréte reliant les deux sommets contractés est retirée du graphe.

Par convention, nous contractons toujours le sommet le plus grand vers le plus petit.
Pour mettre a jour la matrice Laplacienne, nous commengons par ajouter au sommet ¢ toutes
les arétes (j, k) : lix < liy + L. Cela peut créer des arétes multiples, ce qui n’est pas un
probleme, étant donné que les densités de solution calculées sont également valables pour les
multigraphes. Le degré du sommet 7, ¢;;, est mis a jour en conséquence. Ensuite, comme le
sommet j fusionne avec le sommet 2, nous retirons toutes les arétes y étant connectées, en
remplagant par zéro la valeur de toutes les cellules de la rangée et colonne j. Finalement,
nous ajustons la valeur de la cellule /;; a 1, afin que les mineurs soient calculés correctement
lorsque les rangées et colonnes j sont incluses. Autrement, le mineur aurait eu une valeur
nulle, car la rangée et colonne j n’aurait inclut que des zéros. Cette procédure est illutrée
dans I'exemple [4.4].

Exemple 4.4 (Choix d’une aréte dans la matrice Laplacienne, cas non orienté)
Supposons que l'aréte (1,2) est maintenant requise dans l’arbre de recouvrement. Nous contrac-

tons donc le sommet 2 avec le sommet 1.

40

3 -1 -1 -1 3 0 -2 -1
-1 2 -1 1
I 0 I 0 0 0
-1 -1 3 -1 -2 0 3 -1
-1 0 -1 2 -1 0 -1 2
2 — 8 3
e]
1 - 4 12 - 4

4.2.2 Mise a jour des densités de solution

Les densités de solutions vont changer au cours de la recherche et il serait utile d’éviter de
les recalculer au complet a chaque branchement. Etant donné Pinverse de la matrice M, est-il
possible de calculer incrémentalement I'inverse d’une matrice légerement différente de M’. La
formule Sherman-Morrison]40] révele que si M’ est obtenu a partir de M en remplagant sa

i¢ colonne, (M);, par un vecteur colonne u comme auparavant, alors

(M~ (u = (M):))(e; M)

lel — M*l .
1+ef M= (u— (M);)

Ceci peut étre calculé en O(n?), car cela implique la multiplication d’un vecteur colonne de
taille n et d’une matrice de taille n?, ce qui implique de 1'ordre de n? opérations.

Dans certains cas, nous pouvons réduire cette complexité considérablement. Considérons
I'aréte interdite (i,7). Pour n’importe quelle aréte (i,k), dont la densité de solution a été
obtenue a partir de I'inverse de la sous-matrice dont la rangée et colonne i avaient été retirées
de L, retirer l'aréte (7,j) ne change la valeur que d’une seule cellule dans la sous-matrice,
comme nous avons vu précédemment, ce qui simplifie la formule de la facon suivante :

(M1 (=€) - (ef -M7Y)

J

1
1 my; 1 my;

lel — M*l o

olt @ = (gnr) est une matrice (n — 1) x (n — 1) avec gy = mgjl

. mj_kl. Comme nous n’avons
besoin que de la k¢ cellule sur la diagonale, m;, + (m,;jl)2 /(1 — mj_jl), la mise a jour est faite
en temps constant. L’application de cette procédure est illustrée par I’'exemple Ce qui
précede est également applicable pour n’importe quelle aréte (7, k) avec la sous-matrice dont

la rangée et colonne j ont été retirées de L.

Exemple 4.5 (Mise a jour de la matrice Laplacienne, version incrémentale)

Soit le cas suivant :

41

~ Densité de solution pour Uaréte (1,4) est 2.
— L’aréte (1,2) est interdite

— La densité de solution mise & jour : 2 + (mgy)2/ (1 —myy) =

oot
+
—~
=
~—
[\
~
—~
—_
|
|t
~—
Il
Wi

9 —
/
1

>~ —

2 - 2 -
/ /
1 1~

N = o

Mettre en place cette mise a jour incrémentale est relativement complexe. Le but est
d’inverser la matrice pour le premier calcul de densité de solutions et de ne jamais réinverser
par la suite, d’apporter des changements directement a la matrice inversée. Pour ce faire, il
faut conserver la matrice inverse en mémoire, dans une structure réversible. Il faut également
conserver en mémoire tous les changements nécessaires de la matrice Laplacienne, non seule-
ment lors de branchements, mais également lorsque des arétes sont retirées par le filtrage.
Pour ce faire, des structures de données supplémentaires, soit des vecteurs correspondants
aux vecteurs u modifiés, sont nécessaires. Lorsqu’une aréte est retirée ou choisie, les change-
ments doivent étre faits sur I’ensemble des matrices inverses, soit un changement par sommet
dans la couverture de sommets.

Il est également possible de faire ces mises a jour sous forme d’événements, ot 'ensemble
des modifications a faire est accumulé et conservé en mémoire. Lorsqu’une densité de solution
est requise, toutes des modifications stockées sont apportées sur les matrices inverses, avant le
calcul de la densité de solution. Pour la mise en place de cette procédure, il faut des structures

qui gardent ’ensemble des modifications a faire, dans I'ordre ou elles doivent étre faites.

4.2.3 Mise a jour de la matrice Laplacienne, cas orienté

Comme pour le cas non orienté, si I'aréte (i, 7) est interdite, elle est simplement retirée du
graphe. Pour refléter ce changement dans la matrice Laplacienne, nous ajoutons 1 a la cellule
¢;; uniquement, étant donné que la matrice n’est pas symétrique. Le degré du sommet source
de cet arc doit également étre mis a jour, en soustrayant un a la cellule ¢;. Cette procédure

est illustrée dans 'exemple [4.7]

Exemple 4.6 (Retrait d'un arc de la matrice Laplacienne, cas orienté)

Supposons que Uaréte (1,2) est maintenant interdite pour l’anti-arborescence :

2 -1 0 -1 10 0 -1
0 2 -1 —1 02 -1 -1
L(G) = L(G) =
0 0 1 —1 00 1 —1
0 0 0 1 00 0 1

42

2

~ — 2o

\

B — o

\

*. — o

1

Comme dans le cas non orienté, lorsqu'un arc (i,j) est requis dans I’anti-arborescence,
nous le contractons dans le graphe, de facon a ce que (i,7) fasse implicitement partie de
celle-ci. Il est impératif que la contraction se fasse de la source vers la destination, car dans
la matrice Laplacienne, seuls les arcs sortant d’un sommet sont représentés. Cette réalité est
représentée dans le vecteur qui garde en mémoire les sommets contractés et dans la matrice
Laplacienne.

Pour mettre a jour la matrice Laplacienne, la rangée j demeure inchangée. Cependant,
I’ensemble des arcs qui était dirigés vers le sommet ¢ doivent maintenant étre dirigés vers j,
afin de refléter la contraction. Pour ce faire, tous les arcs dirigés vers le sommet ¢ sont ajoutés
a ceux dirigés vers le sommet j, ce qui revient a transférer les arcs de colonne dans la matrice
Laplacienne, pour tous les sommets sauf ¢ et j : f; < f3; + {;. Comme pour le cas non
orienté, des arcs multiples peuvent étre créés, ce qui n’affecte en rien la validité des densités
de solution. Ensuite, comme le sommet ¢ fusionne avec le sommet 7, nous retirons tous les arcs
sortants de 7, en remplacant par zéro la valeur de toutes les cellules des rangées et colonnes
i. Finalement, nous ajustons la valeur de la cellule ¢; a 1, afin que les mineurs soient calculés
correctement lorsque la rangée et colonne 7 sont incluses. Autrement, comme dans le cas non
orienté, le mineur aurait eu une valeur nulle, car la rangée et colonne 7 n’aurait inclue que

des zéros. Cette procédure est illustrée dans I'exemple [4.7]

Exemple 4.7 (Choix d’un arc dans la matrice Laplacienne, cas orienté)
Supposons que U'arc (1,2) est maintenant requis dans [’anti-arborescence. Nous contractons

donc le sommet 1 avec le sommet 2.

2 -1 0 -1 10 0 O
0 -1 -1 02 -1 -1
L(G) = L(G) =
0 -1 00 1 -1
0O 0 0 1 00 0 1
2 - 3 3
TN\t Sl
1~ 4 12 7 4

~

Tout comme pour le cas non orienté, il est possible et moins cotiteux de mettre a jour la

matrice Laplacienne de fagon incrémentale. En appliquant la formule Sherman-Morrison[40)],

43

tel que pour le cas non orienté, la mise & jour peut étre calculée en O(n?), en multipliant
le vecteur colonne de taille n par la matrice de taille n2. Il n’est cependant pas possible de
réduire cette complexité, car il faut toujours mettre a jour au minimum deux cellules. En
effet, le retrait d'un arc (4, j) affecte les cellules (7,4) et (7, j), qui doivent réduire et augmenter
leur valeur de 1, respectivement. Le choix d’un arc (7, j) implique la mise a jour de la rangée i
au complet, ainsi que celle des rangée et colonne j. Par conséquent, le gain relatif a ’ajout du
calcul incrémental pour le cas orienté est moindre par rapport a celui pour le cas non-orienté,

malgré le fait que sa mise en oeuvre soit aussi complexe.

4.3 Complications

Le fait que les densités de solutions et les valeurs dans les sous-matrices a inverser soies
conservées dans des nombres a points flottants nous a causé quelques complications, en par-
ticulier pour le cas orienté. En effet, étant donné que le calcul des densités de solutions pour
le cas orienté implique une opération entre deux valeurs de la sous-matrice inversée, il n’était
pas rare d’obtenir des densités plus petites que 0 ou plus grandes que 1, ce qui est impos-
sible et incohérent, étant donné que la densité de solution est un rapport entre le nombre
de solutions incluant un arc et le nombre total de solutions. Cette instabilité numérique est
due a une opération entre 2 nombres infiniment grands ou deux nombres infiniment petits,
en point flottant. Lorsque l'opération est faite entre ces deux nombres (typiquement une
soustraction), le résultat est légerement imprécis. Une densité qui devrait alors prendre une
valeur de 0 prend une valeur légérement différente (relativement a la taille des nombres sur
lesquels I'opération est faite). Ce faisant, la densité de solutions pour la paire variable-valeur
concernée est erronée, ce qui peut occasionner des branchements inadéquats et par le fait
méme s’avérer fort cotuteux dans la recherche de solutions. Il est donc impératif de remédier
a ce probleme, sinon la qualité de I'heuristique de branchement basée sur le dénombrement
est affectée.

Une autre limite de nos approches reliée aux points flottants est le fait qu’il ne soit pas
possible d’obtenir des 0 plats (valeur en point flottant de 0 et non un nombre infiniment petit).
Parfois, une aréte ne participe a aucune solution, ce qui devrait lui attribuer une densité de
solution de 0. Or, comme nous travaillons avec des structures utilisant des points flottants, un
tel 0 n’existe pas. Une valeur infiniment petite sera utilisée pour remplacer ce zéro, ce qui ne
cause pas de probleme a premiere vue. Le probléeme est le suivant : au fur et a mesure que la
recherche progresse, cette valeur infiniment petite le devient de moins en moins, car ’erreur
au niveau du calcul de la matrice inverse se propage. Eventuellement, il est possible d’obtenir

des valeurs incohérentes, ce qui encore une fois peut causer des branchements inadéquats.

44

Une solution a tous ces problemes est 'introduction d’une valeur €, qui joue le role de
seuil. Pour les opérations entre deux nombres de grande taille, il suffit de comparer chacun
des nombres a €, avant de faire 'opération. Si ces nombres 'excede, la densité de solution qui
devrait résulter de 'opération entre ces deux nombres est directement fixée a zéro (nous par-
lons ici du cas de la soustraction de deux grands nombres, pour le cas orienté en particulier).
La meéme procédure est utilisé si des nombres infiniment petits sont rencontrés. En fixant
directement la valeur de la densité de solution, 'instabilité numérique est évitée et n’affecte
donc pas les branchements. Les imprécisions des calculs des densités qui devraient donner 0
sont également gérées de cette fagon. Si la valeur de densité est inférieure a e, la densité est
fixée a zéro.

Lors de I'implémentation des mises a jour incrémentales, nous avons également constaté
des problemes reliés a l'instabilité numérique, qui sont eux aussi reliés a 'utilisation des points
flottants. En effet, lorsque deux calculs différents menant au méme résultat sont faits a ’aide
de nombres en point flottant, il est possible qu’il y ait une légere variation au niveau des
valeurs numériques. Or, lorsque les mises a jour sont faites sur les matrices inverses, le calcul
fait n’est pas le méme que si la matrice est inversée entierement a nouveau. Conséquemment,
les valeurs dans la matrice peuvent étre tres légerement différentes (une vingtaine de chiffres
derriere la virgule dans notre cas). Néanmoins, puisque I'heuristique de branchement choisit
la paire variable-valeur ayant la plus grande densité, il est possible que le branchement soit
différent, en fonction de I’approche utilisée, car I'une des paires a une densité légerement plus
grande (alors qu’elle devrait étre identique) qu’une autre. Donc, la recherche de solution, et
par extension le temps puis le nombre d’échecs, n’étaient pas exactement les mémes pour
certains exemplaires, pour I'approche standard et incrémentale. Malgré cette différence, la
qualité des solutions et le nombre de branchement pour y arriver demeurent tres semblables

pour les deux approches, ce qui n’en fait pas une complication majeure.

45
CHAPITRE 5

EXPERIMENTATIONS ET DISCUSSION

Ce chapitre illustre l'efficacité des heuristiques de branchement basées sur le dénombre-
ment, en comparant une approche basée sur ce type d’heuristique a deux autres approches.
La section rapporte les résultats d’expérimentations impliquant la contrainte arbre de

recouvrement, tandis que la section [5.2] fait de méme pour la contrainte d’anti-arborescence.

5.1 Contrainte d’arbre de recouvrement

Pour démontrer 'efficacité de 1'utilisation de la densité de solution avec la contrainte
arbre de recouvrement pour guider I'heuristique de branchement sur quelques problemes
de STA contraints, nous avons considéré la recherche des arbres de recouvrement de degré
contraint, dans un graphe donné. Pour ce probleme, un cas spécial est celui ou un degré
maximum égal a 2 est imposé. Ce cas correspond a la recherche d’un chemin hamiltonien.
Nous avons généré quelques graphes avec un générateur congu pour produire des exemplaires
avec lesquels il est difficile de trouver un chemin hamiltonien pour des algorithmes ayant
recours au backtracking [43].

Le probleme d’arbre de recouvrement de degré contraint est modélisé avec la contrainte
d’arbre de recouvrement ainsi que par une série de contraintes arithmétiques, venant borner
le degré de chaque sommet. Une contrainte arithmétique est donc présente pour chaque
sommet, sommant ’ensemble des variables associées aux arétes adjacentes a ce sommet et

bornant cette somme a la valeur souhaitée. Le modele est illustré par 'exemple [5.1].

Exemple 5.1 (Modele pour l'arbre de recouvrement de degré contraint)

Soit le graphe suivant :

28—
|
1 - 4
Voici le vecteur de variables de branchement y étant associé :

{0} {0,1} {0,1} {0,1}
{0,13 {0}y {0,1} {0}
{0,13 {0,1} {0} {0,1}
{0,13 {0}y {0,1} {0}

var =

46

E’m’demm@nt, la contrainte d’arbre de recouvrement est appliquée sur var. Si nous voulons
borner le degré des sommets a 2, il faut ajouter les 4 contraintes arithmétiques suivantes,
impliquant les arétes adjacentes de chaque sommet :

~ Sommet 1 :wvar[l,2] +var[l,3] +var[l,4] <2

— Sommet 2 : var|2,1] +var[2,3] < 2
— Sommet 3 : var[3,1] + var(3,2] + var[3,4] < 2
— Sommet 4 :var[4,1] +var[4,3] <2

Nous comparons les heuristiques de branchement suivantes : densité de solution maxi-
male (maxSD), impact-based search (IBS) et sélection de variable et valeur aléatoire (ran-
dom). L’heuristique maxSD considere I'information relative a la densité de solution de chaque
contrainte et branche sur la paire variable-valeur qui correspond a la densité de solution la
plus importante. Pour IBS, les impacts sont initialisés avec les informations du noeud racine
de l'arbre de recherche. A un noeud particulier de arbre de recherche, les cing meilleures
variables en fonction des impacts approximés sont identifiées. Pour ce sous-ensemble, les im-
pacts exacts sont calculés et le branchement est fait sur la meilleure variable (impact le plus
élevé) et meilleure valeur(impact le plus bas). Cette procédure est cohérente avec ce qui est
suggéré dans la documentation de IBM ILOG solver. Pour random, nous rapportons une

moyenne de dix exécutions.

Tableau 5.1 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal a 2. Chaque ligne représente une moyenne
sur 10 exemplaires.

n maxSD IBS random n maxSD IBS random
15 0.2 229.8 49.0 15 0.029 0.001 0.001
20 1.5 533.0 976.6 20 0.080 0.012 0.020
25 2.1 1772.3 5919.6 25 0.187 0.085 0.173
30 71.7 12517.1 91454.4 30 0.815 0.897 1.873
35 112.2 18405.4 139861.3 35 1.769 4.742 14.646

Nous avons d’abord généré des graphes aléatoires de 15, 20, 25, 30 et 35 sommets (10
exemplaires chacun). Le générateur garantit I’existence d’un chemin hamiltonien dans ces
graphes, en construisant d’abord un chemin hamiltonien dans celui-ci. Ensuite, chacune des
arétes restantes est ajoutée ou non au graphe, en fonction d’une probabilité fixe dont la valeur
dépend de la densité souhaitée. Plus le graphe doit étre dense, plus la probabilité d’ajouter

une aréte sera importante. En regardant d’abord la borne de degré égal a 2, le tableau de

47

Tableau 5.2 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal a 3. Chaque ligne représente une moyenne
sur 10 exemplaires.

n maxSD IBS random n maxSD IBS random
15 0.0 225.6 1.3 15 0.039 0.002 0.001
20 0.0 315.2 53.2 20 0.100 0.013 0.001
25 0.0 446.7 882.0 25 0.222 0.021 0.311
30 0.0 495.1 18589.8 30 0.441 0.039 0.093
35 0.0 566.8 20001.4 35 0.852 0.063 2.333

gauche indique que 'utilisation de maxSD guide efficacement la recherche vers une solution,
en faisant plusieurs ordres de grandeur de backtracks de moins que les deux autres approches.
Bien que maxSD apparaisse comme plus lente sur les petits graphes, comme indiqué par le
tableau de droite, au fur et a mesure que les graphes grossissent, ’approche devient plus
rapide que IBS et random.

Nous nous tournons ensuite vers les arbres de recouvrement de degré maximal égal a
3. (voir tableau [5.2). Il est clairement démontré que l'utilisation de la densité de solution
pour trouver des arbres de recouvrement dans des graphes aléatoires est une approche tres
efficace. Un degré maximum de 3 est beaucoup moins restrictif qu'un degré maximum de 2,
ce qui implique qu’un plus grand nombre d’arbres de recouvrement auront cette propriété.
Conséquemment, les premiers arbres trouvés satisferont toutes les contraintes. Pour tous les
graphes, I'heuristique de branchement basée sur la densité de solution trouve un arbre de
recouvrement sans backtrack, contrairement aux autres approches. Malgré le fait qu’aucun
backtrack n’est fait, maxSD demeure plus lente que IBS sur ces exemplaires étant donné que
cette derniere ne requiert que quelques centaines de backtracks.

Nous avons également généré des crossroad graphs en utilisant le meéme générateur de
graphe[43]. Ces graphes sont constitués de plusieurs petits sous-graphes aléatoires peu denses,
uniquement connectés les uns aux autres par des arétes ponts ("bridges”). Ala figure , les
ponts sont les arétes (3,4) et (6,7). Nous avons généré 10 exemplaires de crossroad graphs
contenant 3, 4 et 5 sous-graphes et nous avons tenté d’y trouver un chemin hamiltonien (arbre
de recouvrement de degré 2). Les résultats sont présentés au tableau .

Utiliser maxSD sur ces graphes difficiles s’avere tres efficace, car une solution est toujours
trouvée avec un grand nombre de backtracks en moins. Pour les exemplaires constitués de 5

sous-graphes, random n’a pas pu trouver de solution pour un seul exemplaire en 2 heures de

48

Tableau 5.3 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un chemin hamiltonien dans les crossroad graphs. Chaque ligne représente une moyenne sur
10 exemplaires.

n maxSD IBS random n maxSD IBS random
3 0.2 7721.9 8530.5 3 0.085 0.255 0.062
4 0.1 262011.7 191195.8 4 0.280 26.379 3.674
5 0.4 162353.0 - 5 0.676 586.679 -

temps de calcul. Dans ce cas , maxSD est également plus rapide que les deux autres approches,
de plusieurs ordres de grandeur.
— -9

2)
| yoawd
1 — 6

7
|
8

3
\
4
Figure 5.1 Exemple de crossroad graph

Nous avons aussi testé notre approche sur 3 topologies réelles, issues d’un opérateur de
reéseau télécom européen. Le tableau [5.4| donne le nombre de sommets et d’arétes de chaque
exemplaire. L’exemplaire b5 est de loin le plus épars et devrait donc étre le plus facile, tandis

que b3 devrait étre le plus difficle, étant donné son plus grand nombre de sommets et d’arétes.

Tableau 5.4 Nombre de sommets (V) et d’arétes(E) des trois topologies réelles

exemplaire V E

bl 45 63
b3 52 72
b5 22 58

Comme pour les graphes aléaloires, nous avons comparé les trois heuristiques de bran-
chement suivante : maxSD, IBS et random. Nous testons l'efficacité de notre approche en
cherchant des arbres de recouvrement dont le degré des sommets est restreint a 2 ou 3. Pour

random, nous rapportons une moyenne de dix exécutions.

49

Tableau 5.5 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal a 3.

exemplaire maxSD IBS random n maxSD IBS random
bl 0 664 3160299 bl 1.31 0.08 186.07
b3 0 778 5351123 b3 3.39 0.14 410
b5 0 626 89 b5 1.86 0.11 0.04

Tableau 5.6 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal a 2.

exemplaire maxSD IBS random n maxSD IBS random
bl - - - bl - - -
b3 127 - - b3 6.38 - -
b5* 28786 450440 108552 b5* 877.12 85.29 9.21

Le tableau[5.5 démontre que maxSD guide rapidement vers une solution, sans aucun back-
track, tandis que IBS fait quelques backtracks et que random en fait un grand nombre, sauf
pour l'exemplaire b5, en raison de sa plus grande simplicité. Cependant, maxSD se montre
moins rapide que IBS pour ces exemplaires. Cela est expliqué par la taille des graphes im-
pliqués, qui demande un effort de calcul considérable pour obtenir la densité de solutions a
chaque branchement. Lorsque le degré est restreint a 2, le probleme devient beaucoup plus
difficile, comme illustré dans le tableau |5.6, En effet, pour le premier exemplaire, b1, aucune
approche ne réussit a trouver une solution durant les 10 minutes de temps d’exécution al-
louées. Pour I'exemplaire b3, seul maxSD arrive a trouver une solution durant les 10 minutes
de temps de calcul allouées, et ce, en quelques backtracks seulement. Ce résultat indique
clairement que maxSD est une approche efficace pour les problemes de satisfaction difficiles.
Pour I'exemplaire b5, il n’existe aucun arbre de recouvrement dont le degré des sommets est
restreint a 2. Donc, les trois approches épuisent I’ensemble de 'espace de recherche, ce qui
constitue un preuve d’optimalité. MaxSD se montre plus efficace que 'approche aléatoire,
mais également considérablement plus lente que IBS. MaxSD guide cependant mieux la re-
cherche, faisait la preuve avec le plus petit nombre de backtracks, soit un ordre de grandeur
de moins que les deux autres approches. Encore une fois, la taille du graphe explique le temps

de calcul élevé.

20

5.2 Contrainte d’anti-arborescence

Pour démontrer 'efficacité de 1'utilisation de la densité de solution avec la contrainte anti-
arborescence pour guider 'heuristique de branchement, nous avons considéré la recherche
d’anti-arborescences contraintes. De facon similaire au cas non orienté, I’anti-arborescence de
degré contraint peut étre modélisée par la contrainte anti-aborescence accompagnée par une
contrainte arithmétique pour chaque sommet, venant borner le degré entrant de celui-ci. Le
modele de base est illustré par 1'exemple [5.2

Exemple 5.2 (Modele pour I'anti-arborescence de degré contraint)

Soit le graphe suivant :

~ =

X

B o

Voici le tableau de variables y étant associé :

{0} {01} {0} {01}
{0y {0}y {0,1} {0,1}
{0,13 {0y {0} {0,1}
{0y {0}y {0} {0}

Evidemment, la contrainte d’anti-arborescence est appliquée sur var. Si nous voulons
borner le degré entrant des sommets a 1, ils faut ajouter les 4 contraintes arithmétiques
suivantes, impliquant les arcs entrants de chaque sommet :

— Sommet 1 :var[3,1] <1

[
— Sommet 2 :var[l,2] <1
— Sommet 3 :var[2,3] <1
— Sommet 4 : var[l,4] +var(2,4] + var[3,4] <1

Pour nos expériementations, nous avons considéré la recherche de k-arborescences, définie

en B2,
Définition 5.2.1 (k-arborescence[21].)

Soit un graphe orienté G = (V, E), une racine r € V, un sous-ensemble de sommets can-
didats S C V \ r de terminauzx (feuilles possibles dans l'arbre) et un entier k < |S|. Une
k-arborescence est une arborescence, dont la racine est r, qui a exactement k feuilles (som-
mets de degré sortant de 0) parmi S. Il ne peut pas y avoir de feuilles parmi les sommets
non-candidats. Une contrainte sur le degré des sommets dans [’arborescence est également

présente.

51

Nous pouvons résoudre ce probleme a ’aide de notre contrainte d’anti-arborescence, en
inversant le sens des arcs des exemplaires et en choississant la racine r comme puits s.
Nous modélisons la contrainte des k terminaux devant étre choisis dans le sous-ensemble de
sommets candidats a 'aide d’une contrainte de type GCC (Global Cardinality Constraint),
qui stipule que exactement k sommets parmi ce sous-ensemble doivent avoir un degré entrant
nul. La contrainte de degré est ajoutée comme a l'exemple |5.2] Pour s’assurer que seuls les
sommets candidats puissent etre des feuilles dans I’anti-arborescence, une deuxieme contrainte
de type GCC est utilisée sur les sommets non candidats, les forcant a avoir un degré entrant
supérieur ou égal a 1.

Comme pour la contrainte d’arbre de recouvrement, nous utilisons les 3 topologies réelles,
que nous avons converties en graphes orientés. Pour ce faire, nous avons simplement doublé
chaque aréte, pour en faire un arc dans chaque direction. Le puits choisi est toujours le dernier
sommet, soit le sommet n. Le tableau [5.7] illustre le nombre de sommets et d’arcs pour les

trois exemplaires.

Tableau 5.7 Nombre de sommets (V) et d’arcs(E) des trois topologies réelles

exemplaire 'V E

bl 45 126
b3 02 144
b5 22 106

Comme pour la contrainte anti-arborescence, nous considérons 3 approches, soit densité
de solution maximale (maxSD), impact-based search (IBS), et sélection de variable et valeur
aléatoire (random). Pour chacun des trois exemplaires, nous considérons 10 ensembles de
sommets candidats différents de 25 sommets, construits de fagon aléatoire. Nous fixons le
puits au dernier sommet (sommet n). Pour random, nous rapportons une moyenne de dix
exécutions.

Comme illustré par le tableau 5.8 maxSD est nettement plus efficace pour les exemplaires
bl et b3, tant au niveau du nombre de backtracks qu’au niveau du temps de calcul, qui domine
les deux autres approches de 1 a 2 ordres de grandeur. Pour I'exemplaire bb, qui est le
I'exemplaire plus facile, maxSD ne se démarque pas comme pour les deux autres exemplaires,
car elle trouve une solution avec le plus petit nombre de backtracks, mais avec un temps de
calcul semblable aux autres approches. Encore une fois, la taille du graphe impliqué et la
difficulté relativement faible de I’exemplaire sont en cause.

La 13-arborescence, dont le degré est limité a 2, est un probléeme plus difficile que le pro-

52

Tableau 5.8 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
une 10-arborescence (k = 10) pour chaque exemplaire. Chaque ligne représente une moyenne
sur 10 exemplaires, dont les sous-ensembles de sommets candidats sont différents. Le degré
entrant maximum des sommets est de 3.

exemplaire maxSD IBS random exemplaire maxSD IBS random
bl 0.2 570.0 2857.3 bl 0.09 0.20 0.36
b3 111.7 3699.8 25080.9 b3 0.24 1.48 24.26
b5 118.0 671.1 178.8 b5 0.22 0.29 0.10

Tableau 5.9 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
une 13-arborescence (k = 13) pour chaque exemplaire. Chaque ligne représente une moyenne
sur 10 exemplaires, dont les sous-ensembles de sommets candidats son différents. Le degré
maximal entrant des sommets est de 2.

exemplaire maxSD IBS random exemplaire maxSD IBS random
bl 3172 1723.6 6925.1 bl 0.27 0.54 0.66
b3 4454 1946.7 91613.3 b3 0.53 0.59 10.78
b5* 258.0 639.0 254.4 b5* 0.36 0.31 0.08

bleme de la 10-arboresence de degré 3. En effet, un grand nombre d’essais ont été réalisés pour
trouver des exemplaires difficiles, ce qui explique le choix de ces parametres particuliers. Le
tableau[5.9(en témoigne, montrant un nombre de backtracks beaucoup plus important pour les
trois heuristiques. Pour les exemplaires bl et b3, maxSD guide beaucoup mieux la recherche
de solutions, bien qu’elle ne soit pas beaucoup plus rapide que IBS. L’heuristique random
se montre tres inefficace pour ces deux exemplaires, ce qui indique leur difficulté. L’exem-
plaire b5 n’admet aucune solution a ce probleme, donc les trois heuristiques démontrent la
preuve d’optimalité. Comme cet exemplaire est plus facile que les deux autres, maxSD per-
forme moins bien, générant autant de backtracks et prenant plus de temps que I’heuristique

aléatoire. Il en va de méme pour I1BS.

93
CHAPITRE 6

CONCLUSION

Les travaux proposés dans ce mémoire traitent principalement des heuristiques de bran-
chements et du dénombrement de solutions, deux aspects qui se sont révélés comme clé dans
la programmation par contraintes. Guider la recherche vers les espaces de solutions promet-
teurs en utilisant le dénombrement s’avere tres efficace pour plusieurs contraintes, dont celles
étudiées dans le cadre de cette maitrise : I'arbre de recouvrement et ’anti-arborescence. Ce
chapitre se divise comme suit : la section rappelle et résume la contribution des travaux; la
section [6.2] expose les limitations de la contribution et la section [6.3| aborde les améliorations

possibles et les perspectives d’avenir.

6.1 Synthese des travaux

La densité de solution, étant donné une contrainte, est un rapport qui indique, pour une
combinaison variable-valeur, la quantité de solutions auxquelles elle participe. Cette informa-
tion peut etre utilisée pour guider la recherche. Pour pouvoir utiliser cette approche, il faut
un algorithme de dénombrement propre a chaque contrainte. Il existe plusieurs contraintes
pour lesquelles un tel algorithme n’a pas été congu, notamment pour les contraintes d’arbre
de recouvrement et d’anti-arborescence.

Dans le chapitre [3 les algorithmes de dénombrement pour les contraintes d’arbre de
recouvrement et d’anti-arborescence sont expliqués. La matrice Laplacienne, pouvant étre
formée a partir de la matrice d’adjacence d’'un graphe, possede des propriétés intéressantes,
qui permettent son utilisation pour le calcul de densité de solution. Pour la contrainte d’arbre
de recouvrement, il est possible de calculer le déterminant de cette matrice pour obtenir
directement le nombre d’arbres de recouvrement total dans le graphe. En inversant une sous-
matrice issue de la matrice Laplacienne, le nombre d’arbres de recouvrement auxquels une
aréte précise participe peut étre calculé en O(n*) . Pour la contrainte d’anti-arborescence,
il est également possible de retirer de I'information de dénombrement a partir de la matrice
Laplacienne. En retirant la rangée et colonne correspondant au puit du graphe "sink-rooted”,
le mineur de la matrice Laplacienne peut également étre calculé, ce qui permet d’obtenir la
densité de solution relative & un arc. Ce calcul peut étre fait en O(n?)

Dans le chapitre [4] la mise en place des algorithmes de dénombrement, leur intégration

a la recherche ainsi que les complications relatives a I'implémentation sont abordées. Tout

o4

d’abord, les structures de données, les variables et les contraintes nécessaires a la modélisation
des problemes d’arbre de recouvrement et d’anti-arborescences sont détaillées. En utilisant
des structures réversibles, les calculs relatifs au backtracking peuvent étre évités. En utilisant
un vecteur de variables binaires et des contraintes sur le degré entrant et sortant des sommets,
plusieurs problemes de STA contraints peuvent étre mis en place. L’inversion de la matrice
Laplacienne pour le calcul de la densité de solution peut étre faite de facon efficace avec les
fonctionnalités de la librairie ALGLIB, qui utilise la décomposition LU. La densité de solution
peut étre mise a jour de fagon incrémentale, en utilisant la formule de Sherman-Morrison,
pour le cas non orienté et le cas orienté. En modifiant directement la matrice inversée, un
facteur n peut étre retiré du calcul de la densité de solution, ce qui permet de le faire en temps
O(yn). Des complications reliées a l'utilisation de nombres en point flottant sont relevées,
expliquées et résolues.

Le chapitre [5|compare ’approche maximisant la densité de solution a chaque branchement
a d’autres approches pour démontrer son efficacité. Le probleme de ’arbre de recouvrement
de degré contraint est utilisé pour la contrainte d’arbre de recouvrement. Pour les graphes non
orientés aléatoires et en particulier pour ceux composés de quelques composantes connexes
reliées par des arétes ponts, 'approche maximisant la densité de solution se démontre la plus
efficace. Des graphes issus de topologies réelles sont également utilisés pour illustré 1'effica-
cité de I'heuristique proposée. Le probleme de k-arborecence est utilisé pour la contrainte
d’anti-arborescence, dans le cas orienté. En réutilisant et en adaptant les topologies réelles
précédemment utilisées, 'efficacité de I'heuristique de branchement basée sur le dénombre-

ment est a nouveau démontrée, en particulier pour les exemplaires les plus difficiles.

6.2 Limitations de la solution proposée

Bien que I'heuristique de branchement basée sur les densités de solution s’avere efficace,
elle admet certaines limitations. La plus flagrante est sans doute la mise a 1’échelle. Au
fur et a mesure que le graphe a traiter grossit, la matrice a inverser grossit également. Il
est évident que l'inversion de matrice, pour des graphes d’une tres grande taille (quelques
centaines de sommets), sera trés cotiteuse peu importe la méthode utilisée. Si le cout relatif a
I'inversion excede le bénéfice retiré du bon guidage de la recherche de solutions, il n’est plus

utile d’utiliser la densité de solution pour guider la recherche.

6.3 Améliorations futures

Comme travail futur, nous pourrions résoudre d’autres types de STAs contraints. Plu-

sieurs domaines, dont la conception de réseaux, la télécommunication et le transport ont des

55

problemes qui impliquent la recherche de STAs. Le probleme de ’arbre de recouvrement de
degré contraint [28], le probléeme de 1'arbre de recouvrement "hop-constrained” [15] et le STA
minimum de diameétre contraint [3] en sont des exemples.

Nos travaux pourraient également avoir des applications pour les circuits Eulériens. En
effet, 'algorithme BEST[2], [44] décrit une formule qui permet de compter le nombre de cycles
Eulériens dans un graphe orienté, en temps polynomial. Or, ce calcul implique celui du nombre
d’arborescences, dont nous donnons le détail dans nos travaux. Les circuits Eulériens ont de
nombreuses applications, dont la planification de routes de déneigement ou de facteurs.

Nous planifions également d’examiner la compatibilité de la notre algorithme de densité
de solution avec des algorithmes de filtrage plus puissants développés pour les contraintes de

STA, tel que proposé dans la littérature.

[1]

[11]
[12]

[13]

o6

REFERENCES

(2010). IBM ILOG CPLEX Optimizer.
urlhttp ://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
AARDENNE-EHRENFEST, T. et BRUIJN, N. (1987). Circuits and Trees in Oriented

Linear Graphs. Modern Birkh&user Classics. Birkhduser Boston.

ABDALLA, A. et DEO, N. (2002). Random-tree diameter and the diameter-constrained
mst. Int. J. Comput. Math., 79, 651-663.

ALON, N., FOMIN, F. V., GUTIN, G., KRIVELEVICH, M. et SAURABH, S. (2009).
Spanning directed trees with many leaves. SIAM J. Discrete Math., 23, 466-476.

BANSAL, N., KHANDEKAR, R. et NAGARAJAN, V. (2009). Additive guarantees for
degree-bounded directed network design. SIAM J. Comput., 39, 1413-1431.

BELDICEANU, N., FLENER, P. et LORCA, X. (2005). The tree constraint. CPAIOR.
64-78.

BOCHKANOV, S. (2010). Alglib. http://mloss.org/software/view/231/.

BOUSSEMART, F., HEMERY, F., LECOUTRE, C. et SAIS, L. (2004). Boosting sys-
tematic search by weighting constraints. FCAI 146-150.

DOOMS, G. et KATRIEL, I. (2006). The minimum spanning tree constraint. CP.
152-166.

DOOMS, G. et KATRIEL, I. (2007). The "not-too-heavy spanning tree” constraint.
CPAIOR. 59-70.

FOULDS, L. R. (1991). Graph Theory Applications. Springer.

FURER, M. et RACHAVACHARI, B. (1994). Approximating the minimum-degree stei-
ner tree to within one of optimal. J. Algorithms, 17, 409-423.

GABOW, H. N. et MYERS, E. W. (1978). Finding all spanning trees of directed and
undirected graphs. SIAM J. Comput., 7, 280-287.

GAREY, M. R. et JOHNSON, D. S. (1979). Computers and Intractability : A Guide to
the Theory of NP-Completeness. W. H. Freeman.

GOUVEIA, L., SIMONETTI, L. et UCHOA, E. (2011). Modeling hop-constrained and
diameter-constrained minimum spanning tree problems as steiner tree problems over
layered graphs. Math. Program., 128, 123-148.

HARALICK, R. M. et ELLIOTT, G. L. (1980). Increasing tree search efficiency for
constraint satisfaction problems. Artif. Intell., 14, 263-313.

http://mloss.org/software/view/231/

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

o7

HSU, E. I, KITCHING, M., BACCHUS, F. et MCILRAITH, S. A. (2007). Using

expectation maximization to find likely assignments for solving csp’s. AAAIL 224-230.

KAPOOR, S. et RAMESH, H. (1995). Algorithms for enumerating all spanning trees of
undirected and weighted graphs. SIAM J. Comput., 24, 247-265.

KAPOOR, S. et RAMESH, H. (2000). An algorithm for enumerating all spanning trees
of a directed graph. Algorithmica, 27, 120-130.

KASK, K., DECHTER, R. et GOGATE, V. (2004). Counting-based look-ahead schemes
for constraint satisfaction. CP. 317-331.

KHANDEKAR, R., KORTSARZ, G. et NUTOV, Z. (2013). On some network design
problems with degree constraints. J. Comput. Syst. Sci., 79, 725-736.

LEBRAS, R., ZANARINI, A. et PESANT, G. (2009). Efficient generic search heuristics
within the embp framework. CP. 539-553.

LOKSHTANOV, D., RAMAN, V., SAURABH, S. et SIKDAR, S. (2009). On the directed
degree-preserving spanning tree problem. IWPEC. 276-287.

LOKSHTANOV, D., RAMAN, V., SAURABH, S. et SIKDAR, S. (2011). On the directed
full degree spanning tree problem. Discrete Optimization, 8, 97-109.

MERRIS, R. (1994). Laplacian matrices of graphs : a survey. Linear Algebra and its
Applications, 197-198, 143 — 176.

MICHEL, L. et HENTENRYCK, P. V. (2012). Activity-based search for black-box
constraint programming solvers. CPAIOR. 228-243.

MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L. et MALIK, S. (2001).
Chaff : Engineering an efficient sat solver. DAC. 530-535.

NARULA, S. C. et HO, C. A. (1980). Degree-constrained minimum spanning tree.
Computers ¢ OR, 7, 239-249.

NUTOV, Z. (2011). Approximating directed weighted-degree constrained networks.
Theor. Comput. Sci., 412, 901-912.

OSTROWSKI, A. (1937). Uber die determinanten mit iiberwiegender hauptdiagonale.
Commentarii Mathematici Helvetici, 10, 69-96.

PESANT, G. (2005). Counting solutions of csps : A structural approach. IJCAIL 260-
265.

PESANT, G. (2011). Filtering and Counting for the Spread and Deviation Constraints.

Proc. Tenth International Workshop on Constraint Modelling and Reformulation (held
during CP’11).

[33]

[34]

[41]

[42]

[43]

o8

PESANT, G., GENDREAU, M., POTVIN, J.-Y. et ROUSSEAU, J.-M. (1998). An
exact constraint logic programming algorithm for the traveling salesman problem with

time windows. Transportation Science, 32, 12—-29.

PESANT, G., QUIMPER, C.-G. et ZANARINI, A. (2012). Counting-based search :
Branching heuristics for constraint satisfaction problems. J. Artif. Intell. Res. (JAIR),
43, 173-210.

PESANT, G. et ZANARINI, A. (2011). Recovering indirect solution densities for
counting-based branching heuristics. CPAIOR. 170-175.

POTHOF, I., SCHUT, J. et DER TOEGEPASTE WISKUNDE, U. T. F. (1995). Graph-
theoretic Approach to Identifiability in a Water Distribution Network. Memorandum /
Faculteit der Toegepaste Wiskunde, Universiteit Twente. Fac. of Applied Math., Uni-

versity of Twente.

REFALO, P. (2004). Impact-based search strategies for constraint programming. CP.
5bH7-571.

REGIN, J.-C. (2008). Simpler and incremental consistency checking and arc consistency
filtering algorithms for the weighted spanning tree constraint. CPAIOR. 233-247.

REGIN, J.-C., ROUSSEAU, L.-M., RUEHER, M. et VAN HOEVE, W. J. (2010). The
weighted spanning tree constraint revisited. CPAIOR. 287-291.

SHERMAN, J. et MORRISON, W. J. (1950). Adjustment of an inverse matrix corres-
ponding to a change in one element of a given matrix. Annals of Mathematical Statistics,
21, 124-127.

TUTTE, W. (2001). Graph Theory, vol. 21 de Encyclopedia of Mathematics and Its
Applications. Cambridge University Press. 333 pages.

UNO, T. (1996). An algorithm for enumerating all directed spanning trees in a directed
graph. ISAAC. 166-173.

VANDEGRIEND, B. (1998). Finding Hamiltonian Cycles : Algorithms,
Graphs and Performance. Mémoire de maitrise, University of Alberta.
Http ://webdocs.cs.ualberta.ca/~joe/Theses/HCarchive /main.html.

W. T. TUTTE, C. A. B. S. (1941). On unicursal paths in a network of degree 4. The
American Mathematical Monthly.

ZANARINI, A. et PESANT, G. (2009). Solution counting algorithms for constraint-

centered search heuristics. Constraints, 14, 392-413.

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	2 REVUE DE LITTÉRATURE
	2.1 Heuristiques de branchement
	2.2 Heuristiques de branchement basées sur le dénombrement
	2.3 Contraintes d'arbres de recouvrement
	2.4 STAs Contraints

	3 ALGORITHMES DE DÉNOMBREMENT
	3.1 Algorithme de dénombrement pour les graphes non orientés
	3.2 Algorithme de dénombrement pour les graphes orientés

	4 MISE EN OEUVRE
	4.1 Modèles et contraintes
	4.1.1 Cas non orienté
	4.1.2 Cas orienté
	4.1.3 Calcul de la densité de solution

	4.2 Intégration à la recherche arborescente
	4.2.1 Mise à jour de la matrice Laplacienne, cas non orienté
	4.2.2 Mise à jour des densités de solution
	4.2.3 Mise à jour de la matrice Laplacienne, cas orienté

	4.3 Complications

	5 EXPÉRIMENTATIONS ET DISCUSSION
	5.1 Contrainte d'arbre de recouvrement
	5.2 Contrainte d'anti-arborescence

	6 CONCLUSION
	6.1 Synthèse des travaux
	6.2 Limitations de la solution proposée
	6.3 Améliorations futures

	RÉFÉRENCES

