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HEURISTIQUES DE BRANCHEMENT BASÉES SUR LE DÉNOMBREMENT POUR
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M. GAGNON Michel, Ph.D., président

M. PESANT Gilles, Ph.D., membre et directeur de recherche

M. ROUSSEAU Louis-Martin, Ph.D., membre et codirecteur de recherche

M. HERTZ Alain, Doct. ès Sc., membre
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RÉSUMÉ

Ce mémoire se concentre sur la programmation par contraintes (CP), une approche puis-

sante pour résoudre des problèmes combinatoires. Notre travail tourne autour de l’un des

concepts clés de la CP : les heuristiques de branchement. Cette composante définit comment

l’espace de recherche doit être exploré, quelles régions devraient être visitées en premier pour

trouver une solution rapidement. Le progrès sur ce sujet est important, étant donné que la

CP n’admet toujours pas d’approche générique efficace pour la recherche.

Les heuristiques de branchement basées sur le dénombrement comme maxSD se sont mon-

trées efficaces pour une variété de problèmes de satisfaction de contraintes. Ces heuristiques

ont besoin d’un algorithme dédié qui calcule la densité de solution locale pour chaque paire

de variable-valeur, pour chaque contrainte, de façon semblable à ce qui a été fait pour les

algorithmes de filtrage, pour appliquer l’inférence locale. Cependant, plusieurs contraintes

n’ont toujours pas de tel algorithme.

Dans notre travail, nous dérivons un algorithme exact qui, en temps polynomial, calcule la

densité de solution pour la contrainte d’arbre de recouvrement, à partir d’un résultat connu

sur le nombre d’arbres de recouvrement dans un graphe non orienté. Nous étendons ensuite

cet algorithme pour les graphes orientés, ce qui nous permet de calculer la densité de solution

pour une contrainte d’anti-arborescence, également en temps polynomial.

Ensuite, nous comparons empiriquement les heuristiques de branchement basées sur ces ré-

sultats avec d’autres approches génériques. Tout d’abord, nous utilisons le problème d’arbres

de recouvrement de degré contraint, sur des graphes non orientés pour démontrer l’effica-

cité de notre approche. Ensuite, pour les graphes orientés, nous utilisons le problème de la

k-arborescence. Les heuristiques de branchement basées sur le dénombrement se montrent

comme des approches très efficaces, autant pour le cas non orienté que pour le cas orienté,

trouvant rapidement des solutions avec un minimum de retours en arrière.
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ABSTRACT

This Master’s thesis focuses on Constraint Programming (CP), a powerful approach to

solve combinational problems. Our work revolves around one of the main components of CP

: branching heuristics. This component defines how the search space must be explored, which

areas should be visited first in order to quickly find a solution to the problem. Advances on

this topic are critical, since CP lacks a generic effective search approach.

Counting-based branching heuristics such as maxSD were shown to be effective on a

variety of constraint satisfaction problems. These heuristics require that we equip each family

of constraints with a dedicated algorithm to compute the local solution density of variable

assignments, much as what has been done with filtering algorithms to apply local inference.

However, many constraints still lack such an algorithm.

In our work, we derive an exact polytime algorithm to compute solution densities for a

spanning tree constraint, starting from a known result about the number of spanning trees

in an undirected graph. We then extend the algorithm for directed graphs, which allows us

to compute solution densities for a reverse arborescence constraint, also in polytime.

We then empirically compare branching heuristics based on those results with other

generic heuristics. First, we use the degree contrained spanning tree, on undirected graphs,

to demonstrate the effectiveness of our approach. Then, for the directed graphs, we use the

k-arborescence problem. Counting-based branching heuristics prove to be very effective for

both the undirected and directed case, finding solutions quickly and without many backtracks.
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ligne représente une moyenne sur 10 exemplaires. . . . . . . . . . . . . 47

Tableau 5.3 Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver un chemin hamiltonien dans les crossroad graphs. Chaque ligne

représente une moyenne sur 10 exemplaires. . . . . . . . . . . . . . . . 48
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sommets est de 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Tableau 5.9 Nombre de backtracks (gauche) et temps en secondes (droite) avant de

trouver une 13-arborescence (k = 13) pour chaque exemplaire. Chaque

ligne représente une moyenne sur 10 exemplaires, dont les sous-ensembles
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CHAPITRE 1

INTRODUCTION

Les problèmes combinatoires sont riches et variés. Ils permettent de décrire de nombreuses

problématiques présentes en industrie ainsi que dans le milieu académique. Que ce soit pour

concevoir des réseaux, des horaires ou encore pour ordonnancer des tâches dans une châıne

de montage, les problèmes combinatoires sont présents dans d’innombrables domaines.

Il existe plusieurs approches permettant de s’attaquer à la résolution de problèmes com-

binatoires NP-difficiles. La programmation en nombres entiers (IP, ”Integer Programming”)

décrit les problèmes comme des problèmes mathématiques d’optimisation, dans lesquels les

variables ne peuvent prendre que des valeurs entières. Dans plusieurs cas, les contraintes et

les fonctions objectifs sont toutes linéaires. Lorsque c’est le cas, l’approche prend le nom de

programmation de nombres entiers linéaire (ILP, ”Integer Linear Programming”). Une fois

que le problème est modélisé, plusieurs algorithmes existent pour le résoudre de façon exacte.

La résolution de problème formulé en programmation linéaire en nombres entiers repose sur

le calcul de sa relaxation linéaire, c’est-à-dire de la même formulation à laquelle on per-

met aux variables de prendre des valeurs fractionnaires. Afin d’obtenir une solution entière,

deux méthodes possibles. D’abord le branchement (Branch-and-Bound), l’ajout successif de

contraintes de séparation permet d’explorer l’ensemble de l’espace de recherche. Ensuite pour

l’ajout de contraintes additionnelles (Cutting Planes) ayant la propriété de séparer la solution

courante de la relaxation linéaire des solutions entières réalisables du problème. La combi-

naison de ces deux approches est aussi courante (Branch-and-Cut).

Les approches de recherche locale utilisent un voisinage, qui consiste à modifier légère-

ment une solution de base, afin d’obtenir de meilleures solutions au fur et à mesure que la

recherche progresse. L’idée est d’explorer l’espace de recherche en utilisant différents méca-

nismes pour éviter de visiter plusieurs fois la même solution. Deux approches très connues

sont le recuit simulé et la recherche taboue. Le recuit simulé fait souvent des changements

améliorant directement la solution et rarement des changements moins prometteurs, en uti-

lisant les probabilités. Plus la recherche avance, plus la probabilité de faire un choix peu

prometteur diminue. La recherche taboue utilise une liste taboue afin d’interdire les change-

ments déjà faits, pendant un certain temps. Pour toutes les approches, il existe des méthodes

de diversifications ou de perturbation, qui consistent à modifier grandement une solution

existante, pour aller explorer un espace de recherche plus éloigné du voisinage.

Les solveurs SAT, une autre approche couramment utilisée, décrivent les problèmes sous
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la forme d’expressions booléennes à satisfaire. Le problème combinatoire devient alors un

problème de décision, dans lequel le solveur tente de donner une valeur aux variables de

façon à satisfaire l’expression booléenne ou prouver qu’elle est insatisfaisable.

La programmation par contraintes est une autre approche qui utilise le formalisme du CSP.

Un CSP modélise un problème combinatoire à l’aide de variables, de leur domaine ainsi qu’un

ensemble de contraintes, qui viennent expliciter les propriétés d’une solution au problème qui

doit être résolu. Un CSP est défini comme un triplet < X,D,C > où X représente l’ensemble

des variables du problème, D représente l’ensemble des domaines des variables,c’est-à-dire les

valeurs que les variables peuvent prendre, et C représente l’ensemble des contraintes sur les

variables, qui restreignent les valeurs qu’elles peuvent prendre. Les contraintes indiquent les

propriétés que la solution au problème doit respecter pour être admissible. Voici un exemple

simple de CSP :

Exemple 1.1 (Exemple de CSP)

Soit un problème de planification d’examens finaux. Pour les 6 cours suivants (variables), les

plages horaires suivantes(domaines, numérotées de 1 à 4) sont disponibles.

– INF4705 ∈ {1, 2, 3, 4}
– INF8702 ∈ {2, 3}
– INF3710 ∈ {1, 3, 4}
– INF1600 ∈ {3, 4}
– INF1500 ∈ {1, 2, 3}
– INF6101 ∈ {1, 3, 4}
Les examens ayant au moins un élève en commun doivent avoir une période différente,

sinon il y aura conflit. Voici les contraintes représentant ces conflits potentiels :

– INF4705 6= INF3710

– INF4705 6= INF1600

– INF3710 6= INF1600

– INF8702 6= INF6101

– INF1600 6= INF1500

– INF1600 6= INF6101

– INF1500 6= INF6101

Voici un exemple de solution à ce problème :

(où == implique l’affectation d’une valeur à une variable) :

– INF4705 == 1

– INF8702 == 2

– INF3710 == 3

– INF1600 == 4
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– INF1500 == 1

– INF6101 == 3

La CP(Constraint Programming) est une approche permettant de résoudre les CSP qui

sépare la définition du problème de sa résolution. Une fois modélisé, le problème est résolu au

moyen d’un solveur. Le solveur CP peut être divisé en deux couches distinctes qui collaborent.

La première est la recherche de solutions, dans laquelle le solveur tente d’attribuer des valeurs

aux variables afin de respecter l’ensemble des contraintes définies sur celles-ci. De façon plus

précise, le solveur fixe généralement une seule variable à la fois, à une seule valeur, puis fait

appel à la deuxième couche : la couche de filtrage. Dans cette couche, le solveur filtre les

domaines des variables, un contrainte à la fois. Cela signifie qu’il retire des domaines des

variables les valeurs qui, une fois attribuées aux variables restantes, ne respecteraient plus la

contrainte. Cette étape est répétée pour l’ensemble des contraintes du problème.

Exemple 1.2 (Exemple de Résolution d’un CSP avec la CP)

Reprenons le CSP de l’exemple 1.1. Les contraintes binaires, pour faciliter le filtrage, peuvent

être regroupées. La contrainte globale alldifferent(S), où S est une ensemble, implique que

chaque élément de cet ensemble doit avoir une valeur différente. En utilisant les contraintes

binaires définies dans l’exemple 1.1, les ensembles suivants peuvent être construits :

– ensemble A = {INF4705, INF3710, INF1600}
– ensemble B = {INF8702, INF6101}
– ensemble C = {INF1600, INF1500, INF6101}
Finalement, définissons les trois contraintes alldifferent impliquant ces ensembles :

– alldifferent(A), qui implique INF4705 6= INF3710 6= INF1600

– alldifferent(B), qui implique INF8702 6= INF6101

– alldifferent(C), qui implique INF1600 6= INF1500 6= INF6101

Pour résoudre ce CSP, commençons par fixer la variable INF4705 à la valeur 1. Comme

INF4705 est impliquée dans la contrainte alldifferent(A), la valeur 1 doit être filtrée des

domaines des variables INF3710 et INF1600. Voici donc les variables et leur domaines res-

tants :

– INF4705 == 1

– INF8702 ∈ {2, 3}
– INF3710 ∈ {3, 4}
– INF1600 ∈ {3, 4}
– INF1500 ∈ {1, 2, 3}
– INF6101 ∈ {1, 3, 4}
Fixons maintenant la variable INF8702 à 2. Le filtrage devrait retirer cette valeur du
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domaine de la variable INF6101, à cause de la contrainte alldifferent(B), mais elle ne s’y

trouve pas, donc son domaine demeure le même. Voici les nouveaux domaines :

– INF4705 == 1

– INF8702 == 2

– INF3710 ∈ {3, 4}
– INF1600 ∈ {3, 4}
– INF1500 ∈ {1, 2, 3}
– INF6101 ∈ {1, 3, 4}
Fixons maintenant INF1600 à 4, ce qui impliquera le filtrage de cette valeur du domaine de

INF3710, pour la contrainte alldifferent(A), mais aussi le filtrage pour les variables INF1500

et INF6101, pour la contrainte alldifferent(C) :

– INF4705 == 1

– INF8702 == 2

– INF3710 ∈ {3}
– INF1600 == 4

– INF1500 ∈ {1, 2, 3}
– INF6101 ∈ {1, 3}
Ces étapes sont répétées jusqu’à ce qu’une solution soit trouvée.

De façon plus graphique, le filtrage réduit l’espace de recherche de solutions en retirant

les valeurs du domaine des variables dont l’affectation ne mènera pas vers une solution, avant

que celle-ci soit faite.

Le filtrage peut être plus ou moins précis pour une contrainte donnée. Évidemment, plus

il est précis, plus il est coûteux. Le filtrage le plus abordable est appelé cohérence de bornes.

Lorsqu’une solution implique une certaine assignation variable-valeur, on dit que la valeur

est supportée par cette solution. La cohérence de bornes garantit que la valeur maximale

et minimale de chaque domaine a un support, mais ne garantit rien pour toutes les valeurs

réelles entre ces deux dernières. La cohérence d’arcs, beaucoup plus précise, garantit que

chaque valeur du domaine des variables est impliquée dans une solution.

Pour résoudre un problème, un solveur CP ne fait qu’alterner entre ses couches de re-

cherche de solution et de filtrage, jusqu’à ce qu’une solution soit trouvée. Si jamais le domaine

d’une variable devient vide suite au filtrage (aucune assignation possible), le solveur fait un

”backtrack”, qui consiste à revenir sur une décision prise préalablement et retourner à l’état

qu’il avait lors de cette prise de décision. Une variable fixée à une certaine valeur est alors

fixée à une autre valeur, ce qui relance le filtrage et à nouveau la recherche de solution. Ce

processus est répété jusqu’à ce qu’une solution soit trouvée ou que l’espace de solutions ait

été exploré en entier.
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Exemple 1.3 (Exemple de ”backtrack” avec la CP)

Reprenons le CSP de l’exemple 1.1 et restreignons le domaine de la variable INF4705 aux

valeurs {3, 4}
Commençons par fixer la variable INF3710 à la valeur 3. Comme INF3710 sont impli-

quées dans la contrainte alldifferent(A), la valeur 3 doit être filtrée des domaines des variables

INF4705 et INF1600. Voici donc les variables et leur domaine restants :

– INF4705 ∈ {4}
– INF8702 ∈ {2, 3}
– INF3710 == 3

– INF1600 ∈ {4}
– INF1500 ∈ {1, 2, 3}
– INF6101 ∈ {1, 3, 4}
La contraite Alldifferent(A) détecte alors une impasse puisque les variables INF4705 et

Inf1600 ne peuvent prendre que la même valeur (4). Il y aura alors un backtrack sur l’affec-

tation à INF3710. Une nouvelle affectation peut donc être faite, comme INF3710 == 1 par

exemple.

Malheureusement, le nombre d’affectations possibles (donner une valeur de son domaine à

une variable) est typiquement énorme pour un CSP. Il n’est donc pas possible de tester indi-

viduellement l’ensemble des assignations. De façon générale, les solveurs décident de donner

ou non une certaine valeur à une variable. L’ordonnancement des branchements devient donc

une partie importante de la recherche de solutions, car elle permet de l’orienter rapidement

vers les parties de l’arbre de recherche les plus prometteuses. La CP utilise donc des heuris-

tiques de branchement pour guider la recherche. Il n’existe présentement pas d’heuristique

générique et efficace qui peut être utilisée de façon automatique par les solveurs CP. Il existe

l’heuristique de choix de variable plus-petit domaine d’abord (minsize), qui est générique et

relativement efficace ; des heuristiques plus spécialisées, plus efficaces pour certains problèmes

sont nécessaires et ont été développées. Les heuristiques de branchement basées sur le dé-

nombrement de solution ont récemment été proposées et s’avèrent très efficaces pour un bon

nombre de problèmes. Elles nécessitent cependant un algorithme de dénombrement spécia-

lisé, pour chaque famille de contraintes. De tels algorithmes existent pour un bon nombre

de contraintes, mais il en reste certaines pour lesquels ces algorithmes n’ont pas encore été

développés. La contrainte d’arbre de recouvrement, nécessaire pour traiter de nombreux pro-

blèmes de réseaux, n’a pas de tel algorithme.

Trouver un l’arbre de recouvrement dans un graphe est un problème bien connu. Pour

le résoudre, un sous-ensemble d’arêtes connexe couvrant tous les sommets, sans former de

cycle, est trouvé dans un graphe connexe et non orienté. Il est facile de le résoudre en temps
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polynomial, même dans sa version d’optimisation : l’arbre de recouvrement minimal (MST :

minimum spanning tree). À la figure 1.1, les arêtes (1,2), (1,4) et (2,3) en rouge couvrent

tous les sommets sans former de cycle et constituent un arbre de recouvrement.

1

2 3

4

Figure 1.1 Exemple d’arbre de recouvrement

Bien que ce problème puisse être résolu en temps polynomial, ajouter certaines contraintes

à l’arbre de recouvrement le rend NP-Difficile. Or, de tels problèmes sont fréquents : concep-

tion de réseaux informatiques, télécommunication ou élaboration de réseaux de transport. Le

problème d’arbre de recouvrement avec degré contraint[28], le problème d’arbre de recouvre-

ment hop-contraint[15] et l’arbre de recouvrement de diamètre contraint[3] sont des exemples

de problèmes pour lesquels un arbre de recouvrement contraint doit être trouvé.

Ce mémoire s’attarde sur les heuristiques de branchement basées sur le dénombrement

de solutions, en particulier pour les problèmes relatifs aux arbres de recouvrement, dans des

graphes non orientés. Nos contributions principales sont les suivantes :

– L’élaboration d’un algorithme permettant de dénombrer les solutions pour la contrainte

d’arbre de recouvrement non orientés, à partir de théorèmes mathématiques existants.

– L’implémentation et l’utilisation de cet algorithme dans une heuristique de branche-

ment, qui guide la recherche en fonction de la densité de solutions.

– La résolution de problèmes d’arbres de recouvrement contraints avec la nouvelle heu-

ristique proposée.

– La généralisation de l’algorithme de dénombrement pour les graphes orientés, ce qui

implique une généralisation de l’heuristique de branchement qui en découle.

– L’utilisation de cet algorithme généralisé dans une heuristique de branchement, qui

guide la recherche en fonction de la densité de solutions.

– La résolution de problèmes d’arborescences contraintes avec la nouvelle heuristique

proposée.

– L’élaboration et la mise en place d’une procédure de mise à jour des matrices utilisées

pour le calcul de la densité de solution, pour la contrainte d’arbre de recouvrement et

d’anti-arborescence.

– L’élaboration et la mise en place d’un méthode permettant de calculer les densités

de solutions de façon incrémentale, pour la contrainte d’arbre de recouvrement et la

contrainte d’anti-arborescence.
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Le mémoire est organisé comme suit : le chapitre 2 résume le travail précédant ce mémoire.

Le chapitre 3 introduit nos algorithmes de dénombrement pour les arbres de recouvrements.

Le chapitre 4 présente la mise en oeuvre des algorithmes du chapitre 3. Les résultats expé-

rimentaux, issus de la comparaison des heuristiques de branchement basées sur le dénombre-

ment avec d’autres approches, sont donnés dans le chapitre 5. Finalement, la conclusion est

présentée dans le chapitre 6.
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CHAPITRE 2

REVUE DE LITTÉRATURE

Dans ce chapitre, la recherche précédant le travail réalisé dans ce mémoire est abordée. Ce

chapitre commence par la section 2.1, qui explique différentes heuristiques de branchement.

Ensuite, la section 2.2 aborde les heuristiques de branchement basées sur le dénombrement

et les algorithmes de dénombrement proposés pour plusieurs contraintes. Le travail fait sur

les contraintes d’arbre de recouvrement est expliqué à la section 2.3. Enfin, les arbres ou

arborescences contraints sont abordés à la section 2.4.

2.1 Heuristiques de branchement

Pour la CP, il n’existe pas à ce jour d’approche exacte, générique et intégrée au solveur

pour choisir dans quel ordre les variables-valeurs, appelés branchements, doivent être choisies.

Conséquemment, la CP fait appel aux heuristiques de branchement pour explorer rapidement

les parties les plus prometteuses de l’arbre de recherche, afin de trouver efficacement des

solutions aux CSP. En se basant sur plusieurs critères, tels la structure du problème, la taille

des domaines ou l’impact d’une assignation sur les autres domaines, ces heuristiques indiquent

quel branchement il est préférable de faire à un endroit précis dans l’arbre de recherche. Il

existe un certain dilemme pour l’utilisation des heuristiques de recherche : les heuristiques

très simples utilisent peu la structure du problème, donc guident moins bien la recherche. Les

heuristiques plus complexes, guidant mieux la recherche, demandent un temps de calcul plus

important. Dans cette section, différentes heuristiques de branchement seront décrites.

Les heuristiques de branchement se divisent en trois catégories principales, impliquant

chacune un choix sur une composante particulière du branchement. La première est celle se

concentrant sur le choix de la variable. Ce type d’heuristique détermine quelle variable il est

préférable de fixer en premier. La deuxième catégorie est l’heuristique qui fait un choix de

valeur. Une fois la variable choisie, cette approche détermine quelle valeur il est préférable

de donner à la variable en premier. Enfin, la troisième et dernière catégorie fait à la fois le

choix de variable et de valeur.

L’une des premières stratégies de branchement introduites fut celle du ”fail-first principle”,

proposée par Haralick et Elliott [16]. L’idée derrière cette approche est fort simple : il s’agit de

faire le plus restrictif, le plus difficile, dès le début. Ce faisant, faire le choix qui risque de mener

vers un échec (branchement ne menant vers aucune solution) s’est montré très bénéfique.
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Haralick et Elliott ont démontré que les approches respectant ce principe permettent d’obtenir

de meilleurs résultats que les approches standards [16]. Un grand nombre d’heuristiques de

branchement simples s’inspirent de ce principe.

Une heuristique appliquant directement ce principe est l’heuristique de choix de variable

plus-petit-domaine-d’abord[16]. Cette heuristique très simple peut être appliquée à prati-

quement n’importe quel problème. Le principe est le suivant : la variable dont le domaine

comporte le plus petit nombre de valeurs est beaucoup plus prompte à causer un échec dans

la recherche de solutions, étant donné que le choix de valeurs possibles pour cette variable

est plus restreint. Puisque cette variable risque de causer des échecs, il est beaucoup plus

judicieux de lui assigner une valeur dès le début de la recherche et obtenir un échec presque

immédiatement, plutôt qu’après un grand nombre de branchements, ce qui reviendrait à

perdre du temps.

Exemple 2.1 (Heuristique Plus-Petit-Domaine-d’Abord)

Soit le CSP simple avec les variables et domaines suivants :

– a ∈ {1, 2, 3}
– b ∈ {2, 3, 5}
– c ∈ {3, 4}
– d ∈ {3, 4}
et la contrainte globale alldifferent<a,b,c,d>, qui implique que les 4 variables ne doivent

pas être fixées à la même valeur. (a ==2 et b==2 ne respecterait pas cette contrainte). Nous

supposons ici un algorithme de filtrage simple qui ne considère que les contraintes binaires.

Si l’heuristique plus-petit-domaine-d’abord est appliquée, on branchera d’abord sur la va-

riable c ou d, car les deux ont un domaine de taille 2, tandis que les variables a et b ont

trois valeurs dans leur domaine. Par exemple, prenons c == 3. La valeur 3 doit donc être

éliminée des autres domaines, car autrement, a,b ou d pourrait prendre la même valeur que

c. Ce faisant, les nouveaux domaines deviennent :

– a ∈ {1, 2}
– b ∈ {2, 5}
– c == 3

– d ∈ {4}
La variable d sera fixée sans branchement, car elle n’a qu’une seule valeur dans son

domaine.

Il existe aussi d’autres heuristiques de branchement qui tentent de maximiser le filtrage en

choisissant des valeurs qui auront un impact important sur le domaine des autres variables.

L’heuristique ”Impact-based search”, proposée par Refalo [37] choisit la variable ayant le
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plus grand impact dans la recherche de solution. Cette approche mesure l’impact de chaque

assignation en calculant le produit de la taille des domaines de l’ensemble des variables, de

la façon suivante :

P = |Dx1| × ...× |Dxn|
où P représente le produit de la taille des domaines des variables x1 à xn

L’impact d’une affectation peut alors être calculé comme suit :

I(xi == a) = 1− Paprès

Pavant

Où I est l’impact pour une assignation donnée. Pavant et Paprès représentent le produit de

la taille des domaines avant et après l’assignation, respectivement.

Plus la taille de l’espace de recherche sera diminuée, plus l’impact calculé sera grand.

Cependant, calculer l’impact pour toutes les assignations possibles à chaque branchement

s’avère coûteux. Il est possible de faire une moyenne des impacts pour une variable donnée,

en sommant l’impact de chaque assignation et en divisant par le nombre d’assignations.

Cette méthode est beaucoup plus efficace. Cette stratégie globale permet de résoudre des

exemplaires de problèmes qui étaient auparavant impossibles à résoudre avec des stratégies

standards, comme plus-petit-domaine-d’abord.

Exemple 2.2 (Heuristique Impact-based search)

Soit le même CSP que celui utilisé dans l’exemple 2.1.

Calculons le produit des domaines P de base :

P = |Da| × |Db| × |Dc| × |Dd| = 3× 3× 2× 2 = 36

Calculons maintenant l’impact de chaque assignation : Si a == 1 est choisi, la valeur 1

doit être retirée de tous les domaines (aucun dans ce cas-ci)

I(a == 1) = 1− Paprès

Pavant
= 1− 1×3×2×2

36
= 1− 12

36
= 24

36

Si a== 2 est choisi, la valeur 2 sera retirée du domaine de b.

I(a == 2) = 1− Paprès

Pavant
= 1− 1×2×2×2

36
= 1− 8

36
= 28

36

si a==3 est choisi, la valeur 3 devra être retiré des domaines de b,c et d

I(a == 3) = 1− Paprès

Pavant
= 1− 1×2×1×1

36
= 1− 2

36
= 34

36

Voici les Impacts pour les autres assignations :

I(b == 2) = 28
36

I(b == 3) = 34
36

I(b == 5) = 24
36

I(c == 3) = 32
36

I(c == 4) = 27
36

I(d == 3) = 32
36

I(d == 4) = 27
36
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Comme le rapport le plus grand est celui de I(a == 3), il sera choisi.

Une autre stratégie de branchement élaborée est l’heuristique dom/wdeg, proposée par

Boussemart et al. [8]. Cette approche attribue un poids initial de 1 à chaque contrainte.

À chaque fois qu’une contrainte cause un échec (le filtrage causé par cette contrainte vide

le domaine d’une variable), son poids est augmenté de 1. Le degré pondéré d’une variable

correspond à la somme des poids des contraintes qui l’impliquent. Cette information, si le

”fail-first principle” est considéré, devient très intéressante, car elle permet d’ordonner les

variables en fonction de la somme des poids des contraintes qui y sont associées. Un ratio

divisant la taille du domaine par le degré pondéré de la variable peut alors être calculé.

L’heuristique ne fait que choisir la variable ayant le plus petit rapport, ce qui correspond à

choisir la variable qui a le plus grand potentiel de conflit d’abord.

Exemple 2.3 (Heuristique dom/wdeg)

Soit le même CSP que celui utilisé dans l’exemple 2.1. Ajoutons la contrainte arithmétique

suivante :

a+ c > 6

Les variables ont les degrés pondérés suivants initialement :

degré a = 2

degré b = 1

degré c = 2

degré d = 1

Calculons les ratios initiaux :

ratio a = |Da|
dega

= 3
2

ratio b = |Db|
degb

= 3
1

ratio c = |Dc|
degc

= 2
2

ratio d = |Dd|
degd

= 2
1

Comme la variable c admet le plus petit ratio, elle sera choisie d’abord. Fixons c==3.

La contrainte alldifferent retire la valeur 3 de tous les domaines, tandis que la contrainte

arithmétique retire toutes les valeurs du domaine de a, car aucune ne permet de respecter la

contrainte. Les domaines deviennent :

– a ∈ {}
– b ∈ {2, 5}
– c == 3

– d ∈ {4}
Comme la contrainte arithmétique cause un échec, vidant le domaine de la variable a, son

poids augmente et prend la valeur 2. Ce faisant, les degrés des variables a et c augmenteront

et prendront la valeur 3. Après le backtrack, les domaines sont les suivants :
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– a ∈ {1, 2, 3}
– b ∈ {2, 3, 5}
– c ∈ {4}
– d ∈ {3, 4}
les ratios deviennent :

ratio a = |Da|
dega

= 3
3

ratio b = |Db|
degb

= 2
1

ratio c = |Dc|
degc

= 1
3

ratio d = |Dd|
degd

= 2
1

La variable c sera choisie ensuite, car elle a le plus petit ratio.

L’activité des variables dans le filtrage du solveur peut également être utilisée pour guider

la recherche. L’heuristique de branchement ”Activity-based search”, inspirée des solveurs SAT

(heuristique VSID[27]), a été proposée par Michel et Van Hentenryck[26]. Elle mesure à quelle

fréquence le domaine d’une variable est modifié. L’activité d’une variable x dans l’ensemble

des variables X du CSP est calculée de la façon suivante :

∀x ∈ X −X ′ t.q. |D(x)| > 1 : A(x) = A(x) · γ
∀x ∈ X ′ : A(x) = A(x) + 1

0 < γ < 1

Où X ′ est l’ensemble des variables affectées. Il faut évidemment que le domaine de la

variable soit plus grand que 1 pour que son activité soit considérée, autrement elle est déjà

fixée. La valeur de γ, située entre 0 et 1, affecte à quelle vitesse l’activité d’une variable

diminue d’une itération à l’autre. Plus sa valeur est petite, plus l’activité d’une variable

décroit rapidement en fonction du temps. Ainsi, de façon générale, l’activité relative à une

variable diminue avec le temps, mais augmente si son domaine est régulièrement affecté.

L’activité est mise à jour à chaque noeud de l’arbre de recherche. Un ratio peut alors être

calculé A(x)
|D(x)| . En utilisant ce ratio, il est possible d’ordonner les variables et de choisir celle qui

est la plus active d’abord. Il est également possible d’estimer l’activité relative à l’assignation

d’une valeur.

Exemple 2.4 (Heuristique Activity-based search)

Soit le même CSP que celui utilisé dans l’exemple 2.1

Choisissons un γ = 0.5 et initialisons l’activité de chaque variable à 1.

Fixons a == 2, comme première assignation. Les domaines des variables deviennent :

– a == 2

– b ∈ {3, 5}
– c ∈ {3, 4}
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– d ∈ {3, 4}
Le domaine de la variables b est affecté, ce qui augmente son activité :

A(b) = A(b) + 1 = 2

La mise à jour des ratios doit également être faite pour les variables dont les domaines

demeurent inchangés :

A(c) = A(c)× 0.5 = 0.5

A(d) = A(d)× 0.5 = 0.5

Calculons les ratios :

ratio b = A(b)
|Db|

= 2
2

= 1

ratio c = A(c)
|Dc| = 0.5

2
= 0.25

ratio d = A(d)
|Dd|

= 0.5
2

= 0.25

Comme b a le plus grand ratio, c’est la variable la plus active. Elle sera choisie.

D’autres approches tentent plutôt de mesurer le bénéfice de fixer ou de ne pas fixer une

certaine valeur à une variable à un moment donné, dans un problème d’optimisation. C’est

le cas de la stratégie du regret[33]. L’idée derrière cette stratégie est la suivante : mesurer le

bénéfice résultant de l’assignation d’une certaine valeur à une variable et ensuite mesurer la

perte résultant de faire un choix différent. Cette perte est appelée regret. L’heuristique de

branchement en découlant tente de minimiser le regret.

Exemple 2.5 (Heuristique de branchement regret)

Soit le CSP suivant, sous sa version optimisation, où la fonction objectif attribue les bénéfices

(ici donnés arbitrairement) suivants (entre parenthèses) pour chaque valeur du domaine :

– a ∈ {1(5), 2(10), 3(12)}
– b ∈ {2(5), 3(2), 4(8)}
– c ∈ {3(3), 4(4)}

Considérations de l’heuristique

– Considérons la valeur 4, pour la variable b. Si l’assignation b==4, dont le bénéfice est

de 8 n’est pas faite, le mieux qu’il est possible de faire est b == 2, qui donne un bénéfice

de 5. Conséquemment, si l’assignation b == 4 n’est pas faite, l’heuristique estimera un

regret de 3.

– Considérons la valeur 3 pour la variable a. Le maximum possible est 12, avec a ==3.

Ensuite, si a==3 n’est pas choisi, a==2 peut l’être, ce qui constitue un regret de 2.

– Pour la variable c, si c==4 est choisi, le bénéfice est de 4, tandis que l’alternative ne

permet qu’un revenu de 3, ce qui résulte en un regret de 1.

Comme l’affectation b == 4 admet le plus grand regret, elle sera faite en premier.
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2.2 Heuristiques de branchement basées sur le dénombrement

Récemment, des heuristiques basées sur le dénombrement ont été proposées. Ces heuris-

tiques sont très efficaces, mais nécessitent un algorithme de dénombrement adapté à chaque

contrainte.

L’idée générale des heuristiques de dénombrement est de prendre une décision de bran-

chement en se basant sur le nombre de solutions qui la supportent et qui incluent cette

assignation particulière. De façon plus formelle, ces heuristiques utilisent les concepts de dé-

nombrement de solutions et de densité de solution [31, 45, 34], qui sont définis de la façon

suivante :

Définition 2.2.1 (Dénombrement de solution)

Étant donné une contrainte c(x1, ..., xn) et les domaines finis respectifs Di, 1 < i < n,

#c(x1, ..., xn) représente le nombre de n-tuples dans la relation correspondante.

Définition 2.2.2 (Densité de solution)

Étant donné une contrainte c(x1, ..., xn) et les domaines finis respectifs Di, 1 < i < n, pour

une variable xi incluse dans la contrainte c et une valeur d ∈ Di, nous appelons

σ(xi, d, c) =
#c(x1, . . . , xi−1, d, xi+1, . . . , xn)

#c(x1, . . . , xn)

la densité de solution d’une paire (xi, d) dans c. La densité de solution mesure à quelle

fréquence un choix variable-valeur fait partie d’une solution respectant la contrainte c

L’idée d’utiliser le nombre de solutions pour guider la recherche a déjà été exploitée par

le passé. Kask et al. [20] ont proposé une heuristique qui approxime le nombre de solu-

tions qui étend une solution partielle. Celle-ci choisit l’assignation participant au plus grand

nombre de solutions pour la variable courante. Une heuristique basée sur la distribution des

solutions, proposée initialement par Hsu et al. [17] et ensuite améliorée par [22], utilise le

framework ”Expectation-Maximisation Belief Propagation” (EMPB). La probabilité qu’une

variable prenne une certaine valeur dans une solution est calculée, puis utilisée pour gui-

der la recherche. Les travaux utilisant la densité de solution[31, 45, 34] diffèrent des autres

approches, car le calcul est fait individuellement pour chaque contrainte.

La densité de solution peut être calculée de façon exacte ou approximée, pour une contrainte

donnée. Pour ce faire, un algorithme de dénombrement, adapté à une contrainte particulière,

est nécessaire. En utilisant des informations intrinsèques aux contraintes, ainsi que des pro-

priétés mathématiques, le nombre de solutions impliquant une assignation particulière peut

être calculé ou approximé. Par exemple, le calcul du permanent, une fonction de la ma-

trice similaire au déterminant, peut être utilisé pour évaluer la densité de solution pour la
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contrainte alldifferent [45, 34], en construisant la matrice représentant le graphe de valeurs

pour l’ensemble des variables de la contrainte.

Il existe cependant un compromis entre la précision de l’algorithme de dénombrement

et son efficacité dans l’heuristique de recherche. Comme le dénombrement de solutions doit

être fait avant chaque branchement, il doit être le plus efficace possible, sinon il serait moins

coûteux de risquer un branchement moins bon et d’éventuellement atteindre une solution,

que de faire un long calcul menant directement à celle-ci. Dans cette optique, Pesant et al.

[34] bornent le permanent, ce qui est nettement plus rapide que de le calculer exactement.

Bien que l’heuristique basée sur le dénombrement de solutions perde de la précision, le fait

d’avoir un calcul plus performant permet d’opter pour une solution combinée : un calcul

moins précis, mais moins coûteux, ce qui s’avère beaucoup plus efficace globalement.

Pesant et al. [34] décrivent des algorithmes de dénombrement pour de nombreuses autres

contraintes : alldifferent symétrique, cardinalité globale, regular et knapsack, qui permettent

de résoudre de nombreux autres problèmes. Pour la version symétrique de la contrainte

alldifferent, les auteurs étendent l’algorithme développé pour la contrainte alldifferent de base.

Ils calculent une borne supérieure du permanent de façon un peu moins précise qu’avec la

contrainte de base. La contrainte de cardinalité globale est une généralisation de la contrainte

alldifferent, donc les auteurs utilisent une fois de plus une borne supérieure sur le permanent

pour dénombrer les solutions. Pour les contraintes regular et knapsack, Pesant et al. [34]

proposent un algorithme exact. Les auteurs décrivent également un algorithme approché

pour la contrainte knapsack.

Des algorithmes de dénombrement ont également été proposés pour d’autres contraintes

globales : element[35] et spread/deviation[32]. Pour la contrainte element, un algorithme

exact est proposé. Un algorithme exact est également décrit par l’auteur pour la contrainte

spread/deviation.

Pesant et al. [34] ont généralisé le concept d’heuristique basée sur le dénombrement de

solution sous la forme d’une heuristique générique, centrée sur la contrainte. Leur approche,

maxSD (max Solution Density), combine le choix de variable et de valeur en itérant sur chaque

variable et chaque valeur de son domaine. L’assignation ayant la densité de solution la plus

élevée est choisie. Au fur et à mesure que la recherche de solution progresse, les densités de

solutions sont recalculées ou mises à jour, ce qui permet d’utiliser cette heuristique jusqu’à

ce que le problème soit résolu.

Bien que des algorithmes de dénombrement existent pour plusieurs contraintes, il en reste

plusieurs pour lesquels un tel algorithme n’a pas encore été développé. La contrainte arbre

de recouvrement, qui permet de modéliser plusieurs problèmes de réseaux, n’admet toujours

pas d’algorithme de dénombrement. La prochaine section donne plus de détails sur ce type
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de contrainte.

2.3 Contraintes d’arbres de recouvrement

La recherche dans la communauté CP sur les structures d’arbres imposées s’est concentrée

sur les algorithmes de filtrage et non sur les heuristiques de branchement.

Beldiceanu et al. [6] ont introduit la contrainte d’arbre, qui permet le partitionnement d’un

problème de digraphe avec une perspective de CP. Dans leur travail, une contrainte utilisant

une variable de type ensemble pour représenter une anti-arborescence est proposée. Ce type

de variable regroupe tous les sommets faisant partie de l’anti-arborescence dans un ensemble

et ceux n’en faisant pas partie dans l’autre. Avec leur contrainte, les auteurs obtiennent une

cohérence de domaine en O(nm), où n est le nombre de sommets du graphe, tandis que m

est le nombre d’arêtes. Le filtrage de leur contrainte repose sur l’identification des points

d’articulation du graphe, ainsi que sur ses racines et ses puits. Ces informations sont utilisées

pour évaluer le nombre minimum et le maximum d’arbres nécessaires pour partitionner le

graphe.

Dooms et Katriel [9] ont introduit la contrainte MST, qui requiert une variable arbre

pour représenter l’arbre de recouvrement minimum du graphe sur lequel la contrainte est

définie. Plusieurs variantes du problème de l’arbre de recouvrement minimum, comme le

”minimum k-spanning tree” et le ”Steiner tree” sont connus pour être NP-difficiles, bien que la

version de base du problème puisse être résolue en temps polynomial. Ces problèmes peuvent

être modélisés en combinant la contrainte d’arbre de recouvrement minimum et d’autres

contraintes. Les auteurs ont proposé un algorithme de filtrage qui maintient la cohérence de

borne en temps polynomial, pour plusieurs restrictions de cette contrainte. Leur algorithme

divise les arêtes en trois ensembles : obligatoires, possibles et interdites. Par la suite, Dooms

et Katriel [10] ont proposé une version de la contrainte avec un poids (weighted spanning tree

contraint), dans laquelle l’arbre de recouvrement et le poids des arêtes sont des variables. Ils

considèrent plusieurs algorithmes de filtrage. Dans leur travail, une variable d’ensemble est

utilisée, indiquant quelles arêtes font partie de l’arbre de recouvrement.

Le filtrage proposé par Dooms et Katriel [10] a par la suite été simplifié et amélioré par

Régin [38], qui a proposé un algorithme de filtrage incrémental, qui maintient plusieurs com-

posantes connexes et représente les opérations de fusion des arbres disjoints dans l’algorithme

de Kruskal. Conséquemment, la cohérence de domaine a été atteinte pour cette contrainte,

en O(m+n log n). Subséquemment, Régin et al. [39] ont amélioré la complexité de ce filtrage.
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2.4 STAs Contraints

Bien que le problème de l’arbre de recouvrement minimal puisse se résoudre en O(n2)

avec les algorithmes de Prim et Kruskal, ajouter certaines contraintes sur celui-ci le rend NP-

difficile. Plutôt que de trouver un arbre de recouvrement minimum, il peut être intéressant

d’énumérer tous les arbres recouvrants possibles dans un graphe. Comme nous considérerons

à la fois les graphes orientés et non orientés dans notre travail, nous utiliserons STA(Spanning

tree or Arborescence) pour référer aux arbres (non orientés) ou arborescences (orientées) de

recouvrement.

Beaucoup de recherche a été faite sur l’énumération des STAs dans les graphes. Gabow

et Myers [13] ont d’abord introduit un algorithme qui trouve tous les STAs dans les graphes

orientés ou non orientés. Leur approche utilise le ”backtracking”et la recherche en profondeur,

énumérant tous les STAs en O(V + E + EN), où V , E et N représentent le nombre de

sommets, arêtes et STAs, respectivement. Kapoor et Ramesh [18] ont présenté un algorithme

pour trouver les STAs dans les graphes non orientés avec des arêtes avec ou sans poids. En

construisant d’abord un arbre et en utilisant une approche pour parcourir celui-ci, les auteurs

sont capables de représenter les STAs en décrivant uniquement les changements relatifs d’un

STA à l’autre, plutôt qu’en les décrivant entièrement . Ils améliorent ensuite la performance de

leur approche pour les graphes orientés[19], en présentant un nouvel algorithme, qui énumère

tous les STAs en O(NV +V 3). Leur approche implique l’échange d’arcs faisant partie ou non

du premier STA décrit, ce qui permet de les énumérer tous. Uno [42] a également proposé

une approche pour énumérer tous les STAs dans un graphe orienté, en O(E+ND(V,E)), où

D(V,E) est la complexité de la structure de données nécessaire pour mettre à jour le STA,

dans un graphe non orienté de V sommets et E arêtes.

Les approches énumérées dans le paragraphe précédent énumèrent les STAs en appliquant

principalement des changements locaux. Notre travail se distingue de cette recherche par son

objectif principal : utiliser l’information locale sur les arêtes (densité de solution) comme

heuristique de branchement, pour construire un STA. Nous utilisons le filtrage de la contrainte

d’arbre de recouvrement pour calculer le nombre de solutions impliquant une certaine arête.

Au fur et à mesure que la recherche de solution progresse, l’information sur les arêtes est

mise à jour, jusqu’à ce qu’un STA complet soit construit. Notre travail peut donc être utilisé

pour énumérer les STAs, mais notre intérêt se situe plutôt au niveau des STAs contraints.

Il existe de nombreux problèmes impliquant une contrainte de degré sur le STA. Lok-

shtanov et al. [23] considèrent le ”degree preserving spanning tree problem”. Ils considèrent

explicitement deux problèmes en particulier[24]. Le premier est le ”full degree spanning tree

problem”qui, étant donné un graphe connexe et non orienté, détermine si le graphe G contient
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un STA T dans lequel au moins k sommets ont le même degré dans G que dans T . Les au-

teurs généralisent ce problème aux graphes orientés. Ils considèrent également le problème

inverse, le ”reduced degree spanning tree”, dans lequel au moins k sommets doivent avoir un

degré différent dans G et T . L’intérêt d’un tel problème se situe au niveau de la conception

de réseaux de distribution d’eau, où un nombre minimal d’appareils mesurant le débit devait

être installés[36].

Un exemple de problème plus général est le ”minimum degree spanning tree problem”[12],

qui consiste à trouver le STA ayant le plus petit degré maximum dans le graphe. Les auteurs

proposent un algorithme approximatif pour résoudre ce problème, dont la généralisation

permet également de résoudre le ”minimum degree steiner tree problem”. Ce dernier problème

implique la construction d’un sous-graphe de recouvrement dont certaines composantes ne

sont pas connexes.

Il existe également des contraintes qui ne sont pas reliées aux degrés des sommets du STA.

Par exemple, Alon et al. [4] décrivent le ”directed maximum leaf out branching problem”, qui

consiste à trouver le STA ayant le plus grand nombre de feuilles. Ce problème NP-difficile

admet également une version non orientée, qui est également NP-difficile[14]. L’intérêt de

ces problèmes se situe au niveau de la conception de protocoles de routage, où les nombres

d’entrées et de sorties des routeurs est limité.

Beaucoup de travail a également été fait sur les STAs contraints dont les arêtes ont des

poids, ce qui en fait des problèmes d’optimisation. Khandekar et al. [21] décrivent un algo-

rithme approximatif pour résoudre le ”minimum-cost degree constrained 2-node connected

subgraph problem”. Résoudre ce problème implique la recherche d’un MST dont tous les som-

mets ont un degré inférieur à une certaine valeur. Ce MST doit également être 2-sommets

connecté, ce qui signifie que le retrait de n’importe quel sommet n’affecte pas la connexité du

sous-graphe. Nutov [29] donne un algorithme approximatif pour résoudre le ”directed weigh-

ted degree constrained network”, problème qui implique la recherche d’un sous-graphe de coût

minimum f-connecté (le retrait de f sommets ne déconnecte pas le sous-graphe) qui satisfait

également des contraintes de degré. Un autre problème est le ”minimum crossing spanning

tree problem”, considéré par [5]. Ce problème est résolu en trouvant un MST qui contient au

moins b arêtes faisant partie d’un sous-ensemble d’arêtes e ∈ E. Les auteurs proposent une

amélioration à la garantie d’approximation de l’algorithme existant, en plus d’une extension

à la technique de résolution pour le cas orienté.

Notre travail se situe au niveau de la résolution des problèmes de satisfaction, pour les

graphes orientés et non orientés. Nous ne considérons donc pas les problèmes d’optimisation

impliquant un poids sur les arêtes, mais uniquement les problèmes où un STA respectant

certaines contraintes doit être trouvé.
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CHAPITRE 3

ALGORITHMES DE DÉNOMBREMENT

Dans ce chapitre, les algorithmes de dénombrement proposés pour la contrainte d’arbre de

recouvrement et d’anti-arborescence sont détaillés. À la section 3.1, l’algorithme de dénom-

brement est démontré et expliqué pour les graphes non orientés. À la section 3.2, l’algorithme

est étendu pour les graphes orientés.

3.1 Algorithme de dénombrement pour les graphes non orientés

Un graphe est défini comme G = (V,E) où V est un ensemble de sommets et E est un

ensemble d’arêtes, couplant les sommets de V . Un graphe non orienté a un ensemble d’arêtes

qui couple les sommets de façon non ordonnée. Un graphe orienté, ou digraphe, a plutôt un

ensemble d’arcs, qui couple les sommets de façon ordonnée. Les arcs ont une information de

plus que les arêtes : un sens.

1

2 3

4

Figure 3.1 Graphe non orienté

1

2 3

4

Figure 3.2 Graphe orienté

En comptant le nombre d’arêtes reliées à un sommet d’un graphe non orienté, le degré

deg(v) d’un sommet v est obtenu. Pour un graphe, il est possible de calculer le degré sortant

et entrant du sommet. Le degré entrant, noté deg−(s), correspond au nombre d’arcs orientés

vers le sommet, tandis que le degré sortant, noté deg+(s), correspond au nombre d’arcs dont

l’origine est le sommet.

Un graphe G′ = (V ′, E ′) est défini comme un sous-graphe induit de G = (V,E) si V ′ ⊆ V ,

E ′ ⊆ E et si E ′ est l’ensemble des arêtes de E dont les deux sommets font partie de V ′. G′
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est un graphe connexe si pour chaque paire de sommets u, v ∈ V il existe au moins un chemin

entre u et v. Un arbre est un graphe non orienté acyclique connexe.

Continuons avec une définition plus formelle d’un arbre de recouvrement :

Définition 3.1.1 (Arbre de recouvrement (Spanning tree)[11])

Un arbre de recouvrement T d’un graphe G est un arbre T (V,E ′) où E ′ ⊆ E.

Les graphes peuvent être représentés en mémoire de plusieurs façons. La plus commune est

la matrice d’adjacence, une matrice carrée n × n qui indique si une arête entre les sommets

i et j est présente, pour l’ensemble des arêtes possibles. La figure 3.3 est un exemple de

matrice d’adjacence, pour le graphe non orienté de la figure 3.1, tandis que la figure 3.4

l’est pour le graphe orienté de la figure 3.2.

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0



Figure 3.3 Matrice d’adjacence pour le graphe non orienté 3.1

A =


0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0



Figure 3.4 Matrice d’adjacence pour le graphe orienté 3.2

Pour un graphe non orienté, la matrice d’adjacence est toujours symétrique, ce qui im-

plique que les matrices triangulaires supérieures et inférieures partage la même information.

Ce n’est pas le cas pour la matrice d’adjacence du graphe orienté.

La matrice Laplacienne L(G) d’un graphe non orienté G est formée en soustrayant la

matrice d’adjacence de G de la matrice diagonale où l’entrée i correspond au degré du sommet

i dans G. Plus formellement :

L(G) = D − A(G)

où D est la matrice diagonale dont l’entrée i correspond à deg(vi) et A est la matrice d’ad-

jacence de G.
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Par convention, nous ferons référence à cette matrice simplement par L. La figure 3.5 est

un exemple de matrice Laplacienne pour le graphe non orienté 3.1.

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2



Figure 3.5 Matrice Laplacienne pour le graphe 3.1

Tout comme la matrice d’adjacence, la matrice Laplacienne est symétrique pour les

graphes non orientés. Le mineur-(i, j) d’une matrice carrée M , noté Mij, est le détermi-

nant de la sous-matrice obtenue en retirant la ie rangée et la je colonne de M . La matrice

Laplacienne a une propriété fort intéressante : son mineur-(i, j), pour n’importe quelles rangée

i et colonne j, est égal au nombre d’arbres de recouvrement du graphe correspondant.

Theoreme 3.1.1 (Kirchhoff’s Matrix-Tree [41])

Dénotons par τ(G) le nombre d’arbres de recouvrement du graphe G de n sommets et par Lij

le mineur-(i, j) de la matrice Laplacienne de G, pour 1 ≤ i, j ≤ n quelconques. Alors

τ(G) = |Lij|.

Conséquemment, le nombre de solutions pour la contrainte arbre de recouvrement peut

être calculé comme le déterminant d’une matrice carrée (n− 1)× (n− 1), en O(n3).

Cependant, la matrice Laplacienne est une M-matrice[25], ce qui lui donne une propriété

particulière : ses mineurs principaux sont toujours positifs[30]. Une M-matrice est définie de

la façon suivante :

A − sI − B où B = (bij) avec bij ≥ 0, pour tous 1 ≤ i, j ≤ n, et s ≥ p(B), le maximum

du moduli des vecteurs propres de B.

Un mineur principal est le déterminant d’une sous-matrice formée par le retrait de la

rangée et colonne correspondante (autrement dit, i = j). Par conséquent, si la rangée et

colonne retirées de la matrice Laplacienne sont les mêmes, nous avons :

Corollaire 3.1.1

Dénotons par τ(G) le nombre d’arbres de recouvrement du graphe G de n sommets et par Lii

le mineur-(i, i) de la matrice Laplacienne de G, pour 1 ≤ i ≤ n quelconque. Alors

τ(G) = Lii.



22

Dans notre cas, les colonnes et rangées retirées pour le calcul du mineur-(i, j) seront

toujours correspondantes (i = j). Si nous retirons la première rangée et colonne de la matrice

Laplacienne de la figure 3.5, le mineur résultant est L11 = 2× (3×2− (−1)× (−1))− (−1)×
(−1 × 2 − (−1) × 0) = 8, comme illustré à la figure 3.6, où les 8 arbres de recouvrement

possibles sont illustrés.

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

Figure 3.6 Arbres recouvrants (arêtes en rouge) présents dans le graphe 3.1

Nous sommes plutôt intéressés à calculer la densité de solution pour une arête (i, j) ∈ E.

Pour ce faire, il est possible de compter le nombre d’arbres de recouvrement qui n’utilisent

pas cette arête, τ(G \ {(i, j)}), et ensuite, diviser cette quantité par le nombre total d’arbres

de recouvrement existants dans le graphe. Le résultat est la densité de solution correspondant

à l’affectation de la valeur 0 à la variable associée à l’arête retirée (i.e. (i, j) /∈ T ) :

σ((i, j), 0, arbre de recouvrement(G, T )) =
τ(G \ {(i, j)})

τ(G)
.

Soit L′ = L(G \ {(i, j)}). Comment L′ diffère de L ? Ces deux matrices sont identiques,

sauf pour les cellules `ii, `jj, `ij, et `ji. En effet, comme nous pouvons choisir le retrait de

n’importe quelles rangées et colonnes pour calculer le mineur, nous retirons la rangée et la

colonne i. Cela nous évite de devoir modifier les cellules `ii, `ij, et `ji. Conséquemment, il

ne reste qu’à modifier une seule cellule, de la façon suivante : `′jj = `jj − 1. Donc, la valeur

présente dans cette cellule est la seule différence entre les matrices L′ et L. La mise à jour

est illustrée sur la figure 3.7, où i = 1 et j = 2. Sans les premières rangée et colonne, une

seule mise à jour est réellement nécessaire.

La formule Sherman-Morrison[40] stipule que si une matrice M ′ est obtenue à partir

d’une matrice M en remplaçant sa je colonne, (M)j, par un vecteur colonne u alors

det(M ′) = (1 + e>j M
−1(u− (M)j))det(M).

Dans notre cas, (u − (M)j) = −ej, donc l’expression de droite de l’équation précédente
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L(G) =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 L(G− (i, j)) =


2 0 −1 −1
0 1 −1 0
−1 −1 3 −1
−1 0 −1 2


Figure 3.7 Mise à jour de la matrice Laplacienne pour i = 1 et j = 2

se simplifie : (1− e>j M−1ej)det(M) = (1−m−1
jj )det(M).

Finalement, nous avons

σ((i, j), 0, arbre de recouvrement(G, T )) =
L′ii
Lii

=
(1−m−1

jj )Lii

Lii

= 1−m−1
jj ,

et évidemment

σ((i, j), 1, arbre de recouvrement(G, T )) = m−1
jj .

Calculer les densités de solutions s’avère donc très simple : pour chaque arête (i, j) adja-

cente à un sommet i, de façon à ce que j < i (respectivement j > i), la valeur correspondante

est la je (respectivement (j − 1)e, car la colonne et rangée i sont retirées) cellule sur la

diagonale de la matrice inverse de M , la sous-matrice de la matrice Laplacienne L obtenue

en enlevant la ie rangée et colonne. Répéter ces opérations pour chaque sommet d’un en-

semble recouvrant de sommets (vertex cover) permet d’obtenir la densité de solution relative

à chaque arête. Cet ensemble a une taille d’au plus n (car il y a n sommets dans le graphe),

donc l’ensemble de la procédure peut être fait en O(γn3), où gamma est dans l’ordre de O(n).

Une couverture de sommets peut être définie de la façon suivante :

Définition 3.1.2 (Couverture de sommets [11])

Dans un graphe, un sommet couvre une arête si celle-ci lui est adjacente. Une couverture de

sommet est un sous-ensemble de sommets qui couvre toutes les arêtes du graphe. La couverture

de sommet minimum est celle dont le nombre de sommets en faisant partie est le plus petit.

Trouver une telle couverture est NP-difficile.

Afin de pouvoir calculer la densité de solutions pour toutes les arêtes, il est nécessaire de

répéter le calcul pour au moins chaque sommet faisant partie de la couverture de sommets

minimum. Comme calculer cette couverture est difficile et coûteux, une couverture incluant

un plus grand nombre de sommets est utilisée, ce qui est quand même plus rapide en pratique

que de répéter le calcul pour l’ensemble des sommets du graphe.

La figure 3.8 illustre l’application de la formule de Sherman-Morrison. La valeur à la

position (2, 2) de la matrice Laplacienne originale (et (1, 1) dans la sous-matrice M , dont la
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rangée et la colonne 1 a été retirées) est mise à jour. Le vecteur colonne u, qui est identique

à la colonne (M)j, sauf pour la valeur à la position 1, vient remplacer la colonne (M)j. Ce

faisant, seule la valeur à la position (1, 1) change dans la nouvelle sous-matrice M ′, ce qui

correspond à ce que la formule Sherman-Morrison énonce.

M =

 2 −1 0
−1 3 −1

0 −1 2


u =

 1
−1

0



M ′ =

 1 −1 0
−1 3 −1

0 −1 2


Figure 3.8 Exemple d’application de la formule Sherman-Morrison

Soit M−1 la sous-matrice inversée de L, obtenue en retirant la première rangée et la

première colonne, comme illustré à la figure 3.9. En inversant cette matrice, les densités

de solutions pour les arêtes adjacentes au sommet 1 sont obtenues sur la diagonale. Si nous

portons attention à l’arête (1, 2), on remarque qu’il y a bel et bien 5 arbres recouvrants qui

incluent cette arête (en vert), comme illustré à la figure 3.10.

M−1 =

 5/8 2/8 1/8
2/8 4/8 2/8
1/8 2/8 5/8


Figure 3.9 Matrice M inversée
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4

Figure 3.10 Arbres recouvrants (en rouge et vert) incluant l’arête (1, 2)(en vert)
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3.2 Algorithme de dénombrement pour les graphes orientés

L’extension naturelle d’un arbre de recouvrement pour un graphe orienté est une arbo-

rescence. Une arborescence implique habituellement une racine, qui est définie comme suit :

Définition 3.2.1 (Racine [11])

Une racine est un sommet à partir duquel il existe au moins un chemin vers tous les autres

sommets du graphe.

Un graphe orienté peut également admettre un ou plusieurs puits.

Définition 3.2.2 (Puits [11])

Un puits est exactement l’inverse d’une racine. Pour chaque sommet, il existe au moins un

chemin les reliant au puits.

Définition 3.2.3 (Arborescence [11])

Une arborescence est un graphe orienté qui est un arbre (sans l’orientation des arcs) et qui

a une racine.

Dans nos travaux, nous considérerons les anti-arborescences, qui sont définies de la façon

suivante :

Définition 3.2.4 (Anti-arborescence [11])

Une anti-arborescence est un graphe orienté qui est un arbre (sans l’orientation des arcs) et

qui a un puits.

Nos algorithmes de dénombrement pour les graphes orientés ont été conçus pour un type

de graphe particulier : les ”sink-rooted graphs” :

Définition 3.2.5 (Sink-rooted graph [11])

Soit G = (V,E) un graphe orienté. Il peut être appelé un sink-rooted graph s’il y a un puits

s ∈ V auquel tous les autres sommets sont connectés.

Dans notre cas, le puits s aura également une boucle sur lui-même (self-loop), ce qui

implique deg+(s) = 1. Le graphe illustré à la figure 3.2 est bel et bien un ”sink-rooted graph”,

étant donné que le sommet 4, le puits, n’admet aucune arête sortante (outre la boucle) et

que chaque autre sommet a un chemin le reliant au puits.

La matrice Laplacienne est également définie pour les graphes orientés. Comme pour les

graphes non orientés, elle est formée par la soustraction de la matrice d’adjacence de G à la

matrice diagonale de degré. Pour le cas orienté, la matrice diagonale de degré ne considère que

le degré sortant des sommets. Donc, dans cette matrice, la valeur de la ie cellule correspond
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1

2 3

4
L =


2 −1 0 −1
0 2 −1 −1
0 0 1 −1
0 0 0 1


Figure 3.11 Graphe orienté et sa matrice Laplacienne correspondante

au degré sortant (deg+) du sommet i dans G. La figure 3.11 illustre un graphe orienté et sa

matrice Laplacienne correspondante.

Le mineur − (i, j) d’une matrice carrée M , dénoté Mij est le déterminant de la sous-

matrice obtenue en retirant la ie rangée et je colonne de M . La matrice Laplacienne a la

propriété suivante : son mineur-(s, s), pour la rangée et la colonne s correspondant au puits

s du graphe orienté, est égal au nombre d’anti-arborescences du graphe correspondant.

Theoreme 3.2.1 (Kirchhoff’s Matrix-Tree [41])

Soit A(G) le nombre d’anti-arborescences du graphe G ayant n sommets, dont s est un puits.

Donc,

A(G) = Lss.

Donc, le nombre de solutions respectant la contrainte anti-arborescence peut aussi être

calculé comme le déterminant d’une matrice carrée (n− 1)× (n− 1) , en O(n3).

Si nous retirons les dernières rangée et colonne (correspondant aux colonne et rangée du

puits) de la matrice Laplacienne à la figure 3.11, le mineur résultant est 2× (2× 1− (−1)×
(0))− (−1)× (0× 1− (−1)× 0) = 4. Les 4 anti-arborescences sont illustrées à la figure 3.13.

L44 =

 2 −1 0
0 2 −1
0 0 1


Figure 3.12 L44, pour le digraphe 3.2

Nous sommes intéressés par le calcul de la densité de solution pour un arc (i, j) ∈ E.

Comme pour le cas non orienté, une façon de calculer la densité de solution est de compter

le nombre d’anti-arborescences n’utilisant pas cet arc, A(G \ {(i, j)}), et ensuite diviser ce

nombre par le nombre total d’anti-arborescences. Le résultat est la densité de solution de la
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1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

Figure 3.13 Anti-arborescences (arcs en rouge) présentes dans le digraphe 3.2

variable correspondante à laquelle une valeur de 0 (i.e. (i, j) /∈ A) est affectée :

σ((i, j), 0, Anti-arborescence(G,A)) =
A(G \ {(i, j)})

A(G)
.

Nous pouvons donc dériver la densité de solution pour le cas orienté. Soit L′ = L(G \
{(i, j)}). Pour le cas orienté, L et L′ sont identiques sauf pour les celllules `ii et `ij. Les

changements sont donc localisés sur une seule rangée, tel qu’illustré par la figure 3.14, où

i = 1 et j = 2.

L(G) =


2 −1 0 −1
0 2 −1 −1
0 0 1 −1
0 0 0 1

 L(G− {i, j}) =


1 0 0 −1
0 2 −1 −1
0 0 1 −1
0 0 0 1


Figure 3.14 Mise à jour de la matrice Laplacienne pour i = 1 et j = 2

Comme tous les changements sont localisés dans une seule rangée de M , nous transposons

la matrice (son déterminant reste invariant après une transposition) et appliquons la formule

Sherman-Morrison comme auparavant :

det(M ′) = (1 + e>i (M−1)>(u− (M)i)
>)det(M>).

Il y a deux cas possibles. Dans le premier, la destination de l’arc est un sommet quelconque.

Dans le deuxième, la destination du sommet est le puits.

Dans le premier cas, (u − (M)i)
> = ej − ei donc l’expression de droite de l’équation

précédente se simplifie à

(1 + e>i (M>)−1(ej − ei))det(M)

et ensuite
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(1 + e>i (M>)−1(ej) + (1 + e>i (M>)−1)(−ei))det(M)

.

En simplifiant, nous obtenons :

(1 + (m>ij)
−1 − (m>ii)

−1)det(M) = (1 +m−1
ji −m−1

ii )det(M)

.

Donc finalement, nous avons

σ((i, j), 0, Anti-Arborescence(G,A)) =
L′ss
Lss

=
(1 +m−1

ji −m−1
ii )Lii

Lii

= 1 +m−1
ji −m−1

ii ,

et évidemment

σ((i, j), 1, Anti-asrborescence(G,A)) = m−1
ii −m−1

ji .

Dans le deuxième cas, (u− (M)i)
> = −ei donc l’expression de droite de l’équation précé-

dente se simplifie à

(1 + e>i (M>)−1(−ei))det(M)

et ensuite

(1 + e>i (M>)−1(−ei))det(M)

.

En simplifiant, nous obtenons :

(1− (m>ii)
−1)det(M) = (1−m−1

ii )det(M)

.

Donc finalement, nous avons

σ((i, j), 0, Anti-arborescence(G,A)) =
L′ss
Lss

=
(1−m−1

ii )Lii

Lii

= 1−m−1
ii ,

et évidemment

σ((i, j), 1, Anti-arborescence(G,A)) = m−1
ii .

Voici un exemple d’application de la formule Sherman-Morrison, pour le cas orienté, à la
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figure 3.15.

Supposons j = 2

M =

 2 −1 0
0 2 −1
0 0 1


u =

(
1 0 0

)

M ′ =

 1 0 0
0 2 −1
0 0 1


Figure 3.15 Exemple d’application de la formule Sherman-Morrison

Calculer la densité de solution pour la contrainte d’anti-arborescence s’avère aussi simple

que pour la contrainte d’arbre de recouvrement.

Exemple 3.1

Soit M la sous-matrice de L obtenue en retirant la dernière colonne et rangée, comme à la

figure 3.12. Alors

M−1 =

 1/2 1/4 1/4

0 1/2 1/2

0 0 1


Et la densité pour l’arc (1, 2) est simplement : m−1

11 −m−1
21 = 1

2
− 0 = 1

2
. Pour un arc dirigé

vers le puits, l’arc (2, 4), nous avons : m−1
22 = 1

2
.

La figure 3.16 illustre quelles anti-arborescences incluent l’arc (1, 2) (en vert, première

rangée) et l’arc (2, 4) (en jaune, deuxième rangée).

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

Figure 3.16 Anti-arborescences du digraphe de la figure 3.2, incluant l’arc (1, 2) (vert, pre-
mière rangée) et l’arc (2, 4) (jaune, deuxième rangée)
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CHAPITRE 4

MISE EN OEUVRE

Dans ce chapitre, les détails nécessaires à la mise en oeuvre des heuristiques de branche-

ment basées sur le dénombrement sont abordés. Dans la section 4.1, les modèles et contraintes

nécessaires à la recherche de STAs contraints sont détaillés. Dans la section 4.2, l’intégration

des algorithmes de dénombrement à la recherche est expliquée. Enfin, dans la section 4.3,

quelques problèmes reliés à l’implémentation et leur solution sont donnés.

4.1 Modèles et contraintes

Dans cette section, les détails relatifs à la modélisation des STAs sont donnés. Pour tous

nos modèles, nos structures de données sont réversibles, afin qu’elles puissent être restaurées

lors d’un backtrack. La librairie Ilog[1], utilisée pour modéliser les STAs, propose des variables

de type IlcRev, qui conservent en mémoire toutes les valeurs prises par les éléments de la

structure. Lorsqu’un backtrack est nécessaire, les structures retrouvent automatiquement

l’état qu’elles avaient au moment où la décision de branchement est revue. Donc, aucun

calcul n’est nécessaire pour restaurer les structures de données à l’état approprié.

Dans la sous-section 4.1.1, les modèles utilisés pour décrire les arbres de recouvrement

contraints sont abordés. Dans la sous-section 4.1.2, les modèles pour résoudre les problèmes

d’anti-arborescence sont décrits.

4.1.1 Cas non orienté

De façon générale, un arbre de recouvrement est représenté par l’ensemble des arêtes qui

le constitue. Nous utilisons donc un vecteur de variables binaires, où chaque arête possible

est représentée. Conséquemment, notre vecteur a une taille de n2, où n est le nombre de

sommets du graphe. Conséquemment, ce vecteur est symétrique, car pour chaque arête, il

y a deux cellules dédiées, étant donné que chaque arête est représentée comme adjacente

aux deux sommets qu’elle relient. Nous indiquons qu’une variable est requise par l’arbre de

recouvrement par la valeur 1, tandis qu’une arête inexistante ou interdite est représentée par

la valeur 0. Le tableau de variables est initialisé en fonction du graphe dans lequel un arbre

de recouvrement est recherché.

Une solution au problème correspond au choix de n − 1 arêtes parmi celles disponibles,

sans qu’un cycle soit créé dans le graphe. Cela correspond à notre première contrainte :
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arbre de recouvrement (Spanning Tree). Cette contrainte borne d’abord le nombre d’arêtes

pouvant être choisies et garantit qu’aucun cycle ne sera formé, étant donné que le graphe

reste connexe. Pour borner le nombre d’arêtes, il suffit d’une contrainte arithmétique, qui

somme le nombre de 1 dans le tableau de variables et la compare à la borne souhaitée : n-1.

Définition 4.1.1 (Contrainte arbre de recouvrement)

Soit un graphe non orienté de n sommets. Le tableau de variables var est une matrice de

variables binaires de taille n2. La contrainte d’arbre de recouvrement prend la forme suivante :

sum(var) == n− 1

Cela signifie qu’il y aura un choix de n-1 arêtes exactement dans le graphe, ce qui forme

l’arbre de recouvrement, à condition qu’aucun cycle ne soit formé.

Prévenir la formation de cycles dans le graphe s’avère un peu plus complexe, car une

contrainte ne peut pas être utilisée directement. C’est par le filtrage que cette garantie prend

forme. Pour ce faire, les composantes connexes formées par le choix des arêtes sont conservées

en mémoire et mises à jour après chaque choix d’arête. Lorsqu’une arête est choisie, cela

implique que les deux sommets qu’elle relie entrent dans la même composante connexe.

Prévenir la formation d’un cycle revient à interdire le choix d’une arête reliant deux sommets

qui font partie de la même composante connexe. Donc, initialement, chaque sommet forme

sa propre composante connexe, dont il est l’unique représentant. Lorsqu’une arête est choisie,

les deux sommets entrent dans la même composante connexe, soit celle du plus petit sommet

(par convention). Pour joindre deux sommets dans la même composante connexe, il suffit de

parcourir le tableau de composantes connexes et de remplacer les valeurs égale à celle du plus

grand sommet par celle du plus petit sommet. Ensuite, le tableau des variables est parcouru

pour retirer les arêtes reliant deux sommets figurant dans la même composante connexe. Cela

correspond à retirer la valeur 1 du domaine de ces variables, comme illustré dans l’exemple

4.1. Le retrait des arêtes incohérentes est également fait dans la matrice Laplacienne. Le

détail de ces mises à jour est donné dans la section 4.2.1.

Exemple 4.1 (Modèle pour l’arbre de recouvrement)

Soit le graphe suivant :

1

2 3

4

Voici la matrice de variables de branchement y étant associée :
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var =


{0} {0, 1} {0, 1} {0, 1}
{0, 1} {0} {0, 1} {0}
{0, 1} {0, 1} {0} {0, 1}
{0, 1} {0} {0, 1} {0}


Étant donné qu’il y a 4 sommets, la matrice contient 16 variables binaires. Comme toutes

les arêtes excluant les ”self-loop” ((1, 1), (2, 2), (3, 3), (4, 4)), et (2, 4), puis sa symétrique

(4, 2), font partie du graphe, la matrice admet les valeurs 0 et 1 pour toutes les autres cellules.

Voici le tableau qui donne la composante connexe de chaque sommet :

cc =
(

1 2 3 4
)

Si l’arête (1, 2) est choisie, la matrice de variables de branchement sera mise à jour (cases

(1, 2) et (2, 1))et le tableau de composante connexe le sera également.

var =


{0} {1} {0, 1} {0, 1}
{1} {0} {0, 1} {0}
{0, 1} {0, 1} {0} {0, 1}
{0, 1} {0} {0, 1} {0}


cc =

(
1 1 3 4

)
Si ensuite l’arête (2, 3) est choisie, l’arête (1, 3) doit être retirée du graphe, car autrement,

les sommets 1 et 3 pourraient être directement reliés, ce qui formerait un cycle :

1

2 3

4

Conséquemment, les structures sont mises à jour de la façon suivante :

var =


{0} {1} {0} {0, 1}
{1} {0} {1} {0}
{0} {1} {0} {0, 1}
{0, 1} {0} {0, 1} {0}


cc =

(
1 1 1 4

)
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4.1.2 Cas orienté

De façon générale, tout comme pour un arbre de recouvrement, une anti-arborescence

est représentée par l’ensemble des arcs qui la constitue. Nous utilisons donc une matrice

de variables binaires, où chaque arc possible est représenté, de taille n2. Contrairement à la

matrice pour le cas non orienté, celle pour le cas orienté n’est pas symétrique, donc chaque arc

possible n’est représenté qu’une seule fois. Sa numérotation est en fonction de sa source, vers

sa destination. Comme pour le cas non orienté, nous indiquons qu’une variable est requise

par l’arborescence par la valeur 1, tandis qu’un arc inexistant ou interdit est représenté par

la valeur 0. Le tableau de variables est également initialisé en fonction du graphe dans lequel

l’anti-arborescence est recherchée.

La construction d’une anti-arborescence correspond au choix de n − 1 arcs parmi ceux

disponibles, sans qu’un cycle soit créé dans le graphe. Cela correspond à notre première

contrainte : anti-arborescence. Tout comme la contrainte d’arbre de recouvrement, cette

contrainte borne d’abord le nombre d’arcs pouvant être choisis et garantit qu’aucun cycle

ne sera formé. Pour borner le nombre d’arcs, il suffit d’une contrainte arithmétique, qui

somme le nombre de 1 dans la matrice de variables de branchement et qui compare cette

somme à la borne souhaitée.

Limiter le nombre d’arcs choisis est insuffisant pour garantir la formation d’une anti-

arborescence. Il faut également garantir qu’il n’existe qu’un seul chemin, à partir de chaque

sommet, qui atteint le puits. Une autre façon de voir cette contrainte est de limiter le degré

sortant de chaque sommet à 1. Si le degré sortant de chaque sommet est égal à 1 (sauf le puits,

qui, évidemment, n’admet aucun arc sortant), il est impossible que plusieurs chemins mènent

un sommet vers le puit, car il faut au minimum n − 1 arcs pour que chaque sommet puisse

être connecté au puit. Conséquemment, lorsqu’un arc est choisi, tous les arcs sortant de son

sommet source sont retirés la matrice de variables. Pour ce faire, il suffit de le parcourir et de

retirer 1 du domaine de tous les arcs dont le sommet source correspond à celui du sommet

choisi. Le degré sortant d’un sommet est calculé en sommant la valeur prise par tous les arcs

ayant ce sommet comme source. Comme seules les variables correspondantes aux arcs pris ont

la valeur 1, la somme des valeurs de toutes les variables partageant le même sommet source

revient à calculer le degré sortant. Pour empêcher les cycles, il faut faire appel au filtrage,

comme dans le cas non orienté. En combinant le filtrage, le degré sortant limité à un et le

nombre d’arcs choisis à n− 1, il n’y a pas de cycles ni de multiples chemins dans la solution,

ce qui en fait une anti-arborescence correcte.

Définition 4.1.2 (Contrainte anti-arborescence)

Soit un graphe orienté de n sommets. La matrice de variables binaires var est de taille n2 La
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contrainte d’anti-arborescence prend la forme suivante :

sum(var) == n− 1

Cela signifie qu’il y aura un choix de n-1 arcs exactement dans le graphe. Chaque sommet

v (excluant le puit) admet également la contrainte suivante :

deg(v) == 1 ∀v 6= s

Cela signifie qu’un seul arc peut prendre le sommet v comme source.

Le filtrage d’arcs pouvant former des cycles est fait de façon presque identique à celui

pour le cas non orienté. Tout comme pour le cas non orienté, les composantes connexes for-

mées par le choix des arcs sont conservées en mémoire et mises à jour après chaque choix

d’arc. Initialement, chaque sommet forme sa propre composante connexe, dont il est l’unique

représentant. Lorsqu’un arc est choisi, les deux sommets entrent dans la même composante

connexe, soit celle du plus grand sommet (par convention). Comme pour le cas non orienté, il

suffit de parcourir le vecteur de composantes connexes et de remplacer les valeurs correspon-

dant à l’un ou l’autre des sommets reliés par l’arc par celle du sommet le plus grand. Ensuite,

le tableau des variables est parcouru pour retirer les arcs dont la source et la destination

figurent dans la même composante connexe. Cela correspond à retirer la valeur 1 du domaine

de ces variables, comme illustré dans l’exemple 4.2. La matrice Laplacienne doit également

être cohérente. Les mises à jour nécessaires sont décrites dans la sous-section 4.2.3. Le retrait

des arêtes incohérentes est également fait dans la matrice Laplacienne, dont le détail est

donné dans la sous-section 4.2.3.

Exemple 4.2 (Modèle pour l’anti-arborescence)

Soit le graphe suivant :

1

2 3

4

Voici le tableau de variables y étant associé :

var =


{0} {0, 1} {0} {0, 1}
{0} {0} {0, 1} {0, 1}
{0, 1} {0} {0} {0, 1}
{0} {0} {0} {0}


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Le tableau n’étant pas symétrique, seuls les arcs présents apparaissent, par exemple l’arc

(0, 1), à la cellule (0, 1). Évidemment, les arcs qui seraient des ”self-loop” sont absents.

Voici le tableau qui donne la composante connexe de chaque sommet :

cc =
(

1 2 3 4
)

Si l’arête (1, 2) est choisie, les variables seront mises à jour (cellule (1, 2) dans le tableau.

Le tableau de composante connexe le sera également.

var =


{0} {1} {0} {0}
{0} {0} {0, 1} {0, 1}
{0, 1} {0} {0} {0, 1}
{0} {0} {0} {0}


cc =

(
2 2 3 4

)
Si ensuite l’arête (2, 3) est choisie, l’arête (3, 1) doit être retirée du graphe, car autrement,

les sommets 3 et 1 pourraient être directement reliés, ce qui formerait un cycle :

1

2 3

4

Conséquemment, les structures sont mises à jour de la façon suivante :

var =


{0} {1} {0} {0}
{0} {0} {1} {0}
{0} {0} {0} {0, 1}
{0} {0} {0} {0}


cc =

(
3 3 3 4

)

4.1.3 Calcul de la densité de solution

Pour mettre en place le calcul de densité de solution, il est nécessaire d’implémenter les

contraintes d’arbre de recouvrement et d’anti-arborescence. En utilisant la structure (”frame-

work”) présente dans le laboratoire, nous avons implémenté un type de contrainte particulier,

que nous avons nous-même défini, qui inclut les méthodes nécessaires au calcul de la densité

de solutions. Dans ce framework, une contrainte prend la forme d’une classe C++. Donc, la
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contrainte particulière, Countable Constraint, est une classe abstraite de laquelle toutes les

contrainte de dénombrement héritent, qui a l’interface définie à la figure 4.1.

class CountableConstraint

{

CountableConstraint()

recount();

getDensity();

}

Figure 4.1 Interface de Countable Constraint

Une contrainte de base admet un constructeur, une méthode post, qui indique quand la

propagation est appelée ainsi qu’une méthode propagate, qui effectue le filtrage approprié.

Notre type de contrainte particulier ajoute à celles-ci les méthodes recount, qui fait le dé-

nombrement de solutions puis le calcul des densités et getDensity, qui retourne la densité de

solution pour une paire variable-valeur. La figure 4.2 donne l’interface d’une contrainte qui

hérite de Countable Constraint.

class NewConstraint : CountableConstraint

{

NewConstraint()

post();

propagate();

recount();

getDensity();

}

Figure 4.2 Interface de classe héritant de Countable Constraint

Pour la contrainte d’arbre de recouvrement, les fonctions remplissent les tâches indiquées

à la définition 4.1.3 :

Définition 4.1.3 (Fonctions de la contrainte arbre de recouvrement)

Voici les fonctions et leurs tâches respectives :

– constructeur

– Initialise la matrice Laplacienne

– Calcule la couverture de sommets, qui est indispensable pour calculer la densité de

solution de chaque arête.
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– Ajoute au modèle la contrainte sur le tableau de variables, indiquant que seules n− 1

arêtes peuvent être choisies.

– post

– Indique quand la propagation doit avoir lieu, soit à chaque fois que le domaine d’une

variable est modifié. En effet, puisqu’il s’agit de variables binaires, le retrait d’une

valeur dans le domaine implique que cette variable est fixée, donc que l’arête corres-

pondante est requise ou interdite dans l’arbre.

– propagate

– Filtre des arêtes incohérentes pour éviter les cycles.

– Met à jour la matrice Laplacienne

– recount

– Calcule la densité de solution, au complet ou de façon incrémentale.

– getDensity

– Retourne la densité de solution pour une paire variable-valeur. Évite d’avoir à recal-

culer la densité à chaque fois qu’elle est requise.

La structure de la contrainte d’anti-arborescence est pratiquement identique à celle de

l’arbre de recouvrement. Pour cette contrainte, les fonctions remplissent les tâches données

par la définition 4.1.4 :

Définition 4.1.4 (Fonctions de la contrainte anto-arborescence)

Voici les fonctions et leurs tâches respectives :

– constructeur

– Initialise la matrice Laplacienne

– Ajoute au modèle la contrainte sur le tableau de variables, indiquant que seules n− 1

arêtes peuvent être choisies.

– post

– Indique quand la propagation doit avoir lieu, soit à chaque fois que le domaine d’une

variable est modifié.

– propagate

– Filtre des arcs incohérents pour éviter les cycles.

– Met à jour la matrice Laplacienne

– recount

– Calcule la densité de solution, au complet ou de façon incrémentale.

– getDensity

– Retourne la densité de solution pour une paire variable-valeur.

Comme la densité de solution doit être connue pour chaque paire variable-valeur, il est plus
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judicieux de la conserver en mémoire que de la calculer à chaque fois qu’elle est nécessaire.

Pour cette raison, une structure réversible est utilisée pour conserver la densité de solution,

sous la forme d’un tableau de nombres en points flottants.

Que cela soit pour le cas orienté ou le cas non orienté, le calcul de la densité de solution

implique une inversion de la matrice Laplacienne, comme décrit au chapitre 3. Comme la

densité de solution doit être calculée à nouveau après chaque branchement, il est impératif

que ce calcul soit le plus performant possible. Dans cette optique, nous avons utilisé la

librairie ALGLIB[7], qui gère entièrement l’inversion de matrice. Cette librairie utilise la

décomposition LU, qui est beaucoup plus rapide que l’inversion directe. Il suffit d’utiliser

les variables du format de la librairie, ce qui amène un léger surcoût, puis de faire appel à

la méthode rmatrixinverse, qui retourne la matrice inversée. Ensuite, il suffit d’utiliser les

cellules de cette matrice inversée pour obtenir les densités de solutions désirées (diagonale

pour le cas non orienté et diagonale - terme pour le cas orienté).

Pour le cas non orienté, il faut au plus n inversions de la sous-matrice Laplacienne, soit

une par sommet, afin que la rangée et la colonne y correspondant soient retirées de la La-

placienne avant l’inversion. Il est possible de réduire le nombre d’inversions en utilisant une

couverture de sommets (”vertex cover”). Il peut s’avérer coûteux de calculer la couverture

de sommets. Nous utilisons une approche heuristique qui calcule une couverture raisonnable,

mais pas nécessairement minimum, ce qui nous permet de réduire significativement le nombre

d’inversions nécessaires. Il faut également maintenir la couverture de sommets tout au long de

la recherche de solutions, car plusieurs sommets seront contractés, ce qui sera expliqué ulté-

rieurement. Une façon de faire est d’ajouter un des deux sommets contractés à la couverture

de sommets, s’il n’y est pas déjà présent. Pour le cas orienté, il suffit d’une seule inversion

de matrice par branchement, car seules les rangée et colonne correspondant au puits doivent

être retirées de la matrice Laplacienne.

4.2 Intégration à la recherche arborescente

Dans cette section, nous décrivons quelques détails d’implémentation et les problèmes

reliés à celle-ci. Au fur et à mesure que les décisions de branchement sont prises et que le

filtrage de domaine est appliqué, certaines arêtes de G seront requises dans T , tandis que

d’autres seront interdites. Ces changements doivent se refléter dans nos structures de données.

4.2.1 Mise à jour de la matrice Laplacienne, cas non orienté

Si l’arête (i, j) est interdite, elle est simplement retirée du graphe. Pour refléter ce chan-

gement dans la matrice Laplacienne, nous ajoutons un aux cellules `ij et `ji, qui représentent
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la même arête, étant donné que la matrice est symétrique. Le degré des deux sommets aux

extrémités de cette arête doit également être mis à jour, en soustrayant un aux cellules `ii et

`jj. Cette procédure est illustrée dans l’exemple 4.3.

Exemple 4.3 (Retrait d’une arête de la matrice Laplacienne, cas non orienté)

Supposons que l’arête (1, 2) est maintenant interdite pour l’arbre de recouvrement :

L =


3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

 L =


2 0 −1 −1

0 1 −1 0

−1 −1 3 −1

−1 0 −1 2



1

2 3

4 1

2 3

4

Si l’arête (i, j) est requise, nous contractons les deux sommets qu’elle relie dans le graphe

de façon à ce que (i, j) fasse implicitement partie de l’arbre de recouvrement. Contracter

deux sommets dans le graphe revient à imposer implicitement l’arête les reliant dans l’arbre

de recouvrement. Nous remplaçons les deux sommets par un seul nouveau sommet, qui sera

relié à toutes les arêtes adjacentes à l’un ou l’autre des sommets contractés. Évidemment,

l’arête reliant les deux sommets contractés est retirée du graphe.

Par convention, nous contractons toujours le sommet le plus grand vers le plus petit.

Pour mettre à jour la matrice Laplacienne, nous commençons par ajouter au sommet i toutes

les arêtes (j, k) : `ik ← `ik + `jk. Cela peut créer des arêtes multiples, ce qui n’est pas un

problème, étant donné que les densités de solution calculées sont également valables pour les

multigraphes. Le degré du sommet i, `ii, est mis à jour en conséquence. Ensuite, comme le

sommet j fusionne avec le sommet i, nous retirons toutes les arêtes y étant connectées, en

remplaçant par zéro la valeur de toutes les cellules de la rangée et colonne j. Finalement,

nous ajustons la valeur de la cellule `jj à 1, afin que les mineurs soient calculés correctement

lorsque les rangées et colonnes j sont incluses. Autrement, le mineur aurait eu une valeur

nulle, car la rangée et colonne j n’aurait inclut que des zéros. Cette procédure est illutrée

dans l’exemple 4.4.

Exemple 4.4 (Choix d’une arête dans la matrice Laplacienne, cas non orienté)

Supposons que l’arête (1, 2) est maintenant requise dans l’arbre de recouvrement. Nous contrac-

tons donc le sommet 2 avec le sommet 1.
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L =


3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

 L =


3 0 −2 −1

0 1 0 0

−2 0 3 −1

−1 0 −1 2



1

2 3

4 12

3

4

4.2.2 Mise à jour des densités de solution

Les densités de solutions vont changer au cours de la recherche et il serait utile d’éviter de

les recalculer au complet à chaque branchement. Étant donné l’inverse de la matrice M , est-il

possible de calculer incrémentalement l’inverse d’une matrice légèrement différente de M ′. La

formule Sherman-Morrison[40] révèle que si M ′ est obtenu à partir de M en remplaçant sa

ie colonne, (M)i, par un vecteur colonne u comme auparavant, alors

M ′−1 = M−1 − (M−1(u− (M)i))(e
>
i M

−1)

1 + e>i M
−1(u− (M)i)

.

Ceci peut être calculé en O(n2), car cela implique la multiplication d’un vecteur colonne de

taille n et d’une matrice de taille n2, ce qui implique de l’ordre de n2 opérations.

Dans certains cas, nous pouvons réduire cette complexité considérablement. Considérons

l’arête interdite (i, j). Pour n’importe quelle arête (i, k), dont la densité de solution a été

obtenue à partir de l’inverse de la sous-matrice dont la rangée et colonne i avaient été retirées

de L, retirer l’arête (i, j) ne change la valeur que d’une seule cellule dans la sous-matrice,

comme nous avons vu précédemment, ce qui simplifie la formule de la façon suivante :

M ′−1 = M−1 −
(M−1 · (−ej)) · (e>j ·M−1)

1−m−1
jj

= M−1 +
1

1−m−1
jj

·Q

où Q = (qhk) est une matrice (n− 1)× (n− 1) avec qhk = m−1
hj ·m

−1
jk . Comme nous n’avons

besoin que de la ke cellule sur la diagonale, m−1
kk + (m−1

kj )2/(1−m−1
jj ), la mise à jour est faite

en temps constant. L’application de cette procédure est illustrée par l’exemple 4.5. Ce qui

précède est également applicable pour n’importe quelle arête (j, k) avec la sous-matrice dont

la rangée et colonne j ont été retirées de L.

Exemple 4.5 (Mise à jour de la matrice Laplacienne, version incrémentale)

Soit le cas suivant :
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– Densité de solution pour l’arête (1, 4) est 5
8
.

– L’arête (1, 2) est interdite

– La densité de solution mise à jour : 5
8

+ (m−1
42 )2/(1−m−1

22 ) = 5
8

+ (1
8
)2/(1− 5

8
) = 2

3
.

1

2 3

4 1

2 3

4 1

2 3

4

Mettre en place cette mise à jour incrémentale est relativement complexe. Le but est

d’inverser la matrice pour le premier calcul de densité de solutions et de ne jamais réinverser

par la suite, d’apporter des changements directement à la matrice inversée. Pour ce faire, il

faut conserver la matrice inverse en mémoire, dans une structure réversible. Il faut également

conserver en mémoire tous les changements nécessaires de la matrice Laplacienne, non seule-

ment lors de branchements, mais également lorsque des arêtes sont retirées par le filtrage.

Pour ce faire, des structures de données supplémentaires, soit des vecteurs correspondants

aux vecteurs u modifiés, sont nécessaires. Lorsqu’une arête est retirée ou choisie, les change-

ments doivent être faits sur l’ensemble des matrices inverses, soit un changement par sommet

dans la couverture de sommets.

Il est également possible de faire ces mises à jour sous forme d’événements, où l’ensemble

des modifications à faire est accumulé et conservé en mémoire. Lorsqu’une densité de solution

est requise, toutes des modifications stockées sont apportées sur les matrices inverses, avant le

calcul de la densité de solution. Pour la mise en place de cette procédure, il faut des structures

qui gardent l’ensemble des modifications à faire, dans l’ordre où elles doivent être faites.

4.2.3 Mise à jour de la matrice Laplacienne, cas orienté

Comme pour le cas non orienté, si l’arête (i, j) est interdite, elle est simplement retirée du

graphe. Pour refléter ce changement dans la matrice Laplacienne, nous ajoutons 1 à la cellule

`ij uniquement, étant donné que la matrice n’est pas symétrique. Le degré du sommet source

de cet arc doit également être mis à jour, en soustrayant un à la cellule `ii. Cette procédure

est illustrée dans l’exemple 4.7.

Exemple 4.6 (Retrait d’un arc de la matrice Laplacienne, cas orienté)

Supposons que l’arête (1, 2) est maintenant interdite pour l’anti-arborescence :

L(G) =


2 −1 0 −1

0 2 −1 −1

0 0 1 −1

0 0 0 1

 L(G) =


1 0 0 −1

0 2 −1 −1

0 0 1 −1

0 0 0 1


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1

2 3

4 1

2 3

4

Comme dans le cas non orienté, lorsqu’un arc (i, j) est requis dans l’anti-arborescence,

nous le contractons dans le graphe, de façon à ce que (i, j) fasse implicitement partie de

celle-ci. Il est impératif que la contraction se fasse de la source vers la destination, car dans

la matrice Laplacienne, seuls les arcs sortant d’un sommet sont représentés. Cette réalité est

représentée dans le vecteur qui garde en mémoire les sommets contractés et dans la matrice

Laplacienne.

Pour mettre à jour la matrice Laplacienne, la rangée j demeure inchangée. Cependant,

l’ensemble des arcs qui était dirigés vers le sommet i doivent maintenant être dirigés vers j,

afin de refléter la contraction. Pour ce faire, tous les arcs dirigés vers le sommet i sont ajoutés

à ceux dirigés vers le sommet j, ce qui revient à transférer les arcs de colonne dans la matrice

Laplacienne, pour tous les sommets sauf i et j : `kj ← `kj + `ki. Comme pour le cas non

orienté, des arcs multiples peuvent être créés, ce qui n’affecte en rien la validité des densités

de solution. Ensuite, comme le sommet i fusionne avec le sommet j, nous retirons tous les arcs

sortants de i, en remplaçant par zéro la valeur de toutes les cellules des rangées et colonnes

i. Finalement, nous ajustons la valeur de la cellule `ii à 1, afin que les mineurs soient calculés

correctement lorsque la rangée et colonne i sont incluses. Autrement, comme dans le cas non

orienté, le mineur aurait eu une valeur nulle, car la rangée et colonne i n’aurait inclue que

des zéros. Cette procédure est illustrée dans l’exemple 4.7.

Exemple 4.7 (Choix d’un arc dans la matrice Laplacienne, cas orienté)

Supposons que l’arc (1, 2) est maintenant requis dans l’anti-arborescence. Nous contractons

donc le sommet 1 avec le sommet 2.

L(G) =


2 −1 0 −1

0 2 −1 −1

0 0 1 −1

0 0 0 1

 L(G) =


1 0 0 0

0 2 −1 −1

0 0 1 −1

0 0 0 1



1

2 3

4 12

3

4

Tout comme pour le cas non orienté, il est possible et moins coûteux de mettre à jour la

matrice Laplacienne de façon incrémentale. En appliquant la formule Sherman-Morrison[40],
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tel que pour le cas non orienté, la mise à jour peut être calculée en O(n2), en multipliant

le vecteur colonne de taille n par la matrice de taille n2. Il n’est cependant pas possible de

réduire cette complexité, car il faut toujours mettre à jour au minimum deux cellules. En

effet, le retrait d’un arc (i, j) affecte les cellules (i, i) et (i, j), qui doivent réduire et augmenter

leur valeur de 1, respectivement. Le choix d’un arc (i, j) implique la mise à jour de la rangée i

au complet, ainsi que celle des rangée et colonne j. Par conséquent, le gain relatif à l’ajout du

calcul incrémental pour le cas orienté est moindre par rapport à celui pour le cas non-orienté,

malgré le fait que sa mise en oeuvre soit aussi complexe.

4.3 Complications

Le fait que les densités de solutions et les valeurs dans les sous-matrices à inverser soies

conservées dans des nombres à points flottants nous a causé quelques complications, en par-

ticulier pour le cas orienté. En effet, étant donné que le calcul des densités de solutions pour

le cas orienté implique une opération entre deux valeurs de la sous-matrice inversée, il n’était

pas rare d’obtenir des densités plus petites que 0 ou plus grandes que 1, ce qui est impos-

sible et incohérent, étant donné que la densité de solution est un rapport entre le nombre

de solutions incluant un arc et le nombre total de solutions. Cette instabilité numérique est

due à une opération entre 2 nombres infiniment grands ou deux nombres infiniment petits,

en point flottant. Lorsque l’opération est faite entre ces deux nombres (typiquement une

soustraction), le résultat est légèrement imprécis. Une densité qui devrait alors prendre une

valeur de 0 prend une valeur légèrement différente (relativement à la taille des nombres sur

lesquels l’opération est faite). Ce faisant, la densité de solutions pour la paire variable-valeur

concernée est erronée, ce qui peut occasionner des branchements inadéquats et par le fait

même s’avérer fort coûteux dans la recherche de solutions. Il est donc impératif de remédier

à ce problème, sinon la qualité de l’heuristique de branchement basée sur le dénombrement

est affectée.

Une autre limite de nos approches reliée aux points flottants est le fait qu’il ne soit pas

possible d’obtenir des 0 plats (valeur en point flottant de 0 et non un nombre infiniment petit).

Parfois, une arête ne participe à aucune solution, ce qui devrait lui attribuer une densité de

solution de 0. Or, comme nous travaillons avec des structures utilisant des points flottants, un

tel 0 n’existe pas. Une valeur infiniment petite sera utilisée pour remplacer ce zéro, ce qui ne

cause pas de problème à première vue. Le problème est le suivant : au fur et à mesure que la

recherche progresse, cette valeur infiniment petite le devient de moins en moins, car l’erreur

au niveau du calcul de la matrice inverse se propage. Éventuellement, il est possible d’obtenir

des valeurs incohérentes, ce qui encore une fois peut causer des branchements inadéquats.
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Une solution à tous ces problèmes est l’introduction d’une valeur ε, qui joue le rôle de

seuil. Pour les opérations entre deux nombres de grande taille, il suffit de comparer chacun

des nombres à ε, avant de faire l’opération. Si ces nombres l’excède, la densité de solution qui

devrait résulter de l’opération entre ces deux nombres est directement fixée à zéro (nous par-

lons ici du cas de la soustraction de deux grands nombres, pour le cas orienté en particulier).

La même procédure est utilisé si des nombres infiniment petits sont rencontrés. En fixant

directement la valeur de la densité de solution, l’instabilité numérique est évitée et n’affecte

donc pas les branchements. Les imprécisions des calculs des densités qui devraient donner 0

sont également gérées de cette façon. Si la valeur de densité est inférieure à ε, la densité est

fixée à zéro.

Lors de l’implémentation des mises à jour incrémentales, nous avons également constaté

des problèmes reliés à l’instabilité numérique, qui sont eux aussi reliés à l’utilisation des points

flottants. En effet, lorsque deux calculs différents menant au même résultat sont faits à l’aide

de nombres en point flottant, il est possible qu’il y ait une légère variation au niveau des

valeurs numériques. Or, lorsque les mises à jour sont faites sur les matrices inverses, le calcul

fait n’est pas le même que si la matrice est inversée entièrement à nouveau. Conséquemment,

les valeurs dans la matrice peuvent être très légèrement différentes (une vingtaine de chiffres

derrière la virgule dans notre cas). Néanmoins, puisque l’heuristique de branchement choisit

la paire variable-valeur ayant la plus grande densité, il est possible que le branchement soit

différent, en fonction de l’approche utilisée, car l’une des paires a une densité légèrement plus

grande (alors qu’elle devrait être identique) qu’une autre. Donc, la recherche de solution, et

par extension le temps puis le nombre d’échecs, n’étaient pas exactement les mêmes pour

certains exemplaires, pour l’approche standard et incrémentale. Malgré cette différence, la

qualité des solutions et le nombre de branchement pour y arriver demeurent très semblables

pour les deux approches, ce qui n’en fait pas une complication majeure.
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CHAPITRE 5

EXPÉRIMENTATIONS ET DISCUSSION

Ce chapitre illustre l’efficacité des heuristiques de branchement basées sur le dénombre-

ment, en comparant une approche basée sur ce type d’heuristique à deux autres approches.

La section 5.1 rapporte les résultats d’expérimentations impliquant la contrainte arbre de

recouvrement, tandis que la section 5.2 fait de même pour la contrainte d’anti-arborescence.

5.1 Contrainte d’arbre de recouvrement

Pour démontrer l’efficacité de l’utilisation de la densité de solution avec la contrainte

arbre de recouvrement pour guider l’heuristique de branchement sur quelques problèmes

de STA contraints, nous avons considéré la recherche des arbres de recouvrement de degré

contraint, dans un graphe donné. Pour ce problème, un cas spécial est celui où un degré

maximum égal à 2 est imposé. Ce cas correspond à la recherche d’un chemin hamiltonien.

Nous avons généré quelques graphes avec un générateur conçu pour produire des exemplaires

avec lesquels il est difficile de trouver un chemin hamiltonien pour des algorithmes ayant

recours au backtracking [43].

Le problème d’arbre de recouvrement de degré contraint est modélisé avec la contrainte

d’arbre de recouvrement ainsi que par une série de contraintes arithmétiques, venant borner

le degré de chaque sommet. Une contrainte arithmétique est donc présente pour chaque

sommet, sommant l’ensemble des variables associées aux arêtes adjacentes à ce sommet et

bornant cette somme à la valeur souhaitée. Le modèle est illustré par l’exemple 5.1.

Exemple 5.1 (Modèle pour l’arbre de recouvrement de degré contraint)

Soit le graphe suivant :

1

2 3

4

Voici le vecteur de variables de branchement y étant associé :

var =


{0} {0, 1} {0, 1} {0, 1}
{0, 1} {0} {0, 1} {0}
{0, 1} {0, 1} {0} {0, 1}
{0, 1} {0} {0, 1} {0}


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Évidemment, la contrainte d’arbre de recouvrement est appliquée sur var. Si nous voulons

borner le degré des sommets à 2, il faut ajouter les 4 contraintes arithmétiques suivantes,

impliquant les arêtes adjacentes de chaque sommet :

– Sommet 1 : var[1, 2] + var[1, 3] + var[1, 4] ≤ 2

– Sommet 2 : var[2, 1] + var[2, 3] ≤ 2

– Sommet 3 : var[3, 1] + var[3, 2] + var[3, 4] ≤ 2

– Sommet 4 : var[4, 1] + var[4, 3] ≤ 2

Nous comparons les heuristiques de branchement suivantes : densité de solution maxi-

male (maxSD), impact-based search (IBS) et sélection de variable et valeur aléatoire (ran-

dom). L’heuristique maxSD considère l’information relative à la densité de solution de chaque

contrainte et branche sur la paire variable-valeur qui correspond à la densité de solution la

plus importante. Pour IBS, les impacts sont initialisés avec les informations du noeud racine

de l’arbre de recherche. À un noeud particulier de l’arbre de recherche, les cinq meilleures

variables en fonction des impacts approximés sont identifiées. Pour ce sous-ensemble, les im-

pacts exacts sont calculés et le branchement est fait sur la meilleure variable (impact le plus

élevé) et meilleure valeur(impact le plus bas). Cette procédure est cohérente avec ce qui est

suggéré dans la documentation de IBM ILOG solver. Pour random, nous rapportons une

moyenne de dix exécutions.

Tableau 5.1 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal à 2. Chaque ligne représente une moyenne
sur 10 exemplaires.

n maxSD IBS random

15 0.2 229.8 49.0
20 1.5 533.0 976.6
25 2.1 1772.3 5919.6
30 71.7 12517.1 91454.4
35 112.2 18405.4 139861.3

n maxSD IBS random

15 0.029 0.001 0.001
20 0.080 0.012 0.020
25 0.187 0.085 0.173
30 0.815 0.897 1.873
35 1.769 4.742 14.646

Nous avons d’abord généré des graphes aléatoires de 15, 20, 25, 30 et 35 sommets (10

exemplaires chacun). Le générateur garantit l’existence d’un chemin hamiltonien dans ces

graphes, en construisant d’abord un chemin hamiltonien dans celui-ci. Ensuite, chacune des

arêtes restantes est ajoutée ou non au graphe, en fonction d’une probabilité fixe dont la valeur

dépend de la densité souhaitée. Plus le graphe doit être dense, plus la probabilité d’ajouter

une arête sera importante. En regardant d’abord la borne de degré égal à 2, le tableau 5.1 de
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Tableau 5.2 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal à 3. Chaque ligne représente une moyenne
sur 10 exemplaires.

n maxSD IBS random

15 0.0 225.6 1.3
20 0.0 315.2 53.2
25 0.0 446.7 882.0
30 0.0 495.1 18589.8
35 0.0 566.8 20001.4

n maxSD IBS random

15 0.039 0.002 0.001
20 0.100 0.013 0.001
25 0.222 0.021 0.311
30 0.441 0.039 0.093
35 0.852 0.063 2.333

gauche indique que l’utilisation de maxSD guide efficacement la recherche vers une solution,

en faisant plusieurs ordres de grandeur de backtracks de moins que les deux autres approches.

Bien que maxSD apparaisse comme plus lente sur les petits graphes, comme indiqué par le

tableau 5.1 de droite, au fur et à mesure que les graphes grossissent, l’approche devient plus

rapide que IBS et random.

Nous nous tournons ensuite vers les arbres de recouvrement de degré maximal égal à

3. (voir tableau 5.2). Il est clairement démontré que l’utilisation de la densité de solution

pour trouver des arbres de recouvrement dans des graphes aléatoires est une approche très

efficace. Un degré maximum de 3 est beaucoup moins restrictif qu’un degré maximum de 2,

ce qui implique qu’un plus grand nombre d’arbres de recouvrement auront cette propriété.

Conséquemment, les premiers arbres trouvés satisferont toutes les contraintes. Pour tous les

graphes, l’heuristique de branchement basée sur la densité de solution trouve un arbre de

recouvrement sans backtrack, contrairement aux autres approches. Malgré le fait qu’aucun

backtrack n’est fait, maxSD demeure plus lente que IBS sur ces exemplaires étant donné que

cette dernière ne requiert que quelques centaines de backtracks.

Nous avons également généré des crossroad graphs en utilisant le même générateur de

graphe[43]. Ces graphes sont constitués de plusieurs petits sous-graphes aléatoires peu denses,

uniquement connectés les uns aux autres par des arêtes ponts (”bridges”). À la figure 5.1, les

ponts sont les arêtes (3, 4) et (6, 7). Nous avons généré 10 exemplaires de crossroad graphs

contenant 3, 4 et 5 sous-graphes et nous avons tenté d’y trouver un chemin hamiltonien (arbre

de recouvrement de degré 2). Les résultats sont présentés au tableau 5.3.

Utiliser maxSD sur ces graphes difficiles s’avère très efficace, car une solution est toujours

trouvée avec un grand nombre de backtracks en moins. Pour les exemplaires constitués de 5

sous-graphes, random n’a pas pu trouver de solution pour un seul exemplaire en 2 heures de
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Tableau 5.3 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un chemin hamiltonien dans les crossroad graphs. Chaque ligne représente une moyenne sur
10 exemplaires.

n maxSD IBS random

3 0.2 7721.9 8530.5
4 0.1 262011.7 191195.8
5 0.4 162353.0 -

n maxSD IBS random

3 0.085 0.255 0.062
4 0.280 26.379 3.674
5 0.676 586.679 -

temps de calcul. Dans ce cas , maxSD est également plus rapide que les deux autres approches,

de plusieurs ordres de grandeur.

1

2 3

4

5

6

7

8

9

Figure 5.1 Exemple de crossroad graph

Nous avons aussi testé notre approche sur 3 topologies réelles, issues d’un opérateur de

reéseau télécom européen. Le tableau 5.4 donne le nombre de sommets et d’arêtes de chaque

exemplaire. L’exemplaire b5 est de loin le plus épars et devrait donc être le plus facile, tandis

que b3 devrait être le plus difficle, étant donné son plus grand nombre de sommets et d’arêtes.

Tableau 5.4 Nombre de sommets (V) et d’arêtes(E) des trois topologies réelles

exemplaire V E

b1 45 63
b3 52 72
b5 52 58

Comme pour les graphes aléaloires, nous avons comparé les trois heuristiques de bran-

chement suivante : maxSD, IBS et random. Nous testons l’efficacité de notre approche en

cherchant des arbres de recouvrement dont le degré des sommets est restreint à 2 ou 3. Pour

random, nous rapportons une moyenne de dix exécutions.
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Tableau 5.5 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal à 3.

exemplaire maxSD IBS random

b1 0 664 3160299
b3 0 778 5351123
b5 0 626 89

n maxSD IBS random

b1 1.31 0.08 186.07
b3 3.39 0.14 410
b5 1.86 0.11 0.04

Tableau 5.6 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
un arbre de recouvrement de degré maximum égal à 2.

exemplaire maxSD IBS random

b1 - - -
b3 127 - -
b5* 28786 450440 108552

n maxSD IBS random

b1 - - -
b3 6.38 - -
b5* 877.12 85.29 9.21

Le tableau 5.5 démontre que maxSD guide rapidement vers une solution, sans aucun back-

track, tandis que IBS fait quelques backtracks et que random en fait un grand nombre, sauf

pour l’exemplaire b5, en raison de sa plus grande simplicité. Cependant, maxSD se montre

moins rapide que IBS pour ces exemplaires. Cela est expliqué par la taille des graphes im-

pliqués, qui demande un effort de calcul considérable pour obtenir la densité de solutions à

chaque branchement. Lorsque le degré est restreint à 2, le problème devient beaucoup plus

difficile, comme illustré dans le tableau 5.6. En effet, pour le premier exemplaire, b1, aucune

approche ne réussit à trouver une solution durant les 10 minutes de temps d’exécution al-

louées. Pour l’exemplaire b3, seul maxSD arrive à trouver une solution durant les 10 minutes

de temps de calcul allouées, et ce, en quelques backtracks seulement. Ce résultat indique

clairement que maxSD est une approche efficace pour les problèmes de satisfaction difficiles.

Pour l’exemplaire b5, il n’existe aucun arbre de recouvrement dont le degré des sommets est

restreint à 2. Donc, les trois approches épuisent l’ensemble de l’espace de recherche, ce qui

constitue un preuve d’optimalité. MaxSD se montre plus efficace que l’approche aléatoire,

mais également considérablement plus lente que IBS. MaxSD guide cependant mieux la re-

cherche, faisait la preuve avec le plus petit nombre de backtracks, soit un ordre de grandeur

de moins que les deux autres approches. Encore une fois, la taille du graphe explique le temps

de calcul élevé.
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5.2 Contrainte d’anti-arborescence

Pour démontrer l’efficacité de l’utilisation de la densité de solution avec la contrainte anti-

arborescence pour guider l’heuristique de branchement, nous avons considéré la recherche

d’anti-arborescences contraintes. De façon similaire au cas non orienté, l’anti-arborescence de

degré contraint peut être modélisée par la contrainte anti-aborescence accompagnée par une

contrainte arithmétique pour chaque sommet, venant borner le degré entrant de celui-ci. Le

modèle de base est illustré par l’exemple 5.2.

Exemple 5.2 (Modèle pour l’anti-arborescence de degré contraint)

Soit le graphe suivant :

1

2 3

4

Voici le tableau de variables y étant associé :

var =


{0} {0, 1} {0} {0, 1}
{0} {0} {0, 1} {0, 1}
{0, 1} {0} {0} {0, 1}
{0} {0} {0} {0}


Évidemment, la contrainte d’anti-arborescence est appliquée sur var. Si nous voulons

borner le degré entrant des sommets à 1, ils faut ajouter les 4 contraintes arithmétiques

suivantes, impliquant les arcs entrants de chaque sommet :

– Sommet 1 : var[3, 1] ≤ 1

– Sommet 2 : var[1, 2] ≤ 1

– Sommet 3 : var[2, 3] ≤ 1

– Sommet 4 : var[1, 4] + var[2, 4] + var[3, 4] ≤ 1

Pour nos expériementations, nous avons considéré la recherche de k-arborescences, définie

en 5.2.1.

Définition 5.2.1 (k-arborescence[21].)

Soit un graphe orienté G = (V,E), une racine r ∈ V , un sous-ensemble de sommets can-

didats S ⊆ V \ r de terminaux (feuilles possibles dans l’arbre) et un entier k ≤ |S|. Une

k-arborescence est une arborescence, dont la racine est r, qui a exactement k feuilles (som-

mets de degré sortant de 0) parmi S. Il ne peut pas y avoir de feuilles parmi les sommets

non-candidats. Une contrainte sur le degré des sommets dans l’arborescence est également

présente.
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Nous pouvons résoudre ce problème à l’aide de notre contrainte d’anti-arborescence, en

inversant le sens des arcs des exemplaires et en choississant la racine r comme puits s.

Nous modélisons la contrainte des k terminaux devant être choisis dans le sous-ensemble de

sommets candidats à l’aide d’une contrainte de type GCC (Global Cardinality Constraint),

qui stipule que exactement k sommets parmi ce sous-ensemble doivent avoir un degré entrant

nul. La contrainte de degré est ajoutée comme à l’exemple 5.2. Pour s’assurer que seuls les

sommets candidats puissent être des feuilles dans l’anti-arborescence, une deuxième contrainte

de type GCC est utilisée sur les sommets non candidats, les forçant à avoir un degré entrant

supérieur ou égal à 1.

Comme pour la contrainte d’arbre de recouvrement, nous utilisons les 3 topologies réelles,

que nous avons converties en graphes orientés. Pour ce faire, nous avons simplement doublé

chaque arête, pour en faire un arc dans chaque direction. Le puits choisi est toujours le dernier

sommet, soit le sommet n. Le tableau 5.7 illustre le nombre de sommets et d’arcs pour les

trois exemplaires.

Tableau 5.7 Nombre de sommets (V) et d’arcs(E) des trois topologies réelles

exemplaire V E

b1 45 126
b3 52 144
b5 52 106

Comme pour la contrainte anti-arborescence, nous considérons 3 approches, soit densité

de solution maximale (maxSD), impact-based search (IBS), et sélection de variable et valeur

aléatoire (random). Pour chacun des trois exemplaires, nous considérons 10 ensembles de

sommets candidats différents de 25 sommets, construits de façon aléatoire. Nous fixons le

puits au dernier sommet (sommet n). Pour random, nous rapportons une moyenne de dix

exécutions.

Comme illustré par le tableau 5.8, maxSD est nettement plus efficace pour les exemplaires

b1 et b3, tant au niveau du nombre de backtracks qu’au niveau du temps de calcul, qui domine

les deux autres approches de 1 à 2 ordres de grandeur. Pour l’exemplaire b5, qui est le

l’exemplaire plus facile, maxSD ne se démarque pas comme pour les deux autres exemplaires,

car elle trouve une solution avec le plus petit nombre de backtracks, mais avec un temps de

calcul semblable aux autres approches. Encore une fois, la taille du graphe impliqué et la

difficulté relativement faible de l’exemplaire sont en cause.

La 13-arborescence, dont le degré est limité à 2, est un problème plus difficile que le pro-
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Tableau 5.8 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
une 10-arborescence (k = 10) pour chaque exemplaire. Chaque ligne représente une moyenne
sur 10 exemplaires, dont les sous-ensembles de sommets candidats sont différents. Le degré
entrant maximum des sommets est de 3.

exemplaire maxSD IBS random

b1 0.2 570.0 2857.3
b3 111.7 3699.8 25080.9
b5 118.0 671.1 178.8

exemplaire maxSD IBS random

b1 0.09 0.20 0.36
b3 0.24 1.48 24.26
b5 0.22 0.29 0.10

Tableau 5.9 Nombre de backtracks (gauche) et temps en secondes (droite) avant de trouver
une 13-arborescence (k = 13) pour chaque exemplaire. Chaque ligne représente une moyenne
sur 10 exemplaires, dont les sous-ensembles de sommets candidats son différents. Le degré
maximal entrant des sommets est de 2.

exemplaire maxSD IBS random

b1 317.2 1723.6 6925.1
b3 445.4 1946.7 91613.3
b5* 258.0 639.0 254.4

exemplaire maxSD IBS random

b1 0.27 0.54 0.66
b3 0.53 0.59 10.78
b5* 0.36 0.31 0.08

blème de la 10-arboresence de degré 3. En effet, un grand nombre d’essais ont été réalisés pour

trouver des exemplaires difficiles, ce qui explique le choix de ces paramètres particuliers. Le

tableau 5.9 en témoigne, montrant un nombre de backtracks beaucoup plus important pour les

trois heuristiques. Pour les exemplaires b1 et b3, maxSD guide beaucoup mieux la recherche

de solutions, bien qu’elle ne soit pas beaucoup plus rapide que IBS. L’heuristique random

se montre très inefficace pour ces deux exemplaires, ce qui indique leur difficulté. L’exem-

plaire b5 n’admet aucune solution à ce problème, donc les trois heuristiques démontrent la

preuve d’optimalité. Comme cet exemplaire est plus facile que les deux autres, maxSD per-

forme moins bien, générant autant de backtracks et prenant plus de temps que l’heuristique

aléatoire. Il en va de même pour IBS.
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CHAPITRE 6

CONCLUSION

Les travaux proposés dans ce mémoire traitent principalement des heuristiques de bran-

chements et du dénombrement de solutions, deux aspects qui se sont révélés comme clé dans

la programmation par contraintes. Guider la recherche vers les espaces de solutions promet-

teurs en utilisant le dénombrement s’avère très efficace pour plusieurs contraintes, dont celles

étudiées dans le cadre de cette maitrise : l’arbre de recouvrement et l’anti-arborescence. Ce

chapitre se divise comme suit : la section 6.1 rappelle et résume la contribution des travaux ; la

section 6.2 expose les limitations de la contribution et la section 6.3 aborde les améliorations

possibles et les perspectives d’avenir.

6.1 Synthèse des travaux

La densité de solution, étant donné une contrainte, est un rapport qui indique, pour une

combinaison variable-valeur, la quantité de solutions auxquelles elle participe. Cette informa-

tion peut être utilisée pour guider la recherche. Pour pouvoir utiliser cette approche, il faut

un algorithme de dénombrement propre à chaque contrainte. Il existe plusieurs contraintes

pour lesquelles un tel algorithme n’a pas été conçu, notamment pour les contraintes d’arbre

de recouvrement et d’anti-arborescence.

Dans le chapitre 3, les algorithmes de dénombrement pour les contraintes d’arbre de

recouvrement et d’anti-arborescence sont expliqués. La matrice Laplacienne, pouvant être

formée à partir de la matrice d’adjacence d’un graphe, possède des propriétés intéressantes,

qui permettent son utilisation pour le calcul de densité de solution. Pour la contrainte d’arbre

de recouvrement, il est possible de calculer le déterminant de cette matrice pour obtenir

directement le nombre d’arbres de recouvrement total dans le graphe. En inversant une sous-

matrice issue de la matrice Laplacienne, le nombre d’arbres de recouvrement auxquels une

arête précise participe peut être calculé en O(n4) . Pour la contrainte d’anti-arborescence,

il est également possible de retirer de l’information de dénombrement à partir de la matrice

Laplacienne. En retirant la rangée et colonne correspondant au puit du graphe ”sink-rooted”,

le mineur de la matrice Laplacienne peut également être calculé, ce qui permet d’obtenir la

densité de solution relative à un arc. Ce calcul peut être fait en O(n3)

Dans le chapitre 4, la mise en place des algorithmes de dénombrement, leur intégration

à la recherche ainsi que les complications relatives à l’implémentation sont abordées. Tout
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d’abord, les structures de données, les variables et les contraintes nécessaires à la modélisation

des problèmes d’arbre de recouvrement et d’anti-arborescences sont détaillées. En utilisant

des structures réversibles, les calculs relatifs au backtracking peuvent être évités. En utilisant

un vecteur de variables binaires et des contraintes sur le degré entrant et sortant des sommets,

plusieurs problèmes de STA contraints peuvent être mis en place. L’inversion de la matrice

Laplacienne pour le calcul de la densité de solution peut être faite de façon efficace avec les

fonctionnalités de la librairie ALGLIB, qui utilise la décomposition LU. La densité de solution

peut être mise à jour de façon incrémentale, en utilisant la formule de Sherman-Morrison,

pour le cas non orienté et le cas orienté. En modifiant directement la matrice inversée, un

facteur n peut être retiré du calcul de la densité de solution, ce qui permet de le faire en temps

O(γn). Des complications reliées à l’utilisation de nombres en point flottant sont relevées,

expliquées et résolues.

Le chapitre 5 compare l’approche maximisant la densité de solution à chaque branchement

à d’autres approches pour démontrer son efficacité. Le problème de l’arbre de recouvrement

de degré contraint est utilisé pour la contrainte d’arbre de recouvrement. Pour les graphes non

orientés aléatoires et en particulier pour ceux composés de quelques composantes connexes

reliées par des arêtes ponts, l’approche maximisant la densité de solution se démontre la plus

efficace. Des graphes issus de topologies réelles sont également utilisés pour illustré l’effica-

cité de l’heuristique proposée. Le problème de k-arborecence est utilisé pour la contrainte

d’anti-arborescence, dans le cas orienté. En réutilisant et en adaptant les topologies réelles

précédemment utilisées, l’efficacité de l’heuristique de branchement basée sur le dénombre-

ment est à nouveau démontrée, en particulier pour les exemplaires les plus difficiles.

6.2 Limitations de la solution proposée

Bien que l’heuristique de branchement basée sur les densités de solution s’avère efficace,

elle admet certaines limitations. La plus flagrante est sans doute la mise à l’échelle. Au

fur et à mesure que le graphe à traiter grossit, la matrice à inverser grossit également. Il

est évident que l’inversion de matrice, pour des graphes d’une très grande taille (quelques

centaines de sommets), sera très coûteuse peu importe la méthode utilisée. Si le coût relatif à

l’inversion excède le bénéfice retiré du bon guidage de la recherche de solutions, il n’est plus

utile d’utiliser la densité de solution pour guider la recherche.

6.3 Améliorations futures

Comme travail futur, nous pourrions résoudre d’autres types de STAs contraints. Plu-

sieurs domaines, dont la conception de réseaux, la télécommunication et le transport ont des
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problèmes qui impliquent la recherche de STAs. Le problème de l’arbre de recouvrement de

degré contraint [28], le problème de l’arbre de recouvrement ”hop-constrained” [15] et le STA

minimum de diamètre contraint [3] en sont des exemples.

Nos travaux pourraient également avoir des applications pour les circuits Eulériens. En

effet, l’algorithme BEST[2, 44] décrit une formule qui permet de compter le nombre de cycles

Eulériens dans un graphe orienté, en temps polynomial. Or, ce calcul implique celui du nombre

d’arborescences, dont nous donnons le détail dans nos travaux. Les circuits Eulériens ont de

nombreuses applications, dont la planification de routes de déneigement ou de facteurs.

Nous planifions également d’examiner la compatibilité de la notre algorithme de densité

de solution avec des algorithmes de filtrage plus puissants développés pour les contraintes de

STA, tel que proposé dans la littérature.
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