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Abstract Immersed cylinder piles are usually modelled as immersed cantilever cylinder columns
carrying a tip mass and rotary moment of inertia. In this paper, the equations of motion of
an immersed cylinder pile along transversal modes of vibration are developed. Compressibility
of water and structural damping are included in the formulation. Natural frequencies of the
immersed pile are obtained from the developed equations using harmonic sweep frequency response
analyses. The proposed method is applied to numerical examples, and the results obtained are
shown satisfactory when compared to other numerical solutions in the literature, or to finite element
solutions and experimental data. c© 2012 The Chinese Society of Theoretical and Applied Mechanics.
[doi:10.1063/2.1202302]

Keywords vibration analysis, cylinder pile, fluid-structure interaction, sweep frequency response
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Cylinder piles are widely used as driven or drilled
piles for deep-water foundations of many offshore
infrastructures.1 The piles surrounded by water are usu-
ally modelled in seismic analyses as cantilever columns
carrying a tip mass with rotary moment of inertia,2,3

as shown in Fig. 1. Previous researches4–7 showed that
the interaction between the piles and the surrounding
water might alter the dynamic characteristics of the pile
foundation and lead to increased dynamic forces. In this
context, effective and reliable techniques are required to
analyse the frequency response of immersed piles.

The early literature devoted to the free vibrations of
cantilever columns mainly focused on the determination
of an “added mass” of water which is equivalent to the
hydrodynamic effect.8–10 These solutions are based on
the assumptions of a rigid structure and incompressible
fluid.4 Liaw and Chopra11 studied the dynamic response
of towers surrounded by water and determined the fun-
damental frequency of an immersed tower without a tip
mass using harmonic sweep frequency response (HSFR)

analysis method. Us̈ci�lowska et al.5 and Öz6 derived
eigenvalue equations corresponding to the vibrations of
partially immersed cantilever beams carrying a tip mass
and obtained analytical solutions for vibration frequen-
cies. With the fast development of computers, many nu-
merical approaches based on finite elements and bound-
ary elements were also utilized to assess fluid-structure
interaction problems.12–16

Little attention has been paid to the determination
of higher modes of vibration of cylinder piles. In this
work, an approximation is adopted to extend the equa-
tions of motion for an immersed pile in which the effects

a)Corresponding author. Email: yuan@tongji.edu.cn.

Fig. 1. Sketch of the immersed pile under study.

of higher modes of transversal vibration are included.
The HSFR method is then used to identify the natural
frequencies of the immersed pile.

As shown in Fig. 1, the cylinder pile has a total
height Hs and a radius rs. It is surrounded by an infi-
nite water domain of constant depth Hw and the whole
system is subjected to a horizontal ground motion. The
pile has a flexural rigidity EsIs and a mass per unit
length μs. M0 is the tip mass, J0 is its rotary moment
of inertia and d is the distance between the center of
gravity of the tip mass and the end of pile. The fol-
lowing assumptions are adopted: (1) the deformation
of pile is linear elastic during the excitation; (2) water
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is inviscid with its motion irrotational and small in am-
plitudes; (3) gravity surface waves are neglected and (4)
each mode of the pile vibration is independent on the
other modes.

Considering the above-mentioned assumptions, the
equation of motion of the immersed pile subjected to
ground motion üg(t) along the nth mode of vibration
can be obtained as an extension of those developed by
Liaw and Chopra11 for fundamental mode analysis of a
tower surrounded by water

Mn Ÿn(t) + 2 ξn ωn Mn Ẏn(t) + ω2
n Mn Yn(t)

= −M ′
n üg(t) − Fn(t), (1)

where ωn is the vibration frequency along the nth mode
of vibration ψn without water, Yn is the corresponding
generalized coordinate and ξn is the structural damping.
The parameters Mn, M ′

n and Fn are given by

Mn =

∫ Hs

0

μs ψn(z)2 d z, (2a)

M ′
n =

∫ Hs

0

μs ψn(z) d z, (2b)

Fn(t) =

∫ Hs

0

∫ 2π

0

ps(z, θ, t) rs cos(θ)ψn(z) d θ d z,

(2c)

in which ps(θ, z, t) denotes the hydrodynamic pressure
applied at the outer lateral surface of the cylinder pile.

Considering a harmonic ground acceleration üg(t) =
e iωt, the radial hydrodynamic pressure ps, the gener-
alized coordinate Yn(t) and its double time derivative

Ÿn(t) can be obtained as

ps(z, θ, t) = p̄s(z, θ, ω)e iωt, (3)

Yn (t) = Ȳn (ω) e iωt, (4)

Ÿn (t) = ¯̈Yn (ω) e iωt = −ω2 Ȳn (ω) e iωt. (5)

The frequency response function p̄s for hydrodynamic
pressure can be decomposed as11

p̄s(z, θ, ω) = p̄0(z, θ, ω) +

Nm∑
n=1

¯̈Yn(ω) p̄n(z, θ, ω), (6)

in which Nm is the number of modes included in the
analysis, p̄0 is the hydrodynamic pressure frequency re-
sponse functions corresponding to a rigid body motion
of the cylinder pile ψ0 = 1, and p̄n is corresponding
to mode shape ψn.11,14 The equations governing the
hydrodynamic pressures p̄0, p̄n and the corresponding
boundary conditions were given by Liaw and Chopra.11

To simplify computations in this work, we adopt
a coarse assumption stipulating that the effect of each
mode n can be isolated by neglecting the contributions
of the other modes, yielding the gross approximation

p̄s(z, θ, ω) ≈ p̄0(z, θ, ω) + ¯̈Yn(ω) p̄n(z, θ, ω). (7)

Using Eqs. (1) and (7), we show that the frequency re-

sponse function ¯̈Yn(ω) for each mode n can be expressed
as

¯̈Yn (ω) =
M ′

n + B0 (ω)

Mn

[
−1 + 2 i ξn

(ωn

ω

)
+
(ωn

ω

)]
−Bn (ω)

,

n = 1, 2, . . . , Nm, (8)

where

Bk (ω) =

∫ H

0

∫ 2π

0

p̄k (θ, z, ω) rs cos(θ)ψn (z) d θ d z,

k = 0, 1, . . . , Nm, (9)

The mode shapes ψn of the cantilevered cylinder
pile carrying a tip mass with rotary moment of inertia
can be expressed as

ψn (z) = A1 cos(anz) + A2 sin(anz) +

A3 cosh(anz) + A4 sinh(anz), (10)

where A1, A2, A3 and A4 are unknown real constants to
be determined using the following four boundary con-
ditions

ψ(0) = 0; EsIs ψ
′′′(Hs) = −ω2 ψ (Hs)M0, (11a)

ψ′(0) = 0; EsIs ψ
′′(Hs) = −ω2 ψ′ (Hs) J, (11b)

where J = J0 + M0 d
2. Substituting Eq. (10) into

Eq. (11) yields A3 = −A1, A4 = −A2 and

A2

A1
=

μs

[
cos(anHs) + cosh(anHs)

]
+ a3nJ

[
sin(anHs) + sinh(anHs)

]
a3nJ

[
cos(anHs) − cosh(anHs)

]− μs

[
sin(anHs) + sinh(anHs)

] (12)

=
μs

[
sin(anHs) − sinh(anHs)

]
+ anM0

[
cos(anHs) − cosh(anHs)

]
μs

[
cos(anHs) + cosh(anHs)

]− anM0

[
sin(anHs) − sinh(anHs)

] (13)

Equations (12) and (13) provide the parameters an

which correspond to the frequencies of the pile with-

out water. The relationship between an and the nth

frequency ωn (rad/s) is

ωn = a2n
√
EI/μs (14)
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Table 1. First three natural frequencies (rad/s) of a pile immersed in water for different tip masses M0, rotary moment of
inertia J0 and water height ratios Hw/Hs.

Hw/Hs M0/(μsHs) J0/(μsH
3
s )

HSFR proposed solution Solution from Ref. 5

ω1 ω2 ω3 ω1 ω2 ω3

1/3 0 0 6.009 37.510 104.079 6.013 37.390 103.149

1/3 0.1 0 5.075 32.821 92.599 5.006 31.690 88.641

1/3 0.5 0 3.447 28.326 83.956 3.338 27.096 81.500

1/3 0 0.1 4.255 11.987 51.876 4.255 11.987 51.652

1/3 0 0.5 2.301 10.035 51.411 2.301 10.025 51.189

1/3 0.1 0.5 2.246 9.165 47.739 2.239 9.178 47.612

1/3 0.5 0.1 3.004 10.964 43.662 2.926 11.163 43.885

1/3 0.5 0.5 2.052 7.408 42.716 2.026 7.486 42.661

2/3 0 0 5.980 36.718 102.434 5.947 36.171 101.604

2/3 0.5 0 3.428 27.455 82.507 3.327 26.179 80.208

2/3 0 0.5 2.292 9.925 50.115 2.299 9.868 49.670

2/3 0.5 0.5 2.044 7.312 41.167 2.024 7.436 41.115

Table 2. Fundamental frequency (rad/s) of cylinder pile
tested in water with different levels.

Hw/Hs Experiment17 HSFR FEM

0 130.4 130.6 132.1

0.8 115.0 116.8 114.4

0.95 107.4 105.5 102.3

1.0 99.9 100.8 97.4

The mode shapes ψn can be obtained by introducing
the values of an into Eq. (10).

The natural frequencies of the pile-water system are
obtained next using a harmonic sweep frequency re-
sponse (HSFR) analysis. Equation (8) is first solved in
the time domain for harmonic ground accelerations with
forcing frequency covering the range 0 to 2ωn, where
ωn is the nth natural frequency of the dry pile com-
puted from Eqs. (11)–(14). An acceleration frequency
response such as the one illustrated in Fig. 2 is then
determined and the nth natural frequency ω′

n of the
immersed pile is obtained as the frequency value corre-
sponding to the resonant peak.

Two numerical examples are presented next to val-
idate the proposed method. We first consider the case
of a cylinder pile of diameter 0.3 m, length 15 m and
d 5 m described in Ref. 5. The mass density of the
pile is ρs = 7 850 kg/m

3
and its modulus of elasticity is

Es = 20.68 GPa. Table 1 shows the first three frequen-
cies of the immersed pile obtained using the proposed
HSFR method for different tip masses M0, rotary mo-
ment of inertia J0 and water height ratios Hw/Hs. The
table also contains the results obtained using an semi-
analytical method developed in Ref. 5. It is seen that
the HSFR yields satisfactory results and the differences
stem mainly from the gross approximation adopted in
Eq. (7).

The second example is a vibration test on a pile

Fig. 2. Sweep frequency response curve of structural accel-
eration at mid-point of the immersed pile.

Fig. 3. Finite element model.

foundation-water system described in Ref. 17. The pile
specimen is fixed within a cylindrical basin with a di-
ameter 1 m and a height 0.63 m. The cylinder pile has
a radius rs = 0.0146 m, height Hs = 0.55 m, a modulus
of elasticity Es = 2.44 GPa and μs = 0.696 g/m. No
tip mass is concentrated at the top of the pile. Water
depths Hw of 0 m, 0.44 m, 0.52 m and 0.55 m are con-
sidered.
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For purpose of validation, a finite element model is
built in ADINA16 as shown in Fig. 3. It consists of
20-node three-dimensional (3D) solid and 3D potential-
based fluid elements. Fluid - structure interface ele-
ments are used to simulate the water - pile interaction.
Free surface interface elements are placed on the top of
the potential-based fluid elements to prescribe the zero
pressure and free displacement conditions. The surface
of water is modeled using rigid-wall interface elements,
which are adopted to consider the wave reflection effect.
The natural frequencies determined using the proposed
HSFR method are compared to those obtained from ex-
perimental testing and finite element method in Table 2.

When Hw = Hs, the natural frequency of the vi-
brating pile can also be obtained using an added mass
method described in Ref. 10, which yields a natural fre-
quency of 99.9 rad/s.

It is again observed that the HSFR method gives
very satisfactory results compared with the experimen-
tal data, finite element and added mass solutions. As
expected, decreasing water height leads to an increase
in the natural frequencies because of the lower added
mass.
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